
man pages section 3: Library
Functions

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part No: 816–1057–10
November 2001

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

011029@2471

Contents

Preface 15

Introduction 21

Intro(3) 22

Introduction to Library Functions 37

accept(3SOCKET) 38

adornfc(3TSOL) 40

auditwrite(3TSOL) 42

au_preselect(3BSM) 54

auth_set_to_str(3TSOL) 56

auth_to_str(3TSOL) 57

au_user_mask(3BSM) 58

aw_errno(3TSOL) 60

aw_geterrno(3TSOL) 62

aw_perror(3TSOL) 64

aw_perror_r(3TSOL) 66

aw_strerror(3TSOL) 68

bclearhigh(3TSOL) 70

bclearlow(3TSOL) 72

bcleartoh(3TSOL) 74

bcleartoh_r(3TSOL) 76

bcleartos(3TSOL) 78

bclearundef(3TSOL) 81

bclearvalid(3TSOL) 83

3

bclhigh(3TSOL) 85

bcllow(3TSOL) 87

bcltobanner(3TSOL) 89

bcltoh(3TSOL) 92

bcltoh_r(3TSOL) 94

bcltos(3TSOL) 96

bcltosl(3TSOL) 99

bclundef(3TSOL) 100

bind(3SOCKET) 102

blcompare(3TSOL) 104

bldominates(3TSOL) 105

blequal(3TSOL) 106

blinrange(3TSOL) 107

blinset(3TSOL) 108

blmanifest(3TSOL) 110

blmaximum(3TSOL) 112

blminimum(3TSOL) 113

blminmax(3TSOL) 114

blportion(3TSOL) 115

blstrictdom(3TSOL) 116

bltocolor(3TSOL) 117

bltocolor_r(3TSOL) 119

bltos(3TSOL) 121

bltype(3TSOL) 124

blvalid(3TSOL) 125

bslhigh(3TSOL) 127

bsllow(3TSOL) 129

bsltoh(3TSOL) 131

bsltoh_r(3TSOL) 133

bsltos(3TSOL) 135

bslundef(3TSOL) 138

bslvalid(3TSOL) 140

btohex(3TSOL) 142

chkauth(3TSOL) 144

chkauthattr(3SECDB) 145

clnt_call(3NSL) 148

clnt_control(3NSL) 152

4 man pages section 3: Library Functions • November 2001

clnt_create(3NSL) 158

clnt_create_timed(3NSL) 164

clnt_create_vers(3NSL) 170

clnt_create_vers_timed(3NSL) 176

clnt_destroy(3NSL) 182

clnt_dg_create(3NSL) 188

clnt_freeres(3NSL) 194

clnt_geterr(3NSL) 198

clnt_pcreateerror(3NSL) 202

clnt_perrno(3NSL) 208

clnt_perror(3NSL) 212

clnt_raw_create(3NSL) 216

clnt_spcreateerror(3NSL) 222

clnt_sperrno(3NSL) 228

clnt_sperror(3NSL) 232

clnt_tli_create(3NSL) 236

clnt_tp_create(3NSL) 242

clnt_tp_create_timed(3NSL) 248

clnt_vc_create(3NSL) 254

clock_getres(3RT) 260

clock_gettime(3RT) 262

clock_settime(3RT) 264

dn_comp(3RESOLV) 266

dn_expand(3RESOLV) 272

door_create(3DOOR) 278

door_tcred(3DOOR) 280

endac(3BSM) 282

endauclass(3BSM) 284

endauevent(3BSM) 286

endauthattr(3SECDB) 289

endauuser(3BSM) 292

endexecattr(3SECDB) 294

endprofattr(3SECDB) 298

endprofent(3TSOL) 300

endprofstr(3TSOL) 301

enduserattr(3SECDB) 302

enduserent(3TSOL) 304

Contents 5

endutent(3C) 305

endutxent(3C) 308

fp_resstat(3RESOLV) 312

free_authattr(3SECDB) 318

free_auth_set(3TSOL) 321

free_execattr(3SECDB) 322

free_profattr(3SECDB) 326

free_profent(3TSOL) 328

free_profstr(3TSOL) 329

free_userattr(3SECDB) 330

free_userent(3TSOL) 332

ftw(3C) 333

getacdir(3BSM) 338

getacflg(3BSM) 340

getacinfo(3BSM) 342

getacmin(3BSM) 344

getacna(3BSM) 346

getauclassent(3BSM) 348

getauclassent_r(3BSM) 350

getauclassnam(3BSM) 352

getauclassnam_r(3BSM) 354

getauditflags(3BSM) 356

getauditflagsbin(3BSM) 357

getauditflagschar(3BSM) 358

getauevent(3BSM) 359

getauevent_r(3BSM) 362

getauevnam(3BSM) 365

getauevnam_r(3BSM) 368

getauevnonam(3BSM) 371

getauevnum(3BSM) 374

getauevnum_r(3BSM) 377

getauthattr(3SECDB) 380

getauthnam(3SECDB) 383

get_auth_text(3TSOL) 386

getauuserent(3BSM) 387

getauusernam(3BSM) 389

getcsl(3TSOL) 391

6 man pages section 3: Library Functions • November 2001

getexecattr(3SECDB) 392

getexecprof(3SECDB) 396

getexecuser(3SECDB) 400

getfauditflags(3BSM) 404

getpeerinfo(3TSOL) 405

get_priv_text(3TSOL) 407

getprofattr(3SECDB) 409

getprofent(3TSOL) 411

getprofentbyname(3TSOL) 412

getprofnam(3SECDB) 413

getprofstr(3TSOL) 415

getprofstrbyname(3TSOL) 416

getsockopt(3SOCKET) 417

getuserattr(3SECDB) 420

getuserent(3TSOL) 422

getuserentbyname(3TSOL) 423

getuserentbyuid(3TSOL) 424

getusernam(3SECDB) 425

getuseruid(3SECDB) 427

getutent(3C) 429

getutid(3C) 432

getutline(3C) 435

getutmp(3C) 438

getutmpx(3C) 442

getutxent(3C) 446

getutxid(3C) 450

getutxline(3C) 454

getvfsaent(3TSOL) 458

getvfsafile(3TSOL) 460

grantpt(3C) 462

h_alloc(3TSOL) 463

herror(3RESOLV) 465

hextob(3TSOL) 471

h_free(3TSOL) 472

hstrerror(3RESOLV) 474

htobcl(3TSOL) 480

htobclear(3TSOL) 481

Contents 7

htobsl(3TSOL) 482

initgroups(3C) 483

kstat_read(3KSTAT) 484

kstat_write(3KSTAT) 485

kva_match(3SECDB) 486

labelbuilder(3TSOL) 487

labelclipping(3TSOL) 492

labelinfo(3TSOL) 494

labelvers(3TSOL) 496

libt6(3NSL) 498

listen(3SOCKET) 502

match_execattr(3SECDB) 503

mldgetcwd(3TSOL) 507

mldlstat(3TSOL) 509

mldrealpath(3TSOL) 510

mldrealpathl(3TSOL) 512

mldstat(3TSOL) 514

mlock(3C) 515

mlockall(3C) 517

munlock(3C) 519

munlockall(3C) 521

nftw(3C) 523

nis_add(3NSL) 528

nis_add_entry(3NSL) 534

nis_addmember(3NSL) 542

nis_checkpoint(3NSL) 545

nis_creategroup(3NSL) 547

nis_destroygroup(3NSL) 550

nis_first_entry(3NSL) 553

nis_freeresult(3NSL) 561

nis_freeservlist(3NSL) 567

nis_freetags(3NSL) 569

nis_getservlist(3NSL) 571

nis_groups(3NSL) 573

nis_ismember(3NSL) 576

nis_list(3NSL) 579

nis_lookup(3NSL) 587

8 man pages section 3: Library Functions • November 2001

nis_mkdir(3NSL) 593

nis_modify(3NSL) 595

nis_modify_entry(3NSL) 601

nis_names(3NSL) 609

nis_next_entry(3NSL) 615

nis_ping(3NSL) 623

nis_print_group_entry(3NSL) 625

nis_remove(3NSL) 628

nis_remove_entry(3NSL) 634

nis_removemember(3NSL) 642

nis_rmdir(3NSL) 645

nis_server(3NSL) 647

nis_servstate(3NSL) 649

nis_stats(3NSL) 651

nis_tables(3NSL) 653

nis_verifygroup(3NSL) 661

plock(3C) 664

priv_set_to_str(3TSOL) 665

priv_to_str(3TSOL) 667

putprofstr(3TSOL) 669

pututline(3C) 670

pututxline(3C) 673

randomword(3TSOL) 677

res_hostalias(3RESOLV) 679

res_init(3RESOLV) 685

res_mkquery(3RESOLV) 691

res_nclose(3RESOLV) 697

res_ninit(3RESOLV) 703

res_nmkquery(3RESOLV) 709

res_npquery(3RESOLV) 715

res_nquery(3RESOLV) 721

res_nquerydomain(3RESOLV) 727

res_nsearch(3RESOLV) 733

res_nsend(3RESOLV) 739

res_nsendsigned(3RESOLV) 745

resolver(3RESOLV) 751

res_query(3RESOLV) 757

Contents 9

res_search(3RESOLV) 763

res_send(3RESOLV) 769

rpc(3NSL) 775

rpcb_getaddr(3NSL) 784

rpcb_getallmaps(3NSL) 787

rpcb_getmaps(3NSL) 790

rpcb_gettime(3NSL) 793

rpcbind(3NSL) 796

rpcb_rmtcall(3NSL) 799

rpc_broadcast(3NSL) 802

rpc_broadcast_exp(3NSL) 806

rpcb_set(3NSL) 810

rpcb_unset(3NSL) 813

rpc_call(3NSL) 816

rpc_clnt_calls(3NSL) 820

rpc_clnt_create(3NSL) 824

rpc_createerr(3NSL) 830

rpc_reg(3NSL) 836

rpc_svc_calls(3NSL) 839

rpc_svc_create(3NSL) 844

rpc_svc_reg(3NSL) 848

sbcleartos(3TSOL) 851

sbcltos(3TSOL) 853

sbltos(3TSOL) 855

sbsltos(3TSOL) 857

send(3SOCKET) 859

sendmsg(3SOCKET) 861

sendto(3SOCKET) 863

setac(3BSM) 865

setauclass(3BSM) 867

setauevent(3BSM) 869

setauthattr(3SECDB) 872

setauuser(3BSM) 875

setbltype(3TSOL) 877

setcsl(3TSOL) 878

set_effective_priv(3TSOL) 879

setexecattr(3SECDB) 881

10 man pages section 3: Library Functions • November 2001

set_inheritable_priv(3TSOL) 885

set_permitted_priv(3TSOL) 887

setprofattr(3SECDB) 889

setprofent(3TSOL) 891

setprofstr(3TSOL) 892

setsockopt(3SOCKET) 893

setuserattr(3SECDB) 896

setuserent(3TSOL) 898

setutent(3C) 899

setutxent(3C) 902

socket(3SOCKET) 906

stobcl(3TSOL) 909

stobclear(3TSOL) 912

stobl(3TSOL) 915

stobsl(3TSOL) 918

str_to_auth(3TSOL) 921

str_to_auth_set(3TSOL) 922

str_to_priv(3TSOL) 923

str_to_priv_set(3TSOL) 925

svc_auth_reg(3NSL) 927

svc_control(3NSL) 930

svc_create(3NSL) 934

svc_destroy(3NSL) 938

svc_dg_create(3NSL) 942

svc_dg_enablecache(3NSL) 946

svc_done(3NSL) 951

svc_exit(3NSL) 956

svc_fd_create(3NSL) 961

svc_fdset(3NSL) 965

svc_freeargs(3NSL) 970

svc_getargs(3NSL) 975

svc_getreq_common(3NSL) 980

svc_getreq_poll(3NSL) 985

svc_getreqset(3NSL) 990

svc_getrpccaller(3NSL) 995

svc_max_pollfd(3NSL) 1000

svc_pollfd(3NSL) 1005

Contents 11

svc_raw_create(3NSL) 1010

svc_reg(3NSL) 1014

svc_run(3NSL) 1017

svc_sendreply(3NSL) 1022

svc_tli_create(3NSL) 1027

svc_tp_create(3NSL) 1031

svc_unreg(3NSL) 1035

svc_vc_create(3NSL) 1038

t6alloc_blk(3NSL) 1042

t6attr_query(3NSL) 1043

t6clear_blk(3NSL) 1044

t6cmp_blk(3NSL) 1045

t6copy_blk(3NSL) 1046

t6dup_blk(3NSL) 1047

t6ext_attr(3NSL) 1048

t6free_blk(3NSL) 1049

t6get_attr(3NSL) 1050

t6get_endpt_default(3NSL) 1052

t6get_endpt_mask(3NSL) 1054

t6last_attr(3NSL) 1056

t6new_attr(3NSL) 1057

t6peek_attr(3NSL) 1058

t6recvfrom(3NSL) 1059

t6sendto(3NSL) 1061

t6set_attr(3NSL) 1063

t6set_endpt_default(3NSL) 1065

t6set_endpt_mask(3NSL) 1067

t6size_attr(3NSL) 1069

t_accept(3NSL) 1070

t_bind(3NSL) 1074

t_optmgmt(3NSL) 1078

t_snd(3NSL) 1084

t_sndudata(3NSL) 1088

tsol_lbuild_create(3TSOL) 1091

tsol_lbuild_destroy(3TSOL) 1096

tsol_lbuild_get(3TSOL) 1101

tsol_lbuild_set(3TSOL) 1106

12 man pages section 3: Library Functions • November 2001

updwtmp(3C) 1111

updwtmpx(3C) 1115

utmpname(3C) 1119

utmpxname(3C) 1122

Xbcleartos(3TSOL) 1126

Xbcltos(3TSOL) 1128

Xbsltos(3TSOL) 1130

xprt_register(3NSL) 1132

xprt_unregister(3NSL) 1135

XTSOLgetClientAttributes(3) 1138

XTSOLgetPropAttributes(3) 1139

XTSOLgetPropLabel(3) 1140

XTSOLgetPropUID(3) 1141

XTSOLgetResAttributes(3) 1142

XTSOLgetResLabel(3) 1143

XTSOLgetResUID(3) 1144

XTSOLgetSSHeight(3) 1145

XTSOLgetWorkstationOwner(3) 1146

XTSOLIsWindowTrusted(3) 1147

XTSOLMakeTPWindow(3) 1148

XTSOLsetPolyInstInfo(3) 1149

XTSOLsetPropLabel(3) 1150

XTSOLsetPropUID(3) 1151

XTSOLsetResLabel(3) 1152

XTSOLsetResUID(3) 1153

XTSOLsetSessionHI(3) 1154

XTSOLsetSessionLO(3) 1155

XTSOLsetSSHeight(3) 1156

XTSOLsetWorkstationOwner(3) 1157

XTSOLShutdown(3) 1158

Index 1159

Contents 13

14 man pages section 3: Library Functions • November 2001

Preface

Overview
A man page is provided for both the naive user and the sophisticated user who is
familiar with the Trusted Solaris operating environment and is in need of online
information. A man page is intended to answer concisely the question “What does it
do?” The man pages in general comprise a reference manual. They are not intended to
be a tutorial.

Trusted Solaris Reference Manual
In the AnswerBook2™ and online man command forms of the man pages, all man
pages are available:

� Trusted Solaris man pages that are unique for the Trusted Solaris environment

� SunOS 5.8 man pages that have been changed in the Trusted Solaris environment

� SunOS 5.8 man pages that remain unchanged.

The printed manual, the Trusted Solaris 8 Reference Manual contains:

� Man pages that have been added to the SunOS operating system by the Trusted
Solaris environment

� Man pages that originated in SunOS 5.8, but have been modified in the Trusted
Solaris environment to handle security requirements.

Users of printed manuals need both manuals in order to have a full set of man pages,
since the SunOS 5.8 Reference Manual contains the common man pages that are not
modified in the Trusted Solaris environment.

15

Man Page Sections
The following contains a brief description of each section in the man pages and the
information it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2 of
this volume.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character set tables.

� Section 6 contains available games and demos.

� Section 7 describes various special files that refer to specific hardware peripherals,
and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

� Section 9 provides reference information needed to write device drivers in the
kernel operating systems environment. It describes two device driver interface
specifications: the Device Driver Interface (DDI) and the Driver⁄Kernel Interface
(DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer may include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.

� Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME
This section gives the names of the commands or functions documented, followed
by a brief description of what they do.

SYNOPSIS
This section shows the syntax of commands or functions. When a command or file
does not exist in the standard path, its full pathname is shown. Options and

16 man pages section 3: Library Functions • November 2001

arguments are alphabetized, with single letter arguments first, and options with
arguments next, unless a different argument order is required.

The following special characters are used in this section:

[] The option or argument enclosed in these brackets is optional. If the
brackets are omitted, the argument must be specified.

. . . Ellipses. Several values may be provided for the previous argument, or
the previous argument can be specified multiple times, for example, ‘
"filename . . ." .

| Separator. Only one of the arguments separated by this character can be
specified at a time.

{ } Braces. The options and/or arguments enclosed within braces are
interdependent, such that everything enclosed must be treated as a unit.

PROTOCOL
This section occurs only in subsection 3R to indicate the protocol description file.

DESCRIPTION
This section defines the functionality and behavior of the service. Thus it describes
concisely what the command does. It does not discuss OPTIONS or cite
EXAMPLES. Interactive commands, subcommands, requests, macros, functions and
such, are described under USAGE.

IOCTL
This section appears on pages in Section 7 only. Only the device class which
supplies appropriate parameters to the ioctl (2) system call is called ioctl and
generates its own heading. ioctl calls for a specific device are listed alphabetically
(on the man page for that specific device). ioctl calls are used for a particular
class of devices all of which have an io ending, such as mtio(7I)

OPTIONS
This secton lists the command options with a concise summary of what each option
does. The options are listed literally and in the order they appear in the SYNOPSIS
section. Possible arguments to options are discussed under the option, and where
appropriate, default values are supplied.

OPERANDS
This section lists the command operands and describes how they affect the actions
of the command.

OUTPUT
This section describes the output – standard output, standard error, or output files –
generated by the command.

RETURN VALUES
If the man page documents functions that return values, this section lists these
values and describes the conditions under which they are returned. If a function
can return only constant values, such as 0 or –1, these values are listed in tagged

Preface 17

paragraphs. Otherwise, a single paragraph describes the return values of each
function. Functions declared void do not return values, so they are not discussed in
RETURN VALUES.

ERRORS
On failure, most functions place an error code in the global variable errno
indicating why they failed. This section lists alphabetically all error codes a
function can generate and describes the conditions that cause each error. When
more than one condition can cause the same error, each condition is described in a
separate paragraph under the error code.

USAGE
This section lists special rules, features, and commands that require in-depth
explanations. The subsections listed here are used to explain built-in functionality:

� Commands
� Modifiers
� Variables
� Expressions
� Input Grammar

EXAMPLES
This section provides examples of usage or of how to use a command or function.
Wherever possible a complete example including command-line entry and machine
response is shown. Whenever an example is given, the prompt is shown as
example%, or if the user must be root, example#. Examples are followed by
explanations, variable substitution rules, or returned values. Most examples
illustrate concepts from the SYNOPSIS, DESCRIPTION, OPTIONS, and USAGE
sections.

ENVIRONMENT VARIABLES
This section lists any environment variables that the command or function affects,
followed by a brief description of the effect.

EXIT STATUS
This section lists the values the command returns to the calling program or shell
and the conditions that cause these values to be returned. Usually, zero is returned
for successful completion, and values other than zero for various error conditions.

FILES
This section lists all file names referred to by the man page, files of interest, and
files created or required by commands. Each is followed by a descriptive summary
or explanation.

ATTRIBUTES
This section lists characteristics of commands, utilities, and device drivers by
defining the attribute type and its corresponding value. See attributes(5) for
more information.

18 man pages section 3: Library Functions • November 2001

SUMMARY OF TRUSTED SOLARIS CHANGES
This section describes changes to a Solaris item by Trusted Solaris software. It is
present in man pages that have been modified from Solaris software.

SEE ALSO
This section lists references to other man pages, in-house documentation and
outside publications. The references are divided into two sections, so that users of
printed manuals can easily locate a man page in its appropriate printed manual.

DIAGNOSTICS
This section lists diagnostic messages with a brief explanation of the condition
causing the error.

WARNINGS
This section lists warnings about special conditions which could seriously affect
your working conditions. This is not a list of diagnostics.

NOTES
This section lists additional information that does not belong anywhere else on the
page. It takes the form of an aside to the user, covering points of special interest.
Critical information is never covered here.

BUGS
This section describes known bugs and, wherever possible, suggests workarounds.

Preface 19

20 man pages section 3: Library Functions • November 2001

Introduction

21

Intro – introduction to functions and libraries

This section describes functions found in various libraries in the Solaris and Trusted
Solaris environment, other than those functions that directly invoke UNIX system
primitives, which are described in Section 2.

These functions can be:

� Functions that are unique to and originate in the Trusted Solaris environment, such
as labelinfo(3tsol). labelinfo() gets information about security labels from
the label_encodings(4) file.

� SunOS 5.8 functions and X windows functions that have been modified to work
within the Trusted Solaris security policy, such as accept(3SOCKET). Man pages
for modified functions have been rewritten to remove information that is not
accurate for how the function behaves in the Trusted Solaris environment.
Modified man pages, such as accept(), also contain descriptions for any added
features and arguments.

� SunOS 5.8 functions that remain unchanged from the Solaris 8 release, such as
connect(3SOCKET).

Note – The printed Trusted Solaris 8 4/01 Reference Manual includes only those
functions that have been modified or originate in the Trusted Solaris environment.
This includes X Windows Library man pages, located in /usr/openwin/man/man3,
and the dtappsession.1 man page, located in /usr/dt/man/man1. Printed
versions of unchanged SunOS 5.8 man pages are found in the SunOS 5.8 Reference
Manual.

Function declarations can be obtained from the #include files indicated on each
page. Pages are grouped by library and are identified by the library name (or an
abbreviation of the library name) after the section number. Collections of related
libraries are grouped into five volumes as described below. A sixth volume (listed first)
contains pages describing the contents of each shared library and each header used by
the functions, macros, and external variables described in the remaining five volumes.

This volume describes the contents of each shared library and each header used by
functions, macros, and external variables described in the remaining five volumes.

(3LIB) The libraries described in this section are implemented as shared
objects.

Descriptions of shared objects may include a definition of the
global symbols that define the shared objects’ public interface, for
example SUNW_1.1. Other interfaces may exist within the shared
object, for example SUNW_private.1.1. The public interface
provides a stable, committed set of symbols for application
development. The private interfaces are for internal use only, and
may change at any time.

Intro(3)

NAME

DESCRIPTION

Library Interfaces
and Headers

22 man pages section 3: Library Functions • Last Revised 1 Feb 2001

For many shared objects, an archive library is provided for
backward compatibility on 32–bit systems only. Use of these
libraries may restrict an applications ability to migrate between
different Solaris releases. As dynamic linking is the preferred
compilation method on Solaris, the use of these libraries is
discouraged.

(3LIBUCB) The SunOS/BSD Compatibility libraries described in this section
are implemented as a shared object. See (3LIB) above.

(3HEAD) The headers described in this section are used by functions,
macros, and external variables. Headers contain function
prototypes, definitions of symbolic constants, common structures,
preprocessor macros, and defined types. Each function described
in the remaining five volumes specifies the headers that an
application must include in order to use that function. In most
cases only one header is required. These headers are present on an
application development system; they do have to be present on the
target execution system.

The functions described in this volume are the core C library functions that are basic to
application development.

(3C) These functions, together with those of Section 2, constitute the
standard C library, libc, which is automatically linked by the C
compilation system. The standard C library is implemented as a
shared object, libc.so, and as an archive, libc.a. C programs
are linked with the shared object version of the standard C library
by default. Specify -Bstatic or -dn on the cc command line to
link with the archive version. See libc(3LIB), cc(1B) for other
overrides, and the “C Compilation System“ chapter of the ANSI C
Programmer’s Guide for a discussion. Some functions behave
differently in standard-conforming environments. This behavior is
noted on the individual manual pages. See standards(5).

Some functions in libc have been modified for the Trusted Solaris
environment. Changes in behavior or requirements are noted on
the individual man pages.

(3DL) These functions constitute the dynamic linking library, libdl.
This library is implemented as a shared object, libdl.so, but is
not automatically linked by the C compilation system. Specify
-ldl on the cc command line to link with this library. See
libdl(3LIB).

(3MALLOC) These functions constitute the various memory allocation libraries:
libmalloc, libbsdmalloc, libmapmalloc, and
libmtmalloc. Each of these libraries is implemented as a shared
object (libmalloc.so, libbsdmalloc.so, libmapmalloc.so,
and libmtmalloc.so) and all except libmtmalloc are

Intro(3)

Basic Library
Functions

Introduction 23

implemented as archives (libmalloc.a, libbsdmalloc.a,
libmapmalloc.a). These libraries are not automatically linked
by the C compilation system. Specify -lmalloc, -lbsdmalloc ,
-lmapmalloc , and -lmtmalloc to link with, respectively,
libmalloc, libbsdmalloc, libmapmalloc, and
libmtmalloc. See libmalloc(3LIB), libbsdmalloc(3LIB),
libmapmalloc(3LIB), and libmtmalloc(3LIB).

(3UCB) These functions constitute the Source Compatibility (with BSD
functions) library. It is implemented as a shared object,
libucb.so, and as an archive, libucb.a, but is not
automatically linked by the C compilation system. Specify -lucb
on the cc command line to link with this library, which is located
in the /usr/ucb subdirectory. Headers for this library are located
within /usr/ucbinclude. See libucb(3LIB).

The functions described in this volume comprise the various networking libraries.

(3GSS) The functions in this library are the routines that comprise the Generic
Security Services API library. This library is implemented as a shared
object, libgss.so.1, but it is not automatically linked by the C
compilation system. Specify -lgss on the cc command line to link
with this library. See libgss(3LIB).

(3KRB) These functions constitute the Kerberos library libkrb. This library is
implemented as a shared object, libkrb.so, and as an archive,
libkrb.a, but is not automatically linked by the C compilation
system. Specify -lkrb on the cc command line to link with this
library. See libkrb(3LIB).

(3LDAP) These functions constitute the Lightweight Directory Access Protocol
library, libldap. This library is implemented as a shared object,
libldap.so, but is not automatically linked by the C compilation
system. Specify -lldap on the cc command line to link with this
library. See ldap(3LDAP).

(3NSL) These functions constitute the Network Service Library, libnsl. The
Trusted Solaris environment modifies some Network Service Library
functions, and adds the Trusted Systems Interoperability Group (TSIG)
TSIX [RE]1.1 library, libt6. See libt6(3NSL).

libnsl.so and libt6.so are implemented as shared objects, and
libnsl.a is also specified as an archive. Neither library is
automatically linked by the C compilation system. Specify -lnsl on
the cc command line to link with the libnsl. Specify -lt6 on the cc
command line to link with the libt6 library.

Many base networking functions are also available in the X/Open
Networking Interfaces library, libxnet. See section (3XNET) below
for more information on the libxnet interfaces.

Intro(3)

Networking
Library Functions

24 man pages section 3: Library Functions • Last Revised 1 Feb 2001

(3RAC) These functions constitute the remote asynchronous calls library,
librac. This library is implemented as a shared object, librac.so,
and as an archive, librac.a, but is not automatically linked by the C
compilation system. Specify -lrac on the cc command line to link
with this library. See librac(3LIB).

(3RESOLV) These functions constitute the resolver library, libresolv. This
library is implemented as a shared object, libresolv.so, and as an
archive, libresolv.a, but is not automatically linked by the C
compilation system. Specify -lresolv on the cc command line to
link with this library. See libresolv(3LIB).

(3RPC) These functions constitute the remote procedure call libraries,
librpcsvc and librpcsoc. The latter is provided for compatibility
only; new applications should not link to it. Both libraries are
implemented as shared objects, librpcsvc.so and librpcsoc.so,
respectively, and librpcsvc is implemented as an archive,
librpcsvc.a. librt(3LIB). Neither library is automatically linked
by the C compilation system. Specify -lrpcsvc or -lrpcsoc on the
cc command line to link with these libraries. See librpcsvc(3LIB)
and librpcsoc(3LIB).

(3SLP) These functions constitute the Service Location Protocol library,
libslp. This library is implemented as a shared object,
libslp.so.1, but it is not automatically linked by the C compilation
system. See libslp(3LIB)

(3SOCKET) These functions constitute the sockets library, libsocket. This library
is implemented as a shared object, libsocket.so, and as an archive,
libsocket.a, but is not automatically linked by the C compilation
system. Specify -lsocket on the cc command line to link with this
library. See libsocket(3LIB).

(3XFN) These functions constitute the X/Open Federated Naming library,
libxfn. This library is implemented as a shared object, libxfn.so,
but is not automatically linked by the C compilation system. Specify
-lxfn on the cc command line to link with this library. See
libxfn(3LIB), xfn(3XFN), fns(5), and standards(5).

(3XNET) These functions constitute X/Open networking interfaces which
comply with the X/Open CAE Specification, Networking Services,
Issue 4 (September, 1994). This library is implemented as a shared
object, libxnet.so, but is not automatically linked by the C
compilation system. Specify -lxnet on the cc command line to link
with this library. See libxnet(3LIB) and standards(5) for
compilation information.

Under all circumstances, the use of the Sockets API is recommended over the XTI and
TLI APIs. If portability to other XPGV4v2 (see standards(5)) systems is a
requirement, the application must use the libxnet interfaces. If portability is not

Intro(3)

Introduction 25

required, the sockets interfaces in libsocket and libnsl are recommended over
those in libxnet. Between the XTI and TLI APIs, the XTI interfaces (available with
libxnet) are recommended over the TLI interfaces (available with libnsl).

The functions described in this volume comprise the libraries that provide graphics
and character screen updating capabilities.

(3CURSES) The functions constitute the following libraries:

libcurses These functions constitute the curses library,
libcurses. This library is implemented as a
shared object, libcurses.so, and as an
archive, libcurses.a, but is not
automatically linked by the C compilation
system. Specify -lcurses on the cc
command line to link with this library. See
libcurses(3LIB).

libform These functions constitute the forms library,
libform. This library is implemented as a
shared object, libform.so, and as an archive,
libforms.a, but is not automatically linked
by the C compilation system. Specify -lform
on the cc command line to link with this
library. See libform(3LIB).

libmenu These functions constitute the menus library,
libmenu. This library is implemented as a
shared object, libmenu.so, and as an archive,
libmenu.a, but is not automatically linked by
the C compilation system. Specify -lmenu on
the cc command line to link with this library.
See libmenu(3LIB).

libpanel These functions constitute the panels library,
libpanel. This library is implemented as a
shared object, libpanel.so, and as an
archive, libpanel.a, but is not automatically
linked by the C compilation system. Specify
-lpanel on the cc command line to link with
this library. See libpanel(3LIB).

(3PLOT) These functions constitute the grapnics library, libplot. This
library is implemented as a shared object, libplot.so, and as an
archive, libplot.a, but is not automatically linked by the C
compilation system. Specify -lplot on the cc command line to
link with this library. See libplot(3LIB).

(3XCURSES) These functions constitute the X/Open Curses library, located in
/usr/xpg4/lib/libcurses.so.1. This library provides a set

Intro(3)

Curses Library
Functions

26 man pages section 3: Library Functions • Last Revised 1 Feb 2001

of internationalized functions and macros for creating and
modifying input and output to a terminal screen. Included in this
library are functions for creating windows, highlighting text,
writing to the screen, reading from user input, and moving the
cursor. X/Open Curses is designed to optimize screen update
activities. The X/Open Curses library conforms fully with Issue 4
of the X/Open Extended Curses specification.

The functions described in this volume constitute the threads and realtime libraries.

(3AIO) These functions constitute the asynchronous I/O library, liaio.
This library is implemented as a shared object, libaio.so, but is
not automatically linked by the C compilation system. Specify
-laio on the cc command line to link with this library. See
libaio(3LIB).

(3DOOR) These functions constitute the doors library, libdoor. This library
is implemented as a shared object, libdoor.so, but is not
automatically linked by the C compilation system. Specify -ldoor
on the cc command line to link with this library.

The Trusted Solaris environment adds the function
door_tcred() to ldoor and modifies the door_create()
function. Changes in behavior or requirements are noted on the
individual man pages.

(3RT) These functions constitute the POSIX.4 Realtime library, librt. It
is implemented as a shared object, librt.so, but is not
automatically linked by the C compilation system. Specify -lrt
on the cc command line to link with this library. Note that the
former name for this library, libposix4, is maintained for
backward compatibility but should be avoided. See librt(3LIB)

The clock_settime() function in librt has been modified for
the Trusted Solaris environment. Changes in behavior or
requirements are noted on the man page.

(3SCHED) These functions constitute the LWP scheduling library, libsched.
This library is implemented as a shared object, libsched.so, but
is not automatically linked by the C compilation system. Specify
-lsched on the cc command line to link with this library. .

(3THR) These functions constitute the threads libraries, libpthread,
libthread, and libthread_db. The libpthread and
libthread libraries are used for building multithreaded
applications: libpthread implements the POSIX (see
standards(5)) threads interface, whereas libthread
implements the Solaris threads interface. The libthread_db
library is useful for building debuggers for multithreaded
applications.

Intro(3)

Threads and
Realtime Library

Functions

Introduction 27

Both POSIX threads and Solaris threads can be used within the
same application. Their implementations are completely
compatible with each other; however, only POSIX threads
guarantee portability to other POSIX-conforming environments.

When POSIX and Solaris threads are used in the same application,
if there are calls with the same name but different semantics, the
POSIX semantic supersedes the Solaris threads semantic. For
example, the call to fork() will imply the fork1() semantic in a
program linked with the POSIX threads library, whether or not it is
also linked with -lthread (Solaris threads).

The libpthread, libthread, and libthread_db libraries are
implemented as shared objects, libpthread.so,
libthread_db.so, and libthread.so, respectively, but only
libthread_db is implememted as an archive library,
libthread_db.a. These libraries are not automatically linked by
the C compilation system. Specify -lpthread, -lthread , or
-lthread_db on the cc command line to link with these
libraries. See libpthread(3LIB), libthread(3LIB), and
libthread_db(3LIB).

The following functions are optional under POSIX and are not
supported in the current Solaris release.

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr,
int protocol);

int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr,
int *protocol);

int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr,
int prioceiling);

int pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr,
int *prioceiling);

The functions described in this volume comprise various specialized libraries that are
not limited to the following:

(3BSM) These functions constitute the basic security library, libbsm. This
library is implemented as a shared object, libbsm.so, and as an
archive, libbsm.a, but is not automatically linked by the C
compilation system. Specify -lbsm on the cc command line to
link with this library. See libbsm(3LIB).

The Trusted Solaris environment modifies some functions in
libbsm. Changes in behavior or requirements are noted on the
individual man pages.

Intro(3)

Extended Library
Functions

28 man pages section 3: Library Functions • Last Revised 1 Feb 2001

(3CFGADM) These functions constitute the configuration administration library,
libcfgadm. This library is implemented as a shared object,
libcfgadm.so, but is not automatically linked by the C
compilation system. Specify -lcfgadm on the cc command line to
link with this library. See libcfgadm(3LIB).

(3CPC) These functions constitute the CPU performance counter library,
libcpc, and the process context library, libpctx. These libraries
are implemented as shared objects, libcpc.so and libpctx.so,
respectively, but are not automatically linked by the C compilation
system. Specify -lcpc or -lpctx on the cc command line to link
with these libraries. See libcpc(3LIB) and libpctx(3LIB).

(3DEVID) These functions constitute the device ID library, libdevid. This
library is implemented as a shared object, libdevid.so, but is
not automatically linked by the C compilation system. Specify
-ldevid on the cc command line to link with this library. See
libdevid(3LIB).

(3DEVINFO) These functions constitute the device information library, libbsm.
This library is implemented as a shared object, libdevinfo.so,
and as an archive, libdevinfo.a, but is not automatically linked
by the C compilation system. Specify -ldevinfo on the cc
command line to link with this library. See libdevinfo(3LIB).

(3DMI) These functions constitute the DMI libraries, libdmi, libdmici,
and libdmimi. These libraries are implemented as shared objects,
libdmi.so, libdmici.so, and libdmimi.so, respectively, but
are not automatically linked by the C compilation system. Specify
-ldmi, -ldmici , or -ldmimi on the cc command line to link
with these libraries. See libdmi(3LIB), libdmici(3LIB), and
libdmimi(3LIB).

(3ELF) These functions constitute the ELF access library, libelf,
(Extensible Linking Format). This library provides the interface for
the creation and analyses of “elf” files; executables, objects, and
shared objects. libelf is implemented as a shared object,
libelf.so, and as an archive, libelf.a, but is not
automatically linked by the C compilation system. Specify -lelf
on the cc command line to link with this library. See
libelf(3LIB).

(3EXACCT) These functions constitute the extended accounting access library,
libexacct, and the project database access library, libproject.
These libraries are implemented as shared objects, libexacct.so
and libproject.so, respectively, but are not automatically
linked by the C compilation system. Specify -lexacct or
-lproject on the cc command line to link with these libraries.
See libexacct(3LIB) and libproject(3LIB).

Intro(3)

Introduction 29

(3GEN) These functions constitute the string pattern-matching and
pathname manipulation library, libgen. This library is
implemented as a shared object, libgen.so, and as an archive,
libgen.a, but is not automatically linked by the C compilation
system. Specify -lgen on the cc command line to link with this
library. See libgen(3LIB).

(3KSTAT) These functions constitute the kernel statistics library, which is
implemented as a shared object, libkstat.so, and as an archive,
libkstat.a, but is not automatically linked by the C compilation
system. Specify -lkstat on the cc command line to link with this
library. See libkstat(3LIB).

The kstat_read() function in libkstat has been modified for
the Trusted Solaris environment. Changes in behavior or
requirements are noted on the man page.

(3KVM) These functions allow access to the kernel’s virtual memory
library, which is implemented as a shared object, libkvm.so, and
as an archive, libkvm.a, but is not automatically linked by the C
compilation system. Specify -lkvm on the cc command line to
link with this library. See libkvm(3LIB).

The kstat_write() function in libkvm has been modified for
the Trusted Solaris environment. Changes in behavior or
requirements are noted on the man page.

(3LAYOUT) These functions constitute the layout service library, which is
implemented as a shared object, liblayout.so, but is not
automatically linked by the C compilation system. Specify
-llayout on the cc command line to link with this library. See
liblayout(3LIB).

(3M) These functions constitute the mathematical library, libm. This
library is implemented as a shared object, libm.so, and as an
archive, libm.a, but is not automatically linked by the C
compilation system. Specify -lm on the cc command line to link
with this library.

(3MAIL) These functions constitute the user mailbox management library,
libmail. This library is implemented as a shared object,
libmail.so, and as an archive, libmail.a, but is not
automatically linked by the C compilation system. Specify -lmail
on the cc command line to link with this library.

(3MP) These functions constitute the integer mathematical library, libmp.
This library is implemented as a shared object, libmp.so, and as
an archive, libmp.a, but is not automatically linked by the C
compilation system. Specify -lmp on the cc command line to link
with this library. See libmp(3LIB).

Intro(3)

30 man pages section 3: Library Functions • Last Revised 1 Feb 2001

(3NVPAIR) These functions constitute the name–value pair library,
libnvpair. This library is implemented as a shared object,
libnvpair.so, but is not automatically linked by the C
compilation system. Specify -lnvpair on the cc command line to
link with this library. See libnvpair(3LIB).

(3PAM) These functions constitute the Pluggable Authentication Module
(PAM) library, libpam. This library is implemented as a shared
object, libpam.so, and as an archive, libpam.a, but is not
automatically linked by the C compilation system. Specify -lpam
on the cc command line to link with this library. See
libpam(3LIB).

(3PICL) These functions constitute the PICL library, libpicl. This library
is implemented as a shared object, libpicl.so, but is not
automatically linked by the C compilation system. Specify -lpicl
on the cc command line to link with this library. See
libpicl(3LIB) and libpicl(3PICL).

(3PICLTREE) These functions constitute the PICL plug-in library, libpicltree.
This library is implemented as a shared object, libpicltree.so,
but is not automatically linked by the C compilation system.
Specify -lpicltree on the cc command line to link with this
library. See libpicltree(3LIB) and libpicltree(3PICLTREE).

(3SEC) These functions constitute the file access control library, libsec.
This library is implemented as a shared object, libsec.so, and as
an archive, libsec.a, but is not automatically linked by the C
compilation system. Specify -lsec on the cc command line to
link with this library. See libsec(3LIB).

(3SECDB) These functions constitute the security attributes database library,
libsecdb. This library is implemented as a shared object,
libsecdb.so, but is not automatically linked by the C
compilation system. Specify -lsecdb on the cc command line to
link with this library. See libsecdb(3LIB).

The Trusted Solaris environment adds some functions to
libsecdb and modifies others. Changes in behavior or
requirements are noted on the individual man pages.

(3SNMP) These functions constitute the SNMP libraries, libdssagent and
libdssasnmp. These libraries are implemented as shared objects,
libssagent.so and libssasnmp.so, respectively, but are not
automatically linked by the C compilation system. Specify
-lssagent or -lssasnmp on the cc command line to link with
these libraries. See libssagent(3LIB) and libssasnmp(3LIB).

(3SYSEVENT) These functions constitute the system event library, libsysevent.
This library is implemented as a shared object, libsysevent.so,

Intro(3)

Introduction 31

but is not automatically linked by the C compilation system.
Specify -lsysevent on the cc command line to link with this
library. See libsysevent(3LIB).

(3TNF) These functions constitute the TNF libraries, libtnf, libtnfctl,
and libtnfprobe. These libraries are implemented as shared
objects, libtnf.so, libtnfctl.so, and libtnfprobe.so,
respectively, but are not automatically linked by the C compilation
system. Specify -ltnf, -ltnfctl , or -ltnfprobe on the cc
command line to link with these libraries. See libtnfctl(3TNF),
libtnfctl(3LIB), and libtnfprobe(3LIB).

(3VOLMGT) These functions constitute the volume management library,
libvolmgt. This library is implemented as a shared object,
libvolmgt.so, and as an archive, libvolmgt.a, but is not
automatically linked by the C compilation system. Specify
-lvolmgt on the cc command line to link with this library. See
libvolmgt(3LIB).

(3WSREG) These functions constitute the product install registry library,
libwsreg. This library is implemented as a shared object,
libwsreg.so, but is not automatically linked by the C
compilation system. Specify -lwsreg on the cc command line to
link with this library. See libwsreg(3LIB).

(3TSOL) These functions constitute the Trusted Solaris library libtsol.
libtsol.so is implemented as a shared object but is not
automatically linked by the C compilation system. To link with the
libtsol library specify -ltsol on the cc command line.

(3X11) The printed and AnswerBook2 versions of the Trusted Solaris 8
4/01 Reference Manual include these functions, which constitute
the Trusted Solaris extension to the X windows library libXtsol.
libXtsol.so is implemented as a shared object but is not
automatically linked by the C compilation system. To link with the
libXtsol library, specify -lX11 and then -lXtsol on the cc
command line (cc -lX11 -lXtsol).

Online man pages for these functions are stored in
/usr/openwin/man/man3.

System calls enforce policy for library routines, and you should generally look to the
system call man page for the to find out how policy is enforced for the system call.
However, policy is sometimes explained on the library routine man pages, according
to the following guidelines:

� If the relationship between the library routine and the underlying system call is
intuitively obvious, as is the relationship between fopen(3UCB) and open(2), the
related system call is mentioned in the SEE ALSO section, and the policy is not
repeated on the library routine’s man page.

Intro(3)

SECURITY
POLICY

32 man pages section 3: Library Functions • Last Revised 1 Feb 2001

� If the relationship between the library routine and the underlying system call(s) is
not obvious, the policy information appears on the library routine’s man page.

� If the system call man page has so much information that the developer may have
trouble finding it, the relevant information is repeated on the library routine’s man
page. An example is t6peek_attr(3NSL), which relies on streamio(7I), whose
man page is 21 pages.

� If the library is the exposed interface, and if the system call is undocumented, the
policy appears on the library man page. One example of this is in the TSIX library
routines, some of which rely on undocumented system calls.

A character is any bit pattern able to fit into a byte on the machine. In some
international languages, however, a “character” may require more than one byte, and
is represented in multi-bytes.

The null character is a character with value 0, conventionally represented in the C
language as \ 0. A character array is a sequence of characters. A null-terminated
character array (a string) is a sequence of characters, the last of which is the null
character. The null string is a character array containing only the terminating null
character. A null pointer is the value that is obtained by casting 0 into a pointer. C
guarantees that this value will not match that of any legitimate pointer, so many
functions that return pointers return NULL to indicate an error. The macro NULL is
defined in <stdio.h>. Types of the form size_t are defined in the appropriate
headers.

See attributes(5) for descriptions of library MT-Levels.

INCDIR usually /usr/include

LIBDIR usually /usr/lib (32–bit) or
/usr/lib/sparcv9(64–bit)

LIBDIR/libc.so

LIBDIR/libc.a

LIBDIR/libgen.a

LIBDIR/libm.a

LIBDIR/libsfm.sa

/usr/lib/libc.so.1

ld(1), fork(2)

For assistance specific to Trusted Solaris libraries, see intro(2), specifically the
DEFINITIONS section, and the Trusted Solaris Developer’s Guide.

ar(1), cc(1B), stdio(3C), attributes(5), standards(5)

Linker and Libraries Guide

Intro(3)

DEFINITIONS

MT-Level of
Libraries

FILES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction 33

Profiling Tools

ANSI C Programmer’s Guide

For functions that return floating-point values, error handling varies according to
compilation mode. Under the -Xt (default) option to cc, these functions return the
conventional values 0, ±HUGE, or NaN when the function is undefined for the given
arguments or when the value is not representable. In the -Xa and -Xc compilation
modes, ±HUGE_VAL is returned instead of ±HUGE. (HUGE_VAL and HUGE are defined in
<math.h> to be infinity and the largest-magnitude single-precision number,
respectively.)

When compiling a multithreaded application, either the _POSIX_C_SOURCE,
_POSIX_PTHREAD_SEMANTICS, or _REENTRANT flag must be defined on the
command line. This enables special definitions for functions only applicable to
multithreaded applications. For POSIX.1c-conforming applications, define the
_POSIX_C_SOURCE flag to be >= 199506L:

cc [flags] file. . . -D_POSIX_C_SOURCE=199506L -lpthread

For POSIX behavior with the Solaris fork() and fork1() distinction, compile as
follows:

cc [flags] file... -D_POSIX_PTHREAD_SEMANTICS -lthread

For Solaris threads behavior, compile as follows:

cc [flags] file... -D_REENTRANT -lthread

When building a singlethreaded application, the above flags should be undefined.
This generates a binary that is executable on previous Solaris releases which do not
support multithreading.

Unsafe interfaces should be called only from the main thread to ensure the
application’s safety.

MT-Safe interfaces are denoted in the ATTRIBUTES section of the functions and
libraries manual pages (see attributes(5)). If a manual page does not state explicitly
that an interface is MT-Safe, the user should assume that the interface is unsafe.

Be sure to have set the environment variable LD_BIND_NOW to a non-null value to
enable early binding. Refer to the “When Relocations are Processed” chapter in Linker
and Libraries Guide for additional information.

None of the functions, external variables, or macros should be redefined in the user’s
programs. Any other name may be redefined without affecting the behavior of other
library functions, but such redefinition may conflict with a declaration in an included
header.

Intro(3)

DIAGNOSTICS

NOTES ON
MULTITHREADED

APPLICATIONS

REALTIME
APPLICATIONS

NOTES

34 man pages section 3: Library Functions • Last Revised 1 Feb 2001

The headers in INCDIR provide function prototypes (function declarations including
the types of arguments) for most of the functions listed in this manual. Function
prototypes allow the compiler to check for correct usage of these functions in the
user’s program. The lint program checker may also be used and will report
discrepancies even if the headers are not included with #include statements.
Definitions for Sections 2, 3C, and 3S are checked automatically. Other definitions can
be included by using the -l option to lint. (For example, -lm includes definitions
for libm.) Use of lint is highly recommended. See the lint chapter in Performance
Profiling Tools.

Users should carefully note the difference between STREAMS and stream. STREAMS is
a set of kernel mechanisms that support the development of network services and data
communication drivers. It is composed of utility routines, kernel facilities, and a set of
data structures. A stream is a file with its associated buffering. It is declared to be a
pointer to a type FILE defined in <stdio.h>.

In detailed definitions of components, it is sometimes necessary to refer to symbolic
names that are implementation-specific, but which are not necessarily expected to be
accessible to an application program. Many of these symbolic names describe
boundary conditions and system limits.

In this section, for readability, these implementation-specific values are given symbolic
names. These names always appear enclosed in curly brackets to distinguish them
from symbolic names of other implementation-specific constants that are accessible to
application programs by headers. These names are not necessarily accessible to an
application program through a header, although they may be defined in the
documentation for a particular system.

In general, a portable application program should not refer to these symbolic names in
its code. For example, an application program would not be expected to test the length
of an argument list given to a routine to determine if it was greater than ARG_MAX.

Intro(3)

Introduction 35

Intro(3)

36 man pages section 3: Library Functions • Last Revised 1 Feb 2001

Introduction to Library Functions

37

accept – accept a connection on a socket

cc [flags…] file … -lsocket -lnsl [library…]

#include <sys/types.h>

#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

The argument s is a socket that has been created with socket(3SOCKET) and bound
to an address with bind(3SOCKET), and that is listening for connections after a call to
listen(3SOCKET). The accept() function extracts the first connection on the queue
of pending connections, creates a new socket with the properties of s, and allocates a
new file descriptor, ns, for the socket. If no pending connections are present on the
queue and the socket is not marked as non-blocking, accept() blocks the caller until
a connection is present. If the socket is marked as non-blocking and no pending
connections are present on the queue, accept() returns an error as described below.
The accept() function uses the netconfig(4) file to determine the STREAMS
device file name associated with s. This is the device on which the connect indication
will be accepted. The accepted socket, ns, is used to read and write data to and from
the socket that connected to ns; it is not used to accept more connections. The original
socket (s) remains open for accepting further connections.

The argument addr is a result parameter that is filled in with the address of the
connecting entity as it is known to the communications layer. The exact format of the
addr parameter is determined by the domain in which the communication occurs.

The argument addrlen is a value-result parameter. Initially, it contains the amount of
space pointed to by addr; on return it contains the length in bytes of the address
returned.

The accept() function is used with connection-based socket types, currently with
SOCK_STREAM.

It is possible to select(3C) or poll(2) a socket for the purpose of an accept() by
selecting or polling it for a read. However, this will only indicate when a connect
indication is pending; it is still necessary to call accept().

The accept() function returns −1 on error. If it succeeds, it returns a non-negative
integer that is a descriptor for the accepted socket.

accept() will fail if:

EBADF The descriptor is invalid.

EINTR The accept attempt was interrupted by the delivery of a
signal.

EMFILE The per-process descriptor table is full.

ENODEV The protocol family and type corresponding to s could
not be found in the netconfig file.

accept(3SOCKET)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

38 man pages section 3: Library Functions • Last Revised 16 May 1997

ENOMEM There was insufficient user memory available to
complete the operation.

ENOSR There were insufficient STREAMS resources available
to complete the operation.

ENOTSOCK The descriptor does not reference a socket.

EOPNOTSUPP The referenced socket is not of type SOCK_STREAM.

EPROTO A protocol error has occurred; for example, the
STREAMS protocol stack has not been initialized or the
connection has already been released.

EWOULDBLOCK The socket is marked as non-blocking and no
connections are present to be accepted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

If the calling process possesses the PRIV_NET_MAC_READ privilege and the socket has
been bound to a multilevel port (MLP), the connection is accepted on a MLP;
otherwise, the connection is accepted on a single-level port (SLP). See
bind(3SOCKET) for more information.

bind(3SOCKET), listen(3SOCKET), socket(3SOCKET)

poll(2), select(3C), socket(3HEAD), connect(3SOCKET), netconfig(4),
attributes(5)

accept(3SOCKET)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

Introduction to Library Functions 39

adornfc – Adorn the final component of a pathname

cc [flags…] file … -ltsol [library…]

#include <tsol/mld.h>

int adornfc(char *path_name, char *adorned_name);

adornfc() adorns the final component of path_name unless it is already adorned.
path_name is a pathname to a filesystem object. adorned_name is a pointer to a buffer in
which the adorned version of path_name is placed. This buffer should be of at least
MAXPATHLEN bytes in length.

adornfc() returns:

0 On success.

−1 On failure and sets errno to indicate the error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

adornfc() fails if one or more of the following are true:

EACCES Search permission is denied for a component of the
path prefix of path_name.

EFAULT path_name or adorned_name points to an invalid address.

EIO An I/O error occurred while reading from the file
system.

ELOOP Too many symbolic links were encountered in
translating path_name.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX or
MAXPATHLEN.

A pathname component is longer than NAME_MAX (see
sysconf(3C)) while _POSIX_NO_TRUNC is in effect
(see pathconf(2)).

ENOENT A component of the path prefix of path_name does not
exist.

ENOTDIR A component of the path prefix of path_name is not a
directory.

adornfc(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

ERRORS

40 man pages section 3: Library Functions • Last Revised 30 Mar 1998

pathconf(2)

attributes(5)

adornfc(3TSOL)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

Introduction to Library Functions 41

auditwrite – construct and write user-level audit records

cc [flag…] file… -lbsm -lsocket -lnsl -lintl -ltsol [library…]

#include <bsm/auditwrite.h>
#include <bsm/audit_uevents.h>
#include <tsol/priv.h>

#include <tsol/label.h>

int auditwrite(...,AW_END);

auditwrite() provides a single-function programmer interface to auditing for
user-level programs. The principal features of auditwrite() are audit record
construction, audit record queueing, a save area, and support for trusted server
auditing. See NOTES for privileges needed to write audit records and for
multithreading considerations.

auditwrite() creates complete audit records or appends information to an existing,
partial audit record. A single-shot audit record is one that is constructed and written in
a single call to auditwrite(). Multi-shot audit records are those constructed
piecemeal through two or more calls to auditwrite(). See EXAMPLES.

Audit records may be queued by specifying a threshold. When the threshold is
reached, records are written in one operation. This batching minimizes system-call
overhead.

A special audit-record buffer may be requested as a save area. Attributes stored in the
save area are prepended to every subsequent record written with auditwrite().

Some trusted servers act on behalf of untrusted client processes performing security
checks and providing access to TCB objects. A trusted server must sometimes generate
audit records with the audit characteristics of its clients. The AW_SERVER command
tells auditwrite() that the caller is a trusted server and that additional information
should be added to each audit record if the information has not already been
provided.

auditwrite() takes a variable number of arguments. Arguments are of three types.
One type, referred to as control commands, controls the behavior of auditwrite().
Only one normal control command may appear in a single auditwrite()
invocation.

(By default, control commands apply to all record descriptors. AW_USERD is a special
control command which can affect command scope and can be used with other control
commands; see the AW_USERD command for details.)

Another type of argument is an attribute command. Attribute commands describe the
attributes that comprise an audit record. The last type of argument is the terminator
command. The terminator command notifies auditwrite() when to stop parsing
the invocation line.

auditwrite(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

Record
Construction

Record Queuing

Save Area

Trusted Server
Auditing Support

PARAMETERS

42 man pages section 3: Library Functions • Last Revised 3 Aug 2001

AW_WRITE Write to the audit trail the default audit record or the
audit record specified by AW_USERD. If queueing is in
effect, the record is queued and written when the
queue is flushed.

AW_APPEND Attach one or more record attributes to the end of the
record. AW_APPEND is used in the multi-shot
construction of an audit record. Attributes are kept in a
record buffer until auditwrite() is called with the
AW_WRITE command. One or more attribute
commands must be specified with the AW_APPEND
command.

AW_DEFAULTRD Use the default record descriptor.

AW_DISCARD Discard all partial and complete audit records.

AW_DISCARDRD, int rd Discard the record descriptor specified by rd. An rd of
−1 can be specified to discard the default rd.

AW_GETRD, int *rd Obtain an audit record descriptor for use with
AW_USERD.

AW_PRESELECT,
au_mask_t *pmask Preselect audit records according to pmask. Normally

audit records are preselected by auditwrite() using
the preselection mask in the execution environment.
See getaudit(2) for details.

AW_NOPRESELECT Use the preselection mask in the execution
environment instead of the one specified with the
AW_PRESELECT command.

AW_QUEUE,
u_int hi_water Turn on audit-record queueing. AW_QUEUE causes

auditwrite() to queue all audit records. When the
total number of bytes of all queued audit records
reaches hi_water, the queue is flushed. The queue may
also be flushed at will with AW_FLUSH. The
auditwrite() audit-record queue should not be
confused with the kernel audit-record queue. The
auditwrite() queue is a separate and distinct queue
created in user address space. The auditwrite()
audit-record queue can minimize system-call overhead
by writing several audit records in one operation.

AW_NOQUEUE Turn off audit-record queueing. Flush the queue.

AW_FLUSH Flush the audit-record queue.

AW_SAVERD, int *rd Turn on use of a save area. Attributes stored in the save
area are prepended to records before they are written.

auditwrite(3TSOL)

Control
Commands

Introduction to Library Functions 43

A new record descriptor is obtained and returned in rd,
in the same way as AW_GETRD, and this is marked as
the active save area.

This descriptor can be used with AW_USERD and
AW_APPEND to accumulate attributes in the save area.

AW_SAVERD should not be used on the same call with
AW_USERD.

AW_NOSAVE Turn off use of the save area.

AW_SERVER Turn on the trusted server option. The AW_SERVER
command tells auditwrite() that the calling
program is a server that must generate complete audit
records. auditwrite() adds header and trailer
attributes to all records. Sequence and group attributes
are also added depending upon the audit policy. See
audit(2) for further information on audit policy.

AW_NOSERVER Turn off the trusted server option.

AW_USERD, int rd Use the record descriptor obtained with AW_GETRD.
This command can be used with other control
commands except AW_DEFAULTRD, AW_DISCARD,
AW_DISCARDRD, AW_FLUSH, and AW_GETRD.

The record descriptor and any related context is
automatically released upon completion of the
AW_WRITE command or upon any error.

When used on the same call with other commands, this
must be the first argument. This command will limit the
scope of the other commands to the specified record
descriptor. Subsequent calls are not affected unless they
also use AW_USERD with the same descriptor, along
with another command.

In this mode, the descriptor is not affected by other
auditwrite calls. For instance:

auditwrite(AW_PRESELECT, &mymask, AW_END);

auditwrite(AW_USERD, rdn, AW_WRITE, ...,
AW_END);

The first call will not change the behavior of the
second, because the descriptor rdn has its own
separate context.

auditwrite(3TSOL)

44 man pages section 3: Library Functions • Last Revised 3 Aug 2001

When used as the only command, this changes the
scope of AW_WRITE and AW_APPEND commands on all
subsequent calls which don’t include AW_USERD.

Attribute commands describe the attributes that compose an audit record. Attribute
commands must be specified with one and only one AW_APPEND or AW_WRITE control
command.

AW_ARG, char n, char *text, uint32_t v
Place the specified system call argument information into the audit record. n
contains the argument number. text contains a string describing the argument. v
contains the value of the argument.

AW_ATTR, mode_t mode, uid_t uid, gid_t gid, dev_t dev, ino_t ino, dev_t
rdev

Place the specified file system object attribute information into the audit record. You
can get this information using the stat(2) system call.

AW_CLEARANCE bclear_t *clear
Place the specified clearance into the audit record. If sensitivity labels are not
enabled on this system or if the appropriate audit policy (slabel) from auditon(2)
is not enabled on this system, the command is ignored.

AW_DATA, char unit_print, char unit_type, char unit_count, caddr_t p
Place the specified arbitrary data into the audit record. unit_print describes how the
data should be printed by programs that read the audit trail. These are allowable
values for unit_print:

AWD_BINARY
AWD_OCTAL
AWD_DECIMAL
AWD_HEX
AWD_STRING

unit_type describes the type of data in p. These are allowable values for unit_type:

AWD_BYTE
AWD_CHAR
AWD_SHORT
AWD_INT32
AWD_INT64
AWD_INT (This is provided for compatibility but should otherwise not be used.
It is the equivalent of AWD_INT32.)
AWD_LONG (This is provided for compatibility but should otherwise not be used.
It is the equivalent of AWD_INT32.)

unit_count describes how many elements of unit_type exist in p, which is an address
pointing to the data to be written.

auditwrite(3TSOL)

Attribute
Commands

Introduction to Library Functions 45

AW_EVENT, char *event_str
Specify the audit event associated with the audit record. One and only one event
must be associated with every audit record. If an attempt is made to write an audit
record for which an event has not been specified, auditwrite() returns an error.
event_str is any valid user-level audit-event string as defined by audit_event(4).
(AW_EVENT is used for third-party application events. For other events,
AW_EVENTNUM should be used if possible, since AW_EVENT incurs additional
overhead for string lookup.)

AW_EVENTNUM, int event
AW_EVENTNUM is similar to AW_EVENT but takes as its argument any valid event
number instead of an event string. To maintain compatibility between third party
add-ons, only registered events may use this attribute command. event is any valid
audit event defined in audit_event(4) and
</usr/include/bsm/audit_uevent.h>. See audit_event(4) for further
information on audit-event strings.

AW_EXEC_ARGS, char **argv
Place the specified command line arguments into the audit record. The array is
terminated by a null pointer. (The format is the same as that used for argv by an
invoking C program.) If the appropriate audit policy (argv) from auditon(2) is
not enabled on this system, this call is ignored.

AW_EXEC_ENV, char **envp
Place the specified command-line environment into the audit record. The array is
terminated by a null pointer. (This format is the same as that used for envp by an
invoking C program.) If the appropriate audit policy (arge) from auditon(2) is
not enabled on this system, this call is ignored.

AW_EXIT, int status, int errno
Place the specified program exit-status information into the audit record. status
contains the exit status of the calling program. errno contains the system error
number or an internal error number indicating the cause of the program exit.

AW_GROUPS, int num, gid_t *groups
Format and place the elements of the array groups into the audit record. num
specifies the number of elements in the array and must be between NGROUPS_UMIN
and NGROUPS_UMAX as defined in </usr/include/sys/param.h>. If the audit
policy (see auditconfig (1M)) is not configured for including supplementary
groups, the command is ignored.

AW_INADDR, struct in_addr *in_addr
Place the specified Internet address into the audit record. (This is provided for
compatibility but should otherwise not be used. It is the equivalent of
AW_IN_ADDR.)

AW_IN_ADDR, struct in_addr *in_addr
Place the specified Internet address into the audit record.

AW_IN_ADDR_EX, struct in6_addr *in6_addr
Place the specified multi-format Internet address into the audit record.

auditwrite(3TSOL)

46 man pages section 3: Library Functions • Last Revised 3 Aug 2001

AW_IPC, char type, int id
Place the specified interprocess-communications identifier into the audit record.
type is one of these values: AT_IPC_MSG, AT_IPC_SEM, AT_IPC_SHM, or
AT_IPC_NULL.

AW_IPC_PERM, struct ipc_perm *perm
Place the specified interprocess-communications identifier permission information
into the audit record.

AW_IPORT, u_short iport
Place the specified IP port into the audit record.

AW_LEVEL, blevel_t *level
Place the specified level into the audit record. If sensitivity labels are not enabled on
this system or if the appropriate audit policy (slabel) from auditon(2) is not
enabled on this system, the command is ignored.

AW_OPAQUE, caddr_t data, short byte_count
Place into the audit record the opaque data to which data points and which has
byte_count length.

AW_PATH, char *path
Place the specified path into the audit record. Paths are anchored with the current
active root if they do not begin with a slash (/).

AW_PRIVILEGE, priv_set_t *priv_set, char settype
Place the specified privilege set into the audit record. These are allowable values for
settype:

AU_PRIV_UNKNOWN
AU_PRIV_FORCED
AU_PRIV_ALLOWED
AU_PRIV_EFFECTIVE
AU_PRIV_INHERITABLE
AU_PRIV_PERMITTED
AU_PRIV_SAVED

AW_PROCESS, au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t
rgid, pid_t pid, au_asid_t sid, au_tid_t *tid

Place the specified process information into the audit record. The AW_PROCESS and
AW_SUBJECT attributes, and the AW_PROCESS_EX and AW_SUBJECT_EX attributes,
record the same information. Use the AW_PROCESS or AW_PROCESS_EX attribute
when recording information about a process object. Use the AW_SUBJECT or
AW_SUBJECT_EX attribute when recording information about a process subject.
AW_PROCESS_EX and AW_SUBJECT_EX are extended forms which support
multiple IP address formats in the terminal ID field.

AW_PROCESS_EX, au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t
rgid, pid_t pid, au_asid_t sid, au_tid_t *tid

Place the specified process information into the audit record. See AW_PROCESS.

auditwrite(3TSOL)

Introduction to Library Functions 47

AW_RETURN, char number, u_int retval
Indicates the success or failure of an audit event. This attribute is used by
auditwrite() for preselection, and by the auditreduce(1M) post-selection
program to select audit records according to success or failure.

number indicates the success or failure of the event. Failure is denoted by a nonzero
number value. Positive values are interpreted by praudit(1M) as errno values.
Corresponding error strings are printed. Negative values indicate a general failure
specific to the audit event. Success is denoted by a zero number value. retval
indicates the return value or status value of the successful or failed function or
program.

AW_SLABEL, bslabel_t *label
Place the specified sensitivity label into the audit record. If sensitivity labels are not
enabled on this system or if the appropriate audit policy (slabel) from auditon(2)
is not enabled on this system, the command is ignored.

AW_SOCKET, struct socket *s
Place the specified socket information into the audit record.

AW_SUBJECT, au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t
rgid, pid_t pid, au_asid_t sid, au_tid_t *tid

Place the specified subject information into the audit record. See AW_PROCESS.

AW_SUBJECT_EX, au_id_t auid, uid_t euid, gid_t egid, uid_t ruid, gid_t
rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid

Place the specified subject information into the audit record. See AW_PROCESS.

AW_TEXT, char *text
Place the specified null-terminated string text into the audit record.

AW_UAUTH, char *auth
Place the specified authorization name into the audit record.

AW_USEOFPRIV, char flag priv_t priv
Place a flag and a single privilege into the audit record denoting an attempted use
of privilege. flag indicates success (1) or failure (0) of the attempt. priv indicates the
privilege upon which the attempt was made.

AW_XATOM, char *atom_string
Place the specified X atom string into the audit record.

AW_XCOLORMAP, uint32_t xid, uid_t creator_uid
Place the specified X colormap information into the audit record.

AW_XCLIENT, uint32_t clientid
Place the specified X client ID into the audit record.

AW_XCURSOR, uint32_t xid, uid_t creator_uid
Place the specified X cursor information into the audit record.

AW_XFONT, uint32_t xid, uid_t creator_uid
Place the specified X font information into the audit record.

auditwrite(3TSOL)

48 man pages section 3: Library Functions • Last Revised 3 Aug 2001

AW_XGC, uint32_t xid, uid_t creator_uid
Place the specified X gc information into the audit record.

AW_XPIXMAP, uint32_t xid, uid_t creator_uid
Place the specified X pixel-mapping information into the audit record.

AW_XPROPERTY, uint32_t xid, uid_t creator_uid, char *atom_name
Place the specified X property information into the audit record.

AW_XSELECT, char *property_string, char *property_type, char *window_data
Place the specified X select information into the audit record.

AW_XWINDOW, uint32_t xid, uid_t creator_uid
Place the specified X window information into the audit record.

The terminator command AW_END must be the last argument on the auditwrite()
invocation line.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

MT-Level MT-Safe

auditwrite() returns:

0 On success.

−1 On failure, and sets aw_errno to indicate the error.

When an error is encountered, any whole or partial audit records are immediately
written to the audit trail. These include records that may have been queued. In
addition, a LOG_ALERT message is sent to syslogd(1M) and an attempt is made to
write an auditwrite() “processing error” audit record to the audit trail. All record
descriptors and related context are freed also.

aw_strerror(3TSOL) or aw_perror(3TSOL) may be used for obtaining the error
strings associated with aw_errno.

When multiple threads may be auditing, aw_errno may not be retrieved in an
MT-safe way. In this environment, AW_USERD should be used on all auditwrite calls
(after a AW_GETRD call), and aw_geterrno(3TSOL), aw_strerror(3TSOL), and
aw_perror_r(3TSOL) should be used to obtain and format error information.

These are the possible values of aw_errno:

AW_ERR_ADDR_INVALID An address specified was invalid.

AW_ERR_ALLOC_FAIL An attempt to allocate memory failed.

auditwrite(3TSOL)

Terminator
Command

ATTRIBUTES

RETURN VALUES

ERRORS

Introduction to Library Functions 49

AW_ERR_AUDITON_FAIL The auditon(2) system call failed. See
errno for the reason.

AW_ERR_AUDIT_FAIL The audit(2) system call failed. See errno
for the reason.

AW_ERR_CMD_INCOMPLETE A required command was omitted. This
event occurs when AW_APPEND is specified
without any attribute commands or vice
versa.

AW_ERR_CMD_INVALID The command specified was not a valid
command.

AW_ERR_CMD_IN_EFFECT A command already in effect, such as
AW_QUEUE or AW_SAVERD was specified.

AW_ERR_CMD_NOT_IN_EFFECT An attempt was made to reverse a
command that was not in effect.

AW_ERR_CMD_TOO_MANY More than one control command was
specified.

AW_ERR_EVENT_ID_INVALID The event ID string passed was not valid.

AW_ERR_EVENT_ID_NOT_SET An attempt was made to write an audit
record without a valid event ID. When this
attempt occurs, the event ID is set to a null
value and the record is written anyway as a
part of error-processing procedure.

AW_ERR_GETAUDIT_FAIL The getaudit(2) or getaudit_addr(2)
system call failed. See errno for the reason.

AW_ERR_QUEUE_SIZE_INVALID The specified queue size was greater than
the system-imposed maximum audit-record
size.

AW_ERR_RD_INVALID The specified record descriptor was invalid.

AW_ERR_REC_TOO_BIG An attempt was made to construct an audit
record larger than the system-imposed
maximum audit record size.

AW_ERR_NO_PLABEL The process label for the current process
could not be obtained; thus a complete
record could not be generated.

EXAMPLE 1 Single-shot record construction

/* Single-shot record construction:
* Construct an audit record and write the record to the audit trail.
* Uses the default audit record.
*/

auditwrite(3TSOL)

Valid Examples

50 man pages section 3: Library Functions • Last Revised 3 Aug 2001

EXAMPLE 1 Single-shot record construction (Continued)

(void) auditwrite(AW_EVENTNUM, AUE_valid_event_string1, AW_TEXT,

"hello", AW_WRITE, AW_END);

EXAMPLE 2 Multi-shot construction

/* Multi-shot construction:
* Construct an audit record piecemeal and write the record.
* Uses the default audit record.
*/

(void) auditwrite(AW_EVENTNUM, AUE_valid_event_string2,
AW_APPEND, AW_END);

(void) auditwrite(AW_TEXT, "part 1", AW_APPEND, AW_END);
(void) auditwrite(AW_TEXT, "part 2", AW_APPEND, AW_END);
(void) auditwrite(AW_RETURN, 0, 0, AW_APPEND, AW_END);

(void) auditwrite(AW_WRITE, AW_END);

EXAMPLE 3 Multi-shot record construction

/* Multi-shot record construction:
* Decide upon the return token value when it occurs.
*/

(void) auditwrite(AW_EVENTNUM, AUE_ftpd, AW_APPEND, AW_END);
(void) auditwrite(AW_TEXT, "Read access attempt", AW_APPEND, AW_END);

if (access_decision() == FALSE) {
succ_or_fail = -1;
reason = get_reason;

} else {
succ_or_fail = 0;
reason = 0;

}

(void) auditwrite(AW_TEXT, "more text", AW_RETURN, succ_or_fail,
reason, AW_APPEND, AW_END);

(void) auditwrite(AW_WRITE, AW_END);

EXAMPLE 4 Queueing

/* Queueing:
* Turn on queueing, queue two records, then turn off queueing.
* Queue is flushed automatically when queuing is turned off.
*/

(void) auditwrite(AW_QUEUE, 1024, AW_END);
(void) auditwrite(AW_EVENTNUM, AUE_valid_event_string3, AW_RETURN,

0, 0, AW_WRITE, AW_END);
(void) auditwrite(AW_EVENTNUM, AUE_valid_event_string4, AW_RETURN,

0, 0, AW_WRITE, AW_END);
(void) auditwrite(AW_EVENTNUM, AUE_valid_event_string5, AW_RETURN,

0, 0, AW_APPEND, AW_END);

auditwrite(3TSOL)

Introduction to Library Functions 51

EXAMPLE 4 Queueing (Continued)

(void) auditwrite(AW_NOQUEUE, AW_END);

EXAMPLE 5 Using record descriptors

/*
* Note that this is not MT-safe; see next example for
* correct multithreaded code.
*
* Note that after the WRITE, the record descriptor is freed.
* For subsequent auditing the AW_GET needs to be repeated
* before record appending/writing.
*/
(void) auditwrite(AW_GETRD, &rdn, AW_END);
(void) auditwrite(AW_USERD, rdn, AW_END);

(void) auditwrite(AW_APPEND, AW_TEXT, "part 1", AW_END);
(void) auditwrite(AW_EVENTNUM, event_no,

AW_WRITE, AW_TEXT, "part 2", AW_END);

EXAMPLE 6 Multithreading

/*
* This approach will be safe even when multiple threads may
* be auditing...
*
* Note that after the WRITE, the record descriptor and all
* context is freed. For subsequent auditing the entire
* sequence needs to be repeated: get an rd, set state (such
* as PRESELECT, SERVER, ...), and record appending/writing.
*/
(void) auditwrite(AW_GETRD, &rdn, AW_END);
(void) auditwrite(AW_USERD, rdn, AW_PRESELECT, &mymask, AW_END);
(void) auditwrite(AW_USERD, rdn, AW_APPEND, AW_TEXT, "part 1", AW_END);
(void) auditwrite(AW_USERD, rdn, AW_EVENTNUM, event_no,

AW_WRITE, AW_TEXT, "part 2", AW_END);

EXAMPLE 7 Specify no more than one normal control command

/*
* Invalid command combinations:
* Only one normal control command may be specified.
*/
(void) auditwrite(AW_EVENTNUM, valid_event_str, AW_TEXT, "text",

AW_DISCARD, AW_WRITE, AW_END);

EXAMPLE 8 No control command specified

/*
* Invalid command combinations:
* No control command specified
*/

auditwrite(3TSOL)

Invalid Examples

52 man pages section 3: Library Functions • Last Revised 3 Aug 2001

EXAMPLE 8 No control command specified (Continued)

(void) auditwrite(AW_TEXT, "text", AW_END);

/etc/security/audit_event Used to obtain the mappings between audit
event strings and audit event numbers.

auditconfig(1M), auditreduce(1M), praudit(1M), audit(2), auditon(2),
getaudit(2), stat(2), aw_geterrno(3TSOL), aw_perror(3TSOL),
aw_perror_r(3TSOL), aw_strerror(3TSOL), audit_event(4)

Trusted Solaris Developer’s Guide

attributes(5)

These interfaces are uncommitted. Although they are not expected to change between
minor releases of the Trusted Solaris environment, they may.

In a multithreading environment where multiple threads may invoke auditwrite, to
preserve consistency AW_USERD should be used as the first command on all
auditwrite calls (after a AW_GETRD call). Also, aw_errno may not be used directly;
see ERRORS for details.

When a subject is not provided, auditwrite() attempts to generate the subject,
groups, and (depending on appropriate audit policy) sensitivity label attributes for the
current process. This attempt has implications for servers because unless they
negotiate to get the AUID, UID, sensitivity label, and groups of the process being
served and provide them to auditwrite(), the values recorded will be those of the
server process. Programmers of servers should take this circumstance into account
when using auditwrite() and make specific requests to auditwrite() to work
around this problem.

To write an audit record with an event number from 2048 to 32767, the calling process
must have PRIV_PROC_AUDIT_TCB in its set of effective privileges. If the event
number is from 32768 to 65535, the calling process must have
PRIV_PROC_AUDIT_APPL in its set of effective privileges. These sets of event
numbers are the only valid user-level event numbers.

auditwrite(3TSOL)

FILES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 53

au_preselect – Preselect an audit event

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <bsm/libbsm.h>

int au_preselect(au_event_t event, au_mask_t *mask_p, int sorf, int
flag);

au_preselect() determines whether or not the audit event event is preselected
against the binary preselection mask pointed to by mask_p (usually obtained by a call
to getaudit(2)). au_preselect() looks up the classes associated with event in
audit_event(4) and compares them with the classes in mask_p. If the classes
associated with event match the classes in the specified portions of the binary
preselection mask pointed to by mask_p, the event is said to be preselected.

sorf indicates whether the comparison is made with the success portion, the failure
portion or both portions of the mask pointed to by mask_p.

The following are the valid values of sorf:

AU_PRS_SUCCESS Compare the event class with the success portion of the
preselection mask.

AU_PRS_FAILURE Compare the event class with the failure portion of the
preselection mask.

AU_PRS_BOTH Compare the event class with both the success and
failure portions of the preselection mask.

flag tells au_preselect() how to read the audit_event(4) database. Upon initial
invocation, au_preselect() reads the audit_event(4) database and allocates
space in an internal cache for each entry with malloc(3C). In subsequent invocations,
the value of flag determines where au_preselect() obtains audit event information.
The following are the valid values of flag:

AU_PRS_REREAD Get audit event information by searching the
audit_event(4) database.

AU_PRS_USECACHE Get audit event information from internal cache created
upon the initial invocation. This option is much faster.

au_preselect() returns:

0 event is not preselected.

1 event is preselected.

−1 An error occurred. au_preselect() couldn’t allocate memory or
couldn’t find event in the audit_event(4) database.

au_preselect(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

54 man pages section 3: Library Functions • Last Revised 5 May 1998

This function looks up the classes associated with event in the Trusted Solaris
audit_event(4) file. By default, auditing is enabled in the Trusted Solaris
environment.

/etc/security/audit_class Maps audit class number to audit class
names and descriptions.

/etc/security/audit_event Maps audit event number to audit event
names.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getaudit(2), getauclassent(3BSM), getauevent(3BSM), auditwrite(3TSOL),
audit_class(4), audit_event(4)

au_open(3BSM), malloc(3C), attributes(5)

This functionality is active only if the auditing has been enabled. By default, auditing
is enabled in the Trusted Solaris environment. See Trusted Solaris Audit Administration
for how to disable and enable auditing. au_preselect() is normally called prior to
constructing and writing an audit record. If the event is not preselected, the overhead
of constructing and writing the record can be saved.

au_preselect(3BSM)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual
NOTES

Introduction to Library Functions 55

auth_to_str, str_to_auth, auth_set_to_str, str_to_auth_set, free_auth_set, get_auth_text
– translate and verify user authorizations

cc [flag…] file… -ltsol -ltsoldb -lcmd -lnsl [library…]

(obsolete)

These functions are obsolete. Authorizations in Trusted Solaris 8 and later releases do
not need translation. See getauthattr(3SECDB) for how to search auth_attr(4)
entries.

auth_set_to_str(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

56 man pages section 3: Library Functions • Last Revised 30 May 2000

auth_to_str, str_to_auth, auth_set_to_str, str_to_auth_set, free_auth_set, get_auth_text
– translate and verify user authorizations

cc [flag…] file… -ltsol -ltsoldb -lcmd -lnsl [library…]

(obsolete)

These functions are obsolete. Authorizations in Trusted Solaris 8 and later releases do
not need translation. See getauthattr(3SECDB) for how to search auth_attr(4)
entries.

auth_to_str(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 57

au_user_mask – Get user’s binary preselection mask

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <bsm/libbsm.h>

int au_user_mask(char *username, au_mask_t *mask_p);

au_user_mask() reads the default, system wide audit classes from
audit_control(4), combines them with the per-user audit classes from the
audit_user(4) database, and updates the binary preselection mask pointed to by
mask_p with the combined value.

The audit flags in the flags field of the audit_control(4) database and the
always-audit-flags and never-audit-flags from the audit_user(4) database represent
binary audit classes. These fields are combined by au_preselect(3BSM) as follows:

mask = (flags + always-audit-flags) − never-audit-flags

au_user_mask() only fails if both the both the audit_control(4) and the
audit_user(4) database entries could not be retrieved. This allows for flexible
configurations.

au_user_mask() returns:

0 Success.

−1 Failure. Both the audit_control(4) and the audit_user(4) database
entries could not be retrieved.

/etc/security/audit_control Contains default parameters read by the
audit daemon, auditd(1M).

/etc/security/audit_user Stores per-user audit event mask.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

By default, auditing is enabled in the Trusted Solaris environment. Trusted Solaris
2.5.1, 7, and later releases extend the number of audit classes and audit events, and
introduce new but similar structures and programming interfaces.

login(4), getaudit(4), au_preselect(3BSM), getacinfo(3BSM),
getauusernam(3BSM), audit_control(4), audit_user(4)

attributes(5)

au_user_mask(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

58 man pages section 3: Library Functions • Last Revised 29 Nov 1998

This functionality is active only if auditing has been enabled. au_user_mask()
should be called by programs like login(1) that set the preselection mask of a process
with setaudit(2) in the Trusted Solaris 8 4/01 Reference Manual. getaudit(2)
should be used to obtain audit characteristics for the current process.

au_user_mask(3BSM)

NOTES

Introduction to Library Functions 59

aw_strerror, aw_errno, aw_geterrno, aw_perror, aw_perror_r – Obtain and display
error messages

cc [flag…] file… -lbsm -lsocket -lnsl -lintl -ltsol [library…]

#include <bsm/auditwrite.h>

int aw_errno

int aw_geterrno(int rd);

char *aw_strerror(const int status);

void aw_perror(const char *s);

void aw_perror_r(int rd, const char *s);

aw_errno is a variable set by auditwrite(3TSOL) to indicate the type of error
encountered during its execution, in much the same manner as errno(3C) is set
during a system or library call. However, aw_errno cannot be accessed directly in an
MT-safe way; in multithreaded environments, aw_geterrno() should be used
instead. Supporting functions convert auditwrite(3TSOL) error numbers into text
strings.

aw_geterrno() takes a record descriptor, rd, and returns the aw_errno value
associated with that descriptor.

aw_strerror() takes a specified return value status and returns a pointer to a string
constant that is the error string.

aw_perror() prints the error message corresponding to status as “s: error_message”
to standard error. This interface is not MT-safe.

aw_perror_r() prints the error message corresponding to status associated with the
specified record descriptor as “s: error_message”.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

MT-Level MT-Safe with Exceptions

auditwrite(3TSOL)

errno(3C), perror(3C), strerror(3C), attributes(5)

The functions aw_strerror(), aw_geterrno(), and aw_perror_r() are
MT-Safe. The aw_errno global variable and the aw_perror() function are not
MT-Safe.

aw_errno(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

60 man pages section 3: Library Functions • Last Revised 3 Oct 2000

The returned string must not be overwritten. If string manipulation is required, work
on a local copy.

aw_errno(3TSOL)

Introduction to Library Functions 61

aw_strerror, aw_errno, aw_geterrno, aw_perror, aw_perror_r – Obtain and display
error messages

cc [flag…] file… -lbsm -lsocket -lnsl -lintl -ltsol [library…]

#include <bsm/auditwrite.h>

int aw_errno

int aw_geterrno(int rd);

char *aw_strerror(const int status);

void aw_perror(const char *s);

void aw_perror_r(int rd, const char *s);

aw_errno is a variable set by auditwrite(3TSOL) to indicate the type of error
encountered during its execution, in much the same manner as errno(3C) is set
during a system or library call. However, aw_errno cannot be accessed directly in an
MT-safe way; in multithreaded environments, aw_geterrno() should be used
instead. Supporting functions convert auditwrite(3TSOL) error numbers into text
strings.

aw_geterrno() takes a record descriptor, rd, and returns the aw_errno value
associated with that descriptor.

aw_strerror() takes a specified return value status and returns a pointer to a string
constant that is the error string.

aw_perror() prints the error message corresponding to status as “s: error_message”
to standard error. This interface is not MT-safe.

aw_perror_r() prints the error message corresponding to status associated with the
specified record descriptor as “s: error_message”.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

MT-Level MT-Safe with Exceptions

auditwrite(3TSOL)

errno(3C), perror(3C), strerror(3C), attributes(5)

The functions aw_strerror(), aw_geterrno(), and aw_perror_r() are
MT-Safe. The aw_errno global variable and the aw_perror() function are not
MT-Safe.

aw_geterrno(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

62 man pages section 3: Library Functions • Last Revised 3 Oct 2000

The returned string must not be overwritten. If string manipulation is required, work
on a local copy.

aw_geterrno(3TSOL)

Introduction to Library Functions 63

aw_strerror, aw_errno, aw_geterrno, aw_perror, aw_perror_r – Obtain and display
error messages

cc [flag…] file… -lbsm -lsocket -lnsl -lintl -ltsol [library…]

#include <bsm/auditwrite.h>

int aw_errno

int aw_geterrno(int rd);

char *aw_strerror(const int status);

void aw_perror(const char *s);

void aw_perror_r(int rd, const char *s);

aw_errno is a variable set by auditwrite(3TSOL) to indicate the type of error
encountered during its execution, in much the same manner as errno(3C) is set
during a system or library call. However, aw_errno cannot be accessed directly in an
MT-safe way; in multithreaded environments, aw_geterrno() should be used
instead. Supporting functions convert auditwrite(3TSOL) error numbers into text
strings.

aw_geterrno() takes a record descriptor, rd, and returns the aw_errno value
associated with that descriptor.

aw_strerror() takes a specified return value status and returns a pointer to a string
constant that is the error string.

aw_perror() prints the error message corresponding to status as “s: error_message”
to standard error. This interface is not MT-safe.

aw_perror_r() prints the error message corresponding to status associated with the
specified record descriptor as “s: error_message”.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

MT-Level MT-Safe with Exceptions

auditwrite(3TSOL)

errno(3C), perror(3C), strerror(3C), attributes(5)

The functions aw_strerror(), aw_geterrno(), and aw_perror_r() are
MT-Safe. The aw_errno global variable and the aw_perror() function are not
MT-Safe.

aw_perror(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

64 man pages section 3: Library Functions • Last Revised 3 Oct 2000

The returned string must not be overwritten. If string manipulation is required, work
on a local copy.

aw_perror(3TSOL)

Introduction to Library Functions 65

aw_strerror, aw_errno, aw_geterrno, aw_perror, aw_perror_r – Obtain and display
error messages

cc [flag…] file… -lbsm -lsocket -lnsl -lintl -ltsol [library…]

#include <bsm/auditwrite.h>

int aw_errno

int aw_geterrno(int rd);

char *aw_strerror(const int status);

void aw_perror(const char *s);

void aw_perror_r(int rd, const char *s);

aw_errno is a variable set by auditwrite(3TSOL) to indicate the type of error
encountered during its execution, in much the same manner as errno(3C) is set
during a system or library call. However, aw_errno cannot be accessed directly in an
MT-safe way; in multithreaded environments, aw_geterrno() should be used
instead. Supporting functions convert auditwrite(3TSOL) error numbers into text
strings.

aw_geterrno() takes a record descriptor, rd, and returns the aw_errno value
associated with that descriptor.

aw_strerror() takes a specified return value status and returns a pointer to a string
constant that is the error string.

aw_perror() prints the error message corresponding to status as “s: error_message”
to standard error. This interface is not MT-safe.

aw_perror_r() prints the error message corresponding to status associated with the
specified record descriptor as “s: error_message”.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

MT-Level MT-Safe with Exceptions

auditwrite(3TSOL)

errno(3C), perror(3C), strerror(3C), attributes(5)

The functions aw_strerror(), aw_geterrno(), and aw_perror_r() are
MT-Safe. The aw_errno global variable and the aw_perror() function are not
MT-Safe.

aw_perror_r(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

66 man pages section 3: Library Functions • Last Revised 3 Oct 2000

The returned string must not be overwritten. If string manipulation is required, work
on a local copy.

aw_perror_r(3TSOL)

Introduction to Library Functions 67

aw_strerror, aw_errno, aw_geterrno, aw_perror, aw_perror_r – Obtain and display
error messages

cc [flag…] file… -lbsm -lsocket -lnsl -lintl -ltsol [library…]

#include <bsm/auditwrite.h>

int aw_errno

int aw_geterrno(int rd);

char *aw_strerror(const int status);

void aw_perror(const char *s);

void aw_perror_r(int rd, const char *s);

aw_errno is a variable set by auditwrite(3TSOL) to indicate the type of error
encountered during its execution, in much the same manner as errno(3C) is set
during a system or library call. However, aw_errno cannot be accessed directly in an
MT-safe way; in multithreaded environments, aw_geterrno() should be used
instead. Supporting functions convert auditwrite(3TSOL) error numbers into text
strings.

aw_geterrno() takes a record descriptor, rd, and returns the aw_errno value
associated with that descriptor.

aw_strerror() takes a specified return value status and returns a pointer to a string
constant that is the error string.

aw_perror() prints the error message corresponding to status as “s: error_message”
to standard error. This interface is not MT-safe.

aw_perror_r() prints the error message corresponding to status associated with the
specified record descriptor as “s: error_message”.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

MT-Level MT-Safe with Exceptions

auditwrite(3TSOL)

errno(3C), perror(3C), strerror(3C), attributes(5)

The functions aw_strerror(), aw_geterrno(), and aw_perror_r() are
MT-Safe. The aw_errno global variable and the aw_perror() function are not
MT-Safe.

aw_strerror(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

68 man pages section 3: Library Functions • Last Revised 3 Oct 2000

The returned string must not be overwritten. If string manipulation is required, work
on a local copy.

aw_strerror(3TSOL)

Introduction to Library Functions 69

blmanifest, bcllow, bclhigh, bsllow, bslhigh, bclearlow, bclearhigh, bclundef, bslundef,
bclearundef – create manifest binary labels

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

void bcllow(bclabel_t *label);

void bclhigh(bclabel_t *label);

void bsllow(bslabel_t *label);

void bslhigh(bslabel_t *label);

void bclearlow(bclear_t *clearance);

void bclearhigh(bclear_t *clearance);

void bclundef(bclabel_t *label);

void bslundef(bslabel_t *label);

void bclearundef(bclabel_t *label);

These functions initialize binary label structures to manifest values.

bcllow() and bclhigh() initialize the binary CMW label structure label to the
manifest constant values for the ADMIN_LOW and ADMIN_HIGH CMW labels,
respectively.

bsllow() and bslhigh() initialize the binary sensitivity label structure label to the
manifest constant values for the ADMIN_LOW and ADMIN_HIGH sensitivity labels,
respectively.

bclearlow() and bclearhigh() initialize the binary clearance structure clearance
to the manifest constant values for the ADMIN_LOW and ADMIN_HIGH clearances,
respectively.

bclundef() and bslundef() initialize the binary CMW and sensitivity label
structure label to the manifest constant value for an undefined CMW and sensitivity
label, respectively.

bclearundef() initializes the binary clearance clearance to the manifest constant
value for an undefined clearance.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bclearhigh(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

70 man pages section 3: Library Functions • Last Revised 20 Feb 2001

bcltobanner(3TSOL), blcompare(3TSOL), bltype(3TSOL), hextob(3TSOL),
labelvers(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

bclearhigh(3TSOL)

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction to Library Functions 71

blmanifest, bcllow, bclhigh, bsllow, bslhigh, bclearlow, bclearhigh, bclundef, bslundef,
bclearundef – create manifest binary labels

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

void bcllow(bclabel_t *label);

void bclhigh(bclabel_t *label);

void bsllow(bslabel_t *label);

void bslhigh(bslabel_t *label);

void bclearlow(bclear_t *clearance);

void bclearhigh(bclear_t *clearance);

void bclundef(bclabel_t *label);

void bslundef(bslabel_t *label);

void bclearundef(bclabel_t *label);

These functions initialize binary label structures to manifest values.

bcllow() and bclhigh() initialize the binary CMW label structure label to the
manifest constant values for the ADMIN_LOW and ADMIN_HIGH CMW labels,
respectively.

bsllow() and bslhigh() initialize the binary sensitivity label structure label to the
manifest constant values for the ADMIN_LOW and ADMIN_HIGH sensitivity labels,
respectively.

bclearlow() and bclearhigh() initialize the binary clearance structure clearance
to the manifest constant values for the ADMIN_LOW and ADMIN_HIGH clearances,
respectively.

bclundef() and bslundef() initialize the binary CMW and sensitivity label
structure label to the manifest constant value for an undefined CMW and sensitivity
label, respectively.

bclearundef() initializes the binary clearance clearance to the manifest constant
value for an undefined clearance.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bclearlow(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

72 man pages section 3: Library Functions • Last Revised 20 Feb 2001

bcltobanner(3TSOL), blcompare(3TSOL), bltype(3TSOL), hextob(3TSOL),
labelvers(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

bclearlow(3TSOL)

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction to Library Functions 73

btohex, bcltoh, bsltoh, bcleartoh, bcltoh_r, bsltoh_r, bcleartoh_r, h_alloc, h_free –
convert binary label to hexadecimal

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

char *bcltoh(const bclabel_t *label);

char *bsltoh(const bslabel_t *label);

char *bcleartoh(const bclear_t *clearance);

char *bcltoh_r(const bclabel_t *label, char *hex);

char *bsltoh_r(const bslabel_t *label, char *hex);

char *bcleartoh_r(const bclear_t *clearance, char *hex);

char *h_alloc(const unsigned char type);

void h_free(char *hex);

These functions convert binary labels into hexadecimal strings that represent the
internal value.

bcltoh() and bcltoh_r() convert a binary CMW label into a string of the form:

0xADMIN_LOW_hex_value [0xsensitivity_label_hexadecimal_value]

bsltoh() and bsltoh_r() convert a binary sensitivity label into a string of the
form:

[0xsensitivity_label_hexadecimal_value]

bcleartoh() and bcleartoh_r() convert a binary clearance into a string of the
form:

0xclearance_hexadecimal_value

h_alloc() allocates memory for the hexadecimal value type for use by bcltoh_r(),
bsltoh_r(), and bcleartoh_r().

Valid values for type are:

SUN_CMW_ID label is a binary CMW label.

SUN_SL_ID label is a binary sensitivity label.

SUN_CLR_ID label is a binary clearance.

h_free() frees memory allocated by h_alloc().

These functions return a pointer to a string that contains the result of the translation,
or (char *)0 if the parameter is not of the required type.

See attributes(5) for descriptions of the following attributes:

bcleartoh(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

74 man pages section 3: Library Functions • Last Revised 24 May 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe with exceptions

atohexlabel(1M), hextoalabel(1M), bcltobanner(3TSOL),
blmanifest(3TSOL), bltocolor(3TSOL), bltype(3TSOL), labelinfo(3TSOL),
sbltos(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

The functions bcltoh(), bsltoh(), and bcleartoh() share the same statically
allocated string storage. They are not MT-Safe. Subsequent calls to any of these
functions will overwrite that string with the newly translated string.

For multithreaded applications, the functions bcltoh_r(), bsltoh_r(), and
bcleartoh_r() should be used.

bcleartoh(3TSOL)

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 75

btohex, bcltoh, bsltoh, bcleartoh, bcltoh_r, bsltoh_r, bcleartoh_r, h_alloc, h_free –
convert binary label to hexadecimal

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

char *bcltoh(const bclabel_t *label);

char *bsltoh(const bslabel_t *label);

char *bcleartoh(const bclear_t *clearance);

char *bcltoh_r(const bclabel_t *label, char *hex);

char *bsltoh_r(const bslabel_t *label, char *hex);

char *bcleartoh_r(const bclear_t *clearance, char *hex);

char *h_alloc(const unsigned char type);

void h_free(char *hex);

These functions convert binary labels into hexadecimal strings that represent the
internal value.

bcltoh() and bcltoh_r() convert a binary CMW label into a string of the form:

0xADMIN_LOW_hex_value [0xsensitivity_label_hexadecimal_value]

bsltoh() and bsltoh_r() convert a binary sensitivity label into a string of the
form:

[0xsensitivity_label_hexadecimal_value]

bcleartoh() and bcleartoh_r() convert a binary clearance into a string of the
form:

0xclearance_hexadecimal_value

h_alloc() allocates memory for the hexadecimal value type for use by bcltoh_r(),
bsltoh_r(), and bcleartoh_r().

Valid values for type are:

SUN_CMW_ID label is a binary CMW label.

SUN_SL_ID label is a binary sensitivity label.

SUN_CLR_ID label is a binary clearance.

h_free() frees memory allocated by h_alloc().

These functions return a pointer to a string that contains the result of the translation,
or (char *)0 if the parameter is not of the required type.

See attributes(5) for descriptions of the following attributes:

bcleartoh_r(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

76 man pages section 3: Library Functions • Last Revised 24 May 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe with exceptions

atohexlabel(1M), hextoalabel(1M), bcltobanner(3TSOL),
blmanifest(3TSOL), bltocolor(3TSOL), bltype(3TSOL), labelinfo(3TSOL),
sbltos(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

The functions bcltoh(), bsltoh(), and bcleartoh() share the same statically
allocated string storage. They are not MT-Safe. Subsequent calls to any of these
functions will overwrite that string with the newly translated string.

For multithreaded applications, the functions bcltoh_r(), bsltoh_r(), and
bcleartoh_r() should be used.

bcleartoh_r(3TSOL)

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 77

bltos, bcltos, bsltos, bcleartos – translate binary labels to character coded labels

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

int bltos(const blevel_t *label, char **string, const int str_len, const
int flags);

int bcltos(const bclabel_t *label, char **string, const int str_len,
const int flags);

int bsltos(const bslabel_t *label, char **string, const int str_len,
const int flags);

int bcleartos(const bclear_t *label, char **string, const int str_len,
const int flags);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to perform label translation on labels that dominate the current process’
sensitivity label.

These routines translate binary labels into strings controlled by the value of the flags
parameter.

The generic form of an output character-coded label is:

CLASSIFICATION WORD1 WORD2 WORD3/WORD4 SUFFIX PREFIX WORD5/WORD6

Capital letters are used to display all Classification names and Words. The ‘ ’ (space)
character separates classifications and words from other words in all character-coded
labels except where multiple words that require the same Prefix or Suffix are present,
in which case the multiple words are separated from each other by the ‘/’ (slash)
character.

string may point to either a pointer to pre-allocated memory, or the value (char *)0.
If it points to a pointer to pre-allocated memory, then str_len indicates the size of that
memory. If it points to the value (char *)0, memory is allocated using malloc() to
contain the translated character-coded labels. The translated label is copied into
allocated or pre-allocated memory.

flags is 0 (zero), or the logical sum of the following:

LONG_WORDS Translate using long names of words defined in label.

SHORT_WORDS Translate using short names of words defined in label. If
no short name is defined in the label_encodings file
for a word, the long name is used.

LONG_CLASSIFICATION Translate using long name of classification defined in
label.

bcleartos(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

78 man pages section 3: Library Functions • Last Revised 24 May 2001

SHORT_CLASSIFICATION Translate using short name of classification defined in
label.

ACCESS_RELATED Translate only access-related entries defined in
information label label.

VIEW_EXTERNAL Translate ADMIN_LOW and ADMIN_HIGH labels to the
lowest and highest labels defined in the
label_encodings file.

VIEW_INTERNAL Translate ADMIN_LOW and ADMIN_HIGH labels to the
admin low name and admin high name strings
specified in the label_encodings file. If no strings
are specified, the strings “ADMIN_LOW” and
“ADMIN_HIGH” are used.

NO_CLASSIFICATION Do not translate classification defined in label.

bcltos() translates a binary CMW label into a string of the form:

ADMIN_LOW [sensitivity label]

The applicable flags are LONG_WORDS or SHORT_WORDS, and VIEW_EXTERNAL or
VIEW_INTERNAL. A flags value 0 is equivalent to (LONG_WORDS).

bsltos() translates a binary sensitivity label into a string. The applicable flags are
LONG_CLASSIFICATION or SHORT_CLASSIFICATION, LONG_WORDS or
SHORT_WORDS, VIEW_EXTERNAL or VIEW_INTERNAL, and NO_CLASSIFICATION. A
flags value 0 is equivalent to (SHORT_CLASSIFICATION | LONG_WORDS).

bcleartos() translates a binary clearance into a string. The applicable flags are
LONG_CLASSIFICATION or SHORT_CLASSIFICATION, LONG_WORDS or
SHORT_WORDS, VIEW_EXTERNAL or VIEW_INTERNAL, and NO_CLASSIFICATION. A
flags value 0 is equivalent to (SHORT_CLASSIFICATION | LONG_WORDS). The
translation of a clearance may not be the same as the translation of a sensitivity label.
These functions use different label_encodings file tables that may contain different
words and constraints.

These routines return:

−1 If the label is not of the valid defined required type, if the label is not
dominated by the process sensitivity label and the process does not have
PRIV_SYS_TRANS_LABEL in its set of effective privileges, or the
label_encodings file is inaccessible.

0 If memory cannot be allocated for the return string, or the pre-allocated
return string memory is insufficient to hold the string. The value of the
pre-allocated string is set to the NULL string (*string[0]=’\\00’;).

>0 If successful, the length of the character-coded label including the NULL
terminator.

bcleartos(3TSOL)

RETURN VALUES

Introduction to Library Functions 79

If the VIEW_EXTERNAL or VIEW_INTERNAL flags are not specified, translation of
ADMIN_LOW and ADMIN_HIGH labels is controlled by the label view process attribute
flags. If no label view process attribute flags are defined, their translation is controlled
by the label view configured in the label_encodings file. A value of External
specifies that ADMIN_LOW and ADMIN_HIGH labels are mapped to the lowest and
highest labels defined in the label_encodings file. A value of Internal specifies
that the ADMIN_LOW and ADMIN_HIGH labels are translated to the admin low and
admin high name strings specified in the label_encodings file. If no such names
are specified, the strings “ADMIN_LOW” and “ADMIN_HIGH” are used.

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), blcompare(3TSOL), bltocolor(3TSOL),
labelinfo(3TSOL)

Trusted Solaris Developer’s Guide, Trusted Solaris administrator’s document set

free(3C), malloc(3C), attributes(5)

If memory is allocated by these routines, the caller must free the memory with
free() when the memory is no longer in use.

bcleartos(3TSOL)

PROCESS
ATTRIBUTES

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

80 man pages section 3: Library Functions • Last Revised 24 May 2001

blmanifest, bcllow, bclhigh, bsllow, bslhigh, bclearlow, bclearhigh, bclundef, bslundef,
bclearundef – create manifest binary labels

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

void bcllow(bclabel_t *label);

void bclhigh(bclabel_t *label);

void bsllow(bslabel_t *label);

void bslhigh(bslabel_t *label);

void bclearlow(bclear_t *clearance);

void bclearhigh(bclear_t *clearance);

void bclundef(bclabel_t *label);

void bslundef(bslabel_t *label);

void bclearundef(bclabel_t *label);

These functions initialize binary label structures to manifest values.

bcllow() and bclhigh() initialize the binary CMW label structure label to the
manifest constant values for the ADMIN_LOW and ADMIN_HIGH CMW labels,
respectively.

bsllow() and bslhigh() initialize the binary sensitivity label structure label to the
manifest constant values for the ADMIN_LOW and ADMIN_HIGH sensitivity labels,
respectively.

bclearlow() and bclearhigh() initialize the binary clearance structure clearance
to the manifest constant values for the ADMIN_LOW and ADMIN_HIGH clearances,
respectively.

bclundef() and bslundef() initialize the binary CMW and sensitivity label
structure label to the manifest constant value for an undefined CMW and sensitivity
label, respectively.

bclearundef() initializes the binary clearance clearance to the manifest constant
value for an undefined clearance.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bclearundef(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Introduction to Library Functions 81

bcltobanner(3TSOL), blcompare(3TSOL), bltype(3TSOL), hextob(3TSOL),
labelvers(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

bclearundef(3TSOL)

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

82 man pages section 3: Library Functions • Last Revised 20 Feb 2001

blvalid, bslvalid, bclearvalid – check validity of binary label

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

int bslvalid(const bslabel_t *label);

int bclearvalid(const bclear_t *clearance);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to inquire about labels that dominate the current process’ sensitivity label.

These functions check the validity of binary labels.

bslvalid() examines label to determine if it is a valid sensitivity label for this
system.

bclearvalid() examines clearance to determine if it is a valid clearance for this
system.

These routines return:

−1 If the label_encodings file is inaccessible.

0 If the binary label is not valid for this system or is not dominated by the
process’ sensitivity label and the process does not have
PRIV_SYS_TRANS_LABEL in its set of effective privileges,

1 If the binary label is valid for this system.

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), blcompare(3TSOL), bltocolor(3TSOL), btohex(3TSOL),
labelinfo(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

Binary sensitivity labels are valid if they are contained in the
SYSTEM_ACCREDITATION_RANGE as checked by blinset(3TSOL). bslvalid() is a

bclearvalid(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 83

synonym for calling blinset() with the containing set of
SYSTEM_ACCREDITATION_RANGE and is included for completeness.

bclearvalid(3TSOL)

84 man pages section 3: Library Functions • Last Revised 1 Feb 2001

blmanifest, bcllow, bclhigh, bsllow, bslhigh, bclearlow, bclearhigh, bclundef, bslundef,
bclearundef – create manifest binary labels

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

void bcllow(bclabel_t *label);

void bclhigh(bclabel_t *label);

void bsllow(bslabel_t *label);

void bslhigh(bslabel_t *label);

void bclearlow(bclear_t *clearance);

void bclearhigh(bclear_t *clearance);

void bclundef(bclabel_t *label);

void bslundef(bslabel_t *label);

void bclearundef(bclabel_t *label);

These functions initialize binary label structures to manifest values.

bcllow() and bclhigh() initialize the binary CMW label structure label to the
manifest constant values for the ADMIN_LOW and ADMIN_HIGH CMW labels,
respectively.

bsllow() and bslhigh() initialize the binary sensitivity label structure label to the
manifest constant values for the ADMIN_LOW and ADMIN_HIGH sensitivity labels,
respectively.

bclearlow() and bclearhigh() initialize the binary clearance structure clearance
to the manifest constant values for the ADMIN_LOW and ADMIN_HIGH clearances,
respectively.

bclundef() and bslundef() initialize the binary CMW and sensitivity label
structure label to the manifest constant value for an undefined CMW and sensitivity
label, respectively.

bclearundef() initializes the binary clearance clearance to the manifest constant
value for an undefined clearance.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bclhigh(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Introduction to Library Functions 85

bcltobanner(3TSOL), blcompare(3TSOL), bltype(3TSOL), hextob(3TSOL),
labelvers(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

bclhigh(3TSOL)

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

86 man pages section 3: Library Functions • Last Revised 20 Feb 2001

blmanifest, bcllow, bclhigh, bsllow, bslhigh, bclearlow, bclearhigh, bclundef, bslundef,
bclearundef – create manifest binary labels

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

void bcllow(bclabel_t *label);

void bclhigh(bclabel_t *label);

void bsllow(bslabel_t *label);

void bslhigh(bslabel_t *label);

void bclearlow(bclear_t *clearance);

void bclearhigh(bclear_t *clearance);

void bclundef(bclabel_t *label);

void bslundef(bslabel_t *label);

void bclearundef(bclabel_t *label);

These functions initialize binary label structures to manifest values.

bcllow() and bclhigh() initialize the binary CMW label structure label to the
manifest constant values for the ADMIN_LOW and ADMIN_HIGH CMW labels,
respectively.

bsllow() and bslhigh() initialize the binary sensitivity label structure label to the
manifest constant values for the ADMIN_LOW and ADMIN_HIGH sensitivity labels,
respectively.

bclearlow() and bclearhigh() initialize the binary clearance structure clearance
to the manifest constant values for the ADMIN_LOW and ADMIN_HIGH clearances,
respectively.

bclundef() and bslundef() initialize the binary CMW and sensitivity label
structure label to the manifest constant value for an undefined CMW and sensitivity
label, respectively.

bclearundef() initializes the binary clearance clearance to the manifest constant
value for an undefined clearance.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcllow(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Introduction to Library Functions 87

bcltobanner(3TSOL), blcompare(3TSOL), bltype(3TSOL), hextob(3TSOL),
labelvers(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

bcllow(3TSOL)

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

88 man pages section 3: Library Functions • Last Revised 20 Feb 2001

bcltobanner – translate binary CMW labels to character-coded labels for a printer
banner page

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

int bcltobanner(const bclabel_t *label, struct banner_fields *fields,
const int flags);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to perform label translation on labels that dominate the current process’
sensitivity label.

bcltobanner() translates a binary CMW label, label, into various character-coded
labels and strings for display on printer banner and trailer pages and at the top and
bottom of the document body pages. The members of the fields structure are either
string pointers, or the length of memory pre-allocated to a string pointer. The string
pointers may contain either a pointer to pre-allocated memory, or the value (char
*)0. If the string pointer contains a pointer to pre-allocated memory, then its
associated length member indicates the size of that memory. If it contains the value
(char *)0, memory is allocated using malloc() to contain the translated
character-coded label or string. The translated string is copied into allocated or
pre-allocated memory.

The structure banner_fields stores the folloiwng information:

struct banner_fields {
char *header; /* top and bottom banner/trailer page */
char *protect_as; /* "protect as" banner page section */
char *ilabel; /* obsolete */
char *caveats; /* ‘‘caveats’’ banner page section */
char *channels; /* ‘‘handling channels’’ section */

/* lengths of pre-allocated string memory */
short header_len; /* header */
short protect_as_len; /* protect_as */
short short ilabel_len; /* obsolete */
short caveats_len; /* caveats */
short channels_len; /* handling channels */

};

Members of the fields structure have the following meaning:

header
String to print at the top and bottom of banner and trailer pages

protect_as
String to print in the protect as warning of banner and trailer pages

ilabel
Obsolete string

caveats
String to print in caveats section of the banner and trailer pages

bcltobanner(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 89

channels
String to print in channels section of the banner and trailer pages

header_len
Length of pre-allocated memory for header string

protect_as_len
Length of pre-allocated memory for protect_as string

ilabel_len
Obsolete string

caveats_len
Length of pre-allocated memory for caveats string

channels_len
Length of pre-allocated memory for channels string

The translation is controlled by the value of the flags parameter. flags may be either
LONG_WORDS, SHORT_WORDS, or 0 (zero).

LONG_WORDS Translate using long names of Words defined in label.

SHORT_WORDS Translate using short names of Words defined in label. If no short
name is defined in the label_encodings file for a Word, the
long name is used.

0 A flags value 0 is equivalent to LONG_WORDS.

bcltobanner() returns:

−1 If label is not a binary CMW label with a defined sensitivity label, or if its
sensitivity label portion is not dominated by the process sensitivity label
and the process does not have PRIV_SYS_TRANS_LABEL in its set of
effective privileges, or if the label_encodings file is inaccessible.

0 If memory cannot be allocated for a string in the fields structure, or if one of
the pre-allocated memories is insufficient to hold its string. The value of
that pre-allocated string is set to the NULL string (fields→ string[0] =
’\00’;).

1 If successful.

EXAMPLE 1 Banner Page Format

The string members of the fields structure are included in a printer banner page in the
following manner:

HEADER

This output must be protected as:
PROTECT_AS

unless manually reviewed and downgraded.

bcltobanner(3TSOL)

RETURN VALUES

EXAMPLES

90 man pages section 3: Library Functions • Last Revised 24 May 2001

EXAMPLE 1 Banner Page Format (Continued)

CAVEATS
CHANNELS
HEADER

etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

blcompare(3TSOL), blinset(3TSOL), blmanifest(3TSOL), blminmax(3TSOL),
blportion(3TSOL), bltype(3TSOL), blvalid(3TSOL), btohex(3TSOL),
hextob(3TSOL), labelinfo(3TSOL), labelvers(3TSOL), sbltos(3TSOL),
label_encodings(4)

Trusted Solaris Developer’s Guide, and Trusted Solaris administrator’s document set

free(3C), malloc(3C), attributes(5)

If memory is allocated by this routine, the caller must free memory with free() when
the memory is no longer in use. ADMIN_LOW and ADMIN_HIGH labels are mapped
differently than the other routines. If the label is ADMIN_LOW, the label is mapped into
the minimum sensitivity label defined in the label_encodings file, and if the label is
ADMIN_HIGH, the label is mapped into the maximum classification, and all
compartments defined in the label_encodings file.

bcltobanner(3TSOL)

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 91

btohex, bcltoh, bsltoh, bcleartoh, bcltoh_r, bsltoh_r, bcleartoh_r, h_alloc, h_free –
convert binary label to hexadecimal

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

char *bcltoh(const bclabel_t *label);

char *bsltoh(const bslabel_t *label);

char *bcleartoh(const bclear_t *clearance);

char *bcltoh_r(const bclabel_t *label, char *hex);

char *bsltoh_r(const bslabel_t *label, char *hex);

char *bcleartoh_r(const bclear_t *clearance, char *hex);

char *h_alloc(const unsigned char type);

void h_free(char *hex);

These functions convert binary labels into hexadecimal strings that represent the
internal value.

bcltoh() and bcltoh_r() convert a binary CMW label into a string of the form:

0xADMIN_LOW_hex_value [0xsensitivity_label_hexadecimal_value]

bsltoh() and bsltoh_r() convert a binary sensitivity label into a string of the
form:

[0xsensitivity_label_hexadecimal_value]

bcleartoh() and bcleartoh_r() convert a binary clearance into a string of the
form:

0xclearance_hexadecimal_value

h_alloc() allocates memory for the hexadecimal value type for use by bcltoh_r(),
bsltoh_r(), and bcleartoh_r().

Valid values for type are:

SUN_CMW_ID label is a binary CMW label.

SUN_SL_ID label is a binary sensitivity label.

SUN_CLR_ID label is a binary clearance.

h_free() frees memory allocated by h_alloc().

These functions return a pointer to a string that contains the result of the translation,
or (char *)0 if the parameter is not of the required type.

See attributes(5) for descriptions of the following attributes:

bcltoh(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

92 man pages section 3: Library Functions • Last Revised 24 May 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe with exceptions

atohexlabel(1M), hextoalabel(1M), bcltobanner(3TSOL),
blmanifest(3TSOL), bltocolor(3TSOL), bltype(3TSOL), labelinfo(3TSOL),
sbltos(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

The functions bcltoh(), bsltoh(), and bcleartoh() share the same statically
allocated string storage. They are not MT-Safe. Subsequent calls to any of these
functions will overwrite that string with the newly translated string.

For multithreaded applications, the functions bcltoh_r(), bsltoh_r(), and
bcleartoh_r() should be used.

bcltoh(3TSOL)

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 93

btohex, bcltoh, bsltoh, bcleartoh, bcltoh_r, bsltoh_r, bcleartoh_r, h_alloc, h_free –
convert binary label to hexadecimal

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

char *bcltoh(const bclabel_t *label);

char *bsltoh(const bslabel_t *label);

char *bcleartoh(const bclear_t *clearance);

char *bcltoh_r(const bclabel_t *label, char *hex);

char *bsltoh_r(const bslabel_t *label, char *hex);

char *bcleartoh_r(const bclear_t *clearance, char *hex);

char *h_alloc(const unsigned char type);

void h_free(char *hex);

These functions convert binary labels into hexadecimal strings that represent the
internal value.

bcltoh() and bcltoh_r() convert a binary CMW label into a string of the form:

0xADMIN_LOW_hex_value [0xsensitivity_label_hexadecimal_value]

bsltoh() and bsltoh_r() convert a binary sensitivity label into a string of the
form:

[0xsensitivity_label_hexadecimal_value]

bcleartoh() and bcleartoh_r() convert a binary clearance into a string of the
form:

0xclearance_hexadecimal_value

h_alloc() allocates memory for the hexadecimal value type for use by bcltoh_r(),
bsltoh_r(), and bcleartoh_r().

Valid values for type are:

SUN_CMW_ID label is a binary CMW label.

SUN_SL_ID label is a binary sensitivity label.

SUN_CLR_ID label is a binary clearance.

h_free() frees memory allocated by h_alloc().

These functions return a pointer to a string that contains the result of the translation,
or (char *)0 if the parameter is not of the required type.

See attributes(5) for descriptions of the following attributes:

bcltoh_r(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

94 man pages section 3: Library Functions • Last Revised 24 May 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe with exceptions

atohexlabel(1M), hextoalabel(1M), bcltobanner(3TSOL),
blmanifest(3TSOL), bltocolor(3TSOL), bltype(3TSOL), labelinfo(3TSOL),
sbltos(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

The functions bcltoh(), bsltoh(), and bcleartoh() share the same statically
allocated string storage. They are not MT-Safe. Subsequent calls to any of these
functions will overwrite that string with the newly translated string.

For multithreaded applications, the functions bcltoh_r(), bsltoh_r(), and
bcleartoh_r() should be used.

bcltoh_r(3TSOL)

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 95

bltos, bcltos, bsltos, bcleartos – translate binary labels to character coded labels

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

int bltos(const blevel_t *label, char **string, const int str_len, const
int flags);

int bcltos(const bclabel_t *label, char **string, const int str_len,
const int flags);

int bsltos(const bslabel_t *label, char **string, const int str_len,
const int flags);

int bcleartos(const bclear_t *label, char **string, const int str_len,
const int flags);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to perform label translation on labels that dominate the current process’
sensitivity label.

These routines translate binary labels into strings controlled by the value of the flags
parameter.

The generic form of an output character-coded label is:

CLASSIFICATION WORD1 WORD2 WORD3/WORD4 SUFFIX PREFIX WORD5/WORD6

Capital letters are used to display all Classification names and Words. The ‘ ’ (space)
character separates classifications and words from other words in all character-coded
labels except where multiple words that require the same Prefix or Suffix are present,
in which case the multiple words are separated from each other by the ‘/’ (slash)
character.

string may point to either a pointer to pre-allocated memory, or the value (char *)0.
If it points to a pointer to pre-allocated memory, then str_len indicates the size of that
memory. If it points to the value (char *)0, memory is allocated using malloc() to
contain the translated character-coded labels. The translated label is copied into
allocated or pre-allocated memory.

flags is 0 (zero), or the logical sum of the following:

LONG_WORDS Translate using long names of words defined in label.

SHORT_WORDS Translate using short names of words defined in label. If
no short name is defined in the label_encodings file
for a word, the long name is used.

LONG_CLASSIFICATION Translate using long name of classification defined in
label.

bcltos(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

96 man pages section 3: Library Functions • Last Revised 24 May 2001

SHORT_CLASSIFICATION Translate using short name of classification defined in
label.

ACCESS_RELATED Translate only access-related entries defined in
information label label.

VIEW_EXTERNAL Translate ADMIN_LOW and ADMIN_HIGH labels to the
lowest and highest labels defined in the
label_encodings file.

VIEW_INTERNAL Translate ADMIN_LOW and ADMIN_HIGH labels to the
admin low name and admin high name strings
specified in the label_encodings file. If no strings
are specified, the strings “ADMIN_LOW” and
“ADMIN_HIGH” are used.

NO_CLASSIFICATION Do not translate classification defined in label.

bcltos() translates a binary CMW label into a string of the form:

ADMIN_LOW [sensitivity label]

The applicable flags are LONG_WORDS or SHORT_WORDS, and VIEW_EXTERNAL or
VIEW_INTERNAL. A flags value 0 is equivalent to (LONG_WORDS).

bsltos() translates a binary sensitivity label into a string. The applicable flags are
LONG_CLASSIFICATION or SHORT_CLASSIFICATION, LONG_WORDS or
SHORT_WORDS, VIEW_EXTERNAL or VIEW_INTERNAL, and NO_CLASSIFICATION. A
flags value 0 is equivalent to (SHORT_CLASSIFICATION | LONG_WORDS).

bcleartos() translates a binary clearance into a string. The applicable flags are
LONG_CLASSIFICATION or SHORT_CLASSIFICATION, LONG_WORDS or
SHORT_WORDS, VIEW_EXTERNAL or VIEW_INTERNAL, and NO_CLASSIFICATION. A
flags value 0 is equivalent to (SHORT_CLASSIFICATION | LONG_WORDS). The
translation of a clearance may not be the same as the translation of a sensitivity label.
These functions use different label_encodings file tables that may contain different
words and constraints.

These routines return:

−1 If the label is not of the valid defined required type, if the label is not
dominated by the process sensitivity label and the process does not have
PRIV_SYS_TRANS_LABEL in its set of effective privileges, or the
label_encodings file is inaccessible.

0 If memory cannot be allocated for the return string, or the pre-allocated
return string memory is insufficient to hold the string. The value of the
pre-allocated string is set to the NULL string (*string[0]=’\\00’;).

>0 If successful, the length of the character-coded label including the NULL
terminator.

bcltos(3TSOL)

RETURN VALUES

Introduction to Library Functions 97

If the VIEW_EXTERNAL or VIEW_INTERNAL flags are not specified, translation of
ADMIN_LOW and ADMIN_HIGH labels is controlled by the label view process attribute
flags. If no label view process attribute flags are defined, their translation is controlled
by the label view configured in the label_encodings file. A value of External
specifies that ADMIN_LOW and ADMIN_HIGH labels are mapped to the lowest and
highest labels defined in the label_encodings file. A value of Internal specifies
that the ADMIN_LOW and ADMIN_HIGH labels are translated to the admin low and
admin high name strings specified in the label_encodings file. If no such names
are specified, the strings “ADMIN_LOW” and “ADMIN_HIGH” are used.

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), blcompare(3TSOL), bltocolor(3TSOL),
labelinfo(3TSOL)

Trusted Solaris Developer’s Guide, Trusted Solaris administrator’s document set

free(3C), malloc(3C), attributes(5)

If memory is allocated by these routines, the caller must free the memory with
free() when the memory is no longer in use.

bcltos(3TSOL)

PROCESS
ATTRIBUTES

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

98 man pages section 3: Library Functions • Last Revised 24 May 2001

blportion, bcltosl, getcsl, setcsl – access binary label portions

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

bslabel_t *bcltosl(bclabel_t *label);

void getcsl(bslabel_t *destination_label, const bclabel_t *source_label);

void setcsl(bclabel_t *destination_label, const bslabel_t *source_label);

These functions provide pointers to, extract, and replace portions of binary labels.

bcltosl() provides a pointer to the sensitivity label of the binary CMW label label.

getcsl() copies the sensitivity label of the binary CMW label source_label to the
binary sensitivity label destination_label.

setcsl() replaces the value of the sensitivity label of the binary CMW label
destination_label with the value of the binary sensitivity label source_label.

bcltosl() returns a pointer to its label type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

EXAMPLE 1 Comparing Sensitivity Labels

The following example shows how to compare the sensitivity label portion of a binary
CMW label with a file’s binary sensitivity label.

blequal(bcltosl(&cmw_label), &file_sensitivity_label)

bcltobanner(3TSOL), blcompare(3TSOL), bltos(3TSOL), btohex(3TSOL),
labelinfo(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

bcltosl(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

EXAMPLES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction to Library Functions 99

blmanifest, bcllow, bclhigh, bsllow, bslhigh, bclearlow, bclearhigh, bclundef, bslundef,
bclearundef – create manifest binary labels

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

void bcllow(bclabel_t *label);

void bclhigh(bclabel_t *label);

void bsllow(bslabel_t *label);

void bslhigh(bslabel_t *label);

void bclearlow(bclear_t *clearance);

void bclearhigh(bclear_t *clearance);

void bclundef(bclabel_t *label);

void bslundef(bslabel_t *label);

void bclearundef(bclabel_t *label);

These functions initialize binary label structures to manifest values.

bcllow() and bclhigh() initialize the binary CMW label structure label to the
manifest constant values for the ADMIN_LOW and ADMIN_HIGH CMW labels,
respectively.

bsllow() and bslhigh() initialize the binary sensitivity label structure label to the
manifest constant values for the ADMIN_LOW and ADMIN_HIGH sensitivity labels,
respectively.

bclearlow() and bclearhigh() initialize the binary clearance structure clearance
to the manifest constant values for the ADMIN_LOW and ADMIN_HIGH clearances,
respectively.

bclundef() and bslundef() initialize the binary CMW and sensitivity label
structure label to the manifest constant value for an undefined CMW and sensitivity
label, respectively.

bclearundef() initializes the binary clearance clearance to the manifest constant
value for an undefined clearance.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bclundef(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

100 man pages section 3: Library Functions • Last Revised 20 Feb 2001

bcltobanner(3TSOL), blcompare(3TSOL), bltype(3TSOL), hextob(3TSOL),
labelvers(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

bclundef(3TSOL)

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction to Library Functions 101

bind – bind a name to a socket

cc [flags…] file … -lsocket -lnsl [library…]

#include <sys/types.h>

#include <sys/socket.h>

int bind (int s, const struct sockaddr *name, socklen_t *namelen);

bind() assigns a name to an unnamed socket. When a socket is created with
socket(3SOCKET), it exists in a name space (address family) but has no name
assigned. bind() requests that the name pointed to by name be assigned to the socket.
The socket is bound to a single-level port (SLP), unless the calling process possesses
the PRIV_NET_MAC_READ privilege, when it is bound to a multilevel port (MLP).

bind() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The bind() call will fail if:

EACCES The requested address is protected and the current user
has inadequate permission to access it. The calling
process must have the PRIV_NET_PRIVADDR privilege
to override this restriction.

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available on the local
machine.

EBADF s is not a valid descriptor.

EINVAL namelen is not the size of a valid address for the
specified address family.

EINVAL The socket is already bound to an address.

ENOSR There were insufficient STREAMS resources for the
operation to complete.

ENOTSOCK s is a descriptor for a file, not a socket.

The following errors are specific to binding names in the UNIX domain:

EACCES Search permission is denied for a component of the
path prefix of the pathname in name.

EIO An I/O error occurred while making the directory
entry or allocating the inode.

EISDIR A null pathname was specified.

bind(3SOCKET)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

102 man pages section 3: Library Functions • Last Revised 11 Aug 2000

ELOOP Too many symbolic links were encountered in
translating the pathname in name.

ENOENT A component of the path prefix of the pathname in
name does not exist.

ENOTDIR A component of the path prefix of the pathname in
name is not a directory.

EROFS The inode would reside on a read-only file system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

If the calling process possesses the PRIV_NET_MAC_READ privilege, the socket is
bound to a multilevel port (MLP); otherwise, the socket is bound to a single-level port
(SLP). To override the access restriction on privileged ports, the calling process must
have the PRIV_NET_PRIVADDR privilege.

unlink(2), socket(3SOCKET)

socket(3HEAD), attributes(5)

Binding a name in the UNIX domain creates a socket in the file system that must be
deleted by the caller when it is no longer needed (using unlink(2)).

The rules used in name binding vary between communication domains.

bind(3SOCKET)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 103

blcompare, blequal, bldominates, blstrictdom, blinrange – compare binary labels

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>
typedef binary_level_range {

blevel_t lower_bound;
blevel_t upper_bound;

} brange_t;

int blequal(const blevel_t *label1, const blevel_t *label2);

int bldominates(const blevel_t *label1, const blevel_t *label2);

int blstrictdom(const blevel_t *label1, const blevel_t *label2);

int blinrange(const blevel_t *label,const brange_t *range);

These functions compare binary labels for meeting a particular condition.

blequal() compares two levels for equality.

bldominates() compares level label1 for dominance over level label2.

blstrictdom() compares level label1 for strict dominance over level label2.

blinrange() compares level label for dominance over range→lower_bound and
range→upper_bound for dominance over level label.

These functions return non-zero if their respective conditions are met, otherwise zero
is returned.

EXAMPLE 1 Compare two binary labels

The following example shows how to compare two binary CMW labels:

blequal(bcltosl(&cmw_label1), bcltosl(&cmw_label2))

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), bltos(3TSOL), labelinfo(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

blcompare(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

104 man pages section 3: Library Functions • Last Revised 11 Apr 2000

blcompare, blequal, bldominates, blstrictdom, blinrange – compare binary labels

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>
typedef binary_level_range {

blevel_t lower_bound;
blevel_t upper_bound;

} brange_t;

int blequal(const blevel_t *label1, const blevel_t *label2);

int bldominates(const blevel_t *label1, const blevel_t *label2);

int blstrictdom(const blevel_t *label1, const blevel_t *label2);

int blinrange(const blevel_t *label,const brange_t *range);

These functions compare binary labels for meeting a particular condition.

blequal() compares two levels for equality.

bldominates() compares level label1 for dominance over level label2.

blstrictdom() compares level label1 for strict dominance over level label2.

blinrange() compares level label for dominance over range→lower_bound and
range→upper_bound for dominance over level label.

These functions return non-zero if their respective conditions are met, otherwise zero
is returned.

EXAMPLE 1 Compare two binary labels

The following example shows how to compare two binary CMW labels:

blequal(bcltosl(&cmw_label1), bcltosl(&cmw_label2))

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), bltos(3TSOL), labelinfo(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

bldominates(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction to Library Functions 105

blcompare, blequal, bldominates, blstrictdom, blinrange – compare binary labels

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>
typedef binary_level_range {

blevel_t lower_bound;
blevel_t upper_bound;

} brange_t;

int blequal(const blevel_t *label1, const blevel_t *label2);

int bldominates(const blevel_t *label1, const blevel_t *label2);

int blstrictdom(const blevel_t *label1, const blevel_t *label2);

int blinrange(const blevel_t *label,const brange_t *range);

These functions compare binary labels for meeting a particular condition.

blequal() compares two levels for equality.

bldominates() compares level label1 for dominance over level label2.

blstrictdom() compares level label1 for strict dominance over level label2.

blinrange() compares level label for dominance over range→lower_bound and
range→upper_bound for dominance over level label.

These functions return non-zero if their respective conditions are met, otherwise zero
is returned.

EXAMPLE 1 Compare two binary labels

The following example shows how to compare two binary CMW labels:

blequal(bcltosl(&cmw_label1), bcltosl(&cmw_label2))

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), bltos(3TSOL), labelinfo(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

blequal(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

106 man pages section 3: Library Functions • Last Revised 11 Apr 2000

blcompare, blequal, bldominates, blstrictdom, blinrange – compare binary labels

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>
typedef binary_level_range {

blevel_t lower_bound;
blevel_t upper_bound;

} brange_t;

int blequal(const blevel_t *label1, const blevel_t *label2);

int bldominates(const blevel_t *label1, const blevel_t *label2);

int blstrictdom(const blevel_t *label1, const blevel_t *label2);

int blinrange(const blevel_t *label,const brange_t *range);

These functions compare binary labels for meeting a particular condition.

blequal() compares two levels for equality.

bldominates() compares level label1 for dominance over level label2.

blstrictdom() compares level label1 for strict dominance over level label2.

blinrange() compares level label for dominance over range→lower_bound and
range→upper_bound for dominance over level label.

These functions return non-zero if their respective conditions are met, otherwise zero
is returned.

EXAMPLE 1 Compare two binary labels

The following example shows how to compare two binary CMW labels:

blequal(bcltosl(&cmw_label1), bcltosl(&cmw_label2))

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), bltos(3TSOL), labelinfo(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

blinrange(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction to Library Functions 107

blinset – Check binary label for inclusion in set

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>
typedef label_set_identifier {

int type;
char *name;

} set_id;

int blinset(const bslabel_t *label,const set_id *id));

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to perform tests on labels that dominate the current processes’ sensitivity
label.

label is examined to determine if it is an element of the label set id. The set_id type
field contains a manifest constant defining the type of set to be examined. The set_id
name field contains the name of the particular set of type type. The following types and
names are defined:

SYSTEM_ACCREDITATION_RANGE
The system’s accreditation range as defined in the label_encodings file. The
name field is ignored and need not be specified.

USER_ACCREDITATION_RANGE
The user accreditation range as defined in the label_encodings file. The name
field is ignored and need not be specified.

Other type and name values are reserved for future implementation.

blinset() returns:

1 If the label is contained in the specified set.

0 If the label is not in the specified set, is not a valid sensitivity label, or is not
dominated by the process sensitivity label and the process does not have
PRIV_SYS_TRANS_LABEL in its set of effective privileges.

−1 If the specified set is inaccessible.

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

blinset(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

ATTRIBUTES

108 man pages section 3: Library Functions • Last Revised 02 Jun 1998

bcltobanner(3TSOL), blcompare(3TSOL), bltype(3TSOL), labelinfo(3TSOL),
sbltos(3TSOL), label_encodings(4)

Trusted Solaris Developer’s Guide and the Trusted Solaris administrator’s document set

attributes(5)

The ADMIN_HIGH and ADMIN_LOW labels are accepted even if the remainder of the
system’s accreditation range is inaccessible.

The only sets available are the System Accreditation Range and User Accreditation
Range.

blinset(3TSOL)

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

BUGS

Introduction to Library Functions 109

blmanifest, bcllow, bclhigh, bsllow, bslhigh, bclearlow, bclearhigh, bclundef, bslundef,
bclearundef – create manifest binary labels

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

void bcllow(bclabel_t *label);

void bclhigh(bclabel_t *label);

void bsllow(bslabel_t *label);

void bslhigh(bslabel_t *label);

void bclearlow(bclear_t *clearance);

void bclearhigh(bclear_t *clearance);

void bclundef(bclabel_t *label);

void bslundef(bslabel_t *label);

void bclearundef(bclabel_t *label);

These functions initialize binary label structures to manifest values.

bcllow() and bclhigh() initialize the binary CMW label structure label to the
manifest constant values for the ADMIN_LOW and ADMIN_HIGH CMW labels,
respectively.

bsllow() and bslhigh() initialize the binary sensitivity label structure label to the
manifest constant values for the ADMIN_LOW and ADMIN_HIGH sensitivity labels,
respectively.

bclearlow() and bclearhigh() initialize the binary clearance structure clearance
to the manifest constant values for the ADMIN_LOW and ADMIN_HIGH clearances,
respectively.

bclundef() and bslundef() initialize the binary CMW and sensitivity label
structure label to the manifest constant value for an undefined CMW and sensitivity
label, respectively.

bclearundef() initializes the binary clearance clearance to the manifest constant
value for an undefined clearance.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

blmanifest(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

110 man pages section 3: Library Functions • Last Revised 20 Feb 2001

bcltobanner(3TSOL), blcompare(3TSOL), bltype(3TSOL), hextob(3TSOL),
labelvers(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

blmanifest(3TSOL)

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction to Library Functions 111

blminmax, blmaximum, blminimum – Bound of two binary levels

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

void blmaximum(blevel_t *maximum_label,const blevel_t
*bounding_label);

void blminimum(blevel_t *minimum_label,const blevel_t *bounding_label);

blmaximum() replaces the contents of binary level maximum_label with the least
upper bound of binary levels maximum_label and bounding_label. The least upper
bound is the greater of the classifications and all of the compartments of the two
binary levels. This is the least binary level that dominates both the original binary
levels.

blminimum() replaces the contents of binary level minimum_label with the greatest
lower bound of binary levels minimum_label and bounding_label. The greatest lower
bound is the lower of the classifications and only the compartments contained in both
binary levels. This is the greatest binary level that is dominated by both the original
binary levels.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), blinset(3TSOL), blvalid(3TSOL), labelinfo(3TSOL),
sbltos(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

blmaximum(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

112 man pages section 3: Library Functions • Last Revised 3 Aug 1995

blminmax, blmaximum, blminimum – Bound of two binary levels

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

void blmaximum(blevel_t *maximum_label,const blevel_t
*bounding_label);

void blminimum(blevel_t *minimum_label,const blevel_t *bounding_label);

blmaximum() replaces the contents of binary level maximum_label with the least
upper bound of binary levels maximum_label and bounding_label. The least upper
bound is the greater of the classifications and all of the compartments of the two
binary levels. This is the least binary level that dominates both the original binary
levels.

blminimum() replaces the contents of binary level minimum_label with the greatest
lower bound of binary levels minimum_label and bounding_label. The greatest lower
bound is the lower of the classifications and only the compartments contained in both
binary levels. This is the greatest binary level that is dominated by both the original
binary levels.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), blinset(3TSOL), blvalid(3TSOL), labelinfo(3TSOL),
sbltos(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

blminimum(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction to Library Functions 113

blminmax, blmaximum, blminimum – Bound of two binary levels

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

void blmaximum(blevel_t *maximum_label,const blevel_t
*bounding_label);

void blminimum(blevel_t *minimum_label,const blevel_t *bounding_label);

blmaximum() replaces the contents of binary level maximum_label with the least
upper bound of binary levels maximum_label and bounding_label. The least upper
bound is the greater of the classifications and all of the compartments of the two
binary levels. This is the least binary level that dominates both the original binary
levels.

blminimum() replaces the contents of binary level minimum_label with the greatest
lower bound of binary levels minimum_label and bounding_label. The greatest lower
bound is the lower of the classifications and only the compartments contained in both
binary levels. This is the greatest binary level that is dominated by both the original
binary levels.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), blinset(3TSOL), blvalid(3TSOL), labelinfo(3TSOL),
sbltos(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

blminmax(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

114 man pages section 3: Library Functions • Last Revised 3 Aug 1995

blportion, bcltosl, getcsl, setcsl – access binary label portions

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

bslabel_t *bcltosl(bclabel_t *label);

void getcsl(bslabel_t *destination_label, const bclabel_t *source_label);

void setcsl(bclabel_t *destination_label, const bslabel_t *source_label);

These functions provide pointers to, extract, and replace portions of binary labels.

bcltosl() provides a pointer to the sensitivity label of the binary CMW label label.

getcsl() copies the sensitivity label of the binary CMW label source_label to the
binary sensitivity label destination_label.

setcsl() replaces the value of the sensitivity label of the binary CMW label
destination_label with the value of the binary sensitivity label source_label.

bcltosl() returns a pointer to its label type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

EXAMPLE 1 Comparing Sensitivity Labels

The following example shows how to compare the sensitivity label portion of a binary
CMW label with a file’s binary sensitivity label.

blequal(bcltosl(&cmw_label), &file_sensitivity_label)

bcltobanner(3TSOL), blcompare(3TSOL), bltos(3TSOL), btohex(3TSOL),
labelinfo(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

blportion(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

EXAMPLES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction to Library Functions 115

blcompare, blequal, bldominates, blstrictdom, blinrange – compare binary labels

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>
typedef binary_level_range {

blevel_t lower_bound;
blevel_t upper_bound;

} brange_t;

int blequal(const blevel_t *label1, const blevel_t *label2);

int bldominates(const blevel_t *label1, const blevel_t *label2);

int blstrictdom(const blevel_t *label1, const blevel_t *label2);

int blinrange(const blevel_t *label,const brange_t *range);

These functions compare binary labels for meeting a particular condition.

blequal() compares two levels for equality.

bldominates() compares level label1 for dominance over level label2.

blstrictdom() compares level label1 for strict dominance over level label2.

blinrange() compares level label for dominance over range→lower_bound and
range→upper_bound for dominance over level label.

These functions return non-zero if their respective conditions are met, otherwise zero
is returned.

EXAMPLE 1 Compare two binary labels

The following example shows how to compare two binary CMW labels:

blequal(bcltosl(&cmw_label1), bcltosl(&cmw_label2))

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), bltos(3TSOL), labelinfo(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

blstrictdom(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

116 man pages section 3: Library Functions • Last Revised 11 Apr 2000

bltocolor, bltocolor_r – Get character-coded color name of label

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

char *bltocolor(const blevel_t *label);

char *bltocolor_r(const blevel_t *label, const int size, char
*color_name);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to get color names of labels that dominate the current processes’ sensitivity
label.

bltocolor() and bltocolor_r() get the character-coded color name associated
with the binary label label.

bltocolor() returns a pointer to a statically allocated string that contains the
character-coded color name specified for the label or returns (char *)0 if, for any
reason, no character-coded color name is available for this binary label.

bltocolor_r() returns a pointer to the color_name string which contains the
character-coded color name specified for the label or returns (char *)0 if, for any
reason, no character-coded color name is available for this binary label. color_name
must provide for a string of at least size characters.

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe with exceptions

bcltobanner(3TSOL), blcompare(3TSOL), bltos(3TSOL), btohex(3TSOL),
labelinfo(3TSOL)

Trusted Solaris Developer’s Guide, Trusted Solaris User’s Guide, and Trusted Solaris
administrator’s document set

attributes(5)

The function bltocolor() returns a pointer to a statically allocated string.
Subsequent calls to it will overwrite that string with a new character-coded color
name. It is not MT-Safe.

bltocolor(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 117

For multithreaded applications the function bltocolor_r() should be used.

If label includes a specified word or words, the character-coded color name associated
with the first word specified in the label encodings file is returned. Otherwise, if no
character-coded color name is specified for label, the first character-coded color name
specified in the label encodings file with the same classification as the binary label is
returned.

These interfaces are uncommitted. Although they are not expected to change between
minor releases of the Trusted Solaris environment, they may.

bltocolor(3TSOL)

118 man pages section 3: Library Functions • Last Revised 29 Dec 1995

bltocolor, bltocolor_r – Get character-coded color name of label

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

char *bltocolor(const blevel_t *label);

char *bltocolor_r(const blevel_t *label, const int size, char
*color_name);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to get color names of labels that dominate the current processes’ sensitivity
label.

bltocolor() and bltocolor_r() get the character-coded color name associated
with the binary label label.

bltocolor() returns a pointer to a statically allocated string that contains the
character-coded color name specified for the label or returns (char *)0 if, for any
reason, no character-coded color name is available for this binary label.

bltocolor_r() returns a pointer to the color_name string which contains the
character-coded color name specified for the label or returns (char *)0 if, for any
reason, no character-coded color name is available for this binary label. color_name
must provide for a string of at least size characters.

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe with exceptions

bcltobanner(3TSOL), blcompare(3TSOL), bltos(3TSOL), btohex(3TSOL),
labelinfo(3TSOL)

Trusted Solaris Developer’s Guide, Trusted Solaris User’s Guide, and Trusted Solaris
administrator’s document set

attributes(5)

The function bltocolor() returns a pointer to a statically allocated string.
Subsequent calls to it will overwrite that string with a new character-coded color
name. It is not MT-Safe.

bltocolor_r(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 119

For multithreaded applications the function bltocolor_r() should be used.

If label includes a specified word or words, the character-coded color name associated
with the first word specified in the label encodings file is returned. Otherwise, if no
character-coded color name is specified for label, the first character-coded color name
specified in the label encodings file with the same classification as the binary label is
returned.

These interfaces are uncommitted. Although they are not expected to change between
minor releases of the Trusted Solaris environment, they may.

bltocolor_r(3TSOL)

120 man pages section 3: Library Functions • Last Revised 29 Dec 1995

bltos, bcltos, bsltos, bcleartos – translate binary labels to character coded labels

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

int bltos(const blevel_t *label, char **string, const int str_len, const
int flags);

int bcltos(const bclabel_t *label, char **string, const int str_len,
const int flags);

int bsltos(const bslabel_t *label, char **string, const int str_len,
const int flags);

int bcleartos(const bclear_t *label, char **string, const int str_len,
const int flags);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to perform label translation on labels that dominate the current process’
sensitivity label.

These routines translate binary labels into strings controlled by the value of the flags
parameter.

The generic form of an output character-coded label is:

CLASSIFICATION WORD1 WORD2 WORD3/WORD4 SUFFIX PREFIX WORD5/WORD6

Capital letters are used to display all Classification names and Words. The ‘ ’ (space)
character separates classifications and words from other words in all character-coded
labels except where multiple words that require the same Prefix or Suffix are present,
in which case the multiple words are separated from each other by the ‘/’ (slash)
character.

string may point to either a pointer to pre-allocated memory, or the value (char *)0.
If it points to a pointer to pre-allocated memory, then str_len indicates the size of that
memory. If it points to the value (char *)0, memory is allocated using malloc() to
contain the translated character-coded labels. The translated label is copied into
allocated or pre-allocated memory.

flags is 0 (zero), or the logical sum of the following:

LONG_WORDS Translate using long names of words defined in label.

SHORT_WORDS Translate using short names of words defined in label. If
no short name is defined in the label_encodings file
for a word, the long name is used.

LONG_CLASSIFICATION Translate using long name of classification defined in
label.

bltos(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 121

SHORT_CLASSIFICATION Translate using short name of classification defined in
label.

ACCESS_RELATED Translate only access-related entries defined in
information label label.

VIEW_EXTERNAL Translate ADMIN_LOW and ADMIN_HIGH labels to the
lowest and highest labels defined in the
label_encodings file.

VIEW_INTERNAL Translate ADMIN_LOW and ADMIN_HIGH labels to the
admin low name and admin high name strings
specified in the label_encodings file. If no strings
are specified, the strings “ADMIN_LOW” and
“ADMIN_HIGH” are used.

NO_CLASSIFICATION Do not translate classification defined in label.

bcltos() translates a binary CMW label into a string of the form:

ADMIN_LOW [sensitivity label]

The applicable flags are LONG_WORDS or SHORT_WORDS, and VIEW_EXTERNAL or
VIEW_INTERNAL. A flags value 0 is equivalent to (LONG_WORDS).

bsltos() translates a binary sensitivity label into a string. The applicable flags are
LONG_CLASSIFICATION or SHORT_CLASSIFICATION, LONG_WORDS or
SHORT_WORDS, VIEW_EXTERNAL or VIEW_INTERNAL, and NO_CLASSIFICATION. A
flags value 0 is equivalent to (SHORT_CLASSIFICATION | LONG_WORDS).

bcleartos() translates a binary clearance into a string. The applicable flags are
LONG_CLASSIFICATION or SHORT_CLASSIFICATION, LONG_WORDS or
SHORT_WORDS, VIEW_EXTERNAL or VIEW_INTERNAL, and NO_CLASSIFICATION. A
flags value 0 is equivalent to (SHORT_CLASSIFICATION | LONG_WORDS). The
translation of a clearance may not be the same as the translation of a sensitivity label.
These functions use different label_encodings file tables that may contain different
words and constraints.

These routines return:

−1 If the label is not of the valid defined required type, if the label is not
dominated by the process sensitivity label and the process does not have
PRIV_SYS_TRANS_LABEL in its set of effective privileges, or the
label_encodings file is inaccessible.

0 If memory cannot be allocated for the return string, or the pre-allocated
return string memory is insufficient to hold the string. The value of the
pre-allocated string is set to the NULL string (*string[0]=’\\00’;).

>0 If successful, the length of the character-coded label including the NULL
terminator.

bltos(3TSOL)

RETURN VALUES

122 man pages section 3: Library Functions • Last Revised 24 May 2001

If the VIEW_EXTERNAL or VIEW_INTERNAL flags are not specified, translation of
ADMIN_LOW and ADMIN_HIGH labels is controlled by the label view process attribute
flags. If no label view process attribute flags are defined, their translation is controlled
by the label view configured in the label_encodings file. A value of External
specifies that ADMIN_LOW and ADMIN_HIGH labels are mapped to the lowest and
highest labels defined in the label_encodings file. A value of Internal specifies
that the ADMIN_LOW and ADMIN_HIGH labels are translated to the admin low and
admin high name strings specified in the label_encodings file. If no such names
are specified, the strings “ADMIN_LOW” and “ADMIN_HIGH” are used.

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), blcompare(3TSOL), bltocolor(3TSOL),
labelinfo(3TSOL)

Trusted Solaris Developer’s Guide, Trusted Solaris administrator’s document set

free(3C), malloc(3C), attributes(5)

If memory is allocated by these routines, the caller must free the memory with
free() when the memory is no longer in use.

bltos(3TSOL)

PROCESS
ATTRIBUTES

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 123

bltype, setbltype – compare and set the type of binary label

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

int bltype(const void *label, const unsigned char type);

void setbltype(void *label, const unsigned char type);

These functions compare and set the type of binary labels.

bltype() examines label to determine if it is of the specified type type.

setbltype() sets the type of label to the specified type type.

type may be one of:

SUN_SL_ID label is a defined binary sensitivity label.

SUN_SL_UN label is an undefined binary sensitivity label.

SUN_CLR_ID label is a defined binary clearance.

SUN_CLR_UN label is an undefined binary clearance.

SUN_CMW_ID label is a binary CMW label whose label portions may or may not
be defined. (bltype() only.)

bltype() returns non-zero if label is of type type, otherwise zero is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), blcompare(3TSOL), bltocolor(3TSOL), btohex(3TSOL),
labelinfo(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

1. bltype(&cmw_label, SUN_CMW_ID) checks the existence of a binary CMW
label structure and not the portions of the structure that contain defined labels.

2. When attempting to determine the type of a label, rather than to verify that a
specific label type is present, check SUN_CMW_ID first.

3. setbltype() makes no checks on the structure it is setting or the type value.

bltype(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

WARNINGS

124 man pages section 3: Library Functions • Last Revised 24 May 2001

blvalid, bslvalid, bclearvalid – check validity of binary label

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

int bslvalid(const bslabel_t *label);

int bclearvalid(const bclear_t *clearance);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to inquire about labels that dominate the current process’ sensitivity label.

These functions check the validity of binary labels.

bslvalid() examines label to determine if it is a valid sensitivity label for this
system.

bclearvalid() examines clearance to determine if it is a valid clearance for this
system.

These routines return:

−1 If the label_encodings file is inaccessible.

0 If the binary label is not valid for this system or is not dominated by the
process’ sensitivity label and the process does not have
PRIV_SYS_TRANS_LABEL in its set of effective privileges,

1 If the binary label is valid for this system.

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), blcompare(3TSOL), bltocolor(3TSOL), btohex(3TSOL),
labelinfo(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

Binary sensitivity labels are valid if they are contained in the
SYSTEM_ACCREDITATION_RANGE as checked by blinset(3TSOL). bslvalid() is a

blvalid(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 125

synonym for calling blinset() with the containing set of
SYSTEM_ACCREDITATION_RANGE and is included for completeness.

blvalid(3TSOL)

126 man pages section 3: Library Functions • Last Revised 1 Feb 2001

blmanifest, bcllow, bclhigh, bsllow, bslhigh, bclearlow, bclearhigh, bclundef, bslundef,
bclearundef – create manifest binary labels

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

void bcllow(bclabel_t *label);

void bclhigh(bclabel_t *label);

void bsllow(bslabel_t *label);

void bslhigh(bslabel_t *label);

void bclearlow(bclear_t *clearance);

void bclearhigh(bclear_t *clearance);

void bclundef(bclabel_t *label);

void bslundef(bslabel_t *label);

void bclearundef(bclabel_t *label);

These functions initialize binary label structures to manifest values.

bcllow() and bclhigh() initialize the binary CMW label structure label to the
manifest constant values for the ADMIN_LOW and ADMIN_HIGH CMW labels,
respectively.

bsllow() and bslhigh() initialize the binary sensitivity label structure label to the
manifest constant values for the ADMIN_LOW and ADMIN_HIGH sensitivity labels,
respectively.

bclearlow() and bclearhigh() initialize the binary clearance structure clearance
to the manifest constant values for the ADMIN_LOW and ADMIN_HIGH clearances,
respectively.

bclundef() and bslundef() initialize the binary CMW and sensitivity label
structure label to the manifest constant value for an undefined CMW and sensitivity
label, respectively.

bclearundef() initializes the binary clearance clearance to the manifest constant
value for an undefined clearance.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bslhigh(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Introduction to Library Functions 127

bcltobanner(3TSOL), blcompare(3TSOL), bltype(3TSOL), hextob(3TSOL),
labelvers(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

bslhigh(3TSOL)

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

128 man pages section 3: Library Functions • Last Revised 20 Feb 2001

blmanifest, bcllow, bclhigh, bsllow, bslhigh, bclearlow, bclearhigh, bclundef, bslundef,
bclearundef – create manifest binary labels

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

void bcllow(bclabel_t *label);

void bclhigh(bclabel_t *label);

void bsllow(bslabel_t *label);

void bslhigh(bslabel_t *label);

void bclearlow(bclear_t *clearance);

void bclearhigh(bclear_t *clearance);

void bclundef(bclabel_t *label);

void bslundef(bslabel_t *label);

void bclearundef(bclabel_t *label);

These functions initialize binary label structures to manifest values.

bcllow() and bclhigh() initialize the binary CMW label structure label to the
manifest constant values for the ADMIN_LOW and ADMIN_HIGH CMW labels,
respectively.

bsllow() and bslhigh() initialize the binary sensitivity label structure label to the
manifest constant values for the ADMIN_LOW and ADMIN_HIGH sensitivity labels,
respectively.

bclearlow() and bclearhigh() initialize the binary clearance structure clearance
to the manifest constant values for the ADMIN_LOW and ADMIN_HIGH clearances,
respectively.

bclundef() and bslundef() initialize the binary CMW and sensitivity label
structure label to the manifest constant value for an undefined CMW and sensitivity
label, respectively.

bclearundef() initializes the binary clearance clearance to the manifest constant
value for an undefined clearance.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bsllow(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Introduction to Library Functions 129

bcltobanner(3TSOL), blcompare(3TSOL), bltype(3TSOL), hextob(3TSOL),
labelvers(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

bsllow(3TSOL)

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

130 man pages section 3: Library Functions • Last Revised 20 Feb 2001

btohex, bcltoh, bsltoh, bcleartoh, bcltoh_r, bsltoh_r, bcleartoh_r, h_alloc, h_free –
convert binary label to hexadecimal

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

char *bcltoh(const bclabel_t *label);

char *bsltoh(const bslabel_t *label);

char *bcleartoh(const bclear_t *clearance);

char *bcltoh_r(const bclabel_t *label, char *hex);

char *bsltoh_r(const bslabel_t *label, char *hex);

char *bcleartoh_r(const bclear_t *clearance, char *hex);

char *h_alloc(const unsigned char type);

void h_free(char *hex);

These functions convert binary labels into hexadecimal strings that represent the
internal value.

bcltoh() and bcltoh_r() convert a binary CMW label into a string of the form:

0xADMIN_LOW_hex_value [0xsensitivity_label_hexadecimal_value]

bsltoh() and bsltoh_r() convert a binary sensitivity label into a string of the
form:

[0xsensitivity_label_hexadecimal_value]

bcleartoh() and bcleartoh_r() convert a binary clearance into a string of the
form:

0xclearance_hexadecimal_value

h_alloc() allocates memory for the hexadecimal value type for use by bcltoh_r(),
bsltoh_r(), and bcleartoh_r().

Valid values for type are:

SUN_CMW_ID label is a binary CMW label.

SUN_SL_ID label is a binary sensitivity label.

SUN_CLR_ID label is a binary clearance.

h_free() frees memory allocated by h_alloc().

These functions return a pointer to a string that contains the result of the translation,
or (char *)0 if the parameter is not of the required type.

See attributes(5) for descriptions of the following attributes:

bsltoh(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

Introduction to Library Functions 131

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe with exceptions

atohexlabel(1M), hextoalabel(1M), bcltobanner(3TSOL),
blmanifest(3TSOL), bltocolor(3TSOL), bltype(3TSOL), labelinfo(3TSOL),
sbltos(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

The functions bcltoh(), bsltoh(), and bcleartoh() share the same statically
allocated string storage. They are not MT-Safe. Subsequent calls to any of these
functions will overwrite that string with the newly translated string.

For multithreaded applications, the functions bcltoh_r(), bsltoh_r(), and
bcleartoh_r() should be used.

bsltoh(3TSOL)

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

132 man pages section 3: Library Functions • Last Revised 24 May 2001

btohex, bcltoh, bsltoh, bcleartoh, bcltoh_r, bsltoh_r, bcleartoh_r, h_alloc, h_free –
convert binary label to hexadecimal

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

char *bcltoh(const bclabel_t *label);

char *bsltoh(const bslabel_t *label);

char *bcleartoh(const bclear_t *clearance);

char *bcltoh_r(const bclabel_t *label, char *hex);

char *bsltoh_r(const bslabel_t *label, char *hex);

char *bcleartoh_r(const bclear_t *clearance, char *hex);

char *h_alloc(const unsigned char type);

void h_free(char *hex);

These functions convert binary labels into hexadecimal strings that represent the
internal value.

bcltoh() and bcltoh_r() convert a binary CMW label into a string of the form:

0xADMIN_LOW_hex_value [0xsensitivity_label_hexadecimal_value]

bsltoh() and bsltoh_r() convert a binary sensitivity label into a string of the
form:

[0xsensitivity_label_hexadecimal_value]

bcleartoh() and bcleartoh_r() convert a binary clearance into a string of the
form:

0xclearance_hexadecimal_value

h_alloc() allocates memory for the hexadecimal value type for use by bcltoh_r(),
bsltoh_r(), and bcleartoh_r().

Valid values for type are:

SUN_CMW_ID label is a binary CMW label.

SUN_SL_ID label is a binary sensitivity label.

SUN_CLR_ID label is a binary clearance.

h_free() frees memory allocated by h_alloc().

These functions return a pointer to a string that contains the result of the translation,
or (char *)0 if the parameter is not of the required type.

See attributes(5) for descriptions of the following attributes:

bsltoh_r(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

Introduction to Library Functions 133

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe with exceptions

atohexlabel(1M), hextoalabel(1M), bcltobanner(3TSOL),
blmanifest(3TSOL), bltocolor(3TSOL), bltype(3TSOL), labelinfo(3TSOL),
sbltos(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

The functions bcltoh(), bsltoh(), and bcleartoh() share the same statically
allocated string storage. They are not MT-Safe. Subsequent calls to any of these
functions will overwrite that string with the newly translated string.

For multithreaded applications, the functions bcltoh_r(), bsltoh_r(), and
bcleartoh_r() should be used.

bsltoh_r(3TSOL)

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

134 man pages section 3: Library Functions • Last Revised 24 May 2001

bltos, bcltos, bsltos, bcleartos – translate binary labels to character coded labels

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

int bltos(const blevel_t *label, char **string, const int str_len, const
int flags);

int bcltos(const bclabel_t *label, char **string, const int str_len,
const int flags);

int bsltos(const bslabel_t *label, char **string, const int str_len,
const int flags);

int bcleartos(const bclear_t *label, char **string, const int str_len,
const int flags);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to perform label translation on labels that dominate the current process’
sensitivity label.

These routines translate binary labels into strings controlled by the value of the flags
parameter.

The generic form of an output character-coded label is:

CLASSIFICATION WORD1 WORD2 WORD3/WORD4 SUFFIX PREFIX WORD5/WORD6

Capital letters are used to display all Classification names and Words. The ‘ ’ (space)
character separates classifications and words from other words in all character-coded
labels except where multiple words that require the same Prefix or Suffix are present,
in which case the multiple words are separated from each other by the ‘/’ (slash)
character.

string may point to either a pointer to pre-allocated memory, or the value (char *)0.
If it points to a pointer to pre-allocated memory, then str_len indicates the size of that
memory. If it points to the value (char *)0, memory is allocated using malloc() to
contain the translated character-coded labels. The translated label is copied into
allocated or pre-allocated memory.

flags is 0 (zero), or the logical sum of the following:

LONG_WORDS Translate using long names of words defined in label.

SHORT_WORDS Translate using short names of words defined in label. If
no short name is defined in the label_encodings file
for a word, the long name is used.

LONG_CLASSIFICATION Translate using long name of classification defined in
label.

bsltos(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 135

SHORT_CLASSIFICATION Translate using short name of classification defined in
label.

ACCESS_RELATED Translate only access-related entries defined in
information label label.

VIEW_EXTERNAL Translate ADMIN_LOW and ADMIN_HIGH labels to the
lowest and highest labels defined in the
label_encodings file.

VIEW_INTERNAL Translate ADMIN_LOW and ADMIN_HIGH labels to the
admin low name and admin high name strings
specified in the label_encodings file. If no strings
are specified, the strings “ADMIN_LOW” and
“ADMIN_HIGH” are used.

NO_CLASSIFICATION Do not translate classification defined in label.

bcltos() translates a binary CMW label into a string of the form:

ADMIN_LOW [sensitivity label]

The applicable flags are LONG_WORDS or SHORT_WORDS, and VIEW_EXTERNAL or
VIEW_INTERNAL. A flags value 0 is equivalent to (LONG_WORDS).

bsltos() translates a binary sensitivity label into a string. The applicable flags are
LONG_CLASSIFICATION or SHORT_CLASSIFICATION, LONG_WORDS or
SHORT_WORDS, VIEW_EXTERNAL or VIEW_INTERNAL, and NO_CLASSIFICATION. A
flags value 0 is equivalent to (SHORT_CLASSIFICATION | LONG_WORDS).

bcleartos() translates a binary clearance into a string. The applicable flags are
LONG_CLASSIFICATION or SHORT_CLASSIFICATION, LONG_WORDS or
SHORT_WORDS, VIEW_EXTERNAL or VIEW_INTERNAL, and NO_CLASSIFICATION. A
flags value 0 is equivalent to (SHORT_CLASSIFICATION | LONG_WORDS). The
translation of a clearance may not be the same as the translation of a sensitivity label.
These functions use different label_encodings file tables that may contain different
words and constraints.

These routines return:

−1 If the label is not of the valid defined required type, if the label is not
dominated by the process sensitivity label and the process does not have
PRIV_SYS_TRANS_LABEL in its set of effective privileges, or the
label_encodings file is inaccessible.

0 If memory cannot be allocated for the return string, or the pre-allocated
return string memory is insufficient to hold the string. The value of the
pre-allocated string is set to the NULL string (*string[0]=’\\00’;).

>0 If successful, the length of the character-coded label including the NULL
terminator.

bsltos(3TSOL)

RETURN VALUES

136 man pages section 3: Library Functions • Last Revised 24 May 2001

If the VIEW_EXTERNAL or VIEW_INTERNAL flags are not specified, translation of
ADMIN_LOW and ADMIN_HIGH labels is controlled by the label view process attribute
flags. If no label view process attribute flags are defined, their translation is controlled
by the label view configured in the label_encodings file. A value of External
specifies that ADMIN_LOW and ADMIN_HIGH labels are mapped to the lowest and
highest labels defined in the label_encodings file. A value of Internal specifies
that the ADMIN_LOW and ADMIN_HIGH labels are translated to the admin low and
admin high name strings specified in the label_encodings file. If no such names
are specified, the strings “ADMIN_LOW” and “ADMIN_HIGH” are used.

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), blcompare(3TSOL), bltocolor(3TSOL),
labelinfo(3TSOL)

Trusted Solaris Developer’s Guide, Trusted Solaris administrator’s document set

free(3C), malloc(3C), attributes(5)

If memory is allocated by these routines, the caller must free the memory with
free() when the memory is no longer in use.

bsltos(3TSOL)

PROCESS
ATTRIBUTES

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 137

blmanifest, bcllow, bclhigh, bsllow, bslhigh, bclearlow, bclearhigh, bclundef, bslundef,
bclearundef – create manifest binary labels

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

void bcllow(bclabel_t *label);

void bclhigh(bclabel_t *label);

void bsllow(bslabel_t *label);

void bslhigh(bslabel_t *label);

void bclearlow(bclear_t *clearance);

void bclearhigh(bclear_t *clearance);

void bclundef(bclabel_t *label);

void bslundef(bslabel_t *label);

void bclearundef(bclabel_t *label);

These functions initialize binary label structures to manifest values.

bcllow() and bclhigh() initialize the binary CMW label structure label to the
manifest constant values for the ADMIN_LOW and ADMIN_HIGH CMW labels,
respectively.

bsllow() and bslhigh() initialize the binary sensitivity label structure label to the
manifest constant values for the ADMIN_LOW and ADMIN_HIGH sensitivity labels,
respectively.

bclearlow() and bclearhigh() initialize the binary clearance structure clearance
to the manifest constant values for the ADMIN_LOW and ADMIN_HIGH clearances,
respectively.

bclundef() and bslundef() initialize the binary CMW and sensitivity label
structure label to the manifest constant value for an undefined CMW and sensitivity
label, respectively.

bclearundef() initializes the binary clearance clearance to the manifest constant
value for an undefined clearance.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bslundef(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

138 man pages section 3: Library Functions • Last Revised 20 Feb 2001

bcltobanner(3TSOL), blcompare(3TSOL), bltype(3TSOL), hextob(3TSOL),
labelvers(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

bslundef(3TSOL)

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction to Library Functions 139

blvalid, bslvalid, bclearvalid – check validity of binary label

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

int bslvalid(const bslabel_t *label);

int bclearvalid(const bclear_t *clearance);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to inquire about labels that dominate the current process’ sensitivity label.

These functions check the validity of binary labels.

bslvalid() examines label to determine if it is a valid sensitivity label for this
system.

bclearvalid() examines clearance to determine if it is a valid clearance for this
system.

These routines return:

−1 If the label_encodings file is inaccessible.

0 If the binary label is not valid for this system or is not dominated by the
process’ sensitivity label and the process does not have
PRIV_SYS_TRANS_LABEL in its set of effective privileges,

1 If the binary label is valid for this system.

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), blcompare(3TSOL), bltocolor(3TSOL), btohex(3TSOL),
labelinfo(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

Binary sensitivity labels are valid if they are contained in the
SYSTEM_ACCREDITATION_RANGE as checked by blinset(3TSOL). bslvalid() is a

bslvalid(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

140 man pages section 3: Library Functions • Last Revised 1 Feb 2001

synonym for calling blinset() with the containing set of
SYSTEM_ACCREDITATION_RANGE and is included for completeness.

bslvalid(3TSOL)

Introduction to Library Functions 141

btohex, bcltoh, bsltoh, bcleartoh, bcltoh_r, bsltoh_r, bcleartoh_r, h_alloc, h_free –
convert binary label to hexadecimal

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

char *bcltoh(const bclabel_t *label);

char *bsltoh(const bslabel_t *label);

char *bcleartoh(const bclear_t *clearance);

char *bcltoh_r(const bclabel_t *label, char *hex);

char *bsltoh_r(const bslabel_t *label, char *hex);

char *bcleartoh_r(const bclear_t *clearance, char *hex);

char *h_alloc(const unsigned char type);

void h_free(char *hex);

These functions convert binary labels into hexadecimal strings that represent the
internal value.

bcltoh() and bcltoh_r() convert a binary CMW label into a string of the form:

0xADMIN_LOW_hex_value [0xsensitivity_label_hexadecimal_value]

bsltoh() and bsltoh_r() convert a binary sensitivity label into a string of the
form:

[0xsensitivity_label_hexadecimal_value]

bcleartoh() and bcleartoh_r() convert a binary clearance into a string of the
form:

0xclearance_hexadecimal_value

h_alloc() allocates memory for the hexadecimal value type for use by bcltoh_r(),
bsltoh_r(), and bcleartoh_r().

Valid values for type are:

SUN_CMW_ID label is a binary CMW label.

SUN_SL_ID label is a binary sensitivity label.

SUN_CLR_ID label is a binary clearance.

h_free() frees memory allocated by h_alloc().

These functions return a pointer to a string that contains the result of the translation,
or (char *)0 if the parameter is not of the required type.

See attributes(5) for descriptions of the following attributes:

btohex(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

142 man pages section 3: Library Functions • Last Revised 24 May 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe with exceptions

atohexlabel(1M), hextoalabel(1M), bcltobanner(3TSOL),
blmanifest(3TSOL), bltocolor(3TSOL), bltype(3TSOL), labelinfo(3TSOL),
sbltos(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

The functions bcltoh(), bsltoh(), and bcleartoh() share the same statically
allocated string storage. They are not MT-Safe. Subsequent calls to any of these
functions will overwrite that string with the newly translated string.

For multithreaded applications, the functions bcltoh_r(), bsltoh_r(), and
bcleartoh_r() should be used.

btohex(3TSOL)

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 143

chkauth – Verify user authorizations

cc [flag…] file… -ltsol -ltsoldb -lcmd -lnsl [library…]

(obsolete)

The chkauth function is replaced in Trusted Solaris 8 and later releases with the
chkauthattr function described in the getauthattr(3SECDB) man page. This
function finds authorization entries in auth_attr(4).

chkauth(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

144 man pages section 3: Library Functions • Last Revised 30 May 2000

getauthattr, getauthnam, free_authattr, setauthattr, endauthattr, chkauthattr – get
authorization entry

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]
#include <auth_attr.h>

#include <secdb.h>

authattr_t *getauthattr(void);

authattr_t *getauthnam(const char *name);

void free_authattr(authattr_t *auth);

void setauthattr(void);

void endauthattr(void);

int chkauthattr(const char *authname, const char *username);

The getauthattr() and getauthnam() functions each return an auth_attr(4)
entry. Entries can come from any of the sources specified in the nsswitch.conf(4)
file.

The getauthattr() function enumerates auth_attr entries. The getauthnam()
function searches for an auth_attr entry with a given authorization name name.
Successive calls to these functions return either successive auth_attr entries or
NULL.

Th internal representation of an auth_attr entry is an authattr_t structure
defined in <auth_attr.h> with the following members:

char *name; /* name of the authorization */
char *res1; /* reserved for future use */
char *res2; /* reserved for future use */
char *short_desc; /* short description */
char *long_desc; /* long description */

kva_t *attr; /* array of key-value pair attributes */

The setauthattr() function “rewinds” to the beginning of the enumeration of
auth_attr entries. Calls to getauthnam() can leave the enumeration in an
indeterminate state. Therefore, setauthattr() should be called before the first call
to getauthattr().

The endauthattr() function may be called to indicate that auth_attr processing
is complete; the system may then close any open auth_attr file, deallocate storage,
and so forth.

The chkauthattr() function verifies whether or not a user has a given
authorization. It first reads the AUTHS_GRANTED key in the
/etc/security/policy.conf file and returns 1 if it finds a match for the given
authorization. If chkauthattr() does not find a match, it reads the
PROFS_GRANTED key in /etc/security/policy.conf and returns 1 if the given
authorization is in any profiles specified with the PROFS_GRANTED keyword. If a

chkauthattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 145

match is not found from the default authorizations and default profiles,
chkauthattr() reads the user_attr(4) database. If it does not find a match in
user_attr, it reads the prof_attr(4) database, using the list of profiles assigned to
the user, and checks if any of the profiles assigned to the user has the given
authorization. The chkauthattr() function returns 0 if it does not find a match in
any of the three sources.

A user is considered to have been assigned an authorization if either of the following
are true:

� The authorization name matches exactly any authorization assigned in the
user_attr or prof_attr databases (authorization names are case-sensitive).

� The authorization name suffix is not the keyword grant and the authorization
name matches any authorization up to the asterisk (*) character assigned in the
user_attr or prof_attr databases.

The examples in the following table illustrate the conditions under which a user is
assigned an authorization.

/etc/security/policy.conf or Is user

Authorization name user_attr or prof_attr entry authorized?

solaris.printer.postscript solaris.printer.postscript Yes

solaris.printer.postscript solaris.printer.* Yes

solaris.printer.grant solaris.printer.* No

The free_authattr() function releases memory allocated by the getauthnam()
and getauthattr() functions.

The getauthattr() function returns a pointer to an authattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getauthnam() function returns a pointer to an authattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

The chkauthattr() function returns 1 if the user is authorized and 0 otherwise.

The getauthattr() and getauthnam() functions both allocate memory for the
pointers they return. This memory should be de-allocated with the
free_authattr() call.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

chkauthattr(3SECDB)

RETURN VALUES

USAGE

146 man pages section 3: Library Functions • Last Revised 4 May 2000

Individual attributes in the attr structure can be referred to by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, code must be written to ignore
unknown key-value pairs without error.

/etc/nsswitch.conf configuration file lookup information for
the name server switch

/etc/user_attr extended user attributes

/etc/security/auth_attr authorization attributes

/etc/security/policy.conf policy definitions

/etc/security/prof_attr profile information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

The Trusted Solaris environment adds authorizations. The chkauthattr() function
replaces the Trusted Solaris 7 chkauth() function.

nsswitch.conf(4), prof_attr(4), user_attr(4)

getexecattr(3SECDB), getprofattr(3SECDB), getuserattr(3SECDB),
kva_match(3SECDB), auth_attr(4), attributes(5), rbac(5)

chkauthattr(3SECDB)

WARNINGS

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

Introduction to Library Functions 147

rpc_clnt_calls, clnt_call, clnt_freeres, clnt_geterr, clnt_perrno, clnt_perror, clnt_sperrno,
clnt_sperror, rpc_broadcast, rpc_broadcast_exp, rpc_call – Library routines for client
side calls

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First, the client calls a procedure to send a request to the
server. Upon receipt of the request, the server calls a dispatch routine to perform the
requested service, and then sends back a reply.

The clnt_call(), rpc_call(), and rpc_broadcast() routines handle the client
side of the procedure call. The remaining routines deal with error handling in the case
of errors.

Some of the routines take a CLIENT handle as one of the parameters. A CLIENT
handle can be created by an RPC creation routine such as clnt_create() (see
rpc_clnt_create(3NSL)).

These routines are safe for use in multithreaded applications. CLIENT handles can be
shared between threads, however in this implementation requests by different threads
are serialized (that is, the first request will receive its results before the second request
is sent).

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

enum clnt_stat clnt_call(CLIENT *clnt, const rpcproc_t procnum, const xdrproc_t inproc,
const caddr_t in, const xdrproc_t outproc, caddr_t out, const struct timeval tout);

A function macro that calls the remote procedure procnum associated with the client
handle, clnt, which is obtained with an RPC client creation routine such as
clnt_create() (see rpc_clnt_create(3NSL)). The parameter inproc is the
XDR function used to encode the procedure’s parameters, and outproc is the XDR
function used to decode the procedure’s results; in is the address of the procedure’s
argument(s), and out is the address of where to place the result(s). tout is the time
allowed for results to be returned, which is overridden by a time-out set explicitly
through clnt_control(), see rpc_clnt_create(3NSL) .

If the remote call succeeds, the status returned is RPC_SUCCESS, otherwise an
appropriate status is returned.

bool_t clnt_freeres(CLIENT *clnt, const xdrproc_t outproc, caddr_t out);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the results of an RPC call. The parameter out is the address of the results,
and outproc is the XDR routine describing the results. This routine returns 1 if the
results were successfully freed, and 0 otherwise.

void clnt_geterr(const CLIENT *clnt, struct rpc_err *errp);
A function macro that copies the error structure out of the client handle to the
structure at address errp.

clnt_call(3NSL)

NAME

DESCRIPTION

Routines

148 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_perrno(const enum clnt_stat stat);
Print a message to standard error corresponding to the condition indicated by stat.
A newline is appended. Normally used after a procedure call fails for a routine for
which a client handle is not needed, for instance rpc_call().

void clnt_perror(const CLIENT *clnt, const char *s);
Print a message to the standard error indicating why an RPC call failed; clnt is the
handle used to do the call. The message is prepended with string s and a colon. A
newline is appended. Normally used after a remote procedure call fails for a
routine which requires a client handle, for instance clnt_call().

char *clnt_sperrno(const enum clnt_stat stat);
Take the same arguments as clnt_perrno(), but instead of sending a message to
the standard error indicating why an RPC call failed, return a pointer to a string
which contains the message.

clnt_sperrno() is normally used instead of clnt_perrno() when the
program does not have a standard error (as a program running as a server quite
likely does not), or if the programmer does not want the message to be output with
printf() [see printf(3C)], or if a message format different than that supported
by clnt_perrno() is to be used. Note: unlike clnt_sperror() and
clnt_spcreaterror() [see rpc_clnt_create(3NSL)], clnt_sperrno()
does not return pointer to static data so the result will not get overwritten on each
call.

char *clnt_sperror(const CLIENT *clnt, const char *s);
Like clnt_perror(), except that (like clnt_sperrno()) it returns a string
instead of printing to standard error. However, clnt_sperror() does not append
a newline at the end of the message.

Warning: Returns pointer to a buffer that is overwritten on each call. In multithread
applications, this buffer is implemented as thread-specific data.

enum clnt_stat rpc_broadcast(const rpcprog_t prognum, const rpcvers_t versnum, const
rpcproc_t procnum, const xdrproc_t inproc, const caddr_t in, const xdrproc_t outproc,
caddr_t out, const resultproc_t eachresult, const char *nettype);

Like rpc_call(), except the call message is broadcast to all the connectionless
transports specified by nettype. If nettype is NULL, it defaults to "netpath. Each
time it receives a response, this routine calls eachresult(), whose form is:

bool_t eachresult(caddr_t out, const struct netbuf *addr,

const struct netconfig *netconf);where out is the same as out passed to
rpc_broadcast(), except that the remote procedure’s output is decoded there;
addr points to the address of the machine that sent the results, and netconf is the
netconfig structure of the transport on which the remote server responded. If
eachresult() returns 0, rpc_broadcast() waits for more replies; otherwise it
returns with appropriate status.

clnt_call(3NSL)

Introduction to Library Functions 149

Warning: broadcast file descriptors are limited in size to the maximum transfer size
of that transport. For Ethernet, this value is 1500 bytes. rpc_broadcast() uses
AUTH_SYS credentials by default [see rpc_clnt_auth(3NSL)].

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_broadcast_exp(const rpcprog_t prognum, const rpcvers_t versnum,
const rpcproc_t procnum, const xdrproc_t xargs, caddr_t argsp, const xdrproc_t xresults,
caddr_t resultsp, const resultproc_t eachresult, const int inittime, const int waittime, const
char *nettype);

Like rpc_broadcast(), except that the initial timeout, inittime and the maximum
timeout, waittime are specified in milliseconds.

inittime is the initial time that rpc_broadcast_exp() waits before resending the
request. After the first resend, the re-transmission interval increases exponentially
until it exceeds waittime.

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_call(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const rpcproc_t procnum, const xdrproc_t inproc, const char *in, const
xdrproc_t outproc, char *out, const char *nettype);

Call the remote procedure associated with prognum, versnum, and procnum on the
machine, host. The parameter inproc is used to encode the procedure’s parameters,
and outproc is used to decode the procedure’s results; in is the address of the
procedure’s argument(s), and out is the address of where to place the result(s).
nettype can be any of the values listed on rpc(3NSL). This routine returns
RPC_SUCCESS if it succeeds, or an appropriate status is returned. Use the
clnt_perrno() routine to translate failure status into error messages.

Warning: rpc_call() uses the first available transport belonging to the class
nettype, on which it can create a connection. You do not have control of timeouts or
authentication using this routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel. rpc_broadcast() and
rpc_broadcast_exp() require the PRIV_NET_BROADCAST privilege.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate

clnt_call(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

150 man pages section 3: Library Functions • Last Revised 1 May 2000

attribute-control structures and set the t6attr_t pointers in the CLIENT structure.
When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpc(3NSL), rpc_clnt_create(3NSL), libt6(3NSL), t6alloc_blk(3NSL),
t6free_blk(3NSL)

printf(3C), rpc_clnt_auth(3NSL), attributes(5)

clnt_call(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 151

rpc_clnt_create, clnt_control, clnt_create, clnt_create_timed, clnt_create_vers,
clnt_create_vers_timed, clnt_destroy, clnt_dg_create, clnt_pcreateerror,
clnt_raw_create, clnt_spcreateerror, clnt_tli_create, clnt_tp_create,
clnt_tp_create_timed, clnt_vc_create, rpc_createerr – Library routines for dealing with
creation and manipulation of CLIENT handles

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First a CLIENT handle is created and then the client calls
a procedure to send a request to the server. On receipt of the request, the server calls a
dispatch routine to perform the requested service, and then sends a reply.

These routines are MT-Safe. In the case of multithreaded applications, the
_REENTRANT flag must be defined on the command line at compilation time
(-D_REENTRANT). When the _REENTRANT flag is defined, rpc_createerr becomes
a macro which enables each thread to have its own rpc_createerr.

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

See rpc(3NSL) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

bool_t clnt_control(CLIENT *clnt, const uint_t req, char *info);
A function macro to change or retrieve various information about a client object. req
indicates the type of operation, and info is a pointer to the information. For both
connectionless and connection-oriented transports, the supported values of req and
their argument types and what they do are:

CLSET_TIMEOUT struct timeval * set total timeout
CLGET_TIMEOUT struct timeval * get total timeout

If the timeout is set using clnt_control(), the timeout argument passed by
clnt_call() is ignored in all subsequent calls. If the timeout value is set to 0,
clnt_control() immediately returns RPC_TIMEDOUT. Set the timeout parameter
to 0 for batching calls.

CLGET_SERVER_ADDR struct netbuf * get server’s address
CLGET_SVC_ADDR struct netbuf * get server’s address
CLGET_FD int * get associated file descriptor
CLSET_FD_CLOSE void close the file descriptor when

destroying the client handle
(see clnt_destroy())

CLSET_FD_NCLOSE void do not close the file
descriptor when destroying

the client handle

CLGET_VERS rpcvers_t get the RPC program’s version
number associated with the
client handle

CLSET_VERS rpcvers_t set the RPC program’s version
number associated with the

clnt_control(3NSL)

NAME

DESCRIPTION

Routines

152 man pages section 3: Library Functions • Last Revised 1 May 2000

client handle. This assumes
that the RPC server for this
new version is still listening
at the address of the previous
version.

CLGET_XID uint32_t get the XID of the previous
remote procedure call

CLSET_XID uint32_t set the XID of the next
remote procedure call

CLGET_PROG rpcprog_t get program number
CLSET_PROG rpcprog_t set program number

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval * set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval * get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

clnt_control() returns TRUE on success and FALSE on failure.

CLIENT *clnt_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype);

Generic client creation routine for program prognum and version versnum. host
identifies the name of the remote host where the server is located. nettype indicates
the class of transport protocol to use. The transports are tried in left to right order in
NETPATH variable or in top to bottom order in the netconfig database.

clnt_create() tries all the transports of the nettype class available from the
NETPATH environment variable and the netconfig database, and chooses the first
successful one. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)).

CLIENT *clnt_create_timed(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype, const struct timeval *timeout);

Generic client creation routine which is similar to clnt_create() but which also
has the additional parameter timeout that specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_timed() call behaves exactly like the clnt_create() call.

CLIENT *clnt_create_vers(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype);

Generic client creation routine which is similar to clnt_create() but which also
checks for the version availability. host identifies the name of the remote host where
the server is located. nettype indicates the class transport protocols to be used. If the

clnt_control(3NSL)

Introduction to Library Functions 153

routine is successful it returns a client handle created for the highest version
between vers_low and vers_high that is supported by the server. vers_outp is set to
this value. That is, after a successful return vers_low <= *vers_outp <= vers_high. If no
version between vers_low and vers_high is supported by the server then the routine
fails and returns NULL. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)). However, clnt_create_vers() does this for you
and returns a valid handle only if a version within the range supplied is supported
by the server.

CLIENT *clnt_create_vers_timed(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype const struct
timeval *timeout);

Generic client creation routine similar to clnt_create_vers() but with the
additional parameter timeout, which specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_vers_timed() call behaves exactly like the
clnt_create_vers() call.

void clnt_destroy(CLIENT *clnt);
A function macro that destroys the client’s RPC handle. Destruction usually
involves deallocation of private data structures, including clnt itself. Use of clnt is
undefined after calling clnt_destroy(). If the RPC library opened the associated
file descriptor, or CLSET_FD_CLOSE was set using clnt_control(), the file
descriptor will be closed.

The caller should call auth_destroy(clnt⇒cl_auth) (before calling
clnt_destroy()) to destroy the associated AUTH structure (see
rpc_clnt_auth(3NSL)).

CLIENT *clnt_dg_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connectionless transport. The remote program is located
at address svcaddr. The parameter fildes is an open and bound file descriptor. This
routine will resend the call message in intervals of 15 seconds until a response is
received or until the call times out. The total time for the call to time out is specified
by clnt_call() (see clnt_call() in rpc_clnt_calls(3NSL)). The retry time
out and the total time out periods can be changed using clnt_control(). The
user may set the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. This routine returns NULL if it fails.

clnt_control(3NSL)

154 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_pcreateerror(const char *s);
Print a message to standard error indicating why a client RPC handle could not be
created. The message is prepended with the string s and a colon, and appended
with a newline.

CLIENT *clnt_raw_create(const rpcprog_t prognum, const rpcvers_t versnum);
This routine creates an RPC client handle for the remote program prognum and
version versnum. The transport used to pass messages to the service is a buffer
within the process’s address space, so the corresponding RPC server should live in
the same address space; (see svc_raw_create() in rpc_svc_create(3NSL)).
This allows simulation of RPC and measurement of RPC overheads, such as round
trip times, without any kernel or networking interference. This routine returns
NULL if it fails. clnt_raw_create() should be called after svc_raw_create().

char *clnt_spcreateerror(const char *s);
Like clnt_pcreateerror(), except that it returns a string instead of printing to
the standard error. A newline is not appended to the message in this case.

Warning: returns a pointer to a buffer that is overwritten on each call. In
multithread applications, this buffer is implemented as thread-specific data.

CLIENT *clnt_tli_create(const int fildes, const struct netconfig *netconf, const struct
netbuf *svcaddr, const rpcprog_t prognum, const rpcvers_t versnum, const uint_t sendsz,
const uint_t recvsz);

This routine creates an RPC client handle for the remote program prognum and
version versnum. The remote program is located at address svcaddr. If svcaddr is
NULL and it is connection-oriented, it is assumed that the file descriptor is
connected. For connectionless transports, if svcaddr is NULL, RPC_UNKNOWNADDR
error is set. fildes is a file descriptor which may be open, bound and connected. If it
is RPC_ANYFD, it opens a file descriptor on the transport specified by netconf. If
fildes is RPC_ANYFD and netconf is NULL, a RPC_UNKNOWNPROTO error is set. If fildes
is unbound, then it will attempt to bind the descriptor. The user may specify the
size of the buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults. Depending upon the type of the transport (connection-oriented or
connectionless), clnt_tli_create() calls appropriate client creation routines.
This routine returns NULL if it fails. The clnt_pcreateerror() routine can be
used to print the reason for failure. The remote rpcbind service (see
rpcbind(1M)) is not consulted for the address of the remote service.

CLIENT *clnt_tp_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf);

Like clnt_create() except clnt_tp_create() tries only one transport
specified through netconf.

clnt_tp_create() creates a client handle for the program prognum, the version
versnum, and for the transport specified by netconf. Default options are set, which
can be changed using clnt_control() calls. The remote rpcbind service on the

clnt_control(3NSL)

Introduction to Library Functions 155

host host is consulted for the address of the remote service. This routine returns
NULL if it fails. The clnt_pcreateerror() routine can be used to print the
reason for failure.

CLIENT *clnt_tp_create_timed(const char *host, const rpcprog_t prognum, const
rpcvers_t versnum, const struct netconfig *netconf, const struct timeval *timeout);

Like clnt_tp_create() except clnt_tp_create_timed() has the extra
parameter timeout which specifies the maximum time allowed for the creation
attempt to succeed. In all other respects, the clnt_tp_create_timed() call
behaves exactly like the clnt_tp_create() call.

CLIENT *clnt_vc_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connection-oriented transport. The remote program is
located at address svcaddr. The parameter fildes is an open and bound file descriptor.
The user may specify the size of the send and receive buffers with the parameters
sendsz and recvsz; values of 0 choose suitable defaults. This routine returns NULL if
it fails.

The address svcaddr should not be NULL and should point to the actual address of
the remote program. clnt_vc_create() does not consult the remote rpcbind
service for this information.

struct rpc_createerr rpc_createerr;
A global variable whose value is set by any RPC client handle creation routine that
fails. It is used by the routine clnt_pcreateerror() to print the reason for the
failure.

In multithreaded applications, rpc_createerr becomes a macro which enables
each thread to have its own rpc_createerr.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate
attribute-control structures and set the t6attr_t pointers in the CLIENT structure.

clnt_control(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

156 man pages section 3: Library Functions • Last Revised 1 May 2000

When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_calls(3NSL), rpc_svc_create(3NSL),
libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_clnt_auth(3NSL), svc_raw_create(3NSL), attributes(5)

clnt_control(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 157

rpc_clnt_create, clnt_control, clnt_create, clnt_create_timed, clnt_create_vers,
clnt_create_vers_timed, clnt_destroy, clnt_dg_create, clnt_pcreateerror,
clnt_raw_create, clnt_spcreateerror, clnt_tli_create, clnt_tp_create,
clnt_tp_create_timed, clnt_vc_create, rpc_createerr – Library routines for dealing with
creation and manipulation of CLIENT handles

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First a CLIENT handle is created and then the client calls
a procedure to send a request to the server. On receipt of the request, the server calls a
dispatch routine to perform the requested service, and then sends a reply.

These routines are MT-Safe. In the case of multithreaded applications, the
_REENTRANT flag must be defined on the command line at compilation time
(-D_REENTRANT). When the _REENTRANT flag is defined, rpc_createerr becomes
a macro which enables each thread to have its own rpc_createerr.

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

See rpc(3NSL) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

bool_t clnt_control(CLIENT *clnt, const uint_t req, char *info);
A function macro to change or retrieve various information about a client object. req
indicates the type of operation, and info is a pointer to the information. For both
connectionless and connection-oriented transports, the supported values of req and
their argument types and what they do are:

CLSET_TIMEOUT struct timeval * set total timeout
CLGET_TIMEOUT struct timeval * get total timeout

If the timeout is set using clnt_control(), the timeout argument passed by
clnt_call() is ignored in all subsequent calls. If the timeout value is set to 0,
clnt_control() immediately returns RPC_TIMEDOUT. Set the timeout parameter
to 0 for batching calls.

CLGET_SERVER_ADDR struct netbuf * get server’s address
CLGET_SVC_ADDR struct netbuf * get server’s address
CLGET_FD int * get associated file descriptor
CLSET_FD_CLOSE void close the file descriptor when

destroying the client handle
(see clnt_destroy())

CLSET_FD_NCLOSE void do not close the file
descriptor when destroying

the client handle

CLGET_VERS rpcvers_t get the RPC program’s version
number associated with the
client handle

CLSET_VERS rpcvers_t set the RPC program’s version
number associated with the

clnt_create(3NSL)

NAME

DESCRIPTION

Routines

158 man pages section 3: Library Functions • Last Revised 1 May 2000

client handle. This assumes
that the RPC server for this
new version is still listening
at the address of the previous
version.

CLGET_XID uint32_t get the XID of the previous
remote procedure call

CLSET_XID uint32_t set the XID of the next
remote procedure call

CLGET_PROG rpcprog_t get program number
CLSET_PROG rpcprog_t set program number

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval * set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval * get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

clnt_control() returns TRUE on success and FALSE on failure.

CLIENT *clnt_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype);

Generic client creation routine for program prognum and version versnum. host
identifies the name of the remote host where the server is located. nettype indicates
the class of transport protocol to use. The transports are tried in left to right order in
NETPATH variable or in top to bottom order in the netconfig database.

clnt_create() tries all the transports of the nettype class available from the
NETPATH environment variable and the netconfig database, and chooses the first
successful one. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)).

CLIENT *clnt_create_timed(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype, const struct timeval *timeout);

Generic client creation routine which is similar to clnt_create() but which also
has the additional parameter timeout that specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_timed() call behaves exactly like the clnt_create() call.

CLIENT *clnt_create_vers(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype);

Generic client creation routine which is similar to clnt_create() but which also
checks for the version availability. host identifies the name of the remote host where
the server is located. nettype indicates the class transport protocols to be used. If the

clnt_create(3NSL)

Introduction to Library Functions 159

routine is successful it returns a client handle created for the highest version
between vers_low and vers_high that is supported by the server. vers_outp is set to
this value. That is, after a successful return vers_low <= *vers_outp <= vers_high. If no
version between vers_low and vers_high is supported by the server then the routine
fails and returns NULL. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)). However, clnt_create_vers() does this for you
and returns a valid handle only if a version within the range supplied is supported
by the server.

CLIENT *clnt_create_vers_timed(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype const struct
timeval *timeout);

Generic client creation routine similar to clnt_create_vers() but with the
additional parameter timeout, which specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_vers_timed() call behaves exactly like the
clnt_create_vers() call.

void clnt_destroy(CLIENT *clnt);
A function macro that destroys the client’s RPC handle. Destruction usually
involves deallocation of private data structures, including clnt itself. Use of clnt is
undefined after calling clnt_destroy(). If the RPC library opened the associated
file descriptor, or CLSET_FD_CLOSE was set using clnt_control(), the file
descriptor will be closed.

The caller should call auth_destroy(clnt⇒cl_auth) (before calling
clnt_destroy()) to destroy the associated AUTH structure (see
rpc_clnt_auth(3NSL)).

CLIENT *clnt_dg_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connectionless transport. The remote program is located
at address svcaddr. The parameter fildes is an open and bound file descriptor. This
routine will resend the call message in intervals of 15 seconds until a response is
received or until the call times out. The total time for the call to time out is specified
by clnt_call() (see clnt_call() in rpc_clnt_calls(3NSL)). The retry time
out and the total time out periods can be changed using clnt_control(). The
user may set the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. This routine returns NULL if it fails.

clnt_create(3NSL)

160 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_pcreateerror(const char *s);
Print a message to standard error indicating why a client RPC handle could not be
created. The message is prepended with the string s and a colon, and appended
with a newline.

CLIENT *clnt_raw_create(const rpcprog_t prognum, const rpcvers_t versnum);
This routine creates an RPC client handle for the remote program prognum and
version versnum. The transport used to pass messages to the service is a buffer
within the process’s address space, so the corresponding RPC server should live in
the same address space; (see svc_raw_create() in rpc_svc_create(3NSL)).
This allows simulation of RPC and measurement of RPC overheads, such as round
trip times, without any kernel or networking interference. This routine returns
NULL if it fails. clnt_raw_create() should be called after svc_raw_create().

char *clnt_spcreateerror(const char *s);
Like clnt_pcreateerror(), except that it returns a string instead of printing to
the standard error. A newline is not appended to the message in this case.

Warning: returns a pointer to a buffer that is overwritten on each call. In
multithread applications, this buffer is implemented as thread-specific data.

CLIENT *clnt_tli_create(const int fildes, const struct netconfig *netconf, const struct
netbuf *svcaddr, const rpcprog_t prognum, const rpcvers_t versnum, const uint_t sendsz,
const uint_t recvsz);

This routine creates an RPC client handle for the remote program prognum and
version versnum. The remote program is located at address svcaddr. If svcaddr is
NULL and it is connection-oriented, it is assumed that the file descriptor is
connected. For connectionless transports, if svcaddr is NULL, RPC_UNKNOWNADDR
error is set. fildes is a file descriptor which may be open, bound and connected. If it
is RPC_ANYFD, it opens a file descriptor on the transport specified by netconf. If
fildes is RPC_ANYFD and netconf is NULL, a RPC_UNKNOWNPROTO error is set. If fildes
is unbound, then it will attempt to bind the descriptor. The user may specify the
size of the buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults. Depending upon the type of the transport (connection-oriented or
connectionless), clnt_tli_create() calls appropriate client creation routines.
This routine returns NULL if it fails. The clnt_pcreateerror() routine can be
used to print the reason for failure. The remote rpcbind service (see
rpcbind(1M)) is not consulted for the address of the remote service.

CLIENT *clnt_tp_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf);

Like clnt_create() except clnt_tp_create() tries only one transport
specified through netconf.

clnt_tp_create() creates a client handle for the program prognum, the version
versnum, and for the transport specified by netconf. Default options are set, which
can be changed using clnt_control() calls. The remote rpcbind service on the

clnt_create(3NSL)

Introduction to Library Functions 161

host host is consulted for the address of the remote service. This routine returns
NULL if it fails. The clnt_pcreateerror() routine can be used to print the
reason for failure.

CLIENT *clnt_tp_create_timed(const char *host, const rpcprog_t prognum, const
rpcvers_t versnum, const struct netconfig *netconf, const struct timeval *timeout);

Like clnt_tp_create() except clnt_tp_create_timed() has the extra
parameter timeout which specifies the maximum time allowed for the creation
attempt to succeed. In all other respects, the clnt_tp_create_timed() call
behaves exactly like the clnt_tp_create() call.

CLIENT *clnt_vc_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connection-oriented transport. The remote program is
located at address svcaddr. The parameter fildes is an open and bound file descriptor.
The user may specify the size of the send and receive buffers with the parameters
sendsz and recvsz; values of 0 choose suitable defaults. This routine returns NULL if
it fails.

The address svcaddr should not be NULL and should point to the actual address of
the remote program. clnt_vc_create() does not consult the remote rpcbind
service for this information.

struct rpc_createerr rpc_createerr;
A global variable whose value is set by any RPC client handle creation routine that
fails. It is used by the routine clnt_pcreateerror() to print the reason for the
failure.

In multithreaded applications, rpc_createerr becomes a macro which enables
each thread to have its own rpc_createerr.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate
attribute-control structures and set the t6attr_t pointers in the CLIENT structure.

clnt_create(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

162 man pages section 3: Library Functions • Last Revised 1 May 2000

When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_calls(3NSL), rpc_svc_create(3NSL),
libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_clnt_auth(3NSL), svc_raw_create(3NSL), attributes(5)

clnt_create(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 163

rpc_clnt_create, clnt_control, clnt_create, clnt_create_timed, clnt_create_vers,
clnt_create_vers_timed, clnt_destroy, clnt_dg_create, clnt_pcreateerror,
clnt_raw_create, clnt_spcreateerror, clnt_tli_create, clnt_tp_create,
clnt_tp_create_timed, clnt_vc_create, rpc_createerr – Library routines for dealing with
creation and manipulation of CLIENT handles

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First a CLIENT handle is created and then the client calls
a procedure to send a request to the server. On receipt of the request, the server calls a
dispatch routine to perform the requested service, and then sends a reply.

These routines are MT-Safe. In the case of multithreaded applications, the
_REENTRANT flag must be defined on the command line at compilation time
(-D_REENTRANT). When the _REENTRANT flag is defined, rpc_createerr becomes
a macro which enables each thread to have its own rpc_createerr.

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

See rpc(3NSL) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

bool_t clnt_control(CLIENT *clnt, const uint_t req, char *info);
A function macro to change or retrieve various information about a client object. req
indicates the type of operation, and info is a pointer to the information. For both
connectionless and connection-oriented transports, the supported values of req and
their argument types and what they do are:

CLSET_TIMEOUT struct timeval * set total timeout
CLGET_TIMEOUT struct timeval * get total timeout

If the timeout is set using clnt_control(), the timeout argument passed by
clnt_call() is ignored in all subsequent calls. If the timeout value is set to 0,
clnt_control() immediately returns RPC_TIMEDOUT. Set the timeout parameter
to 0 for batching calls.

CLGET_SERVER_ADDR struct netbuf * get server’s address
CLGET_SVC_ADDR struct netbuf * get server’s address
CLGET_FD int * get associated file descriptor
CLSET_FD_CLOSE void close the file descriptor when

destroying the client handle
(see clnt_destroy())

CLSET_FD_NCLOSE void do not close the file
descriptor when destroying

the client handle

CLGET_VERS rpcvers_t get the RPC program’s version
number associated with the
client handle

CLSET_VERS rpcvers_t set the RPC program’s version
number associated with the

clnt_create_timed(3NSL)

NAME

DESCRIPTION

Routines

164 man pages section 3: Library Functions • Last Revised 1 May 2000

client handle. This assumes
that the RPC server for this
new version is still listening
at the address of the previous
version.

CLGET_XID uint32_t get the XID of the previous
remote procedure call

CLSET_XID uint32_t set the XID of the next
remote procedure call

CLGET_PROG rpcprog_t get program number
CLSET_PROG rpcprog_t set program number

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval * set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval * get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

clnt_control() returns TRUE on success and FALSE on failure.

CLIENT *clnt_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype);

Generic client creation routine for program prognum and version versnum. host
identifies the name of the remote host where the server is located. nettype indicates
the class of transport protocol to use. The transports are tried in left to right order in
NETPATH variable or in top to bottom order in the netconfig database.

clnt_create() tries all the transports of the nettype class available from the
NETPATH environment variable and the netconfig database, and chooses the first
successful one. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)).

CLIENT *clnt_create_timed(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype, const struct timeval *timeout);

Generic client creation routine which is similar to clnt_create() but which also
has the additional parameter timeout that specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_timed() call behaves exactly like the clnt_create() call.

CLIENT *clnt_create_vers(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype);

Generic client creation routine which is similar to clnt_create() but which also
checks for the version availability. host identifies the name of the remote host where
the server is located. nettype indicates the class transport protocols to be used. If the

clnt_create_timed(3NSL)

Introduction to Library Functions 165

routine is successful it returns a client handle created for the highest version
between vers_low and vers_high that is supported by the server. vers_outp is set to
this value. That is, after a successful return vers_low <= *vers_outp <= vers_high. If no
version between vers_low and vers_high is supported by the server then the routine
fails and returns NULL. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)). However, clnt_create_vers() does this for you
and returns a valid handle only if a version within the range supplied is supported
by the server.

CLIENT *clnt_create_vers_timed(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype const struct
timeval *timeout);

Generic client creation routine similar to clnt_create_vers() but with the
additional parameter timeout, which specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_vers_timed() call behaves exactly like the
clnt_create_vers() call.

void clnt_destroy(CLIENT *clnt);
A function macro that destroys the client’s RPC handle. Destruction usually
involves deallocation of private data structures, including clnt itself. Use of clnt is
undefined after calling clnt_destroy(). If the RPC library opened the associated
file descriptor, or CLSET_FD_CLOSE was set using clnt_control(), the file
descriptor will be closed.

The caller should call auth_destroy(clnt⇒cl_auth) (before calling
clnt_destroy()) to destroy the associated AUTH structure (see
rpc_clnt_auth(3NSL)).

CLIENT *clnt_dg_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connectionless transport. The remote program is located
at address svcaddr. The parameter fildes is an open and bound file descriptor. This
routine will resend the call message in intervals of 15 seconds until a response is
received or until the call times out. The total time for the call to time out is specified
by clnt_call() (see clnt_call() in rpc_clnt_calls(3NSL)). The retry time
out and the total time out periods can be changed using clnt_control(). The
user may set the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. This routine returns NULL if it fails.

clnt_create_timed(3NSL)

166 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_pcreateerror(const char *s);
Print a message to standard error indicating why a client RPC handle could not be
created. The message is prepended with the string s and a colon, and appended
with a newline.

CLIENT *clnt_raw_create(const rpcprog_t prognum, const rpcvers_t versnum);
This routine creates an RPC client handle for the remote program prognum and
version versnum. The transport used to pass messages to the service is a buffer
within the process’s address space, so the corresponding RPC server should live in
the same address space; (see svc_raw_create() in rpc_svc_create(3NSL)).
This allows simulation of RPC and measurement of RPC overheads, such as round
trip times, without any kernel or networking interference. This routine returns
NULL if it fails. clnt_raw_create() should be called after svc_raw_create().

char *clnt_spcreateerror(const char *s);
Like clnt_pcreateerror(), except that it returns a string instead of printing to
the standard error. A newline is not appended to the message in this case.

Warning: returns a pointer to a buffer that is overwritten on each call. In
multithread applications, this buffer is implemented as thread-specific data.

CLIENT *clnt_tli_create(const int fildes, const struct netconfig *netconf, const struct
netbuf *svcaddr, const rpcprog_t prognum, const rpcvers_t versnum, const uint_t sendsz,
const uint_t recvsz);

This routine creates an RPC client handle for the remote program prognum and
version versnum. The remote program is located at address svcaddr. If svcaddr is
NULL and it is connection-oriented, it is assumed that the file descriptor is
connected. For connectionless transports, if svcaddr is NULL, RPC_UNKNOWNADDR
error is set. fildes is a file descriptor which may be open, bound and connected. If it
is RPC_ANYFD, it opens a file descriptor on the transport specified by netconf. If
fildes is RPC_ANYFD and netconf is NULL, a RPC_UNKNOWNPROTO error is set. If fildes
is unbound, then it will attempt to bind the descriptor. The user may specify the
size of the buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults. Depending upon the type of the transport (connection-oriented or
connectionless), clnt_tli_create() calls appropriate client creation routines.
This routine returns NULL if it fails. The clnt_pcreateerror() routine can be
used to print the reason for failure. The remote rpcbind service (see
rpcbind(1M)) is not consulted for the address of the remote service.

CLIENT *clnt_tp_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf);

Like clnt_create() except clnt_tp_create() tries only one transport
specified through netconf.

clnt_tp_create() creates a client handle for the program prognum, the version
versnum, and for the transport specified by netconf. Default options are set, which
can be changed using clnt_control() calls. The remote rpcbind service on the

clnt_create_timed(3NSL)

Introduction to Library Functions 167

host host is consulted for the address of the remote service. This routine returns
NULL if it fails. The clnt_pcreateerror() routine can be used to print the
reason for failure.

CLIENT *clnt_tp_create_timed(const char *host, const rpcprog_t prognum, const
rpcvers_t versnum, const struct netconfig *netconf, const struct timeval *timeout);

Like clnt_tp_create() except clnt_tp_create_timed() has the extra
parameter timeout which specifies the maximum time allowed for the creation
attempt to succeed. In all other respects, the clnt_tp_create_timed() call
behaves exactly like the clnt_tp_create() call.

CLIENT *clnt_vc_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connection-oriented transport. The remote program is
located at address svcaddr. The parameter fildes is an open and bound file descriptor.
The user may specify the size of the send and receive buffers with the parameters
sendsz and recvsz; values of 0 choose suitable defaults. This routine returns NULL if
it fails.

The address svcaddr should not be NULL and should point to the actual address of
the remote program. clnt_vc_create() does not consult the remote rpcbind
service for this information.

struct rpc_createerr rpc_createerr;
A global variable whose value is set by any RPC client handle creation routine that
fails. It is used by the routine clnt_pcreateerror() to print the reason for the
failure.

In multithreaded applications, rpc_createerr becomes a macro which enables
each thread to have its own rpc_createerr.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate
attribute-control structures and set the t6attr_t pointers in the CLIENT structure.

clnt_create_timed(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

168 man pages section 3: Library Functions • Last Revised 1 May 2000

When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_calls(3NSL), rpc_svc_create(3NSL),
libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_clnt_auth(3NSL), svc_raw_create(3NSL), attributes(5)

clnt_create_timed(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 169

rpc_clnt_create, clnt_control, clnt_create, clnt_create_timed, clnt_create_vers,
clnt_create_vers_timed, clnt_destroy, clnt_dg_create, clnt_pcreateerror,
clnt_raw_create, clnt_spcreateerror, clnt_tli_create, clnt_tp_create,
clnt_tp_create_timed, clnt_vc_create, rpc_createerr – Library routines for dealing with
creation and manipulation of CLIENT handles

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First a CLIENT handle is created and then the client calls
a procedure to send a request to the server. On receipt of the request, the server calls a
dispatch routine to perform the requested service, and then sends a reply.

These routines are MT-Safe. In the case of multithreaded applications, the
_REENTRANT flag must be defined on the command line at compilation time
(-D_REENTRANT). When the _REENTRANT flag is defined, rpc_createerr becomes
a macro which enables each thread to have its own rpc_createerr.

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

See rpc(3NSL) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

bool_t clnt_control(CLIENT *clnt, const uint_t req, char *info);
A function macro to change or retrieve various information about a client object. req
indicates the type of operation, and info is a pointer to the information. For both
connectionless and connection-oriented transports, the supported values of req and
their argument types and what they do are:

CLSET_TIMEOUT struct timeval * set total timeout
CLGET_TIMEOUT struct timeval * get total timeout

If the timeout is set using clnt_control(), the timeout argument passed by
clnt_call() is ignored in all subsequent calls. If the timeout value is set to 0,
clnt_control() immediately returns RPC_TIMEDOUT. Set the timeout parameter
to 0 for batching calls.

CLGET_SERVER_ADDR struct netbuf * get server’s address
CLGET_SVC_ADDR struct netbuf * get server’s address
CLGET_FD int * get associated file descriptor
CLSET_FD_CLOSE void close the file descriptor when

destroying the client handle
(see clnt_destroy())

CLSET_FD_NCLOSE void do not close the file
descriptor when destroying

the client handle

CLGET_VERS rpcvers_t get the RPC program’s version
number associated with the
client handle

CLSET_VERS rpcvers_t set the RPC program’s version
number associated with the

clnt_create_vers(3NSL)

NAME

DESCRIPTION

Routines

170 man pages section 3: Library Functions • Last Revised 1 May 2000

client handle. This assumes
that the RPC server for this
new version is still listening
at the address of the previous
version.

CLGET_XID uint32_t get the XID of the previous
remote procedure call

CLSET_XID uint32_t set the XID of the next
remote procedure call

CLGET_PROG rpcprog_t get program number
CLSET_PROG rpcprog_t set program number

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval * set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval * get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

clnt_control() returns TRUE on success and FALSE on failure.

CLIENT *clnt_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype);

Generic client creation routine for program prognum and version versnum. host
identifies the name of the remote host where the server is located. nettype indicates
the class of transport protocol to use. The transports are tried in left to right order in
NETPATH variable or in top to bottom order in the netconfig database.

clnt_create() tries all the transports of the nettype class available from the
NETPATH environment variable and the netconfig database, and chooses the first
successful one. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)).

CLIENT *clnt_create_timed(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype, const struct timeval *timeout);

Generic client creation routine which is similar to clnt_create() but which also
has the additional parameter timeout that specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_timed() call behaves exactly like the clnt_create() call.

CLIENT *clnt_create_vers(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype);

Generic client creation routine which is similar to clnt_create() but which also
checks for the version availability. host identifies the name of the remote host where
the server is located. nettype indicates the class transport protocols to be used. If the

clnt_create_vers(3NSL)

Introduction to Library Functions 171

routine is successful it returns a client handle created for the highest version
between vers_low and vers_high that is supported by the server. vers_outp is set to
this value. That is, after a successful return vers_low <= *vers_outp <= vers_high. If no
version between vers_low and vers_high is supported by the server then the routine
fails and returns NULL. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)). However, clnt_create_vers() does this for you
and returns a valid handle only if a version within the range supplied is supported
by the server.

CLIENT *clnt_create_vers_timed(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype const struct
timeval *timeout);

Generic client creation routine similar to clnt_create_vers() but with the
additional parameter timeout, which specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_vers_timed() call behaves exactly like the
clnt_create_vers() call.

void clnt_destroy(CLIENT *clnt);
A function macro that destroys the client’s RPC handle. Destruction usually
involves deallocation of private data structures, including clnt itself. Use of clnt is
undefined after calling clnt_destroy(). If the RPC library opened the associated
file descriptor, or CLSET_FD_CLOSE was set using clnt_control(), the file
descriptor will be closed.

The caller should call auth_destroy(clnt⇒cl_auth) (before calling
clnt_destroy()) to destroy the associated AUTH structure (see
rpc_clnt_auth(3NSL)).

CLIENT *clnt_dg_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connectionless transport. The remote program is located
at address svcaddr. The parameter fildes is an open and bound file descriptor. This
routine will resend the call message in intervals of 15 seconds until a response is
received or until the call times out. The total time for the call to time out is specified
by clnt_call() (see clnt_call() in rpc_clnt_calls(3NSL)). The retry time
out and the total time out periods can be changed using clnt_control(). The
user may set the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. This routine returns NULL if it fails.

clnt_create_vers(3NSL)

172 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_pcreateerror(const char *s);
Print a message to standard error indicating why a client RPC handle could not be
created. The message is prepended with the string s and a colon, and appended
with a newline.

CLIENT *clnt_raw_create(const rpcprog_t prognum, const rpcvers_t versnum);
This routine creates an RPC client handle for the remote program prognum and
version versnum. The transport used to pass messages to the service is a buffer
within the process’s address space, so the corresponding RPC server should live in
the same address space; (see svc_raw_create() in rpc_svc_create(3NSL)).
This allows simulation of RPC and measurement of RPC overheads, such as round
trip times, without any kernel or networking interference. This routine returns
NULL if it fails. clnt_raw_create() should be called after svc_raw_create().

char *clnt_spcreateerror(const char *s);
Like clnt_pcreateerror(), except that it returns a string instead of printing to
the standard error. A newline is not appended to the message in this case.

Warning: returns a pointer to a buffer that is overwritten on each call. In
multithread applications, this buffer is implemented as thread-specific data.

CLIENT *clnt_tli_create(const int fildes, const struct netconfig *netconf, const struct
netbuf *svcaddr, const rpcprog_t prognum, const rpcvers_t versnum, const uint_t sendsz,
const uint_t recvsz);

This routine creates an RPC client handle for the remote program prognum and
version versnum. The remote program is located at address svcaddr. If svcaddr is
NULL and it is connection-oriented, it is assumed that the file descriptor is
connected. For connectionless transports, if svcaddr is NULL, RPC_UNKNOWNADDR
error is set. fildes is a file descriptor which may be open, bound and connected. If it
is RPC_ANYFD, it opens a file descriptor on the transport specified by netconf. If
fildes is RPC_ANYFD and netconf is NULL, a RPC_UNKNOWNPROTO error is set. If fildes
is unbound, then it will attempt to bind the descriptor. The user may specify the
size of the buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults. Depending upon the type of the transport (connection-oriented or
connectionless), clnt_tli_create() calls appropriate client creation routines.
This routine returns NULL if it fails. The clnt_pcreateerror() routine can be
used to print the reason for failure. The remote rpcbind service (see
rpcbind(1M)) is not consulted for the address of the remote service.

CLIENT *clnt_tp_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf);

Like clnt_create() except clnt_tp_create() tries only one transport
specified through netconf.

clnt_tp_create() creates a client handle for the program prognum, the version
versnum, and for the transport specified by netconf. Default options are set, which
can be changed using clnt_control() calls. The remote rpcbind service on the

clnt_create_vers(3NSL)

Introduction to Library Functions 173

host host is consulted for the address of the remote service. This routine returns
NULL if it fails. The clnt_pcreateerror() routine can be used to print the
reason for failure.

CLIENT *clnt_tp_create_timed(const char *host, const rpcprog_t prognum, const
rpcvers_t versnum, const struct netconfig *netconf, const struct timeval *timeout);

Like clnt_tp_create() except clnt_tp_create_timed() has the extra
parameter timeout which specifies the maximum time allowed for the creation
attempt to succeed. In all other respects, the clnt_tp_create_timed() call
behaves exactly like the clnt_tp_create() call.

CLIENT *clnt_vc_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connection-oriented transport. The remote program is
located at address svcaddr. The parameter fildes is an open and bound file descriptor.
The user may specify the size of the send and receive buffers with the parameters
sendsz and recvsz; values of 0 choose suitable defaults. This routine returns NULL if
it fails.

The address svcaddr should not be NULL and should point to the actual address of
the remote program. clnt_vc_create() does not consult the remote rpcbind
service for this information.

struct rpc_createerr rpc_createerr;
A global variable whose value is set by any RPC client handle creation routine that
fails. It is used by the routine clnt_pcreateerror() to print the reason for the
failure.

In multithreaded applications, rpc_createerr becomes a macro which enables
each thread to have its own rpc_createerr.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate
attribute-control structures and set the t6attr_t pointers in the CLIENT structure.

clnt_create_vers(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

174 man pages section 3: Library Functions • Last Revised 1 May 2000

When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_calls(3NSL), rpc_svc_create(3NSL),
libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_clnt_auth(3NSL), svc_raw_create(3NSL), attributes(5)

clnt_create_vers(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 175

rpc_clnt_create, clnt_control, clnt_create, clnt_create_timed, clnt_create_vers,
clnt_create_vers_timed, clnt_destroy, clnt_dg_create, clnt_pcreateerror,
clnt_raw_create, clnt_spcreateerror, clnt_tli_create, clnt_tp_create,
clnt_tp_create_timed, clnt_vc_create, rpc_createerr – Library routines for dealing with
creation and manipulation of CLIENT handles

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First a CLIENT handle is created and then the client calls
a procedure to send a request to the server. On receipt of the request, the server calls a
dispatch routine to perform the requested service, and then sends a reply.

These routines are MT-Safe. In the case of multithreaded applications, the
_REENTRANT flag must be defined on the command line at compilation time
(-D_REENTRANT). When the _REENTRANT flag is defined, rpc_createerr becomes
a macro which enables each thread to have its own rpc_createerr.

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

See rpc(3NSL) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

bool_t clnt_control(CLIENT *clnt, const uint_t req, char *info);
A function macro to change or retrieve various information about a client object. req
indicates the type of operation, and info is a pointer to the information. For both
connectionless and connection-oriented transports, the supported values of req and
their argument types and what they do are:

CLSET_TIMEOUT struct timeval * set total timeout
CLGET_TIMEOUT struct timeval * get total timeout

If the timeout is set using clnt_control(), the timeout argument passed by
clnt_call() is ignored in all subsequent calls. If the timeout value is set to 0,
clnt_control() immediately returns RPC_TIMEDOUT. Set the timeout parameter
to 0 for batching calls.

CLGET_SERVER_ADDR struct netbuf * get server’s address
CLGET_SVC_ADDR struct netbuf * get server’s address
CLGET_FD int * get associated file descriptor
CLSET_FD_CLOSE void close the file descriptor when

destroying the client handle
(see clnt_destroy())

CLSET_FD_NCLOSE void do not close the file
descriptor when destroying

the client handle

CLGET_VERS rpcvers_t get the RPC program’s version
number associated with the
client handle

CLSET_VERS rpcvers_t set the RPC program’s version
number associated with the

clnt_create_vers_timed(3NSL)

NAME

DESCRIPTION

Routines

176 man pages section 3: Library Functions • Last Revised 1 May 2000

client handle. This assumes
that the RPC server for this
new version is still listening
at the address of the previous
version.

CLGET_XID uint32_t get the XID of the previous
remote procedure call

CLSET_XID uint32_t set the XID of the next
remote procedure call

CLGET_PROG rpcprog_t get program number
CLSET_PROG rpcprog_t set program number

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval * set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval * get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

clnt_control() returns TRUE on success and FALSE on failure.

CLIENT *clnt_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype);

Generic client creation routine for program prognum and version versnum. host
identifies the name of the remote host where the server is located. nettype indicates
the class of transport protocol to use. The transports are tried in left to right order in
NETPATH variable or in top to bottom order in the netconfig database.

clnt_create() tries all the transports of the nettype class available from the
NETPATH environment variable and the netconfig database, and chooses the first
successful one. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)).

CLIENT *clnt_create_timed(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype, const struct timeval *timeout);

Generic client creation routine which is similar to clnt_create() but which also
has the additional parameter timeout that specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_timed() call behaves exactly like the clnt_create() call.

CLIENT *clnt_create_vers(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype);

Generic client creation routine which is similar to clnt_create() but which also
checks for the version availability. host identifies the name of the remote host where
the server is located. nettype indicates the class transport protocols to be used. If the

clnt_create_vers_timed(3NSL)

Introduction to Library Functions 177

routine is successful it returns a client handle created for the highest version
between vers_low and vers_high that is supported by the server. vers_outp is set to
this value. That is, after a successful return vers_low <= *vers_outp <= vers_high. If no
version between vers_low and vers_high is supported by the server then the routine
fails and returns NULL. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)). However, clnt_create_vers() does this for you
and returns a valid handle only if a version within the range supplied is supported
by the server.

CLIENT *clnt_create_vers_timed(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype const struct
timeval *timeout);

Generic client creation routine similar to clnt_create_vers() but with the
additional parameter timeout, which specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_vers_timed() call behaves exactly like the
clnt_create_vers() call.

void clnt_destroy(CLIENT *clnt);
A function macro that destroys the client’s RPC handle. Destruction usually
involves deallocation of private data structures, including clnt itself. Use of clnt is
undefined after calling clnt_destroy(). If the RPC library opened the associated
file descriptor, or CLSET_FD_CLOSE was set using clnt_control(), the file
descriptor will be closed.

The caller should call auth_destroy(clnt⇒cl_auth) (before calling
clnt_destroy()) to destroy the associated AUTH structure (see
rpc_clnt_auth(3NSL)).

CLIENT *clnt_dg_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connectionless transport. The remote program is located
at address svcaddr. The parameter fildes is an open and bound file descriptor. This
routine will resend the call message in intervals of 15 seconds until a response is
received or until the call times out. The total time for the call to time out is specified
by clnt_call() (see clnt_call() in rpc_clnt_calls(3NSL)). The retry time
out and the total time out periods can be changed using clnt_control(). The
user may set the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. This routine returns NULL if it fails.

clnt_create_vers_timed(3NSL)

178 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_pcreateerror(const char *s);
Print a message to standard error indicating why a client RPC handle could not be
created. The message is prepended with the string s and a colon, and appended
with a newline.

CLIENT *clnt_raw_create(const rpcprog_t prognum, const rpcvers_t versnum);
This routine creates an RPC client handle for the remote program prognum and
version versnum. The transport used to pass messages to the service is a buffer
within the process’s address space, so the corresponding RPC server should live in
the same address space; (see svc_raw_create() in rpc_svc_create(3NSL)).
This allows simulation of RPC and measurement of RPC overheads, such as round
trip times, without any kernel or networking interference. This routine returns
NULL if it fails. clnt_raw_create() should be called after svc_raw_create().

char *clnt_spcreateerror(const char *s);
Like clnt_pcreateerror(), except that it returns a string instead of printing to
the standard error. A newline is not appended to the message in this case.

Warning: returns a pointer to a buffer that is overwritten on each call. In
multithread applications, this buffer is implemented as thread-specific data.

CLIENT *clnt_tli_create(const int fildes, const struct netconfig *netconf, const struct
netbuf *svcaddr, const rpcprog_t prognum, const rpcvers_t versnum, const uint_t sendsz,
const uint_t recvsz);

This routine creates an RPC client handle for the remote program prognum and
version versnum. The remote program is located at address svcaddr. If svcaddr is
NULL and it is connection-oriented, it is assumed that the file descriptor is
connected. For connectionless transports, if svcaddr is NULL, RPC_UNKNOWNADDR
error is set. fildes is a file descriptor which may be open, bound and connected. If it
is RPC_ANYFD, it opens a file descriptor on the transport specified by netconf. If
fildes is RPC_ANYFD and netconf is NULL, a RPC_UNKNOWNPROTO error is set. If fildes
is unbound, then it will attempt to bind the descriptor. The user may specify the
size of the buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults. Depending upon the type of the transport (connection-oriented or
connectionless), clnt_tli_create() calls appropriate client creation routines.
This routine returns NULL if it fails. The clnt_pcreateerror() routine can be
used to print the reason for failure. The remote rpcbind service (see
rpcbind(1M)) is not consulted for the address of the remote service.

CLIENT *clnt_tp_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf);

Like clnt_create() except clnt_tp_create() tries only one transport
specified through netconf.

clnt_tp_create() creates a client handle for the program prognum, the version
versnum, and for the transport specified by netconf. Default options are set, which
can be changed using clnt_control() calls. The remote rpcbind service on the

clnt_create_vers_timed(3NSL)

Introduction to Library Functions 179

host host is consulted for the address of the remote service. This routine returns
NULL if it fails. The clnt_pcreateerror() routine can be used to print the
reason for failure.

CLIENT *clnt_tp_create_timed(const char *host, const rpcprog_t prognum, const
rpcvers_t versnum, const struct netconfig *netconf, const struct timeval *timeout);

Like clnt_tp_create() except clnt_tp_create_timed() has the extra
parameter timeout which specifies the maximum time allowed for the creation
attempt to succeed. In all other respects, the clnt_tp_create_timed() call
behaves exactly like the clnt_tp_create() call.

CLIENT *clnt_vc_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connection-oriented transport. The remote program is
located at address svcaddr. The parameter fildes is an open and bound file descriptor.
The user may specify the size of the send and receive buffers with the parameters
sendsz and recvsz; values of 0 choose suitable defaults. This routine returns NULL if
it fails.

The address svcaddr should not be NULL and should point to the actual address of
the remote program. clnt_vc_create() does not consult the remote rpcbind
service for this information.

struct rpc_createerr rpc_createerr;
A global variable whose value is set by any RPC client handle creation routine that
fails. It is used by the routine clnt_pcreateerror() to print the reason for the
failure.

In multithreaded applications, rpc_createerr becomes a macro which enables
each thread to have its own rpc_createerr.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate
attribute-control structures and set the t6attr_t pointers in the CLIENT structure.

clnt_create_vers_timed(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

180 man pages section 3: Library Functions • Last Revised 1 May 2000

When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_calls(3NSL), rpc_svc_create(3NSL),
libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_clnt_auth(3NSL), svc_raw_create(3NSL), attributes(5)

clnt_create_vers_timed(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 181

rpc_clnt_create, clnt_control, clnt_create, clnt_create_timed, clnt_create_vers,
clnt_create_vers_timed, clnt_destroy, clnt_dg_create, clnt_pcreateerror,
clnt_raw_create, clnt_spcreateerror, clnt_tli_create, clnt_tp_create,
clnt_tp_create_timed, clnt_vc_create, rpc_createerr – Library routines for dealing with
creation and manipulation of CLIENT handles

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First a CLIENT handle is created and then the client calls
a procedure to send a request to the server. On receipt of the request, the server calls a
dispatch routine to perform the requested service, and then sends a reply.

These routines are MT-Safe. In the case of multithreaded applications, the
_REENTRANT flag must be defined on the command line at compilation time
(-D_REENTRANT). When the _REENTRANT flag is defined, rpc_createerr becomes
a macro which enables each thread to have its own rpc_createerr.

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

See rpc(3NSL) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

bool_t clnt_control(CLIENT *clnt, const uint_t req, char *info);
A function macro to change or retrieve various information about a client object. req
indicates the type of operation, and info is a pointer to the information. For both
connectionless and connection-oriented transports, the supported values of req and
their argument types and what they do are:

CLSET_TIMEOUT struct timeval * set total timeout
CLGET_TIMEOUT struct timeval * get total timeout

If the timeout is set using clnt_control(), the timeout argument passed by
clnt_call() is ignored in all subsequent calls. If the timeout value is set to 0,
clnt_control() immediately returns RPC_TIMEDOUT. Set the timeout parameter
to 0 for batching calls.

CLGET_SERVER_ADDR struct netbuf * get server’s address
CLGET_SVC_ADDR struct netbuf * get server’s address
CLGET_FD int * get associated file descriptor
CLSET_FD_CLOSE void close the file descriptor when

destroying the client handle
(see clnt_destroy())

CLSET_FD_NCLOSE void do not close the file
descriptor when destroying

the client handle

CLGET_VERS rpcvers_t get the RPC program’s version
number associated with the
client handle

CLSET_VERS rpcvers_t set the RPC program’s version
number associated with the

clnt_destroy(3NSL)

NAME

DESCRIPTION

Routines

182 man pages section 3: Library Functions • Last Revised 1 May 2000

client handle. This assumes
that the RPC server for this
new version is still listening
at the address of the previous
version.

CLGET_XID uint32_t get the XID of the previous
remote procedure call

CLSET_XID uint32_t set the XID of the next
remote procedure call

CLGET_PROG rpcprog_t get program number
CLSET_PROG rpcprog_t set program number

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval * set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval * get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

clnt_control() returns TRUE on success and FALSE on failure.

CLIENT *clnt_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype);

Generic client creation routine for program prognum and version versnum. host
identifies the name of the remote host where the server is located. nettype indicates
the class of transport protocol to use. The transports are tried in left to right order in
NETPATH variable or in top to bottom order in the netconfig database.

clnt_create() tries all the transports of the nettype class available from the
NETPATH environment variable and the netconfig database, and chooses the first
successful one. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)).

CLIENT *clnt_create_timed(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype, const struct timeval *timeout);

Generic client creation routine which is similar to clnt_create() but which also
has the additional parameter timeout that specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_timed() call behaves exactly like the clnt_create() call.

CLIENT *clnt_create_vers(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype);

Generic client creation routine which is similar to clnt_create() but which also
checks for the version availability. host identifies the name of the remote host where
the server is located. nettype indicates the class transport protocols to be used. If the

clnt_destroy(3NSL)

Introduction to Library Functions 183

routine is successful it returns a client handle created for the highest version
between vers_low and vers_high that is supported by the server. vers_outp is set to
this value. That is, after a successful return vers_low <= *vers_outp <= vers_high. If no
version between vers_low and vers_high is supported by the server then the routine
fails and returns NULL. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)). However, clnt_create_vers() does this for you
and returns a valid handle only if a version within the range supplied is supported
by the server.

CLIENT *clnt_create_vers_timed(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype const struct
timeval *timeout);

Generic client creation routine similar to clnt_create_vers() but with the
additional parameter timeout, which specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_vers_timed() call behaves exactly like the
clnt_create_vers() call.

void clnt_destroy(CLIENT *clnt);
A function macro that destroys the client’s RPC handle. Destruction usually
involves deallocation of private data structures, including clnt itself. Use of clnt is
undefined after calling clnt_destroy(). If the RPC library opened the associated
file descriptor, or CLSET_FD_CLOSE was set using clnt_control(), the file
descriptor will be closed.

The caller should call auth_destroy(clnt⇒cl_auth) (before calling
clnt_destroy()) to destroy the associated AUTH structure (see
rpc_clnt_auth(3NSL)).

CLIENT *clnt_dg_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connectionless transport. The remote program is located
at address svcaddr. The parameter fildes is an open and bound file descriptor. This
routine will resend the call message in intervals of 15 seconds until a response is
received or until the call times out. The total time for the call to time out is specified
by clnt_call() (see clnt_call() in rpc_clnt_calls(3NSL)). The retry time
out and the total time out periods can be changed using clnt_control(). The
user may set the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. This routine returns NULL if it fails.

clnt_destroy(3NSL)

184 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_pcreateerror(const char *s);
Print a message to standard error indicating why a client RPC handle could not be
created. The message is prepended with the string s and a colon, and appended
with a newline.

CLIENT *clnt_raw_create(const rpcprog_t prognum, const rpcvers_t versnum);
This routine creates an RPC client handle for the remote program prognum and
version versnum. The transport used to pass messages to the service is a buffer
within the process’s address space, so the corresponding RPC server should live in
the same address space; (see svc_raw_create() in rpc_svc_create(3NSL)).
This allows simulation of RPC and measurement of RPC overheads, such as round
trip times, without any kernel or networking interference. This routine returns
NULL if it fails. clnt_raw_create() should be called after svc_raw_create().

char *clnt_spcreateerror(const char *s);
Like clnt_pcreateerror(), except that it returns a string instead of printing to
the standard error. A newline is not appended to the message in this case.

Warning: returns a pointer to a buffer that is overwritten on each call. In
multithread applications, this buffer is implemented as thread-specific data.

CLIENT *clnt_tli_create(const int fildes, const struct netconfig *netconf, const struct
netbuf *svcaddr, const rpcprog_t prognum, const rpcvers_t versnum, const uint_t sendsz,
const uint_t recvsz);

This routine creates an RPC client handle for the remote program prognum and
version versnum. The remote program is located at address svcaddr. If svcaddr is
NULL and it is connection-oriented, it is assumed that the file descriptor is
connected. For connectionless transports, if svcaddr is NULL, RPC_UNKNOWNADDR
error is set. fildes is a file descriptor which may be open, bound and connected. If it
is RPC_ANYFD, it opens a file descriptor on the transport specified by netconf. If
fildes is RPC_ANYFD and netconf is NULL, a RPC_UNKNOWNPROTO error is set. If fildes
is unbound, then it will attempt to bind the descriptor. The user may specify the
size of the buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults. Depending upon the type of the transport (connection-oriented or
connectionless), clnt_tli_create() calls appropriate client creation routines.
This routine returns NULL if it fails. The clnt_pcreateerror() routine can be
used to print the reason for failure. The remote rpcbind service (see
rpcbind(1M)) is not consulted for the address of the remote service.

CLIENT *clnt_tp_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf);

Like clnt_create() except clnt_tp_create() tries only one transport
specified through netconf.

clnt_tp_create() creates a client handle for the program prognum, the version
versnum, and for the transport specified by netconf. Default options are set, which
can be changed using clnt_control() calls. The remote rpcbind service on the

clnt_destroy(3NSL)

Introduction to Library Functions 185

host host is consulted for the address of the remote service. This routine returns
NULL if it fails. The clnt_pcreateerror() routine can be used to print the
reason for failure.

CLIENT *clnt_tp_create_timed(const char *host, const rpcprog_t prognum, const
rpcvers_t versnum, const struct netconfig *netconf, const struct timeval *timeout);

Like clnt_tp_create() except clnt_tp_create_timed() has the extra
parameter timeout which specifies the maximum time allowed for the creation
attempt to succeed. In all other respects, the clnt_tp_create_timed() call
behaves exactly like the clnt_tp_create() call.

CLIENT *clnt_vc_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connection-oriented transport. The remote program is
located at address svcaddr. The parameter fildes is an open and bound file descriptor.
The user may specify the size of the send and receive buffers with the parameters
sendsz and recvsz; values of 0 choose suitable defaults. This routine returns NULL if
it fails.

The address svcaddr should not be NULL and should point to the actual address of
the remote program. clnt_vc_create() does not consult the remote rpcbind
service for this information.

struct rpc_createerr rpc_createerr;
A global variable whose value is set by any RPC client handle creation routine that
fails. It is used by the routine clnt_pcreateerror() to print the reason for the
failure.

In multithreaded applications, rpc_createerr becomes a macro which enables
each thread to have its own rpc_createerr.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate
attribute-control structures and set the t6attr_t pointers in the CLIENT structure.

clnt_destroy(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

186 man pages section 3: Library Functions • Last Revised 1 May 2000

When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_calls(3NSL), rpc_svc_create(3NSL),
libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_clnt_auth(3NSL), svc_raw_create(3NSL), attributes(5)

clnt_destroy(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 187

rpc_clnt_create, clnt_control, clnt_create, clnt_create_timed, clnt_create_vers,
clnt_create_vers_timed, clnt_destroy, clnt_dg_create, clnt_pcreateerror,
clnt_raw_create, clnt_spcreateerror, clnt_tli_create, clnt_tp_create,
clnt_tp_create_timed, clnt_vc_create, rpc_createerr – Library routines for dealing with
creation and manipulation of CLIENT handles

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First a CLIENT handle is created and then the client calls
a procedure to send a request to the server. On receipt of the request, the server calls a
dispatch routine to perform the requested service, and then sends a reply.

These routines are MT-Safe. In the case of multithreaded applications, the
_REENTRANT flag must be defined on the command line at compilation time
(-D_REENTRANT). When the _REENTRANT flag is defined, rpc_createerr becomes
a macro which enables each thread to have its own rpc_createerr.

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

See rpc(3NSL) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

bool_t clnt_control(CLIENT *clnt, const uint_t req, char *info);
A function macro to change or retrieve various information about a client object. req
indicates the type of operation, and info is a pointer to the information. For both
connectionless and connection-oriented transports, the supported values of req and
their argument types and what they do are:

CLSET_TIMEOUT struct timeval * set total timeout
CLGET_TIMEOUT struct timeval * get total timeout

If the timeout is set using clnt_control(), the timeout argument passed by
clnt_call() is ignored in all subsequent calls. If the timeout value is set to 0,
clnt_control() immediately returns RPC_TIMEDOUT. Set the timeout parameter
to 0 for batching calls.

CLGET_SERVER_ADDR struct netbuf * get server’s address
CLGET_SVC_ADDR struct netbuf * get server’s address
CLGET_FD int * get associated file descriptor
CLSET_FD_CLOSE void close the file descriptor when

destroying the client handle
(see clnt_destroy())

CLSET_FD_NCLOSE void do not close the file
descriptor when destroying

the client handle

CLGET_VERS rpcvers_t get the RPC program’s version
number associated with the
client handle

CLSET_VERS rpcvers_t set the RPC program’s version
number associated with the

clnt_dg_create(3NSL)

NAME

DESCRIPTION

Routines

188 man pages section 3: Library Functions • Last Revised 1 May 2000

client handle. This assumes
that the RPC server for this
new version is still listening
at the address of the previous
version.

CLGET_XID uint32_t get the XID of the previous
remote procedure call

CLSET_XID uint32_t set the XID of the next
remote procedure call

CLGET_PROG rpcprog_t get program number
CLSET_PROG rpcprog_t set program number

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval * set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval * get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

clnt_control() returns TRUE on success and FALSE on failure.

CLIENT *clnt_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype);

Generic client creation routine for program prognum and version versnum. host
identifies the name of the remote host where the server is located. nettype indicates
the class of transport protocol to use. The transports are tried in left to right order in
NETPATH variable or in top to bottom order in the netconfig database.

clnt_create() tries all the transports of the nettype class available from the
NETPATH environment variable and the netconfig database, and chooses the first
successful one. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)).

CLIENT *clnt_create_timed(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype, const struct timeval *timeout);

Generic client creation routine which is similar to clnt_create() but which also
has the additional parameter timeout that specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_timed() call behaves exactly like the clnt_create() call.

CLIENT *clnt_create_vers(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype);

Generic client creation routine which is similar to clnt_create() but which also
checks for the version availability. host identifies the name of the remote host where
the server is located. nettype indicates the class transport protocols to be used. If the

clnt_dg_create(3NSL)

Introduction to Library Functions 189

routine is successful it returns a client handle created for the highest version
between vers_low and vers_high that is supported by the server. vers_outp is set to
this value. That is, after a successful return vers_low <= *vers_outp <= vers_high. If no
version between vers_low and vers_high is supported by the server then the routine
fails and returns NULL. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)). However, clnt_create_vers() does this for you
and returns a valid handle only if a version within the range supplied is supported
by the server.

CLIENT *clnt_create_vers_timed(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype const struct
timeval *timeout);

Generic client creation routine similar to clnt_create_vers() but with the
additional parameter timeout, which specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_vers_timed() call behaves exactly like the
clnt_create_vers() call.

void clnt_destroy(CLIENT *clnt);
A function macro that destroys the client’s RPC handle. Destruction usually
involves deallocation of private data structures, including clnt itself. Use of clnt is
undefined after calling clnt_destroy(). If the RPC library opened the associated
file descriptor, or CLSET_FD_CLOSE was set using clnt_control(), the file
descriptor will be closed.

The caller should call auth_destroy(clnt⇒cl_auth) (before calling
clnt_destroy()) to destroy the associated AUTH structure (see
rpc_clnt_auth(3NSL)).

CLIENT *clnt_dg_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connectionless transport. The remote program is located
at address svcaddr. The parameter fildes is an open and bound file descriptor. This
routine will resend the call message in intervals of 15 seconds until a response is
received or until the call times out. The total time for the call to time out is specified
by clnt_call() (see clnt_call() in rpc_clnt_calls(3NSL)). The retry time
out and the total time out periods can be changed using clnt_control(). The
user may set the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. This routine returns NULL if it fails.

clnt_dg_create(3NSL)

190 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_pcreateerror(const char *s);
Print a message to standard error indicating why a client RPC handle could not be
created. The message is prepended with the string s and a colon, and appended
with a newline.

CLIENT *clnt_raw_create(const rpcprog_t prognum, const rpcvers_t versnum);
This routine creates an RPC client handle for the remote program prognum and
version versnum. The transport used to pass messages to the service is a buffer
within the process’s address space, so the corresponding RPC server should live in
the same address space; (see svc_raw_create() in rpc_svc_create(3NSL)).
This allows simulation of RPC and measurement of RPC overheads, such as round
trip times, without any kernel or networking interference. This routine returns
NULL if it fails. clnt_raw_create() should be called after svc_raw_create().

char *clnt_spcreateerror(const char *s);
Like clnt_pcreateerror(), except that it returns a string instead of printing to
the standard error. A newline is not appended to the message in this case.

Warning: returns a pointer to a buffer that is overwritten on each call. In
multithread applications, this buffer is implemented as thread-specific data.

CLIENT *clnt_tli_create(const int fildes, const struct netconfig *netconf, const struct
netbuf *svcaddr, const rpcprog_t prognum, const rpcvers_t versnum, const uint_t sendsz,
const uint_t recvsz);

This routine creates an RPC client handle for the remote program prognum and
version versnum. The remote program is located at address svcaddr. If svcaddr is
NULL and it is connection-oriented, it is assumed that the file descriptor is
connected. For connectionless transports, if svcaddr is NULL, RPC_UNKNOWNADDR
error is set. fildes is a file descriptor which may be open, bound and connected. If it
is RPC_ANYFD, it opens a file descriptor on the transport specified by netconf. If
fildes is RPC_ANYFD and netconf is NULL, a RPC_UNKNOWNPROTO error is set. If fildes
is unbound, then it will attempt to bind the descriptor. The user may specify the
size of the buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults. Depending upon the type of the transport (connection-oriented or
connectionless), clnt_tli_create() calls appropriate client creation routines.
This routine returns NULL if it fails. The clnt_pcreateerror() routine can be
used to print the reason for failure. The remote rpcbind service (see
rpcbind(1M)) is not consulted for the address of the remote service.

CLIENT *clnt_tp_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf);

Like clnt_create() except clnt_tp_create() tries only one transport
specified through netconf.

clnt_tp_create() creates a client handle for the program prognum, the version
versnum, and for the transport specified by netconf. Default options are set, which
can be changed using clnt_control() calls. The remote rpcbind service on the

clnt_dg_create(3NSL)

Introduction to Library Functions 191

host host is consulted for the address of the remote service. This routine returns
NULL if it fails. The clnt_pcreateerror() routine can be used to print the
reason for failure.

CLIENT *clnt_tp_create_timed(const char *host, const rpcprog_t prognum, const
rpcvers_t versnum, const struct netconfig *netconf, const struct timeval *timeout);

Like clnt_tp_create() except clnt_tp_create_timed() has the extra
parameter timeout which specifies the maximum time allowed for the creation
attempt to succeed. In all other respects, the clnt_tp_create_timed() call
behaves exactly like the clnt_tp_create() call.

CLIENT *clnt_vc_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connection-oriented transport. The remote program is
located at address svcaddr. The parameter fildes is an open and bound file descriptor.
The user may specify the size of the send and receive buffers with the parameters
sendsz and recvsz; values of 0 choose suitable defaults. This routine returns NULL if
it fails.

The address svcaddr should not be NULL and should point to the actual address of
the remote program. clnt_vc_create() does not consult the remote rpcbind
service for this information.

struct rpc_createerr rpc_createerr;
A global variable whose value is set by any RPC client handle creation routine that
fails. It is used by the routine clnt_pcreateerror() to print the reason for the
failure.

In multithreaded applications, rpc_createerr becomes a macro which enables
each thread to have its own rpc_createerr.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate
attribute-control structures and set the t6attr_t pointers in the CLIENT structure.

clnt_dg_create(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

192 man pages section 3: Library Functions • Last Revised 1 May 2000

When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_calls(3NSL), rpc_svc_create(3NSL),
libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_clnt_auth(3NSL), svc_raw_create(3NSL), attributes(5)

clnt_dg_create(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 193

rpc_clnt_calls, clnt_call, clnt_freeres, clnt_geterr, clnt_perrno, clnt_perror, clnt_sperrno,
clnt_sperror, rpc_broadcast, rpc_broadcast_exp, rpc_call – Library routines for client
side calls

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First, the client calls a procedure to send a request to the
server. Upon receipt of the request, the server calls a dispatch routine to perform the
requested service, and then sends back a reply.

The clnt_call(), rpc_call(), and rpc_broadcast() routines handle the client
side of the procedure call. The remaining routines deal with error handling in the case
of errors.

Some of the routines take a CLIENT handle as one of the parameters. A CLIENT
handle can be created by an RPC creation routine such as clnt_create() (see
rpc_clnt_create(3NSL)).

These routines are safe for use in multithreaded applications. CLIENT handles can be
shared between threads, however in this implementation requests by different threads
are serialized (that is, the first request will receive its results before the second request
is sent).

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

enum clnt_stat clnt_call(CLIENT *clnt, const rpcproc_t procnum, const xdrproc_t inproc,
const caddr_t in, const xdrproc_t outproc, caddr_t out, const struct timeval tout);

A function macro that calls the remote procedure procnum associated with the client
handle, clnt, which is obtained with an RPC client creation routine such as
clnt_create() (see rpc_clnt_create(3NSL)). The parameter inproc is the
XDR function used to encode the procedure’s parameters, and outproc is the XDR
function used to decode the procedure’s results; in is the address of the procedure’s
argument(s), and out is the address of where to place the result(s). tout is the time
allowed for results to be returned, which is overridden by a time-out set explicitly
through clnt_control(), see rpc_clnt_create(3NSL) .

If the remote call succeeds, the status returned is RPC_SUCCESS, otherwise an
appropriate status is returned.

bool_t clnt_freeres(CLIENT *clnt, const xdrproc_t outproc, caddr_t out);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the results of an RPC call. The parameter out is the address of the results,
and outproc is the XDR routine describing the results. This routine returns 1 if the
results were successfully freed, and 0 otherwise.

void clnt_geterr(const CLIENT *clnt, struct rpc_err *errp);
A function macro that copies the error structure out of the client handle to the
structure at address errp.

clnt_freeres(3NSL)

NAME

DESCRIPTION

Routines

194 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_perrno(const enum clnt_stat stat);
Print a message to standard error corresponding to the condition indicated by stat.
A newline is appended. Normally used after a procedure call fails for a routine for
which a client handle is not needed, for instance rpc_call().

void clnt_perror(const CLIENT *clnt, const char *s);
Print a message to the standard error indicating why an RPC call failed; clnt is the
handle used to do the call. The message is prepended with string s and a colon. A
newline is appended. Normally used after a remote procedure call fails for a
routine which requires a client handle, for instance clnt_call().

char *clnt_sperrno(const enum clnt_stat stat);
Take the same arguments as clnt_perrno(), but instead of sending a message to
the standard error indicating why an RPC call failed, return a pointer to a string
which contains the message.

clnt_sperrno() is normally used instead of clnt_perrno() when the
program does not have a standard error (as a program running as a server quite
likely does not), or if the programmer does not want the message to be output with
printf() [see printf(3C)], or if a message format different than that supported
by clnt_perrno() is to be used. Note: unlike clnt_sperror() and
clnt_spcreaterror() [see rpc_clnt_create(3NSL)], clnt_sperrno()
does not return pointer to static data so the result will not get overwritten on each
call.

char *clnt_sperror(const CLIENT *clnt, const char *s);
Like clnt_perror(), except that (like clnt_sperrno()) it returns a string
instead of printing to standard error. However, clnt_sperror() does not append
a newline at the end of the message.

Warning: Returns pointer to a buffer that is overwritten on each call. In multithread
applications, this buffer is implemented as thread-specific data.

enum clnt_stat rpc_broadcast(const rpcprog_t prognum, const rpcvers_t versnum, const
rpcproc_t procnum, const xdrproc_t inproc, const caddr_t in, const xdrproc_t outproc,
caddr_t out, const resultproc_t eachresult, const char *nettype);

Like rpc_call(), except the call message is broadcast to all the connectionless
transports specified by nettype. If nettype is NULL, it defaults to "netpath. Each
time it receives a response, this routine calls eachresult(), whose form is:

bool_t eachresult(caddr_t out, const struct netbuf *addr,

const struct netconfig *netconf);where out is the same as out passed to
rpc_broadcast(), except that the remote procedure’s output is decoded there;
addr points to the address of the machine that sent the results, and netconf is the
netconfig structure of the transport on which the remote server responded. If
eachresult() returns 0, rpc_broadcast() waits for more replies; otherwise it
returns with appropriate status.

clnt_freeres(3NSL)

Introduction to Library Functions 195

Warning: broadcast file descriptors are limited in size to the maximum transfer size
of that transport. For Ethernet, this value is 1500 bytes. rpc_broadcast() uses
AUTH_SYS credentials by default [see rpc_clnt_auth(3NSL)].

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_broadcast_exp(const rpcprog_t prognum, const rpcvers_t versnum,
const rpcproc_t procnum, const xdrproc_t xargs, caddr_t argsp, const xdrproc_t xresults,
caddr_t resultsp, const resultproc_t eachresult, const int inittime, const int waittime, const
char *nettype);

Like rpc_broadcast(), except that the initial timeout, inittime and the maximum
timeout, waittime are specified in milliseconds.

inittime is the initial time that rpc_broadcast_exp() waits before resending the
request. After the first resend, the re-transmission interval increases exponentially
until it exceeds waittime.

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_call(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const rpcproc_t procnum, const xdrproc_t inproc, const char *in, const
xdrproc_t outproc, char *out, const char *nettype);

Call the remote procedure associated with prognum, versnum, and procnum on the
machine, host. The parameter inproc is used to encode the procedure’s parameters,
and outproc is used to decode the procedure’s results; in is the address of the
procedure’s argument(s), and out is the address of where to place the result(s).
nettype can be any of the values listed on rpc(3NSL). This routine returns
RPC_SUCCESS if it succeeds, or an appropriate status is returned. Use the
clnt_perrno() routine to translate failure status into error messages.

Warning: rpc_call() uses the first available transport belonging to the class
nettype, on which it can create a connection. You do not have control of timeouts or
authentication using this routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel. rpc_broadcast() and
rpc_broadcast_exp() require the PRIV_NET_BROADCAST privilege.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate

clnt_freeres(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

196 man pages section 3: Library Functions • Last Revised 1 May 2000

attribute-control structures and set the t6attr_t pointers in the CLIENT structure.
When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpc(3NSL), rpc_clnt_create(3NSL), libt6(3NSL), t6alloc_blk(3NSL),
t6free_blk(3NSL)

printf(3C), rpc_clnt_auth(3NSL), attributes(5)

clnt_freeres(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 197

rpc_clnt_calls, clnt_call, clnt_freeres, clnt_geterr, clnt_perrno, clnt_perror, clnt_sperrno,
clnt_sperror, rpc_broadcast, rpc_broadcast_exp, rpc_call – Library routines for client
side calls

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First, the client calls a procedure to send a request to the
server. Upon receipt of the request, the server calls a dispatch routine to perform the
requested service, and then sends back a reply.

The clnt_call(), rpc_call(), and rpc_broadcast() routines handle the client
side of the procedure call. The remaining routines deal with error handling in the case
of errors.

Some of the routines take a CLIENT handle as one of the parameters. A CLIENT
handle can be created by an RPC creation routine such as clnt_create() (see
rpc_clnt_create(3NSL)).

These routines are safe for use in multithreaded applications. CLIENT handles can be
shared between threads, however in this implementation requests by different threads
are serialized (that is, the first request will receive its results before the second request
is sent).

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

enum clnt_stat clnt_call(CLIENT *clnt, const rpcproc_t procnum, const xdrproc_t inproc,
const caddr_t in, const xdrproc_t outproc, caddr_t out, const struct timeval tout);

A function macro that calls the remote procedure procnum associated with the client
handle, clnt, which is obtained with an RPC client creation routine such as
clnt_create() (see rpc_clnt_create(3NSL)). The parameter inproc is the
XDR function used to encode the procedure’s parameters, and outproc is the XDR
function used to decode the procedure’s results; in is the address of the procedure’s
argument(s), and out is the address of where to place the result(s). tout is the time
allowed for results to be returned, which is overridden by a time-out set explicitly
through clnt_control(), see rpc_clnt_create(3NSL) .

If the remote call succeeds, the status returned is RPC_SUCCESS, otherwise an
appropriate status is returned.

bool_t clnt_freeres(CLIENT *clnt, const xdrproc_t outproc, caddr_t out);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the results of an RPC call. The parameter out is the address of the results,
and outproc is the XDR routine describing the results. This routine returns 1 if the
results were successfully freed, and 0 otherwise.

void clnt_geterr(const CLIENT *clnt, struct rpc_err *errp);
A function macro that copies the error structure out of the client handle to the
structure at address errp.

clnt_geterr(3NSL)

NAME

DESCRIPTION

Routines

198 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_perrno(const enum clnt_stat stat);
Print a message to standard error corresponding to the condition indicated by stat.
A newline is appended. Normally used after a procedure call fails for a routine for
which a client handle is not needed, for instance rpc_call().

void clnt_perror(const CLIENT *clnt, const char *s);
Print a message to the standard error indicating why an RPC call failed; clnt is the
handle used to do the call. The message is prepended with string s and a colon. A
newline is appended. Normally used after a remote procedure call fails for a
routine which requires a client handle, for instance clnt_call().

char *clnt_sperrno(const enum clnt_stat stat);
Take the same arguments as clnt_perrno(), but instead of sending a message to
the standard error indicating why an RPC call failed, return a pointer to a string
which contains the message.

clnt_sperrno() is normally used instead of clnt_perrno() when the
program does not have a standard error (as a program running as a server quite
likely does not), or if the programmer does not want the message to be output with
printf() [see printf(3C)], or if a message format different than that supported
by clnt_perrno() is to be used. Note: unlike clnt_sperror() and
clnt_spcreaterror() [see rpc_clnt_create(3NSL)], clnt_sperrno()
does not return pointer to static data so the result will not get overwritten on each
call.

char *clnt_sperror(const CLIENT *clnt, const char *s);
Like clnt_perror(), except that (like clnt_sperrno()) it returns a string
instead of printing to standard error. However, clnt_sperror() does not append
a newline at the end of the message.

Warning: Returns pointer to a buffer that is overwritten on each call. In multithread
applications, this buffer is implemented as thread-specific data.

enum clnt_stat rpc_broadcast(const rpcprog_t prognum, const rpcvers_t versnum, const
rpcproc_t procnum, const xdrproc_t inproc, const caddr_t in, const xdrproc_t outproc,
caddr_t out, const resultproc_t eachresult, const char *nettype);

Like rpc_call(), except the call message is broadcast to all the connectionless
transports specified by nettype. If nettype is NULL, it defaults to "netpath. Each
time it receives a response, this routine calls eachresult(), whose form is:

bool_t eachresult(caddr_t out, const struct netbuf *addr,

const struct netconfig *netconf);where out is the same as out passed to
rpc_broadcast(), except that the remote procedure’s output is decoded there;
addr points to the address of the machine that sent the results, and netconf is the
netconfig structure of the transport on which the remote server responded. If
eachresult() returns 0, rpc_broadcast() waits for more replies; otherwise it
returns with appropriate status.

clnt_geterr(3NSL)

Introduction to Library Functions 199

Warning: broadcast file descriptors are limited in size to the maximum transfer size
of that transport. For Ethernet, this value is 1500 bytes. rpc_broadcast() uses
AUTH_SYS credentials by default [see rpc_clnt_auth(3NSL)].

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_broadcast_exp(const rpcprog_t prognum, const rpcvers_t versnum,
const rpcproc_t procnum, const xdrproc_t xargs, caddr_t argsp, const xdrproc_t xresults,
caddr_t resultsp, const resultproc_t eachresult, const int inittime, const int waittime, const
char *nettype);

Like rpc_broadcast(), except that the initial timeout, inittime and the maximum
timeout, waittime are specified in milliseconds.

inittime is the initial time that rpc_broadcast_exp() waits before resending the
request. After the first resend, the re-transmission interval increases exponentially
until it exceeds waittime.

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_call(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const rpcproc_t procnum, const xdrproc_t inproc, const char *in, const
xdrproc_t outproc, char *out, const char *nettype);

Call the remote procedure associated with prognum, versnum, and procnum on the
machine, host. The parameter inproc is used to encode the procedure’s parameters,
and outproc is used to decode the procedure’s results; in is the address of the
procedure’s argument(s), and out is the address of where to place the result(s).
nettype can be any of the values listed on rpc(3NSL). This routine returns
RPC_SUCCESS if it succeeds, or an appropriate status is returned. Use the
clnt_perrno() routine to translate failure status into error messages.

Warning: rpc_call() uses the first available transport belonging to the class
nettype, on which it can create a connection. You do not have control of timeouts or
authentication using this routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel. rpc_broadcast() and
rpc_broadcast_exp() require the PRIV_NET_BROADCAST privilege.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate

clnt_geterr(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

200 man pages section 3: Library Functions • Last Revised 1 May 2000

attribute-control structures and set the t6attr_t pointers in the CLIENT structure.
When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpc(3NSL), rpc_clnt_create(3NSL), libt6(3NSL), t6alloc_blk(3NSL),
t6free_blk(3NSL)

printf(3C), rpc_clnt_auth(3NSL), attributes(5)

clnt_geterr(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 201

rpc_clnt_create, clnt_control, clnt_create, clnt_create_timed, clnt_create_vers,
clnt_create_vers_timed, clnt_destroy, clnt_dg_create, clnt_pcreateerror,
clnt_raw_create, clnt_spcreateerror, clnt_tli_create, clnt_tp_create,
clnt_tp_create_timed, clnt_vc_create, rpc_createerr – Library routines for dealing with
creation and manipulation of CLIENT handles

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First a CLIENT handle is created and then the client calls
a procedure to send a request to the server. On receipt of the request, the server calls a
dispatch routine to perform the requested service, and then sends a reply.

These routines are MT-Safe. In the case of multithreaded applications, the
_REENTRANT flag must be defined on the command line at compilation time
(-D_REENTRANT). When the _REENTRANT flag is defined, rpc_createerr becomes
a macro which enables each thread to have its own rpc_createerr.

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

See rpc(3NSL) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

bool_t clnt_control(CLIENT *clnt, const uint_t req, char *info);
A function macro to change or retrieve various information about a client object. req
indicates the type of operation, and info is a pointer to the information. For both
connectionless and connection-oriented transports, the supported values of req and
their argument types and what they do are:

CLSET_TIMEOUT struct timeval * set total timeout
CLGET_TIMEOUT struct timeval * get total timeout

If the timeout is set using clnt_control(), the timeout argument passed by
clnt_call() is ignored in all subsequent calls. If the timeout value is set to 0,
clnt_control() immediately returns RPC_TIMEDOUT. Set the timeout parameter
to 0 for batching calls.

CLGET_SERVER_ADDR struct netbuf * get server’s address
CLGET_SVC_ADDR struct netbuf * get server’s address
CLGET_FD int * get associated file descriptor
CLSET_FD_CLOSE void close the file descriptor when

destroying the client handle
(see clnt_destroy())

CLSET_FD_NCLOSE void do not close the file
descriptor when destroying

the client handle

CLGET_VERS rpcvers_t get the RPC program’s version
number associated with the
client handle

CLSET_VERS rpcvers_t set the RPC program’s version
number associated with the

clnt_pcreateerror(3NSL)

NAME

DESCRIPTION

Routines

202 man pages section 3: Library Functions • Last Revised 1 May 2000

client handle. This assumes
that the RPC server for this
new version is still listening
at the address of the previous
version.

CLGET_XID uint32_t get the XID of the previous
remote procedure call

CLSET_XID uint32_t set the XID of the next
remote procedure call

CLGET_PROG rpcprog_t get program number
CLSET_PROG rpcprog_t set program number

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval * set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval * get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

clnt_control() returns TRUE on success and FALSE on failure.

CLIENT *clnt_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype);

Generic client creation routine for program prognum and version versnum. host
identifies the name of the remote host where the server is located. nettype indicates
the class of transport protocol to use. The transports are tried in left to right order in
NETPATH variable or in top to bottom order in the netconfig database.

clnt_create() tries all the transports of the nettype class available from the
NETPATH environment variable and the netconfig database, and chooses the first
successful one. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)).

CLIENT *clnt_create_timed(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype, const struct timeval *timeout);

Generic client creation routine which is similar to clnt_create() but which also
has the additional parameter timeout that specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_timed() call behaves exactly like the clnt_create() call.

CLIENT *clnt_create_vers(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype);

Generic client creation routine which is similar to clnt_create() but which also
checks for the version availability. host identifies the name of the remote host where
the server is located. nettype indicates the class transport protocols to be used. If the

clnt_pcreateerror(3NSL)

Introduction to Library Functions 203

routine is successful it returns a client handle created for the highest version
between vers_low and vers_high that is supported by the server. vers_outp is set to
this value. That is, after a successful return vers_low <= *vers_outp <= vers_high. If no
version between vers_low and vers_high is supported by the server then the routine
fails and returns NULL. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)). However, clnt_create_vers() does this for you
and returns a valid handle only if a version within the range supplied is supported
by the server.

CLIENT *clnt_create_vers_timed(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype const struct
timeval *timeout);

Generic client creation routine similar to clnt_create_vers() but with the
additional parameter timeout, which specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_vers_timed() call behaves exactly like the
clnt_create_vers() call.

void clnt_destroy(CLIENT *clnt);
A function macro that destroys the client’s RPC handle. Destruction usually
involves deallocation of private data structures, including clnt itself. Use of clnt is
undefined after calling clnt_destroy(). If the RPC library opened the associated
file descriptor, or CLSET_FD_CLOSE was set using clnt_control(), the file
descriptor will be closed.

The caller should call auth_destroy(clnt⇒cl_auth) (before calling
clnt_destroy()) to destroy the associated AUTH structure (see
rpc_clnt_auth(3NSL)).

CLIENT *clnt_dg_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connectionless transport. The remote program is located
at address svcaddr. The parameter fildes is an open and bound file descriptor. This
routine will resend the call message in intervals of 15 seconds until a response is
received or until the call times out. The total time for the call to time out is specified
by clnt_call() (see clnt_call() in rpc_clnt_calls(3NSL)). The retry time
out and the total time out periods can be changed using clnt_control(). The
user may set the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. This routine returns NULL if it fails.

clnt_pcreateerror(3NSL)

204 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_pcreateerror(const char *s);
Print a message to standard error indicating why a client RPC handle could not be
created. The message is prepended with the string s and a colon, and appended
with a newline.

CLIENT *clnt_raw_create(const rpcprog_t prognum, const rpcvers_t versnum);
This routine creates an RPC client handle for the remote program prognum and
version versnum. The transport used to pass messages to the service is a buffer
within the process’s address space, so the corresponding RPC server should live in
the same address space; (see svc_raw_create() in rpc_svc_create(3NSL)).
This allows simulation of RPC and measurement of RPC overheads, such as round
trip times, without any kernel or networking interference. This routine returns
NULL if it fails. clnt_raw_create() should be called after svc_raw_create().

char *clnt_spcreateerror(const char *s);
Like clnt_pcreateerror(), except that it returns a string instead of printing to
the standard error. A newline is not appended to the message in this case.

Warning: returns a pointer to a buffer that is overwritten on each call. In
multithread applications, this buffer is implemented as thread-specific data.

CLIENT *clnt_tli_create(const int fildes, const struct netconfig *netconf, const struct
netbuf *svcaddr, const rpcprog_t prognum, const rpcvers_t versnum, const uint_t sendsz,
const uint_t recvsz);

This routine creates an RPC client handle for the remote program prognum and
version versnum. The remote program is located at address svcaddr. If svcaddr is
NULL and it is connection-oriented, it is assumed that the file descriptor is
connected. For connectionless transports, if svcaddr is NULL, RPC_UNKNOWNADDR
error is set. fildes is a file descriptor which may be open, bound and connected. If it
is RPC_ANYFD, it opens a file descriptor on the transport specified by netconf. If
fildes is RPC_ANYFD and netconf is NULL, a RPC_UNKNOWNPROTO error is set. If fildes
is unbound, then it will attempt to bind the descriptor. The user may specify the
size of the buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults. Depending upon the type of the transport (connection-oriented or
connectionless), clnt_tli_create() calls appropriate client creation routines.
This routine returns NULL if it fails. The clnt_pcreateerror() routine can be
used to print the reason for failure. The remote rpcbind service (see
rpcbind(1M)) is not consulted for the address of the remote service.

CLIENT *clnt_tp_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf);

Like clnt_create() except clnt_tp_create() tries only one transport
specified through netconf.

clnt_tp_create() creates a client handle for the program prognum, the version
versnum, and for the transport specified by netconf. Default options are set, which
can be changed using clnt_control() calls. The remote rpcbind service on the

clnt_pcreateerror(3NSL)

Introduction to Library Functions 205

host host is consulted for the address of the remote service. This routine returns
NULL if it fails. The clnt_pcreateerror() routine can be used to print the
reason for failure.

CLIENT *clnt_tp_create_timed(const char *host, const rpcprog_t prognum, const
rpcvers_t versnum, const struct netconfig *netconf, const struct timeval *timeout);

Like clnt_tp_create() except clnt_tp_create_timed() has the extra
parameter timeout which specifies the maximum time allowed for the creation
attempt to succeed. In all other respects, the clnt_tp_create_timed() call
behaves exactly like the clnt_tp_create() call.

CLIENT *clnt_vc_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connection-oriented transport. The remote program is
located at address svcaddr. The parameter fildes is an open and bound file descriptor.
The user may specify the size of the send and receive buffers with the parameters
sendsz and recvsz; values of 0 choose suitable defaults. This routine returns NULL if
it fails.

The address svcaddr should not be NULL and should point to the actual address of
the remote program. clnt_vc_create() does not consult the remote rpcbind
service for this information.

struct rpc_createerr rpc_createerr;
A global variable whose value is set by any RPC client handle creation routine that
fails. It is used by the routine clnt_pcreateerror() to print the reason for the
failure.

In multithreaded applications, rpc_createerr becomes a macro which enables
each thread to have its own rpc_createerr.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate
attribute-control structures and set the t6attr_t pointers in the CLIENT structure.

clnt_pcreateerror(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

206 man pages section 3: Library Functions • Last Revised 1 May 2000

When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_calls(3NSL), rpc_svc_create(3NSL),
libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_clnt_auth(3NSL), svc_raw_create(3NSL), attributes(5)

clnt_pcreateerror(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 207

rpc_clnt_calls, clnt_call, clnt_freeres, clnt_geterr, clnt_perrno, clnt_perror, clnt_sperrno,
clnt_sperror, rpc_broadcast, rpc_broadcast_exp, rpc_call – Library routines for client
side calls

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First, the client calls a procedure to send a request to the
server. Upon receipt of the request, the server calls a dispatch routine to perform the
requested service, and then sends back a reply.

The clnt_call(), rpc_call(), and rpc_broadcast() routines handle the client
side of the procedure call. The remaining routines deal with error handling in the case
of errors.

Some of the routines take a CLIENT handle as one of the parameters. A CLIENT
handle can be created by an RPC creation routine such as clnt_create() (see
rpc_clnt_create(3NSL)).

These routines are safe for use in multithreaded applications. CLIENT handles can be
shared between threads, however in this implementation requests by different threads
are serialized (that is, the first request will receive its results before the second request
is sent).

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

enum clnt_stat clnt_call(CLIENT *clnt, const rpcproc_t procnum, const xdrproc_t inproc,
const caddr_t in, const xdrproc_t outproc, caddr_t out, const struct timeval tout);

A function macro that calls the remote procedure procnum associated with the client
handle, clnt, which is obtained with an RPC client creation routine such as
clnt_create() (see rpc_clnt_create(3NSL)). The parameter inproc is the
XDR function used to encode the procedure’s parameters, and outproc is the XDR
function used to decode the procedure’s results; in is the address of the procedure’s
argument(s), and out is the address of where to place the result(s). tout is the time
allowed for results to be returned, which is overridden by a time-out set explicitly
through clnt_control(), see rpc_clnt_create(3NSL) .

If the remote call succeeds, the status returned is RPC_SUCCESS, otherwise an
appropriate status is returned.

bool_t clnt_freeres(CLIENT *clnt, const xdrproc_t outproc, caddr_t out);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the results of an RPC call. The parameter out is the address of the results,
and outproc is the XDR routine describing the results. This routine returns 1 if the
results were successfully freed, and 0 otherwise.

void clnt_geterr(const CLIENT *clnt, struct rpc_err *errp);
A function macro that copies the error structure out of the client handle to the
structure at address errp.

clnt_perrno(3NSL)

NAME

DESCRIPTION

Routines

208 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_perrno(const enum clnt_stat stat);
Print a message to standard error corresponding to the condition indicated by stat.
A newline is appended. Normally used after a procedure call fails for a routine for
which a client handle is not needed, for instance rpc_call().

void clnt_perror(const CLIENT *clnt, const char *s);
Print a message to the standard error indicating why an RPC call failed; clnt is the
handle used to do the call. The message is prepended with string s and a colon. A
newline is appended. Normally used after a remote procedure call fails for a
routine which requires a client handle, for instance clnt_call().

char *clnt_sperrno(const enum clnt_stat stat);
Take the same arguments as clnt_perrno(), but instead of sending a message to
the standard error indicating why an RPC call failed, return a pointer to a string
which contains the message.

clnt_sperrno() is normally used instead of clnt_perrno() when the
program does not have a standard error (as a program running as a server quite
likely does not), or if the programmer does not want the message to be output with
printf() [see printf(3C)], or if a message format different than that supported
by clnt_perrno() is to be used. Note: unlike clnt_sperror() and
clnt_spcreaterror() [see rpc_clnt_create(3NSL)], clnt_sperrno()
does not return pointer to static data so the result will not get overwritten on each
call.

char *clnt_sperror(const CLIENT *clnt, const char *s);
Like clnt_perror(), except that (like clnt_sperrno()) it returns a string
instead of printing to standard error. However, clnt_sperror() does not append
a newline at the end of the message.

Warning: Returns pointer to a buffer that is overwritten on each call. In multithread
applications, this buffer is implemented as thread-specific data.

enum clnt_stat rpc_broadcast(const rpcprog_t prognum, const rpcvers_t versnum, const
rpcproc_t procnum, const xdrproc_t inproc, const caddr_t in, const xdrproc_t outproc,
caddr_t out, const resultproc_t eachresult, const char *nettype);

Like rpc_call(), except the call message is broadcast to all the connectionless
transports specified by nettype. If nettype is NULL, it defaults to "netpath. Each
time it receives a response, this routine calls eachresult(), whose form is:

bool_t eachresult(caddr_t out, const struct netbuf *addr,

const struct netconfig *netconf);where out is the same as out passed to
rpc_broadcast(), except that the remote procedure’s output is decoded there;
addr points to the address of the machine that sent the results, and netconf is the
netconfig structure of the transport on which the remote server responded. If
eachresult() returns 0, rpc_broadcast() waits for more replies; otherwise it
returns with appropriate status.

clnt_perrno(3NSL)

Introduction to Library Functions 209

Warning: broadcast file descriptors are limited in size to the maximum transfer size
of that transport. For Ethernet, this value is 1500 bytes. rpc_broadcast() uses
AUTH_SYS credentials by default [see rpc_clnt_auth(3NSL)].

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_broadcast_exp(const rpcprog_t prognum, const rpcvers_t versnum,
const rpcproc_t procnum, const xdrproc_t xargs, caddr_t argsp, const xdrproc_t xresults,
caddr_t resultsp, const resultproc_t eachresult, const int inittime, const int waittime, const
char *nettype);

Like rpc_broadcast(), except that the initial timeout, inittime and the maximum
timeout, waittime are specified in milliseconds.

inittime is the initial time that rpc_broadcast_exp() waits before resending the
request. After the first resend, the re-transmission interval increases exponentially
until it exceeds waittime.

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_call(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const rpcproc_t procnum, const xdrproc_t inproc, const char *in, const
xdrproc_t outproc, char *out, const char *nettype);

Call the remote procedure associated with prognum, versnum, and procnum on the
machine, host. The parameter inproc is used to encode the procedure’s parameters,
and outproc is used to decode the procedure’s results; in is the address of the
procedure’s argument(s), and out is the address of where to place the result(s).
nettype can be any of the values listed on rpc(3NSL). This routine returns
RPC_SUCCESS if it succeeds, or an appropriate status is returned. Use the
clnt_perrno() routine to translate failure status into error messages.

Warning: rpc_call() uses the first available transport belonging to the class
nettype, on which it can create a connection. You do not have control of timeouts or
authentication using this routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel. rpc_broadcast() and
rpc_broadcast_exp() require the PRIV_NET_BROADCAST privilege.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate

clnt_perrno(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

210 man pages section 3: Library Functions • Last Revised 1 May 2000

attribute-control structures and set the t6attr_t pointers in the CLIENT structure.
When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpc(3NSL), rpc_clnt_create(3NSL), libt6(3NSL), t6alloc_blk(3NSL),
t6free_blk(3NSL)

printf(3C), rpc_clnt_auth(3NSL), attributes(5)

clnt_perrno(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 211

rpc_clnt_calls, clnt_call, clnt_freeres, clnt_geterr, clnt_perrno, clnt_perror, clnt_sperrno,
clnt_sperror, rpc_broadcast, rpc_broadcast_exp, rpc_call – Library routines for client
side calls

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First, the client calls a procedure to send a request to the
server. Upon receipt of the request, the server calls a dispatch routine to perform the
requested service, and then sends back a reply.

The clnt_call(), rpc_call(), and rpc_broadcast() routines handle the client
side of the procedure call. The remaining routines deal with error handling in the case
of errors.

Some of the routines take a CLIENT handle as one of the parameters. A CLIENT
handle can be created by an RPC creation routine such as clnt_create() (see
rpc_clnt_create(3NSL)).

These routines are safe for use in multithreaded applications. CLIENT handles can be
shared between threads, however in this implementation requests by different threads
are serialized (that is, the first request will receive its results before the second request
is sent).

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

enum clnt_stat clnt_call(CLIENT *clnt, const rpcproc_t procnum, const xdrproc_t inproc,
const caddr_t in, const xdrproc_t outproc, caddr_t out, const struct timeval tout);

A function macro that calls the remote procedure procnum associated with the client
handle, clnt, which is obtained with an RPC client creation routine such as
clnt_create() (see rpc_clnt_create(3NSL)). The parameter inproc is the
XDR function used to encode the procedure’s parameters, and outproc is the XDR
function used to decode the procedure’s results; in is the address of the procedure’s
argument(s), and out is the address of where to place the result(s). tout is the time
allowed for results to be returned, which is overridden by a time-out set explicitly
through clnt_control(), see rpc_clnt_create(3NSL) .

If the remote call succeeds, the status returned is RPC_SUCCESS, otherwise an
appropriate status is returned.

bool_t clnt_freeres(CLIENT *clnt, const xdrproc_t outproc, caddr_t out);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the results of an RPC call. The parameter out is the address of the results,
and outproc is the XDR routine describing the results. This routine returns 1 if the
results were successfully freed, and 0 otherwise.

void clnt_geterr(const CLIENT *clnt, struct rpc_err *errp);
A function macro that copies the error structure out of the client handle to the
structure at address errp.

clnt_perror(3NSL)

NAME

DESCRIPTION

Routines

212 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_perrno(const enum clnt_stat stat);
Print a message to standard error corresponding to the condition indicated by stat.
A newline is appended. Normally used after a procedure call fails for a routine for
which a client handle is not needed, for instance rpc_call().

void clnt_perror(const CLIENT *clnt, const char *s);
Print a message to the standard error indicating why an RPC call failed; clnt is the
handle used to do the call. The message is prepended with string s and a colon. A
newline is appended. Normally used after a remote procedure call fails for a
routine which requires a client handle, for instance clnt_call().

char *clnt_sperrno(const enum clnt_stat stat);
Take the same arguments as clnt_perrno(), but instead of sending a message to
the standard error indicating why an RPC call failed, return a pointer to a string
which contains the message.

clnt_sperrno() is normally used instead of clnt_perrno() when the
program does not have a standard error (as a program running as a server quite
likely does not), or if the programmer does not want the message to be output with
printf() [see printf(3C)], or if a message format different than that supported
by clnt_perrno() is to be used. Note: unlike clnt_sperror() and
clnt_spcreaterror() [see rpc_clnt_create(3NSL)], clnt_sperrno()
does not return pointer to static data so the result will not get overwritten on each
call.

char *clnt_sperror(const CLIENT *clnt, const char *s);
Like clnt_perror(), except that (like clnt_sperrno()) it returns a string
instead of printing to standard error. However, clnt_sperror() does not append
a newline at the end of the message.

Warning: Returns pointer to a buffer that is overwritten on each call. In multithread
applications, this buffer is implemented as thread-specific data.

enum clnt_stat rpc_broadcast(const rpcprog_t prognum, const rpcvers_t versnum, const
rpcproc_t procnum, const xdrproc_t inproc, const caddr_t in, const xdrproc_t outproc,
caddr_t out, const resultproc_t eachresult, const char *nettype);

Like rpc_call(), except the call message is broadcast to all the connectionless
transports specified by nettype. If nettype is NULL, it defaults to "netpath. Each
time it receives a response, this routine calls eachresult(), whose form is:

bool_t eachresult(caddr_t out, const struct netbuf *addr,

const struct netconfig *netconf);where out is the same as out passed to
rpc_broadcast(), except that the remote procedure’s output is decoded there;
addr points to the address of the machine that sent the results, and netconf is the
netconfig structure of the transport on which the remote server responded. If
eachresult() returns 0, rpc_broadcast() waits for more replies; otherwise it
returns with appropriate status.

clnt_perror(3NSL)

Introduction to Library Functions 213

Warning: broadcast file descriptors are limited in size to the maximum transfer size
of that transport. For Ethernet, this value is 1500 bytes. rpc_broadcast() uses
AUTH_SYS credentials by default [see rpc_clnt_auth(3NSL)].

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_broadcast_exp(const rpcprog_t prognum, const rpcvers_t versnum,
const rpcproc_t procnum, const xdrproc_t xargs, caddr_t argsp, const xdrproc_t xresults,
caddr_t resultsp, const resultproc_t eachresult, const int inittime, const int waittime, const
char *nettype);

Like rpc_broadcast(), except that the initial timeout, inittime and the maximum
timeout, waittime are specified in milliseconds.

inittime is the initial time that rpc_broadcast_exp() waits before resending the
request. After the first resend, the re-transmission interval increases exponentially
until it exceeds waittime.

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_call(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const rpcproc_t procnum, const xdrproc_t inproc, const char *in, const
xdrproc_t outproc, char *out, const char *nettype);

Call the remote procedure associated with prognum, versnum, and procnum on the
machine, host. The parameter inproc is used to encode the procedure’s parameters,
and outproc is used to decode the procedure’s results; in is the address of the
procedure’s argument(s), and out is the address of where to place the result(s).
nettype can be any of the values listed on rpc(3NSL). This routine returns
RPC_SUCCESS if it succeeds, or an appropriate status is returned. Use the
clnt_perrno() routine to translate failure status into error messages.

Warning: rpc_call() uses the first available transport belonging to the class
nettype, on which it can create a connection. You do not have control of timeouts or
authentication using this routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel. rpc_broadcast() and
rpc_broadcast_exp() require the PRIV_NET_BROADCAST privilege.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate

clnt_perror(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

214 man pages section 3: Library Functions • Last Revised 1 May 2000

attribute-control structures and set the t6attr_t pointers in the CLIENT structure.
When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpc(3NSL), rpc_clnt_create(3NSL), libt6(3NSL), t6alloc_blk(3NSL),
t6free_blk(3NSL)

printf(3C), rpc_clnt_auth(3NSL), attributes(5)

clnt_perror(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 215

rpc_clnt_create, clnt_control, clnt_create, clnt_create_timed, clnt_create_vers,
clnt_create_vers_timed, clnt_destroy, clnt_dg_create, clnt_pcreateerror,
clnt_raw_create, clnt_spcreateerror, clnt_tli_create, clnt_tp_create,
clnt_tp_create_timed, clnt_vc_create, rpc_createerr – Library routines for dealing with
creation and manipulation of CLIENT handles

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First a CLIENT handle is created and then the client calls
a procedure to send a request to the server. On receipt of the request, the server calls a
dispatch routine to perform the requested service, and then sends a reply.

These routines are MT-Safe. In the case of multithreaded applications, the
_REENTRANT flag must be defined on the command line at compilation time
(-D_REENTRANT). When the _REENTRANT flag is defined, rpc_createerr becomes
a macro which enables each thread to have its own rpc_createerr.

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

See rpc(3NSL) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

bool_t clnt_control(CLIENT *clnt, const uint_t req, char *info);
A function macro to change or retrieve various information about a client object. req
indicates the type of operation, and info is a pointer to the information. For both
connectionless and connection-oriented transports, the supported values of req and
their argument types and what they do are:

CLSET_TIMEOUT struct timeval * set total timeout
CLGET_TIMEOUT struct timeval * get total timeout

If the timeout is set using clnt_control(), the timeout argument passed by
clnt_call() is ignored in all subsequent calls. If the timeout value is set to 0,
clnt_control() immediately returns RPC_TIMEDOUT. Set the timeout parameter
to 0 for batching calls.

CLGET_SERVER_ADDR struct netbuf * get server’s address
CLGET_SVC_ADDR struct netbuf * get server’s address
CLGET_FD int * get associated file descriptor
CLSET_FD_CLOSE void close the file descriptor when

destroying the client handle
(see clnt_destroy())

CLSET_FD_NCLOSE void do not close the file
descriptor when destroying

the client handle

CLGET_VERS rpcvers_t get the RPC program’s version
number associated with the
client handle

CLSET_VERS rpcvers_t set the RPC program’s version
number associated with the

clnt_raw_create(3NSL)

NAME

DESCRIPTION

Routines

216 man pages section 3: Library Functions • Last Revised 1 May 2000

client handle. This assumes
that the RPC server for this
new version is still listening
at the address of the previous
version.

CLGET_XID uint32_t get the XID of the previous
remote procedure call

CLSET_XID uint32_t set the XID of the next
remote procedure call

CLGET_PROG rpcprog_t get program number
CLSET_PROG rpcprog_t set program number

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval * set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval * get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

clnt_control() returns TRUE on success and FALSE on failure.

CLIENT *clnt_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype);

Generic client creation routine for program prognum and version versnum. host
identifies the name of the remote host where the server is located. nettype indicates
the class of transport protocol to use. The transports are tried in left to right order in
NETPATH variable or in top to bottom order in the netconfig database.

clnt_create() tries all the transports of the nettype class available from the
NETPATH environment variable and the netconfig database, and chooses the first
successful one. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)).

CLIENT *clnt_create_timed(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype, const struct timeval *timeout);

Generic client creation routine which is similar to clnt_create() but which also
has the additional parameter timeout that specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_timed() call behaves exactly like the clnt_create() call.

CLIENT *clnt_create_vers(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype);

Generic client creation routine which is similar to clnt_create() but which also
checks for the version availability. host identifies the name of the remote host where
the server is located. nettype indicates the class transport protocols to be used. If the

clnt_raw_create(3NSL)

Introduction to Library Functions 217

routine is successful it returns a client handle created for the highest version
between vers_low and vers_high that is supported by the server. vers_outp is set to
this value. That is, after a successful return vers_low <= *vers_outp <= vers_high. If no
version between vers_low and vers_high is supported by the server then the routine
fails and returns NULL. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)). However, clnt_create_vers() does this for you
and returns a valid handle only if a version within the range supplied is supported
by the server.

CLIENT *clnt_create_vers_timed(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype const struct
timeval *timeout);

Generic client creation routine similar to clnt_create_vers() but with the
additional parameter timeout, which specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_vers_timed() call behaves exactly like the
clnt_create_vers() call.

void clnt_destroy(CLIENT *clnt);
A function macro that destroys the client’s RPC handle. Destruction usually
involves deallocation of private data structures, including clnt itself. Use of clnt is
undefined after calling clnt_destroy(). If the RPC library opened the associated
file descriptor, or CLSET_FD_CLOSE was set using clnt_control(), the file
descriptor will be closed.

The caller should call auth_destroy(clnt⇒cl_auth) (before calling
clnt_destroy()) to destroy the associated AUTH structure (see
rpc_clnt_auth(3NSL)).

CLIENT *clnt_dg_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connectionless transport. The remote program is located
at address svcaddr. The parameter fildes is an open and bound file descriptor. This
routine will resend the call message in intervals of 15 seconds until a response is
received or until the call times out. The total time for the call to time out is specified
by clnt_call() (see clnt_call() in rpc_clnt_calls(3NSL)). The retry time
out and the total time out periods can be changed using clnt_control(). The
user may set the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. This routine returns NULL if it fails.

clnt_raw_create(3NSL)

218 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_pcreateerror(const char *s);
Print a message to standard error indicating why a client RPC handle could not be
created. The message is prepended with the string s and a colon, and appended
with a newline.

CLIENT *clnt_raw_create(const rpcprog_t prognum, const rpcvers_t versnum);
This routine creates an RPC client handle for the remote program prognum and
version versnum. The transport used to pass messages to the service is a buffer
within the process’s address space, so the corresponding RPC server should live in
the same address space; (see svc_raw_create() in rpc_svc_create(3NSL)).
This allows simulation of RPC and measurement of RPC overheads, such as round
trip times, without any kernel or networking interference. This routine returns
NULL if it fails. clnt_raw_create() should be called after svc_raw_create().

char *clnt_spcreateerror(const char *s);
Like clnt_pcreateerror(), except that it returns a string instead of printing to
the standard error. A newline is not appended to the message in this case.

Warning: returns a pointer to a buffer that is overwritten on each call. In
multithread applications, this buffer is implemented as thread-specific data.

CLIENT *clnt_tli_create(const int fildes, const struct netconfig *netconf, const struct
netbuf *svcaddr, const rpcprog_t prognum, const rpcvers_t versnum, const uint_t sendsz,
const uint_t recvsz);

This routine creates an RPC client handle for the remote program prognum and
version versnum. The remote program is located at address svcaddr. If svcaddr is
NULL and it is connection-oriented, it is assumed that the file descriptor is
connected. For connectionless transports, if svcaddr is NULL, RPC_UNKNOWNADDR
error is set. fildes is a file descriptor which may be open, bound and connected. If it
is RPC_ANYFD, it opens a file descriptor on the transport specified by netconf. If
fildes is RPC_ANYFD and netconf is NULL, a RPC_UNKNOWNPROTO error is set. If fildes
is unbound, then it will attempt to bind the descriptor. The user may specify the
size of the buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults. Depending upon the type of the transport (connection-oriented or
connectionless), clnt_tli_create() calls appropriate client creation routines.
This routine returns NULL if it fails. The clnt_pcreateerror() routine can be
used to print the reason for failure. The remote rpcbind service (see
rpcbind(1M)) is not consulted for the address of the remote service.

CLIENT *clnt_tp_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf);

Like clnt_create() except clnt_tp_create() tries only one transport
specified through netconf.

clnt_tp_create() creates a client handle for the program prognum, the version
versnum, and for the transport specified by netconf. Default options are set, which
can be changed using clnt_control() calls. The remote rpcbind service on the

clnt_raw_create(3NSL)

Introduction to Library Functions 219

host host is consulted for the address of the remote service. This routine returns
NULL if it fails. The clnt_pcreateerror() routine can be used to print the
reason for failure.

CLIENT *clnt_tp_create_timed(const char *host, const rpcprog_t prognum, const
rpcvers_t versnum, const struct netconfig *netconf, const struct timeval *timeout);

Like clnt_tp_create() except clnt_tp_create_timed() has the extra
parameter timeout which specifies the maximum time allowed for the creation
attempt to succeed. In all other respects, the clnt_tp_create_timed() call
behaves exactly like the clnt_tp_create() call.

CLIENT *clnt_vc_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connection-oriented transport. The remote program is
located at address svcaddr. The parameter fildes is an open and bound file descriptor.
The user may specify the size of the send and receive buffers with the parameters
sendsz and recvsz; values of 0 choose suitable defaults. This routine returns NULL if
it fails.

The address svcaddr should not be NULL and should point to the actual address of
the remote program. clnt_vc_create() does not consult the remote rpcbind
service for this information.

struct rpc_createerr rpc_createerr;
A global variable whose value is set by any RPC client handle creation routine that
fails. It is used by the routine clnt_pcreateerror() to print the reason for the
failure.

In multithreaded applications, rpc_createerr becomes a macro which enables
each thread to have its own rpc_createerr.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate
attribute-control structures and set the t6attr_t pointers in the CLIENT structure.

clnt_raw_create(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

220 man pages section 3: Library Functions • Last Revised 1 May 2000

When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_calls(3NSL), rpc_svc_create(3NSL),
libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_clnt_auth(3NSL), svc_raw_create(3NSL), attributes(5)

clnt_raw_create(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 221

rpc_clnt_create, clnt_control, clnt_create, clnt_create_timed, clnt_create_vers,
clnt_create_vers_timed, clnt_destroy, clnt_dg_create, clnt_pcreateerror,
clnt_raw_create, clnt_spcreateerror, clnt_tli_create, clnt_tp_create,
clnt_tp_create_timed, clnt_vc_create, rpc_createerr – Library routines for dealing with
creation and manipulation of CLIENT handles

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First a CLIENT handle is created and then the client calls
a procedure to send a request to the server. On receipt of the request, the server calls a
dispatch routine to perform the requested service, and then sends a reply.

These routines are MT-Safe. In the case of multithreaded applications, the
_REENTRANT flag must be defined on the command line at compilation time
(-D_REENTRANT). When the _REENTRANT flag is defined, rpc_createerr becomes
a macro which enables each thread to have its own rpc_createerr.

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

See rpc(3NSL) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

bool_t clnt_control(CLIENT *clnt, const uint_t req, char *info);
A function macro to change or retrieve various information about a client object. req
indicates the type of operation, and info is a pointer to the information. For both
connectionless and connection-oriented transports, the supported values of req and
their argument types and what they do are:

CLSET_TIMEOUT struct timeval * set total timeout
CLGET_TIMEOUT struct timeval * get total timeout

If the timeout is set using clnt_control(), the timeout argument passed by
clnt_call() is ignored in all subsequent calls. If the timeout value is set to 0,
clnt_control() immediately returns RPC_TIMEDOUT. Set the timeout parameter
to 0 for batching calls.

CLGET_SERVER_ADDR struct netbuf * get server’s address
CLGET_SVC_ADDR struct netbuf * get server’s address
CLGET_FD int * get associated file descriptor
CLSET_FD_CLOSE void close the file descriptor when

destroying the client handle
(see clnt_destroy())

CLSET_FD_NCLOSE void do not close the file
descriptor when destroying

the client handle

CLGET_VERS rpcvers_t get the RPC program’s version
number associated with the
client handle

CLSET_VERS rpcvers_t set the RPC program’s version
number associated with the

clnt_spcreateerror(3NSL)

NAME

DESCRIPTION

Routines

222 man pages section 3: Library Functions • Last Revised 1 May 2000

client handle. This assumes
that the RPC server for this
new version is still listening
at the address of the previous
version.

CLGET_XID uint32_t get the XID of the previous
remote procedure call

CLSET_XID uint32_t set the XID of the next
remote procedure call

CLGET_PROG rpcprog_t get program number
CLSET_PROG rpcprog_t set program number

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval * set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval * get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

clnt_control() returns TRUE on success and FALSE on failure.

CLIENT *clnt_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype);

Generic client creation routine for program prognum and version versnum. host
identifies the name of the remote host where the server is located. nettype indicates
the class of transport protocol to use. The transports are tried in left to right order in
NETPATH variable or in top to bottom order in the netconfig database.

clnt_create() tries all the transports of the nettype class available from the
NETPATH environment variable and the netconfig database, and chooses the first
successful one. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)).

CLIENT *clnt_create_timed(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype, const struct timeval *timeout);

Generic client creation routine which is similar to clnt_create() but which also
has the additional parameter timeout that specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_timed() call behaves exactly like the clnt_create() call.

CLIENT *clnt_create_vers(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype);

Generic client creation routine which is similar to clnt_create() but which also
checks for the version availability. host identifies the name of the remote host where
the server is located. nettype indicates the class transport protocols to be used. If the

clnt_spcreateerror(3NSL)

Introduction to Library Functions 223

routine is successful it returns a client handle created for the highest version
between vers_low and vers_high that is supported by the server. vers_outp is set to
this value. That is, after a successful return vers_low <= *vers_outp <= vers_high. If no
version between vers_low and vers_high is supported by the server then the routine
fails and returns NULL. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)). However, clnt_create_vers() does this for you
and returns a valid handle only if a version within the range supplied is supported
by the server.

CLIENT *clnt_create_vers_timed(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype const struct
timeval *timeout);

Generic client creation routine similar to clnt_create_vers() but with the
additional parameter timeout, which specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_vers_timed() call behaves exactly like the
clnt_create_vers() call.

void clnt_destroy(CLIENT *clnt);
A function macro that destroys the client’s RPC handle. Destruction usually
involves deallocation of private data structures, including clnt itself. Use of clnt is
undefined after calling clnt_destroy(). If the RPC library opened the associated
file descriptor, or CLSET_FD_CLOSE was set using clnt_control(), the file
descriptor will be closed.

The caller should call auth_destroy(clnt⇒cl_auth) (before calling
clnt_destroy()) to destroy the associated AUTH structure (see
rpc_clnt_auth(3NSL)).

CLIENT *clnt_dg_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connectionless transport. The remote program is located
at address svcaddr. The parameter fildes is an open and bound file descriptor. This
routine will resend the call message in intervals of 15 seconds until a response is
received or until the call times out. The total time for the call to time out is specified
by clnt_call() (see clnt_call() in rpc_clnt_calls(3NSL)). The retry time
out and the total time out periods can be changed using clnt_control(). The
user may set the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. This routine returns NULL if it fails.

clnt_spcreateerror(3NSL)

224 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_pcreateerror(const char *s);
Print a message to standard error indicating why a client RPC handle could not be
created. The message is prepended with the string s and a colon, and appended
with a newline.

CLIENT *clnt_raw_create(const rpcprog_t prognum, const rpcvers_t versnum);
This routine creates an RPC client handle for the remote program prognum and
version versnum. The transport used to pass messages to the service is a buffer
within the process’s address space, so the corresponding RPC server should live in
the same address space; (see svc_raw_create() in rpc_svc_create(3NSL)).
This allows simulation of RPC and measurement of RPC overheads, such as round
trip times, without any kernel or networking interference. This routine returns
NULL if it fails. clnt_raw_create() should be called after svc_raw_create().

char *clnt_spcreateerror(const char *s);
Like clnt_pcreateerror(), except that it returns a string instead of printing to
the standard error. A newline is not appended to the message in this case.

Warning: returns a pointer to a buffer that is overwritten on each call. In
multithread applications, this buffer is implemented as thread-specific data.

CLIENT *clnt_tli_create(const int fildes, const struct netconfig *netconf, const struct
netbuf *svcaddr, const rpcprog_t prognum, const rpcvers_t versnum, const uint_t sendsz,
const uint_t recvsz);

This routine creates an RPC client handle for the remote program prognum and
version versnum. The remote program is located at address svcaddr. If svcaddr is
NULL and it is connection-oriented, it is assumed that the file descriptor is
connected. For connectionless transports, if svcaddr is NULL, RPC_UNKNOWNADDR
error is set. fildes is a file descriptor which may be open, bound and connected. If it
is RPC_ANYFD, it opens a file descriptor on the transport specified by netconf. If
fildes is RPC_ANYFD and netconf is NULL, a RPC_UNKNOWNPROTO error is set. If fildes
is unbound, then it will attempt to bind the descriptor. The user may specify the
size of the buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults. Depending upon the type of the transport (connection-oriented or
connectionless), clnt_tli_create() calls appropriate client creation routines.
This routine returns NULL if it fails. The clnt_pcreateerror() routine can be
used to print the reason for failure. The remote rpcbind service (see
rpcbind(1M)) is not consulted for the address of the remote service.

CLIENT *clnt_tp_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf);

Like clnt_create() except clnt_tp_create() tries only one transport
specified through netconf.

clnt_tp_create() creates a client handle for the program prognum, the version
versnum, and for the transport specified by netconf. Default options are set, which
can be changed using clnt_control() calls. The remote rpcbind service on the

clnt_spcreateerror(3NSL)

Introduction to Library Functions 225

host host is consulted for the address of the remote service. This routine returns
NULL if it fails. The clnt_pcreateerror() routine can be used to print the
reason for failure.

CLIENT *clnt_tp_create_timed(const char *host, const rpcprog_t prognum, const
rpcvers_t versnum, const struct netconfig *netconf, const struct timeval *timeout);

Like clnt_tp_create() except clnt_tp_create_timed() has the extra
parameter timeout which specifies the maximum time allowed for the creation
attempt to succeed. In all other respects, the clnt_tp_create_timed() call
behaves exactly like the clnt_tp_create() call.

CLIENT *clnt_vc_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connection-oriented transport. The remote program is
located at address svcaddr. The parameter fildes is an open and bound file descriptor.
The user may specify the size of the send and receive buffers with the parameters
sendsz and recvsz; values of 0 choose suitable defaults. This routine returns NULL if
it fails.

The address svcaddr should not be NULL and should point to the actual address of
the remote program. clnt_vc_create() does not consult the remote rpcbind
service for this information.

struct rpc_createerr rpc_createerr;
A global variable whose value is set by any RPC client handle creation routine that
fails. It is used by the routine clnt_pcreateerror() to print the reason for the
failure.

In multithreaded applications, rpc_createerr becomes a macro which enables
each thread to have its own rpc_createerr.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate
attribute-control structures and set the t6attr_t pointers in the CLIENT structure.

clnt_spcreateerror(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

226 man pages section 3: Library Functions • Last Revised 1 May 2000

When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_calls(3NSL), rpc_svc_create(3NSL),
libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_clnt_auth(3NSL), svc_raw_create(3NSL), attributes(5)

clnt_spcreateerror(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 227

rpc_clnt_calls, clnt_call, clnt_freeres, clnt_geterr, clnt_perrno, clnt_perror, clnt_sperrno,
clnt_sperror, rpc_broadcast, rpc_broadcast_exp, rpc_call – Library routines for client
side calls

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First, the client calls a procedure to send a request to the
server. Upon receipt of the request, the server calls a dispatch routine to perform the
requested service, and then sends back a reply.

The clnt_call(), rpc_call(), and rpc_broadcast() routines handle the client
side of the procedure call. The remaining routines deal with error handling in the case
of errors.

Some of the routines take a CLIENT handle as one of the parameters. A CLIENT
handle can be created by an RPC creation routine such as clnt_create() (see
rpc_clnt_create(3NSL)).

These routines are safe for use in multithreaded applications. CLIENT handles can be
shared between threads, however in this implementation requests by different threads
are serialized (that is, the first request will receive its results before the second request
is sent).

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

enum clnt_stat clnt_call(CLIENT *clnt, const rpcproc_t procnum, const xdrproc_t inproc,
const caddr_t in, const xdrproc_t outproc, caddr_t out, const struct timeval tout);

A function macro that calls the remote procedure procnum associated with the client
handle, clnt, which is obtained with an RPC client creation routine such as
clnt_create() (see rpc_clnt_create(3NSL)). The parameter inproc is the
XDR function used to encode the procedure’s parameters, and outproc is the XDR
function used to decode the procedure’s results; in is the address of the procedure’s
argument(s), and out is the address of where to place the result(s). tout is the time
allowed for results to be returned, which is overridden by a time-out set explicitly
through clnt_control(), see rpc_clnt_create(3NSL) .

If the remote call succeeds, the status returned is RPC_SUCCESS, otherwise an
appropriate status is returned.

bool_t clnt_freeres(CLIENT *clnt, const xdrproc_t outproc, caddr_t out);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the results of an RPC call. The parameter out is the address of the results,
and outproc is the XDR routine describing the results. This routine returns 1 if the
results were successfully freed, and 0 otherwise.

void clnt_geterr(const CLIENT *clnt, struct rpc_err *errp);
A function macro that copies the error structure out of the client handle to the
structure at address errp.

clnt_sperrno(3NSL)

NAME

DESCRIPTION

Routines

228 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_perrno(const enum clnt_stat stat);
Print a message to standard error corresponding to the condition indicated by stat.
A newline is appended. Normally used after a procedure call fails for a routine for
which a client handle is not needed, for instance rpc_call().

void clnt_perror(const CLIENT *clnt, const char *s);
Print a message to the standard error indicating why an RPC call failed; clnt is the
handle used to do the call. The message is prepended with string s and a colon. A
newline is appended. Normally used after a remote procedure call fails for a
routine which requires a client handle, for instance clnt_call().

char *clnt_sperrno(const enum clnt_stat stat);
Take the same arguments as clnt_perrno(), but instead of sending a message to
the standard error indicating why an RPC call failed, return a pointer to a string
which contains the message.

clnt_sperrno() is normally used instead of clnt_perrno() when the
program does not have a standard error (as a program running as a server quite
likely does not), or if the programmer does not want the message to be output with
printf() [see printf(3C)], or if a message format different than that supported
by clnt_perrno() is to be used. Note: unlike clnt_sperror() and
clnt_spcreaterror() [see rpc_clnt_create(3NSL)], clnt_sperrno()
does not return pointer to static data so the result will not get overwritten on each
call.

char *clnt_sperror(const CLIENT *clnt, const char *s);
Like clnt_perror(), except that (like clnt_sperrno()) it returns a string
instead of printing to standard error. However, clnt_sperror() does not append
a newline at the end of the message.

Warning: Returns pointer to a buffer that is overwritten on each call. In multithread
applications, this buffer is implemented as thread-specific data.

enum clnt_stat rpc_broadcast(const rpcprog_t prognum, const rpcvers_t versnum, const
rpcproc_t procnum, const xdrproc_t inproc, const caddr_t in, const xdrproc_t outproc,
caddr_t out, const resultproc_t eachresult, const char *nettype);

Like rpc_call(), except the call message is broadcast to all the connectionless
transports specified by nettype. If nettype is NULL, it defaults to "netpath. Each
time it receives a response, this routine calls eachresult(), whose form is:

bool_t eachresult(caddr_t out, const struct netbuf *addr,

const struct netconfig *netconf);where out is the same as out passed to
rpc_broadcast(), except that the remote procedure’s output is decoded there;
addr points to the address of the machine that sent the results, and netconf is the
netconfig structure of the transport on which the remote server responded. If
eachresult() returns 0, rpc_broadcast() waits for more replies; otherwise it
returns with appropriate status.

clnt_sperrno(3NSL)

Introduction to Library Functions 229

Warning: broadcast file descriptors are limited in size to the maximum transfer size
of that transport. For Ethernet, this value is 1500 bytes. rpc_broadcast() uses
AUTH_SYS credentials by default [see rpc_clnt_auth(3NSL)].

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_broadcast_exp(const rpcprog_t prognum, const rpcvers_t versnum,
const rpcproc_t procnum, const xdrproc_t xargs, caddr_t argsp, const xdrproc_t xresults,
caddr_t resultsp, const resultproc_t eachresult, const int inittime, const int waittime, const
char *nettype);

Like rpc_broadcast(), except that the initial timeout, inittime and the maximum
timeout, waittime are specified in milliseconds.

inittime is the initial time that rpc_broadcast_exp() waits before resending the
request. After the first resend, the re-transmission interval increases exponentially
until it exceeds waittime.

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_call(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const rpcproc_t procnum, const xdrproc_t inproc, const char *in, const
xdrproc_t outproc, char *out, const char *nettype);

Call the remote procedure associated with prognum, versnum, and procnum on the
machine, host. The parameter inproc is used to encode the procedure’s parameters,
and outproc is used to decode the procedure’s results; in is the address of the
procedure’s argument(s), and out is the address of where to place the result(s).
nettype can be any of the values listed on rpc(3NSL). This routine returns
RPC_SUCCESS if it succeeds, or an appropriate status is returned. Use the
clnt_perrno() routine to translate failure status into error messages.

Warning: rpc_call() uses the first available transport belonging to the class
nettype, on which it can create a connection. You do not have control of timeouts or
authentication using this routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel. rpc_broadcast() and
rpc_broadcast_exp() require the PRIV_NET_BROADCAST privilege.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate

clnt_sperrno(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

230 man pages section 3: Library Functions • Last Revised 1 May 2000

attribute-control structures and set the t6attr_t pointers in the CLIENT structure.
When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpc(3NSL), rpc_clnt_create(3NSL), libt6(3NSL), t6alloc_blk(3NSL),
t6free_blk(3NSL)

printf(3C), rpc_clnt_auth(3NSL), attributes(5)

clnt_sperrno(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 231

rpc_clnt_calls, clnt_call, clnt_freeres, clnt_geterr, clnt_perrno, clnt_perror, clnt_sperrno,
clnt_sperror, rpc_broadcast, rpc_broadcast_exp, rpc_call – Library routines for client
side calls

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First, the client calls a procedure to send a request to the
server. Upon receipt of the request, the server calls a dispatch routine to perform the
requested service, and then sends back a reply.

The clnt_call(), rpc_call(), and rpc_broadcast() routines handle the client
side of the procedure call. The remaining routines deal with error handling in the case
of errors.

Some of the routines take a CLIENT handle as one of the parameters. A CLIENT
handle can be created by an RPC creation routine such as clnt_create() (see
rpc_clnt_create(3NSL)).

These routines are safe for use in multithreaded applications. CLIENT handles can be
shared between threads, however in this implementation requests by different threads
are serialized (that is, the first request will receive its results before the second request
is sent).

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

enum clnt_stat clnt_call(CLIENT *clnt, const rpcproc_t procnum, const xdrproc_t inproc,
const caddr_t in, const xdrproc_t outproc, caddr_t out, const struct timeval tout);

A function macro that calls the remote procedure procnum associated with the client
handle, clnt, which is obtained with an RPC client creation routine such as
clnt_create() (see rpc_clnt_create(3NSL)). The parameter inproc is the
XDR function used to encode the procedure’s parameters, and outproc is the XDR
function used to decode the procedure’s results; in is the address of the procedure’s
argument(s), and out is the address of where to place the result(s). tout is the time
allowed for results to be returned, which is overridden by a time-out set explicitly
through clnt_control(), see rpc_clnt_create(3NSL) .

If the remote call succeeds, the status returned is RPC_SUCCESS, otherwise an
appropriate status is returned.

bool_t clnt_freeres(CLIENT *clnt, const xdrproc_t outproc, caddr_t out);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the results of an RPC call. The parameter out is the address of the results,
and outproc is the XDR routine describing the results. This routine returns 1 if the
results were successfully freed, and 0 otherwise.

void clnt_geterr(const CLIENT *clnt, struct rpc_err *errp);
A function macro that copies the error structure out of the client handle to the
structure at address errp.

clnt_sperror(3NSL)

NAME

DESCRIPTION

Routines

232 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_perrno(const enum clnt_stat stat);
Print a message to standard error corresponding to the condition indicated by stat.
A newline is appended. Normally used after a procedure call fails for a routine for
which a client handle is not needed, for instance rpc_call().

void clnt_perror(const CLIENT *clnt, const char *s);
Print a message to the standard error indicating why an RPC call failed; clnt is the
handle used to do the call. The message is prepended with string s and a colon. A
newline is appended. Normally used after a remote procedure call fails for a
routine which requires a client handle, for instance clnt_call().

char *clnt_sperrno(const enum clnt_stat stat);
Take the same arguments as clnt_perrno(), but instead of sending a message to
the standard error indicating why an RPC call failed, return a pointer to a string
which contains the message.

clnt_sperrno() is normally used instead of clnt_perrno() when the
program does not have a standard error (as a program running as a server quite
likely does not), or if the programmer does not want the message to be output with
printf() [see printf(3C)], or if a message format different than that supported
by clnt_perrno() is to be used. Note: unlike clnt_sperror() and
clnt_spcreaterror() [see rpc_clnt_create(3NSL)], clnt_sperrno()
does not return pointer to static data so the result will not get overwritten on each
call.

char *clnt_sperror(const CLIENT *clnt, const char *s);
Like clnt_perror(), except that (like clnt_sperrno()) it returns a string
instead of printing to standard error. However, clnt_sperror() does not append
a newline at the end of the message.

Warning: Returns pointer to a buffer that is overwritten on each call. In multithread
applications, this buffer is implemented as thread-specific data.

enum clnt_stat rpc_broadcast(const rpcprog_t prognum, const rpcvers_t versnum, const
rpcproc_t procnum, const xdrproc_t inproc, const caddr_t in, const xdrproc_t outproc,
caddr_t out, const resultproc_t eachresult, const char *nettype);

Like rpc_call(), except the call message is broadcast to all the connectionless
transports specified by nettype. If nettype is NULL, it defaults to "netpath. Each
time it receives a response, this routine calls eachresult(), whose form is:

bool_t eachresult(caddr_t out, const struct netbuf *addr,

const struct netconfig *netconf);where out is the same as out passed to
rpc_broadcast(), except that the remote procedure’s output is decoded there;
addr points to the address of the machine that sent the results, and netconf is the
netconfig structure of the transport on which the remote server responded. If
eachresult() returns 0, rpc_broadcast() waits for more replies; otherwise it
returns with appropriate status.

clnt_sperror(3NSL)

Introduction to Library Functions 233

Warning: broadcast file descriptors are limited in size to the maximum transfer size
of that transport. For Ethernet, this value is 1500 bytes. rpc_broadcast() uses
AUTH_SYS credentials by default [see rpc_clnt_auth(3NSL)].

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_broadcast_exp(const rpcprog_t prognum, const rpcvers_t versnum,
const rpcproc_t procnum, const xdrproc_t xargs, caddr_t argsp, const xdrproc_t xresults,
caddr_t resultsp, const resultproc_t eachresult, const int inittime, const int waittime, const
char *nettype);

Like rpc_broadcast(), except that the initial timeout, inittime and the maximum
timeout, waittime are specified in milliseconds.

inittime is the initial time that rpc_broadcast_exp() waits before resending the
request. After the first resend, the re-transmission interval increases exponentially
until it exceeds waittime.

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_call(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const rpcproc_t procnum, const xdrproc_t inproc, const char *in, const
xdrproc_t outproc, char *out, const char *nettype);

Call the remote procedure associated with prognum, versnum, and procnum on the
machine, host. The parameter inproc is used to encode the procedure’s parameters,
and outproc is used to decode the procedure’s results; in is the address of the
procedure’s argument(s), and out is the address of where to place the result(s).
nettype can be any of the values listed on rpc(3NSL). This routine returns
RPC_SUCCESS if it succeeds, or an appropriate status is returned. Use the
clnt_perrno() routine to translate failure status into error messages.

Warning: rpc_call() uses the first available transport belonging to the class
nettype, on which it can create a connection. You do not have control of timeouts or
authentication using this routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel. rpc_broadcast() and
rpc_broadcast_exp() require the PRIV_NET_BROADCAST privilege.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate

clnt_sperror(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

234 man pages section 3: Library Functions • Last Revised 1 May 2000

attribute-control structures and set the t6attr_t pointers in the CLIENT structure.
When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpc(3NSL), rpc_clnt_create(3NSL), libt6(3NSL), t6alloc_blk(3NSL),
t6free_blk(3NSL)

printf(3C), rpc_clnt_auth(3NSL), attributes(5)

clnt_sperror(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 235

rpc_clnt_create, clnt_control, clnt_create, clnt_create_timed, clnt_create_vers,
clnt_create_vers_timed, clnt_destroy, clnt_dg_create, clnt_pcreateerror,
clnt_raw_create, clnt_spcreateerror, clnt_tli_create, clnt_tp_create,
clnt_tp_create_timed, clnt_vc_create, rpc_createerr – Library routines for dealing with
creation and manipulation of CLIENT handles

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First a CLIENT handle is created and then the client calls
a procedure to send a request to the server. On receipt of the request, the server calls a
dispatch routine to perform the requested service, and then sends a reply.

These routines are MT-Safe. In the case of multithreaded applications, the
_REENTRANT flag must be defined on the command line at compilation time
(-D_REENTRANT). When the _REENTRANT flag is defined, rpc_createerr becomes
a macro which enables each thread to have its own rpc_createerr.

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

See rpc(3NSL) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

bool_t clnt_control(CLIENT *clnt, const uint_t req, char *info);
A function macro to change or retrieve various information about a client object. req
indicates the type of operation, and info is a pointer to the information. For both
connectionless and connection-oriented transports, the supported values of req and
their argument types and what they do are:

CLSET_TIMEOUT struct timeval * set total timeout
CLGET_TIMEOUT struct timeval * get total timeout

If the timeout is set using clnt_control(), the timeout argument passed by
clnt_call() is ignored in all subsequent calls. If the timeout value is set to 0,
clnt_control() immediately returns RPC_TIMEDOUT. Set the timeout parameter
to 0 for batching calls.

CLGET_SERVER_ADDR struct netbuf * get server’s address
CLGET_SVC_ADDR struct netbuf * get server’s address
CLGET_FD int * get associated file descriptor
CLSET_FD_CLOSE void close the file descriptor when

destroying the client handle
(see clnt_destroy())

CLSET_FD_NCLOSE void do not close the file
descriptor when destroying

the client handle

CLGET_VERS rpcvers_t get the RPC program’s version
number associated with the
client handle

CLSET_VERS rpcvers_t set the RPC program’s version
number associated with the

clnt_tli_create(3NSL)

NAME

DESCRIPTION

Routines

236 man pages section 3: Library Functions • Last Revised 1 May 2000

client handle. This assumes
that the RPC server for this
new version is still listening
at the address of the previous
version.

CLGET_XID uint32_t get the XID of the previous
remote procedure call

CLSET_XID uint32_t set the XID of the next
remote procedure call

CLGET_PROG rpcprog_t get program number
CLSET_PROG rpcprog_t set program number

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval * set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval * get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

clnt_control() returns TRUE on success and FALSE on failure.

CLIENT *clnt_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype);

Generic client creation routine for program prognum and version versnum. host
identifies the name of the remote host where the server is located. nettype indicates
the class of transport protocol to use. The transports are tried in left to right order in
NETPATH variable or in top to bottom order in the netconfig database.

clnt_create() tries all the transports of the nettype class available from the
NETPATH environment variable and the netconfig database, and chooses the first
successful one. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)).

CLIENT *clnt_create_timed(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype, const struct timeval *timeout);

Generic client creation routine which is similar to clnt_create() but which also
has the additional parameter timeout that specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_timed() call behaves exactly like the clnt_create() call.

CLIENT *clnt_create_vers(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype);

Generic client creation routine which is similar to clnt_create() but which also
checks for the version availability. host identifies the name of the remote host where
the server is located. nettype indicates the class transport protocols to be used. If the

clnt_tli_create(3NSL)

Introduction to Library Functions 237

routine is successful it returns a client handle created for the highest version
between vers_low and vers_high that is supported by the server. vers_outp is set to
this value. That is, after a successful return vers_low <= *vers_outp <= vers_high. If no
version between vers_low and vers_high is supported by the server then the routine
fails and returns NULL. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)). However, clnt_create_vers() does this for you
and returns a valid handle only if a version within the range supplied is supported
by the server.

CLIENT *clnt_create_vers_timed(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype const struct
timeval *timeout);

Generic client creation routine similar to clnt_create_vers() but with the
additional parameter timeout, which specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_vers_timed() call behaves exactly like the
clnt_create_vers() call.

void clnt_destroy(CLIENT *clnt);
A function macro that destroys the client’s RPC handle. Destruction usually
involves deallocation of private data structures, including clnt itself. Use of clnt is
undefined after calling clnt_destroy(). If the RPC library opened the associated
file descriptor, or CLSET_FD_CLOSE was set using clnt_control(), the file
descriptor will be closed.

The caller should call auth_destroy(clnt⇒cl_auth) (before calling
clnt_destroy()) to destroy the associated AUTH structure (see
rpc_clnt_auth(3NSL)).

CLIENT *clnt_dg_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connectionless transport. The remote program is located
at address svcaddr. The parameter fildes is an open and bound file descriptor. This
routine will resend the call message in intervals of 15 seconds until a response is
received or until the call times out. The total time for the call to time out is specified
by clnt_call() (see clnt_call() in rpc_clnt_calls(3NSL)). The retry time
out and the total time out periods can be changed using clnt_control(). The
user may set the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. This routine returns NULL if it fails.

clnt_tli_create(3NSL)

238 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_pcreateerror(const char *s);
Print a message to standard error indicating why a client RPC handle could not be
created. The message is prepended with the string s and a colon, and appended
with a newline.

CLIENT *clnt_raw_create(const rpcprog_t prognum, const rpcvers_t versnum);
This routine creates an RPC client handle for the remote program prognum and
version versnum. The transport used to pass messages to the service is a buffer
within the process’s address space, so the corresponding RPC server should live in
the same address space; (see svc_raw_create() in rpc_svc_create(3NSL)).
This allows simulation of RPC and measurement of RPC overheads, such as round
trip times, without any kernel or networking interference. This routine returns
NULL if it fails. clnt_raw_create() should be called after svc_raw_create().

char *clnt_spcreateerror(const char *s);
Like clnt_pcreateerror(), except that it returns a string instead of printing to
the standard error. A newline is not appended to the message in this case.

Warning: returns a pointer to a buffer that is overwritten on each call. In
multithread applications, this buffer is implemented as thread-specific data.

CLIENT *clnt_tli_create(const int fildes, const struct netconfig *netconf, const struct
netbuf *svcaddr, const rpcprog_t prognum, const rpcvers_t versnum, const uint_t sendsz,
const uint_t recvsz);

This routine creates an RPC client handle for the remote program prognum and
version versnum. The remote program is located at address svcaddr. If svcaddr is
NULL and it is connection-oriented, it is assumed that the file descriptor is
connected. For connectionless transports, if svcaddr is NULL, RPC_UNKNOWNADDR
error is set. fildes is a file descriptor which may be open, bound and connected. If it
is RPC_ANYFD, it opens a file descriptor on the transport specified by netconf. If
fildes is RPC_ANYFD and netconf is NULL, a RPC_UNKNOWNPROTO error is set. If fildes
is unbound, then it will attempt to bind the descriptor. The user may specify the
size of the buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults. Depending upon the type of the transport (connection-oriented or
connectionless), clnt_tli_create() calls appropriate client creation routines.
This routine returns NULL if it fails. The clnt_pcreateerror() routine can be
used to print the reason for failure. The remote rpcbind service (see
rpcbind(1M)) is not consulted for the address of the remote service.

CLIENT *clnt_tp_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf);

Like clnt_create() except clnt_tp_create() tries only one transport
specified through netconf.

clnt_tp_create() creates a client handle for the program prognum, the version
versnum, and for the transport specified by netconf. Default options are set, which
can be changed using clnt_control() calls. The remote rpcbind service on the

clnt_tli_create(3NSL)

Introduction to Library Functions 239

host host is consulted for the address of the remote service. This routine returns
NULL if it fails. The clnt_pcreateerror() routine can be used to print the
reason for failure.

CLIENT *clnt_tp_create_timed(const char *host, const rpcprog_t prognum, const
rpcvers_t versnum, const struct netconfig *netconf, const struct timeval *timeout);

Like clnt_tp_create() except clnt_tp_create_timed() has the extra
parameter timeout which specifies the maximum time allowed for the creation
attempt to succeed. In all other respects, the clnt_tp_create_timed() call
behaves exactly like the clnt_tp_create() call.

CLIENT *clnt_vc_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connection-oriented transport. The remote program is
located at address svcaddr. The parameter fildes is an open and bound file descriptor.
The user may specify the size of the send and receive buffers with the parameters
sendsz and recvsz; values of 0 choose suitable defaults. This routine returns NULL if
it fails.

The address svcaddr should not be NULL and should point to the actual address of
the remote program. clnt_vc_create() does not consult the remote rpcbind
service for this information.

struct rpc_createerr rpc_createerr;
A global variable whose value is set by any RPC client handle creation routine that
fails. It is used by the routine clnt_pcreateerror() to print the reason for the
failure.

In multithreaded applications, rpc_createerr becomes a macro which enables
each thread to have its own rpc_createerr.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate
attribute-control structures and set the t6attr_t pointers in the CLIENT structure.

clnt_tli_create(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

240 man pages section 3: Library Functions • Last Revised 1 May 2000

When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_calls(3NSL), rpc_svc_create(3NSL),
libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_clnt_auth(3NSL), svc_raw_create(3NSL), attributes(5)

clnt_tli_create(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 241

rpc_clnt_create, clnt_control, clnt_create, clnt_create_timed, clnt_create_vers,
clnt_create_vers_timed, clnt_destroy, clnt_dg_create, clnt_pcreateerror,
clnt_raw_create, clnt_spcreateerror, clnt_tli_create, clnt_tp_create,
clnt_tp_create_timed, clnt_vc_create, rpc_createerr – Library routines for dealing with
creation and manipulation of CLIENT handles

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First a CLIENT handle is created and then the client calls
a procedure to send a request to the server. On receipt of the request, the server calls a
dispatch routine to perform the requested service, and then sends a reply.

These routines are MT-Safe. In the case of multithreaded applications, the
_REENTRANT flag must be defined on the command line at compilation time
(-D_REENTRANT). When the _REENTRANT flag is defined, rpc_createerr becomes
a macro which enables each thread to have its own rpc_createerr.

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

See rpc(3NSL) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

bool_t clnt_control(CLIENT *clnt, const uint_t req, char *info);
A function macro to change or retrieve various information about a client object. req
indicates the type of operation, and info is a pointer to the information. For both
connectionless and connection-oriented transports, the supported values of req and
their argument types and what they do are:

CLSET_TIMEOUT struct timeval * set total timeout
CLGET_TIMEOUT struct timeval * get total timeout

If the timeout is set using clnt_control(), the timeout argument passed by
clnt_call() is ignored in all subsequent calls. If the timeout value is set to 0,
clnt_control() immediately returns RPC_TIMEDOUT. Set the timeout parameter
to 0 for batching calls.

CLGET_SERVER_ADDR struct netbuf * get server’s address
CLGET_SVC_ADDR struct netbuf * get server’s address
CLGET_FD int * get associated file descriptor
CLSET_FD_CLOSE void close the file descriptor when

destroying the client handle
(see clnt_destroy())

CLSET_FD_NCLOSE void do not close the file
descriptor when destroying

the client handle

CLGET_VERS rpcvers_t get the RPC program’s version
number associated with the
client handle

CLSET_VERS rpcvers_t set the RPC program’s version
number associated with the

clnt_tp_create(3NSL)

NAME

DESCRIPTION

Routines

242 man pages section 3: Library Functions • Last Revised 1 May 2000

client handle. This assumes
that the RPC server for this
new version is still listening
at the address of the previous
version.

CLGET_XID uint32_t get the XID of the previous
remote procedure call

CLSET_XID uint32_t set the XID of the next
remote procedure call

CLGET_PROG rpcprog_t get program number
CLSET_PROG rpcprog_t set program number

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval * set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval * get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

clnt_control() returns TRUE on success and FALSE on failure.

CLIENT *clnt_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype);

Generic client creation routine for program prognum and version versnum. host
identifies the name of the remote host where the server is located. nettype indicates
the class of transport protocol to use. The transports are tried in left to right order in
NETPATH variable or in top to bottom order in the netconfig database.

clnt_create() tries all the transports of the nettype class available from the
NETPATH environment variable and the netconfig database, and chooses the first
successful one. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)).

CLIENT *clnt_create_timed(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype, const struct timeval *timeout);

Generic client creation routine which is similar to clnt_create() but which also
has the additional parameter timeout that specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_timed() call behaves exactly like the clnt_create() call.

CLIENT *clnt_create_vers(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype);

Generic client creation routine which is similar to clnt_create() but which also
checks for the version availability. host identifies the name of the remote host where
the server is located. nettype indicates the class transport protocols to be used. If the

clnt_tp_create(3NSL)

Introduction to Library Functions 243

routine is successful it returns a client handle created for the highest version
between vers_low and vers_high that is supported by the server. vers_outp is set to
this value. That is, after a successful return vers_low <= *vers_outp <= vers_high. If no
version between vers_low and vers_high is supported by the server then the routine
fails and returns NULL. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)). However, clnt_create_vers() does this for you
and returns a valid handle only if a version within the range supplied is supported
by the server.

CLIENT *clnt_create_vers_timed(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype const struct
timeval *timeout);

Generic client creation routine similar to clnt_create_vers() but with the
additional parameter timeout, which specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_vers_timed() call behaves exactly like the
clnt_create_vers() call.

void clnt_destroy(CLIENT *clnt);
A function macro that destroys the client’s RPC handle. Destruction usually
involves deallocation of private data structures, including clnt itself. Use of clnt is
undefined after calling clnt_destroy(). If the RPC library opened the associated
file descriptor, or CLSET_FD_CLOSE was set using clnt_control(), the file
descriptor will be closed.

The caller should call auth_destroy(clnt⇒cl_auth) (before calling
clnt_destroy()) to destroy the associated AUTH structure (see
rpc_clnt_auth(3NSL)).

CLIENT *clnt_dg_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connectionless transport. The remote program is located
at address svcaddr. The parameter fildes is an open and bound file descriptor. This
routine will resend the call message in intervals of 15 seconds until a response is
received or until the call times out. The total time for the call to time out is specified
by clnt_call() (see clnt_call() in rpc_clnt_calls(3NSL)). The retry time
out and the total time out periods can be changed using clnt_control(). The
user may set the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. This routine returns NULL if it fails.

clnt_tp_create(3NSL)

244 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_pcreateerror(const char *s);
Print a message to standard error indicating why a client RPC handle could not be
created. The message is prepended with the string s and a colon, and appended
with a newline.

CLIENT *clnt_raw_create(const rpcprog_t prognum, const rpcvers_t versnum);
This routine creates an RPC client handle for the remote program prognum and
version versnum. The transport used to pass messages to the service is a buffer
within the process’s address space, so the corresponding RPC server should live in
the same address space; (see svc_raw_create() in rpc_svc_create(3NSL)).
This allows simulation of RPC and measurement of RPC overheads, such as round
trip times, without any kernel or networking interference. This routine returns
NULL if it fails. clnt_raw_create() should be called after svc_raw_create().

char *clnt_spcreateerror(const char *s);
Like clnt_pcreateerror(), except that it returns a string instead of printing to
the standard error. A newline is not appended to the message in this case.

Warning: returns a pointer to a buffer that is overwritten on each call. In
multithread applications, this buffer is implemented as thread-specific data.

CLIENT *clnt_tli_create(const int fildes, const struct netconfig *netconf, const struct
netbuf *svcaddr, const rpcprog_t prognum, const rpcvers_t versnum, const uint_t sendsz,
const uint_t recvsz);

This routine creates an RPC client handle for the remote program prognum and
version versnum. The remote program is located at address svcaddr. If svcaddr is
NULL and it is connection-oriented, it is assumed that the file descriptor is
connected. For connectionless transports, if svcaddr is NULL, RPC_UNKNOWNADDR
error is set. fildes is a file descriptor which may be open, bound and connected. If it
is RPC_ANYFD, it opens a file descriptor on the transport specified by netconf. If
fildes is RPC_ANYFD and netconf is NULL, a RPC_UNKNOWNPROTO error is set. If fildes
is unbound, then it will attempt to bind the descriptor. The user may specify the
size of the buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults. Depending upon the type of the transport (connection-oriented or
connectionless), clnt_tli_create() calls appropriate client creation routines.
This routine returns NULL if it fails. The clnt_pcreateerror() routine can be
used to print the reason for failure. The remote rpcbind service (see
rpcbind(1M)) is not consulted for the address of the remote service.

CLIENT *clnt_tp_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf);

Like clnt_create() except clnt_tp_create() tries only one transport
specified through netconf.

clnt_tp_create() creates a client handle for the program prognum, the version
versnum, and for the transport specified by netconf. Default options are set, which
can be changed using clnt_control() calls. The remote rpcbind service on the

clnt_tp_create(3NSL)

Introduction to Library Functions 245

host host is consulted for the address of the remote service. This routine returns
NULL if it fails. The clnt_pcreateerror() routine can be used to print the
reason for failure.

CLIENT *clnt_tp_create_timed(const char *host, const rpcprog_t prognum, const
rpcvers_t versnum, const struct netconfig *netconf, const struct timeval *timeout);

Like clnt_tp_create() except clnt_tp_create_timed() has the extra
parameter timeout which specifies the maximum time allowed for the creation
attempt to succeed. In all other respects, the clnt_tp_create_timed() call
behaves exactly like the clnt_tp_create() call.

CLIENT *clnt_vc_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connection-oriented transport. The remote program is
located at address svcaddr. The parameter fildes is an open and bound file descriptor.
The user may specify the size of the send and receive buffers with the parameters
sendsz and recvsz; values of 0 choose suitable defaults. This routine returns NULL if
it fails.

The address svcaddr should not be NULL and should point to the actual address of
the remote program. clnt_vc_create() does not consult the remote rpcbind
service for this information.

struct rpc_createerr rpc_createerr;
A global variable whose value is set by any RPC client handle creation routine that
fails. It is used by the routine clnt_pcreateerror() to print the reason for the
failure.

In multithreaded applications, rpc_createerr becomes a macro which enables
each thread to have its own rpc_createerr.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate
attribute-control structures and set the t6attr_t pointers in the CLIENT structure.

clnt_tp_create(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

246 man pages section 3: Library Functions • Last Revised 1 May 2000

When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_calls(3NSL), rpc_svc_create(3NSL),
libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_clnt_auth(3NSL), svc_raw_create(3NSL), attributes(5)

clnt_tp_create(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 247

rpc_clnt_create, clnt_control, clnt_create, clnt_create_timed, clnt_create_vers,
clnt_create_vers_timed, clnt_destroy, clnt_dg_create, clnt_pcreateerror,
clnt_raw_create, clnt_spcreateerror, clnt_tli_create, clnt_tp_create,
clnt_tp_create_timed, clnt_vc_create, rpc_createerr – Library routines for dealing with
creation and manipulation of CLIENT handles

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First a CLIENT handle is created and then the client calls
a procedure to send a request to the server. On receipt of the request, the server calls a
dispatch routine to perform the requested service, and then sends a reply.

These routines are MT-Safe. In the case of multithreaded applications, the
_REENTRANT flag must be defined on the command line at compilation time
(-D_REENTRANT). When the _REENTRANT flag is defined, rpc_createerr becomes
a macro which enables each thread to have its own rpc_createerr.

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

See rpc(3NSL) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

bool_t clnt_control(CLIENT *clnt, const uint_t req, char *info);
A function macro to change or retrieve various information about a client object. req
indicates the type of operation, and info is a pointer to the information. For both
connectionless and connection-oriented transports, the supported values of req and
their argument types and what they do are:

CLSET_TIMEOUT struct timeval * set total timeout
CLGET_TIMEOUT struct timeval * get total timeout

If the timeout is set using clnt_control(), the timeout argument passed by
clnt_call() is ignored in all subsequent calls. If the timeout value is set to 0,
clnt_control() immediately returns RPC_TIMEDOUT. Set the timeout parameter
to 0 for batching calls.

CLGET_SERVER_ADDR struct netbuf * get server’s address
CLGET_SVC_ADDR struct netbuf * get server’s address
CLGET_FD int * get associated file descriptor
CLSET_FD_CLOSE void close the file descriptor when

destroying the client handle
(see clnt_destroy())

CLSET_FD_NCLOSE void do not close the file
descriptor when destroying

the client handle

CLGET_VERS rpcvers_t get the RPC program’s version
number associated with the
client handle

CLSET_VERS rpcvers_t set the RPC program’s version
number associated with the

clnt_tp_create_timed(3NSL)

NAME

DESCRIPTION

Routines

248 man pages section 3: Library Functions • Last Revised 1 May 2000

client handle. This assumes
that the RPC server for this
new version is still listening
at the address of the previous
version.

CLGET_XID uint32_t get the XID of the previous
remote procedure call

CLSET_XID uint32_t set the XID of the next
remote procedure call

CLGET_PROG rpcprog_t get program number
CLSET_PROG rpcprog_t set program number

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval * set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval * get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

clnt_control() returns TRUE on success and FALSE on failure.

CLIENT *clnt_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype);

Generic client creation routine for program prognum and version versnum. host
identifies the name of the remote host where the server is located. nettype indicates
the class of transport protocol to use. The transports are tried in left to right order in
NETPATH variable or in top to bottom order in the netconfig database.

clnt_create() tries all the transports of the nettype class available from the
NETPATH environment variable and the netconfig database, and chooses the first
successful one. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)).

CLIENT *clnt_create_timed(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype, const struct timeval *timeout);

Generic client creation routine which is similar to clnt_create() but which also
has the additional parameter timeout that specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_timed() call behaves exactly like the clnt_create() call.

CLIENT *clnt_create_vers(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype);

Generic client creation routine which is similar to clnt_create() but which also
checks for the version availability. host identifies the name of the remote host where
the server is located. nettype indicates the class transport protocols to be used. If the

clnt_tp_create_timed(3NSL)

Introduction to Library Functions 249

routine is successful it returns a client handle created for the highest version
between vers_low and vers_high that is supported by the server. vers_outp is set to
this value. That is, after a successful return vers_low <= *vers_outp <= vers_high. If no
version between vers_low and vers_high is supported by the server then the routine
fails and returns NULL. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)). However, clnt_create_vers() does this for you
and returns a valid handle only if a version within the range supplied is supported
by the server.

CLIENT *clnt_create_vers_timed(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype const struct
timeval *timeout);

Generic client creation routine similar to clnt_create_vers() but with the
additional parameter timeout, which specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_vers_timed() call behaves exactly like the
clnt_create_vers() call.

void clnt_destroy(CLIENT *clnt);
A function macro that destroys the client’s RPC handle. Destruction usually
involves deallocation of private data structures, including clnt itself. Use of clnt is
undefined after calling clnt_destroy(). If the RPC library opened the associated
file descriptor, or CLSET_FD_CLOSE was set using clnt_control(), the file
descriptor will be closed.

The caller should call auth_destroy(clnt⇒cl_auth) (before calling
clnt_destroy()) to destroy the associated AUTH structure (see
rpc_clnt_auth(3NSL)).

CLIENT *clnt_dg_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connectionless transport. The remote program is located
at address svcaddr. The parameter fildes is an open and bound file descriptor. This
routine will resend the call message in intervals of 15 seconds until a response is
received or until the call times out. The total time for the call to time out is specified
by clnt_call() (see clnt_call() in rpc_clnt_calls(3NSL)). The retry time
out and the total time out periods can be changed using clnt_control(). The
user may set the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. This routine returns NULL if it fails.

clnt_tp_create_timed(3NSL)

250 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_pcreateerror(const char *s);
Print a message to standard error indicating why a client RPC handle could not be
created. The message is prepended with the string s and a colon, and appended
with a newline.

CLIENT *clnt_raw_create(const rpcprog_t prognum, const rpcvers_t versnum);
This routine creates an RPC client handle for the remote program prognum and
version versnum. The transport used to pass messages to the service is a buffer
within the process’s address space, so the corresponding RPC server should live in
the same address space; (see svc_raw_create() in rpc_svc_create(3NSL)).
This allows simulation of RPC and measurement of RPC overheads, such as round
trip times, without any kernel or networking interference. This routine returns
NULL if it fails. clnt_raw_create() should be called after svc_raw_create().

char *clnt_spcreateerror(const char *s);
Like clnt_pcreateerror(), except that it returns a string instead of printing to
the standard error. A newline is not appended to the message in this case.

Warning: returns a pointer to a buffer that is overwritten on each call. In
multithread applications, this buffer is implemented as thread-specific data.

CLIENT *clnt_tli_create(const int fildes, const struct netconfig *netconf, const struct
netbuf *svcaddr, const rpcprog_t prognum, const rpcvers_t versnum, const uint_t sendsz,
const uint_t recvsz);

This routine creates an RPC client handle for the remote program prognum and
version versnum. The remote program is located at address svcaddr. If svcaddr is
NULL and it is connection-oriented, it is assumed that the file descriptor is
connected. For connectionless transports, if svcaddr is NULL, RPC_UNKNOWNADDR
error is set. fildes is a file descriptor which may be open, bound and connected. If it
is RPC_ANYFD, it opens a file descriptor on the transport specified by netconf. If
fildes is RPC_ANYFD and netconf is NULL, a RPC_UNKNOWNPROTO error is set. If fildes
is unbound, then it will attempt to bind the descriptor. The user may specify the
size of the buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults. Depending upon the type of the transport (connection-oriented or
connectionless), clnt_tli_create() calls appropriate client creation routines.
This routine returns NULL if it fails. The clnt_pcreateerror() routine can be
used to print the reason for failure. The remote rpcbind service (see
rpcbind(1M)) is not consulted for the address of the remote service.

CLIENT *clnt_tp_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf);

Like clnt_create() except clnt_tp_create() tries only one transport
specified through netconf.

clnt_tp_create() creates a client handle for the program prognum, the version
versnum, and for the transport specified by netconf. Default options are set, which
can be changed using clnt_control() calls. The remote rpcbind service on the

clnt_tp_create_timed(3NSL)

Introduction to Library Functions 251

host host is consulted for the address of the remote service. This routine returns
NULL if it fails. The clnt_pcreateerror() routine can be used to print the
reason for failure.

CLIENT *clnt_tp_create_timed(const char *host, const rpcprog_t prognum, const
rpcvers_t versnum, const struct netconfig *netconf, const struct timeval *timeout);

Like clnt_tp_create() except clnt_tp_create_timed() has the extra
parameter timeout which specifies the maximum time allowed for the creation
attempt to succeed. In all other respects, the clnt_tp_create_timed() call
behaves exactly like the clnt_tp_create() call.

CLIENT *clnt_vc_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connection-oriented transport. The remote program is
located at address svcaddr. The parameter fildes is an open and bound file descriptor.
The user may specify the size of the send and receive buffers with the parameters
sendsz and recvsz; values of 0 choose suitable defaults. This routine returns NULL if
it fails.

The address svcaddr should not be NULL and should point to the actual address of
the remote program. clnt_vc_create() does not consult the remote rpcbind
service for this information.

struct rpc_createerr rpc_createerr;
A global variable whose value is set by any RPC client handle creation routine that
fails. It is used by the routine clnt_pcreateerror() to print the reason for the
failure.

In multithreaded applications, rpc_createerr becomes a macro which enables
each thread to have its own rpc_createerr.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate
attribute-control structures and set the t6attr_t pointers in the CLIENT structure.

clnt_tp_create_timed(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

252 man pages section 3: Library Functions • Last Revised 1 May 2000

When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_calls(3NSL), rpc_svc_create(3NSL),
libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_clnt_auth(3NSL), svc_raw_create(3NSL), attributes(5)

clnt_tp_create_timed(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 253

rpc_clnt_create, clnt_control, clnt_create, clnt_create_timed, clnt_create_vers,
clnt_create_vers_timed, clnt_destroy, clnt_dg_create, clnt_pcreateerror,
clnt_raw_create, clnt_spcreateerror, clnt_tli_create, clnt_tp_create,
clnt_tp_create_timed, clnt_vc_create, rpc_createerr – Library routines for dealing with
creation and manipulation of CLIENT handles

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First a CLIENT handle is created and then the client calls
a procedure to send a request to the server. On receipt of the request, the server calls a
dispatch routine to perform the requested service, and then sends a reply.

These routines are MT-Safe. In the case of multithreaded applications, the
_REENTRANT flag must be defined on the command line at compilation time
(-D_REENTRANT). When the _REENTRANT flag is defined, rpc_createerr becomes
a macro which enables each thread to have its own rpc_createerr.

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

See rpc(3NSL) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

bool_t clnt_control(CLIENT *clnt, const uint_t req, char *info);
A function macro to change or retrieve various information about a client object. req
indicates the type of operation, and info is a pointer to the information. For both
connectionless and connection-oriented transports, the supported values of req and
their argument types and what they do are:

CLSET_TIMEOUT struct timeval * set total timeout
CLGET_TIMEOUT struct timeval * get total timeout

If the timeout is set using clnt_control(), the timeout argument passed by
clnt_call() is ignored in all subsequent calls. If the timeout value is set to 0,
clnt_control() immediately returns RPC_TIMEDOUT. Set the timeout parameter
to 0 for batching calls.

CLGET_SERVER_ADDR struct netbuf * get server’s address
CLGET_SVC_ADDR struct netbuf * get server’s address
CLGET_FD int * get associated file descriptor
CLSET_FD_CLOSE void close the file descriptor when

destroying the client handle
(see clnt_destroy())

CLSET_FD_NCLOSE void do not close the file
descriptor when destroying

the client handle

CLGET_VERS rpcvers_t get the RPC program’s version
number associated with the
client handle

CLSET_VERS rpcvers_t set the RPC program’s version
number associated with the

clnt_vc_create(3NSL)

NAME

DESCRIPTION

Routines

254 man pages section 3: Library Functions • Last Revised 1 May 2000

client handle. This assumes
that the RPC server for this
new version is still listening
at the address of the previous
version.

CLGET_XID uint32_t get the XID of the previous
remote procedure call

CLSET_XID uint32_t set the XID of the next
remote procedure call

CLGET_PROG rpcprog_t get program number
CLSET_PROG rpcprog_t set program number

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval * set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval * get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

clnt_control() returns TRUE on success and FALSE on failure.

CLIENT *clnt_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype);

Generic client creation routine for program prognum and version versnum. host
identifies the name of the remote host where the server is located. nettype indicates
the class of transport protocol to use. The transports are tried in left to right order in
NETPATH variable or in top to bottom order in the netconfig database.

clnt_create() tries all the transports of the nettype class available from the
NETPATH environment variable and the netconfig database, and chooses the first
successful one. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)).

CLIENT *clnt_create_timed(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype, const struct timeval *timeout);

Generic client creation routine which is similar to clnt_create() but which also
has the additional parameter timeout that specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_timed() call behaves exactly like the clnt_create() call.

CLIENT *clnt_create_vers(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype);

Generic client creation routine which is similar to clnt_create() but which also
checks for the version availability. host identifies the name of the remote host where
the server is located. nettype indicates the class transport protocols to be used. If the

clnt_vc_create(3NSL)

Introduction to Library Functions 255

routine is successful it returns a client handle created for the highest version
between vers_low and vers_high that is supported by the server. vers_outp is set to
this value. That is, after a successful return vers_low <= *vers_outp <= vers_high. If no
version between vers_low and vers_high is supported by the server then the routine
fails and returns NULL. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)). However, clnt_create_vers() does this for you
and returns a valid handle only if a version within the range supplied is supported
by the server.

CLIENT *clnt_create_vers_timed(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype const struct
timeval *timeout);

Generic client creation routine similar to clnt_create_vers() but with the
additional parameter timeout, which specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_vers_timed() call behaves exactly like the
clnt_create_vers() call.

void clnt_destroy(CLIENT *clnt);
A function macro that destroys the client’s RPC handle. Destruction usually
involves deallocation of private data structures, including clnt itself. Use of clnt is
undefined after calling clnt_destroy(). If the RPC library opened the associated
file descriptor, or CLSET_FD_CLOSE was set using clnt_control(), the file
descriptor will be closed.

The caller should call auth_destroy(clnt⇒cl_auth) (before calling
clnt_destroy()) to destroy the associated AUTH structure (see
rpc_clnt_auth(3NSL)).

CLIENT *clnt_dg_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connectionless transport. The remote program is located
at address svcaddr. The parameter fildes is an open and bound file descriptor. This
routine will resend the call message in intervals of 15 seconds until a response is
received or until the call times out. The total time for the call to time out is specified
by clnt_call() (see clnt_call() in rpc_clnt_calls(3NSL)). The retry time
out and the total time out periods can be changed using clnt_control(). The
user may set the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. This routine returns NULL if it fails.

clnt_vc_create(3NSL)

256 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_pcreateerror(const char *s);
Print a message to standard error indicating why a client RPC handle could not be
created. The message is prepended with the string s and a colon, and appended
with a newline.

CLIENT *clnt_raw_create(const rpcprog_t prognum, const rpcvers_t versnum);
This routine creates an RPC client handle for the remote program prognum and
version versnum. The transport used to pass messages to the service is a buffer
within the process’s address space, so the corresponding RPC server should live in
the same address space; (see svc_raw_create() in rpc_svc_create(3NSL)).
This allows simulation of RPC and measurement of RPC overheads, such as round
trip times, without any kernel or networking interference. This routine returns
NULL if it fails. clnt_raw_create() should be called after svc_raw_create().

char *clnt_spcreateerror(const char *s);
Like clnt_pcreateerror(), except that it returns a string instead of printing to
the standard error. A newline is not appended to the message in this case.

Warning: returns a pointer to a buffer that is overwritten on each call. In
multithread applications, this buffer is implemented as thread-specific data.

CLIENT *clnt_tli_create(const int fildes, const struct netconfig *netconf, const struct
netbuf *svcaddr, const rpcprog_t prognum, const rpcvers_t versnum, const uint_t sendsz,
const uint_t recvsz);

This routine creates an RPC client handle for the remote program prognum and
version versnum. The remote program is located at address svcaddr. If svcaddr is
NULL and it is connection-oriented, it is assumed that the file descriptor is
connected. For connectionless transports, if svcaddr is NULL, RPC_UNKNOWNADDR
error is set. fildes is a file descriptor which may be open, bound and connected. If it
is RPC_ANYFD, it opens a file descriptor on the transport specified by netconf. If
fildes is RPC_ANYFD and netconf is NULL, a RPC_UNKNOWNPROTO error is set. If fildes
is unbound, then it will attempt to bind the descriptor. The user may specify the
size of the buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults. Depending upon the type of the transport (connection-oriented or
connectionless), clnt_tli_create() calls appropriate client creation routines.
This routine returns NULL if it fails. The clnt_pcreateerror() routine can be
used to print the reason for failure. The remote rpcbind service (see
rpcbind(1M)) is not consulted for the address of the remote service.

CLIENT *clnt_tp_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf);

Like clnt_create() except clnt_tp_create() tries only one transport
specified through netconf.

clnt_tp_create() creates a client handle for the program prognum, the version
versnum, and for the transport specified by netconf. Default options are set, which
can be changed using clnt_control() calls. The remote rpcbind service on the

clnt_vc_create(3NSL)

Introduction to Library Functions 257

host host is consulted for the address of the remote service. This routine returns
NULL if it fails. The clnt_pcreateerror() routine can be used to print the
reason for failure.

CLIENT *clnt_tp_create_timed(const char *host, const rpcprog_t prognum, const
rpcvers_t versnum, const struct netconfig *netconf, const struct timeval *timeout);

Like clnt_tp_create() except clnt_tp_create_timed() has the extra
parameter timeout which specifies the maximum time allowed for the creation
attempt to succeed. In all other respects, the clnt_tp_create_timed() call
behaves exactly like the clnt_tp_create() call.

CLIENT *clnt_vc_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connection-oriented transport. The remote program is
located at address svcaddr. The parameter fildes is an open and bound file descriptor.
The user may specify the size of the send and receive buffers with the parameters
sendsz and recvsz; values of 0 choose suitable defaults. This routine returns NULL if
it fails.

The address svcaddr should not be NULL and should point to the actual address of
the remote program. clnt_vc_create() does not consult the remote rpcbind
service for this information.

struct rpc_createerr rpc_createerr;
A global variable whose value is set by any RPC client handle creation routine that
fails. It is used by the routine clnt_pcreateerror() to print the reason for the
failure.

In multithreaded applications, rpc_createerr becomes a macro which enables
each thread to have its own rpc_createerr.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate
attribute-control structures and set the t6attr_t pointers in the CLIENT structure.

clnt_vc_create(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

258 man pages section 3: Library Functions • Last Revised 1 May 2000

When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_calls(3NSL), rpc_svc_create(3NSL),
libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_clnt_auth(3NSL), svc_raw_create(3NSL), attributes(5)

clnt_vc_create(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 259

clock_settime, clock_gettime, clock_getres – High-resolution clock operations

cc [flags…] file … -lrt [library…]

#include <time.h>

int clock_settime(clockid_t clock_id, const struct timespec *tp);

int clock_gettime(clockid_t clock_id, struct timespec *tp);

int clock_getres(clockid_t clock_id, struct timespec *res);

The clock_settime() function sets the specified clock, clock_id, to the value
specified by tp. Time values that are between two consecutive non-negative integer
multiples of the resolution of the specified clock are truncated down to the smaller
multiple of the resolution. The calling process must have the PRIV_SYS_CONFIG
privilege in order to set the specified clock.

The clock_gettime() function returns the current value tp for the specified clock,
clock_id.

The resolution of any clock can be obtained by calling clock_getres(). Clock
resolutions are system-dependent and cannot be set by a process. If the argument res is
not NULL, the resolution of the specified clock is stored in the location pointed to by
res. If res is NULL, the clock resolution is not returned. If the time argument of
clock_settime() is not a multiple of res, then the value is truncated to a multiple of
res.

A clock may be systemwide (that is, visible to all processes) or per-process (measuring
time that is meaningful only within a process).

A clock_id of CLOCK_REALTIME is defined in <time.h>. This clock represents the
realtime clock for the system. For this clock, the values returned by
clock_gettime() and specified by clock_settime() represent the amount of
time (in seconds and nanoseconds) since the Epoch.

A clock_id of CLOCK_HIGHRES represents the non-adjustable, high-resolution clock for
the system. For this clock, the value returned by clock_gettime() represents the
amount of time (in seconds and nanoseconds) since some arbitrary time in the past; it
is not correlated in any way to the time of day, and thus is not subject to resetting or
drifting by way of adjtime(2), ntp_adjtime(2), settimeofday(3C), or
clock_settime(). The time source for this clock is the same as that for
gethrtime(3C).

Additional clocks may also be supported. The interpretation of time values for these
clocks is unspecified.

clock_settime() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

clock_getres(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

260 man pages section 3: Library Functions • Last Revised 4 Apr 2000

The clock_settime(), clock_gettime() and clock_getres() functions will
fail if:

EINVAL The clock_id argument does not specify a known clock.

ENOSYS The functions clock_settime(), clock_gettime(), and
clock_getres() are not supported by this implementation.

The clock_settime() function will fail if:

EINVAL The tp argument to clock_settime() is outside the range for
the given clock ID; or the tp argument specified a nanosecond
value less than zero or greater than or equal to 1000 million.

The clock_settime() function may fail if:

EPERM The requesting process does not have the appropriate privilege to
set the specified clock.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level clock_gettime() is Async-Signal-Safe

The calling process must have the PRIV_SYS_CONFIG privilege in order to set the
specified clock.

adjtime(2), ntp_adjtime(2), time(2), ctime(3C), gethrtime(3C),
settimeofday(3C), time(3HEAD), timer_gettime(3RT), attributes(5)

clock_getres(3RT)

ERRORS

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESSunOS 5.8
Reference Manual

Introduction to Library Functions 261

clock_settime, clock_gettime, clock_getres – High-resolution clock operations

cc [flags…] file … -lrt [library…]

#include <time.h>

int clock_settime(clockid_t clock_id, const struct timespec *tp);

int clock_gettime(clockid_t clock_id, struct timespec *tp);

int clock_getres(clockid_t clock_id, struct timespec *res);

The clock_settime() function sets the specified clock, clock_id, to the value
specified by tp. Time values that are between two consecutive non-negative integer
multiples of the resolution of the specified clock are truncated down to the smaller
multiple of the resolution. The calling process must have the PRIV_SYS_CONFIG
privilege in order to set the specified clock.

The clock_gettime() function returns the current value tp for the specified clock,
clock_id.

The resolution of any clock can be obtained by calling clock_getres(). Clock
resolutions are system-dependent and cannot be set by a process. If the argument res is
not NULL, the resolution of the specified clock is stored in the location pointed to by
res. If res is NULL, the clock resolution is not returned. If the time argument of
clock_settime() is not a multiple of res, then the value is truncated to a multiple of
res.

A clock may be systemwide (that is, visible to all processes) or per-process (measuring
time that is meaningful only within a process).

A clock_id of CLOCK_REALTIME is defined in <time.h>. This clock represents the
realtime clock for the system. For this clock, the values returned by
clock_gettime() and specified by clock_settime() represent the amount of
time (in seconds and nanoseconds) since the Epoch.

A clock_id of CLOCK_HIGHRES represents the non-adjustable, high-resolution clock for
the system. For this clock, the value returned by clock_gettime() represents the
amount of time (in seconds and nanoseconds) since some arbitrary time in the past; it
is not correlated in any way to the time of day, and thus is not subject to resetting or
drifting by way of adjtime(2), ntp_adjtime(2), settimeofday(3C), or
clock_settime(). The time source for this clock is the same as that for
gethrtime(3C).

Additional clocks may also be supported. The interpretation of time values for these
clocks is unspecified.

clock_settime() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

clock_gettime(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

262 man pages section 3: Library Functions • Last Revised 4 Apr 2000

The clock_settime(), clock_gettime() and clock_getres() functions will
fail if:

EINVAL The clock_id argument does not specify a known clock.

ENOSYS The functions clock_settime(), clock_gettime(), and
clock_getres() are not supported by this implementation.

The clock_settime() function will fail if:

EINVAL The tp argument to clock_settime() is outside the range for
the given clock ID; or the tp argument specified a nanosecond
value less than zero or greater than or equal to 1000 million.

The clock_settime() function may fail if:

EPERM The requesting process does not have the appropriate privilege to
set the specified clock.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level clock_gettime() is Async-Signal-Safe

The calling process must have the PRIV_SYS_CONFIG privilege in order to set the
specified clock.

adjtime(2), ntp_adjtime(2), time(2), ctime(3C), gethrtime(3C),
settimeofday(3C), time(3HEAD), timer_gettime(3RT), attributes(5)

clock_gettime(3RT)

ERRORS

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESSunOS 5.8
Reference Manual

Introduction to Library Functions 263

clock_settime, clock_gettime, clock_getres – High-resolution clock operations

cc [flags…] file … -lrt [library…]

#include <time.h>

int clock_settime(clockid_t clock_id, const struct timespec *tp);

int clock_gettime(clockid_t clock_id, struct timespec *tp);

int clock_getres(clockid_t clock_id, struct timespec *res);

The clock_settime() function sets the specified clock, clock_id, to the value
specified by tp. Time values that are between two consecutive non-negative integer
multiples of the resolution of the specified clock are truncated down to the smaller
multiple of the resolution. The calling process must have the PRIV_SYS_CONFIG
privilege in order to set the specified clock.

The clock_gettime() function returns the current value tp for the specified clock,
clock_id.

The resolution of any clock can be obtained by calling clock_getres(). Clock
resolutions are system-dependent and cannot be set by a process. If the argument res is
not NULL, the resolution of the specified clock is stored in the location pointed to by
res. If res is NULL, the clock resolution is not returned. If the time argument of
clock_settime() is not a multiple of res, then the value is truncated to a multiple of
res.

A clock may be systemwide (that is, visible to all processes) or per-process (measuring
time that is meaningful only within a process).

A clock_id of CLOCK_REALTIME is defined in <time.h>. This clock represents the
realtime clock for the system. For this clock, the values returned by
clock_gettime() and specified by clock_settime() represent the amount of
time (in seconds and nanoseconds) since the Epoch.

A clock_id of CLOCK_HIGHRES represents the non-adjustable, high-resolution clock for
the system. For this clock, the value returned by clock_gettime() represents the
amount of time (in seconds and nanoseconds) since some arbitrary time in the past; it
is not correlated in any way to the time of day, and thus is not subject to resetting or
drifting by way of adjtime(2), ntp_adjtime(2), settimeofday(3C), or
clock_settime(). The time source for this clock is the same as that for
gethrtime(3C).

Additional clocks may also be supported. The interpretation of time values for these
clocks is unspecified.

clock_settime() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

clock_settime(3RT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

264 man pages section 3: Library Functions • Last Revised 4 Apr 2000

The clock_settime(), clock_gettime() and clock_getres() functions will
fail if:

EINVAL The clock_id argument does not specify a known clock.

ENOSYS The functions clock_settime(), clock_gettime(), and
clock_getres() are not supported by this implementation.

The clock_settime() function will fail if:

EINVAL The tp argument to clock_settime() is outside the range for
the given clock ID; or the tp argument specified a nanosecond
value less than zero or greater than or equal to 1000 million.

The clock_settime() function may fail if:

EPERM The requesting process does not have the appropriate privilege to
set the specified clock.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level clock_gettime() is Async-Signal-Safe

The calling process must have the PRIV_SYS_CONFIG privilege in order to set the
specified clock.

adjtime(2), ntp_adjtime(2), time(2), ctime(3C), gethrtime(3C),
settimeofday(3C), time(3HEAD), timer_gettime(3RT), attributes(5)

clock_settime(3RT)

ERRORS

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESSunOS 5.8
Reference Manual

Introduction to Library Functions 265

resolver, res_ninit, fp_resstat, res_npquery, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

void res_npquery(const res_state statp, const u_char *msg, int
msglen, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int
type, u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
*domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
*answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg, int msglen,
ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
**dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

dn_comp(3RESOLV)

NAME

BIND 8.2.2
Interfaces

Deprecated
Interfaces

266 man pages section 3: Library Functions • Last Revised 1 Feb 2001

int res_initvoid););

int res_query(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_mkquery(int op, const char *dname, int class, int type, const
char *data, int datalen, struct rrec *newrr, u_char *buf, int
buflen);

int res_send(const u_char *msg, int msglen, u_char *answer, int
anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply
messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions.
Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(),
res_send(), and herror() are deprecated. They are supplied for backwards
compatability. They use global configuration and state information that is kept in the
structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first
call to res_ninit() or res_init() and can be ignored. Options stored in
statp->options or _res.options are defined in <resolv.h>. They are stored as
a simple bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default
domain name are initialized, that is, res_init() or
res_ninit() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() will continue until it finds an
authoritative answer or finds an error. Currently this
option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open
between queries. This is a useful option for programs
that regularly do many queries. The normal mode used
should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

dn_comp(3RESOLV)

DESCRIPTION

Introduction to Library Functions 267

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. res_send() and res_nsend() do not do
iterative queries and expect the name server to handle
recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append
the default domain name to single-component names,
that is, names that do not contain a dot. This option is
enabled by default.

RES_DNSRCH If this option is set, res_search() and
res_nsearch() search for host names in the current
domain and in parent domains. See hostname(1). This
option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by
default.

RES_NOALIASES This option turns off the user level aliasing feature
controlled by the HOSTALIASES environment variable.
Network daemons should set this option.

RES_ROTATE This option causes res_nsend() and res_send() to
rotate the list of nameservers in
statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the
message unchanged after TSIG verification. Otherwise
the TSIG record would be removed and the header
would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is
present, to get the default domain name, search list and the Internet address of the
local name server(s). See resolv.conf(4). If no server is configured, res_init() or
res_ninit() will try to obtain name resolution services from the host on which it is
running. The current domain name is defined by domainname(1M), or by the
hostname if it is not specified in the configuration file. Use the environment variable
LOCALDOMAIN to override the domain name. This environment variable may contain
several blank-separated tokens if you wish to override the search list on a per-process
basis. This is similar to the search command in the configuration file. You can set the
RES_OPTIONS environment variable to override certain internal resolver options. You
can otherwise set them by changing fields in the statp /_res structure.
Alternatively, they are inherited from the configuration file’s options command. See
resolv.conf(4) for information regarding the syntax of the RES_OPTIONS
environment variable. Initialization normally occurs on the first call to one of the other
resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server
query mechanism. They construct a query, send it to the local server, await a response,
and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply

dn_comp(3RESOLV)

res_ninit, res_init

res_nquery,
res_query

268 man pages section 3: Library Functions • Last Revised 1 Feb 2001

message is left in the answer buffer with length anslen supplied by the caller.
res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a
response, just like like res_nquery() and res_query(). In addition, they
implement the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. They return the length of the first successful reply which is
stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The
res_nmkquery() and res_mkquery() functions construct a standard query
message and place it in buf. The routine returns the size of the query, or -1 if the query
is larger than buflen. The query type op is usually QUERY, but can be any of the query
types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a
preformatted query that returns an answer. The routine calls res_ninit() or
res_init(). If RES_INIT is not set, the routine sends the query to the local name
server and handles timeouts and retries. Additionally, the res_nsendsigned() uses
TSIG signatures to add authentication to the query and verify the response. In this
case, only one name server will be contacted. The routines return the length of the
reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query
may be larger still], so it is recommended that you supply a buf larger than the answer
returned by the previous query. answer must be large enough to receive a maximum
UDP response from the server or parts of the answer will be silently discarded. The
default maximum UDP response size is 512 bytes.

The res_npquery() function prints out the query and any answer in msg on fp.

The fp_resstat() function prints out the active flag bits in statp->options preceded
by the text ";; res options:" on file.

dn_comp(3RESOLV)

res_nsearch,
res_search

res_nmkquery,
res_mkquery

res_nsend,
res_send,

res_nsendsigned

res_npquery

fp_resstat

Introduction to Library Functions 269

The res_hostalias() function looks up name in the file referred to by the
HOSTALIASES environment variable and returns the fully qualified host name. If name
is not found or an error occurs, NULL is returned. res_hostalias() stores the result
in buf.

The res_nclose() function closes any open files referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. dn_comp() returns the size of the compressed name, or −1 if there were
errors. length is the size of the array pointed to by comp_dn.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in
the current message. The first pointer must point to the beginning of the message. The
list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted
into the message by dn_comp() as the name is compressed. If dnptrs is NULL, names
are not compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name. The compressed name is contained in a query or reply message. msg is
a pointer to the beginning of that message. The uncompressed name is placed in the
buffer indicated by exp_dn, which is of size length.dn_expand() returns the size of the
compressed name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are
set whenever an error occurs during a resolver operation. The following definitions
are given in <netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the
string parameters, the constant string ": ", and a message corresponding to the value
of h_errno.

The hstrerror() function returns a string, which is the message text that
corresponds to the value of the err parameter.

/etc/resolv.conf Resolver configuration file

See attributes(5) for descriptions of the following attributes:

dn_comp(3RESOLV)

res_hostalias

res_nclose

dn_comp

dn_expand

hstrerror, herror

FILES

ATTRIBUTES

270 man pages section 3: Library Functions • Last Revised 1 Feb 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard BIND 8.2.2

MT-Level Unsafe for Deprecated Interfaces; MT-Safe for
all others.

If the query is sent to a name server on a non-trusted host, then the functions
res_nsend(), res_send(), res_nsearch(), and res_search() can
communicate with the name server if its host’s default sensitivity label matches the
sensitivity label of the process issuing the call. If the calling process is run with the
PRIV_NET_UPGRADE_SL, PRIV_NET_DOWNGRADE_SL, and PRIV_NET_MAC_READ
privileges, then the functions res_nsend(), res_send(), res_nsearch(), and
res_search() can communicate with the name server regardless of the sensitivity
label of the non-trusted host where the name server resides.

in.named(1M), resolv.conf(4)

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), attributes(5)

Lottor, M., Domain Administrators Operators Guide, RFC 1033, SRI International, Menlo
Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information
Center, SRI International, Menlo Park, Calif., January 1986. Stahl, M., Domain
Administrators Guide, RFC 1032, SRI International, Menlo Park, Calif., November 1987.

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte
boundary. Otherwise, an error such as a SIGBUS may result.

dn_comp(3RESOLV)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 271

resolver, res_ninit, fp_resstat, res_npquery, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

void res_npquery(const res_state statp, const u_char *msg, int
msglen, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int
type, u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
*domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
*answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg, int msglen,
ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
**dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

dn_expand(3RESOLV)

NAME

BIND 8.2.2
Interfaces

Deprecated
Interfaces

272 man pages section 3: Library Functions • Last Revised 1 Feb 2001

int res_initvoid););

int res_query(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_mkquery(int op, const char *dname, int class, int type, const
char *data, int datalen, struct rrec *newrr, u_char *buf, int
buflen);

int res_send(const u_char *msg, int msglen, u_char *answer, int
anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply
messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions.
Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(),
res_send(), and herror() are deprecated. They are supplied for backwards
compatability. They use global configuration and state information that is kept in the
structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first
call to res_ninit() or res_init() and can be ignored. Options stored in
statp->options or _res.options are defined in <resolv.h>. They are stored as
a simple bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default
domain name are initialized, that is, res_init() or
res_ninit() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() will continue until it finds an
authoritative answer or finds an error. Currently this
option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open
between queries. This is a useful option for programs
that regularly do many queries. The normal mode used
should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

dn_expand(3RESOLV)

DESCRIPTION

Introduction to Library Functions 273

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. res_send() and res_nsend() do not do
iterative queries and expect the name server to handle
recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append
the default domain name to single-component names,
that is, names that do not contain a dot. This option is
enabled by default.

RES_DNSRCH If this option is set, res_search() and
res_nsearch() search for host names in the current
domain and in parent domains. See hostname(1). This
option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by
default.

RES_NOALIASES This option turns off the user level aliasing feature
controlled by the HOSTALIASES environment variable.
Network daemons should set this option.

RES_ROTATE This option causes res_nsend() and res_send() to
rotate the list of nameservers in
statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the
message unchanged after TSIG verification. Otherwise
the TSIG record would be removed and the header
would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is
present, to get the default domain name, search list and the Internet address of the
local name server(s). See resolv.conf(4). If no server is configured, res_init() or
res_ninit() will try to obtain name resolution services from the host on which it is
running. The current domain name is defined by domainname(1M), or by the
hostname if it is not specified in the configuration file. Use the environment variable
LOCALDOMAIN to override the domain name. This environment variable may contain
several blank-separated tokens if you wish to override the search list on a per-process
basis. This is similar to the search command in the configuration file. You can set the
RES_OPTIONS environment variable to override certain internal resolver options. You
can otherwise set them by changing fields in the statp /_res structure.
Alternatively, they are inherited from the configuration file’s options command. See
resolv.conf(4) for information regarding the syntax of the RES_OPTIONS
environment variable. Initialization normally occurs on the first call to one of the other
resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server
query mechanism. They construct a query, send it to the local server, await a response,
and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply

dn_expand(3RESOLV)

res_ninit, res_init

res_nquery,
res_query

274 man pages section 3: Library Functions • Last Revised 1 Feb 2001

message is left in the answer buffer with length anslen supplied by the caller.
res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a
response, just like like res_nquery() and res_query(). In addition, they
implement the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. They return the length of the first successful reply which is
stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The
res_nmkquery() and res_mkquery() functions construct a standard query
message and place it in buf. The routine returns the size of the query, or -1 if the query
is larger than buflen. The query type op is usually QUERY, but can be any of the query
types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a
preformatted query that returns an answer. The routine calls res_ninit() or
res_init(). If RES_INIT is not set, the routine sends the query to the local name
server and handles timeouts and retries. Additionally, the res_nsendsigned() uses
TSIG signatures to add authentication to the query and verify the response. In this
case, only one name server will be contacted. The routines return the length of the
reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query
may be larger still], so it is recommended that you supply a buf larger than the answer
returned by the previous query. answer must be large enough to receive a maximum
UDP response from the server or parts of the answer will be silently discarded. The
default maximum UDP response size is 512 bytes.

The res_npquery() function prints out the query and any answer in msg on fp.

The fp_resstat() function prints out the active flag bits in statp->options preceded
by the text ";; res options:" on file.

dn_expand(3RESOLV)

res_nsearch,
res_search

res_nmkquery,
res_mkquery

res_nsend,
res_send,

res_nsendsigned

res_npquery

fp_resstat

Introduction to Library Functions 275

The res_hostalias() function looks up name in the file referred to by the
HOSTALIASES environment variable and returns the fully qualified host name. If name
is not found or an error occurs, NULL is returned. res_hostalias() stores the result
in buf.

The res_nclose() function closes any open files referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. dn_comp() returns the size of the compressed name, or −1 if there were
errors. length is the size of the array pointed to by comp_dn.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in
the current message. The first pointer must point to the beginning of the message. The
list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted
into the message by dn_comp() as the name is compressed. If dnptrs is NULL, names
are not compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name. The compressed name is contained in a query or reply message. msg is
a pointer to the beginning of that message. The uncompressed name is placed in the
buffer indicated by exp_dn, which is of size length.dn_expand() returns the size of the
compressed name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are
set whenever an error occurs during a resolver operation. The following definitions
are given in <netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the
string parameters, the constant string ": ", and a message corresponding to the value
of h_errno.

The hstrerror() function returns a string, which is the message text that
corresponds to the value of the err parameter.

/etc/resolv.conf Resolver configuration file

See attributes(5) for descriptions of the following attributes:

dn_expand(3RESOLV)

res_hostalias

res_nclose

dn_comp

dn_expand

hstrerror, herror

FILES

ATTRIBUTES

276 man pages section 3: Library Functions • Last Revised 1 Feb 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard BIND 8.2.2

MT-Level Unsafe for Deprecated Interfaces; MT-Safe for
all others.

If the query is sent to a name server on a non-trusted host, then the functions
res_nsend(), res_send(), res_nsearch(), and res_search() can
communicate with the name server if its host’s default sensitivity label matches the
sensitivity label of the process issuing the call. If the calling process is run with the
PRIV_NET_UPGRADE_SL, PRIV_NET_DOWNGRADE_SL, and PRIV_NET_MAC_READ
privileges, then the functions res_nsend(), res_send(), res_nsearch(), and
res_search() can communicate with the name server regardless of the sensitivity
label of the non-trusted host where the name server resides.

in.named(1M), resolv.conf(4)

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), attributes(5)

Lottor, M., Domain Administrators Operators Guide, RFC 1033, SRI International, Menlo
Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information
Center, SRI International, Menlo Park, Calif., January 1986. Stahl, M., Domain
Administrators Guide, RFC 1032, SRI International, Menlo Park, Calif., November 1987.

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte
boundary. Otherwise, an error such as a SIGBUS may result.

dn_expand(3RESOLV)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 277

door_create – Create a door descriptor

cc [flags…] file … -ldoor -lthread [library…]

#include <door.h>

int door_create(void (*server_procedure) (void *cookie, void *cookie, char
*argp, size_t arg_size, door_desc_t *dp, uint_t n_desc, void
*cookie, uint_t attributes);

The door_create() function creates a door descriptor that describes the procedure
specified by the function server_procedure.

In the Trusted Solaris environment, door_create() sets the door CMW label and
MAC policy based on attributes of the creating process. The CMW label of the door is
set equal to the CMW label of the calling process. If the calling process has the
sys_system_door privilege, the MAC policy is set to MAC_ANY, otherwise its MAC
policy is set to MAC_EQUAL.

The data item, cookie, is associated with the door descriptor, and is passed as an
argument to the invoked function server_procedure during door_call(3X) invocations.
Other arguments passed to server_procedure from an associated door_call() are
placed on the stack and include argp and dp. argp points to arg_size bytes of data and
dp points to n_desc door_desc_t structures. The attributes flag specifies attributes
associated with the newly created door. Valid values for attributes are constructed by
ORing in one or more of the following values:

DOOR_UNREF Delivers a special invocation on the door when the
number of descriptors that refer to this door drops to
one. In order to trigger this condition, more than one
descriptor must have referred to this door at some
time. DOOR_UNREF_DATA designates an unreferenced
invocation, as the argp argument passed to
server_procedure. In the case of an unreferenced
invocation, the values for arg_size , dp and n_did are 0.
Only one unreferenced invocation is delivered on
behalf of a door.

DOOR_UNREF_MULTI Similar to DOOR_UNREF, except multiple unreferenced
invocations can be delivered on the same door if the
number of descriptors referring to the door drops to
one more than once. Since an additional reference may
have been passed by the time an unreferenced
invocation arrives, the DOOR_IS_UNREF attribute
returned by the door_info(3X) call can be used to
determine if the door is still unreferenced.

DOOR_PRIVATE Maintains a separate pool of server threads on behalf of
the door. Server threads are associated with a door’s
private server pool using door_bind(3X).

door_create(3DOOR)

NAME

SYNOPSIS

DESCRIPTION

278 man pages section 3: Library Functions • Last Revised 30 Sep 1999

The descriptor returned from door_create() will be marked as close on exec
(FD_CLOEXEC). Information about a door is available for all clients of a door using
door_info(3DOOR). Programs concerned with security should not place secure
information in door data that is accessible by door_info(). In particular, secure data
should not be stored in the data item cookie.

By default, additional threads are created as needed to handle concurrent
door_call(3DOOR) invocations. See door_server_create(3DOOR) for
information on how to change this behavior.

door_create() returns:

>0 On success.

−1 On failure, and sets errno to indicate the error.

The door_create() function will fail if:

EINVAL Invalid attributes are passed.

EMFILE The process has too many open descriptors.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Stability Evolving

MT-Level Safe

In the Trusted Solaris environment, door_create() sets the door CMW label and
MAC policy based on attributes of the creating process. The CMW label of the door is
set equal to the CMW label of the calling process. If the calling process has the
sys_system_door privilege, the MAC policy is set to MAC_ANY, otherwise its MAC
policy is set to MAC_EQUAL.

door_tcred(3DOOR)

door_bind(3DOOR), door_call(3DOOR), door_info(3DOOR),
door_revoke(3DOOR), door_server_create(3DOOR), attributes(5)

door_create(3DOOR)

RETURN VALUES

ERRORS

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

Introduction to Library Functions 279

door_tcred – Return the extended credential information associated with the client of
the current door invocation

cc [flags…] file … -ltsol -lthread [library…]

#include <door.h>

#include <sys/tsol/tdoor.h>

int door_tcred(door_tcred_t *info);

The door_tcred() function returns the extended credential information associated
with the client (if any) of the current door invocation.

The tsol_door_cred_t structure is returned by the door_tcred() interface. It is
added to the Trusted Solaris environment so that a door server is able to get the
Trusted Solaris attributes of the calling client.

/*
* Structure used to return info from door_tcred
*/
typedef struct tsol_door_cred {

door_cred_t tdc_cred; /* cred data */
bclabel_t tdc_cmw_label; /* CMW Label */
bclear_t tdc_clearance; /* Clearance */
pattr_t tdc_proc_attr; /* Proc. Attr. Flags */
priv_set_t tdc_effective; /* Effective set */

} tsol_door_cred_t;

The credential information associated with the client refers to the information from the
immediate caller, not necessarily from the first thread in a chain of door calls.

door_tcred() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The door_tcred() function fails if:

EFAULT The address of the info argument is invalid.

EINVAL There is no associated door client.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWtsu

Stability Unstable

MT-Level Safe

door_tcred(3DOOR)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

280 man pages section 3: Library Functions • Last Revised 22 May 2000

door_create(3DOOR)

door_call(3DOOR), door_cred(3DOOR), attributes(5)

It would be more appropriate to use an extensible mechanism rather than the
door_tcred() call. This is expected to be part of the general extension mechanism
for process attributes, and will be addressed then. The current door_tcred() can be
re-implemented in terms of such a general mechanism.

door_tcred(3DOOR)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 281

getacinfo, getacdir, getacflg, getacmin, getacna, setac, endac – Get audit control file
information

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <bsm/libbsm.h>

int getacdir(char *dir, int len);

int getacmin(int *min_val);

int getacflg(char *auditstring, int len);

int getacna(char *auditstring, int len);

void setac(void);

void endac(void);

When first called, getacdir() provides information about the first audit directory in
the audit_control file; thereafter, it returns the next directory in the file. Successive
calls list all the directories listed in audit_control(4). The parameter len specifies
the length of the buffer dir. On return, dir points to the directory entry.

getacmin() reads the minimum value from the audit_control file and returns the
value in min_val. The minimum value specifies how full the file system to which the
audit files are being written can get before the script audit_warn(1M) is invoked.

getacflg() reads the system audit value from the audit_control file and returns
the value in auditstring. The parameter len specifies the length of the buffer auditstring.

getacna() reads the system audit value for non-attributable audit events from the
audit_control file and returns the value in auditstring. The parameter len specifies
the length of the buffer auditstring. Non-attributable events are events that cannot be
attributed to an individual user. inetd(1M) and several other daemons record
non-attributable events.

Calling setac rewinds the audit_control file to allow repeated searches.

Calling endac closes the audit_control file when processing is complete.

/etc/security/audit_control Contains default parameters read by the
audit daemon, auditd(1M).

getacdir(), getacflg(), getacna() and getacmin() return:

0 on success.

−2 On failure and set errno to indicate the error.

getacmin() and getacflg() return:

1 On EOF.

getacdir() returns:

endac(3BSM)

NAME

SYNOPSIS

DESCRIPTION

FILES

RETURN VALUES

282 man pages section 3: Library Functions • Last Revised 5 May 1998

−1 on EOF.

2 if the directory search had to start from the beginning because one of the
other functions was called between calls to getacdir().

These functions return:

−3 If the directory entry format in the audit_control file is incorrect.

getacdir(), getacflg() and getacna() return:

−3 If the input buffer is too short to accommodate the record.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

audit_warn(1M), inetd(1M), audit_control(4)

attributes(5)

endac(3BSM)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

Introduction to Library Functions 283

getauclassent, getauclassnam, setauclass, endauclass, getauclassnam_r, getauclassent_r
– get audit_class entry

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_class_ent *getauclassnam(const char *name);

struct au_class_ent *getauclassnam_r(au_class_ent_t *class_int,
const char *name);

struct au_class_ent *getauclassent(void);

struct au_class_ent *getauclassent_r(au_class_ent_t *class_int);

void setauclass(void);

void endauclass(void);

getauclassent() and getauclassnam() each return an audit_class entry.

getauclassnam() searches for an audit_class entry with a given class name name.

getauclassent() enumerates audit_class entries: successive calls to
getauclassent() will return either successive audit_class entries or NULL.

setauclass() ‘‘rewinds’’ to the beginning of the enumeration of audit_class entries.
Calls to getauclassnam() may leave the enumeration in an indeterminate state, so
setauclass() should be called before the first getauclassent().

endauclass() may be called to indicate that audit_class processing is complete; the
system may then close any open audit_class file, deallocate storage, and so forth.

getauclassent_r() and getauclassnam_r() both return a pointer to an
audit_class entry as do their similarly named counterparts. They each take an
additional argument, a pointer to pre-allocated space for an au_class_ent_t, which
is returned if the call is successful. To assure there is enough space for the information
returned, the applications programmer should be sure to allocate
AU_CLASS_NAME_MAX and AU_CLASS_DESC_MAX bytes for the ac_name and ac_desc
elements of the au_class_ent_t data structure.

The internal representation of an audit_user entry is an au_class_ent structure
defined in <bsm/libbsm.h> with the following members:

char *ac_name;
au_class_t ac_class;
char *ac_desc;

getauclassnam() and getauclassnam_r() return a pointer to a struct
au_class_ent if they successfully locate the requested entry; otherwise they return
NULL.

endauclass(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

284 man pages section 3: Library Functions • Last Revised 29 Dec 1996

getauclassent() and getauclassent_r() return a pointer to a struct
au_class_ent if they successfully enumerate an entry; otherwise they return NULL,
indicating the end of the enumeration.

/etc/security/audit_class Maps audit class numbers to audit class
names.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions.

All of the functions described in this man-page are MT-Safe except
getauclassent() and getauclassnam(). The two functions,
getauclassent_r() and getauclassnam_r() have the same functionality as the
unsafe functions, but have a slightly different function call interface in order to make
them MT-Safe.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

audit_class(4), audit_event(4)

attributes(5)

All information in the MT-unsafe versions are contained in a static area, which may be
overwritten, so it must be copied if it is to be saved.

endauclass(3BSM)

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 285

getauevent, getauevnam, getauevnum, getauevnonam, setauevent, endauevent,
getauevent_r, getauevnam_r, getauevnum_r – Get audit_event entry

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_event_ent *getauevent(void);

struct au_event_ent *getauevnam(char *name);

struct au_event_ent *getauevnum(au_event_t event_number);

au_event_t *getauevnonam(char *event_name);

void setauevent(void);

void endauevent(void);

struct au_event_ent *getauevent_r(au_event_ent_t *e);

struct au_event_ent *getauevnam_r(au_event_ent_t *e, char *name);

struct au_event_ent *getauevnum_r(au_event_ent_t *e, au_event_t
event_number);

These interfaces document the programming interface for obtaining entries from the
audit_event(4) file. getauevent(), getauevnam(), getauevnum(),
getauevent(), getauevnam(), and getauevnum() each return a pointer to an
audit_event structure.

getauevent() and getauevent_r() enumerate audit_event entries; successive
calls to these functions will return either successive audit_event entries or NULL.

getauevnam() and getauevnam_r() search for an audit_event entry with a
given event_name.

getauevnum() and getauevnum_r() search for an audit_event entry with a
given event_number.

getauevnonam() searches for an audit_event entry with a given event_name and
returns the corresponding event number.

setauevent() ‘‘rewinds’’ to the beginning of the enumeration of audit_event
entries. Calls to getauevnam(), getauevnum(), getauevnonum(),
getauevnam_r(), or getauevnum_r() may leave the enumeration in an
indeterminate state; setauevent() should be called before the first getauevent()
or getauevent_r().

endauevent() may be called to indicate that audit_event processing is complete;
the system may then close any open audit_event file, deallocate storage, and so
forth.

endauevent(3BSM)

NAME

SYNOPSIS

DESCRIPTION

286 man pages section 3: Library Functions • Last Revised 29 Dec 1996

The three functions getauevent_r(), getauevnam_r(), and getauevnum_r()
each take an argument e which is a pointer to an au_event_ent_t. This pointer is
returned on a successful function call. To assure there is enough space for the
information returned, the applications programmer should be sure to allocate
AU_EVENT_NAME_MAX and AU_EVENT_DESC_MAX bytes for the ae_name and
ac_desc elements of the au_event_ent_t data structure.

The internal representation of an audit_event entry is an au_event_ent structure
defined in <bsm/libbsm.h> with the following members:

au_event_t ae_number;
char *ae_name;
char *ae_desc;
au_class_t ae_class;

getauevent(), getauevnam(), getauevnum(), getauevent_r(),
getauevnam_r(), and getauevnum_r() return a pointer to a struct
au_event_ent if the requested entry is successfully located; otherwise it returns
NULL.

getauevnonam() returns an event number of type au_event_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating it could not find the
requested event name.

/etc/security/audit_event Maps audit event numbers to audit event
names.

/etc/passwd Stores user-ID to username mappings.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

MT-Level MT-Safe with exceptions.

The functions getauevent(), getauevnam(), and getauevnum() are not MT-Safe;
however, there are equivalent functions: getauevent_r(), getauevnam_r(), and
getauevnum_r() — all of which provide the same functionality and a MT-Safe
function call interface.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

getauclassent(3BSM), audit_class(4), audit_event(4)

getpwnam(3C), passwd(4), attributes(5)

endauevent(3BSM)

RETURN VALUES

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

Introduction to Library Functions 287

All information for the functions getauevent(), getauevnam(), and
getauevnum() is contained in a static area, which may be overwritten, so it must be
copied if it is to be saved.

endauevent(3BSM)

NOTES

288 man pages section 3: Library Functions • Last Revised 29 Dec 1996

getauthattr, getauthnam, free_authattr, setauthattr, endauthattr, chkauthattr – get
authorization entry

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]
#include <auth_attr.h>

#include <secdb.h>

authattr_t *getauthattr(void);

authattr_t *getauthnam(const char *name);

void free_authattr(authattr_t *auth);

void setauthattr(void);

void endauthattr(void);

int chkauthattr(const char *authname, const char *username);

The getauthattr() and getauthnam() functions each return an auth_attr(4)
entry. Entries can come from any of the sources specified in the nsswitch.conf(4)
file.

The getauthattr() function enumerates auth_attr entries. The getauthnam()
function searches for an auth_attr entry with a given authorization name name.
Successive calls to these functions return either successive auth_attr entries or
NULL.

Th internal representation of an auth_attr entry is an authattr_t structure
defined in <auth_attr.h> with the following members:

char *name; /* name of the authorization */
char *res1; /* reserved for future use */
char *res2; /* reserved for future use */
char *short_desc; /* short description */
char *long_desc; /* long description */

kva_t *attr; /* array of key-value pair attributes */

The setauthattr() function “rewinds” to the beginning of the enumeration of
auth_attr entries. Calls to getauthnam() can leave the enumeration in an
indeterminate state. Therefore, setauthattr() should be called before the first call
to getauthattr().

The endauthattr() function may be called to indicate that auth_attr processing
is complete; the system may then close any open auth_attr file, deallocate storage,
and so forth.

The chkauthattr() function verifies whether or not a user has a given
authorization. It first reads the AUTHS_GRANTED key in the
/etc/security/policy.conf file and returns 1 if it finds a match for the given
authorization. If chkauthattr() does not find a match, it reads the
PROFS_GRANTED key in /etc/security/policy.conf and returns 1 if the given
authorization is in any profiles specified with the PROFS_GRANTED keyword. If a

endauthattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 289

match is not found from the default authorizations and default profiles,
chkauthattr() reads the user_attr(4) database. If it does not find a match in
user_attr, it reads the prof_attr(4) database, using the list of profiles assigned to
the user, and checks if any of the profiles assigned to the user has the given
authorization. The chkauthattr() function returns 0 if it does not find a match in
any of the three sources.

A user is considered to have been assigned an authorization if either of the following
are true:

� The authorization name matches exactly any authorization assigned in the
user_attr or prof_attr databases (authorization names are case-sensitive).

� The authorization name suffix is not the keyword grant and the authorization
name matches any authorization up to the asterisk (*) character assigned in the
user_attr or prof_attr databases.

The examples in the following table illustrate the conditions under which a user is
assigned an authorization.

/etc/security/policy.conf or Is user

Authorization name user_attr or prof_attr entry authorized?

solaris.printer.postscript solaris.printer.postscript Yes

solaris.printer.postscript solaris.printer.* Yes

solaris.printer.grant solaris.printer.* No

The free_authattr() function releases memory allocated by the getauthnam()
and getauthattr() functions.

The getauthattr() function returns a pointer to an authattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getauthnam() function returns a pointer to an authattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

The chkauthattr() function returns 1 if the user is authorized and 0 otherwise.

The getauthattr() and getauthnam() functions both allocate memory for the
pointers they return. This memory should be de-allocated with the
free_authattr() call.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

endauthattr(3SECDB)

RETURN VALUES

USAGE

290 man pages section 3: Library Functions • Last Revised 4 May 2000

Individual attributes in the attr structure can be referred to by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, code must be written to ignore
unknown key-value pairs without error.

/etc/nsswitch.conf configuration file lookup information for
the name server switch

/etc/user_attr extended user attributes

/etc/security/auth_attr authorization attributes

/etc/security/policy.conf policy definitions

/etc/security/prof_attr profile information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

The Trusted Solaris environment adds authorizations. The chkauthattr() function
replaces the Trusted Solaris 7 chkauth() function.

nsswitch.conf(4), prof_attr(4), user_attr(4)

getexecattr(3SECDB), getprofattr(3SECDB), getuserattr(3SECDB),
kva_match(3SECDB), auth_attr(4), attributes(5), rbac(5)

endauthattr(3SECDB)

WARNINGS

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

Introduction to Library Functions 291

getauusernam, getauuserent, setauuser, endauuser – Get audit_user entry

cc [flag…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_user_ent *getauusernam(const char *name);

struct au_user_ent *getauuserent(void);

void setauuser(void);

void endauuser(void);

struct au_user_ent *getauusernam_r(au_user_ent_t * u, const char
*name);

struct au_user_ent *getauuserent_r(au_user_ent_t *u);

The getauuserent(), getauusernam(), getauuserent_r(), and
getauusernam_r() functions each return an audit_user entry. Entries can come
from any of the sources specified in the /etc/nsswitch.conf file (see
nsswitch.conf(4)).

The getauusernam() and getauusernam_r() functions search for an
audit_user entry with a given login name name.

The getauuserent() and getauuserent_r() functions enumerate audit_user
entries; successive calls to these functions will return either successive audit_user
entries or NULL.

The setauuser() function “rewinds” to the beginning of the enumeration of
audit_user entries. Calls to getauusernam() and getauusernam_r() may leave
the enumeration in an indeterminate state, so setauuser() should be called before
the first call to getauuserent() or getauuserent_r().

The endauuser() function may be called to indicate that audit_user processing is
complete; the system may then close any open audit_user file, deallocate storage,
and so forth.

The getauuserent_r() and getauusernam_r() functions both take an argument
u, which is a pointer to an au_user_ent. This is the pointer that is returned on
successful function calls.

The internal representation of an audit_user entry is an au_user_ent structure
defined in <bsm/libbsm.h> with the following members:

char *au_name;
au_mask_t au_always;
au_mask_t au_never;

endauuser(3BSM)

NAME

SYNOPSIS

DESCRIPTION

292 man pages section 3: Library Functions • Last Revised 18 Apr 2000

The getauusernam() function returns a pointer to a struct_au_user_ent if it
successfully locates the requested entry; otherwise it returns NULL.

The getauuserent() function returns a pointer to a struct_au_user_ent if it
successfully enumerates an entry; otherwise it returns NULL, indicating the end of the
enumeration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions.

/etc/security/audit_user Stores per-user audit event mask.

/etc/passwd Stores user-id to username mappings.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

audit_user(4), nsswitch.conf(4)

getpwnam(3C), passwd(4), attributes(5)

All information for the getauuserent() and getauusernam() functions is
contained in a static area, which may be overwritten, so it must be copied if it is to be
saved.

The getauusernam() and getauuserent() functions are not MT-safe. The
getauusernam_r() and getauuserent_r() functions provide the same
functionality with interfaces that are MT-Safe.

endauuser(3BSM)

RETURN VALUES

ATTRIBUTES

FILES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 293

getexecattr, free_execattr, setexecattr, endexecattr, getexecuser, getexecprof,
match_execattr – get execution profile entry

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]
#include <exec_attr.h>

#include <secdb.h>

execattr_t *getexecattr(void);

void free_execattr(execattr_t *ep);

void setexecattr(void);

void endexecattr(void);

execattr_t *getexecuser(const char *username, const char *type,
const char *id, int search_flag);

execattr_t *getexecprof(const char *profname, const char *type,
const char *id, int search_flag);

execattr_t *match_execattr(execattr_t *ep, char *profname, char
*type, char *id);

The getexecattr() function returns a single exec_attr entry. Entries can come
from any of the sources specified in the nsswitch.conf(4) file.

Successive calls to getexecattr() return either successive exec_attr entries or
NULL. Because getexecattr() always returns a single entry, the next pointer in the
execattr_t data structure points to NULL.

The internal representation of an exec_attr entry is an execattr_t structure
defined in <exec_attr.h> with the following members:

char name; /* name of the profile */
char type; /* type of profile */
char policy; /* policy under which the attributes are */

/* relevant*/
char res1; /* reserved for future use */
char res2; /* reserved for future use */
char id; /* unique identifier */
kva_t attr; /* attributes */

struct execattr_s next; /* optional pointer to next profile */

The free_execattr() function releases memory. It follows the next pointers in the
execattr_t structure so that the entire linked list is released.

The setexecattr() function “rewinds” to the beginning of the enumeration of
exec_attr entries. Calls to getexecuser() can leave the enumeration in an
indeterminate state. Therefore, setexecattr() should be called before the first call
to getexecattr().

endexecattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

294 man pages section 3: Library Functions • Last Revised 13 Mar 2000

The endexecattr() function can be called to indicate that exec_attr processing is
complete; the library can then close any open exec_attr file, deallocate any internal
storage, and so forth.

The getexecuser() function returns a linked list of entries filtered by the function’s
arguments. Only entries assigned to the specified username, as described in the
passwd(4) database, and containing the specified type and id, as described in the
exec_attr(4) database, are placed in the list. The getexecuser() function is
different from the other functions in its family because it spans two databases. It first
looks up the list of profiles assigned to a user in the user_attr database and the list
of default profiles in /etc/security/policy.conf, then looks up each profile in
the exec_attr database.

The getexecprof() function returns a linked list of entries that have components
matching the function’s arguments. Only entries in the database matching the
argument profname, as described in exec_attr, and containing the type and id, also
described in exec_attr, are placed in the list.

Using getexecuser() and getexecprof(), programmers can search for any type
argument, such as the manifest constant KV_COMMAND. The arguments are logically
AND-ed together so that only entries exactly matching all of the arguments are
returned. Wildcard matching applies if there is no exact match for an ID. Any
argument can be assigned the NULL value to indicate that it is not used as part of the
matching criteria. The search_flag controls whether the function returns the first match
(GET_ONE), setting the next pointer to NULL or all matching entries (GET_ALL), using
the next pointer to create a linked list of all entries that meet the search criteria. See
EXAMPLES.

Once a list of entries is returned by getexecuser() or getexecprof(), the
convenience function match_execattr() can be used to identify an individual
entry. It returns a pointer to the individual element with the same profile name (
profname), type name (type), and id. Function parameters set to NULL are not used as
part of the matching criteria. In the event that multiple entries meet the matching
criteria, only a pointer to the first entry is returned. The kva_match(3SECDB)
function can be used to look up a key in a key-value array.

Those functions returning data only return data related to the active policy. The
getexecattr() function returns a pointer to a execattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getexecattr(), getexecuser(), and getexecprof() functions all allocate
memory for the pointers they return. This memory should be deallocated with the
free_execattr() call. The match_execattr()(function does not allocate any
memory. Therefore, pointers returned by this function should not be deallocated.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and

endexecattr(3SECDB)

RETURN VALUES

USAGE

Introduction to Library Functions 295

linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

Individual attributes may be referenced in the attr structure by calling the
kva_match(3SECDB) function.

EXAMPLE 1 The following finds all profiles that have the ping command.

if ((execprof=getexecprof(NULL, KV_COMMAND, "/usr/sbin/ping",
GET_ONE)) == NULL) {

/* do error */

}

EXAMPLE 2 The following finds the entry for the ping command in the Network
Administration Profile.

if ((execprof=getexecprof("Network Administration", KV_COMMAND,
"/usr/sbin/ping", GET_ALL))==NULL) {

/* do error */

}

EXAMPLE 3 The following tells everything that can be done in the Filesystem Security profile.

if ((execprof=getexecprof("Filesystem Security", KV_NULL, NULL,
GET_ALL))==NULL)) {

/* do error */

}

EXAMPLE 4 The following tells if the tar command is in a profile assigned to user wetmore.
If there is no exact profile entry, the wildcard (*), if defined, is returned.

if ((execprof=getexecuser("wetmore", KV_COMMAND, "/usr/bin/tar",
GET_ONE))==NULL) {

/* do error */

}

/etc/nsswitch.conf configuration file lookup information for
the name server switch

/etc/user_attr extended user attributes

/etc/security/exec_attr execution profiles

/etc/security/policy.conf policy definitions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

endexecattr(3SECDB)

EXAMPLES

FILES

ATTRIBUTES

296 man pages section 3: Library Functions • Last Revised 13 Mar 2000

getauthattr(3SECDB), getuserattr(3SECDB), kva_match(3SECDB),
exec_attr(4), policy.conf(4), user_attr(4), attributes(5)

endexecattr(3SECDB)

SEE ALSO

Introduction to Library Functions 297

getprofattr, getprofnam, free_profattr, setprofattr, endprofattr, getproflist, free_proflist
– get profile description and attributes

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]

#include <prof.h>

profattr_t *getprofattr(void);

profattr_t *getprofnam(const char *name);

void free_profattr(profattr_t *pd);

void setprofattr(void);

void endprofattr(void);

void getproflist(const char *profname, char **proflist, int *profcnt);

void free_proflist(char **proflist, int profcnt);

The getprofattr() and getprofnam() functions each return a prof_attr entry.
Entries can come from any of the sources specified in the nsswitch.conf(4) file.

The getprofattr() function enumerates prof_attr entries. The getprofnam()
function searches for a prof_attr entry with a given name. Successive calls to these
functions return either successive prof_attr entries or NULL.

The internal representation of a prof_attr entry is a profattr_t structure defined
in <prof_attr.h> with the following members:

char name; /* Name of the profile */
char res1; /* Reserved for future use */
char res2; /* Reserved for future use */
char desc; /* Description/Purpose of the profile */

kva_t attr; /* Profile attributes */

The free_profattr() function releases memory allocated by the getprofattr()
and getprofnam() functions.

The setprofattr() function “rewinds” to the beginning of the enumeration of
prof_attr entries. Calls to getprofnam() can leave the enumeration in an
indeterminate state. Therefore, setprofattr() should be called before the first call
to getprofattr().

The endprofattr() function may be called to indicate that prof_attr processing
is complete; the system may then close any open prof_attr file, deallocate storage,
and so forth.

The getproflist() function searches for the list of sub-profiles found in the given
profname and allocates memory to store this list in proflist. The given profname will be
included in the list of sub-profiles. The profcnt argument indicates the number of items
currently valid in proflist. Memory allocated by getproflist() should be freed
using the free_proflist() function.

endprofattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

298 man pages section 3: Library Functions • Last Revised 13 Mar 2000

The free_proflist() function frees memory allocated by the getproflist()
function. The profcnt argument specifies the number of items to free from the proflist
argument.

The getprofattr() function returns a pointer to a profattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getprofnam() function returns a pointer to a profattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

Individual attributes in the prof_attr_t structure can be referred to by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, any code must be written to ignore
unknown key-value pairs without error.

The getprofattr() and getprofnam() functions both allocate memory for the
pointers they return. This memory should be deallocated with the free_profattr()
function.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

/etc/security/prof_attr profiles and their descriptions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

auths(1), profiles(1), getexecattr(3SECDB), getauthattr(3SECDB),
prof_attr(4)

endprofattr(3SECDB)

RETURN VALUES

USAGE

FILES

ATTRIBUTES

SEE ALSO

Introduction to Library Functions 299

getprofent, setprofent, endprofent, getprofentbyname, free_profent – Get user profile
description

cc [flag…] file… -ltsol -ltsoldb -lcmd -lnsl [library…]

(obsolete)

The getprofent, setprofent, endprofent, getprofentbyname, and
free_profent functions are replaced in Trusted Solaris 8 and later releases with the
functions described in the getprofattr(3SECDB) and getexecattr(3SECDB) man
pages. These functions find rights profiles information in prof_attr(4) and
exec_attr(4).

endprofent(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

300 man pages section 3: Library Functions • Last Revised 16 Jun 2000

getprofstr, putprofstr, setprofstr, endprofstr, getprofstrbyname, free_profstr – Get user
profile description

cc [flag…] file… -ltsol -ltsoldb -lcmd -lnsl [library…]

(obsolete)

The getprofstr, putprofstr, setprofstr, endprofstr, getprofstrbyname,
and free_profstr functions are replaced in Trusted Solaris 8 and later releases with
the functions described in the getprofattr(3SECDB) and getexecattr(3SECDB)
man pages. These functions find rights profiles information in prof_attr(4) and
exec_attr(4).

endprofstr(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 301

getuserattr, getusernam, getuseruid, free_userattr, setuserattr, enduserattr – get
user_attr entry

cc [flag...] file...– lsecdb – lsocket – lnsl – lintl [library...]

#include <user_attr.h>

userattr_t *getuserattr(void);

userattr_t *getusernam(const char *name);

userattr_t *getuseruid(uid_t uid);

void free_userattr(userattr_t *userattr);

void setuserattr(void);

void enduserattr(void);

The getuserattr(), getusernam(), and getuseruid() functions each return a
user_attr(4) entry. Entries can come from any of the sources specified in the
nsswitch.conf(4) file. The getuserattr() function enumerates user_attr
entries. The getusernam() function searches for a user_attr entry with a given
user name name. The getuseruid() function searches for a user_attr entry with a
given user id uid. Successive calls to these functions return either successive
user_attr entries or NULL.

The free_userattr() function releases memory allocated by the getusernam()
and getuserattr() functions.

The internal representation of a user_attr entry is a userattr_t structure defined
in <user_attr.h> with the following members:

char name; /* name of the user */
char qualifier; /* reserved for future use */
char res1; /* reserved for future use */
char res2; /* reserved for future use */

kva_t attr; /* list of attributes */

The setuserattr() function “rewinds” to the beginning of the enumeration of
user_attr entries. Calls to getusernam() may leave the enumeration in an
indeterminate state, so setuserattr() should be called before the first call to
getuserattr().

The enduserattr() function may be called to indicate that user_attr processing
is complete; the library may then close any open user_attr file, deallocate any
internal storage, and so forth.

The getuserattr() function returns a pointer to a userattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getusernam() function returns a pointer to a userattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

enduserattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

302 man pages section 3: Library Functions • Last Revised 12 Aug 1999

The getuserattr() and getusernam() functions both allocate memory for the
pointers they return. This memory should be deallocated with the free_userattr()
function.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

Individual attributes may be referenced in the attr structure by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, code must be written to ignore
unknown key-value pairs without error.

/etc/user_attr extended user attributes

/etc/nsswitch.conf configuration file lookup information for
the name server switch

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getauthattr(3SECDB), getexecattr(3SECDB), getprofattr(3SECDB),
user_attr(4), attributes(5)

enduserattr(3SECDB)

USAGE

WARININGS

FILES

ATTRIBUTES

SEE ALSO

Introduction to Library Functions 303

getuserent, setuserent, enduserent, getuserentbyname, getuserentbyuid, free_userent –
Get user security attributes

cc [flag…] file… -ltsoldb -ltsol -lnsl -lcmd [library…]

(obsolete)

The getuserent, setuserent, enduserent, getuserentbyname,
getuserentbyuid, and free_userent functions are replaced in Trusted Solaris 8
and later releases with the functions described in the getuserattr(3SECDB) man
page. These functions find user security attributes in user_attr(4).

enduserent(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

304 man pages section 3: Library Functions • Last Revised 16 Jun 2000

getutent, getutid, getutline, pututline, setutent, endutent, utmpname – Access utmp
file entry

#include <utmp.h>

struct utmp *getutent(void);

struct utmp *getutid(const struct utmp *id);

struct utmp *getutline(const struct utmp *line);

struct utmp *pututline(const struct utmp *utmp);

void setutent(void);

void endutent(void);

int utmpname(const char *file);

The getutent(), getutid(), getutline(), and pututline() functions each
return a pointer to a utmp structure with the following members:

char ut_user[8]; /* user login name */
char ut_id[4]; /* /sbin/inittab id (usually line #) */
char ut_line[12]; /* device name (console, lnxx) */
short ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */

time_t ut_time; /* time entry was made */

The structure exit_status includes the following members:

short e_termination; /* termination status */
short e_exit; /* exit status */

The getutent() function reads in the next entry from a utmp-like file. If the file is
not already open, it opens it. If it reaches the end of the file, it fails.

The getutid() function searches forward from the current point in the utmp file
until it finds an entry with a ut_type matching id⇒ut_type if the type specified is
RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in id is
INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then
getutid() will return a pointer to the first entry whose type is one of these four and
whose ut_id member matches id⇒ut_id. If the end of file is reached without a
match, it fails.

The getutline() function searches forward from the current point in the utmp file
until it finds an entry of the type LOGIN_PROCESS or ut_line string matching the
line⇒ut_line string. If the end of file is reached without a match, it fails.

The pututline() function writes the supplied utmp structure into the utmp file. It
uses getutid() to search forward for the proper place if it finds that it is not already

endutent(3C)

NAME

SYNOPSIS

DESCRIPTION

getutent()

getutid()

getutline()

pututline()

Introduction to Library Functions 305

at the proper place. It is expected that normally the user of pututline() will have
searched for the proper entry using one of the these functions. If so, pututline()
will not search. If pututline() does not find a matching slot for the new entry, it
will add a new entry to the end of the file. It returns a pointer to the utmp structure.

When called by a process that does not have an effective uid of 0 and a sensitivity
label of ADMIN_LOW, pututline() invokes a program (that has the appropriate
forced privileges) to verify and write the entry, since /etc/utmpx is normally
writable only by a process with a UID of 0 and a sensitivity label of ADMIN_LOW. In
this event, the ut_name member must correspond to the actual user name associated
with the process; the ut_type member must be either USER_PROCESS or
DEAD_PROCESS; and the ut_line member must be a device special file and be
writable by the user. If the process does not have the PAF_TRUSTED_PATH process
attribute, all other fields in the entry are cleared.

The setutent() function resets the input stream to the beginning of the file. This
reset should be done before each search for a new entry if it is desired that the entire
file be examined.

The endutent() function closes the currently open file.

The utmpname() function allows the user to change the name of the file examined,
from /var/adm/utmp to any other file. It is most often expected that this other file
will be /var/adm/wtmp. If the file does not exist, this will not be apparent until the
first attempt to reference the file is made. The utmpname() function does not open the
file but closes the old file if it is currently open and saves the new file name.

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write. If the file name given is longer than 79
characters, utmpname() returns 0. Otherwise, it returns 1.

These functions use buffered standard I/O for input, but pututline() uses an
unbuffered non-standard write to avoid race conditions between processes trying to
modify the utmp and wtmp files.

Applications should not access the utmp and wtmp databases directly, but should use
these functions to ensure that these databases are maintained consistently. Using these
functions, however, may cause applications to fail if user accounting data cannot be
represented properly in the utmp structure (for example, on a system where PIDs can
exceed 32767). Use the functions described on the getutxent(3C) manual page
instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

endutent(3C)

setutent()

endutent()

utmpname()

RETURN VALUES

USAGE

ATTRIBUTES

306 man pages section 3: Library Functions • Last Revised 16 Oct 1997

pututline() invokes a program with appropriate forced privileges to verify and
write the utmpx structure. pututline() clears fields in an entry if the process does
not have the PAF_TRUSTED_PATH process attribute.

ttyslot(3C), utmp(4), utmpx(4), attributes(5)

The most current entry is saved in a static structure. Multiple accesses require that it
be copied before further accesses are made. On each call to either getutid() or
getutline(), the function examines the static structure before performing more I/O.
If the contents of the static structure match what it is searching for, it looks no further.
For this reason, to use getutline() to search for multiple occurrences, it would be
necessary to zero out the static area after each success, or getutline() would just
return the same structure over and over again. There is one exception to the rule about
emptying the structure before further reads are done. The implicit read done by
pututline() (if it finds that it is not already at the correct place in the file) will not
hurt the contents of the static structure returned by the getutent(), getutid() or
getutline() functions, if the user has just modified those contents and passed the
pointer back to pututline().

endutent(3C)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

SunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 307

getutxent, getutxid, getutxline, pututxline, setutxent, endutxent, utmpxname,
getutmp, getutmpx, updwtmp, updwtmpx – User accounting database functions

#include <utmpx.h>

struct utmpx *getutxent(void);

struct utmpx *getutxid(const struct utmpx *id);

struct utmpx *getutxline(const struct utmpx *line);

struct utmpx *pututxline(const struct utmpx *utmpx);

void setutxent(void);

void endutxent(void);

int utmpxname(const char *file);

void getutmp(struct utmpx *utmpx, struct utmp *utmp);

void getutmpx(struct utmp *utmp, struct utmpx *utmpx);

void updwtmp(char *wfile, struct utmp *utmp);

void updwtmpx(char *wfilex, struct utmpx *utmpx);

These functions provide access to the user accounting database, utmpx (see utmpx(4)).
Entries in the database are described by the definitions and data structures in
<utmpx.h>.

char ut_user[32]; /* user login name */
char ut_id[4]; /* /etc/inittab id (usually line #) */
char ut_line[32]; /* device name (console, lnxx) */
pid_t ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */
struct timeval ut_tv; /* time entry was made */
long ut_session; /* session ID, used for windowing */
long pad[5]; /* reserved for future use */
short ut_syslen; /* significant length of ut_host */

/* including terminating null */

char ut_host[257]; /* host name, if remote */

The structure exit status includes the following members:

short e_termination; /* termination status */

short e_exit; /* exit status */

The getutxent() function reads in the next entry from a utmpx database. If the
database is not already open, it opens it. If it reaches the end of the database, it fails.

The getutxid() function searches forward from the current point in the utmpx
database until it finds an entry with a ut_type matching id⇒ut_type, if the type
specified is RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in

endutxent(3C)

NAME

SYNOPSIS

DESCRIPTION

getutxent()

getutxid()

308 man pages section 3: Library Functions • Last Revised 6 Oct 1999

id is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then
getutxid() will return a pointer to the first entry whose type is one of these four
and whose ut_id member matches id⇒ut_id. If the end of database is reached
without a match, it fails.

The getutxline() function searches forward from the current point in the utmpx
database until it finds an entry of the type LOGIN_PROCESS or USER_PROCESS which
also has a ut_line string matching the line⇒ut_line string. If the end of the database
is reached without a match, it fails.

The pututxline() function writes the supplied utmpx structure into the utmpx file.
It uses getutxid() to search forward for the proper place if it finds that it is not
already at the proper place. It is expected that normally the user of pututxline()
will have searched for the proper entry using one of the getutx() routines. If so,
pututxline() will not search. If pututxline() does not find a matching slot for
the new entry, it will add a new entry to the end of the database. It returns a pointer to
the utmpx structure.

When called by a process that does not have an effective uid of 0 and a sensitivity
label of ADMIN_LOW, pututxline() invokes a program (that has the appropriate
forced privileges) to verify and write the entry, since /etc/utmpx is normally
writable only by a process with a UID of 0 and a sensitivity label of ADMIN_LOW. In
this event, the ut_name member must correspond to the actual user name associated
with the process; the ut_type member must be either USER_PROCESS or
DEAD_PROCESS; and the ut_line member must be a device special file and be
writable by the user. If the process does not have the PAF_TRUSTED_PATH process
attribute, all other fields in the entry are cleared.

The setutxent() function resets the input stream to the beginning. This should be
done before each search for a new entry if it is desired that the entire database be
examined.

The endutxent() function closes the currently open database.

The utmpxname() function allows the user to change the name of the database file
examined from /var/adm/utmpx to any other file, most often /var/adm/wtmpx. If
the file does not exist, this will not be apparent until the first attempt to reference the
file is made. The utmpxname() function does not open the file, but closes the old file
if it is currently open and saves the new file name. The new file name must end with
the “x” character to allow the name of the corresponding utmp file to be easily
obtainable.; otherwise, an error value of 0 is returned. The function returns 1 on
success.

The getutmp() function copies the information stored in the members of the utmpx
structure to the corresponding members of the utmp structure. If the information in
any member of utmpx does not fit in the corresponding utmp member, the data is
silently truncated. (See getutent(3C) for utmp structure)

endutxent(3C)

getutxline()

pututxline()

setutxent()

endutxent()

utmpxname()

getutmp()

Introduction to Library Functions 309

The getutmpx() function copies the information stored in the members of the utmp
structure to the corresponding members of the utmpx structure. (See getutent(3C)
for utmp structure)

The updwtmp() function can be used in two ways.

If wfile is /var/adm/wtmp, the utmp format record supplied by the caller is converted
to a utmpx format record and the /var/adm/wtmpx file is updated (because the
/var/adm/wtmp file no longer exists, operations on wtmp are converted to operations
on wtmpx by the library functions.

If wfile is a file other than /var/adm/wtmp, it is assumed to be an old file in utmp
format and is updated directly with the utmp format record supplied by the caller.

The updwtmpx() function writes the contents of the utmpx structure pointed to by
utmpx to the database.

The values of the e_termination and e_exit members of the ut_exit structure
are valid only for records of type DEAD_PROCESS. For utmpx entries created by
init(1M), these values are set according to the result of the wait() call that init
performs on the process when the process exits. See the wait(2) manual page for the
values init uses. Applications creating utmpx entries can set ut_exit values using
the following code example:

u->ut_exit.e_termination = WTERMSIG(process->p_exit)
u->ut_exit.e_exit = WEXITSTATUS(process->p_exit)

See wstat(3XFN) for descriptions of the WTERMSIG and WEXITSTATUS macros.

The ut_session member is not acted upon by the operating system. It is used by
applications interested in creating utmpx entries.

For records of type USER_PROCESS, the nonuser() and nonuserx() macros use the
value of the ut_exit.e_exit member to mark utmpx entries as real logins (as
opposed to multiple xterms started by the same user on a window system). This
allows the system utilities that display users to obtain an accurate indication of the
number of actual users, while still permitting each pty to have a utmpx record (as
most applications expect.). The NONROOT_USER macro defines the value that login
places in the ut_exit.e_exit member.

Upon successful completion, getutxent(), getutxid(), and getutxline() each
return a pointer to a utmpx structure containing a copy of the requested entry in the
user accounting database. Otherwise a null pointer is returned.

The return value may point to a static area which is overwritten by a subsequent call
to getutxid () or getutxline().

Upon successful completion, pututxline() returns a pointer to a utmpx structure
containing a copy of the entry added to the user accounting database. Otherwise a null
pointer is returned.

endutxent(3C)

getutmpx()

updwtmp()

updwtmpx()

utmpx
structure

RETURN VALUES

310 man pages section 3: Library Functions • Last Revised 6 Oct 1999

The endutxent() and setutxent() functions return no value.

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write.

These functions use buffered standard I/O for input, but pututxline() uses an
unbuffered write to avoid race conditions between processes trying to modify the
utmpx and wtmpx files.

Applications should not access the utmpx and wtmpx databases directly, but should
use these functions to ensure that these databases are maintained consistently.

/var/adm/utmpx User access and accounting information

/var/adm/wtmpx History of user access and accounting information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

pututxline() invokes a program with appropriate forced privileges to verify and
write the utmpx structure. pututxline clears fields in an entry if the process does
not have the PAF_TRUSTED_PATH process attribute

getutent(3C)

wait(2), ttyslot(3C), utmpx(4), attributes(5), wstat(3XFN)

The most current entry is saved in a static structure. Multiple accesses require that it
be copied before further accesses are made. On each call to either getutxid() or
getutxline(), the routine examines the static structure before performing more
I/O. If the contents of the static structure match what it is searching for, it looks no
further. For this reason, to use getutxline() to search for multiple occurrences it
would be necessary to zero out the static after each success, or getutxline() would
just return the same structure over and over again. There is one exception to the rule
about emptying the structure before further reads are done. The implicit read done by
pututxline() (if it finds that it is not already at the correct place in the file) will not
hurt the contents of the static structure returned by the getutxent(), getutxid(),
or getutxline() routines, if the user has just modified those contents and passed
the pointer back to pututxline().

endutxent(3C)

USAGE

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 311

resolver, res_ninit, fp_resstat, res_npquery, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

void res_npquery(const res_state statp, const u_char *msg, int
msglen, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int
type, u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
*domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
*answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg, int msglen,
ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
**dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

fp_resstat(3RESOLV)

NAME

BIND 8.2.2
Interfaces

Deprecated
Interfaces

312 man pages section 3: Library Functions • Last Revised 1 Feb 2001

int res_initvoid););

int res_query(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_mkquery(int op, const char *dname, int class, int type, const
char *data, int datalen, struct rrec *newrr, u_char *buf, int
buflen);

int res_send(const u_char *msg, int msglen, u_char *answer, int
anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply
messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions.
Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(),
res_send(), and herror() are deprecated. They are supplied for backwards
compatability. They use global configuration and state information that is kept in the
structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first
call to res_ninit() or res_init() and can be ignored. Options stored in
statp->options or _res.options are defined in <resolv.h>. They are stored as
a simple bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default
domain name are initialized, that is, res_init() or
res_ninit() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() will continue until it finds an
authoritative answer or finds an error. Currently this
option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open
between queries. This is a useful option for programs
that regularly do many queries. The normal mode used
should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

fp_resstat(3RESOLV)

DESCRIPTION

Introduction to Library Functions 313

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. res_send() and res_nsend() do not do
iterative queries and expect the name server to handle
recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append
the default domain name to single-component names,
that is, names that do not contain a dot. This option is
enabled by default.

RES_DNSRCH If this option is set, res_search() and
res_nsearch() search for host names in the current
domain and in parent domains. See hostname(1). This
option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by
default.

RES_NOALIASES This option turns off the user level aliasing feature
controlled by the HOSTALIASES environment variable.
Network daemons should set this option.

RES_ROTATE This option causes res_nsend() and res_send() to
rotate the list of nameservers in
statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the
message unchanged after TSIG verification. Otherwise
the TSIG record would be removed and the header
would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is
present, to get the default domain name, search list and the Internet address of the
local name server(s). See resolv.conf(4). If no server is configured, res_init() or
res_ninit() will try to obtain name resolution services from the host on which it is
running. The current domain name is defined by domainname(1M), or by the
hostname if it is not specified in the configuration file. Use the environment variable
LOCALDOMAIN to override the domain name. This environment variable may contain
several blank-separated tokens if you wish to override the search list on a per-process
basis. This is similar to the search command in the configuration file. You can set the
RES_OPTIONS environment variable to override certain internal resolver options. You
can otherwise set them by changing fields in the statp /_res structure.
Alternatively, they are inherited from the configuration file’s options command. See
resolv.conf(4) for information regarding the syntax of the RES_OPTIONS
environment variable. Initialization normally occurs on the first call to one of the other
resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server
query mechanism. They construct a query, send it to the local server, await a response,
and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply

fp_resstat(3RESOLV)

res_ninit, res_init

res_nquery,
res_query

314 man pages section 3: Library Functions • Last Revised 1 Feb 2001

message is left in the answer buffer with length anslen supplied by the caller.
res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a
response, just like like res_nquery() and res_query(). In addition, they
implement the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. They return the length of the first successful reply which is
stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The
res_nmkquery() and res_mkquery() functions construct a standard query
message and place it in buf. The routine returns the size of the query, or -1 if the query
is larger than buflen. The query type op is usually QUERY, but can be any of the query
types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a
preformatted query that returns an answer. The routine calls res_ninit() or
res_init(). If RES_INIT is not set, the routine sends the query to the local name
server and handles timeouts and retries. Additionally, the res_nsendsigned() uses
TSIG signatures to add authentication to the query and verify the response. In this
case, only one name server will be contacted. The routines return the length of the
reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query
may be larger still], so it is recommended that you supply a buf larger than the answer
returned by the previous query. answer must be large enough to receive a maximum
UDP response from the server or parts of the answer will be silently discarded. The
default maximum UDP response size is 512 bytes.

The res_npquery() function prints out the query and any answer in msg on fp.

The fp_resstat() function prints out the active flag bits in statp->options preceded
by the text ";; res options:" on file.

fp_resstat(3RESOLV)

res_nsearch,
res_search

res_nmkquery,
res_mkquery

res_nsend,
res_send,

res_nsendsigned

res_npquery

fp_resstat

Introduction to Library Functions 315

The res_hostalias() function looks up name in the file referred to by the
HOSTALIASES environment variable and returns the fully qualified host name. If name
is not found or an error occurs, NULL is returned. res_hostalias() stores the result
in buf.

The res_nclose() function closes any open files referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. dn_comp() returns the size of the compressed name, or −1 if there were
errors. length is the size of the array pointed to by comp_dn.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in
the current message. The first pointer must point to the beginning of the message. The
list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted
into the message by dn_comp() as the name is compressed. If dnptrs is NULL, names
are not compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name. The compressed name is contained in a query or reply message. msg is
a pointer to the beginning of that message. The uncompressed name is placed in the
buffer indicated by exp_dn, which is of size length.dn_expand() returns the size of the
compressed name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are
set whenever an error occurs during a resolver operation. The following definitions
are given in <netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the
string parameters, the constant string ": ", and a message corresponding to the value
of h_errno.

The hstrerror() function returns a string, which is the message text that
corresponds to the value of the err parameter.

/etc/resolv.conf Resolver configuration file

See attributes(5) for descriptions of the following attributes:

fp_resstat(3RESOLV)

res_hostalias

res_nclose

dn_comp

dn_expand

hstrerror, herror

FILES

ATTRIBUTES

316 man pages section 3: Library Functions • Last Revised 1 Feb 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard BIND 8.2.2

MT-Level Unsafe for Deprecated Interfaces; MT-Safe for
all others.

If the query is sent to a name server on a non-trusted host, then the functions
res_nsend(), res_send(), res_nsearch(), and res_search() can
communicate with the name server if its host’s default sensitivity label matches the
sensitivity label of the process issuing the call. If the calling process is run with the
PRIV_NET_UPGRADE_SL, PRIV_NET_DOWNGRADE_SL, and PRIV_NET_MAC_READ
privileges, then the functions res_nsend(), res_send(), res_nsearch(), and
res_search() can communicate with the name server regardless of the sensitivity
label of the non-trusted host where the name server resides.

in.named(1M), resolv.conf(4)

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), attributes(5)

Lottor, M., Domain Administrators Operators Guide, RFC 1033, SRI International, Menlo
Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information
Center, SRI International, Menlo Park, Calif., January 1986. Stahl, M., Domain
Administrators Guide, RFC 1032, SRI International, Menlo Park, Calif., November 1987.

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte
boundary. Otherwise, an error such as a SIGBUS may result.

fp_resstat(3RESOLV)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 317

getauthattr, getauthnam, free_authattr, setauthattr, endauthattr, chkauthattr – get
authorization entry

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]
#include <auth_attr.h>

#include <secdb.h>

authattr_t *getauthattr(void);

authattr_t *getauthnam(const char *name);

void free_authattr(authattr_t *auth);

void setauthattr(void);

void endauthattr(void);

int chkauthattr(const char *authname, const char *username);

The getauthattr() and getauthnam() functions each return an auth_attr(4)
entry. Entries can come from any of the sources specified in the nsswitch.conf(4)
file.

The getauthattr() function enumerates auth_attr entries. The getauthnam()
function searches for an auth_attr entry with a given authorization name name.
Successive calls to these functions return either successive auth_attr entries or
NULL.

Th internal representation of an auth_attr entry is an authattr_t structure
defined in <auth_attr.h> with the following members:

char *name; /* name of the authorization */
char *res1; /* reserved for future use */
char *res2; /* reserved for future use */
char *short_desc; /* short description */
char *long_desc; /* long description */

kva_t *attr; /* array of key-value pair attributes */

The setauthattr() function “rewinds” to the beginning of the enumeration of
auth_attr entries. Calls to getauthnam() can leave the enumeration in an
indeterminate state. Therefore, setauthattr() should be called before the first call
to getauthattr().

The endauthattr() function may be called to indicate that auth_attr processing
is complete; the system may then close any open auth_attr file, deallocate storage,
and so forth.

The chkauthattr() function verifies whether or not a user has a given
authorization. It first reads the AUTHS_GRANTED key in the
/etc/security/policy.conf file and returns 1 if it finds a match for the given
authorization. If chkauthattr() does not find a match, it reads the
PROFS_GRANTED key in /etc/security/policy.conf and returns 1 if the given
authorization is in any profiles specified with the PROFS_GRANTED keyword. If a

free_authattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

318 man pages section 3: Library Functions • Last Revised 4 May 2000

match is not found from the default authorizations and default profiles,
chkauthattr() reads the user_attr(4) database. If it does not find a match in
user_attr, it reads the prof_attr(4) database, using the list of profiles assigned to
the user, and checks if any of the profiles assigned to the user has the given
authorization. The chkauthattr() function returns 0 if it does not find a match in
any of the three sources.

A user is considered to have been assigned an authorization if either of the following
are true:

� The authorization name matches exactly any authorization assigned in the
user_attr or prof_attr databases (authorization names are case-sensitive).

� The authorization name suffix is not the keyword grant and the authorization
name matches any authorization up to the asterisk (*) character assigned in the
user_attr or prof_attr databases.

The examples in the following table illustrate the conditions under which a user is
assigned an authorization.

/etc/security/policy.conf or Is user

Authorization name user_attr or prof_attr entry authorized?

solaris.printer.postscript solaris.printer.postscript Yes

solaris.printer.postscript solaris.printer.* Yes

solaris.printer.grant solaris.printer.* No

The free_authattr() function releases memory allocated by the getauthnam()
and getauthattr() functions.

The getauthattr() function returns a pointer to an authattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getauthnam() function returns a pointer to an authattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

The chkauthattr() function returns 1 if the user is authorized and 0 otherwise.

The getauthattr() and getauthnam() functions both allocate memory for the
pointers they return. This memory should be de-allocated with the
free_authattr() call.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

free_authattr(3SECDB)

RETURN VALUES

USAGE

Introduction to Library Functions 319

Individual attributes in the attr structure can be referred to by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, code must be written to ignore
unknown key-value pairs without error.

/etc/nsswitch.conf configuration file lookup information for
the name server switch

/etc/user_attr extended user attributes

/etc/security/auth_attr authorization attributes

/etc/security/policy.conf policy definitions

/etc/security/prof_attr profile information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

The Trusted Solaris environment adds authorizations. The chkauthattr() function
replaces the Trusted Solaris 7 chkauth() function.

nsswitch.conf(4), prof_attr(4), user_attr(4)

getexecattr(3SECDB), getprofattr(3SECDB), getuserattr(3SECDB),
kva_match(3SECDB), auth_attr(4), attributes(5), rbac(5)

free_authattr(3SECDB)

WARNINGS

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

320 man pages section 3: Library Functions • Last Revised 4 May 2000

auth_to_str, str_to_auth, auth_set_to_str, str_to_auth_set, free_auth_set, get_auth_text
– translate and verify user authorizations

cc [flag…] file… -ltsol -ltsoldb -lcmd -lnsl [library…]

(obsolete)

These functions are obsolete. Authorizations in Trusted Solaris 8 and later releases do
not need translation. See getauthattr(3SECDB) for how to search auth_attr(4)
entries.

free_auth_set(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 321

getexecattr, free_execattr, setexecattr, endexecattr, getexecuser, getexecprof,
match_execattr – get execution profile entry

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]
#include <exec_attr.h>

#include <secdb.h>

execattr_t *getexecattr(void);

void free_execattr(execattr_t *ep);

void setexecattr(void);

void endexecattr(void);

execattr_t *getexecuser(const char *username, const char *type,
const char *id, int search_flag);

execattr_t *getexecprof(const char *profname, const char *type,
const char *id, int search_flag);

execattr_t *match_execattr(execattr_t *ep, char *profname, char
*type, char *id);

The getexecattr() function returns a single exec_attr entry. Entries can come
from any of the sources specified in the nsswitch.conf(4) file.

Successive calls to getexecattr() return either successive exec_attr entries or
NULL. Because getexecattr() always returns a single entry, the next pointer in the
execattr_t data structure points to NULL.

The internal representation of an exec_attr entry is an execattr_t structure
defined in <exec_attr.h> with the following members:

char name; /* name of the profile */
char type; /* type of profile */
char policy; /* policy under which the attributes are */

/* relevant*/
char res1; /* reserved for future use */
char res2; /* reserved for future use */
char id; /* unique identifier */
kva_t attr; /* attributes */

struct execattr_s next; /* optional pointer to next profile */

The free_execattr() function releases memory. It follows the next pointers in the
execattr_t structure so that the entire linked list is released.

The setexecattr() function “rewinds” to the beginning of the enumeration of
exec_attr entries. Calls to getexecuser() can leave the enumeration in an
indeterminate state. Therefore, setexecattr() should be called before the first call
to getexecattr().

free_execattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

322 man pages section 3: Library Functions • Last Revised 13 Mar 2000

The endexecattr() function can be called to indicate that exec_attr processing is
complete; the library can then close any open exec_attr file, deallocate any internal
storage, and so forth.

The getexecuser() function returns a linked list of entries filtered by the function’s
arguments. Only entries assigned to the specified username, as described in the
passwd(4) database, and containing the specified type and id, as described in the
exec_attr(4) database, are placed in the list. The getexecuser() function is
different from the other functions in its family because it spans two databases. It first
looks up the list of profiles assigned to a user in the user_attr database and the list
of default profiles in /etc/security/policy.conf, then looks up each profile in
the exec_attr database.

The getexecprof() function returns a linked list of entries that have components
matching the function’s arguments. Only entries in the database matching the
argument profname, as described in exec_attr, and containing the type and id, also
described in exec_attr, are placed in the list.

Using getexecuser() and getexecprof(), programmers can search for any type
argument, such as the manifest constant KV_COMMAND. The arguments are logically
AND-ed together so that only entries exactly matching all of the arguments are
returned. Wildcard matching applies if there is no exact match for an ID. Any
argument can be assigned the NULL value to indicate that it is not used as part of the
matching criteria. The search_flag controls whether the function returns the first match
(GET_ONE), setting the next pointer to NULL or all matching entries (GET_ALL), using
the next pointer to create a linked list of all entries that meet the search criteria. See
EXAMPLES.

Once a list of entries is returned by getexecuser() or getexecprof(), the
convenience function match_execattr() can be used to identify an individual
entry. It returns a pointer to the individual element with the same profile name (
profname), type name (type), and id. Function parameters set to NULL are not used as
part of the matching criteria. In the event that multiple entries meet the matching
criteria, only a pointer to the first entry is returned. The kva_match(3SECDB)
function can be used to look up a key in a key-value array.

Those functions returning data only return data related to the active policy. The
getexecattr() function returns a pointer to a execattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getexecattr(), getexecuser(), and getexecprof() functions all allocate
memory for the pointers they return. This memory should be deallocated with the
free_execattr() call. The match_execattr()(function does not allocate any
memory. Therefore, pointers returned by this function should not be deallocated.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and

free_execattr(3SECDB)

RETURN VALUES

USAGE

Introduction to Library Functions 323

linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

Individual attributes may be referenced in the attr structure by calling the
kva_match(3SECDB) function.

EXAMPLE 1 The following finds all profiles that have the ping command.

if ((execprof=getexecprof(NULL, KV_COMMAND, "/usr/sbin/ping",
GET_ONE)) == NULL) {

/* do error */

}

EXAMPLE 2 The following finds the entry for the ping command in the Network
Administration Profile.

if ((execprof=getexecprof("Network Administration", KV_COMMAND,
"/usr/sbin/ping", GET_ALL))==NULL) {

/* do error */

}

EXAMPLE 3 The following tells everything that can be done in the Filesystem Security profile.

if ((execprof=getexecprof("Filesystem Security", KV_NULL, NULL,
GET_ALL))==NULL)) {

/* do error */

}

EXAMPLE 4 The following tells if the tar command is in a profile assigned to user wetmore.
If there is no exact profile entry, the wildcard (*), if defined, is returned.

if ((execprof=getexecuser("wetmore", KV_COMMAND, "/usr/bin/tar",
GET_ONE))==NULL) {

/* do error */

}

/etc/nsswitch.conf configuration file lookup information for
the name server switch

/etc/user_attr extended user attributes

/etc/security/exec_attr execution profiles

/etc/security/policy.conf policy definitions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

free_execattr(3SECDB)

EXAMPLES

FILES

ATTRIBUTES

324 man pages section 3: Library Functions • Last Revised 13 Mar 2000

getauthattr(3SECDB), getuserattr(3SECDB), kva_match(3SECDB),
exec_attr(4), policy.conf(4), user_attr(4), attributes(5)

free_execattr(3SECDB)

SEE ALSO

Introduction to Library Functions 325

getprofattr, getprofnam, free_profattr, setprofattr, endprofattr, getproflist, free_proflist
– get profile description and attributes

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]

#include <prof.h>

profattr_t *getprofattr(void);

profattr_t *getprofnam(const char *name);

void free_profattr(profattr_t *pd);

void setprofattr(void);

void endprofattr(void);

void getproflist(const char *profname, char **proflist, int *profcnt);

void free_proflist(char **proflist, int profcnt);

The getprofattr() and getprofnam() functions each return a prof_attr entry.
Entries can come from any of the sources specified in the nsswitch.conf(4) file.

The getprofattr() function enumerates prof_attr entries. The getprofnam()
function searches for a prof_attr entry with a given name. Successive calls to these
functions return either successive prof_attr entries or NULL.

The internal representation of a prof_attr entry is a profattr_t structure defined
in <prof_attr.h> with the following members:

char name; /* Name of the profile */
char res1; /* Reserved for future use */
char res2; /* Reserved for future use */
char desc; /* Description/Purpose of the profile */

kva_t attr; /* Profile attributes */

The free_profattr() function releases memory allocated by the getprofattr()
and getprofnam() functions.

The setprofattr() function “rewinds” to the beginning of the enumeration of
prof_attr entries. Calls to getprofnam() can leave the enumeration in an
indeterminate state. Therefore, setprofattr() should be called before the first call
to getprofattr().

The endprofattr() function may be called to indicate that prof_attr processing
is complete; the system may then close any open prof_attr file, deallocate storage,
and so forth.

The getproflist() function searches for the list of sub-profiles found in the given
profname and allocates memory to store this list in proflist. The given profname will be
included in the list of sub-profiles. The profcnt argument indicates the number of items
currently valid in proflist. Memory allocated by getproflist() should be freed
using the free_proflist() function.

free_profattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

326 man pages section 3: Library Functions • Last Revised 13 Mar 2000

The free_proflist() function frees memory allocated by the getproflist()
function. The profcnt argument specifies the number of items to free from the proflist
argument.

The getprofattr() function returns a pointer to a profattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getprofnam() function returns a pointer to a profattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

Individual attributes in the prof_attr_t structure can be referred to by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, any code must be written to ignore
unknown key-value pairs without error.

The getprofattr() and getprofnam() functions both allocate memory for the
pointers they return. This memory should be deallocated with the free_profattr()
function.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

/etc/security/prof_attr profiles and their descriptions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

auths(1), profiles(1), getexecattr(3SECDB), getauthattr(3SECDB),
prof_attr(4)

free_profattr(3SECDB)

RETURN VALUES

USAGE

FILES

ATTRIBUTES

SEE ALSO

Introduction to Library Functions 327

getprofent, setprofent, endprofent, getprofentbyname, free_profent – Get user profile
description

cc [flag…] file… -ltsol -ltsoldb -lcmd -lnsl [library…]

(obsolete)

The getprofent, setprofent, endprofent, getprofentbyname, and
free_profent functions are replaced in Trusted Solaris 8 and later releases with the
functions described in the getprofattr(3SECDB) and getexecattr(3SECDB) man
pages. These functions find rights profiles information in prof_attr(4) and
exec_attr(4).

free_profent(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

328 man pages section 3: Library Functions • Last Revised 16 Jun 2000

getprofstr, putprofstr, setprofstr, endprofstr, getprofstrbyname, free_profstr – Get user
profile description

cc [flag…] file… -ltsol -ltsoldb -lcmd -lnsl [library…]

(obsolete)

The getprofstr, putprofstr, setprofstr, endprofstr, getprofstrbyname,
and free_profstr functions are replaced in Trusted Solaris 8 and later releases with
the functions described in the getprofattr(3SECDB) and getexecattr(3SECDB)
man pages. These functions find rights profiles information in prof_attr(4) and
exec_attr(4).

free_profstr(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 329

getuserattr, getusernam, getuseruid, free_userattr, setuserattr, enduserattr – get
user_attr entry

cc [flag...] file...– lsecdb – lsocket – lnsl – lintl [library...]

#include <user_attr.h>

userattr_t *getuserattr(void);

userattr_t *getusernam(const char *name);

userattr_t *getuseruid(uid_t uid);

void free_userattr(userattr_t *userattr);

void setuserattr(void);

void enduserattr(void);

The getuserattr(), getusernam(), and getuseruid() functions each return a
user_attr(4) entry. Entries can come from any of the sources specified in the
nsswitch.conf(4) file. The getuserattr() function enumerates user_attr
entries. The getusernam() function searches for a user_attr entry with a given
user name name. The getuseruid() function searches for a user_attr entry with a
given user id uid. Successive calls to these functions return either successive
user_attr entries or NULL.

The free_userattr() function releases memory allocated by the getusernam()
and getuserattr() functions.

The internal representation of a user_attr entry is a userattr_t structure defined
in <user_attr.h> with the following members:

char name; /* name of the user */
char qualifier; /* reserved for future use */
char res1; /* reserved for future use */
char res2; /* reserved for future use */

kva_t attr; /* list of attributes */

The setuserattr() function “rewinds” to the beginning of the enumeration of
user_attr entries. Calls to getusernam() may leave the enumeration in an
indeterminate state, so setuserattr() should be called before the first call to
getuserattr().

The enduserattr() function may be called to indicate that user_attr processing
is complete; the library may then close any open user_attr file, deallocate any
internal storage, and so forth.

The getuserattr() function returns a pointer to a userattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getusernam() function returns a pointer to a userattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

free_userattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

330 man pages section 3: Library Functions • Last Revised 12 Aug 1999

The getuserattr() and getusernam() functions both allocate memory for the
pointers they return. This memory should be deallocated with the free_userattr()
function.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

Individual attributes may be referenced in the attr structure by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, code must be written to ignore
unknown key-value pairs without error.

/etc/user_attr extended user attributes

/etc/nsswitch.conf configuration file lookup information for
the name server switch

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getauthattr(3SECDB), getexecattr(3SECDB), getprofattr(3SECDB),
user_attr(4), attributes(5)

free_userattr(3SECDB)

USAGE

WARININGS

FILES

ATTRIBUTES

SEE ALSO

Introduction to Library Functions 331

getuserent, setuserent, enduserent, getuserentbyname, getuserentbyuid, free_userent –
Get user security attributes

cc [flag…] file… -ltsoldb -ltsol -lnsl -lcmd [library…]

(obsolete)

The getuserent, setuserent, enduserent, getuserentbyname,
getuserentbyuid, and free_userent functions are replaced in Trusted Solaris 8
and later releases with the functions described in the getuserattr(3SECDB) man
page. These functions find user security attributes in user_attr(4).

free_userent(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

332 man pages section 3: Library Functions • Last Revised 16 Jun 2000

ftw, nftw – Walk a file tree

#include <ftw.h>

int ftw(const char *path, int (*fn) (const char *, const struct stat
*, int), int depth);

int nftw(const char *path, int (*fn) (const char *, const struct
stat *, int, struct FTW*), int depth, int flags);

The ftw() function recursively descends the directory hierarchy rooted in path. For
each object in the hierarchy, ftw() calls the user-defined function fn, passing it a
pointer to a null-terminated character string containing the name of the object, a
pointer to a stat structure (see stat(2)) containing information about the object, and
an integer. Possible values of the integer, defined in the <ftw.h> header, are:

FTW_F The object is a file.

FTW_D The object is a directory.

FTW_DNR The object is a directory that cannot be read. Descendants of the
directory will not be processed.

FTW_NS The stat() function failed on the object because of lack of
appropriate permission or the object is a symbolic link that points
to a non-existent file. The stat buffer passed to fn is undefined.

The ftw() function visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn returns a
non-zero value, or some error is detected within ftw() (such as an I/O error). If the
tree is exhausted, ftw() returns 0. If fn returns a non-zero value, ftw() stops its tree
traversal and returns whatever value was returned by fn.

The nftw() function recursively descends the directory hierarchy rooted in path. The
flags argument is used to control the tree walk and holds one of these values:

FTW_PHYS Physical walk, does not follow symbolic links. Otherwise, nftw()
will follow links but will not walk down any path that crosses
itself.

FTW_MOUNT The walk will not cross a mount point.

FTW_DEPTH All subdirectories will be visited before the directory itself.

FTW_CHDIR The walk will change to each directory before reading it.

FTW_TSOL_MLD In all multilevel directories (MLDs) encountered as nftw() walks
the tree, the walk will visit single-level directories (SLDs) that are
dominated by the sensitivity label of the process if the process is
run without privilege. If the effective privilege set of the process
includes the PRIV_FILE_MAC_READ and
PRIV_FILE_MAC_SEARCH privileges, the walk visits all SLDs in

ftw(3C)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 333

each MLD. The file system enforces all underlying DAC policies
and privilege interpretations.

If the FTW_TSOL_MLD flag is not specified and path points to an
adorned MLD, the walk traverses only the SLDs of this MLD. All
other MLDs encountered while walking down the tree are
automatically translated to the SLD at the sensitivity label of the
process even if the process is run with all privileges.

If the FTW_TSOL_MLD flag is not specified and path points to an
unadorned MLD, when the walk down the tree encounters this
and all other MLDs, then the function automatically translates to
the SLD at the sensitivity label of the process.

If the FTW_TSOL_MLD flag is not specified and path does not point
to an MLD, when the walk down the tree encounters any MLDs,
then the function automatically translates to the SLD at the
sensitivity label of the process even if the process is run with all
privileges.

The nftw() function calls fn with four arguments at each file and directory. The first
argument is the pathname of the object, the second is a pointer to the stat structure
(see stat(2)) containing information about the object, the third is an integer giving
additional information, and the fourth is a struct FTW that contains the following
members:

int base;
int level;

The base member is the offset into the pathname of the base name of the object. The
level member indicates the depth relative to the rest of the walk, where the root level
is zero.

The values of the third argument are as follows:

FTW_F The object is a file.

FTW_D The object is a directory.

FTW_DP The object is a directory and subdirectories have been visited.

FTW_SL The object is a symbolic link.

FTW_SLN The object is a symbolic link that points to a non-existent file.

FTW_DNR The object is a directory that cannot be read.]The user-defined
function fn will not be called for any of its descendants.

FTW_NS The stat() function failed on the object because of lack of
appropriate permission. The stat buffer passed to fn is undefined.
The stat() function failed for a reason other than lack of
appropriate permission. EACCES is considered an error and

ftw(3C)

334 man pages section 3: Library Functions • Last Revised 5 Oct 1999

nftw() will return −1.

The tree traversal continues until the tree is exhausted, an invocation of fn returns a
nonzero value, or some error (such as an I/O error) is detected within nftw(). If the
tree is exhausted, nftw() returns zero. If fn returns a nonzero value, nftw() stops its
tree traversal and returns whatever value fn returned.

Both ftw() and nftw() use one file descriptor for each level in the tree. The depth
argument limits the number of file descriptors so used. If depth is zero or negative, the
effect is the same as if it were 1. It must not be greater than the number of file
descriptors currently available for use. The ftw() function will run faster if depth is at
least as large as the number of levels in the tree. When ftw() and nftw() return,
they close any file descriptors they have opened; they do not close any file descriptors
that may have been opened by fn.

If the tree is exhausted, ftw() and nftw() return 0. If the function pointed to by fn
returns a non-zero value, ftw() and nftw() stop their tree traversal and return
whatever value was returned by the function pointed to by fn. If ftw() and nftw()
detect an error, they return −1 and set errno to indicate the error.

If ftw() and nftw() encounter an error other than EACCES (see FTW_DNR and
FTW_NS above), they return −1 and set errno to indicate the error. The external
variable errno may contain any error value that is possible when a directory is
opened or when one of the stat functions is executed on a directory or file.

The ftw() and nftw() functions will fail if:

ENAMETOOLONG The length of the path exceeds PATH_MAX, or a
pathname component is longer than NAME_MAX.

ENOENT A component of path does not name an existing file or
path is an empty string.

ENOTDIR A component of path is not a directory.

The ftw() function will fail if:

EACCES Search permission is denied for any component of path
or read permission is denied for path.

ELOOP Too many symbolic links were encountered.

The nftw() function will fail if:

EACCES Search permission is denied for any component of path
or read permission is denied for path, or fn() returns −1
and does not reset errno.

The ftw() and nftw() functions may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an
intermediate result whose length exceeds PATH_MAX.

ftw(3C)

RETURN VALUES

ERRORS

Introduction to Library Functions 335

The ftw() function may fail if:

EINVAL The value of the ndirs argument is invalid.

The nftw() function may fail if:

ELOOP Too many symbolic links were encountered in
resolving path.

EMFILE There are OPEN_MAX file descriptors currently open in
the calling process.

ENFILE Too many files are currently open in the system.

In addition, if the function pointed to by fn encounters system errors, errno may be
set accordingly.

Because ftw() is recursive, it is possible for it to terminate with a memory fault when
applied to very deep file structures.

The ftw() function uses malloc(3C) to allocate dynamic storage during its
operation. If ftw() is forcibly terminated, such as by longjmp(3C) being executed by
fn or an interrupt routine, ftw() will not have a chance to free that storage, so it will
remain permanently allocated. A safe way to handle interrupts is to store the fact that
an interrupt has occurred, and arrange to have fn return a non-zero value at its next
invocation.

The ftw() and nftw() functions have transitional interfaces for 64-bit file offsets. See
lf64(5).

The ftw() function is safe in multithreaded applications. The nftw() function is safe
in multithreaded applications when the FTW_CHDIR flag is not set.

There are two versions of nftw(). The Solaris version, which does not traverse
multilevel directories (MLDs), is located in libc; the Trusted Solaris version, which
traverses MLDs, is located in libtsol. To use the Trusted Solaris version of nftw(),
make sure that the application uses the version of nftw located in libtsol.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe with exceptions.

The libc versions of ftw() and nftw() are unchanged. The Trusted Solaris version
of nftw(), which has the additional flag FTW_TSOL_MLD, is available in libtsol.
You must be careful of the library sequence when linking.

stat(2)

ftw(3C)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual

336 man pages section 3: Library Functions • Last Revised 5 Oct 1999

longjmp(3C), malloc(3C), attributes(5), lf64(5)

ftw(3C)

SunOS 5.8
Reference Manual

Introduction to Library Functions 337

getacinfo, getacdir, getacflg, getacmin, getacna, setac, endac – Get audit control file
information

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <bsm/libbsm.h>

int getacdir(char *dir, int len);

int getacmin(int *min_val);

int getacflg(char *auditstring, int len);

int getacna(char *auditstring, int len);

void setac(void);

void endac(void);

When first called, getacdir() provides information about the first audit directory in
the audit_control file; thereafter, it returns the next directory in the file. Successive
calls list all the directories listed in audit_control(4). The parameter len specifies
the length of the buffer dir. On return, dir points to the directory entry.

getacmin() reads the minimum value from the audit_control file and returns the
value in min_val. The minimum value specifies how full the file system to which the
audit files are being written can get before the script audit_warn(1M) is invoked.

getacflg() reads the system audit value from the audit_control file and returns
the value in auditstring. The parameter len specifies the length of the buffer auditstring.

getacna() reads the system audit value for non-attributable audit events from the
audit_control file and returns the value in auditstring. The parameter len specifies
the length of the buffer auditstring. Non-attributable events are events that cannot be
attributed to an individual user. inetd(1M) and several other daemons record
non-attributable events.

Calling setac rewinds the audit_control file to allow repeated searches.

Calling endac closes the audit_control file when processing is complete.

/etc/security/audit_control Contains default parameters read by the
audit daemon, auditd(1M).

getacdir(), getacflg(), getacna() and getacmin() return:

0 on success.

−2 On failure and set errno to indicate the error.

getacmin() and getacflg() return:

1 On EOF.

getacdir() returns:

getacdir(3BSM)

NAME

SYNOPSIS

DESCRIPTION

FILES

RETURN VALUES

338 man pages section 3: Library Functions • Last Revised 5 May 1998

−1 on EOF.

2 if the directory search had to start from the beginning because one of the
other functions was called between calls to getacdir().

These functions return:

−3 If the directory entry format in the audit_control file is incorrect.

getacdir(), getacflg() and getacna() return:

−3 If the input buffer is too short to accommodate the record.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

audit_warn(1M), inetd(1M), audit_control(4)

attributes(5)

getacdir(3BSM)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

Introduction to Library Functions 339

getacinfo, getacdir, getacflg, getacmin, getacna, setac, endac – Get audit control file
information

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <bsm/libbsm.h>

int getacdir(char *dir, int len);

int getacmin(int *min_val);

int getacflg(char *auditstring, int len);

int getacna(char *auditstring, int len);

void setac(void);

void endac(void);

When first called, getacdir() provides information about the first audit directory in
the audit_control file; thereafter, it returns the next directory in the file. Successive
calls list all the directories listed in audit_control(4). The parameter len specifies
the length of the buffer dir. On return, dir points to the directory entry.

getacmin() reads the minimum value from the audit_control file and returns the
value in min_val. The minimum value specifies how full the file system to which the
audit files are being written can get before the script audit_warn(1M) is invoked.

getacflg() reads the system audit value from the audit_control file and returns
the value in auditstring. The parameter len specifies the length of the buffer auditstring.

getacna() reads the system audit value for non-attributable audit events from the
audit_control file and returns the value in auditstring. The parameter len specifies
the length of the buffer auditstring. Non-attributable events are events that cannot be
attributed to an individual user. inetd(1M) and several other daemons record
non-attributable events.

Calling setac rewinds the audit_control file to allow repeated searches.

Calling endac closes the audit_control file when processing is complete.

/etc/security/audit_control Contains default parameters read by the
audit daemon, auditd(1M).

getacdir(), getacflg(), getacna() and getacmin() return:

0 on success.

−2 On failure and set errno to indicate the error.

getacmin() and getacflg() return:

1 On EOF.

getacdir() returns:

getacflg(3BSM)

NAME

SYNOPSIS

DESCRIPTION

FILES

RETURN VALUES

340 man pages section 3: Library Functions • Last Revised 5 May 1998

−1 on EOF.

2 if the directory search had to start from the beginning because one of the
other functions was called between calls to getacdir().

These functions return:

−3 If the directory entry format in the audit_control file is incorrect.

getacdir(), getacflg() and getacna() return:

−3 If the input buffer is too short to accommodate the record.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

audit_warn(1M), inetd(1M), audit_control(4)

attributes(5)

getacflg(3BSM)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

Introduction to Library Functions 341

getacinfo, getacdir, getacflg, getacmin, getacna, setac, endac – Get audit control file
information

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <bsm/libbsm.h>

int getacdir(char *dir, int len);

int getacmin(int *min_val);

int getacflg(char *auditstring, int len);

int getacna(char *auditstring, int len);

void setac(void);

void endac(void);

When first called, getacdir() provides information about the first audit directory in
the audit_control file; thereafter, it returns the next directory in the file. Successive
calls list all the directories listed in audit_control(4). The parameter len specifies
the length of the buffer dir. On return, dir points to the directory entry.

getacmin() reads the minimum value from the audit_control file and returns the
value in min_val. The minimum value specifies how full the file system to which the
audit files are being written can get before the script audit_warn(1M) is invoked.

getacflg() reads the system audit value from the audit_control file and returns
the value in auditstring. The parameter len specifies the length of the buffer auditstring.

getacna() reads the system audit value for non-attributable audit events from the
audit_control file and returns the value in auditstring. The parameter len specifies
the length of the buffer auditstring. Non-attributable events are events that cannot be
attributed to an individual user. inetd(1M) and several other daemons record
non-attributable events.

Calling setac rewinds the audit_control file to allow repeated searches.

Calling endac closes the audit_control file when processing is complete.

/etc/security/audit_control Contains default parameters read by the
audit daemon, auditd(1M).

getacdir(), getacflg(), getacna() and getacmin() return:

0 on success.

−2 On failure and set errno to indicate the error.

getacmin() and getacflg() return:

1 On EOF.

getacdir() returns:

getacinfo(3BSM)

NAME

SYNOPSIS

DESCRIPTION

FILES

RETURN VALUES

342 man pages section 3: Library Functions • Last Revised 5 May 1998

−1 on EOF.

2 if the directory search had to start from the beginning because one of the
other functions was called between calls to getacdir().

These functions return:

−3 If the directory entry format in the audit_control file is incorrect.

getacdir(), getacflg() and getacna() return:

−3 If the input buffer is too short to accommodate the record.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

audit_warn(1M), inetd(1M), audit_control(4)

attributes(5)

getacinfo(3BSM)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

Introduction to Library Functions 343

getacinfo, getacdir, getacflg, getacmin, getacna, setac, endac – Get audit control file
information

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <bsm/libbsm.h>

int getacdir(char *dir, int len);

int getacmin(int *min_val);

int getacflg(char *auditstring, int len);

int getacna(char *auditstring, int len);

void setac(void);

void endac(void);

When first called, getacdir() provides information about the first audit directory in
the audit_control file; thereafter, it returns the next directory in the file. Successive
calls list all the directories listed in audit_control(4). The parameter len specifies
the length of the buffer dir. On return, dir points to the directory entry.

getacmin() reads the minimum value from the audit_control file and returns the
value in min_val. The minimum value specifies how full the file system to which the
audit files are being written can get before the script audit_warn(1M) is invoked.

getacflg() reads the system audit value from the audit_control file and returns
the value in auditstring. The parameter len specifies the length of the buffer auditstring.

getacna() reads the system audit value for non-attributable audit events from the
audit_control file and returns the value in auditstring. The parameter len specifies
the length of the buffer auditstring. Non-attributable events are events that cannot be
attributed to an individual user. inetd(1M) and several other daemons record
non-attributable events.

Calling setac rewinds the audit_control file to allow repeated searches.

Calling endac closes the audit_control file when processing is complete.

/etc/security/audit_control Contains default parameters read by the
audit daemon, auditd(1M).

getacdir(), getacflg(), getacna() and getacmin() return:

0 on success.

−2 On failure and set errno to indicate the error.

getacmin() and getacflg() return:

1 On EOF.

getacdir() returns:

getacmin(3BSM)

NAME

SYNOPSIS

DESCRIPTION

FILES

RETURN VALUES

344 man pages section 3: Library Functions • Last Revised 5 May 1998

−1 on EOF.

2 if the directory search had to start from the beginning because one of the
other functions was called between calls to getacdir().

These functions return:

−3 If the directory entry format in the audit_control file is incorrect.

getacdir(), getacflg() and getacna() return:

−3 If the input buffer is too short to accommodate the record.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

audit_warn(1M), inetd(1M), audit_control(4)

attributes(5)

getacmin(3BSM)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

Introduction to Library Functions 345

getacinfo, getacdir, getacflg, getacmin, getacna, setac, endac – Get audit control file
information

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <bsm/libbsm.h>

int getacdir(char *dir, int len);

int getacmin(int *min_val);

int getacflg(char *auditstring, int len);

int getacna(char *auditstring, int len);

void setac(void);

void endac(void);

When first called, getacdir() provides information about the first audit directory in
the audit_control file; thereafter, it returns the next directory in the file. Successive
calls list all the directories listed in audit_control(4). The parameter len specifies
the length of the buffer dir. On return, dir points to the directory entry.

getacmin() reads the minimum value from the audit_control file and returns the
value in min_val. The minimum value specifies how full the file system to which the
audit files are being written can get before the script audit_warn(1M) is invoked.

getacflg() reads the system audit value from the audit_control file and returns
the value in auditstring. The parameter len specifies the length of the buffer auditstring.

getacna() reads the system audit value for non-attributable audit events from the
audit_control file and returns the value in auditstring. The parameter len specifies
the length of the buffer auditstring. Non-attributable events are events that cannot be
attributed to an individual user. inetd(1M) and several other daemons record
non-attributable events.

Calling setac rewinds the audit_control file to allow repeated searches.

Calling endac closes the audit_control file when processing is complete.

/etc/security/audit_control Contains default parameters read by the
audit daemon, auditd(1M).

getacdir(), getacflg(), getacna() and getacmin() return:

0 on success.

−2 On failure and set errno to indicate the error.

getacmin() and getacflg() return:

1 On EOF.

getacdir() returns:

getacna(3BSM)

NAME

SYNOPSIS

DESCRIPTION

FILES

RETURN VALUES

346 man pages section 3: Library Functions • Last Revised 5 May 1998

−1 on EOF.

2 if the directory search had to start from the beginning because one of the
other functions was called between calls to getacdir().

These functions return:

−3 If the directory entry format in the audit_control file is incorrect.

getacdir(), getacflg() and getacna() return:

−3 If the input buffer is too short to accommodate the record.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

audit_warn(1M), inetd(1M), audit_control(4)

attributes(5)

getacna(3BSM)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

Introduction to Library Functions 347

getauclassent, getauclassnam, setauclass, endauclass, getauclassnam_r, getauclassent_r
– get audit_class entry

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_class_ent *getauclassnam(const char *name);

struct au_class_ent *getauclassnam_r(au_class_ent_t *class_int,
const char *name);

struct au_class_ent *getauclassent(void);

struct au_class_ent *getauclassent_r(au_class_ent_t *class_int);

void setauclass(void);

void endauclass(void);

getauclassent() and getauclassnam() each return an audit_class entry.

getauclassnam() searches for an audit_class entry with a given class name name.

getauclassent() enumerates audit_class entries: successive calls to
getauclassent() will return either successive audit_class entries or NULL.

setauclass() ‘‘rewinds’’ to the beginning of the enumeration of audit_class entries.
Calls to getauclassnam() may leave the enumeration in an indeterminate state, so
setauclass() should be called before the first getauclassent().

endauclass() may be called to indicate that audit_class processing is complete; the
system may then close any open audit_class file, deallocate storage, and so forth.

getauclassent_r() and getauclassnam_r() both return a pointer to an
audit_class entry as do their similarly named counterparts. They each take an
additional argument, a pointer to pre-allocated space for an au_class_ent_t, which
is returned if the call is successful. To assure there is enough space for the information
returned, the applications programmer should be sure to allocate
AU_CLASS_NAME_MAX and AU_CLASS_DESC_MAX bytes for the ac_name and ac_desc
elements of the au_class_ent_t data structure.

The internal representation of an audit_user entry is an au_class_ent structure
defined in <bsm/libbsm.h> with the following members:

char *ac_name;
au_class_t ac_class;
char *ac_desc;

getauclassnam() and getauclassnam_r() return a pointer to a struct
au_class_ent if they successfully locate the requested entry; otherwise they return
NULL.

getauclassent(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

348 man pages section 3: Library Functions • Last Revised 29 Dec 1996

getauclassent() and getauclassent_r() return a pointer to a struct
au_class_ent if they successfully enumerate an entry; otherwise they return NULL,
indicating the end of the enumeration.

/etc/security/audit_class Maps audit class numbers to audit class
names.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions.

All of the functions described in this man-page are MT-Safe except
getauclassent() and getauclassnam(). The two functions,
getauclassent_r() and getauclassnam_r() have the same functionality as the
unsafe functions, but have a slightly different function call interface in order to make
them MT-Safe.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

audit_class(4), audit_event(4)

attributes(5)

All information in the MT-unsafe versions are contained in a static area, which may be
overwritten, so it must be copied if it is to be saved.

getauclassent(3BSM)

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 349

getauclassent, getauclassnam, setauclass, endauclass, getauclassnam_r, getauclassent_r
– get audit_class entry

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_class_ent *getauclassnam(const char *name);

struct au_class_ent *getauclassnam_r(au_class_ent_t *class_int,
const char *name);

struct au_class_ent *getauclassent(void);

struct au_class_ent *getauclassent_r(au_class_ent_t *class_int);

void setauclass(void);

void endauclass(void);

getauclassent() and getauclassnam() each return an audit_class entry.

getauclassnam() searches for an audit_class entry with a given class name name.

getauclassent() enumerates audit_class entries: successive calls to
getauclassent() will return either successive audit_class entries or NULL.

setauclass() ‘‘rewinds’’ to the beginning of the enumeration of audit_class entries.
Calls to getauclassnam() may leave the enumeration in an indeterminate state, so
setauclass() should be called before the first getauclassent().

endauclass() may be called to indicate that audit_class processing is complete; the
system may then close any open audit_class file, deallocate storage, and so forth.

getauclassent_r() and getauclassnam_r() both return a pointer to an
audit_class entry as do their similarly named counterparts. They each take an
additional argument, a pointer to pre-allocated space for an au_class_ent_t, which
is returned if the call is successful. To assure there is enough space for the information
returned, the applications programmer should be sure to allocate
AU_CLASS_NAME_MAX and AU_CLASS_DESC_MAX bytes for the ac_name and ac_desc
elements of the au_class_ent_t data structure.

The internal representation of an audit_user entry is an au_class_ent structure
defined in <bsm/libbsm.h> with the following members:

char *ac_name;
au_class_t ac_class;
char *ac_desc;

getauclassnam() and getauclassnam_r() return a pointer to a struct
au_class_ent if they successfully locate the requested entry; otherwise they return
NULL.

getauclassent_r(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

350 man pages section 3: Library Functions • Last Revised 29 Dec 1996

getauclassent() and getauclassent_r() return a pointer to a struct
au_class_ent if they successfully enumerate an entry; otherwise they return NULL,
indicating the end of the enumeration.

/etc/security/audit_class Maps audit class numbers to audit class
names.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions.

All of the functions described in this man-page are MT-Safe except
getauclassent() and getauclassnam(). The two functions,
getauclassent_r() and getauclassnam_r() have the same functionality as the
unsafe functions, but have a slightly different function call interface in order to make
them MT-Safe.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

audit_class(4), audit_event(4)

attributes(5)

All information in the MT-unsafe versions are contained in a static area, which may be
overwritten, so it must be copied if it is to be saved.

getauclassent_r(3BSM)

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 351

getauclassent, getauclassnam, setauclass, endauclass, getauclassnam_r, getauclassent_r
– get audit_class entry

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_class_ent *getauclassnam(const char *name);

struct au_class_ent *getauclassnam_r(au_class_ent_t *class_int,
const char *name);

struct au_class_ent *getauclassent(void);

struct au_class_ent *getauclassent_r(au_class_ent_t *class_int);

void setauclass(void);

void endauclass(void);

getauclassent() and getauclassnam() each return an audit_class entry.

getauclassnam() searches for an audit_class entry with a given class name name.

getauclassent() enumerates audit_class entries: successive calls to
getauclassent() will return either successive audit_class entries or NULL.

setauclass() ‘‘rewinds’’ to the beginning of the enumeration of audit_class entries.
Calls to getauclassnam() may leave the enumeration in an indeterminate state, so
setauclass() should be called before the first getauclassent().

endauclass() may be called to indicate that audit_class processing is complete; the
system may then close any open audit_class file, deallocate storage, and so forth.

getauclassent_r() and getauclassnam_r() both return a pointer to an
audit_class entry as do their similarly named counterparts. They each take an
additional argument, a pointer to pre-allocated space for an au_class_ent_t, which
is returned if the call is successful. To assure there is enough space for the information
returned, the applications programmer should be sure to allocate
AU_CLASS_NAME_MAX and AU_CLASS_DESC_MAX bytes for the ac_name and ac_desc
elements of the au_class_ent_t data structure.

The internal representation of an audit_user entry is an au_class_ent structure
defined in <bsm/libbsm.h> with the following members:

char *ac_name;
au_class_t ac_class;
char *ac_desc;

getauclassnam() and getauclassnam_r() return a pointer to a struct
au_class_ent if they successfully locate the requested entry; otherwise they return
NULL.

getauclassnam(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

352 man pages section 3: Library Functions • Last Revised 29 Dec 1996

getauclassent() and getauclassent_r() return a pointer to a struct
au_class_ent if they successfully enumerate an entry; otherwise they return NULL,
indicating the end of the enumeration.

/etc/security/audit_class Maps audit class numbers to audit class
names.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions.

All of the functions described in this man-page are MT-Safe except
getauclassent() and getauclassnam(). The two functions,
getauclassent_r() and getauclassnam_r() have the same functionality as the
unsafe functions, but have a slightly different function call interface in order to make
them MT-Safe.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

audit_class(4), audit_event(4)

attributes(5)

All information in the MT-unsafe versions are contained in a static area, which may be
overwritten, so it must be copied if it is to be saved.

getauclassnam(3BSM)

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 353

getauclassent, getauclassnam, setauclass, endauclass, getauclassnam_r, getauclassent_r
– get audit_class entry

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_class_ent *getauclassnam(const char *name);

struct au_class_ent *getauclassnam_r(au_class_ent_t *class_int,
const char *name);

struct au_class_ent *getauclassent(void);

struct au_class_ent *getauclassent_r(au_class_ent_t *class_int);

void setauclass(void);

void endauclass(void);

getauclassent() and getauclassnam() each return an audit_class entry.

getauclassnam() searches for an audit_class entry with a given class name name.

getauclassent() enumerates audit_class entries: successive calls to
getauclassent() will return either successive audit_class entries or NULL.

setauclass() ‘‘rewinds’’ to the beginning of the enumeration of audit_class entries.
Calls to getauclassnam() may leave the enumeration in an indeterminate state, so
setauclass() should be called before the first getauclassent().

endauclass() may be called to indicate that audit_class processing is complete; the
system may then close any open audit_class file, deallocate storage, and so forth.

getauclassent_r() and getauclassnam_r() both return a pointer to an
audit_class entry as do their similarly named counterparts. They each take an
additional argument, a pointer to pre-allocated space for an au_class_ent_t, which
is returned if the call is successful. To assure there is enough space for the information
returned, the applications programmer should be sure to allocate
AU_CLASS_NAME_MAX and AU_CLASS_DESC_MAX bytes for the ac_name and ac_desc
elements of the au_class_ent_t data structure.

The internal representation of an audit_user entry is an au_class_ent structure
defined in <bsm/libbsm.h> with the following members:

char *ac_name;
au_class_t ac_class;
char *ac_desc;

getauclassnam() and getauclassnam_r() return a pointer to a struct
au_class_ent if they successfully locate the requested entry; otherwise they return
NULL.

getauclassnam_r(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

354 man pages section 3: Library Functions • Last Revised 29 Dec 1996

getauclassent() and getauclassent_r() return a pointer to a struct
au_class_ent if they successfully enumerate an entry; otherwise they return NULL,
indicating the end of the enumeration.

/etc/security/audit_class Maps audit class numbers to audit class
names.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions.

All of the functions described in this man-page are MT-Safe except
getauclassent() and getauclassnam(). The two functions,
getauclassent_r() and getauclassnam_r() have the same functionality as the
unsafe functions, but have a slightly different function call interface in order to make
them MT-Safe.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

audit_class(4), audit_event(4)

attributes(5)

All information in the MT-unsafe versions are contained in a static area, which may be
overwritten, so it must be copied if it is to be saved.

getauclassnam_r(3BSM)

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 355

getauditflags, getauditflagsbin, getauditflagschar – Convert audit flag specifications

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

int getauditflagsbin(char *auditstring, au_mask_t *masks);

int getauditflagschar(char *auditstring, au_mask_t *masks, int
verbose);

getauditflagsbin() converts the character representation of audit values pointed
to by auditstring into au_mask_t fields pointed to by masks. These fields indicate
which events are to be audited when they succeed and which are to be audited when
they fail. The character string syntax is described in audit_control(4).

getauditflagschar() converts the au_mask_t fields pointed to by masks into a
string pointed to by auditstring. If verbose is zero, the short (2-character) flag names are
used. If verbose is non-zero, the long flag names are used. auditstring should be large
enough to contain the text representation of the events.

auditstring contains a series of event names, each one identifying a single audit class,
separated by commas. The au_mask_t fields pointed to by masks correspond to
binary values defined in <bsm/audit.h>, which is read by <bsm/libbsm.h>.

getauditflagsbin() and getauditflagschar() return:

0 On success.

−1 On failure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

audit.log(4), audit_control(4)

attributes(5)

This is not a very extensible interface.

getauditflags(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

BUGS

356 man pages section 3: Library Functions • Last Revised 5 May 1998

getauditflags, getauditflagsbin, getauditflagschar – Convert audit flag specifications

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

int getauditflagsbin(char *auditstring, au_mask_t *masks);

int getauditflagschar(char *auditstring, au_mask_t *masks, int
verbose);

getauditflagsbin() converts the character representation of audit values pointed
to by auditstring into au_mask_t fields pointed to by masks. These fields indicate
which events are to be audited when they succeed and which are to be audited when
they fail. The character string syntax is described in audit_control(4).

getauditflagschar() converts the au_mask_t fields pointed to by masks into a
string pointed to by auditstring. If verbose is zero, the short (2-character) flag names are
used. If verbose is non-zero, the long flag names are used. auditstring should be large
enough to contain the text representation of the events.

auditstring contains a series of event names, each one identifying a single audit class,
separated by commas. The au_mask_t fields pointed to by masks correspond to
binary values defined in <bsm/audit.h>, which is read by <bsm/libbsm.h>.

getauditflagsbin() and getauditflagschar() return:

0 On success.

−1 On failure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

audit.log(4), audit_control(4)

attributes(5)

This is not a very extensible interface.

getauditflagsbin(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

BUGS

Introduction to Library Functions 357

getauditflags, getauditflagsbin, getauditflagschar – Convert audit flag specifications

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

int getauditflagsbin(char *auditstring, au_mask_t *masks);

int getauditflagschar(char *auditstring, au_mask_t *masks, int
verbose);

getauditflagsbin() converts the character representation of audit values pointed
to by auditstring into au_mask_t fields pointed to by masks. These fields indicate
which events are to be audited when they succeed and which are to be audited when
they fail. The character string syntax is described in audit_control(4).

getauditflagschar() converts the au_mask_t fields pointed to by masks into a
string pointed to by auditstring. If verbose is zero, the short (2-character) flag names are
used. If verbose is non-zero, the long flag names are used. auditstring should be large
enough to contain the text representation of the events.

auditstring contains a series of event names, each one identifying a single audit class,
separated by commas. The au_mask_t fields pointed to by masks correspond to
binary values defined in <bsm/audit.h>, which is read by <bsm/libbsm.h>.

getauditflagsbin() and getauditflagschar() return:

0 On success.

−1 On failure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

audit.log(4), audit_control(4)

attributes(5)

This is not a very extensible interface.

getauditflagschar(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

BUGS

358 man pages section 3: Library Functions • Last Revised 5 May 1998

getauevent, getauevnam, getauevnum, getauevnonam, setauevent, endauevent,
getauevent_r, getauevnam_r, getauevnum_r – Get audit_event entry

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_event_ent *getauevent(void);

struct au_event_ent *getauevnam(char *name);

struct au_event_ent *getauevnum(au_event_t event_number);

au_event_t *getauevnonam(char *event_name);

void setauevent(void);

void endauevent(void);

struct au_event_ent *getauevent_r(au_event_ent_t *e);

struct au_event_ent *getauevnam_r(au_event_ent_t *e, char *name);

struct au_event_ent *getauevnum_r(au_event_ent_t *e, au_event_t
event_number);

These interfaces document the programming interface for obtaining entries from the
audit_event(4) file. getauevent(), getauevnam(), getauevnum(),
getauevent(), getauevnam(), and getauevnum() each return a pointer to an
audit_event structure.

getauevent() and getauevent_r() enumerate audit_event entries; successive
calls to these functions will return either successive audit_event entries or NULL.

getauevnam() and getauevnam_r() search for an audit_event entry with a
given event_name.

getauevnum() and getauevnum_r() search for an audit_event entry with a
given event_number.

getauevnonam() searches for an audit_event entry with a given event_name and
returns the corresponding event number.

setauevent() ‘‘rewinds’’ to the beginning of the enumeration of audit_event
entries. Calls to getauevnam(), getauevnum(), getauevnonum(),
getauevnam_r(), or getauevnum_r() may leave the enumeration in an
indeterminate state; setauevent() should be called before the first getauevent()
or getauevent_r().

endauevent() may be called to indicate that audit_event processing is complete;
the system may then close any open audit_event file, deallocate storage, and so
forth.

getauevent(3BSM)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 359

The three functions getauevent_r(), getauevnam_r(), and getauevnum_r()
each take an argument e which is a pointer to an au_event_ent_t. This pointer is
returned on a successful function call. To assure there is enough space for the
information returned, the applications programmer should be sure to allocate
AU_EVENT_NAME_MAX and AU_EVENT_DESC_MAX bytes for the ae_name and
ac_desc elements of the au_event_ent_t data structure.

The internal representation of an audit_event entry is an au_event_ent structure
defined in <bsm/libbsm.h> with the following members:

au_event_t ae_number;
char *ae_name;
char *ae_desc;
au_class_t ae_class;

getauevent(), getauevnam(), getauevnum(), getauevent_r(),
getauevnam_r(), and getauevnum_r() return a pointer to a struct
au_event_ent if the requested entry is successfully located; otherwise it returns
NULL.

getauevnonam() returns an event number of type au_event_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating it could not find the
requested event name.

/etc/security/audit_event Maps audit event numbers to audit event
names.

/etc/passwd Stores user-ID to username mappings.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

MT-Level MT-Safe with exceptions.

The functions getauevent(), getauevnam(), and getauevnum() are not MT-Safe;
however, there are equivalent functions: getauevent_r(), getauevnam_r(), and
getauevnum_r() — all of which provide the same functionality and a MT-Safe
function call interface.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

getauclassent(3BSM), audit_class(4), audit_event(4)

getpwnam(3C), passwd(4), attributes(5)

getauevent(3BSM)

RETURN VALUES

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

360 man pages section 3: Library Functions • Last Revised 29 Dec 1996

All information for the functions getauevent(), getauevnam(), and
getauevnum() is contained in a static area, which may be overwritten, so it must be
copied if it is to be saved.

getauevent(3BSM)

NOTES

Introduction to Library Functions 361

getauevent, getauevnam, getauevnum, getauevnonam, setauevent, endauevent,
getauevent_r, getauevnam_r, getauevnum_r – Get audit_event entry

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_event_ent *getauevent(void);

struct au_event_ent *getauevnam(char *name);

struct au_event_ent *getauevnum(au_event_t event_number);

au_event_t *getauevnonam(char *event_name);

void setauevent(void);

void endauevent(void);

struct au_event_ent *getauevent_r(au_event_ent_t *e);

struct au_event_ent *getauevnam_r(au_event_ent_t *e, char *name);

struct au_event_ent *getauevnum_r(au_event_ent_t *e, au_event_t
event_number);

These interfaces document the programming interface for obtaining entries from the
audit_event(4) file. getauevent(), getauevnam(), getauevnum(),
getauevent(), getauevnam(), and getauevnum() each return a pointer to an
audit_event structure.

getauevent() and getauevent_r() enumerate audit_event entries; successive
calls to these functions will return either successive audit_event entries or NULL.

getauevnam() and getauevnam_r() search for an audit_event entry with a
given event_name.

getauevnum() and getauevnum_r() search for an audit_event entry with a
given event_number.

getauevnonam() searches for an audit_event entry with a given event_name and
returns the corresponding event number.

setauevent() ‘‘rewinds’’ to the beginning of the enumeration of audit_event
entries. Calls to getauevnam(), getauevnum(), getauevnonum(),
getauevnam_r(), or getauevnum_r() may leave the enumeration in an
indeterminate state; setauevent() should be called before the first getauevent()
or getauevent_r().

endauevent() may be called to indicate that audit_event processing is complete;
the system may then close any open audit_event file, deallocate storage, and so
forth.

getauevent_r(3BSM)

NAME

SYNOPSIS

DESCRIPTION

362 man pages section 3: Library Functions • Last Revised 29 Dec 1996

The three functions getauevent_r(), getauevnam_r(), and getauevnum_r()
each take an argument e which is a pointer to an au_event_ent_t. This pointer is
returned on a successful function call. To assure there is enough space for the
information returned, the applications programmer should be sure to allocate
AU_EVENT_NAME_MAX and AU_EVENT_DESC_MAX bytes for the ae_name and
ac_desc elements of the au_event_ent_t data structure.

The internal representation of an audit_event entry is an au_event_ent structure
defined in <bsm/libbsm.h> with the following members:

au_event_t ae_number;
char *ae_name;
char *ae_desc;
au_class_t ae_class;

getauevent(), getauevnam(), getauevnum(), getauevent_r(),
getauevnam_r(), and getauevnum_r() return a pointer to a struct
au_event_ent if the requested entry is successfully located; otherwise it returns
NULL.

getauevnonam() returns an event number of type au_event_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating it could not find the
requested event name.

/etc/security/audit_event Maps audit event numbers to audit event
names.

/etc/passwd Stores user-ID to username mappings.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

MT-Level MT-Safe with exceptions.

The functions getauevent(), getauevnam(), and getauevnum() are not MT-Safe;
however, there are equivalent functions: getauevent_r(), getauevnam_r(), and
getauevnum_r() — all of which provide the same functionality and a MT-Safe
function call interface.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

getauclassent(3BSM), audit_class(4), audit_event(4)

getpwnam(3C), passwd(4), attributes(5)

getauevent_r(3BSM)

RETURN VALUES

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

Introduction to Library Functions 363

All information for the functions getauevent(), getauevnam(), and
getauevnum() is contained in a static area, which may be overwritten, so it must be
copied if it is to be saved.

getauevent_r(3BSM)

NOTES

364 man pages section 3: Library Functions • Last Revised 29 Dec 1996

getauevent, getauevnam, getauevnum, getauevnonam, setauevent, endauevent,
getauevent_r, getauevnam_r, getauevnum_r – Get audit_event entry

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_event_ent *getauevent(void);

struct au_event_ent *getauevnam(char *name);

struct au_event_ent *getauevnum(au_event_t event_number);

au_event_t *getauevnonam(char *event_name);

void setauevent(void);

void endauevent(void);

struct au_event_ent *getauevent_r(au_event_ent_t *e);

struct au_event_ent *getauevnam_r(au_event_ent_t *e, char *name);

struct au_event_ent *getauevnum_r(au_event_ent_t *e, au_event_t
event_number);

These interfaces document the programming interface for obtaining entries from the
audit_event(4) file. getauevent(), getauevnam(), getauevnum(),
getauevent(), getauevnam(), and getauevnum() each return a pointer to an
audit_event structure.

getauevent() and getauevent_r() enumerate audit_event entries; successive
calls to these functions will return either successive audit_event entries or NULL.

getauevnam() and getauevnam_r() search for an audit_event entry with a
given event_name.

getauevnum() and getauevnum_r() search for an audit_event entry with a
given event_number.

getauevnonam() searches for an audit_event entry with a given event_name and
returns the corresponding event number.

setauevent() ‘‘rewinds’’ to the beginning of the enumeration of audit_event
entries. Calls to getauevnam(), getauevnum(), getauevnonum(),
getauevnam_r(), or getauevnum_r() may leave the enumeration in an
indeterminate state; setauevent() should be called before the first getauevent()
or getauevent_r().

endauevent() may be called to indicate that audit_event processing is complete;
the system may then close any open audit_event file, deallocate storage, and so
forth.

getauevnam(3BSM)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 365

The three functions getauevent_r(), getauevnam_r(), and getauevnum_r()
each take an argument e which is a pointer to an au_event_ent_t. This pointer is
returned on a successful function call. To assure there is enough space for the
information returned, the applications programmer should be sure to allocate
AU_EVENT_NAME_MAX and AU_EVENT_DESC_MAX bytes for the ae_name and
ac_desc elements of the au_event_ent_t data structure.

The internal representation of an audit_event entry is an au_event_ent structure
defined in <bsm/libbsm.h> with the following members:

au_event_t ae_number;
char *ae_name;
char *ae_desc;
au_class_t ae_class;

getauevent(), getauevnam(), getauevnum(), getauevent_r(),
getauevnam_r(), and getauevnum_r() return a pointer to a struct
au_event_ent if the requested entry is successfully located; otherwise it returns
NULL.

getauevnonam() returns an event number of type au_event_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating it could not find the
requested event name.

/etc/security/audit_event Maps audit event numbers to audit event
names.

/etc/passwd Stores user-ID to username mappings.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

MT-Level MT-Safe with exceptions.

The functions getauevent(), getauevnam(), and getauevnum() are not MT-Safe;
however, there are equivalent functions: getauevent_r(), getauevnam_r(), and
getauevnum_r() — all of which provide the same functionality and a MT-Safe
function call interface.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

getauclassent(3BSM), audit_class(4), audit_event(4)

getpwnam(3C), passwd(4), attributes(5)

getauevnam(3BSM)

RETURN VALUES

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

366 man pages section 3: Library Functions • Last Revised 29 Dec 1996

All information for the functions getauevent(), getauevnam(), and
getauevnum() is contained in a static area, which may be overwritten, so it must be
copied if it is to be saved.

getauevnam(3BSM)

NOTES

Introduction to Library Functions 367

getauevent, getauevnam, getauevnum, getauevnonam, setauevent, endauevent,
getauevent_r, getauevnam_r, getauevnum_r – Get audit_event entry

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_event_ent *getauevent(void);

struct au_event_ent *getauevnam(char *name);

struct au_event_ent *getauevnum(au_event_t event_number);

au_event_t *getauevnonam(char *event_name);

void setauevent(void);

void endauevent(void);

struct au_event_ent *getauevent_r(au_event_ent_t *e);

struct au_event_ent *getauevnam_r(au_event_ent_t *e, char *name);

struct au_event_ent *getauevnum_r(au_event_ent_t *e, au_event_t
event_number);

These interfaces document the programming interface for obtaining entries from the
audit_event(4) file. getauevent(), getauevnam(), getauevnum(),
getauevent(), getauevnam(), and getauevnum() each return a pointer to an
audit_event structure.

getauevent() and getauevent_r() enumerate audit_event entries; successive
calls to these functions will return either successive audit_event entries or NULL.

getauevnam() and getauevnam_r() search for an audit_event entry with a
given event_name.

getauevnum() and getauevnum_r() search for an audit_event entry with a
given event_number.

getauevnonam() searches for an audit_event entry with a given event_name and
returns the corresponding event number.

setauevent() ‘‘rewinds’’ to the beginning of the enumeration of audit_event
entries. Calls to getauevnam(), getauevnum(), getauevnonum(),
getauevnam_r(), or getauevnum_r() may leave the enumeration in an
indeterminate state; setauevent() should be called before the first getauevent()
or getauevent_r().

endauevent() may be called to indicate that audit_event processing is complete;
the system may then close any open audit_event file, deallocate storage, and so
forth.

getauevnam_r(3BSM)

NAME

SYNOPSIS

DESCRIPTION

368 man pages section 3: Library Functions • Last Revised 29 Dec 1996

The three functions getauevent_r(), getauevnam_r(), and getauevnum_r()
each take an argument e which is a pointer to an au_event_ent_t. This pointer is
returned on a successful function call. To assure there is enough space for the
information returned, the applications programmer should be sure to allocate
AU_EVENT_NAME_MAX and AU_EVENT_DESC_MAX bytes for the ae_name and
ac_desc elements of the au_event_ent_t data structure.

The internal representation of an audit_event entry is an au_event_ent structure
defined in <bsm/libbsm.h> with the following members:

au_event_t ae_number;
char *ae_name;
char *ae_desc;
au_class_t ae_class;

getauevent(), getauevnam(), getauevnum(), getauevent_r(),
getauevnam_r(), and getauevnum_r() return a pointer to a struct
au_event_ent if the requested entry is successfully located; otherwise it returns
NULL.

getauevnonam() returns an event number of type au_event_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating it could not find the
requested event name.

/etc/security/audit_event Maps audit event numbers to audit event
names.

/etc/passwd Stores user-ID to username mappings.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

MT-Level MT-Safe with exceptions.

The functions getauevent(), getauevnam(), and getauevnum() are not MT-Safe;
however, there are equivalent functions: getauevent_r(), getauevnam_r(), and
getauevnum_r() — all of which provide the same functionality and a MT-Safe
function call interface.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

getauclassent(3BSM), audit_class(4), audit_event(4)

getpwnam(3C), passwd(4), attributes(5)

getauevnam_r(3BSM)

RETURN VALUES

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

Introduction to Library Functions 369

All information for the functions getauevent(), getauevnam(), and
getauevnum() is contained in a static area, which may be overwritten, so it must be
copied if it is to be saved.

getauevnam_r(3BSM)

NOTES

370 man pages section 3: Library Functions • Last Revised 29 Dec 1996

getauevent, getauevnam, getauevnum, getauevnonam, setauevent, endauevent,
getauevent_r, getauevnam_r, getauevnum_r – Get audit_event entry

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_event_ent *getauevent(void);

struct au_event_ent *getauevnam(char *name);

struct au_event_ent *getauevnum(au_event_t event_number);

au_event_t *getauevnonam(char *event_name);

void setauevent(void);

void endauevent(void);

struct au_event_ent *getauevent_r(au_event_ent_t *e);

struct au_event_ent *getauevnam_r(au_event_ent_t *e, char *name);

struct au_event_ent *getauevnum_r(au_event_ent_t *e, au_event_t
event_number);

These interfaces document the programming interface for obtaining entries from the
audit_event(4) file. getauevent(), getauevnam(), getauevnum(),
getauevent(), getauevnam(), and getauevnum() each return a pointer to an
audit_event structure.

getauevent() and getauevent_r() enumerate audit_event entries; successive
calls to these functions will return either successive audit_event entries or NULL.

getauevnam() and getauevnam_r() search for an audit_event entry with a
given event_name.

getauevnum() and getauevnum_r() search for an audit_event entry with a
given event_number.

getauevnonam() searches for an audit_event entry with a given event_name and
returns the corresponding event number.

setauevent() ‘‘rewinds’’ to the beginning of the enumeration of audit_event
entries. Calls to getauevnam(), getauevnum(), getauevnonum(),
getauevnam_r(), or getauevnum_r() may leave the enumeration in an
indeterminate state; setauevent() should be called before the first getauevent()
or getauevent_r().

endauevent() may be called to indicate that audit_event processing is complete;
the system may then close any open audit_event file, deallocate storage, and so
forth.

getauevnonam(3BSM)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 371

The three functions getauevent_r(), getauevnam_r(), and getauevnum_r()
each take an argument e which is a pointer to an au_event_ent_t. This pointer is
returned on a successful function call. To assure there is enough space for the
information returned, the applications programmer should be sure to allocate
AU_EVENT_NAME_MAX and AU_EVENT_DESC_MAX bytes for the ae_name and
ac_desc elements of the au_event_ent_t data structure.

The internal representation of an audit_event entry is an au_event_ent structure
defined in <bsm/libbsm.h> with the following members:

au_event_t ae_number;
char *ae_name;
char *ae_desc;
au_class_t ae_class;

getauevent(), getauevnam(), getauevnum(), getauevent_r(),
getauevnam_r(), and getauevnum_r() return a pointer to a struct
au_event_ent if the requested entry is successfully located; otherwise it returns
NULL.

getauevnonam() returns an event number of type au_event_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating it could not find the
requested event name.

/etc/security/audit_event Maps audit event numbers to audit event
names.

/etc/passwd Stores user-ID to username mappings.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

MT-Level MT-Safe with exceptions.

The functions getauevent(), getauevnam(), and getauevnum() are not MT-Safe;
however, there are equivalent functions: getauevent_r(), getauevnam_r(), and
getauevnum_r() — all of which provide the same functionality and a MT-Safe
function call interface.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

getauclassent(3BSM), audit_class(4), audit_event(4)

getpwnam(3C), passwd(4), attributes(5)

getauevnonam(3BSM)

RETURN VALUES

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

372 man pages section 3: Library Functions • Last Revised 29 Dec 1996

All information for the functions getauevent(), getauevnam(), and
getauevnum() is contained in a static area, which may be overwritten, so it must be
copied if it is to be saved.

getauevnonam(3BSM)

NOTES

Introduction to Library Functions 373

getauevent, getauevnam, getauevnum, getauevnonam, setauevent, endauevent,
getauevent_r, getauevnam_r, getauevnum_r – Get audit_event entry

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_event_ent *getauevent(void);

struct au_event_ent *getauevnam(char *name);

struct au_event_ent *getauevnum(au_event_t event_number);

au_event_t *getauevnonam(char *event_name);

void setauevent(void);

void endauevent(void);

struct au_event_ent *getauevent_r(au_event_ent_t *e);

struct au_event_ent *getauevnam_r(au_event_ent_t *e, char *name);

struct au_event_ent *getauevnum_r(au_event_ent_t *e, au_event_t
event_number);

These interfaces document the programming interface for obtaining entries from the
audit_event(4) file. getauevent(), getauevnam(), getauevnum(),
getauevent(), getauevnam(), and getauevnum() each return a pointer to an
audit_event structure.

getauevent() and getauevent_r() enumerate audit_event entries; successive
calls to these functions will return either successive audit_event entries or NULL.

getauevnam() and getauevnam_r() search for an audit_event entry with a
given event_name.

getauevnum() and getauevnum_r() search for an audit_event entry with a
given event_number.

getauevnonam() searches for an audit_event entry with a given event_name and
returns the corresponding event number.

setauevent() ‘‘rewinds’’ to the beginning of the enumeration of audit_event
entries. Calls to getauevnam(), getauevnum(), getauevnonum(),
getauevnam_r(), or getauevnum_r() may leave the enumeration in an
indeterminate state; setauevent() should be called before the first getauevent()
or getauevent_r().

endauevent() may be called to indicate that audit_event processing is complete;
the system may then close any open audit_event file, deallocate storage, and so
forth.

getauevnum(3BSM)

NAME

SYNOPSIS

DESCRIPTION

374 man pages section 3: Library Functions • Last Revised 29 Dec 1996

The three functions getauevent_r(), getauevnam_r(), and getauevnum_r()
each take an argument e which is a pointer to an au_event_ent_t. This pointer is
returned on a successful function call. To assure there is enough space for the
information returned, the applications programmer should be sure to allocate
AU_EVENT_NAME_MAX and AU_EVENT_DESC_MAX bytes for the ae_name and
ac_desc elements of the au_event_ent_t data structure.

The internal representation of an audit_event entry is an au_event_ent structure
defined in <bsm/libbsm.h> with the following members:

au_event_t ae_number;
char *ae_name;
char *ae_desc;
au_class_t ae_class;

getauevent(), getauevnam(), getauevnum(), getauevent_r(),
getauevnam_r(), and getauevnum_r() return a pointer to a struct
au_event_ent if the requested entry is successfully located; otherwise it returns
NULL.

getauevnonam() returns an event number of type au_event_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating it could not find the
requested event name.

/etc/security/audit_event Maps audit event numbers to audit event
names.

/etc/passwd Stores user-ID to username mappings.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

MT-Level MT-Safe with exceptions.

The functions getauevent(), getauevnam(), and getauevnum() are not MT-Safe;
however, there are equivalent functions: getauevent_r(), getauevnam_r(), and
getauevnum_r() — all of which provide the same functionality and a MT-Safe
function call interface.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

getauclassent(3BSM), audit_class(4), audit_event(4)

getpwnam(3C), passwd(4), attributes(5)

getauevnum(3BSM)

RETURN VALUES

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

Introduction to Library Functions 375

All information for the functions getauevent(), getauevnam(), and
getauevnum() is contained in a static area, which may be overwritten, so it must be
copied if it is to be saved.

getauevnum(3BSM)

NOTES

376 man pages section 3: Library Functions • Last Revised 29 Dec 1996

getauevent, getauevnam, getauevnum, getauevnonam, setauevent, endauevent,
getauevent_r, getauevnam_r, getauevnum_r – Get audit_event entry

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_event_ent *getauevent(void);

struct au_event_ent *getauevnam(char *name);

struct au_event_ent *getauevnum(au_event_t event_number);

au_event_t *getauevnonam(char *event_name);

void setauevent(void);

void endauevent(void);

struct au_event_ent *getauevent_r(au_event_ent_t *e);

struct au_event_ent *getauevnam_r(au_event_ent_t *e, char *name);

struct au_event_ent *getauevnum_r(au_event_ent_t *e, au_event_t
event_number);

These interfaces document the programming interface for obtaining entries from the
audit_event(4) file. getauevent(), getauevnam(), getauevnum(),
getauevent(), getauevnam(), and getauevnum() each return a pointer to an
audit_event structure.

getauevent() and getauevent_r() enumerate audit_event entries; successive
calls to these functions will return either successive audit_event entries or NULL.

getauevnam() and getauevnam_r() search for an audit_event entry with a
given event_name.

getauevnum() and getauevnum_r() search for an audit_event entry with a
given event_number.

getauevnonam() searches for an audit_event entry with a given event_name and
returns the corresponding event number.

setauevent() ‘‘rewinds’’ to the beginning of the enumeration of audit_event
entries. Calls to getauevnam(), getauevnum(), getauevnonum(),
getauevnam_r(), or getauevnum_r() may leave the enumeration in an
indeterminate state; setauevent() should be called before the first getauevent()
or getauevent_r().

endauevent() may be called to indicate that audit_event processing is complete;
the system may then close any open audit_event file, deallocate storage, and so
forth.

getauevnum_r(3BSM)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 377

The three functions getauevent_r(), getauevnam_r(), and getauevnum_r()
each take an argument e which is a pointer to an au_event_ent_t. This pointer is
returned on a successful function call. To assure there is enough space for the
information returned, the applications programmer should be sure to allocate
AU_EVENT_NAME_MAX and AU_EVENT_DESC_MAX bytes for the ae_name and
ac_desc elements of the au_event_ent_t data structure.

The internal representation of an audit_event entry is an au_event_ent structure
defined in <bsm/libbsm.h> with the following members:

au_event_t ae_number;
char *ae_name;
char *ae_desc;
au_class_t ae_class;

getauevent(), getauevnam(), getauevnum(), getauevent_r(),
getauevnam_r(), and getauevnum_r() return a pointer to a struct
au_event_ent if the requested entry is successfully located; otherwise it returns
NULL.

getauevnonam() returns an event number of type au_event_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating it could not find the
requested event name.

/etc/security/audit_event Maps audit event numbers to audit event
names.

/etc/passwd Stores user-ID to username mappings.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

MT-Level MT-Safe with exceptions.

The functions getauevent(), getauevnam(), and getauevnum() are not MT-Safe;
however, there are equivalent functions: getauevent_r(), getauevnam_r(), and
getauevnum_r() — all of which provide the same functionality and a MT-Safe
function call interface.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

getauclassent(3BSM), audit_class(4), audit_event(4)

getpwnam(3C), passwd(4), attributes(5)

getauevnum_r(3BSM)

RETURN VALUES

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

378 man pages section 3: Library Functions • Last Revised 29 Dec 1996

All information for the functions getauevent(), getauevnam(), and
getauevnum() is contained in a static area, which may be overwritten, so it must be
copied if it is to be saved.

getauevnum_r(3BSM)

NOTES

Introduction to Library Functions 379

getauthattr, getauthnam, free_authattr, setauthattr, endauthattr, chkauthattr – get
authorization entry

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]
#include <auth_attr.h>

#include <secdb.h>

authattr_t *getauthattr(void);

authattr_t *getauthnam(const char *name);

void free_authattr(authattr_t *auth);

void setauthattr(void);

void endauthattr(void);

int chkauthattr(const char *authname, const char *username);

The getauthattr() and getauthnam() functions each return an auth_attr(4)
entry. Entries can come from any of the sources specified in the nsswitch.conf(4)
file.

The getauthattr() function enumerates auth_attr entries. The getauthnam()
function searches for an auth_attr entry with a given authorization name name.
Successive calls to these functions return either successive auth_attr entries or
NULL.

Th internal representation of an auth_attr entry is an authattr_t structure
defined in <auth_attr.h> with the following members:

char *name; /* name of the authorization */
char *res1; /* reserved for future use */
char *res2; /* reserved for future use */
char *short_desc; /* short description */
char *long_desc; /* long description */

kva_t *attr; /* array of key-value pair attributes */

The setauthattr() function “rewinds” to the beginning of the enumeration of
auth_attr entries. Calls to getauthnam() can leave the enumeration in an
indeterminate state. Therefore, setauthattr() should be called before the first call
to getauthattr().

The endauthattr() function may be called to indicate that auth_attr processing
is complete; the system may then close any open auth_attr file, deallocate storage,
and so forth.

The chkauthattr() function verifies whether or not a user has a given
authorization. It first reads the AUTHS_GRANTED key in the
/etc/security/policy.conf file and returns 1 if it finds a match for the given
authorization. If chkauthattr() does not find a match, it reads the
PROFS_GRANTED key in /etc/security/policy.conf and returns 1 if the given
authorization is in any profiles specified with the PROFS_GRANTED keyword. If a

getauthattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

380 man pages section 3: Library Functions • Last Revised 4 May 2000

match is not found from the default authorizations and default profiles,
chkauthattr() reads the user_attr(4) database. If it does not find a match in
user_attr, it reads the prof_attr(4) database, using the list of profiles assigned to
the user, and checks if any of the profiles assigned to the user has the given
authorization. The chkauthattr() function returns 0 if it does not find a match in
any of the three sources.

A user is considered to have been assigned an authorization if either of the following
are true:

� The authorization name matches exactly any authorization assigned in the
user_attr or prof_attr databases (authorization names are case-sensitive).

� The authorization name suffix is not the keyword grant and the authorization
name matches any authorization up to the asterisk (*) character assigned in the
user_attr or prof_attr databases.

The examples in the following table illustrate the conditions under which a user is
assigned an authorization.

/etc/security/policy.conf or Is user

Authorization name user_attr or prof_attr entry authorized?

solaris.printer.postscript solaris.printer.postscript Yes

solaris.printer.postscript solaris.printer.* Yes

solaris.printer.grant solaris.printer.* No

The free_authattr() function releases memory allocated by the getauthnam()
and getauthattr() functions.

The getauthattr() function returns a pointer to an authattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getauthnam() function returns a pointer to an authattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

The chkauthattr() function returns 1 if the user is authorized and 0 otherwise.

The getauthattr() and getauthnam() functions both allocate memory for the
pointers they return. This memory should be de-allocated with the
free_authattr() call.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

getauthattr(3SECDB)

RETURN VALUES

USAGE

Introduction to Library Functions 381

Individual attributes in the attr structure can be referred to by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, code must be written to ignore
unknown key-value pairs without error.

/etc/nsswitch.conf configuration file lookup information for
the name server switch

/etc/user_attr extended user attributes

/etc/security/auth_attr authorization attributes

/etc/security/policy.conf policy definitions

/etc/security/prof_attr profile information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

The Trusted Solaris environment adds authorizations. The chkauthattr() function
replaces the Trusted Solaris 7 chkauth() function.

nsswitch.conf(4), prof_attr(4), user_attr(4)

getexecattr(3SECDB), getprofattr(3SECDB), getuserattr(3SECDB),
kva_match(3SECDB), auth_attr(4), attributes(5), rbac(5)

getauthattr(3SECDB)

WARNINGS

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

382 man pages section 3: Library Functions • Last Revised 4 May 2000

getauthattr, getauthnam, free_authattr, setauthattr, endauthattr, chkauthattr – get
authorization entry

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]
#include <auth_attr.h>

#include <secdb.h>

authattr_t *getauthattr(void);

authattr_t *getauthnam(const char *name);

void free_authattr(authattr_t *auth);

void setauthattr(void);

void endauthattr(void);

int chkauthattr(const char *authname, const char *username);

The getauthattr() and getauthnam() functions each return an auth_attr(4)
entry. Entries can come from any of the sources specified in the nsswitch.conf(4)
file.

The getauthattr() function enumerates auth_attr entries. The getauthnam()
function searches for an auth_attr entry with a given authorization name name.
Successive calls to these functions return either successive auth_attr entries or
NULL.

Th internal representation of an auth_attr entry is an authattr_t structure
defined in <auth_attr.h> with the following members:

char *name; /* name of the authorization */
char *res1; /* reserved for future use */
char *res2; /* reserved for future use */
char *short_desc; /* short description */
char *long_desc; /* long description */

kva_t *attr; /* array of key-value pair attributes */

The setauthattr() function “rewinds” to the beginning of the enumeration of
auth_attr entries. Calls to getauthnam() can leave the enumeration in an
indeterminate state. Therefore, setauthattr() should be called before the first call
to getauthattr().

The endauthattr() function may be called to indicate that auth_attr processing
is complete; the system may then close any open auth_attr file, deallocate storage,
and so forth.

The chkauthattr() function verifies whether or not a user has a given
authorization. It first reads the AUTHS_GRANTED key in the
/etc/security/policy.conf file and returns 1 if it finds a match for the given
authorization. If chkauthattr() does not find a match, it reads the
PROFS_GRANTED key in /etc/security/policy.conf and returns 1 if the given
authorization is in any profiles specified with the PROFS_GRANTED keyword. If a

getauthnam(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 383

match is not found from the default authorizations and default profiles,
chkauthattr() reads the user_attr(4) database. If it does not find a match in
user_attr, it reads the prof_attr(4) database, using the list of profiles assigned to
the user, and checks if any of the profiles assigned to the user has the given
authorization. The chkauthattr() function returns 0 if it does not find a match in
any of the three sources.

A user is considered to have been assigned an authorization if either of the following
are true:

� The authorization name matches exactly any authorization assigned in the
user_attr or prof_attr databases (authorization names are case-sensitive).

� The authorization name suffix is not the keyword grant and the authorization
name matches any authorization up to the asterisk (*) character assigned in the
user_attr or prof_attr databases.

The examples in the following table illustrate the conditions under which a user is
assigned an authorization.

/etc/security/policy.conf or Is user

Authorization name user_attr or prof_attr entry authorized?

solaris.printer.postscript solaris.printer.postscript Yes

solaris.printer.postscript solaris.printer.* Yes

solaris.printer.grant solaris.printer.* No

The free_authattr() function releases memory allocated by the getauthnam()
and getauthattr() functions.

The getauthattr() function returns a pointer to an authattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getauthnam() function returns a pointer to an authattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

The chkauthattr() function returns 1 if the user is authorized and 0 otherwise.

The getauthattr() and getauthnam() functions both allocate memory for the
pointers they return. This memory should be de-allocated with the
free_authattr() call.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

getauthnam(3SECDB)

RETURN VALUES

USAGE

384 man pages section 3: Library Functions • Last Revised 4 May 2000

Individual attributes in the attr structure can be referred to by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, code must be written to ignore
unknown key-value pairs without error.

/etc/nsswitch.conf configuration file lookup information for
the name server switch

/etc/user_attr extended user attributes

/etc/security/auth_attr authorization attributes

/etc/security/policy.conf policy definitions

/etc/security/prof_attr profile information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

The Trusted Solaris environment adds authorizations. The chkauthattr() function
replaces the Trusted Solaris 7 chkauth() function.

nsswitch.conf(4), prof_attr(4), user_attr(4)

getexecattr(3SECDB), getprofattr(3SECDB), getuserattr(3SECDB),
kva_match(3SECDB), auth_attr(4), attributes(5), rbac(5)

getauthnam(3SECDB)

WARNINGS

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

Introduction to Library Functions 385

auth_to_str, str_to_auth, auth_set_to_str, str_to_auth_set, free_auth_set, get_auth_text
– translate and verify user authorizations

cc [flag…] file… -ltsol -ltsoldb -lcmd -lnsl [library…]

(obsolete)

These functions are obsolete. Authorizations in Trusted Solaris 8 and later releases do
not need translation. See getauthattr(3SECDB) for how to search auth_attr(4)
entries.

get_auth_text(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

386 man pages section 3: Library Functions • Last Revised 30 May 2000

getauusernam, getauuserent, setauuser, endauuser – Get audit_user entry

cc [flag…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_user_ent *getauusernam(const char *name);

struct au_user_ent *getauuserent(void);

void setauuser(void);

void endauuser(void);

struct au_user_ent *getauusernam_r(au_user_ent_t * u, const char
*name);

struct au_user_ent *getauuserent_r(au_user_ent_t *u);

The getauuserent(), getauusernam(), getauuserent_r(), and
getauusernam_r() functions each return an audit_user entry. Entries can come
from any of the sources specified in the /etc/nsswitch.conf file (see
nsswitch.conf(4)).

The getauusernam() and getauusernam_r() functions search for an
audit_user entry with a given login name name.

The getauuserent() and getauuserent_r() functions enumerate audit_user
entries; successive calls to these functions will return either successive audit_user
entries or NULL.

The setauuser() function “rewinds” to the beginning of the enumeration of
audit_user entries. Calls to getauusernam() and getauusernam_r() may leave
the enumeration in an indeterminate state, so setauuser() should be called before
the first call to getauuserent() or getauuserent_r().

The endauuser() function may be called to indicate that audit_user processing is
complete; the system may then close any open audit_user file, deallocate storage,
and so forth.

The getauuserent_r() and getauusernam_r() functions both take an argument
u, which is a pointer to an au_user_ent. This is the pointer that is returned on
successful function calls.

The internal representation of an audit_user entry is an au_user_ent structure
defined in <bsm/libbsm.h> with the following members:

char *au_name;
au_mask_t au_always;
au_mask_t au_never;

getauuserent(3BSM)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 387

The getauusernam() function returns a pointer to a struct_au_user_ent if it
successfully locates the requested entry; otherwise it returns NULL.

The getauuserent() function returns a pointer to a struct_au_user_ent if it
successfully enumerates an entry; otherwise it returns NULL, indicating the end of the
enumeration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions.

/etc/security/audit_user Stores per-user audit event mask.

/etc/passwd Stores user-id to username mappings.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

audit_user(4), nsswitch.conf(4)

getpwnam(3C), passwd(4), attributes(5)

All information for the getauuserent() and getauusernam() functions is
contained in a static area, which may be overwritten, so it must be copied if it is to be
saved.

The getauusernam() and getauuserent() functions are not MT-safe. The
getauusernam_r() and getauuserent_r() functions provide the same
functionality with interfaces that are MT-Safe.

getauuserent(3BSM)

RETURN VALUES

ATTRIBUTES

FILES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

388 man pages section 3: Library Functions • Last Revised 18 Apr 2000

getauusernam, getauuserent, setauuser, endauuser – Get audit_user entry

cc [flag…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_user_ent *getauusernam(const char *name);

struct au_user_ent *getauuserent(void);

void setauuser(void);

void endauuser(void);

struct au_user_ent *getauusernam_r(au_user_ent_t * u, const char
*name);

struct au_user_ent *getauuserent_r(au_user_ent_t *u);

The getauuserent(), getauusernam(), getauuserent_r(), and
getauusernam_r() functions each return an audit_user entry. Entries can come
from any of the sources specified in the /etc/nsswitch.conf file (see
nsswitch.conf(4)).

The getauusernam() and getauusernam_r() functions search for an
audit_user entry with a given login name name.

The getauuserent() and getauuserent_r() functions enumerate audit_user
entries; successive calls to these functions will return either successive audit_user
entries or NULL.

The setauuser() function “rewinds” to the beginning of the enumeration of
audit_user entries. Calls to getauusernam() and getauusernam_r() may leave
the enumeration in an indeterminate state, so setauuser() should be called before
the first call to getauuserent() or getauuserent_r().

The endauuser() function may be called to indicate that audit_user processing is
complete; the system may then close any open audit_user file, deallocate storage,
and so forth.

The getauuserent_r() and getauusernam_r() functions both take an argument
u, which is a pointer to an au_user_ent. This is the pointer that is returned on
successful function calls.

The internal representation of an audit_user entry is an au_user_ent structure
defined in <bsm/libbsm.h> with the following members:

char *au_name;
au_mask_t au_always;
au_mask_t au_never;

getauusernam(3BSM)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 389

The getauusernam() function returns a pointer to a struct_au_user_ent if it
successfully locates the requested entry; otherwise it returns NULL.

The getauuserent() function returns a pointer to a struct_au_user_ent if it
successfully enumerates an entry; otherwise it returns NULL, indicating the end of the
enumeration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions.

/etc/security/audit_user Stores per-user audit event mask.

/etc/passwd Stores user-id to username mappings.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

audit_user(4), nsswitch.conf(4)

getpwnam(3C), passwd(4), attributes(5)

All information for the getauuserent() and getauusernam() functions is
contained in a static area, which may be overwritten, so it must be copied if it is to be
saved.

The getauusernam() and getauuserent() functions are not MT-safe. The
getauusernam_r() and getauuserent_r() functions provide the same
functionality with interfaces that are MT-Safe.

getauusernam(3BSM)

RETURN VALUES

ATTRIBUTES

FILES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

390 man pages section 3: Library Functions • Last Revised 18 Apr 2000

blportion, bcltosl, getcsl, setcsl – access binary label portions

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

bslabel_t *bcltosl(bclabel_t *label);

void getcsl(bslabel_t *destination_label, const bclabel_t *source_label);

void setcsl(bclabel_t *destination_label, const bslabel_t *source_label);

These functions provide pointers to, extract, and replace portions of binary labels.

bcltosl() provides a pointer to the sensitivity label of the binary CMW label label.

getcsl() copies the sensitivity label of the binary CMW label source_label to the
binary sensitivity label destination_label.

setcsl() replaces the value of the sensitivity label of the binary CMW label
destination_label with the value of the binary sensitivity label source_label.

bcltosl() returns a pointer to its label type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

EXAMPLE 1 Comparing Sensitivity Labels

The following example shows how to compare the sensitivity label portion of a binary
CMW label with a file’s binary sensitivity label.

blequal(bcltosl(&cmw_label), &file_sensitivity_label)

bcltobanner(3TSOL), blcompare(3TSOL), bltos(3TSOL), btohex(3TSOL),
labelinfo(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

getcsl(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

EXAMPLES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction to Library Functions 391

getexecattr, free_execattr, setexecattr, endexecattr, getexecuser, getexecprof,
match_execattr – get execution profile entry

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]
#include <exec_attr.h>

#include <secdb.h>

execattr_t *getexecattr(void);

void free_execattr(execattr_t *ep);

void setexecattr(void);

void endexecattr(void);

execattr_t *getexecuser(const char *username, const char *type,
const char *id, int search_flag);

execattr_t *getexecprof(const char *profname, const char *type,
const char *id, int search_flag);

execattr_t *match_execattr(execattr_t *ep, char *profname, char
*type, char *id);

The getexecattr() function returns a single exec_attr entry. Entries can come
from any of the sources specified in the nsswitch.conf(4) file.

Successive calls to getexecattr() return either successive exec_attr entries or
NULL. Because getexecattr() always returns a single entry, the next pointer in the
execattr_t data structure points to NULL.

The internal representation of an exec_attr entry is an execattr_t structure
defined in <exec_attr.h> with the following members:

char name; /* name of the profile */
char type; /* type of profile */
char policy; /* policy under which the attributes are */

/* relevant*/
char res1; /* reserved for future use */
char res2; /* reserved for future use */
char id; /* unique identifier */
kva_t attr; /* attributes */

struct execattr_s next; /* optional pointer to next profile */

The free_execattr() function releases memory. It follows the next pointers in the
execattr_t structure so that the entire linked list is released.

The setexecattr() function “rewinds” to the beginning of the enumeration of
exec_attr entries. Calls to getexecuser() can leave the enumeration in an
indeterminate state. Therefore, setexecattr() should be called before the first call
to getexecattr().

getexecattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

392 man pages section 3: Library Functions • Last Revised 13 Mar 2000

The endexecattr() function can be called to indicate that exec_attr processing is
complete; the library can then close any open exec_attr file, deallocate any internal
storage, and so forth.

The getexecuser() function returns a linked list of entries filtered by the function’s
arguments. Only entries assigned to the specified username, as described in the
passwd(4) database, and containing the specified type and id, as described in the
exec_attr(4) database, are placed in the list. The getexecuser() function is
different from the other functions in its family because it spans two databases. It first
looks up the list of profiles assigned to a user in the user_attr database and the list
of default profiles in /etc/security/policy.conf, then looks up each profile in
the exec_attr database.

The getexecprof() function returns a linked list of entries that have components
matching the function’s arguments. Only entries in the database matching the
argument profname, as described in exec_attr, and containing the type and id, also
described in exec_attr, are placed in the list.

Using getexecuser() and getexecprof(), programmers can search for any type
argument, such as the manifest constant KV_COMMAND. The arguments are logically
AND-ed together so that only entries exactly matching all of the arguments are
returned. Wildcard matching applies if there is no exact match for an ID. Any
argument can be assigned the NULL value to indicate that it is not used as part of the
matching criteria. The search_flag controls whether the function returns the first match
(GET_ONE), setting the next pointer to NULL or all matching entries (GET_ALL), using
the next pointer to create a linked list of all entries that meet the search criteria. See
EXAMPLES.

Once a list of entries is returned by getexecuser() or getexecprof(), the
convenience function match_execattr() can be used to identify an individual
entry. It returns a pointer to the individual element with the same profile name (
profname), type name (type), and id. Function parameters set to NULL are not used as
part of the matching criteria. In the event that multiple entries meet the matching
criteria, only a pointer to the first entry is returned. The kva_match(3SECDB)
function can be used to look up a key in a key-value array.

Those functions returning data only return data related to the active policy. The
getexecattr() function returns a pointer to a execattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getexecattr(), getexecuser(), and getexecprof() functions all allocate
memory for the pointers they return. This memory should be deallocated with the
free_execattr() call. The match_execattr()(function does not allocate any
memory. Therefore, pointers returned by this function should not be deallocated.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and

getexecattr(3SECDB)

RETURN VALUES

USAGE

Introduction to Library Functions 393

linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

Individual attributes may be referenced in the attr structure by calling the
kva_match(3SECDB) function.

EXAMPLE 1 The following finds all profiles that have the ping command.

if ((execprof=getexecprof(NULL, KV_COMMAND, "/usr/sbin/ping",
GET_ONE)) == NULL) {

/* do error */

}

EXAMPLE 2 The following finds the entry for the ping command in the Network
Administration Profile.

if ((execprof=getexecprof("Network Administration", KV_COMMAND,
"/usr/sbin/ping", GET_ALL))==NULL) {

/* do error */

}

EXAMPLE 3 The following tells everything that can be done in the Filesystem Security profile.

if ((execprof=getexecprof("Filesystem Security", KV_NULL, NULL,
GET_ALL))==NULL)) {

/* do error */

}

EXAMPLE 4 The following tells if the tar command is in a profile assigned to user wetmore.
If there is no exact profile entry, the wildcard (*), if defined, is returned.

if ((execprof=getexecuser("wetmore", KV_COMMAND, "/usr/bin/tar",
GET_ONE))==NULL) {

/* do error */

}

/etc/nsswitch.conf configuration file lookup information for
the name server switch

/etc/user_attr extended user attributes

/etc/security/exec_attr execution profiles

/etc/security/policy.conf policy definitions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getexecattr(3SECDB)

EXAMPLES

FILES

ATTRIBUTES

394 man pages section 3: Library Functions • Last Revised 13 Mar 2000

getauthattr(3SECDB), getuserattr(3SECDB), kva_match(3SECDB),
exec_attr(4), policy.conf(4), user_attr(4), attributes(5)

getexecattr(3SECDB)

SEE ALSO

Introduction to Library Functions 395

getexecattr, free_execattr, setexecattr, endexecattr, getexecuser, getexecprof,
match_execattr – get execution profile entry

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]
#include <exec_attr.h>

#include <secdb.h>

execattr_t *getexecattr(void);

void free_execattr(execattr_t *ep);

void setexecattr(void);

void endexecattr(void);

execattr_t *getexecuser(const char *username, const char *type,
const char *id, int search_flag);

execattr_t *getexecprof(const char *profname, const char *type,
const char *id, int search_flag);

execattr_t *match_execattr(execattr_t *ep, char *profname, char
*type, char *id);

The getexecattr() function returns a single exec_attr entry. Entries can come
from any of the sources specified in the nsswitch.conf(4) file.

Successive calls to getexecattr() return either successive exec_attr entries or
NULL. Because getexecattr() always returns a single entry, the next pointer in the
execattr_t data structure points to NULL.

The internal representation of an exec_attr entry is an execattr_t structure
defined in <exec_attr.h> with the following members:

char name; /* name of the profile */
char type; /* type of profile */
char policy; /* policy under which the attributes are */

/* relevant*/
char res1; /* reserved for future use */
char res2; /* reserved for future use */
char id; /* unique identifier */
kva_t attr; /* attributes */

struct execattr_s next; /* optional pointer to next profile */

The free_execattr() function releases memory. It follows the next pointers in the
execattr_t structure so that the entire linked list is released.

The setexecattr() function “rewinds” to the beginning of the enumeration of
exec_attr entries. Calls to getexecuser() can leave the enumeration in an
indeterminate state. Therefore, setexecattr() should be called before the first call
to getexecattr().

getexecprof(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

396 man pages section 3: Library Functions • Last Revised 13 Mar 2000

The endexecattr() function can be called to indicate that exec_attr processing is
complete; the library can then close any open exec_attr file, deallocate any internal
storage, and so forth.

The getexecuser() function returns a linked list of entries filtered by the function’s
arguments. Only entries assigned to the specified username, as described in the
passwd(4) database, and containing the specified type and id, as described in the
exec_attr(4) database, are placed in the list. The getexecuser() function is
different from the other functions in its family because it spans two databases. It first
looks up the list of profiles assigned to a user in the user_attr database and the list
of default profiles in /etc/security/policy.conf, then looks up each profile in
the exec_attr database.

The getexecprof() function returns a linked list of entries that have components
matching the function’s arguments. Only entries in the database matching the
argument profname, as described in exec_attr, and containing the type and id, also
described in exec_attr, are placed in the list.

Using getexecuser() and getexecprof(), programmers can search for any type
argument, such as the manifest constant KV_COMMAND. The arguments are logically
AND-ed together so that only entries exactly matching all of the arguments are
returned. Wildcard matching applies if there is no exact match for an ID. Any
argument can be assigned the NULL value to indicate that it is not used as part of the
matching criteria. The search_flag controls whether the function returns the first match
(GET_ONE), setting the next pointer to NULL or all matching entries (GET_ALL), using
the next pointer to create a linked list of all entries that meet the search criteria. See
EXAMPLES.

Once a list of entries is returned by getexecuser() or getexecprof(), the
convenience function match_execattr() can be used to identify an individual
entry. It returns a pointer to the individual element with the same profile name (
profname), type name (type), and id. Function parameters set to NULL are not used as
part of the matching criteria. In the event that multiple entries meet the matching
criteria, only a pointer to the first entry is returned. The kva_match(3SECDB)
function can be used to look up a key in a key-value array.

Those functions returning data only return data related to the active policy. The
getexecattr() function returns a pointer to a execattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getexecattr(), getexecuser(), and getexecprof() functions all allocate
memory for the pointers they return. This memory should be deallocated with the
free_execattr() call. The match_execattr()(function does not allocate any
memory. Therefore, pointers returned by this function should not be deallocated.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and

getexecprof(3SECDB)

RETURN VALUES

USAGE

Introduction to Library Functions 397

linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

Individual attributes may be referenced in the attr structure by calling the
kva_match(3SECDB) function.

EXAMPLE 1 The following finds all profiles that have the ping command.

if ((execprof=getexecprof(NULL, KV_COMMAND, "/usr/sbin/ping",
GET_ONE)) == NULL) {

/* do error */

}

EXAMPLE 2 The following finds the entry for the ping command in the Network
Administration Profile.

if ((execprof=getexecprof("Network Administration", KV_COMMAND,
"/usr/sbin/ping", GET_ALL))==NULL) {

/* do error */

}

EXAMPLE 3 The following tells everything that can be done in the Filesystem Security profile.

if ((execprof=getexecprof("Filesystem Security", KV_NULL, NULL,
GET_ALL))==NULL)) {

/* do error */

}

EXAMPLE 4 The following tells if the tar command is in a profile assigned to user wetmore.
If there is no exact profile entry, the wildcard (*), if defined, is returned.

if ((execprof=getexecuser("wetmore", KV_COMMAND, "/usr/bin/tar",
GET_ONE))==NULL) {

/* do error */

}

/etc/nsswitch.conf configuration file lookup information for
the name server switch

/etc/user_attr extended user attributes

/etc/security/exec_attr execution profiles

/etc/security/policy.conf policy definitions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getexecprof(3SECDB)

EXAMPLES

FILES

ATTRIBUTES

398 man pages section 3: Library Functions • Last Revised 13 Mar 2000

getauthattr(3SECDB), getuserattr(3SECDB), kva_match(3SECDB),
exec_attr(4), policy.conf(4), user_attr(4), attributes(5)

getexecprof(3SECDB)

SEE ALSO

Introduction to Library Functions 399

getexecattr, free_execattr, setexecattr, endexecattr, getexecuser, getexecprof,
match_execattr – get execution profile entry

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]
#include <exec_attr.h>

#include <secdb.h>

execattr_t *getexecattr(void);

void free_execattr(execattr_t *ep);

void setexecattr(void);

void endexecattr(void);

execattr_t *getexecuser(const char *username, const char *type,
const char *id, int search_flag);

execattr_t *getexecprof(const char *profname, const char *type,
const char *id, int search_flag);

execattr_t *match_execattr(execattr_t *ep, char *profname, char
*type, char *id);

The getexecattr() function returns a single exec_attr entry. Entries can come
from any of the sources specified in the nsswitch.conf(4) file.

Successive calls to getexecattr() return either successive exec_attr entries or
NULL. Because getexecattr() always returns a single entry, the next pointer in the
execattr_t data structure points to NULL.

The internal representation of an exec_attr entry is an execattr_t structure
defined in <exec_attr.h> with the following members:

char name; /* name of the profile */
char type; /* type of profile */
char policy; /* policy under which the attributes are */

/* relevant*/
char res1; /* reserved for future use */
char res2; /* reserved for future use */
char id; /* unique identifier */
kva_t attr; /* attributes */

struct execattr_s next; /* optional pointer to next profile */

The free_execattr() function releases memory. It follows the next pointers in the
execattr_t structure so that the entire linked list is released.

The setexecattr() function “rewinds” to the beginning of the enumeration of
exec_attr entries. Calls to getexecuser() can leave the enumeration in an
indeterminate state. Therefore, setexecattr() should be called before the first call
to getexecattr().

getexecuser(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

400 man pages section 3: Library Functions • Last Revised 13 Mar 2000

The endexecattr() function can be called to indicate that exec_attr processing is
complete; the library can then close any open exec_attr file, deallocate any internal
storage, and so forth.

The getexecuser() function returns a linked list of entries filtered by the function’s
arguments. Only entries assigned to the specified username, as described in the
passwd(4) database, and containing the specified type and id, as described in the
exec_attr(4) database, are placed in the list. The getexecuser() function is
different from the other functions in its family because it spans two databases. It first
looks up the list of profiles assigned to a user in the user_attr database and the list
of default profiles in /etc/security/policy.conf, then looks up each profile in
the exec_attr database.

The getexecprof() function returns a linked list of entries that have components
matching the function’s arguments. Only entries in the database matching the
argument profname, as described in exec_attr, and containing the type and id, also
described in exec_attr, are placed in the list.

Using getexecuser() and getexecprof(), programmers can search for any type
argument, such as the manifest constant KV_COMMAND. The arguments are logically
AND-ed together so that only entries exactly matching all of the arguments are
returned. Wildcard matching applies if there is no exact match for an ID. Any
argument can be assigned the NULL value to indicate that it is not used as part of the
matching criteria. The search_flag controls whether the function returns the first match
(GET_ONE), setting the next pointer to NULL or all matching entries (GET_ALL), using
the next pointer to create a linked list of all entries that meet the search criteria. See
EXAMPLES.

Once a list of entries is returned by getexecuser() or getexecprof(), the
convenience function match_execattr() can be used to identify an individual
entry. It returns a pointer to the individual element with the same profile name (
profname), type name (type), and id. Function parameters set to NULL are not used as
part of the matching criteria. In the event that multiple entries meet the matching
criteria, only a pointer to the first entry is returned. The kva_match(3SECDB)
function can be used to look up a key in a key-value array.

Those functions returning data only return data related to the active policy. The
getexecattr() function returns a pointer to a execattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getexecattr(), getexecuser(), and getexecprof() functions all allocate
memory for the pointers they return. This memory should be deallocated with the
free_execattr() call. The match_execattr()(function does not allocate any
memory. Therefore, pointers returned by this function should not be deallocated.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and

getexecuser(3SECDB)

RETURN VALUES

USAGE

Introduction to Library Functions 401

linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

Individual attributes may be referenced in the attr structure by calling the
kva_match(3SECDB) function.

EXAMPLE 1 The following finds all profiles that have the ping command.

if ((execprof=getexecprof(NULL, KV_COMMAND, "/usr/sbin/ping",
GET_ONE)) == NULL) {

/* do error */

}

EXAMPLE 2 The following finds the entry for the ping command in the Network
Administration Profile.

if ((execprof=getexecprof("Network Administration", KV_COMMAND,
"/usr/sbin/ping", GET_ALL))==NULL) {

/* do error */

}

EXAMPLE 3 The following tells everything that can be done in the Filesystem Security profile.

if ((execprof=getexecprof("Filesystem Security", KV_NULL, NULL,
GET_ALL))==NULL)) {

/* do error */

}

EXAMPLE 4 The following tells if the tar command is in a profile assigned to user wetmore.
If there is no exact profile entry, the wildcard (*), if defined, is returned.

if ((execprof=getexecuser("wetmore", KV_COMMAND, "/usr/bin/tar",
GET_ONE))==NULL) {

/* do error */

}

/etc/nsswitch.conf configuration file lookup information for
the name server switch

/etc/user_attr extended user attributes

/etc/security/exec_attr execution profiles

/etc/security/policy.conf policy definitions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getexecuser(3SECDB)

EXAMPLES

FILES

ATTRIBUTES

402 man pages section 3: Library Functions • Last Revised 13 Mar 2000

getauthattr(3SECDB), getuserattr(3SECDB), kva_match(3SECDB),
exec_attr(4), policy.conf(4), user_attr(4), attributes(5)

getexecuser(3SECDB)

SEE ALSO

Introduction to Library Functions 403

getfauditflags – Generates the process audit state

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

int getfauditflags(au_mask_t *usremasks, au_mask_t *usrdmasks,
au_mask_t *lastmasks);

getfauditflags() generates a process audit state by combining the audit masks
passed as parameters with the system audit masks specified in the
audit_control(4) file. getfauditflags() obtains the system audit value by
calling getacflg() (see getacinfo(3BSM).)

usremasks points to au_mask_t fields which contains two values. The first value
defines which events are always to be audited when they succeed. The second value
defines which events are always to be audited when they fail.

usrdmasks also points to au_mask_t fields which contains two values. The first value
defines which events are never to be audited when they succeed. The second value
defines which events are never to be audited when they fail.

The structures pointed to by usremasks and usrdmasks may be obtained from the
audit_user(4) file by calling getauusernam() which returns a pointer to a
strucure containing all audit_user(4) fields for a user.

The output of this function is stored in lastmasks which is a pointer of type au_mask_t
as well. The first value defines which events are to be audited when they succeed and
the second defines which events are to be audited when they fail.

Both usremasks and usrdmasks override the values in the system audit values.

−1 is returned on error and 0 on success.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

getacinfo(3BSM), getauditflags(3BSM), getauusernam(3BSM), audit.log(4),
audit_control(4), audit_user(4)

attributes(5)

getfauditflags(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

404 man pages section 3: Library Functions • Last Revised 29 Dec 1996

getpeerinfo – Get peer’s process characteristics

cc [flag…] file… -lbsm -lsocket -lnsl -lintl [library…]

#include <bsm/audit.h>

int getpeerinfo(int fd, au_peergroupinfo_t *grpinfo,
au_peermiscinfo_t *peerinfo);

Returns the peer process’ audit attributes for the peer designated by the socket or TLI
file descriptor fd. If grpinfo or peerinfo is NULL, then the corresponding information is
not obtained.

The au_peergroupinfo structure has the following form:

struct peergroupinfo {
ulong_t peer_ngroups /* number of elements obtained */
gid_t peer_groups[NGROUPS_UMAX]; /* peer’s supplemental groups */

};

The remaining attributes are returned in peerinfo which is of type struct
au_peermiscinfo and has been allocated by the calling process. The
au_peermiscinfo structure has the following form:

struct au_peermiscinfo{
uid_t peer_ruid; /* peer’s real user id */

gid_t peer_rgid; /* peer’s real group id */
auditinfo_t peer_audit; /* peer’s audit characteristic’s */
};

where auditinfo_t is of type struct auditinfo which has the following form:

struct auditinfo{
au_id_t ai_auid; /* audit ID */
au_mask_t ai_mask; /* preselection mask */
au_tid_t ai_termid; /* audit terminal ID */
au_asid_t ai_asid; /* audit session ID */

};

getpeerinfo() requires that either the PRIV_PROC_AUDIT_TCB or
PRIV_PROC_AUDIT_APPL privilege be asserted in a process’ effective set in order to
get the peerinfo attributes from its peer. No privileges are required to obtain just
grpinfo.

getpeerinfo() returns 0 on success. On failure it returns a negative value and sets
errno to indicate the error.

See attributes(5) for descriptions of the following attributes:

getpeerinfo(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

Introduction to Library Functions 405

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl

MT-Level MT-Safe

EBADF fd is not a valid descriptor.

ENOTSOCK fd is not a socket or TLI interface.

ENOBUFS Insufficient resources were available in the system to
perform the operation.

EADDRNOTAVAIL Could not establish connection with server.

EINVAL There was an internal error in which fd pointed to a
peer process that was not recognized by its host.

ENOENT No such port currently active on the peer.

EOPNOTSUPP Type not SOCK_DGRAM or SOCK_STREAM, or either the
local peer socket or TLI descriptor is not AF_INET.

EPERM The caller does not have the proper privileges.

Available only on Trusted Solaris systems with auditing enabled. Auditing is enabled
by default in the Trusted Solaris environment.

attributes(5)

getpeerinfo(3TSOL)

ERRORS

NOTES

SunOS 5.8
Reference Manual

406 man pages section 3: Library Functions • Last Revised 05 May 1998

priv_to_str, priv_set_to_str, str_to_priv, str_to_priv_set, get_priv_text – Convert a
numeric privilege to its name or a privilege name to its number

cc [flag…] file… -ltsol [library…]

#include <tsol/priv.h>

priv_t str_to_priv(const char *priv_name);

char *priv_to_str(const priv_t priv_id);

char *str_to_priv_set(const char *priv_names, priv_set_t *priv_set,
const char *separators);

char *priv_set_to_str(priv_set_t *priv_set, char separator, char
*buffer, int *buflen);

char *get_priv_text(const priv_t priv_id);

priv_to_str() returns a pointer to the statically allocated, null-terminated privilege
name specified by priv_id. If priv_id is an undefined privilege ID, the integer ordinal of
priv_id is returned. If priv_id is greater than TSOL_MAX_PRIV, the maximum allowable
privilege ID, a NULL is returned.

str_to_priv() returns the numeric privilege ID specified by the null-terminated
privilege name priv_name. Privilege names can be specified in upper or lower case. An
integer ordinal in the string is also acceptable.

priv_set_to_str() appends the name of each privilege in priv_set to a string to
which the user-supplied buffer of length buflen points. Privilege names are separated
by the separator character. Integer ordinals name the undefined privileges found in the
privilege set. String none identifies an empty privilege set; and all, a full privilege
set. Privilege names in the string are sorted in alphabetical order by localized sort.

Based on the token separators (separators), str_to_priv_set() breaks the
priv_names string into tokens to be translated into a privilege set. Token none is
translated to an empty privilege set; token all, to a full privilege set. The presence of
token none overrides whatever precedes it. For example, the string
file_mac_read,file_mac_write,none,proc_nofloat produces the same
result as proc_nofloat alone. The constructed privilege set is stored in the
priv_set_t buffer to which priv_set points.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

get_priv_text(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Introduction to Library Functions 407

get_priv_text() Returns a pointer to the statically allocated,
null-terminated privilege description text specified by
priv_id.

priv_to_str() Returns a pointer to the translated privilege name
string. The function returns NULL and sets errno on
failure.

str_to_priv() Returns the numeric privilege ID. The function returns
−1 and sets errno on failure.

priv_set_to_str() Returns a pointer to the translated privilege names
string. If the passed-in buflen is too small to hold the
string, this routine stores the required buffer size into
buflen and returns NULL. The function returns NULL
and sets errno on failure. This function returns −1 if
the string cannot be translated or if an integer ordinal
in the string is greater than TSOL_MAX_PRIV.

str_to_priv_set() Returns NULL on success. If bad privilege names
appear in the priv_names string, the function returns a
pointer to the first privilege name that is not
recognizable.

priv_to_str() may fail for this reason:

EINVAL The specified priv_id is greater than TSOL_MAX_PRIV.

priv_set_to_str() may fail for this reason:

EFAULT The specified priv_set is an invalid address.

str_to_priv() may fail for one of these reasons:

EINVAL The specified priv_name does not match any of the defined
privilege names.

EFAULT The specified priv_name is an invalid address.

To use these routines, the program must be loaded with the Trusted Solaris library
libtsol or libtsol.so.

priv_desc(4) priv_name(4)

attributes(5)

get_priv_text(3TSOL)

RETURN VALUES

ERRORS

NOTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

408 man pages section 3: Library Functions • Last Revised 17 Apr 1998

getprofattr, getprofnam, free_profattr, setprofattr, endprofattr, getproflist, free_proflist
– get profile description and attributes

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]

#include <prof.h>

profattr_t *getprofattr(void);

profattr_t *getprofnam(const char *name);

void free_profattr(profattr_t *pd);

void setprofattr(void);

void endprofattr(void);

void getproflist(const char *profname, char **proflist, int *profcnt);

void free_proflist(char **proflist, int profcnt);

The getprofattr() and getprofnam() functions each return a prof_attr entry.
Entries can come from any of the sources specified in the nsswitch.conf(4) file.

The getprofattr() function enumerates prof_attr entries. The getprofnam()
function searches for a prof_attr entry with a given name. Successive calls to these
functions return either successive prof_attr entries or NULL.

The internal representation of a prof_attr entry is a profattr_t structure defined
in <prof_attr.h> with the following members:

char name; /* Name of the profile */
char res1; /* Reserved for future use */
char res2; /* Reserved for future use */
char desc; /* Description/Purpose of the profile */

kva_t attr; /* Profile attributes */

The free_profattr() function releases memory allocated by the getprofattr()
and getprofnam() functions.

The setprofattr() function “rewinds” to the beginning of the enumeration of
prof_attr entries. Calls to getprofnam() can leave the enumeration in an
indeterminate state. Therefore, setprofattr() should be called before the first call
to getprofattr().

The endprofattr() function may be called to indicate that prof_attr processing
is complete; the system may then close any open prof_attr file, deallocate storage,
and so forth.

The getproflist() function searches for the list of sub-profiles found in the given
profname and allocates memory to store this list in proflist. The given profname will be
included in the list of sub-profiles. The profcnt argument indicates the number of items
currently valid in proflist. Memory allocated by getproflist() should be freed
using the free_proflist() function.

getprofattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 409

The free_proflist() function frees memory allocated by the getproflist()
function. The profcnt argument specifies the number of items to free from the proflist
argument.

The getprofattr() function returns a pointer to a profattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getprofnam() function returns a pointer to a profattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

Individual attributes in the prof_attr_t structure can be referred to by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, any code must be written to ignore
unknown key-value pairs without error.

The getprofattr() and getprofnam() functions both allocate memory for the
pointers they return. This memory should be deallocated with the free_profattr()
function.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

/etc/security/prof_attr profiles and their descriptions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

auths(1), profiles(1), getexecattr(3SECDB), getauthattr(3SECDB),
prof_attr(4)

getprofattr(3SECDB)

RETURN VALUES

USAGE

FILES

ATTRIBUTES

SEE ALSO

410 man pages section 3: Library Functions • Last Revised 13 Mar 2000

getprofent, setprofent, endprofent, getprofentbyname, free_profent – Get user profile
description

cc [flag…] file… -ltsol -ltsoldb -lcmd -lnsl [library…]

(obsolete)

The getprofent, setprofent, endprofent, getprofentbyname, and
free_profent functions are replaced in Trusted Solaris 8 and later releases with the
functions described in the getprofattr(3SECDB) and getexecattr(3SECDB) man
pages. These functions find rights profiles information in prof_attr(4) and
exec_attr(4).

getprofent(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 411

getprofent, setprofent, endprofent, getprofentbyname, free_profent – Get user profile
description

cc [flag…] file… -ltsol -ltsoldb -lcmd -lnsl [library…]

(obsolete)

The getprofent, setprofent, endprofent, getprofentbyname, and
free_profent functions are replaced in Trusted Solaris 8 and later releases with the
functions described in the getprofattr(3SECDB) and getexecattr(3SECDB) man
pages. These functions find rights profiles information in prof_attr(4) and
exec_attr(4).

getprofentbyname(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

412 man pages section 3: Library Functions • Last Revised 16 Jun 2000

getprofattr, getprofnam, free_profattr, setprofattr, endprofattr, getproflist, free_proflist
– get profile description and attributes

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]

#include <prof.h>

profattr_t *getprofattr(void);

profattr_t *getprofnam(const char *name);

void free_profattr(profattr_t *pd);

void setprofattr(void);

void endprofattr(void);

void getproflist(const char *profname, char **proflist, int *profcnt);

void free_proflist(char **proflist, int profcnt);

The getprofattr() and getprofnam() functions each return a prof_attr entry.
Entries can come from any of the sources specified in the nsswitch.conf(4) file.

The getprofattr() function enumerates prof_attr entries. The getprofnam()
function searches for a prof_attr entry with a given name. Successive calls to these
functions return either successive prof_attr entries or NULL.

The internal representation of a prof_attr entry is a profattr_t structure defined
in <prof_attr.h> with the following members:

char name; /* Name of the profile */
char res1; /* Reserved for future use */
char res2; /* Reserved for future use */
char desc; /* Description/Purpose of the profile */

kva_t attr; /* Profile attributes */

The free_profattr() function releases memory allocated by the getprofattr()
and getprofnam() functions.

The setprofattr() function “rewinds” to the beginning of the enumeration of
prof_attr entries. Calls to getprofnam() can leave the enumeration in an
indeterminate state. Therefore, setprofattr() should be called before the first call
to getprofattr().

The endprofattr() function may be called to indicate that prof_attr processing
is complete; the system may then close any open prof_attr file, deallocate storage,
and so forth.

The getproflist() function searches for the list of sub-profiles found in the given
profname and allocates memory to store this list in proflist. The given profname will be
included in the list of sub-profiles. The profcnt argument indicates the number of items
currently valid in proflist. Memory allocated by getproflist() should be freed
using the free_proflist() function.

getprofnam(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 413

The free_proflist() function frees memory allocated by the getproflist()
function. The profcnt argument specifies the number of items to free from the proflist
argument.

The getprofattr() function returns a pointer to a profattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getprofnam() function returns a pointer to a profattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

Individual attributes in the prof_attr_t structure can be referred to by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, any code must be written to ignore
unknown key-value pairs without error.

The getprofattr() and getprofnam() functions both allocate memory for the
pointers they return. This memory should be deallocated with the free_profattr()
function.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

/etc/security/prof_attr profiles and their descriptions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

auths(1), profiles(1), getexecattr(3SECDB), getauthattr(3SECDB),
prof_attr(4)

getprofnam(3SECDB)

RETURN VALUES

USAGE

FILES

ATTRIBUTES

SEE ALSO

414 man pages section 3: Library Functions • Last Revised 13 Mar 2000

getprofstr, putprofstr, setprofstr, endprofstr, getprofstrbyname, free_profstr – Get user
profile description

cc [flag…] file… -ltsol -ltsoldb -lcmd -lnsl [library…]

(obsolete)

The getprofstr, putprofstr, setprofstr, endprofstr, getprofstrbyname,
and free_profstr functions are replaced in Trusted Solaris 8 and later releases with
the functions described in the getprofattr(3SECDB) and getexecattr(3SECDB)
man pages. These functions find rights profiles information in prof_attr(4) and
exec_attr(4).

getprofstr(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 415

getprofstr, putprofstr, setprofstr, endprofstr, getprofstrbyname, free_profstr – Get user
profile description

cc [flag…] file… -ltsol -ltsoldb -lcmd -lnsl [library…]

(obsolete)

The getprofstr, putprofstr, setprofstr, endprofstr, getprofstrbyname,
and free_profstr functions are replaced in Trusted Solaris 8 and later releases with
the functions described in the getprofattr(3SECDB) and getexecattr(3SECDB)
man pages. These functions find rights profiles information in prof_attr(4) and
exec_attr(4).

getprofstrbyname(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

416 man pages section 3: Library Functions • Last Revised 16 Jun 2000

getsockopt, setsockopt – get and set options on sockets

cc [flags…] file … -lsocket -lnsl [library…]

#include <sys/types.h>

#include <sys/socket.h>

int getsockopt(int s, int level, int optname, void *optval, int *optlen);

int setsockopt(int s, int level, int optname, const void *optval, int
optlen);

getsockopt() and setsockopt() manipulate options associated with a socket.
Options may exist at multiple protocol levels; they are always present at the
uppermost “socket” level.

When manipulating socket options, the level at which the option resides and the name
of the option must be specified. To manipulate options at the “socket” level, level is
specified as SOL_SOCKET. To manipulate options at any other level, level is the
protocol number of the protocol that controls the option. For example, to indicate that
an option is to be interpreted by the TCP protocol, level is set to the TCP protocol
number (see getprotobyname(3SOCKET)).

The parameters optval and optlen are used to access option values for setsockopt().
For getsockopt(), they identify a buffer in which the value(s) for the requested
option(s) are to be returned. For getsockopt(), optlen is a value-result parameter,
initially containing the size of the buffer pointed to by optval, and modified on return
to indicate the actual size of the value returned. Use a 0 optval if no option value is to
be supplied or returned.

optname and any specified options are passed uninterpreted to the appropriate
protocol module for interpretation. The include file <sys/socket.h> contains
definitions for the socket-level options described below. Options at other protocol
levels vary in format and name.

Most socket-level options take an int for optval. For setsockopt(), the optval
parameter should be non-zero to enable a boolean option, or zero if the option is to be
disabled. SO_LINGER uses a struct linger parameter that specifies the desired
state of the option and the linger interval (see below). struct linger is defined in
<sys/socket.h>. struct linger contains the following members:

l_onoff on = 1/off = 0

l_linger linger time, in seconds

The following options are recognized at the socket level. Except as noted, each may be
examined with getsockopt() and set with setsockopt().

SO_DEBUG enable/disable recording of debugging information

SO_REUSEADDR enable/disable local address reuse

SO_KEEPALIVE enable/disable keep connections alive

getsockopt(3SOCKET)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 417

SO_DONTROUTE enable/disable routing bypass for outgoing messages

SO_LINGER linger on close if data is present

SO_BROADCAST enable/disable permission to transmit broadcast
messages

SO_OOBINLINE enable/disable reception of out-of-band data in band

SO_SNDBUF set buffer size for output

SO_RCVBUF set buffer size for input

SO_DGRAM_ERRIND application wants delayed error

SO_TYPE get the type of the socket (get only)

SO_ERROR get and clear error on the socket (get only)

SO_DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR
indicates that the rules used in validating addresses supplied in a bind(3SOCKET)
call should allow reuse of local addresses. SO_KEEPALIVE enables the periodic
transmission of messages on a connected socket. If the connected party fails to
respond to these messages, the connection is considered broken and processes using
the socket are notified using a SIGPIPE signal. SO_DONTROUTE indicates that
outgoing messages should bypass the standard routing facilities. Instead, messages are
directed to the appropriate network interface according to the network portion of the
destination address.

SO_LINGER controls the action taken when unsent messages are queued on a socket
and a close(2) is performed. If the socket promises reliable delivery of data and
SO_LINGER is set, the system will block the process on the close() attempt until it is
able to transmit the data or until it decides it is unable to deliver the information (a
timeout period, termed the linger interval, is specified in the setsockopt() call
when SO_LINGER is requested). If SO_LINGER is disabled and a close() is issued,
the system will process the close() in a manner that allows the process to continue
as quickly as possible.

The option SO_BROADCAST requests permission to send broadcast datagrams on the
socket. With protocols that support out-of-band data, the SO_OOBINLINE option
requests that out-of-band data be placed in the normal data input queue as received; it
will then be accessible with recv() or read() calls without the MSG_OOB flag.No
privilege is required to set the SO_BROADCAST flag, and any user may do so; however,
the PRIV_NET_BROADCAST privilege is required to use a broadcast address.

SO_SNDBUF and SO_RCVBUF are options that adjust the normal buffer sizes allocated
for output and input buffers, respectively. The buffer size may be increased for
high-volume connections or may be decreased to limit the possible backlog of
incoming data. SunOS sets the maximum buffer size for both UDP and TCP to 256
Kbytes.

getsockopt(3SOCKET)

418 man pages section 3: Library Functions • Last Revised 4 Apr 2000

By default, delayed errors (such as ICMP port unreachable packets) are returned only
for connected datagram sockets. SO_DGRAM_ERRIND makes it possible to receive
errors for datagram sockets that are not connected. When this option is set, certain
delayed errors received after completion of a sendto() or sendmsg() operation will
cause a subsequent sendto() or sendmsg() operation using the same destination
address (to parameter) to fail with the appropriate error. See send(3SOCKET).

Finally, SO_TYPE and SO_ERROR are options used only with getsockopt().
SO_TYPE returns the type of the socket (for example, SOCK_STREAM). It is useful for
servers that inherit sockets on startup. SO_ERROR returns any pending error on the
socket and clears the error status. It may be used to check for asynchronous errors on
connected datagram sockets or for other asynchronous errors.

getsockopt() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The call succeeds unless:

EBADF The argument s is not a valid file descriptor.

ENOMEM There was insufficient memory available for the
operation to complete.

ENOPROTOOPT The option is unknown at the level indicated.

ENOSR There were insufficient STREAMS resources available
for the operation to complete.

ENOTSOCK The argument s is not a socket.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

A process must have the PRIV_NET_RAWACCESS privilege in order to specify IP
options 130 or 134 (IPOPT_SEC and IPOPT_CIPSO, respectively, as defined in
<inet/ip.h>). The former refers to the Basic Security Option and the latter refers to
the CIPSO option. A process must have the PRIV_NET_BROADCAST privilege to use a
broadcast address.

read(2), bind(3SOCKET), send(3SOCKET), socket(3SOCKET)

close(2), ioctl(2), getprotobyname(3SOCKET), recv(3SOCKET), netconfig(4),
attributes(5)

getsockopt(3SOCKET)

RETURN VALUES

ERRORS

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

Introduction to Library Functions 419

getuserattr, getusernam, getuseruid, free_userattr, setuserattr, enduserattr – get
user_attr entry

cc [flag...] file...– lsecdb – lsocket – lnsl – lintl [library...]

#include <user_attr.h>

userattr_t *getuserattr(void);

userattr_t *getusernam(const char *name);

userattr_t *getuseruid(uid_t uid);

void free_userattr(userattr_t *userattr);

void setuserattr(void);

void enduserattr(void);

The getuserattr(), getusernam(), and getuseruid() functions each return a
user_attr(4) entry. Entries can come from any of the sources specified in the
nsswitch.conf(4) file. The getuserattr() function enumerates user_attr
entries. The getusernam() function searches for a user_attr entry with a given
user name name. The getuseruid() function searches for a user_attr entry with a
given user id uid. Successive calls to these functions return either successive
user_attr entries or NULL.

The free_userattr() function releases memory allocated by the getusernam()
and getuserattr() functions.

The internal representation of a user_attr entry is a userattr_t structure defined
in <user_attr.h> with the following members:

char name; /* name of the user */
char qualifier; /* reserved for future use */
char res1; /* reserved for future use */
char res2; /* reserved for future use */

kva_t attr; /* list of attributes */

The setuserattr() function “rewinds” to the beginning of the enumeration of
user_attr entries. Calls to getusernam() may leave the enumeration in an
indeterminate state, so setuserattr() should be called before the first call to
getuserattr().

The enduserattr() function may be called to indicate that user_attr processing
is complete; the library may then close any open user_attr file, deallocate any
internal storage, and so forth.

The getuserattr() function returns a pointer to a userattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getusernam() function returns a pointer to a userattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

getuserattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

420 man pages section 3: Library Functions • Last Revised 12 Aug 1999

The getuserattr() and getusernam() functions both allocate memory for the
pointers they return. This memory should be deallocated with the free_userattr()
function.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

Individual attributes may be referenced in the attr structure by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, code must be written to ignore
unknown key-value pairs without error.

/etc/user_attr extended user attributes

/etc/nsswitch.conf configuration file lookup information for
the name server switch

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getauthattr(3SECDB), getexecattr(3SECDB), getprofattr(3SECDB),
user_attr(4), attributes(5)

getuserattr(3SECDB)

USAGE

WARININGS

FILES

ATTRIBUTES

SEE ALSO

Introduction to Library Functions 421

getuserent, setuserent, enduserent, getuserentbyname, getuserentbyuid, free_userent –
Get user security attributes

cc [flag…] file… -ltsoldb -ltsol -lnsl -lcmd [library…]

(obsolete)

The getuserent, setuserent, enduserent, getuserentbyname,
getuserentbyuid, and free_userent functions are replaced in Trusted Solaris 8
and later releases with the functions described in the getuserattr(3SECDB) man
page. These functions find user security attributes in user_attr(4).

getuserent(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

422 man pages section 3: Library Functions • Last Revised 16 Jun 2000

getuserent, setuserent, enduserent, getuserentbyname, getuserentbyuid, free_userent –
Get user security attributes

cc [flag…] file… -ltsoldb -ltsol -lnsl -lcmd [library…]

(obsolete)

The getuserent, setuserent, enduserent, getuserentbyname,
getuserentbyuid, and free_userent functions are replaced in Trusted Solaris 8
and later releases with the functions described in the getuserattr(3SECDB) man
page. These functions find user security attributes in user_attr(4).

getuserentbyname(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 423

getuserent, setuserent, enduserent, getuserentbyname, getuserentbyuid, free_userent –
Get user security attributes

cc [flag…] file… -ltsoldb -ltsol -lnsl -lcmd [library…]

(obsolete)

The getuserent, setuserent, enduserent, getuserentbyname,
getuserentbyuid, and free_userent functions are replaced in Trusted Solaris 8
and later releases with the functions described in the getuserattr(3SECDB) man
page. These functions find user security attributes in user_attr(4).

getuserentbyuid(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

424 man pages section 3: Library Functions • Last Revised 16 Jun 2000

getuserattr, getusernam, getuseruid, free_userattr, setuserattr, enduserattr – get
user_attr entry

cc [flag...] file...– lsecdb – lsocket – lnsl – lintl [library...]

#include <user_attr.h>

userattr_t *getuserattr(void);

userattr_t *getusernam(const char *name);

userattr_t *getuseruid(uid_t uid);

void free_userattr(userattr_t *userattr);

void setuserattr(void);

void enduserattr(void);

The getuserattr(), getusernam(), and getuseruid() functions each return a
user_attr(4) entry. Entries can come from any of the sources specified in the
nsswitch.conf(4) file. The getuserattr() function enumerates user_attr
entries. The getusernam() function searches for a user_attr entry with a given
user name name. The getuseruid() function searches for a user_attr entry with a
given user id uid. Successive calls to these functions return either successive
user_attr entries or NULL.

The free_userattr() function releases memory allocated by the getusernam()
and getuserattr() functions.

The internal representation of a user_attr entry is a userattr_t structure defined
in <user_attr.h> with the following members:

char name; /* name of the user */
char qualifier; /* reserved for future use */
char res1; /* reserved for future use */
char res2; /* reserved for future use */

kva_t attr; /* list of attributes */

The setuserattr() function “rewinds” to the beginning of the enumeration of
user_attr entries. Calls to getusernam() may leave the enumeration in an
indeterminate state, so setuserattr() should be called before the first call to
getuserattr().

The enduserattr() function may be called to indicate that user_attr processing
is complete; the library may then close any open user_attr file, deallocate any
internal storage, and so forth.

The getuserattr() function returns a pointer to a userattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getusernam() function returns a pointer to a userattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

getusernam(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Introduction to Library Functions 425

The getuserattr() and getusernam() functions both allocate memory for the
pointers they return. This memory should be deallocated with the free_userattr()
function.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

Individual attributes may be referenced in the attr structure by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, code must be written to ignore
unknown key-value pairs without error.

/etc/user_attr extended user attributes

/etc/nsswitch.conf configuration file lookup information for
the name server switch

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getauthattr(3SECDB), getexecattr(3SECDB), getprofattr(3SECDB),
user_attr(4), attributes(5)

getusernam(3SECDB)

USAGE

WARININGS

FILES

ATTRIBUTES

SEE ALSO

426 man pages section 3: Library Functions • Last Revised 12 Aug 1999

getuserattr, getusernam, getuseruid, free_userattr, setuserattr, enduserattr – get
user_attr entry

cc [flag...] file...– lsecdb – lsocket – lnsl – lintl [library...]

#include <user_attr.h>

userattr_t *getuserattr(void);

userattr_t *getusernam(const char *name);

userattr_t *getuseruid(uid_t uid);

void free_userattr(userattr_t *userattr);

void setuserattr(void);

void enduserattr(void);

The getuserattr(), getusernam(), and getuseruid() functions each return a
user_attr(4) entry. Entries can come from any of the sources specified in the
nsswitch.conf(4) file. The getuserattr() function enumerates user_attr
entries. The getusernam() function searches for a user_attr entry with a given
user name name. The getuseruid() function searches for a user_attr entry with a
given user id uid. Successive calls to these functions return either successive
user_attr entries or NULL.

The free_userattr() function releases memory allocated by the getusernam()
and getuserattr() functions.

The internal representation of a user_attr entry is a userattr_t structure defined
in <user_attr.h> with the following members:

char name; /* name of the user */
char qualifier; /* reserved for future use */
char res1; /* reserved for future use */
char res2; /* reserved for future use */

kva_t attr; /* list of attributes */

The setuserattr() function “rewinds” to the beginning of the enumeration of
user_attr entries. Calls to getusernam() may leave the enumeration in an
indeterminate state, so setuserattr() should be called before the first call to
getuserattr().

The enduserattr() function may be called to indicate that user_attr processing
is complete; the library may then close any open user_attr file, deallocate any
internal storage, and so forth.

The getuserattr() function returns a pointer to a userattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getusernam() function returns a pointer to a userattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

getuseruid(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Introduction to Library Functions 427

The getuserattr() and getusernam() functions both allocate memory for the
pointers they return. This memory should be deallocated with the free_userattr()
function.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

Individual attributes may be referenced in the attr structure by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, code must be written to ignore
unknown key-value pairs without error.

/etc/user_attr extended user attributes

/etc/nsswitch.conf configuration file lookup information for
the name server switch

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getauthattr(3SECDB), getexecattr(3SECDB), getprofattr(3SECDB),
user_attr(4), attributes(5)

getuseruid(3SECDB)

USAGE

WARININGS

FILES

ATTRIBUTES

SEE ALSO

428 man pages section 3: Library Functions • Last Revised 12 Aug 1999

getutent, getutid, getutline, pututline, setutent, endutent, utmpname – Access utmp
file entry

#include <utmp.h>

struct utmp *getutent(void);

struct utmp *getutid(const struct utmp *id);

struct utmp *getutline(const struct utmp *line);

struct utmp *pututline(const struct utmp *utmp);

void setutent(void);

void endutent(void);

int utmpname(const char *file);

The getutent(), getutid(), getutline(), and pututline() functions each
return a pointer to a utmp structure with the following members:

char ut_user[8]; /* user login name */
char ut_id[4]; /* /sbin/inittab id (usually line #) */
char ut_line[12]; /* device name (console, lnxx) */
short ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */

time_t ut_time; /* time entry was made */

The structure exit_status includes the following members:

short e_termination; /* termination status */
short e_exit; /* exit status */

The getutent() function reads in the next entry from a utmp-like file. If the file is
not already open, it opens it. If it reaches the end of the file, it fails.

The getutid() function searches forward from the current point in the utmp file
until it finds an entry with a ut_type matching id⇒ut_type if the type specified is
RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in id is
INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then
getutid() will return a pointer to the first entry whose type is one of these four and
whose ut_id member matches id⇒ut_id. If the end of file is reached without a
match, it fails.

The getutline() function searches forward from the current point in the utmp file
until it finds an entry of the type LOGIN_PROCESS or ut_line string matching the
line⇒ut_line string. If the end of file is reached without a match, it fails.

The pututline() function writes the supplied utmp structure into the utmp file. It
uses getutid() to search forward for the proper place if it finds that it is not already

getutent(3C)

NAME

SYNOPSIS

DESCRIPTION

getutent()

getutid()

getutline()

pututline()

Introduction to Library Functions 429

at the proper place. It is expected that normally the user of pututline() will have
searched for the proper entry using one of the these functions. If so, pututline()
will not search. If pututline() does not find a matching slot for the new entry, it
will add a new entry to the end of the file. It returns a pointer to the utmp structure.

When called by a process that does not have an effective uid of 0 and a sensitivity
label of ADMIN_LOW, pututline() invokes a program (that has the appropriate
forced privileges) to verify and write the entry, since /etc/utmpx is normally
writable only by a process with a UID of 0 and a sensitivity label of ADMIN_LOW. In
this event, the ut_name member must correspond to the actual user name associated
with the process; the ut_type member must be either USER_PROCESS or
DEAD_PROCESS; and the ut_line member must be a device special file and be
writable by the user. If the process does not have the PAF_TRUSTED_PATH process
attribute, all other fields in the entry are cleared.

The setutent() function resets the input stream to the beginning of the file. This
reset should be done before each search for a new entry if it is desired that the entire
file be examined.

The endutent() function closes the currently open file.

The utmpname() function allows the user to change the name of the file examined,
from /var/adm/utmp to any other file. It is most often expected that this other file
will be /var/adm/wtmp. If the file does not exist, this will not be apparent until the
first attempt to reference the file is made. The utmpname() function does not open the
file but closes the old file if it is currently open and saves the new file name.

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write. If the file name given is longer than 79
characters, utmpname() returns 0. Otherwise, it returns 1.

These functions use buffered standard I/O for input, but pututline() uses an
unbuffered non-standard write to avoid race conditions between processes trying to
modify the utmp and wtmp files.

Applications should not access the utmp and wtmp databases directly, but should use
these functions to ensure that these databases are maintained consistently. Using these
functions, however, may cause applications to fail if user accounting data cannot be
represented properly in the utmp structure (for example, on a system where PIDs can
exceed 32767). Use the functions described on the getutxent(3C) manual page
instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

getutent(3C)

setutent()

endutent()

utmpname()

RETURN VALUES

USAGE

ATTRIBUTES

430 man pages section 3: Library Functions • Last Revised 16 Oct 1997

pututline() invokes a program with appropriate forced privileges to verify and
write the utmpx structure. pututline() clears fields in an entry if the process does
not have the PAF_TRUSTED_PATH process attribute.

ttyslot(3C), utmp(4), utmpx(4), attributes(5)

The most current entry is saved in a static structure. Multiple accesses require that it
be copied before further accesses are made. On each call to either getutid() or
getutline(), the function examines the static structure before performing more I/O.
If the contents of the static structure match what it is searching for, it looks no further.
For this reason, to use getutline() to search for multiple occurrences, it would be
necessary to zero out the static area after each success, or getutline() would just
return the same structure over and over again. There is one exception to the rule about
emptying the structure before further reads are done. The implicit read done by
pututline() (if it finds that it is not already at the correct place in the file) will not
hurt the contents of the static structure returned by the getutent(), getutid() or
getutline() functions, if the user has just modified those contents and passed the
pointer back to pututline().

getutent(3C)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

SunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 431

getutent, getutid, getutline, pututline, setutent, endutent, utmpname – Access utmp
file entry

#include <utmp.h>

struct utmp *getutent(void);

struct utmp *getutid(const struct utmp *id);

struct utmp *getutline(const struct utmp *line);

struct utmp *pututline(const struct utmp *utmp);

void setutent(void);

void endutent(void);

int utmpname(const char *file);

The getutent(), getutid(), getutline(), and pututline() functions each
return a pointer to a utmp structure with the following members:

char ut_user[8]; /* user login name */
char ut_id[4]; /* /sbin/inittab id (usually line #) */
char ut_line[12]; /* device name (console, lnxx) */
short ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */

time_t ut_time; /* time entry was made */

The structure exit_status includes the following members:

short e_termination; /* termination status */
short e_exit; /* exit status */

The getutent() function reads in the next entry from a utmp-like file. If the file is
not already open, it opens it. If it reaches the end of the file, it fails.

The getutid() function searches forward from the current point in the utmp file
until it finds an entry with a ut_type matching id⇒ut_type if the type specified is
RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in id is
INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then
getutid() will return a pointer to the first entry whose type is one of these four and
whose ut_id member matches id⇒ut_id. If the end of file is reached without a
match, it fails.

The getutline() function searches forward from the current point in the utmp file
until it finds an entry of the type LOGIN_PROCESS or ut_line string matching the
line⇒ut_line string. If the end of file is reached without a match, it fails.

The pututline() function writes the supplied utmp structure into the utmp file. It
uses getutid() to search forward for the proper place if it finds that it is not already

getutid(3C)

NAME

SYNOPSIS

DESCRIPTION

getutent()

getutid()

getutline()

pututline()

432 man pages section 3: Library Functions • Last Revised 16 Oct 1997

at the proper place. It is expected that normally the user of pututline() will have
searched for the proper entry using one of the these functions. If so, pututline()
will not search. If pututline() does not find a matching slot for the new entry, it
will add a new entry to the end of the file. It returns a pointer to the utmp structure.

When called by a process that does not have an effective uid of 0 and a sensitivity
label of ADMIN_LOW, pututline() invokes a program (that has the appropriate
forced privileges) to verify and write the entry, since /etc/utmpx is normally
writable only by a process with a UID of 0 and a sensitivity label of ADMIN_LOW. In
this event, the ut_name member must correspond to the actual user name associated
with the process; the ut_type member must be either USER_PROCESS or
DEAD_PROCESS; and the ut_line member must be a device special file and be
writable by the user. If the process does not have the PAF_TRUSTED_PATH process
attribute, all other fields in the entry are cleared.

The setutent() function resets the input stream to the beginning of the file. This
reset should be done before each search for a new entry if it is desired that the entire
file be examined.

The endutent() function closes the currently open file.

The utmpname() function allows the user to change the name of the file examined,
from /var/adm/utmp to any other file. It is most often expected that this other file
will be /var/adm/wtmp. If the file does not exist, this will not be apparent until the
first attempt to reference the file is made. The utmpname() function does not open the
file but closes the old file if it is currently open and saves the new file name.

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write. If the file name given is longer than 79
characters, utmpname() returns 0. Otherwise, it returns 1.

These functions use buffered standard I/O for input, but pututline() uses an
unbuffered non-standard write to avoid race conditions between processes trying to
modify the utmp and wtmp files.

Applications should not access the utmp and wtmp databases directly, but should use
these functions to ensure that these databases are maintained consistently. Using these
functions, however, may cause applications to fail if user accounting data cannot be
represented properly in the utmp structure (for example, on a system where PIDs can
exceed 32767). Use the functions described on the getutxent(3C) manual page
instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

getutid(3C)

setutent()

endutent()

utmpname()

RETURN VALUES

USAGE

ATTRIBUTES

Introduction to Library Functions 433

pututline() invokes a program with appropriate forced privileges to verify and
write the utmpx structure. pututline() clears fields in an entry if the process does
not have the PAF_TRUSTED_PATH process attribute.

ttyslot(3C), utmp(4), utmpx(4), attributes(5)

The most current entry is saved in a static structure. Multiple accesses require that it
be copied before further accesses are made. On each call to either getutid() or
getutline(), the function examines the static structure before performing more I/O.
If the contents of the static structure match what it is searching for, it looks no further.
For this reason, to use getutline() to search for multiple occurrences, it would be
necessary to zero out the static area after each success, or getutline() would just
return the same structure over and over again. There is one exception to the rule about
emptying the structure before further reads are done. The implicit read done by
pututline() (if it finds that it is not already at the correct place in the file) will not
hurt the contents of the static structure returned by the getutent(), getutid() or
getutline() functions, if the user has just modified those contents and passed the
pointer back to pututline().

getutid(3C)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

SunOS 5.8
Reference Manual

NOTES

434 man pages section 3: Library Functions • Last Revised 16 Oct 1997

getutent, getutid, getutline, pututline, setutent, endutent, utmpname – Access utmp
file entry

#include <utmp.h>

struct utmp *getutent(void);

struct utmp *getutid(const struct utmp *id);

struct utmp *getutline(const struct utmp *line);

struct utmp *pututline(const struct utmp *utmp);

void setutent(void);

void endutent(void);

int utmpname(const char *file);

The getutent(), getutid(), getutline(), and pututline() functions each
return a pointer to a utmp structure with the following members:

char ut_user[8]; /* user login name */
char ut_id[4]; /* /sbin/inittab id (usually line #) */
char ut_line[12]; /* device name (console, lnxx) */
short ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */

time_t ut_time; /* time entry was made */

The structure exit_status includes the following members:

short e_termination; /* termination status */
short e_exit; /* exit status */

The getutent() function reads in the next entry from a utmp-like file. If the file is
not already open, it opens it. If it reaches the end of the file, it fails.

The getutid() function searches forward from the current point in the utmp file
until it finds an entry with a ut_type matching id⇒ut_type if the type specified is
RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in id is
INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then
getutid() will return a pointer to the first entry whose type is one of these four and
whose ut_id member matches id⇒ut_id. If the end of file is reached without a
match, it fails.

The getutline() function searches forward from the current point in the utmp file
until it finds an entry of the type LOGIN_PROCESS or ut_line string matching the
line⇒ut_line string. If the end of file is reached without a match, it fails.

The pututline() function writes the supplied utmp structure into the utmp file. It
uses getutid() to search forward for the proper place if it finds that it is not already

getutline(3C)

NAME

SYNOPSIS

DESCRIPTION

getutent()

getutid()

getutline()

pututline()

Introduction to Library Functions 435

at the proper place. It is expected that normally the user of pututline() will have
searched for the proper entry using one of the these functions. If so, pututline()
will not search. If pututline() does not find a matching slot for the new entry, it
will add a new entry to the end of the file. It returns a pointer to the utmp structure.

When called by a process that does not have an effective uid of 0 and a sensitivity
label of ADMIN_LOW, pututline() invokes a program (that has the appropriate
forced privileges) to verify and write the entry, since /etc/utmpx is normally
writable only by a process with a UID of 0 and a sensitivity label of ADMIN_LOW. In
this event, the ut_name member must correspond to the actual user name associated
with the process; the ut_type member must be either USER_PROCESS or
DEAD_PROCESS; and the ut_line member must be a device special file and be
writable by the user. If the process does not have the PAF_TRUSTED_PATH process
attribute, all other fields in the entry are cleared.

The setutent() function resets the input stream to the beginning of the file. This
reset should be done before each search for a new entry if it is desired that the entire
file be examined.

The endutent() function closes the currently open file.

The utmpname() function allows the user to change the name of the file examined,
from /var/adm/utmp to any other file. It is most often expected that this other file
will be /var/adm/wtmp. If the file does not exist, this will not be apparent until the
first attempt to reference the file is made. The utmpname() function does not open the
file but closes the old file if it is currently open and saves the new file name.

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write. If the file name given is longer than 79
characters, utmpname() returns 0. Otherwise, it returns 1.

These functions use buffered standard I/O for input, but pututline() uses an
unbuffered non-standard write to avoid race conditions between processes trying to
modify the utmp and wtmp files.

Applications should not access the utmp and wtmp databases directly, but should use
these functions to ensure that these databases are maintained consistently. Using these
functions, however, may cause applications to fail if user accounting data cannot be
represented properly in the utmp structure (for example, on a system where PIDs can
exceed 32767). Use the functions described on the getutxent(3C) manual page
instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

getutline(3C)

setutent()

endutent()

utmpname()

RETURN VALUES

USAGE

ATTRIBUTES

436 man pages section 3: Library Functions • Last Revised 16 Oct 1997

pututline() invokes a program with appropriate forced privileges to verify and
write the utmpx structure. pututline() clears fields in an entry if the process does
not have the PAF_TRUSTED_PATH process attribute.

ttyslot(3C), utmp(4), utmpx(4), attributes(5)

The most current entry is saved in a static structure. Multiple accesses require that it
be copied before further accesses are made. On each call to either getutid() or
getutline(), the function examines the static structure before performing more I/O.
If the contents of the static structure match what it is searching for, it looks no further.
For this reason, to use getutline() to search for multiple occurrences, it would be
necessary to zero out the static area after each success, or getutline() would just
return the same structure over and over again. There is one exception to the rule about
emptying the structure before further reads are done. The implicit read done by
pututline() (if it finds that it is not already at the correct place in the file) will not
hurt the contents of the static structure returned by the getutent(), getutid() or
getutline() functions, if the user has just modified those contents and passed the
pointer back to pututline().

getutline(3C)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

SunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 437

getutxent, getutxid, getutxline, pututxline, setutxent, endutxent, utmpxname,
getutmp, getutmpx, updwtmp, updwtmpx – User accounting database functions

#include <utmpx.h>

struct utmpx *getutxent(void);

struct utmpx *getutxid(const struct utmpx *id);

struct utmpx *getutxline(const struct utmpx *line);

struct utmpx *pututxline(const struct utmpx *utmpx);

void setutxent(void);

void endutxent(void);

int utmpxname(const char *file);

void getutmp(struct utmpx *utmpx, struct utmp *utmp);

void getutmpx(struct utmp *utmp, struct utmpx *utmpx);

void updwtmp(char *wfile, struct utmp *utmp);

void updwtmpx(char *wfilex, struct utmpx *utmpx);

These functions provide access to the user accounting database, utmpx (see utmpx(4)).
Entries in the database are described by the definitions and data structures in
<utmpx.h>.

char ut_user[32]; /* user login name */
char ut_id[4]; /* /etc/inittab id (usually line #) */
char ut_line[32]; /* device name (console, lnxx) */
pid_t ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */
struct timeval ut_tv; /* time entry was made */
long ut_session; /* session ID, used for windowing */
long pad[5]; /* reserved for future use */
short ut_syslen; /* significant length of ut_host */

/* including terminating null */

char ut_host[257]; /* host name, if remote */

The structure exit status includes the following members:

short e_termination; /* termination status */

short e_exit; /* exit status */

The getutxent() function reads in the next entry from a utmpx database. If the
database is not already open, it opens it. If it reaches the end of the database, it fails.

The getutxid() function searches forward from the current point in the utmpx
database until it finds an entry with a ut_type matching id⇒ut_type, if the type
specified is RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in

getutmp(3C)

NAME

SYNOPSIS

DESCRIPTION

getutxent()

getutxid()

438 man pages section 3: Library Functions • Last Revised 6 Oct 1999

id is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then
getutxid() will return a pointer to the first entry whose type is one of these four
and whose ut_id member matches id⇒ut_id. If the end of database is reached
without a match, it fails.

The getutxline() function searches forward from the current point in the utmpx
database until it finds an entry of the type LOGIN_PROCESS or USER_PROCESS which
also has a ut_line string matching the line⇒ut_line string. If the end of the database
is reached without a match, it fails.

The pututxline() function writes the supplied utmpx structure into the utmpx file.
It uses getutxid() to search forward for the proper place if it finds that it is not
already at the proper place. It is expected that normally the user of pututxline()
will have searched for the proper entry using one of the getutx() routines. If so,
pututxline() will not search. If pututxline() does not find a matching slot for
the new entry, it will add a new entry to the end of the database. It returns a pointer to
the utmpx structure.

When called by a process that does not have an effective uid of 0 and a sensitivity
label of ADMIN_LOW, pututxline() invokes a program (that has the appropriate
forced privileges) to verify and write the entry, since /etc/utmpx is normally
writable only by a process with a UID of 0 and a sensitivity label of ADMIN_LOW. In
this event, the ut_name member must correspond to the actual user name associated
with the process; the ut_type member must be either USER_PROCESS or
DEAD_PROCESS; and the ut_line member must be a device special file and be
writable by the user. If the process does not have the PAF_TRUSTED_PATH process
attribute, all other fields in the entry are cleared.

The setutxent() function resets the input stream to the beginning. This should be
done before each search for a new entry if it is desired that the entire database be
examined.

The endutxent() function closes the currently open database.

The utmpxname() function allows the user to change the name of the database file
examined from /var/adm/utmpx to any other file, most often /var/adm/wtmpx. If
the file does not exist, this will not be apparent until the first attempt to reference the
file is made. The utmpxname() function does not open the file, but closes the old file
if it is currently open and saves the new file name. The new file name must end with
the “x” character to allow the name of the corresponding utmp file to be easily
obtainable.; otherwise, an error value of 0 is returned. The function returns 1 on
success.

The getutmp() function copies the information stored in the members of the utmpx
structure to the corresponding members of the utmp structure. If the information in
any member of utmpx does not fit in the corresponding utmp member, the data is
silently truncated. (See getutent(3C) for utmp structure)

getutmp(3C)

getutxline()

pututxline()

setutxent()

endutxent()

utmpxname()

getutmp()

Introduction to Library Functions 439

The getutmpx() function copies the information stored in the members of the utmp
structure to the corresponding members of the utmpx structure. (See getutent(3C)
for utmp structure)

The updwtmp() function can be used in two ways.

If wfile is /var/adm/wtmp, the utmp format record supplied by the caller is converted
to a utmpx format record and the /var/adm/wtmpx file is updated (because the
/var/adm/wtmp file no longer exists, operations on wtmp are converted to operations
on wtmpx by the library functions.

If wfile is a file other than /var/adm/wtmp, it is assumed to be an old file in utmp
format and is updated directly with the utmp format record supplied by the caller.

The updwtmpx() function writes the contents of the utmpx structure pointed to by
utmpx to the database.

The values of the e_termination and e_exit members of the ut_exit structure
are valid only for records of type DEAD_PROCESS. For utmpx entries created by
init(1M), these values are set according to the result of the wait() call that init
performs on the process when the process exits. See the wait(2) manual page for the
values init uses. Applications creating utmpx entries can set ut_exit values using
the following code example:

u->ut_exit.e_termination = WTERMSIG(process->p_exit)
u->ut_exit.e_exit = WEXITSTATUS(process->p_exit)

See wstat(3XFN) for descriptions of the WTERMSIG and WEXITSTATUS macros.

The ut_session member is not acted upon by the operating system. It is used by
applications interested in creating utmpx entries.

For records of type USER_PROCESS, the nonuser() and nonuserx() macros use the
value of the ut_exit.e_exit member to mark utmpx entries as real logins (as
opposed to multiple xterms started by the same user on a window system). This
allows the system utilities that display users to obtain an accurate indication of the
number of actual users, while still permitting each pty to have a utmpx record (as
most applications expect.). The NONROOT_USER macro defines the value that login
places in the ut_exit.e_exit member.

Upon successful completion, getutxent(), getutxid(), and getutxline() each
return a pointer to a utmpx structure containing a copy of the requested entry in the
user accounting database. Otherwise a null pointer is returned.

The return value may point to a static area which is overwritten by a subsequent call
to getutxid () or getutxline().

Upon successful completion, pututxline() returns a pointer to a utmpx structure
containing a copy of the entry added to the user accounting database. Otherwise a null
pointer is returned.

getutmp(3C)

getutmpx()

updwtmp()

updwtmpx()

utmpx
structure

RETURN VALUES

440 man pages section 3: Library Functions • Last Revised 6 Oct 1999

The endutxent() and setutxent() functions return no value.

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write.

These functions use buffered standard I/O for input, but pututxline() uses an
unbuffered write to avoid race conditions between processes trying to modify the
utmpx and wtmpx files.

Applications should not access the utmpx and wtmpx databases directly, but should
use these functions to ensure that these databases are maintained consistently.

/var/adm/utmpx User access and accounting information

/var/adm/wtmpx History of user access and accounting information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

pututxline() invokes a program with appropriate forced privileges to verify and
write the utmpx structure. pututxline clears fields in an entry if the process does
not have the PAF_TRUSTED_PATH process attribute

getutent(3C)

wait(2), ttyslot(3C), utmpx(4), attributes(5), wstat(3XFN)

The most current entry is saved in a static structure. Multiple accesses require that it
be copied before further accesses are made. On each call to either getutxid() or
getutxline(), the routine examines the static structure before performing more
I/O. If the contents of the static structure match what it is searching for, it looks no
further. For this reason, to use getutxline() to search for multiple occurrences it
would be necessary to zero out the static after each success, or getutxline() would
just return the same structure over and over again. There is one exception to the rule
about emptying the structure before further reads are done. The implicit read done by
pututxline() (if it finds that it is not already at the correct place in the file) will not
hurt the contents of the static structure returned by the getutxent(), getutxid(),
or getutxline() routines, if the user has just modified those contents and passed
the pointer back to pututxline().

getutmp(3C)

USAGE

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 441

getutxent, getutxid, getutxline, pututxline, setutxent, endutxent, utmpxname,
getutmp, getutmpx, updwtmp, updwtmpx – User accounting database functions

#include <utmpx.h>

struct utmpx *getutxent(void);

struct utmpx *getutxid(const struct utmpx *id);

struct utmpx *getutxline(const struct utmpx *line);

struct utmpx *pututxline(const struct utmpx *utmpx);

void setutxent(void);

void endutxent(void);

int utmpxname(const char *file);

void getutmp(struct utmpx *utmpx, struct utmp *utmp);

void getutmpx(struct utmp *utmp, struct utmpx *utmpx);

void updwtmp(char *wfile, struct utmp *utmp);

void updwtmpx(char *wfilex, struct utmpx *utmpx);

These functions provide access to the user accounting database, utmpx (see utmpx(4)).
Entries in the database are described by the definitions and data structures in
<utmpx.h>.

char ut_user[32]; /* user login name */
char ut_id[4]; /* /etc/inittab id (usually line #) */
char ut_line[32]; /* device name (console, lnxx) */
pid_t ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */
struct timeval ut_tv; /* time entry was made */
long ut_session; /* session ID, used for windowing */
long pad[5]; /* reserved for future use */
short ut_syslen; /* significant length of ut_host */

/* including terminating null */

char ut_host[257]; /* host name, if remote */

The structure exit status includes the following members:

short e_termination; /* termination status */

short e_exit; /* exit status */

The getutxent() function reads in the next entry from a utmpx database. If the
database is not already open, it opens it. If it reaches the end of the database, it fails.

The getutxid() function searches forward from the current point in the utmpx
database until it finds an entry with a ut_type matching id⇒ut_type, if the type
specified is RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in

getutmpx(3C)

NAME

SYNOPSIS

DESCRIPTION

getutxent()

getutxid()

442 man pages section 3: Library Functions • Last Revised 6 Oct 1999

id is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then
getutxid() will return a pointer to the first entry whose type is one of these four
and whose ut_id member matches id⇒ut_id. If the end of database is reached
without a match, it fails.

The getutxline() function searches forward from the current point in the utmpx
database until it finds an entry of the type LOGIN_PROCESS or USER_PROCESS which
also has a ut_line string matching the line⇒ut_line string. If the end of the database
is reached without a match, it fails.

The pututxline() function writes the supplied utmpx structure into the utmpx file.
It uses getutxid() to search forward for the proper place if it finds that it is not
already at the proper place. It is expected that normally the user of pututxline()
will have searched for the proper entry using one of the getutx() routines. If so,
pututxline() will not search. If pututxline() does not find a matching slot for
the new entry, it will add a new entry to the end of the database. It returns a pointer to
the utmpx structure.

When called by a process that does not have an effective uid of 0 and a sensitivity
label of ADMIN_LOW, pututxline() invokes a program (that has the appropriate
forced privileges) to verify and write the entry, since /etc/utmpx is normally
writable only by a process with a UID of 0 and a sensitivity label of ADMIN_LOW. In
this event, the ut_name member must correspond to the actual user name associated
with the process; the ut_type member must be either USER_PROCESS or
DEAD_PROCESS; and the ut_line member must be a device special file and be
writable by the user. If the process does not have the PAF_TRUSTED_PATH process
attribute, all other fields in the entry are cleared.

The setutxent() function resets the input stream to the beginning. This should be
done before each search for a new entry if it is desired that the entire database be
examined.

The endutxent() function closes the currently open database.

The utmpxname() function allows the user to change the name of the database file
examined from /var/adm/utmpx to any other file, most often /var/adm/wtmpx. If
the file does not exist, this will not be apparent until the first attempt to reference the
file is made. The utmpxname() function does not open the file, but closes the old file
if it is currently open and saves the new file name. The new file name must end with
the “x” character to allow the name of the corresponding utmp file to be easily
obtainable.; otherwise, an error value of 0 is returned. The function returns 1 on
success.

The getutmp() function copies the information stored in the members of the utmpx
structure to the corresponding members of the utmp structure. If the information in
any member of utmpx does not fit in the corresponding utmp member, the data is
silently truncated. (See getutent(3C) for utmp structure)

getutmpx(3C)

getutxline()

pututxline()

setutxent()

endutxent()

utmpxname()

getutmp()

Introduction to Library Functions 443

The getutmpx() function copies the information stored in the members of the utmp
structure to the corresponding members of the utmpx structure. (See getutent(3C)
for utmp structure)

The updwtmp() function can be used in two ways.

If wfile is /var/adm/wtmp, the utmp format record supplied by the caller is converted
to a utmpx format record and the /var/adm/wtmpx file is updated (because the
/var/adm/wtmp file no longer exists, operations on wtmp are converted to operations
on wtmpx by the library functions.

If wfile is a file other than /var/adm/wtmp, it is assumed to be an old file in utmp
format and is updated directly with the utmp format record supplied by the caller.

The updwtmpx() function writes the contents of the utmpx structure pointed to by
utmpx to the database.

The values of the e_termination and e_exit members of the ut_exit structure
are valid only for records of type DEAD_PROCESS. For utmpx entries created by
init(1M), these values are set according to the result of the wait() call that init
performs on the process when the process exits. See the wait(2) manual page for the
values init uses. Applications creating utmpx entries can set ut_exit values using
the following code example:

u->ut_exit.e_termination = WTERMSIG(process->p_exit)
u->ut_exit.e_exit = WEXITSTATUS(process->p_exit)

See wstat(3XFN) for descriptions of the WTERMSIG and WEXITSTATUS macros.

The ut_session member is not acted upon by the operating system. It is used by
applications interested in creating utmpx entries.

For records of type USER_PROCESS, the nonuser() and nonuserx() macros use the
value of the ut_exit.e_exit member to mark utmpx entries as real logins (as
opposed to multiple xterms started by the same user on a window system). This
allows the system utilities that display users to obtain an accurate indication of the
number of actual users, while still permitting each pty to have a utmpx record (as
most applications expect.). The NONROOT_USER macro defines the value that login
places in the ut_exit.e_exit member.

Upon successful completion, getutxent(), getutxid(), and getutxline() each
return a pointer to a utmpx structure containing a copy of the requested entry in the
user accounting database. Otherwise a null pointer is returned.

The return value may point to a static area which is overwritten by a subsequent call
to getutxid () or getutxline().

Upon successful completion, pututxline() returns a pointer to a utmpx structure
containing a copy of the entry added to the user accounting database. Otherwise a null
pointer is returned.

getutmpx(3C)

getutmpx()

updwtmp()

updwtmpx()

utmpx
structure

RETURN VALUES

444 man pages section 3: Library Functions • Last Revised 6 Oct 1999

The endutxent() and setutxent() functions return no value.

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write.

These functions use buffered standard I/O for input, but pututxline() uses an
unbuffered write to avoid race conditions between processes trying to modify the
utmpx and wtmpx files.

Applications should not access the utmpx and wtmpx databases directly, but should
use these functions to ensure that these databases are maintained consistently.

/var/adm/utmpx User access and accounting information

/var/adm/wtmpx History of user access and accounting information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

pututxline() invokes a program with appropriate forced privileges to verify and
write the utmpx structure. pututxline clears fields in an entry if the process does
not have the PAF_TRUSTED_PATH process attribute

getutent(3C)

wait(2), ttyslot(3C), utmpx(4), attributes(5), wstat(3XFN)

The most current entry is saved in a static structure. Multiple accesses require that it
be copied before further accesses are made. On each call to either getutxid() or
getutxline(), the routine examines the static structure before performing more
I/O. If the contents of the static structure match what it is searching for, it looks no
further. For this reason, to use getutxline() to search for multiple occurrences it
would be necessary to zero out the static after each success, or getutxline() would
just return the same structure over and over again. There is one exception to the rule
about emptying the structure before further reads are done. The implicit read done by
pututxline() (if it finds that it is not already at the correct place in the file) will not
hurt the contents of the static structure returned by the getutxent(), getutxid(),
or getutxline() routines, if the user has just modified those contents and passed
the pointer back to pututxline().

getutmpx(3C)

USAGE

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 445

getutxent, getutxid, getutxline, pututxline, setutxent, endutxent, utmpxname,
getutmp, getutmpx, updwtmp, updwtmpx – User accounting database functions

#include <utmpx.h>

struct utmpx *getutxent(void);

struct utmpx *getutxid(const struct utmpx *id);

struct utmpx *getutxline(const struct utmpx *line);

struct utmpx *pututxline(const struct utmpx *utmpx);

void setutxent(void);

void endutxent(void);

int utmpxname(const char *file);

void getutmp(struct utmpx *utmpx, struct utmp *utmp);

void getutmpx(struct utmp *utmp, struct utmpx *utmpx);

void updwtmp(char *wfile, struct utmp *utmp);

void updwtmpx(char *wfilex, struct utmpx *utmpx);

These functions provide access to the user accounting database, utmpx (see utmpx(4)).
Entries in the database are described by the definitions and data structures in
<utmpx.h>.

char ut_user[32]; /* user login name */
char ut_id[4]; /* /etc/inittab id (usually line #) */
char ut_line[32]; /* device name (console, lnxx) */
pid_t ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */
struct timeval ut_tv; /* time entry was made */
long ut_session; /* session ID, used for windowing */
long pad[5]; /* reserved for future use */
short ut_syslen; /* significant length of ut_host */

/* including terminating null */

char ut_host[257]; /* host name, if remote */

The structure exit status includes the following members:

short e_termination; /* termination status */

short e_exit; /* exit status */

The getutxent() function reads in the next entry from a utmpx database. If the
database is not already open, it opens it. If it reaches the end of the database, it fails.

The getutxid() function searches forward from the current point in the utmpx
database until it finds an entry with a ut_type matching id⇒ut_type, if the type
specified is RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in

getutxent(3C)

NAME

SYNOPSIS

DESCRIPTION

getutxent()

getutxid()

446 man pages section 3: Library Functions • Last Revised 6 Oct 1999

id is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then
getutxid() will return a pointer to the first entry whose type is one of these four
and whose ut_id member matches id⇒ut_id. If the end of database is reached
without a match, it fails.

The getutxline() function searches forward from the current point in the utmpx
database until it finds an entry of the type LOGIN_PROCESS or USER_PROCESS which
also has a ut_line string matching the line⇒ut_line string. If the end of the database
is reached without a match, it fails.

The pututxline() function writes the supplied utmpx structure into the utmpx file.
It uses getutxid() to search forward for the proper place if it finds that it is not
already at the proper place. It is expected that normally the user of pututxline()
will have searched for the proper entry using one of the getutx() routines. If so,
pututxline() will not search. If pututxline() does not find a matching slot for
the new entry, it will add a new entry to the end of the database. It returns a pointer to
the utmpx structure.

When called by a process that does not have an effective uid of 0 and a sensitivity
label of ADMIN_LOW, pututxline() invokes a program (that has the appropriate
forced privileges) to verify and write the entry, since /etc/utmpx is normally
writable only by a process with a UID of 0 and a sensitivity label of ADMIN_LOW. In
this event, the ut_name member must correspond to the actual user name associated
with the process; the ut_type member must be either USER_PROCESS or
DEAD_PROCESS; and the ut_line member must be a device special file and be
writable by the user. If the process does not have the PAF_TRUSTED_PATH process
attribute, all other fields in the entry are cleared.

The setutxent() function resets the input stream to the beginning. This should be
done before each search for a new entry if it is desired that the entire database be
examined.

The endutxent() function closes the currently open database.

The utmpxname() function allows the user to change the name of the database file
examined from /var/adm/utmpx to any other file, most often /var/adm/wtmpx. If
the file does not exist, this will not be apparent until the first attempt to reference the
file is made. The utmpxname() function does not open the file, but closes the old file
if it is currently open and saves the new file name. The new file name must end with
the “x” character to allow the name of the corresponding utmp file to be easily
obtainable.; otherwise, an error value of 0 is returned. The function returns 1 on
success.

The getutmp() function copies the information stored in the members of the utmpx
structure to the corresponding members of the utmp structure. If the information in
any member of utmpx does not fit in the corresponding utmp member, the data is
silently truncated. (See getutent(3C) for utmp structure)

getutxent(3C)

getutxline()

pututxline()

setutxent()

endutxent()

utmpxname()

getutmp()

Introduction to Library Functions 447

The getutmpx() function copies the information stored in the members of the utmp
structure to the corresponding members of the utmpx structure. (See getutent(3C)
for utmp structure)

The updwtmp() function can be used in two ways.

If wfile is /var/adm/wtmp, the utmp format record supplied by the caller is converted
to a utmpx format record and the /var/adm/wtmpx file is updated (because the
/var/adm/wtmp file no longer exists, operations on wtmp are converted to operations
on wtmpx by the library functions.

If wfile is a file other than /var/adm/wtmp, it is assumed to be an old file in utmp
format and is updated directly with the utmp format record supplied by the caller.

The updwtmpx() function writes the contents of the utmpx structure pointed to by
utmpx to the database.

The values of the e_termination and e_exit members of the ut_exit structure
are valid only for records of type DEAD_PROCESS. For utmpx entries created by
init(1M), these values are set according to the result of the wait() call that init
performs on the process when the process exits. See the wait(2) manual page for the
values init uses. Applications creating utmpx entries can set ut_exit values using
the following code example:

u->ut_exit.e_termination = WTERMSIG(process->p_exit)
u->ut_exit.e_exit = WEXITSTATUS(process->p_exit)

See wstat(3XFN) for descriptions of the WTERMSIG and WEXITSTATUS macros.

The ut_session member is not acted upon by the operating system. It is used by
applications interested in creating utmpx entries.

For records of type USER_PROCESS, the nonuser() and nonuserx() macros use the
value of the ut_exit.e_exit member to mark utmpx entries as real logins (as
opposed to multiple xterms started by the same user on a window system). This
allows the system utilities that display users to obtain an accurate indication of the
number of actual users, while still permitting each pty to have a utmpx record (as
most applications expect.). The NONROOT_USER macro defines the value that login
places in the ut_exit.e_exit member.

Upon successful completion, getutxent(), getutxid(), and getutxline() each
return a pointer to a utmpx structure containing a copy of the requested entry in the
user accounting database. Otherwise a null pointer is returned.

The return value may point to a static area which is overwritten by a subsequent call
to getutxid () or getutxline().

Upon successful completion, pututxline() returns a pointer to a utmpx structure
containing a copy of the entry added to the user accounting database. Otherwise a null
pointer is returned.

getutxent(3C)

getutmpx()

updwtmp()

updwtmpx()

utmpx
structure

RETURN VALUES

448 man pages section 3: Library Functions • Last Revised 6 Oct 1999

The endutxent() and setutxent() functions return no value.

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write.

These functions use buffered standard I/O for input, but pututxline() uses an
unbuffered write to avoid race conditions between processes trying to modify the
utmpx and wtmpx files.

Applications should not access the utmpx and wtmpx databases directly, but should
use these functions to ensure that these databases are maintained consistently.

/var/adm/utmpx User access and accounting information

/var/adm/wtmpx History of user access and accounting information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

pututxline() invokes a program with appropriate forced privileges to verify and
write the utmpx structure. pututxline clears fields in an entry if the process does
not have the PAF_TRUSTED_PATH process attribute

getutent(3C)

wait(2), ttyslot(3C), utmpx(4), attributes(5), wstat(3XFN)

The most current entry is saved in a static structure. Multiple accesses require that it
be copied before further accesses are made. On each call to either getutxid() or
getutxline(), the routine examines the static structure before performing more
I/O. If the contents of the static structure match what it is searching for, it looks no
further. For this reason, to use getutxline() to search for multiple occurrences it
would be necessary to zero out the static after each success, or getutxline() would
just return the same structure over and over again. There is one exception to the rule
about emptying the structure before further reads are done. The implicit read done by
pututxline() (if it finds that it is not already at the correct place in the file) will not
hurt the contents of the static structure returned by the getutxent(), getutxid(),
or getutxline() routines, if the user has just modified those contents and passed
the pointer back to pututxline().

getutxent(3C)

USAGE

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 449

getutxent, getutxid, getutxline, pututxline, setutxent, endutxent, utmpxname,
getutmp, getutmpx, updwtmp, updwtmpx – User accounting database functions

#include <utmpx.h>

struct utmpx *getutxent(void);

struct utmpx *getutxid(const struct utmpx *id);

struct utmpx *getutxline(const struct utmpx *line);

struct utmpx *pututxline(const struct utmpx *utmpx);

void setutxent(void);

void endutxent(void);

int utmpxname(const char *file);

void getutmp(struct utmpx *utmpx, struct utmp *utmp);

void getutmpx(struct utmp *utmp, struct utmpx *utmpx);

void updwtmp(char *wfile, struct utmp *utmp);

void updwtmpx(char *wfilex, struct utmpx *utmpx);

These functions provide access to the user accounting database, utmpx (see utmpx(4)).
Entries in the database are described by the definitions and data structures in
<utmpx.h>.

char ut_user[32]; /* user login name */
char ut_id[4]; /* /etc/inittab id (usually line #) */
char ut_line[32]; /* device name (console, lnxx) */
pid_t ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */
struct timeval ut_tv; /* time entry was made */
long ut_session; /* session ID, used for windowing */
long pad[5]; /* reserved for future use */
short ut_syslen; /* significant length of ut_host */

/* including terminating null */

char ut_host[257]; /* host name, if remote */

The structure exit status includes the following members:

short e_termination; /* termination status */

short e_exit; /* exit status */

The getutxent() function reads in the next entry from a utmpx database. If the
database is not already open, it opens it. If it reaches the end of the database, it fails.

The getutxid() function searches forward from the current point in the utmpx
database until it finds an entry with a ut_type matching id⇒ut_type, if the type
specified is RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in

getutxid(3C)

NAME

SYNOPSIS

DESCRIPTION

getutxent()

getutxid()

450 man pages section 3: Library Functions • Last Revised 6 Oct 1999

id is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then
getutxid() will return a pointer to the first entry whose type is one of these four
and whose ut_id member matches id⇒ut_id. If the end of database is reached
without a match, it fails.

The getutxline() function searches forward from the current point in the utmpx
database until it finds an entry of the type LOGIN_PROCESS or USER_PROCESS which
also has a ut_line string matching the line⇒ut_line string. If the end of the database
is reached without a match, it fails.

The pututxline() function writes the supplied utmpx structure into the utmpx file.
It uses getutxid() to search forward for the proper place if it finds that it is not
already at the proper place. It is expected that normally the user of pututxline()
will have searched for the proper entry using one of the getutx() routines. If so,
pututxline() will not search. If pututxline() does not find a matching slot for
the new entry, it will add a new entry to the end of the database. It returns a pointer to
the utmpx structure.

When called by a process that does not have an effective uid of 0 and a sensitivity
label of ADMIN_LOW, pututxline() invokes a program (that has the appropriate
forced privileges) to verify and write the entry, since /etc/utmpx is normally
writable only by a process with a UID of 0 and a sensitivity label of ADMIN_LOW. In
this event, the ut_name member must correspond to the actual user name associated
with the process; the ut_type member must be either USER_PROCESS or
DEAD_PROCESS; and the ut_line member must be a device special file and be
writable by the user. If the process does not have the PAF_TRUSTED_PATH process
attribute, all other fields in the entry are cleared.

The setutxent() function resets the input stream to the beginning. This should be
done before each search for a new entry if it is desired that the entire database be
examined.

The endutxent() function closes the currently open database.

The utmpxname() function allows the user to change the name of the database file
examined from /var/adm/utmpx to any other file, most often /var/adm/wtmpx. If
the file does not exist, this will not be apparent until the first attempt to reference the
file is made. The utmpxname() function does not open the file, but closes the old file
if it is currently open and saves the new file name. The new file name must end with
the “x” character to allow the name of the corresponding utmp file to be easily
obtainable.; otherwise, an error value of 0 is returned. The function returns 1 on
success.

The getutmp() function copies the information stored in the members of the utmpx
structure to the corresponding members of the utmp structure. If the information in
any member of utmpx does not fit in the corresponding utmp member, the data is
silently truncated. (See getutent(3C) for utmp structure)

getutxid(3C)

getutxline()

pututxline()

setutxent()

endutxent()

utmpxname()

getutmp()

Introduction to Library Functions 451

The getutmpx() function copies the information stored in the members of the utmp
structure to the corresponding members of the utmpx structure. (See getutent(3C)
for utmp structure)

The updwtmp() function can be used in two ways.

If wfile is /var/adm/wtmp, the utmp format record supplied by the caller is converted
to a utmpx format record and the /var/adm/wtmpx file is updated (because the
/var/adm/wtmp file no longer exists, operations on wtmp are converted to operations
on wtmpx by the library functions.

If wfile is a file other than /var/adm/wtmp, it is assumed to be an old file in utmp
format and is updated directly with the utmp format record supplied by the caller.

The updwtmpx() function writes the contents of the utmpx structure pointed to by
utmpx to the database.

The values of the e_termination and e_exit members of the ut_exit structure
are valid only for records of type DEAD_PROCESS. For utmpx entries created by
init(1M), these values are set according to the result of the wait() call that init
performs on the process when the process exits. See the wait(2) manual page for the
values init uses. Applications creating utmpx entries can set ut_exit values using
the following code example:

u->ut_exit.e_termination = WTERMSIG(process->p_exit)
u->ut_exit.e_exit = WEXITSTATUS(process->p_exit)

See wstat(3XFN) for descriptions of the WTERMSIG and WEXITSTATUS macros.

The ut_session member is not acted upon by the operating system. It is used by
applications interested in creating utmpx entries.

For records of type USER_PROCESS, the nonuser() and nonuserx() macros use the
value of the ut_exit.e_exit member to mark utmpx entries as real logins (as
opposed to multiple xterms started by the same user on a window system). This
allows the system utilities that display users to obtain an accurate indication of the
number of actual users, while still permitting each pty to have a utmpx record (as
most applications expect.). The NONROOT_USER macro defines the value that login
places in the ut_exit.e_exit member.

Upon successful completion, getutxent(), getutxid(), and getutxline() each
return a pointer to a utmpx structure containing a copy of the requested entry in the
user accounting database. Otherwise a null pointer is returned.

The return value may point to a static area which is overwritten by a subsequent call
to getutxid () or getutxline().

Upon successful completion, pututxline() returns a pointer to a utmpx structure
containing a copy of the entry added to the user accounting database. Otherwise a null
pointer is returned.

getutxid(3C)

getutmpx()

updwtmp()

updwtmpx()

utmpx
structure

RETURN VALUES

452 man pages section 3: Library Functions • Last Revised 6 Oct 1999

The endutxent() and setutxent() functions return no value.

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write.

These functions use buffered standard I/O for input, but pututxline() uses an
unbuffered write to avoid race conditions between processes trying to modify the
utmpx and wtmpx files.

Applications should not access the utmpx and wtmpx databases directly, but should
use these functions to ensure that these databases are maintained consistently.

/var/adm/utmpx User access and accounting information

/var/adm/wtmpx History of user access and accounting information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

pututxline() invokes a program with appropriate forced privileges to verify and
write the utmpx structure. pututxline clears fields in an entry if the process does
not have the PAF_TRUSTED_PATH process attribute

getutent(3C)

wait(2), ttyslot(3C), utmpx(4), attributes(5), wstat(3XFN)

The most current entry is saved in a static structure. Multiple accesses require that it
be copied before further accesses are made. On each call to either getutxid() or
getutxline(), the routine examines the static structure before performing more
I/O. If the contents of the static structure match what it is searching for, it looks no
further. For this reason, to use getutxline() to search for multiple occurrences it
would be necessary to zero out the static after each success, or getutxline() would
just return the same structure over and over again. There is one exception to the rule
about emptying the structure before further reads are done. The implicit read done by
pututxline() (if it finds that it is not already at the correct place in the file) will not
hurt the contents of the static structure returned by the getutxent(), getutxid(),
or getutxline() routines, if the user has just modified those contents and passed
the pointer back to pututxline().

getutxid(3C)

USAGE

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 453

getutxent, getutxid, getutxline, pututxline, setutxent, endutxent, utmpxname,
getutmp, getutmpx, updwtmp, updwtmpx – User accounting database functions

#include <utmpx.h>

struct utmpx *getutxent(void);

struct utmpx *getutxid(const struct utmpx *id);

struct utmpx *getutxline(const struct utmpx *line);

struct utmpx *pututxline(const struct utmpx *utmpx);

void setutxent(void);

void endutxent(void);

int utmpxname(const char *file);

void getutmp(struct utmpx *utmpx, struct utmp *utmp);

void getutmpx(struct utmp *utmp, struct utmpx *utmpx);

void updwtmp(char *wfile, struct utmp *utmp);

void updwtmpx(char *wfilex, struct utmpx *utmpx);

These functions provide access to the user accounting database, utmpx (see utmpx(4)).
Entries in the database are described by the definitions and data structures in
<utmpx.h>.

char ut_user[32]; /* user login name */
char ut_id[4]; /* /etc/inittab id (usually line #) */
char ut_line[32]; /* device name (console, lnxx) */
pid_t ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */
struct timeval ut_tv; /* time entry was made */
long ut_session; /* session ID, used for windowing */
long pad[5]; /* reserved for future use */
short ut_syslen; /* significant length of ut_host */

/* including terminating null */

char ut_host[257]; /* host name, if remote */

The structure exit status includes the following members:

short e_termination; /* termination status */

short e_exit; /* exit status */

The getutxent() function reads in the next entry from a utmpx database. If the
database is not already open, it opens it. If it reaches the end of the database, it fails.

The getutxid() function searches forward from the current point in the utmpx
database until it finds an entry with a ut_type matching id⇒ut_type, if the type
specified is RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in

getutxline(3C)

NAME

SYNOPSIS

DESCRIPTION

getutxent()

getutxid()

454 man pages section 3: Library Functions • Last Revised 6 Oct 1999

id is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then
getutxid() will return a pointer to the first entry whose type is one of these four
and whose ut_id member matches id⇒ut_id. If the end of database is reached
without a match, it fails.

The getutxline() function searches forward from the current point in the utmpx
database until it finds an entry of the type LOGIN_PROCESS or USER_PROCESS which
also has a ut_line string matching the line⇒ut_line string. If the end of the database
is reached without a match, it fails.

The pututxline() function writes the supplied utmpx structure into the utmpx file.
It uses getutxid() to search forward for the proper place if it finds that it is not
already at the proper place. It is expected that normally the user of pututxline()
will have searched for the proper entry using one of the getutx() routines. If so,
pututxline() will not search. If pututxline() does not find a matching slot for
the new entry, it will add a new entry to the end of the database. It returns a pointer to
the utmpx structure.

When called by a process that does not have an effective uid of 0 and a sensitivity
label of ADMIN_LOW, pututxline() invokes a program (that has the appropriate
forced privileges) to verify and write the entry, since /etc/utmpx is normally
writable only by a process with a UID of 0 and a sensitivity label of ADMIN_LOW. In
this event, the ut_name member must correspond to the actual user name associated
with the process; the ut_type member must be either USER_PROCESS or
DEAD_PROCESS; and the ut_line member must be a device special file and be
writable by the user. If the process does not have the PAF_TRUSTED_PATH process
attribute, all other fields in the entry are cleared.

The setutxent() function resets the input stream to the beginning. This should be
done before each search for a new entry if it is desired that the entire database be
examined.

The endutxent() function closes the currently open database.

The utmpxname() function allows the user to change the name of the database file
examined from /var/adm/utmpx to any other file, most often /var/adm/wtmpx. If
the file does not exist, this will not be apparent until the first attempt to reference the
file is made. The utmpxname() function does not open the file, but closes the old file
if it is currently open and saves the new file name. The new file name must end with
the “x” character to allow the name of the corresponding utmp file to be easily
obtainable.; otherwise, an error value of 0 is returned. The function returns 1 on
success.

The getutmp() function copies the information stored in the members of the utmpx
structure to the corresponding members of the utmp structure. If the information in
any member of utmpx does not fit in the corresponding utmp member, the data is
silently truncated. (See getutent(3C) for utmp structure)

getutxline(3C)

getutxline()

pututxline()

setutxent()

endutxent()

utmpxname()

getutmp()

Introduction to Library Functions 455

The getutmpx() function copies the information stored in the members of the utmp
structure to the corresponding members of the utmpx structure. (See getutent(3C)
for utmp structure)

The updwtmp() function can be used in two ways.

If wfile is /var/adm/wtmp, the utmp format record supplied by the caller is converted
to a utmpx format record and the /var/adm/wtmpx file is updated (because the
/var/adm/wtmp file no longer exists, operations on wtmp are converted to operations
on wtmpx by the library functions.

If wfile is a file other than /var/adm/wtmp, it is assumed to be an old file in utmp
format and is updated directly with the utmp format record supplied by the caller.

The updwtmpx() function writes the contents of the utmpx structure pointed to by
utmpx to the database.

The values of the e_termination and e_exit members of the ut_exit structure
are valid only for records of type DEAD_PROCESS. For utmpx entries created by
init(1M), these values are set according to the result of the wait() call that init
performs on the process when the process exits. See the wait(2) manual page for the
values init uses. Applications creating utmpx entries can set ut_exit values using
the following code example:

u->ut_exit.e_termination = WTERMSIG(process->p_exit)
u->ut_exit.e_exit = WEXITSTATUS(process->p_exit)

See wstat(3XFN) for descriptions of the WTERMSIG and WEXITSTATUS macros.

The ut_session member is not acted upon by the operating system. It is used by
applications interested in creating utmpx entries.

For records of type USER_PROCESS, the nonuser() and nonuserx() macros use the
value of the ut_exit.e_exit member to mark utmpx entries as real logins (as
opposed to multiple xterms started by the same user on a window system). This
allows the system utilities that display users to obtain an accurate indication of the
number of actual users, while still permitting each pty to have a utmpx record (as
most applications expect.). The NONROOT_USER macro defines the value that login
places in the ut_exit.e_exit member.

Upon successful completion, getutxent(), getutxid(), and getutxline() each
return a pointer to a utmpx structure containing a copy of the requested entry in the
user accounting database. Otherwise a null pointer is returned.

The return value may point to a static area which is overwritten by a subsequent call
to getutxid () or getutxline().

Upon successful completion, pututxline() returns a pointer to a utmpx structure
containing a copy of the entry added to the user accounting database. Otherwise a null
pointer is returned.

getutxline(3C)

getutmpx()

updwtmp()

updwtmpx()

utmpx
structure

RETURN VALUES

456 man pages section 3: Library Functions • Last Revised 6 Oct 1999

The endutxent() and setutxent() functions return no value.

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write.

These functions use buffered standard I/O for input, but pututxline() uses an
unbuffered write to avoid race conditions between processes trying to modify the
utmpx and wtmpx files.

Applications should not access the utmpx and wtmpx databases directly, but should
use these functions to ensure that these databases are maintained consistently.

/var/adm/utmpx User access and accounting information

/var/adm/wtmpx History of user access and accounting information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

pututxline() invokes a program with appropriate forced privileges to verify and
write the utmpx structure. pututxline clears fields in an entry if the process does
not have the PAF_TRUSTED_PATH process attribute

getutent(3C)

wait(2), ttyslot(3C), utmpx(4), attributes(5), wstat(3XFN)

The most current entry is saved in a static structure. Multiple accesses require that it
be copied before further accesses are made. On each call to either getutxid() or
getutxline(), the routine examines the static structure before performing more
I/O. If the contents of the static structure match what it is searching for, it looks no
further. For this reason, to use getutxline() to search for multiple occurrences it
would be necessary to zero out the static after each success, or getutxline() would
just return the same structure over and over again. There is one exception to the rule
about emptying the structure before further reads are done. The implicit read done by
pututxline() (if it finds that it is not already at the correct place in the file) will not
hurt the contents of the static structure returned by the getutxent(), getutxid(),
or getutxline() routines, if the user has just modified those contents and passed
the pointer back to pututxline().

getutxline(3C)

USAGE

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 457

getvfsaent, getvfsafile – Get vfstab_adjunct file entry

cc [flags…] file… -ltsol

#include <stdio.h>

#include <tsol/vfstab_adjunct.h>

int getvfsaent(FILE *fp, struct vfsaent **vp);

int getvfsafile(FILE *fp, struct vfsaent **vp, char *file);

getvfsaent() and getvfsafile() each fill in the structure pointed to by vp with
the broken-out fields of a line in the /etc/security/tsol/vfstab_adjunct file.
Each line in the file contains a vfstab_adjunct structure, declared in the
<tsol/vfstab_adjunct.h> header:

struct vfsaent {
char *vfsa_fsname;
char *vfsa_attrs;

};

The vfsa_fsname contains the full pathname of the file system as listed in vfstab(4).
The vfsa_attrs points to the attribute string composed of keyword/value assignments
of the form keyword=value separated by semicolons as described in
vfstab_adjunct(4).

getvfsaent() returns a pointer to the next vfsaent structure in the file; so
successive calls can be used to search the entire file. getvfsafile() searches the file
referred to by fp until a mount point matching file is found.

On successful return, the locations referred to by *vp, *vp~>vfsa_fsname, and
*vp~>vfsa_attrs have been separately allocated and may be independently released by
calls to free(3C).

Note that these routines do not open, close, or rewind the file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

If the next entry is successfully read by getvfsaent() or a match is found with
getvfsafile(), 0 is returned. If an end-of-file is encountered on reading, these
functions return −1. If an error is encountered, a value greater than 0 is returned. The
possible error values are:

ENOMEM Memory cannot be allocated for an entry.

getvfsaent(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

RETURN VALUES

458 man pages section 3: Library Functions • Last Revised 1 Mar 1996

/etc/security/tsol/vfstab_adjunct
Attribute data file for mounting a file system in the Trusted Solaris environment.

vfstab_adjunct(4)

>attributes(5)

These interfaces are uncommitted, which means that even though they are not
expected to change, they may change between minor releases of the Trusted Solaris
environment.

getvfsaent(3TSOL)

FILES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 459

getvfsaent, getvfsafile – Get vfstab_adjunct file entry

cc [flags…] file… -ltsol

#include <stdio.h>

#include <tsol/vfstab_adjunct.h>

int getvfsaent(FILE *fp, struct vfsaent **vp);

int getvfsafile(FILE *fp, struct vfsaent **vp, char *file);

getvfsaent() and getvfsafile() each fill in the structure pointed to by vp with
the broken-out fields of a line in the /etc/security/tsol/vfstab_adjunct file.
Each line in the file contains a vfstab_adjunct structure, declared in the
<tsol/vfstab_adjunct.h> header:

struct vfsaent {
char *vfsa_fsname;
char *vfsa_attrs;

};

The vfsa_fsname contains the full pathname of the file system as listed in vfstab(4).
The vfsa_attrs points to the attribute string composed of keyword/value assignments
of the form keyword=value separated by semicolons as described in
vfstab_adjunct(4).

getvfsaent() returns a pointer to the next vfsaent structure in the file; so
successive calls can be used to search the entire file. getvfsafile() searches the file
referred to by fp until a mount point matching file is found.

On successful return, the locations referred to by *vp, *vp~>vfsa_fsname, and
*vp~>vfsa_attrs have been separately allocated and may be independently released by
calls to free(3C).

Note that these routines do not open, close, or rewind the file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

If the next entry is successfully read by getvfsaent() or a match is found with
getvfsafile(), 0 is returned. If an end-of-file is encountered on reading, these
functions return −1. If an error is encountered, a value greater than 0 is returned. The
possible error values are:

ENOMEM Memory cannot be allocated for an entry.

getvfsafile(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

RETURN VALUES

460 man pages section 3: Library Functions • Last Revised 1 Mar 1996

/etc/security/tsol/vfstab_adjunct
Attribute data file for mounting a file system in the Trusted Solaris environment.

vfstab_adjunct(4)

>attributes(5)

These interfaces are uncommitted, which means that even though they are not
expected to change, they may change between minor releases of the Trusted Solaris
environment.

getvfsafile(3TSOL)

FILES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 461

grantpt – grant access to the slave pseudo-terminal device

#include <stdlib.h>

int grantpt(int fildes);

The grantpt() function changes the mode and ownership of the slave
pseudo-terminal device associated with its master pseudo-terminal counter part. fildes
is the file descriptor returned from a successful open of the master pseudo-terminal
device. A setuid root program (see setuid(2)) is invoked to change the permissions.
The user ID of the slave is set to the real UID of the calling process and the group ID is
set to a reserved group. The permission mode of the slave pseudo-terminal is set to
readable and writable by the owner and writable by the group.

In the Trusted Solaris environment, the grantpt() function has been modified to do
nothing and always return successfully. Automatic device allocation obsoletes this
function since device ownership and permissions are automatically assigned to the
open() process.

Upon successful completion, grantpt() returns 0. Otherwise, it returns −1 and sets
errno to indicate the error.

The grantpt() function may fail if:

EBADF The fildes argument is not a valid open file descriptor.

EINVAL The fildes argument is not associated with a master
pseudo-terminal device.

EACCES The corresponding slave pseudo-terminal device could not be
accessed.

The grantpt() function will fail if it is unable to successfully invoke the setuid root
program. It may also fail if the application has installed a signal handler to catch
SIGCHLD signals.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

Automatic device allocation obsoletes the grantpt() function.

open(2), setuid(2)

ptsname(3C), unlockpt(3C), attributes(5)

STREAMS Programming Guide

grantpt(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
ManualSunOS 5.8

Reference Manual

462 man pages section 3: Library Functions • Last Revised 22 Sep 2000

btohex, bcltoh, bsltoh, bcleartoh, bcltoh_r, bsltoh_r, bcleartoh_r, h_alloc, h_free –
convert binary label to hexadecimal

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

char *bcltoh(const bclabel_t *label);

char *bsltoh(const bslabel_t *label);

char *bcleartoh(const bclear_t *clearance);

char *bcltoh_r(const bclabel_t *label, char *hex);

char *bsltoh_r(const bslabel_t *label, char *hex);

char *bcleartoh_r(const bclear_t *clearance, char *hex);

char *h_alloc(const unsigned char type);

void h_free(char *hex);

These functions convert binary labels into hexadecimal strings that represent the
internal value.

bcltoh() and bcltoh_r() convert a binary CMW label into a string of the form:

0xADMIN_LOW_hex_value [0xsensitivity_label_hexadecimal_value]

bsltoh() and bsltoh_r() convert a binary sensitivity label into a string of the
form:

[0xsensitivity_label_hexadecimal_value]

bcleartoh() and bcleartoh_r() convert a binary clearance into a string of the
form:

0xclearance_hexadecimal_value

h_alloc() allocates memory for the hexadecimal value type for use by bcltoh_r(),
bsltoh_r(), and bcleartoh_r().

Valid values for type are:

SUN_CMW_ID label is a binary CMW label.

SUN_SL_ID label is a binary sensitivity label.

SUN_CLR_ID label is a binary clearance.

h_free() frees memory allocated by h_alloc().

These functions return a pointer to a string that contains the result of the translation,
or (char *)0 if the parameter is not of the required type.

See attributes(5) for descriptions of the following attributes:

h_alloc(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

Introduction to Library Functions 463

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe with exceptions

atohexlabel(1M), hextoalabel(1M), bcltobanner(3TSOL),
blmanifest(3TSOL), bltocolor(3TSOL), bltype(3TSOL), labelinfo(3TSOL),
sbltos(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

The functions bcltoh(), bsltoh(), and bcleartoh() share the same statically
allocated string storage. They are not MT-Safe. Subsequent calls to any of these
functions will overwrite that string with the newly translated string.

For multithreaded applications, the functions bcltoh_r(), bsltoh_r(), and
bcleartoh_r() should be used.

h_alloc(3TSOL)

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

464 man pages section 3: Library Functions • Last Revised 24 May 2001

resolver, res_ninit, fp_resstat, res_npquery, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

void res_npquery(const res_state statp, const u_char *msg, int
msglen, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int
type, u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
*domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
*answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg, int msglen,
ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
**dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

herror(3RESOLV)

NAME

BIND 8.2.2
Interfaces

Deprecated
Interfaces

Introduction to Library Functions 465

int res_initvoid););

int res_query(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_mkquery(int op, const char *dname, int class, int type, const
char *data, int datalen, struct rrec *newrr, u_char *buf, int
buflen);

int res_send(const u_char *msg, int msglen, u_char *answer, int
anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply
messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions.
Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(),
res_send(), and herror() are deprecated. They are supplied for backwards
compatability. They use global configuration and state information that is kept in the
structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first
call to res_ninit() or res_init() and can be ignored. Options stored in
statp->options or _res.options are defined in <resolv.h>. They are stored as
a simple bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default
domain name are initialized, that is, res_init() or
res_ninit() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() will continue until it finds an
authoritative answer or finds an error. Currently this
option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open
between queries. This is a useful option for programs
that regularly do many queries. The normal mode used
should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

herror(3RESOLV)

DESCRIPTION

466 man pages section 3: Library Functions • Last Revised 1 Feb 2001

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. res_send() and res_nsend() do not do
iterative queries and expect the name server to handle
recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append
the default domain name to single-component names,
that is, names that do not contain a dot. This option is
enabled by default.

RES_DNSRCH If this option is set, res_search() and
res_nsearch() search for host names in the current
domain and in parent domains. See hostname(1). This
option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by
default.

RES_NOALIASES This option turns off the user level aliasing feature
controlled by the HOSTALIASES environment variable.
Network daemons should set this option.

RES_ROTATE This option causes res_nsend() and res_send() to
rotate the list of nameservers in
statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the
message unchanged after TSIG verification. Otherwise
the TSIG record would be removed and the header
would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is
present, to get the default domain name, search list and the Internet address of the
local name server(s). See resolv.conf(4). If no server is configured, res_init() or
res_ninit() will try to obtain name resolution services from the host on which it is
running. The current domain name is defined by domainname(1M), or by the
hostname if it is not specified in the configuration file. Use the environment variable
LOCALDOMAIN to override the domain name. This environment variable may contain
several blank-separated tokens if you wish to override the search list on a per-process
basis. This is similar to the search command in the configuration file. You can set the
RES_OPTIONS environment variable to override certain internal resolver options. You
can otherwise set them by changing fields in the statp /_res structure.
Alternatively, they are inherited from the configuration file’s options command. See
resolv.conf(4) for information regarding the syntax of the RES_OPTIONS
environment variable. Initialization normally occurs on the first call to one of the other
resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server
query mechanism. They construct a query, send it to the local server, await a response,
and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply

herror(3RESOLV)

res_ninit, res_init

res_nquery,
res_query

Introduction to Library Functions 467

message is left in the answer buffer with length anslen supplied by the caller.
res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a
response, just like like res_nquery() and res_query(). In addition, they
implement the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. They return the length of the first successful reply which is
stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The
res_nmkquery() and res_mkquery() functions construct a standard query
message and place it in buf. The routine returns the size of the query, or -1 if the query
is larger than buflen. The query type op is usually QUERY, but can be any of the query
types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a
preformatted query that returns an answer. The routine calls res_ninit() or
res_init(). If RES_INIT is not set, the routine sends the query to the local name
server and handles timeouts and retries. Additionally, the res_nsendsigned() uses
TSIG signatures to add authentication to the query and verify the response. In this
case, only one name server will be contacted. The routines return the length of the
reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query
may be larger still], so it is recommended that you supply a buf larger than the answer
returned by the previous query. answer must be large enough to receive a maximum
UDP response from the server or parts of the answer will be silently discarded. The
default maximum UDP response size is 512 bytes.

The res_npquery() function prints out the query and any answer in msg on fp.

The fp_resstat() function prints out the active flag bits in statp->options preceded
by the text ";; res options:" on file.

herror(3RESOLV)

res_nsearch,
res_search

res_nmkquery,
res_mkquery

res_nsend,
res_send,

res_nsendsigned

res_npquery

fp_resstat

468 man pages section 3: Library Functions • Last Revised 1 Feb 2001

The res_hostalias() function looks up name in the file referred to by the
HOSTALIASES environment variable and returns the fully qualified host name. If name
is not found or an error occurs, NULL is returned. res_hostalias() stores the result
in buf.

The res_nclose() function closes any open files referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. dn_comp() returns the size of the compressed name, or −1 if there were
errors. length is the size of the array pointed to by comp_dn.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in
the current message. The first pointer must point to the beginning of the message. The
list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted
into the message by dn_comp() as the name is compressed. If dnptrs is NULL, names
are not compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name. The compressed name is contained in a query or reply message. msg is
a pointer to the beginning of that message. The uncompressed name is placed in the
buffer indicated by exp_dn, which is of size length.dn_expand() returns the size of the
compressed name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are
set whenever an error occurs during a resolver operation. The following definitions
are given in <netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the
string parameters, the constant string ": ", and a message corresponding to the value
of h_errno.

The hstrerror() function returns a string, which is the message text that
corresponds to the value of the err parameter.

/etc/resolv.conf Resolver configuration file

See attributes(5) for descriptions of the following attributes:

herror(3RESOLV)

res_hostalias

res_nclose

dn_comp

dn_expand

hstrerror, herror

FILES

ATTRIBUTES

Introduction to Library Functions 469

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard BIND 8.2.2

MT-Level Unsafe for Deprecated Interfaces; MT-Safe for
all others.

If the query is sent to a name server on a non-trusted host, then the functions
res_nsend(), res_send(), res_nsearch(), and res_search() can
communicate with the name server if its host’s default sensitivity label matches the
sensitivity label of the process issuing the call. If the calling process is run with the
PRIV_NET_UPGRADE_SL, PRIV_NET_DOWNGRADE_SL, and PRIV_NET_MAC_READ
privileges, then the functions res_nsend(), res_send(), res_nsearch(), and
res_search() can communicate with the name server regardless of the sensitivity
label of the non-trusted host where the name server resides.

in.named(1M), resolv.conf(4)

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), attributes(5)

Lottor, M., Domain Administrators Operators Guide, RFC 1033, SRI International, Menlo
Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information
Center, SRI International, Menlo Park, Calif., January 1986. Stahl, M., Domain
Administrators Guide, RFC 1032, SRI International, Menlo Park, Calif., November 1987.

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte
boundary. Otherwise, an error such as a SIGBUS may result.

herror(3RESOLV)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

470 man pages section 3: Library Functions • Last Revised 1 Feb 2001

hextob, htobcl, htobsl, htobclear – convert hexadecimal string to binary label

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

int htobcl(const char *s, bclabel_t *label);

int htobsl(const char *s, bslabel_t *label);

int htobclear(const char *s, bclear_t *clearance);

These functions convert hexadecimal string representations of internal label values
into binary labels.

htobcl() converts into a binary CMW label, a hexadecimal string of the form:

0xADMIN_LOW_hex_value [0xsensitivity_label_hexadecimal_value]

Note – The argument to the htobcl() function must contain a fixed n-character
hexadecimal number before the sensitivity label hexadecimal value. The fixed number
is ignored. CMW labels retain the number for backward compatibility.

htobsl() converts into a binary sensitivity label, a hexadecimal string of the form:

[0xsensitivity_label_hexadecimal_value]

htobclear() converts into a binary clearance, a hexadecimal string of the form:

0xclearance_hexadecimal_value

These functions return non-zero if the conversion was successful, otherwise zero is
returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

atohexlabel(1M), hextoalabel(1M), bcltobanner(3TSOL),
blmanifest(3TSOL), bltocolor(3TSOL), bltype(3TSOL), labelinfo(3TSOL),
sbltos(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

hextob(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction to Library Functions 471

btohex, bcltoh, bsltoh, bcleartoh, bcltoh_r, bsltoh_r, bcleartoh_r, h_alloc, h_free –
convert binary label to hexadecimal

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

char *bcltoh(const bclabel_t *label);

char *bsltoh(const bslabel_t *label);

char *bcleartoh(const bclear_t *clearance);

char *bcltoh_r(const bclabel_t *label, char *hex);

char *bsltoh_r(const bslabel_t *label, char *hex);

char *bcleartoh_r(const bclear_t *clearance, char *hex);

char *h_alloc(const unsigned char type);

void h_free(char *hex);

These functions convert binary labels into hexadecimal strings that represent the
internal value.

bcltoh() and bcltoh_r() convert a binary CMW label into a string of the form:

0xADMIN_LOW_hex_value [0xsensitivity_label_hexadecimal_value]

bsltoh() and bsltoh_r() convert a binary sensitivity label into a string of the
form:

[0xsensitivity_label_hexadecimal_value]

bcleartoh() and bcleartoh_r() convert a binary clearance into a string of the
form:

0xclearance_hexadecimal_value

h_alloc() allocates memory for the hexadecimal value type for use by bcltoh_r(),
bsltoh_r(), and bcleartoh_r().

Valid values for type are:

SUN_CMW_ID label is a binary CMW label.

SUN_SL_ID label is a binary sensitivity label.

SUN_CLR_ID label is a binary clearance.

h_free() frees memory allocated by h_alloc().

These functions return a pointer to a string that contains the result of the translation,
or (char *)0 if the parameter is not of the required type.

See attributes(5) for descriptions of the following attributes:

h_free(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

472 man pages section 3: Library Functions • Last Revised 24 May 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe with exceptions

atohexlabel(1M), hextoalabel(1M), bcltobanner(3TSOL),
blmanifest(3TSOL), bltocolor(3TSOL), bltype(3TSOL), labelinfo(3TSOL),
sbltos(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

The functions bcltoh(), bsltoh(), and bcleartoh() share the same statically
allocated string storage. They are not MT-Safe. Subsequent calls to any of these
functions will overwrite that string with the newly translated string.

For multithreaded applications, the functions bcltoh_r(), bsltoh_r(), and
bcleartoh_r() should be used.

h_free(3TSOL)

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 473

resolver, res_ninit, fp_resstat, res_npquery, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

void res_npquery(const res_state statp, const u_char *msg, int
msglen, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int
type, u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
*domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
*answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg, int msglen,
ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
**dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

hstrerror(3RESOLV)

NAME

BIND 8.2.2
Interfaces

Deprecated
Interfaces

474 man pages section 3: Library Functions • Last Revised 1 Feb 2001

int res_initvoid););

int res_query(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_mkquery(int op, const char *dname, int class, int type, const
char *data, int datalen, struct rrec *newrr, u_char *buf, int
buflen);

int res_send(const u_char *msg, int msglen, u_char *answer, int
anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply
messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions.
Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(),
res_send(), and herror() are deprecated. They are supplied for backwards
compatability. They use global configuration and state information that is kept in the
structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first
call to res_ninit() or res_init() and can be ignored. Options stored in
statp->options or _res.options are defined in <resolv.h>. They are stored as
a simple bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default
domain name are initialized, that is, res_init() or
res_ninit() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() will continue until it finds an
authoritative answer or finds an error. Currently this
option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open
between queries. This is a useful option for programs
that regularly do many queries. The normal mode used
should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

hstrerror(3RESOLV)

DESCRIPTION

Introduction to Library Functions 475

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. res_send() and res_nsend() do not do
iterative queries and expect the name server to handle
recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append
the default domain name to single-component names,
that is, names that do not contain a dot. This option is
enabled by default.

RES_DNSRCH If this option is set, res_search() and
res_nsearch() search for host names in the current
domain and in parent domains. See hostname(1). This
option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by
default.

RES_NOALIASES This option turns off the user level aliasing feature
controlled by the HOSTALIASES environment variable.
Network daemons should set this option.

RES_ROTATE This option causes res_nsend() and res_send() to
rotate the list of nameservers in
statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the
message unchanged after TSIG verification. Otherwise
the TSIG record would be removed and the header
would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is
present, to get the default domain name, search list and the Internet address of the
local name server(s). See resolv.conf(4). If no server is configured, res_init() or
res_ninit() will try to obtain name resolution services from the host on which it is
running. The current domain name is defined by domainname(1M), or by the
hostname if it is not specified in the configuration file. Use the environment variable
LOCALDOMAIN to override the domain name. This environment variable may contain
several blank-separated tokens if you wish to override the search list on a per-process
basis. This is similar to the search command in the configuration file. You can set the
RES_OPTIONS environment variable to override certain internal resolver options. You
can otherwise set them by changing fields in the statp /_res structure.
Alternatively, they are inherited from the configuration file’s options command. See
resolv.conf(4) for information regarding the syntax of the RES_OPTIONS
environment variable. Initialization normally occurs on the first call to one of the other
resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server
query mechanism. They construct a query, send it to the local server, await a response,
and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply

hstrerror(3RESOLV)

res_ninit, res_init

res_nquery,
res_query

476 man pages section 3: Library Functions • Last Revised 1 Feb 2001

message is left in the answer buffer with length anslen supplied by the caller.
res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a
response, just like like res_nquery() and res_query(). In addition, they
implement the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. They return the length of the first successful reply which is
stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The
res_nmkquery() and res_mkquery() functions construct a standard query
message and place it in buf. The routine returns the size of the query, or -1 if the query
is larger than buflen. The query type op is usually QUERY, but can be any of the query
types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a
preformatted query that returns an answer. The routine calls res_ninit() or
res_init(). If RES_INIT is not set, the routine sends the query to the local name
server and handles timeouts and retries. Additionally, the res_nsendsigned() uses
TSIG signatures to add authentication to the query and verify the response. In this
case, only one name server will be contacted. The routines return the length of the
reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query
may be larger still], so it is recommended that you supply a buf larger than the answer
returned by the previous query. answer must be large enough to receive a maximum
UDP response from the server or parts of the answer will be silently discarded. The
default maximum UDP response size is 512 bytes.

The res_npquery() function prints out the query and any answer in msg on fp.

The fp_resstat() function prints out the active flag bits in statp->options preceded
by the text ";; res options:" on file.

hstrerror(3RESOLV)

res_nsearch,
res_search

res_nmkquery,
res_mkquery

res_nsend,
res_send,

res_nsendsigned

res_npquery

fp_resstat

Introduction to Library Functions 477

The res_hostalias() function looks up name in the file referred to by the
HOSTALIASES environment variable and returns the fully qualified host name. If name
is not found or an error occurs, NULL is returned. res_hostalias() stores the result
in buf.

The res_nclose() function closes any open files referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. dn_comp() returns the size of the compressed name, or −1 if there were
errors. length is the size of the array pointed to by comp_dn.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in
the current message. The first pointer must point to the beginning of the message. The
list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted
into the message by dn_comp() as the name is compressed. If dnptrs is NULL, names
are not compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name. The compressed name is contained in a query or reply message. msg is
a pointer to the beginning of that message. The uncompressed name is placed in the
buffer indicated by exp_dn, which is of size length.dn_expand() returns the size of the
compressed name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are
set whenever an error occurs during a resolver operation. The following definitions
are given in <netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the
string parameters, the constant string ": ", and a message corresponding to the value
of h_errno.

The hstrerror() function returns a string, which is the message text that
corresponds to the value of the err parameter.

/etc/resolv.conf Resolver configuration file

See attributes(5) for descriptions of the following attributes:

hstrerror(3RESOLV)

res_hostalias

res_nclose

dn_comp

dn_expand

hstrerror, herror

FILES

ATTRIBUTES

478 man pages section 3: Library Functions • Last Revised 1 Feb 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard BIND 8.2.2

MT-Level Unsafe for Deprecated Interfaces; MT-Safe for
all others.

If the query is sent to a name server on a non-trusted host, then the functions
res_nsend(), res_send(), res_nsearch(), and res_search() can
communicate with the name server if its host’s default sensitivity label matches the
sensitivity label of the process issuing the call. If the calling process is run with the
PRIV_NET_UPGRADE_SL, PRIV_NET_DOWNGRADE_SL, and PRIV_NET_MAC_READ
privileges, then the functions res_nsend(), res_send(), res_nsearch(), and
res_search() can communicate with the name server regardless of the sensitivity
label of the non-trusted host where the name server resides.

in.named(1M), resolv.conf(4)

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), attributes(5)

Lottor, M., Domain Administrators Operators Guide, RFC 1033, SRI International, Menlo
Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information
Center, SRI International, Menlo Park, Calif., January 1986. Stahl, M., Domain
Administrators Guide, RFC 1032, SRI International, Menlo Park, Calif., November 1987.

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte
boundary. Otherwise, an error such as a SIGBUS may result.

hstrerror(3RESOLV)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 479

hextob, htobcl, htobsl, htobclear – convert hexadecimal string to binary label

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

int htobcl(const char *s, bclabel_t *label);

int htobsl(const char *s, bslabel_t *label);

int htobclear(const char *s, bclear_t *clearance);

These functions convert hexadecimal string representations of internal label values
into binary labels.

htobcl() converts into a binary CMW label, a hexadecimal string of the form:

0xADMIN_LOW_hex_value [0xsensitivity_label_hexadecimal_value]

Note – The argument to the htobcl() function must contain a fixed n-character
hexadecimal number before the sensitivity label hexadecimal value. The fixed number
is ignored. CMW labels retain the number for backward compatibility.

htobsl() converts into a binary sensitivity label, a hexadecimal string of the form:

[0xsensitivity_label_hexadecimal_value]

htobclear() converts into a binary clearance, a hexadecimal string of the form:

0xclearance_hexadecimal_value

These functions return non-zero if the conversion was successful, otherwise zero is
returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

atohexlabel(1M), hextoalabel(1M), bcltobanner(3TSOL),
blmanifest(3TSOL), bltocolor(3TSOL), bltype(3TSOL), labelinfo(3TSOL),
sbltos(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

htobcl(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

480 man pages section 3: Library Functions • Last Revised 24 May 2001

hextob, htobcl, htobsl, htobclear – convert hexadecimal string to binary label

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

int htobcl(const char *s, bclabel_t *label);

int htobsl(const char *s, bslabel_t *label);

int htobclear(const char *s, bclear_t *clearance);

These functions convert hexadecimal string representations of internal label values
into binary labels.

htobcl() converts into a binary CMW label, a hexadecimal string of the form:

0xADMIN_LOW_hex_value [0xsensitivity_label_hexadecimal_value]

Note – The argument to the htobcl() function must contain a fixed n-character
hexadecimal number before the sensitivity label hexadecimal value. The fixed number
is ignored. CMW labels retain the number for backward compatibility.

htobsl() converts into a binary sensitivity label, a hexadecimal string of the form:

[0xsensitivity_label_hexadecimal_value]

htobclear() converts into a binary clearance, a hexadecimal string of the form:

0xclearance_hexadecimal_value

These functions return non-zero if the conversion was successful, otherwise zero is
returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

atohexlabel(1M), hextoalabel(1M), bcltobanner(3TSOL),
blmanifest(3TSOL), bltocolor(3TSOL), bltype(3TSOL), labelinfo(3TSOL),
sbltos(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

htobclear(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction to Library Functions 481

hextob, htobcl, htobsl, htobclear – convert hexadecimal string to binary label

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

int htobcl(const char *s, bclabel_t *label);

int htobsl(const char *s, bslabel_t *label);

int htobclear(const char *s, bclear_t *clearance);

These functions convert hexadecimal string representations of internal label values
into binary labels.

htobcl() converts into a binary CMW label, a hexadecimal string of the form:

0xADMIN_LOW_hex_value [0xsensitivity_label_hexadecimal_value]

Note – The argument to the htobcl() function must contain a fixed n-character
hexadecimal number before the sensitivity label hexadecimal value. The fixed number
is ignored. CMW labels retain the number for backward compatibility.

htobsl() converts into a binary sensitivity label, a hexadecimal string of the form:

[0xsensitivity_label_hexadecimal_value]

htobclear() converts into a binary clearance, a hexadecimal string of the form:

0xclearance_hexadecimal_value

These functions return non-zero if the conversion was successful, otherwise zero is
returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

atohexlabel(1M), hextoalabel(1M), bcltobanner(3TSOL),
blmanifest(3TSOL), bltocolor(3TSOL), bltype(3TSOL), labelinfo(3TSOL),
sbltos(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

htobsl(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

482 man pages section 3: Library Functions • Last Revised 24 May 2001

initgroups – Initialize the supplementary group access list

#include <grp.h>

#include <sys/types.h>

int initgroups(const char *name, gid_t basegid);

The initgroups() function reads the group database to get the group membership
for the user specified by name, and initializes the supplementary group access list of
the calling process (see getgrnam(3C) and getgroups(2)). The basegid group ID is
also included in the supplementary group access list. This is typically the real group
ID from the user database.

While scanning the group database, if the number of groups, including the basegid
entry, exceeds NGROUPS_MAX, subsequent group entries are ignored.

initgroups() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The initgroups() function will fail and not change the supplementary group access
list if:

EPERM The effective user ID is not superuser.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

To succeed, initgroups() must have PRIV_PROC_SETID in its set of effective
privileges.

getgroups(2)

getgrnam(3C), attributes(5)

initgroups(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

Introduction to Library Functions 483

kstat_read, kstat_write – Read or write kstat data

cc [flag…] file … -lkstat [library…]

#include <kstat.h>

kid_t kstat_read(kstat_ctl_t *kc, kstat_t *ksp, void *buf);

kid_t kstat_write(kstat_ctl_t *kc, kstat_t *ksp, void *buf);

kstat_read() gets data from the kernel for the kstat pointed to by ksp. ksp->ks_data
is automatically allocated (or reallocated) to be large enough to hold all of the data.
ksp->ks_ndata is set to the number of data fields, ksp->ks_data_size is set to the total size
of the data, and ksp->ks_snaptime is set to the high-resolution time at which the data
snapshot was taken. If buf is non-NULL, the data is copied from ksp->ks_data into buf.

kstat_write() writes data from buf, or from ksp->ks_data if buf is NULL, to the
corresponding kstat in the kernel. kstat_write() requires the PRIV_SYS_CONFIG
privilege and MAC write access to /dev/kstat.

On success, kstat_read() and kstat_write() return the current kstat chain ID
(KCID). On failure, they return −1.

/dev/kstat Kernel statistics driver

kstat_write() requires the PRIV_SYS_CONFIG privilege and MAC write access to
/dev/kstat.

kstat(3KSTAT), kstat_chain_update(3KSTAT), kstat_close(3KSTAT),
kstat_data_lookup(3KSTAT), kstat_lookup(3KSTAT), kstat_open(3KSTAT)

kstat_read(3KSTAT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESSunOS 5.8
Reference Manual

484 man pages section 3: Library Functions • Last Revised 13 May 1998

kstat_read, kstat_write – Read or write kstat data

cc [flag…] file … -lkstat [library…]

#include <kstat.h>

kid_t kstat_read(kstat_ctl_t *kc, kstat_t *ksp, void *buf);

kid_t kstat_write(kstat_ctl_t *kc, kstat_t *ksp, void *buf);

kstat_read() gets data from the kernel for the kstat pointed to by ksp. ksp->ks_data
is automatically allocated (or reallocated) to be large enough to hold all of the data.
ksp->ks_ndata is set to the number of data fields, ksp->ks_data_size is set to the total size
of the data, and ksp->ks_snaptime is set to the high-resolution time at which the data
snapshot was taken. If buf is non-NULL, the data is copied from ksp->ks_data into buf.

kstat_write() writes data from buf, or from ksp->ks_data if buf is NULL, to the
corresponding kstat in the kernel. kstat_write() requires the PRIV_SYS_CONFIG
privilege and MAC write access to /dev/kstat.

On success, kstat_read() and kstat_write() return the current kstat chain ID
(KCID). On failure, they return −1.

/dev/kstat Kernel statistics driver

kstat_write() requires the PRIV_SYS_CONFIG privilege and MAC write access to
/dev/kstat.

kstat(3KSTAT), kstat_chain_update(3KSTAT), kstat_close(3KSTAT),
kstat_data_lookup(3KSTAT), kstat_lookup(3KSTAT), kstat_open(3KSTAT)

kstat_write(3KSTAT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESSunOS 5.8
Reference Manual

Introduction to Library Functions 485

kva_match – look up a key in a key-value array

cc [flag...] file...– lsecdb [library...]

#include <secdb.h>

char *kva_match(kva_t *kva, char *, key);

The kva_match() function searches a kva_t structure, which is part of the
authattr_t, execattr_t, profattr_t, or userattr_t structures. The function
takes two arguments: a pointer to a key value array, and a key. If the key is in the
array, the function returns a pointer to the first corresponding value that matches that
key. Otherwise, the function returns NULL.

Upon success, the function returns a pointer to the value sought. Otherwise, it returns
NULL.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getauthattr(3SECDB), getexecattr(3SECDB), getprofattr(3SECDB),
getuserattr(3SECDB)

The kva_match() function returns a pointer to data that already exists in the
key-value array. It does not allocate its own memory for this pointer but obtains it
from the key-value array that is passed as its first argument.

kva_match(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

486 man pages section 3: Library Functions • Last Revised 12 Aug 1999

labelbuilder, tsol_lbuild_create, tsol_lbuild_get, tsol_lbuild_set, tsol_lbuild_destroy –
create a Motif-based user interface for interactively building a valid label or clearance

cc [flag…] file… -ltsol -lDtTsol [library…]

#include <Dt/ModLabel.h>

ModLabelData *tsol_lbuild_create(Widget widget void (*event_handler)()
ok_callback lbuild_attributes extended_operation, , NULL);

void *tsol_lbuild_get(ModLabelData *data, lbuild_attributes
extended_operation);

void tsol_lbuild_set(ModLabelData *data lbuild_attributes
extended_operation, , NULL);

void tsol_lbuild_destroy(ModLabelData *data);

The label builder user interface prompts the end user for information and generates a
valid CMW label, information label, sensitivity label, or clearance from the user input
based on specifications in the label_encodings(4) file on the system where the
application runs. The end user can build the label or clearance by typing a text value
or by interactively choosing options.

Application-specific functionality is implemented in the callback for the OK
pushbutton. This callback is passed to the tsol_lbuild_create() call where it is
mapped to the OK pushbutton widget.

When choosing options, the label builder shows the user only those classifications
(and related compartments and markings) dominated by the workspace sensitivity
label unless the executable has the PRIV_SYS_TRANS_LABEL privilege in its effective
set.

If the end user does not have the authorization to upgrade or downgrade labels, or if
the user-built label is out of the user’s accreditation range, the OK and Reset
pushbuttons are grayed. There are no privileges to override these restrictions.

tsol_lbuild_create() creates the graphical user interface and returns a pointer
variable of type ModLabeldata* that contains information on the user interface. This
information is a combination of values passed in the tsol_lbuild_create() input
parameter list, default values for information not provided, and information on the
widgets used by the label builder to create the user interface. All information except
the widget information should be accessed with the tsol_lbuild_get() and
tsol_lbuild_set() routines.

The widget information is accessed directly by referencing the following fields of the
ModLabelData structure.

lbuild_dialog The label builder dialog box.

ok The OK pushbutton.

cancel The Cancel pushbutton.

labelbuilder(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 487

reset The Reset pushbutton.

help The Help pushbutton.

The tsol_lbuild_create() parameter list takes the following values:

widget The widget from which the dialog box is created. Any Motif
widget can be passed.

ok_callback A callback function that implements the behavior of the OK
pushbutton on the dialog box.

..., NULL A NULL terminated list of extended operations and value pairs that
define the characteristics and behavior of the label builder dialog
box.

tsol_lbuild_destroy() destroys the ModLabelData structure returned by
tsol_lbuild_create().

tsol_lbuild_get() and tsol_lbuild_set() access the information stored in
the ModLabelData structure returned by tsol_lbuild_create().

The following extended operations can be passed to tsol_lbuild_create() to
build the user interface, to tsol_lbuild_get() to retrieve information on the user
interface, and to tsol_lbuild_set() to change the user interface information. All
extended operations are valid for tsol_lbuild_get(), but the *WORK* operations
are not valid for tsol_lbuild_set() or tsol_lbuild_create() because these
values are set from input supplied by the end user. These exceptions are noted in the
descriptions.

LBUILD_MODE
Create a user interface to build an information label, sensitivity label, CMW label,
or clearance. Value is LBUILD_MODE_CMW by default.

LBUILD_MODE_IL Build an information label.

An information label is fixed at ADMIN_LOW.

LBUILD_MODE_SL Build a sensitivity label.

LBUILD_MODE_CMW Build a CMW label.

LBUILD_MODE_CLR Build a clearance.

LBUILD_VALUE_SL
The starting sensitivity label. This value is ADMIN_LOW by default and is used when
the mode is LBUILD_MODE_SL.

LBUILD_VALUE_IL
The starting information label. This value is ADMIN_LOW by default and is used
when the mode is LBUILD_MODE_IL.

labelbuilder(3TSOL)

488 man pages section 3: Library Functions • Last Revised 24 May 2001

LBUILD_VALUE_CMW
The starting CMW label. This value is ADMIN_LOW[ADMIN_LOW] by default and is
used when the mode is LBUILD_MODE_CMW.

LBUILD_VALUE_CLR
The starting clearance. This value is ADMIN_LOW by default and is used when the
mode is LBUILD_MODE_CLR.

LBUILD_USERFIELD
A character string prompt that displays at the top of the label builder dialog box.
Value is NULL by default.

LBUILD_SHOW
Show or hide the label builder dialog box. Value is FALSE by default.

TRUE Show the label builder dialog box.

FALSE Hide the label builder dialog box.

LBUILD_TITLE
A character string title that appears at the top of the label builder dialog box. Value
is NULL by default.

LBUILD_WORK_SL
Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The sensitivity
label the end user is building. Value is updated to the end user’s input when the
end user selects the Update pushbutton or interactively chooses an option.

LBUILD_WORK_IL
Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The
information label the end user is building. Value is updated to the end user’s input
when the end user selects the Update pushbutton or interactively chooses an
option.

LBUILD_WORK_CMW
Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The CMW label
the end user is building. Value is updated to the end user’s input when the end
user selects the Update pushbutton or interactively chooses an option.

LBUILD_WORK_CLR
Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The clearance
the end user is building. Value is updated to the end user’s input when the end
user selects the Update pushbutton or interactively chooses an option.

LBUILD_X
The X position in pixels of the top-left corner of the label buider dialog box in
relation to the top-left corner of the screen. By default the label builder dialog box is
positioned in the middle of the screen.

LBUILD_Y
The Y position in pixels of the top-left corner of the label builder dialog box in
relation to the top-left corner of the screen. By default the label builder dialog box is
positioned in the middle of the screen.

labelbuilder(3TSOL)

Introduction to Library Functions 489

LBUILD_LOWER_BOUND
The lowest classification (and related compartments and markings) available to the
user as radio buttons for interactively building a label or clearance. This value is the
user’s minimum label.

LBUILD_UPPER_BOUND
The highest classification (and related compartments and markings) available to the
user as radio buttons for interactively building a label or clearance. A supplied
value should be within the user’s accreditation range. If no value is specified, the
value is the user’s workspace sensitivity label, or if the executable has the
PRIV_SYS_TRANS_LABEL privilege, the value is the user’s clearance.

LBUILD_CHECK_AR
Check that the user-built label entered in the Update With field is within the user’s
accreditation range. A value of 1 means check, and a value of 0 means do not check.
If checking is on and the label is out of range, an error message is raised to the end
user.

LBUILD_VIEW
Use the internal or external label representation. Value is
LBUILD_VIEW_EXTERNAL by default.

LBUILD_VIEW_INTERNAL Use the internal names for the highest and lowest
labels in the system: ADMIN_HIGH and ADMIN_LOW.

LBUILD_VIEW_EXTERNAL Promote an ADMIN_LOW label to the next highest
label, and demote an ADMIN_HIGH label to the next
lowest label.

The tsol_lbuild_get() returns −1 if it is unable to get the value.

The tsol_lbuild_create() routine returns a variable of type ModLabelData that
contains the information provided in the tsol_lbuild_create() input parameter
list, default values for information not provided, and information on the widgets used
by the label builder to create the user interface.

EXAMPLE 1 To create a Label Builder

(ModLabelData *)lbldata = tsol_lbuild_create(widget0, callback_function,
LBUILD_MODE, LBUILD_MODE_CMW,
LBUILD_TITLE, "Setting CMW Label",
LBUILD_VIEW, LBUILD_VIEW_INTERNAL,
LBUILD_X, 200,
LBUILD_Y, 200,
LBUILD_USERFIELD, "Pathname:",
LBUILD_SHOW, FALSE,

NULL);

EXAMPLE 2 To query the mode and display the Label Builder

These examples call the tsol_lbuild_get() routine to query the mode being used,
and call the tsol_lbuild_set() routine so the label builder dialog box displays.

labelbuilder(3TSOL)

RETURN VALUES

EXAMPLES

490 man pages section 3: Library Functions • Last Revised 24 May 2001

EXAMPLE 2 To query the mode and display the Label Builder (Continued)

mode = (int)tsol_lbuild_get(lbldata, LBUILD_MODE);

tsol_lbuild_set(lbldata, LBUILD_SHOW, TRUE,

NULL);

EXAMPLE 3 To destroy the ModLabelData variable

This example destroys the ModLabelData variable returned in the call to
tsol_lbuild_create().

tsol_lbuild_destroy(lbldata);

/usr/dt/include/Dt/ModLabel.h
Header file for label builder functions

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

label_encodings(4)

Trusted Solaris Developer’s Guide

attributes(5)

labelbuilder(3TSOL)

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction to Library Functions 491

labelclipping, Xbcltos, Xbsltos, Xbcleartos – translate a binary label and clip to the
specified width

cc [flag…] file… -ltsol -lDtTsol [library…]

#include <Dt/label_clipping.h>

XmString Xbcltos(Display *display, const bclabel_t *cmwlabel,
Dimension width, const XmFontList fontlist, const int flags);

XmString Xbsltos(Display*display, const bxlabel_t *senslabel,
Dimensionwidth, const XmFontList fontlist, const int flags);

XmString Xbcleartos(Display *display, const bclear_t *clearance,
Dimensionwidth, const XmFontListfontlist, const int flags);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to translate labels or clearances that dominate the current process’
sensitivity label.

display The structure controlling the connection to an X Window System
display.

cmwlabel The CMW label to be translated.

senslabel The sensitivity label to be translated.

clearance The clearance to be translated.

width The width of the translated label or clearance in pixels. If the
specified width is shorter than the full label, the label is clipped
and the presence of clipped letters is indicated by an arrow. In this
example, letters have been clipped to the right of: TS<-. See the
sbltos(3TSOL) man page for more information on the clipped
indicator. If the specified width is equal to the display width
(display), the label is not truncated, but word-wrapped using a
width of half the display width.

fontlist A list of fonts and character sets where each font is associated with
a character set.

flags The value of flags indicates which words in the
label_encodings(4) file are used for the translation. See the
bltos(3TSOL) man page for a description of the flag values:
LONG_WORDS, SHORT_WORDS, LONG_CLASSIFICATION,
SHORT_CLASSIFICATION, ALL_ENTRIES, ACCESS_RELATED,
VIEW_EXTERNAL, VIEW_INTERNAL, NO_CLASSIFICATION.
BRACKETED is an additional flag that can be used with
Xbsltos() only. It encloses the sensitivity label in square brackets
as follows: [C].

These interfaces return a compound string that represents the character-coded form of
the CMW label, sensitivity label, or clearance translated. The compound string uses

labelclipping(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

492 man pages section 3: Library Functions • Last Revised 24 May 2001

the language and fonts specified in fontlist and is clipped to width. These interfaces
return NULL if the label or clearance is not a valid, required type as defined in the
label_encodings(4) file, or not dominated by the process’ sensitivity label and the
PRIV_SYS_TRANS_LABEL privilege is not asserted.

/usr/dt/include/Dt/label_clipping.h
Header file for label clipping functions

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

EXAMPLE 1 To Translate and Clip a Clearance

This example translates a clearance to text using the long words specified in the
label_encodings(4) file, a font list, and clips the translated clearance to a width of
72 pixels.

xmstr = Xbcleartos(XtDisplay(topLevel),

&clearance, 72, fontlist, LONG_WORDS

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bltos(3TSOL), label_encodings(4)

Trusted Solaris Developer’s Guide

Trusted Solaris Label Administration

attributes(5)

See XmStringDraw(3) and FontList(3) for information on the creation and structure
of a font list.

labelclipping(3TSOL)

FILES

EXAMPLES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction to Library Functions 493

labelinfo – get information about the label encodings

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

int labelinfo(struct label_info *info);

Information about the label encodings is returned in the label_info structure
pointed to by info.

struct label_info{
short ilabel_len; /*obsolete */
short slabel_len; /*max sensitivity label length */
short clabel_len; /*max CMW label length */
short clear_len; /*max clearance label length */
short vers_len; /*version string length */
short header_len; /*max len of banner page header */
short protect_as_len; /*max len of banner page protect as */
short caveats_len; /*max len of banner page caveats */
short channels_len; /*max len of banner page channels */
};

The fields in this structure have the following values:

ilabel_len Obsolete.

slabel_len The maximum length of a character–coded sensitivity
label returned when translated from a binary
sensitivity label.

clabel_len The maximum length of a character–coded CMW label
returned when translated from a binary CMW label.

clear_len The maximum length of a character–coded clearance
returned when translated from a binary clearance.

vers_len The length of the label_encodings file version
string returned by labelvers().

header_len The maximum length of a printer banner page header
string returned by bcltobanner().

protect_as_len The maximum length of a printer banner page
“protect_as” string returned by bcltobanner().

caveats_len The maximum length of a printer banner page caveats
string returned by bcltobanner().

channels_len The maximum length of a printer banner page channels
string returned by bcltobanner().

labelinfo() returns:

1 On success.

−1 If the label_encodings information is unavailable.

labelinfo(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

494 man pages section 3: Library Functions • Last Revised 24 May 2001

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), blcompare(3TSOL), bltocolor(3TSOL), blvalid(3TSOL),
hextob(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

If the label_encodings file is modified after an application gets information about
it, that information may be out of date.

The label_encodings file is rarely updated on a running system and there is no
way of informing an application that the label_encodings file has been modified.

labelinfo(3TSOL)

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

WARNINGS

BUGS

Introduction to Library Functions 495

labelvers – Get version of the label_encodings file

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

int labelvers(char **version, const int len);

version may point either to a pointer to pre-allocated memory or to the value (char
*)0. If version points to a pointer to pre-allocated memory, then len indicates the size
of that memory. If version points to the value (char *)0, memory is allocated using
malloc() to contain the label_encodings file version string. The version string
from the label_encodings file is copied into the allocated or pre-allocated memory.

labelvers() returns:

−1 If the label_encodings file is inaccessible.

0 If memory cannot be allocated for the return string or if the pre-allocated
return string memory is insufficient to hold the string. The value of the
pre-allocated string is set to the NULL string (* version[0] = ’\00’;).

>0 If successful, the length of the version string including the NULL terminator.

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), blcompare(3TSOL), blinset(3TSOL),
blmanifest(3TSOL), blminmax(3TSOL), blportion(3TSOL), bltocolor(3TSOL),
bltype(3TSOL), blvalid(3TSOL), btohex(3TSOL), labelinfo(3TSOL),
stobl(3TSOL), label_encodings(4)

Trusted Solaris Developer’s Guide

free(3C), malloc(3C), attributes(5)

If the label_encodings file is modified after the version string is obtained, that
string may be out of date.

If memory is allocated by this routine, the caller must free memory with free()
when the memory is no longer in use.

labelvers(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

WARNINGS

NOTES

496 man pages section 3: Library Functions • Last Revised 3 Aug 1995

The label_encodings file is rarely updated on a running system, and there is no
way of informing an application that the label_encodings file has been modified.

labelvers(3TSOL)

BUGS

Introduction to Library Functions 497

libt6 – TSIX trusted IPC library

cc [flag…] file… -lt6 [library…]

#include <tsix/t6attrs.h>

libt6() constitutes the TSIX Application Program Interface (API). It is a library of
routines that an application uses to control attribute transport during trusted
interprocess communication. The routines in the library are recommended over the
underlying system call interfaces for portability because they shield the application
from operating system, communication protocol, and IPC mechanism specifics.

The libt6() routines provide interfaces through which the trusted application:

� Specifies the security attributes used to label outgoing IPC messages (on-message
attributes) and reads the on-message attributes associated with a received message.

� Controls the security options of the endpoint used to perform trusted IPC.

The security attributes associated with the sending process are called on-message
attributes because they are independent of the contents of the message. The TCBs
decide what to do with the message based on the on-message attributes. The security
attributes associated with a process, and therefore those that are used to label IPC
messages, vary with the configuration of the system but must be a subset of the
following attributes:

Sensitivity Label
Nationality Caveats
Integrity Label
TSIX Session ID
Clearance
Access Control List
Effective Privileges
Audit ID
Process ID
Additional Audit Information (Deprecated. See notes.)
Additional Audit Information with Extended Address
Process Attributes
User ID
Group ID
Supplementary Group IDs

Note – Some of these attributes imply component security policies that may not be
available on some systems. See NOTES.

The TSIX application program interface allows trusted applications to change the
on-message attributes associated with an outgoing message and retrieve the
on-message attributes associated with an incoming message.

The on-message attribute routines affect the security attributes associated with
outgoing messages or retrieve attributes associated with incoming messages. The

libt6(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Security Attributes

On-Message
Attribute Routines

498 man pages section 3: Library Functions • Last Revised 17 August 2001

caller specifies attributes to these routines through a t6attr_t control structure
(defined in <tsix/t6attrs.h>), an opaque structure used to access sets of security
attributes. The caller specifies the attributes applied to outbound messages or
retrieved from incoming messages through TSIX routines. Specified attributes are
copied from or written to the buffers accessible through the control structure. Any
attributes not designated by the sender are supplied for outgoing messages by the
underlying trusted kernel. The routines that send and retrieve on-message attributes
operate on sockets or streams, generically referred to as endpoints.

t6alloc_blk(3NSL)
Allocates space for a t6attr_t control structure.

t6free_blk(3NSL)
Frees attribute control structure and buffers. This interface should be used in
conjunction with t6alloc_blk(3NSL), which allocates the space.

t6dup_blk(3NSL)
Given one attribute control structure, this routine allocates enough storage to hold a
duplicate control structure and all attributes it references, and creates a duplicate.

t6copy_blk(3NSL)
Copies a t6attr_t control structure and the security attributes to which it points
into a second, previously allocated t6attr_t structure and its previously allocated
buffers.

t6clear_blk(3NSL)
Clears attributes from a t6attr_t control structure.

t6cmp_blk(3NSL)
Compares two t6attr_t control structures for equal attributes set.

t6size_attr(3NSL)
Gets the size of an attribute from the control structure.

t6get_attr(3NSL)
Gets an attribute handled by the control structure.

t6set_attr(3NSL)
Sets an attribute handled by the control structure.

t6sendto(3NSL)
Sends data and a specified set of security attributes on a endpoint.

t6recvfrom(3NSL)
Reads a network message and retrieves the security attributes associated with the
data.

t6peek_attr(3NSL)
Peeks ahead and returns the attributes associated with the next byte of data.

t6last_attr(3NSL)
Returns the security attributes associated with the last byte of data read from the
network endpoint.

libt6(3NSL)

Introduction to Library Functions 499

t6get_endpt_mask(3NSL)
Gets the endpoint mask.

t6set_endpt_mask(3NSL)
Sets the endpoint mask.

t6get_endpt_default(3NSL)
Gets the endpoint default security attributes.

t6set_endpt_default(3NSL)
Sets the endpoint default security attributes.

t6attr_query(3NSL)
Gets a mask that indicates which attributes came from templates.

A trusted application can manipulate a number of security options associated with the
network endpoint via the following calls:

t6ext_attr(3NSL)
Turns on or off the security extensions to the network endpoint. This must be called
before using any other libt6() routines.

t6new_attr(3NSL)
Specifies to the network endpoint that the receiving process is only interested in
receiving attributes if they have changed since the last time it received them. This
saves the overhead created by passing attributes unnecessarily with each message.

Any programs that use routines in this library must include the header files containing
declarations pertinent to the routine. The synopsis section of each manual page
indicates the required header files. Most routines in the library contain references to
declarations defined in <tsix/t6attrs.h>. This file defines constants for attribute
types to be used by various TSIX attribute library access functions, as well as constants
used as parameters to the library functions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability Trusted Solaris systems and on all other
TSIX(RE) 1.1 –API compliant systems

MT-Level MT-Safe

The Trusted Solaris environment supports the following security attributes:

Sensitivity Label
Clearance
Effective Privileges
Process Attributes
Effective User ID

libt6(3NSL)

NETWORK
ENDPOINT
SECURITY
OPTIONS

INCLUDE FILES

ATTRIBUTES

TRUSTED
SOLARIS

SECURITY
ATTRIBUTES

500 man pages section 3: Library Functions • Last Revised 17 August 2001

Effective Group ID
Audit ID
Additional Audit Information (Deprecated. See notes.)
Additional Audit Information with Extended Address
Supplemental Group IDs

The Trusted Solaris environment also supports the following attributes as read only:

Session ID
Access Control List
Process ID

This man page is based on the version from the TSIX(RE) 1.1 Application
Programming Interface (API) document.

The use of the Additional Audit Information attribute is not reliable in
configurations that include the use of IPv6 addresses. For this reason, the use of the
Additional Audit Information attribute is deprecated. Applications needing
this information should use the Additional Audit Information with
Extended Address attribute.

libt6(3NSL)

NOTES

Introduction to Library Functions 501

listen – listen for connections on a socket

cc [flags…] file … -lsocket -lnsl [library…]

#include <sys/types.h>

#include <sys/socket.h>

int listen(int s, int backlog);

To accept connections, a socket is first created with socket(3SOCKET), a backlog for
incoming connections is specified with listen() and then the connections are
accepted with accept(3SOCKET). The listen() call applies only to sockets of type
SOCK_STREAM or SOCK_SEQPACKET.

The backlog parameter defines the maximum length the queue of pending connections
may grow to.

If a connection request arrives with the queue full, the client will receive an error with
an indication of ECONNREFUSED for AF_UNIX sockets. If the underlying protocol
supports retransmission, the connection request may be ignored so that retries may
succeed. For AF_INET sockets, the tcp will retry the connection. If the backlog is not
cleared by the time the tcp times out, the connect will fail with ETIMEDOUT.

A 0 return value indicates success; −1 indicates an error.listen() returns:

The call fails if:

EBADF The argument s is not a valid file descriptor.

ENOTSOCK The argument s is not a socket.

EOPNOTSUPP The socket is not of a type that supports the operation
listen().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

If the calling process possesses thePRIV_NET_MAC_READ privilege, the endpoint will
bind to an MLP; otherwise, it will bind to an SLP.

accept(3SOCKET), socket(3SOCKET)

socket(3HEAD), connect(3SOCKET), attributes(5)

There is currently no backlog limit.

listen(3SOCKET)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

502 man pages section 3: Library Functions • Last Revised 4 Apr 2000

getexecattr, free_execattr, setexecattr, endexecattr, getexecuser, getexecprof,
match_execattr – get execution profile entry

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]
#include <exec_attr.h>

#include <secdb.h>

execattr_t *getexecattr(void);

void free_execattr(execattr_t *ep);

void setexecattr(void);

void endexecattr(void);

execattr_t *getexecuser(const char *username, const char *type,
const char *id, int search_flag);

execattr_t *getexecprof(const char *profname, const char *type,
const char *id, int search_flag);

execattr_t *match_execattr(execattr_t *ep, char *profname, char
*type, char *id);

The getexecattr() function returns a single exec_attr entry. Entries can come
from any of the sources specified in the nsswitch.conf(4) file.

Successive calls to getexecattr() return either successive exec_attr entries or
NULL. Because getexecattr() always returns a single entry, the next pointer in the
execattr_t data structure points to NULL.

The internal representation of an exec_attr entry is an execattr_t structure
defined in <exec_attr.h> with the following members:

char name; /* name of the profile */
char type; /* type of profile */
char policy; /* policy under which the attributes are */

/* relevant*/
char res1; /* reserved for future use */
char res2; /* reserved for future use */
char id; /* unique identifier */
kva_t attr; /* attributes */

struct execattr_s next; /* optional pointer to next profile */

The free_execattr() function releases memory. It follows the next pointers in the
execattr_t structure so that the entire linked list is released.

The setexecattr() function “rewinds” to the beginning of the enumeration of
exec_attr entries. Calls to getexecuser() can leave the enumeration in an
indeterminate state. Therefore, setexecattr() should be called before the first call
to getexecattr().

match_execattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 503

The endexecattr() function can be called to indicate that exec_attr processing is
complete; the library can then close any open exec_attr file, deallocate any internal
storage, and so forth.

The getexecuser() function returns a linked list of entries filtered by the function’s
arguments. Only entries assigned to the specified username, as described in the
passwd(4) database, and containing the specified type and id, as described in the
exec_attr(4) database, are placed in the list. The getexecuser() function is
different from the other functions in its family because it spans two databases. It first
looks up the list of profiles assigned to a user in the user_attr database and the list
of default profiles in /etc/security/policy.conf, then looks up each profile in
the exec_attr database.

The getexecprof() function returns a linked list of entries that have components
matching the function’s arguments. Only entries in the database matching the
argument profname, as described in exec_attr, and containing the type and id, also
described in exec_attr, are placed in the list.

Using getexecuser() and getexecprof(), programmers can search for any type
argument, such as the manifest constant KV_COMMAND. The arguments are logically
AND-ed together so that only entries exactly matching all of the arguments are
returned. Wildcard matching applies if there is no exact match for an ID. Any
argument can be assigned the NULL value to indicate that it is not used as part of the
matching criteria. The search_flag controls whether the function returns the first match
(GET_ONE), setting the next pointer to NULL or all matching entries (GET_ALL), using
the next pointer to create a linked list of all entries that meet the search criteria. See
EXAMPLES.

Once a list of entries is returned by getexecuser() or getexecprof(), the
convenience function match_execattr() can be used to identify an individual
entry. It returns a pointer to the individual element with the same profile name (
profname), type name (type), and id. Function parameters set to NULL are not used as
part of the matching criteria. In the event that multiple entries meet the matching
criteria, only a pointer to the first entry is returned. The kva_match(3SECDB)
function can be used to look up a key in a key-value array.

Those functions returning data only return data related to the active policy. The
getexecattr() function returns a pointer to a execattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getexecattr(), getexecuser(), and getexecprof() functions all allocate
memory for the pointers they return. This memory should be deallocated with the
free_execattr() call. The match_execattr()(function does not allocate any
memory. Therefore, pointers returned by this function should not be deallocated.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and

match_execattr(3SECDB)

RETURN VALUES

USAGE

504 man pages section 3: Library Functions • Last Revised 13 Mar 2000

linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

Individual attributes may be referenced in the attr structure by calling the
kva_match(3SECDB) function.

EXAMPLE 1 The following finds all profiles that have the ping command.

if ((execprof=getexecprof(NULL, KV_COMMAND, "/usr/sbin/ping",
GET_ONE)) == NULL) {

/* do error */

}

EXAMPLE 2 The following finds the entry for the ping command in the Network
Administration Profile.

if ((execprof=getexecprof("Network Administration", KV_COMMAND,
"/usr/sbin/ping", GET_ALL))==NULL) {

/* do error */

}

EXAMPLE 3 The following tells everything that can be done in the Filesystem Security profile.

if ((execprof=getexecprof("Filesystem Security", KV_NULL, NULL,
GET_ALL))==NULL)) {

/* do error */

}

EXAMPLE 4 The following tells if the tar command is in a profile assigned to user wetmore.
If there is no exact profile entry, the wildcard (*), if defined, is returned.

if ((execprof=getexecuser("wetmore", KV_COMMAND, "/usr/bin/tar",
GET_ONE))==NULL) {

/* do error */

}

/etc/nsswitch.conf configuration file lookup information for
the name server switch

/etc/user_attr extended user attributes

/etc/security/exec_attr execution profiles

/etc/security/policy.conf policy definitions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

match_execattr(3SECDB)

EXAMPLES

FILES

ATTRIBUTES

Introduction to Library Functions 505

getauthattr(3SECDB), getuserattr(3SECDB), kva_match(3SECDB),
exec_attr(4), policy.conf(4), user_attr(4), attributes(5)

match_execattr(3SECDB)

SEE ALSO

506 man pages section 3: Library Functions • Last Revised 13 Mar 2000

mldgetcwd – Get pathname of current working directory

cc [flags…] file… -ltsol

#include <unistd.h>

#include <tsol/mld.h>

extern char *mldgetcwd(char *buf, size_t size);

mldgetcwd() returns a pointer to the current directory pathname including any
MLD adornments and SLD names. The value of size must be at least one greater than
the length of the pathname to be returned.

If buf is not NULL, the pathname will be stored in the space pointed to by buf.

If buf is a NULL pointer, mldgetcwd() will obtain size bytes of space using
malloc(3C). In this case, the pointer returned by mldgetcwd() may be used as the
argument in a subsequent call to free().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

mldgetcwd() returns NULL with errno set if size is not large enough, or if an error
occurs in a lower-level function.

mldgetcwd() will fail if one or more of the following are true:

EACCES A parent directory cannot be read to get its name.

EINVAL size is equal to 0.

ERANGE size is greater than 0 and less than the length of the pathname plus
1.

Here is a program that prints the current working directory.

#include <unistd.h>
#include <stdio.h>
main()
{

char *cwd;
if ((cwd = mldgetcwd(NULL, 64)) == NULL) {

perror("pwd");
exit(2);

}
(void)printf("%s\n", cwd);
return(0);

}

mldgetcwd(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

RETURN VALUES

ERRORS

EXAMPLES

Introduction to Library Functions 507

chdir(2)

malloc(3C), attributes(5)

Using chdir(2) in conjunction with mldgetcwd() can give unpredictable results.

mldgetcwd(3TSOL)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

508 man pages section 3: Library Functions • Last Revised 4 Apr 1995

mldstat, mldlstat – get file status in multilevel directory

#include <sys/types.h>

#include <sys/stat.h>

int mldstat(const char *path, struct stat *buf);

int mldlstat(const char *path, struct stat *buf);

mldstat() obtains file attributes similar to those that the stat(2) system call obtains
except when path refers to a multilevel directory (MLD); in that case, mldstat()
returns information about the MLD; stat() returns information about the
single-level directory (SLD) corresponding to the label of the calling process.

mldlstat() obtains file attributes similar to those that lstat() obtains except when
the named file is an MLD; in that case, mldlstat() returns information about the
MLD; lstat() returns information about the single-level directory (SLD)
corresponding to the label of the calling process.

mldstat() and mldlstat() require mandatory read access to the final component
of path. To override this restriction, the calling process may assert the
PRIV_FILE_MAC_READ privilege in its set of effective privileges.

If the calling process does not have mandatory read access, mldstat() and
mldlstat() return fixed values for some elements of the stat structure.

See the stat(2) man page for a description of the stat structure pointed to by buf.

mldstat() and mldlstat() return:

0 On success.

−1 On failure, and set errno to indicate the error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

Certain uses of this interface may present a covert channel. If a covert channel is
exploited, the execution of the process may be delayed. To bypass this delay, the
process may assert the PRIV_PROC_NODELAY privilege.

link(2), stat(2)

attributes(5), stat(5)

mldlstat(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

NOTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

Introduction to Library Functions 509

mldrealpath, mldrealpathl – Return the canonicalized absolute pathname, including
any MLD adornments and SLD names

cc [flags…] file… -ltsol

#include <sys/param.h>

#include <tsol/mld.h>

char *mldrealpath(const char *path, char *resolved_path);

#include <tsol/label.h>

char *mldrealpathl(const char *path, char *resolved_path, const
bslabel_t *sl);

mldrealpath() expands all symbolic links and resolves references to ’/./’, ’/../’,
extra ’/’ characters, and MLD translations in the NULL terminated string named by
path and stores the canonicalized absolute pathname in the buffer named by
resolved_path. The resulting path will have no symbolic links components, nor any
’/./’, ’/. ./’, nor any unadorned MLDs, nor any hidden SLD names for single level
directories at the present sensitivity label.

mldrealpathl() operates the same as mldrealpath() except the SLD name is
relative to the sensitivity label sl. To specify a sensitivity label for an SLD name which
does not exist, the process must assert either the PRIV_FILE_UPGRADE_SL or
PRIV_FILE_DOWNGRADE_SL privilege depending on whether the specified sensitivity
label dominates or does not dominate the process sensitivity label.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

mldrealpath() returns a pointer to the resolved_path on success. On failure, it
returns NULL, sets errno to indicate the error, and places in resolved_path the absolute
pathname of the path component which could not be resolved.

EACCES Search permission is denied for a component of the
path prefix of path.

EFAULT resolved_path extends outside the process’s allocated
address space.

ELOOP Too many symbolic links were encountered in
translating path.

EINVAL path or resolved_path was NULL.

mldrealpath(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

RETURN VALUES

ERRORS

510 man pages section 3: Library Functions • Last Revised 9 Sep 1996

EIO An I/O error occurred while reading from or writing to
the file system.

ENOENT The named file does not exist.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX. A
pathname component is longer than NAME_MAX (see
sysconf(3C)) while _POSIX_NO_TRUNC is in effect
(see pathconf(2)).

readlink(2), getsldname(2), mldgetcwd(3TSOL)

attributes(5)

It indirectly invokes the readlink(2) system call and mldgetcwd(3TSOL) library call
(for relative path names), and hence inherits the possibility of hanging due to
inaccessible file system resources.

mldrealpath(3TSOL)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

WARNINGS

Introduction to Library Functions 511

mldrealpath, mldrealpathl – Return the canonicalized absolute pathname, including
any MLD adornments and SLD names

cc [flags…] file… -ltsol

#include <sys/param.h>

#include <tsol/mld.h>

char *mldrealpath(const char *path, char *resolved_path);

#include <tsol/label.h>

char *mldrealpathl(const char *path, char *resolved_path, const
bslabel_t *sl);

mldrealpath() expands all symbolic links and resolves references to ’/./’, ’/../’,
extra ’/’ characters, and MLD translations in the NULL terminated string named by
path and stores the canonicalized absolute pathname in the buffer named by
resolved_path. The resulting path will have no symbolic links components, nor any
’/./’, ’/. ./’, nor any unadorned MLDs, nor any hidden SLD names for single level
directories at the present sensitivity label.

mldrealpathl() operates the same as mldrealpath() except the SLD name is
relative to the sensitivity label sl. To specify a sensitivity label for an SLD name which
does not exist, the process must assert either the PRIV_FILE_UPGRADE_SL or
PRIV_FILE_DOWNGRADE_SL privilege depending on whether the specified sensitivity
label dominates or does not dominate the process sensitivity label.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

mldrealpath() returns a pointer to the resolved_path on success. On failure, it
returns NULL, sets errno to indicate the error, and places in resolved_path the absolute
pathname of the path component which could not be resolved.

EACCES Search permission is denied for a component of the
path prefix of path.

EFAULT resolved_path extends outside the process’s allocated
address space.

ELOOP Too many symbolic links were encountered in
translating path.

EINVAL path or resolved_path was NULL.

mldrealpathl(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

RETURN VALUES

ERRORS

512 man pages section 3: Library Functions • Last Revised 9 Sep 1996

EIO An I/O error occurred while reading from or writing to
the file system.

ENOENT The named file does not exist.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX. A
pathname component is longer than NAME_MAX (see
sysconf(3C)) while _POSIX_NO_TRUNC is in effect
(see pathconf(2)).

readlink(2), getsldname(2), mldgetcwd(3TSOL)

attributes(5)

It indirectly invokes the readlink(2) system call and mldgetcwd(3TSOL) library call
(for relative path names), and hence inherits the possibility of hanging due to
inaccessible file system resources.

mldrealpathl(3TSOL)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

WARNINGS

Introduction to Library Functions 513

mldstat, mldlstat – get file status in multilevel directory

#include <sys/types.h>

#include <sys/stat.h>

int mldstat(const char *path, struct stat *buf);

int mldlstat(const char *path, struct stat *buf);

mldstat() obtains file attributes similar to those that the stat(2) system call obtains
except when path refers to a multilevel directory (MLD); in that case, mldstat()
returns information about the MLD; stat() returns information about the
single-level directory (SLD) corresponding to the label of the calling process.

mldlstat() obtains file attributes similar to those that lstat() obtains except when
the named file is an MLD; in that case, mldlstat() returns information about the
MLD; lstat() returns information about the single-level directory (SLD)
corresponding to the label of the calling process.

mldstat() and mldlstat() require mandatory read access to the final component
of path. To override this restriction, the calling process may assert the
PRIV_FILE_MAC_READ privilege in its set of effective privileges.

If the calling process does not have mandatory read access, mldstat() and
mldlstat() return fixed values for some elements of the stat structure.

See the stat(2) man page for a description of the stat structure pointed to by buf.

mldstat() and mldlstat() return:

0 On success.

−1 On failure, and set errno to indicate the error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

Certain uses of this interface may present a covert channel. If a covert channel is
exploited, the execution of the process may be delayed. To bypass this delay, the
process may assert the PRIV_PROC_NODELAY privilege.

link(2), stat(2)

attributes(5), stat(5)

mldstat(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

NOTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

514 man pages section 3: Library Functions • Last Revised 30 Sep 1999

mlock, munlock – Lock or unlock pages in memory

#include <sys/mman.h>

int mlock(caddr_t addr, size_t len);

int munlock(caddr_t addr, size_t len);

#include <sys/mman.h>

int mlock(const void * addr, size_t len);

int munlock(const void * addr, size_t len);

The mlock() function uses the mappings established for the address range (addr, addr
+ len) to identify pages to be locked in memory. If the page identified by a mapping
changes, such as occurs when a copy of a writable MAP_PRIVATE page is made upon
the first store, the lock will be transferred to the newly copied private page.

The munlock() function removes locks established with mlock().

A given page may be locked multiple times by executing an mlock() through
different mappings. That is, if two different processes lock the same page, then the
page will remain locked until both processes remove their locks. However, within a
given mapping, page locks do not nest − multiple mlock() operations on the same
address in the same process will all be removed with a single munlock(). Of course,
a page locked in one process and mapped in another (or visible through a different
mapping in the locking process) is still locked in memory. This fact can be used to
create applications that do nothing other than lock important data in memory, thereby
avoiding page I/O faults on references from other processes in the system.

If the mapping through which an mlock() has been performed is removed, an
munlock() is implicitly performed. An munlock() is also performed implicitly
when a page is deleted through file removal or truncation.

Locks established with mlock() are not inherited by a child process after a fork()
and are not nested.

Attempts to mlock() more memory than a system-specific limit will fail.

mlock() and munlock() return:

0 On success.

−1 On failure, and set errno to indicate the error. No changes are made to any
locks in the address space of the process

The mlock() and munlock() functions will fail if:

EINVAL The addr argument is not a multiple of the page size as returned by
sysconf(3C).

mlock(3C)

NAME

Default

Standard-conforming

DESCRIPTION

RETURN VALUES

ERRORS

Introduction to Library Functions 515

ENOMEM Addresses in the range [addr, addr + len) are invalid for the address
space of a process, or specify one or more pages which are not
mapped.

ENOSYS The system does not support this memory locking interface.

EPERM The process does not have sufficient privilege.

The mlock() function will fail if:

EAGAIN Some or all of the memory identified by the range [addr, addr + len)
could not be locked because of insufficient system resources.

Because of the impact on system resources, the use of mlock() and munlock() is
restricted to users in administrative roles with the PRIV_SYS_CONFIG privilege.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, mlock() must have PRIV_SYS_CONFIG in its set of effective privileges

fork(2), plock(3C), mlockall(3C)

memcntl(2), mmap(2), sysconf(3C),attributes(5), standards(5)

mlock(3C)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
ManualSunOS 5.8

Reference Manual

516 man pages section 3: Library Functions • Last Revised 29 Dec 1996

mlockall, munlockall – Lock or unlock address space

#include <sys/mman.h>

int mlockall(int flags);

int munlockall(void);

The mlockall() function locks in memory all pages mapped by an address space.

The value of flags determines whether the pages to be locked are those currently
mapped by the address space, those that will be mapped in the future, or both:

MCL_CURRENT Lock current mappings

MCL_FUTURE Lock future mappings

If MCL_FUTURE is specified for mlockall(), mappings are locked as they are added
to the address space (or replace existing mappings), provided sufficient memory is
available. Locking in this manner is not persistent across the exec family of functions
(see exec(2)).

Mappings locked using mlockall() with any option may be explicitly unlocked
with a munlock() call (see mlock(3C)).

The munlockall() function removes address space locks and locks on mappings in
the address space.

All conditions and constraints on the use of locked memory that apply to mlock(3C)
also apply to mlockall().

Locks established with mlockall() are not inherited by a child process after a
fork(2) call, and are not nested.

mlockall() and munlockall() return:

0 On success.

−1 On failure, and set errno to indicate the error.

The mlockall() and munlockall() functions will fail if:

EAGAIN Some or all of the memory in the address space could not be
locked due to sufficient resources. This error condition applies to
mlockall() only.

EINVAL The flags argument contains values other than MCL_CURRENT and
MCL_FUTURE.

EPERM The process does not have sufficient privilege.

The mlockall() and munlockall() functions require PRIV_SYS_CONFIG in their
set of effective privileges.

mlockall(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

Introduction to Library Functions 517

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, the mlockall() and munlockall() functions require
PRIV_SYS_CONFIG in their set of effective privileges.

exec(2), fork(2), plock(3C), mlock(3C)

memcntl(2), mmap(2), sysconf(3C), attributes(5)

mlockall(3C)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

518 man pages section 3: Library Functions • Last Revised 18 Apr 1997

mlock, munlock – Lock or unlock pages in memory

#include <sys/mman.h>

int mlock(caddr_t addr, size_t len);

int munlock(caddr_t addr, size_t len);

#include <sys/mman.h>

int mlock(const void * addr, size_t len);

int munlock(const void * addr, size_t len);

The mlock() function uses the mappings established for the address range (addr, addr
+ len) to identify pages to be locked in memory. If the page identified by a mapping
changes, such as occurs when a copy of a writable MAP_PRIVATE page is made upon
the first store, the lock will be transferred to the newly copied private page.

The munlock() function removes locks established with mlock().

A given page may be locked multiple times by executing an mlock() through
different mappings. That is, if two different processes lock the same page, then the
page will remain locked until both processes remove their locks. However, within a
given mapping, page locks do not nest − multiple mlock() operations on the same
address in the same process will all be removed with a single munlock(). Of course,
a page locked in one process and mapped in another (or visible through a different
mapping in the locking process) is still locked in memory. This fact can be used to
create applications that do nothing other than lock important data in memory, thereby
avoiding page I/O faults on references from other processes in the system.

If the mapping through which an mlock() has been performed is removed, an
munlock() is implicitly performed. An munlock() is also performed implicitly
when a page is deleted through file removal or truncation.

Locks established with mlock() are not inherited by a child process after a fork()
and are not nested.

Attempts to mlock() more memory than a system-specific limit will fail.

mlock() and munlock() return:

0 On success.

−1 On failure, and set errno to indicate the error. No changes are made to any
locks in the address space of the process

The mlock() and munlock() functions will fail if:

EINVAL The addr argument is not a multiple of the page size as returned by
sysconf(3C).

munlock(3C)

NAME

Default

Standard-conforming

DESCRIPTION

RETURN VALUES

ERRORS

Introduction to Library Functions 519

ENOMEM Addresses in the range [addr, addr + len) are invalid for the address
space of a process, or specify one or more pages which are not
mapped.

ENOSYS The system does not support this memory locking interface.

EPERM The process does not have sufficient privilege.

The mlock() function will fail if:

EAGAIN Some or all of the memory identified by the range [addr, addr + len)
could not be locked because of insufficient system resources.

Because of the impact on system resources, the use of mlock() and munlock() is
restricted to users in administrative roles with the PRIV_SYS_CONFIG privilege.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, mlock() must have PRIV_SYS_CONFIG in its set of effective privileges

fork(2), plock(3C), mlockall(3C)

memcntl(2), mmap(2), sysconf(3C),attributes(5), standards(5)

munlock(3C)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
ManualSunOS 5.8

Reference Manual

520 man pages section 3: Library Functions • Last Revised 29 Dec 1996

mlockall, munlockall – Lock or unlock address space

#include <sys/mman.h>

int mlockall(int flags);

int munlockall(void);

The mlockall() function locks in memory all pages mapped by an address space.

The value of flags determines whether the pages to be locked are those currently
mapped by the address space, those that will be mapped in the future, or both:

MCL_CURRENT Lock current mappings

MCL_FUTURE Lock future mappings

If MCL_FUTURE is specified for mlockall(), mappings are locked as they are added
to the address space (or replace existing mappings), provided sufficient memory is
available. Locking in this manner is not persistent across the exec family of functions
(see exec(2)).

Mappings locked using mlockall() with any option may be explicitly unlocked
with a munlock() call (see mlock(3C)).

The munlockall() function removes address space locks and locks on mappings in
the address space.

All conditions and constraints on the use of locked memory that apply to mlock(3C)
also apply to mlockall().

Locks established with mlockall() are not inherited by a child process after a
fork(2) call, and are not nested.

mlockall() and munlockall() return:

0 On success.

−1 On failure, and set errno to indicate the error.

The mlockall() and munlockall() functions will fail if:

EAGAIN Some or all of the memory in the address space could not be
locked due to sufficient resources. This error condition applies to
mlockall() only.

EINVAL The flags argument contains values other than MCL_CURRENT and
MCL_FUTURE.

EPERM The process does not have sufficient privilege.

The mlockall() and munlockall() functions require PRIV_SYS_CONFIG in their
set of effective privileges.

munlockall(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

Introduction to Library Functions 521

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, the mlockall() and munlockall() functions require
PRIV_SYS_CONFIG in their set of effective privileges.

exec(2), fork(2), plock(3C), mlock(3C)

memcntl(2), mmap(2), sysconf(3C), attributes(5)

munlockall(3C)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

522 man pages section 3: Library Functions • Last Revised 18 Apr 1997

ftw, nftw – Walk a file tree

#include <ftw.h>

int ftw(const char *path, int (*fn) (const char *, const struct stat
*, int), int depth);

int nftw(const char *path, int (*fn) (const char *, const struct
stat *, int, struct FTW*), int depth, int flags);

The ftw() function recursively descends the directory hierarchy rooted in path. For
each object in the hierarchy, ftw() calls the user-defined function fn, passing it a
pointer to a null-terminated character string containing the name of the object, a
pointer to a stat structure (see stat(2)) containing information about the object, and
an integer. Possible values of the integer, defined in the <ftw.h> header, are:

FTW_F The object is a file.

FTW_D The object is a directory.

FTW_DNR The object is a directory that cannot be read. Descendants of the
directory will not be processed.

FTW_NS The stat() function failed on the object because of lack of
appropriate permission or the object is a symbolic link that points
to a non-existent file. The stat buffer passed to fn is undefined.

The ftw() function visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn returns a
non-zero value, or some error is detected within ftw() (such as an I/O error). If the
tree is exhausted, ftw() returns 0. If fn returns a non-zero value, ftw() stops its tree
traversal and returns whatever value was returned by fn.

The nftw() function recursively descends the directory hierarchy rooted in path. The
flags argument is used to control the tree walk and holds one of these values:

FTW_PHYS Physical walk, does not follow symbolic links. Otherwise, nftw()
will follow links but will not walk down any path that crosses
itself.

FTW_MOUNT The walk will not cross a mount point.

FTW_DEPTH All subdirectories will be visited before the directory itself.

FTW_CHDIR The walk will change to each directory before reading it.

FTW_TSOL_MLD In all multilevel directories (MLDs) encountered as nftw() walks
the tree, the walk will visit single-level directories (SLDs) that are
dominated by the sensitivity label of the process if the process is
run without privilege. If the effective privilege set of the process
includes the PRIV_FILE_MAC_READ and
PRIV_FILE_MAC_SEARCH privileges, the walk visits all SLDs in

nftw(3C)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 523

each MLD. The file system enforces all underlying DAC policies
and privilege interpretations.

If the FTW_TSOL_MLD flag is not specified and path points to an
adorned MLD, the walk traverses only the SLDs of this MLD. All
other MLDs encountered while walking down the tree are
automatically translated to the SLD at the sensitivity label of the
process even if the process is run with all privileges.

If the FTW_TSOL_MLD flag is not specified and path points to an
unadorned MLD, when the walk down the tree encounters this
and all other MLDs, then the function automatically translates to
the SLD at the sensitivity label of the process.

If the FTW_TSOL_MLD flag is not specified and path does not point
to an MLD, when the walk down the tree encounters any MLDs,
then the function automatically translates to the SLD at the
sensitivity label of the process even if the process is run with all
privileges.

The nftw() function calls fn with four arguments at each file and directory. The first
argument is the pathname of the object, the second is a pointer to the stat structure
(see stat(2)) containing information about the object, the third is an integer giving
additional information, and the fourth is a struct FTW that contains the following
members:

int base;
int level;

The base member is the offset into the pathname of the base name of the object. The
level member indicates the depth relative to the rest of the walk, where the root level
is zero.

The values of the third argument are as follows:

FTW_F The object is a file.

FTW_D The object is a directory.

FTW_DP The object is a directory and subdirectories have been visited.

FTW_SL The object is a symbolic link.

FTW_SLN The object is a symbolic link that points to a non-existent file.

FTW_DNR The object is a directory that cannot be read.]The user-defined
function fn will not be called for any of its descendants.

FTW_NS The stat() function failed on the object because of lack of
appropriate permission. The stat buffer passed to fn is undefined.
The stat() function failed for a reason other than lack of
appropriate permission. EACCES is considered an error and

nftw(3C)

524 man pages section 3: Library Functions • Last Revised 5 Oct 1999

nftw() will return −1.

The tree traversal continues until the tree is exhausted, an invocation of fn returns a
nonzero value, or some error (such as an I/O error) is detected within nftw(). If the
tree is exhausted, nftw() returns zero. If fn returns a nonzero value, nftw() stops its
tree traversal and returns whatever value fn returned.

Both ftw() and nftw() use one file descriptor for each level in the tree. The depth
argument limits the number of file descriptors so used. If depth is zero or negative, the
effect is the same as if it were 1. It must not be greater than the number of file
descriptors currently available for use. The ftw() function will run faster if depth is at
least as large as the number of levels in the tree. When ftw() and nftw() return,
they close any file descriptors they have opened; they do not close any file descriptors
that may have been opened by fn.

If the tree is exhausted, ftw() and nftw() return 0. If the function pointed to by fn
returns a non-zero value, ftw() and nftw() stop their tree traversal and return
whatever value was returned by the function pointed to by fn. If ftw() and nftw()
detect an error, they return −1 and set errno to indicate the error.

If ftw() and nftw() encounter an error other than EACCES (see FTW_DNR and
FTW_NS above), they return −1 and set errno to indicate the error. The external
variable errno may contain any error value that is possible when a directory is
opened or when one of the stat functions is executed on a directory or file.

The ftw() and nftw() functions will fail if:

ENAMETOOLONG The length of the path exceeds PATH_MAX, or a
pathname component is longer than NAME_MAX.

ENOENT A component of path does not name an existing file or
path is an empty string.

ENOTDIR A component of path is not a directory.

The ftw() function will fail if:

EACCES Search permission is denied for any component of path
or read permission is denied for path.

ELOOP Too many symbolic links were encountered.

The nftw() function will fail if:

EACCES Search permission is denied for any component of path
or read permission is denied for path, or fn() returns −1
and does not reset errno.

The ftw() and nftw() functions may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an
intermediate result whose length exceeds PATH_MAX.

nftw(3C)

RETURN VALUES

ERRORS

Introduction to Library Functions 525

The ftw() function may fail if:

EINVAL The value of the ndirs argument is invalid.

The nftw() function may fail if:

ELOOP Too many symbolic links were encountered in
resolving path.

EMFILE There are OPEN_MAX file descriptors currently open in
the calling process.

ENFILE Too many files are currently open in the system.

In addition, if the function pointed to by fn encounters system errors, errno may be
set accordingly.

Because ftw() is recursive, it is possible for it to terminate with a memory fault when
applied to very deep file structures.

The ftw() function uses malloc(3C) to allocate dynamic storage during its
operation. If ftw() is forcibly terminated, such as by longjmp(3C) being executed by
fn or an interrupt routine, ftw() will not have a chance to free that storage, so it will
remain permanently allocated. A safe way to handle interrupts is to store the fact that
an interrupt has occurred, and arrange to have fn return a non-zero value at its next
invocation.

The ftw() and nftw() functions have transitional interfaces for 64-bit file offsets. See
lf64(5).

The ftw() function is safe in multithreaded applications. The nftw() function is safe
in multithreaded applications when the FTW_CHDIR flag is not set.

There are two versions of nftw(). The Solaris version, which does not traverse
multilevel directories (MLDs), is located in libc; the Trusted Solaris version, which
traverses MLDs, is located in libtsol. To use the Trusted Solaris version of nftw(),
make sure that the application uses the version of nftw located in libtsol.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe with exceptions.

The libc versions of ftw() and nftw() are unchanged. The Trusted Solaris version
of nftw(), which has the additional flag FTW_TSOL_MLD, is available in libtsol.
You must be careful of the library sequence when linking.

stat(2)

nftw(3C)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual

526 man pages section 3: Library Functions • Last Revised 5 Oct 1999

longjmp(3C), malloc(3C), attributes(5), lf64(5)

nftw(3C)

SunOS 5.8
Reference Manual

Introduction to Library Functions 527

nis_names, nis_lookup, nis_add, nis_remove, nis_modify, nis_freeresult – NIS+
namespace functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

nis_result *nis_lookup(nis_name name, uint_t flags);

nis_result *nis_add(nis_name name, nis_object *obj);

nis_result *nis_remove(nis_name name, nis_object *obj);

nis_result *nis_modify(nis_name name, nis_object *obj);

void nis_freeresult(nis_result *result);

These functions are used to locate and manipulate all NIS+ objects (see
nis_objects(3NSL)) except the NIS+ entry objects. To look up the NIS+ entry
objects within a NIS+ table, refer to nis_subr(3NSL).

nis_lookup() resolves a NIS+ name and returns a copy of that object from a NIS+
server. nis_add() and nis_remove() add and remove objects to the NIS+
namespace, respectively. nis_modify() can change specific attributes of an object
that already exists in the namespace.

These functions should be used only with names that refer to an NIS+ Directory, NIS+
Table, NIS+ Group, or NIS+ Private object. If a name refers to an NIS+ entry object, the
functions listed in nis_subr(3NSL) should be used.

nis_freeresult() frees all memory associated with a nis_result structure. This
function must be called to free the memory associated with a NIS+ result.
nis_lookup(), nis_add(), nis_remove(), and nis_modify() all return a
pointer to a nis_result structure which must be freed by calling
nis_freeresult() when you have finished using it. If one or more of the objects
returned in the structure need to be retained, they can be copied with
nis_clone_object(3NSL) (see nis_subr(3NSL)). To succeed, nis_add(),
nis_modify(), and nis_remove() must inherit the PAF_TRUSTED_PATH attribute.

nis_lookup() takes two parameters, the name of the object to be resolved in name,
and a flags parameter, flags, which is defined below. The object name is expected to
correspond to the syntax of a non-indexed NIS+ name (see nis_tables(3NSL)). The
nis_lookup() function is the only function from this group that can use a non-fully
qualified name. If the parameter name is not a fully qualified name, then the flag
EXPAND_NAME must be specified in the call. If this flag is not specified, the function
will fail with the error NIS_BADNAME.

The flags parameter is constructed by logically ORing zero or more flags from the
following list.

FOLLOW_LINKS When specified, the client library will ‘‘follow’’ links by issuing
another NIS+ lookup call for the object named by the link. If the

nis_add(3NSL)

NAME

SYNOPSIS

DESCRIPTION

528 man pages section 3: Library Functions • Last Revised 17 Feb 1998

linked object is itself a link, then this process will iterate until the
either a object is found that is not a LINK type object, or the library
has followed 16 links.

HARD_LOOKUP When specified, the client library will retry the lookup until it is
answered by a server. Using this flag will cause the library to block
until at least one NIS+ server is available. If the network
connectivity is impaired, this can be a relatively long time.

NO_CACHE When specified, the client library will bypass any object caches
and will get the object from either the master NIS+ server or one of
its replicas.

MASTER_ONLY When specified, the client library will bypass any object caches
and any domain replicas and fetch the object from the NIS+ master
server for the object’s domain. This insures that the object returned
is up to date at the cost of a possible performance degradation and
failure if the master server is unavailable or physically distant.

EXPAND_NAME When specified, the client library will attempt to expand a
partially qualified name by calling the function nis_getnames()
(see nis_subr(3NSL)) which uses the environment variable
NIS_PATH.

The status value may be translated to ascii text using the function nis_sperrno()
(see nis_error(3NSL)).

On return, the objects array in the result will contain one and possibly several objects
that were resolved by the request. If the FOLLOW_LINKS flag was present, on success
the function could return several entry objects if the link in question pointed within a
table. If an error occurred when following a link, the objects array will contain a copy
of the link object itself.

The function nis_add() will take the object obj and add it to the NIS+ namespace
with the name name. This operation will fail if the client making the request does not
have the create access right for the domain in which this object will be added. The
parameter name must contain a fully qualified NIS+ name. The object members
zo_name and zo_domain will be constructed from this name. This operation will fail if
the object already exists. This feature prevents the accidental addition of objects over
another object that has been added by another process.

The function nis_remove() will remove the object with name name from the NIS+
namespace. The client making this request must have the destroy access right for the
domain in which this object resides. If the named object is a link, the link is removed
and not the object that it points to. If the parameter obj is not NULL, it is assumed to
point to a copy of the object being removed. In this case, if the object on the server
does not have the same object identifier as the object being passed, the operation will
fail with the NIS_NOTSAMEOBJ error. This feature allows the client to insure that it is
removing the desired object. The parameter name must contain a fully qualified NIS+
name.

nis_add(3NSL)

Introduction to Library Functions 529

The function nis_modify() will modify the object named by name to the field values
in the object pointed to by obj. This object should contain a copy of the object from the
name space that is being modified. This operation will fail with the error
NIS_NOTSAMEOBJ if the object identifier of the passed object does not match that of
the object being modified in the namespace.

Normally the contents of the member zo_name in the nis_object structure would be
constructed from the name passed in the name parameter. However, if it is non-null the
client library will use the name in the zo_name member to perform a rename operation
on the object. This name must not contain any unquoted ‘.’(dot) characters. If these
conditions are not met the operation will fail and return the NIS_BADNAME error code.

These functions return a pointer to a structure of type nis_result:

struct nis_result {
nis_error status;
struct {

uint_t objects_len;
nis_object *objects_val;

} objects;
netobj cookie;
uint32_t zticks;
uint32_t dticks;
uint32_t aticks;
uint32_t cticks;

};

The status member contains the error status of the the operation. A text message that
describes the error can be obtained by calling the function nis_sperrno() (see
nis_error(3NSL)).

The objects structure contains two members. objects_val is an array of nis_object
structures; objects_len is the number of cells in the array. These objects will be freed by
the call to nis_freeresult(). If you need to keep a copy of one or more objects,
they can be copied with the function nis_clone_object() and freed with the
function nis_destroy_object() (see nis_server(3NSL)). Refer to
nis_objects(3NSL) for a description of the nis_object structure.

The various ticks contain details of where the time was taken during a request. They
can be used to tune one’s data organization for faster access and to compare different
database implementations.

zticks The time spent in the NIS+ service itself. This count starts when the server
receives the request and stops when it sends the reply.

dticks The time spent in the database backend. This time is measured from the
time a database call starts, until the result is returned. If the request results
in multiple calls to the database, this is the sum of all the time spent in
those calls.

aticks The time spent in any ‘‘accelerators’’ or caches. This includes the time
required to locate the server needed to resolve the request.

nis_add(3NSL)

Results

530 man pages section 3: Library Functions • Last Revised 17 Feb 1998

cticks The total time spent in the request. This clock starts when you enter the
client library and stops when a result is returned. By subtracting the sum of
the other ticks values from this value, you can obtain the local overhead of
generating a NIS+ request.

Subtracting the value in dticks from the value in zticks will yield the time spent in the
service code itself. Subtracting the sum of the values in zticks and aticks from the value
in cticks will yield the time spent in the client library itself. Note: all of the tick times
are measured in microseconds.

The client library can return a variety of error returns and diagnostics. The more
salient ones are documented below.

NIS_SUCCESS
The request was successful.

NIS_S_SUCCESS
The request was successful, however the object returned came from an object cache
and not directly from the server. If you do not wish to see objects from object caches
you must specify the flag NO_CACHE when you call the lookup function.

NIS_NOTFOUND
The named object does not exist in the namespace.

NIS_CACHEEXPIRED
The object returned came from an object cache that has expired. The time to live
value has gone to zero and the object may have changed. If the flag NO_CACHE was
passed to the lookup function then the lookup function will retry the operation to
get an unexpired copy of the object.

NIS_NAMEUNREACHABLE
A server for the directory of the named object could not be reached. This can occur
when there is a network partition or all servers have crashed. See the
HARD_LOOKUP flag.

NIS_UNKNOWNOBJ
The object returned is of an unknown type.

NIS_TRYAGAIN
The server connected to was too busy to handle your request. For the add, remove,
and modify operations this is returned when either the master server for a directory
is unavailable or it is in the process of checkpointing its database. It can also be
returned when the server is updating it’s internal state. And in the case of
nis_list() if the client specifies a callback and the server does not have enough
resources to handle the callback.

NIS_SYSTEMERROR
A generic system error occurred while attempting the request. Most commonly the
server has crashed or the database has become corrupted. Check the syslog record
for error messages from the server.

nis_add(3NSL)

RETURN VALUES

Introduction to Library Functions 531

NIS_NOT_ME
A request was made to a server that does not serve the name in question. Normally
this will not occur, however if you are not using the built in location mechanism for
servers you may see this if your mechanism is broken.

NIS_NOMEMORY
Generally a fatal result. It means that the service ran out of heap space.

NIS_NAMEEXISTS
An attempt was made to add a name that already exists. To add the name, first
remove the existing name and then add the new object or modify the existing
named object.

NIS_NOTMASTER
An attempt was made to update the database on a replica server.

NIS_INVALIDOBJ
The object pointed to by obj is not a valid NIS+ object.

NIS_BADNAME
The name passed to the function is not a legal NIS+ name.

NIS_LINKNAMEERROR
The name passed resolved to a LINK type object and the contents of the link
pointed to an invalid name.

NIS_NOTSAMEOBJ
An attempt to remove an object from the namespace was aborted because the object
that would have been removed was not the same object that was passed in the
request.

NIS_NOSUCHNAME
This hard error indicates that the named directory of the table object does not exist.
This occurs when the server that should be the parent of the server that serves the
table, does not know about the directory in which the table resides.

NIS_NOSUCHTABLE
The named table does not exist.

NIS_MODFAIL
The attempted modification failed.

NIS_FOREIGNNS
The name could not be completely resolved. When the name passed to the function
would resolve in a namespace that is outside the NIS+ name tree, this error is
returned with a NIS+ object of type DIRECTORY, which contains the type of
namespace and contact information for a server within that namespace.

NIS_RPCERROR
This fatal error indicates the RPC subsystem failed in some way. Generally there
will be a syslog(3C) message indicating why the RPC request failed.

nis_add(3NSL)

532 man pages section 3: Library Functions • Last Revised 17 Feb 1998

NIS_PATH If the flag EXPAND_NAME is set, this variable is the search path
used by nis_lookup().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_add(), nis_modify(), and nis_remove() must inherit the
PAF_TRUSTED_PATH attribute.

nis_server(3NSL), nis_tables(3NSL)

nis_error(3NSL), nis_objects(3NSL), nis_subr(3NSL), attributes(5)

You cannot modify the name of an object if that modification would cause the object to
reside in a different domain.

You cannot modify the schema of a table object.

nis_add(3NSL)

ENVIRONMENT
VARIABLES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 533

nis_tables, nis_list, nis_add_entry, nis_remove_entry, nis_modify_entry, nis_first_entry,
nis_next_entry – NIS+ table functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

nis_result *nis_list(nis_name name, uint_tflags, int
(*callback)(nis_name table_name, nis_object *object, void
*userdata), void *userdata);

nis_result *nis_add_entry(nis_name table_name, nis_object *object,
uint_t flags);

nis_result *nis_remove_entry(nis_name name, nis_object *object,
uint_tflags);

nis_result *nis_modify_entry(nis_name name, nis_object *object,
uint_tflags);

nis_result *nis_first_entry(nis_name table_name);

nis_result *nis_next_entry(nis_name table_name, netobj *cookie);

void nis_freeresult(nis_result *result);

These functions are used to search and modify NIS+ tables. nis_list() is used to
search a table in the NIS+ namespace. nis_first_entry() and
nis_next_entry() are used to enumerate a table one entry at a time.
nis_add_entry(), nis_remove_entry(), and nis_modify_entry() are used
to change the information stored in a table. nis_freeresult() is used to free the
memory associated with the nis_result structure.

Entries within a table are named by NIS+ indexed names. An indexed name is a
compound name that is composed of a search criteria and a simple NIS+ name that
identifies a table object. A search criteria is a series of column names and their
associated values enclosed in bracket ’[]’ characters. Indexed names have the
following form:

[colname=value, . . .],tablename

The list function, nis_list(), takes an indexed name as the value for the name
parameter. Here, the tablename should be a fully qualified NIS+ name unless the
EXPAND_NAME flag (described below) is set. The second parameter, flags, defines how
the function will respond to various conditions. The value for this parameter is created
by logically ORing together one or more flags from the following list.

FOLLOW_LINKS If the table specified in name resolves to be a LINK type object (see
nis_objects(3NSL)), this flag specifies that the client library
follow that link and do the search at that object. If this flag is not
set and the name resolves to a link, the error
NIS_NOTSEARCHABLE will be returned.

nis_add_entry(3NSL)

NAME

SYNOPSIS

DESCRIPTION

534 man pages section 3: Library Functions • Last Revised 17 Feb 1998

FOLLOW_PATH This flag specifies that if the entry is not found within this table,
the list operation should follow the path specified in the table
object. When used in conjunction with the ALL_RESULTS flag
below, it specifies that the path should be followed regardless of
the result of the search. When used in conjunction with the
FOLLOW_LINKS flag above, named tables in the path that resolve
to links will be followed until the table they point to is located. If a
table in the path is not reachable because no server that serves it is
available, the result of the operation will be either a “soft” success
or a “soft” failure to indicate that not all tables in the path could be
searched. If a name in the path names is either an invalid or
non-existent object then it is silently ignored.

HARD_LOOKUP This flag specifies that the operation should continue trying to
contact a server of the named table until a definitive result is
returned (such as NIS_NOTFOUND).

ALL_RESULTS This flag can only be used in conjunction with FOLLOW_PATH and
a callback function. When specified, it forces all of the tables in the
path to be searched. If name does not specify a search criteria
(imply that all entries are to be returned), then this flag will cause
all of the entries in all of the tables in the path to be returned.

NO_CACHE This flag specifies that the client library should bypass any client
object caches and get its information directly from either the
master server or a replica server for the named table.

MASTER_ONLY This flag is even stronger than NO_CACHE in that it specifies that
the client library should only get its information from the master
server for a particular table. This guarantees that the information
will be up to date. However, there may be severe performance
penalties associated with contacting the master server directly on
large networks. When used in conjunction with the HARD_LOOKUP
flag, this will block the list operation until the master server is up
and available.

EXPAND_NAME When specified, the client library will attempt to expand a
partially qualified name by calling nis_getnames() [see
nis_local_names(3NSL)] which uses the environment variable
NIS_PATH.

RETURN_RESULT This flag is used to specify that a copy of the returning object be
returned in the nis_result structure if the operation was
successful.

The third parameter to nis_list(), callback, is an optional pointer to a function that
will process the ENTRY type objects that are returned from the search. If this pointer is
NULL, then all entries that match the search criteria are returned in the nis_result
structure, otherwise this function will be called once for each entry returned. When
called, this function should return 0 when additional objects are desired and 1 when it

nis_add_entry(3NSL)

Introduction to Library Functions 535

no longer wishes to see any more objects. The fourth parameter, userdata, is simply
passed to callback function along with the returned entry object. The client can use
this pointer to pass state information or other relevant data that the callback function
might need to process the entries.

The nis_list() function is not MT-Safe with callbacks. See NOTES.

nis_add_entry() will add the NIS+ object to the NIS+ table_name. The flags
parameter is used to specify the failure semantics for the add operation. The default
(flags equal 0) is to fail if the entry being added already exists in the table. The
ADD_OVERWRITE flag may be used to specify that existing object is to be overwritten if
it exists, (a modify operation) or added if it does not exist. With the ADD_OVERWRITE
flag, this function will fail with the error NIS_PERMISSION if the existing object does
not allow modify privileges to the client.

If the flag RETURN_RESULT has been specified, the server will return a copy of the
resulting object if the operation was successful. To succeed, nis_add_entry() must
inherit the PAF_TRUSTED_PATH attribute.

nis_remove_entry() removes the identified entry from the table or a set of entries
identified by table_name. If the parameter object is non-null, it is presumed to point to a
cached copy of the entry. When the removal is attempted, and the object that would be
removed is not the same as the cached object pointed to by object then the operation
will fail with an NIS_NOTSAMEOBJ error. If an object is passed with this function, the
search criteria in name is optional as it can be constructed from the values within the
entry. However, if no object is present, the search criteria must be included in the name
parameter. If the flags variable is null, and the search criteria does not uniquely
identify an entry, the NIS_NOTUNIQUE error is returned and the operation is aborted.
If the flag parameter REM_MULTIPLE is passed, and if remove permission is allowed
for each of these objects, then all objects that match the search criteria will be removed.
Note that a null search criteria and the REM_MULTIPLE flag will remove all entries in a
table. To succeed, nis_remove_entry() must inherit the PAF_TRUSTED_PATH
attribute.

nis_modify_entry() modifies an object identified by name. The parameter object
should point to an entry with the LEN_MODIFIED flag set in each column that
contains new information.

The owner, group, and access rights of an entry are modified by placing the modified
information into the respective fields of the parameter, object: zo_owner, zo_group,
and zo_access.

These columns will replace their counterparts in the entry that is stored in the table.
The entry passed must have the same number of columns, same type, and valid data
in the modified columns for this operation to succeed.

If the flags parameter contains the flag MOD_SAMEOBJ then the object pointed to by
object is assumed to be a cached copy of the original object. If the OID of the object
passed is different than the OID of the object the server fetches, then the operation fails

nis_add_entry(3NSL)

536 man pages section 3: Library Functions • Last Revised 17 Feb 1998

with the NIS_NOTSAMEOBJ error. This can be used to implement a simple
read-modify-write protocol which will fail if the object is modified before the client
can write the object back.

If the flag RETURN_RESULT has been specified, the server will return a copy of the
resulting object if the operation was successful. To succeed, nis_modify_entry()
must inherit the PAF_TRUSTED_PATH attribute.

nis_first_entry() fetches entries from a table one at a time. This mode of
operation is extremely inefficient and callbacks should be used instead wherever
possible. The table containing the entries of interest is identified by name. If a search
criteria is present in name it is ignored. The value of cookie within the nis_result
structure must be copied by the caller into local storage and passed as an argument to
nis_next_entry().

nis_next_entry() retrieves the “next” entry from a table specified by table_name.
The order in which entries are returned is not guaranteed. Further, should an update
occur in the table between client calls to nis_next_entry() there is no guarantee
that an entry that is added or modified will be seen by the client. Should an entry be
removed from the table that would have been the “next” entry returned, the error
NIS_CHAINBROKEN is returned instead.

These functions return a pointer to a structure of type nis_result:

struct nis_result {
nis_error status;
struct {

uint_t objects_len;
nis_object *objects_val;

} objects;
netobj cookie;
uint32_t zticks;
uint32_t dticks;
uint32_t aticks;
uint32_t cticks;

};The status member contains the error status of the the operation. A text
message that describes the error can be obtained by calling the function
nis_sperrno() [see nis_error(3NSL)].

The objects structure contains two members. objects_val is an array of nis_object
structures; objects_len is the number of cells in the array. These objects will be freed by
a call to nis_freeresult()([see nis_names(3NSL)). If you need to keep a copy of
one or more objects, they can be copied with the function nis_clone_object() and
freed with the function nis_destroy_object() (see nis_server(3NSL)).

The various ticks contain details of where the time (in microseconds) was taken during
a request. They can be used to tune one’s data organization for faster access and to
compare different database implementations.

nis_add_entry(3NSL)

RETURN VALUES

Introduction to Library Functions 537

zticks The time spent in the NIS+ service itself, this count starts when the server
receives the request and stops when it sends the reply.

dticks The time spent in the database backend, this time is measured from the
time a database call starts, until a result is returned. If the request results in
multiple calls to the database, this is the sum of all the time spent in those
calls.

aticks The time spent in any "accelerators" or caches. This includes the time
required to locate the server needed to resolve the request.

cticks The total time spent in the request, this clock starts when you enter the
client library and stops when a result is returned. By subtracting the sum of
the other ticks values from this value you can obtain the local overhead of
generating a NIS+ request.

Subtracting the value in dticks from the value in zticks will yield the time spent in the
service code itself. Subtracting the sum of the values in zticks and aticks from the value
in cticks will yield the time spent in the client library itself. Note: all of the tick times
are measured in microseconds.

The client library can return a variety of error returns and diagnostics. The more
salient ones are documented below.

NIS_BADATTRIBUTE
The name of an attribute did not match up with a named column in the table, or the
attribute did not have an associated value.

NIS_BADNAME
The name passed to the function is not a legal NIS+ name.

NIS_BADREQUEST
A problem was detected in the request structure passed to the client library.

NIS_CACHEEXPIRED
The entry returned came from an object cache that has expired. This means that the
time to live value has gone to zero and the entry may have changed. If the flag
NO_CACHE was passed to the lookup function then the lookup function will retry
the operation to get an unexpired copy of the object.

NIS_CBERROR
An RPC error occurred on the server while it was calling back to the client. The
transaction was aborted at that time and any unsent data was discarded.

NIS_CBRESULTS
Even though the request was successful, all of the entries have been sent to your
callback function and are thus not included in this result.

NIS_FOREIGNNS
The name could not be completely resolved. When the name passed to the function
would resolve in a namespace that is outside the NIS+ name tree, this error is

nis_add_entry(3NSL)

ERRORS

538 man pages section 3: Library Functions • Last Revised 17 Feb 1998

returned with a NIS+ object of type DIRECTORY. The returned object contains the
type of namespace and contact information for a server within that namespace.

NIS_INVALIDOBJ
The object pointed to by object is not a valid NIS+ entry object for the given table.
This could occur if it had a mismatched number of columns, or a different data type
(for example, binary or text) than the associated column in the table.

NIS_LINKNAMEERROR
The name passed resolved to a LINK type object and the contents of the object
pointed to an invalid name.

NIS_MODFAIL
The attempted modification failed for some reason.

NIS_NAMEEXISTS
An attempt was made to add a name that already exists. To add the name, first
remove the existing name and then add the new name or modify the existing
named object.

NIS_NAMEUNREACHABLE
This soft error indicates that a server for the desired directory of the named table
object could not be reached. This can occur when there is a network partition or the
server has crashed. Attempting the operation again may succeed. See the
HARD_LOOKUP flag.

NIS_NOCALLBACK
The server was unable to contact the callback service on your machine. This results
in no data being returned.

NIS_NOMEMORY
Generally a fatal result. It means that the service ran out of heap space.

NIS_NOSUCHNAME
This hard error indicates that the named directory of the table object does not exist.
This occurs when the server that should be the parent of the server that serves the
table, does not know about the directory in which the table resides.

NIS_NOSUCHTABLE
The named table does not exist.

NIS_NOT_ME
A request was made to a server that does not serve the given name. Normally this
will not occur, however if you are not using the built in location mechanism for
servers, you may see this if your mechanism is broken.

NIS_NOTFOUND
No entries in the table matched the search criteria. If the search criteria was null
(return all entries) then this result means that the table is empty and may safely be
removed by calling the nis_remove().

nis_add_entry(3NSL)

Introduction to Library Functions 539

If the FOLLOW_PATH flag was set, this error indicates that none of the tables in the
path contain entries that match the search criteria.

NIS_NOTMASTER
A change request was made to a server that serves the name, but it is not the master
server. This can occur when a directory object changes and it specifies a new master
server. Clients that have cached copies of the directory object in the
/var/nis/NIS_SHARED_DIRCACHE file will need to have their cache managers
restarted (use nis_cachemgr -i) to flush this cache.

NIS_NOTSAMEOBJ
An attempt to remove an object from the namespace was aborted because the object
that would have been removed was not the same object that was passed in the
request.

NIS_NOTSEARCHABLE
The table name resolved to a NIS+ object that was not searchable.

NIS_PARTIAL
This result is similar to NIS_NOTFOUND except that it means the request succeeded
but resolved to zero entries. When this occurs, the server returns a copy of the table
object instead of an entry so that the client may then process the path or implement
some other local policy.

NIS_RPCERROR
This fatal error indicates the RPC subsystem failed in some way. Generally there
will be a syslog(3C) message indicating why the RPC request failed.

NIS_S_NOTFOUND
The named entry does not exist in the table, however not all tables in the path
could be searched, so the entry may exist in one of those tables.

NIS_S_SUCCESS
Even though the request was successful, a table in the search path was not able to
be searched, so the result may not be the same as the one you would have received
if that table had been accessible.

NIS_SUCCESS
The request was successful.

NIS_SYSTEMERROR
Some form of generic system error occurred while attempting the request. Check
the syslog(3C) record for error messages from the server.

NIS_TOOMANYATTRS
The search criteria passed to the server had more attributes than the table had
searchable columns.

NIS_TRYAGAIN
The server connected to was too busy to handle your request. add_entry(),
remove_entry(), and modify_entry() return this error when the master

nis_add_entry(3NSL)

540 man pages section 3: Library Functions • Last Revised 17 Feb 1998

server is currently updating its internal state. It can be returned to nis_list()
when the function specifies a callback and the server does not have the resources to
handle callbacks.

NIS_TYPEMISMATCH
An attempt was made to add or modify an entry in a table, and the entry passed
was of a different type than the table.

NIS_PATH When set, this variable is the search path used by nis_list() if
the flag EXPAND_NAME is set.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

To succeed, nis_add_entry(), nis_remove_entry(), and
nis_modify_entry() must inherit the PAF_TRUSTED_PATH attribute.

nis_cachemgr(1M), nis_names(3NSL), nis_server(3NSL),
rpc_svc_calls(3NSL)

niscat(1), niserror(1), nismatch(1), syslog(3C), nis_clone_object(3NSL),
nis_destroy_object(3NSL), nis_error(3NSL), nis_getnames(3NSL),
nis_local_names(3NSL), nis_objects(3NSL), attributes(5)

Use the flag HARD_LOOKUP carefully since it can cause the application to block
indefinitely during a network partition.

The path used when the flag FOLLOW_PATH is specified, is the one present in the first
table searched. The path values in tables that are subsequently searched are ignored.

It is legal to call functions that would access the nameservice from within a list
callback. However, calling a function that would itself use a callback, or calling
nis_list() with a callback from within a list callback function is not currently
supported.

There are currently no known methods for nis_first_entry() and
nis_next_entry() to get their answers from only the master server.

The nis_list() function is not MT-Safe with callbacks. nis_list() callbacks are
serialized. A call to nis_list() with a callback from within nis_list() will
deadlock. nis_list() with a callback cannot be called from an rpc server. See
rpc_svc_calls(3NSL). Otherwise, this function is MT-Safe.

nis_add_entry(3NSL)

ENVIRONMENT
VARIABLES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

WARNINGS

NOTES

Introduction to Library Functions 541

nis_groups, nis_ismember, nis_addmember, nis_removemember, nis_creategroup,
nis_destroygroup, nis_verifygroup, nis_print_group_entry – NIS+ group manipulation
functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

bool_t nis_ismember(nis_name principal, nis_name group);

nis_error nis_addmember(nis_name member, nis_name group);

nis_error nis_removemember(nis_name member, nis_name group);

nis_error nis_creategroup(nis_name group, uint_t flags);

nis_error nis_destroygroup(nis_name group);

void nis_print_group_entry(nis_name group);

nis_error nis_verifygroup(nis_name group);

These functions manipulate NIS+ groups. They are used by NIS+ clients and servers,
and are the interfaces to the group authorization object.

The names of NIS+ groups are syntactically similar to names of NIS+ objects but they
occupy a separate namespace. A group named "a.b.c.d." is represented by a NIS+
group object named "a.groups_dir.b.c.d."; the functions described here all expect the
name of the group, not the name of the corresponding group object.

There are three types of group members:

� An explicit member is just a NIS+ principal-name, for example
"wickedwitch.west.oz."

� An implicit ("domain") member, written "*.west.oz.", means that all principals in the
given domain belong to this member. No other forms of wildcarding are allowed:
"wickedwitch.*.oz." is invalid, as is "wickedwitch.west.*.". Note that principals in
subdomains of the given domain are not included.

� A recursive ("group") member, written "@cowards.oz.", refers to another group; all
principals that belong to that group are considered to belong here.

Any member may be made negative by prefixing it with a minus sign (’−’). A group
may thus contain explicit, implicit, recursive, negative explicit, negative implicit, and
negative recursive members.

A principal is considered to belong to a group if it belongs to at least one non-negative
group member of the group and belongs to no negative group members.

The nis_ismember() function returns TRUE if it can establish that principal belongs
to group; otherwise it returns FALSE.

The nis_addmember() and nis_removemember() functions add or remove a
member. They do not check whether the member is valid. The user must have read

nis_addmember(3NSL)

NAME

SYNOPSIS

DESCRIPTION

542 man pages section 3: Library Functions • Last Revised 17 Feb 1998

and modify rights for the group in question. To succeed, nis_addmember() and
nis_removemember() must inherit the PAF_TRUSTED_PATH attribute.

The nis_creategroup() and nis_destroygroup() functions create and destroy
group objects. The user must have create or destroy rights, respectively, for the
groups_dir directory in the appropriate domain. The parameter flags to
nis_creategroup() is currently unused and should be set to zero. To succeed,
nis_creategroup() and nis_destroygroup() must inherit the
PAF_TRUSTED_PATH attribute.

The nis_print_group_entry() function lists a group’s members on the standard
output.

The nis_verifygroup() function returns NIS_SUCCESS if the given group exists,
otherwise it returns an error code.

EXAMPLE 1 Simple Memberships

Given a group sadsouls.oz. with members tinman.oz., lion.oz., and
scarecrow.oz., the function call

bool_var = nis_ismember("lion.oz.", "sadsouls.oz.");

will return 1 (TRUE) and the function call

bool_var = nis_ismember("toto.oz.", "sadsouls.oz.");

will return 0 (FALSE).

EXAMPLE 2 Implicit Memberships

Given a group baddies.oz., with members wickedwitch.west.oz. and
*.monkeys.west.oz., the function callbool_var =
nis_ismember("hogan.monkeys.west.oz.", "baddies.oz."); will return 1 (TRUE) because
any principal from the monkeys.west.oz. domain belongs to the implicit group
*.monkeys.west.oz., but the function call

bool_var = nis_ismember("hogan.big.monkeys.west.oz.", "baddies.oz.");

will return 0 (FALSE).

EXAMPLE 3 Recursive Memberships

Given a group goodandbad.oz., with members toto.kansas, @sadsouls.oz.,
and @baddies.oz., and the groups sadsouls.oz. and baddies.oz. defined
above, the function call

bool_var = nis_ismember("wickedwitch.west.oz.", "goodandbad.oz.");

will return 1 (TRUE), because wickedwitch.west.oz. is a member of the
baddies.oz. group which is recursively included in the goodandbad.oz. group.

See attributes(5) for descriptions of the following attributes:

nis_addmember(3NSL)

EXAMPLES

ATTRIBUTES

Introduction to Library Functions 543

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_addmember(), nis_removemember(), nis_creategroup() and
nis_destroygroup() must inherit the PAF_TRUSTED_PATH attribute.

nisgrpadm(1), nis_objects(3NSL), attributes(5)

These functions only accept fully-qualified NIS+ names.

A group is represented by a NIS+ object (see nis_objects(3NSL)) with a variant
part that is defined in the group_obj structure. It contains the following fields:

uint_t gr_flags; /* Interpretation Flags
(currently unused) */

struct {
uint_t gr_members_len;
nis_name *gr_members_val;

} gr_members; /* Array of members */

NIS+ servers and clients maintain a local cache of expanded groups to enhance their
performance when checking for group membership. Should the membership of a
group change, servers and clients with that group cached will not see the change until
either the group cache has expired or it is explicitly flushed. A server’s cache may be
flushed programmatically by calling the nis_servstate() function with tag
TAG_GCACHE and a value of 1.

There are currently no known methods for nis_ismember(),
nis_print_group_entry(), and nis_verifygroup() to get their answers from
only the master server.

nis_addmember(3NSL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGESSunOS 5.8
Reference Manual

NOTES

544 man pages section 3: Library Functions • Last Revised 17 Feb 1998

nis_ping, nis_checkpoint – Misc NIS+ log administration functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

void nis_ping(nis_name dirname, uint32_t utime, nis_object *dirobj);

nis_result *nis_checkpoint(nis_name dirname);

nis_ping() is called by the master server for a directory when a change has
occurred within that directory. The parameter dirname identifies the directory with the
change. If the parameter dirobj is NULL, this function looks up the directory object for
dirname and uses the list of replicas it contains. The parameter utime contains the
timestamp of the last change made to the directory. This timestamp is used by the
replicas when retrieving updates made to the directory.

The effect of calling nis_ping() is to schedule an update on the replica. A short time
after a ping is received, typically about two minutes, the replica compares the last
update time for its databases to the timestamp sent by the ping. If the ping timestamp
is later, the replica establishes a connection with the master server and request all
changes from the log that occurred after the last update that it had recorded in its local
log.

To succeed, nis_ping() must inherit the PAF_TRUSTED_PATH attribute.

nis_checkpoint() is used to force the service to checkpoint information that has
been entered in the log but has not been checkpointed to disk. When called, this
function checkpoints the database for each table in the directory, the database
containing the directory and the transaction log. Care should be used in calling this
function since directories that have seen a lot of changes may take several minutes to
checkpoint. During the checkpointing process, the service will be unavailable for
updates for all directories that are served by this machine as master.

nis_checkpoint() returns a pointer to a nis_result structure (described in
nis_tables(3NSL)). This structure should be freed with nis_freeresult() (see
nis_names(3NSL)). The only items of interest in the returned result are the status
value and the statistics.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_ping() must inherit the PAF_TRUSTED_PATH attribute.

nis_names(3NSL), nis_tables(3NSL)

nis_checkpoint(3NSL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
Manual

Introduction to Library Functions 545

nislog(1M), nisfiles(4), attributes(5)

nis_checkpoint(3NSL)

SunOS 5.8
Reference Manual

546 man pages section 3: Library Functions • Last Revised 17 Feb 1998

nis_groups, nis_ismember, nis_addmember, nis_removemember, nis_creategroup,
nis_destroygroup, nis_verifygroup, nis_print_group_entry – NIS+ group manipulation
functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

bool_t nis_ismember(nis_name principal, nis_name group);

nis_error nis_addmember(nis_name member, nis_name group);

nis_error nis_removemember(nis_name member, nis_name group);

nis_error nis_creategroup(nis_name group, uint_t flags);

nis_error nis_destroygroup(nis_name group);

void nis_print_group_entry(nis_name group);

nis_error nis_verifygroup(nis_name group);

These functions manipulate NIS+ groups. They are used by NIS+ clients and servers,
and are the interfaces to the group authorization object.

The names of NIS+ groups are syntactically similar to names of NIS+ objects but they
occupy a separate namespace. A group named "a.b.c.d." is represented by a NIS+
group object named "a.groups_dir.b.c.d."; the functions described here all expect the
name of the group, not the name of the corresponding group object.

There are three types of group members:

� An explicit member is just a NIS+ principal-name, for example
"wickedwitch.west.oz."

� An implicit ("domain") member, written "*.west.oz.", means that all principals in the
given domain belong to this member. No other forms of wildcarding are allowed:
"wickedwitch.*.oz." is invalid, as is "wickedwitch.west.*.". Note that principals in
subdomains of the given domain are not included.

� A recursive ("group") member, written "@cowards.oz.", refers to another group; all
principals that belong to that group are considered to belong here.

Any member may be made negative by prefixing it with a minus sign (’−’). A group
may thus contain explicit, implicit, recursive, negative explicit, negative implicit, and
negative recursive members.

A principal is considered to belong to a group if it belongs to at least one non-negative
group member of the group and belongs to no negative group members.

The nis_ismember() function returns TRUE if it can establish that principal belongs
to group; otherwise it returns FALSE.

The nis_addmember() and nis_removemember() functions add or remove a
member. They do not check whether the member is valid. The user must have read

nis_creategroup(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 547

and modify rights for the group in question. To succeed, nis_addmember() and
nis_removemember() must inherit the PAF_TRUSTED_PATH attribute.

The nis_creategroup() and nis_destroygroup() functions create and destroy
group objects. The user must have create or destroy rights, respectively, for the
groups_dir directory in the appropriate domain. The parameter flags to
nis_creategroup() is currently unused and should be set to zero. To succeed,
nis_creategroup() and nis_destroygroup() must inherit the
PAF_TRUSTED_PATH attribute.

The nis_print_group_entry() function lists a group’s members on the standard
output.

The nis_verifygroup() function returns NIS_SUCCESS if the given group exists,
otherwise it returns an error code.

EXAMPLE 1 Simple Memberships

Given a group sadsouls.oz. with members tinman.oz., lion.oz., and
scarecrow.oz., the function call

bool_var = nis_ismember("lion.oz.", "sadsouls.oz.");

will return 1 (TRUE) and the function call

bool_var = nis_ismember("toto.oz.", "sadsouls.oz.");

will return 0 (FALSE).

EXAMPLE 2 Implicit Memberships

Given a group baddies.oz., with members wickedwitch.west.oz. and
*.monkeys.west.oz., the function callbool_var =
nis_ismember("hogan.monkeys.west.oz.", "baddies.oz."); will return 1 (TRUE) because
any principal from the monkeys.west.oz. domain belongs to the implicit group
*.monkeys.west.oz., but the function call

bool_var = nis_ismember("hogan.big.monkeys.west.oz.", "baddies.oz.");

will return 0 (FALSE).

EXAMPLE 3 Recursive Memberships

Given a group goodandbad.oz., with members toto.kansas, @sadsouls.oz.,
and @baddies.oz., and the groups sadsouls.oz. and baddies.oz. defined
above, the function call

bool_var = nis_ismember("wickedwitch.west.oz.", "goodandbad.oz.");

will return 1 (TRUE), because wickedwitch.west.oz. is a member of the
baddies.oz. group which is recursively included in the goodandbad.oz. group.

See attributes(5) for descriptions of the following attributes:

nis_creategroup(3NSL)

EXAMPLES

ATTRIBUTES

548 man pages section 3: Library Functions • Last Revised 17 Feb 1998

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_addmember(), nis_removemember(), nis_creategroup() and
nis_destroygroup() must inherit the PAF_TRUSTED_PATH attribute.

nisgrpadm(1), nis_objects(3NSL), attributes(5)

These functions only accept fully-qualified NIS+ names.

A group is represented by a NIS+ object (see nis_objects(3NSL)) with a variant
part that is defined in the group_obj structure. It contains the following fields:

uint_t gr_flags; /* Interpretation Flags
(currently unused) */

struct {
uint_t gr_members_len;
nis_name *gr_members_val;

} gr_members; /* Array of members */

NIS+ servers and clients maintain a local cache of expanded groups to enhance their
performance when checking for group membership. Should the membership of a
group change, servers and clients with that group cached will not see the change until
either the group cache has expired or it is explicitly flushed. A server’s cache may be
flushed programmatically by calling the nis_servstate() function with tag
TAG_GCACHE and a value of 1.

There are currently no known methods for nis_ismember(),
nis_print_group_entry(), and nis_verifygroup() to get their answers from
only the master server.

nis_creategroup(3NSL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGESSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 549

nis_groups, nis_ismember, nis_addmember, nis_removemember, nis_creategroup,
nis_destroygroup, nis_verifygroup, nis_print_group_entry – NIS+ group manipulation
functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

bool_t nis_ismember(nis_name principal, nis_name group);

nis_error nis_addmember(nis_name member, nis_name group);

nis_error nis_removemember(nis_name member, nis_name group);

nis_error nis_creategroup(nis_name group, uint_t flags);

nis_error nis_destroygroup(nis_name group);

void nis_print_group_entry(nis_name group);

nis_error nis_verifygroup(nis_name group);

These functions manipulate NIS+ groups. They are used by NIS+ clients and servers,
and are the interfaces to the group authorization object.

The names of NIS+ groups are syntactically similar to names of NIS+ objects but they
occupy a separate namespace. A group named "a.b.c.d." is represented by a NIS+
group object named "a.groups_dir.b.c.d."; the functions described here all expect the
name of the group, not the name of the corresponding group object.

There are three types of group members:

� An explicit member is just a NIS+ principal-name, for example
"wickedwitch.west.oz."

� An implicit ("domain") member, written "*.west.oz.", means that all principals in the
given domain belong to this member. No other forms of wildcarding are allowed:
"wickedwitch.*.oz." is invalid, as is "wickedwitch.west.*.". Note that principals in
subdomains of the given domain are not included.

� A recursive ("group") member, written "@cowards.oz.", refers to another group; all
principals that belong to that group are considered to belong here.

Any member may be made negative by prefixing it with a minus sign (’−’). A group
may thus contain explicit, implicit, recursive, negative explicit, negative implicit, and
negative recursive members.

A principal is considered to belong to a group if it belongs to at least one non-negative
group member of the group and belongs to no negative group members.

The nis_ismember() function returns TRUE if it can establish that principal belongs
to group; otherwise it returns FALSE.

The nis_addmember() and nis_removemember() functions add or remove a
member. They do not check whether the member is valid. The user must have read

nis_destroygroup(3NSL)

NAME

SYNOPSIS

DESCRIPTION

550 man pages section 3: Library Functions • Last Revised 17 Feb 1998

and modify rights for the group in question. To succeed, nis_addmember() and
nis_removemember() must inherit the PAF_TRUSTED_PATH attribute.

The nis_creategroup() and nis_destroygroup() functions create and destroy
group objects. The user must have create or destroy rights, respectively, for the
groups_dir directory in the appropriate domain. The parameter flags to
nis_creategroup() is currently unused and should be set to zero. To succeed,
nis_creategroup() and nis_destroygroup() must inherit the
PAF_TRUSTED_PATH attribute.

The nis_print_group_entry() function lists a group’s members on the standard
output.

The nis_verifygroup() function returns NIS_SUCCESS if the given group exists,
otherwise it returns an error code.

EXAMPLE 1 Simple Memberships

Given a group sadsouls.oz. with members tinman.oz., lion.oz., and
scarecrow.oz., the function call

bool_var = nis_ismember("lion.oz.", "sadsouls.oz.");

will return 1 (TRUE) and the function call

bool_var = nis_ismember("toto.oz.", "sadsouls.oz.");

will return 0 (FALSE).

EXAMPLE 2 Implicit Memberships

Given a group baddies.oz., with members wickedwitch.west.oz. and
*.monkeys.west.oz., the function callbool_var =
nis_ismember("hogan.monkeys.west.oz.", "baddies.oz."); will return 1 (TRUE) because
any principal from the monkeys.west.oz. domain belongs to the implicit group
*.monkeys.west.oz., but the function call

bool_var = nis_ismember("hogan.big.monkeys.west.oz.", "baddies.oz.");

will return 0 (FALSE).

EXAMPLE 3 Recursive Memberships

Given a group goodandbad.oz., with members toto.kansas, @sadsouls.oz.,
and @baddies.oz., and the groups sadsouls.oz. and baddies.oz. defined
above, the function call

bool_var = nis_ismember("wickedwitch.west.oz.", "goodandbad.oz.");

will return 1 (TRUE), because wickedwitch.west.oz. is a member of the
baddies.oz. group which is recursively included in the goodandbad.oz. group.

See attributes(5) for descriptions of the following attributes:

nis_destroygroup(3NSL)

EXAMPLES

ATTRIBUTES

Introduction to Library Functions 551

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_addmember(), nis_removemember(), nis_creategroup() and
nis_destroygroup() must inherit the PAF_TRUSTED_PATH attribute.

nisgrpadm(1), nis_objects(3NSL), attributes(5)

These functions only accept fully-qualified NIS+ names.

A group is represented by a NIS+ object (see nis_objects(3NSL)) with a variant
part that is defined in the group_obj structure. It contains the following fields:

uint_t gr_flags; /* Interpretation Flags
(currently unused) */

struct {
uint_t gr_members_len;
nis_name *gr_members_val;

} gr_members; /* Array of members */

NIS+ servers and clients maintain a local cache of expanded groups to enhance their
performance when checking for group membership. Should the membership of a
group change, servers and clients with that group cached will not see the change until
either the group cache has expired or it is explicitly flushed. A server’s cache may be
flushed programmatically by calling the nis_servstate() function with tag
TAG_GCACHE and a value of 1.

There are currently no known methods for nis_ismember(),
nis_print_group_entry(), and nis_verifygroup() to get their answers from
only the master server.

nis_destroygroup(3NSL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGESSunOS 5.8
Reference Manual

NOTES

552 man pages section 3: Library Functions • Last Revised 17 Feb 1998

nis_tables, nis_list, nis_add_entry, nis_remove_entry, nis_modify_entry, nis_first_entry,
nis_next_entry – NIS+ table functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

nis_result *nis_list(nis_name name, uint_tflags, int
(*callback)(nis_name table_name, nis_object *object, void
*userdata), void *userdata);

nis_result *nis_add_entry(nis_name table_name, nis_object *object,
uint_t flags);

nis_result *nis_remove_entry(nis_name name, nis_object *object,
uint_tflags);

nis_result *nis_modify_entry(nis_name name, nis_object *object,
uint_tflags);

nis_result *nis_first_entry(nis_name table_name);

nis_result *nis_next_entry(nis_name table_name, netobj *cookie);

void nis_freeresult(nis_result *result);

These functions are used to search and modify NIS+ tables. nis_list() is used to
search a table in the NIS+ namespace. nis_first_entry() and
nis_next_entry() are used to enumerate a table one entry at a time.
nis_add_entry(), nis_remove_entry(), and nis_modify_entry() are used
to change the information stored in a table. nis_freeresult() is used to free the
memory associated with the nis_result structure.

Entries within a table are named by NIS+ indexed names. An indexed name is a
compound name that is composed of a search criteria and a simple NIS+ name that
identifies a table object. A search criteria is a series of column names and their
associated values enclosed in bracket ’[]’ characters. Indexed names have the
following form:

[colname=value, . . .],tablename

The list function, nis_list(), takes an indexed name as the value for the name
parameter. Here, the tablename should be a fully qualified NIS+ name unless the
EXPAND_NAME flag (described below) is set. The second parameter, flags, defines how
the function will respond to various conditions. The value for this parameter is created
by logically ORing together one or more flags from the following list.

FOLLOW_LINKS If the table specified in name resolves to be a LINK type object (see
nis_objects(3NSL)), this flag specifies that the client library
follow that link and do the search at that object. If this flag is not
set and the name resolves to a link, the error
NIS_NOTSEARCHABLE will be returned.

nis_first_entry(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 553

FOLLOW_PATH This flag specifies that if the entry is not found within this table,
the list operation should follow the path specified in the table
object. When used in conjunction with the ALL_RESULTS flag
below, it specifies that the path should be followed regardless of
the result of the search. When used in conjunction with the
FOLLOW_LINKS flag above, named tables in the path that resolve
to links will be followed until the table they point to is located. If a
table in the path is not reachable because no server that serves it is
available, the result of the operation will be either a “soft” success
or a “soft” failure to indicate that not all tables in the path could be
searched. If a name in the path names is either an invalid or
non-existent object then it is silently ignored.

HARD_LOOKUP This flag specifies that the operation should continue trying to
contact a server of the named table until a definitive result is
returned (such as NIS_NOTFOUND).

ALL_RESULTS This flag can only be used in conjunction with FOLLOW_PATH and
a callback function. When specified, it forces all of the tables in the
path to be searched. If name does not specify a search criteria
(imply that all entries are to be returned), then this flag will cause
all of the entries in all of the tables in the path to be returned.

NO_CACHE This flag specifies that the client library should bypass any client
object caches and get its information directly from either the
master server or a replica server for the named table.

MASTER_ONLY This flag is even stronger than NO_CACHE in that it specifies that
the client library should only get its information from the master
server for a particular table. This guarantees that the information
will be up to date. However, there may be severe performance
penalties associated with contacting the master server directly on
large networks. When used in conjunction with the HARD_LOOKUP
flag, this will block the list operation until the master server is up
and available.

EXPAND_NAME When specified, the client library will attempt to expand a
partially qualified name by calling nis_getnames() [see
nis_local_names(3NSL)] which uses the environment variable
NIS_PATH.

RETURN_RESULT This flag is used to specify that a copy of the returning object be
returned in the nis_result structure if the operation was
successful.

The third parameter to nis_list(), callback, is an optional pointer to a function that
will process the ENTRY type objects that are returned from the search. If this pointer is
NULL, then all entries that match the search criteria are returned in the nis_result
structure, otherwise this function will be called once for each entry returned. When
called, this function should return 0 when additional objects are desired and 1 when it

nis_first_entry(3NSL)

554 man pages section 3: Library Functions • Last Revised 17 Feb 1998

no longer wishes to see any more objects. The fourth parameter, userdata, is simply
passed to callback function along with the returned entry object. The client can use
this pointer to pass state information or other relevant data that the callback function
might need to process the entries.

The nis_list() function is not MT-Safe with callbacks. See NOTES.

nis_add_entry() will add the NIS+ object to the NIS+ table_name. The flags
parameter is used to specify the failure semantics for the add operation. The default
(flags equal 0) is to fail if the entry being added already exists in the table. The
ADD_OVERWRITE flag may be used to specify that existing object is to be overwritten if
it exists, (a modify operation) or added if it does not exist. With the ADD_OVERWRITE
flag, this function will fail with the error NIS_PERMISSION if the existing object does
not allow modify privileges to the client.

If the flag RETURN_RESULT has been specified, the server will return a copy of the
resulting object if the operation was successful. To succeed, nis_add_entry() must
inherit the PAF_TRUSTED_PATH attribute.

nis_remove_entry() removes the identified entry from the table or a set of entries
identified by table_name. If the parameter object is non-null, it is presumed to point to a
cached copy of the entry. When the removal is attempted, and the object that would be
removed is not the same as the cached object pointed to by object then the operation
will fail with an NIS_NOTSAMEOBJ error. If an object is passed with this function, the
search criteria in name is optional as it can be constructed from the values within the
entry. However, if no object is present, the search criteria must be included in the name
parameter. If the flags variable is null, and the search criteria does not uniquely
identify an entry, the NIS_NOTUNIQUE error is returned and the operation is aborted.
If the flag parameter REM_MULTIPLE is passed, and if remove permission is allowed
for each of these objects, then all objects that match the search criteria will be removed.
Note that a null search criteria and the REM_MULTIPLE flag will remove all entries in a
table. To succeed, nis_remove_entry() must inherit the PAF_TRUSTED_PATH
attribute.

nis_modify_entry() modifies an object identified by name. The parameter object
should point to an entry with the LEN_MODIFIED flag set in each column that
contains new information.

The owner, group, and access rights of an entry are modified by placing the modified
information into the respective fields of the parameter, object: zo_owner, zo_group,
and zo_access.

These columns will replace their counterparts in the entry that is stored in the table.
The entry passed must have the same number of columns, same type, and valid data
in the modified columns for this operation to succeed.

If the flags parameter contains the flag MOD_SAMEOBJ then the object pointed to by
object is assumed to be a cached copy of the original object. If the OID of the object
passed is different than the OID of the object the server fetches, then the operation fails

nis_first_entry(3NSL)

Introduction to Library Functions 555

with the NIS_NOTSAMEOBJ error. This can be used to implement a simple
read-modify-write protocol which will fail if the object is modified before the client
can write the object back.

If the flag RETURN_RESULT has been specified, the server will return a copy of the
resulting object if the operation was successful. To succeed, nis_modify_entry()
must inherit the PAF_TRUSTED_PATH attribute.

nis_first_entry() fetches entries from a table one at a time. This mode of
operation is extremely inefficient and callbacks should be used instead wherever
possible. The table containing the entries of interest is identified by name. If a search
criteria is present in name it is ignored. The value of cookie within the nis_result
structure must be copied by the caller into local storage and passed as an argument to
nis_next_entry().

nis_next_entry() retrieves the “next” entry from a table specified by table_name.
The order in which entries are returned is not guaranteed. Further, should an update
occur in the table between client calls to nis_next_entry() there is no guarantee
that an entry that is added or modified will be seen by the client. Should an entry be
removed from the table that would have been the “next” entry returned, the error
NIS_CHAINBROKEN is returned instead.

These functions return a pointer to a structure of type nis_result:

struct nis_result {
nis_error status;
struct {

uint_t objects_len;
nis_object *objects_val;

} objects;
netobj cookie;
uint32_t zticks;
uint32_t dticks;
uint32_t aticks;
uint32_t cticks;

};The status member contains the error status of the the operation. A text
message that describes the error can be obtained by calling the function
nis_sperrno() [see nis_error(3NSL)].

The objects structure contains two members. objects_val is an array of nis_object
structures; objects_len is the number of cells in the array. These objects will be freed by
a call to nis_freeresult()([see nis_names(3NSL)). If you need to keep a copy of
one or more objects, they can be copied with the function nis_clone_object() and
freed with the function nis_destroy_object() (see nis_server(3NSL)).

The various ticks contain details of where the time (in microseconds) was taken during
a request. They can be used to tune one’s data organization for faster access and to
compare different database implementations.

nis_first_entry(3NSL)

RETURN VALUES

556 man pages section 3: Library Functions • Last Revised 17 Feb 1998

zticks The time spent in the NIS+ service itself, this count starts when the server
receives the request and stops when it sends the reply.

dticks The time spent in the database backend, this time is measured from the
time a database call starts, until a result is returned. If the request results in
multiple calls to the database, this is the sum of all the time spent in those
calls.

aticks The time spent in any "accelerators" or caches. This includes the time
required to locate the server needed to resolve the request.

cticks The total time spent in the request, this clock starts when you enter the
client library and stops when a result is returned. By subtracting the sum of
the other ticks values from this value you can obtain the local overhead of
generating a NIS+ request.

Subtracting the value in dticks from the value in zticks will yield the time spent in the
service code itself. Subtracting the sum of the values in zticks and aticks from the value
in cticks will yield the time spent in the client library itself. Note: all of the tick times
are measured in microseconds.

The client library can return a variety of error returns and diagnostics. The more
salient ones are documented below.

NIS_BADATTRIBUTE
The name of an attribute did not match up with a named column in the table, or the
attribute did not have an associated value.

NIS_BADNAME
The name passed to the function is not a legal NIS+ name.

NIS_BADREQUEST
A problem was detected in the request structure passed to the client library.

NIS_CACHEEXPIRED
The entry returned came from an object cache that has expired. This means that the
time to live value has gone to zero and the entry may have changed. If the flag
NO_CACHE was passed to the lookup function then the lookup function will retry
the operation to get an unexpired copy of the object.

NIS_CBERROR
An RPC error occurred on the server while it was calling back to the client. The
transaction was aborted at that time and any unsent data was discarded.

NIS_CBRESULTS
Even though the request was successful, all of the entries have been sent to your
callback function and are thus not included in this result.

NIS_FOREIGNNS
The name could not be completely resolved. When the name passed to the function
would resolve in a namespace that is outside the NIS+ name tree, this error is

nis_first_entry(3NSL)

ERRORS

Introduction to Library Functions 557

returned with a NIS+ object of type DIRECTORY. The returned object contains the
type of namespace and contact information for a server within that namespace.

NIS_INVALIDOBJ
The object pointed to by object is not a valid NIS+ entry object for the given table.
This could occur if it had a mismatched number of columns, or a different data type
(for example, binary or text) than the associated column in the table.

NIS_LINKNAMEERROR
The name passed resolved to a LINK type object and the contents of the object
pointed to an invalid name.

NIS_MODFAIL
The attempted modification failed for some reason.

NIS_NAMEEXISTS
An attempt was made to add a name that already exists. To add the name, first
remove the existing name and then add the new name or modify the existing
named object.

NIS_NAMEUNREACHABLE
This soft error indicates that a server for the desired directory of the named table
object could not be reached. This can occur when there is a network partition or the
server has crashed. Attempting the operation again may succeed. See the
HARD_LOOKUP flag.

NIS_NOCALLBACK
The server was unable to contact the callback service on your machine. This results
in no data being returned.

NIS_NOMEMORY
Generally a fatal result. It means that the service ran out of heap space.

NIS_NOSUCHNAME
This hard error indicates that the named directory of the table object does not exist.
This occurs when the server that should be the parent of the server that serves the
table, does not know about the directory in which the table resides.

NIS_NOSUCHTABLE
The named table does not exist.

NIS_NOT_ME
A request was made to a server that does not serve the given name. Normally this
will not occur, however if you are not using the built in location mechanism for
servers, you may see this if your mechanism is broken.

NIS_NOTFOUND
No entries in the table matched the search criteria. If the search criteria was null
(return all entries) then this result means that the table is empty and may safely be
removed by calling the nis_remove().

nis_first_entry(3NSL)

558 man pages section 3: Library Functions • Last Revised 17 Feb 1998

If the FOLLOW_PATH flag was set, this error indicates that none of the tables in the
path contain entries that match the search criteria.

NIS_NOTMASTER
A change request was made to a server that serves the name, but it is not the master
server. This can occur when a directory object changes and it specifies a new master
server. Clients that have cached copies of the directory object in the
/var/nis/NIS_SHARED_DIRCACHE file will need to have their cache managers
restarted (use nis_cachemgr -i) to flush this cache.

NIS_NOTSAMEOBJ
An attempt to remove an object from the namespace was aborted because the object
that would have been removed was not the same object that was passed in the
request.

NIS_NOTSEARCHABLE
The table name resolved to a NIS+ object that was not searchable.

NIS_PARTIAL
This result is similar to NIS_NOTFOUND except that it means the request succeeded
but resolved to zero entries. When this occurs, the server returns a copy of the table
object instead of an entry so that the client may then process the path or implement
some other local policy.

NIS_RPCERROR
This fatal error indicates the RPC subsystem failed in some way. Generally there
will be a syslog(3C) message indicating why the RPC request failed.

NIS_S_NOTFOUND
The named entry does not exist in the table, however not all tables in the path
could be searched, so the entry may exist in one of those tables.

NIS_S_SUCCESS
Even though the request was successful, a table in the search path was not able to
be searched, so the result may not be the same as the one you would have received
if that table had been accessible.

NIS_SUCCESS
The request was successful.

NIS_SYSTEMERROR
Some form of generic system error occurred while attempting the request. Check
the syslog(3C) record for error messages from the server.

NIS_TOOMANYATTRS
The search criteria passed to the server had more attributes than the table had
searchable columns.

NIS_TRYAGAIN
The server connected to was too busy to handle your request. add_entry(),
remove_entry(), and modify_entry() return this error when the master

nis_first_entry(3NSL)

Introduction to Library Functions 559

server is currently updating its internal state. It can be returned to nis_list()
when the function specifies a callback and the server does not have the resources to
handle callbacks.

NIS_TYPEMISMATCH
An attempt was made to add or modify an entry in a table, and the entry passed
was of a different type than the table.

NIS_PATH When set, this variable is the search path used by nis_list() if
the flag EXPAND_NAME is set.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

To succeed, nis_add_entry(), nis_remove_entry(), and
nis_modify_entry() must inherit the PAF_TRUSTED_PATH attribute.

nis_cachemgr(1M), nis_names(3NSL), nis_server(3NSL),
rpc_svc_calls(3NSL)

niscat(1), niserror(1), nismatch(1), syslog(3C), nis_clone_object(3NSL),
nis_destroy_object(3NSL), nis_error(3NSL), nis_getnames(3NSL),
nis_local_names(3NSL), nis_objects(3NSL), attributes(5)

Use the flag HARD_LOOKUP carefully since it can cause the application to block
indefinitely during a network partition.

The path used when the flag FOLLOW_PATH is specified, is the one present in the first
table searched. The path values in tables that are subsequently searched are ignored.

It is legal to call functions that would access the nameservice from within a list
callback. However, calling a function that would itself use a callback, or calling
nis_list() with a callback from within a list callback function is not currently
supported.

There are currently no known methods for nis_first_entry() and
nis_next_entry() to get their answers from only the master server.

The nis_list() function is not MT-Safe with callbacks. nis_list() callbacks are
serialized. A call to nis_list() with a callback from within nis_list() will
deadlock. nis_list() with a callback cannot be called from an rpc server. See
rpc_svc_calls(3NSL). Otherwise, this function is MT-Safe.

nis_first_entry(3NSL)

ENVIRONMENT
VARIABLES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

WARNINGS

NOTES

560 man pages section 3: Library Functions • Last Revised 17 Feb 1998

nis_names, nis_lookup, nis_add, nis_remove, nis_modify, nis_freeresult – NIS+
namespace functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

nis_result *nis_lookup(nis_name name, uint_t flags);

nis_result *nis_add(nis_name name, nis_object *obj);

nis_result *nis_remove(nis_name name, nis_object *obj);

nis_result *nis_modify(nis_name name, nis_object *obj);

void nis_freeresult(nis_result *result);

These functions are used to locate and manipulate all NIS+ objects (see
nis_objects(3NSL)) except the NIS+ entry objects. To look up the NIS+ entry
objects within a NIS+ table, refer to nis_subr(3NSL).

nis_lookup() resolves a NIS+ name and returns a copy of that object from a NIS+
server. nis_add() and nis_remove() add and remove objects to the NIS+
namespace, respectively. nis_modify() can change specific attributes of an object
that already exists in the namespace.

These functions should be used only with names that refer to an NIS+ Directory, NIS+
Table, NIS+ Group, or NIS+ Private object. If a name refers to an NIS+ entry object, the
functions listed in nis_subr(3NSL) should be used.

nis_freeresult() frees all memory associated with a nis_result structure. This
function must be called to free the memory associated with a NIS+ result.
nis_lookup(), nis_add(), nis_remove(), and nis_modify() all return a
pointer to a nis_result structure which must be freed by calling
nis_freeresult() when you have finished using it. If one or more of the objects
returned in the structure need to be retained, they can be copied with
nis_clone_object(3NSL) (see nis_subr(3NSL)). To succeed, nis_add(),
nis_modify(), and nis_remove() must inherit the PAF_TRUSTED_PATH attribute.

nis_lookup() takes two parameters, the name of the object to be resolved in name,
and a flags parameter, flags, which is defined below. The object name is expected to
correspond to the syntax of a non-indexed NIS+ name (see nis_tables(3NSL)). The
nis_lookup() function is the only function from this group that can use a non-fully
qualified name. If the parameter name is not a fully qualified name, then the flag
EXPAND_NAME must be specified in the call. If this flag is not specified, the function
will fail with the error NIS_BADNAME.

The flags parameter is constructed by logically ORing zero or more flags from the
following list.

FOLLOW_LINKS When specified, the client library will ‘‘follow’’ links by issuing
another NIS+ lookup call for the object named by the link. If the

nis_freeresult(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 561

linked object is itself a link, then this process will iterate until the
either a object is found that is not a LINK type object, or the library
has followed 16 links.

HARD_LOOKUP When specified, the client library will retry the lookup until it is
answered by a server. Using this flag will cause the library to block
until at least one NIS+ server is available. If the network
connectivity is impaired, this can be a relatively long time.

NO_CACHE When specified, the client library will bypass any object caches
and will get the object from either the master NIS+ server or one of
its replicas.

MASTER_ONLY When specified, the client library will bypass any object caches
and any domain replicas and fetch the object from the NIS+ master
server for the object’s domain. This insures that the object returned
is up to date at the cost of a possible performance degradation and
failure if the master server is unavailable or physically distant.

EXPAND_NAME When specified, the client library will attempt to expand a
partially qualified name by calling the function nis_getnames()
(see nis_subr(3NSL)) which uses the environment variable
NIS_PATH.

The status value may be translated to ascii text using the function nis_sperrno()
(see nis_error(3NSL)).

On return, the objects array in the result will contain one and possibly several objects
that were resolved by the request. If the FOLLOW_LINKS flag was present, on success
the function could return several entry objects if the link in question pointed within a
table. If an error occurred when following a link, the objects array will contain a copy
of the link object itself.

The function nis_add() will take the object obj and add it to the NIS+ namespace
with the name name. This operation will fail if the client making the request does not
have the create access right for the domain in which this object will be added. The
parameter name must contain a fully qualified NIS+ name. The object members
zo_name and zo_domain will be constructed from this name. This operation will fail if
the object already exists. This feature prevents the accidental addition of objects over
another object that has been added by another process.

The function nis_remove() will remove the object with name name from the NIS+
namespace. The client making this request must have the destroy access right for the
domain in which this object resides. If the named object is a link, the link is removed
and not the object that it points to. If the parameter obj is not NULL, it is assumed to
point to a copy of the object being removed. In this case, if the object on the server
does not have the same object identifier as the object being passed, the operation will
fail with the NIS_NOTSAMEOBJ error. This feature allows the client to insure that it is
removing the desired object. The parameter name must contain a fully qualified NIS+
name.

nis_freeresult(3NSL)

562 man pages section 3: Library Functions • Last Revised 17 Feb 1998

The function nis_modify() will modify the object named by name to the field values
in the object pointed to by obj. This object should contain a copy of the object from the
name space that is being modified. This operation will fail with the error
NIS_NOTSAMEOBJ if the object identifier of the passed object does not match that of
the object being modified in the namespace.

Normally the contents of the member zo_name in the nis_object structure would be
constructed from the name passed in the name parameter. However, if it is non-null the
client library will use the name in the zo_name member to perform a rename operation
on the object. This name must not contain any unquoted ‘.’(dot) characters. If these
conditions are not met the operation will fail and return the NIS_BADNAME error code.

These functions return a pointer to a structure of type nis_result:

struct nis_result {
nis_error status;
struct {

uint_t objects_len;
nis_object *objects_val;

} objects;
netobj cookie;
uint32_t zticks;
uint32_t dticks;
uint32_t aticks;
uint32_t cticks;

};

The status member contains the error status of the the operation. A text message that
describes the error can be obtained by calling the function nis_sperrno() (see
nis_error(3NSL)).

The objects structure contains two members. objects_val is an array of nis_object
structures; objects_len is the number of cells in the array. These objects will be freed by
the call to nis_freeresult(). If you need to keep a copy of one or more objects,
they can be copied with the function nis_clone_object() and freed with the
function nis_destroy_object() (see nis_server(3NSL)). Refer to
nis_objects(3NSL) for a description of the nis_object structure.

The various ticks contain details of where the time was taken during a request. They
can be used to tune one’s data organization for faster access and to compare different
database implementations.

zticks The time spent in the NIS+ service itself. This count starts when the server
receives the request and stops when it sends the reply.

dticks The time spent in the database backend. This time is measured from the
time a database call starts, until the result is returned. If the request results
in multiple calls to the database, this is the sum of all the time spent in
those calls.

aticks The time spent in any ‘‘accelerators’’ or caches. This includes the time
required to locate the server needed to resolve the request.

nis_freeresult(3NSL)

Results

Introduction to Library Functions 563

cticks The total time spent in the request. This clock starts when you enter the
client library and stops when a result is returned. By subtracting the sum of
the other ticks values from this value, you can obtain the local overhead of
generating a NIS+ request.

Subtracting the value in dticks from the value in zticks will yield the time spent in the
service code itself. Subtracting the sum of the values in zticks and aticks from the value
in cticks will yield the time spent in the client library itself. Note: all of the tick times
are measured in microseconds.

The client library can return a variety of error returns and diagnostics. The more
salient ones are documented below.

NIS_SUCCESS
The request was successful.

NIS_S_SUCCESS
The request was successful, however the object returned came from an object cache
and not directly from the server. If you do not wish to see objects from object caches
you must specify the flag NO_CACHE when you call the lookup function.

NIS_NOTFOUND
The named object does not exist in the namespace.

NIS_CACHEEXPIRED
The object returned came from an object cache that has expired. The time to live
value has gone to zero and the object may have changed. If the flag NO_CACHE was
passed to the lookup function then the lookup function will retry the operation to
get an unexpired copy of the object.

NIS_NAMEUNREACHABLE
A server for the directory of the named object could not be reached. This can occur
when there is a network partition or all servers have crashed. See the
HARD_LOOKUP flag.

NIS_UNKNOWNOBJ
The object returned is of an unknown type.

NIS_TRYAGAIN
The server connected to was too busy to handle your request. For the add, remove,
and modify operations this is returned when either the master server for a directory
is unavailable or it is in the process of checkpointing its database. It can also be
returned when the server is updating it’s internal state. And in the case of
nis_list() if the client specifies a callback and the server does not have enough
resources to handle the callback.

NIS_SYSTEMERROR
A generic system error occurred while attempting the request. Most commonly the
server has crashed or the database has become corrupted. Check the syslog record
for error messages from the server.

nis_freeresult(3NSL)

RETURN VALUES

564 man pages section 3: Library Functions • Last Revised 17 Feb 1998

NIS_NOT_ME
A request was made to a server that does not serve the name in question. Normally
this will not occur, however if you are not using the built in location mechanism for
servers you may see this if your mechanism is broken.

NIS_NOMEMORY
Generally a fatal result. It means that the service ran out of heap space.

NIS_NAMEEXISTS
An attempt was made to add a name that already exists. To add the name, first
remove the existing name and then add the new object or modify the existing
named object.

NIS_NOTMASTER
An attempt was made to update the database on a replica server.

NIS_INVALIDOBJ
The object pointed to by obj is not a valid NIS+ object.

NIS_BADNAME
The name passed to the function is not a legal NIS+ name.

NIS_LINKNAMEERROR
The name passed resolved to a LINK type object and the contents of the link
pointed to an invalid name.

NIS_NOTSAMEOBJ
An attempt to remove an object from the namespace was aborted because the object
that would have been removed was not the same object that was passed in the
request.

NIS_NOSUCHNAME
This hard error indicates that the named directory of the table object does not exist.
This occurs when the server that should be the parent of the server that serves the
table, does not know about the directory in which the table resides.

NIS_NOSUCHTABLE
The named table does not exist.

NIS_MODFAIL
The attempted modification failed.

NIS_FOREIGNNS
The name could not be completely resolved. When the name passed to the function
would resolve in a namespace that is outside the NIS+ name tree, this error is
returned with a NIS+ object of type DIRECTORY, which contains the type of
namespace and contact information for a server within that namespace.

NIS_RPCERROR
This fatal error indicates the RPC subsystem failed in some way. Generally there
will be a syslog(3C) message indicating why the RPC request failed.

nis_freeresult(3NSL)

Introduction to Library Functions 565

NIS_PATH If the flag EXPAND_NAME is set, this variable is the search path
used by nis_lookup().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_add(), nis_modify(), and nis_remove() must inherit the
PAF_TRUSTED_PATH attribute.

nis_server(3NSL), nis_tables(3NSL)

nis_error(3NSL), nis_objects(3NSL), nis_subr(3NSL), attributes(5)

You cannot modify the name of an object if that modification would cause the object to
reside in a different domain.

You cannot modify the schema of a table object.

nis_freeresult(3NSL)

ENVIRONMENT
VARIABLES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

566 man pages section 3: Library Functions • Last Revised 17 Feb 1998

nis_server, nis_mkdir, nis_rmdir, nis_servstate, nis_stats, nis_getservlist,
nis_freeservlist, nis_freetags – Miscellaneous NIS+ functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

nis_error nis_mkdir(nis_name dirname, nis_server *machine);

nis_error nis_rmdir(nis_name dirname, nis_server *machine);

nis_error nis_servstate(nis_server *machine, nis_tag *tags, int
numtags, nis_tag **result);

nis_error nis_stats(nis_server *machine, nis_tag *tags, int numtags,
nis_tag **result);

void nis_freetags(nis_tag *tags, int numtags);

nis_server **nis_getservlist(nis_name dirname);

void nis_freeservlist(nis_server **machines);

These functions provide a variety of services for NIS+ applications.

nis_mkdir() is used to create the necessary databases to support NIS+ service for a
directory, dirname, on a server, machine. If this operation is successful, it means that
the directory object describing dirname has been updated to reflect that server machine
is serving the named directory. For a description of the nis_server structure, refer to
nis_objects(3NSL). To succeed, nis_mkdir() must inherit the
PAF_TRUSTED_PATH attribute.

Per-server and per-directory access restrictions may apply to nis_mkdir(). See
nisopaccess(1)

nis_rmdir() is used to delete the directory, dirname, from the specified server
machine. The machine parameter cannot be NULL. Note that nis_rmdir() does not
remove the directory dirname from the namespace or remove a server from the server
list in the directory object. To remove a directory from the namespace you must call
nis_remove() to remove the directory dirname from the namespace and call
nis_rmdir() for each server in the server list to remove the directory from the
server. To remove a replica from the server list, you need to first call nis_modify()
to remove the server from the directory object and then call nis_rmdir() to remove
the replica. To succeed, nis_rmdir() must inherit the PAF_TRUSTED_PATH
attribute.

Per-server and per-directory access restrictions may apply to nis_rmdir(). See
nisopaccess(1)

nis_servstate() is used to set and read the various state variables of the NIS+
servers. In particular the internal debugging state of the servers may be set and
queried. To succeed, nis_servstate() must inherit the PAF_TRUSTED_PATH
attribute.

nis_freeservlist(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 567

The nis_stats() function is used to retrieve statistics about how the server is
operating. Tracking these statistics can help administrators determine when they need
to add additional replicas or to break up a domain into two or more subdomains. For
more information on reading statistics, see nisstat(1M).

nis_servstate() and nis_stats() use the tag list. This tag list is a variable
length array of nis_tag structures whose length is passed to the function in the numtags
parameter. The set of legal tags are defined in the file <rpcsvc/nis_tags.h> which
is included in <rpcsvc/nis.h>. Because these tags can and do vary between
implementations of the NIS+ service, it is best to consult this file for the supported list.
Passing unrecognized tags to a server will result in their tag_value member being set to
the string ‘‘unknown.’’ Both of these functions return their results in malloced tag
structure, *result. If there is an error, *result is set to NULL. The tag_value pointers points
to allocated string memory which contains the results. Use nis_freetags() to free
the tag structure.

Per-server and per-directory access restrictions may apply to the NIS_SERVSTATE or
NIS_STATUS (nis_stats()) operations and their sub-operations (tags). See
nisopaccess(1)

nis_getservlist() returns a null terminated list of nis_server structures that
represent the list of servers that serve the domain named dirname. Servers from this list
can be used when calling functions that require the name of a NIS+ server. For a
description of the nis_server structure, refer to nis_objects(3NSL).
nis_freeservlist() frees the list of servers returned by nis_getservlist().
Note that this is the only legal way to free that list.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_mkdir(), nis_rmdir(), and nis_servstat() must inherit the
PAF_TRUSTED_PATH attribute.

nis_names(3NSL)

nisopaccess(1), nisstat(1M), nis_objects(3NSL), nis_subr(3NSL),
attributes(5)

nis_freeservlist(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

568 man pages section 3: Library Functions • Last Revised 4 Apr 2000

nis_server, nis_mkdir, nis_rmdir, nis_servstate, nis_stats, nis_getservlist,
nis_freeservlist, nis_freetags – Miscellaneous NIS+ functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

nis_error nis_mkdir(nis_name dirname, nis_server *machine);

nis_error nis_rmdir(nis_name dirname, nis_server *machine);

nis_error nis_servstate(nis_server *machine, nis_tag *tags, int
numtags, nis_tag **result);

nis_error nis_stats(nis_server *machine, nis_tag *tags, int numtags,
nis_tag **result);

void nis_freetags(nis_tag *tags, int numtags);

nis_server **nis_getservlist(nis_name dirname);

void nis_freeservlist(nis_server **machines);

These functions provide a variety of services for NIS+ applications.

nis_mkdir() is used to create the necessary databases to support NIS+ service for a
directory, dirname, on a server, machine. If this operation is successful, it means that
the directory object describing dirname has been updated to reflect that server machine
is serving the named directory. For a description of the nis_server structure, refer to
nis_objects(3NSL). To succeed, nis_mkdir() must inherit the
PAF_TRUSTED_PATH attribute.

Per-server and per-directory access restrictions may apply to nis_mkdir(). See
nisopaccess(1)

nis_rmdir() is used to delete the directory, dirname, from the specified server
machine. The machine parameter cannot be NULL. Note that nis_rmdir() does not
remove the directory dirname from the namespace or remove a server from the server
list in the directory object. To remove a directory from the namespace you must call
nis_remove() to remove the directory dirname from the namespace and call
nis_rmdir() for each server in the server list to remove the directory from the
server. To remove a replica from the server list, you need to first call nis_modify()
to remove the server from the directory object and then call nis_rmdir() to remove
the replica. To succeed, nis_rmdir() must inherit the PAF_TRUSTED_PATH
attribute.

Per-server and per-directory access restrictions may apply to nis_rmdir(). See
nisopaccess(1)

nis_servstate() is used to set and read the various state variables of the NIS+
servers. In particular the internal debugging state of the servers may be set and
queried. To succeed, nis_servstate() must inherit the PAF_TRUSTED_PATH
attribute.

nis_freetags(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 569

The nis_stats() function is used to retrieve statistics about how the server is
operating. Tracking these statistics can help administrators determine when they need
to add additional replicas or to break up a domain into two or more subdomains. For
more information on reading statistics, see nisstat(1M).

nis_servstate() and nis_stats() use the tag list. This tag list is a variable
length array of nis_tag structures whose length is passed to the function in the numtags
parameter. The set of legal tags are defined in the file <rpcsvc/nis_tags.h> which
is included in <rpcsvc/nis.h>. Because these tags can and do vary between
implementations of the NIS+ service, it is best to consult this file for the supported list.
Passing unrecognized tags to a server will result in their tag_value member being set to
the string ‘‘unknown.’’ Both of these functions return their results in malloced tag
structure, *result. If there is an error, *result is set to NULL. The tag_value pointers points
to allocated string memory which contains the results. Use nis_freetags() to free
the tag structure.

Per-server and per-directory access restrictions may apply to the NIS_SERVSTATE or
NIS_STATUS (nis_stats()) operations and their sub-operations (tags). See
nisopaccess(1)

nis_getservlist() returns a null terminated list of nis_server structures that
represent the list of servers that serve the domain named dirname. Servers from this list
can be used when calling functions that require the name of a NIS+ server. For a
description of the nis_server structure, refer to nis_objects(3NSL).
nis_freeservlist() frees the list of servers returned by nis_getservlist().
Note that this is the only legal way to free that list.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_mkdir(), nis_rmdir(), and nis_servstat() must inherit the
PAF_TRUSTED_PATH attribute.

nis_names(3NSL)

nisopaccess(1), nisstat(1M), nis_objects(3NSL), nis_subr(3NSL),
attributes(5)

nis_freetags(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

570 man pages section 3: Library Functions • Last Revised 4 Apr 2000

nis_server, nis_mkdir, nis_rmdir, nis_servstate, nis_stats, nis_getservlist,
nis_freeservlist, nis_freetags – Miscellaneous NIS+ functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

nis_error nis_mkdir(nis_name dirname, nis_server *machine);

nis_error nis_rmdir(nis_name dirname, nis_server *machine);

nis_error nis_servstate(nis_server *machine, nis_tag *tags, int
numtags, nis_tag **result);

nis_error nis_stats(nis_server *machine, nis_tag *tags, int numtags,
nis_tag **result);

void nis_freetags(nis_tag *tags, int numtags);

nis_server **nis_getservlist(nis_name dirname);

void nis_freeservlist(nis_server **machines);

These functions provide a variety of services for NIS+ applications.

nis_mkdir() is used to create the necessary databases to support NIS+ service for a
directory, dirname, on a server, machine. If this operation is successful, it means that
the directory object describing dirname has been updated to reflect that server machine
is serving the named directory. For a description of the nis_server structure, refer to
nis_objects(3NSL). To succeed, nis_mkdir() must inherit the
PAF_TRUSTED_PATH attribute.

Per-server and per-directory access restrictions may apply to nis_mkdir(). See
nisopaccess(1)

nis_rmdir() is used to delete the directory, dirname, from the specified server
machine. The machine parameter cannot be NULL. Note that nis_rmdir() does not
remove the directory dirname from the namespace or remove a server from the server
list in the directory object. To remove a directory from the namespace you must call
nis_remove() to remove the directory dirname from the namespace and call
nis_rmdir() for each server in the server list to remove the directory from the
server. To remove a replica from the server list, you need to first call nis_modify()
to remove the server from the directory object and then call nis_rmdir() to remove
the replica. To succeed, nis_rmdir() must inherit the PAF_TRUSTED_PATH
attribute.

Per-server and per-directory access restrictions may apply to nis_rmdir(). See
nisopaccess(1)

nis_servstate() is used to set and read the various state variables of the NIS+
servers. In particular the internal debugging state of the servers may be set and
queried. To succeed, nis_servstate() must inherit the PAF_TRUSTED_PATH
attribute.

nis_getservlist(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 571

The nis_stats() function is used to retrieve statistics about how the server is
operating. Tracking these statistics can help administrators determine when they need
to add additional replicas or to break up a domain into two or more subdomains. For
more information on reading statistics, see nisstat(1M).

nis_servstate() and nis_stats() use the tag list. This tag list is a variable
length array of nis_tag structures whose length is passed to the function in the numtags
parameter. The set of legal tags are defined in the file <rpcsvc/nis_tags.h> which
is included in <rpcsvc/nis.h>. Because these tags can and do vary between
implementations of the NIS+ service, it is best to consult this file for the supported list.
Passing unrecognized tags to a server will result in their tag_value member being set to
the string ‘‘unknown.’’ Both of these functions return their results in malloced tag
structure, *result. If there is an error, *result is set to NULL. The tag_value pointers points
to allocated string memory which contains the results. Use nis_freetags() to free
the tag structure.

Per-server and per-directory access restrictions may apply to the NIS_SERVSTATE or
NIS_STATUS (nis_stats()) operations and their sub-operations (tags). See
nisopaccess(1)

nis_getservlist() returns a null terminated list of nis_server structures that
represent the list of servers that serve the domain named dirname. Servers from this list
can be used when calling functions that require the name of a NIS+ server. For a
description of the nis_server structure, refer to nis_objects(3NSL).
nis_freeservlist() frees the list of servers returned by nis_getservlist().
Note that this is the only legal way to free that list.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_mkdir(), nis_rmdir(), and nis_servstat() must inherit the
PAF_TRUSTED_PATH attribute.

nis_names(3NSL)

nisopaccess(1), nisstat(1M), nis_objects(3NSL), nis_subr(3NSL),
attributes(5)

nis_getservlist(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

572 man pages section 3: Library Functions • Last Revised 4 Apr 2000

nis_groups, nis_ismember, nis_addmember, nis_removemember, nis_creategroup,
nis_destroygroup, nis_verifygroup, nis_print_group_entry – NIS+ group manipulation
functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

bool_t nis_ismember(nis_name principal, nis_name group);

nis_error nis_addmember(nis_name member, nis_name group);

nis_error nis_removemember(nis_name member, nis_name group);

nis_error nis_creategroup(nis_name group, uint_t flags);

nis_error nis_destroygroup(nis_name group);

void nis_print_group_entry(nis_name group);

nis_error nis_verifygroup(nis_name group);

These functions manipulate NIS+ groups. They are used by NIS+ clients and servers,
and are the interfaces to the group authorization object.

The names of NIS+ groups are syntactically similar to names of NIS+ objects but they
occupy a separate namespace. A group named "a.b.c.d." is represented by a NIS+
group object named "a.groups_dir.b.c.d."; the functions described here all expect the
name of the group, not the name of the corresponding group object.

There are three types of group members:

� An explicit member is just a NIS+ principal-name, for example
"wickedwitch.west.oz."

� An implicit ("domain") member, written "*.west.oz.", means that all principals in the
given domain belong to this member. No other forms of wildcarding are allowed:
"wickedwitch.*.oz." is invalid, as is "wickedwitch.west.*.". Note that principals in
subdomains of the given domain are not included.

� A recursive ("group") member, written "@cowards.oz.", refers to another group; all
principals that belong to that group are considered to belong here.

Any member may be made negative by prefixing it with a minus sign (’−’). A group
may thus contain explicit, implicit, recursive, negative explicit, negative implicit, and
negative recursive members.

A principal is considered to belong to a group if it belongs to at least one non-negative
group member of the group and belongs to no negative group members.

The nis_ismember() function returns TRUE if it can establish that principal belongs
to group; otherwise it returns FALSE.

The nis_addmember() and nis_removemember() functions add or remove a
member. They do not check whether the member is valid. The user must have read

nis_groups(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 573

and modify rights for the group in question. To succeed, nis_addmember() and
nis_removemember() must inherit the PAF_TRUSTED_PATH attribute.

The nis_creategroup() and nis_destroygroup() functions create and destroy
group objects. The user must have create or destroy rights, respectively, for the
groups_dir directory in the appropriate domain. The parameter flags to
nis_creategroup() is currently unused and should be set to zero. To succeed,
nis_creategroup() and nis_destroygroup() must inherit the
PAF_TRUSTED_PATH attribute.

The nis_print_group_entry() function lists a group’s members on the standard
output.

The nis_verifygroup() function returns NIS_SUCCESS if the given group exists,
otherwise it returns an error code.

EXAMPLE 1 Simple Memberships

Given a group sadsouls.oz. with members tinman.oz., lion.oz., and
scarecrow.oz., the function call

bool_var = nis_ismember("lion.oz.", "sadsouls.oz.");

will return 1 (TRUE) and the function call

bool_var = nis_ismember("toto.oz.", "sadsouls.oz.");

will return 0 (FALSE).

EXAMPLE 2 Implicit Memberships

Given a group baddies.oz., with members wickedwitch.west.oz. and
*.monkeys.west.oz., the function callbool_var =
nis_ismember("hogan.monkeys.west.oz.", "baddies.oz."); will return 1 (TRUE) because
any principal from the monkeys.west.oz. domain belongs to the implicit group
*.monkeys.west.oz., but the function call

bool_var = nis_ismember("hogan.big.monkeys.west.oz.", "baddies.oz.");

will return 0 (FALSE).

EXAMPLE 3 Recursive Memberships

Given a group goodandbad.oz., with members toto.kansas, @sadsouls.oz.,
and @baddies.oz., and the groups sadsouls.oz. and baddies.oz. defined
above, the function call

bool_var = nis_ismember("wickedwitch.west.oz.", "goodandbad.oz.");

will return 1 (TRUE), because wickedwitch.west.oz. is a member of the
baddies.oz. group which is recursively included in the goodandbad.oz. group.

See attributes(5) for descriptions of the following attributes:

nis_groups(3NSL)

EXAMPLES

ATTRIBUTES

574 man pages section 3: Library Functions • Last Revised 17 Feb 1998

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_addmember(), nis_removemember(), nis_creategroup() and
nis_destroygroup() must inherit the PAF_TRUSTED_PATH attribute.

nisgrpadm(1), nis_objects(3NSL), attributes(5)

These functions only accept fully-qualified NIS+ names.

A group is represented by a NIS+ object (see nis_objects(3NSL)) with a variant
part that is defined in the group_obj structure. It contains the following fields:

uint_t gr_flags; /* Interpretation Flags
(currently unused) */

struct {
uint_t gr_members_len;
nis_name *gr_members_val;

} gr_members; /* Array of members */

NIS+ servers and clients maintain a local cache of expanded groups to enhance their
performance when checking for group membership. Should the membership of a
group change, servers and clients with that group cached will not see the change until
either the group cache has expired or it is explicitly flushed. A server’s cache may be
flushed programmatically by calling the nis_servstate() function with tag
TAG_GCACHE and a value of 1.

There are currently no known methods for nis_ismember(),
nis_print_group_entry(), and nis_verifygroup() to get their answers from
only the master server.

nis_groups(3NSL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGESSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 575

nis_groups, nis_ismember, nis_addmember, nis_removemember, nis_creategroup,
nis_destroygroup, nis_verifygroup, nis_print_group_entry – NIS+ group manipulation
functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

bool_t nis_ismember(nis_name principal, nis_name group);

nis_error nis_addmember(nis_name member, nis_name group);

nis_error nis_removemember(nis_name member, nis_name group);

nis_error nis_creategroup(nis_name group, uint_t flags);

nis_error nis_destroygroup(nis_name group);

void nis_print_group_entry(nis_name group);

nis_error nis_verifygroup(nis_name group);

These functions manipulate NIS+ groups. They are used by NIS+ clients and servers,
and are the interfaces to the group authorization object.

The names of NIS+ groups are syntactically similar to names of NIS+ objects but they
occupy a separate namespace. A group named "a.b.c.d." is represented by a NIS+
group object named "a.groups_dir.b.c.d."; the functions described here all expect the
name of the group, not the name of the corresponding group object.

There are three types of group members:

� An explicit member is just a NIS+ principal-name, for example
"wickedwitch.west.oz."

� An implicit ("domain") member, written "*.west.oz.", means that all principals in the
given domain belong to this member. No other forms of wildcarding are allowed:
"wickedwitch.*.oz." is invalid, as is "wickedwitch.west.*.". Note that principals in
subdomains of the given domain are not included.

� A recursive ("group") member, written "@cowards.oz.", refers to another group; all
principals that belong to that group are considered to belong here.

Any member may be made negative by prefixing it with a minus sign (’−’). A group
may thus contain explicit, implicit, recursive, negative explicit, negative implicit, and
negative recursive members.

A principal is considered to belong to a group if it belongs to at least one non-negative
group member of the group and belongs to no negative group members.

The nis_ismember() function returns TRUE if it can establish that principal belongs
to group; otherwise it returns FALSE.

The nis_addmember() and nis_removemember() functions add or remove a
member. They do not check whether the member is valid. The user must have read

nis_ismember(3NSL)

NAME

SYNOPSIS

DESCRIPTION

576 man pages section 3: Library Functions • Last Revised 17 Feb 1998

and modify rights for the group in question. To succeed, nis_addmember() and
nis_removemember() must inherit the PAF_TRUSTED_PATH attribute.

The nis_creategroup() and nis_destroygroup() functions create and destroy
group objects. The user must have create or destroy rights, respectively, for the
groups_dir directory in the appropriate domain. The parameter flags to
nis_creategroup() is currently unused and should be set to zero. To succeed,
nis_creategroup() and nis_destroygroup() must inherit the
PAF_TRUSTED_PATH attribute.

The nis_print_group_entry() function lists a group’s members on the standard
output.

The nis_verifygroup() function returns NIS_SUCCESS if the given group exists,
otherwise it returns an error code.

EXAMPLE 1 Simple Memberships

Given a group sadsouls.oz. with members tinman.oz., lion.oz., and
scarecrow.oz., the function call

bool_var = nis_ismember("lion.oz.", "sadsouls.oz.");

will return 1 (TRUE) and the function call

bool_var = nis_ismember("toto.oz.", "sadsouls.oz.");

will return 0 (FALSE).

EXAMPLE 2 Implicit Memberships

Given a group baddies.oz., with members wickedwitch.west.oz. and
*.monkeys.west.oz., the function callbool_var =
nis_ismember("hogan.monkeys.west.oz.", "baddies.oz."); will return 1 (TRUE) because
any principal from the monkeys.west.oz. domain belongs to the implicit group
*.monkeys.west.oz., but the function call

bool_var = nis_ismember("hogan.big.monkeys.west.oz.", "baddies.oz.");

will return 0 (FALSE).

EXAMPLE 3 Recursive Memberships

Given a group goodandbad.oz., with members toto.kansas, @sadsouls.oz.,
and @baddies.oz., and the groups sadsouls.oz. and baddies.oz. defined
above, the function call

bool_var = nis_ismember("wickedwitch.west.oz.", "goodandbad.oz.");

will return 1 (TRUE), because wickedwitch.west.oz. is a member of the
baddies.oz. group which is recursively included in the goodandbad.oz. group.

See attributes(5) for descriptions of the following attributes:

nis_ismember(3NSL)

EXAMPLES

ATTRIBUTES

Introduction to Library Functions 577

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_addmember(), nis_removemember(), nis_creategroup() and
nis_destroygroup() must inherit the PAF_TRUSTED_PATH attribute.

nisgrpadm(1), nis_objects(3NSL), attributes(5)

These functions only accept fully-qualified NIS+ names.

A group is represented by a NIS+ object (see nis_objects(3NSL)) with a variant
part that is defined in the group_obj structure. It contains the following fields:

uint_t gr_flags; /* Interpretation Flags
(currently unused) */

struct {
uint_t gr_members_len;
nis_name *gr_members_val;

} gr_members; /* Array of members */

NIS+ servers and clients maintain a local cache of expanded groups to enhance their
performance when checking for group membership. Should the membership of a
group change, servers and clients with that group cached will not see the change until
either the group cache has expired or it is explicitly flushed. A server’s cache may be
flushed programmatically by calling the nis_servstate() function with tag
TAG_GCACHE and a value of 1.

There are currently no known methods for nis_ismember(),
nis_print_group_entry(), and nis_verifygroup() to get their answers from
only the master server.

nis_ismember(3NSL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGESSunOS 5.8
Reference Manual

NOTES

578 man pages section 3: Library Functions • Last Revised 17 Feb 1998

nis_tables, nis_list, nis_add_entry, nis_remove_entry, nis_modify_entry, nis_first_entry,
nis_next_entry – NIS+ table functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

nis_result *nis_list(nis_name name, uint_tflags, int
(*callback)(nis_name table_name, nis_object *object, void
*userdata), void *userdata);

nis_result *nis_add_entry(nis_name table_name, nis_object *object,
uint_t flags);

nis_result *nis_remove_entry(nis_name name, nis_object *object,
uint_tflags);

nis_result *nis_modify_entry(nis_name name, nis_object *object,
uint_tflags);

nis_result *nis_first_entry(nis_name table_name);

nis_result *nis_next_entry(nis_name table_name, netobj *cookie);

void nis_freeresult(nis_result *result);

These functions are used to search and modify NIS+ tables. nis_list() is used to
search a table in the NIS+ namespace. nis_first_entry() and
nis_next_entry() are used to enumerate a table one entry at a time.
nis_add_entry(), nis_remove_entry(), and nis_modify_entry() are used
to change the information stored in a table. nis_freeresult() is used to free the
memory associated with the nis_result structure.

Entries within a table are named by NIS+ indexed names. An indexed name is a
compound name that is composed of a search criteria and a simple NIS+ name that
identifies a table object. A search criteria is a series of column names and their
associated values enclosed in bracket ’[]’ characters. Indexed names have the
following form:

[colname=value, . . .],tablename

The list function, nis_list(), takes an indexed name as the value for the name
parameter. Here, the tablename should be a fully qualified NIS+ name unless the
EXPAND_NAME flag (described below) is set. The second parameter, flags, defines how
the function will respond to various conditions. The value for this parameter is created
by logically ORing together one or more flags from the following list.

FOLLOW_LINKS If the table specified in name resolves to be a LINK type object (see
nis_objects(3NSL)), this flag specifies that the client library
follow that link and do the search at that object. If this flag is not
set and the name resolves to a link, the error
NIS_NOTSEARCHABLE will be returned.

nis_list(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 579

FOLLOW_PATH This flag specifies that if the entry is not found within this table,
the list operation should follow the path specified in the table
object. When used in conjunction with the ALL_RESULTS flag
below, it specifies that the path should be followed regardless of
the result of the search. When used in conjunction with the
FOLLOW_LINKS flag above, named tables in the path that resolve
to links will be followed until the table they point to is located. If a
table in the path is not reachable because no server that serves it is
available, the result of the operation will be either a “soft” success
or a “soft” failure to indicate that not all tables in the path could be
searched. If a name in the path names is either an invalid or
non-existent object then it is silently ignored.

HARD_LOOKUP This flag specifies that the operation should continue trying to
contact a server of the named table until a definitive result is
returned (such as NIS_NOTFOUND).

ALL_RESULTS This flag can only be used in conjunction with FOLLOW_PATH and
a callback function. When specified, it forces all of the tables in the
path to be searched. If name does not specify a search criteria
(imply that all entries are to be returned), then this flag will cause
all of the entries in all of the tables in the path to be returned.

NO_CACHE This flag specifies that the client library should bypass any client
object caches and get its information directly from either the
master server or a replica server for the named table.

MASTER_ONLY This flag is even stronger than NO_CACHE in that it specifies that
the client library should only get its information from the master
server for a particular table. This guarantees that the information
will be up to date. However, there may be severe performance
penalties associated with contacting the master server directly on
large networks. When used in conjunction with the HARD_LOOKUP
flag, this will block the list operation until the master server is up
and available.

EXPAND_NAME When specified, the client library will attempt to expand a
partially qualified name by calling nis_getnames() [see
nis_local_names(3NSL)] which uses the environment variable
NIS_PATH.

RETURN_RESULT This flag is used to specify that a copy of the returning object be
returned in the nis_result structure if the operation was
successful.

The third parameter to nis_list(), callback, is an optional pointer to a function that
will process the ENTRY type objects that are returned from the search. If this pointer is
NULL, then all entries that match the search criteria are returned in the nis_result
structure, otherwise this function will be called once for each entry returned. When
called, this function should return 0 when additional objects are desired and 1 when it

nis_list(3NSL)

580 man pages section 3: Library Functions • Last Revised 17 Feb 1998

no longer wishes to see any more objects. The fourth parameter, userdata, is simply
passed to callback function along with the returned entry object. The client can use
this pointer to pass state information or other relevant data that the callback function
might need to process the entries.

The nis_list() function is not MT-Safe with callbacks. See NOTES.

nis_add_entry() will add the NIS+ object to the NIS+ table_name. The flags
parameter is used to specify the failure semantics for the add operation. The default
(flags equal 0) is to fail if the entry being added already exists in the table. The
ADD_OVERWRITE flag may be used to specify that existing object is to be overwritten if
it exists, (a modify operation) or added if it does not exist. With the ADD_OVERWRITE
flag, this function will fail with the error NIS_PERMISSION if the existing object does
not allow modify privileges to the client.

If the flag RETURN_RESULT has been specified, the server will return a copy of the
resulting object if the operation was successful. To succeed, nis_add_entry() must
inherit the PAF_TRUSTED_PATH attribute.

nis_remove_entry() removes the identified entry from the table or a set of entries
identified by table_name. If the parameter object is non-null, it is presumed to point to a
cached copy of the entry. When the removal is attempted, and the object that would be
removed is not the same as the cached object pointed to by object then the operation
will fail with an NIS_NOTSAMEOBJ error. If an object is passed with this function, the
search criteria in name is optional as it can be constructed from the values within the
entry. However, if no object is present, the search criteria must be included in the name
parameter. If the flags variable is null, and the search criteria does not uniquely
identify an entry, the NIS_NOTUNIQUE error is returned and the operation is aborted.
If the flag parameter REM_MULTIPLE is passed, and if remove permission is allowed
for each of these objects, then all objects that match the search criteria will be removed.
Note that a null search criteria and the REM_MULTIPLE flag will remove all entries in a
table. To succeed, nis_remove_entry() must inherit the PAF_TRUSTED_PATH
attribute.

nis_modify_entry() modifies an object identified by name. The parameter object
should point to an entry with the LEN_MODIFIED flag set in each column that
contains new information.

The owner, group, and access rights of an entry are modified by placing the modified
information into the respective fields of the parameter, object: zo_owner, zo_group,
and zo_access.

These columns will replace their counterparts in the entry that is stored in the table.
The entry passed must have the same number of columns, same type, and valid data
in the modified columns for this operation to succeed.

If the flags parameter contains the flag MOD_SAMEOBJ then the object pointed to by
object is assumed to be a cached copy of the original object. If the OID of the object
passed is different than the OID of the object the server fetches, then the operation fails

nis_list(3NSL)

Introduction to Library Functions 581

with the NIS_NOTSAMEOBJ error. This can be used to implement a simple
read-modify-write protocol which will fail if the object is modified before the client
can write the object back.

If the flag RETURN_RESULT has been specified, the server will return a copy of the
resulting object if the operation was successful. To succeed, nis_modify_entry()
must inherit the PAF_TRUSTED_PATH attribute.

nis_first_entry() fetches entries from a table one at a time. This mode of
operation is extremely inefficient and callbacks should be used instead wherever
possible. The table containing the entries of interest is identified by name. If a search
criteria is present in name it is ignored. The value of cookie within the nis_result
structure must be copied by the caller into local storage and passed as an argument to
nis_next_entry().

nis_next_entry() retrieves the “next” entry from a table specified by table_name.
The order in which entries are returned is not guaranteed. Further, should an update
occur in the table between client calls to nis_next_entry() there is no guarantee
that an entry that is added or modified will be seen by the client. Should an entry be
removed from the table that would have been the “next” entry returned, the error
NIS_CHAINBROKEN is returned instead.

These functions return a pointer to a structure of type nis_result:

struct nis_result {
nis_error status;
struct {

uint_t objects_len;
nis_object *objects_val;

} objects;
netobj cookie;
uint32_t zticks;
uint32_t dticks;
uint32_t aticks;
uint32_t cticks;

};The status member contains the error status of the the operation. A text
message that describes the error can be obtained by calling the function
nis_sperrno() [see nis_error(3NSL)].

The objects structure contains two members. objects_val is an array of nis_object
structures; objects_len is the number of cells in the array. These objects will be freed by
a call to nis_freeresult()([see nis_names(3NSL)). If you need to keep a copy of
one or more objects, they can be copied with the function nis_clone_object() and
freed with the function nis_destroy_object() (see nis_server(3NSL)).

The various ticks contain details of where the time (in microseconds) was taken during
a request. They can be used to tune one’s data organization for faster access and to
compare different database implementations.

nis_list(3NSL)

RETURN VALUES

582 man pages section 3: Library Functions • Last Revised 17 Feb 1998

zticks The time spent in the NIS+ service itself, this count starts when the server
receives the request and stops when it sends the reply.

dticks The time spent in the database backend, this time is measured from the
time a database call starts, until a result is returned. If the request results in
multiple calls to the database, this is the sum of all the time spent in those
calls.

aticks The time spent in any "accelerators" or caches. This includes the time
required to locate the server needed to resolve the request.

cticks The total time spent in the request, this clock starts when you enter the
client library and stops when a result is returned. By subtracting the sum of
the other ticks values from this value you can obtain the local overhead of
generating a NIS+ request.

Subtracting the value in dticks from the value in zticks will yield the time spent in the
service code itself. Subtracting the sum of the values in zticks and aticks from the value
in cticks will yield the time spent in the client library itself. Note: all of the tick times
are measured in microseconds.

The client library can return a variety of error returns and diagnostics. The more
salient ones are documented below.

NIS_BADATTRIBUTE
The name of an attribute did not match up with a named column in the table, or the
attribute did not have an associated value.

NIS_BADNAME
The name passed to the function is not a legal NIS+ name.

NIS_BADREQUEST
A problem was detected in the request structure passed to the client library.

NIS_CACHEEXPIRED
The entry returned came from an object cache that has expired. This means that the
time to live value has gone to zero and the entry may have changed. If the flag
NO_CACHE was passed to the lookup function then the lookup function will retry
the operation to get an unexpired copy of the object.

NIS_CBERROR
An RPC error occurred on the server while it was calling back to the client. The
transaction was aborted at that time and any unsent data was discarded.

NIS_CBRESULTS
Even though the request was successful, all of the entries have been sent to your
callback function and are thus not included in this result.

NIS_FOREIGNNS
The name could not be completely resolved. When the name passed to the function
would resolve in a namespace that is outside the NIS+ name tree, this error is

nis_list(3NSL)

ERRORS

Introduction to Library Functions 583

returned with a NIS+ object of type DIRECTORY. The returned object contains the
type of namespace and contact information for a server within that namespace.

NIS_INVALIDOBJ
The object pointed to by object is not a valid NIS+ entry object for the given table.
This could occur if it had a mismatched number of columns, or a different data type
(for example, binary or text) than the associated column in the table.

NIS_LINKNAMEERROR
The name passed resolved to a LINK type object and the contents of the object
pointed to an invalid name.

NIS_MODFAIL
The attempted modification failed for some reason.

NIS_NAMEEXISTS
An attempt was made to add a name that already exists. To add the name, first
remove the existing name and then add the new name or modify the existing
named object.

NIS_NAMEUNREACHABLE
This soft error indicates that a server for the desired directory of the named table
object could not be reached. This can occur when there is a network partition or the
server has crashed. Attempting the operation again may succeed. See the
HARD_LOOKUP flag.

NIS_NOCALLBACK
The server was unable to contact the callback service on your machine. This results
in no data being returned.

NIS_NOMEMORY
Generally a fatal result. It means that the service ran out of heap space.

NIS_NOSUCHNAME
This hard error indicates that the named directory of the table object does not exist.
This occurs when the server that should be the parent of the server that serves the
table, does not know about the directory in which the table resides.

NIS_NOSUCHTABLE
The named table does not exist.

NIS_NOT_ME
A request was made to a server that does not serve the given name. Normally this
will not occur, however if you are not using the built in location mechanism for
servers, you may see this if your mechanism is broken.

NIS_NOTFOUND
No entries in the table matched the search criteria. If the search criteria was null
(return all entries) then this result means that the table is empty and may safely be
removed by calling the nis_remove().

nis_list(3NSL)

584 man pages section 3: Library Functions • Last Revised 17 Feb 1998

If the FOLLOW_PATH flag was set, this error indicates that none of the tables in the
path contain entries that match the search criteria.

NIS_NOTMASTER
A change request was made to a server that serves the name, but it is not the master
server. This can occur when a directory object changes and it specifies a new master
server. Clients that have cached copies of the directory object in the
/var/nis/NIS_SHARED_DIRCACHE file will need to have their cache managers
restarted (use nis_cachemgr -i) to flush this cache.

NIS_NOTSAMEOBJ
An attempt to remove an object from the namespace was aborted because the object
that would have been removed was not the same object that was passed in the
request.

NIS_NOTSEARCHABLE
The table name resolved to a NIS+ object that was not searchable.

NIS_PARTIAL
This result is similar to NIS_NOTFOUND except that it means the request succeeded
but resolved to zero entries. When this occurs, the server returns a copy of the table
object instead of an entry so that the client may then process the path or implement
some other local policy.

NIS_RPCERROR
This fatal error indicates the RPC subsystem failed in some way. Generally there
will be a syslog(3C) message indicating why the RPC request failed.

NIS_S_NOTFOUND
The named entry does not exist in the table, however not all tables in the path
could be searched, so the entry may exist in one of those tables.

NIS_S_SUCCESS
Even though the request was successful, a table in the search path was not able to
be searched, so the result may not be the same as the one you would have received
if that table had been accessible.

NIS_SUCCESS
The request was successful.

NIS_SYSTEMERROR
Some form of generic system error occurred while attempting the request. Check
the syslog(3C) record for error messages from the server.

NIS_TOOMANYATTRS
The search criteria passed to the server had more attributes than the table had
searchable columns.

NIS_TRYAGAIN
The server connected to was too busy to handle your request. add_entry(),
remove_entry(), and modify_entry() return this error when the master

nis_list(3NSL)

Introduction to Library Functions 585

server is currently updating its internal state. It can be returned to nis_list()
when the function specifies a callback and the server does not have the resources to
handle callbacks.

NIS_TYPEMISMATCH
An attempt was made to add or modify an entry in a table, and the entry passed
was of a different type than the table.

NIS_PATH When set, this variable is the search path used by nis_list() if
the flag EXPAND_NAME is set.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

To succeed, nis_add_entry(), nis_remove_entry(), and
nis_modify_entry() must inherit the PAF_TRUSTED_PATH attribute.

nis_cachemgr(1M), nis_names(3NSL), nis_server(3NSL),
rpc_svc_calls(3NSL)

niscat(1), niserror(1), nismatch(1), syslog(3C), nis_clone_object(3NSL),
nis_destroy_object(3NSL), nis_error(3NSL), nis_getnames(3NSL),
nis_local_names(3NSL), nis_objects(3NSL), attributes(5)

Use the flag HARD_LOOKUP carefully since it can cause the application to block
indefinitely during a network partition.

The path used when the flag FOLLOW_PATH is specified, is the one present in the first
table searched. The path values in tables that are subsequently searched are ignored.

It is legal to call functions that would access the nameservice from within a list
callback. However, calling a function that would itself use a callback, or calling
nis_list() with a callback from within a list callback function is not currently
supported.

There are currently no known methods for nis_first_entry() and
nis_next_entry() to get their answers from only the master server.

The nis_list() function is not MT-Safe with callbacks. nis_list() callbacks are
serialized. A call to nis_list() with a callback from within nis_list() will
deadlock. nis_list() with a callback cannot be called from an rpc server. See
rpc_svc_calls(3NSL). Otherwise, this function is MT-Safe.

nis_list(3NSL)

ENVIRONMENT
VARIABLES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

WARNINGS

NOTES

586 man pages section 3: Library Functions • Last Revised 17 Feb 1998

nis_names, nis_lookup, nis_add, nis_remove, nis_modify, nis_freeresult – NIS+
namespace functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

nis_result *nis_lookup(nis_name name, uint_t flags);

nis_result *nis_add(nis_name name, nis_object *obj);

nis_result *nis_remove(nis_name name, nis_object *obj);

nis_result *nis_modify(nis_name name, nis_object *obj);

void nis_freeresult(nis_result *result);

These functions are used to locate and manipulate all NIS+ objects (see
nis_objects(3NSL)) except the NIS+ entry objects. To look up the NIS+ entry
objects within a NIS+ table, refer to nis_subr(3NSL).

nis_lookup() resolves a NIS+ name and returns a copy of that object from a NIS+
server. nis_add() and nis_remove() add and remove objects to the NIS+
namespace, respectively. nis_modify() can change specific attributes of an object
that already exists in the namespace.

These functions should be used only with names that refer to an NIS+ Directory, NIS+
Table, NIS+ Group, or NIS+ Private object. If a name refers to an NIS+ entry object, the
functions listed in nis_subr(3NSL) should be used.

nis_freeresult() frees all memory associated with a nis_result structure. This
function must be called to free the memory associated with a NIS+ result.
nis_lookup(), nis_add(), nis_remove(), and nis_modify() all return a
pointer to a nis_result structure which must be freed by calling
nis_freeresult() when you have finished using it. If one or more of the objects
returned in the structure need to be retained, they can be copied with
nis_clone_object(3NSL) (see nis_subr(3NSL)). To succeed, nis_add(),
nis_modify(), and nis_remove() must inherit the PAF_TRUSTED_PATH attribute.

nis_lookup() takes two parameters, the name of the object to be resolved in name,
and a flags parameter, flags, which is defined below. The object name is expected to
correspond to the syntax of a non-indexed NIS+ name (see nis_tables(3NSL)). The
nis_lookup() function is the only function from this group that can use a non-fully
qualified name. If the parameter name is not a fully qualified name, then the flag
EXPAND_NAME must be specified in the call. If this flag is not specified, the function
will fail with the error NIS_BADNAME.

The flags parameter is constructed by logically ORing zero or more flags from the
following list.

FOLLOW_LINKS When specified, the client library will ‘‘follow’’ links by issuing
another NIS+ lookup call for the object named by the link. If the

nis_lookup(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 587

linked object is itself a link, then this process will iterate until the
either a object is found that is not a LINK type object, or the library
has followed 16 links.

HARD_LOOKUP When specified, the client library will retry the lookup until it is
answered by a server. Using this flag will cause the library to block
until at least one NIS+ server is available. If the network
connectivity is impaired, this can be a relatively long time.

NO_CACHE When specified, the client library will bypass any object caches
and will get the object from either the master NIS+ server or one of
its replicas.

MASTER_ONLY When specified, the client library will bypass any object caches
and any domain replicas and fetch the object from the NIS+ master
server for the object’s domain. This insures that the object returned
is up to date at the cost of a possible performance degradation and
failure if the master server is unavailable or physically distant.

EXPAND_NAME When specified, the client library will attempt to expand a
partially qualified name by calling the function nis_getnames()
(see nis_subr(3NSL)) which uses the environment variable
NIS_PATH.

The status value may be translated to ascii text using the function nis_sperrno()
(see nis_error(3NSL)).

On return, the objects array in the result will contain one and possibly several objects
that were resolved by the request. If the FOLLOW_LINKS flag was present, on success
the function could return several entry objects if the link in question pointed within a
table. If an error occurred when following a link, the objects array will contain a copy
of the link object itself.

The function nis_add() will take the object obj and add it to the NIS+ namespace
with the name name. This operation will fail if the client making the request does not
have the create access right for the domain in which this object will be added. The
parameter name must contain a fully qualified NIS+ name. The object members
zo_name and zo_domain will be constructed from this name. This operation will fail if
the object already exists. This feature prevents the accidental addition of objects over
another object that has been added by another process.

The function nis_remove() will remove the object with name name from the NIS+
namespace. The client making this request must have the destroy access right for the
domain in which this object resides. If the named object is a link, the link is removed
and not the object that it points to. If the parameter obj is not NULL, it is assumed to
point to a copy of the object being removed. In this case, if the object on the server
does not have the same object identifier as the object being passed, the operation will
fail with the NIS_NOTSAMEOBJ error. This feature allows the client to insure that it is
removing the desired object. The parameter name must contain a fully qualified NIS+
name.

nis_lookup(3NSL)

588 man pages section 3: Library Functions • Last Revised 17 Feb 1998

The function nis_modify() will modify the object named by name to the field values
in the object pointed to by obj. This object should contain a copy of the object from the
name space that is being modified. This operation will fail with the error
NIS_NOTSAMEOBJ if the object identifier of the passed object does not match that of
the object being modified in the namespace.

Normally the contents of the member zo_name in the nis_object structure would be
constructed from the name passed in the name parameter. However, if it is non-null the
client library will use the name in the zo_name member to perform a rename operation
on the object. This name must not contain any unquoted ‘.’(dot) characters. If these
conditions are not met the operation will fail and return the NIS_BADNAME error code.

These functions return a pointer to a structure of type nis_result:

struct nis_result {
nis_error status;
struct {

uint_t objects_len;
nis_object *objects_val;

} objects;
netobj cookie;
uint32_t zticks;
uint32_t dticks;
uint32_t aticks;
uint32_t cticks;

};

The status member contains the error status of the the operation. A text message that
describes the error can be obtained by calling the function nis_sperrno() (see
nis_error(3NSL)).

The objects structure contains two members. objects_val is an array of nis_object
structures; objects_len is the number of cells in the array. These objects will be freed by
the call to nis_freeresult(). If you need to keep a copy of one or more objects,
they can be copied with the function nis_clone_object() and freed with the
function nis_destroy_object() (see nis_server(3NSL)). Refer to
nis_objects(3NSL) for a description of the nis_object structure.

The various ticks contain details of where the time was taken during a request. They
can be used to tune one’s data organization for faster access and to compare different
database implementations.

zticks The time spent in the NIS+ service itself. This count starts when the server
receives the request and stops when it sends the reply.

dticks The time spent in the database backend. This time is measured from the
time a database call starts, until the result is returned. If the request results
in multiple calls to the database, this is the sum of all the time spent in
those calls.

aticks The time spent in any ‘‘accelerators’’ or caches. This includes the time
required to locate the server needed to resolve the request.

nis_lookup(3NSL)

Results

Introduction to Library Functions 589

cticks The total time spent in the request. This clock starts when you enter the
client library and stops when a result is returned. By subtracting the sum of
the other ticks values from this value, you can obtain the local overhead of
generating a NIS+ request.

Subtracting the value in dticks from the value in zticks will yield the time spent in the
service code itself. Subtracting the sum of the values in zticks and aticks from the value
in cticks will yield the time spent in the client library itself. Note: all of the tick times
are measured in microseconds.

The client library can return a variety of error returns and diagnostics. The more
salient ones are documented below.

NIS_SUCCESS
The request was successful.

NIS_S_SUCCESS
The request was successful, however the object returned came from an object cache
and not directly from the server. If you do not wish to see objects from object caches
you must specify the flag NO_CACHE when you call the lookup function.

NIS_NOTFOUND
The named object does not exist in the namespace.

NIS_CACHEEXPIRED
The object returned came from an object cache that has expired. The time to live
value has gone to zero and the object may have changed. If the flag NO_CACHE was
passed to the lookup function then the lookup function will retry the operation to
get an unexpired copy of the object.

NIS_NAMEUNREACHABLE
A server for the directory of the named object could not be reached. This can occur
when there is a network partition or all servers have crashed. See the
HARD_LOOKUP flag.

NIS_UNKNOWNOBJ
The object returned is of an unknown type.

NIS_TRYAGAIN
The server connected to was too busy to handle your request. For the add, remove,
and modify operations this is returned when either the master server for a directory
is unavailable or it is in the process of checkpointing its database. It can also be
returned when the server is updating it’s internal state. And in the case of
nis_list() if the client specifies a callback and the server does not have enough
resources to handle the callback.

NIS_SYSTEMERROR
A generic system error occurred while attempting the request. Most commonly the
server has crashed or the database has become corrupted. Check the syslog record
for error messages from the server.

nis_lookup(3NSL)

RETURN VALUES

590 man pages section 3: Library Functions • Last Revised 17 Feb 1998

NIS_NOT_ME
A request was made to a server that does not serve the name in question. Normally
this will not occur, however if you are not using the built in location mechanism for
servers you may see this if your mechanism is broken.

NIS_NOMEMORY
Generally a fatal result. It means that the service ran out of heap space.

NIS_NAMEEXISTS
An attempt was made to add a name that already exists. To add the name, first
remove the existing name and then add the new object or modify the existing
named object.

NIS_NOTMASTER
An attempt was made to update the database on a replica server.

NIS_INVALIDOBJ
The object pointed to by obj is not a valid NIS+ object.

NIS_BADNAME
The name passed to the function is not a legal NIS+ name.

NIS_LINKNAMEERROR
The name passed resolved to a LINK type object and the contents of the link
pointed to an invalid name.

NIS_NOTSAMEOBJ
An attempt to remove an object from the namespace was aborted because the object
that would have been removed was not the same object that was passed in the
request.

NIS_NOSUCHNAME
This hard error indicates that the named directory of the table object does not exist.
This occurs when the server that should be the parent of the server that serves the
table, does not know about the directory in which the table resides.

NIS_NOSUCHTABLE
The named table does not exist.

NIS_MODFAIL
The attempted modification failed.

NIS_FOREIGNNS
The name could not be completely resolved. When the name passed to the function
would resolve in a namespace that is outside the NIS+ name tree, this error is
returned with a NIS+ object of type DIRECTORY, which contains the type of
namespace and contact information for a server within that namespace.

NIS_RPCERROR
This fatal error indicates the RPC subsystem failed in some way. Generally there
will be a syslog(3C) message indicating why the RPC request failed.

nis_lookup(3NSL)

Introduction to Library Functions 591

NIS_PATH If the flag EXPAND_NAME is set, this variable is the search path
used by nis_lookup().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_add(), nis_modify(), and nis_remove() must inherit the
PAF_TRUSTED_PATH attribute.

nis_server(3NSL), nis_tables(3NSL)

nis_error(3NSL), nis_objects(3NSL), nis_subr(3NSL), attributes(5)

You cannot modify the name of an object if that modification would cause the object to
reside in a different domain.

You cannot modify the schema of a table object.

nis_lookup(3NSL)

ENVIRONMENT
VARIABLES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

592 man pages section 3: Library Functions • Last Revised 17 Feb 1998

nis_server, nis_mkdir, nis_rmdir, nis_servstate, nis_stats, nis_getservlist,
nis_freeservlist, nis_freetags – Miscellaneous NIS+ functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

nis_error nis_mkdir(nis_name dirname, nis_server *machine);

nis_error nis_rmdir(nis_name dirname, nis_server *machine);

nis_error nis_servstate(nis_server *machine, nis_tag *tags, int
numtags, nis_tag **result);

nis_error nis_stats(nis_server *machine, nis_tag *tags, int numtags,
nis_tag **result);

void nis_freetags(nis_tag *tags, int numtags);

nis_server **nis_getservlist(nis_name dirname);

void nis_freeservlist(nis_server **machines);

These functions provide a variety of services for NIS+ applications.

nis_mkdir() is used to create the necessary databases to support NIS+ service for a
directory, dirname, on a server, machine. If this operation is successful, it means that
the directory object describing dirname has been updated to reflect that server machine
is serving the named directory. For a description of the nis_server structure, refer to
nis_objects(3NSL). To succeed, nis_mkdir() must inherit the
PAF_TRUSTED_PATH attribute.

Per-server and per-directory access restrictions may apply to nis_mkdir(). See
nisopaccess(1)

nis_rmdir() is used to delete the directory, dirname, from the specified server
machine. The machine parameter cannot be NULL. Note that nis_rmdir() does not
remove the directory dirname from the namespace or remove a server from the server
list in the directory object. To remove a directory from the namespace you must call
nis_remove() to remove the directory dirname from the namespace and call
nis_rmdir() for each server in the server list to remove the directory from the
server. To remove a replica from the server list, you need to first call nis_modify()
to remove the server from the directory object and then call nis_rmdir() to remove
the replica. To succeed, nis_rmdir() must inherit the PAF_TRUSTED_PATH
attribute.

Per-server and per-directory access restrictions may apply to nis_rmdir(). See
nisopaccess(1)

nis_servstate() is used to set and read the various state variables of the NIS+
servers. In particular the internal debugging state of the servers may be set and
queried. To succeed, nis_servstate() must inherit the PAF_TRUSTED_PATH
attribute.

nis_mkdir(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 593

The nis_stats() function is used to retrieve statistics about how the server is
operating. Tracking these statistics can help administrators determine when they need
to add additional replicas or to break up a domain into two or more subdomains. For
more information on reading statistics, see nisstat(1M).

nis_servstate() and nis_stats() use the tag list. This tag list is a variable
length array of nis_tag structures whose length is passed to the function in the numtags
parameter. The set of legal tags are defined in the file <rpcsvc/nis_tags.h> which
is included in <rpcsvc/nis.h>. Because these tags can and do vary between
implementations of the NIS+ service, it is best to consult this file for the supported list.
Passing unrecognized tags to a server will result in their tag_value member being set to
the string ‘‘unknown.’’ Both of these functions return their results in malloced tag
structure, *result. If there is an error, *result is set to NULL. The tag_value pointers points
to allocated string memory which contains the results. Use nis_freetags() to free
the tag structure.

Per-server and per-directory access restrictions may apply to the NIS_SERVSTATE or
NIS_STATUS (nis_stats()) operations and their sub-operations (tags). See
nisopaccess(1)

nis_getservlist() returns a null terminated list of nis_server structures that
represent the list of servers that serve the domain named dirname. Servers from this list
can be used when calling functions that require the name of a NIS+ server. For a
description of the nis_server structure, refer to nis_objects(3NSL).
nis_freeservlist() frees the list of servers returned by nis_getservlist().
Note that this is the only legal way to free that list.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_mkdir(), nis_rmdir(), and nis_servstat() must inherit the
PAF_TRUSTED_PATH attribute.

nis_names(3NSL)

nisopaccess(1), nisstat(1M), nis_objects(3NSL), nis_subr(3NSL),
attributes(5)

nis_mkdir(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

594 man pages section 3: Library Functions • Last Revised 4 Apr 2000

nis_names, nis_lookup, nis_add, nis_remove, nis_modify, nis_freeresult – NIS+
namespace functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

nis_result *nis_lookup(nis_name name, uint_t flags);

nis_result *nis_add(nis_name name, nis_object *obj);

nis_result *nis_remove(nis_name name, nis_object *obj);

nis_result *nis_modify(nis_name name, nis_object *obj);

void nis_freeresult(nis_result *result);

These functions are used to locate and manipulate all NIS+ objects (see
nis_objects(3NSL)) except the NIS+ entry objects. To look up the NIS+ entry
objects within a NIS+ table, refer to nis_subr(3NSL).

nis_lookup() resolves a NIS+ name and returns a copy of that object from a NIS+
server. nis_add() and nis_remove() add and remove objects to the NIS+
namespace, respectively. nis_modify() can change specific attributes of an object
that already exists in the namespace.

These functions should be used only with names that refer to an NIS+ Directory, NIS+
Table, NIS+ Group, or NIS+ Private object. If a name refers to an NIS+ entry object, the
functions listed in nis_subr(3NSL) should be used.

nis_freeresult() frees all memory associated with a nis_result structure. This
function must be called to free the memory associated with a NIS+ result.
nis_lookup(), nis_add(), nis_remove(), and nis_modify() all return a
pointer to a nis_result structure which must be freed by calling
nis_freeresult() when you have finished using it. If one or more of the objects
returned in the structure need to be retained, they can be copied with
nis_clone_object(3NSL) (see nis_subr(3NSL)). To succeed, nis_add(),
nis_modify(), and nis_remove() must inherit the PAF_TRUSTED_PATH attribute.

nis_lookup() takes two parameters, the name of the object to be resolved in name,
and a flags parameter, flags, which is defined below. The object name is expected to
correspond to the syntax of a non-indexed NIS+ name (see nis_tables(3NSL)). The
nis_lookup() function is the only function from this group that can use a non-fully
qualified name. If the parameter name is not a fully qualified name, then the flag
EXPAND_NAME must be specified in the call. If this flag is not specified, the function
will fail with the error NIS_BADNAME.

The flags parameter is constructed by logically ORing zero or more flags from the
following list.

FOLLOW_LINKS When specified, the client library will ‘‘follow’’ links by issuing
another NIS+ lookup call for the object named by the link. If the

nis_modify(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 595

linked object is itself a link, then this process will iterate until the
either a object is found that is not a LINK type object, or the library
has followed 16 links.

HARD_LOOKUP When specified, the client library will retry the lookup until it is
answered by a server. Using this flag will cause the library to block
until at least one NIS+ server is available. If the network
connectivity is impaired, this can be a relatively long time.

NO_CACHE When specified, the client library will bypass any object caches
and will get the object from either the master NIS+ server or one of
its replicas.

MASTER_ONLY When specified, the client library will bypass any object caches
and any domain replicas and fetch the object from the NIS+ master
server for the object’s domain. This insures that the object returned
is up to date at the cost of a possible performance degradation and
failure if the master server is unavailable or physically distant.

EXPAND_NAME When specified, the client library will attempt to expand a
partially qualified name by calling the function nis_getnames()
(see nis_subr(3NSL)) which uses the environment variable
NIS_PATH.

The status value may be translated to ascii text using the function nis_sperrno()
(see nis_error(3NSL)).

On return, the objects array in the result will contain one and possibly several objects
that were resolved by the request. If the FOLLOW_LINKS flag was present, on success
the function could return several entry objects if the link in question pointed within a
table. If an error occurred when following a link, the objects array will contain a copy
of the link object itself.

The function nis_add() will take the object obj and add it to the NIS+ namespace
with the name name. This operation will fail if the client making the request does not
have the create access right for the domain in which this object will be added. The
parameter name must contain a fully qualified NIS+ name. The object members
zo_name and zo_domain will be constructed from this name. This operation will fail if
the object already exists. This feature prevents the accidental addition of objects over
another object that has been added by another process.

The function nis_remove() will remove the object with name name from the NIS+
namespace. The client making this request must have the destroy access right for the
domain in which this object resides. If the named object is a link, the link is removed
and not the object that it points to. If the parameter obj is not NULL, it is assumed to
point to a copy of the object being removed. In this case, if the object on the server
does not have the same object identifier as the object being passed, the operation will
fail with the NIS_NOTSAMEOBJ error. This feature allows the client to insure that it is
removing the desired object. The parameter name must contain a fully qualified NIS+
name.

nis_modify(3NSL)

596 man pages section 3: Library Functions • Last Revised 17 Feb 1998

The function nis_modify() will modify the object named by name to the field values
in the object pointed to by obj. This object should contain a copy of the object from the
name space that is being modified. This operation will fail with the error
NIS_NOTSAMEOBJ if the object identifier of the passed object does not match that of
the object being modified in the namespace.

Normally the contents of the member zo_name in the nis_object structure would be
constructed from the name passed in the name parameter. However, if it is non-null the
client library will use the name in the zo_name member to perform a rename operation
on the object. This name must not contain any unquoted ‘.’(dot) characters. If these
conditions are not met the operation will fail and return the NIS_BADNAME error code.

These functions return a pointer to a structure of type nis_result:

struct nis_result {
nis_error status;
struct {

uint_t objects_len;
nis_object *objects_val;

} objects;
netobj cookie;
uint32_t zticks;
uint32_t dticks;
uint32_t aticks;
uint32_t cticks;

};

The status member contains the error status of the the operation. A text message that
describes the error can be obtained by calling the function nis_sperrno() (see
nis_error(3NSL)).

The objects structure contains two members. objects_val is an array of nis_object
structures; objects_len is the number of cells in the array. These objects will be freed by
the call to nis_freeresult(). If you need to keep a copy of one or more objects,
they can be copied with the function nis_clone_object() and freed with the
function nis_destroy_object() (see nis_server(3NSL)). Refer to
nis_objects(3NSL) for a description of the nis_object structure.

The various ticks contain details of where the time was taken during a request. They
can be used to tune one’s data organization for faster access and to compare different
database implementations.

zticks The time spent in the NIS+ service itself. This count starts when the server
receives the request and stops when it sends the reply.

dticks The time spent in the database backend. This time is measured from the
time a database call starts, until the result is returned. If the request results
in multiple calls to the database, this is the sum of all the time spent in
those calls.

aticks The time spent in any ‘‘accelerators’’ or caches. This includes the time
required to locate the server needed to resolve the request.

nis_modify(3NSL)

Results

Introduction to Library Functions 597

cticks The total time spent in the request. This clock starts when you enter the
client library and stops when a result is returned. By subtracting the sum of
the other ticks values from this value, you can obtain the local overhead of
generating a NIS+ request.

Subtracting the value in dticks from the value in zticks will yield the time spent in the
service code itself. Subtracting the sum of the values in zticks and aticks from the value
in cticks will yield the time spent in the client library itself. Note: all of the tick times
are measured in microseconds.

The client library can return a variety of error returns and diagnostics. The more
salient ones are documented below.

NIS_SUCCESS
The request was successful.

NIS_S_SUCCESS
The request was successful, however the object returned came from an object cache
and not directly from the server. If you do not wish to see objects from object caches
you must specify the flag NO_CACHE when you call the lookup function.

NIS_NOTFOUND
The named object does not exist in the namespace.

NIS_CACHEEXPIRED
The object returned came from an object cache that has expired. The time to live
value has gone to zero and the object may have changed. If the flag NO_CACHE was
passed to the lookup function then the lookup function will retry the operation to
get an unexpired copy of the object.

NIS_NAMEUNREACHABLE
A server for the directory of the named object could not be reached. This can occur
when there is a network partition or all servers have crashed. See the
HARD_LOOKUP flag.

NIS_UNKNOWNOBJ
The object returned is of an unknown type.

NIS_TRYAGAIN
The server connected to was too busy to handle your request. For the add, remove,
and modify operations this is returned when either the master server for a directory
is unavailable or it is in the process of checkpointing its database. It can also be
returned when the server is updating it’s internal state. And in the case of
nis_list() if the client specifies a callback and the server does not have enough
resources to handle the callback.

NIS_SYSTEMERROR
A generic system error occurred while attempting the request. Most commonly the
server has crashed or the database has become corrupted. Check the syslog record
for error messages from the server.

nis_modify(3NSL)

RETURN VALUES

598 man pages section 3: Library Functions • Last Revised 17 Feb 1998

NIS_NOT_ME
A request was made to a server that does not serve the name in question. Normally
this will not occur, however if you are not using the built in location mechanism for
servers you may see this if your mechanism is broken.

NIS_NOMEMORY
Generally a fatal result. It means that the service ran out of heap space.

NIS_NAMEEXISTS
An attempt was made to add a name that already exists. To add the name, first
remove the existing name and then add the new object or modify the existing
named object.

NIS_NOTMASTER
An attempt was made to update the database on a replica server.

NIS_INVALIDOBJ
The object pointed to by obj is not a valid NIS+ object.

NIS_BADNAME
The name passed to the function is not a legal NIS+ name.

NIS_LINKNAMEERROR
The name passed resolved to a LINK type object and the contents of the link
pointed to an invalid name.

NIS_NOTSAMEOBJ
An attempt to remove an object from the namespace was aborted because the object
that would have been removed was not the same object that was passed in the
request.

NIS_NOSUCHNAME
This hard error indicates that the named directory of the table object does not exist.
This occurs when the server that should be the parent of the server that serves the
table, does not know about the directory in which the table resides.

NIS_NOSUCHTABLE
The named table does not exist.

NIS_MODFAIL
The attempted modification failed.

NIS_FOREIGNNS
The name could not be completely resolved. When the name passed to the function
would resolve in a namespace that is outside the NIS+ name tree, this error is
returned with a NIS+ object of type DIRECTORY, which contains the type of
namespace and contact information for a server within that namespace.

NIS_RPCERROR
This fatal error indicates the RPC subsystem failed in some way. Generally there
will be a syslog(3C) message indicating why the RPC request failed.

nis_modify(3NSL)

Introduction to Library Functions 599

NIS_PATH If the flag EXPAND_NAME is set, this variable is the search path
used by nis_lookup().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_add(), nis_modify(), and nis_remove() must inherit the
PAF_TRUSTED_PATH attribute.

nis_server(3NSL), nis_tables(3NSL)

nis_error(3NSL), nis_objects(3NSL), nis_subr(3NSL), attributes(5)

You cannot modify the name of an object if that modification would cause the object to
reside in a different domain.

You cannot modify the schema of a table object.

nis_modify(3NSL)

ENVIRONMENT
VARIABLES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

600 man pages section 3: Library Functions • Last Revised 17 Feb 1998

nis_tables, nis_list, nis_add_entry, nis_remove_entry, nis_modify_entry, nis_first_entry,
nis_next_entry – NIS+ table functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

nis_result *nis_list(nis_name name, uint_tflags, int
(*callback)(nis_name table_name, nis_object *object, void
*userdata), void *userdata);

nis_result *nis_add_entry(nis_name table_name, nis_object *object,
uint_t flags);

nis_result *nis_remove_entry(nis_name name, nis_object *object,
uint_tflags);

nis_result *nis_modify_entry(nis_name name, nis_object *object,
uint_tflags);

nis_result *nis_first_entry(nis_name table_name);

nis_result *nis_next_entry(nis_name table_name, netobj *cookie);

void nis_freeresult(nis_result *result);

These functions are used to search and modify NIS+ tables. nis_list() is used to
search a table in the NIS+ namespace. nis_first_entry() and
nis_next_entry() are used to enumerate a table one entry at a time.
nis_add_entry(), nis_remove_entry(), and nis_modify_entry() are used
to change the information stored in a table. nis_freeresult() is used to free the
memory associated with the nis_result structure.

Entries within a table are named by NIS+ indexed names. An indexed name is a
compound name that is composed of a search criteria and a simple NIS+ name that
identifies a table object. A search criteria is a series of column names and their
associated values enclosed in bracket ’[]’ characters. Indexed names have the
following form:

[colname=value, . . .],tablename

The list function, nis_list(), takes an indexed name as the value for the name
parameter. Here, the tablename should be a fully qualified NIS+ name unless the
EXPAND_NAME flag (described below) is set. The second parameter, flags, defines how
the function will respond to various conditions. The value for this parameter is created
by logically ORing together one or more flags from the following list.

FOLLOW_LINKS If the table specified in name resolves to be a LINK type object (see
nis_objects(3NSL)), this flag specifies that the client library
follow that link and do the search at that object. If this flag is not
set and the name resolves to a link, the error
NIS_NOTSEARCHABLE will be returned.

nis_modify_entry(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 601

FOLLOW_PATH This flag specifies that if the entry is not found within this table,
the list operation should follow the path specified in the table
object. When used in conjunction with the ALL_RESULTS flag
below, it specifies that the path should be followed regardless of
the result of the search. When used in conjunction with the
FOLLOW_LINKS flag above, named tables in the path that resolve
to links will be followed until the table they point to is located. If a
table in the path is not reachable because no server that serves it is
available, the result of the operation will be either a “soft” success
or a “soft” failure to indicate that not all tables in the path could be
searched. If a name in the path names is either an invalid or
non-existent object then it is silently ignored.

HARD_LOOKUP This flag specifies that the operation should continue trying to
contact a server of the named table until a definitive result is
returned (such as NIS_NOTFOUND).

ALL_RESULTS This flag can only be used in conjunction with FOLLOW_PATH and
a callback function. When specified, it forces all of the tables in the
path to be searched. If name does not specify a search criteria
(imply that all entries are to be returned), then this flag will cause
all of the entries in all of the tables in the path to be returned.

NO_CACHE This flag specifies that the client library should bypass any client
object caches and get its information directly from either the
master server or a replica server for the named table.

MASTER_ONLY This flag is even stronger than NO_CACHE in that it specifies that
the client library should only get its information from the master
server for a particular table. This guarantees that the information
will be up to date. However, there may be severe performance
penalties associated with contacting the master server directly on
large networks. When used in conjunction with the HARD_LOOKUP
flag, this will block the list operation until the master server is up
and available.

EXPAND_NAME When specified, the client library will attempt to expand a
partially qualified name by calling nis_getnames() [see
nis_local_names(3NSL)] which uses the environment variable
NIS_PATH.

RETURN_RESULT This flag is used to specify that a copy of the returning object be
returned in the nis_result structure if the operation was
successful.

The third parameter to nis_list(), callback, is an optional pointer to a function that
will process the ENTRY type objects that are returned from the search. If this pointer is
NULL, then all entries that match the search criteria are returned in the nis_result
structure, otherwise this function will be called once for each entry returned. When
called, this function should return 0 when additional objects are desired and 1 when it

nis_modify_entry(3NSL)

602 man pages section 3: Library Functions • Last Revised 17 Feb 1998

no longer wishes to see any more objects. The fourth parameter, userdata, is simply
passed to callback function along with the returned entry object. The client can use
this pointer to pass state information or other relevant data that the callback function
might need to process the entries.

The nis_list() function is not MT-Safe with callbacks. See NOTES.

nis_add_entry() will add the NIS+ object to the NIS+ table_name. The flags
parameter is used to specify the failure semantics for the add operation. The default
(flags equal 0) is to fail if the entry being added already exists in the table. The
ADD_OVERWRITE flag may be used to specify that existing object is to be overwritten if
it exists, (a modify operation) or added if it does not exist. With the ADD_OVERWRITE
flag, this function will fail with the error NIS_PERMISSION if the existing object does
not allow modify privileges to the client.

If the flag RETURN_RESULT has been specified, the server will return a copy of the
resulting object if the operation was successful. To succeed, nis_add_entry() must
inherit the PAF_TRUSTED_PATH attribute.

nis_remove_entry() removes the identified entry from the table or a set of entries
identified by table_name. If the parameter object is non-null, it is presumed to point to a
cached copy of the entry. When the removal is attempted, and the object that would be
removed is not the same as the cached object pointed to by object then the operation
will fail with an NIS_NOTSAMEOBJ error. If an object is passed with this function, the
search criteria in name is optional as it can be constructed from the values within the
entry. However, if no object is present, the search criteria must be included in the name
parameter. If the flags variable is null, and the search criteria does not uniquely
identify an entry, the NIS_NOTUNIQUE error is returned and the operation is aborted.
If the flag parameter REM_MULTIPLE is passed, and if remove permission is allowed
for each of these objects, then all objects that match the search criteria will be removed.
Note that a null search criteria and the REM_MULTIPLE flag will remove all entries in a
table. To succeed, nis_remove_entry() must inherit the PAF_TRUSTED_PATH
attribute.

nis_modify_entry() modifies an object identified by name. The parameter object
should point to an entry with the LEN_MODIFIED flag set in each column that
contains new information.

The owner, group, and access rights of an entry are modified by placing the modified
information into the respective fields of the parameter, object: zo_owner, zo_group,
and zo_access.

These columns will replace their counterparts in the entry that is stored in the table.
The entry passed must have the same number of columns, same type, and valid data
in the modified columns for this operation to succeed.

If the flags parameter contains the flag MOD_SAMEOBJ then the object pointed to by
object is assumed to be a cached copy of the original object. If the OID of the object
passed is different than the OID of the object the server fetches, then the operation fails

nis_modify_entry(3NSL)

Introduction to Library Functions 603

with the NIS_NOTSAMEOBJ error. This can be used to implement a simple
read-modify-write protocol which will fail if the object is modified before the client
can write the object back.

If the flag RETURN_RESULT has been specified, the server will return a copy of the
resulting object if the operation was successful. To succeed, nis_modify_entry()
must inherit the PAF_TRUSTED_PATH attribute.

nis_first_entry() fetches entries from a table one at a time. This mode of
operation is extremely inefficient and callbacks should be used instead wherever
possible. The table containing the entries of interest is identified by name. If a search
criteria is present in name it is ignored. The value of cookie within the nis_result
structure must be copied by the caller into local storage and passed as an argument to
nis_next_entry().

nis_next_entry() retrieves the “next” entry from a table specified by table_name.
The order in which entries are returned is not guaranteed. Further, should an update
occur in the table between client calls to nis_next_entry() there is no guarantee
that an entry that is added or modified will be seen by the client. Should an entry be
removed from the table that would have been the “next” entry returned, the error
NIS_CHAINBROKEN is returned instead.

These functions return a pointer to a structure of type nis_result:

struct nis_result {
nis_error status;
struct {

uint_t objects_len;
nis_object *objects_val;

} objects;
netobj cookie;
uint32_t zticks;
uint32_t dticks;
uint32_t aticks;
uint32_t cticks;

};The status member contains the error status of the the operation. A text
message that describes the error can be obtained by calling the function
nis_sperrno() [see nis_error(3NSL)].

The objects structure contains two members. objects_val is an array of nis_object
structures; objects_len is the number of cells in the array. These objects will be freed by
a call to nis_freeresult()([see nis_names(3NSL)). If you need to keep a copy of
one or more objects, they can be copied with the function nis_clone_object() and
freed with the function nis_destroy_object() (see nis_server(3NSL)).

The various ticks contain details of where the time (in microseconds) was taken during
a request. They can be used to tune one’s data organization for faster access and to
compare different database implementations.

nis_modify_entry(3NSL)

RETURN VALUES

604 man pages section 3: Library Functions • Last Revised 17 Feb 1998

zticks The time spent in the NIS+ service itself, this count starts when the server
receives the request and stops when it sends the reply.

dticks The time spent in the database backend, this time is measured from the
time a database call starts, until a result is returned. If the request results in
multiple calls to the database, this is the sum of all the time spent in those
calls.

aticks The time spent in any "accelerators" or caches. This includes the time
required to locate the server needed to resolve the request.

cticks The total time spent in the request, this clock starts when you enter the
client library and stops when a result is returned. By subtracting the sum of
the other ticks values from this value you can obtain the local overhead of
generating a NIS+ request.

Subtracting the value in dticks from the value in zticks will yield the time spent in the
service code itself. Subtracting the sum of the values in zticks and aticks from the value
in cticks will yield the time spent in the client library itself. Note: all of the tick times
are measured in microseconds.

The client library can return a variety of error returns and diagnostics. The more
salient ones are documented below.

NIS_BADATTRIBUTE
The name of an attribute did not match up with a named column in the table, or the
attribute did not have an associated value.

NIS_BADNAME
The name passed to the function is not a legal NIS+ name.

NIS_BADREQUEST
A problem was detected in the request structure passed to the client library.

NIS_CACHEEXPIRED
The entry returned came from an object cache that has expired. This means that the
time to live value has gone to zero and the entry may have changed. If the flag
NO_CACHE was passed to the lookup function then the lookup function will retry
the operation to get an unexpired copy of the object.

NIS_CBERROR
An RPC error occurred on the server while it was calling back to the client. The
transaction was aborted at that time and any unsent data was discarded.

NIS_CBRESULTS
Even though the request was successful, all of the entries have been sent to your
callback function and are thus not included in this result.

NIS_FOREIGNNS
The name could not be completely resolved. When the name passed to the function
would resolve in a namespace that is outside the NIS+ name tree, this error is

nis_modify_entry(3NSL)

ERRORS

Introduction to Library Functions 605

returned with a NIS+ object of type DIRECTORY. The returned object contains the
type of namespace and contact information for a server within that namespace.

NIS_INVALIDOBJ
The object pointed to by object is not a valid NIS+ entry object for the given table.
This could occur if it had a mismatched number of columns, or a different data type
(for example, binary or text) than the associated column in the table.

NIS_LINKNAMEERROR
The name passed resolved to a LINK type object and the contents of the object
pointed to an invalid name.

NIS_MODFAIL
The attempted modification failed for some reason.

NIS_NAMEEXISTS
An attempt was made to add a name that already exists. To add the name, first
remove the existing name and then add the new name or modify the existing
named object.

NIS_NAMEUNREACHABLE
This soft error indicates that a server for the desired directory of the named table
object could not be reached. This can occur when there is a network partition or the
server has crashed. Attempting the operation again may succeed. See the
HARD_LOOKUP flag.

NIS_NOCALLBACK
The server was unable to contact the callback service on your machine. This results
in no data being returned.

NIS_NOMEMORY
Generally a fatal result. It means that the service ran out of heap space.

NIS_NOSUCHNAME
This hard error indicates that the named directory of the table object does not exist.
This occurs when the server that should be the parent of the server that serves the
table, does not know about the directory in which the table resides.

NIS_NOSUCHTABLE
The named table does not exist.

NIS_NOT_ME
A request was made to a server that does not serve the given name. Normally this
will not occur, however if you are not using the built in location mechanism for
servers, you may see this if your mechanism is broken.

NIS_NOTFOUND
No entries in the table matched the search criteria. If the search criteria was null
(return all entries) then this result means that the table is empty and may safely be
removed by calling the nis_remove().

nis_modify_entry(3NSL)

606 man pages section 3: Library Functions • Last Revised 17 Feb 1998

If the FOLLOW_PATH flag was set, this error indicates that none of the tables in the
path contain entries that match the search criteria.

NIS_NOTMASTER
A change request was made to a server that serves the name, but it is not the master
server. This can occur when a directory object changes and it specifies a new master
server. Clients that have cached copies of the directory object in the
/var/nis/NIS_SHARED_DIRCACHE file will need to have their cache managers
restarted (use nis_cachemgr -i) to flush this cache.

NIS_NOTSAMEOBJ
An attempt to remove an object from the namespace was aborted because the object
that would have been removed was not the same object that was passed in the
request.

NIS_NOTSEARCHABLE
The table name resolved to a NIS+ object that was not searchable.

NIS_PARTIAL
This result is similar to NIS_NOTFOUND except that it means the request succeeded
but resolved to zero entries. When this occurs, the server returns a copy of the table
object instead of an entry so that the client may then process the path or implement
some other local policy.

NIS_RPCERROR
This fatal error indicates the RPC subsystem failed in some way. Generally there
will be a syslog(3C) message indicating why the RPC request failed.

NIS_S_NOTFOUND
The named entry does not exist in the table, however not all tables in the path
could be searched, so the entry may exist in one of those tables.

NIS_S_SUCCESS
Even though the request was successful, a table in the search path was not able to
be searched, so the result may not be the same as the one you would have received
if that table had been accessible.

NIS_SUCCESS
The request was successful.

NIS_SYSTEMERROR
Some form of generic system error occurred while attempting the request. Check
the syslog(3C) record for error messages from the server.

NIS_TOOMANYATTRS
The search criteria passed to the server had more attributes than the table had
searchable columns.

NIS_TRYAGAIN
The server connected to was too busy to handle your request. add_entry(),
remove_entry(), and modify_entry() return this error when the master

nis_modify_entry(3NSL)

Introduction to Library Functions 607

server is currently updating its internal state. It can be returned to nis_list()
when the function specifies a callback and the server does not have the resources to
handle callbacks.

NIS_TYPEMISMATCH
An attempt was made to add or modify an entry in a table, and the entry passed
was of a different type than the table.

NIS_PATH When set, this variable is the search path used by nis_list() if
the flag EXPAND_NAME is set.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

To succeed, nis_add_entry(), nis_remove_entry(), and
nis_modify_entry() must inherit the PAF_TRUSTED_PATH attribute.

nis_cachemgr(1M), nis_names(3NSL), nis_server(3NSL),
rpc_svc_calls(3NSL)

niscat(1), niserror(1), nismatch(1), syslog(3C), nis_clone_object(3NSL),
nis_destroy_object(3NSL), nis_error(3NSL), nis_getnames(3NSL),
nis_local_names(3NSL), nis_objects(3NSL), attributes(5)

Use the flag HARD_LOOKUP carefully since it can cause the application to block
indefinitely during a network partition.

The path used when the flag FOLLOW_PATH is specified, is the one present in the first
table searched. The path values in tables that are subsequently searched are ignored.

It is legal to call functions that would access the nameservice from within a list
callback. However, calling a function that would itself use a callback, or calling
nis_list() with a callback from within a list callback function is not currently
supported.

There are currently no known methods for nis_first_entry() and
nis_next_entry() to get their answers from only the master server.

The nis_list() function is not MT-Safe with callbacks. nis_list() callbacks are
serialized. A call to nis_list() with a callback from within nis_list() will
deadlock. nis_list() with a callback cannot be called from an rpc server. See
rpc_svc_calls(3NSL). Otherwise, this function is MT-Safe.

nis_modify_entry(3NSL)

ENVIRONMENT
VARIABLES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

WARNINGS

NOTES

608 man pages section 3: Library Functions • Last Revised 17 Feb 1998

nis_names, nis_lookup, nis_add, nis_remove, nis_modify, nis_freeresult – NIS+
namespace functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

nis_result *nis_lookup(nis_name name, uint_t flags);

nis_result *nis_add(nis_name name, nis_object *obj);

nis_result *nis_remove(nis_name name, nis_object *obj);

nis_result *nis_modify(nis_name name, nis_object *obj);

void nis_freeresult(nis_result *result);

These functions are used to locate and manipulate all NIS+ objects (see
nis_objects(3NSL)) except the NIS+ entry objects. To look up the NIS+ entry
objects within a NIS+ table, refer to nis_subr(3NSL).

nis_lookup() resolves a NIS+ name and returns a copy of that object from a NIS+
server. nis_add() and nis_remove() add and remove objects to the NIS+
namespace, respectively. nis_modify() can change specific attributes of an object
that already exists in the namespace.

These functions should be used only with names that refer to an NIS+ Directory, NIS+
Table, NIS+ Group, or NIS+ Private object. If a name refers to an NIS+ entry object, the
functions listed in nis_subr(3NSL) should be used.

nis_freeresult() frees all memory associated with a nis_result structure. This
function must be called to free the memory associated with a NIS+ result.
nis_lookup(), nis_add(), nis_remove(), and nis_modify() all return a
pointer to a nis_result structure which must be freed by calling
nis_freeresult() when you have finished using it. If one or more of the objects
returned in the structure need to be retained, they can be copied with
nis_clone_object(3NSL) (see nis_subr(3NSL)). To succeed, nis_add(),
nis_modify(), and nis_remove() must inherit the PAF_TRUSTED_PATH attribute.

nis_lookup() takes two parameters, the name of the object to be resolved in name,
and a flags parameter, flags, which is defined below. The object name is expected to
correspond to the syntax of a non-indexed NIS+ name (see nis_tables(3NSL)). The
nis_lookup() function is the only function from this group that can use a non-fully
qualified name. If the parameter name is not a fully qualified name, then the flag
EXPAND_NAME must be specified in the call. If this flag is not specified, the function
will fail with the error NIS_BADNAME.

The flags parameter is constructed by logically ORing zero or more flags from the
following list.

FOLLOW_LINKS When specified, the client library will ‘‘follow’’ links by issuing
another NIS+ lookup call for the object named by the link. If the

nis_names(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 609

linked object is itself a link, then this process will iterate until the
either a object is found that is not a LINK type object, or the library
has followed 16 links.

HARD_LOOKUP When specified, the client library will retry the lookup until it is
answered by a server. Using this flag will cause the library to block
until at least one NIS+ server is available. If the network
connectivity is impaired, this can be a relatively long time.

NO_CACHE When specified, the client library will bypass any object caches
and will get the object from either the master NIS+ server or one of
its replicas.

MASTER_ONLY When specified, the client library will bypass any object caches
and any domain replicas and fetch the object from the NIS+ master
server for the object’s domain. This insures that the object returned
is up to date at the cost of a possible performance degradation and
failure if the master server is unavailable or physically distant.

EXPAND_NAME When specified, the client library will attempt to expand a
partially qualified name by calling the function nis_getnames()
(see nis_subr(3NSL)) which uses the environment variable
NIS_PATH.

The status value may be translated to ascii text using the function nis_sperrno()
(see nis_error(3NSL)).

On return, the objects array in the result will contain one and possibly several objects
that were resolved by the request. If the FOLLOW_LINKS flag was present, on success
the function could return several entry objects if the link in question pointed within a
table. If an error occurred when following a link, the objects array will contain a copy
of the link object itself.

The function nis_add() will take the object obj and add it to the NIS+ namespace
with the name name. This operation will fail if the client making the request does not
have the create access right for the domain in which this object will be added. The
parameter name must contain a fully qualified NIS+ name. The object members
zo_name and zo_domain will be constructed from this name. This operation will fail if
the object already exists. This feature prevents the accidental addition of objects over
another object that has been added by another process.

The function nis_remove() will remove the object with name name from the NIS+
namespace. The client making this request must have the destroy access right for the
domain in which this object resides. If the named object is a link, the link is removed
and not the object that it points to. If the parameter obj is not NULL, it is assumed to
point to a copy of the object being removed. In this case, if the object on the server
does not have the same object identifier as the object being passed, the operation will
fail with the NIS_NOTSAMEOBJ error. This feature allows the client to insure that it is
removing the desired object. The parameter name must contain a fully qualified NIS+
name.

nis_names(3NSL)

610 man pages section 3: Library Functions • Last Revised 17 Feb 1998

The function nis_modify() will modify the object named by name to the field values
in the object pointed to by obj. This object should contain a copy of the object from the
name space that is being modified. This operation will fail with the error
NIS_NOTSAMEOBJ if the object identifier of the passed object does not match that of
the object being modified in the namespace.

Normally the contents of the member zo_name in the nis_object structure would be
constructed from the name passed in the name parameter. However, if it is non-null the
client library will use the name in the zo_name member to perform a rename operation
on the object. This name must not contain any unquoted ‘.’(dot) characters. If these
conditions are not met the operation will fail and return the NIS_BADNAME error code.

These functions return a pointer to a structure of type nis_result:

struct nis_result {
nis_error status;
struct {

uint_t objects_len;
nis_object *objects_val;

} objects;
netobj cookie;
uint32_t zticks;
uint32_t dticks;
uint32_t aticks;
uint32_t cticks;

};

The status member contains the error status of the the operation. A text message that
describes the error can be obtained by calling the function nis_sperrno() (see
nis_error(3NSL)).

The objects structure contains two members. objects_val is an array of nis_object
structures; objects_len is the number of cells in the array. These objects will be freed by
the call to nis_freeresult(). If you need to keep a copy of one or more objects,
they can be copied with the function nis_clone_object() and freed with the
function nis_destroy_object() (see nis_server(3NSL)). Refer to
nis_objects(3NSL) for a description of the nis_object structure.

The various ticks contain details of where the time was taken during a request. They
can be used to tune one’s data organization for faster access and to compare different
database implementations.

zticks The time spent in the NIS+ service itself. This count starts when the server
receives the request and stops when it sends the reply.

dticks The time spent in the database backend. This time is measured from the
time a database call starts, until the result is returned. If the request results
in multiple calls to the database, this is the sum of all the time spent in
those calls.

aticks The time spent in any ‘‘accelerators’’ or caches. This includes the time
required to locate the server needed to resolve the request.

nis_names(3NSL)

Results

Introduction to Library Functions 611

cticks The total time spent in the request. This clock starts when you enter the
client library and stops when a result is returned. By subtracting the sum of
the other ticks values from this value, you can obtain the local overhead of
generating a NIS+ request.

Subtracting the value in dticks from the value in zticks will yield the time spent in the
service code itself. Subtracting the sum of the values in zticks and aticks from the value
in cticks will yield the time spent in the client library itself. Note: all of the tick times
are measured in microseconds.

The client library can return a variety of error returns and diagnostics. The more
salient ones are documented below.

NIS_SUCCESS
The request was successful.

NIS_S_SUCCESS
The request was successful, however the object returned came from an object cache
and not directly from the server. If you do not wish to see objects from object caches
you must specify the flag NO_CACHE when you call the lookup function.

NIS_NOTFOUND
The named object does not exist in the namespace.

NIS_CACHEEXPIRED
The object returned came from an object cache that has expired. The time to live
value has gone to zero and the object may have changed. If the flag NO_CACHE was
passed to the lookup function then the lookup function will retry the operation to
get an unexpired copy of the object.

NIS_NAMEUNREACHABLE
A server for the directory of the named object could not be reached. This can occur
when there is a network partition or all servers have crashed. See the
HARD_LOOKUP flag.

NIS_UNKNOWNOBJ
The object returned is of an unknown type.

NIS_TRYAGAIN
The server connected to was too busy to handle your request. For the add, remove,
and modify operations this is returned when either the master server for a directory
is unavailable or it is in the process of checkpointing its database. It can also be
returned when the server is updating it’s internal state. And in the case of
nis_list() if the client specifies a callback and the server does not have enough
resources to handle the callback.

NIS_SYSTEMERROR
A generic system error occurred while attempting the request. Most commonly the
server has crashed or the database has become corrupted. Check the syslog record
for error messages from the server.

nis_names(3NSL)

RETURN VALUES

612 man pages section 3: Library Functions • Last Revised 17 Feb 1998

NIS_NOT_ME
A request was made to a server that does not serve the name in question. Normally
this will not occur, however if you are not using the built in location mechanism for
servers you may see this if your mechanism is broken.

NIS_NOMEMORY
Generally a fatal result. It means that the service ran out of heap space.

NIS_NAMEEXISTS
An attempt was made to add a name that already exists. To add the name, first
remove the existing name and then add the new object or modify the existing
named object.

NIS_NOTMASTER
An attempt was made to update the database on a replica server.

NIS_INVALIDOBJ
The object pointed to by obj is not a valid NIS+ object.

NIS_BADNAME
The name passed to the function is not a legal NIS+ name.

NIS_LINKNAMEERROR
The name passed resolved to a LINK type object and the contents of the link
pointed to an invalid name.

NIS_NOTSAMEOBJ
An attempt to remove an object from the namespace was aborted because the object
that would have been removed was not the same object that was passed in the
request.

NIS_NOSUCHNAME
This hard error indicates that the named directory of the table object does not exist.
This occurs when the server that should be the parent of the server that serves the
table, does not know about the directory in which the table resides.

NIS_NOSUCHTABLE
The named table does not exist.

NIS_MODFAIL
The attempted modification failed.

NIS_FOREIGNNS
The name could not be completely resolved. When the name passed to the function
would resolve in a namespace that is outside the NIS+ name tree, this error is
returned with a NIS+ object of type DIRECTORY, which contains the type of
namespace and contact information for a server within that namespace.

NIS_RPCERROR
This fatal error indicates the RPC subsystem failed in some way. Generally there
will be a syslog(3C) message indicating why the RPC request failed.

nis_names(3NSL)

Introduction to Library Functions 613

NIS_PATH If the flag EXPAND_NAME is set, this variable is the search path
used by nis_lookup().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_add(), nis_modify(), and nis_remove() must inherit the
PAF_TRUSTED_PATH attribute.

nis_server(3NSL), nis_tables(3NSL)

nis_error(3NSL), nis_objects(3NSL), nis_subr(3NSL), attributes(5)

You cannot modify the name of an object if that modification would cause the object to
reside in a different domain.

You cannot modify the schema of a table object.

nis_names(3NSL)

ENVIRONMENT
VARIABLES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

614 man pages section 3: Library Functions • Last Revised 17 Feb 1998

nis_tables, nis_list, nis_add_entry, nis_remove_entry, nis_modify_entry, nis_first_entry,
nis_next_entry – NIS+ table functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

nis_result *nis_list(nis_name name, uint_tflags, int
(*callback)(nis_name table_name, nis_object *object, void
*userdata), void *userdata);

nis_result *nis_add_entry(nis_name table_name, nis_object *object,
uint_t flags);

nis_result *nis_remove_entry(nis_name name, nis_object *object,
uint_tflags);

nis_result *nis_modify_entry(nis_name name, nis_object *object,
uint_tflags);

nis_result *nis_first_entry(nis_name table_name);

nis_result *nis_next_entry(nis_name table_name, netobj *cookie);

void nis_freeresult(nis_result *result);

These functions are used to search and modify NIS+ tables. nis_list() is used to
search a table in the NIS+ namespace. nis_first_entry() and
nis_next_entry() are used to enumerate a table one entry at a time.
nis_add_entry(), nis_remove_entry(), and nis_modify_entry() are used
to change the information stored in a table. nis_freeresult() is used to free the
memory associated with the nis_result structure.

Entries within a table are named by NIS+ indexed names. An indexed name is a
compound name that is composed of a search criteria and a simple NIS+ name that
identifies a table object. A search criteria is a series of column names and their
associated values enclosed in bracket ’[]’ characters. Indexed names have the
following form:

[colname=value, . . .],tablename

The list function, nis_list(), takes an indexed name as the value for the name
parameter. Here, the tablename should be a fully qualified NIS+ name unless the
EXPAND_NAME flag (described below) is set. The second parameter, flags, defines how
the function will respond to various conditions. The value for this parameter is created
by logically ORing together one or more flags from the following list.

FOLLOW_LINKS If the table specified in name resolves to be a LINK type object (see
nis_objects(3NSL)), this flag specifies that the client library
follow that link and do the search at that object. If this flag is not
set and the name resolves to a link, the error
NIS_NOTSEARCHABLE will be returned.

nis_next_entry(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 615

FOLLOW_PATH This flag specifies that if the entry is not found within this table,
the list operation should follow the path specified in the table
object. When used in conjunction with the ALL_RESULTS flag
below, it specifies that the path should be followed regardless of
the result of the search. When used in conjunction with the
FOLLOW_LINKS flag above, named tables in the path that resolve
to links will be followed until the table they point to is located. If a
table in the path is not reachable because no server that serves it is
available, the result of the operation will be either a “soft” success
or a “soft” failure to indicate that not all tables in the path could be
searched. If a name in the path names is either an invalid or
non-existent object then it is silently ignored.

HARD_LOOKUP This flag specifies that the operation should continue trying to
contact a server of the named table until a definitive result is
returned (such as NIS_NOTFOUND).

ALL_RESULTS This flag can only be used in conjunction with FOLLOW_PATH and
a callback function. When specified, it forces all of the tables in the
path to be searched. If name does not specify a search criteria
(imply that all entries are to be returned), then this flag will cause
all of the entries in all of the tables in the path to be returned.

NO_CACHE This flag specifies that the client library should bypass any client
object caches and get its information directly from either the
master server or a replica server for the named table.

MASTER_ONLY This flag is even stronger than NO_CACHE in that it specifies that
the client library should only get its information from the master
server for a particular table. This guarantees that the information
will be up to date. However, there may be severe performance
penalties associated with contacting the master server directly on
large networks. When used in conjunction with the HARD_LOOKUP
flag, this will block the list operation until the master server is up
and available.

EXPAND_NAME When specified, the client library will attempt to expand a
partially qualified name by calling nis_getnames() [see
nis_local_names(3NSL)] which uses the environment variable
NIS_PATH.

RETURN_RESULT This flag is used to specify that a copy of the returning object be
returned in the nis_result structure if the operation was
successful.

The third parameter to nis_list(), callback, is an optional pointer to a function that
will process the ENTRY type objects that are returned from the search. If this pointer is
NULL, then all entries that match the search criteria are returned in the nis_result
structure, otherwise this function will be called once for each entry returned. When
called, this function should return 0 when additional objects are desired and 1 when it

nis_next_entry(3NSL)

616 man pages section 3: Library Functions • Last Revised 17 Feb 1998

no longer wishes to see any more objects. The fourth parameter, userdata, is simply
passed to callback function along with the returned entry object. The client can use
this pointer to pass state information or other relevant data that the callback function
might need to process the entries.

The nis_list() function is not MT-Safe with callbacks. See NOTES.

nis_add_entry() will add the NIS+ object to the NIS+ table_name. The flags
parameter is used to specify the failure semantics for the add operation. The default
(flags equal 0) is to fail if the entry being added already exists in the table. The
ADD_OVERWRITE flag may be used to specify that existing object is to be overwritten if
it exists, (a modify operation) or added if it does not exist. With the ADD_OVERWRITE
flag, this function will fail with the error NIS_PERMISSION if the existing object does
not allow modify privileges to the client.

If the flag RETURN_RESULT has been specified, the server will return a copy of the
resulting object if the operation was successful. To succeed, nis_add_entry() must
inherit the PAF_TRUSTED_PATH attribute.

nis_remove_entry() removes the identified entry from the table or a set of entries
identified by table_name. If the parameter object is non-null, it is presumed to point to a
cached copy of the entry. When the removal is attempted, and the object that would be
removed is not the same as the cached object pointed to by object then the operation
will fail with an NIS_NOTSAMEOBJ error. If an object is passed with this function, the
search criteria in name is optional as it can be constructed from the values within the
entry. However, if no object is present, the search criteria must be included in the name
parameter. If the flags variable is null, and the search criteria does not uniquely
identify an entry, the NIS_NOTUNIQUE error is returned and the operation is aborted.
If the flag parameter REM_MULTIPLE is passed, and if remove permission is allowed
for each of these objects, then all objects that match the search criteria will be removed.
Note that a null search criteria and the REM_MULTIPLE flag will remove all entries in a
table. To succeed, nis_remove_entry() must inherit the PAF_TRUSTED_PATH
attribute.

nis_modify_entry() modifies an object identified by name. The parameter object
should point to an entry with the LEN_MODIFIED flag set in each column that
contains new information.

The owner, group, and access rights of an entry are modified by placing the modified
information into the respective fields of the parameter, object: zo_owner, zo_group,
and zo_access.

These columns will replace their counterparts in the entry that is stored in the table.
The entry passed must have the same number of columns, same type, and valid data
in the modified columns for this operation to succeed.

If the flags parameter contains the flag MOD_SAMEOBJ then the object pointed to by
object is assumed to be a cached copy of the original object. If the OID of the object
passed is different than the OID of the object the server fetches, then the operation fails

nis_next_entry(3NSL)

Introduction to Library Functions 617

with the NIS_NOTSAMEOBJ error. This can be used to implement a simple
read-modify-write protocol which will fail if the object is modified before the client
can write the object back.

If the flag RETURN_RESULT has been specified, the server will return a copy of the
resulting object if the operation was successful. To succeed, nis_modify_entry()
must inherit the PAF_TRUSTED_PATH attribute.

nis_first_entry() fetches entries from a table one at a time. This mode of
operation is extremely inefficient and callbacks should be used instead wherever
possible. The table containing the entries of interest is identified by name. If a search
criteria is present in name it is ignored. The value of cookie within the nis_result
structure must be copied by the caller into local storage and passed as an argument to
nis_next_entry().

nis_next_entry() retrieves the “next” entry from a table specified by table_name.
The order in which entries are returned is not guaranteed. Further, should an update
occur in the table between client calls to nis_next_entry() there is no guarantee
that an entry that is added or modified will be seen by the client. Should an entry be
removed from the table that would have been the “next” entry returned, the error
NIS_CHAINBROKEN is returned instead.

These functions return a pointer to a structure of type nis_result:

struct nis_result {
nis_error status;
struct {

uint_t objects_len;
nis_object *objects_val;

} objects;
netobj cookie;
uint32_t zticks;
uint32_t dticks;
uint32_t aticks;
uint32_t cticks;

};The status member contains the error status of the the operation. A text
message that describes the error can be obtained by calling the function
nis_sperrno() [see nis_error(3NSL)].

The objects structure contains two members. objects_val is an array of nis_object
structures; objects_len is the number of cells in the array. These objects will be freed by
a call to nis_freeresult()([see nis_names(3NSL)). If you need to keep a copy of
one or more objects, they can be copied with the function nis_clone_object() and
freed with the function nis_destroy_object() (see nis_server(3NSL)).

The various ticks contain details of where the time (in microseconds) was taken during
a request. They can be used to tune one’s data organization for faster access and to
compare different database implementations.

nis_next_entry(3NSL)

RETURN VALUES

618 man pages section 3: Library Functions • Last Revised 17 Feb 1998

zticks The time spent in the NIS+ service itself, this count starts when the server
receives the request and stops when it sends the reply.

dticks The time spent in the database backend, this time is measured from the
time a database call starts, until a result is returned. If the request results in
multiple calls to the database, this is the sum of all the time spent in those
calls.

aticks The time spent in any "accelerators" or caches. This includes the time
required to locate the server needed to resolve the request.

cticks The total time spent in the request, this clock starts when you enter the
client library and stops when a result is returned. By subtracting the sum of
the other ticks values from this value you can obtain the local overhead of
generating a NIS+ request.

Subtracting the value in dticks from the value in zticks will yield the time spent in the
service code itself. Subtracting the sum of the values in zticks and aticks from the value
in cticks will yield the time spent in the client library itself. Note: all of the tick times
are measured in microseconds.

The client library can return a variety of error returns and diagnostics. The more
salient ones are documented below.

NIS_BADATTRIBUTE
The name of an attribute did not match up with a named column in the table, or the
attribute did not have an associated value.

NIS_BADNAME
The name passed to the function is not a legal NIS+ name.

NIS_BADREQUEST
A problem was detected in the request structure passed to the client library.

NIS_CACHEEXPIRED
The entry returned came from an object cache that has expired. This means that the
time to live value has gone to zero and the entry may have changed. If the flag
NO_CACHE was passed to the lookup function then the lookup function will retry
the operation to get an unexpired copy of the object.

NIS_CBERROR
An RPC error occurred on the server while it was calling back to the client. The
transaction was aborted at that time and any unsent data was discarded.

NIS_CBRESULTS
Even though the request was successful, all of the entries have been sent to your
callback function and are thus not included in this result.

NIS_FOREIGNNS
The name could not be completely resolved. When the name passed to the function
would resolve in a namespace that is outside the NIS+ name tree, this error is

nis_next_entry(3NSL)

ERRORS

Introduction to Library Functions 619

returned with a NIS+ object of type DIRECTORY. The returned object contains the
type of namespace and contact information for a server within that namespace.

NIS_INVALIDOBJ
The object pointed to by object is not a valid NIS+ entry object for the given table.
This could occur if it had a mismatched number of columns, or a different data type
(for example, binary or text) than the associated column in the table.

NIS_LINKNAMEERROR
The name passed resolved to a LINK type object and the contents of the object
pointed to an invalid name.

NIS_MODFAIL
The attempted modification failed for some reason.

NIS_NAMEEXISTS
An attempt was made to add a name that already exists. To add the name, first
remove the existing name and then add the new name or modify the existing
named object.

NIS_NAMEUNREACHABLE
This soft error indicates that a server for the desired directory of the named table
object could not be reached. This can occur when there is a network partition or the
server has crashed. Attempting the operation again may succeed. See the
HARD_LOOKUP flag.

NIS_NOCALLBACK
The server was unable to contact the callback service on your machine. This results
in no data being returned.

NIS_NOMEMORY
Generally a fatal result. It means that the service ran out of heap space.

NIS_NOSUCHNAME
This hard error indicates that the named directory of the table object does not exist.
This occurs when the server that should be the parent of the server that serves the
table, does not know about the directory in which the table resides.

NIS_NOSUCHTABLE
The named table does not exist.

NIS_NOT_ME
A request was made to a server that does not serve the given name. Normally this
will not occur, however if you are not using the built in location mechanism for
servers, you may see this if your mechanism is broken.

NIS_NOTFOUND
No entries in the table matched the search criteria. If the search criteria was null
(return all entries) then this result means that the table is empty and may safely be
removed by calling the nis_remove().

nis_next_entry(3NSL)

620 man pages section 3: Library Functions • Last Revised 17 Feb 1998

If the FOLLOW_PATH flag was set, this error indicates that none of the tables in the
path contain entries that match the search criteria.

NIS_NOTMASTER
A change request was made to a server that serves the name, but it is not the master
server. This can occur when a directory object changes and it specifies a new master
server. Clients that have cached copies of the directory object in the
/var/nis/NIS_SHARED_DIRCACHE file will need to have their cache managers
restarted (use nis_cachemgr -i) to flush this cache.

NIS_NOTSAMEOBJ
An attempt to remove an object from the namespace was aborted because the object
that would have been removed was not the same object that was passed in the
request.

NIS_NOTSEARCHABLE
The table name resolved to a NIS+ object that was not searchable.

NIS_PARTIAL
This result is similar to NIS_NOTFOUND except that it means the request succeeded
but resolved to zero entries. When this occurs, the server returns a copy of the table
object instead of an entry so that the client may then process the path or implement
some other local policy.

NIS_RPCERROR
This fatal error indicates the RPC subsystem failed in some way. Generally there
will be a syslog(3C) message indicating why the RPC request failed.

NIS_S_NOTFOUND
The named entry does not exist in the table, however not all tables in the path
could be searched, so the entry may exist in one of those tables.

NIS_S_SUCCESS
Even though the request was successful, a table in the search path was not able to
be searched, so the result may not be the same as the one you would have received
if that table had been accessible.

NIS_SUCCESS
The request was successful.

NIS_SYSTEMERROR
Some form of generic system error occurred while attempting the request. Check
the syslog(3C) record for error messages from the server.

NIS_TOOMANYATTRS
The search criteria passed to the server had more attributes than the table had
searchable columns.

NIS_TRYAGAIN
The server connected to was too busy to handle your request. add_entry(),
remove_entry(), and modify_entry() return this error when the master

nis_next_entry(3NSL)

Introduction to Library Functions 621

server is currently updating its internal state. It can be returned to nis_list()
when the function specifies a callback and the server does not have the resources to
handle callbacks.

NIS_TYPEMISMATCH
An attempt was made to add or modify an entry in a table, and the entry passed
was of a different type than the table.

NIS_PATH When set, this variable is the search path used by nis_list() if
the flag EXPAND_NAME is set.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

To succeed, nis_add_entry(), nis_remove_entry(), and
nis_modify_entry() must inherit the PAF_TRUSTED_PATH attribute.

nis_cachemgr(1M), nis_names(3NSL), nis_server(3NSL),
rpc_svc_calls(3NSL)

niscat(1), niserror(1), nismatch(1), syslog(3C), nis_clone_object(3NSL),
nis_destroy_object(3NSL), nis_error(3NSL), nis_getnames(3NSL),
nis_local_names(3NSL), nis_objects(3NSL), attributes(5)

Use the flag HARD_LOOKUP carefully since it can cause the application to block
indefinitely during a network partition.

The path used when the flag FOLLOW_PATH is specified, is the one present in the first
table searched. The path values in tables that are subsequently searched are ignored.

It is legal to call functions that would access the nameservice from within a list
callback. However, calling a function that would itself use a callback, or calling
nis_list() with a callback from within a list callback function is not currently
supported.

There are currently no known methods for nis_first_entry() and
nis_next_entry() to get their answers from only the master server.

The nis_list() function is not MT-Safe with callbacks. nis_list() callbacks are
serialized. A call to nis_list() with a callback from within nis_list() will
deadlock. nis_list() with a callback cannot be called from an rpc server. See
rpc_svc_calls(3NSL). Otherwise, this function is MT-Safe.

nis_next_entry(3NSL)

ENVIRONMENT
VARIABLES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

WARNINGS

NOTES

622 man pages section 3: Library Functions • Last Revised 17 Feb 1998

nis_ping, nis_checkpoint – Misc NIS+ log administration functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

void nis_ping(nis_name dirname, uint32_t utime, nis_object *dirobj);

nis_result *nis_checkpoint(nis_name dirname);

nis_ping() is called by the master server for a directory when a change has
occurred within that directory. The parameter dirname identifies the directory with the
change. If the parameter dirobj is NULL, this function looks up the directory object for
dirname and uses the list of replicas it contains. The parameter utime contains the
timestamp of the last change made to the directory. This timestamp is used by the
replicas when retrieving updates made to the directory.

The effect of calling nis_ping() is to schedule an update on the replica. A short time
after a ping is received, typically about two minutes, the replica compares the last
update time for its databases to the timestamp sent by the ping. If the ping timestamp
is later, the replica establishes a connection with the master server and request all
changes from the log that occurred after the last update that it had recorded in its local
log.

To succeed, nis_ping() must inherit the PAF_TRUSTED_PATH attribute.

nis_checkpoint() is used to force the service to checkpoint information that has
been entered in the log but has not been checkpointed to disk. When called, this
function checkpoints the database for each table in the directory, the database
containing the directory and the transaction log. Care should be used in calling this
function since directories that have seen a lot of changes may take several minutes to
checkpoint. During the checkpointing process, the service will be unavailable for
updates for all directories that are served by this machine as master.

nis_checkpoint() returns a pointer to a nis_result structure (described in
nis_tables(3NSL)). This structure should be freed with nis_freeresult() (see
nis_names(3NSL)). The only items of interest in the returned result are the status
value and the statistics.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_ping() must inherit the PAF_TRUSTED_PATH attribute.

nis_names(3NSL), nis_tables(3NSL)

nis_ping(3NSL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
Manual

Introduction to Library Functions 623

nislog(1M), nisfiles(4), attributes(5)

nis_ping(3NSL)

SunOS 5.8
Reference Manual

624 man pages section 3: Library Functions • Last Revised 17 Feb 1998

nis_groups, nis_ismember, nis_addmember, nis_removemember, nis_creategroup,
nis_destroygroup, nis_verifygroup, nis_print_group_entry – NIS+ group manipulation
functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

bool_t nis_ismember(nis_name principal, nis_name group);

nis_error nis_addmember(nis_name member, nis_name group);

nis_error nis_removemember(nis_name member, nis_name group);

nis_error nis_creategroup(nis_name group, uint_t flags);

nis_error nis_destroygroup(nis_name group);

void nis_print_group_entry(nis_name group);

nis_error nis_verifygroup(nis_name group);

These functions manipulate NIS+ groups. They are used by NIS+ clients and servers,
and are the interfaces to the group authorization object.

The names of NIS+ groups are syntactically similar to names of NIS+ objects but they
occupy a separate namespace. A group named "a.b.c.d." is represented by a NIS+
group object named "a.groups_dir.b.c.d."; the functions described here all expect the
name of the group, not the name of the corresponding group object.

There are three types of group members:

� An explicit member is just a NIS+ principal-name, for example
"wickedwitch.west.oz."

� An implicit ("domain") member, written "*.west.oz.", means that all principals in the
given domain belong to this member. No other forms of wildcarding are allowed:
"wickedwitch.*.oz." is invalid, as is "wickedwitch.west.*.". Note that principals in
subdomains of the given domain are not included.

� A recursive ("group") member, written "@cowards.oz.", refers to another group; all
principals that belong to that group are considered to belong here.

Any member may be made negative by prefixing it with a minus sign (’−’). A group
may thus contain explicit, implicit, recursive, negative explicit, negative implicit, and
negative recursive members.

A principal is considered to belong to a group if it belongs to at least one non-negative
group member of the group and belongs to no negative group members.

The nis_ismember() function returns TRUE if it can establish that principal belongs
to group; otherwise it returns FALSE.

The nis_addmember() and nis_removemember() functions add or remove a
member. They do not check whether the member is valid. The user must have read

nis_print_group_entry(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 625

and modify rights for the group in question. To succeed, nis_addmember() and
nis_removemember() must inherit the PAF_TRUSTED_PATH attribute.

The nis_creategroup() and nis_destroygroup() functions create and destroy
group objects. The user must have create or destroy rights, respectively, for the
groups_dir directory in the appropriate domain. The parameter flags to
nis_creategroup() is currently unused and should be set to zero. To succeed,
nis_creategroup() and nis_destroygroup() must inherit the
PAF_TRUSTED_PATH attribute.

The nis_print_group_entry() function lists a group’s members on the standard
output.

The nis_verifygroup() function returns NIS_SUCCESS if the given group exists,
otherwise it returns an error code.

EXAMPLE 1 Simple Memberships

Given a group sadsouls.oz. with members tinman.oz., lion.oz., and
scarecrow.oz., the function call

bool_var = nis_ismember("lion.oz.", "sadsouls.oz.");

will return 1 (TRUE) and the function call

bool_var = nis_ismember("toto.oz.", "sadsouls.oz.");

will return 0 (FALSE).

EXAMPLE 2 Implicit Memberships

Given a group baddies.oz., with members wickedwitch.west.oz. and
*.monkeys.west.oz., the function callbool_var =
nis_ismember("hogan.monkeys.west.oz.", "baddies.oz."); will return 1 (TRUE) because
any principal from the monkeys.west.oz. domain belongs to the implicit group
*.monkeys.west.oz., but the function call

bool_var = nis_ismember("hogan.big.monkeys.west.oz.", "baddies.oz.");

will return 0 (FALSE).

EXAMPLE 3 Recursive Memberships

Given a group goodandbad.oz., with members toto.kansas, @sadsouls.oz.,
and @baddies.oz., and the groups sadsouls.oz. and baddies.oz. defined
above, the function call

bool_var = nis_ismember("wickedwitch.west.oz.", "goodandbad.oz.");

will return 1 (TRUE), because wickedwitch.west.oz. is a member of the
baddies.oz. group which is recursively included in the goodandbad.oz. group.

See attributes(5) for descriptions of the following attributes:

nis_print_group_entry(3NSL)

EXAMPLES

ATTRIBUTES

626 man pages section 3: Library Functions • Last Revised 17 Feb 1998

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_addmember(), nis_removemember(), nis_creategroup() and
nis_destroygroup() must inherit the PAF_TRUSTED_PATH attribute.

nisgrpadm(1), nis_objects(3NSL), attributes(5)

These functions only accept fully-qualified NIS+ names.

A group is represented by a NIS+ object (see nis_objects(3NSL)) with a variant
part that is defined in the group_obj structure. It contains the following fields:

uint_t gr_flags; /* Interpretation Flags
(currently unused) */

struct {
uint_t gr_members_len;
nis_name *gr_members_val;

} gr_members; /* Array of members */

NIS+ servers and clients maintain a local cache of expanded groups to enhance their
performance when checking for group membership. Should the membership of a
group change, servers and clients with that group cached will not see the change until
either the group cache has expired or it is explicitly flushed. A server’s cache may be
flushed programmatically by calling the nis_servstate() function with tag
TAG_GCACHE and a value of 1.

There are currently no known methods for nis_ismember(),
nis_print_group_entry(), and nis_verifygroup() to get their answers from
only the master server.

nis_print_group_entry(3NSL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGESSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 627

nis_names, nis_lookup, nis_add, nis_remove, nis_modify, nis_freeresult – NIS+
namespace functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

nis_result *nis_lookup(nis_name name, uint_t flags);

nis_result *nis_add(nis_name name, nis_object *obj);

nis_result *nis_remove(nis_name name, nis_object *obj);

nis_result *nis_modify(nis_name name, nis_object *obj);

void nis_freeresult(nis_result *result);

These functions are used to locate and manipulate all NIS+ objects (see
nis_objects(3NSL)) except the NIS+ entry objects. To look up the NIS+ entry
objects within a NIS+ table, refer to nis_subr(3NSL).

nis_lookup() resolves a NIS+ name and returns a copy of that object from a NIS+
server. nis_add() and nis_remove() add and remove objects to the NIS+
namespace, respectively. nis_modify() can change specific attributes of an object
that already exists in the namespace.

These functions should be used only with names that refer to an NIS+ Directory, NIS+
Table, NIS+ Group, or NIS+ Private object. If a name refers to an NIS+ entry object, the
functions listed in nis_subr(3NSL) should be used.

nis_freeresult() frees all memory associated with a nis_result structure. This
function must be called to free the memory associated with a NIS+ result.
nis_lookup(), nis_add(), nis_remove(), and nis_modify() all return a
pointer to a nis_result structure which must be freed by calling
nis_freeresult() when you have finished using it. If one or more of the objects
returned in the structure need to be retained, they can be copied with
nis_clone_object(3NSL) (see nis_subr(3NSL)). To succeed, nis_add(),
nis_modify(), and nis_remove() must inherit the PAF_TRUSTED_PATH attribute.

nis_lookup() takes two parameters, the name of the object to be resolved in name,
and a flags parameter, flags, which is defined below. The object name is expected to
correspond to the syntax of a non-indexed NIS+ name (see nis_tables(3NSL)). The
nis_lookup() function is the only function from this group that can use a non-fully
qualified name. If the parameter name is not a fully qualified name, then the flag
EXPAND_NAME must be specified in the call. If this flag is not specified, the function
will fail with the error NIS_BADNAME.

The flags parameter is constructed by logically ORing zero or more flags from the
following list.

FOLLOW_LINKS When specified, the client library will ‘‘follow’’ links by issuing
another NIS+ lookup call for the object named by the link. If the

nis_remove(3NSL)

NAME

SYNOPSIS

DESCRIPTION

628 man pages section 3: Library Functions • Last Revised 17 Feb 1998

linked object is itself a link, then this process will iterate until the
either a object is found that is not a LINK type object, or the library
has followed 16 links.

HARD_LOOKUP When specified, the client library will retry the lookup until it is
answered by a server. Using this flag will cause the library to block
until at least one NIS+ server is available. If the network
connectivity is impaired, this can be a relatively long time.

NO_CACHE When specified, the client library will bypass any object caches
and will get the object from either the master NIS+ server or one of
its replicas.

MASTER_ONLY When specified, the client library will bypass any object caches
and any domain replicas and fetch the object from the NIS+ master
server for the object’s domain. This insures that the object returned
is up to date at the cost of a possible performance degradation and
failure if the master server is unavailable or physically distant.

EXPAND_NAME When specified, the client library will attempt to expand a
partially qualified name by calling the function nis_getnames()
(see nis_subr(3NSL)) which uses the environment variable
NIS_PATH.

The status value may be translated to ascii text using the function nis_sperrno()
(see nis_error(3NSL)).

On return, the objects array in the result will contain one and possibly several objects
that were resolved by the request. If the FOLLOW_LINKS flag was present, on success
the function could return several entry objects if the link in question pointed within a
table. If an error occurred when following a link, the objects array will contain a copy
of the link object itself.

The function nis_add() will take the object obj and add it to the NIS+ namespace
with the name name. This operation will fail if the client making the request does not
have the create access right for the domain in which this object will be added. The
parameter name must contain a fully qualified NIS+ name. The object members
zo_name and zo_domain will be constructed from this name. This operation will fail if
the object already exists. This feature prevents the accidental addition of objects over
another object that has been added by another process.

The function nis_remove() will remove the object with name name from the NIS+
namespace. The client making this request must have the destroy access right for the
domain in which this object resides. If the named object is a link, the link is removed
and not the object that it points to. If the parameter obj is not NULL, it is assumed to
point to a copy of the object being removed. In this case, if the object on the server
does not have the same object identifier as the object being passed, the operation will
fail with the NIS_NOTSAMEOBJ error. This feature allows the client to insure that it is
removing the desired object. The parameter name must contain a fully qualified NIS+
name.

nis_remove(3NSL)

Introduction to Library Functions 629

The function nis_modify() will modify the object named by name to the field values
in the object pointed to by obj. This object should contain a copy of the object from the
name space that is being modified. This operation will fail with the error
NIS_NOTSAMEOBJ if the object identifier of the passed object does not match that of
the object being modified in the namespace.

Normally the contents of the member zo_name in the nis_object structure would be
constructed from the name passed in the name parameter. However, if it is non-null the
client library will use the name in the zo_name member to perform a rename operation
on the object. This name must not contain any unquoted ‘.’(dot) characters. If these
conditions are not met the operation will fail and return the NIS_BADNAME error code.

These functions return a pointer to a structure of type nis_result:

struct nis_result {
nis_error status;
struct {

uint_t objects_len;
nis_object *objects_val;

} objects;
netobj cookie;
uint32_t zticks;
uint32_t dticks;
uint32_t aticks;
uint32_t cticks;

};

The status member contains the error status of the the operation. A text message that
describes the error can be obtained by calling the function nis_sperrno() (see
nis_error(3NSL)).

The objects structure contains two members. objects_val is an array of nis_object
structures; objects_len is the number of cells in the array. These objects will be freed by
the call to nis_freeresult(). If you need to keep a copy of one or more objects,
they can be copied with the function nis_clone_object() and freed with the
function nis_destroy_object() (see nis_server(3NSL)). Refer to
nis_objects(3NSL) for a description of the nis_object structure.

The various ticks contain details of where the time was taken during a request. They
can be used to tune one’s data organization for faster access and to compare different
database implementations.

zticks The time spent in the NIS+ service itself. This count starts when the server
receives the request and stops when it sends the reply.

dticks The time spent in the database backend. This time is measured from the
time a database call starts, until the result is returned. If the request results
in multiple calls to the database, this is the sum of all the time spent in
those calls.

aticks The time spent in any ‘‘accelerators’’ or caches. This includes the time
required to locate the server needed to resolve the request.

nis_remove(3NSL)

Results

630 man pages section 3: Library Functions • Last Revised 17 Feb 1998

cticks The total time spent in the request. This clock starts when you enter the
client library and stops when a result is returned. By subtracting the sum of
the other ticks values from this value, you can obtain the local overhead of
generating a NIS+ request.

Subtracting the value in dticks from the value in zticks will yield the time spent in the
service code itself. Subtracting the sum of the values in zticks and aticks from the value
in cticks will yield the time spent in the client library itself. Note: all of the tick times
are measured in microseconds.

The client library can return a variety of error returns and diagnostics. The more
salient ones are documented below.

NIS_SUCCESS
The request was successful.

NIS_S_SUCCESS
The request was successful, however the object returned came from an object cache
and not directly from the server. If you do not wish to see objects from object caches
you must specify the flag NO_CACHE when you call the lookup function.

NIS_NOTFOUND
The named object does not exist in the namespace.

NIS_CACHEEXPIRED
The object returned came from an object cache that has expired. The time to live
value has gone to zero and the object may have changed. If the flag NO_CACHE was
passed to the lookup function then the lookup function will retry the operation to
get an unexpired copy of the object.

NIS_NAMEUNREACHABLE
A server for the directory of the named object could not be reached. This can occur
when there is a network partition or all servers have crashed. See the
HARD_LOOKUP flag.

NIS_UNKNOWNOBJ
The object returned is of an unknown type.

NIS_TRYAGAIN
The server connected to was too busy to handle your request. For the add, remove,
and modify operations this is returned when either the master server for a directory
is unavailable or it is in the process of checkpointing its database. It can also be
returned when the server is updating it’s internal state. And in the case of
nis_list() if the client specifies a callback and the server does not have enough
resources to handle the callback.

NIS_SYSTEMERROR
A generic system error occurred while attempting the request. Most commonly the
server has crashed or the database has become corrupted. Check the syslog record
for error messages from the server.

nis_remove(3NSL)

RETURN VALUES

Introduction to Library Functions 631

NIS_NOT_ME
A request was made to a server that does not serve the name in question. Normally
this will not occur, however if you are not using the built in location mechanism for
servers you may see this if your mechanism is broken.

NIS_NOMEMORY
Generally a fatal result. It means that the service ran out of heap space.

NIS_NAMEEXISTS
An attempt was made to add a name that already exists. To add the name, first
remove the existing name and then add the new object or modify the existing
named object.

NIS_NOTMASTER
An attempt was made to update the database on a replica server.

NIS_INVALIDOBJ
The object pointed to by obj is not a valid NIS+ object.

NIS_BADNAME
The name passed to the function is not a legal NIS+ name.

NIS_LINKNAMEERROR
The name passed resolved to a LINK type object and the contents of the link
pointed to an invalid name.

NIS_NOTSAMEOBJ
An attempt to remove an object from the namespace was aborted because the object
that would have been removed was not the same object that was passed in the
request.

NIS_NOSUCHNAME
This hard error indicates that the named directory of the table object does not exist.
This occurs when the server that should be the parent of the server that serves the
table, does not know about the directory in which the table resides.

NIS_NOSUCHTABLE
The named table does not exist.

NIS_MODFAIL
The attempted modification failed.

NIS_FOREIGNNS
The name could not be completely resolved. When the name passed to the function
would resolve in a namespace that is outside the NIS+ name tree, this error is
returned with a NIS+ object of type DIRECTORY, which contains the type of
namespace and contact information for a server within that namespace.

NIS_RPCERROR
This fatal error indicates the RPC subsystem failed in some way. Generally there
will be a syslog(3C) message indicating why the RPC request failed.

nis_remove(3NSL)

632 man pages section 3: Library Functions • Last Revised 17 Feb 1998

NIS_PATH If the flag EXPAND_NAME is set, this variable is the search path
used by nis_lookup().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_add(), nis_modify(), and nis_remove() must inherit the
PAF_TRUSTED_PATH attribute.

nis_server(3NSL), nis_tables(3NSL)

nis_error(3NSL), nis_objects(3NSL), nis_subr(3NSL), attributes(5)

You cannot modify the name of an object if that modification would cause the object to
reside in a different domain.

You cannot modify the schema of a table object.

nis_remove(3NSL)

ENVIRONMENT
VARIABLES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 633

nis_tables, nis_list, nis_add_entry, nis_remove_entry, nis_modify_entry, nis_first_entry,
nis_next_entry – NIS+ table functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

nis_result *nis_list(nis_name name, uint_tflags, int
(*callback)(nis_name table_name, nis_object *object, void
*userdata), void *userdata);

nis_result *nis_add_entry(nis_name table_name, nis_object *object,
uint_t flags);

nis_result *nis_remove_entry(nis_name name, nis_object *object,
uint_tflags);

nis_result *nis_modify_entry(nis_name name, nis_object *object,
uint_tflags);

nis_result *nis_first_entry(nis_name table_name);

nis_result *nis_next_entry(nis_name table_name, netobj *cookie);

void nis_freeresult(nis_result *result);

These functions are used to search and modify NIS+ tables. nis_list() is used to
search a table in the NIS+ namespace. nis_first_entry() and
nis_next_entry() are used to enumerate a table one entry at a time.
nis_add_entry(), nis_remove_entry(), and nis_modify_entry() are used
to change the information stored in a table. nis_freeresult() is used to free the
memory associated with the nis_result structure.

Entries within a table are named by NIS+ indexed names. An indexed name is a
compound name that is composed of a search criteria and a simple NIS+ name that
identifies a table object. A search criteria is a series of column names and their
associated values enclosed in bracket ’[]’ characters. Indexed names have the
following form:

[colname=value, . . .],tablename

The list function, nis_list(), takes an indexed name as the value for the name
parameter. Here, the tablename should be a fully qualified NIS+ name unless the
EXPAND_NAME flag (described below) is set. The second parameter, flags, defines how
the function will respond to various conditions. The value for this parameter is created
by logically ORing together one or more flags from the following list.

FOLLOW_LINKS If the table specified in name resolves to be a LINK type object (see
nis_objects(3NSL)), this flag specifies that the client library
follow that link and do the search at that object. If this flag is not
set and the name resolves to a link, the error
NIS_NOTSEARCHABLE will be returned.

nis_remove_entry(3NSL)

NAME

SYNOPSIS

DESCRIPTION

634 man pages section 3: Library Functions • Last Revised 17 Feb 1998

FOLLOW_PATH This flag specifies that if the entry is not found within this table,
the list operation should follow the path specified in the table
object. When used in conjunction with the ALL_RESULTS flag
below, it specifies that the path should be followed regardless of
the result of the search. When used in conjunction with the
FOLLOW_LINKS flag above, named tables in the path that resolve
to links will be followed until the table they point to is located. If a
table in the path is not reachable because no server that serves it is
available, the result of the operation will be either a “soft” success
or a “soft” failure to indicate that not all tables in the path could be
searched. If a name in the path names is either an invalid or
non-existent object then it is silently ignored.

HARD_LOOKUP This flag specifies that the operation should continue trying to
contact a server of the named table until a definitive result is
returned (such as NIS_NOTFOUND).

ALL_RESULTS This flag can only be used in conjunction with FOLLOW_PATH and
a callback function. When specified, it forces all of the tables in the
path to be searched. If name does not specify a search criteria
(imply that all entries are to be returned), then this flag will cause
all of the entries in all of the tables in the path to be returned.

NO_CACHE This flag specifies that the client library should bypass any client
object caches and get its information directly from either the
master server or a replica server for the named table.

MASTER_ONLY This flag is even stronger than NO_CACHE in that it specifies that
the client library should only get its information from the master
server for a particular table. This guarantees that the information
will be up to date. However, there may be severe performance
penalties associated with contacting the master server directly on
large networks. When used in conjunction with the HARD_LOOKUP
flag, this will block the list operation until the master server is up
and available.

EXPAND_NAME When specified, the client library will attempt to expand a
partially qualified name by calling nis_getnames() [see
nis_local_names(3NSL)] which uses the environment variable
NIS_PATH.

RETURN_RESULT This flag is used to specify that a copy of the returning object be
returned in the nis_result structure if the operation was
successful.

The third parameter to nis_list(), callback, is an optional pointer to a function that
will process the ENTRY type objects that are returned from the search. If this pointer is
NULL, then all entries that match the search criteria are returned in the nis_result
structure, otherwise this function will be called once for each entry returned. When
called, this function should return 0 when additional objects are desired and 1 when it

nis_remove_entry(3NSL)

Introduction to Library Functions 635

no longer wishes to see any more objects. The fourth parameter, userdata, is simply
passed to callback function along with the returned entry object. The client can use
this pointer to pass state information or other relevant data that the callback function
might need to process the entries.

The nis_list() function is not MT-Safe with callbacks. See NOTES.

nis_add_entry() will add the NIS+ object to the NIS+ table_name. The flags
parameter is used to specify the failure semantics for the add operation. The default
(flags equal 0) is to fail if the entry being added already exists in the table. The
ADD_OVERWRITE flag may be used to specify that existing object is to be overwritten if
it exists, (a modify operation) or added if it does not exist. With the ADD_OVERWRITE
flag, this function will fail with the error NIS_PERMISSION if the existing object does
not allow modify privileges to the client.

If the flag RETURN_RESULT has been specified, the server will return a copy of the
resulting object if the operation was successful. To succeed, nis_add_entry() must
inherit the PAF_TRUSTED_PATH attribute.

nis_remove_entry() removes the identified entry from the table or a set of entries
identified by table_name. If the parameter object is non-null, it is presumed to point to a
cached copy of the entry. When the removal is attempted, and the object that would be
removed is not the same as the cached object pointed to by object then the operation
will fail with an NIS_NOTSAMEOBJ error. If an object is passed with this function, the
search criteria in name is optional as it can be constructed from the values within the
entry. However, if no object is present, the search criteria must be included in the name
parameter. If the flags variable is null, and the search criteria does not uniquely
identify an entry, the NIS_NOTUNIQUE error is returned and the operation is aborted.
If the flag parameter REM_MULTIPLE is passed, and if remove permission is allowed
for each of these objects, then all objects that match the search criteria will be removed.
Note that a null search criteria and the REM_MULTIPLE flag will remove all entries in a
table. To succeed, nis_remove_entry() must inherit the PAF_TRUSTED_PATH
attribute.

nis_modify_entry() modifies an object identified by name. The parameter object
should point to an entry with the LEN_MODIFIED flag set in each column that
contains new information.

The owner, group, and access rights of an entry are modified by placing the modified
information into the respective fields of the parameter, object: zo_owner, zo_group,
and zo_access.

These columns will replace their counterparts in the entry that is stored in the table.
The entry passed must have the same number of columns, same type, and valid data
in the modified columns for this operation to succeed.

If the flags parameter contains the flag MOD_SAMEOBJ then the object pointed to by
object is assumed to be a cached copy of the original object. If the OID of the object
passed is different than the OID of the object the server fetches, then the operation fails

nis_remove_entry(3NSL)

636 man pages section 3: Library Functions • Last Revised 17 Feb 1998

with the NIS_NOTSAMEOBJ error. This can be used to implement a simple
read-modify-write protocol which will fail if the object is modified before the client
can write the object back.

If the flag RETURN_RESULT has been specified, the server will return a copy of the
resulting object if the operation was successful. To succeed, nis_modify_entry()
must inherit the PAF_TRUSTED_PATH attribute.

nis_first_entry() fetches entries from a table one at a time. This mode of
operation is extremely inefficient and callbacks should be used instead wherever
possible. The table containing the entries of interest is identified by name. If a search
criteria is present in name it is ignored. The value of cookie within the nis_result
structure must be copied by the caller into local storage and passed as an argument to
nis_next_entry().

nis_next_entry() retrieves the “next” entry from a table specified by table_name.
The order in which entries are returned is not guaranteed. Further, should an update
occur in the table between client calls to nis_next_entry() there is no guarantee
that an entry that is added or modified will be seen by the client. Should an entry be
removed from the table that would have been the “next” entry returned, the error
NIS_CHAINBROKEN is returned instead.

These functions return a pointer to a structure of type nis_result:

struct nis_result {
nis_error status;
struct {

uint_t objects_len;
nis_object *objects_val;

} objects;
netobj cookie;
uint32_t zticks;
uint32_t dticks;
uint32_t aticks;
uint32_t cticks;

};The status member contains the error status of the the operation. A text
message that describes the error can be obtained by calling the function
nis_sperrno() [see nis_error(3NSL)].

The objects structure contains two members. objects_val is an array of nis_object
structures; objects_len is the number of cells in the array. These objects will be freed by
a call to nis_freeresult()([see nis_names(3NSL)). If you need to keep a copy of
one or more objects, they can be copied with the function nis_clone_object() and
freed with the function nis_destroy_object() (see nis_server(3NSL)).

The various ticks contain details of where the time (in microseconds) was taken during
a request. They can be used to tune one’s data organization for faster access and to
compare different database implementations.

nis_remove_entry(3NSL)

RETURN VALUES

Introduction to Library Functions 637

zticks The time spent in the NIS+ service itself, this count starts when the server
receives the request and stops when it sends the reply.

dticks The time spent in the database backend, this time is measured from the
time a database call starts, until a result is returned. If the request results in
multiple calls to the database, this is the sum of all the time spent in those
calls.

aticks The time spent in any "accelerators" or caches. This includes the time
required to locate the server needed to resolve the request.

cticks The total time spent in the request, this clock starts when you enter the
client library and stops when a result is returned. By subtracting the sum of
the other ticks values from this value you can obtain the local overhead of
generating a NIS+ request.

Subtracting the value in dticks from the value in zticks will yield the time spent in the
service code itself. Subtracting the sum of the values in zticks and aticks from the value
in cticks will yield the time spent in the client library itself. Note: all of the tick times
are measured in microseconds.

The client library can return a variety of error returns and diagnostics. The more
salient ones are documented below.

NIS_BADATTRIBUTE
The name of an attribute did not match up with a named column in the table, or the
attribute did not have an associated value.

NIS_BADNAME
The name passed to the function is not a legal NIS+ name.

NIS_BADREQUEST
A problem was detected in the request structure passed to the client library.

NIS_CACHEEXPIRED
The entry returned came from an object cache that has expired. This means that the
time to live value has gone to zero and the entry may have changed. If the flag
NO_CACHE was passed to the lookup function then the lookup function will retry
the operation to get an unexpired copy of the object.

NIS_CBERROR
An RPC error occurred on the server while it was calling back to the client. The
transaction was aborted at that time and any unsent data was discarded.

NIS_CBRESULTS
Even though the request was successful, all of the entries have been sent to your
callback function and are thus not included in this result.

NIS_FOREIGNNS
The name could not be completely resolved. When the name passed to the function
would resolve in a namespace that is outside the NIS+ name tree, this error is

nis_remove_entry(3NSL)

ERRORS

638 man pages section 3: Library Functions • Last Revised 17 Feb 1998

returned with a NIS+ object of type DIRECTORY. The returned object contains the
type of namespace and contact information for a server within that namespace.

NIS_INVALIDOBJ
The object pointed to by object is not a valid NIS+ entry object for the given table.
This could occur if it had a mismatched number of columns, or a different data type
(for example, binary or text) than the associated column in the table.

NIS_LINKNAMEERROR
The name passed resolved to a LINK type object and the contents of the object
pointed to an invalid name.

NIS_MODFAIL
The attempted modification failed for some reason.

NIS_NAMEEXISTS
An attempt was made to add a name that already exists. To add the name, first
remove the existing name and then add the new name or modify the existing
named object.

NIS_NAMEUNREACHABLE
This soft error indicates that a server for the desired directory of the named table
object could not be reached. This can occur when there is a network partition or the
server has crashed. Attempting the operation again may succeed. See the
HARD_LOOKUP flag.

NIS_NOCALLBACK
The server was unable to contact the callback service on your machine. This results
in no data being returned.

NIS_NOMEMORY
Generally a fatal result. It means that the service ran out of heap space.

NIS_NOSUCHNAME
This hard error indicates that the named directory of the table object does not exist.
This occurs when the server that should be the parent of the server that serves the
table, does not know about the directory in which the table resides.

NIS_NOSUCHTABLE
The named table does not exist.

NIS_NOT_ME
A request was made to a server that does not serve the given name. Normally this
will not occur, however if you are not using the built in location mechanism for
servers, you may see this if your mechanism is broken.

NIS_NOTFOUND
No entries in the table matched the search criteria. If the search criteria was null
(return all entries) then this result means that the table is empty and may safely be
removed by calling the nis_remove().

nis_remove_entry(3NSL)

Introduction to Library Functions 639

If the FOLLOW_PATH flag was set, this error indicates that none of the tables in the
path contain entries that match the search criteria.

NIS_NOTMASTER
A change request was made to a server that serves the name, but it is not the master
server. This can occur when a directory object changes and it specifies a new master
server. Clients that have cached copies of the directory object in the
/var/nis/NIS_SHARED_DIRCACHE file will need to have their cache managers
restarted (use nis_cachemgr -i) to flush this cache.

NIS_NOTSAMEOBJ
An attempt to remove an object from the namespace was aborted because the object
that would have been removed was not the same object that was passed in the
request.

NIS_NOTSEARCHABLE
The table name resolved to a NIS+ object that was not searchable.

NIS_PARTIAL
This result is similar to NIS_NOTFOUND except that it means the request succeeded
but resolved to zero entries. When this occurs, the server returns a copy of the table
object instead of an entry so that the client may then process the path or implement
some other local policy.

NIS_RPCERROR
This fatal error indicates the RPC subsystem failed in some way. Generally there
will be a syslog(3C) message indicating why the RPC request failed.

NIS_S_NOTFOUND
The named entry does not exist in the table, however not all tables in the path
could be searched, so the entry may exist in one of those tables.

NIS_S_SUCCESS
Even though the request was successful, a table in the search path was not able to
be searched, so the result may not be the same as the one you would have received
if that table had been accessible.

NIS_SUCCESS
The request was successful.

NIS_SYSTEMERROR
Some form of generic system error occurred while attempting the request. Check
the syslog(3C) record for error messages from the server.

NIS_TOOMANYATTRS
The search criteria passed to the server had more attributes than the table had
searchable columns.

NIS_TRYAGAIN
The server connected to was too busy to handle your request. add_entry(),
remove_entry(), and modify_entry() return this error when the master

nis_remove_entry(3NSL)

640 man pages section 3: Library Functions • Last Revised 17 Feb 1998

server is currently updating its internal state. It can be returned to nis_list()
when the function specifies a callback and the server does not have the resources to
handle callbacks.

NIS_TYPEMISMATCH
An attempt was made to add or modify an entry in a table, and the entry passed
was of a different type than the table.

NIS_PATH When set, this variable is the search path used by nis_list() if
the flag EXPAND_NAME is set.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

To succeed, nis_add_entry(), nis_remove_entry(), and
nis_modify_entry() must inherit the PAF_TRUSTED_PATH attribute.

nis_cachemgr(1M), nis_names(3NSL), nis_server(3NSL),
rpc_svc_calls(3NSL)

niscat(1), niserror(1), nismatch(1), syslog(3C), nis_clone_object(3NSL),
nis_destroy_object(3NSL), nis_error(3NSL), nis_getnames(3NSL),
nis_local_names(3NSL), nis_objects(3NSL), attributes(5)

Use the flag HARD_LOOKUP carefully since it can cause the application to block
indefinitely during a network partition.

The path used when the flag FOLLOW_PATH is specified, is the one present in the first
table searched. The path values in tables that are subsequently searched are ignored.

It is legal to call functions that would access the nameservice from within a list
callback. However, calling a function that would itself use a callback, or calling
nis_list() with a callback from within a list callback function is not currently
supported.

There are currently no known methods for nis_first_entry() and
nis_next_entry() to get their answers from only the master server.

The nis_list() function is not MT-Safe with callbacks. nis_list() callbacks are
serialized. A call to nis_list() with a callback from within nis_list() will
deadlock. nis_list() with a callback cannot be called from an rpc server. See
rpc_svc_calls(3NSL). Otherwise, this function is MT-Safe.

nis_remove_entry(3NSL)

ENVIRONMENT
VARIABLES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

WARNINGS

NOTES

Introduction to Library Functions 641

nis_groups, nis_ismember, nis_addmember, nis_removemember, nis_creategroup,
nis_destroygroup, nis_verifygroup, nis_print_group_entry – NIS+ group manipulation
functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

bool_t nis_ismember(nis_name principal, nis_name group);

nis_error nis_addmember(nis_name member, nis_name group);

nis_error nis_removemember(nis_name member, nis_name group);

nis_error nis_creategroup(nis_name group, uint_t flags);

nis_error nis_destroygroup(nis_name group);

void nis_print_group_entry(nis_name group);

nis_error nis_verifygroup(nis_name group);

These functions manipulate NIS+ groups. They are used by NIS+ clients and servers,
and are the interfaces to the group authorization object.

The names of NIS+ groups are syntactically similar to names of NIS+ objects but they
occupy a separate namespace. A group named "a.b.c.d." is represented by a NIS+
group object named "a.groups_dir.b.c.d."; the functions described here all expect the
name of the group, not the name of the corresponding group object.

There are three types of group members:

� An explicit member is just a NIS+ principal-name, for example
"wickedwitch.west.oz."

� An implicit ("domain") member, written "*.west.oz.", means that all principals in the
given domain belong to this member. No other forms of wildcarding are allowed:
"wickedwitch.*.oz." is invalid, as is "wickedwitch.west.*.". Note that principals in
subdomains of the given domain are not included.

� A recursive ("group") member, written "@cowards.oz.", refers to another group; all
principals that belong to that group are considered to belong here.

Any member may be made negative by prefixing it with a minus sign (’−’). A group
may thus contain explicit, implicit, recursive, negative explicit, negative implicit, and
negative recursive members.

A principal is considered to belong to a group if it belongs to at least one non-negative
group member of the group and belongs to no negative group members.

The nis_ismember() function returns TRUE if it can establish that principal belongs
to group; otherwise it returns FALSE.

The nis_addmember() and nis_removemember() functions add or remove a
member. They do not check whether the member is valid. The user must have read

nis_removemember(3NSL)

NAME

SYNOPSIS

DESCRIPTION

642 man pages section 3: Library Functions • Last Revised 17 Feb 1998

and modify rights for the group in question. To succeed, nis_addmember() and
nis_removemember() must inherit the PAF_TRUSTED_PATH attribute.

The nis_creategroup() and nis_destroygroup() functions create and destroy
group objects. The user must have create or destroy rights, respectively, for the
groups_dir directory in the appropriate domain. The parameter flags to
nis_creategroup() is currently unused and should be set to zero. To succeed,
nis_creategroup() and nis_destroygroup() must inherit the
PAF_TRUSTED_PATH attribute.

The nis_print_group_entry() function lists a group’s members on the standard
output.

The nis_verifygroup() function returns NIS_SUCCESS if the given group exists,
otherwise it returns an error code.

EXAMPLE 1 Simple Memberships

Given a group sadsouls.oz. with members tinman.oz., lion.oz., and
scarecrow.oz., the function call

bool_var = nis_ismember("lion.oz.", "sadsouls.oz.");

will return 1 (TRUE) and the function call

bool_var = nis_ismember("toto.oz.", "sadsouls.oz.");

will return 0 (FALSE).

EXAMPLE 2 Implicit Memberships

Given a group baddies.oz., with members wickedwitch.west.oz. and
*.monkeys.west.oz., the function callbool_var =
nis_ismember("hogan.monkeys.west.oz.", "baddies.oz."); will return 1 (TRUE) because
any principal from the monkeys.west.oz. domain belongs to the implicit group
*.monkeys.west.oz., but the function call

bool_var = nis_ismember("hogan.big.monkeys.west.oz.", "baddies.oz.");

will return 0 (FALSE).

EXAMPLE 3 Recursive Memberships

Given a group goodandbad.oz., with members toto.kansas, @sadsouls.oz.,
and @baddies.oz., and the groups sadsouls.oz. and baddies.oz. defined
above, the function call

bool_var = nis_ismember("wickedwitch.west.oz.", "goodandbad.oz.");

will return 1 (TRUE), because wickedwitch.west.oz. is a member of the
baddies.oz. group which is recursively included in the goodandbad.oz. group.

See attributes(5) for descriptions of the following attributes:

nis_removemember(3NSL)

EXAMPLES

ATTRIBUTES

Introduction to Library Functions 643

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_addmember(), nis_removemember(), nis_creategroup() and
nis_destroygroup() must inherit the PAF_TRUSTED_PATH attribute.

nisgrpadm(1), nis_objects(3NSL), attributes(5)

These functions only accept fully-qualified NIS+ names.

A group is represented by a NIS+ object (see nis_objects(3NSL)) with a variant
part that is defined in the group_obj structure. It contains the following fields:

uint_t gr_flags; /* Interpretation Flags
(currently unused) */

struct {
uint_t gr_members_len;
nis_name *gr_members_val;

} gr_members; /* Array of members */

NIS+ servers and clients maintain a local cache of expanded groups to enhance their
performance when checking for group membership. Should the membership of a
group change, servers and clients with that group cached will not see the change until
either the group cache has expired or it is explicitly flushed. A server’s cache may be
flushed programmatically by calling the nis_servstate() function with tag
TAG_GCACHE and a value of 1.

There are currently no known methods for nis_ismember(),
nis_print_group_entry(), and nis_verifygroup() to get their answers from
only the master server.

nis_removemember(3NSL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGESSunOS 5.8
Reference Manual

NOTES

644 man pages section 3: Library Functions • Last Revised 17 Feb 1998

nis_server, nis_mkdir, nis_rmdir, nis_servstate, nis_stats, nis_getservlist,
nis_freeservlist, nis_freetags – Miscellaneous NIS+ functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

nis_error nis_mkdir(nis_name dirname, nis_server *machine);

nis_error nis_rmdir(nis_name dirname, nis_server *machine);

nis_error nis_servstate(nis_server *machine, nis_tag *tags, int
numtags, nis_tag **result);

nis_error nis_stats(nis_server *machine, nis_tag *tags, int numtags,
nis_tag **result);

void nis_freetags(nis_tag *tags, int numtags);

nis_server **nis_getservlist(nis_name dirname);

void nis_freeservlist(nis_server **machines);

These functions provide a variety of services for NIS+ applications.

nis_mkdir() is used to create the necessary databases to support NIS+ service for a
directory, dirname, on a server, machine. If this operation is successful, it means that
the directory object describing dirname has been updated to reflect that server machine
is serving the named directory. For a description of the nis_server structure, refer to
nis_objects(3NSL). To succeed, nis_mkdir() must inherit the
PAF_TRUSTED_PATH attribute.

Per-server and per-directory access restrictions may apply to nis_mkdir(). See
nisopaccess(1)

nis_rmdir() is used to delete the directory, dirname, from the specified server
machine. The machine parameter cannot be NULL. Note that nis_rmdir() does not
remove the directory dirname from the namespace or remove a server from the server
list in the directory object. To remove a directory from the namespace you must call
nis_remove() to remove the directory dirname from the namespace and call
nis_rmdir() for each server in the server list to remove the directory from the
server. To remove a replica from the server list, you need to first call nis_modify()
to remove the server from the directory object and then call nis_rmdir() to remove
the replica. To succeed, nis_rmdir() must inherit the PAF_TRUSTED_PATH
attribute.

Per-server and per-directory access restrictions may apply to nis_rmdir(). See
nisopaccess(1)

nis_servstate() is used to set and read the various state variables of the NIS+
servers. In particular the internal debugging state of the servers may be set and
queried. To succeed, nis_servstate() must inherit the PAF_TRUSTED_PATH
attribute.

nis_rmdir(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 645

The nis_stats() function is used to retrieve statistics about how the server is
operating. Tracking these statistics can help administrators determine when they need
to add additional replicas or to break up a domain into two or more subdomains. For
more information on reading statistics, see nisstat(1M).

nis_servstate() and nis_stats() use the tag list. This tag list is a variable
length array of nis_tag structures whose length is passed to the function in the numtags
parameter. The set of legal tags are defined in the file <rpcsvc/nis_tags.h> which
is included in <rpcsvc/nis.h>. Because these tags can and do vary between
implementations of the NIS+ service, it is best to consult this file for the supported list.
Passing unrecognized tags to a server will result in their tag_value member being set to
the string ‘‘unknown.’’ Both of these functions return their results in malloced tag
structure, *result. If there is an error, *result is set to NULL. The tag_value pointers points
to allocated string memory which contains the results. Use nis_freetags() to free
the tag structure.

Per-server and per-directory access restrictions may apply to the NIS_SERVSTATE or
NIS_STATUS (nis_stats()) operations and their sub-operations (tags). See
nisopaccess(1)

nis_getservlist() returns a null terminated list of nis_server structures that
represent the list of servers that serve the domain named dirname. Servers from this list
can be used when calling functions that require the name of a NIS+ server. For a
description of the nis_server structure, refer to nis_objects(3NSL).
nis_freeservlist() frees the list of servers returned by nis_getservlist().
Note that this is the only legal way to free that list.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_mkdir(), nis_rmdir(), and nis_servstat() must inherit the
PAF_TRUSTED_PATH attribute.

nis_names(3NSL)

nisopaccess(1), nisstat(1M), nis_objects(3NSL), nis_subr(3NSL),
attributes(5)

nis_rmdir(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

646 man pages section 3: Library Functions • Last Revised 4 Apr 2000

nis_server, nis_mkdir, nis_rmdir, nis_servstate, nis_stats, nis_getservlist,
nis_freeservlist, nis_freetags – Miscellaneous NIS+ functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

nis_error nis_mkdir(nis_name dirname, nis_server *machine);

nis_error nis_rmdir(nis_name dirname, nis_server *machine);

nis_error nis_servstate(nis_server *machine, nis_tag *tags, int
numtags, nis_tag **result);

nis_error nis_stats(nis_server *machine, nis_tag *tags, int numtags,
nis_tag **result);

void nis_freetags(nis_tag *tags, int numtags);

nis_server **nis_getservlist(nis_name dirname);

void nis_freeservlist(nis_server **machines);

These functions provide a variety of services for NIS+ applications.

nis_mkdir() is used to create the necessary databases to support NIS+ service for a
directory, dirname, on a server, machine. If this operation is successful, it means that
the directory object describing dirname has been updated to reflect that server machine
is serving the named directory. For a description of the nis_server structure, refer to
nis_objects(3NSL). To succeed, nis_mkdir() must inherit the
PAF_TRUSTED_PATH attribute.

Per-server and per-directory access restrictions may apply to nis_mkdir(). See
nisopaccess(1)

nis_rmdir() is used to delete the directory, dirname, from the specified server
machine. The machine parameter cannot be NULL. Note that nis_rmdir() does not
remove the directory dirname from the namespace or remove a server from the server
list in the directory object. To remove a directory from the namespace you must call
nis_remove() to remove the directory dirname from the namespace and call
nis_rmdir() for each server in the server list to remove the directory from the
server. To remove a replica from the server list, you need to first call nis_modify()
to remove the server from the directory object and then call nis_rmdir() to remove
the replica. To succeed, nis_rmdir() must inherit the PAF_TRUSTED_PATH
attribute.

Per-server and per-directory access restrictions may apply to nis_rmdir(). See
nisopaccess(1)

nis_servstate() is used to set and read the various state variables of the NIS+
servers. In particular the internal debugging state of the servers may be set and
queried. To succeed, nis_servstate() must inherit the PAF_TRUSTED_PATH
attribute.

nis_server(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 647

The nis_stats() function is used to retrieve statistics about how the server is
operating. Tracking these statistics can help administrators determine when they need
to add additional replicas or to break up a domain into two or more subdomains. For
more information on reading statistics, see nisstat(1M).

nis_servstate() and nis_stats() use the tag list. This tag list is a variable
length array of nis_tag structures whose length is passed to the function in the numtags
parameter. The set of legal tags are defined in the file <rpcsvc/nis_tags.h> which
is included in <rpcsvc/nis.h>. Because these tags can and do vary between
implementations of the NIS+ service, it is best to consult this file for the supported list.
Passing unrecognized tags to a server will result in their tag_value member being set to
the string ‘‘unknown.’’ Both of these functions return their results in malloced tag
structure, *result. If there is an error, *result is set to NULL. The tag_value pointers points
to allocated string memory which contains the results. Use nis_freetags() to free
the tag structure.

Per-server and per-directory access restrictions may apply to the NIS_SERVSTATE or
NIS_STATUS (nis_stats()) operations and their sub-operations (tags). See
nisopaccess(1)

nis_getservlist() returns a null terminated list of nis_server structures that
represent the list of servers that serve the domain named dirname. Servers from this list
can be used when calling functions that require the name of a NIS+ server. For a
description of the nis_server structure, refer to nis_objects(3NSL).
nis_freeservlist() frees the list of servers returned by nis_getservlist().
Note that this is the only legal way to free that list.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_mkdir(), nis_rmdir(), and nis_servstat() must inherit the
PAF_TRUSTED_PATH attribute.

nis_names(3NSL)

nisopaccess(1), nisstat(1M), nis_objects(3NSL), nis_subr(3NSL),
attributes(5)

nis_server(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

648 man pages section 3: Library Functions • Last Revised 4 Apr 2000

nis_server, nis_mkdir, nis_rmdir, nis_servstate, nis_stats, nis_getservlist,
nis_freeservlist, nis_freetags – Miscellaneous NIS+ functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

nis_error nis_mkdir(nis_name dirname, nis_server *machine);

nis_error nis_rmdir(nis_name dirname, nis_server *machine);

nis_error nis_servstate(nis_server *machine, nis_tag *tags, int
numtags, nis_tag **result);

nis_error nis_stats(nis_server *machine, nis_tag *tags, int numtags,
nis_tag **result);

void nis_freetags(nis_tag *tags, int numtags);

nis_server **nis_getservlist(nis_name dirname);

void nis_freeservlist(nis_server **machines);

These functions provide a variety of services for NIS+ applications.

nis_mkdir() is used to create the necessary databases to support NIS+ service for a
directory, dirname, on a server, machine. If this operation is successful, it means that
the directory object describing dirname has been updated to reflect that server machine
is serving the named directory. For a description of the nis_server structure, refer to
nis_objects(3NSL). To succeed, nis_mkdir() must inherit the
PAF_TRUSTED_PATH attribute.

Per-server and per-directory access restrictions may apply to nis_mkdir(). See
nisopaccess(1)

nis_rmdir() is used to delete the directory, dirname, from the specified server
machine. The machine parameter cannot be NULL. Note that nis_rmdir() does not
remove the directory dirname from the namespace or remove a server from the server
list in the directory object. To remove a directory from the namespace you must call
nis_remove() to remove the directory dirname from the namespace and call
nis_rmdir() for each server in the server list to remove the directory from the
server. To remove a replica from the server list, you need to first call nis_modify()
to remove the server from the directory object and then call nis_rmdir() to remove
the replica. To succeed, nis_rmdir() must inherit the PAF_TRUSTED_PATH
attribute.

Per-server and per-directory access restrictions may apply to nis_rmdir(). See
nisopaccess(1)

nis_servstate() is used to set and read the various state variables of the NIS+
servers. In particular the internal debugging state of the servers may be set and
queried. To succeed, nis_servstate() must inherit the PAF_TRUSTED_PATH
attribute.

nis_servstate(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 649

The nis_stats() function is used to retrieve statistics about how the server is
operating. Tracking these statistics can help administrators determine when they need
to add additional replicas or to break up a domain into two or more subdomains. For
more information on reading statistics, see nisstat(1M).

nis_servstate() and nis_stats() use the tag list. This tag list is a variable
length array of nis_tag structures whose length is passed to the function in the numtags
parameter. The set of legal tags are defined in the file <rpcsvc/nis_tags.h> which
is included in <rpcsvc/nis.h>. Because these tags can and do vary between
implementations of the NIS+ service, it is best to consult this file for the supported list.
Passing unrecognized tags to a server will result in their tag_value member being set to
the string ‘‘unknown.’’ Both of these functions return their results in malloced tag
structure, *result. If there is an error, *result is set to NULL. The tag_value pointers points
to allocated string memory which contains the results. Use nis_freetags() to free
the tag structure.

Per-server and per-directory access restrictions may apply to the NIS_SERVSTATE or
NIS_STATUS (nis_stats()) operations and their sub-operations (tags). See
nisopaccess(1)

nis_getservlist() returns a null terminated list of nis_server structures that
represent the list of servers that serve the domain named dirname. Servers from this list
can be used when calling functions that require the name of a NIS+ server. For a
description of the nis_server structure, refer to nis_objects(3NSL).
nis_freeservlist() frees the list of servers returned by nis_getservlist().
Note that this is the only legal way to free that list.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_mkdir(), nis_rmdir(), and nis_servstat() must inherit the
PAF_TRUSTED_PATH attribute.

nis_names(3NSL)

nisopaccess(1), nisstat(1M), nis_objects(3NSL), nis_subr(3NSL),
attributes(5)

nis_servstate(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

650 man pages section 3: Library Functions • Last Revised 4 Apr 2000

nis_server, nis_mkdir, nis_rmdir, nis_servstate, nis_stats, nis_getservlist,
nis_freeservlist, nis_freetags – Miscellaneous NIS+ functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

nis_error nis_mkdir(nis_name dirname, nis_server *machine);

nis_error nis_rmdir(nis_name dirname, nis_server *machine);

nis_error nis_servstate(nis_server *machine, nis_tag *tags, int
numtags, nis_tag **result);

nis_error nis_stats(nis_server *machine, nis_tag *tags, int numtags,
nis_tag **result);

void nis_freetags(nis_tag *tags, int numtags);

nis_server **nis_getservlist(nis_name dirname);

void nis_freeservlist(nis_server **machines);

These functions provide a variety of services for NIS+ applications.

nis_mkdir() is used to create the necessary databases to support NIS+ service for a
directory, dirname, on a server, machine. If this operation is successful, it means that
the directory object describing dirname has been updated to reflect that server machine
is serving the named directory. For a description of the nis_server structure, refer to
nis_objects(3NSL). To succeed, nis_mkdir() must inherit the
PAF_TRUSTED_PATH attribute.

Per-server and per-directory access restrictions may apply to nis_mkdir(). See
nisopaccess(1)

nis_rmdir() is used to delete the directory, dirname, from the specified server
machine. The machine parameter cannot be NULL. Note that nis_rmdir() does not
remove the directory dirname from the namespace or remove a server from the server
list in the directory object. To remove a directory from the namespace you must call
nis_remove() to remove the directory dirname from the namespace and call
nis_rmdir() for each server in the server list to remove the directory from the
server. To remove a replica from the server list, you need to first call nis_modify()
to remove the server from the directory object and then call nis_rmdir() to remove
the replica. To succeed, nis_rmdir() must inherit the PAF_TRUSTED_PATH
attribute.

Per-server and per-directory access restrictions may apply to nis_rmdir(). See
nisopaccess(1)

nis_servstate() is used to set and read the various state variables of the NIS+
servers. In particular the internal debugging state of the servers may be set and
queried. To succeed, nis_servstate() must inherit the PAF_TRUSTED_PATH
attribute.

nis_stats(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 651

The nis_stats() function is used to retrieve statistics about how the server is
operating. Tracking these statistics can help administrators determine when they need
to add additional replicas or to break up a domain into two or more subdomains. For
more information on reading statistics, see nisstat(1M).

nis_servstate() and nis_stats() use the tag list. This tag list is a variable
length array of nis_tag structures whose length is passed to the function in the numtags
parameter. The set of legal tags are defined in the file <rpcsvc/nis_tags.h> which
is included in <rpcsvc/nis.h>. Because these tags can and do vary between
implementations of the NIS+ service, it is best to consult this file for the supported list.
Passing unrecognized tags to a server will result in their tag_value member being set to
the string ‘‘unknown.’’ Both of these functions return their results in malloced tag
structure, *result. If there is an error, *result is set to NULL. The tag_value pointers points
to allocated string memory which contains the results. Use nis_freetags() to free
the tag structure.

Per-server and per-directory access restrictions may apply to the NIS_SERVSTATE or
NIS_STATUS (nis_stats()) operations and their sub-operations (tags). See
nisopaccess(1)

nis_getservlist() returns a null terminated list of nis_server structures that
represent the list of servers that serve the domain named dirname. Servers from this list
can be used when calling functions that require the name of a NIS+ server. For a
description of the nis_server structure, refer to nis_objects(3NSL).
nis_freeservlist() frees the list of servers returned by nis_getservlist().
Note that this is the only legal way to free that list.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_mkdir(), nis_rmdir(), and nis_servstat() must inherit the
PAF_TRUSTED_PATH attribute.

nis_names(3NSL)

nisopaccess(1), nisstat(1M), nis_objects(3NSL), nis_subr(3NSL),
attributes(5)

nis_stats(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

652 man pages section 3: Library Functions • Last Revised 4 Apr 2000

nis_tables, nis_list, nis_add_entry, nis_remove_entry, nis_modify_entry, nis_first_entry,
nis_next_entry – NIS+ table functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

nis_result *nis_list(nis_name name, uint_tflags, int
(*callback)(nis_name table_name, nis_object *object, void
*userdata), void *userdata);

nis_result *nis_add_entry(nis_name table_name, nis_object *object,
uint_t flags);

nis_result *nis_remove_entry(nis_name name, nis_object *object,
uint_tflags);

nis_result *nis_modify_entry(nis_name name, nis_object *object,
uint_tflags);

nis_result *nis_first_entry(nis_name table_name);

nis_result *nis_next_entry(nis_name table_name, netobj *cookie);

void nis_freeresult(nis_result *result);

These functions are used to search and modify NIS+ tables. nis_list() is used to
search a table in the NIS+ namespace. nis_first_entry() and
nis_next_entry() are used to enumerate a table one entry at a time.
nis_add_entry(), nis_remove_entry(), and nis_modify_entry() are used
to change the information stored in a table. nis_freeresult() is used to free the
memory associated with the nis_result structure.

Entries within a table are named by NIS+ indexed names. An indexed name is a
compound name that is composed of a search criteria and a simple NIS+ name that
identifies a table object. A search criteria is a series of column names and their
associated values enclosed in bracket ’[]’ characters. Indexed names have the
following form:

[colname=value, . . .],tablename

The list function, nis_list(), takes an indexed name as the value for the name
parameter. Here, the tablename should be a fully qualified NIS+ name unless the
EXPAND_NAME flag (described below) is set. The second parameter, flags, defines how
the function will respond to various conditions. The value for this parameter is created
by logically ORing together one or more flags from the following list.

FOLLOW_LINKS If the table specified in name resolves to be a LINK type object (see
nis_objects(3NSL)), this flag specifies that the client library
follow that link and do the search at that object. If this flag is not
set and the name resolves to a link, the error
NIS_NOTSEARCHABLE will be returned.

nis_tables(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 653

FOLLOW_PATH This flag specifies that if the entry is not found within this table,
the list operation should follow the path specified in the table
object. When used in conjunction with the ALL_RESULTS flag
below, it specifies that the path should be followed regardless of
the result of the search. When used in conjunction with the
FOLLOW_LINKS flag above, named tables in the path that resolve
to links will be followed until the table they point to is located. If a
table in the path is not reachable because no server that serves it is
available, the result of the operation will be either a “soft” success
or a “soft” failure to indicate that not all tables in the path could be
searched. If a name in the path names is either an invalid or
non-existent object then it is silently ignored.

HARD_LOOKUP This flag specifies that the operation should continue trying to
contact a server of the named table until a definitive result is
returned (such as NIS_NOTFOUND).

ALL_RESULTS This flag can only be used in conjunction with FOLLOW_PATH and
a callback function. When specified, it forces all of the tables in the
path to be searched. If name does not specify a search criteria
(imply that all entries are to be returned), then this flag will cause
all of the entries in all of the tables in the path to be returned.

NO_CACHE This flag specifies that the client library should bypass any client
object caches and get its information directly from either the
master server or a replica server for the named table.

MASTER_ONLY This flag is even stronger than NO_CACHE in that it specifies that
the client library should only get its information from the master
server for a particular table. This guarantees that the information
will be up to date. However, there may be severe performance
penalties associated with contacting the master server directly on
large networks. When used in conjunction with the HARD_LOOKUP
flag, this will block the list operation until the master server is up
and available.

EXPAND_NAME When specified, the client library will attempt to expand a
partially qualified name by calling nis_getnames() [see
nis_local_names(3NSL)] which uses the environment variable
NIS_PATH.

RETURN_RESULT This flag is used to specify that a copy of the returning object be
returned in the nis_result structure if the operation was
successful.

The third parameter to nis_list(), callback, is an optional pointer to a function that
will process the ENTRY type objects that are returned from the search. If this pointer is
NULL, then all entries that match the search criteria are returned in the nis_result
structure, otherwise this function will be called once for each entry returned. When
called, this function should return 0 when additional objects are desired and 1 when it

nis_tables(3NSL)

654 man pages section 3: Library Functions • Last Revised 17 Feb 1998

no longer wishes to see any more objects. The fourth parameter, userdata, is simply
passed to callback function along with the returned entry object. The client can use
this pointer to pass state information or other relevant data that the callback function
might need to process the entries.

The nis_list() function is not MT-Safe with callbacks. See NOTES.

nis_add_entry() will add the NIS+ object to the NIS+ table_name. The flags
parameter is used to specify the failure semantics for the add operation. The default
(flags equal 0) is to fail if the entry being added already exists in the table. The
ADD_OVERWRITE flag may be used to specify that existing object is to be overwritten if
it exists, (a modify operation) or added if it does not exist. With the ADD_OVERWRITE
flag, this function will fail with the error NIS_PERMISSION if the existing object does
not allow modify privileges to the client.

If the flag RETURN_RESULT has been specified, the server will return a copy of the
resulting object if the operation was successful. To succeed, nis_add_entry() must
inherit the PAF_TRUSTED_PATH attribute.

nis_remove_entry() removes the identified entry from the table or a set of entries
identified by table_name. If the parameter object is non-null, it is presumed to point to a
cached copy of the entry. When the removal is attempted, and the object that would be
removed is not the same as the cached object pointed to by object then the operation
will fail with an NIS_NOTSAMEOBJ error. If an object is passed with this function, the
search criteria in name is optional as it can be constructed from the values within the
entry. However, if no object is present, the search criteria must be included in the name
parameter. If the flags variable is null, and the search criteria does not uniquely
identify an entry, the NIS_NOTUNIQUE error is returned and the operation is aborted.
If the flag parameter REM_MULTIPLE is passed, and if remove permission is allowed
for each of these objects, then all objects that match the search criteria will be removed.
Note that a null search criteria and the REM_MULTIPLE flag will remove all entries in a
table. To succeed, nis_remove_entry() must inherit the PAF_TRUSTED_PATH
attribute.

nis_modify_entry() modifies an object identified by name. The parameter object
should point to an entry with the LEN_MODIFIED flag set in each column that
contains new information.

The owner, group, and access rights of an entry are modified by placing the modified
information into the respective fields of the parameter, object: zo_owner, zo_group,
and zo_access.

These columns will replace their counterparts in the entry that is stored in the table.
The entry passed must have the same number of columns, same type, and valid data
in the modified columns for this operation to succeed.

If the flags parameter contains the flag MOD_SAMEOBJ then the object pointed to by
object is assumed to be a cached copy of the original object. If the OID of the object
passed is different than the OID of the object the server fetches, then the operation fails

nis_tables(3NSL)

Introduction to Library Functions 655

with the NIS_NOTSAMEOBJ error. This can be used to implement a simple
read-modify-write protocol which will fail if the object is modified before the client
can write the object back.

If the flag RETURN_RESULT has been specified, the server will return a copy of the
resulting object if the operation was successful. To succeed, nis_modify_entry()
must inherit the PAF_TRUSTED_PATH attribute.

nis_first_entry() fetches entries from a table one at a time. This mode of
operation is extremely inefficient and callbacks should be used instead wherever
possible. The table containing the entries of interest is identified by name. If a search
criteria is present in name it is ignored. The value of cookie within the nis_result
structure must be copied by the caller into local storage and passed as an argument to
nis_next_entry().

nis_next_entry() retrieves the “next” entry from a table specified by table_name.
The order in which entries are returned is not guaranteed. Further, should an update
occur in the table between client calls to nis_next_entry() there is no guarantee
that an entry that is added or modified will be seen by the client. Should an entry be
removed from the table that would have been the “next” entry returned, the error
NIS_CHAINBROKEN is returned instead.

These functions return a pointer to a structure of type nis_result:

struct nis_result {
nis_error status;
struct {

uint_t objects_len;
nis_object *objects_val;

} objects;
netobj cookie;
uint32_t zticks;
uint32_t dticks;
uint32_t aticks;
uint32_t cticks;

};The status member contains the error status of the the operation. A text
message that describes the error can be obtained by calling the function
nis_sperrno() [see nis_error(3NSL)].

The objects structure contains two members. objects_val is an array of nis_object
structures; objects_len is the number of cells in the array. These objects will be freed by
a call to nis_freeresult()([see nis_names(3NSL)). If you need to keep a copy of
one or more objects, they can be copied with the function nis_clone_object() and
freed with the function nis_destroy_object() (see nis_server(3NSL)).

The various ticks contain details of where the time (in microseconds) was taken during
a request. They can be used to tune one’s data organization for faster access and to
compare different database implementations.

nis_tables(3NSL)

RETURN VALUES

656 man pages section 3: Library Functions • Last Revised 17 Feb 1998

zticks The time spent in the NIS+ service itself, this count starts when the server
receives the request and stops when it sends the reply.

dticks The time spent in the database backend, this time is measured from the
time a database call starts, until a result is returned. If the request results in
multiple calls to the database, this is the sum of all the time spent in those
calls.

aticks The time spent in any "accelerators" or caches. This includes the time
required to locate the server needed to resolve the request.

cticks The total time spent in the request, this clock starts when you enter the
client library and stops when a result is returned. By subtracting the sum of
the other ticks values from this value you can obtain the local overhead of
generating a NIS+ request.

Subtracting the value in dticks from the value in zticks will yield the time spent in the
service code itself. Subtracting the sum of the values in zticks and aticks from the value
in cticks will yield the time spent in the client library itself. Note: all of the tick times
are measured in microseconds.

The client library can return a variety of error returns and diagnostics. The more
salient ones are documented below.

NIS_BADATTRIBUTE
The name of an attribute did not match up with a named column in the table, or the
attribute did not have an associated value.

NIS_BADNAME
The name passed to the function is not a legal NIS+ name.

NIS_BADREQUEST
A problem was detected in the request structure passed to the client library.

NIS_CACHEEXPIRED
The entry returned came from an object cache that has expired. This means that the
time to live value has gone to zero and the entry may have changed. If the flag
NO_CACHE was passed to the lookup function then the lookup function will retry
the operation to get an unexpired copy of the object.

NIS_CBERROR
An RPC error occurred on the server while it was calling back to the client. The
transaction was aborted at that time and any unsent data was discarded.

NIS_CBRESULTS
Even though the request was successful, all of the entries have been sent to your
callback function and are thus not included in this result.

NIS_FOREIGNNS
The name could not be completely resolved. When the name passed to the function
would resolve in a namespace that is outside the NIS+ name tree, this error is

nis_tables(3NSL)

ERRORS

Introduction to Library Functions 657

returned with a NIS+ object of type DIRECTORY. The returned object contains the
type of namespace and contact information for a server within that namespace.

NIS_INVALIDOBJ
The object pointed to by object is not a valid NIS+ entry object for the given table.
This could occur if it had a mismatched number of columns, or a different data type
(for example, binary or text) than the associated column in the table.

NIS_LINKNAMEERROR
The name passed resolved to a LINK type object and the contents of the object
pointed to an invalid name.

NIS_MODFAIL
The attempted modification failed for some reason.

NIS_NAMEEXISTS
An attempt was made to add a name that already exists. To add the name, first
remove the existing name and then add the new name or modify the existing
named object.

NIS_NAMEUNREACHABLE
This soft error indicates that a server for the desired directory of the named table
object could not be reached. This can occur when there is a network partition or the
server has crashed. Attempting the operation again may succeed. See the
HARD_LOOKUP flag.

NIS_NOCALLBACK
The server was unable to contact the callback service on your machine. This results
in no data being returned.

NIS_NOMEMORY
Generally a fatal result. It means that the service ran out of heap space.

NIS_NOSUCHNAME
This hard error indicates that the named directory of the table object does not exist.
This occurs when the server that should be the parent of the server that serves the
table, does not know about the directory in which the table resides.

NIS_NOSUCHTABLE
The named table does not exist.

NIS_NOT_ME
A request was made to a server that does not serve the given name. Normally this
will not occur, however if you are not using the built in location mechanism for
servers, you may see this if your mechanism is broken.

NIS_NOTFOUND
No entries in the table matched the search criteria. If the search criteria was null
(return all entries) then this result means that the table is empty and may safely be
removed by calling the nis_remove().

nis_tables(3NSL)

658 man pages section 3: Library Functions • Last Revised 17 Feb 1998

If the FOLLOW_PATH flag was set, this error indicates that none of the tables in the
path contain entries that match the search criteria.

NIS_NOTMASTER
A change request was made to a server that serves the name, but it is not the master
server. This can occur when a directory object changes and it specifies a new master
server. Clients that have cached copies of the directory object in the
/var/nis/NIS_SHARED_DIRCACHE file will need to have their cache managers
restarted (use nis_cachemgr -i) to flush this cache.

NIS_NOTSAMEOBJ
An attempt to remove an object from the namespace was aborted because the object
that would have been removed was not the same object that was passed in the
request.

NIS_NOTSEARCHABLE
The table name resolved to a NIS+ object that was not searchable.

NIS_PARTIAL
This result is similar to NIS_NOTFOUND except that it means the request succeeded
but resolved to zero entries. When this occurs, the server returns a copy of the table
object instead of an entry so that the client may then process the path or implement
some other local policy.

NIS_RPCERROR
This fatal error indicates the RPC subsystem failed in some way. Generally there
will be a syslog(3C) message indicating why the RPC request failed.

NIS_S_NOTFOUND
The named entry does not exist in the table, however not all tables in the path
could be searched, so the entry may exist in one of those tables.

NIS_S_SUCCESS
Even though the request was successful, a table in the search path was not able to
be searched, so the result may not be the same as the one you would have received
if that table had been accessible.

NIS_SUCCESS
The request was successful.

NIS_SYSTEMERROR
Some form of generic system error occurred while attempting the request. Check
the syslog(3C) record for error messages from the server.

NIS_TOOMANYATTRS
The search criteria passed to the server had more attributes than the table had
searchable columns.

NIS_TRYAGAIN
The server connected to was too busy to handle your request. add_entry(),
remove_entry(), and modify_entry() return this error when the master

nis_tables(3NSL)

Introduction to Library Functions 659

server is currently updating its internal state. It can be returned to nis_list()
when the function specifies a callback and the server does not have the resources to
handle callbacks.

NIS_TYPEMISMATCH
An attempt was made to add or modify an entry in a table, and the entry passed
was of a different type than the table.

NIS_PATH When set, this variable is the search path used by nis_list() if
the flag EXPAND_NAME is set.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

To succeed, nis_add_entry(), nis_remove_entry(), and
nis_modify_entry() must inherit the PAF_TRUSTED_PATH attribute.

nis_cachemgr(1M), nis_names(3NSL), nis_server(3NSL),
rpc_svc_calls(3NSL)

niscat(1), niserror(1), nismatch(1), syslog(3C), nis_clone_object(3NSL),
nis_destroy_object(3NSL), nis_error(3NSL), nis_getnames(3NSL),
nis_local_names(3NSL), nis_objects(3NSL), attributes(5)

Use the flag HARD_LOOKUP carefully since it can cause the application to block
indefinitely during a network partition.

The path used when the flag FOLLOW_PATH is specified, is the one present in the first
table searched. The path values in tables that are subsequently searched are ignored.

It is legal to call functions that would access the nameservice from within a list
callback. However, calling a function that would itself use a callback, or calling
nis_list() with a callback from within a list callback function is not currently
supported.

There are currently no known methods for nis_first_entry() and
nis_next_entry() to get their answers from only the master server.

The nis_list() function is not MT-Safe with callbacks. nis_list() callbacks are
serialized. A call to nis_list() with a callback from within nis_list() will
deadlock. nis_list() with a callback cannot be called from an rpc server. See
rpc_svc_calls(3NSL). Otherwise, this function is MT-Safe.

nis_tables(3NSL)

ENVIRONMENT
VARIABLES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

WARNINGS

NOTES

660 man pages section 3: Library Functions • Last Revised 17 Feb 1998

nis_groups, nis_ismember, nis_addmember, nis_removemember, nis_creategroup,
nis_destroygroup, nis_verifygroup, nis_print_group_entry – NIS+ group manipulation
functions

cc [flags…] file … -lnsl [library…]

#include <rpcsvc/nis.h>

bool_t nis_ismember(nis_name principal, nis_name group);

nis_error nis_addmember(nis_name member, nis_name group);

nis_error nis_removemember(nis_name member, nis_name group);

nis_error nis_creategroup(nis_name group, uint_t flags);

nis_error nis_destroygroup(nis_name group);

void nis_print_group_entry(nis_name group);

nis_error nis_verifygroup(nis_name group);

These functions manipulate NIS+ groups. They are used by NIS+ clients and servers,
and are the interfaces to the group authorization object.

The names of NIS+ groups are syntactically similar to names of NIS+ objects but they
occupy a separate namespace. A group named "a.b.c.d." is represented by a NIS+
group object named "a.groups_dir.b.c.d."; the functions described here all expect the
name of the group, not the name of the corresponding group object.

There are three types of group members:

� An explicit member is just a NIS+ principal-name, for example
"wickedwitch.west.oz."

� An implicit ("domain") member, written "*.west.oz.", means that all principals in the
given domain belong to this member. No other forms of wildcarding are allowed:
"wickedwitch.*.oz." is invalid, as is "wickedwitch.west.*.". Note that principals in
subdomains of the given domain are not included.

� A recursive ("group") member, written "@cowards.oz.", refers to another group; all
principals that belong to that group are considered to belong here.

Any member may be made negative by prefixing it with a minus sign (’−’). A group
may thus contain explicit, implicit, recursive, negative explicit, negative implicit, and
negative recursive members.

A principal is considered to belong to a group if it belongs to at least one non-negative
group member of the group and belongs to no negative group members.

The nis_ismember() function returns TRUE if it can establish that principal belongs
to group; otherwise it returns FALSE.

The nis_addmember() and nis_removemember() functions add or remove a
member. They do not check whether the member is valid. The user must have read

nis_verifygroup(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 661

and modify rights for the group in question. To succeed, nis_addmember() and
nis_removemember() must inherit the PAF_TRUSTED_PATH attribute.

The nis_creategroup() and nis_destroygroup() functions create and destroy
group objects. The user must have create or destroy rights, respectively, for the
groups_dir directory in the appropriate domain. The parameter flags to
nis_creategroup() is currently unused and should be set to zero. To succeed,
nis_creategroup() and nis_destroygroup() must inherit the
PAF_TRUSTED_PATH attribute.

The nis_print_group_entry() function lists a group’s members on the standard
output.

The nis_verifygroup() function returns NIS_SUCCESS if the given group exists,
otherwise it returns an error code.

EXAMPLE 1 Simple Memberships

Given a group sadsouls.oz. with members tinman.oz., lion.oz., and
scarecrow.oz., the function call

bool_var = nis_ismember("lion.oz.", "sadsouls.oz.");

will return 1 (TRUE) and the function call

bool_var = nis_ismember("toto.oz.", "sadsouls.oz.");

will return 0 (FALSE).

EXAMPLE 2 Implicit Memberships

Given a group baddies.oz., with members wickedwitch.west.oz. and
*.monkeys.west.oz., the function callbool_var =
nis_ismember("hogan.monkeys.west.oz.", "baddies.oz."); will return 1 (TRUE) because
any principal from the monkeys.west.oz. domain belongs to the implicit group
*.monkeys.west.oz., but the function call

bool_var = nis_ismember("hogan.big.monkeys.west.oz.", "baddies.oz.");

will return 0 (FALSE).

EXAMPLE 3 Recursive Memberships

Given a group goodandbad.oz., with members toto.kansas, @sadsouls.oz.,
and @baddies.oz., and the groups sadsouls.oz. and baddies.oz. defined
above, the function call

bool_var = nis_ismember("wickedwitch.west.oz.", "goodandbad.oz.");

will return 1 (TRUE), because wickedwitch.west.oz. is a member of the
baddies.oz. group which is recursively included in the goodandbad.oz. group.

See attributes(5) for descriptions of the following attributes:

nis_verifygroup(3NSL)

EXAMPLES

ATTRIBUTES

662 man pages section 3: Library Functions • Last Revised 17 Feb 1998

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

To succeed, nis_addmember(), nis_removemember(), nis_creategroup() and
nis_destroygroup() must inherit the PAF_TRUSTED_PATH attribute.

nisgrpadm(1), nis_objects(3NSL), attributes(5)

These functions only accept fully-qualified NIS+ names.

A group is represented by a NIS+ object (see nis_objects(3NSL)) with a variant
part that is defined in the group_obj structure. It contains the following fields:

uint_t gr_flags; /* Interpretation Flags
(currently unused) */

struct {
uint_t gr_members_len;
nis_name *gr_members_val;

} gr_members; /* Array of members */

NIS+ servers and clients maintain a local cache of expanded groups to enhance their
performance when checking for group membership. Should the membership of a
group change, servers and clients with that group cached will not see the change until
either the group cache has expired or it is explicitly flushed. A server’s cache may be
flushed programmatically by calling the nis_servstate() function with tag
TAG_GCACHE and a value of 1.

There are currently no known methods for nis_ismember(),
nis_print_group_entry(), and nis_verifygroup() to get their answers from
only the master server.

nis_verifygroup(3NSL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGESSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 663

plock – Lock or unlock into memory process, text, or data

#include <sys/lock.h>

int plock(int op);

The plock() function allows the calling process to lock or unlock into memory its
text segment (text lock), its data segment (data lock), or both its text and data
segments (process lock). Locked segments are immune to all routine swapping. The
calling process must have the PRIV_SYS_CONFIG privilege to succeed.

The plock() function performs the function specified by op:

PROCLOCK Lock text and data segments into memory (process lock).

TXTLOCK Lock text segment into memory (text lock).

DATLOCK Lock data segment into memory (data lock).

UNLOCK Remove locks.

plock() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The plock() function fails and does not perform the requested operation if:

EAGAIN Not enough memory.

EINVAL The op argument is equal to PROCLOCK and a process lock, a text
lock, or a data lock already exists on the calling process; the op
argument is equal to TXTLOCK and a text lock or a process lock
already exists on the calling process; the op argument is equal to
DATLOCK and a data lock or a process lock already exists on the
calling process; or the op argument is equal to UNLOCK and no lock
exists on the calling process.

EPERM The process does not have sufficient privilege.

To succeed, plock() must have PRIV_SYS_CONFIG in its set of effective privileges.

The mlock(3C) and mlockall(3C) functions are the preferred interfaces for process
locking.

exec(2), fork(2), mlock(3C), mlockall(3C)

exit(2), memcntl(2)

plock(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
USAGE

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

664 man pages section 3: Library Functions • Last Revised 25 Jan 1993

priv_to_str, priv_set_to_str, str_to_priv, str_to_priv_set, get_priv_text – Convert a
numeric privilege to its name or a privilege name to its number

cc [flag…] file… -ltsol [library…]

#include <tsol/priv.h>

priv_t str_to_priv(const char *priv_name);

char *priv_to_str(const priv_t priv_id);

char *str_to_priv_set(const char *priv_names, priv_set_t *priv_set,
const char *separators);

char *priv_set_to_str(priv_set_t *priv_set, char separator, char
*buffer, int *buflen);

char *get_priv_text(const priv_t priv_id);

priv_to_str() returns a pointer to the statically allocated, null-terminated privilege
name specified by priv_id. If priv_id is an undefined privilege ID, the integer ordinal of
priv_id is returned. If priv_id is greater than TSOL_MAX_PRIV, the maximum allowable
privilege ID, a NULL is returned.

str_to_priv() returns the numeric privilege ID specified by the null-terminated
privilege name priv_name. Privilege names can be specified in upper or lower case. An
integer ordinal in the string is also acceptable.

priv_set_to_str() appends the name of each privilege in priv_set to a string to
which the user-supplied buffer of length buflen points. Privilege names are separated
by the separator character. Integer ordinals name the undefined privileges found in the
privilege set. String none identifies an empty privilege set; and all, a full privilege
set. Privilege names in the string are sorted in alphabetical order by localized sort.

Based on the token separators (separators), str_to_priv_set() breaks the
priv_names string into tokens to be translated into a privilege set. Token none is
translated to an empty privilege set; token all, to a full privilege set. The presence of
token none overrides whatever precedes it. For example, the string
file_mac_read,file_mac_write,none,proc_nofloat produces the same
result as proc_nofloat alone. The constructed privilege set is stored in the
priv_set_t buffer to which priv_set points.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

priv_set_to_str(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Introduction to Library Functions 665

get_priv_text() Returns a pointer to the statically allocated,
null-terminated privilege description text specified by
priv_id.

priv_to_str() Returns a pointer to the translated privilege name
string. The function returns NULL and sets errno on
failure.

str_to_priv() Returns the numeric privilege ID. The function returns
−1 and sets errno on failure.

priv_set_to_str() Returns a pointer to the translated privilege names
string. If the passed-in buflen is too small to hold the
string, this routine stores the required buffer size into
buflen and returns NULL. The function returns NULL
and sets errno on failure. This function returns −1 if
the string cannot be translated or if an integer ordinal
in the string is greater than TSOL_MAX_PRIV.

str_to_priv_set() Returns NULL on success. If bad privilege names
appear in the priv_names string, the function returns a
pointer to the first privilege name that is not
recognizable.

priv_to_str() may fail for this reason:

EINVAL The specified priv_id is greater than TSOL_MAX_PRIV.

priv_set_to_str() may fail for this reason:

EFAULT The specified priv_set is an invalid address.

str_to_priv() may fail for one of these reasons:

EINVAL The specified priv_name does not match any of the defined
privilege names.

EFAULT The specified priv_name is an invalid address.

To use these routines, the program must be loaded with the Trusted Solaris library
libtsol or libtsol.so.

priv_desc(4) priv_name(4)

attributes(5)

priv_set_to_str(3TSOL)

RETURN VALUES

ERRORS

NOTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

666 man pages section 3: Library Functions • Last Revised 17 Apr 1998

priv_to_str, priv_set_to_str, str_to_priv, str_to_priv_set, get_priv_text – Convert a
numeric privilege to its name or a privilege name to its number

cc [flag…] file… -ltsol [library…]

#include <tsol/priv.h>

priv_t str_to_priv(const char *priv_name);

char *priv_to_str(const priv_t priv_id);

char *str_to_priv_set(const char *priv_names, priv_set_t *priv_set,
const char *separators);

char *priv_set_to_str(priv_set_t *priv_set, char separator, char
*buffer, int *buflen);

char *get_priv_text(const priv_t priv_id);

priv_to_str() returns a pointer to the statically allocated, null-terminated privilege
name specified by priv_id. If priv_id is an undefined privilege ID, the integer ordinal of
priv_id is returned. If priv_id is greater than TSOL_MAX_PRIV, the maximum allowable
privilege ID, a NULL is returned.

str_to_priv() returns the numeric privilege ID specified by the null-terminated
privilege name priv_name. Privilege names can be specified in upper or lower case. An
integer ordinal in the string is also acceptable.

priv_set_to_str() appends the name of each privilege in priv_set to a string to
which the user-supplied buffer of length buflen points. Privilege names are separated
by the separator character. Integer ordinals name the undefined privileges found in the
privilege set. String none identifies an empty privilege set; and all, a full privilege
set. Privilege names in the string are sorted in alphabetical order by localized sort.

Based on the token separators (separators), str_to_priv_set() breaks the
priv_names string into tokens to be translated into a privilege set. Token none is
translated to an empty privilege set; token all, to a full privilege set. The presence of
token none overrides whatever precedes it. For example, the string
file_mac_read,file_mac_write,none,proc_nofloat produces the same
result as proc_nofloat alone. The constructed privilege set is stored in the
priv_set_t buffer to which priv_set points.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

priv_to_str(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Introduction to Library Functions 667

get_priv_text() Returns a pointer to the statically allocated,
null-terminated privilege description text specified by
priv_id.

priv_to_str() Returns a pointer to the translated privilege name
string. The function returns NULL and sets errno on
failure.

str_to_priv() Returns the numeric privilege ID. The function returns
−1 and sets errno on failure.

priv_set_to_str() Returns a pointer to the translated privilege names
string. If the passed-in buflen is too small to hold the
string, this routine stores the required buffer size into
buflen and returns NULL. The function returns NULL
and sets errno on failure. This function returns −1 if
the string cannot be translated or if an integer ordinal
in the string is greater than TSOL_MAX_PRIV.

str_to_priv_set() Returns NULL on success. If bad privilege names
appear in the priv_names string, the function returns a
pointer to the first privilege name that is not
recognizable.

priv_to_str() may fail for this reason:

EINVAL The specified priv_id is greater than TSOL_MAX_PRIV.

priv_set_to_str() may fail for this reason:

EFAULT The specified priv_set is an invalid address.

str_to_priv() may fail for one of these reasons:

EINVAL The specified priv_name does not match any of the defined
privilege names.

EFAULT The specified priv_name is an invalid address.

To use these routines, the program must be loaded with the Trusted Solaris library
libtsol or libtsol.so.

priv_desc(4) priv_name(4)

attributes(5)

priv_to_str(3TSOL)

RETURN VALUES

ERRORS

NOTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

668 man pages section 3: Library Functions • Last Revised 17 Apr 1998

getprofstr, putprofstr, setprofstr, endprofstr, getprofstrbyname, free_profstr – Get user
profile description

cc [flag…] file… -ltsol -ltsoldb -lcmd -lnsl [library…]

(obsolete)

The getprofstr, putprofstr, setprofstr, endprofstr, getprofstrbyname,
and free_profstr functions are replaced in Trusted Solaris 8 and later releases with
the functions described in the getprofattr(3SECDB) and getexecattr(3SECDB)
man pages. These functions find rights profiles information in prof_attr(4) and
exec_attr(4).

putprofstr(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 669

getutent, getutid, getutline, pututline, setutent, endutent, utmpname – Access utmp
file entry

#include <utmp.h>

struct utmp *getutent(void);

struct utmp *getutid(const struct utmp *id);

struct utmp *getutline(const struct utmp *line);

struct utmp *pututline(const struct utmp *utmp);

void setutent(void);

void endutent(void);

int utmpname(const char *file);

The getutent(), getutid(), getutline(), and pututline() functions each
return a pointer to a utmp structure with the following members:

char ut_user[8]; /* user login name */
char ut_id[4]; /* /sbin/inittab id (usually line #) */
char ut_line[12]; /* device name (console, lnxx) */
short ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */

time_t ut_time; /* time entry was made */

The structure exit_status includes the following members:

short e_termination; /* termination status */
short e_exit; /* exit status */

The getutent() function reads in the next entry from a utmp-like file. If the file is
not already open, it opens it. If it reaches the end of the file, it fails.

The getutid() function searches forward from the current point in the utmp file
until it finds an entry with a ut_type matching id⇒ut_type if the type specified is
RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in id is
INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then
getutid() will return a pointer to the first entry whose type is one of these four and
whose ut_id member matches id⇒ut_id. If the end of file is reached without a
match, it fails.

The getutline() function searches forward from the current point in the utmp file
until it finds an entry of the type LOGIN_PROCESS or ut_line string matching the
line⇒ut_line string. If the end of file is reached without a match, it fails.

The pututline() function writes the supplied utmp structure into the utmp file. It
uses getutid() to search forward for the proper place if it finds that it is not already

pututline(3C)

NAME

SYNOPSIS

DESCRIPTION

getutent()

getutid()

getutline()

pututline()

670 man pages section 3: Library Functions • Last Revised 16 Oct 1997

at the proper place. It is expected that normally the user of pututline() will have
searched for the proper entry using one of the these functions. If so, pututline()
will not search. If pututline() does not find a matching slot for the new entry, it
will add a new entry to the end of the file. It returns a pointer to the utmp structure.

When called by a process that does not have an effective uid of 0 and a sensitivity
label of ADMIN_LOW, pututline() invokes a program (that has the appropriate
forced privileges) to verify and write the entry, since /etc/utmpx is normally
writable only by a process with a UID of 0 and a sensitivity label of ADMIN_LOW. In
this event, the ut_name member must correspond to the actual user name associated
with the process; the ut_type member must be either USER_PROCESS or
DEAD_PROCESS; and the ut_line member must be a device special file and be
writable by the user. If the process does not have the PAF_TRUSTED_PATH process
attribute, all other fields in the entry are cleared.

The setutent() function resets the input stream to the beginning of the file. This
reset should be done before each search for a new entry if it is desired that the entire
file be examined.

The endutent() function closes the currently open file.

The utmpname() function allows the user to change the name of the file examined,
from /var/adm/utmp to any other file. It is most often expected that this other file
will be /var/adm/wtmp. If the file does not exist, this will not be apparent until the
first attempt to reference the file is made. The utmpname() function does not open the
file but closes the old file if it is currently open and saves the new file name.

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write. If the file name given is longer than 79
characters, utmpname() returns 0. Otherwise, it returns 1.

These functions use buffered standard I/O for input, but pututline() uses an
unbuffered non-standard write to avoid race conditions between processes trying to
modify the utmp and wtmp files.

Applications should not access the utmp and wtmp databases directly, but should use
these functions to ensure that these databases are maintained consistently. Using these
functions, however, may cause applications to fail if user accounting data cannot be
represented properly in the utmp structure (for example, on a system where PIDs can
exceed 32767). Use the functions described on the getutxent(3C) manual page
instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

pututline(3C)

setutent()

endutent()

utmpname()

RETURN VALUES

USAGE

ATTRIBUTES

Introduction to Library Functions 671

pututline() invokes a program with appropriate forced privileges to verify and
write the utmpx structure. pututline() clears fields in an entry if the process does
not have the PAF_TRUSTED_PATH process attribute.

ttyslot(3C), utmp(4), utmpx(4), attributes(5)

The most current entry is saved in a static structure. Multiple accesses require that it
be copied before further accesses are made. On each call to either getutid() or
getutline(), the function examines the static structure before performing more I/O.
If the contents of the static structure match what it is searching for, it looks no further.
For this reason, to use getutline() to search for multiple occurrences, it would be
necessary to zero out the static area after each success, or getutline() would just
return the same structure over and over again. There is one exception to the rule about
emptying the structure before further reads are done. The implicit read done by
pututline() (if it finds that it is not already at the correct place in the file) will not
hurt the contents of the static structure returned by the getutent(), getutid() or
getutline() functions, if the user has just modified those contents and passed the
pointer back to pututline().

pututline(3C)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

SunOS 5.8
Reference Manual

NOTES

672 man pages section 3: Library Functions • Last Revised 16 Oct 1997

getutxent, getutxid, getutxline, pututxline, setutxent, endutxent, utmpxname,
getutmp, getutmpx, updwtmp, updwtmpx – User accounting database functions

#include <utmpx.h>

struct utmpx *getutxent(void);

struct utmpx *getutxid(const struct utmpx *id);

struct utmpx *getutxline(const struct utmpx *line);

struct utmpx *pututxline(const struct utmpx *utmpx);

void setutxent(void);

void endutxent(void);

int utmpxname(const char *file);

void getutmp(struct utmpx *utmpx, struct utmp *utmp);

void getutmpx(struct utmp *utmp, struct utmpx *utmpx);

void updwtmp(char *wfile, struct utmp *utmp);

void updwtmpx(char *wfilex, struct utmpx *utmpx);

These functions provide access to the user accounting database, utmpx (see utmpx(4)).
Entries in the database are described by the definitions and data structures in
<utmpx.h>.

char ut_user[32]; /* user login name */
char ut_id[4]; /* /etc/inittab id (usually line #) */
char ut_line[32]; /* device name (console, lnxx) */
pid_t ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */
struct timeval ut_tv; /* time entry was made */
long ut_session; /* session ID, used for windowing */
long pad[5]; /* reserved for future use */
short ut_syslen; /* significant length of ut_host */

/* including terminating null */

char ut_host[257]; /* host name, if remote */

The structure exit status includes the following members:

short e_termination; /* termination status */

short e_exit; /* exit status */

The getutxent() function reads in the next entry from a utmpx database. If the
database is not already open, it opens it. If it reaches the end of the database, it fails.

The getutxid() function searches forward from the current point in the utmpx
database until it finds an entry with a ut_type matching id⇒ut_type, if the type
specified is RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in

pututxline(3C)

NAME

SYNOPSIS

DESCRIPTION

getutxent()

getutxid()

Introduction to Library Functions 673

id is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then
getutxid() will return a pointer to the first entry whose type is one of these four
and whose ut_id member matches id⇒ut_id. If the end of database is reached
without a match, it fails.

The getutxline() function searches forward from the current point in the utmpx
database until it finds an entry of the type LOGIN_PROCESS or USER_PROCESS which
also has a ut_line string matching the line⇒ut_line string. If the end of the database
is reached without a match, it fails.

The pututxline() function writes the supplied utmpx structure into the utmpx file.
It uses getutxid() to search forward for the proper place if it finds that it is not
already at the proper place. It is expected that normally the user of pututxline()
will have searched for the proper entry using one of the getutx() routines. If so,
pututxline() will not search. If pututxline() does not find a matching slot for
the new entry, it will add a new entry to the end of the database. It returns a pointer to
the utmpx structure.

When called by a process that does not have an effective uid of 0 and a sensitivity
label of ADMIN_LOW, pututxline() invokes a program (that has the appropriate
forced privileges) to verify and write the entry, since /etc/utmpx is normally
writable only by a process with a UID of 0 and a sensitivity label of ADMIN_LOW. In
this event, the ut_name member must correspond to the actual user name associated
with the process; the ut_type member must be either USER_PROCESS or
DEAD_PROCESS; and the ut_line member must be a device special file and be
writable by the user. If the process does not have the PAF_TRUSTED_PATH process
attribute, all other fields in the entry are cleared.

The setutxent() function resets the input stream to the beginning. This should be
done before each search for a new entry if it is desired that the entire database be
examined.

The endutxent() function closes the currently open database.

The utmpxname() function allows the user to change the name of the database file
examined from /var/adm/utmpx to any other file, most often /var/adm/wtmpx. If
the file does not exist, this will not be apparent until the first attempt to reference the
file is made. The utmpxname() function does not open the file, but closes the old file
if it is currently open and saves the new file name. The new file name must end with
the “x” character to allow the name of the corresponding utmp file to be easily
obtainable.; otherwise, an error value of 0 is returned. The function returns 1 on
success.

The getutmp() function copies the information stored in the members of the utmpx
structure to the corresponding members of the utmp structure. If the information in
any member of utmpx does not fit in the corresponding utmp member, the data is
silently truncated. (See getutent(3C) for utmp structure)

pututxline(3C)

getutxline()

pututxline()

setutxent()

endutxent()

utmpxname()

getutmp()

674 man pages section 3: Library Functions • Last Revised 6 Oct 1999

The getutmpx() function copies the information stored in the members of the utmp
structure to the corresponding members of the utmpx structure. (See getutent(3C)
for utmp structure)

The updwtmp() function can be used in two ways.

If wfile is /var/adm/wtmp, the utmp format record supplied by the caller is converted
to a utmpx format record and the /var/adm/wtmpx file is updated (because the
/var/adm/wtmp file no longer exists, operations on wtmp are converted to operations
on wtmpx by the library functions.

If wfile is a file other than /var/adm/wtmp, it is assumed to be an old file in utmp
format and is updated directly with the utmp format record supplied by the caller.

The updwtmpx() function writes the contents of the utmpx structure pointed to by
utmpx to the database.

The values of the e_termination and e_exit members of the ut_exit structure
are valid only for records of type DEAD_PROCESS. For utmpx entries created by
init(1M), these values are set according to the result of the wait() call that init
performs on the process when the process exits. See the wait(2) manual page for the
values init uses. Applications creating utmpx entries can set ut_exit values using
the following code example:

u->ut_exit.e_termination = WTERMSIG(process->p_exit)
u->ut_exit.e_exit = WEXITSTATUS(process->p_exit)

See wstat(3XFN) for descriptions of the WTERMSIG and WEXITSTATUS macros.

The ut_session member is not acted upon by the operating system. It is used by
applications interested in creating utmpx entries.

For records of type USER_PROCESS, the nonuser() and nonuserx() macros use the
value of the ut_exit.e_exit member to mark utmpx entries as real logins (as
opposed to multiple xterms started by the same user on a window system). This
allows the system utilities that display users to obtain an accurate indication of the
number of actual users, while still permitting each pty to have a utmpx record (as
most applications expect.). The NONROOT_USER macro defines the value that login
places in the ut_exit.e_exit member.

Upon successful completion, getutxent(), getutxid(), and getutxline() each
return a pointer to a utmpx structure containing a copy of the requested entry in the
user accounting database. Otherwise a null pointer is returned.

The return value may point to a static area which is overwritten by a subsequent call
to getutxid () or getutxline().

Upon successful completion, pututxline() returns a pointer to a utmpx structure
containing a copy of the entry added to the user accounting database. Otherwise a null
pointer is returned.

pututxline(3C)

getutmpx()

updwtmp()

updwtmpx()

utmpx
structure

RETURN VALUES

Introduction to Library Functions 675

The endutxent() and setutxent() functions return no value.

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write.

These functions use buffered standard I/O for input, but pututxline() uses an
unbuffered write to avoid race conditions between processes trying to modify the
utmpx and wtmpx files.

Applications should not access the utmpx and wtmpx databases directly, but should
use these functions to ensure that these databases are maintained consistently.

/var/adm/utmpx User access and accounting information

/var/adm/wtmpx History of user access and accounting information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

pututxline() invokes a program with appropriate forced privileges to verify and
write the utmpx structure. pututxline clears fields in an entry if the process does
not have the PAF_TRUSTED_PATH process attribute

getutent(3C)

wait(2), ttyslot(3C), utmpx(4), attributes(5), wstat(3XFN)

The most current entry is saved in a static structure. Multiple accesses require that it
be copied before further accesses are made. On each call to either getutxid() or
getutxline(), the routine examines the static structure before performing more
I/O. If the contents of the static structure match what it is searching for, it looks no
further. For this reason, to use getutxline() to search for multiple occurrences it
would be necessary to zero out the static after each success, or getutxline() would
just return the same structure over and over again. There is one exception to the rule
about emptying the structure before further reads are done. The implicit read done by
pututxline() (if it finds that it is not already at the correct place in the file) will not
hurt the contents of the static structure returned by the getutxent(), getutxid(),
or getutxline() routines, if the user has just modified those contents and passed
the pointer back to pututxline().

pututxline(3C)

USAGE

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

676 man pages section 3: Library Functions • Last Revised 6 Oct 1999

randomword – Generate random pronounceable password

cc [flag…] file… -ltsol [library]

#include <tsol/tsol.h>

int randomword(char *word, char *hyphenated_word, const unsigned
short minlen, const unsigned short maxlen, const unsigned char
*seed);

randomword() generates random pronounceable passwords using the FIPS 181
algorithm. Upon successful completion, word is replaced with a new password with a
length between minlen and maxlen inclusive. hyphenated_word is a hyphenated version
of word showing its pronunciation. If seed is non-NULL, it is a random number seed of
eight significant characters. A good choice is the user’s old password. Successive calls
to randomword() by the same program should pass a null pointer for seed to produce
new random passwords using the initial seed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Unsafe

randomword() returns:

−1 If minlen > maxlen or seed has not been set.

0 If maxlen is zero (0).

>0 Length of the password word generated.

EXAMPLE 1 Randomword Example

char password[10];
char hyphen_password[20];
char seed[9];
int len;
int i;

printf("Please enter old password: ");
fgets(seed, 9, stdin);

len = randomword(password, hyphen_password, 6, 8, seed);
printf("password %s is pronounced %s\n", password, hyphen_password);

for (i = 1; i < 5; i++) {
len = randomword(password, hyphen_password, 6, 8, (unsigned char *) 0);
printf("password %s is pronounced %s\n", password, hyphen_password);

}

randomword(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

RETURN VALUES

EXAMPLES

Introduction to Library Functions 677

Federal Information Processing Standards Publication 181, Automated Password
Generator, 5 October 1993

attributes(5)

randomword(3TSOL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

678 man pages section 3: Library Functions • Last Revised 6 May 1994

resolver, res_ninit, fp_resstat, res_npquery, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

void res_npquery(const res_state statp, const u_char *msg, int
msglen, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int
type, u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
*domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
*answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg, int msglen,
ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
**dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

res_hostalias(3RESOLV)

NAME

BIND 8.2.2
Interfaces

Deprecated
Interfaces

Introduction to Library Functions 679

int res_initvoid););

int res_query(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_mkquery(int op, const char *dname, int class, int type, const
char *data, int datalen, struct rrec *newrr, u_char *buf, int
buflen);

int res_send(const u_char *msg, int msglen, u_char *answer, int
anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply
messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions.
Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(),
res_send(), and herror() are deprecated. They are supplied for backwards
compatability. They use global configuration and state information that is kept in the
structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first
call to res_ninit() or res_init() and can be ignored. Options stored in
statp->options or _res.options are defined in <resolv.h>. They are stored as
a simple bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default
domain name are initialized, that is, res_init() or
res_ninit() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() will continue until it finds an
authoritative answer or finds an error. Currently this
option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open
between queries. This is a useful option for programs
that regularly do many queries. The normal mode used
should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

res_hostalias(3RESOLV)

DESCRIPTION

680 man pages section 3: Library Functions • Last Revised 1 Feb 2001

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. res_send() and res_nsend() do not do
iterative queries and expect the name server to handle
recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append
the default domain name to single-component names,
that is, names that do not contain a dot. This option is
enabled by default.

RES_DNSRCH If this option is set, res_search() and
res_nsearch() search for host names in the current
domain and in parent domains. See hostname(1). This
option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by
default.

RES_NOALIASES This option turns off the user level aliasing feature
controlled by the HOSTALIASES environment variable.
Network daemons should set this option.

RES_ROTATE This option causes res_nsend() and res_send() to
rotate the list of nameservers in
statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the
message unchanged after TSIG verification. Otherwise
the TSIG record would be removed and the header
would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is
present, to get the default domain name, search list and the Internet address of the
local name server(s). See resolv.conf(4). If no server is configured, res_init() or
res_ninit() will try to obtain name resolution services from the host on which it is
running. The current domain name is defined by domainname(1M), or by the
hostname if it is not specified in the configuration file. Use the environment variable
LOCALDOMAIN to override the domain name. This environment variable may contain
several blank-separated tokens if you wish to override the search list on a per-process
basis. This is similar to the search command in the configuration file. You can set the
RES_OPTIONS environment variable to override certain internal resolver options. You
can otherwise set them by changing fields in the statp /_res structure.
Alternatively, they are inherited from the configuration file’s options command. See
resolv.conf(4) for information regarding the syntax of the RES_OPTIONS
environment variable. Initialization normally occurs on the first call to one of the other
resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server
query mechanism. They construct a query, send it to the local server, await a response,
and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply

res_hostalias(3RESOLV)

res_ninit, res_init

res_nquery,
res_query

Introduction to Library Functions 681

message is left in the answer buffer with length anslen supplied by the caller.
res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a
response, just like like res_nquery() and res_query(). In addition, they
implement the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. They return the length of the first successful reply which is
stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The
res_nmkquery() and res_mkquery() functions construct a standard query
message and place it in buf. The routine returns the size of the query, or -1 if the query
is larger than buflen. The query type op is usually QUERY, but can be any of the query
types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a
preformatted query that returns an answer. The routine calls res_ninit() or
res_init(). If RES_INIT is not set, the routine sends the query to the local name
server and handles timeouts and retries. Additionally, the res_nsendsigned() uses
TSIG signatures to add authentication to the query and verify the response. In this
case, only one name server will be contacted. The routines return the length of the
reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query
may be larger still], so it is recommended that you supply a buf larger than the answer
returned by the previous query. answer must be large enough to receive a maximum
UDP response from the server or parts of the answer will be silently discarded. The
default maximum UDP response size is 512 bytes.

The res_npquery() function prints out the query and any answer in msg on fp.

The fp_resstat() function prints out the active flag bits in statp->options preceded
by the text ";; res options:" on file.

res_hostalias(3RESOLV)

res_nsearch,
res_search

res_nmkquery,
res_mkquery

res_nsend,
res_send,

res_nsendsigned

res_npquery

fp_resstat

682 man pages section 3: Library Functions • Last Revised 1 Feb 2001

The res_hostalias() function looks up name in the file referred to by the
HOSTALIASES environment variable and returns the fully qualified host name. If name
is not found or an error occurs, NULL is returned. res_hostalias() stores the result
in buf.

The res_nclose() function closes any open files referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. dn_comp() returns the size of the compressed name, or −1 if there were
errors. length is the size of the array pointed to by comp_dn.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in
the current message. The first pointer must point to the beginning of the message. The
list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted
into the message by dn_comp() as the name is compressed. If dnptrs is NULL, names
are not compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name. The compressed name is contained in a query or reply message. msg is
a pointer to the beginning of that message. The uncompressed name is placed in the
buffer indicated by exp_dn, which is of size length.dn_expand() returns the size of the
compressed name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are
set whenever an error occurs during a resolver operation. The following definitions
are given in <netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the
string parameters, the constant string ": ", and a message corresponding to the value
of h_errno.

The hstrerror() function returns a string, which is the message text that
corresponds to the value of the err parameter.

/etc/resolv.conf Resolver configuration file

See attributes(5) for descriptions of the following attributes:

res_hostalias(3RESOLV)

res_hostalias

res_nclose

dn_comp

dn_expand

hstrerror, herror

FILES

ATTRIBUTES

Introduction to Library Functions 683

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard BIND 8.2.2

MT-Level Unsafe for Deprecated Interfaces; MT-Safe for
all others.

If the query is sent to a name server on a non-trusted host, then the functions
res_nsend(), res_send(), res_nsearch(), and res_search() can
communicate with the name server if its host’s default sensitivity label matches the
sensitivity label of the process issuing the call. If the calling process is run with the
PRIV_NET_UPGRADE_SL, PRIV_NET_DOWNGRADE_SL, and PRIV_NET_MAC_READ
privileges, then the functions res_nsend(), res_send(), res_nsearch(), and
res_search() can communicate with the name server regardless of the sensitivity
label of the non-trusted host where the name server resides.

in.named(1M), resolv.conf(4)

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), attributes(5)

Lottor, M., Domain Administrators Operators Guide, RFC 1033, SRI International, Menlo
Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information
Center, SRI International, Menlo Park, Calif., January 1986. Stahl, M., Domain
Administrators Guide, RFC 1032, SRI International, Menlo Park, Calif., November 1987.

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte
boundary. Otherwise, an error such as a SIGBUS may result.

res_hostalias(3RESOLV)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

684 man pages section 3: Library Functions • Last Revised 1 Feb 2001

resolver, res_ninit, fp_resstat, res_npquery, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

void res_npquery(const res_state statp, const u_char *msg, int
msglen, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int
type, u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
*domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
*answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg, int msglen,
ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
**dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

res_init(3RESOLV)

NAME

BIND 8.2.2
Interfaces

Deprecated
Interfaces

Introduction to Library Functions 685

int res_initvoid););

int res_query(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_mkquery(int op, const char *dname, int class, int type, const
char *data, int datalen, struct rrec *newrr, u_char *buf, int
buflen);

int res_send(const u_char *msg, int msglen, u_char *answer, int
anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply
messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions.
Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(),
res_send(), and herror() are deprecated. They are supplied for backwards
compatability. They use global configuration and state information that is kept in the
structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first
call to res_ninit() or res_init() and can be ignored. Options stored in
statp->options or _res.options are defined in <resolv.h>. They are stored as
a simple bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default
domain name are initialized, that is, res_init() or
res_ninit() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() will continue until it finds an
authoritative answer or finds an error. Currently this
option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open
between queries. This is a useful option for programs
that regularly do many queries. The normal mode used
should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

res_init(3RESOLV)

DESCRIPTION

686 man pages section 3: Library Functions • Last Revised 1 Feb 2001

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. res_send() and res_nsend() do not do
iterative queries and expect the name server to handle
recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append
the default domain name to single-component names,
that is, names that do not contain a dot. This option is
enabled by default.

RES_DNSRCH If this option is set, res_search() and
res_nsearch() search for host names in the current
domain and in parent domains. See hostname(1). This
option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by
default.

RES_NOALIASES This option turns off the user level aliasing feature
controlled by the HOSTALIASES environment variable.
Network daemons should set this option.

RES_ROTATE This option causes res_nsend() and res_send() to
rotate the list of nameservers in
statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the
message unchanged after TSIG verification. Otherwise
the TSIG record would be removed and the header
would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is
present, to get the default domain name, search list and the Internet address of the
local name server(s). See resolv.conf(4). If no server is configured, res_init() or
res_ninit() will try to obtain name resolution services from the host on which it is
running. The current domain name is defined by domainname(1M), or by the
hostname if it is not specified in the configuration file. Use the environment variable
LOCALDOMAIN to override the domain name. This environment variable may contain
several blank-separated tokens if you wish to override the search list on a per-process
basis. This is similar to the search command in the configuration file. You can set the
RES_OPTIONS environment variable to override certain internal resolver options. You
can otherwise set them by changing fields in the statp /_res structure.
Alternatively, they are inherited from the configuration file’s options command. See
resolv.conf(4) for information regarding the syntax of the RES_OPTIONS
environment variable. Initialization normally occurs on the first call to one of the other
resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server
query mechanism. They construct a query, send it to the local server, await a response,
and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply

res_init(3RESOLV)

res_ninit, res_init

res_nquery,
res_query

Introduction to Library Functions 687

message is left in the answer buffer with length anslen supplied by the caller.
res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a
response, just like like res_nquery() and res_query(). In addition, they
implement the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. They return the length of the first successful reply which is
stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The
res_nmkquery() and res_mkquery() functions construct a standard query
message and place it in buf. The routine returns the size of the query, or -1 if the query
is larger than buflen. The query type op is usually QUERY, but can be any of the query
types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a
preformatted query that returns an answer. The routine calls res_ninit() or
res_init(). If RES_INIT is not set, the routine sends the query to the local name
server and handles timeouts and retries. Additionally, the res_nsendsigned() uses
TSIG signatures to add authentication to the query and verify the response. In this
case, only one name server will be contacted. The routines return the length of the
reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query
may be larger still], so it is recommended that you supply a buf larger than the answer
returned by the previous query. answer must be large enough to receive a maximum
UDP response from the server or parts of the answer will be silently discarded. The
default maximum UDP response size is 512 bytes.

The res_npquery() function prints out the query and any answer in msg on fp.

The fp_resstat() function prints out the active flag bits in statp->options preceded
by the text ";; res options:" on file.

res_init(3RESOLV)

res_nsearch,
res_search

res_nmkquery,
res_mkquery

res_nsend,
res_send,

res_nsendsigned

res_npquery

fp_resstat

688 man pages section 3: Library Functions • Last Revised 1 Feb 2001

The res_hostalias() function looks up name in the file referred to by the
HOSTALIASES environment variable and returns the fully qualified host name. If name
is not found or an error occurs, NULL is returned. res_hostalias() stores the result
in buf.

The res_nclose() function closes any open files referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. dn_comp() returns the size of the compressed name, or −1 if there were
errors. length is the size of the array pointed to by comp_dn.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in
the current message. The first pointer must point to the beginning of the message. The
list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted
into the message by dn_comp() as the name is compressed. If dnptrs is NULL, names
are not compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name. The compressed name is contained in a query or reply message. msg is
a pointer to the beginning of that message. The uncompressed name is placed in the
buffer indicated by exp_dn, which is of size length.dn_expand() returns the size of the
compressed name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are
set whenever an error occurs during a resolver operation. The following definitions
are given in <netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the
string parameters, the constant string ": ", and a message corresponding to the value
of h_errno.

The hstrerror() function returns a string, which is the message text that
corresponds to the value of the err parameter.

/etc/resolv.conf Resolver configuration file

See attributes(5) for descriptions of the following attributes:

res_init(3RESOLV)

res_hostalias

res_nclose

dn_comp

dn_expand

hstrerror, herror

FILES

ATTRIBUTES

Introduction to Library Functions 689

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard BIND 8.2.2

MT-Level Unsafe for Deprecated Interfaces; MT-Safe for
all others.

If the query is sent to a name server on a non-trusted host, then the functions
res_nsend(), res_send(), res_nsearch(), and res_search() can
communicate with the name server if its host’s default sensitivity label matches the
sensitivity label of the process issuing the call. If the calling process is run with the
PRIV_NET_UPGRADE_SL, PRIV_NET_DOWNGRADE_SL, and PRIV_NET_MAC_READ
privileges, then the functions res_nsend(), res_send(), res_nsearch(), and
res_search() can communicate with the name server regardless of the sensitivity
label of the non-trusted host where the name server resides.

in.named(1M), resolv.conf(4)

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), attributes(5)

Lottor, M., Domain Administrators Operators Guide, RFC 1033, SRI International, Menlo
Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information
Center, SRI International, Menlo Park, Calif., January 1986. Stahl, M., Domain
Administrators Guide, RFC 1032, SRI International, Menlo Park, Calif., November 1987.

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte
boundary. Otherwise, an error such as a SIGBUS may result.

res_init(3RESOLV)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

690 man pages section 3: Library Functions • Last Revised 1 Feb 2001

resolver, res_ninit, fp_resstat, res_npquery, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

void res_npquery(const res_state statp, const u_char *msg, int
msglen, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int
type, u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
*domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
*answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg, int msglen,
ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
**dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

res_mkquery(3RESOLV)

NAME

BIND 8.2.2
Interfaces

Deprecated
Interfaces

Introduction to Library Functions 691

int res_initvoid););

int res_query(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_mkquery(int op, const char *dname, int class, int type, const
char *data, int datalen, struct rrec *newrr, u_char *buf, int
buflen);

int res_send(const u_char *msg, int msglen, u_char *answer, int
anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply
messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions.
Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(),
res_send(), and herror() are deprecated. They are supplied for backwards
compatability. They use global configuration and state information that is kept in the
structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first
call to res_ninit() or res_init() and can be ignored. Options stored in
statp->options or _res.options are defined in <resolv.h>. They are stored as
a simple bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default
domain name are initialized, that is, res_init() or
res_ninit() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() will continue until it finds an
authoritative answer or finds an error. Currently this
option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open
between queries. This is a useful option for programs
that regularly do many queries. The normal mode used
should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

res_mkquery(3RESOLV)

DESCRIPTION

692 man pages section 3: Library Functions • Last Revised 1 Feb 2001

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. res_send() and res_nsend() do not do
iterative queries and expect the name server to handle
recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append
the default domain name to single-component names,
that is, names that do not contain a dot. This option is
enabled by default.

RES_DNSRCH If this option is set, res_search() and
res_nsearch() search for host names in the current
domain and in parent domains. See hostname(1). This
option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by
default.

RES_NOALIASES This option turns off the user level aliasing feature
controlled by the HOSTALIASES environment variable.
Network daemons should set this option.

RES_ROTATE This option causes res_nsend() and res_send() to
rotate the list of nameservers in
statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the
message unchanged after TSIG verification. Otherwise
the TSIG record would be removed and the header
would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is
present, to get the default domain name, search list and the Internet address of the
local name server(s). See resolv.conf(4). If no server is configured, res_init() or
res_ninit() will try to obtain name resolution services from the host on which it is
running. The current domain name is defined by domainname(1M), or by the
hostname if it is not specified in the configuration file. Use the environment variable
LOCALDOMAIN to override the domain name. This environment variable may contain
several blank-separated tokens if you wish to override the search list on a per-process
basis. This is similar to the search command in the configuration file. You can set the
RES_OPTIONS environment variable to override certain internal resolver options. You
can otherwise set them by changing fields in the statp /_res structure.
Alternatively, they are inherited from the configuration file’s options command. See
resolv.conf(4) for information regarding the syntax of the RES_OPTIONS
environment variable. Initialization normally occurs on the first call to one of the other
resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server
query mechanism. They construct a query, send it to the local server, await a response,
and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply

res_mkquery(3RESOLV)

res_ninit, res_init

res_nquery,
res_query

Introduction to Library Functions 693

message is left in the answer buffer with length anslen supplied by the caller.
res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a
response, just like like res_nquery() and res_query(). In addition, they
implement the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. They return the length of the first successful reply which is
stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The
res_nmkquery() and res_mkquery() functions construct a standard query
message and place it in buf. The routine returns the size of the query, or -1 if the query
is larger than buflen. The query type op is usually QUERY, but can be any of the query
types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a
preformatted query that returns an answer. The routine calls res_ninit() or
res_init(). If RES_INIT is not set, the routine sends the query to the local name
server and handles timeouts and retries. Additionally, the res_nsendsigned() uses
TSIG signatures to add authentication to the query and verify the response. In this
case, only one name server will be contacted. The routines return the length of the
reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query
may be larger still], so it is recommended that you supply a buf larger than the answer
returned by the previous query. answer must be large enough to receive a maximum
UDP response from the server or parts of the answer will be silently discarded. The
default maximum UDP response size is 512 bytes.

The res_npquery() function prints out the query and any answer in msg on fp.

The fp_resstat() function prints out the active flag bits in statp->options preceded
by the text ";; res options:" on file.

res_mkquery(3RESOLV)

res_nsearch,
res_search

res_nmkquery,
res_mkquery

res_nsend,
res_send,

res_nsendsigned

res_npquery

fp_resstat

694 man pages section 3: Library Functions • Last Revised 1 Feb 2001

The res_hostalias() function looks up name in the file referred to by the
HOSTALIASES environment variable and returns the fully qualified host name. If name
is not found or an error occurs, NULL is returned. res_hostalias() stores the result
in buf.

The res_nclose() function closes any open files referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. dn_comp() returns the size of the compressed name, or −1 if there were
errors. length is the size of the array pointed to by comp_dn.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in
the current message. The first pointer must point to the beginning of the message. The
list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted
into the message by dn_comp() as the name is compressed. If dnptrs is NULL, names
are not compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name. The compressed name is contained in a query or reply message. msg is
a pointer to the beginning of that message. The uncompressed name is placed in the
buffer indicated by exp_dn, which is of size length.dn_expand() returns the size of the
compressed name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are
set whenever an error occurs during a resolver operation. The following definitions
are given in <netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the
string parameters, the constant string ": ", and a message corresponding to the value
of h_errno.

The hstrerror() function returns a string, which is the message text that
corresponds to the value of the err parameter.

/etc/resolv.conf Resolver configuration file

See attributes(5) for descriptions of the following attributes:

res_mkquery(3RESOLV)

res_hostalias

res_nclose

dn_comp

dn_expand

hstrerror, herror

FILES

ATTRIBUTES

Introduction to Library Functions 695

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard BIND 8.2.2

MT-Level Unsafe for Deprecated Interfaces; MT-Safe for
all others.

If the query is sent to a name server on a non-trusted host, then the functions
res_nsend(), res_send(), res_nsearch(), and res_search() can
communicate with the name server if its host’s default sensitivity label matches the
sensitivity label of the process issuing the call. If the calling process is run with the
PRIV_NET_UPGRADE_SL, PRIV_NET_DOWNGRADE_SL, and PRIV_NET_MAC_READ
privileges, then the functions res_nsend(), res_send(), res_nsearch(), and
res_search() can communicate with the name server regardless of the sensitivity
label of the non-trusted host where the name server resides.

in.named(1M), resolv.conf(4)

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), attributes(5)

Lottor, M., Domain Administrators Operators Guide, RFC 1033, SRI International, Menlo
Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information
Center, SRI International, Menlo Park, Calif., January 1986. Stahl, M., Domain
Administrators Guide, RFC 1032, SRI International, Menlo Park, Calif., November 1987.

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte
boundary. Otherwise, an error such as a SIGBUS may result.

res_mkquery(3RESOLV)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

696 man pages section 3: Library Functions • Last Revised 1 Feb 2001

resolver, res_ninit, fp_resstat, res_npquery, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

void res_npquery(const res_state statp, const u_char *msg, int
msglen, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int
type, u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
*domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
*answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg, int msglen,
ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
**dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

res_nclose(3RESOLV)

NAME

BIND 8.2.2
Interfaces

Deprecated
Interfaces

Introduction to Library Functions 697

int res_initvoid););

int res_query(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_mkquery(int op, const char *dname, int class, int type, const
char *data, int datalen, struct rrec *newrr, u_char *buf, int
buflen);

int res_send(const u_char *msg, int msglen, u_char *answer, int
anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply
messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions.
Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(),
res_send(), and herror() are deprecated. They are supplied for backwards
compatability. They use global configuration and state information that is kept in the
structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first
call to res_ninit() or res_init() and can be ignored. Options stored in
statp->options or _res.options are defined in <resolv.h>. They are stored as
a simple bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default
domain name are initialized, that is, res_init() or
res_ninit() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() will continue until it finds an
authoritative answer or finds an error. Currently this
option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open
between queries. This is a useful option for programs
that regularly do many queries. The normal mode used
should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

res_nclose(3RESOLV)

DESCRIPTION

698 man pages section 3: Library Functions • Last Revised 1 Feb 2001

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. res_send() and res_nsend() do not do
iterative queries and expect the name server to handle
recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append
the default domain name to single-component names,
that is, names that do not contain a dot. This option is
enabled by default.

RES_DNSRCH If this option is set, res_search() and
res_nsearch() search for host names in the current
domain and in parent domains. See hostname(1). This
option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by
default.

RES_NOALIASES This option turns off the user level aliasing feature
controlled by the HOSTALIASES environment variable.
Network daemons should set this option.

RES_ROTATE This option causes res_nsend() and res_send() to
rotate the list of nameservers in
statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the
message unchanged after TSIG verification. Otherwise
the TSIG record would be removed and the header
would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is
present, to get the default domain name, search list and the Internet address of the
local name server(s). See resolv.conf(4). If no server is configured, res_init() or
res_ninit() will try to obtain name resolution services from the host on which it is
running. The current domain name is defined by domainname(1M), or by the
hostname if it is not specified in the configuration file. Use the environment variable
LOCALDOMAIN to override the domain name. This environment variable may contain
several blank-separated tokens if you wish to override the search list on a per-process
basis. This is similar to the search command in the configuration file. You can set the
RES_OPTIONS environment variable to override certain internal resolver options. You
can otherwise set them by changing fields in the statp /_res structure.
Alternatively, they are inherited from the configuration file’s options command. See
resolv.conf(4) for information regarding the syntax of the RES_OPTIONS
environment variable. Initialization normally occurs on the first call to one of the other
resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server
query mechanism. They construct a query, send it to the local server, await a response,
and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply

res_nclose(3RESOLV)

res_ninit, res_init

res_nquery,
res_query

Introduction to Library Functions 699

message is left in the answer buffer with length anslen supplied by the caller.
res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a
response, just like like res_nquery() and res_query(). In addition, they
implement the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. They return the length of the first successful reply which is
stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The
res_nmkquery() and res_mkquery() functions construct a standard query
message and place it in buf. The routine returns the size of the query, or -1 if the query
is larger than buflen. The query type op is usually QUERY, but can be any of the query
types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a
preformatted query that returns an answer. The routine calls res_ninit() or
res_init(). If RES_INIT is not set, the routine sends the query to the local name
server and handles timeouts and retries. Additionally, the res_nsendsigned() uses
TSIG signatures to add authentication to the query and verify the response. In this
case, only one name server will be contacted. The routines return the length of the
reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query
may be larger still], so it is recommended that you supply a buf larger than the answer
returned by the previous query. answer must be large enough to receive a maximum
UDP response from the server or parts of the answer will be silently discarded. The
default maximum UDP response size is 512 bytes.

The res_npquery() function prints out the query and any answer in msg on fp.

The fp_resstat() function prints out the active flag bits in statp->options preceded
by the text ";; res options:" on file.

res_nclose(3RESOLV)

res_nsearch,
res_search

res_nmkquery,
res_mkquery

res_nsend,
res_send,

res_nsendsigned

res_npquery

fp_resstat

700 man pages section 3: Library Functions • Last Revised 1 Feb 2001

The res_hostalias() function looks up name in the file referred to by the
HOSTALIASES environment variable and returns the fully qualified host name. If name
is not found or an error occurs, NULL is returned. res_hostalias() stores the result
in buf.

The res_nclose() function closes any open files referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. dn_comp() returns the size of the compressed name, or −1 if there were
errors. length is the size of the array pointed to by comp_dn.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in
the current message. The first pointer must point to the beginning of the message. The
list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted
into the message by dn_comp() as the name is compressed. If dnptrs is NULL, names
are not compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name. The compressed name is contained in a query or reply message. msg is
a pointer to the beginning of that message. The uncompressed name is placed in the
buffer indicated by exp_dn, which is of size length.dn_expand() returns the size of the
compressed name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are
set whenever an error occurs during a resolver operation. The following definitions
are given in <netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the
string parameters, the constant string ": ", and a message corresponding to the value
of h_errno.

The hstrerror() function returns a string, which is the message text that
corresponds to the value of the err parameter.

/etc/resolv.conf Resolver configuration file

See attributes(5) for descriptions of the following attributes:

res_nclose(3RESOLV)

res_hostalias

res_nclose

dn_comp

dn_expand

hstrerror, herror

FILES

ATTRIBUTES

Introduction to Library Functions 701

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard BIND 8.2.2

MT-Level Unsafe for Deprecated Interfaces; MT-Safe for
all others.

If the query is sent to a name server on a non-trusted host, then the functions
res_nsend(), res_send(), res_nsearch(), and res_search() can
communicate with the name server if its host’s default sensitivity label matches the
sensitivity label of the process issuing the call. If the calling process is run with the
PRIV_NET_UPGRADE_SL, PRIV_NET_DOWNGRADE_SL, and PRIV_NET_MAC_READ
privileges, then the functions res_nsend(), res_send(), res_nsearch(), and
res_search() can communicate with the name server regardless of the sensitivity
label of the non-trusted host where the name server resides.

in.named(1M), resolv.conf(4)

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), attributes(5)

Lottor, M., Domain Administrators Operators Guide, RFC 1033, SRI International, Menlo
Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information
Center, SRI International, Menlo Park, Calif., January 1986. Stahl, M., Domain
Administrators Guide, RFC 1032, SRI International, Menlo Park, Calif., November 1987.

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte
boundary. Otherwise, an error such as a SIGBUS may result.

res_nclose(3RESOLV)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

702 man pages section 3: Library Functions • Last Revised 1 Feb 2001

resolver, res_ninit, fp_resstat, res_npquery, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

void res_npquery(const res_state statp, const u_char *msg, int
msglen, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int
type, u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
*domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
*answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg, int msglen,
ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
**dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

res_ninit(3RESOLV)

NAME

BIND 8.2.2
Interfaces

Deprecated
Interfaces

Introduction to Library Functions 703

int res_initvoid););

int res_query(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_mkquery(int op, const char *dname, int class, int type, const
char *data, int datalen, struct rrec *newrr, u_char *buf, int
buflen);

int res_send(const u_char *msg, int msglen, u_char *answer, int
anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply
messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions.
Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(),
res_send(), and herror() are deprecated. They are supplied for backwards
compatability. They use global configuration and state information that is kept in the
structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first
call to res_ninit() or res_init() and can be ignored. Options stored in
statp->options or _res.options are defined in <resolv.h>. They are stored as
a simple bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default
domain name are initialized, that is, res_init() or
res_ninit() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() will continue until it finds an
authoritative answer or finds an error. Currently this
option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open
between queries. This is a useful option for programs
that regularly do many queries. The normal mode used
should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

res_ninit(3RESOLV)

DESCRIPTION

704 man pages section 3: Library Functions • Last Revised 1 Feb 2001

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. res_send() and res_nsend() do not do
iterative queries and expect the name server to handle
recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append
the default domain name to single-component names,
that is, names that do not contain a dot. This option is
enabled by default.

RES_DNSRCH If this option is set, res_search() and
res_nsearch() search for host names in the current
domain and in parent domains. See hostname(1). This
option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by
default.

RES_NOALIASES This option turns off the user level aliasing feature
controlled by the HOSTALIASES environment variable.
Network daemons should set this option.

RES_ROTATE This option causes res_nsend() and res_send() to
rotate the list of nameservers in
statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the
message unchanged after TSIG verification. Otherwise
the TSIG record would be removed and the header
would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is
present, to get the default domain name, search list and the Internet address of the
local name server(s). See resolv.conf(4). If no server is configured, res_init() or
res_ninit() will try to obtain name resolution services from the host on which it is
running. The current domain name is defined by domainname(1M), or by the
hostname if it is not specified in the configuration file. Use the environment variable
LOCALDOMAIN to override the domain name. This environment variable may contain
several blank-separated tokens if you wish to override the search list on a per-process
basis. This is similar to the search command in the configuration file. You can set the
RES_OPTIONS environment variable to override certain internal resolver options. You
can otherwise set them by changing fields in the statp /_res structure.
Alternatively, they are inherited from the configuration file’s options command. See
resolv.conf(4) for information regarding the syntax of the RES_OPTIONS
environment variable. Initialization normally occurs on the first call to one of the other
resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server
query mechanism. They construct a query, send it to the local server, await a response,
and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply

res_ninit(3RESOLV)

res_ninit, res_init

res_nquery,
res_query

Introduction to Library Functions 705

message is left in the answer buffer with length anslen supplied by the caller.
res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a
response, just like like res_nquery() and res_query(). In addition, they
implement the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. They return the length of the first successful reply which is
stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The
res_nmkquery() and res_mkquery() functions construct a standard query
message and place it in buf. The routine returns the size of the query, or -1 if the query
is larger than buflen. The query type op is usually QUERY, but can be any of the query
types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a
preformatted query that returns an answer. The routine calls res_ninit() or
res_init(). If RES_INIT is not set, the routine sends the query to the local name
server and handles timeouts and retries. Additionally, the res_nsendsigned() uses
TSIG signatures to add authentication to the query and verify the response. In this
case, only one name server will be contacted. The routines return the length of the
reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query
may be larger still], so it is recommended that you supply a buf larger than the answer
returned by the previous query. answer must be large enough to receive a maximum
UDP response from the server or parts of the answer will be silently discarded. The
default maximum UDP response size is 512 bytes.

The res_npquery() function prints out the query and any answer in msg on fp.

The fp_resstat() function prints out the active flag bits in statp->options preceded
by the text ";; res options:" on file.

res_ninit(3RESOLV)

res_nsearch,
res_search

res_nmkquery,
res_mkquery

res_nsend,
res_send,

res_nsendsigned

res_npquery

fp_resstat

706 man pages section 3: Library Functions • Last Revised 1 Feb 2001

The res_hostalias() function looks up name in the file referred to by the
HOSTALIASES environment variable and returns the fully qualified host name. If name
is not found or an error occurs, NULL is returned. res_hostalias() stores the result
in buf.

The res_nclose() function closes any open files referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. dn_comp() returns the size of the compressed name, or −1 if there were
errors. length is the size of the array pointed to by comp_dn.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in
the current message. The first pointer must point to the beginning of the message. The
list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted
into the message by dn_comp() as the name is compressed. If dnptrs is NULL, names
are not compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name. The compressed name is contained in a query or reply message. msg is
a pointer to the beginning of that message. The uncompressed name is placed in the
buffer indicated by exp_dn, which is of size length.dn_expand() returns the size of the
compressed name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are
set whenever an error occurs during a resolver operation. The following definitions
are given in <netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the
string parameters, the constant string ": ", and a message corresponding to the value
of h_errno.

The hstrerror() function returns a string, which is the message text that
corresponds to the value of the err parameter.

/etc/resolv.conf Resolver configuration file

See attributes(5) for descriptions of the following attributes:

res_ninit(3RESOLV)

res_hostalias

res_nclose

dn_comp

dn_expand

hstrerror, herror

FILES

ATTRIBUTES

Introduction to Library Functions 707

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard BIND 8.2.2

MT-Level Unsafe for Deprecated Interfaces; MT-Safe for
all others.

If the query is sent to a name server on a non-trusted host, then the functions
res_nsend(), res_send(), res_nsearch(), and res_search() can
communicate with the name server if its host’s default sensitivity label matches the
sensitivity label of the process issuing the call. If the calling process is run with the
PRIV_NET_UPGRADE_SL, PRIV_NET_DOWNGRADE_SL, and PRIV_NET_MAC_READ
privileges, then the functions res_nsend(), res_send(), res_nsearch(), and
res_search() can communicate with the name server regardless of the sensitivity
label of the non-trusted host where the name server resides.

in.named(1M), resolv.conf(4)

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), attributes(5)

Lottor, M., Domain Administrators Operators Guide, RFC 1033, SRI International, Menlo
Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information
Center, SRI International, Menlo Park, Calif., January 1986. Stahl, M., Domain
Administrators Guide, RFC 1032, SRI International, Menlo Park, Calif., November 1987.

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte
boundary. Otherwise, an error such as a SIGBUS may result.

res_ninit(3RESOLV)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

708 man pages section 3: Library Functions • Last Revised 1 Feb 2001

resolver, res_ninit, fp_resstat, res_npquery, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

void res_npquery(const res_state statp, const u_char *msg, int
msglen, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int
type, u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
*domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
*answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg, int msglen,
ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
**dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

res_nmkquery(3RESOLV)

NAME

BIND 8.2.2
Interfaces

Deprecated
Interfaces

Introduction to Library Functions 709

int res_initvoid););

int res_query(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_mkquery(int op, const char *dname, int class, int type, const
char *data, int datalen, struct rrec *newrr, u_char *buf, int
buflen);

int res_send(const u_char *msg, int msglen, u_char *answer, int
anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply
messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions.
Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(),
res_send(), and herror() are deprecated. They are supplied for backwards
compatability. They use global configuration and state information that is kept in the
structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first
call to res_ninit() or res_init() and can be ignored. Options stored in
statp->options or _res.options are defined in <resolv.h>. They are stored as
a simple bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default
domain name are initialized, that is, res_init() or
res_ninit() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() will continue until it finds an
authoritative answer or finds an error. Currently this
option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open
between queries. This is a useful option for programs
that regularly do many queries. The normal mode used
should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

res_nmkquery(3RESOLV)

DESCRIPTION

710 man pages section 3: Library Functions • Last Revised 1 Feb 2001

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. res_send() and res_nsend() do not do
iterative queries and expect the name server to handle
recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append
the default domain name to single-component names,
that is, names that do not contain a dot. This option is
enabled by default.

RES_DNSRCH If this option is set, res_search() and
res_nsearch() search for host names in the current
domain and in parent domains. See hostname(1). This
option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by
default.

RES_NOALIASES This option turns off the user level aliasing feature
controlled by the HOSTALIASES environment variable.
Network daemons should set this option.

RES_ROTATE This option causes res_nsend() and res_send() to
rotate the list of nameservers in
statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the
message unchanged after TSIG verification. Otherwise
the TSIG record would be removed and the header
would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is
present, to get the default domain name, search list and the Internet address of the
local name server(s). See resolv.conf(4). If no server is configured, res_init() or
res_ninit() will try to obtain name resolution services from the host on which it is
running. The current domain name is defined by domainname(1M), or by the
hostname if it is not specified in the configuration file. Use the environment variable
LOCALDOMAIN to override the domain name. This environment variable may contain
several blank-separated tokens if you wish to override the search list on a per-process
basis. This is similar to the search command in the configuration file. You can set the
RES_OPTIONS environment variable to override certain internal resolver options. You
can otherwise set them by changing fields in the statp /_res structure.
Alternatively, they are inherited from the configuration file’s options command. See
resolv.conf(4) for information regarding the syntax of the RES_OPTIONS
environment variable. Initialization normally occurs on the first call to one of the other
resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server
query mechanism. They construct a query, send it to the local server, await a response,
and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply

res_nmkquery(3RESOLV)

res_ninit, res_init

res_nquery,
res_query

Introduction to Library Functions 711

message is left in the answer buffer with length anslen supplied by the caller.
res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a
response, just like like res_nquery() and res_query(). In addition, they
implement the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. They return the length of the first successful reply which is
stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The
res_nmkquery() and res_mkquery() functions construct a standard query
message and place it in buf. The routine returns the size of the query, or -1 if the query
is larger than buflen. The query type op is usually QUERY, but can be any of the query
types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a
preformatted query that returns an answer. The routine calls res_ninit() or
res_init(). If RES_INIT is not set, the routine sends the query to the local name
server and handles timeouts and retries. Additionally, the res_nsendsigned() uses
TSIG signatures to add authentication to the query and verify the response. In this
case, only one name server will be contacted. The routines return the length of the
reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query
may be larger still], so it is recommended that you supply a buf larger than the answer
returned by the previous query. answer must be large enough to receive a maximum
UDP response from the server or parts of the answer will be silently discarded. The
default maximum UDP response size is 512 bytes.

The res_npquery() function prints out the query and any answer in msg on fp.

The fp_resstat() function prints out the active flag bits in statp->options preceded
by the text ";; res options:" on file.

res_nmkquery(3RESOLV)

res_nsearch,
res_search

res_nmkquery,
res_mkquery

res_nsend,
res_send,

res_nsendsigned

res_npquery

fp_resstat

712 man pages section 3: Library Functions • Last Revised 1 Feb 2001

The res_hostalias() function looks up name in the file referred to by the
HOSTALIASES environment variable and returns the fully qualified host name. If name
is not found or an error occurs, NULL is returned. res_hostalias() stores the result
in buf.

The res_nclose() function closes any open files referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. dn_comp() returns the size of the compressed name, or −1 if there were
errors. length is the size of the array pointed to by comp_dn.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in
the current message. The first pointer must point to the beginning of the message. The
list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted
into the message by dn_comp() as the name is compressed. If dnptrs is NULL, names
are not compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name. The compressed name is contained in a query or reply message. msg is
a pointer to the beginning of that message. The uncompressed name is placed in the
buffer indicated by exp_dn, which is of size length.dn_expand() returns the size of the
compressed name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are
set whenever an error occurs during a resolver operation. The following definitions
are given in <netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the
string parameters, the constant string ": ", and a message corresponding to the value
of h_errno.

The hstrerror() function returns a string, which is the message text that
corresponds to the value of the err parameter.

/etc/resolv.conf Resolver configuration file

See attributes(5) for descriptions of the following attributes:

res_nmkquery(3RESOLV)

res_hostalias

res_nclose

dn_comp

dn_expand

hstrerror, herror

FILES

ATTRIBUTES

Introduction to Library Functions 713

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard BIND 8.2.2

MT-Level Unsafe for Deprecated Interfaces; MT-Safe for
all others.

If the query is sent to a name server on a non-trusted host, then the functions
res_nsend(), res_send(), res_nsearch(), and res_search() can
communicate with the name server if its host’s default sensitivity label matches the
sensitivity label of the process issuing the call. If the calling process is run with the
PRIV_NET_UPGRADE_SL, PRIV_NET_DOWNGRADE_SL, and PRIV_NET_MAC_READ
privileges, then the functions res_nsend(), res_send(), res_nsearch(), and
res_search() can communicate with the name server regardless of the sensitivity
label of the non-trusted host where the name server resides.

in.named(1M), resolv.conf(4)

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), attributes(5)

Lottor, M., Domain Administrators Operators Guide, RFC 1033, SRI International, Menlo
Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information
Center, SRI International, Menlo Park, Calif., January 1986. Stahl, M., Domain
Administrators Guide, RFC 1032, SRI International, Menlo Park, Calif., November 1987.

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte
boundary. Otherwise, an error such as a SIGBUS may result.

res_nmkquery(3RESOLV)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

714 man pages section 3: Library Functions • Last Revised 1 Feb 2001

resolver, res_ninit, fp_resstat, res_npquery, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

void res_npquery(const res_state statp, const u_char *msg, int
msglen, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int
type, u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
*domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
*answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg, int msglen,
ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
**dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

res_npquery(3RESOLV)

NAME

BIND 8.2.2
Interfaces

Deprecated
Interfaces

Introduction to Library Functions 715

int res_initvoid););

int res_query(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_mkquery(int op, const char *dname, int class, int type, const
char *data, int datalen, struct rrec *newrr, u_char *buf, int
buflen);

int res_send(const u_char *msg, int msglen, u_char *answer, int
anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply
messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions.
Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(),
res_send(), and herror() are deprecated. They are supplied for backwards
compatability. They use global configuration and state information that is kept in the
structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first
call to res_ninit() or res_init() and can be ignored. Options stored in
statp->options or _res.options are defined in <resolv.h>. They are stored as
a simple bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default
domain name are initialized, that is, res_init() or
res_ninit() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() will continue until it finds an
authoritative answer or finds an error. Currently this
option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open
between queries. This is a useful option for programs
that regularly do many queries. The normal mode used
should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

res_npquery(3RESOLV)

DESCRIPTION

716 man pages section 3: Library Functions • Last Revised 1 Feb 2001

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. res_send() and res_nsend() do not do
iterative queries and expect the name server to handle
recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append
the default domain name to single-component names,
that is, names that do not contain a dot. This option is
enabled by default.

RES_DNSRCH If this option is set, res_search() and
res_nsearch() search for host names in the current
domain and in parent domains. See hostname(1). This
option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by
default.

RES_NOALIASES This option turns off the user level aliasing feature
controlled by the HOSTALIASES environment variable.
Network daemons should set this option.

RES_ROTATE This option causes res_nsend() and res_send() to
rotate the list of nameservers in
statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the
message unchanged after TSIG verification. Otherwise
the TSIG record would be removed and the header
would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is
present, to get the default domain name, search list and the Internet address of the
local name server(s). See resolv.conf(4). If no server is configured, res_init() or
res_ninit() will try to obtain name resolution services from the host on which it is
running. The current domain name is defined by domainname(1M), or by the
hostname if it is not specified in the configuration file. Use the environment variable
LOCALDOMAIN to override the domain name. This environment variable may contain
several blank-separated tokens if you wish to override the search list on a per-process
basis. This is similar to the search command in the configuration file. You can set the
RES_OPTIONS environment variable to override certain internal resolver options. You
can otherwise set them by changing fields in the statp /_res structure.
Alternatively, they are inherited from the configuration file’s options command. See
resolv.conf(4) for information regarding the syntax of the RES_OPTIONS
environment variable. Initialization normally occurs on the first call to one of the other
resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server
query mechanism. They construct a query, send it to the local server, await a response,
and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply

res_npquery(3RESOLV)

res_ninit, res_init

res_nquery,
res_query

Introduction to Library Functions 717

message is left in the answer buffer with length anslen supplied by the caller.
res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a
response, just like like res_nquery() and res_query(). In addition, they
implement the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. They return the length of the first successful reply which is
stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The
res_nmkquery() and res_mkquery() functions construct a standard query
message and place it in buf. The routine returns the size of the query, or -1 if the query
is larger than buflen. The query type op is usually QUERY, but can be any of the query
types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a
preformatted query that returns an answer. The routine calls res_ninit() or
res_init(). If RES_INIT is not set, the routine sends the query to the local name
server and handles timeouts and retries. Additionally, the res_nsendsigned() uses
TSIG signatures to add authentication to the query and verify the response. In this
case, only one name server will be contacted. The routines return the length of the
reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query
may be larger still], so it is recommended that you supply a buf larger than the answer
returned by the previous query. answer must be large enough to receive a maximum
UDP response from the server or parts of the answer will be silently discarded. The
default maximum UDP response size is 512 bytes.

The res_npquery() function prints out the query and any answer in msg on fp.

The fp_resstat() function prints out the active flag bits in statp->options preceded
by the text ";; res options:" on file.

res_npquery(3RESOLV)

res_nsearch,
res_search

res_nmkquery,
res_mkquery

res_nsend,
res_send,

res_nsendsigned

res_npquery

fp_resstat

718 man pages section 3: Library Functions • Last Revised 1 Feb 2001

The res_hostalias() function looks up name in the file referred to by the
HOSTALIASES environment variable and returns the fully qualified host name. If name
is not found or an error occurs, NULL is returned. res_hostalias() stores the result
in buf.

The res_nclose() function closes any open files referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. dn_comp() returns the size of the compressed name, or −1 if there were
errors. length is the size of the array pointed to by comp_dn.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in
the current message. The first pointer must point to the beginning of the message. The
list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted
into the message by dn_comp() as the name is compressed. If dnptrs is NULL, names
are not compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name. The compressed name is contained in a query or reply message. msg is
a pointer to the beginning of that message. The uncompressed name is placed in the
buffer indicated by exp_dn, which is of size length.dn_expand() returns the size of the
compressed name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are
set whenever an error occurs during a resolver operation. The following definitions
are given in <netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the
string parameters, the constant string ": ", and a message corresponding to the value
of h_errno.

The hstrerror() function returns a string, which is the message text that
corresponds to the value of the err parameter.

/etc/resolv.conf Resolver configuration file

See attributes(5) for descriptions of the following attributes:

res_npquery(3RESOLV)

res_hostalias

res_nclose

dn_comp

dn_expand

hstrerror, herror

FILES

ATTRIBUTES

Introduction to Library Functions 719

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard BIND 8.2.2

MT-Level Unsafe for Deprecated Interfaces; MT-Safe for
all others.

If the query is sent to a name server on a non-trusted host, then the functions
res_nsend(), res_send(), res_nsearch(), and res_search() can
communicate with the name server if its host’s default sensitivity label matches the
sensitivity label of the process issuing the call. If the calling process is run with the
PRIV_NET_UPGRADE_SL, PRIV_NET_DOWNGRADE_SL, and PRIV_NET_MAC_READ
privileges, then the functions res_nsend(), res_send(), res_nsearch(), and
res_search() can communicate with the name server regardless of the sensitivity
label of the non-trusted host where the name server resides.

in.named(1M), resolv.conf(4)

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), attributes(5)

Lottor, M., Domain Administrators Operators Guide, RFC 1033, SRI International, Menlo
Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information
Center, SRI International, Menlo Park, Calif., January 1986. Stahl, M., Domain
Administrators Guide, RFC 1032, SRI International, Menlo Park, Calif., November 1987.

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte
boundary. Otherwise, an error such as a SIGBUS may result.

res_npquery(3RESOLV)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

720 man pages section 3: Library Functions • Last Revised 1 Feb 2001

resolver, res_ninit, fp_resstat, res_npquery, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

void res_npquery(const res_state statp, const u_char *msg, int
msglen, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int
type, u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
*domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
*answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg, int msglen,
ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
**dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

res_nquery(3RESOLV)

NAME

BIND 8.2.2
Interfaces

Deprecated
Interfaces

Introduction to Library Functions 721

int res_initvoid););

int res_query(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_mkquery(int op, const char *dname, int class, int type, const
char *data, int datalen, struct rrec *newrr, u_char *buf, int
buflen);

int res_send(const u_char *msg, int msglen, u_char *answer, int
anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply
messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions.
Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(),
res_send(), and herror() are deprecated. They are supplied for backwards
compatability. They use global configuration and state information that is kept in the
structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first
call to res_ninit() or res_init() and can be ignored. Options stored in
statp->options or _res.options are defined in <resolv.h>. They are stored as
a simple bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default
domain name are initialized, that is, res_init() or
res_ninit() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() will continue until it finds an
authoritative answer or finds an error. Currently this
option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open
between queries. This is a useful option for programs
that regularly do many queries. The normal mode used
should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

res_nquery(3RESOLV)

DESCRIPTION

722 man pages section 3: Library Functions • Last Revised 1 Feb 2001

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. res_send() and res_nsend() do not do
iterative queries and expect the name server to handle
recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append
the default domain name to single-component names,
that is, names that do not contain a dot. This option is
enabled by default.

RES_DNSRCH If this option is set, res_search() and
res_nsearch() search for host names in the current
domain and in parent domains. See hostname(1). This
option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by
default.

RES_NOALIASES This option turns off the user level aliasing feature
controlled by the HOSTALIASES environment variable.
Network daemons should set this option.

RES_ROTATE This option causes res_nsend() and res_send() to
rotate the list of nameservers in
statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the
message unchanged after TSIG verification. Otherwise
the TSIG record would be removed and the header
would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is
present, to get the default domain name, search list and the Internet address of the
local name server(s). See resolv.conf(4). If no server is configured, res_init() or
res_ninit() will try to obtain name resolution services from the host on which it is
running. The current domain name is defined by domainname(1M), or by the
hostname if it is not specified in the configuration file. Use the environment variable
LOCALDOMAIN to override the domain name. This environment variable may contain
several blank-separated tokens if you wish to override the search list on a per-process
basis. This is similar to the search command in the configuration file. You can set the
RES_OPTIONS environment variable to override certain internal resolver options. You
can otherwise set them by changing fields in the statp /_res structure.
Alternatively, they are inherited from the configuration file’s options command. See
resolv.conf(4) for information regarding the syntax of the RES_OPTIONS
environment variable. Initialization normally occurs on the first call to one of the other
resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server
query mechanism. They construct a query, send it to the local server, await a response,
and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply

res_nquery(3RESOLV)

res_ninit, res_init

res_nquery,
res_query

Introduction to Library Functions 723

message is left in the answer buffer with length anslen supplied by the caller.
res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a
response, just like like res_nquery() and res_query(). In addition, they
implement the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. They return the length of the first successful reply which is
stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The
res_nmkquery() and res_mkquery() functions construct a standard query
message and place it in buf. The routine returns the size of the query, or -1 if the query
is larger than buflen. The query type op is usually QUERY, but can be any of the query
types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a
preformatted query that returns an answer. The routine calls res_ninit() or
res_init(). If RES_INIT is not set, the routine sends the query to the local name
server and handles timeouts and retries. Additionally, the res_nsendsigned() uses
TSIG signatures to add authentication to the query and verify the response. In this
case, only one name server will be contacted. The routines return the length of the
reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query
may be larger still], so it is recommended that you supply a buf larger than the answer
returned by the previous query. answer must be large enough to receive a maximum
UDP response from the server or parts of the answer will be silently discarded. The
default maximum UDP response size is 512 bytes.

The res_npquery() function prints out the query and any answer in msg on fp.

The fp_resstat() function prints out the active flag bits in statp->options preceded
by the text ";; res options:" on file.

res_nquery(3RESOLV)

res_nsearch,
res_search

res_nmkquery,
res_mkquery

res_nsend,
res_send,

res_nsendsigned

res_npquery

fp_resstat

724 man pages section 3: Library Functions • Last Revised 1 Feb 2001

The res_hostalias() function looks up name in the file referred to by the
HOSTALIASES environment variable and returns the fully qualified host name. If name
is not found or an error occurs, NULL is returned. res_hostalias() stores the result
in buf.

The res_nclose() function closes any open files referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. dn_comp() returns the size of the compressed name, or −1 if there were
errors. length is the size of the array pointed to by comp_dn.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in
the current message. The first pointer must point to the beginning of the message. The
list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted
into the message by dn_comp() as the name is compressed. If dnptrs is NULL, names
are not compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name. The compressed name is contained in a query or reply message. msg is
a pointer to the beginning of that message. The uncompressed name is placed in the
buffer indicated by exp_dn, which is of size length.dn_expand() returns the size of the
compressed name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are
set whenever an error occurs during a resolver operation. The following definitions
are given in <netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the
string parameters, the constant string ": ", and a message corresponding to the value
of h_errno.

The hstrerror() function returns a string, which is the message text that
corresponds to the value of the err parameter.

/etc/resolv.conf Resolver configuration file

See attributes(5) for descriptions of the following attributes:

res_nquery(3RESOLV)

res_hostalias

res_nclose

dn_comp

dn_expand

hstrerror, herror

FILES

ATTRIBUTES

Introduction to Library Functions 725

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard BIND 8.2.2

MT-Level Unsafe for Deprecated Interfaces; MT-Safe for
all others.

If the query is sent to a name server on a non-trusted host, then the functions
res_nsend(), res_send(), res_nsearch(), and res_search() can
communicate with the name server if its host’s default sensitivity label matches the
sensitivity label of the process issuing the call. If the calling process is run with the
PRIV_NET_UPGRADE_SL, PRIV_NET_DOWNGRADE_SL, and PRIV_NET_MAC_READ
privileges, then the functions res_nsend(), res_send(), res_nsearch(), and
res_search() can communicate with the name server regardless of the sensitivity
label of the non-trusted host where the name server resides.

in.named(1M), resolv.conf(4)

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), attributes(5)

Lottor, M., Domain Administrators Operators Guide, RFC 1033, SRI International, Menlo
Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information
Center, SRI International, Menlo Park, Calif., January 1986. Stahl, M., Domain
Administrators Guide, RFC 1032, SRI International, Menlo Park, Calif., November 1987.

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte
boundary. Otherwise, an error such as a SIGBUS may result.

res_nquery(3RESOLV)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

726 man pages section 3: Library Functions • Last Revised 1 Feb 2001

resolver, res_ninit, fp_resstat, res_npquery, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

void res_npquery(const res_state statp, const u_char *msg, int
msglen, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int
type, u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
*domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
*answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg, int msglen,
ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
**dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

res_nquerydomain(3RESOLV)

NAME

BIND 8.2.2
Interfaces

Deprecated
Interfaces

Introduction to Library Functions 727

int res_initvoid););

int res_query(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_mkquery(int op, const char *dname, int class, int type, const
char *data, int datalen, struct rrec *newrr, u_char *buf, int
buflen);

int res_send(const u_char *msg, int msglen, u_char *answer, int
anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply
messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions.
Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(),
res_send(), and herror() are deprecated. They are supplied for backwards
compatability. They use global configuration and state information that is kept in the
structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first
call to res_ninit() or res_init() and can be ignored. Options stored in
statp->options or _res.options are defined in <resolv.h>. They are stored as
a simple bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default
domain name are initialized, that is, res_init() or
res_ninit() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() will continue until it finds an
authoritative answer or finds an error. Currently this
option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open
between queries. This is a useful option for programs
that regularly do many queries. The normal mode used
should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

res_nquerydomain(3RESOLV)

DESCRIPTION

728 man pages section 3: Library Functions • Last Revised 1 Feb 2001

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. res_send() and res_nsend() do not do
iterative queries and expect the name server to handle
recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append
the default domain name to single-component names,
that is, names that do not contain a dot. This option is
enabled by default.

RES_DNSRCH If this option is set, res_search() and
res_nsearch() search for host names in the current
domain and in parent domains. See hostname(1). This
option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by
default.

RES_NOALIASES This option turns off the user level aliasing feature
controlled by the HOSTALIASES environment variable.
Network daemons should set this option.

RES_ROTATE This option causes res_nsend() and res_send() to
rotate the list of nameservers in
statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the
message unchanged after TSIG verification. Otherwise
the TSIG record would be removed and the header
would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is
present, to get the default domain name, search list and the Internet address of the
local name server(s). See resolv.conf(4). If no server is configured, res_init() or
res_ninit() will try to obtain name resolution services from the host on which it is
running. The current domain name is defined by domainname(1M), or by the
hostname if it is not specified in the configuration file. Use the environment variable
LOCALDOMAIN to override the domain name. This environment variable may contain
several blank-separated tokens if you wish to override the search list on a per-process
basis. This is similar to the search command in the configuration file. You can set the
RES_OPTIONS environment variable to override certain internal resolver options. You
can otherwise set them by changing fields in the statp /_res structure.
Alternatively, they are inherited from the configuration file’s options command. See
resolv.conf(4) for information regarding the syntax of the RES_OPTIONS
environment variable. Initialization normally occurs on the first call to one of the other
resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server
query mechanism. They construct a query, send it to the local server, await a response,
and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply

res_nquerydomain(3RESOLV)

res_ninit, res_init

res_nquery,
res_query

Introduction to Library Functions 729

message is left in the answer buffer with length anslen supplied by the caller.
res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a
response, just like like res_nquery() and res_query(). In addition, they
implement the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. They return the length of the first successful reply which is
stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The
res_nmkquery() and res_mkquery() functions construct a standard query
message and place it in buf. The routine returns the size of the query, or -1 if the query
is larger than buflen. The query type op is usually QUERY, but can be any of the query
types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a
preformatted query that returns an answer. The routine calls res_ninit() or
res_init(). If RES_INIT is not set, the routine sends the query to the local name
server and handles timeouts and retries. Additionally, the res_nsendsigned() uses
TSIG signatures to add authentication to the query and verify the response. In this
case, only one name server will be contacted. The routines return the length of the
reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query
may be larger still], so it is recommended that you supply a buf larger than the answer
returned by the previous query. answer must be large enough to receive a maximum
UDP response from the server or parts of the answer will be silently discarded. The
default maximum UDP response size is 512 bytes.

The res_npquery() function prints out the query and any answer in msg on fp.

The fp_resstat() function prints out the active flag bits in statp->options preceded
by the text ";; res options:" on file.

res_nquerydomain(3RESOLV)

res_nsearch,
res_search

res_nmkquery,
res_mkquery

res_nsend,
res_send,

res_nsendsigned

res_npquery

fp_resstat

730 man pages section 3: Library Functions • Last Revised 1 Feb 2001

The res_hostalias() function looks up name in the file referred to by the
HOSTALIASES environment variable and returns the fully qualified host name. If name
is not found or an error occurs, NULL is returned. res_hostalias() stores the result
in buf.

The res_nclose() function closes any open files referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. dn_comp() returns the size of the compressed name, or −1 if there were
errors. length is the size of the array pointed to by comp_dn.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in
the current message. The first pointer must point to the beginning of the message. The
list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted
into the message by dn_comp() as the name is compressed. If dnptrs is NULL, names
are not compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name. The compressed name is contained in a query or reply message. msg is
a pointer to the beginning of that message. The uncompressed name is placed in the
buffer indicated by exp_dn, which is of size length.dn_expand() returns the size of the
compressed name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are
set whenever an error occurs during a resolver operation. The following definitions
are given in <netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the
string parameters, the constant string ": ", and a message corresponding to the value
of h_errno.

The hstrerror() function returns a string, which is the message text that
corresponds to the value of the err parameter.

/etc/resolv.conf Resolver configuration file

See attributes(5) for descriptions of the following attributes:

res_nquerydomain(3RESOLV)

res_hostalias

res_nclose

dn_comp

dn_expand

hstrerror, herror

FILES

ATTRIBUTES

Introduction to Library Functions 731

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard BIND 8.2.2

MT-Level Unsafe for Deprecated Interfaces; MT-Safe for
all others.

If the query is sent to a name server on a non-trusted host, then the functions
res_nsend(), res_send(), res_nsearch(), and res_search() can
communicate with the name server if its host’s default sensitivity label matches the
sensitivity label of the process issuing the call. If the calling process is run with the
PRIV_NET_UPGRADE_SL, PRIV_NET_DOWNGRADE_SL, and PRIV_NET_MAC_READ
privileges, then the functions res_nsend(), res_send(), res_nsearch(), and
res_search() can communicate with the name server regardless of the sensitivity
label of the non-trusted host where the name server resides.

in.named(1M), resolv.conf(4)

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), attributes(5)

Lottor, M., Domain Administrators Operators Guide, RFC 1033, SRI International, Menlo
Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information
Center, SRI International, Menlo Park, Calif., January 1986. Stahl, M., Domain
Administrators Guide, RFC 1032, SRI International, Menlo Park, Calif., November 1987.

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte
boundary. Otherwise, an error such as a SIGBUS may result.

res_nquerydomain(3RESOLV)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

732 man pages section 3: Library Functions • Last Revised 1 Feb 2001

resolver, res_ninit, fp_resstat, res_npquery, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

void res_npquery(const res_state statp, const u_char *msg, int
msglen, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int
type, u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
*domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
*answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg, int msglen,
ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
**dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

res_nsearch(3RESOLV)

NAME

BIND 8.2.2
Interfaces

Deprecated
Interfaces

Introduction to Library Functions 733

int res_initvoid););

int res_query(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_mkquery(int op, const char *dname, int class, int type, const
char *data, int datalen, struct rrec *newrr, u_char *buf, int
buflen);

int res_send(const u_char *msg, int msglen, u_char *answer, int
anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply
messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions.
Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(),
res_send(), and herror() are deprecated. They are supplied for backwards
compatability. They use global configuration and state information that is kept in the
structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first
call to res_ninit() or res_init() and can be ignored. Options stored in
statp->options or _res.options are defined in <resolv.h>. They are stored as
a simple bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default
domain name are initialized, that is, res_init() or
res_ninit() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() will continue until it finds an
authoritative answer or finds an error. Currently this
option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open
between queries. This is a useful option for programs
that regularly do many queries. The normal mode used
should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

res_nsearch(3RESOLV)

DESCRIPTION

734 man pages section 3: Library Functions • Last Revised 1 Feb 2001

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. res_send() and res_nsend() do not do
iterative queries and expect the name server to handle
recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append
the default domain name to single-component names,
that is, names that do not contain a dot. This option is
enabled by default.

RES_DNSRCH If this option is set, res_search() and
res_nsearch() search for host names in the current
domain and in parent domains. See hostname(1). This
option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by
default.

RES_NOALIASES This option turns off the user level aliasing feature
controlled by the HOSTALIASES environment variable.
Network daemons should set this option.

RES_ROTATE This option causes res_nsend() and res_send() to
rotate the list of nameservers in
statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the
message unchanged after TSIG verification. Otherwise
the TSIG record would be removed and the header
would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is
present, to get the default domain name, search list and the Internet address of the
local name server(s). See resolv.conf(4). If no server is configured, res_init() or
res_ninit() will try to obtain name resolution services from the host on which it is
running. The current domain name is defined by domainname(1M), or by the
hostname if it is not specified in the configuration file. Use the environment variable
LOCALDOMAIN to override the domain name. This environment variable may contain
several blank-separated tokens if you wish to override the search list on a per-process
basis. This is similar to the search command in the configuration file. You can set the
RES_OPTIONS environment variable to override certain internal resolver options. You
can otherwise set them by changing fields in the statp /_res structure.
Alternatively, they are inherited from the configuration file’s options command. See
resolv.conf(4) for information regarding the syntax of the RES_OPTIONS
environment variable. Initialization normally occurs on the first call to one of the other
resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server
query mechanism. They construct a query, send it to the local server, await a response,
and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply

res_nsearch(3RESOLV)

res_ninit, res_init

res_nquery,
res_query

Introduction to Library Functions 735

message is left in the answer buffer with length anslen supplied by the caller.
res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a
response, just like like res_nquery() and res_query(). In addition, they
implement the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. They return the length of the first successful reply which is
stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The
res_nmkquery() and res_mkquery() functions construct a standard query
message and place it in buf. The routine returns the size of the query, or -1 if the query
is larger than buflen. The query type op is usually QUERY, but can be any of the query
types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a
preformatted query that returns an answer. The routine calls res_ninit() or
res_init(). If RES_INIT is not set, the routine sends the query to the local name
server and handles timeouts and retries. Additionally, the res_nsendsigned() uses
TSIG signatures to add authentication to the query and verify the response. In this
case, only one name server will be contacted. The routines return the length of the
reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query
may be larger still], so it is recommended that you supply a buf larger than the answer
returned by the previous query. answer must be large enough to receive a maximum
UDP response from the server or parts of the answer will be silently discarded. The
default maximum UDP response size is 512 bytes.

The res_npquery() function prints out the query and any answer in msg on fp.

The fp_resstat() function prints out the active flag bits in statp->options preceded
by the text ";; res options:" on file.

res_nsearch(3RESOLV)

res_nsearch,
res_search

res_nmkquery,
res_mkquery

res_nsend,
res_send,

res_nsendsigned

res_npquery

fp_resstat

736 man pages section 3: Library Functions • Last Revised 1 Feb 2001

The res_hostalias() function looks up name in the file referred to by the
HOSTALIASES environment variable and returns the fully qualified host name. If name
is not found or an error occurs, NULL is returned. res_hostalias() stores the result
in buf.

The res_nclose() function closes any open files referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. dn_comp() returns the size of the compressed name, or −1 if there were
errors. length is the size of the array pointed to by comp_dn.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in
the current message. The first pointer must point to the beginning of the message. The
list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted
into the message by dn_comp() as the name is compressed. If dnptrs is NULL, names
are not compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name. The compressed name is contained in a query or reply message. msg is
a pointer to the beginning of that message. The uncompressed name is placed in the
buffer indicated by exp_dn, which is of size length.dn_expand() returns the size of the
compressed name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are
set whenever an error occurs during a resolver operation. The following definitions
are given in <netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the
string parameters, the constant string ": ", and a message corresponding to the value
of h_errno.

The hstrerror() function returns a string, which is the message text that
corresponds to the value of the err parameter.

/etc/resolv.conf Resolver configuration file

See attributes(5) for descriptions of the following attributes:

res_nsearch(3RESOLV)

res_hostalias

res_nclose

dn_comp

dn_expand

hstrerror, herror

FILES

ATTRIBUTES

Introduction to Library Functions 737

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard BIND 8.2.2

MT-Level Unsafe for Deprecated Interfaces; MT-Safe for
all others.

If the query is sent to a name server on a non-trusted host, then the functions
res_nsend(), res_send(), res_nsearch(), and res_search() can
communicate with the name server if its host’s default sensitivity label matches the
sensitivity label of the process issuing the call. If the calling process is run with the
PRIV_NET_UPGRADE_SL, PRIV_NET_DOWNGRADE_SL, and PRIV_NET_MAC_READ
privileges, then the functions res_nsend(), res_send(), res_nsearch(), and
res_search() can communicate with the name server regardless of the sensitivity
label of the non-trusted host where the name server resides.

in.named(1M), resolv.conf(4)

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), attributes(5)

Lottor, M., Domain Administrators Operators Guide, RFC 1033, SRI International, Menlo
Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information
Center, SRI International, Menlo Park, Calif., January 1986. Stahl, M., Domain
Administrators Guide, RFC 1032, SRI International, Menlo Park, Calif., November 1987.

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte
boundary. Otherwise, an error such as a SIGBUS may result.

res_nsearch(3RESOLV)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

738 man pages section 3: Library Functions • Last Revised 1 Feb 2001

resolver, res_ninit, fp_resstat, res_npquery, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

void res_npquery(const res_state statp, const u_char *msg, int
msglen, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int
type, u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
*domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
*answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg, int msglen,
ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
**dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

res_nsend(3RESOLV)

NAME

BIND 8.2.2
Interfaces

Deprecated
Interfaces

Introduction to Library Functions 739

int res_initvoid););

int res_query(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_mkquery(int op, const char *dname, int class, int type, const
char *data, int datalen, struct rrec *newrr, u_char *buf, int
buflen);

int res_send(const u_char *msg, int msglen, u_char *answer, int
anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply
messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions.
Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(),
res_send(), and herror() are deprecated. They are supplied for backwards
compatability. They use global configuration and state information that is kept in the
structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first
call to res_ninit() or res_init() and can be ignored. Options stored in
statp->options or _res.options are defined in <resolv.h>. They are stored as
a simple bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default
domain name are initialized, that is, res_init() or
res_ninit() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() will continue until it finds an
authoritative answer or finds an error. Currently this
option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open
between queries. This is a useful option for programs
that regularly do many queries. The normal mode used
should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

res_nsend(3RESOLV)

DESCRIPTION

740 man pages section 3: Library Functions • Last Revised 1 Feb 2001

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. res_send() and res_nsend() do not do
iterative queries and expect the name server to handle
recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append
the default domain name to single-component names,
that is, names that do not contain a dot. This option is
enabled by default.

RES_DNSRCH If this option is set, res_search() and
res_nsearch() search for host names in the current
domain and in parent domains. See hostname(1). This
option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by
default.

RES_NOALIASES This option turns off the user level aliasing feature
controlled by the HOSTALIASES environment variable.
Network daemons should set this option.

RES_ROTATE This option causes res_nsend() and res_send() to
rotate the list of nameservers in
statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the
message unchanged after TSIG verification. Otherwise
the TSIG record would be removed and the header
would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is
present, to get the default domain name, search list and the Internet address of the
local name server(s). See resolv.conf(4). If no server is configured, res_init() or
res_ninit() will try to obtain name resolution services from the host on which it is
running. The current domain name is defined by domainname(1M), or by the
hostname if it is not specified in the configuration file. Use the environment variable
LOCALDOMAIN to override the domain name. This environment variable may contain
several blank-separated tokens if you wish to override the search list on a per-process
basis. This is similar to the search command in the configuration file. You can set the
RES_OPTIONS environment variable to override certain internal resolver options. You
can otherwise set them by changing fields in the statp /_res structure.
Alternatively, they are inherited from the configuration file’s options command. See
resolv.conf(4) for information regarding the syntax of the RES_OPTIONS
environment variable. Initialization normally occurs on the first call to one of the other
resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server
query mechanism. They construct a query, send it to the local server, await a response,
and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply

res_nsend(3RESOLV)

res_ninit, res_init

res_nquery,
res_query

Introduction to Library Functions 741

message is left in the answer buffer with length anslen supplied by the caller.
res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a
response, just like like res_nquery() and res_query(). In addition, they
implement the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. They return the length of the first successful reply which is
stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The
res_nmkquery() and res_mkquery() functions construct a standard query
message and place it in buf. The routine returns the size of the query, or -1 if the query
is larger than buflen. The query type op is usually QUERY, but can be any of the query
types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a
preformatted query that returns an answer. The routine calls res_ninit() or
res_init(). If RES_INIT is not set, the routine sends the query to the local name
server and handles timeouts and retries. Additionally, the res_nsendsigned() uses
TSIG signatures to add authentication to the query and verify the response. In this
case, only one name server will be contacted. The routines return the length of the
reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query
may be larger still], so it is recommended that you supply a buf larger than the answer
returned by the previous query. answer must be large enough to receive a maximum
UDP response from the server or parts of the answer will be silently discarded. The
default maximum UDP response size is 512 bytes.

The res_npquery() function prints out the query and any answer in msg on fp.

The fp_resstat() function prints out the active flag bits in statp->options preceded
by the text ";; res options:" on file.

res_nsend(3RESOLV)

res_nsearch,
res_search

res_nmkquery,
res_mkquery

res_nsend,
res_send,

res_nsendsigned

res_npquery

fp_resstat

742 man pages section 3: Library Functions • Last Revised 1 Feb 2001

The res_hostalias() function looks up name in the file referred to by the
HOSTALIASES environment variable and returns the fully qualified host name. If name
is not found or an error occurs, NULL is returned. res_hostalias() stores the result
in buf.

The res_nclose() function closes any open files referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. dn_comp() returns the size of the compressed name, or −1 if there were
errors. length is the size of the array pointed to by comp_dn.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in
the current message. The first pointer must point to the beginning of the message. The
list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted
into the message by dn_comp() as the name is compressed. If dnptrs is NULL, names
are not compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name. The compressed name is contained in a query or reply message. msg is
a pointer to the beginning of that message. The uncompressed name is placed in the
buffer indicated by exp_dn, which is of size length.dn_expand() returns the size of the
compressed name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are
set whenever an error occurs during a resolver operation. The following definitions
are given in <netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the
string parameters, the constant string ": ", and a message corresponding to the value
of h_errno.

The hstrerror() function returns a string, which is the message text that
corresponds to the value of the err parameter.

/etc/resolv.conf Resolver configuration file

See attributes(5) for descriptions of the following attributes:

res_nsend(3RESOLV)

res_hostalias

res_nclose

dn_comp

dn_expand

hstrerror, herror

FILES

ATTRIBUTES

Introduction to Library Functions 743

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard BIND 8.2.2

MT-Level Unsafe for Deprecated Interfaces; MT-Safe for
all others.

If the query is sent to a name server on a non-trusted host, then the functions
res_nsend(), res_send(), res_nsearch(), and res_search() can
communicate with the name server if its host’s default sensitivity label matches the
sensitivity label of the process issuing the call. If the calling process is run with the
PRIV_NET_UPGRADE_SL, PRIV_NET_DOWNGRADE_SL, and PRIV_NET_MAC_READ
privileges, then the functions res_nsend(), res_send(), res_nsearch(), and
res_search() can communicate with the name server regardless of the sensitivity
label of the non-trusted host where the name server resides.

in.named(1M), resolv.conf(4)

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), attributes(5)

Lottor, M., Domain Administrators Operators Guide, RFC 1033, SRI International, Menlo
Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information
Center, SRI International, Menlo Park, Calif., January 1986. Stahl, M., Domain
Administrators Guide, RFC 1032, SRI International, Menlo Park, Calif., November 1987.

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte
boundary. Otherwise, an error such as a SIGBUS may result.

res_nsend(3RESOLV)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

744 man pages section 3: Library Functions • Last Revised 1 Feb 2001

resolver, res_ninit, fp_resstat, res_npquery, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

void res_npquery(const res_state statp, const u_char *msg, int
msglen, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int
type, u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
*domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
*answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg, int msglen,
ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
**dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

res_nsendsigned(3RESOLV)

NAME

BIND 8.2.2
Interfaces

Deprecated
Interfaces

Introduction to Library Functions 745

int res_initvoid););

int res_query(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_mkquery(int op, const char *dname, int class, int type, const
char *data, int datalen, struct rrec *newrr, u_char *buf, int
buflen);

int res_send(const u_char *msg, int msglen, u_char *answer, int
anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply
messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions.
Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(),
res_send(), and herror() are deprecated. They are supplied for backwards
compatability. They use global configuration and state information that is kept in the
structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first
call to res_ninit() or res_init() and can be ignored. Options stored in
statp->options or _res.options are defined in <resolv.h>. They are stored as
a simple bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default
domain name are initialized, that is, res_init() or
res_ninit() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() will continue until it finds an
authoritative answer or finds an error. Currently this
option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open
between queries. This is a useful option for programs
that regularly do many queries. The normal mode used
should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

res_nsendsigned(3RESOLV)

DESCRIPTION

746 man pages section 3: Library Functions • Last Revised 1 Feb 2001

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. res_send() and res_nsend() do not do
iterative queries and expect the name server to handle
recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append
the default domain name to single-component names,
that is, names that do not contain a dot. This option is
enabled by default.

RES_DNSRCH If this option is set, res_search() and
res_nsearch() search for host names in the current
domain and in parent domains. See hostname(1). This
option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by
default.

RES_NOALIASES This option turns off the user level aliasing feature
controlled by the HOSTALIASES environment variable.
Network daemons should set this option.

RES_ROTATE This option causes res_nsend() and res_send() to
rotate the list of nameservers in
statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the
message unchanged after TSIG verification. Otherwise
the TSIG record would be removed and the header
would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is
present, to get the default domain name, search list and the Internet address of the
local name server(s). See resolv.conf(4). If no server is configured, res_init() or
res_ninit() will try to obtain name resolution services from the host on which it is
running. The current domain name is defined by domainname(1M), or by the
hostname if it is not specified in the configuration file. Use the environment variable
LOCALDOMAIN to override the domain name. This environment variable may contain
several blank-separated tokens if you wish to override the search list on a per-process
basis. This is similar to the search command in the configuration file. You can set the
RES_OPTIONS environment variable to override certain internal resolver options. You
can otherwise set them by changing fields in the statp /_res structure.
Alternatively, they are inherited from the configuration file’s options command. See
resolv.conf(4) for information regarding the syntax of the RES_OPTIONS
environment variable. Initialization normally occurs on the first call to one of the other
resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server
query mechanism. They construct a query, send it to the local server, await a response,
and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply

res_nsendsigned(3RESOLV)

res_ninit, res_init

res_nquery,
res_query

Introduction to Library Functions 747

message is left in the answer buffer with length anslen supplied by the caller.
res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a
response, just like like res_nquery() and res_query(). In addition, they
implement the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. They return the length of the first successful reply which is
stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The
res_nmkquery() and res_mkquery() functions construct a standard query
message and place it in buf. The routine returns the size of the query, or -1 if the query
is larger than buflen. The query type op is usually QUERY, but can be any of the query
types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a
preformatted query that returns an answer. The routine calls res_ninit() or
res_init(). If RES_INIT is not set, the routine sends the query to the local name
server and handles timeouts and retries. Additionally, the res_nsendsigned() uses
TSIG signatures to add authentication to the query and verify the response. In this
case, only one name server will be contacted. The routines return the length of the
reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query
may be larger still], so it is recommended that you supply a buf larger than the answer
returned by the previous query. answer must be large enough to receive a maximum
UDP response from the server or parts of the answer will be silently discarded. The
default maximum UDP response size is 512 bytes.

The res_npquery() function prints out the query and any answer in msg on fp.

The fp_resstat() function prints out the active flag bits in statp->options preceded
by the text ";; res options:" on file.

res_nsendsigned(3RESOLV)

res_nsearch,
res_search

res_nmkquery,
res_mkquery

res_nsend,
res_send,

res_nsendsigned

res_npquery

fp_resstat

748 man pages section 3: Library Functions • Last Revised 1 Feb 2001

The res_hostalias() function looks up name in the file referred to by the
HOSTALIASES environment variable and returns the fully qualified host name. If name
is not found or an error occurs, NULL is returned. res_hostalias() stores the result
in buf.

The res_nclose() function closes any open files referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. dn_comp() returns the size of the compressed name, or −1 if there were
errors. length is the size of the array pointed to by comp_dn.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in
the current message. The first pointer must point to the beginning of the message. The
list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted
into the message by dn_comp() as the name is compressed. If dnptrs is NULL, names
are not compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name. The compressed name is contained in a query or reply message. msg is
a pointer to the beginning of that message. The uncompressed name is placed in the
buffer indicated by exp_dn, which is of size length.dn_expand() returns the size of the
compressed name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are
set whenever an error occurs during a resolver operation. The following definitions
are given in <netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the
string parameters, the constant string ": ", and a message corresponding to the value
of h_errno.

The hstrerror() function returns a string, which is the message text that
corresponds to the value of the err parameter.

/etc/resolv.conf Resolver configuration file

See attributes(5) for descriptions of the following attributes:

res_nsendsigned(3RESOLV)

res_hostalias

res_nclose

dn_comp

dn_expand

hstrerror, herror

FILES

ATTRIBUTES

Introduction to Library Functions 749

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard BIND 8.2.2

MT-Level Unsafe for Deprecated Interfaces; MT-Safe for
all others.

If the query is sent to a name server on a non-trusted host, then the functions
res_nsend(), res_send(), res_nsearch(), and res_search() can
communicate with the name server if its host’s default sensitivity label matches the
sensitivity label of the process issuing the call. If the calling process is run with the
PRIV_NET_UPGRADE_SL, PRIV_NET_DOWNGRADE_SL, and PRIV_NET_MAC_READ
privileges, then the functions res_nsend(), res_send(), res_nsearch(), and
res_search() can communicate with the name server regardless of the sensitivity
label of the non-trusted host where the name server resides.

in.named(1M), resolv.conf(4)

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), attributes(5)

Lottor, M., Domain Administrators Operators Guide, RFC 1033, SRI International, Menlo
Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information
Center, SRI International, Menlo Park, Calif., January 1986. Stahl, M., Domain
Administrators Guide, RFC 1032, SRI International, Menlo Park, Calif., November 1987.

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte
boundary. Otherwise, an error such as a SIGBUS may result.

res_nsendsigned(3RESOLV)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

750 man pages section 3: Library Functions • Last Revised 1 Feb 2001

resolver, res_ninit, fp_resstat, res_npquery, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

void res_npquery(const res_state statp, const u_char *msg, int
msglen, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int
type, u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
*domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
*answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg, int msglen,
ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
**dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

resolver(3RESOLV)

NAME

BIND 8.2.2
Interfaces

Deprecated
Interfaces

Introduction to Library Functions 751

int res_initvoid););

int res_query(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_mkquery(int op, const char *dname, int class, int type, const
char *data, int datalen, struct rrec *newrr, u_char *buf, int
buflen);

int res_send(const u_char *msg, int msglen, u_char *answer, int
anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply
messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions.
Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(),
res_send(), and herror() are deprecated. They are supplied for backwards
compatability. They use global configuration and state information that is kept in the
structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first
call to res_ninit() or res_init() and can be ignored. Options stored in
statp->options or _res.options are defined in <resolv.h>. They are stored as
a simple bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default
domain name are initialized, that is, res_init() or
res_ninit() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() will continue until it finds an
authoritative answer or finds an error. Currently this
option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open
between queries. This is a useful option for programs
that regularly do many queries. The normal mode used
should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

resolver(3RESOLV)

DESCRIPTION

752 man pages section 3: Library Functions • Last Revised 1 Feb 2001

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. res_send() and res_nsend() do not do
iterative queries and expect the name server to handle
recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append
the default domain name to single-component names,
that is, names that do not contain a dot. This option is
enabled by default.

RES_DNSRCH If this option is set, res_search() and
res_nsearch() search for host names in the current
domain and in parent domains. See hostname(1). This
option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by
default.

RES_NOALIASES This option turns off the user level aliasing feature
controlled by the HOSTALIASES environment variable.
Network daemons should set this option.

RES_ROTATE This option causes res_nsend() and res_send() to
rotate the list of nameservers in
statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the
message unchanged after TSIG verification. Otherwise
the TSIG record would be removed and the header
would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is
present, to get the default domain name, search list and the Internet address of the
local name server(s). See resolv.conf(4). If no server is configured, res_init() or
res_ninit() will try to obtain name resolution services from the host on which it is
running. The current domain name is defined by domainname(1M), or by the
hostname if it is not specified in the configuration file. Use the environment variable
LOCALDOMAIN to override the domain name. This environment variable may contain
several blank-separated tokens if you wish to override the search list on a per-process
basis. This is similar to the search command in the configuration file. You can set the
RES_OPTIONS environment variable to override certain internal resolver options. You
can otherwise set them by changing fields in the statp /_res structure.
Alternatively, they are inherited from the configuration file’s options command. See
resolv.conf(4) for information regarding the syntax of the RES_OPTIONS
environment variable. Initialization normally occurs on the first call to one of the other
resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server
query mechanism. They construct a query, send it to the local server, await a response,
and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply

resolver(3RESOLV)

res_ninit, res_init

res_nquery,
res_query

Introduction to Library Functions 753

message is left in the answer buffer with length anslen supplied by the caller.
res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a
response, just like like res_nquery() and res_query(). In addition, they
implement the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. They return the length of the first successful reply which is
stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The
res_nmkquery() and res_mkquery() functions construct a standard query
message and place it in buf. The routine returns the size of the query, or -1 if the query
is larger than buflen. The query type op is usually QUERY, but can be any of the query
types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a
preformatted query that returns an answer. The routine calls res_ninit() or
res_init(). If RES_INIT is not set, the routine sends the query to the local name
server and handles timeouts and retries. Additionally, the res_nsendsigned() uses
TSIG signatures to add authentication to the query and verify the response. In this
case, only one name server will be contacted. The routines return the length of the
reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query
may be larger still], so it is recommended that you supply a buf larger than the answer
returned by the previous query. answer must be large enough to receive a maximum
UDP response from the server or parts of the answer will be silently discarded. The
default maximum UDP response size is 512 bytes.

The res_npquery() function prints out the query and any answer in msg on fp.

The fp_resstat() function prints out the active flag bits in statp->options preceded
by the text ";; res options:" on file.

resolver(3RESOLV)

res_nsearch,
res_search

res_nmkquery,
res_mkquery

res_nsend,
res_send,

res_nsendsigned

res_npquery

fp_resstat

754 man pages section 3: Library Functions • Last Revised 1 Feb 2001

The res_hostalias() function looks up name in the file referred to by the
HOSTALIASES environment variable and returns the fully qualified host name. If name
is not found or an error occurs, NULL is returned. res_hostalias() stores the result
in buf.

The res_nclose() function closes any open files referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. dn_comp() returns the size of the compressed name, or −1 if there were
errors. length is the size of the array pointed to by comp_dn.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in
the current message. The first pointer must point to the beginning of the message. The
list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted
into the message by dn_comp() as the name is compressed. If dnptrs is NULL, names
are not compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name. The compressed name is contained in a query or reply message. msg is
a pointer to the beginning of that message. The uncompressed name is placed in the
buffer indicated by exp_dn, which is of size length.dn_expand() returns the size of the
compressed name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are
set whenever an error occurs during a resolver operation. The following definitions
are given in <netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the
string parameters, the constant string ": ", and a message corresponding to the value
of h_errno.

The hstrerror() function returns a string, which is the message text that
corresponds to the value of the err parameter.

/etc/resolv.conf Resolver configuration file

See attributes(5) for descriptions of the following attributes:

resolver(3RESOLV)

res_hostalias

res_nclose

dn_comp

dn_expand

hstrerror, herror

FILES

ATTRIBUTES

Introduction to Library Functions 755

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard BIND 8.2.2

MT-Level Unsafe for Deprecated Interfaces; MT-Safe for
all others.

If the query is sent to a name server on a non-trusted host, then the functions
res_nsend(), res_send(), res_nsearch(), and res_search() can
communicate with the name server if its host’s default sensitivity label matches the
sensitivity label of the process issuing the call. If the calling process is run with the
PRIV_NET_UPGRADE_SL, PRIV_NET_DOWNGRADE_SL, and PRIV_NET_MAC_READ
privileges, then the functions res_nsend(), res_send(), res_nsearch(), and
res_search() can communicate with the name server regardless of the sensitivity
label of the non-trusted host where the name server resides.

in.named(1M), resolv.conf(4)

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), attributes(5)

Lottor, M., Domain Administrators Operators Guide, RFC 1033, SRI International, Menlo
Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information
Center, SRI International, Menlo Park, Calif., January 1986. Stahl, M., Domain
Administrators Guide, RFC 1032, SRI International, Menlo Park, Calif., November 1987.

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte
boundary. Otherwise, an error such as a SIGBUS may result.

resolver(3RESOLV)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

756 man pages section 3: Library Functions • Last Revised 1 Feb 2001

resolver, res_ninit, fp_resstat, res_npquery, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

void res_npquery(const res_state statp, const u_char *msg, int
msglen, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int
type, u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
*domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
*answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg, int msglen,
ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
**dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

res_query(3RESOLV)

NAME

BIND 8.2.2
Interfaces

Deprecated
Interfaces

Introduction to Library Functions 757

int res_initvoid););

int res_query(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_mkquery(int op, const char *dname, int class, int type, const
char *data, int datalen, struct rrec *newrr, u_char *buf, int
buflen);

int res_send(const u_char *msg, int msglen, u_char *answer, int
anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply
messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions.
Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(),
res_send(), and herror() are deprecated. They are supplied for backwards
compatability. They use global configuration and state information that is kept in the
structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first
call to res_ninit() or res_init() and can be ignored. Options stored in
statp->options or _res.options are defined in <resolv.h>. They are stored as
a simple bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default
domain name are initialized, that is, res_init() or
res_ninit() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() will continue until it finds an
authoritative answer or finds an error. Currently this
option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open
between queries. This is a useful option for programs
that regularly do many queries. The normal mode used
should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

res_query(3RESOLV)

DESCRIPTION

758 man pages section 3: Library Functions • Last Revised 1 Feb 2001

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. res_send() and res_nsend() do not do
iterative queries and expect the name server to handle
recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append
the default domain name to single-component names,
that is, names that do not contain a dot. This option is
enabled by default.

RES_DNSRCH If this option is set, res_search() and
res_nsearch() search for host names in the current
domain and in parent domains. See hostname(1). This
option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by
default.

RES_NOALIASES This option turns off the user level aliasing feature
controlled by the HOSTALIASES environment variable.
Network daemons should set this option.

RES_ROTATE This option causes res_nsend() and res_send() to
rotate the list of nameservers in
statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the
message unchanged after TSIG verification. Otherwise
the TSIG record would be removed and the header
would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is
present, to get the default domain name, search list and the Internet address of the
local name server(s). See resolv.conf(4). If no server is configured, res_init() or
res_ninit() will try to obtain name resolution services from the host on which it is
running. The current domain name is defined by domainname(1M), or by the
hostname if it is not specified in the configuration file. Use the environment variable
LOCALDOMAIN to override the domain name. This environment variable may contain
several blank-separated tokens if you wish to override the search list on a per-process
basis. This is similar to the search command in the configuration file. You can set the
RES_OPTIONS environment variable to override certain internal resolver options. You
can otherwise set them by changing fields in the statp /_res structure.
Alternatively, they are inherited from the configuration file’s options command. See
resolv.conf(4) for information regarding the syntax of the RES_OPTIONS
environment variable. Initialization normally occurs on the first call to one of the other
resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server
query mechanism. They construct a query, send it to the local server, await a response,
and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply

res_query(3RESOLV)

res_ninit, res_init

res_nquery,
res_query

Introduction to Library Functions 759

message is left in the answer buffer with length anslen supplied by the caller.
res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a
response, just like like res_nquery() and res_query(). In addition, they
implement the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. They return the length of the first successful reply which is
stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The
res_nmkquery() and res_mkquery() functions construct a standard query
message and place it in buf. The routine returns the size of the query, or -1 if the query
is larger than buflen. The query type op is usually QUERY, but can be any of the query
types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a
preformatted query that returns an answer. The routine calls res_ninit() or
res_init(). If RES_INIT is not set, the routine sends the query to the local name
server and handles timeouts and retries. Additionally, the res_nsendsigned() uses
TSIG signatures to add authentication to the query and verify the response. In this
case, only one name server will be contacted. The routines return the length of the
reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query
may be larger still], so it is recommended that you supply a buf larger than the answer
returned by the previous query. answer must be large enough to receive a maximum
UDP response from the server or parts of the answer will be silently discarded. The
default maximum UDP response size is 512 bytes.

The res_npquery() function prints out the query and any answer in msg on fp.

The fp_resstat() function prints out the active flag bits in statp->options preceded
by the text ";; res options:" on file.

res_query(3RESOLV)

res_nsearch,
res_search

res_nmkquery,
res_mkquery

res_nsend,
res_send,

res_nsendsigned

res_npquery

fp_resstat

760 man pages section 3: Library Functions • Last Revised 1 Feb 2001

The res_hostalias() function looks up name in the file referred to by the
HOSTALIASES environment variable and returns the fully qualified host name. If name
is not found or an error occurs, NULL is returned. res_hostalias() stores the result
in buf.

The res_nclose() function closes any open files referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. dn_comp() returns the size of the compressed name, or −1 if there were
errors. length is the size of the array pointed to by comp_dn.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in
the current message. The first pointer must point to the beginning of the message. The
list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted
into the message by dn_comp() as the name is compressed. If dnptrs is NULL, names
are not compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name. The compressed name is contained in a query or reply message. msg is
a pointer to the beginning of that message. The uncompressed name is placed in the
buffer indicated by exp_dn, which is of size length.dn_expand() returns the size of the
compressed name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are
set whenever an error occurs during a resolver operation. The following definitions
are given in <netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the
string parameters, the constant string ": ", and a message corresponding to the value
of h_errno.

The hstrerror() function returns a string, which is the message text that
corresponds to the value of the err parameter.

/etc/resolv.conf Resolver configuration file

See attributes(5) for descriptions of the following attributes:

res_query(3RESOLV)

res_hostalias

res_nclose

dn_comp

dn_expand

hstrerror, herror

FILES

ATTRIBUTES

Introduction to Library Functions 761

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard BIND 8.2.2

MT-Level Unsafe for Deprecated Interfaces; MT-Safe for
all others.

If the query is sent to a name server on a non-trusted host, then the functions
res_nsend(), res_send(), res_nsearch(), and res_search() can
communicate with the name server if its host’s default sensitivity label matches the
sensitivity label of the process issuing the call. If the calling process is run with the
PRIV_NET_UPGRADE_SL, PRIV_NET_DOWNGRADE_SL, and PRIV_NET_MAC_READ
privileges, then the functions res_nsend(), res_send(), res_nsearch(), and
res_search() can communicate with the name server regardless of the sensitivity
label of the non-trusted host where the name server resides.

in.named(1M), resolv.conf(4)

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), attributes(5)

Lottor, M., Domain Administrators Operators Guide, RFC 1033, SRI International, Menlo
Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information
Center, SRI International, Menlo Park, Calif., January 1986. Stahl, M., Domain
Administrators Guide, RFC 1032, SRI International, Menlo Park, Calif., November 1987.

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte
boundary. Otherwise, an error such as a SIGBUS may result.

res_query(3RESOLV)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

762 man pages section 3: Library Functions • Last Revised 1 Feb 2001

resolver, res_ninit, fp_resstat, res_npquery, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

void res_npquery(const res_state statp, const u_char *msg, int
msglen, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int
type, u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
*domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
*answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg, int msglen,
ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
**dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

res_search(3RESOLV)

NAME

BIND 8.2.2
Interfaces

Deprecated
Interfaces

Introduction to Library Functions 763

int res_initvoid););

int res_query(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_mkquery(int op, const char *dname, int class, int type, const
char *data, int datalen, struct rrec *newrr, u_char *buf, int
buflen);

int res_send(const u_char *msg, int msglen, u_char *answer, int
anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply
messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions.
Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(),
res_send(), and herror() are deprecated. They are supplied for backwards
compatability. They use global configuration and state information that is kept in the
structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first
call to res_ninit() or res_init() and can be ignored. Options stored in
statp->options or _res.options are defined in <resolv.h>. They are stored as
a simple bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default
domain name are initialized, that is, res_init() or
res_ninit() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() will continue until it finds an
authoritative answer or finds an error. Currently this
option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open
between queries. This is a useful option for programs
that regularly do many queries. The normal mode used
should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

res_search(3RESOLV)

DESCRIPTION

764 man pages section 3: Library Functions • Last Revised 1 Feb 2001

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. res_send() and res_nsend() do not do
iterative queries and expect the name server to handle
recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append
the default domain name to single-component names,
that is, names that do not contain a dot. This option is
enabled by default.

RES_DNSRCH If this option is set, res_search() and
res_nsearch() search for host names in the current
domain and in parent domains. See hostname(1). This
option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by
default.

RES_NOALIASES This option turns off the user level aliasing feature
controlled by the HOSTALIASES environment variable.
Network daemons should set this option.

RES_ROTATE This option causes res_nsend() and res_send() to
rotate the list of nameservers in
statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the
message unchanged after TSIG verification. Otherwise
the TSIG record would be removed and the header
would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is
present, to get the default domain name, search list and the Internet address of the
local name server(s). See resolv.conf(4). If no server is configured, res_init() or
res_ninit() will try to obtain name resolution services from the host on which it is
running. The current domain name is defined by domainname(1M), or by the
hostname if it is not specified in the configuration file. Use the environment variable
LOCALDOMAIN to override the domain name. This environment variable may contain
several blank-separated tokens if you wish to override the search list on a per-process
basis. This is similar to the search command in the configuration file. You can set the
RES_OPTIONS environment variable to override certain internal resolver options. You
can otherwise set them by changing fields in the statp /_res structure.
Alternatively, they are inherited from the configuration file’s options command. See
resolv.conf(4) for information regarding the syntax of the RES_OPTIONS
environment variable. Initialization normally occurs on the first call to one of the other
resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server
query mechanism. They construct a query, send it to the local server, await a response,
and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply

res_search(3RESOLV)

res_ninit, res_init

res_nquery,
res_query

Introduction to Library Functions 765

message is left in the answer buffer with length anslen supplied by the caller.
res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a
response, just like like res_nquery() and res_query(). In addition, they
implement the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. They return the length of the first successful reply which is
stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The
res_nmkquery() and res_mkquery() functions construct a standard query
message and place it in buf. The routine returns the size of the query, or -1 if the query
is larger than buflen. The query type op is usually QUERY, but can be any of the query
types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a
preformatted query that returns an answer. The routine calls res_ninit() or
res_init(). If RES_INIT is not set, the routine sends the query to the local name
server and handles timeouts and retries. Additionally, the res_nsendsigned() uses
TSIG signatures to add authentication to the query and verify the response. In this
case, only one name server will be contacted. The routines return the length of the
reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query
may be larger still], so it is recommended that you supply a buf larger than the answer
returned by the previous query. answer must be large enough to receive a maximum
UDP response from the server or parts of the answer will be silently discarded. The
default maximum UDP response size is 512 bytes.

The res_npquery() function prints out the query and any answer in msg on fp.

The fp_resstat() function prints out the active flag bits in statp->options preceded
by the text ";; res options:" on file.

res_search(3RESOLV)

res_nsearch,
res_search

res_nmkquery,
res_mkquery

res_nsend,
res_send,

res_nsendsigned

res_npquery

fp_resstat

766 man pages section 3: Library Functions • Last Revised 1 Feb 2001

The res_hostalias() function looks up name in the file referred to by the
HOSTALIASES environment variable and returns the fully qualified host name. If name
is not found or an error occurs, NULL is returned. res_hostalias() stores the result
in buf.

The res_nclose() function closes any open files referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. dn_comp() returns the size of the compressed name, or −1 if there were
errors. length is the size of the array pointed to by comp_dn.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in
the current message. The first pointer must point to the beginning of the message. The
list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted
into the message by dn_comp() as the name is compressed. If dnptrs is NULL, names
are not compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name. The compressed name is contained in a query or reply message. msg is
a pointer to the beginning of that message. The uncompressed name is placed in the
buffer indicated by exp_dn, which is of size length.dn_expand() returns the size of the
compressed name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are
set whenever an error occurs during a resolver operation. The following definitions
are given in <netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the
string parameters, the constant string ": ", and a message corresponding to the value
of h_errno.

The hstrerror() function returns a string, which is the message text that
corresponds to the value of the err parameter.

/etc/resolv.conf Resolver configuration file

See attributes(5) for descriptions of the following attributes:

res_search(3RESOLV)

res_hostalias

res_nclose

dn_comp

dn_expand

hstrerror, herror

FILES

ATTRIBUTES

Introduction to Library Functions 767

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard BIND 8.2.2

MT-Level Unsafe for Deprecated Interfaces; MT-Safe for
all others.

If the query is sent to a name server on a non-trusted host, then the functions
res_nsend(), res_send(), res_nsearch(), and res_search() can
communicate with the name server if its host’s default sensitivity label matches the
sensitivity label of the process issuing the call. If the calling process is run with the
PRIV_NET_UPGRADE_SL, PRIV_NET_DOWNGRADE_SL, and PRIV_NET_MAC_READ
privileges, then the functions res_nsend(), res_send(), res_nsearch(), and
res_search() can communicate with the name server regardless of the sensitivity
label of the non-trusted host where the name server resides.

in.named(1M), resolv.conf(4)

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), attributes(5)

Lottor, M., Domain Administrators Operators Guide, RFC 1033, SRI International, Menlo
Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information
Center, SRI International, Menlo Park, Calif., January 1986. Stahl, M., Domain
Administrators Guide, RFC 1032, SRI International, Menlo Park, Calif., November 1987.

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte
boundary. Otherwise, an error such as a SIGBUS may result.

res_search(3RESOLV)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

768 man pages section 3: Library Functions • Last Revised 1 Feb 2001

resolver, res_ninit, fp_resstat, res_npquery, res_hostalias, res_nquery, res_nsearch,
res_nquerydomain, res_nmkquery, res_nsend, res_nclose, res_nsendsigned, dn_comp,
dn_expand, hstrerror, res_init, res_query, res_search, res_mkquery, res_send, herror –
resolver routines

cc [flag ...] file ... -lresolv -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

int res_ninit(res_state statp);

void fp_resstat(const res_state statp, FILE *fp);

void res_npquery(const res_state statp, const u_char *msg, int
msglen, FILE *fp);

const char *res_hostalias(const res_state statp, const char *name,
char * name, char *buf, size_tbuflen);

int res_nquery(res_state statp, const char *dname, int class, int type,
u_char *answer, int datalen, int anslen);

int res_nsearch(res_state statp, const char *dname, int class, int
type, u_char *answer, int anslen);

int res_nquerydomain(res_state statp, const char *name, const char
*domain, int class, int type, u_char *answer, int anslen);

int res_nmkquery(res_state statp, int op, const char *dname, int
class, int type, u_char *answer, int datalen, int anslen);

int res_nsend(res_state statp, const u_char *msg, int msglen, u_char
*answer, int anslen);

void res_nclose(res_state statp);

int res_snendsigned(res_state statp, const u_char *msg, int msglen,
ns_tsig_key *key, u_char *answer, int anslen);

int dn_comp(const char *exp_dn, u_char *comp_dn, int length, u_char
**dnptrs, **lastdnptr);

int dn_expand(const u_char *msg, *eomorig, *comp_dn, char *exp_dn,
int length);

const char *hstrerror(int err);

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

#include <netdb.h>

res_send(3RESOLV)

NAME

BIND 8.2.2
Interfaces

Deprecated
Interfaces

Introduction to Library Functions 769

int res_initvoid););

int res_query(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_search(const char *dname, int class, int type, u_char *answer,
int anslen);

int res_mkquery(int op, const char *dname, int class, int type, const
char *data, int datalen, struct rrec *newrr, u_char *buf, int
buflen);

int res_send(const u_char *msg, int msglen, u_char *answer, int
anslen);

void herror(const char *s);

These routines are used for making, sending, and interpreting query and reply
messages with Internet domain name servers.

State information is kept in statp and is used to control the behavior of these functions.
Set statp to all zeros prior to making the first call to any of these functions.

The functions res_init(), res_query(), res_search(), res_mkquery(),
res_send(), and herror() are deprecated. They are supplied for backwards
compatability. They use global configuration and state information that is kept in the
structure _res rather than state information referenced through statp.

Most of the values in statp and _res are initialized to reasonable defaults on the first
call to res_ninit() or res_init() and can be ignored. Options stored in
statp->options or _res.options are defined in <resolv.h>. They are stored as
a simple bit mask containing the bitwise OR of the options enabled.

RES_INIT True if the initial name server address and default
domain name are initialized, that is, res_init() or
res_ninit() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this option,
res_send() will continue until it finds an
authoritative answer or finds an error. Currently this
option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_STAYOPEN Use with RES_USEVC to keep the TCP connection open
between queries. This is a useful option for programs
that regularly do many queries. The normal mode used
should be UDP.

RES_IGNTC Ignore truncation errors; that is, do not retry with TCP.

res_send(3RESOLV)

DESCRIPTION

770 man pages section 3: Library Functions • Last Revised 1 Feb 2001

RES_RECURSE Set the recursion-desired bit in queries. This is the
default. res_send() and res_nsend() do not do
iterative queries and expect the name server to handle
recursion.

RES_DEFNAMES If set, res_search() and res_nsearch() append
the default domain name to single-component names,
that is, names that do not contain a dot. This option is
enabled by default.

RES_DNSRCH If this option is set, res_search() and
res_nsearch() search for host names in the current
domain and in parent domains. See hostname(1). This
option is used by the standard host lookup routine
gethostbyname(3NSL). This option is enabled by
default.

RES_NOALIASES This option turns off the user level aliasing feature
controlled by the HOSTALIASES environment variable.
Network daemons should set this option.

RES_ROTATE This option causes res_nsend() and res_send() to
rotate the list of nameservers in
statp->nsaddr_list or _res.nsaddr_list.

RES_KEEPTSIG This option causes res_nsendsigned() to leave the
message unchanged after TSIG verification. Otherwise
the TSIG record would be removed and the header
would be updated.

The res_ninit() and res_init() routines read the configuration file, if any is
present, to get the default domain name, search list and the Internet address of the
local name server(s). See resolv.conf(4). If no server is configured, res_init() or
res_ninit() will try to obtain name resolution services from the host on which it is
running. The current domain name is defined by domainname(1M), or by the
hostname if it is not specified in the configuration file. Use the environment variable
LOCALDOMAIN to override the domain name. This environment variable may contain
several blank-separated tokens if you wish to override the search list on a per-process
basis. This is similar to the search command in the configuration file. You can set the
RES_OPTIONS environment variable to override certain internal resolver options. You
can otherwise set them by changing fields in the statp /_res structure.
Alternatively, they are inherited from the configuration file’s options command. See
resolv.conf(4) for information regarding the syntax of the RES_OPTIONS
environment variable. Initialization normally occurs on the first call to one of the other
resolver routines.

The res_nquery() and res_query() functions provide interfaces to the server
query mechanism. They construct a query, send it to the local server, await a response,
and make preliminary checks on the reply. The query requests information of the
specified type and class for the specified fully-qualified domain name dname. The reply

res_send(3RESOLV)

res_ninit, res_init

res_nquery,
res_query

Introduction to Library Functions 771

message is left in the answer buffer with length anslen supplied by the caller.
res_nquery() and res_query() return the length of the answer, or -1 upon error.

The res_nquery() and res_query() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

The res_nsearch() and res_search() routines make a query and await a
response, just like like res_nquery() and res_query(). In addition, they
implement the default and search rules controlled by the RES_DEFNAMES and
RES_DNSRCH options. They return the length of the first successful reply which is
stored in answer. On error, they reurn –1.

The res_nsearch() and res_search() routines return a length that may be bigger
than anslen. In that case, retry the query with a larger buf. The answer to the second
query may be larger still], so it is recommended that you supply a buf larger than the
answer returned by the previous query. answer must be large enough to receive a
maximum UDP response from the server or parts of the answer will be silently
discarded. The default maximum UDP response size is 512 bytes.

These routines are used by res_nquery() and res_query(). The
res_nmkquery() and res_mkquery() functions construct a standard query
message and place it in buf. The routine returns the size of the query, or -1 if the query
is larger than buflen. The query type op is usually QUERY, but can be any of the query
types defined in <arpa/nameser.h>. The domain name for the query is given by
dname. newrr is currently unused but is intended for making update messages.

The res_nsend(), res_send(), and res_nsendsigned() routines send a
preformatted query that returns an answer. The routine calls res_ninit() or
res_init(). If RES_INIT is not set, the routine sends the query to the local name
server and handles timeouts and retries. Additionally, the res_nsendsigned() uses
TSIG signatures to add authentication to the query and verify the response. In this
case, only one name server will be contacted. The routines return the length of the
reply message, or -1 if there are errors.

The res_nsend() and res_send() routines return a length that may be bigger than
anslen. In that case, retry the query with a larger buf. The answer to the second query
may be larger still], so it is recommended that you supply a buf larger than the answer
returned by the previous query. answer must be large enough to receive a maximum
UDP response from the server or parts of the answer will be silently discarded. The
default maximum UDP response size is 512 bytes.

The res_npquery() function prints out the query and any answer in msg on fp.

The fp_resstat() function prints out the active flag bits in statp->options preceded
by the text ";; res options:" on file.

res_send(3RESOLV)

res_nsearch,
res_search

res_nmkquery,
res_mkquery

res_nsend,
res_send,

res_nsendsigned

res_npquery

fp_resstat

772 man pages section 3: Library Functions • Last Revised 1 Feb 2001

The res_hostalias() function looks up name in the file referred to by the
HOSTALIASES environment variable and returns the fully qualified host name. If name
is not found or an error occurs, NULL is returned. res_hostalias() stores the result
in buf.

The res_nclose() function closes any open files referenced through statp.

The dn_comp() function compresses the domain name exp_dn and stores it in
comp_dn. dn_comp() returns the size of the compressed name, or −1 if there were
errors. length is the size of the array pointed to by comp_dn.

dnptrs is a pointer to the head of the list of pointers to previously compressed names in
the current message. The first pointer must point to the beginning of the message. The
list ends with NULL. The limit to the array is specified by lastdnptr.

A side effect of calling dn_comp() is to update the list of pointers for labels inserted
into the message by dn_comp() as the name is compressed. If dnptrs is NULL, names
are not compressed. If lastdnptr is NULL, dn_comp() does not update the list of labels.

The dn_expand() function expands the compressed domain name comp_dn to a full
domain name. The compressed name is contained in a query or reply message. msg is
a pointer to the beginning of that message. The uncompressed name is placed in the
buffer indicated by exp_dn, which is of size length.dn_expand() returns the size of the
compressed name, or −1 if there was an error.

The variables statp->res_h_errno and _res.res_h_errno and external variable h_errno are
set whenever an error occurs during a resolver operation. The following definitions
are given in <netdb.h>:

#define NETDB_INTERNAL -1 /* see errno */
#define NETDB_SUCCESS 0 /* no problem */
#define HOST_NOT_FOUND 1 /* Authoritative Answer Host not found */
#define TRY_AGAIN 2 /* Non-Authoritative not found, or SERVFAIL */
#define NO_RECOVERY 3 /* Non-Recoverable: FORMERR, REFUSED, NOTIMP*/

#define NO_DATA 4 /* Valid name, no data for requested type */

The herror() function writes a message to the diagnostic output consisting of the
string parameters, the constant string ": ", and a message corresponding to the value
of h_errno.

The hstrerror() function returns a string, which is the message text that
corresponds to the value of the err parameter.

/etc/resolv.conf Resolver configuration file

See attributes(5) for descriptions of the following attributes:

res_send(3RESOLV)

res_hostalias

res_nclose

dn_comp

dn_expand

hstrerror, herror

FILES

ATTRIBUTES

Introduction to Library Functions 773

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32–bit)

SUNWcslx (64–bit)

Interface Stability Standard BIND 8.2.2

MT-Level Unsafe for Deprecated Interfaces; MT-Safe for
all others.

If the query is sent to a name server on a non-trusted host, then the functions
res_nsend(), res_send(), res_nsearch(), and res_search() can
communicate with the name server if its host’s default sensitivity label matches the
sensitivity label of the process issuing the call. If the calling process is run with the
PRIV_NET_UPGRADE_SL, PRIV_NET_DOWNGRADE_SL, and PRIV_NET_MAC_READ
privileges, then the functions res_nsend(), res_send(), res_nsearch(), and
res_search() can communicate with the name server regardless of the sensitivity
label of the non-trusted host where the name server resides.

in.named(1M), resolv.conf(4)

domainname(1M), gethostbyname(3NSL), libresolv(3LIB), attributes(5)

Lottor, M., Domain Administrators Operators Guide, RFC 1033, SRI International, Menlo
Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities, RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Implementation and Specification, RFC 1035, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Partridge, Craig, Mail Routing and the Domain System, RFC 974, Network Information
Center, SRI International, Menlo Park, Calif., January 1986. Stahl, M., Domain
Administrators Guide, RFC 1032, SRI International, Menlo Park, Calif., November 1987.

Vixie, Paul, Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for BIND
(public domain), Internet Software Consortium, 1996.

When the caller supplies a work buffer, for example the answer buffer argument to
res_nsend() or res_send(), the buffer should be aligned on an eight byte
boundary. Otherwise, an error such as a SIGBUS may result.

res_send(3RESOLV)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

774 man pages section 3: Library Functions • Last Revised 1 Feb 2001

rpc – Library routines for remote procedure calls

cc [flags…] file … -lnsl [library…]

#include <rpc/rpc.h>

#include <netconfig.h>

These routines allow C language programs to make procedure calls on other machines
across a network. First, the client sends a request to the server. On receipt of the
request, the server calls a dispatch routine to perform the requested service, and then
sends back a reply.

All RPC routines require the header <rpc/rpc.h>. Routines that take a netconfig
structure also require that <netconfig.h> be included. Applications using RPC and
XDR routines should be linked with the libnsl library.

In the case of multithreaded applications, the _REENTRANT flag must be defined on
the command line at compilation time (-D_REENTRANT). Defining this flag enables a
thread-specific version of rpc_createerr. See rpc_clnt_create(3NSL).

When used in multithreaded applications, client-side routines are MT-Safe. CLIENT
handles can be shared between threads; however, in this implementation, requests by
different threads are serialized (that is, the first request will receive its results before
the second request is sent). See rpc_clnt_create(3NSL).

When used in multithreaded applications, server-side routines are usually Unsafe. In
this implementation the service transport handle, SVCXPRT contains a single data area
for decoding arguments and encoding results. See rpc_svc_create(3NSL).
Therefore, this structure cannot be freely shared between threads that call functions
that do this. Routines that are affected by this restriction are marked as unsafe for MT
applications. See rpc_svc_calls(3NSL).

Some of the high-level RPC interface routines take a nettype string as one of the
parameters (for example, clnt_create(), svc_create(), rpc_reg(),
rpc_call()). This string defines a class of transports which can be used for a
particular application.

nettype can be one of the following:

netpath Choose from the transports which have been indicated by their
token names in the NETPATH environment variable. If NETPATH is
unset or NULL, it defaults to visible. netpath is the default
nettype.

visible Choose the transports which have the visible flag (v) set in the
/etc/netconfig file.

circuit_v This is same as visible except that it chooses only the connection
oriented transports (semantics tpi_cots or tpi_cots_ord)
from the entries in the /etc/netconfig file.

rpc(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Multithread
Considerations

Nettyp

Introduction to Library Functions 775

datagram_v This is same as visible except that it chooses only the
connectionless datagram transports (semantics tpi_clts) from
the entries in the /etc/netconfig file.

circuit_n This is same as netpath except that it chooses only the connection
oriented datagram transports (semantics tpi_cots or
tpi_cots_ord).

datagram_n This is same as netpath except that it chooses only the
connectionless datagram transports (semantics tpi_clts).

udp This refers to Internet UDP.

tcp This refers to Internet TCP.

If nettype is NULL, it defaults to netpath. The transports are tried in left to right order
in the NETPATH variable or in top to down order in the /etc/netconfig file.

In a 64-bit environment, the derived types are defined as follows:

typedef uint32_t rpcprog_t;

typedef uint32_t rpcvers_t;

typedef uint32_t rpcproc_t;

typedef uint32_t rpcprot_t;

typedef uint32_t rpcport_t;

typedef int32_t rpc_inline_t;

In a 32-bit environment, the derived types are defined as follows:

typedef unsigned long rpcprog_t;

typedef unsigned long rpcvers_t;

typedef unsigned long rpcproc_t;

typedef unsigned long rpcprot_t;

typedef unsigned long rpcport_t;

typedef long rpc_inline_t;

Some of the data structures used by the RPC package are shown below.

union des_block {
struct {
u_int32 high;
u_int32 low;

rpc(3NSL)

Derived Types

Data Structures

The AUTH
Structure

776 man pages section 3: Library Functions • Last Revised 1 May 2000

} key;
char c[8];
};
typedef union des_block des_block;
extern bool_t xdr_des_block();
/*
* Authentication info. Opaque to client.
*/
struct opaque_auth {

enum_t oa_flavor; /* flavor of auth */
caddr_t oa_base; /* address of more auth stuff */
uint_t oa_length; /* not to exceed MAX_AUTH_BYTES */

};
/*
* Auth handle, interface to client side authenticators.
*/
typedef struct {

struct opaque_auth ah_cred;
struct opaque_auth ah_verf;
union des_block ah_key;
struct auth_ops {

void(*ah_nextverf)();
int(*ah_marshal)(); /* nextverf & serialize */
int(*ah_validate)(); /* validate verifier */
int(*ah_refresh)(); /* refresh credentials */
void(*ah_destroy)(); /* destroy this structure */

} *ah_ops;
caddr_t ah_private;

} AUTH;

/*
* Client rpc handle.
* Created by individual implementations.
* Client is responsible for initializing auth.
*/

typedef struct {
AUTH *cl_auth; /* authenticator */
struct clnt_ops {

enum clnt_stat (*cl_call)(); /* call remote procedure */
void (*cl_abort)(); /* abort a call */
void (*cl_geterr)(); /* get specific error code */
bool_t (*cl_freeres)(); /* frees results */
void (*cl_destroy)(); /* destroy this structure */
bool_t (*cl_control)(); /* the ioctl() of rpc */
int (*cl_settimers)(); /* set rpc level timers */
} *cl_ops;
caddr_t cl_private; /* private stuff */
char *cl_netid; /* network identifier */
char *cl_tp; /* device name */

} CLIENT;

enum xprt_stat {
XPRT_DIED,
XPRT_MOREREQS,
XPRT_IDLE
};
/*
* Server side transport handle

rpc(3NSL)

The CLIENT
Structure

The SVCXPRT
Structure

Introduction to Library Functions 777

*/
typedef struct {

int xp_fd; /* file descriptor for the
ushort_t xp_port; /* obsolete */
struct xp_ops {

bool_t (*xp_recv)(); /* receive incoming requests */
enum xprt_stat (*xp_stat)(); /* get transport status */
bool_t (*xp_getargs)(); /* get arguments */
bool_t (*xp_reply)(); /* send reply */
bool_t (*xp_freeargs)(); /* free mem allocated

for args */
void (*xp_destroy)(); /* destroy this struct */

} *xp_ops;
int xp_addrlen; /* length of remote addr.

Obsolete */
char *xp_tp; /* transport provider device

name */
char *xp_netid; /* network identifier */
struct netbuf xp_ltaddr; /* local transport address */
struct netbuf xp_rtaddr; /* remote transport address */
char xp_raddr[16]; /* remote address. Obsolete */
struct opaque_auth xp_verf; /* raw response verifier */
caddr_t xp_p1; /* private: for use

by svc ops */
caddr_t xp_p2; /* private: for use

by svc ops */
caddr_t xp_p3; /* private: for use

by svc lib */
int xp_type /* transport type */

} SVCXPRT;

struct svc_req {
rpcprog_t rq_prog; /* service program number */
rpcvers_t rq_vers; /* service protocol version */
rpcproc_t rq_proc; /* the desired procedure */
struct opaque_auth rq_cred; /* raw creds from the wire */
caddr_t rq_clntcred; /* read only cooked cred */
SVCXPRT *rq_xprt; /* associated transport */

};

/*
* XDR operations.
* XDR_ENCODE causes the type to be encoded into the stream.
* XDR_DECODE causes the type to be extracted from the stream.
* XDR_FREE can be used to release the space allocated by an XDR_DECODE
* request.
*/
enum xdr_op {

XDR_ENCODE=0,
XDR_DECODE=1,
XDR_FREE=2

};
/*
* This is the number of bytes per unit of external data.
*/
#define BYTES_PER_XDR_UNIT (4)
#define RNDUP(x) ((((x) + BYTES_PER_XDR_UNIT - 1) /

rpc(3NSL)

The svc_reg
Structure

The XDR
Structure

778 man pages section 3: Library Functions • Last Revised 1 May 2000

BYTES_PER_XDR_UNIT) \ * BYTES_PER_XDR_UNIT)
/*
* A xdrproc_t exists for each data type which is to be encoded or
* decoded. The second argument to the xdrproc_t is a pointer to
* an opaque pointer. The opaque pointer generally points to a
* structure of the data type to be decoded. If this points to 0,
* then the type routines should allocate dynamic storage of the
* appropriate size and return it.
* bool_t (*xdrproc_t)(XDR *, caddr_t *);
*/
typedef bool_t (*xdrproc_t)();
/*
* The XDR handle.
* Contains operation which is being applied to the stream,
* an operations vector for the particular implementation
*/
typedef struct {

enum xdr_op x_op; /* operation; fast additional param */
struct xdr_ops {

bool_t (*x_getlong)(); /* get long from underlying stream */
bool_t (*x_putlong)(); /* put long to underlying stream */
bool_t (*x_getbytes)(); /* get bytes from underlying stream */
bool_t (*x_putbytes)(); /* put bytes to underlying stream */
uint_t (*x_getpostn)(); /* returns bytes off from beginning */
bool_t (*x_setpostn)(); /* reposition the stream */
rpc_inline_t *(*x_inline)(); /* buf quick ptr to buffered data */
void (*x_destroy)(); /* free privates of this xdr_stream */
bool_t (*x_control)(); /* changed/retrieve client object info*/
bool_t (*x_getint32)(); /* get int from underlying stream */
bool_t (*x_putint32)(); /* put int to underlying stream */

} *x_ops;

caddr_t x_public; /* users’ data */
caddr_t x_priv /* pointer to private data */
caddr_t x_base; /* private used for position info */
int x_handy; /* extra private word */
XDR;

The following index lists RPC routines and the manual reference pages on which they
are described:

RPC Routine Manual Reference Page

auth_destroy() rpc_clnt_auth(3NSL)

authdes_create() rpc_soc(3NSL)

authdes_getucred() secure_rpc(3NSL)

authdes_seccreate() secure_rpc(3NSL)

authkerb_getucred() kerberos_rpc(3KRB)

authkerb_seccreate() kerberos_rpc(3KRB)

rpc(3NSL)

Index to Routines

Introduction to Library Functions 779

authnone_create() rpc_clnt_auth(3NSL)

authsys_create() rpc_clnt_auth(3NSL)

authsys_create_default() rpc_clnt_auth(3NSL)

authunix_create() rpc_soc(3NSL)

authunix_create_default() rpc_soc(3NSL)

callrpc() rpc_soc(3NSL)

clnt_broadcast() rpc_soc(3NSL)

clnt_call() rpc_clnt_calls(3NSL)

clnt_control() rpc_clnt_create(3NSL)

clnt_create() rpc_clnt_create(3NSL)

clnt_destroy() rpc_clnt_create(3NSL)

clnt_dg_create() rpc_clnt_create(3NSL)

clnt_freeres() rpc_clnt_calls(3NSL)

clnt_geterr() rpc_clnt_calls(3NSL)

clnt_pcreateerror() rpc_clnt_create(3NSL)

clnt_perrno() rpc_clnt_calls(3NSL)

clnt_perror() rpc_clnt_calls(3NSL)

clnt_raw_create() rpc_clnt_create(3NSL)

clnt_spcreateerror() rpc_clnt_create(3NSL)

clnt_sperrno() rpc_clnt_calls(3NSL)

clnt_sperror() rpc_clnt_calls(3NSL)

clnt_tli_create() rpc_clnt_create(3NSL)

clnt_tp_create() rpc_clnt_create(3NSL)

clnt_udpcreate() rpc_soc(3NSL)

clnt_vc_create() rpc_clnt_create(3NSL)

clntraw_create() rpc_soc(3NSL)

clnttcp_create() rpc_soc(3NSL)

clntudp_bufcreate() rpc_soc(3NSL)

get_myaddress() rpc_soc(3NSL)

getnetname() secure_rpc(3NSL)

host2netname() secure_rpc(3NSL)

rpc(3NSL)

780 man pages section 3: Library Functions • Last Revised 1 May 2000

key_decryptsession() secure_rpc(3NSL)

key_encryptsession() secure_rpc(3NSL)

key_gendes() secure_rpc(3NSL)

key_setsecret() secure_rpc(3NSL)

netname2host()

netname2user() secure_rpc(3NSL)

pmap_getmaps() rpc_soc(3NSL)

pmap_getport() rpc_soc(3NSL)

pmap_rmtcall() rpc_soc(3NSL)

pmap_set() rpc_soc(3NSL)

pmap_unset() rpc_soc(3NSL)

rac_drop() rpc_rac(3RAC)

rac_poll() rpc_rac(3RAC)

rac_recv() rpc_rac(3RAC)

rac_send() rpc_rac(3RAC)

registerrpc() rpc_soc(3NSL)

rpc_broadcast() rpc_clnt_calls(3NSL)

rpc_broadcast_exp() rpc_clnt_calls(3NSL)

rpc_call() rpc_clnt_calls(3NSL)

rpc_reg() rpc_svc_calls(3NSL)

svc_create() rpc_svc_create(3NSL)

svc_destroy() rpc_svc_create(3NSL)

svc_dg_create() rpc_svc_create(3NSL)

svc_dg_enablecache() rpc_svc_calls(3NSL)

svc_fd_create() rpc_svc_create(3NSL)

svc_fds() rpc_soc(3NSL)

svc_freeargs() rpc_svc_reg(3NSL)

svc_getargs() rpc_svc_reg(3NSL)

svc_getcaller() rpc_soc(3NSL)

svc_getreq() rpc_soc(3NSL)

svc_getreqset() rpc_svc_calls(3NSL)

rpc(3NSL)

Introduction to Library Functions 781

svc_getrpccaller() rpc_svc_calls(3NSL)

svc_kerb_reg() kerberos_rpc(3KRB)

svc_raw_create() rpc_svc_create(3NSL)

svc_reg() rpc_svc_calls(3NSL)

svc_register() rpc_soc(3NSL)

svc_run() rpc_svc_reg(3NSL)

svc_sendreply() rpc_svc_reg(3NSL)

svc_tli_create() rpc_svc_create(3NSL)

svc_tp_create() rpc_svc_create(3NSL)

svc_unreg() rpc_svc_calls(3NSL)

svc_unregister() rpc_soc(3NSL)

svc_vc_create() rpc_svc_create(3NSL)

svcerr_auth() rpc_svc_err(3NSL)

svcerr_decode() rpc_svc_err(3NSL)

svcerr_noproc() rpc_svc_err(3NSL)

svcerr_noprog() rpc_svc_err(3NSL)

svcerr_progvers() rpc_svc_err(3NSL)

svcerr_systemerr() rpc_svc_err(3NSL)

svcerr_weakauth() rpc_svc_err(3NSL)

svcfd_create() rpc_soc(3NSL)

svcraw_create() rpc_soc(3NSL)

svctcp_create() rpc_soc(3NSL)

svcudp_bufcreate() rpc_soc(3NSL)

svcudp_create() rpc_soc(3NSL)

user2netname() secure_rpc(3NSL)

xdr_accepted_reply() rpc_xdr(3NSL)

xdr_authsys_parms() rpc_xdr(3NSL)

xdr_authunix_parms() rpc_soc(3NSL)

xdr_callhdr() rpc_xdr(3NSL)

xdr_callmsg() rpc_xdr(3NSL)

xdr_opaque_auth() rpc_xdr(3NSL)

rpc(3NSL)

782 man pages section 3: Library Functions • Last Revised 1 May 2000

xdr_rejected_reply() rpc_xdr(3NSL)

xdr_replymsg() rpc_xdr(3NSL)

xprt_register() rpc_svc_calls(3NSL)

xprt_unregister() rpc_svc_calls(3NSL)

/etc/netconfig Network configuration database

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

The CLIENT and SVCXPRT structures allow clients and servers to provide t6attr_t
pointers to opaque structures for accessing security attributes on requests and replies.
When a new CLIENT or SVCXPRT structure is created, the pointers are initialized to
NULL. If it needs to access the security attributes, the client or server must use the
t6alloc_blk() routine to allocate attribute control structures and set the t6attr_t
pointers in the CLIENT or SVCXPRT structure. When clnt_destroy() or
svc_destroy() is used to destroy a handle, the client or server should also use
t6free_blk() to free any attribute control structures previously allocated for that
handle.

libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL), rpc_clnt_calls(3NSL),
rpc_clnt_create(3NSL), rpc_svc_calls(3NSL), rpc_svc_create(3NSL),
rpc_svc_reg(3NSL), rpcbind(3NSL)

getnetconfig(3NSL), getnetpath(3NSL), kerberos_rpc(3KRB),
rpc_clnt_auth(3NSL), rpc_svc_err(3NSL), rpc_xdr(3NSL),
secure_rpc(3NSL), xdr(3N), netconfig(4), rpc(4), attributes(5), environ(5)

rpc(3NSL)

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction to Library Functions 783

rpcbind, rpcb_getmaps, rpcb_getallmaps, rpcb_getaddr, rpcb_gettime, rpcb_rmtcall,
rpcb_set, rpcb_unset – Library routines for RPC bind service

#include <rpc/rpc.h>

struct rpcblist *rpcb_getmaps(const struct netconfig *netconf,
const char *host);

struct tsol_rpcblist *rpcb_getallmaps(const struct netconfig
*netconf, const char *host);

bool_t rpcb_getaddr(const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf, struct netbuf *ssvcaddr,
const char *host);

bool_t rpcb_gettime(const char *host, time_t *timep);

enum clnt_stat rpcb_rmtcall(const struct netconfig *netconf, const
char *host, const rpcprog_t prognum, const rpcvers_t versnum,
const rpcproc_t procnum, const xdrproc_t inproc, const caddr_t
in, const xdrproc_t outproc, caddr_t out, const struct timeval
tout, struct netbuf *svcaddr);

bool_t rpcb_set(const rpcprog_t prognum, const rpcvers_t versnum,
const struct netconfig *netconf, const struct netbuf *svcaddr);

bool_t rpcb_unset(const rpcprog_t prognum, const rpcvers_t versnum,
const struct netconfig *netconf);

These routines allow client C programs to make procedure calls to the RPC binder
service. rpcbind maintains a list of mappings between programs and their universal
addresses. See rpcbind(1M).

#include <rpc/rpc.h>

rpcb_getmaps()
An interface to the rpcbind service, which returns a list of the current RPC
program-to-address mappings on host. It uses the transport specified through
netconf to contact the remote rpcbind service on host. This routine will return NULL
if the remote rpcbind could not be contacted.

This interface returns all the mappings at the client’s sensitivity label, and all
multilevel mappings.

rpcb_getallmaps()
This interface to the rpcbind service returns a list of the current RPC
program-to-address mappings on host. This interface uses the transport specified
through netconf to contact the remote rpcbind service on host. This routine returns
all the mappings at sensitivity labels dominated by the client’s sensitivity label and
all multilevel mappings. If the client has the PRIV_NET_MAC_READ privilege, all
mappings are returned regardless of their sensitivity labels. This routine will return
NULL if the remote rpcbind could not be contacted.

rpcb_getaddr(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Routines

784 man pages section 3: Library Functions • Last Revised 1 May 2000

rpcb_getaddr()
An interface to the rpcbind service, which finds the address of the service on host
that is registered with program number prognum, version versnum, and speaks the
transport protocol associated with netconf. The address found is returned in svcaddr.
svcaddr should be preallocated. This routine returns TRUE if it succeeds. A return
value of FALSE means that the mapping does not exist, that no mapping exists at
the sensitivity label of the client and no multilabel mapping exists, or that the RPC
system failed to contact the remote rpcbind service. In the last case, the global
variable rpc_createerr contains the RPC status. See rpc_clnt_create(3NSL).

If both a mapping at the sensitivity label of the client and a multilevel mapping
exist, the mapping at the sensitivity label of the client is returned.

rpcb_gettime()
This routine returns the time on host in timep. If host is NULL, rpcb_gettime()
returns the time on its own machine. This routine returns TRUE if it succeeds,
FALSE if it fails. rpcb_gettime() can be used to synchronize the time between
the client and the remote server. This routine is particularly useful for secure RPC.

rpcb_rmtcall()
An interface to the rpcbind service, which instructs rpcbind on host to make an
RPC call on your behalf to a procedure on that host. The netconfig structure
should correspond to a connectionless transport. The parameter *svcaddr will be
modified to the server’s address if the procedure succeeds. See rpc_call() and
clnt_call() in rpc_clnt_calls(3NSL) for the definitions of other parameters.

This procedure should normally be used for a “ping” and nothing else. This routine
allows programs to do lookup and call, all in one step.

Note – Even if the server is not running rpcbind does not return any error
messages to the caller. In such a case, the caller times out.

Trusted Solaris Note: If there is no mapping at the sensitivity label of the client and
no multilevel mapping, rpcbind does not return any error messages to the caller.
In such a case, the caller times out.

Note: rpcb_rmtcall() is only available for connectionless transports.

rpcb_set()
An interface to the rpcbind service, which establishes a mapping between the
triple [prognum, versnum, netconf⇒nc_netid] and svcaddr on the machine’s rpcbind
service. The value of nc_netid must correspond to a network identifier that is
defined by the netconfig database.

If the client has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a privileged port, the client must
have the PRIV_NET_PRIVADDR privilege.

rpcb_getaddr(3NSL)

Introduction to Library Functions 785

This routine returns TRUE if it succeeds, FALSE otherwise. See also svc_reg() in
rpc_svc_calls(3NSL). If there already exists such an entry with rpcbind,
rpcb_set() will fail.

rpcb_unset()
An interface to the rpcbind service, which destroys the mapping between the
triple [prognum, versnum, netconf⇒nc_netid] and the address on the machine’s
rpcbind service. If netconf is NULL, rpcb_unset() destroys all mapping between
the triple [prognum, versnum, all-transports] and the addresses on the machine’s
rpcbind service.

The PRIV_NET_MAC_READ privilege is required to delete a multilevel mapping. If
the mapping being deleted is for a privileged port, the client must have the
PRIV_NET_PRIVADDR privilege.

This routine returns TRUE if it succeeds, FALSE otherwise. Only the owner of the
service or a process with the PRIV_NET_SETID privilege can destroy the mapping.
See also svc_unreg() in rpc_svc_calls(3NSL).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind services operate only on mappings that either match the sensitivity
label of the client or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind
services. If the privilege is asserted when rpcb_set() is called, a multilevel mapping
is created. To delete a multilevel mapping, rpcb_unset() must be called with the
privilege on.

The PRIV_NET_PRIVADDR privilege is required for rpcb_set() or rpcb_unset()
calls that create or delete mappings for a privileged port.

The PRIV_NET_SETID privilege is required by rpcb_unset() for anyone other than
the owner of a mapping to delete the mapping.

rpcbind(1M), rpcinfo(1M), rpc_clnt_calls(3NSL), rpc_clnt_create(3NSL),
rpc_svc_calls(3NSL)

attributes(5)

rpcb_getaddr(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

786 man pages section 3: Library Functions • Last Revised 1 May 2000

rpcbind, rpcb_getmaps, rpcb_getallmaps, rpcb_getaddr, rpcb_gettime, rpcb_rmtcall,
rpcb_set, rpcb_unset – Library routines for RPC bind service

#include <rpc/rpc.h>

struct rpcblist *rpcb_getmaps(const struct netconfig *netconf,
const char *host);

struct tsol_rpcblist *rpcb_getallmaps(const struct netconfig
*netconf, const char *host);

bool_t rpcb_getaddr(const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf, struct netbuf *ssvcaddr,
const char *host);

bool_t rpcb_gettime(const char *host, time_t *timep);

enum clnt_stat rpcb_rmtcall(const struct netconfig *netconf, const
char *host, const rpcprog_t prognum, const rpcvers_t versnum,
const rpcproc_t procnum, const xdrproc_t inproc, const caddr_t
in, const xdrproc_t outproc, caddr_t out, const struct timeval
tout, struct netbuf *svcaddr);

bool_t rpcb_set(const rpcprog_t prognum, const rpcvers_t versnum,
const struct netconfig *netconf, const struct netbuf *svcaddr);

bool_t rpcb_unset(const rpcprog_t prognum, const rpcvers_t versnum,
const struct netconfig *netconf);

These routines allow client C programs to make procedure calls to the RPC binder
service. rpcbind maintains a list of mappings between programs and their universal
addresses. See rpcbind(1M).

#include <rpc/rpc.h>

rpcb_getmaps()
An interface to the rpcbind service, which returns a list of the current RPC
program-to-address mappings on host. It uses the transport specified through
netconf to contact the remote rpcbind service on host. This routine will return NULL
if the remote rpcbind could not be contacted.

This interface returns all the mappings at the client’s sensitivity label, and all
multilevel mappings.

rpcb_getallmaps()
This interface to the rpcbind service returns a list of the current RPC
program-to-address mappings on host. This interface uses the transport specified
through netconf to contact the remote rpcbind service on host. This routine returns
all the mappings at sensitivity labels dominated by the client’s sensitivity label and
all multilevel mappings. If the client has the PRIV_NET_MAC_READ privilege, all
mappings are returned regardless of their sensitivity labels. This routine will return
NULL if the remote rpcbind could not be contacted.

rpcb_getallmaps(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Routines

Introduction to Library Functions 787

rpcb_getaddr()
An interface to the rpcbind service, which finds the address of the service on host
that is registered with program number prognum, version versnum, and speaks the
transport protocol associated with netconf. The address found is returned in svcaddr.
svcaddr should be preallocated. This routine returns TRUE if it succeeds. A return
value of FALSE means that the mapping does not exist, that no mapping exists at
the sensitivity label of the client and no multilabel mapping exists, or that the RPC
system failed to contact the remote rpcbind service. In the last case, the global
variable rpc_createerr contains the RPC status. See rpc_clnt_create(3NSL).

If both a mapping at the sensitivity label of the client and a multilevel mapping
exist, the mapping at the sensitivity label of the client is returned.

rpcb_gettime()
This routine returns the time on host in timep. If host is NULL, rpcb_gettime()
returns the time on its own machine. This routine returns TRUE if it succeeds,
FALSE if it fails. rpcb_gettime() can be used to synchronize the time between
the client and the remote server. This routine is particularly useful for secure RPC.

rpcb_rmtcall()
An interface to the rpcbind service, which instructs rpcbind on host to make an
RPC call on your behalf to a procedure on that host. The netconfig structure
should correspond to a connectionless transport. The parameter *svcaddr will be
modified to the server’s address if the procedure succeeds. See rpc_call() and
clnt_call() in rpc_clnt_calls(3NSL) for the definitions of other parameters.

This procedure should normally be used for a “ping” and nothing else. This routine
allows programs to do lookup and call, all in one step.

Note – Even if the server is not running rpcbind does not return any error
messages to the caller. In such a case, the caller times out.

Trusted Solaris Note: If there is no mapping at the sensitivity label of the client and
no multilevel mapping, rpcbind does not return any error messages to the caller.
In such a case, the caller times out.

Note: rpcb_rmtcall() is only available for connectionless transports.

rpcb_set()
An interface to the rpcbind service, which establishes a mapping between the
triple [prognum, versnum, netconf⇒nc_netid] and svcaddr on the machine’s rpcbind
service. The value of nc_netid must correspond to a network identifier that is
defined by the netconfig database.

If the client has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a privileged port, the client must
have the PRIV_NET_PRIVADDR privilege.

rpcb_getallmaps(3NSL)

788 man pages section 3: Library Functions • Last Revised 1 May 2000

This routine returns TRUE if it succeeds, FALSE otherwise. See also svc_reg() in
rpc_svc_calls(3NSL). If there already exists such an entry with rpcbind,
rpcb_set() will fail.

rpcb_unset()
An interface to the rpcbind service, which destroys the mapping between the
triple [prognum, versnum, netconf⇒nc_netid] and the address on the machine’s
rpcbind service. If netconf is NULL, rpcb_unset() destroys all mapping between
the triple [prognum, versnum, all-transports] and the addresses on the machine’s
rpcbind service.

The PRIV_NET_MAC_READ privilege is required to delete a multilevel mapping. If
the mapping being deleted is for a privileged port, the client must have the
PRIV_NET_PRIVADDR privilege.

This routine returns TRUE if it succeeds, FALSE otherwise. Only the owner of the
service or a process with the PRIV_NET_SETID privilege can destroy the mapping.
See also svc_unreg() in rpc_svc_calls(3NSL).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind services operate only on mappings that either match the sensitivity
label of the client or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind
services. If the privilege is asserted when rpcb_set() is called, a multilevel mapping
is created. To delete a multilevel mapping, rpcb_unset() must be called with the
privilege on.

The PRIV_NET_PRIVADDR privilege is required for rpcb_set() or rpcb_unset()
calls that create or delete mappings for a privileged port.

The PRIV_NET_SETID privilege is required by rpcb_unset() for anyone other than
the owner of a mapping to delete the mapping.

rpcbind(1M), rpcinfo(1M), rpc_clnt_calls(3NSL), rpc_clnt_create(3NSL),
rpc_svc_calls(3NSL)

attributes(5)

rpcb_getallmaps(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 789

rpcbind, rpcb_getmaps, rpcb_getallmaps, rpcb_getaddr, rpcb_gettime, rpcb_rmtcall,
rpcb_set, rpcb_unset – Library routines for RPC bind service

#include <rpc/rpc.h>

struct rpcblist *rpcb_getmaps(const struct netconfig *netconf,
const char *host);

struct tsol_rpcblist *rpcb_getallmaps(const struct netconfig
*netconf, const char *host);

bool_t rpcb_getaddr(const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf, struct netbuf *ssvcaddr,
const char *host);

bool_t rpcb_gettime(const char *host, time_t *timep);

enum clnt_stat rpcb_rmtcall(const struct netconfig *netconf, const
char *host, const rpcprog_t prognum, const rpcvers_t versnum,
const rpcproc_t procnum, const xdrproc_t inproc, const caddr_t
in, const xdrproc_t outproc, caddr_t out, const struct timeval
tout, struct netbuf *svcaddr);

bool_t rpcb_set(const rpcprog_t prognum, const rpcvers_t versnum,
const struct netconfig *netconf, const struct netbuf *svcaddr);

bool_t rpcb_unset(const rpcprog_t prognum, const rpcvers_t versnum,
const struct netconfig *netconf);

These routines allow client C programs to make procedure calls to the RPC binder
service. rpcbind maintains a list of mappings between programs and their universal
addresses. See rpcbind(1M).

#include <rpc/rpc.h>

rpcb_getmaps()
An interface to the rpcbind service, which returns a list of the current RPC
program-to-address mappings on host. It uses the transport specified through
netconf to contact the remote rpcbind service on host. This routine will return NULL
if the remote rpcbind could not be contacted.

This interface returns all the mappings at the client’s sensitivity label, and all
multilevel mappings.

rpcb_getallmaps()
This interface to the rpcbind service returns a list of the current RPC
program-to-address mappings on host. This interface uses the transport specified
through netconf to contact the remote rpcbind service on host. This routine returns
all the mappings at sensitivity labels dominated by the client’s sensitivity label and
all multilevel mappings. If the client has the PRIV_NET_MAC_READ privilege, all
mappings are returned regardless of their sensitivity labels. This routine will return
NULL if the remote rpcbind could not be contacted.

rpcb_getmaps(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Routines

790 man pages section 3: Library Functions • Last Revised 1 May 2000

rpcb_getaddr()
An interface to the rpcbind service, which finds the address of the service on host
that is registered with program number prognum, version versnum, and speaks the
transport protocol associated with netconf. The address found is returned in svcaddr.
svcaddr should be preallocated. This routine returns TRUE if it succeeds. A return
value of FALSE means that the mapping does not exist, that no mapping exists at
the sensitivity label of the client and no multilabel mapping exists, or that the RPC
system failed to contact the remote rpcbind service. In the last case, the global
variable rpc_createerr contains the RPC status. See rpc_clnt_create(3NSL).

If both a mapping at the sensitivity label of the client and a multilevel mapping
exist, the mapping at the sensitivity label of the client is returned.

rpcb_gettime()
This routine returns the time on host in timep. If host is NULL, rpcb_gettime()
returns the time on its own machine. This routine returns TRUE if it succeeds,
FALSE if it fails. rpcb_gettime() can be used to synchronize the time between
the client and the remote server. This routine is particularly useful for secure RPC.

rpcb_rmtcall()
An interface to the rpcbind service, which instructs rpcbind on host to make an
RPC call on your behalf to a procedure on that host. The netconfig structure
should correspond to a connectionless transport. The parameter *svcaddr will be
modified to the server’s address if the procedure succeeds. See rpc_call() and
clnt_call() in rpc_clnt_calls(3NSL) for the definitions of other parameters.

This procedure should normally be used for a “ping” and nothing else. This routine
allows programs to do lookup and call, all in one step.

Note – Even if the server is not running rpcbind does not return any error
messages to the caller. In such a case, the caller times out.

Trusted Solaris Note: If there is no mapping at the sensitivity label of the client and
no multilevel mapping, rpcbind does not return any error messages to the caller.
In such a case, the caller times out.

Note: rpcb_rmtcall() is only available for connectionless transports.

rpcb_set()
An interface to the rpcbind service, which establishes a mapping between the
triple [prognum, versnum, netconf⇒nc_netid] and svcaddr on the machine’s rpcbind
service. The value of nc_netid must correspond to a network identifier that is
defined by the netconfig database.

If the client has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a privileged port, the client must
have the PRIV_NET_PRIVADDR privilege.

rpcb_getmaps(3NSL)

Introduction to Library Functions 791

This routine returns TRUE if it succeeds, FALSE otherwise. See also svc_reg() in
rpc_svc_calls(3NSL). If there already exists such an entry with rpcbind,
rpcb_set() will fail.

rpcb_unset()
An interface to the rpcbind service, which destroys the mapping between the
triple [prognum, versnum, netconf⇒nc_netid] and the address on the machine’s
rpcbind service. If netconf is NULL, rpcb_unset() destroys all mapping between
the triple [prognum, versnum, all-transports] and the addresses on the machine’s
rpcbind service.

The PRIV_NET_MAC_READ privilege is required to delete a multilevel mapping. If
the mapping being deleted is for a privileged port, the client must have the
PRIV_NET_PRIVADDR privilege.

This routine returns TRUE if it succeeds, FALSE otherwise. Only the owner of the
service or a process with the PRIV_NET_SETID privilege can destroy the mapping.
See also svc_unreg() in rpc_svc_calls(3NSL).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind services operate only on mappings that either match the sensitivity
label of the client or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind
services. If the privilege is asserted when rpcb_set() is called, a multilevel mapping
is created. To delete a multilevel mapping, rpcb_unset() must be called with the
privilege on.

The PRIV_NET_PRIVADDR privilege is required for rpcb_set() or rpcb_unset()
calls that create or delete mappings for a privileged port.

The PRIV_NET_SETID privilege is required by rpcb_unset() for anyone other than
the owner of a mapping to delete the mapping.

rpcbind(1M), rpcinfo(1M), rpc_clnt_calls(3NSL), rpc_clnt_create(3NSL),
rpc_svc_calls(3NSL)

attributes(5)

rpcb_getmaps(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

792 man pages section 3: Library Functions • Last Revised 1 May 2000

rpcbind, rpcb_getmaps, rpcb_getallmaps, rpcb_getaddr, rpcb_gettime, rpcb_rmtcall,
rpcb_set, rpcb_unset – Library routines for RPC bind service

#include <rpc/rpc.h>

struct rpcblist *rpcb_getmaps(const struct netconfig *netconf,
const char *host);

struct tsol_rpcblist *rpcb_getallmaps(const struct netconfig
*netconf, const char *host);

bool_t rpcb_getaddr(const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf, struct netbuf *ssvcaddr,
const char *host);

bool_t rpcb_gettime(const char *host, time_t *timep);

enum clnt_stat rpcb_rmtcall(const struct netconfig *netconf, const
char *host, const rpcprog_t prognum, const rpcvers_t versnum,
const rpcproc_t procnum, const xdrproc_t inproc, const caddr_t
in, const xdrproc_t outproc, caddr_t out, const struct timeval
tout, struct netbuf *svcaddr);

bool_t rpcb_set(const rpcprog_t prognum, const rpcvers_t versnum,
const struct netconfig *netconf, const struct netbuf *svcaddr);

bool_t rpcb_unset(const rpcprog_t prognum, const rpcvers_t versnum,
const struct netconfig *netconf);

These routines allow client C programs to make procedure calls to the RPC binder
service. rpcbind maintains a list of mappings between programs and their universal
addresses. See rpcbind(1M).

#include <rpc/rpc.h>

rpcb_getmaps()
An interface to the rpcbind service, which returns a list of the current RPC
program-to-address mappings on host. It uses the transport specified through
netconf to contact the remote rpcbind service on host. This routine will return NULL
if the remote rpcbind could not be contacted.

This interface returns all the mappings at the client’s sensitivity label, and all
multilevel mappings.

rpcb_getallmaps()
This interface to the rpcbind service returns a list of the current RPC
program-to-address mappings on host. This interface uses the transport specified
through netconf to contact the remote rpcbind service on host. This routine returns
all the mappings at sensitivity labels dominated by the client’s sensitivity label and
all multilevel mappings. If the client has the PRIV_NET_MAC_READ privilege, all
mappings are returned regardless of their sensitivity labels. This routine will return
NULL if the remote rpcbind could not be contacted.

rpcb_gettime(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Routines

Introduction to Library Functions 793

rpcb_getaddr()
An interface to the rpcbind service, which finds the address of the service on host
that is registered with program number prognum, version versnum, and speaks the
transport protocol associated with netconf. The address found is returned in svcaddr.
svcaddr should be preallocated. This routine returns TRUE if it succeeds. A return
value of FALSE means that the mapping does not exist, that no mapping exists at
the sensitivity label of the client and no multilabel mapping exists, or that the RPC
system failed to contact the remote rpcbind service. In the last case, the global
variable rpc_createerr contains the RPC status. See rpc_clnt_create(3NSL).

If both a mapping at the sensitivity label of the client and a multilevel mapping
exist, the mapping at the sensitivity label of the client is returned.

rpcb_gettime()
This routine returns the time on host in timep. If host is NULL, rpcb_gettime()
returns the time on its own machine. This routine returns TRUE if it succeeds,
FALSE if it fails. rpcb_gettime() can be used to synchronize the time between
the client and the remote server. This routine is particularly useful for secure RPC.

rpcb_rmtcall()
An interface to the rpcbind service, which instructs rpcbind on host to make an
RPC call on your behalf to a procedure on that host. The netconfig structure
should correspond to a connectionless transport. The parameter *svcaddr will be
modified to the server’s address if the procedure succeeds. See rpc_call() and
clnt_call() in rpc_clnt_calls(3NSL) for the definitions of other parameters.

This procedure should normally be used for a “ping” and nothing else. This routine
allows programs to do lookup and call, all in one step.

Note – Even if the server is not running rpcbind does not return any error
messages to the caller. In such a case, the caller times out.

Trusted Solaris Note: If there is no mapping at the sensitivity label of the client and
no multilevel mapping, rpcbind does not return any error messages to the caller.
In such a case, the caller times out.

Note: rpcb_rmtcall() is only available for connectionless transports.

rpcb_set()
An interface to the rpcbind service, which establishes a mapping between the
triple [prognum, versnum, netconf⇒nc_netid] and svcaddr on the machine’s rpcbind
service. The value of nc_netid must correspond to a network identifier that is
defined by the netconfig database.

If the client has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a privileged port, the client must
have the PRIV_NET_PRIVADDR privilege.

rpcb_gettime(3NSL)

794 man pages section 3: Library Functions • Last Revised 1 May 2000

This routine returns TRUE if it succeeds, FALSE otherwise. See also svc_reg() in
rpc_svc_calls(3NSL). If there already exists such an entry with rpcbind,
rpcb_set() will fail.

rpcb_unset()
An interface to the rpcbind service, which destroys the mapping between the
triple [prognum, versnum, netconf⇒nc_netid] and the address on the machine’s
rpcbind service. If netconf is NULL, rpcb_unset() destroys all mapping between
the triple [prognum, versnum, all-transports] and the addresses on the machine’s
rpcbind service.

The PRIV_NET_MAC_READ privilege is required to delete a multilevel mapping. If
the mapping being deleted is for a privileged port, the client must have the
PRIV_NET_PRIVADDR privilege.

This routine returns TRUE if it succeeds, FALSE otherwise. Only the owner of the
service or a process with the PRIV_NET_SETID privilege can destroy the mapping.
See also svc_unreg() in rpc_svc_calls(3NSL).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind services operate only on mappings that either match the sensitivity
label of the client or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind
services. If the privilege is asserted when rpcb_set() is called, a multilevel mapping
is created. To delete a multilevel mapping, rpcb_unset() must be called with the
privilege on.

The PRIV_NET_PRIVADDR privilege is required for rpcb_set() or rpcb_unset()
calls that create or delete mappings for a privileged port.

The PRIV_NET_SETID privilege is required by rpcb_unset() for anyone other than
the owner of a mapping to delete the mapping.

rpcbind(1M), rpcinfo(1M), rpc_clnt_calls(3NSL), rpc_clnt_create(3NSL),
rpc_svc_calls(3NSL)

attributes(5)

rpcb_gettime(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 795

rpcbind, rpcb_getmaps, rpcb_getallmaps, rpcb_getaddr, rpcb_gettime, rpcb_rmtcall,
rpcb_set, rpcb_unset – Library routines for RPC bind service

#include <rpc/rpc.h>

struct rpcblist *rpcb_getmaps(const struct netconfig *netconf,
const char *host);

struct tsol_rpcblist *rpcb_getallmaps(const struct netconfig
*netconf, const char *host);

bool_t rpcb_getaddr(const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf, struct netbuf *ssvcaddr,
const char *host);

bool_t rpcb_gettime(const char *host, time_t *timep);

enum clnt_stat rpcb_rmtcall(const struct netconfig *netconf, const
char *host, const rpcprog_t prognum, const rpcvers_t versnum,
const rpcproc_t procnum, const xdrproc_t inproc, const caddr_t
in, const xdrproc_t outproc, caddr_t out, const struct timeval
tout, struct netbuf *svcaddr);

bool_t rpcb_set(const rpcprog_t prognum, const rpcvers_t versnum,
const struct netconfig *netconf, const struct netbuf *svcaddr);

bool_t rpcb_unset(const rpcprog_t prognum, const rpcvers_t versnum,
const struct netconfig *netconf);

These routines allow client C programs to make procedure calls to the RPC binder
service. rpcbind maintains a list of mappings between programs and their universal
addresses. See rpcbind(1M).

#include <rpc/rpc.h>

rpcb_getmaps()
An interface to the rpcbind service, which returns a list of the current RPC
program-to-address mappings on host. It uses the transport specified through
netconf to contact the remote rpcbind service on host. This routine will return NULL
if the remote rpcbind could not be contacted.

This interface returns all the mappings at the client’s sensitivity label, and all
multilevel mappings.

rpcb_getallmaps()
This interface to the rpcbind service returns a list of the current RPC
program-to-address mappings on host. This interface uses the transport specified
through netconf to contact the remote rpcbind service on host. This routine returns
all the mappings at sensitivity labels dominated by the client’s sensitivity label and
all multilevel mappings. If the client has the PRIV_NET_MAC_READ privilege, all
mappings are returned regardless of their sensitivity labels. This routine will return
NULL if the remote rpcbind could not be contacted.

rpcbind(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Routines

796 man pages section 3: Library Functions • Last Revised 1 May 2000

rpcb_getaddr()
An interface to the rpcbind service, which finds the address of the service on host
that is registered with program number prognum, version versnum, and speaks the
transport protocol associated with netconf. The address found is returned in svcaddr.
svcaddr should be preallocated. This routine returns TRUE if it succeeds. A return
value of FALSE means that the mapping does not exist, that no mapping exists at
the sensitivity label of the client and no multilabel mapping exists, or that the RPC
system failed to contact the remote rpcbind service. In the last case, the global
variable rpc_createerr contains the RPC status. See rpc_clnt_create(3NSL).

If both a mapping at the sensitivity label of the client and a multilevel mapping
exist, the mapping at the sensitivity label of the client is returned.

rpcb_gettime()
This routine returns the time on host in timep. If host is NULL, rpcb_gettime()
returns the time on its own machine. This routine returns TRUE if it succeeds,
FALSE if it fails. rpcb_gettime() can be used to synchronize the time between
the client and the remote server. This routine is particularly useful for secure RPC.

rpcb_rmtcall()
An interface to the rpcbind service, which instructs rpcbind on host to make an
RPC call on your behalf to a procedure on that host. The netconfig structure
should correspond to a connectionless transport. The parameter *svcaddr will be
modified to the server’s address if the procedure succeeds. See rpc_call() and
clnt_call() in rpc_clnt_calls(3NSL) for the definitions of other parameters.

This procedure should normally be used for a “ping” and nothing else. This routine
allows programs to do lookup and call, all in one step.

Note – Even if the server is not running rpcbind does not return any error
messages to the caller. In such a case, the caller times out.

Trusted Solaris Note: If there is no mapping at the sensitivity label of the client and
no multilevel mapping, rpcbind does not return any error messages to the caller.
In such a case, the caller times out.

Note: rpcb_rmtcall() is only available for connectionless transports.

rpcb_set()
An interface to the rpcbind service, which establishes a mapping between the
triple [prognum, versnum, netconf⇒nc_netid] and svcaddr on the machine’s rpcbind
service. The value of nc_netid must correspond to a network identifier that is
defined by the netconfig database.

If the client has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a privileged port, the client must
have the PRIV_NET_PRIVADDR privilege.

rpcbind(3NSL)

Introduction to Library Functions 797

This routine returns TRUE if it succeeds, FALSE otherwise. See also svc_reg() in
rpc_svc_calls(3NSL). If there already exists such an entry with rpcbind,
rpcb_set() will fail.

rpcb_unset()
An interface to the rpcbind service, which destroys the mapping between the
triple [prognum, versnum, netconf⇒nc_netid] and the address on the machine’s
rpcbind service. If netconf is NULL, rpcb_unset() destroys all mapping between
the triple [prognum, versnum, all-transports] and the addresses on the machine’s
rpcbind service.

The PRIV_NET_MAC_READ privilege is required to delete a multilevel mapping. If
the mapping being deleted is for a privileged port, the client must have the
PRIV_NET_PRIVADDR privilege.

This routine returns TRUE if it succeeds, FALSE otherwise. Only the owner of the
service or a process with the PRIV_NET_SETID privilege can destroy the mapping.
See also svc_unreg() in rpc_svc_calls(3NSL).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind services operate only on mappings that either match the sensitivity
label of the client or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind
services. If the privilege is asserted when rpcb_set() is called, a multilevel mapping
is created. To delete a multilevel mapping, rpcb_unset() must be called with the
privilege on.

The PRIV_NET_PRIVADDR privilege is required for rpcb_set() or rpcb_unset()
calls that create or delete mappings for a privileged port.

The PRIV_NET_SETID privilege is required by rpcb_unset() for anyone other than
the owner of a mapping to delete the mapping.

rpcbind(1M), rpcinfo(1M), rpc_clnt_calls(3NSL), rpc_clnt_create(3NSL),
rpc_svc_calls(3NSL)

attributes(5)

rpcbind(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

798 man pages section 3: Library Functions • Last Revised 1 May 2000

rpcbind, rpcb_getmaps, rpcb_getallmaps, rpcb_getaddr, rpcb_gettime, rpcb_rmtcall,
rpcb_set, rpcb_unset – Library routines for RPC bind service

#include <rpc/rpc.h>

struct rpcblist *rpcb_getmaps(const struct netconfig *netconf,
const char *host);

struct tsol_rpcblist *rpcb_getallmaps(const struct netconfig
*netconf, const char *host);

bool_t rpcb_getaddr(const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf, struct netbuf *ssvcaddr,
const char *host);

bool_t rpcb_gettime(const char *host, time_t *timep);

enum clnt_stat rpcb_rmtcall(const struct netconfig *netconf, const
char *host, const rpcprog_t prognum, const rpcvers_t versnum,
const rpcproc_t procnum, const xdrproc_t inproc, const caddr_t
in, const xdrproc_t outproc, caddr_t out, const struct timeval
tout, struct netbuf *svcaddr);

bool_t rpcb_set(const rpcprog_t prognum, const rpcvers_t versnum,
const struct netconfig *netconf, const struct netbuf *svcaddr);

bool_t rpcb_unset(const rpcprog_t prognum, const rpcvers_t versnum,
const struct netconfig *netconf);

These routines allow client C programs to make procedure calls to the RPC binder
service. rpcbind maintains a list of mappings between programs and their universal
addresses. See rpcbind(1M).

#include <rpc/rpc.h>

rpcb_getmaps()
An interface to the rpcbind service, which returns a list of the current RPC
program-to-address mappings on host. It uses the transport specified through
netconf to contact the remote rpcbind service on host. This routine will return NULL
if the remote rpcbind could not be contacted.

This interface returns all the mappings at the client’s sensitivity label, and all
multilevel mappings.

rpcb_getallmaps()
This interface to the rpcbind service returns a list of the current RPC
program-to-address mappings on host. This interface uses the transport specified
through netconf to contact the remote rpcbind service on host. This routine returns
all the mappings at sensitivity labels dominated by the client’s sensitivity label and
all multilevel mappings. If the client has the PRIV_NET_MAC_READ privilege, all
mappings are returned regardless of their sensitivity labels. This routine will return
NULL if the remote rpcbind could not be contacted.

rpcb_rmtcall(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Routines

Introduction to Library Functions 799

rpcb_getaddr()
An interface to the rpcbind service, which finds the address of the service on host
that is registered with program number prognum, version versnum, and speaks the
transport protocol associated with netconf. The address found is returned in svcaddr.
svcaddr should be preallocated. This routine returns TRUE if it succeeds. A return
value of FALSE means that the mapping does not exist, that no mapping exists at
the sensitivity label of the client and no multilabel mapping exists, or that the RPC
system failed to contact the remote rpcbind service. In the last case, the global
variable rpc_createerr contains the RPC status. See rpc_clnt_create(3NSL).

If both a mapping at the sensitivity label of the client and a multilevel mapping
exist, the mapping at the sensitivity label of the client is returned.

rpcb_gettime()
This routine returns the time on host in timep. If host is NULL, rpcb_gettime()
returns the time on its own machine. This routine returns TRUE if it succeeds,
FALSE if it fails. rpcb_gettime() can be used to synchronize the time between
the client and the remote server. This routine is particularly useful for secure RPC.

rpcb_rmtcall()
An interface to the rpcbind service, which instructs rpcbind on host to make an
RPC call on your behalf to a procedure on that host. The netconfig structure
should correspond to a connectionless transport. The parameter *svcaddr will be
modified to the server’s address if the procedure succeeds. See rpc_call() and
clnt_call() in rpc_clnt_calls(3NSL) for the definitions of other parameters.

This procedure should normally be used for a “ping” and nothing else. This routine
allows programs to do lookup and call, all in one step.

Note – Even if the server is not running rpcbind does not return any error
messages to the caller. In such a case, the caller times out.

Trusted Solaris Note: If there is no mapping at the sensitivity label of the client and
no multilevel mapping, rpcbind does not return any error messages to the caller.
In such a case, the caller times out.

Note: rpcb_rmtcall() is only available for connectionless transports.

rpcb_set()
An interface to the rpcbind service, which establishes a mapping between the
triple [prognum, versnum, netconf⇒nc_netid] and svcaddr on the machine’s rpcbind
service. The value of nc_netid must correspond to a network identifier that is
defined by the netconfig database.

If the client has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a privileged port, the client must
have the PRIV_NET_PRIVADDR privilege.

rpcb_rmtcall(3NSL)

800 man pages section 3: Library Functions • Last Revised 1 May 2000

This routine returns TRUE if it succeeds, FALSE otherwise. See also svc_reg() in
rpc_svc_calls(3NSL). If there already exists such an entry with rpcbind,
rpcb_set() will fail.

rpcb_unset()
An interface to the rpcbind service, which destroys the mapping between the
triple [prognum, versnum, netconf⇒nc_netid] and the address on the machine’s
rpcbind service. If netconf is NULL, rpcb_unset() destroys all mapping between
the triple [prognum, versnum, all-transports] and the addresses on the machine’s
rpcbind service.

The PRIV_NET_MAC_READ privilege is required to delete a multilevel mapping. If
the mapping being deleted is for a privileged port, the client must have the
PRIV_NET_PRIVADDR privilege.

This routine returns TRUE if it succeeds, FALSE otherwise. Only the owner of the
service or a process with the PRIV_NET_SETID privilege can destroy the mapping.
See also svc_unreg() in rpc_svc_calls(3NSL).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind services operate only on mappings that either match the sensitivity
label of the client or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind
services. If the privilege is asserted when rpcb_set() is called, a multilevel mapping
is created. To delete a multilevel mapping, rpcb_unset() must be called with the
privilege on.

The PRIV_NET_PRIVADDR privilege is required for rpcb_set() or rpcb_unset()
calls that create or delete mappings for a privileged port.

The PRIV_NET_SETID privilege is required by rpcb_unset() for anyone other than
the owner of a mapping to delete the mapping.

rpcbind(1M), rpcinfo(1M), rpc_clnt_calls(3NSL), rpc_clnt_create(3NSL),
rpc_svc_calls(3NSL)

attributes(5)

rpcb_rmtcall(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 801

rpc_clnt_calls, clnt_call, clnt_freeres, clnt_geterr, clnt_perrno, clnt_perror, clnt_sperrno,
clnt_sperror, rpc_broadcast, rpc_broadcast_exp, rpc_call – Library routines for client
side calls

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First, the client calls a procedure to send a request to the
server. Upon receipt of the request, the server calls a dispatch routine to perform the
requested service, and then sends back a reply.

The clnt_call(), rpc_call(), and rpc_broadcast() routines handle the client
side of the procedure call. The remaining routines deal with error handling in the case
of errors.

Some of the routines take a CLIENT handle as one of the parameters. A CLIENT
handle can be created by an RPC creation routine such as clnt_create() (see
rpc_clnt_create(3NSL)).

These routines are safe for use in multithreaded applications. CLIENT handles can be
shared between threads, however in this implementation requests by different threads
are serialized (that is, the first request will receive its results before the second request
is sent).

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

enum clnt_stat clnt_call(CLIENT *clnt, const rpcproc_t procnum, const xdrproc_t inproc,
const caddr_t in, const xdrproc_t outproc, caddr_t out, const struct timeval tout);

A function macro that calls the remote procedure procnum associated with the client
handle, clnt, which is obtained with an RPC client creation routine such as
clnt_create() (see rpc_clnt_create(3NSL)). The parameter inproc is the
XDR function used to encode the procedure’s parameters, and outproc is the XDR
function used to decode the procedure’s results; in is the address of the procedure’s
argument(s), and out is the address of where to place the result(s). tout is the time
allowed for results to be returned, which is overridden by a time-out set explicitly
through clnt_control(), see rpc_clnt_create(3NSL) .

If the remote call succeeds, the status returned is RPC_SUCCESS, otherwise an
appropriate status is returned.

bool_t clnt_freeres(CLIENT *clnt, const xdrproc_t outproc, caddr_t out);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the results of an RPC call. The parameter out is the address of the results,
and outproc is the XDR routine describing the results. This routine returns 1 if the
results were successfully freed, and 0 otherwise.

void clnt_geterr(const CLIENT *clnt, struct rpc_err *errp);
A function macro that copies the error structure out of the client handle to the
structure at address errp.

rpc_broadcast(3NSL)

NAME

DESCRIPTION

Routines

802 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_perrno(const enum clnt_stat stat);
Print a message to standard error corresponding to the condition indicated by stat.
A newline is appended. Normally used after a procedure call fails for a routine for
which a client handle is not needed, for instance rpc_call().

void clnt_perror(const CLIENT *clnt, const char *s);
Print a message to the standard error indicating why an RPC call failed; clnt is the
handle used to do the call. The message is prepended with string s and a colon. A
newline is appended. Normally used after a remote procedure call fails for a
routine which requires a client handle, for instance clnt_call().

char *clnt_sperrno(const enum clnt_stat stat);
Take the same arguments as clnt_perrno(), but instead of sending a message to
the standard error indicating why an RPC call failed, return a pointer to a string
which contains the message.

clnt_sperrno() is normally used instead of clnt_perrno() when the
program does not have a standard error (as a program running as a server quite
likely does not), or if the programmer does not want the message to be output with
printf() [see printf(3C)], or if a message format different than that supported
by clnt_perrno() is to be used. Note: unlike clnt_sperror() and
clnt_spcreaterror() [see rpc_clnt_create(3NSL)], clnt_sperrno()
does not return pointer to static data so the result will not get overwritten on each
call.

char *clnt_sperror(const CLIENT *clnt, const char *s);
Like clnt_perror(), except that (like clnt_sperrno()) it returns a string
instead of printing to standard error. However, clnt_sperror() does not append
a newline at the end of the message.

Warning: Returns pointer to a buffer that is overwritten on each call. In multithread
applications, this buffer is implemented as thread-specific data.

enum clnt_stat rpc_broadcast(const rpcprog_t prognum, const rpcvers_t versnum, const
rpcproc_t procnum, const xdrproc_t inproc, const caddr_t in, const xdrproc_t outproc,
caddr_t out, const resultproc_t eachresult, const char *nettype);

Like rpc_call(), except the call message is broadcast to all the connectionless
transports specified by nettype. If nettype is NULL, it defaults to "netpath. Each
time it receives a response, this routine calls eachresult(), whose form is:

bool_t eachresult(caddr_t out, const struct netbuf *addr,

const struct netconfig *netconf);where out is the same as out passed to
rpc_broadcast(), except that the remote procedure’s output is decoded there;
addr points to the address of the machine that sent the results, and netconf is the
netconfig structure of the transport on which the remote server responded. If
eachresult() returns 0, rpc_broadcast() waits for more replies; otherwise it
returns with appropriate status.

rpc_broadcast(3NSL)

Introduction to Library Functions 803

Warning: broadcast file descriptors are limited in size to the maximum transfer size
of that transport. For Ethernet, this value is 1500 bytes. rpc_broadcast() uses
AUTH_SYS credentials by default [see rpc_clnt_auth(3NSL)].

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_broadcast_exp(const rpcprog_t prognum, const rpcvers_t versnum,
const rpcproc_t procnum, const xdrproc_t xargs, caddr_t argsp, const xdrproc_t xresults,
caddr_t resultsp, const resultproc_t eachresult, const int inittime, const int waittime, const
char *nettype);

Like rpc_broadcast(), except that the initial timeout, inittime and the maximum
timeout, waittime are specified in milliseconds.

inittime is the initial time that rpc_broadcast_exp() waits before resending the
request. After the first resend, the re-transmission interval increases exponentially
until it exceeds waittime.

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_call(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const rpcproc_t procnum, const xdrproc_t inproc, const char *in, const
xdrproc_t outproc, char *out, const char *nettype);

Call the remote procedure associated with prognum, versnum, and procnum on the
machine, host. The parameter inproc is used to encode the procedure’s parameters,
and outproc is used to decode the procedure’s results; in is the address of the
procedure’s argument(s), and out is the address of where to place the result(s).
nettype can be any of the values listed on rpc(3NSL). This routine returns
RPC_SUCCESS if it succeeds, or an appropriate status is returned. Use the
clnt_perrno() routine to translate failure status into error messages.

Warning: rpc_call() uses the first available transport belonging to the class
nettype, on which it can create a connection. You do not have control of timeouts or
authentication using this routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel. rpc_broadcast() and
rpc_broadcast_exp() require the PRIV_NET_BROADCAST privilege.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate

rpc_broadcast(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

804 man pages section 3: Library Functions • Last Revised 1 May 2000

attribute-control structures and set the t6attr_t pointers in the CLIENT structure.
When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpc(3NSL), rpc_clnt_create(3NSL), libt6(3NSL), t6alloc_blk(3NSL),
t6free_blk(3NSL)

printf(3C), rpc_clnt_auth(3NSL), attributes(5)

rpc_broadcast(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 805

rpc_clnt_calls, clnt_call, clnt_freeres, clnt_geterr, clnt_perrno, clnt_perror, clnt_sperrno,
clnt_sperror, rpc_broadcast, rpc_broadcast_exp, rpc_call – Library routines for client
side calls

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First, the client calls a procedure to send a request to the
server. Upon receipt of the request, the server calls a dispatch routine to perform the
requested service, and then sends back a reply.

The clnt_call(), rpc_call(), and rpc_broadcast() routines handle the client
side of the procedure call. The remaining routines deal with error handling in the case
of errors.

Some of the routines take a CLIENT handle as one of the parameters. A CLIENT
handle can be created by an RPC creation routine such as clnt_create() (see
rpc_clnt_create(3NSL)).

These routines are safe for use in multithreaded applications. CLIENT handles can be
shared between threads, however in this implementation requests by different threads
are serialized (that is, the first request will receive its results before the second request
is sent).

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

enum clnt_stat clnt_call(CLIENT *clnt, const rpcproc_t procnum, const xdrproc_t inproc,
const caddr_t in, const xdrproc_t outproc, caddr_t out, const struct timeval tout);

A function macro that calls the remote procedure procnum associated with the client
handle, clnt, which is obtained with an RPC client creation routine such as
clnt_create() (see rpc_clnt_create(3NSL)). The parameter inproc is the
XDR function used to encode the procedure’s parameters, and outproc is the XDR
function used to decode the procedure’s results; in is the address of the procedure’s
argument(s), and out is the address of where to place the result(s). tout is the time
allowed for results to be returned, which is overridden by a time-out set explicitly
through clnt_control(), see rpc_clnt_create(3NSL) .

If the remote call succeeds, the status returned is RPC_SUCCESS, otherwise an
appropriate status is returned.

bool_t clnt_freeres(CLIENT *clnt, const xdrproc_t outproc, caddr_t out);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the results of an RPC call. The parameter out is the address of the results,
and outproc is the XDR routine describing the results. This routine returns 1 if the
results were successfully freed, and 0 otherwise.

void clnt_geterr(const CLIENT *clnt, struct rpc_err *errp);
A function macro that copies the error structure out of the client handle to the
structure at address errp.

rpc_broadcast_exp(3NSL)

NAME

DESCRIPTION

Routines

806 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_perrno(const enum clnt_stat stat);
Print a message to standard error corresponding to the condition indicated by stat.
A newline is appended. Normally used after a procedure call fails for a routine for
which a client handle is not needed, for instance rpc_call().

void clnt_perror(const CLIENT *clnt, const char *s);
Print a message to the standard error indicating why an RPC call failed; clnt is the
handle used to do the call. The message is prepended with string s and a colon. A
newline is appended. Normally used after a remote procedure call fails for a
routine which requires a client handle, for instance clnt_call().

char *clnt_sperrno(const enum clnt_stat stat);
Take the same arguments as clnt_perrno(), but instead of sending a message to
the standard error indicating why an RPC call failed, return a pointer to a string
which contains the message.

clnt_sperrno() is normally used instead of clnt_perrno() when the
program does not have a standard error (as a program running as a server quite
likely does not), or if the programmer does not want the message to be output with
printf() [see printf(3C)], or if a message format different than that supported
by clnt_perrno() is to be used. Note: unlike clnt_sperror() and
clnt_spcreaterror() [see rpc_clnt_create(3NSL)], clnt_sperrno()
does not return pointer to static data so the result will not get overwritten on each
call.

char *clnt_sperror(const CLIENT *clnt, const char *s);
Like clnt_perror(), except that (like clnt_sperrno()) it returns a string
instead of printing to standard error. However, clnt_sperror() does not append
a newline at the end of the message.

Warning: Returns pointer to a buffer that is overwritten on each call. In multithread
applications, this buffer is implemented as thread-specific data.

enum clnt_stat rpc_broadcast(const rpcprog_t prognum, const rpcvers_t versnum, const
rpcproc_t procnum, const xdrproc_t inproc, const caddr_t in, const xdrproc_t outproc,
caddr_t out, const resultproc_t eachresult, const char *nettype);

Like rpc_call(), except the call message is broadcast to all the connectionless
transports specified by nettype. If nettype is NULL, it defaults to "netpath. Each
time it receives a response, this routine calls eachresult(), whose form is:

bool_t eachresult(caddr_t out, const struct netbuf *addr,

const struct netconfig *netconf);where out is the same as out passed to
rpc_broadcast(), except that the remote procedure’s output is decoded there;
addr points to the address of the machine that sent the results, and netconf is the
netconfig structure of the transport on which the remote server responded. If
eachresult() returns 0, rpc_broadcast() waits for more replies; otherwise it
returns with appropriate status.

rpc_broadcast_exp(3NSL)

Introduction to Library Functions 807

Warning: broadcast file descriptors are limited in size to the maximum transfer size
of that transport. For Ethernet, this value is 1500 bytes. rpc_broadcast() uses
AUTH_SYS credentials by default [see rpc_clnt_auth(3NSL)].

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_broadcast_exp(const rpcprog_t prognum, const rpcvers_t versnum,
const rpcproc_t procnum, const xdrproc_t xargs, caddr_t argsp, const xdrproc_t xresults,
caddr_t resultsp, const resultproc_t eachresult, const int inittime, const int waittime, const
char *nettype);

Like rpc_broadcast(), except that the initial timeout, inittime and the maximum
timeout, waittime are specified in milliseconds.

inittime is the initial time that rpc_broadcast_exp() waits before resending the
request. After the first resend, the re-transmission interval increases exponentially
until it exceeds waittime.

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_call(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const rpcproc_t procnum, const xdrproc_t inproc, const char *in, const
xdrproc_t outproc, char *out, const char *nettype);

Call the remote procedure associated with prognum, versnum, and procnum on the
machine, host. The parameter inproc is used to encode the procedure’s parameters,
and outproc is used to decode the procedure’s results; in is the address of the
procedure’s argument(s), and out is the address of where to place the result(s).
nettype can be any of the values listed on rpc(3NSL). This routine returns
RPC_SUCCESS if it succeeds, or an appropriate status is returned. Use the
clnt_perrno() routine to translate failure status into error messages.

Warning: rpc_call() uses the first available transport belonging to the class
nettype, on which it can create a connection. You do not have control of timeouts or
authentication using this routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel. rpc_broadcast() and
rpc_broadcast_exp() require the PRIV_NET_BROADCAST privilege.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate

rpc_broadcast_exp(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

808 man pages section 3: Library Functions • Last Revised 1 May 2000

attribute-control structures and set the t6attr_t pointers in the CLIENT structure.
When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpc(3NSL), rpc_clnt_create(3NSL), libt6(3NSL), t6alloc_blk(3NSL),
t6free_blk(3NSL)

printf(3C), rpc_clnt_auth(3NSL), attributes(5)

rpc_broadcast_exp(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 809

rpcbind, rpcb_getmaps, rpcb_getallmaps, rpcb_getaddr, rpcb_gettime, rpcb_rmtcall,
rpcb_set, rpcb_unset – Library routines for RPC bind service

#include <rpc/rpc.h>

struct rpcblist *rpcb_getmaps(const struct netconfig *netconf,
const char *host);

struct tsol_rpcblist *rpcb_getallmaps(const struct netconfig
*netconf, const char *host);

bool_t rpcb_getaddr(const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf, struct netbuf *ssvcaddr,
const char *host);

bool_t rpcb_gettime(const char *host, time_t *timep);

enum clnt_stat rpcb_rmtcall(const struct netconfig *netconf, const
char *host, const rpcprog_t prognum, const rpcvers_t versnum,
const rpcproc_t procnum, const xdrproc_t inproc, const caddr_t
in, const xdrproc_t outproc, caddr_t out, const struct timeval
tout, struct netbuf *svcaddr);

bool_t rpcb_set(const rpcprog_t prognum, const rpcvers_t versnum,
const struct netconfig *netconf, const struct netbuf *svcaddr);

bool_t rpcb_unset(const rpcprog_t prognum, const rpcvers_t versnum,
const struct netconfig *netconf);

These routines allow client C programs to make procedure calls to the RPC binder
service. rpcbind maintains a list of mappings between programs and their universal
addresses. See rpcbind(1M).

#include <rpc/rpc.h>

rpcb_getmaps()
An interface to the rpcbind service, which returns a list of the current RPC
program-to-address mappings on host. It uses the transport specified through
netconf to contact the remote rpcbind service on host. This routine will return NULL
if the remote rpcbind could not be contacted.

This interface returns all the mappings at the client’s sensitivity label, and all
multilevel mappings.

rpcb_getallmaps()
This interface to the rpcbind service returns a list of the current RPC
program-to-address mappings on host. This interface uses the transport specified
through netconf to contact the remote rpcbind service on host. This routine returns
all the mappings at sensitivity labels dominated by the client’s sensitivity label and
all multilevel mappings. If the client has the PRIV_NET_MAC_READ privilege, all
mappings are returned regardless of their sensitivity labels. This routine will return
NULL if the remote rpcbind could not be contacted.

rpcb_set(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Routines

810 man pages section 3: Library Functions • Last Revised 1 May 2000

rpcb_getaddr()
An interface to the rpcbind service, which finds the address of the service on host
that is registered with program number prognum, version versnum, and speaks the
transport protocol associated with netconf. The address found is returned in svcaddr.
svcaddr should be preallocated. This routine returns TRUE if it succeeds. A return
value of FALSE means that the mapping does not exist, that no mapping exists at
the sensitivity label of the client and no multilabel mapping exists, or that the RPC
system failed to contact the remote rpcbind service. In the last case, the global
variable rpc_createerr contains the RPC status. See rpc_clnt_create(3NSL).

If both a mapping at the sensitivity label of the client and a multilevel mapping
exist, the mapping at the sensitivity label of the client is returned.

rpcb_gettime()
This routine returns the time on host in timep. If host is NULL, rpcb_gettime()
returns the time on its own machine. This routine returns TRUE if it succeeds,
FALSE if it fails. rpcb_gettime() can be used to synchronize the time between
the client and the remote server. This routine is particularly useful for secure RPC.

rpcb_rmtcall()
An interface to the rpcbind service, which instructs rpcbind on host to make an
RPC call on your behalf to a procedure on that host. The netconfig structure
should correspond to a connectionless transport. The parameter *svcaddr will be
modified to the server’s address if the procedure succeeds. See rpc_call() and
clnt_call() in rpc_clnt_calls(3NSL) for the definitions of other parameters.

This procedure should normally be used for a “ping” and nothing else. This routine
allows programs to do lookup and call, all in one step.

Note – Even if the server is not running rpcbind does not return any error
messages to the caller. In such a case, the caller times out.

Trusted Solaris Note: If there is no mapping at the sensitivity label of the client and
no multilevel mapping, rpcbind does not return any error messages to the caller.
In such a case, the caller times out.

Note: rpcb_rmtcall() is only available for connectionless transports.

rpcb_set()
An interface to the rpcbind service, which establishes a mapping between the
triple [prognum, versnum, netconf⇒nc_netid] and svcaddr on the machine’s rpcbind
service. The value of nc_netid must correspond to a network identifier that is
defined by the netconfig database.

If the client has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a privileged port, the client must
have the PRIV_NET_PRIVADDR privilege.

rpcb_set(3NSL)

Introduction to Library Functions 811

This routine returns TRUE if it succeeds, FALSE otherwise. See also svc_reg() in
rpc_svc_calls(3NSL). If there already exists such an entry with rpcbind,
rpcb_set() will fail.

rpcb_unset()
An interface to the rpcbind service, which destroys the mapping between the
triple [prognum, versnum, netconf⇒nc_netid] and the address on the machine’s
rpcbind service. If netconf is NULL, rpcb_unset() destroys all mapping between
the triple [prognum, versnum, all-transports] and the addresses on the machine’s
rpcbind service.

The PRIV_NET_MAC_READ privilege is required to delete a multilevel mapping. If
the mapping being deleted is for a privileged port, the client must have the
PRIV_NET_PRIVADDR privilege.

This routine returns TRUE if it succeeds, FALSE otherwise. Only the owner of the
service or a process with the PRIV_NET_SETID privilege can destroy the mapping.
See also svc_unreg() in rpc_svc_calls(3NSL).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind services operate only on mappings that either match the sensitivity
label of the client or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind
services. If the privilege is asserted when rpcb_set() is called, a multilevel mapping
is created. To delete a multilevel mapping, rpcb_unset() must be called with the
privilege on.

The PRIV_NET_PRIVADDR privilege is required for rpcb_set() or rpcb_unset()
calls that create or delete mappings for a privileged port.

The PRIV_NET_SETID privilege is required by rpcb_unset() for anyone other than
the owner of a mapping to delete the mapping.

rpcbind(1M), rpcinfo(1M), rpc_clnt_calls(3NSL), rpc_clnt_create(3NSL),
rpc_svc_calls(3NSL)

attributes(5)

rpcb_set(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

812 man pages section 3: Library Functions • Last Revised 1 May 2000

rpcbind, rpcb_getmaps, rpcb_getallmaps, rpcb_getaddr, rpcb_gettime, rpcb_rmtcall,
rpcb_set, rpcb_unset – Library routines for RPC bind service

#include <rpc/rpc.h>

struct rpcblist *rpcb_getmaps(const struct netconfig *netconf,
const char *host);

struct tsol_rpcblist *rpcb_getallmaps(const struct netconfig
*netconf, const char *host);

bool_t rpcb_getaddr(const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf, struct netbuf *ssvcaddr,
const char *host);

bool_t rpcb_gettime(const char *host, time_t *timep);

enum clnt_stat rpcb_rmtcall(const struct netconfig *netconf, const
char *host, const rpcprog_t prognum, const rpcvers_t versnum,
const rpcproc_t procnum, const xdrproc_t inproc, const caddr_t
in, const xdrproc_t outproc, caddr_t out, const struct timeval
tout, struct netbuf *svcaddr);

bool_t rpcb_set(const rpcprog_t prognum, const rpcvers_t versnum,
const struct netconfig *netconf, const struct netbuf *svcaddr);

bool_t rpcb_unset(const rpcprog_t prognum, const rpcvers_t versnum,
const struct netconfig *netconf);

These routines allow client C programs to make procedure calls to the RPC binder
service. rpcbind maintains a list of mappings between programs and their universal
addresses. See rpcbind(1M).

#include <rpc/rpc.h>

rpcb_getmaps()
An interface to the rpcbind service, which returns a list of the current RPC
program-to-address mappings on host. It uses the transport specified through
netconf to contact the remote rpcbind service on host. This routine will return NULL
if the remote rpcbind could not be contacted.

This interface returns all the mappings at the client’s sensitivity label, and all
multilevel mappings.

rpcb_getallmaps()
This interface to the rpcbind service returns a list of the current RPC
program-to-address mappings on host. This interface uses the transport specified
through netconf to contact the remote rpcbind service on host. This routine returns
all the mappings at sensitivity labels dominated by the client’s sensitivity label and
all multilevel mappings. If the client has the PRIV_NET_MAC_READ privilege, all
mappings are returned regardless of their sensitivity labels. This routine will return
NULL if the remote rpcbind could not be contacted.

rpcb_unset(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Routines

Introduction to Library Functions 813

rpcb_getaddr()
An interface to the rpcbind service, which finds the address of the service on host
that is registered with program number prognum, version versnum, and speaks the
transport protocol associated with netconf. The address found is returned in svcaddr.
svcaddr should be preallocated. This routine returns TRUE if it succeeds. A return
value of FALSE means that the mapping does not exist, that no mapping exists at
the sensitivity label of the client and no multilabel mapping exists, or that the RPC
system failed to contact the remote rpcbind service. In the last case, the global
variable rpc_createerr contains the RPC status. See rpc_clnt_create(3NSL).

If both a mapping at the sensitivity label of the client and a multilevel mapping
exist, the mapping at the sensitivity label of the client is returned.

rpcb_gettime()
This routine returns the time on host in timep. If host is NULL, rpcb_gettime()
returns the time on its own machine. This routine returns TRUE if it succeeds,
FALSE if it fails. rpcb_gettime() can be used to synchronize the time between
the client and the remote server. This routine is particularly useful for secure RPC.

rpcb_rmtcall()
An interface to the rpcbind service, which instructs rpcbind on host to make an
RPC call on your behalf to a procedure on that host. The netconfig structure
should correspond to a connectionless transport. The parameter *svcaddr will be
modified to the server’s address if the procedure succeeds. See rpc_call() and
clnt_call() in rpc_clnt_calls(3NSL) for the definitions of other parameters.

This procedure should normally be used for a “ping” and nothing else. This routine
allows programs to do lookup and call, all in one step.

Note – Even if the server is not running rpcbind does not return any error
messages to the caller. In such a case, the caller times out.

Trusted Solaris Note: If there is no mapping at the sensitivity label of the client and
no multilevel mapping, rpcbind does not return any error messages to the caller.
In such a case, the caller times out.

Note: rpcb_rmtcall() is only available for connectionless transports.

rpcb_set()
An interface to the rpcbind service, which establishes a mapping between the
triple [prognum, versnum, netconf⇒nc_netid] and svcaddr on the machine’s rpcbind
service. The value of nc_netid must correspond to a network identifier that is
defined by the netconfig database.

If the client has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a privileged port, the client must
have the PRIV_NET_PRIVADDR privilege.

rpcb_unset(3NSL)

814 man pages section 3: Library Functions • Last Revised 1 May 2000

This routine returns TRUE if it succeeds, FALSE otherwise. See also svc_reg() in
rpc_svc_calls(3NSL). If there already exists such an entry with rpcbind,
rpcb_set() will fail.

rpcb_unset()
An interface to the rpcbind service, which destroys the mapping between the
triple [prognum, versnum, netconf⇒nc_netid] and the address on the machine’s
rpcbind service. If netconf is NULL, rpcb_unset() destroys all mapping between
the triple [prognum, versnum, all-transports] and the addresses on the machine’s
rpcbind service.

The PRIV_NET_MAC_READ privilege is required to delete a multilevel mapping. If
the mapping being deleted is for a privileged port, the client must have the
PRIV_NET_PRIVADDR privilege.

This routine returns TRUE if it succeeds, FALSE otherwise. Only the owner of the
service or a process with the PRIV_NET_SETID privilege can destroy the mapping.
See also svc_unreg() in rpc_svc_calls(3NSL).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind services operate only on mappings that either match the sensitivity
label of the client or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind
services. If the privilege is asserted when rpcb_set() is called, a multilevel mapping
is created. To delete a multilevel mapping, rpcb_unset() must be called with the
privilege on.

The PRIV_NET_PRIVADDR privilege is required for rpcb_set() or rpcb_unset()
calls that create or delete mappings for a privileged port.

The PRIV_NET_SETID privilege is required by rpcb_unset() for anyone other than
the owner of a mapping to delete the mapping.

rpcbind(1M), rpcinfo(1M), rpc_clnt_calls(3NSL), rpc_clnt_create(3NSL),
rpc_svc_calls(3NSL)

attributes(5)

rpcb_unset(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 815

rpc_clnt_calls, clnt_call, clnt_freeres, clnt_geterr, clnt_perrno, clnt_perror, clnt_sperrno,
clnt_sperror, rpc_broadcast, rpc_broadcast_exp, rpc_call – Library routines for client
side calls

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First, the client calls a procedure to send a request to the
server. Upon receipt of the request, the server calls a dispatch routine to perform the
requested service, and then sends back a reply.

The clnt_call(), rpc_call(), and rpc_broadcast() routines handle the client
side of the procedure call. The remaining routines deal with error handling in the case
of errors.

Some of the routines take a CLIENT handle as one of the parameters. A CLIENT
handle can be created by an RPC creation routine such as clnt_create() (see
rpc_clnt_create(3NSL)).

These routines are safe for use in multithreaded applications. CLIENT handles can be
shared between threads, however in this implementation requests by different threads
are serialized (that is, the first request will receive its results before the second request
is sent).

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

enum clnt_stat clnt_call(CLIENT *clnt, const rpcproc_t procnum, const xdrproc_t inproc,
const caddr_t in, const xdrproc_t outproc, caddr_t out, const struct timeval tout);

A function macro that calls the remote procedure procnum associated with the client
handle, clnt, which is obtained with an RPC client creation routine such as
clnt_create() (see rpc_clnt_create(3NSL)). The parameter inproc is the
XDR function used to encode the procedure’s parameters, and outproc is the XDR
function used to decode the procedure’s results; in is the address of the procedure’s
argument(s), and out is the address of where to place the result(s). tout is the time
allowed for results to be returned, which is overridden by a time-out set explicitly
through clnt_control(), see rpc_clnt_create(3NSL) .

If the remote call succeeds, the status returned is RPC_SUCCESS, otherwise an
appropriate status is returned.

bool_t clnt_freeres(CLIENT *clnt, const xdrproc_t outproc, caddr_t out);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the results of an RPC call. The parameter out is the address of the results,
and outproc is the XDR routine describing the results. This routine returns 1 if the
results were successfully freed, and 0 otherwise.

void clnt_geterr(const CLIENT *clnt, struct rpc_err *errp);
A function macro that copies the error structure out of the client handle to the
structure at address errp.

rpc_call(3NSL)

NAME

DESCRIPTION

Routines

816 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_perrno(const enum clnt_stat stat);
Print a message to standard error corresponding to the condition indicated by stat.
A newline is appended. Normally used after a procedure call fails for a routine for
which a client handle is not needed, for instance rpc_call().

void clnt_perror(const CLIENT *clnt, const char *s);
Print a message to the standard error indicating why an RPC call failed; clnt is the
handle used to do the call. The message is prepended with string s and a colon. A
newline is appended. Normally used after a remote procedure call fails for a
routine which requires a client handle, for instance clnt_call().

char *clnt_sperrno(const enum clnt_stat stat);
Take the same arguments as clnt_perrno(), but instead of sending a message to
the standard error indicating why an RPC call failed, return a pointer to a string
which contains the message.

clnt_sperrno() is normally used instead of clnt_perrno() when the
program does not have a standard error (as a program running as a server quite
likely does not), or if the programmer does not want the message to be output with
printf() [see printf(3C)], or if a message format different than that supported
by clnt_perrno() is to be used. Note: unlike clnt_sperror() and
clnt_spcreaterror() [see rpc_clnt_create(3NSL)], clnt_sperrno()
does not return pointer to static data so the result will not get overwritten on each
call.

char *clnt_sperror(const CLIENT *clnt, const char *s);
Like clnt_perror(), except that (like clnt_sperrno()) it returns a string
instead of printing to standard error. However, clnt_sperror() does not append
a newline at the end of the message.

Warning: Returns pointer to a buffer that is overwritten on each call. In multithread
applications, this buffer is implemented as thread-specific data.

enum clnt_stat rpc_broadcast(const rpcprog_t prognum, const rpcvers_t versnum, const
rpcproc_t procnum, const xdrproc_t inproc, const caddr_t in, const xdrproc_t outproc,
caddr_t out, const resultproc_t eachresult, const char *nettype);

Like rpc_call(), except the call message is broadcast to all the connectionless
transports specified by nettype. If nettype is NULL, it defaults to "netpath. Each
time it receives a response, this routine calls eachresult(), whose form is:

bool_t eachresult(caddr_t out, const struct netbuf *addr,

const struct netconfig *netconf);where out is the same as out passed to
rpc_broadcast(), except that the remote procedure’s output is decoded there;
addr points to the address of the machine that sent the results, and netconf is the
netconfig structure of the transport on which the remote server responded. If
eachresult() returns 0, rpc_broadcast() waits for more replies; otherwise it
returns with appropriate status.

rpc_call(3NSL)

Introduction to Library Functions 817

Warning: broadcast file descriptors are limited in size to the maximum transfer size
of that transport. For Ethernet, this value is 1500 bytes. rpc_broadcast() uses
AUTH_SYS credentials by default [see rpc_clnt_auth(3NSL)].

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_broadcast_exp(const rpcprog_t prognum, const rpcvers_t versnum,
const rpcproc_t procnum, const xdrproc_t xargs, caddr_t argsp, const xdrproc_t xresults,
caddr_t resultsp, const resultproc_t eachresult, const int inittime, const int waittime, const
char *nettype);

Like rpc_broadcast(), except that the initial timeout, inittime and the maximum
timeout, waittime are specified in milliseconds.

inittime is the initial time that rpc_broadcast_exp() waits before resending the
request. After the first resend, the re-transmission interval increases exponentially
until it exceeds waittime.

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_call(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const rpcproc_t procnum, const xdrproc_t inproc, const char *in, const
xdrproc_t outproc, char *out, const char *nettype);

Call the remote procedure associated with prognum, versnum, and procnum on the
machine, host. The parameter inproc is used to encode the procedure’s parameters,
and outproc is used to decode the procedure’s results; in is the address of the
procedure’s argument(s), and out is the address of where to place the result(s).
nettype can be any of the values listed on rpc(3NSL). This routine returns
RPC_SUCCESS if it succeeds, or an appropriate status is returned. Use the
clnt_perrno() routine to translate failure status into error messages.

Warning: rpc_call() uses the first available transport belonging to the class
nettype, on which it can create a connection. You do not have control of timeouts or
authentication using this routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel. rpc_broadcast() and
rpc_broadcast_exp() require the PRIV_NET_BROADCAST privilege.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate

rpc_call(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

818 man pages section 3: Library Functions • Last Revised 1 May 2000

attribute-control structures and set the t6attr_t pointers in the CLIENT structure.
When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpc(3NSL), rpc_clnt_create(3NSL), libt6(3NSL), t6alloc_blk(3NSL),
t6free_blk(3NSL)

printf(3C), rpc_clnt_auth(3NSL), attributes(5)

rpc_call(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 819

rpc_clnt_calls, clnt_call, clnt_freeres, clnt_geterr, clnt_perrno, clnt_perror, clnt_sperrno,
clnt_sperror, rpc_broadcast, rpc_broadcast_exp, rpc_call – Library routines for client
side calls

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First, the client calls a procedure to send a request to the
server. Upon receipt of the request, the server calls a dispatch routine to perform the
requested service, and then sends back a reply.

The clnt_call(), rpc_call(), and rpc_broadcast() routines handle the client
side of the procedure call. The remaining routines deal with error handling in the case
of errors.

Some of the routines take a CLIENT handle as one of the parameters. A CLIENT
handle can be created by an RPC creation routine such as clnt_create() (see
rpc_clnt_create(3NSL)).

These routines are safe for use in multithreaded applications. CLIENT handles can be
shared between threads, however in this implementation requests by different threads
are serialized (that is, the first request will receive its results before the second request
is sent).

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

enum clnt_stat clnt_call(CLIENT *clnt, const rpcproc_t procnum, const xdrproc_t inproc,
const caddr_t in, const xdrproc_t outproc, caddr_t out, const struct timeval tout);

A function macro that calls the remote procedure procnum associated with the client
handle, clnt, which is obtained with an RPC client creation routine such as
clnt_create() (see rpc_clnt_create(3NSL)). The parameter inproc is the
XDR function used to encode the procedure’s parameters, and outproc is the XDR
function used to decode the procedure’s results; in is the address of the procedure’s
argument(s), and out is the address of where to place the result(s). tout is the time
allowed for results to be returned, which is overridden by a time-out set explicitly
through clnt_control(), see rpc_clnt_create(3NSL) .

If the remote call succeeds, the status returned is RPC_SUCCESS, otherwise an
appropriate status is returned.

bool_t clnt_freeres(CLIENT *clnt, const xdrproc_t outproc, caddr_t out);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the results of an RPC call. The parameter out is the address of the results,
and outproc is the XDR routine describing the results. This routine returns 1 if the
results were successfully freed, and 0 otherwise.

void clnt_geterr(const CLIENT *clnt, struct rpc_err *errp);
A function macro that copies the error structure out of the client handle to the
structure at address errp.

rpc_clnt_calls(3NSL)

NAME

DESCRIPTION

Routines

820 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_perrno(const enum clnt_stat stat);
Print a message to standard error corresponding to the condition indicated by stat.
A newline is appended. Normally used after a procedure call fails for a routine for
which a client handle is not needed, for instance rpc_call().

void clnt_perror(const CLIENT *clnt, const char *s);
Print a message to the standard error indicating why an RPC call failed; clnt is the
handle used to do the call. The message is prepended with string s and a colon. A
newline is appended. Normally used after a remote procedure call fails for a
routine which requires a client handle, for instance clnt_call().

char *clnt_sperrno(const enum clnt_stat stat);
Take the same arguments as clnt_perrno(), but instead of sending a message to
the standard error indicating why an RPC call failed, return a pointer to a string
which contains the message.

clnt_sperrno() is normally used instead of clnt_perrno() when the
program does not have a standard error (as a program running as a server quite
likely does not), or if the programmer does not want the message to be output with
printf() [see printf(3C)], or if a message format different than that supported
by clnt_perrno() is to be used. Note: unlike clnt_sperror() and
clnt_spcreaterror() [see rpc_clnt_create(3NSL)], clnt_sperrno()
does not return pointer to static data so the result will not get overwritten on each
call.

char *clnt_sperror(const CLIENT *clnt, const char *s);
Like clnt_perror(), except that (like clnt_sperrno()) it returns a string
instead of printing to standard error. However, clnt_sperror() does not append
a newline at the end of the message.

Warning: Returns pointer to a buffer that is overwritten on each call. In multithread
applications, this buffer is implemented as thread-specific data.

enum clnt_stat rpc_broadcast(const rpcprog_t prognum, const rpcvers_t versnum, const
rpcproc_t procnum, const xdrproc_t inproc, const caddr_t in, const xdrproc_t outproc,
caddr_t out, const resultproc_t eachresult, const char *nettype);

Like rpc_call(), except the call message is broadcast to all the connectionless
transports specified by nettype. If nettype is NULL, it defaults to "netpath. Each
time it receives a response, this routine calls eachresult(), whose form is:

bool_t eachresult(caddr_t out, const struct netbuf *addr,

const struct netconfig *netconf);where out is the same as out passed to
rpc_broadcast(), except that the remote procedure’s output is decoded there;
addr points to the address of the machine that sent the results, and netconf is the
netconfig structure of the transport on which the remote server responded. If
eachresult() returns 0, rpc_broadcast() waits for more replies; otherwise it
returns with appropriate status.

rpc_clnt_calls(3NSL)

Introduction to Library Functions 821

Warning: broadcast file descriptors are limited in size to the maximum transfer size
of that transport. For Ethernet, this value is 1500 bytes. rpc_broadcast() uses
AUTH_SYS credentials by default [see rpc_clnt_auth(3NSL)].

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_broadcast_exp(const rpcprog_t prognum, const rpcvers_t versnum,
const rpcproc_t procnum, const xdrproc_t xargs, caddr_t argsp, const xdrproc_t xresults,
caddr_t resultsp, const resultproc_t eachresult, const int inittime, const int waittime, const
char *nettype);

Like rpc_broadcast(), except that the initial timeout, inittime and the maximum
timeout, waittime are specified in milliseconds.

inittime is the initial time that rpc_broadcast_exp() waits before resending the
request. After the first resend, the re-transmission interval increases exponentially
until it exceeds waittime.

The process requires the PRIV_NET_BROADCAST privilege.

enum clnt_stat rpc_call(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const rpcproc_t procnum, const xdrproc_t inproc, const char *in, const
xdrproc_t outproc, char *out, const char *nettype);

Call the remote procedure associated with prognum, versnum, and procnum on the
machine, host. The parameter inproc is used to encode the procedure’s parameters,
and outproc is used to decode the procedure’s results; in is the address of the
procedure’s argument(s), and out is the address of where to place the result(s).
nettype can be any of the values listed on rpc(3NSL). This routine returns
RPC_SUCCESS if it succeeds, or an appropriate status is returned. Use the
clnt_perrno() routine to translate failure status into error messages.

Warning: rpc_call() uses the first available transport belonging to the class
nettype, on which it can create a connection. You do not have control of timeouts or
authentication using this routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel. rpc_broadcast() and
rpc_broadcast_exp() require the PRIV_NET_BROADCAST privilege.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate

rpc_clnt_calls(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

822 man pages section 3: Library Functions • Last Revised 1 May 2000

attribute-control structures and set the t6attr_t pointers in the CLIENT structure.
When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpc(3NSL), rpc_clnt_create(3NSL), libt6(3NSL), t6alloc_blk(3NSL),
t6free_blk(3NSL)

printf(3C), rpc_clnt_auth(3NSL), attributes(5)

rpc_clnt_calls(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 823

rpc_clnt_create, clnt_control, clnt_create, clnt_create_timed, clnt_create_vers,
clnt_create_vers_timed, clnt_destroy, clnt_dg_create, clnt_pcreateerror,
clnt_raw_create, clnt_spcreateerror, clnt_tli_create, clnt_tp_create,
clnt_tp_create_timed, clnt_vc_create, rpc_createerr – Library routines for dealing with
creation and manipulation of CLIENT handles

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First a CLIENT handle is created and then the client calls
a procedure to send a request to the server. On receipt of the request, the server calls a
dispatch routine to perform the requested service, and then sends a reply.

These routines are MT-Safe. In the case of multithreaded applications, the
_REENTRANT flag must be defined on the command line at compilation time
(-D_REENTRANT). When the _REENTRANT flag is defined, rpc_createerr becomes
a macro which enables each thread to have its own rpc_createerr.

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

See rpc(3NSL) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

bool_t clnt_control(CLIENT *clnt, const uint_t req, char *info);
A function macro to change or retrieve various information about a client object. req
indicates the type of operation, and info is a pointer to the information. For both
connectionless and connection-oriented transports, the supported values of req and
their argument types and what they do are:

CLSET_TIMEOUT struct timeval * set total timeout
CLGET_TIMEOUT struct timeval * get total timeout

If the timeout is set using clnt_control(), the timeout argument passed by
clnt_call() is ignored in all subsequent calls. If the timeout value is set to 0,
clnt_control() immediately returns RPC_TIMEDOUT. Set the timeout parameter
to 0 for batching calls.

CLGET_SERVER_ADDR struct netbuf * get server’s address
CLGET_SVC_ADDR struct netbuf * get server’s address
CLGET_FD int * get associated file descriptor
CLSET_FD_CLOSE void close the file descriptor when

destroying the client handle
(see clnt_destroy())

CLSET_FD_NCLOSE void do not close the file
descriptor when destroying

the client handle

CLGET_VERS rpcvers_t get the RPC program’s version
number associated with the
client handle

CLSET_VERS rpcvers_t set the RPC program’s version
number associated with the

rpc_clnt_create(3NSL)

NAME

DESCRIPTION

Routines

824 man pages section 3: Library Functions • Last Revised 1 May 2000

client handle. This assumes
that the RPC server for this
new version is still listening
at the address of the previous
version.

CLGET_XID uint32_t get the XID of the previous
remote procedure call

CLSET_XID uint32_t set the XID of the next
remote procedure call

CLGET_PROG rpcprog_t get program number
CLSET_PROG rpcprog_t set program number

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval * set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval * get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

clnt_control() returns TRUE on success and FALSE on failure.

CLIENT *clnt_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype);

Generic client creation routine for program prognum and version versnum. host
identifies the name of the remote host where the server is located. nettype indicates
the class of transport protocol to use. The transports are tried in left to right order in
NETPATH variable or in top to bottom order in the netconfig database.

clnt_create() tries all the transports of the nettype class available from the
NETPATH environment variable and the netconfig database, and chooses the first
successful one. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)).

CLIENT *clnt_create_timed(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype, const struct timeval *timeout);

Generic client creation routine which is similar to clnt_create() but which also
has the additional parameter timeout that specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_timed() call behaves exactly like the clnt_create() call.

CLIENT *clnt_create_vers(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype);

Generic client creation routine which is similar to clnt_create() but which also
checks for the version availability. host identifies the name of the remote host where
the server is located. nettype indicates the class transport protocols to be used. If the

rpc_clnt_create(3NSL)

Introduction to Library Functions 825

routine is successful it returns a client handle created for the highest version
between vers_low and vers_high that is supported by the server. vers_outp is set to
this value. That is, after a successful return vers_low <= *vers_outp <= vers_high. If no
version between vers_low and vers_high is supported by the server then the routine
fails and returns NULL. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)). However, clnt_create_vers() does this for you
and returns a valid handle only if a version within the range supplied is supported
by the server.

CLIENT *clnt_create_vers_timed(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype const struct
timeval *timeout);

Generic client creation routine similar to clnt_create_vers() but with the
additional parameter timeout, which specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_vers_timed() call behaves exactly like the
clnt_create_vers() call.

void clnt_destroy(CLIENT *clnt);
A function macro that destroys the client’s RPC handle. Destruction usually
involves deallocation of private data structures, including clnt itself. Use of clnt is
undefined after calling clnt_destroy(). If the RPC library opened the associated
file descriptor, or CLSET_FD_CLOSE was set using clnt_control(), the file
descriptor will be closed.

The caller should call auth_destroy(clnt⇒cl_auth) (before calling
clnt_destroy()) to destroy the associated AUTH structure (see
rpc_clnt_auth(3NSL)).

CLIENT *clnt_dg_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connectionless transport. The remote program is located
at address svcaddr. The parameter fildes is an open and bound file descriptor. This
routine will resend the call message in intervals of 15 seconds until a response is
received or until the call times out. The total time for the call to time out is specified
by clnt_call() (see clnt_call() in rpc_clnt_calls(3NSL)). The retry time
out and the total time out periods can be changed using clnt_control(). The
user may set the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. This routine returns NULL if it fails.

rpc_clnt_create(3NSL)

826 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_pcreateerror(const char *s);
Print a message to standard error indicating why a client RPC handle could not be
created. The message is prepended with the string s and a colon, and appended
with a newline.

CLIENT *clnt_raw_create(const rpcprog_t prognum, const rpcvers_t versnum);
This routine creates an RPC client handle for the remote program prognum and
version versnum. The transport used to pass messages to the service is a buffer
within the process’s address space, so the corresponding RPC server should live in
the same address space; (see svc_raw_create() in rpc_svc_create(3NSL)).
This allows simulation of RPC and measurement of RPC overheads, such as round
trip times, without any kernel or networking interference. This routine returns
NULL if it fails. clnt_raw_create() should be called after svc_raw_create().

char *clnt_spcreateerror(const char *s);
Like clnt_pcreateerror(), except that it returns a string instead of printing to
the standard error. A newline is not appended to the message in this case.

Warning: returns a pointer to a buffer that is overwritten on each call. In
multithread applications, this buffer is implemented as thread-specific data.

CLIENT *clnt_tli_create(const int fildes, const struct netconfig *netconf, const struct
netbuf *svcaddr, const rpcprog_t prognum, const rpcvers_t versnum, const uint_t sendsz,
const uint_t recvsz);

This routine creates an RPC client handle for the remote program prognum and
version versnum. The remote program is located at address svcaddr. If svcaddr is
NULL and it is connection-oriented, it is assumed that the file descriptor is
connected. For connectionless transports, if svcaddr is NULL, RPC_UNKNOWNADDR
error is set. fildes is a file descriptor which may be open, bound and connected. If it
is RPC_ANYFD, it opens a file descriptor on the transport specified by netconf. If
fildes is RPC_ANYFD and netconf is NULL, a RPC_UNKNOWNPROTO error is set. If fildes
is unbound, then it will attempt to bind the descriptor. The user may specify the
size of the buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults. Depending upon the type of the transport (connection-oriented or
connectionless), clnt_tli_create() calls appropriate client creation routines.
This routine returns NULL if it fails. The clnt_pcreateerror() routine can be
used to print the reason for failure. The remote rpcbind service (see
rpcbind(1M)) is not consulted for the address of the remote service.

CLIENT *clnt_tp_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf);

Like clnt_create() except clnt_tp_create() tries only one transport
specified through netconf.

clnt_tp_create() creates a client handle for the program prognum, the version
versnum, and for the transport specified by netconf. Default options are set, which
can be changed using clnt_control() calls. The remote rpcbind service on the

rpc_clnt_create(3NSL)

Introduction to Library Functions 827

host host is consulted for the address of the remote service. This routine returns
NULL if it fails. The clnt_pcreateerror() routine can be used to print the
reason for failure.

CLIENT *clnt_tp_create_timed(const char *host, const rpcprog_t prognum, const
rpcvers_t versnum, const struct netconfig *netconf, const struct timeval *timeout);

Like clnt_tp_create() except clnt_tp_create_timed() has the extra
parameter timeout which specifies the maximum time allowed for the creation
attempt to succeed. In all other respects, the clnt_tp_create_timed() call
behaves exactly like the clnt_tp_create() call.

CLIENT *clnt_vc_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connection-oriented transport. The remote program is
located at address svcaddr. The parameter fildes is an open and bound file descriptor.
The user may specify the size of the send and receive buffers with the parameters
sendsz and recvsz; values of 0 choose suitable defaults. This routine returns NULL if
it fails.

The address svcaddr should not be NULL and should point to the actual address of
the remote program. clnt_vc_create() does not consult the remote rpcbind
service for this information.

struct rpc_createerr rpc_createerr;
A global variable whose value is set by any RPC client handle creation routine that
fails. It is used by the routine clnt_pcreateerror() to print the reason for the
failure.

In multithreaded applications, rpc_createerr becomes a macro which enables
each thread to have its own rpc_createerr.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate
attribute-control structures and set the t6attr_t pointers in the CLIENT structure.

rpc_clnt_create(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

828 man pages section 3: Library Functions • Last Revised 1 May 2000

When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_calls(3NSL), rpc_svc_create(3NSL),
libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_clnt_auth(3NSL), svc_raw_create(3NSL), attributes(5)

rpc_clnt_create(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 829

rpc_clnt_create, clnt_control, clnt_create, clnt_create_timed, clnt_create_vers,
clnt_create_vers_timed, clnt_destroy, clnt_dg_create, clnt_pcreateerror,
clnt_raw_create, clnt_spcreateerror, clnt_tli_create, clnt_tp_create,
clnt_tp_create_timed, clnt_vc_create, rpc_createerr – Library routines for dealing with
creation and manipulation of CLIENT handles

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First a CLIENT handle is created and then the client calls
a procedure to send a request to the server. On receipt of the request, the server calls a
dispatch routine to perform the requested service, and then sends a reply.

These routines are MT-Safe. In the case of multithreaded applications, the
_REENTRANT flag must be defined on the command line at compilation time
(-D_REENTRANT). When the _REENTRANT flag is defined, rpc_createerr becomes
a macro which enables each thread to have its own rpc_createerr.

Programs can retrieve network security attributes from incoming responses, and
privileged programs can set the network security attributes on outgoing requests. See
SUMMARY OF TRUSTED SOLARIS CHANGES for more information.

See rpc(3NSL) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

bool_t clnt_control(CLIENT *clnt, const uint_t req, char *info);
A function macro to change or retrieve various information about a client object. req
indicates the type of operation, and info is a pointer to the information. For both
connectionless and connection-oriented transports, the supported values of req and
their argument types and what they do are:

CLSET_TIMEOUT struct timeval * set total timeout
CLGET_TIMEOUT struct timeval * get total timeout

If the timeout is set using clnt_control(), the timeout argument passed by
clnt_call() is ignored in all subsequent calls. If the timeout value is set to 0,
clnt_control() immediately returns RPC_TIMEDOUT. Set the timeout parameter
to 0 for batching calls.

CLGET_SERVER_ADDR struct netbuf * get server’s address
CLGET_SVC_ADDR struct netbuf * get server’s address
CLGET_FD int * get associated file descriptor
CLSET_FD_CLOSE void close the file descriptor when

destroying the client handle
(see clnt_destroy())

CLSET_FD_NCLOSE void do not close the file
descriptor when destroying

the client handle

CLGET_VERS rpcvers_t get the RPC program’s version
number associated with the
client handle

CLSET_VERS rpcvers_t set the RPC program’s version
number associated with the

rpc_createerr(3NSL)

NAME

DESCRIPTION

Routines

830 man pages section 3: Library Functions • Last Revised 1 May 2000

client handle. This assumes
that the RPC server for this
new version is still listening
at the address of the previous
version.

CLGET_XID uint32_t get the XID of the previous
remote procedure call

CLSET_XID uint32_t set the XID of the next
remote procedure call

CLGET_PROG rpcprog_t get program number
CLSET_PROG rpcprog_t set program number

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval * set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval * get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

clnt_control() returns TRUE on success and FALSE on failure.

CLIENT *clnt_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype);

Generic client creation routine for program prognum and version versnum. host
identifies the name of the remote host where the server is located. nettype indicates
the class of transport protocol to use. The transports are tried in left to right order in
NETPATH variable or in top to bottom order in the netconfig database.

clnt_create() tries all the transports of the nettype class available from the
NETPATH environment variable and the netconfig database, and chooses the first
successful one. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)).

CLIENT *clnt_create_timed(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const char *nettype, const struct timeval *timeout);

Generic client creation routine which is similar to clnt_create() but which also
has the additional parameter timeout that specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_timed() call behaves exactly like the clnt_create() call.

CLIENT *clnt_create_vers(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype);

Generic client creation routine which is similar to clnt_create() but which also
checks for the version availability. host identifies the name of the remote host where
the server is located. nettype indicates the class transport protocols to be used. If the

rpc_createerr(3NSL)

Introduction to Library Functions 831

routine is successful it returns a client handle created for the highest version
between vers_low and vers_high that is supported by the server. vers_outp is set to
this value. That is, after a successful return vers_low <= *vers_outp <= vers_high. If no
version between vers_low and vers_high is supported by the server then the routine
fails and returns NULL. A default timeout is set and can be modified using
clnt_control(). This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular version
number supplied to clnt_create() is not registered with the rpcbind service.
This mismatch will be discovered by a clnt_call later (see
rpc_clnt_calls(3NSL)). However, clnt_create_vers() does this for you
and returns a valid handle only if a version within the range supplied is supported
by the server.

CLIENT *clnt_create_vers_timed(const char *host, const rpcprog_t prognum, rpcvers_t
*vers_outp, const rpcvers_t vers_low, const rpcvers_t vers_high, char *nettype const struct
timeval *timeout);

Generic client creation routine similar to clnt_create_vers() but with the
additional parameter timeout, which specifies the maximum amount of time
allowed for each transport class tried. In all other respects, the
clnt_create_vers_timed() call behaves exactly like the
clnt_create_vers() call.

void clnt_destroy(CLIENT *clnt);
A function macro that destroys the client’s RPC handle. Destruction usually
involves deallocation of private data structures, including clnt itself. Use of clnt is
undefined after calling clnt_destroy(). If the RPC library opened the associated
file descriptor, or CLSET_FD_CLOSE was set using clnt_control(), the file
descriptor will be closed.

The caller should call auth_destroy(clnt⇒cl_auth) (before calling
clnt_destroy()) to destroy the associated AUTH structure (see
rpc_clnt_auth(3NSL)).

CLIENT *clnt_dg_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connectionless transport. The remote program is located
at address svcaddr. The parameter fildes is an open and bound file descriptor. This
routine will resend the call message in intervals of 15 seconds until a response is
received or until the call times out. The total time for the call to time out is specified
by clnt_call() (see clnt_call() in rpc_clnt_calls(3NSL)). The retry time
out and the total time out periods can be changed using clnt_control(). The
user may set the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. This routine returns NULL if it fails.

rpc_createerr(3NSL)

832 man pages section 3: Library Functions • Last Revised 1 May 2000

void clnt_pcreateerror(const char *s);
Print a message to standard error indicating why a client RPC handle could not be
created. The message is prepended with the string s and a colon, and appended
with a newline.

CLIENT *clnt_raw_create(const rpcprog_t prognum, const rpcvers_t versnum);
This routine creates an RPC client handle for the remote program prognum and
version versnum. The transport used to pass messages to the service is a buffer
within the process’s address space, so the corresponding RPC server should live in
the same address space; (see svc_raw_create() in rpc_svc_create(3NSL)).
This allows simulation of RPC and measurement of RPC overheads, such as round
trip times, without any kernel or networking interference. This routine returns
NULL if it fails. clnt_raw_create() should be called after svc_raw_create().

char *clnt_spcreateerror(const char *s);
Like clnt_pcreateerror(), except that it returns a string instead of printing to
the standard error. A newline is not appended to the message in this case.

Warning: returns a pointer to a buffer that is overwritten on each call. In
multithread applications, this buffer is implemented as thread-specific data.

CLIENT *clnt_tli_create(const int fildes, const struct netconfig *netconf, const struct
netbuf *svcaddr, const rpcprog_t prognum, const rpcvers_t versnum, const uint_t sendsz,
const uint_t recvsz);

This routine creates an RPC client handle for the remote program prognum and
version versnum. The remote program is located at address svcaddr. If svcaddr is
NULL and it is connection-oriented, it is assumed that the file descriptor is
connected. For connectionless transports, if svcaddr is NULL, RPC_UNKNOWNADDR
error is set. fildes is a file descriptor which may be open, bound and connected. If it
is RPC_ANYFD, it opens a file descriptor on the transport specified by netconf. If
fildes is RPC_ANYFD and netconf is NULL, a RPC_UNKNOWNPROTO error is set. If fildes
is unbound, then it will attempt to bind the descriptor. The user may specify the
size of the buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults. Depending upon the type of the transport (connection-oriented or
connectionless), clnt_tli_create() calls appropriate client creation routines.
This routine returns NULL if it fails. The clnt_pcreateerror() routine can be
used to print the reason for failure. The remote rpcbind service (see
rpcbind(1M)) is not consulted for the address of the remote service.

CLIENT *clnt_tp_create(const char *host, const rpcprog_t prognum, const rpcvers_t
versnum, const struct netconfig *netconf);

Like clnt_create() except clnt_tp_create() tries only one transport
specified through netconf.

clnt_tp_create() creates a client handle for the program prognum, the version
versnum, and for the transport specified by netconf. Default options are set, which
can be changed using clnt_control() calls. The remote rpcbind service on the

rpc_createerr(3NSL)

Introduction to Library Functions 833

host host is consulted for the address of the remote service. This routine returns
NULL if it fails. The clnt_pcreateerror() routine can be used to print the
reason for failure.

CLIENT *clnt_tp_create_timed(const char *host, const rpcprog_t prognum, const
rpcvers_t versnum, const struct netconfig *netconf, const struct timeval *timeout);

Like clnt_tp_create() except clnt_tp_create_timed() has the extra
parameter timeout which specifies the maximum time allowed for the creation
attempt to succeed. In all other respects, the clnt_tp_create_timed() call
behaves exactly like the clnt_tp_create() call.

CLIENT *clnt_vc_create(const int fildes, const struct netbuf *svcaddr, const rpcprog_t
prognum, const rpcvers_t versnum, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC client for the remote program prognum and version
versnum; the client uses a connection-oriented transport. The remote program is
located at address svcaddr. The parameter fildes is an open and bound file descriptor.
The user may specify the size of the send and receive buffers with the parameters
sendsz and recvsz; values of 0 choose suitable defaults. This routine returns NULL if
it fails.

The address svcaddr should not be NULL and should point to the actual address of
the remote program. clnt_vc_create() does not consult the remote rpcbind
service for this information.

struct rpc_createerr rpc_createerr;
A global variable whose value is set by any RPC client handle creation routine that
fails. It is used by the routine clnt_pcreateerror() to print the reason for the
failure.

In multithreaded applications, rpc_createerr becomes a macro which enables
each thread to have its own rpc_createerr.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The CLIENT structure allows a client to provide t6attr_t pointers to opaque
structures for accessing the security attributes of a reply or request. When a new
CLIENT structure is created, the pointers are initialized to NULL. If it needs to access
the security attributes, the client uses the t6alloc_blk() routine to allocate
attribute-control structures and set the t6attr_t pointers in the CLIENT structure.

rpc_createerr(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

834 man pages section 3: Library Functions • Last Revised 1 May 2000

When clnt_destroy() is used to destroy a client handle, the client should also use
t6free_blk() to free any attribute-control structures previously allocated for that
client handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_calls(3NSL), rpc_svc_create(3NSL),
libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_clnt_auth(3NSL), svc_raw_create(3NSL), attributes(5)

rpc_createerr(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 835

rpc_svc_reg, rpc_reg, svc_reg, svc_unreg, svc_auth_reg, xprt_register, xprt_unregister
– Library routines for registering servers

These routines are a part of the RPC library which allows the RPC servers to register
themselves with rpcbind() [see rpcbind(1M)], and associate the given program
and version number with the dispatch function. When the RPC server receives an RPC
request, the library invokes the dispatch routine with the appropriate arguments.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

bool_t rpc_reg(const rpcprog_t prognum, const rpcvers_t versnum, const rpcproc_t
procnum, char * (*procname)(), const xdrproc_t inproc, const xdrproc_t outproc, const
char *nettype);

Register program prognum, procedure procname, and version versnum with the RPC
service package. If a request arrives for program prognum, version versnum, and
procedure procnum, procname is called with a pointer to its parameter(s); procname
should return a pointer to its static result(s). The arg parameter to procname is a
pointer to the (decoded) procedure argument. inproc is the XDR function used to
decode the parameters while outproc is the XDR function used to encode the results.
Procedures are registered on all available transports of the class nettype. See
rpc(3NSL) . This routine returns 0 if the registration succeeded, −1 otherwise.

If the server has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a transport that uses a privileged
address, the server must have the PRIV_NET_PRIVADDR privilege.

int svc_reg(const SVCXPRT *xprt, const rpcprog_t prognum, const rpcvers_t versnum,
const void (*dispatch)(), const struct netconfig *netconf);

Associates prognum and versnum with the service dispatch procedure, dispatch. If
netconf is NULL, the service is not registered with the rpcbind service. For example,
if a service has already been registered using some other means, such as inetd (see
inetd(1M)), it will not need to be registered again. If netconf is non-zero, then a
mapping of the triple [prognum, versnum, netconf⇒nc_netid] to xprt⇒xp_ltaddr is
established with the local rpcbind service.

The svc_reg() routine returns 1 if it succeeds, and 0 otherwise.

If the server has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a transport that uses a privileged
address, the server must have the PRIV_NET_PRIVADDR privilege.

void svc_unreg(const rpcprog_t prognum, const rpcvers_t versnum);
Remove from the rpcbind service, all mappings of the triple [prognum, versnum,
all-transports] to network address and all mappings within the RPC service package
of the double [prognum, versnum] to dispatch routines.

rpc_reg(3NSL)

NAME

DESCRIPTION

Routines

836 man pages section 3: Library Functions • Last Revised 1 May 2000

If the server has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping being deleted is to a transport that uses a privileged
address, the server must have the PRIV_NET_PRIVADDR privilege.

The PRIV_NET_SETID privilege is required in order for anyone other than the
owner of a mapping to delete the mapping.

int svc_auth_reg(const int cred_flavor, const enum auth_stat (*handler)());
Registers the service authentication routine handler with the dispatch mechanism so
that it can be invoked to authenticate RPC requests received with authentication
type cred_flavor. This interface allows developers to add new authentication types to
their RPC applications without needing to modify the libraries. Service
implementors usually do not need this routine.

Typical service application would call svc_auth_reg() after registering the
service and prior to calling svc_run(). When needed to process an RPC credential
of type cred_flavor, the handler procedure will be called with two parameters
(struct svc_req *rqst, struct rpc_msg *msg) and is expected to return a
valid enum auth_stat value. There is no provision to change or delete an
authentication handler once registered.

The svc_auth_reg() routine returns 0 if the registration is successful, 1 if
cred_flavor already has an authentication handler registered for it, and −1 otherwise.

void xprt_register(const SVCXPRT *xprt);
After RPC service transport handle xprt is created, it is registered with the RPC
service package. This routine modifies the global variable svc_fdset (see
rpc_svc_calls(3NSL)). Service implementors usually do not need this routine.

void xprt_unregister(const SVCXPRT *xprt);
Before an RPC service transport handle xprt is destroyed, it unregisters itself with
the RPC service package. This routine modifies the global variable svc_fdset [see
rpc_svc_calls(3NSL)]. Service implementors usually do not need this routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind
services. If the privilege is on when rpc_reg() or rpc_svc() is called, a multilevel
mapping is created. To delete a multilevel mapping, svc_unreg() must be called
with the privilege on.

rpc_reg(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Introduction to Library Functions 837

The PRIV_NET_PRIVADDR privilege is required for rpc_reg(), rpc_svc(), or
svc_unreg() calls that create or delete mappings for a transport that uses a
privileged address.

The PRIV_NET_SETID privilege is required by svc_unreg() in order for anyone
other than the owner of a mapping to delete the mapping.

inetd(1M), rpcbind(1M), rpc(3NSL), rpc_svc_calls(3NSL),
rpc_svc_create(3NSL), rpcbind(3NSL)

select(3C), rpc_svc_err(3NSL), attributes(5)

rpc_reg(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

838 man pages section 3: Library Functions • Last Revised 1 May 2000

rpc_svc_calls, svc_dg_enablecache, svc_done, svc_exit, svc_fdset, svc_freeargs,
svc_getargs, svc_getreq_common, svc_getreq_poll, svc_getreqset, svc_getrpccaller,
svc_max_pollfd, svc_pollfd, svc_run, svc_sendreply – Library routines for RPC servers

These routines are part of the RPC library which allows C language programs to make
procedure calls on other machines across the network.

These routines are associated with the server side of the RPC mechanism. Some of
them are called by the server side dispatch function, while others (such as
svc_run()) are called when the server is initiated.

In the current implementation, the service transport handle SVCXPRT contains a single
data area for decoding arguments and encoding results. Therefore, this structure
cannot be freely shared between threads that call functions that do this. However,
when a server is operating in the Automatic or User MT modes, a copy of this
structure is passed to the service dispatch procedure in order to enable concurrent
request processing. Under these circumstances, some routines which would otherwise
be unsafe, become safe. These are marked as such. Also marked are routines that are
unsafe for MT applications, and are not to be used by such applications.

Programs can retrieve network security attributes from incoming requests. Privileged
programs can create multilevel ports, create multilevel mappings, and set the security
attributes of outgoing replies. See SUMMARY OF TRUSTED SOLARIS CHANGES for
more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

int svc_dg_enablecache(SVCXPRT *xprt, const uint_t cache_size);
This function allocates a duplicate request cache for the service endpoint xprt, large
enough to hold cache_size entries. Once enabled, there is no way to disable caching.
This routine returns 1 if space necessary for a cache of the given size was
successfully allocated, and 0 otherwise.

This function is safe in MT applications.

int svc_done(SVCXPRT *xprt);
This function frees resources allocated to service a client request directed to the
service endpoint xprt. This call pertains only to servers executing in the User MT
mode. In the User MT mode, service procedures must invoke this call before
returning, either after a client request has been serviced, or after an error or
abnormal condition that prevents a reply from being sent. After svc_done() is
invoked, the service endpoint xprt should not be referenced by the service
procedure. Server multithreading modes and parameters can be set using the
rpc_control() call.

This function is safe in MT applications. It will have no effect if invoked in modes
other than the User MT mode.

rpc_svc_calls(3NSL)

NAME

DESCRIPTION

Routines

Introduction to Library Functions 839

void svc_exit(void);
This function when called by any of the RPC server procedure or otherwise,
destroys all services registered by the server and causes svc_run() to return.

If RPC server activity is to be resumed, services must be reregistered with the RPC
library either through one of the rpc_svc_create(3NSL) functions, or using
xprt_register(3NSL).

svc_exit() has global scope and ends all RPC server activity.

fd_set svc_fdset;
A global variable reflecting the RPC server’s read file descriptor bit mask. This is
only of interest if service implementors do not call svc_run(), but rather do their
own asynchronous event processing. This variable is read-only, and it may change
after calls to svc_getreqset() or any creation routines. Do not pass its address
to select(3C)! Instead, pass the address of a copy.

MT applications executing in either the Automatic MT mode or the User MT
mode should never read this variable. They should use auxiliary threads to do
asynchronous event processing.

svc_fdset is limited to 1024 file descriptors and is considered obsolete. Use of
svc_pollfd is recommended instead.

pollfd_t *svc_pollfd;
A global variable pointing to an array of pollfd_t structures reflecting the RPC
server’s read file descriptor array. This is only of interest if service service
implementors do not call svc_run() but rather do their own asynchronous event
processing. This variable is read-only, and it may change after calls to
svc_getreg_poll() or any creation routines. Do no pass its address to poll(2)!
Instead, pass the address of a copy.

By default, svc_pollfd is limited to 1024 entries. Use rpc_control(3NSL) to
remove this limitation.

MT applications executing in either the Automatic MT mode or the User MT
mode should never be read this variable. They should use auxiliary threads to do
asynchronous event processing.

int svc_max_pollfd;
A global variable containing the maximum length of the svc_pollfd array. This
variable is read-only, and it may change after calls to svc_getreg_poll() or any
creation routines.

bool_t svc_freeargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the arguments to a service procedure using svc_getargs(). This routine
returns TRUE if the results were successfully freed, and FALSE otherwise.

rpc_svc_calls(3NSL)

840 man pages section 3: Library Functions • Last Revised 1 May 2000

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

bool_t svc_getargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that decodes the arguments of an RPC request associated with the
RPC service transport handle xprt. The parameter in is the address where the
arguments will be placed; inproc is the XDR routine used to decode the arguments.
This routine returns TRUE if decoding succeeds, and FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

void svc_getreq_common(const int fd);
This routine is called to handle a request on the given file descriptor.

void svc_getreq_poll(struct pollfd *pfdp, const int pollretval);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
poll(2) has determined that an RPC request has arrived on some RPC file
descriptors; pollretval is the return value from poll(2) and pfdp is the array of pollfd
structures on which the poll(2) was done. It is assumed to be an array large
enough to contain the maximal number of descriptors allowed.

This function macro is unsafe in MT applications.

void svc_getreqset(fd_set *rdfds);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
select(3C) has determined that an RPC request has arrived on some RPC file
descriptors; rdfds is the resultant read file descriptor bit mask. The routine returns
when all file descriptors associated with the value of rdfds have been serviced.

This function macro is unsafe in MT applications.

struct netbuf *svc_getrpccaller(const SVCXPRT *xprt);
The approved way of getting the network address of the caller of a procedure
associated with the RPC service transport handle xprt.

This function macro is safe in MT applications.

void svc_run(void);
This routine never returns. In single threaded mode, it waits for RPC requests to
arrive, and calls the appropriate service procedure using svc_getreq_poll()
when one arrives. This procedure is usually waiting for the poll(2) library call to
return.

Applications executing in the Automatic or User MT modes should invoke this
function exactly once. It the Automatic MT mode, it will create threads to service
client requests. In the User MT mode, it will provide a framework for service
developers to create and manage their own threads for servicing client requests.

rpc_svc_calls(3NSL)

Introduction to Library Functions 841

bool_t svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc, const caddr_t
out);

Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request’s associated transport handle;
outproc is the XDR routine which is used to encode the results; and out is the
address of the results. This routine returns TRUE if it succeeds, FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when a bind(3SOCKET) call
is made, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpc(3NSL), rpc_svc_create(3NSL), rpc_svc_reg(3NSL), libt6(3NSL),
t6alloc_blk(3NSL), t6free_blk(3NSL)

rpcgen(1), poll(2), rpc_control(3NSL), rpc_svc_err(3NSL), select(3C),
xprt_register(3NSL),attributes(5)

svc_dg_enablecache() and svc_getrpccaller() are safe in multithreaded
applications. svc_freeargs(), svc_getargs(), and svc_sendreply() are safe
in MT applications utilizing the Automatic or User MT modes.

rpc_svc_calls(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

NOTES

842 man pages section 3: Library Functions • Last Revised 1 May 2000

svc_getreq_common(), svc_getreqset(), and svc_getreq_poll() are unsafe
in multithreaded applications and should be called only from the main thread.

rpc_svc_calls(3NSL)

Introduction to Library Functions 843

rpc_svc_create, svc_control, svc_create, svc_destroy, svc_dg_create, svc_fd_create,
svc_raw_create, svc_tli_create, svc_tp_create, svc_vc_create – Library routines for the
creation of server handles

These routines are part of the RPC library which allows C language programs to make
procedure calls on servers across the network. These routines deal with the creation of
service handles. Once the handle is created, the server can be invoked by calling
svc_run().

Privileged programs can create multilevel ports, create multilevel mappings, and
access network security attributes. See SUMMARY OF TRUSTED SOLARIS CHANGES
for more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

bool_t svc_control (SVCXPRT *svc, const uint_t req, void *info);
A function to change or retrieve various information about a service object. req
indicates the type of operation and info is a pointer to the information. The
supported values of req, their argument types, and what they do are:

SVCGET_VERSQUIET If a request is received for a program number served
by this server but the version number is outside the
range registered with the server, an
RPC_PROGVERSMISMATCH error will normally be
returned. info should be a pointer to an integer.
Upon successful completion of the
SVCGET_VERSQUIET request, *info contains an
integer which describes the server’s current
behavior: 0 indicates normal server behavior, that is,
an RPC_PROGVERSMISMATCH error will be returned;
1 indicates that the out of range request will be
silently ignored.

SVCSET_VERSQUIET If a request is received for a program number served
by this server but the version number is outside the
range registered with the server, an
RPC_PROGVERSMISMATCH error will normally be
returned. It is sometimes desirable to change this
behavior. info should be a pointer to an integer
which is either 0, indicating normal server behavior
and an RPC_PROGVERSMISMATCH error will be
returned, or −1, indicating that the out of range
request should be silently ignored.

SVCGET_XID Returns the transaction ID of connection−oriented
(vc) and connectionless (dg) transport service calls.
The transaction ID assists in uniquely identifying
client requests for a given RPC version, program

rpc_svc_create(3NSL)

NAME

DESCRIPTION

Routines

844 man pages section 3: Library Functions • Last Revised 1 May 2000

number, procedure, and client. The transaction ID is
extracted from the service transport handle svc; info
must be a pointer to an unsigned long. Upon
successful completion of the SVCGET_XID request,
*info contains the transaction ID. Note that
rendezvous and raw service handles do not define a
transaction ID. Thus, if the service handle is of
rendezvous or raw type, and the request is of type
SVCGET_XID, svc_control() will return
FALSE. Note also that the transaction ID read by
the server can be set by the client through the
suboption CLSET_XID in clnt_control(). See
clnt_create(3NSL)

int svc_create(const void (*dispatch)(const struct svc_req *, const SVCXPRT *), const
rpcprog_t prognum, const rpcvers_t versnum, const char *nettype);

svc_create() creates server handles for all the transports belonging to the class
nettype.

nettype defines a class of transports which can be used for a particular application.
The transports are tried in left to right order in NETPATH variable or in top to
bottom order in the netconfig database. If nettype is NULL, it defaults to netpath.

svc_create() registers itself with the rpcbind service [see rpcbind(1M)].
dispatch is called when there is a remote procedure call for the given prognum and
versnum; this requires calling svc_run() (see svc_run() in
rpc_svc_reg(3NSL)). If svc_create() succeeds, it returns the number of server
handles it created, otherwise it returns 0 and an error message is logged.

void svc_destroy(SVCXPRT *xprt);
A function macro that destroys the RPC service handle xprt. Destruction usually
involves deallocation of private data structures, including xprt itself. Use of xprt is
undefined after calling this routine.

SVCXPRT *svc_dg_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a connectionless RPC service handle, and returns a pointer to it.
This routine returns NULL if it fails, and an error message is logged. sendsz and
recvsz are parameters used to specify the size of the buffers. If they are 0, suitable
defaults are chosen. The file descriptor fildes should be open and bound. The server
is not registered with rpcbind(1M).

Warning: since connectionless-based RPC messages can only hold limited amount
of encoded data, this transport cannot be used for procedures that take large
arguments or return huge results.

SVCXPRT *svc_fd_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a service on top of an open and bound file descriptor, and
returns the handle to it. Typically, this descriptor is a connected file descriptor for a
connection-oriented transport. sendsz and recvsz indicate sizes for the send and

rpc_svc_create(3NSL)

Introduction to Library Functions 845

receive buffers. If they are 0, reasonable defaults are chosen. This routine returns
NULL if it fails, and an error message is logged.

SVCXPRT *svc_raw_create(void);
This routine creates an RPC service handle and returns a pointer to it. The transport
is really a buffer within the process’s address space, so the corresponding RPC
client should live in the same address space; (see clnt_raw_create() in
rpc_clnt_create(3NSL)). This routine allows simulation of RPC and acquisition
of RPC overheads (such as round trip times), without any kernel and networking
interference. This routine returns NULL if it fails, and an error message is logged.

Note: svc_run() should not be called when the raw interface is being used.

SVCXPRT *svc_tli_create(const int fildes, const struct netconfig *netconf, const struct
t_bind *bindaddr, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC server handle, and returns a pointer to it. fildes is the
file descriptor on which the service is listening. If fildes is RPC_ANYFD, it opens a file
descriptor on the transport specified by netconf. If the file descriptor is unbound and
bindaddr is non-null fildes is bound to the address specified by bindaddr, otherwise
fildes is bound to a default address chosen by the transport. In the case where the
default address is chosen, the number of outstanding connect requests is set to 8 for
connection-oriented transports. The user may specify the size of the send and
receive buffers with the parameters sendsz and recvsz ; values of 0 choose suitable
defaults. This routine returns NULL if it fails, and an error message is logged. The
server is not registered with the rpcbind(1M) service.

SVCXPRT *svc_tp_create(const void (*dispatch)(const struct svc_req *, const SVCXPRT
*), const rpcprog_t prognum, const rpcvers_t versnum, const struct netconfig *netconf);

svc_tp_create() creates a server handle for the network specified by netconf,
and registers itself with the rpcbind service. dispatch is called when there is a
remote procedure call for the given prognum and versnum; this requires calling
svc_run(). svc_tp_create() returns the service handle if it succeeds,
otherwise a NULL is returned and an error message is logged.

SVCXPRT *svc_vc_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a connection-oriented RPC service and returns a pointer to it.
This routine returns NULL if it fails, and an error message is logged. The users may
specify the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. The file descriptor fildes should be open
and bound. The server is not registered with the rpcbind(1M) service.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

rpc_svc_create(3NSL)

ATTRIBUTES

846 man pages section 3: Library Functions • Last Revised 1 May 2000

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when an RPC library routine
such as svc_create() binds to a transport, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_create(3NSL), rpc_svc_calls(3NSL),
rpc_svc_reg(3NSL), libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_svc_err(3NSL), attributes(5)

rpc_svc_create(3NSL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 847

rpc_svc_reg, rpc_reg, svc_reg, svc_unreg, svc_auth_reg, xprt_register, xprt_unregister
– Library routines for registering servers

These routines are a part of the RPC library which allows the RPC servers to register
themselves with rpcbind() [see rpcbind(1M)], and associate the given program
and version number with the dispatch function. When the RPC server receives an RPC
request, the library invokes the dispatch routine with the appropriate arguments.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

bool_t rpc_reg(const rpcprog_t prognum, const rpcvers_t versnum, const rpcproc_t
procnum, char * (*procname)(), const xdrproc_t inproc, const xdrproc_t outproc, const
char *nettype);

Register program prognum, procedure procname, and version versnum with the RPC
service package. If a request arrives for program prognum, version versnum, and
procedure procnum, procname is called with a pointer to its parameter(s); procname
should return a pointer to its static result(s). The arg parameter to procname is a
pointer to the (decoded) procedure argument. inproc is the XDR function used to
decode the parameters while outproc is the XDR function used to encode the results.
Procedures are registered on all available transports of the class nettype. See
rpc(3NSL) . This routine returns 0 if the registration succeeded, −1 otherwise.

If the server has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a transport that uses a privileged
address, the server must have the PRIV_NET_PRIVADDR privilege.

int svc_reg(const SVCXPRT *xprt, const rpcprog_t prognum, const rpcvers_t versnum,
const void (*dispatch)(), const struct netconfig *netconf);

Associates prognum and versnum with the service dispatch procedure, dispatch. If
netconf is NULL, the service is not registered with the rpcbind service. For example,
if a service has already been registered using some other means, such as inetd (see
inetd(1M)), it will not need to be registered again. If netconf is non-zero, then a
mapping of the triple [prognum, versnum, netconf⇒nc_netid] to xprt⇒xp_ltaddr is
established with the local rpcbind service.

The svc_reg() routine returns 1 if it succeeds, and 0 otherwise.

If the server has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a transport that uses a privileged
address, the server must have the PRIV_NET_PRIVADDR privilege.

void svc_unreg(const rpcprog_t prognum, const rpcvers_t versnum);
Remove from the rpcbind service, all mappings of the triple [prognum, versnum,
all-transports] to network address and all mappings within the RPC service package
of the double [prognum, versnum] to dispatch routines.

rpc_svc_reg(3NSL)

NAME

DESCRIPTION

Routines

848 man pages section 3: Library Functions • Last Revised 1 May 2000

If the server has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping being deleted is to a transport that uses a privileged
address, the server must have the PRIV_NET_PRIVADDR privilege.

The PRIV_NET_SETID privilege is required in order for anyone other than the
owner of a mapping to delete the mapping.

int svc_auth_reg(const int cred_flavor, const enum auth_stat (*handler)());
Registers the service authentication routine handler with the dispatch mechanism so
that it can be invoked to authenticate RPC requests received with authentication
type cred_flavor. This interface allows developers to add new authentication types to
their RPC applications without needing to modify the libraries. Service
implementors usually do not need this routine.

Typical service application would call svc_auth_reg() after registering the
service and prior to calling svc_run(). When needed to process an RPC credential
of type cred_flavor, the handler procedure will be called with two parameters
(struct svc_req *rqst, struct rpc_msg *msg) and is expected to return a
valid enum auth_stat value. There is no provision to change or delete an
authentication handler once registered.

The svc_auth_reg() routine returns 0 if the registration is successful, 1 if
cred_flavor already has an authentication handler registered for it, and −1 otherwise.

void xprt_register(const SVCXPRT *xprt);
After RPC service transport handle xprt is created, it is registered with the RPC
service package. This routine modifies the global variable svc_fdset (see
rpc_svc_calls(3NSL)). Service implementors usually do not need this routine.

void xprt_unregister(const SVCXPRT *xprt);
Before an RPC service transport handle xprt is destroyed, it unregisters itself with
the RPC service package. This routine modifies the global variable svc_fdset [see
rpc_svc_calls(3NSL)]. Service implementors usually do not need this routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind
services. If the privilege is on when rpc_reg() or rpc_svc() is called, a multilevel
mapping is created. To delete a multilevel mapping, svc_unreg() must be called
with the privilege on.

rpc_svc_reg(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Introduction to Library Functions 849

The PRIV_NET_PRIVADDR privilege is required for rpc_reg(), rpc_svc(), or
svc_unreg() calls that create or delete mappings for a transport that uses a
privileged address.

The PRIV_NET_SETID privilege is required by svc_unreg() in order for anyone
other than the owner of a mapping to delete the mapping.

inetd(1M), rpcbind(1M), rpc(3NSL), rpc_svc_calls(3NSL),
rpc_svc_create(3NSL), rpcbind(3NSL)

select(3C), rpc_svc_err(3NSL), attributes(5)

rpc_svc_reg(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

850 man pages section 3: Library Functions • Last Revised 1 May 2000

sbltos, sbcltos, sbsltos, sbcleartos – translate binary labels to canonical character-coded
labels

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

char *sbcltos(const bclabel_t *label, const int len);

char *sbsltos(const bslabel_t *label, const int len);

char *sbcleartos(const bclear_t *clearance, const int len);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to perform label translation on labels that dominate the current process’s
sensitivity label.

These functions translate binary labels into canonical strings that are clipped to the
number of printable characters specified in len. Clipping is required if the number of
characters of the translated string is greater than len. Clipping is done by truncating
the label on the right to two characters less than the specified number of characters. A
clipped indicator, “<−”, is appended to sensitivity labels and clearances. The
character-coded label begins with a classification name separated with a single space
character from the list of words making up the remainder of the label. The binary
labels must be of the proper defined type and dominated by the process’s sensitivity
label. A len of 0 (zero) returns the entire string with no clipping.

sbcltos() translates a binary CMW label into a clipped string. The function uses the
long form of the words and the short form of the classification name, as in:

0xADMIN_LOW_hexadecimal_value [0xsensitivity_label_hexadecimal_value]

If len is less than the minimum number of characters (four), , the translation will fail.

sbsltos() translates a binary sensitivity label into a clipped string using the long
form of the words and the short form of the classification name. If len is less than the
minimum number of characters (three), the translation fails.

sbcleartos() translates a binary clearance into a clipped string using the long form
of the words and the short form of the classification name. If len is less than the
minimum number of characters (three), the translation fails. The translation of a
clearance may not be the same as the translation of a sensitivity label. These functions
use different tables of the label_encodings file which may contain different words
and constraints.

These routines return a pointer to a statically allocated string that contains the result of
the translation, or (char *)0 if the translation fails for any reason.

Assume that a CMW label is:

[UN TOP/MIDDLE/LOWER DRAWER]

sbcleartos(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

sbcltos

Introduction to Library Functions 851

when clipped to ten characters it is:

−>[UN TOP/<−

Assume that a sensitivity label is:

UN TOP/MIDDLE/LOWER DRAWER

when clipped to ten characters it is:

UN TOP/M<−

If the VIEW_EXTERNAL or VIEW_INTERNAL flags are not specified, translation of
ADMIN_LOW and ADMIN_HIGH labels is controlled by the label view process attribute
flags. If no label view process attribute flags are defined, their translation is controlled
by the label view configured in the label_encodings file. A value of External
specifies that ADMIN_LOW and ADMIN_HIGH labels are mapped to the lowest and
highest labels defined in the label_encodings file. A value of Internal specifies that
the ADMIN_LOW and ADMIN_HIGH labels are translated to the admin low name and
admin high name strings specified in the label_encodings file. If no such names
are specified, the strings “ADMIN_LOW” and “ADMIN_HIGH” are used.

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level Unsafe

bcltobanner(3TSOL), blcompare(3TSOL), bltocolor(3TSOL), blvalid(3TSOL),
hextob(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

All these functions share the same statically allocated string storage. They are not
MT-Safe. Subsequent calls to any of these functions will overwrite that string with the
newly translated string.

sbcleartos(3TSOL)

sbsltos

PROCESS
ATTRIBUTES

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

WARNINGS

852 man pages section 3: Library Functions • Last Revised 24 May 2001

sbltos, sbcltos, sbsltos, sbcleartos – translate binary labels to canonical character-coded
labels

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

char *sbcltos(const bclabel_t *label, const int len);

char *sbsltos(const bslabel_t *label, const int len);

char *sbcleartos(const bclear_t *clearance, const int len);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to perform label translation on labels that dominate the current process’s
sensitivity label.

These functions translate binary labels into canonical strings that are clipped to the
number of printable characters specified in len. Clipping is required if the number of
characters of the translated string is greater than len. Clipping is done by truncating
the label on the right to two characters less than the specified number of characters. A
clipped indicator, “<−”, is appended to sensitivity labels and clearances. The
character-coded label begins with a classification name separated with a single space
character from the list of words making up the remainder of the label. The binary
labels must be of the proper defined type and dominated by the process’s sensitivity
label. A len of 0 (zero) returns the entire string with no clipping.

sbcltos() translates a binary CMW label into a clipped string. The function uses the
long form of the words and the short form of the classification name, as in:

0xADMIN_LOW_hexadecimal_value [0xsensitivity_label_hexadecimal_value]

If len is less than the minimum number of characters (four), , the translation will fail.

sbsltos() translates a binary sensitivity label into a clipped string using the long
form of the words and the short form of the classification name. If len is less than the
minimum number of characters (three), the translation fails.

sbcleartos() translates a binary clearance into a clipped string using the long form
of the words and the short form of the classification name. If len is less than the
minimum number of characters (three), the translation fails. The translation of a
clearance may not be the same as the translation of a sensitivity label. These functions
use different tables of the label_encodings file which may contain different words
and constraints.

These routines return a pointer to a statically allocated string that contains the result of
the translation, or (char *)0 if the translation fails for any reason.

Assume that a CMW label is:

[UN TOP/MIDDLE/LOWER DRAWER]

sbcltos(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

sbcltos

Introduction to Library Functions 853

when clipped to ten characters it is:

−>[UN TOP/<−

Assume that a sensitivity label is:

UN TOP/MIDDLE/LOWER DRAWER

when clipped to ten characters it is:

UN TOP/M<−

If the VIEW_EXTERNAL or VIEW_INTERNAL flags are not specified, translation of
ADMIN_LOW and ADMIN_HIGH labels is controlled by the label view process attribute
flags. If no label view process attribute flags are defined, their translation is controlled
by the label view configured in the label_encodings file. A value of External
specifies that ADMIN_LOW and ADMIN_HIGH labels are mapped to the lowest and
highest labels defined in the label_encodings file. A value of Internal specifies that
the ADMIN_LOW and ADMIN_HIGH labels are translated to the admin low name and
admin high name strings specified in the label_encodings file. If no such names
are specified, the strings “ADMIN_LOW” and “ADMIN_HIGH” are used.

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level Unsafe

bcltobanner(3TSOL), blcompare(3TSOL), bltocolor(3TSOL), blvalid(3TSOL),
hextob(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

All these functions share the same statically allocated string storage. They are not
MT-Safe. Subsequent calls to any of these functions will overwrite that string with the
newly translated string.

sbcltos(3TSOL)

sbsltos

PROCESS
ATTRIBUTES

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

WARNINGS

854 man pages section 3: Library Functions • Last Revised 24 May 2001

sbltos, sbcltos, sbsltos, sbcleartos – translate binary labels to canonical character-coded
labels

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

char *sbcltos(const bclabel_t *label, const int len);

char *sbsltos(const bslabel_t *label, const int len);

char *sbcleartos(const bclear_t *clearance, const int len);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to perform label translation on labels that dominate the current process’s
sensitivity label.

These functions translate binary labels into canonical strings that are clipped to the
number of printable characters specified in len. Clipping is required if the number of
characters of the translated string is greater than len. Clipping is done by truncating
the label on the right to two characters less than the specified number of characters. A
clipped indicator, “<−”, is appended to sensitivity labels and clearances. The
character-coded label begins with a classification name separated with a single space
character from the list of words making up the remainder of the label. The binary
labels must be of the proper defined type and dominated by the process’s sensitivity
label. A len of 0 (zero) returns the entire string with no clipping.

sbcltos() translates a binary CMW label into a clipped string. The function uses the
long form of the words and the short form of the classification name, as in:

0xADMIN_LOW_hexadecimal_value [0xsensitivity_label_hexadecimal_value]

If len is less than the minimum number of characters (four), , the translation will fail.

sbsltos() translates a binary sensitivity label into a clipped string using the long
form of the words and the short form of the classification name. If len is less than the
minimum number of characters (three), the translation fails.

sbcleartos() translates a binary clearance into a clipped string using the long form
of the words and the short form of the classification name. If len is less than the
minimum number of characters (three), the translation fails. The translation of a
clearance may not be the same as the translation of a sensitivity label. These functions
use different tables of the label_encodings file which may contain different words
and constraints.

These routines return a pointer to a statically allocated string that contains the result of
the translation, or (char *)0 if the translation fails for any reason.

Assume that a CMW label is:

[UN TOP/MIDDLE/LOWER DRAWER]

sbltos(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

sbcltos

Introduction to Library Functions 855

when clipped to ten characters it is:

−>[UN TOP/<−

Assume that a sensitivity label is:

UN TOP/MIDDLE/LOWER DRAWER

when clipped to ten characters it is:

UN TOP/M<−

If the VIEW_EXTERNAL or VIEW_INTERNAL flags are not specified, translation of
ADMIN_LOW and ADMIN_HIGH labels is controlled by the label view process attribute
flags. If no label view process attribute flags are defined, their translation is controlled
by the label view configured in the label_encodings file. A value of External
specifies that ADMIN_LOW and ADMIN_HIGH labels are mapped to the lowest and
highest labels defined in the label_encodings file. A value of Internal specifies that
the ADMIN_LOW and ADMIN_HIGH labels are translated to the admin low name and
admin high name strings specified in the label_encodings file. If no such names
are specified, the strings “ADMIN_LOW” and “ADMIN_HIGH” are used.

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level Unsafe

bcltobanner(3TSOL), blcompare(3TSOL), bltocolor(3TSOL), blvalid(3TSOL),
hextob(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

All these functions share the same statically allocated string storage. They are not
MT-Safe. Subsequent calls to any of these functions will overwrite that string with the
newly translated string.

sbltos(3TSOL)

sbsltos

PROCESS
ATTRIBUTES

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

WARNINGS

856 man pages section 3: Library Functions • Last Revised 24 May 2001

sbltos, sbcltos, sbsltos, sbcleartos – translate binary labels to canonical character-coded
labels

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

char *sbcltos(const bclabel_t *label, const int len);

char *sbsltos(const bslabel_t *label, const int len);

char *sbcleartos(const bclear_t *clearance, const int len);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to perform label translation on labels that dominate the current process’s
sensitivity label.

These functions translate binary labels into canonical strings that are clipped to the
number of printable characters specified in len. Clipping is required if the number of
characters of the translated string is greater than len. Clipping is done by truncating
the label on the right to two characters less than the specified number of characters. A
clipped indicator, “<−”, is appended to sensitivity labels and clearances. The
character-coded label begins with a classification name separated with a single space
character from the list of words making up the remainder of the label. The binary
labels must be of the proper defined type and dominated by the process’s sensitivity
label. A len of 0 (zero) returns the entire string with no clipping.

sbcltos() translates a binary CMW label into a clipped string. The function uses the
long form of the words and the short form of the classification name, as in:

0xADMIN_LOW_hexadecimal_value [0xsensitivity_label_hexadecimal_value]

If len is less than the minimum number of characters (four), , the translation will fail.

sbsltos() translates a binary sensitivity label into a clipped string using the long
form of the words and the short form of the classification name. If len is less than the
minimum number of characters (three), the translation fails.

sbcleartos() translates a binary clearance into a clipped string using the long form
of the words and the short form of the classification name. If len is less than the
minimum number of characters (three), the translation fails. The translation of a
clearance may not be the same as the translation of a sensitivity label. These functions
use different tables of the label_encodings file which may contain different words
and constraints.

These routines return a pointer to a statically allocated string that contains the result of
the translation, or (char *)0 if the translation fails for any reason.

Assume that a CMW label is:

[UN TOP/MIDDLE/LOWER DRAWER]

sbsltos(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

sbcltos

Introduction to Library Functions 857

when clipped to ten characters it is:

−>[UN TOP/<−

Assume that a sensitivity label is:

UN TOP/MIDDLE/LOWER DRAWER

when clipped to ten characters it is:

UN TOP/M<−

If the VIEW_EXTERNAL or VIEW_INTERNAL flags are not specified, translation of
ADMIN_LOW and ADMIN_HIGH labels is controlled by the label view process attribute
flags. If no label view process attribute flags are defined, their translation is controlled
by the label view configured in the label_encodings file. A value of External
specifies that ADMIN_LOW and ADMIN_HIGH labels are mapped to the lowest and
highest labels defined in the label_encodings file. A value of Internal specifies that
the ADMIN_LOW and ADMIN_HIGH labels are translated to the admin low name and
admin high name strings specified in the label_encodings file. If no such names
are specified, the strings “ADMIN_LOW” and “ADMIN_HIGH” are used.

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level Unsafe

bcltobanner(3TSOL), blcompare(3TSOL), bltocolor(3TSOL), blvalid(3TSOL),
hextob(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

All these functions share the same statically allocated string storage. They are not
MT-Safe. Subsequent calls to any of these functions will overwrite that string with the
newly translated string.

sbsltos(3TSOL)

sbsltos

PROCESS
ATTRIBUTES

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

WARNINGS

858 man pages section 3: Library Functions • Last Revised 24 May 2001

send, sendto, sendmsg – send a message from a socket

cc [flags…] file … -lsocket -lnsl [library…]

#include <sys/types.h>

#include <sys/socket.h>

ssize_t send(int s, const void *msg, size_t len, int flags);

ssize_t sendto(int s, const void *msg, size_t len, int flags, const
struct sockaddr *to, int tolen);

ssize_t sendmsg(int s, const struct msghdr *msg, int flags);

send(), sendto(), and sendmsg() are used to transmit a message to another
transport end-point. send() may be used only when the socket is in a connected state,
while sendto() and sendmsg() may be used at any time. s is a socket created with
socket(3SOCKET).

The address of the target is given by to with tolen specifying its size. The length of the
message is given by len. If the message is too long to pass atomically through the
underlying protocol, then the error EMSGSIZE is returned, and the message is not
transmitted.

A return value of −1 indicates locally detected errors only. It does not implicitly mean
the message was not delivered.

If the socket does not have enough buffer space available to hold the message being
sent, send() blocks, unless the socket has been placed in non-blocking I/O mode (see
fcntl(2)). The select(3C) or poll(2) call may be used to determine when it is
possible to send more data.

The flags parameter is formed from the bitwise OR of zero or more of the following:

MSG_OOB Send “out-of-band” data on sockets that support this
notion. The underlying protocol must also support
“out-of-band” data. Only SOCK_STREAM sockets
created in the AF_INET address families support
out-of-band data.

MSG_DONTROUTE The SO_DONTROUTE option is turned on for the
duration of the operation. It is used only by diagnostic
or routing programs.

See recv(3SOCKET), for a description of the msghdr structure.

These calls return the number of bytes sent, or −1 if an error occurred.

The calls fail if:

EBADF s is an invalid file descriptor.

send(3SOCKET)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Introduction to Library Functions 859

EINTR The operation was interrupted by delivery of a signal
before any data could be buffered to be sent.

EINVAL tolen is not the size of a valid address for the specified
address family.

EMSGSIZE The socket requires that message be sent atomically,
and the message was too long.

ENOMEM There was insufficient memory available to complete
the operation.

ENOSR There were insufficient STREAMS resources available
for the operation to complete.

ENOTSOCK s is not a socket.

EWOULDBLOCK The socket is marked non-blocking and the requested
operation would block.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

If the process calling these routines possesses the PRIV_NET_REPLY_EQUAL privilege,
the packets the process sends will carry the same CMW label as that of the last packet
received from the destination. If no packet from the destination has ever been
received, this privilege has no effect.

fcntl(2), write(2), getsockopt(3SOCKET), socket(3SOCKET)

poll(2), select(3C), socket(3HEAD), recv(3SOCKET), attributes(5)

send(3SOCKET)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

860 man pages section 3: Library Functions • Last Revised 4 Apr 2000

send, sendto, sendmsg – send a message from a socket

cc [flags…] file … -lsocket -lnsl [library…]

#include <sys/types.h>

#include <sys/socket.h>

ssize_t send(int s, const void *msg, size_t len, int flags);

ssize_t sendto(int s, const void *msg, size_t len, int flags, const
struct sockaddr *to, int tolen);

ssize_t sendmsg(int s, const struct msghdr *msg, int flags);

send(), sendto(), and sendmsg() are used to transmit a message to another
transport end-point. send() may be used only when the socket is in a connected state,
while sendto() and sendmsg() may be used at any time. s is a socket created with
socket(3SOCKET).

The address of the target is given by to with tolen specifying its size. The length of the
message is given by len. If the message is too long to pass atomically through the
underlying protocol, then the error EMSGSIZE is returned, and the message is not
transmitted.

A return value of −1 indicates locally detected errors only. It does not implicitly mean
the message was not delivered.

If the socket does not have enough buffer space available to hold the message being
sent, send() blocks, unless the socket has been placed in non-blocking I/O mode (see
fcntl(2)). The select(3C) or poll(2) call may be used to determine when it is
possible to send more data.

The flags parameter is formed from the bitwise OR of zero or more of the following:

MSG_OOB Send “out-of-band” data on sockets that support this
notion. The underlying protocol must also support
“out-of-band” data. Only SOCK_STREAM sockets
created in the AF_INET address families support
out-of-band data.

MSG_DONTROUTE The SO_DONTROUTE option is turned on for the
duration of the operation. It is used only by diagnostic
or routing programs.

See recv(3SOCKET), for a description of the msghdr structure.

These calls return the number of bytes sent, or −1 if an error occurred.

The calls fail if:

EBADF s is an invalid file descriptor.

sendmsg(3SOCKET)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Introduction to Library Functions 861

EINTR The operation was interrupted by delivery of a signal
before any data could be buffered to be sent.

EINVAL tolen is not the size of a valid address for the specified
address family.

EMSGSIZE The socket requires that message be sent atomically,
and the message was too long.

ENOMEM There was insufficient memory available to complete
the operation.

ENOSR There were insufficient STREAMS resources available
for the operation to complete.

ENOTSOCK s is not a socket.

EWOULDBLOCK The socket is marked non-blocking and the requested
operation would block.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

If the process calling these routines possesses the PRIV_NET_REPLY_EQUAL privilege,
the packets the process sends will carry the same CMW label as that of the last packet
received from the destination. If no packet from the destination has ever been
received, this privilege has no effect.

fcntl(2), write(2), getsockopt(3SOCKET), socket(3SOCKET)

poll(2), select(3C), socket(3HEAD), recv(3SOCKET), attributes(5)

sendmsg(3SOCKET)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

862 man pages section 3: Library Functions • Last Revised 4 Apr 2000

send, sendto, sendmsg – send a message from a socket

cc [flags…] file … -lsocket -lnsl [library…]

#include <sys/types.h>

#include <sys/socket.h>

ssize_t send(int s, const void *msg, size_t len, int flags);

ssize_t sendto(int s, const void *msg, size_t len, int flags, const
struct sockaddr *to, int tolen);

ssize_t sendmsg(int s, const struct msghdr *msg, int flags);

send(), sendto(), and sendmsg() are used to transmit a message to another
transport end-point. send() may be used only when the socket is in a connected state,
while sendto() and sendmsg() may be used at any time. s is a socket created with
socket(3SOCKET).

The address of the target is given by to with tolen specifying its size. The length of the
message is given by len. If the message is too long to pass atomically through the
underlying protocol, then the error EMSGSIZE is returned, and the message is not
transmitted.

A return value of −1 indicates locally detected errors only. It does not implicitly mean
the message was not delivered.

If the socket does not have enough buffer space available to hold the message being
sent, send() blocks, unless the socket has been placed in non-blocking I/O mode (see
fcntl(2)). The select(3C) or poll(2) call may be used to determine when it is
possible to send more data.

The flags parameter is formed from the bitwise OR of zero or more of the following:

MSG_OOB Send “out-of-band” data on sockets that support this
notion. The underlying protocol must also support
“out-of-band” data. Only SOCK_STREAM sockets
created in the AF_INET address families support
out-of-band data.

MSG_DONTROUTE The SO_DONTROUTE option is turned on for the
duration of the operation. It is used only by diagnostic
or routing programs.

See recv(3SOCKET), for a description of the msghdr structure.

These calls return the number of bytes sent, or −1 if an error occurred.

The calls fail if:

EBADF s is an invalid file descriptor.

sendto(3SOCKET)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Introduction to Library Functions 863

EINTR The operation was interrupted by delivery of a signal
before any data could be buffered to be sent.

EINVAL tolen is not the size of a valid address for the specified
address family.

EMSGSIZE The socket requires that message be sent atomically,
and the message was too long.

ENOMEM There was insufficient memory available to complete
the operation.

ENOSR There were insufficient STREAMS resources available
for the operation to complete.

ENOTSOCK s is not a socket.

EWOULDBLOCK The socket is marked non-blocking and the requested
operation would block.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

If the process calling these routines possesses the PRIV_NET_REPLY_EQUAL privilege,
the packets the process sends will carry the same CMW label as that of the last packet
received from the destination. If no packet from the destination has ever been
received, this privilege has no effect.

fcntl(2), write(2), getsockopt(3SOCKET), socket(3SOCKET)

poll(2), select(3C), socket(3HEAD), recv(3SOCKET), attributes(5)

sendto(3SOCKET)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

864 man pages section 3: Library Functions • Last Revised 4 Apr 2000

getacinfo, getacdir, getacflg, getacmin, getacna, setac, endac – Get audit control file
information

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <bsm/libbsm.h>

int getacdir(char *dir, int len);

int getacmin(int *min_val);

int getacflg(char *auditstring, int len);

int getacna(char *auditstring, int len);

void setac(void);

void endac(void);

When first called, getacdir() provides information about the first audit directory in
the audit_control file; thereafter, it returns the next directory in the file. Successive
calls list all the directories listed in audit_control(4). The parameter len specifies
the length of the buffer dir. On return, dir points to the directory entry.

getacmin() reads the minimum value from the audit_control file and returns the
value in min_val. The minimum value specifies how full the file system to which the
audit files are being written can get before the script audit_warn(1M) is invoked.

getacflg() reads the system audit value from the audit_control file and returns
the value in auditstring. The parameter len specifies the length of the buffer auditstring.

getacna() reads the system audit value for non-attributable audit events from the
audit_control file and returns the value in auditstring. The parameter len specifies
the length of the buffer auditstring. Non-attributable events are events that cannot be
attributed to an individual user. inetd(1M) and several other daemons record
non-attributable events.

Calling setac rewinds the audit_control file to allow repeated searches.

Calling endac closes the audit_control file when processing is complete.

/etc/security/audit_control Contains default parameters read by the
audit daemon, auditd(1M).

getacdir(), getacflg(), getacna() and getacmin() return:

0 on success.

−2 On failure and set errno to indicate the error.

getacmin() and getacflg() return:

1 On EOF.

getacdir() returns:

setac(3BSM)

NAME

SYNOPSIS

DESCRIPTION

FILES

RETURN VALUES

Introduction to Library Functions 865

−1 on EOF.

2 if the directory search had to start from the beginning because one of the
other functions was called between calls to getacdir().

These functions return:

−3 If the directory entry format in the audit_control file is incorrect.

getacdir(), getacflg() and getacna() return:

−3 If the input buffer is too short to accommodate the record.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

audit_warn(1M), inetd(1M), audit_control(4)

attributes(5)

setac(3BSM)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

866 man pages section 3: Library Functions • Last Revised 5 May 1998

getauclassent, getauclassnam, setauclass, endauclass, getauclassnam_r, getauclassent_r
– get audit_class entry

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_class_ent *getauclassnam(const char *name);

struct au_class_ent *getauclassnam_r(au_class_ent_t *class_int,
const char *name);

struct au_class_ent *getauclassent(void);

struct au_class_ent *getauclassent_r(au_class_ent_t *class_int);

void setauclass(void);

void endauclass(void);

getauclassent() and getauclassnam() each return an audit_class entry.

getauclassnam() searches for an audit_class entry with a given class name name.

getauclassent() enumerates audit_class entries: successive calls to
getauclassent() will return either successive audit_class entries or NULL.

setauclass() ‘‘rewinds’’ to the beginning of the enumeration of audit_class entries.
Calls to getauclassnam() may leave the enumeration in an indeterminate state, so
setauclass() should be called before the first getauclassent().

endauclass() may be called to indicate that audit_class processing is complete; the
system may then close any open audit_class file, deallocate storage, and so forth.

getauclassent_r() and getauclassnam_r() both return a pointer to an
audit_class entry as do their similarly named counterparts. They each take an
additional argument, a pointer to pre-allocated space for an au_class_ent_t, which
is returned if the call is successful. To assure there is enough space for the information
returned, the applications programmer should be sure to allocate
AU_CLASS_NAME_MAX and AU_CLASS_DESC_MAX bytes for the ac_name and ac_desc
elements of the au_class_ent_t data structure.

The internal representation of an audit_user entry is an au_class_ent structure
defined in <bsm/libbsm.h> with the following members:

char *ac_name;
au_class_t ac_class;
char *ac_desc;

getauclassnam() and getauclassnam_r() return a pointer to a struct
au_class_ent if they successfully locate the requested entry; otherwise they return
NULL.

setauclass(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Introduction to Library Functions 867

getauclassent() and getauclassent_r() return a pointer to a struct
au_class_ent if they successfully enumerate an entry; otherwise they return NULL,
indicating the end of the enumeration.

/etc/security/audit_class Maps audit class numbers to audit class
names.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions.

All of the functions described in this man-page are MT-Safe except
getauclassent() and getauclassnam(). The two functions,
getauclassent_r() and getauclassnam_r() have the same functionality as the
unsafe functions, but have a slightly different function call interface in order to make
them MT-Safe.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

audit_class(4), audit_event(4)

attributes(5)

All information in the MT-unsafe versions are contained in a static area, which may be
overwritten, so it must be copied if it is to be saved.

setauclass(3BSM)

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

868 man pages section 3: Library Functions • Last Revised 29 Dec 1996

getauevent, getauevnam, getauevnum, getauevnonam, setauevent, endauevent,
getauevent_r, getauevnam_r, getauevnum_r – Get audit_event entry

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_event_ent *getauevent(void);

struct au_event_ent *getauevnam(char *name);

struct au_event_ent *getauevnum(au_event_t event_number);

au_event_t *getauevnonam(char *event_name);

void setauevent(void);

void endauevent(void);

struct au_event_ent *getauevent_r(au_event_ent_t *e);

struct au_event_ent *getauevnam_r(au_event_ent_t *e, char *name);

struct au_event_ent *getauevnum_r(au_event_ent_t *e, au_event_t
event_number);

These interfaces document the programming interface for obtaining entries from the
audit_event(4) file. getauevent(), getauevnam(), getauevnum(),
getauevent(), getauevnam(), and getauevnum() each return a pointer to an
audit_event structure.

getauevent() and getauevent_r() enumerate audit_event entries; successive
calls to these functions will return either successive audit_event entries or NULL.

getauevnam() and getauevnam_r() search for an audit_event entry with a
given event_name.

getauevnum() and getauevnum_r() search for an audit_event entry with a
given event_number.

getauevnonam() searches for an audit_event entry with a given event_name and
returns the corresponding event number.

setauevent() ‘‘rewinds’’ to the beginning of the enumeration of audit_event
entries. Calls to getauevnam(), getauevnum(), getauevnonum(),
getauevnam_r(), or getauevnum_r() may leave the enumeration in an
indeterminate state; setauevent() should be called before the first getauevent()
or getauevent_r().

endauevent() may be called to indicate that audit_event processing is complete;
the system may then close any open audit_event file, deallocate storage, and so
forth.

setauevent(3BSM)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 869

The three functions getauevent_r(), getauevnam_r(), and getauevnum_r()
each take an argument e which is a pointer to an au_event_ent_t. This pointer is
returned on a successful function call. To assure there is enough space for the
information returned, the applications programmer should be sure to allocate
AU_EVENT_NAME_MAX and AU_EVENT_DESC_MAX bytes for the ae_name and
ac_desc elements of the au_event_ent_t data structure.

The internal representation of an audit_event entry is an au_event_ent structure
defined in <bsm/libbsm.h> with the following members:

au_event_t ae_number;
char *ae_name;
char *ae_desc;
au_class_t ae_class;

getauevent(), getauevnam(), getauevnum(), getauevent_r(),
getauevnam_r(), and getauevnum_r() return a pointer to a struct
au_event_ent if the requested entry is successfully located; otherwise it returns
NULL.

getauevnonam() returns an event number of type au_event_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating it could not find the
requested event name.

/etc/security/audit_event Maps audit event numbers to audit event
names.

/etc/passwd Stores user-ID to username mappings.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

MT-Level MT-Safe with exceptions.

The functions getauevent(), getauevnam(), and getauevnum() are not MT-Safe;
however, there are equivalent functions: getauevent_r(), getauevnam_r(), and
getauevnum_r() — all of which provide the same functionality and a MT-Safe
function call interface.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

getauclassent(3BSM), audit_class(4), audit_event(4)

getpwnam(3C), passwd(4), attributes(5)

setauevent(3BSM)

RETURN VALUES

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

870 man pages section 3: Library Functions • Last Revised 29 Dec 1996

All information for the functions getauevent(), getauevnam(), and
getauevnum() is contained in a static area, which may be overwritten, so it must be
copied if it is to be saved.

setauevent(3BSM)

NOTES

Introduction to Library Functions 871

getauthattr, getauthnam, free_authattr, setauthattr, endauthattr, chkauthattr – get
authorization entry

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]
#include <auth_attr.h>

#include <secdb.h>

authattr_t *getauthattr(void);

authattr_t *getauthnam(const char *name);

void free_authattr(authattr_t *auth);

void setauthattr(void);

void endauthattr(void);

int chkauthattr(const char *authname, const char *username);

The getauthattr() and getauthnam() functions each return an auth_attr(4)
entry. Entries can come from any of the sources specified in the nsswitch.conf(4)
file.

The getauthattr() function enumerates auth_attr entries. The getauthnam()
function searches for an auth_attr entry with a given authorization name name.
Successive calls to these functions return either successive auth_attr entries or
NULL.

Th internal representation of an auth_attr entry is an authattr_t structure
defined in <auth_attr.h> with the following members:

char *name; /* name of the authorization */
char *res1; /* reserved for future use */
char *res2; /* reserved for future use */
char *short_desc; /* short description */
char *long_desc; /* long description */

kva_t *attr; /* array of key-value pair attributes */

The setauthattr() function “rewinds” to the beginning of the enumeration of
auth_attr entries. Calls to getauthnam() can leave the enumeration in an
indeterminate state. Therefore, setauthattr() should be called before the first call
to getauthattr().

The endauthattr() function may be called to indicate that auth_attr processing
is complete; the system may then close any open auth_attr file, deallocate storage,
and so forth.

The chkauthattr() function verifies whether or not a user has a given
authorization. It first reads the AUTHS_GRANTED key in the
/etc/security/policy.conf file and returns 1 if it finds a match for the given
authorization. If chkauthattr() does not find a match, it reads the
PROFS_GRANTED key in /etc/security/policy.conf and returns 1 if the given
authorization is in any profiles specified with the PROFS_GRANTED keyword. If a

setauthattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

872 man pages section 3: Library Functions • Last Revised 4 May 2000

match is not found from the default authorizations and default profiles,
chkauthattr() reads the user_attr(4) database. If it does not find a match in
user_attr, it reads the prof_attr(4) database, using the list of profiles assigned to
the user, and checks if any of the profiles assigned to the user has the given
authorization. The chkauthattr() function returns 0 if it does not find a match in
any of the three sources.

A user is considered to have been assigned an authorization if either of the following
are true:

� The authorization name matches exactly any authorization assigned in the
user_attr or prof_attr databases (authorization names are case-sensitive).

� The authorization name suffix is not the keyword grant and the authorization
name matches any authorization up to the asterisk (*) character assigned in the
user_attr or prof_attr databases.

The examples in the following table illustrate the conditions under which a user is
assigned an authorization.

/etc/security/policy.conf or Is user

Authorization name user_attr or prof_attr entry authorized?

solaris.printer.postscript solaris.printer.postscript Yes

solaris.printer.postscript solaris.printer.* Yes

solaris.printer.grant solaris.printer.* No

The free_authattr() function releases memory allocated by the getauthnam()
and getauthattr() functions.

The getauthattr() function returns a pointer to an authattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getauthnam() function returns a pointer to an authattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

The chkauthattr() function returns 1 if the user is authorized and 0 otherwise.

The getauthattr() and getauthnam() functions both allocate memory for the
pointers they return. This memory should be de-allocated with the
free_authattr() call.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

setauthattr(3SECDB)

RETURN VALUES

USAGE

Introduction to Library Functions 873

Individual attributes in the attr structure can be referred to by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, code must be written to ignore
unknown key-value pairs without error.

/etc/nsswitch.conf configuration file lookup information for
the name server switch

/etc/user_attr extended user attributes

/etc/security/auth_attr authorization attributes

/etc/security/policy.conf policy definitions

/etc/security/prof_attr profile information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

The Trusted Solaris environment adds authorizations. The chkauthattr() function
replaces the Trusted Solaris 7 chkauth() function.

nsswitch.conf(4), prof_attr(4), user_attr(4)

getexecattr(3SECDB), getprofattr(3SECDB), getuserattr(3SECDB),
kva_match(3SECDB), auth_attr(4), attributes(5), rbac(5)

setauthattr(3SECDB)

WARNINGS

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

874 man pages section 3: Library Functions • Last Revised 4 May 2000

getauusernam, getauuserent, setauuser, endauuser – Get audit_user entry

cc [flag…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_user_ent *getauusernam(const char *name);

struct au_user_ent *getauuserent(void);

void setauuser(void);

void endauuser(void);

struct au_user_ent *getauusernam_r(au_user_ent_t * u, const char
*name);

struct au_user_ent *getauuserent_r(au_user_ent_t *u);

The getauuserent(), getauusernam(), getauuserent_r(), and
getauusernam_r() functions each return an audit_user entry. Entries can come
from any of the sources specified in the /etc/nsswitch.conf file (see
nsswitch.conf(4)).

The getauusernam() and getauusernam_r() functions search for an
audit_user entry with a given login name name.

The getauuserent() and getauuserent_r() functions enumerate audit_user
entries; successive calls to these functions will return either successive audit_user
entries or NULL.

The setauuser() function “rewinds” to the beginning of the enumeration of
audit_user entries. Calls to getauusernam() and getauusernam_r() may leave
the enumeration in an indeterminate state, so setauuser() should be called before
the first call to getauuserent() or getauuserent_r().

The endauuser() function may be called to indicate that audit_user processing is
complete; the system may then close any open audit_user file, deallocate storage,
and so forth.

The getauuserent_r() and getauusernam_r() functions both take an argument
u, which is a pointer to an au_user_ent. This is the pointer that is returned on
successful function calls.

The internal representation of an audit_user entry is an au_user_ent structure
defined in <bsm/libbsm.h> with the following members:

char *au_name;
au_mask_t au_always;
au_mask_t au_never;

setauuser(3BSM)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 875

The getauusernam() function returns a pointer to a struct_au_user_ent if it
successfully locates the requested entry; otherwise it returns NULL.

The getauuserent() function returns a pointer to a struct_au_user_ent if it
successfully enumerates an entry; otherwise it returns NULL, indicating the end of the
enumeration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions.

/etc/security/audit_user Stores per-user audit event mask.

/etc/passwd Stores user-id to username mappings.

The functionality described in this man page is available only if auditing has been
enabled. By default, auditing is enabled in the Trusted Solaris environment.

audit_user(4), nsswitch.conf(4)

getpwnam(3C), passwd(4), attributes(5)

All information for the getauuserent() and getauusernam() functions is
contained in a static area, which may be overwritten, so it must be copied if it is to be
saved.

The getauusernam() and getauuserent() functions are not MT-safe. The
getauusernam_r() and getauuserent_r() functions provide the same
functionality with interfaces that are MT-Safe.

setauuser(3BSM)

RETURN VALUES

ATTRIBUTES

FILES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

876 man pages section 3: Library Functions • Last Revised 18 Apr 2000

bltype, setbltype – compare and set the type of binary label

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

int bltype(const void *label, const unsigned char type);

void setbltype(void *label, const unsigned char type);

These functions compare and set the type of binary labels.

bltype() examines label to determine if it is of the specified type type.

setbltype() sets the type of label to the specified type type.

type may be one of:

SUN_SL_ID label is a defined binary sensitivity label.

SUN_SL_UN label is an undefined binary sensitivity label.

SUN_CLR_ID label is a defined binary clearance.

SUN_CLR_UN label is an undefined binary clearance.

SUN_CMW_ID label is a binary CMW label whose label portions may or may not
be defined. (bltype() only.)

bltype() returns non-zero if label is of type type, otherwise zero is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), blcompare(3TSOL), bltocolor(3TSOL), btohex(3TSOL),
labelinfo(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

1. bltype(&cmw_label, SUN_CMW_ID) checks the existence of a binary CMW
label structure and not the portions of the structure that contain defined labels.

2. When attempting to determine the type of a label, rather than to verify that a
specific label type is present, check SUN_CMW_ID first.

3. setbltype() makes no checks on the structure it is setting or the type value.

setbltype(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

WARNINGS

Introduction to Library Functions 877

blportion, bcltosl, getcsl, setcsl – access binary label portions

cc [flag…] file … -ltsol [library…]

#include <tsol/label.h>

bslabel_t *bcltosl(bclabel_t *label);

void getcsl(bslabel_t *destination_label, const bclabel_t *source_label);

void setcsl(bclabel_t *destination_label, const bslabel_t *source_label);

These functions provide pointers to, extract, and replace portions of binary labels.

bcltosl() provides a pointer to the sensitivity label of the binary CMW label label.

getcsl() copies the sensitivity label of the binary CMW label source_label to the
binary sensitivity label destination_label.

setcsl() replaces the value of the sensitivity label of the binary CMW label
destination_label with the value of the binary sensitivity label source_label.

bcltosl() returns a pointer to its label type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

EXAMPLE 1 Comparing Sensitivity Labels

The following example shows how to compare the sensitivity label portion of a binary
CMW label with a file’s binary sensitivity label.

blequal(bcltosl(&cmw_label), &file_sensitivity_label)

bcltobanner(3TSOL), blcompare(3TSOL), bltos(3TSOL), btohex(3TSOL),
labelinfo(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

setcsl(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

EXAMPLES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

878 man pages section 3: Library Functions • Last Revised 24 May 2001

set_effective_priv, set_inheritable_priv, set_permitted_priv – Assign a privilege set for
the current process

cc [flags…] file… -ltsol

#include <tsol/priv.h>

int set_effective_priv(priv_op_t op, int privno, [, priv_t priv_id,
...]);

int set_permitted_priv(priv_op_t op, int privno, [, priv_t priv_id,
...]);

int set_inheritable_priv(priv_op_t op, int privno, [, priv_t
priv_id, ...]);

These routines, located in the Trusted Solaris library, assign the effective, inheritable,
and permitted privilege sets, respectively, for the current process. These routines
provide a user-friendly interface to the system call setppriv(2). op is one of these
operations:

PRIV_ON Add the specified privilege IDs to the privilege set of the target
process.

PRIV_OFF Clear the specified privileges from the privilege set of the target
process.

PRIV_SET Add the specified privilege IDs to the privilege set of the target
process and clear all other privileges.

privno indicates the count of privilege IDs that follow. The behavior of these routines is
undefined if privno is less than zero. priv_id is a numerical privilege ID defined in
<priv_names.h>.

Note that if op is PRIV_SET and privno is 0, the target privilege set is initialized to the
empty set.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

These routines return:

0 On success.

−1 On failure, and set errno to indicate the error.

EINVAL The specified privilege is invalid.

set_effective_priv(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

RETURN VALUES

ERRORS

Introduction to Library Functions 879

EPERM A specified privilege is not permitted in the asserted set of
privileges.

setppriv(2)

attributes(5)

set_effective_priv(3TSOL)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

880 man pages section 3: Library Functions • Last Revised 21 Feb 1995

getexecattr, free_execattr, setexecattr, endexecattr, getexecuser, getexecprof,
match_execattr – get execution profile entry

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]
#include <exec_attr.h>

#include <secdb.h>

execattr_t *getexecattr(void);

void free_execattr(execattr_t *ep);

void setexecattr(void);

void endexecattr(void);

execattr_t *getexecuser(const char *username, const char *type,
const char *id, int search_flag);

execattr_t *getexecprof(const char *profname, const char *type,
const char *id, int search_flag);

execattr_t *match_execattr(execattr_t *ep, char *profname, char
*type, char *id);

The getexecattr() function returns a single exec_attr entry. Entries can come
from any of the sources specified in the nsswitch.conf(4) file.

Successive calls to getexecattr() return either successive exec_attr entries or
NULL. Because getexecattr() always returns a single entry, the next pointer in the
execattr_t data structure points to NULL.

The internal representation of an exec_attr entry is an execattr_t structure
defined in <exec_attr.h> with the following members:

char name; /* name of the profile */
char type; /* type of profile */
char policy; /* policy under which the attributes are */

/* relevant*/
char res1; /* reserved for future use */
char res2; /* reserved for future use */
char id; /* unique identifier */
kva_t attr; /* attributes */

struct execattr_s next; /* optional pointer to next profile */

The free_execattr() function releases memory. It follows the next pointers in the
execattr_t structure so that the entire linked list is released.

The setexecattr() function “rewinds” to the beginning of the enumeration of
exec_attr entries. Calls to getexecuser() can leave the enumeration in an
indeterminate state. Therefore, setexecattr() should be called before the first call
to getexecattr().

setexecattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 881

The endexecattr() function can be called to indicate that exec_attr processing is
complete; the library can then close any open exec_attr file, deallocate any internal
storage, and so forth.

The getexecuser() function returns a linked list of entries filtered by the function’s
arguments. Only entries assigned to the specified username, as described in the
passwd(4) database, and containing the specified type and id, as described in the
exec_attr(4) database, are placed in the list. The getexecuser() function is
different from the other functions in its family because it spans two databases. It first
looks up the list of profiles assigned to a user in the user_attr database and the list
of default profiles in /etc/security/policy.conf, then looks up each profile in
the exec_attr database.

The getexecprof() function returns a linked list of entries that have components
matching the function’s arguments. Only entries in the database matching the
argument profname, as described in exec_attr, and containing the type and id, also
described in exec_attr, are placed in the list.

Using getexecuser() and getexecprof(), programmers can search for any type
argument, such as the manifest constant KV_COMMAND. The arguments are logically
AND-ed together so that only entries exactly matching all of the arguments are
returned. Wildcard matching applies if there is no exact match for an ID. Any
argument can be assigned the NULL value to indicate that it is not used as part of the
matching criteria. The search_flag controls whether the function returns the first match
(GET_ONE), setting the next pointer to NULL or all matching entries (GET_ALL), using
the next pointer to create a linked list of all entries that meet the search criteria. See
EXAMPLES.

Once a list of entries is returned by getexecuser() or getexecprof(), the
convenience function match_execattr() can be used to identify an individual
entry. It returns a pointer to the individual element with the same profile name (
profname), type name (type), and id. Function parameters set to NULL are not used as
part of the matching criteria. In the event that multiple entries meet the matching
criteria, only a pointer to the first entry is returned. The kva_match(3SECDB)
function can be used to look up a key in a key-value array.

Those functions returning data only return data related to the active policy. The
getexecattr() function returns a pointer to a execattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getexecattr(), getexecuser(), and getexecprof() functions all allocate
memory for the pointers they return. This memory should be deallocated with the
free_execattr() call. The match_execattr()(function does not allocate any
memory. Therefore, pointers returned by this function should not be deallocated.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and

setexecattr(3SECDB)

RETURN VALUES

USAGE

882 man pages section 3: Library Functions • Last Revised 13 Mar 2000

linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

Individual attributes may be referenced in the attr structure by calling the
kva_match(3SECDB) function.

EXAMPLE 1 The following finds all profiles that have the ping command.

if ((execprof=getexecprof(NULL, KV_COMMAND, "/usr/sbin/ping",
GET_ONE)) == NULL) {

/* do error */

}

EXAMPLE 2 The following finds the entry for the ping command in the Network
Administration Profile.

if ((execprof=getexecprof("Network Administration", KV_COMMAND,
"/usr/sbin/ping", GET_ALL))==NULL) {

/* do error */

}

EXAMPLE 3 The following tells everything that can be done in the Filesystem Security profile.

if ((execprof=getexecprof("Filesystem Security", KV_NULL, NULL,
GET_ALL))==NULL)) {

/* do error */

}

EXAMPLE 4 The following tells if the tar command is in a profile assigned to user wetmore.
If there is no exact profile entry, the wildcard (*), if defined, is returned.

if ((execprof=getexecuser("wetmore", KV_COMMAND, "/usr/bin/tar",
GET_ONE))==NULL) {

/* do error */

}

/etc/nsswitch.conf configuration file lookup information for
the name server switch

/etc/user_attr extended user attributes

/etc/security/exec_attr execution profiles

/etc/security/policy.conf policy definitions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

setexecattr(3SECDB)

EXAMPLES

FILES

ATTRIBUTES

Introduction to Library Functions 883

getauthattr(3SECDB), getuserattr(3SECDB), kva_match(3SECDB),
exec_attr(4), policy.conf(4), user_attr(4), attributes(5)

setexecattr(3SECDB)

SEE ALSO

884 man pages section 3: Library Functions • Last Revised 13 Mar 2000

set_effective_priv, set_inheritable_priv, set_permitted_priv – Assign a privilege set for
the current process

cc [flags…] file… -ltsol

#include <tsol/priv.h>

int set_effective_priv(priv_op_t op, int privno, [, priv_t priv_id,
...]);

int set_permitted_priv(priv_op_t op, int privno, [, priv_t priv_id,
...]);

int set_inheritable_priv(priv_op_t op, int privno, [, priv_t
priv_id, ...]);

These routines, located in the Trusted Solaris library, assign the effective, inheritable,
and permitted privilege sets, respectively, for the current process. These routines
provide a user-friendly interface to the system call setppriv(2). op is one of these
operations:

PRIV_ON Add the specified privilege IDs to the privilege set of the target
process.

PRIV_OFF Clear the specified privileges from the privilege set of the target
process.

PRIV_SET Add the specified privilege IDs to the privilege set of the target
process and clear all other privileges.

privno indicates the count of privilege IDs that follow. The behavior of these routines is
undefined if privno is less than zero. priv_id is a numerical privilege ID defined in
<priv_names.h>.

Note that if op is PRIV_SET and privno is 0, the target privilege set is initialized to the
empty set.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

These routines return:

0 On success.

−1 On failure, and set errno to indicate the error.

EINVAL The specified privilege is invalid.

set_inheritable_priv(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

RETURN VALUES

ERRORS

Introduction to Library Functions 885

EPERM A specified privilege is not permitted in the asserted set of
privileges.

setppriv(2)

attributes(5)

set_inheritable_priv(3TSOL)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

886 man pages section 3: Library Functions • Last Revised 21 Feb 1995

set_effective_priv, set_inheritable_priv, set_permitted_priv – Assign a privilege set for
the current process

cc [flags…] file… -ltsol

#include <tsol/priv.h>

int set_effective_priv(priv_op_t op, int privno, [, priv_t priv_id,
...]);

int set_permitted_priv(priv_op_t op, int privno, [, priv_t priv_id,
...]);

int set_inheritable_priv(priv_op_t op, int privno, [, priv_t
priv_id, ...]);

These routines, located in the Trusted Solaris library, assign the effective, inheritable,
and permitted privilege sets, respectively, for the current process. These routines
provide a user-friendly interface to the system call setppriv(2). op is one of these
operations:

PRIV_ON Add the specified privilege IDs to the privilege set of the target
process.

PRIV_OFF Clear the specified privileges from the privilege set of the target
process.

PRIV_SET Add the specified privilege IDs to the privilege set of the target
process and clear all other privileges.

privno indicates the count of privilege IDs that follow. The behavior of these routines is
undefined if privno is less than zero. priv_id is a numerical privilege ID defined in
<priv_names.h>.

Note that if op is PRIV_SET and privno is 0, the target privilege set is initialized to the
empty set.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

These routines return:

0 On success.

−1 On failure, and set errno to indicate the error.

EINVAL The specified privilege is invalid.

set_permitted_priv(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

RETURN VALUES

ERRORS

Introduction to Library Functions 887

EPERM A specified privilege is not permitted in the asserted set of
privileges.

setppriv(2)

attributes(5)

set_permitted_priv(3TSOL)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

888 man pages section 3: Library Functions • Last Revised 21 Feb 1995

getprofattr, getprofnam, free_profattr, setprofattr, endprofattr, getproflist, free_proflist
– get profile description and attributes

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]

#include <prof.h>

profattr_t *getprofattr(void);

profattr_t *getprofnam(const char *name);

void free_profattr(profattr_t *pd);

void setprofattr(void);

void endprofattr(void);

void getproflist(const char *profname, char **proflist, int *profcnt);

void free_proflist(char **proflist, int profcnt);

The getprofattr() and getprofnam() functions each return a prof_attr entry.
Entries can come from any of the sources specified in the nsswitch.conf(4) file.

The getprofattr() function enumerates prof_attr entries. The getprofnam()
function searches for a prof_attr entry with a given name. Successive calls to these
functions return either successive prof_attr entries or NULL.

The internal representation of a prof_attr entry is a profattr_t structure defined
in <prof_attr.h> with the following members:

char name; /* Name of the profile */
char res1; /* Reserved for future use */
char res2; /* Reserved for future use */
char desc; /* Description/Purpose of the profile */

kva_t attr; /* Profile attributes */

The free_profattr() function releases memory allocated by the getprofattr()
and getprofnam() functions.

The setprofattr() function “rewinds” to the beginning of the enumeration of
prof_attr entries. Calls to getprofnam() can leave the enumeration in an
indeterminate state. Therefore, setprofattr() should be called before the first call
to getprofattr().

The endprofattr() function may be called to indicate that prof_attr processing
is complete; the system may then close any open prof_attr file, deallocate storage,
and so forth.

The getproflist() function searches for the list of sub-profiles found in the given
profname and allocates memory to store this list in proflist. The given profname will be
included in the list of sub-profiles. The profcnt argument indicates the number of items
currently valid in proflist. Memory allocated by getproflist() should be freed
using the free_proflist() function.

setprofattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 889

The free_proflist() function frees memory allocated by the getproflist()
function. The profcnt argument specifies the number of items to free from the proflist
argument.

The getprofattr() function returns a pointer to a profattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getprofnam() function returns a pointer to a profattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

Individual attributes in the prof_attr_t structure can be referred to by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, any code must be written to ignore
unknown key-value pairs without error.

The getprofattr() and getprofnam() functions both allocate memory for the
pointers they return. This memory should be deallocated with the free_profattr()
function.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

/etc/security/prof_attr profiles and their descriptions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

auths(1), profiles(1), getexecattr(3SECDB), getauthattr(3SECDB),
prof_attr(4)

setprofattr(3SECDB)

RETURN VALUES

USAGE

FILES

ATTRIBUTES

SEE ALSO

890 man pages section 3: Library Functions • Last Revised 13 Mar 2000

getprofent, setprofent, endprofent, getprofentbyname, free_profent – Get user profile
description

cc [flag…] file… -ltsol -ltsoldb -lcmd -lnsl [library…]

(obsolete)

The getprofent, setprofent, endprofent, getprofentbyname, and
free_profent functions are replaced in Trusted Solaris 8 and later releases with the
functions described in the getprofattr(3SECDB) and getexecattr(3SECDB) man
pages. These functions find rights profiles information in prof_attr(4) and
exec_attr(4).

setprofent(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 891

getprofstr, putprofstr, setprofstr, endprofstr, getprofstrbyname, free_profstr – Get user
profile description

cc [flag…] file… -ltsol -ltsoldb -lcmd -lnsl [library…]

(obsolete)

The getprofstr, putprofstr, setprofstr, endprofstr, getprofstrbyname,
and free_profstr functions are replaced in Trusted Solaris 8 and later releases with
the functions described in the getprofattr(3SECDB) and getexecattr(3SECDB)
man pages. These functions find rights profiles information in prof_attr(4) and
exec_attr(4).

setprofstr(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

892 man pages section 3: Library Functions • Last Revised 16 Jun 2000

getsockopt, setsockopt – get and set options on sockets

cc [flags…] file … -lsocket -lnsl [library…]

#include <sys/types.h>

#include <sys/socket.h>

int getsockopt(int s, int level, int optname, void *optval, int *optlen);

int setsockopt(int s, int level, int optname, const void *optval, int
optlen);

getsockopt() and setsockopt() manipulate options associated with a socket.
Options may exist at multiple protocol levels; they are always present at the
uppermost “socket” level.

When manipulating socket options, the level at which the option resides and the name
of the option must be specified. To manipulate options at the “socket” level, level is
specified as SOL_SOCKET. To manipulate options at any other level, level is the
protocol number of the protocol that controls the option. For example, to indicate that
an option is to be interpreted by the TCP protocol, level is set to the TCP protocol
number (see getprotobyname(3SOCKET)).

The parameters optval and optlen are used to access option values for setsockopt().
For getsockopt(), they identify a buffer in which the value(s) for the requested
option(s) are to be returned. For getsockopt(), optlen is a value-result parameter,
initially containing the size of the buffer pointed to by optval, and modified on return
to indicate the actual size of the value returned. Use a 0 optval if no option value is to
be supplied or returned.

optname and any specified options are passed uninterpreted to the appropriate
protocol module for interpretation. The include file <sys/socket.h> contains
definitions for the socket-level options described below. Options at other protocol
levels vary in format and name.

Most socket-level options take an int for optval. For setsockopt(), the optval
parameter should be non-zero to enable a boolean option, or zero if the option is to be
disabled. SO_LINGER uses a struct linger parameter that specifies the desired
state of the option and the linger interval (see below). struct linger is defined in
<sys/socket.h>. struct linger contains the following members:

l_onoff on = 1/off = 0

l_linger linger time, in seconds

The following options are recognized at the socket level. Except as noted, each may be
examined with getsockopt() and set with setsockopt().

SO_DEBUG enable/disable recording of debugging information

SO_REUSEADDR enable/disable local address reuse

SO_KEEPALIVE enable/disable keep connections alive

setsockopt(3SOCKET)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 893

SO_DONTROUTE enable/disable routing bypass for outgoing messages

SO_LINGER linger on close if data is present

SO_BROADCAST enable/disable permission to transmit broadcast
messages

SO_OOBINLINE enable/disable reception of out-of-band data in band

SO_SNDBUF set buffer size for output

SO_RCVBUF set buffer size for input

SO_DGRAM_ERRIND application wants delayed error

SO_TYPE get the type of the socket (get only)

SO_ERROR get and clear error on the socket (get only)

SO_DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR
indicates that the rules used in validating addresses supplied in a bind(3SOCKET)
call should allow reuse of local addresses. SO_KEEPALIVE enables the periodic
transmission of messages on a connected socket. If the connected party fails to
respond to these messages, the connection is considered broken and processes using
the socket are notified using a SIGPIPE signal. SO_DONTROUTE indicates that
outgoing messages should bypass the standard routing facilities. Instead, messages are
directed to the appropriate network interface according to the network portion of the
destination address.

SO_LINGER controls the action taken when unsent messages are queued on a socket
and a close(2) is performed. If the socket promises reliable delivery of data and
SO_LINGER is set, the system will block the process on the close() attempt until it is
able to transmit the data or until it decides it is unable to deliver the information (a
timeout period, termed the linger interval, is specified in the setsockopt() call
when SO_LINGER is requested). If SO_LINGER is disabled and a close() is issued,
the system will process the close() in a manner that allows the process to continue
as quickly as possible.

The option SO_BROADCAST requests permission to send broadcast datagrams on the
socket. With protocols that support out-of-band data, the SO_OOBINLINE option
requests that out-of-band data be placed in the normal data input queue as received; it
will then be accessible with recv() or read() calls without the MSG_OOB flag.No
privilege is required to set the SO_BROADCAST flag, and any user may do so; however,
the PRIV_NET_BROADCAST privilege is required to use a broadcast address.

SO_SNDBUF and SO_RCVBUF are options that adjust the normal buffer sizes allocated
for output and input buffers, respectively. The buffer size may be increased for
high-volume connections or may be decreased to limit the possible backlog of
incoming data. SunOS sets the maximum buffer size for both UDP and TCP to 256
Kbytes.

setsockopt(3SOCKET)

894 man pages section 3: Library Functions • Last Revised 4 Apr 2000

By default, delayed errors (such as ICMP port unreachable packets) are returned only
for connected datagram sockets. SO_DGRAM_ERRIND makes it possible to receive
errors for datagram sockets that are not connected. When this option is set, certain
delayed errors received after completion of a sendto() or sendmsg() operation will
cause a subsequent sendto() or sendmsg() operation using the same destination
address (to parameter) to fail with the appropriate error. See send(3SOCKET).

Finally, SO_TYPE and SO_ERROR are options used only with getsockopt().
SO_TYPE returns the type of the socket (for example, SOCK_STREAM). It is useful for
servers that inherit sockets on startup. SO_ERROR returns any pending error on the
socket and clears the error status. It may be used to check for asynchronous errors on
connected datagram sockets or for other asynchronous errors.

getsockopt() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The call succeeds unless:

EBADF The argument s is not a valid file descriptor.

ENOMEM There was insufficient memory available for the
operation to complete.

ENOPROTOOPT The option is unknown at the level indicated.

ENOSR There were insufficient STREAMS resources available
for the operation to complete.

ENOTSOCK The argument s is not a socket.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

A process must have the PRIV_NET_RAWACCESS privilege in order to specify IP
options 130 or 134 (IPOPT_SEC and IPOPT_CIPSO, respectively, as defined in
<inet/ip.h>). The former refers to the Basic Security Option and the latter refers to
the CIPSO option. A process must have the PRIV_NET_BROADCAST privilege to use a
broadcast address.

read(2), bind(3SOCKET), send(3SOCKET), socket(3SOCKET)

close(2), ioctl(2), getprotobyname(3SOCKET), recv(3SOCKET), netconfig(4),
attributes(5)

setsockopt(3SOCKET)

RETURN VALUES

ERRORS

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

Introduction to Library Functions 895

getuserattr, getusernam, getuseruid, free_userattr, setuserattr, enduserattr – get
user_attr entry

cc [flag...] file...– lsecdb – lsocket – lnsl – lintl [library...]

#include <user_attr.h>

userattr_t *getuserattr(void);

userattr_t *getusernam(const char *name);

userattr_t *getuseruid(uid_t uid);

void free_userattr(userattr_t *userattr);

void setuserattr(void);

void enduserattr(void);

The getuserattr(), getusernam(), and getuseruid() functions each return a
user_attr(4) entry. Entries can come from any of the sources specified in the
nsswitch.conf(4) file. The getuserattr() function enumerates user_attr
entries. The getusernam() function searches for a user_attr entry with a given
user name name. The getuseruid() function searches for a user_attr entry with a
given user id uid. Successive calls to these functions return either successive
user_attr entries or NULL.

The free_userattr() function releases memory allocated by the getusernam()
and getuserattr() functions.

The internal representation of a user_attr entry is a userattr_t structure defined
in <user_attr.h> with the following members:

char name; /* name of the user */
char qualifier; /* reserved for future use */
char res1; /* reserved for future use */
char res2; /* reserved for future use */

kva_t attr; /* list of attributes */

The setuserattr() function “rewinds” to the beginning of the enumeration of
user_attr entries. Calls to getusernam() may leave the enumeration in an
indeterminate state, so setuserattr() should be called before the first call to
getuserattr().

The enduserattr() function may be called to indicate that user_attr processing
is complete; the library may then close any open user_attr file, deallocate any
internal storage, and so forth.

The getuserattr() function returns a pointer to a userattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getusernam() function returns a pointer to a userattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

setuserattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

896 man pages section 3: Library Functions • Last Revised 12 Aug 1999

The getuserattr() and getusernam() functions both allocate memory for the
pointers they return. This memory should be deallocated with the free_userattr()
function.

Applications that use the interfaces described in this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time. Note that these interfaces are reentrant even
though they do not use the _r suffix naming convention.

Individual attributes may be referenced in the attr structure by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, code must be written to ignore
unknown key-value pairs without error.

/etc/user_attr extended user attributes

/etc/nsswitch.conf configuration file lookup information for
the name server switch

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getauthattr(3SECDB), getexecattr(3SECDB), getprofattr(3SECDB),
user_attr(4), attributes(5)

setuserattr(3SECDB)

USAGE

WARININGS

FILES

ATTRIBUTES

SEE ALSO

Introduction to Library Functions 897

getuserent, setuserent, enduserent, getuserentbyname, getuserentbyuid, free_userent –
Get user security attributes

cc [flag…] file… -ltsoldb -ltsol -lnsl -lcmd [library…]

(obsolete)

The getuserent, setuserent, enduserent, getuserentbyname,
getuserentbyuid, and free_userent functions are replaced in Trusted Solaris 8
and later releases with the functions described in the getuserattr(3SECDB) man
page. These functions find user security attributes in user_attr(4).

setuserent(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

898 man pages section 3: Library Functions • Last Revised 16 Jun 2000

getutent, getutid, getutline, pututline, setutent, endutent, utmpname – Access utmp
file entry

#include <utmp.h>

struct utmp *getutent(void);

struct utmp *getutid(const struct utmp *id);

struct utmp *getutline(const struct utmp *line);

struct utmp *pututline(const struct utmp *utmp);

void setutent(void);

void endutent(void);

int utmpname(const char *file);

The getutent(), getutid(), getutline(), and pututline() functions each
return a pointer to a utmp structure with the following members:

char ut_user[8]; /* user login name */
char ut_id[4]; /* /sbin/inittab id (usually line #) */
char ut_line[12]; /* device name (console, lnxx) */
short ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */

time_t ut_time; /* time entry was made */

The structure exit_status includes the following members:

short e_termination; /* termination status */
short e_exit; /* exit status */

The getutent() function reads in the next entry from a utmp-like file. If the file is
not already open, it opens it. If it reaches the end of the file, it fails.

The getutid() function searches forward from the current point in the utmp file
until it finds an entry with a ut_type matching id⇒ut_type if the type specified is
RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in id is
INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then
getutid() will return a pointer to the first entry whose type is one of these four and
whose ut_id member matches id⇒ut_id. If the end of file is reached without a
match, it fails.

The getutline() function searches forward from the current point in the utmp file
until it finds an entry of the type LOGIN_PROCESS or ut_line string matching the
line⇒ut_line string. If the end of file is reached without a match, it fails.

The pututline() function writes the supplied utmp structure into the utmp file. It
uses getutid() to search forward for the proper place if it finds that it is not already

setutent(3C)

NAME

SYNOPSIS

DESCRIPTION

getutent()

getutid()

getutline()

pututline()

Introduction to Library Functions 899

at the proper place. It is expected that normally the user of pututline() will have
searched for the proper entry using one of the these functions. If so, pututline()
will not search. If pututline() does not find a matching slot for the new entry, it
will add a new entry to the end of the file. It returns a pointer to the utmp structure.

When called by a process that does not have an effective uid of 0 and a sensitivity
label of ADMIN_LOW, pututline() invokes a program (that has the appropriate
forced privileges) to verify and write the entry, since /etc/utmpx is normally
writable only by a process with a UID of 0 and a sensitivity label of ADMIN_LOW. In
this event, the ut_name member must correspond to the actual user name associated
with the process; the ut_type member must be either USER_PROCESS or
DEAD_PROCESS; and the ut_line member must be a device special file and be
writable by the user. If the process does not have the PAF_TRUSTED_PATH process
attribute, all other fields in the entry are cleared.

The setutent() function resets the input stream to the beginning of the file. This
reset should be done before each search for a new entry if it is desired that the entire
file be examined.

The endutent() function closes the currently open file.

The utmpname() function allows the user to change the name of the file examined,
from /var/adm/utmp to any other file. It is most often expected that this other file
will be /var/adm/wtmp. If the file does not exist, this will not be apparent until the
first attempt to reference the file is made. The utmpname() function does not open the
file but closes the old file if it is currently open and saves the new file name.

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write. If the file name given is longer than 79
characters, utmpname() returns 0. Otherwise, it returns 1.

These functions use buffered standard I/O for input, but pututline() uses an
unbuffered non-standard write to avoid race conditions between processes trying to
modify the utmp and wtmp files.

Applications should not access the utmp and wtmp databases directly, but should use
these functions to ensure that these databases are maintained consistently. Using these
functions, however, may cause applications to fail if user accounting data cannot be
represented properly in the utmp structure (for example, on a system where PIDs can
exceed 32767). Use the functions described on the getutxent(3C) manual page
instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

setutent(3C)

setutent()

endutent()

utmpname()

RETURN VALUES

USAGE

ATTRIBUTES

900 man pages section 3: Library Functions • Last Revised 16 Oct 1997

pututline() invokes a program with appropriate forced privileges to verify and
write the utmpx structure. pututline() clears fields in an entry if the process does
not have the PAF_TRUSTED_PATH process attribute.

ttyslot(3C), utmp(4), utmpx(4), attributes(5)

The most current entry is saved in a static structure. Multiple accesses require that it
be copied before further accesses are made. On each call to either getutid() or
getutline(), the function examines the static structure before performing more I/O.
If the contents of the static structure match what it is searching for, it looks no further.
For this reason, to use getutline() to search for multiple occurrences, it would be
necessary to zero out the static area after each success, or getutline() would just
return the same structure over and over again. There is one exception to the rule about
emptying the structure before further reads are done. The implicit read done by
pututline() (if it finds that it is not already at the correct place in the file) will not
hurt the contents of the static structure returned by the getutent(), getutid() or
getutline() functions, if the user has just modified those contents and passed the
pointer back to pututline().

setutent(3C)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

SunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 901

getutxent, getutxid, getutxline, pututxline, setutxent, endutxent, utmpxname,
getutmp, getutmpx, updwtmp, updwtmpx – User accounting database functions

#include <utmpx.h>

struct utmpx *getutxent(void);

struct utmpx *getutxid(const struct utmpx *id);

struct utmpx *getutxline(const struct utmpx *line);

struct utmpx *pututxline(const struct utmpx *utmpx);

void setutxent(void);

void endutxent(void);

int utmpxname(const char *file);

void getutmp(struct utmpx *utmpx, struct utmp *utmp);

void getutmpx(struct utmp *utmp, struct utmpx *utmpx);

void updwtmp(char *wfile, struct utmp *utmp);

void updwtmpx(char *wfilex, struct utmpx *utmpx);

These functions provide access to the user accounting database, utmpx (see utmpx(4)).
Entries in the database are described by the definitions and data structures in
<utmpx.h>.

char ut_user[32]; /* user login name */
char ut_id[4]; /* /etc/inittab id (usually line #) */
char ut_line[32]; /* device name (console, lnxx) */
pid_t ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */
struct timeval ut_tv; /* time entry was made */
long ut_session; /* session ID, used for windowing */
long pad[5]; /* reserved for future use */
short ut_syslen; /* significant length of ut_host */

/* including terminating null */

char ut_host[257]; /* host name, if remote */

The structure exit status includes the following members:

short e_termination; /* termination status */

short e_exit; /* exit status */

The getutxent() function reads in the next entry from a utmpx database. If the
database is not already open, it opens it. If it reaches the end of the database, it fails.

The getutxid() function searches forward from the current point in the utmpx
database until it finds an entry with a ut_type matching id⇒ut_type, if the type
specified is RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in

setutxent(3C)

NAME

SYNOPSIS

DESCRIPTION

getutxent()

getutxid()

902 man pages section 3: Library Functions • Last Revised 6 Oct 1999

id is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then
getutxid() will return a pointer to the first entry whose type is one of these four
and whose ut_id member matches id⇒ut_id. If the end of database is reached
without a match, it fails.

The getutxline() function searches forward from the current point in the utmpx
database until it finds an entry of the type LOGIN_PROCESS or USER_PROCESS which
also has a ut_line string matching the line⇒ut_line string. If the end of the database
is reached without a match, it fails.

The pututxline() function writes the supplied utmpx structure into the utmpx file.
It uses getutxid() to search forward for the proper place if it finds that it is not
already at the proper place. It is expected that normally the user of pututxline()
will have searched for the proper entry using one of the getutx() routines. If so,
pututxline() will not search. If pututxline() does not find a matching slot for
the new entry, it will add a new entry to the end of the database. It returns a pointer to
the utmpx structure.

When called by a process that does not have an effective uid of 0 and a sensitivity
label of ADMIN_LOW, pututxline() invokes a program (that has the appropriate
forced privileges) to verify and write the entry, since /etc/utmpx is normally
writable only by a process with a UID of 0 and a sensitivity label of ADMIN_LOW. In
this event, the ut_name member must correspond to the actual user name associated
with the process; the ut_type member must be either USER_PROCESS or
DEAD_PROCESS; and the ut_line member must be a device special file and be
writable by the user. If the process does not have the PAF_TRUSTED_PATH process
attribute, all other fields in the entry are cleared.

The setutxent() function resets the input stream to the beginning. This should be
done before each search for a new entry if it is desired that the entire database be
examined.

The endutxent() function closes the currently open database.

The utmpxname() function allows the user to change the name of the database file
examined from /var/adm/utmpx to any other file, most often /var/adm/wtmpx. If
the file does not exist, this will not be apparent until the first attempt to reference the
file is made. The utmpxname() function does not open the file, but closes the old file
if it is currently open and saves the new file name. The new file name must end with
the “x” character to allow the name of the corresponding utmp file to be easily
obtainable.; otherwise, an error value of 0 is returned. The function returns 1 on
success.

The getutmp() function copies the information stored in the members of the utmpx
structure to the corresponding members of the utmp structure. If the information in
any member of utmpx does not fit in the corresponding utmp member, the data is
silently truncated. (See getutent(3C) for utmp structure)

setutxent(3C)

getutxline()

pututxline()

setutxent()

endutxent()

utmpxname()

getutmp()

Introduction to Library Functions 903

The getutmpx() function copies the information stored in the members of the utmp
structure to the corresponding members of the utmpx structure. (See getutent(3C)
for utmp structure)

The updwtmp() function can be used in two ways.

If wfile is /var/adm/wtmp, the utmp format record supplied by the caller is converted
to a utmpx format record and the /var/adm/wtmpx file is updated (because the
/var/adm/wtmp file no longer exists, operations on wtmp are converted to operations
on wtmpx by the library functions.

If wfile is a file other than /var/adm/wtmp, it is assumed to be an old file in utmp
format and is updated directly with the utmp format record supplied by the caller.

The updwtmpx() function writes the contents of the utmpx structure pointed to by
utmpx to the database.

The values of the e_termination and e_exit members of the ut_exit structure
are valid only for records of type DEAD_PROCESS. For utmpx entries created by
init(1M), these values are set according to the result of the wait() call that init
performs on the process when the process exits. See the wait(2) manual page for the
values init uses. Applications creating utmpx entries can set ut_exit values using
the following code example:

u->ut_exit.e_termination = WTERMSIG(process->p_exit)
u->ut_exit.e_exit = WEXITSTATUS(process->p_exit)

See wstat(3XFN) for descriptions of the WTERMSIG and WEXITSTATUS macros.

The ut_session member is not acted upon by the operating system. It is used by
applications interested in creating utmpx entries.

For records of type USER_PROCESS, the nonuser() and nonuserx() macros use the
value of the ut_exit.e_exit member to mark utmpx entries as real logins (as
opposed to multiple xterms started by the same user on a window system). This
allows the system utilities that display users to obtain an accurate indication of the
number of actual users, while still permitting each pty to have a utmpx record (as
most applications expect.). The NONROOT_USER macro defines the value that login
places in the ut_exit.e_exit member.

Upon successful completion, getutxent(), getutxid(), and getutxline() each
return a pointer to a utmpx structure containing a copy of the requested entry in the
user accounting database. Otherwise a null pointer is returned.

The return value may point to a static area which is overwritten by a subsequent call
to getutxid () or getutxline().

Upon successful completion, pututxline() returns a pointer to a utmpx structure
containing a copy of the entry added to the user accounting database. Otherwise a null
pointer is returned.

setutxent(3C)

getutmpx()

updwtmp()

updwtmpx()

utmpx
structure

RETURN VALUES

904 man pages section 3: Library Functions • Last Revised 6 Oct 1999

The endutxent() and setutxent() functions return no value.

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write.

These functions use buffered standard I/O for input, but pututxline() uses an
unbuffered write to avoid race conditions between processes trying to modify the
utmpx and wtmpx files.

Applications should not access the utmpx and wtmpx databases directly, but should
use these functions to ensure that these databases are maintained consistently.

/var/adm/utmpx User access and accounting information

/var/adm/wtmpx History of user access and accounting information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

pututxline() invokes a program with appropriate forced privileges to verify and
write the utmpx structure. pututxline clears fields in an entry if the process does
not have the PAF_TRUSTED_PATH process attribute

getutent(3C)

wait(2), ttyslot(3C), utmpx(4), attributes(5), wstat(3XFN)

The most current entry is saved in a static structure. Multiple accesses require that it
be copied before further accesses are made. On each call to either getutxid() or
getutxline(), the routine examines the static structure before performing more
I/O. If the contents of the static structure match what it is searching for, it looks no
further. For this reason, to use getutxline() to search for multiple occurrences it
would be necessary to zero out the static after each success, or getutxline() would
just return the same structure over and over again. There is one exception to the rule
about emptying the structure before further reads are done. The implicit read done by
pututxline() (if it finds that it is not already at the correct place in the file) will not
hurt the contents of the static structure returned by the getutxent(), getutxid(),
or getutxline() routines, if the user has just modified those contents and passed
the pointer back to pututxline().

setutxent(3C)

USAGE

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 905

socket – create an endpoint for communication

cc [flags…] file … -lsocket -lnsl [library…]

#include <sys/types.h>

#include <sys/socket.h>

int socket(int domain, int type, int protocol);

socket() creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which
communication will take place; this selects the protocol family which should be used.
The protocol family generally is the same as the address family for the addresses
supplied in later operations on the socket. These families are defined in the include file
<sys/socket.h>. There must be an entry in the netconfig(4) file for at least each
protocol family and type required. If protocol has been specified, but no exact match for
the tuplet family, type, protocol is found, then the first entry containing the specified
family and type with zero for protocol will be used. The currently understood formats
are:

PF_UNIX UNIX system internal protocols

PF_INET Internet Protocol Version 4 (IPv4)

PF_INET6 Internet Protocol Version 6 (IPv6)

The socket has the indicated type, which specifies the communication semantics.
Currently defined types are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection-based byte
streams. An out-of-band data transmission mechanism may be supported. A
SOCK_DGRAM socket supports datagrams (connectionless, unreliable messages of a
fixed (typically small) maximum length). A SOCK_SEQPACKET socket may provide a
sequenced, reliable, two-way connection-based data transmission path for datagrams
of fixed maximum length; a consumer may be required to read an entire packet with
each read system call. This facility is protocol specific, and presently not implemented
for any protocol family. SOCK_RAW sockets provide access to internal network
interfaces. The types SOCK_RAW, which is available only to a process with the
net_rawaccess privilege, and SOCK_RDM, for which no implementation currently
exists, are not described here.

protocol specifies a particular protocol to be used with the socket. Normally only a
single protocol exists to support a particular socket type within a given protocol
family. However, multiple protocols may exist, in which case a particular protocol
must be specified in this manner. The protocol number to use is particular to the

socket(3SOCKET)

NAME

SYNOPSIS

DESCRIPTION

906 man pages section 3: Library Functions • Last Revised 23 Feb 2001

“communication domain” in which communication is to take place. If a protocol is
specified by the caller, then it will be packaged into a socket level option request and
sent to the underlying protocol layers.

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream
socket must be in a connected state before any data may be sent or received on it. A
connection to another socket is created with a connect(3SOCKET) call. Once
connected, data may be transferred using read(2) and write(2) calls or some variant
of the send(3SOCKET) and recv(3SOCKET) calls. When a session has been
completed, a close(2) may be performed. Out-of-band data may also be transmitted
as described on the send(3SOCKET) manual page and received as described on the
recv(3SOCKET) manual page.

The communications protocols used to implement a SOCK_STREAM insure that data is
not lost or duplicated. If a piece of data for which the peer protocol has buffer space
cannot be successfully transmitted within a reasonable length of time, then the
connection is considered broken and calls will indicate an error with −1 returns and
with ETIMEDOUT as the specific code in the global variable errno. The protocols
optionally keep sockets “warm” by forcing transmissions roughly every minute in the
absence of other activity. An error is then indicated if no response can be elicited on an
otherwise idle connection for a extended period (for instance 5 minutes). A SIGPIPE
signal is raised if a process sends on a broken stream; this causes naive processes,
which do not handle the signal, to exit.

SOCK_SEQPACKET sockets employ the same system calls as SOCK_STREAM sockets.
The only difference is that read(2) calls will return only the amount of data requested,
and any remaining in the arriving packet will be discarded.

SOCK_DGRAM and SOCK_RAW sockets allow datagrams to be sent to correspondents
named in sendto(3SOCKET) calls. Datagrams are generally received with
recvfrom(3SOCKET), which returns the next datagram with its return address.

An fcntl(2) call can be used to specify a process group to receive a SIGURG signal
when the out-of-band data arrives. It may also enable non-blocking I/O and
asynchronous notification of I/O events with SIGIO signals.

The operation of sockets is controlled by socket level options. These options are defined
in the file <sys/socket.h>. setsockopt(3SOCKET) and getsockopt(3SOCKET)
are used to set and get options, respectively.

A −1 is returned if an error occurs. Otherwise the return value is a descriptor
referencing the socket.

The socket() call fails if:

EACCES Permission to create a socket of the
specified type and/or protocol is denied.

EMFILE The per-process descriptor table is full.

socket(3SOCKET)

RETURN VALUES

ERRORS

Introduction to Library Functions 907

ENOMEM Insufficient user memory is available.

ENOSR There were insufficient STREAMS resources
available to complete the operation.

EPROTONOSUPPORT The protocol type or the specified protocol
is not supported within this domain.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

The SOCK_RAW socket is available only to a process with the net_rawaccess
privilege.

fcntl(2), read(2), write(2), accept(3SOCKET), bind(3SOCKET),
getsockopt(3SOCKET), listen(3SOCKET), setsockopt(3SOCKET),
send(3SOCKET), attributes(5)

close(2), ioctl(2), in(3HEAD), socket(3HEAD), connect(3SOCKET),
getsockname(3SOCKET), recv(3SOCKET), shutdown(3SOCKET),
socketpair(3SOCKET), attributes(5)

socket(3SOCKET)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

908 man pages section 3: Library Functions • Last Revised 23 Feb 2001

stobl, stobcl, stobsl, stobclear – translate character-coded labels to binary labels

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

int stobcl(const char *string, bclabel_t *label, const int flags, int
*error);

int stobsl(const char *string, bslabel_t *label, const int flags, int
*error);

int stobclear(const char *string, bclear_t *clearance, const int flags,
int *error);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to perform label translation on character-coded labels that dominate the
process’s sensitivity label.

The stobl functions translate character-coded labels into binary labels. They also
modify an existing binary label by incrementing or decrementing it to produce a new
binary label relative to its existing value.

The generic form of an input character-coded label string is:

[[+] classification name] [[+ | −] word ...]

Leading and trailing white space is ignored. Fields are separated by white space, a ‘/’
(slash), or a ‘,’ (comma). Case is irrelevant. If string starts with + or −, string is
interpreted a modification to an existing label. If string starts with a classification name
followed by a + or −, the new classification is used and the rest of the old label is
retained and modified as specified by string. + modifies an existing label by adding
words. − modifies an existing label by removing words. To the maximum extent
possible, errors in string are corrected in the resulting binary label label.

The stobl functions also translate hexadecimal label representations into binary
labels (see hextob()) when the string starts with 0x and either NEW_LABEL or
NO_CORRECTION is specified in flags.

flags may be the following:

NEW_LABEL label contents is not used, is formatted as a label of the
relevant type, and is assumed to be ADMIN_LOW for
modification changes. If NEW_LABEL is not present,
label is validated as a defined label of the correct type
dominated by the process’s sensitivity label.

NO_CORRECTION No corrections are made if there are errors in the
character-coded label string. string must be complete
and contain all the label components that are required
by the label_encodings file. The NO_CORRECTION
flag implies the NEW_LABEL flag.

stobcl(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 909

0 (zero) The default action is taken.

error is a return parameter that is set only if the function is unsuccessful.

stobcl() translates the character-coded CMW label string into a binary CMW label
and places the result in the label return parameter. string has the form:

[sensitivity label]

flags is NEW_LABEL, NO_CORRECTION, or is 0 (zero). Unless NO_CORRECTION is
specified, these translations force the labels to dominate the minimum classification,
and initial compartments set (and markings set) specified in the label_encodings
file and correct the label to include other label components that are required by the
label_encodings file, but not present in string.

stobsl() translates the character-coded sensitivity label string into a binary
sensitivity label and places the result in the return parameter label. string has the form:
[[] sensitivity label []]

flags may be either NEW_LABEL, NO_CORRECTION, or 0 (zero). Unless
NO_CORRECTION is specified, this translation forces the label to dominate the
minimum classification, and initial compartments set specified in the
label_encodings file and corrects the label to include other label components
required by the label_encodings file, but not present in string.

stobclear() translates the character-coded clearance string into a binary clearance
and places the result in the return parameter clearance. string has the form: clearance

flags may be either NEW_LABEL, NO_CORRECTION, or 0 (zero). Unless
NO_CORRECTION is specified, this translation forces the label to dominate the
minimum classification, and initial compartments set specified in the
label_encodings file and corrects the label to include other label components that
are required by the label_encodings file, but not present in string. The translation
of a clearance may not be the same as the translation of a sensitivity label. These
functions use different tables of the label_encodings file that may contain different
words and constraints.

These functions return:

1 If the translation was successful and a valid binary label was returned.

0 If an error occurred. error indicates the type of error.

When these functions return zero, error contains one of the following values:

−1 Unable to access the label_encodings file.

0 The label label is not valid for this translation and the NEW_LABEL or
NO_CORRECTION flag was not specified, or the label label is not dominated
by the process’s sensitivity label and the process does not have
PRIV_SYS_TRANS_LABEL in its set of effective privileges.

stobcl(3TSOL)

RETURN VALUES

ERRORS

910 man pages section 3: Library Functions • Last Revised 24 May 2001

>0 The character-coded label string is in error. error is a one-based index into
string indicating where the translation error occurred.

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), blcompare(3TSOL), bltocolor(3TSOL), blvalid(3TSOL),
hextob(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

In addition to the ADMIN_LOW name and ADMIN_HIGH name strings defined in the
label_encodings file, the strings “ADMIN_LOW” and “ADMIN_HIGH” are always
accepted as character-coded labels to be translated to the appropriate ADMIN_LOW and
ADMIN_HIGH label, respectively.

Modifying an existing ADMIN_LOW label acts as the specification of a NEW_LABEL and
forces the label to start at the minimum label specified in the label_encodings file.

Modifying an existing ADMIN_HIGH label is treated as an attempt to change a label
that represents the highest defined classification and all the defined compartments
(and, if applicable, markings) specified in the label_encodings file.

The NO_CORRECTION flag is used when the character-coded label must be complete
and accurate so that translation to and from the binary form results in an equivalent
character-coded label.

stobcl(3TSOL)

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 911

stobl, stobcl, stobsl, stobclear – translate character-coded labels to binary labels

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

int stobcl(const char *string, bclabel_t *label, const int flags, int
*error);

int stobsl(const char *string, bslabel_t *label, const int flags, int
*error);

int stobclear(const char *string, bclear_t *clearance, const int flags,
int *error);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to perform label translation on character-coded labels that dominate the
process’s sensitivity label.

The stobl functions translate character-coded labels into binary labels. They also
modify an existing binary label by incrementing or decrementing it to produce a new
binary label relative to its existing value.

The generic form of an input character-coded label string is:

[[+] classification name] [[+ | −] word ...]

Leading and trailing white space is ignored. Fields are separated by white space, a ‘/’
(slash), or a ‘,’ (comma). Case is irrelevant. If string starts with + or −, string is
interpreted a modification to an existing label. If string starts with a classification name
followed by a + or −, the new classification is used and the rest of the old label is
retained and modified as specified by string. + modifies an existing label by adding
words. − modifies an existing label by removing words. To the maximum extent
possible, errors in string are corrected in the resulting binary label label.

The stobl functions also translate hexadecimal label representations into binary
labels (see hextob()) when the string starts with 0x and either NEW_LABEL or
NO_CORRECTION is specified in flags.

flags may be the following:

NEW_LABEL label contents is not used, is formatted as a label of the
relevant type, and is assumed to be ADMIN_LOW for
modification changes. If NEW_LABEL is not present,
label is validated as a defined label of the correct type
dominated by the process’s sensitivity label.

NO_CORRECTION No corrections are made if there are errors in the
character-coded label string. string must be complete
and contain all the label components that are required
by the label_encodings file. The NO_CORRECTION
flag implies the NEW_LABEL flag.

stobclear(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

912 man pages section 3: Library Functions • Last Revised 24 May 2001

0 (zero) The default action is taken.

error is a return parameter that is set only if the function is unsuccessful.

stobcl() translates the character-coded CMW label string into a binary CMW label
and places the result in the label return parameter. string has the form:

[sensitivity label]

flags is NEW_LABEL, NO_CORRECTION, or is 0 (zero). Unless NO_CORRECTION is
specified, these translations force the labels to dominate the minimum classification,
and initial compartments set (and markings set) specified in the label_encodings
file and correct the label to include other label components that are required by the
label_encodings file, but not present in string.

stobsl() translates the character-coded sensitivity label string into a binary
sensitivity label and places the result in the return parameter label. string has the form:
[[] sensitivity label []]

flags may be either NEW_LABEL, NO_CORRECTION, or 0 (zero). Unless
NO_CORRECTION is specified, this translation forces the label to dominate the
minimum classification, and initial compartments set specified in the
label_encodings file and corrects the label to include other label components
required by the label_encodings file, but not present in string.

stobclear() translates the character-coded clearance string into a binary clearance
and places the result in the return parameter clearance. string has the form: clearance

flags may be either NEW_LABEL, NO_CORRECTION, or 0 (zero). Unless
NO_CORRECTION is specified, this translation forces the label to dominate the
minimum classification, and initial compartments set specified in the
label_encodings file and corrects the label to include other label components that
are required by the label_encodings file, but not present in string. The translation
of a clearance may not be the same as the translation of a sensitivity label. These
functions use different tables of the label_encodings file that may contain different
words and constraints.

These functions return:

1 If the translation was successful and a valid binary label was returned.

0 If an error occurred. error indicates the type of error.

When these functions return zero, error contains one of the following values:

−1 Unable to access the label_encodings file.

0 The label label is not valid for this translation and the NEW_LABEL or
NO_CORRECTION flag was not specified, or the label label is not dominated
by the process’s sensitivity label and the process does not have
PRIV_SYS_TRANS_LABEL in its set of effective privileges.

stobclear(3TSOL)

RETURN VALUES

ERRORS

Introduction to Library Functions 913

>0 The character-coded label string is in error. error is a one-based index into
string indicating where the translation error occurred.

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), blcompare(3TSOL), bltocolor(3TSOL), blvalid(3TSOL),
hextob(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

In addition to the ADMIN_LOW name and ADMIN_HIGH name strings defined in the
label_encodings file, the strings “ADMIN_LOW” and “ADMIN_HIGH” are always
accepted as character-coded labels to be translated to the appropriate ADMIN_LOW and
ADMIN_HIGH label, respectively.

Modifying an existing ADMIN_LOW label acts as the specification of a NEW_LABEL and
forces the label to start at the minimum label specified in the label_encodings file.

Modifying an existing ADMIN_HIGH label is treated as an attempt to change a label
that represents the highest defined classification and all the defined compartments
(and, if applicable, markings) specified in the label_encodings file.

The NO_CORRECTION flag is used when the character-coded label must be complete
and accurate so that translation to and from the binary form results in an equivalent
character-coded label.

stobclear(3TSOL)

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

914 man pages section 3: Library Functions • Last Revised 24 May 2001

stobl, stobcl, stobsl, stobclear – translate character-coded labels to binary labels

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

int stobcl(const char *string, bclabel_t *label, const int flags, int
*error);

int stobsl(const char *string, bslabel_t *label, const int flags, int
*error);

int stobclear(const char *string, bclear_t *clearance, const int flags,
int *error);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to perform label translation on character-coded labels that dominate the
process’s sensitivity label.

The stobl functions translate character-coded labels into binary labels. They also
modify an existing binary label by incrementing or decrementing it to produce a new
binary label relative to its existing value.

The generic form of an input character-coded label string is:

[[+] classification name] [[+ | −] word ...]

Leading and trailing white space is ignored. Fields are separated by white space, a ‘/’
(slash), or a ‘,’ (comma). Case is irrelevant. If string starts with + or −, string is
interpreted a modification to an existing label. If string starts with a classification name
followed by a + or −, the new classification is used and the rest of the old label is
retained and modified as specified by string. + modifies an existing label by adding
words. − modifies an existing label by removing words. To the maximum extent
possible, errors in string are corrected in the resulting binary label label.

The stobl functions also translate hexadecimal label representations into binary
labels (see hextob()) when the string starts with 0x and either NEW_LABEL or
NO_CORRECTION is specified in flags.

flags may be the following:

NEW_LABEL label contents is not used, is formatted as a label of the
relevant type, and is assumed to be ADMIN_LOW for
modification changes. If NEW_LABEL is not present,
label is validated as a defined label of the correct type
dominated by the process’s sensitivity label.

NO_CORRECTION No corrections are made if there are errors in the
character-coded label string. string must be complete
and contain all the label components that are required
by the label_encodings file. The NO_CORRECTION
flag implies the NEW_LABEL flag.

stobl(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 915

0 (zero) The default action is taken.

error is a return parameter that is set only if the function is unsuccessful.

stobcl() translates the character-coded CMW label string into a binary CMW label
and places the result in the label return parameter. string has the form:

[sensitivity label]

flags is NEW_LABEL, NO_CORRECTION, or is 0 (zero). Unless NO_CORRECTION is
specified, these translations force the labels to dominate the minimum classification,
and initial compartments set (and markings set) specified in the label_encodings
file and correct the label to include other label components that are required by the
label_encodings file, but not present in string.

stobsl() translates the character-coded sensitivity label string into a binary
sensitivity label and places the result in the return parameter label. string has the form:
[[] sensitivity label []]

flags may be either NEW_LABEL, NO_CORRECTION, or 0 (zero). Unless
NO_CORRECTION is specified, this translation forces the label to dominate the
minimum classification, and initial compartments set specified in the
label_encodings file and corrects the label to include other label components
required by the label_encodings file, but not present in string.

stobclear() translates the character-coded clearance string into a binary clearance
and places the result in the return parameter clearance. string has the form: clearance

flags may be either NEW_LABEL, NO_CORRECTION, or 0 (zero). Unless
NO_CORRECTION is specified, this translation forces the label to dominate the
minimum classification, and initial compartments set specified in the
label_encodings file and corrects the label to include other label components that
are required by the label_encodings file, but not present in string. The translation
of a clearance may not be the same as the translation of a sensitivity label. These
functions use different tables of the label_encodings file that may contain different
words and constraints.

These functions return:

1 If the translation was successful and a valid binary label was returned.

0 If an error occurred. error indicates the type of error.

When these functions return zero, error contains one of the following values:

−1 Unable to access the label_encodings file.

0 The label label is not valid for this translation and the NEW_LABEL or
NO_CORRECTION flag was not specified, or the label label is not dominated
by the process’s sensitivity label and the process does not have
PRIV_SYS_TRANS_LABEL in its set of effective privileges.

stobl(3TSOL)

RETURN VALUES

ERRORS

916 man pages section 3: Library Functions • Last Revised 24 May 2001

>0 The character-coded label string is in error. error is a one-based index into
string indicating where the translation error occurred.

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), blcompare(3TSOL), bltocolor(3TSOL), blvalid(3TSOL),
hextob(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

In addition to the ADMIN_LOW name and ADMIN_HIGH name strings defined in the
label_encodings file, the strings “ADMIN_LOW” and “ADMIN_HIGH” are always
accepted as character-coded labels to be translated to the appropriate ADMIN_LOW and
ADMIN_HIGH label, respectively.

Modifying an existing ADMIN_LOW label acts as the specification of a NEW_LABEL and
forces the label to start at the minimum label specified in the label_encodings file.

Modifying an existing ADMIN_HIGH label is treated as an attempt to change a label
that represents the highest defined classification and all the defined compartments
(and, if applicable, markings) specified in the label_encodings file.

The NO_CORRECTION flag is used when the character-coded label must be complete
and accurate so that translation to and from the binary form results in an equivalent
character-coded label.

stobl(3TSOL)

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 917

stobl, stobcl, stobsl, stobclear – translate character-coded labels to binary labels

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

int stobcl(const char *string, bclabel_t *label, const int flags, int
*error);

int stobsl(const char *string, bslabel_t *label, const int flags, int
*error);

int stobclear(const char *string, bclear_t *clearance, const int flags,
int *error);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to perform label translation on character-coded labels that dominate the
process’s sensitivity label.

The stobl functions translate character-coded labels into binary labels. They also
modify an existing binary label by incrementing or decrementing it to produce a new
binary label relative to its existing value.

The generic form of an input character-coded label string is:

[[+] classification name] [[+ | −] word ...]

Leading and trailing white space is ignored. Fields are separated by white space, a ‘/’
(slash), or a ‘,’ (comma). Case is irrelevant. If string starts with + or −, string is
interpreted a modification to an existing label. If string starts with a classification name
followed by a + or −, the new classification is used and the rest of the old label is
retained and modified as specified by string. + modifies an existing label by adding
words. − modifies an existing label by removing words. To the maximum extent
possible, errors in string are corrected in the resulting binary label label.

The stobl functions also translate hexadecimal label representations into binary
labels (see hextob()) when the string starts with 0x and either NEW_LABEL or
NO_CORRECTION is specified in flags.

flags may be the following:

NEW_LABEL label contents is not used, is formatted as a label of the
relevant type, and is assumed to be ADMIN_LOW for
modification changes. If NEW_LABEL is not present,
label is validated as a defined label of the correct type
dominated by the process’s sensitivity label.

NO_CORRECTION No corrections are made if there are errors in the
character-coded label string. string must be complete
and contain all the label components that are required
by the label_encodings file. The NO_CORRECTION
flag implies the NEW_LABEL flag.

stobsl(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

918 man pages section 3: Library Functions • Last Revised 24 May 2001

0 (zero) The default action is taken.

error is a return parameter that is set only if the function is unsuccessful.

stobcl() translates the character-coded CMW label string into a binary CMW label
and places the result in the label return parameter. string has the form:

[sensitivity label]

flags is NEW_LABEL, NO_CORRECTION, or is 0 (zero). Unless NO_CORRECTION is
specified, these translations force the labels to dominate the minimum classification,
and initial compartments set (and markings set) specified in the label_encodings
file and correct the label to include other label components that are required by the
label_encodings file, but not present in string.

stobsl() translates the character-coded sensitivity label string into a binary
sensitivity label and places the result in the return parameter label. string has the form:
[[] sensitivity label []]

flags may be either NEW_LABEL, NO_CORRECTION, or 0 (zero). Unless
NO_CORRECTION is specified, this translation forces the label to dominate the
minimum classification, and initial compartments set specified in the
label_encodings file and corrects the label to include other label components
required by the label_encodings file, but not present in string.

stobclear() translates the character-coded clearance string into a binary clearance
and places the result in the return parameter clearance. string has the form: clearance

flags may be either NEW_LABEL, NO_CORRECTION, or 0 (zero). Unless
NO_CORRECTION is specified, this translation forces the label to dominate the
minimum classification, and initial compartments set specified in the
label_encodings file and corrects the label to include other label components that
are required by the label_encodings file, but not present in string. The translation
of a clearance may not be the same as the translation of a sensitivity label. These
functions use different tables of the label_encodings file that may contain different
words and constraints.

These functions return:

1 If the translation was successful and a valid binary label was returned.

0 If an error occurred. error indicates the type of error.

When these functions return zero, error contains one of the following values:

−1 Unable to access the label_encodings file.

0 The label label is not valid for this translation and the NEW_LABEL or
NO_CORRECTION flag was not specified, or the label label is not dominated
by the process’s sensitivity label and the process does not have
PRIV_SYS_TRANS_LABEL in its set of effective privileges.

stobsl(3TSOL)

RETURN VALUES

ERRORS

Introduction to Library Functions 919

>0 The character-coded label string is in error. error is a one-based index into
string indicating where the translation error occurred.

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bcltobanner(3TSOL), blcompare(3TSOL), bltocolor(3TSOL), blvalid(3TSOL),
hextob(3TSOL)

Trusted Solaris Developer’s Guide

attributes(5)

In addition to the ADMIN_LOW name and ADMIN_HIGH name strings defined in the
label_encodings file, the strings “ADMIN_LOW” and “ADMIN_HIGH” are always
accepted as character-coded labels to be translated to the appropriate ADMIN_LOW and
ADMIN_HIGH label, respectively.

Modifying an existing ADMIN_LOW label acts as the specification of a NEW_LABEL and
forces the label to start at the minimum label specified in the label_encodings file.

Modifying an existing ADMIN_HIGH label is treated as an attempt to change a label
that represents the highest defined classification and all the defined compartments
(and, if applicable, markings) specified in the label_encodings file.

The NO_CORRECTION flag is used when the character-coded label must be complete
and accurate so that translation to and from the binary form results in an equivalent
character-coded label.

stobsl(3TSOL)

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

NOTES

920 man pages section 3: Library Functions • Last Revised 24 May 2001

auth_to_str, str_to_auth, auth_set_to_str, str_to_auth_set, free_auth_set, get_auth_text
– translate and verify user authorizations

cc [flag…] file… -ltsol -ltsoldb -lcmd -lnsl [library…]

(obsolete)

These functions are obsolete. Authorizations in Trusted Solaris 8 and later releases do
not need translation. See getauthattr(3SECDB) for how to search auth_attr(4)
entries.

str_to_auth(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 921

auth_to_str, str_to_auth, auth_set_to_str, str_to_auth_set, free_auth_set, get_auth_text
– translate and verify user authorizations

cc [flag…] file… -ltsol -ltsoldb -lcmd -lnsl [library…]

(obsolete)

These functions are obsolete. Authorizations in Trusted Solaris 8 and later releases do
not need translation. See getauthattr(3SECDB) for how to search auth_attr(4)
entries.

str_to_auth_set(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

922 man pages section 3: Library Functions • Last Revised 30 May 2000

priv_to_str, priv_set_to_str, str_to_priv, str_to_priv_set, get_priv_text – Convert a
numeric privilege to its name or a privilege name to its number

cc [flag…] file… -ltsol [library…]

#include <tsol/priv.h>

priv_t str_to_priv(const char *priv_name);

char *priv_to_str(const priv_t priv_id);

char *str_to_priv_set(const char *priv_names, priv_set_t *priv_set,
const char *separators);

char *priv_set_to_str(priv_set_t *priv_set, char separator, char
*buffer, int *buflen);

char *get_priv_text(const priv_t priv_id);

priv_to_str() returns a pointer to the statically allocated, null-terminated privilege
name specified by priv_id. If priv_id is an undefined privilege ID, the integer ordinal of
priv_id is returned. If priv_id is greater than TSOL_MAX_PRIV, the maximum allowable
privilege ID, a NULL is returned.

str_to_priv() returns the numeric privilege ID specified by the null-terminated
privilege name priv_name. Privilege names can be specified in upper or lower case. An
integer ordinal in the string is also acceptable.

priv_set_to_str() appends the name of each privilege in priv_set to a string to
which the user-supplied buffer of length buflen points. Privilege names are separated
by the separator character. Integer ordinals name the undefined privileges found in the
privilege set. String none identifies an empty privilege set; and all, a full privilege
set. Privilege names in the string are sorted in alphabetical order by localized sort.

Based on the token separators (separators), str_to_priv_set() breaks the
priv_names string into tokens to be translated into a privilege set. Token none is
translated to an empty privilege set; token all, to a full privilege set. The presence of
token none overrides whatever precedes it. For example, the string
file_mac_read,file_mac_write,none,proc_nofloat produces the same
result as proc_nofloat alone. The constructed privilege set is stored in the
priv_set_t buffer to which priv_set points.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

str_to_priv(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Introduction to Library Functions 923

get_priv_text() Returns a pointer to the statically allocated,
null-terminated privilege description text specified by
priv_id.

priv_to_str() Returns a pointer to the translated privilege name
string. The function returns NULL and sets errno on
failure.

str_to_priv() Returns the numeric privilege ID. The function returns
−1 and sets errno on failure.

priv_set_to_str() Returns a pointer to the translated privilege names
string. If the passed-in buflen is too small to hold the
string, this routine stores the required buffer size into
buflen and returns NULL. The function returns NULL
and sets errno on failure. This function returns −1 if
the string cannot be translated or if an integer ordinal
in the string is greater than TSOL_MAX_PRIV.

str_to_priv_set() Returns NULL on success. If bad privilege names
appear in the priv_names string, the function returns a
pointer to the first privilege name that is not
recognizable.

priv_to_str() may fail for this reason:

EINVAL The specified priv_id is greater than TSOL_MAX_PRIV.

priv_set_to_str() may fail for this reason:

EFAULT The specified priv_set is an invalid address.

str_to_priv() may fail for one of these reasons:

EINVAL The specified priv_name does not match any of the defined
privilege names.

EFAULT The specified priv_name is an invalid address.

To use these routines, the program must be loaded with the Trusted Solaris library
libtsol or libtsol.so.

priv_desc(4) priv_name(4)

attributes(5)

str_to_priv(3TSOL)

RETURN VALUES

ERRORS

NOTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

924 man pages section 3: Library Functions • Last Revised 17 Apr 1998

priv_to_str, priv_set_to_str, str_to_priv, str_to_priv_set, get_priv_text – Convert a
numeric privilege to its name or a privilege name to its number

cc [flag…] file… -ltsol [library…]

#include <tsol/priv.h>

priv_t str_to_priv(const char *priv_name);

char *priv_to_str(const priv_t priv_id);

char *str_to_priv_set(const char *priv_names, priv_set_t *priv_set,
const char *separators);

char *priv_set_to_str(priv_set_t *priv_set, char separator, char
*buffer, int *buflen);

char *get_priv_text(const priv_t priv_id);

priv_to_str() returns a pointer to the statically allocated, null-terminated privilege
name specified by priv_id. If priv_id is an undefined privilege ID, the integer ordinal of
priv_id is returned. If priv_id is greater than TSOL_MAX_PRIV, the maximum allowable
privilege ID, a NULL is returned.

str_to_priv() returns the numeric privilege ID specified by the null-terminated
privilege name priv_name. Privilege names can be specified in upper or lower case. An
integer ordinal in the string is also acceptable.

priv_set_to_str() appends the name of each privilege in priv_set to a string to
which the user-supplied buffer of length buflen points. Privilege names are separated
by the separator character. Integer ordinals name the undefined privileges found in the
privilege set. String none identifies an empty privilege set; and all, a full privilege
set. Privilege names in the string are sorted in alphabetical order by localized sort.

Based on the token separators (separators), str_to_priv_set() breaks the
priv_names string into tokens to be translated into a privilege set. Token none is
translated to an empty privilege set; token all, to a full privilege set. The presence of
token none overrides whatever precedes it. For example, the string
file_mac_read,file_mac_write,none,proc_nofloat produces the same
result as proc_nofloat alone. The constructed privilege set is stored in the
priv_set_t buffer to which priv_set points.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

str_to_priv_set(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Introduction to Library Functions 925

get_priv_text() Returns a pointer to the statically allocated,
null-terminated privilege description text specified by
priv_id.

priv_to_str() Returns a pointer to the translated privilege name
string. The function returns NULL and sets errno on
failure.

str_to_priv() Returns the numeric privilege ID. The function returns
−1 and sets errno on failure.

priv_set_to_str() Returns a pointer to the translated privilege names
string. If the passed-in buflen is too small to hold the
string, this routine stores the required buffer size into
buflen and returns NULL. The function returns NULL
and sets errno on failure. This function returns −1 if
the string cannot be translated or if an integer ordinal
in the string is greater than TSOL_MAX_PRIV.

str_to_priv_set() Returns NULL on success. If bad privilege names
appear in the priv_names string, the function returns a
pointer to the first privilege name that is not
recognizable.

priv_to_str() may fail for this reason:

EINVAL The specified priv_id is greater than TSOL_MAX_PRIV.

priv_set_to_str() may fail for this reason:

EFAULT The specified priv_set is an invalid address.

str_to_priv() may fail for one of these reasons:

EINVAL The specified priv_name does not match any of the defined
privilege names.

EFAULT The specified priv_name is an invalid address.

To use these routines, the program must be loaded with the Trusted Solaris library
libtsol or libtsol.so.

priv_desc(4) priv_name(4)

attributes(5)

str_to_priv_set(3TSOL)

RETURN VALUES

ERRORS

NOTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

926 man pages section 3: Library Functions • Last Revised 17 Apr 1998

rpc_svc_reg, rpc_reg, svc_reg, svc_unreg, svc_auth_reg, xprt_register, xprt_unregister
– Library routines for registering servers

These routines are a part of the RPC library which allows the RPC servers to register
themselves with rpcbind() [see rpcbind(1M)], and associate the given program
and version number with the dispatch function. When the RPC server receives an RPC
request, the library invokes the dispatch routine with the appropriate arguments.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

bool_t rpc_reg(const rpcprog_t prognum, const rpcvers_t versnum, const rpcproc_t
procnum, char * (*procname)(), const xdrproc_t inproc, const xdrproc_t outproc, const
char *nettype);

Register program prognum, procedure procname, and version versnum with the RPC
service package. If a request arrives for program prognum, version versnum, and
procedure procnum, procname is called with a pointer to its parameter(s); procname
should return a pointer to its static result(s). The arg parameter to procname is a
pointer to the (decoded) procedure argument. inproc is the XDR function used to
decode the parameters while outproc is the XDR function used to encode the results.
Procedures are registered on all available transports of the class nettype. See
rpc(3NSL) . This routine returns 0 if the registration succeeded, −1 otherwise.

If the server has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a transport that uses a privileged
address, the server must have the PRIV_NET_PRIVADDR privilege.

int svc_reg(const SVCXPRT *xprt, const rpcprog_t prognum, const rpcvers_t versnum,
const void (*dispatch)(), const struct netconfig *netconf);

Associates prognum and versnum with the service dispatch procedure, dispatch. If
netconf is NULL, the service is not registered with the rpcbind service. For example,
if a service has already been registered using some other means, such as inetd (see
inetd(1M)), it will not need to be registered again. If netconf is non-zero, then a
mapping of the triple [prognum, versnum, netconf⇒nc_netid] to xprt⇒xp_ltaddr is
established with the local rpcbind service.

The svc_reg() routine returns 1 if it succeeds, and 0 otherwise.

If the server has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a transport that uses a privileged
address, the server must have the PRIV_NET_PRIVADDR privilege.

void svc_unreg(const rpcprog_t prognum, const rpcvers_t versnum);
Remove from the rpcbind service, all mappings of the triple [prognum, versnum,
all-transports] to network address and all mappings within the RPC service package
of the double [prognum, versnum] to dispatch routines.

svc_auth_reg(3NSL)

NAME

DESCRIPTION

Routines

Introduction to Library Functions 927

If the server has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping being deleted is to a transport that uses a privileged
address, the server must have the PRIV_NET_PRIVADDR privilege.

The PRIV_NET_SETID privilege is required in order for anyone other than the
owner of a mapping to delete the mapping.

int svc_auth_reg(const int cred_flavor, const enum auth_stat (*handler)());
Registers the service authentication routine handler with the dispatch mechanism so
that it can be invoked to authenticate RPC requests received with authentication
type cred_flavor. This interface allows developers to add new authentication types to
their RPC applications without needing to modify the libraries. Service
implementors usually do not need this routine.

Typical service application would call svc_auth_reg() after registering the
service and prior to calling svc_run(). When needed to process an RPC credential
of type cred_flavor, the handler procedure will be called with two parameters
(struct svc_req *rqst, struct rpc_msg *msg) and is expected to return a
valid enum auth_stat value. There is no provision to change or delete an
authentication handler once registered.

The svc_auth_reg() routine returns 0 if the registration is successful, 1 if
cred_flavor already has an authentication handler registered for it, and −1 otherwise.

void xprt_register(const SVCXPRT *xprt);
After RPC service transport handle xprt is created, it is registered with the RPC
service package. This routine modifies the global variable svc_fdset (see
rpc_svc_calls(3NSL)). Service implementors usually do not need this routine.

void xprt_unregister(const SVCXPRT *xprt);
Before an RPC service transport handle xprt is destroyed, it unregisters itself with
the RPC service package. This routine modifies the global variable svc_fdset [see
rpc_svc_calls(3NSL)]. Service implementors usually do not need this routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind
services. If the privilege is on when rpc_reg() or rpc_svc() is called, a multilevel
mapping is created. To delete a multilevel mapping, svc_unreg() must be called
with the privilege on.

svc_auth_reg(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

928 man pages section 3: Library Functions • Last Revised 1 May 2000

The PRIV_NET_PRIVADDR privilege is required for rpc_reg(), rpc_svc(), or
svc_unreg() calls that create or delete mappings for a transport that uses a
privileged address.

The PRIV_NET_SETID privilege is required by svc_unreg() in order for anyone
other than the owner of a mapping to delete the mapping.

inetd(1M), rpcbind(1M), rpc(3NSL), rpc_svc_calls(3NSL),
rpc_svc_create(3NSL), rpcbind(3NSL)

select(3C), rpc_svc_err(3NSL), attributes(5)

svc_auth_reg(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 929

rpc_svc_create, svc_control, svc_create, svc_destroy, svc_dg_create, svc_fd_create,
svc_raw_create, svc_tli_create, svc_tp_create, svc_vc_create – Library routines for the
creation of server handles

These routines are part of the RPC library which allows C language programs to make
procedure calls on servers across the network. These routines deal with the creation of
service handles. Once the handle is created, the server can be invoked by calling
svc_run().

Privileged programs can create multilevel ports, create multilevel mappings, and
access network security attributes. See SUMMARY OF TRUSTED SOLARIS CHANGES
for more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

bool_t svc_control (SVCXPRT *svc, const uint_t req, void *info);
A function to change or retrieve various information about a service object. req
indicates the type of operation and info is a pointer to the information. The
supported values of req, their argument types, and what they do are:

SVCGET_VERSQUIET If a request is received for a program number served
by this server but the version number is outside the
range registered with the server, an
RPC_PROGVERSMISMATCH error will normally be
returned. info should be a pointer to an integer.
Upon successful completion of the
SVCGET_VERSQUIET request, *info contains an
integer which describes the server’s current
behavior: 0 indicates normal server behavior, that is,
an RPC_PROGVERSMISMATCH error will be returned;
1 indicates that the out of range request will be
silently ignored.

SVCSET_VERSQUIET If a request is received for a program number served
by this server but the version number is outside the
range registered with the server, an
RPC_PROGVERSMISMATCH error will normally be
returned. It is sometimes desirable to change this
behavior. info should be a pointer to an integer
which is either 0, indicating normal server behavior
and an RPC_PROGVERSMISMATCH error will be
returned, or −1, indicating that the out of range
request should be silently ignored.

SVCGET_XID Returns the transaction ID of connection−oriented
(vc) and connectionless (dg) transport service calls.
The transaction ID assists in uniquely identifying
client requests for a given RPC version, program

svc_control(3NSL)

NAME

DESCRIPTION

Routines

930 man pages section 3: Library Functions • Last Revised 1 May 2000

number, procedure, and client. The transaction ID is
extracted from the service transport handle svc; info
must be a pointer to an unsigned long. Upon
successful completion of the SVCGET_XID request,
*info contains the transaction ID. Note that
rendezvous and raw service handles do not define a
transaction ID. Thus, if the service handle is of
rendezvous or raw type, and the request is of type
SVCGET_XID, svc_control() will return
FALSE. Note also that the transaction ID read by
the server can be set by the client through the
suboption CLSET_XID in clnt_control(). See
clnt_create(3NSL)

int svc_create(const void (*dispatch)(const struct svc_req *, const SVCXPRT *), const
rpcprog_t prognum, const rpcvers_t versnum, const char *nettype);

svc_create() creates server handles for all the transports belonging to the class
nettype.

nettype defines a class of transports which can be used for a particular application.
The transports are tried in left to right order in NETPATH variable or in top to
bottom order in the netconfig database. If nettype is NULL, it defaults to netpath.

svc_create() registers itself with the rpcbind service [see rpcbind(1M)].
dispatch is called when there is a remote procedure call for the given prognum and
versnum; this requires calling svc_run() (see svc_run() in
rpc_svc_reg(3NSL)). If svc_create() succeeds, it returns the number of server
handles it created, otherwise it returns 0 and an error message is logged.

void svc_destroy(SVCXPRT *xprt);
A function macro that destroys the RPC service handle xprt. Destruction usually
involves deallocation of private data structures, including xprt itself. Use of xprt is
undefined after calling this routine.

SVCXPRT *svc_dg_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a connectionless RPC service handle, and returns a pointer to it.
This routine returns NULL if it fails, and an error message is logged. sendsz and
recvsz are parameters used to specify the size of the buffers. If they are 0, suitable
defaults are chosen. The file descriptor fildes should be open and bound. The server
is not registered with rpcbind(1M).

Warning: since connectionless-based RPC messages can only hold limited amount
of encoded data, this transport cannot be used for procedures that take large
arguments or return huge results.

SVCXPRT *svc_fd_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a service on top of an open and bound file descriptor, and
returns the handle to it. Typically, this descriptor is a connected file descriptor for a
connection-oriented transport. sendsz and recvsz indicate sizes for the send and

svc_control(3NSL)

Introduction to Library Functions 931

receive buffers. If they are 0, reasonable defaults are chosen. This routine returns
NULL if it fails, and an error message is logged.

SVCXPRT *svc_raw_create(void);
This routine creates an RPC service handle and returns a pointer to it. The transport
is really a buffer within the process’s address space, so the corresponding RPC
client should live in the same address space; (see clnt_raw_create() in
rpc_clnt_create(3NSL)). This routine allows simulation of RPC and acquisition
of RPC overheads (such as round trip times), without any kernel and networking
interference. This routine returns NULL if it fails, and an error message is logged.

Note: svc_run() should not be called when the raw interface is being used.

SVCXPRT *svc_tli_create(const int fildes, const struct netconfig *netconf, const struct
t_bind *bindaddr, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC server handle, and returns a pointer to it. fildes is the
file descriptor on which the service is listening. If fildes is RPC_ANYFD, it opens a file
descriptor on the transport specified by netconf. If the file descriptor is unbound and
bindaddr is non-null fildes is bound to the address specified by bindaddr, otherwise
fildes is bound to a default address chosen by the transport. In the case where the
default address is chosen, the number of outstanding connect requests is set to 8 for
connection-oriented transports. The user may specify the size of the send and
receive buffers with the parameters sendsz and recvsz ; values of 0 choose suitable
defaults. This routine returns NULL if it fails, and an error message is logged. The
server is not registered with the rpcbind(1M) service.

SVCXPRT *svc_tp_create(const void (*dispatch)(const struct svc_req *, const SVCXPRT
*), const rpcprog_t prognum, const rpcvers_t versnum, const struct netconfig *netconf);

svc_tp_create() creates a server handle for the network specified by netconf,
and registers itself with the rpcbind service. dispatch is called when there is a
remote procedure call for the given prognum and versnum; this requires calling
svc_run(). svc_tp_create() returns the service handle if it succeeds,
otherwise a NULL is returned and an error message is logged.

SVCXPRT *svc_vc_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a connection-oriented RPC service and returns a pointer to it.
This routine returns NULL if it fails, and an error message is logged. The users may
specify the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. The file descriptor fildes should be open
and bound. The server is not registered with the rpcbind(1M) service.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

svc_control(3NSL)

ATTRIBUTES

932 man pages section 3: Library Functions • Last Revised 1 May 2000

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when an RPC library routine
such as svc_create() binds to a transport, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_create(3NSL), rpc_svc_calls(3NSL),
rpc_svc_reg(3NSL), libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_svc_err(3NSL), attributes(5)

svc_control(3NSL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 933

rpc_svc_create, svc_control, svc_create, svc_destroy, svc_dg_create, svc_fd_create,
svc_raw_create, svc_tli_create, svc_tp_create, svc_vc_create – Library routines for the
creation of server handles

These routines are part of the RPC library which allows C language programs to make
procedure calls on servers across the network. These routines deal with the creation of
service handles. Once the handle is created, the server can be invoked by calling
svc_run().

Privileged programs can create multilevel ports, create multilevel mappings, and
access network security attributes. See SUMMARY OF TRUSTED SOLARIS CHANGES
for more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

bool_t svc_control (SVCXPRT *svc, const uint_t req, void *info);
A function to change or retrieve various information about a service object. req
indicates the type of operation and info is a pointer to the information. The
supported values of req, their argument types, and what they do are:

SVCGET_VERSQUIET If a request is received for a program number served
by this server but the version number is outside the
range registered with the server, an
RPC_PROGVERSMISMATCH error will normally be
returned. info should be a pointer to an integer.
Upon successful completion of the
SVCGET_VERSQUIET request, *info contains an
integer which describes the server’s current
behavior: 0 indicates normal server behavior, that is,
an RPC_PROGVERSMISMATCH error will be returned;
1 indicates that the out of range request will be
silently ignored.

SVCSET_VERSQUIET If a request is received for a program number served
by this server but the version number is outside the
range registered with the server, an
RPC_PROGVERSMISMATCH error will normally be
returned. It is sometimes desirable to change this
behavior. info should be a pointer to an integer
which is either 0, indicating normal server behavior
and an RPC_PROGVERSMISMATCH error will be
returned, or −1, indicating that the out of range
request should be silently ignored.

SVCGET_XID Returns the transaction ID of connection−oriented
(vc) and connectionless (dg) transport service calls.
The transaction ID assists in uniquely identifying
client requests for a given RPC version, program

svc_create(3NSL)

NAME

DESCRIPTION

Routines

934 man pages section 3: Library Functions • Last Revised 1 May 2000

number, procedure, and client. The transaction ID is
extracted from the service transport handle svc; info
must be a pointer to an unsigned long. Upon
successful completion of the SVCGET_XID request,
*info contains the transaction ID. Note that
rendezvous and raw service handles do not define a
transaction ID. Thus, if the service handle is of
rendezvous or raw type, and the request is of type
SVCGET_XID, svc_control() will return
FALSE. Note also that the transaction ID read by
the server can be set by the client through the
suboption CLSET_XID in clnt_control(). See
clnt_create(3NSL)

int svc_create(const void (*dispatch)(const struct svc_req *, const SVCXPRT *), const
rpcprog_t prognum, const rpcvers_t versnum, const char *nettype);

svc_create() creates server handles for all the transports belonging to the class
nettype.

nettype defines a class of transports which can be used for a particular application.
The transports are tried in left to right order in NETPATH variable or in top to
bottom order in the netconfig database. If nettype is NULL, it defaults to netpath.

svc_create() registers itself with the rpcbind service [see rpcbind(1M)].
dispatch is called when there is a remote procedure call for the given prognum and
versnum; this requires calling svc_run() (see svc_run() in
rpc_svc_reg(3NSL)). If svc_create() succeeds, it returns the number of server
handles it created, otherwise it returns 0 and an error message is logged.

void svc_destroy(SVCXPRT *xprt);
A function macro that destroys the RPC service handle xprt. Destruction usually
involves deallocation of private data structures, including xprt itself. Use of xprt is
undefined after calling this routine.

SVCXPRT *svc_dg_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a connectionless RPC service handle, and returns a pointer to it.
This routine returns NULL if it fails, and an error message is logged. sendsz and
recvsz are parameters used to specify the size of the buffers. If they are 0, suitable
defaults are chosen. The file descriptor fildes should be open and bound. The server
is not registered with rpcbind(1M).

Warning: since connectionless-based RPC messages can only hold limited amount
of encoded data, this transport cannot be used for procedures that take large
arguments or return huge results.

SVCXPRT *svc_fd_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a service on top of an open and bound file descriptor, and
returns the handle to it. Typically, this descriptor is a connected file descriptor for a
connection-oriented transport. sendsz and recvsz indicate sizes for the send and

svc_create(3NSL)

Introduction to Library Functions 935

receive buffers. If they are 0, reasonable defaults are chosen. This routine returns
NULL if it fails, and an error message is logged.

SVCXPRT *svc_raw_create(void);
This routine creates an RPC service handle and returns a pointer to it. The transport
is really a buffer within the process’s address space, so the corresponding RPC
client should live in the same address space; (see clnt_raw_create() in
rpc_clnt_create(3NSL)). This routine allows simulation of RPC and acquisition
of RPC overheads (such as round trip times), without any kernel and networking
interference. This routine returns NULL if it fails, and an error message is logged.

Note: svc_run() should not be called when the raw interface is being used.

SVCXPRT *svc_tli_create(const int fildes, const struct netconfig *netconf, const struct
t_bind *bindaddr, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC server handle, and returns a pointer to it. fildes is the
file descriptor on which the service is listening. If fildes is RPC_ANYFD, it opens a file
descriptor on the transport specified by netconf. If the file descriptor is unbound and
bindaddr is non-null fildes is bound to the address specified by bindaddr, otherwise
fildes is bound to a default address chosen by the transport. In the case where the
default address is chosen, the number of outstanding connect requests is set to 8 for
connection-oriented transports. The user may specify the size of the send and
receive buffers with the parameters sendsz and recvsz ; values of 0 choose suitable
defaults. This routine returns NULL if it fails, and an error message is logged. The
server is not registered with the rpcbind(1M) service.

SVCXPRT *svc_tp_create(const void (*dispatch)(const struct svc_req *, const SVCXPRT
*), const rpcprog_t prognum, const rpcvers_t versnum, const struct netconfig *netconf);

svc_tp_create() creates a server handle for the network specified by netconf,
and registers itself with the rpcbind service. dispatch is called when there is a
remote procedure call for the given prognum and versnum; this requires calling
svc_run(). svc_tp_create() returns the service handle if it succeeds,
otherwise a NULL is returned and an error message is logged.

SVCXPRT *svc_vc_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a connection-oriented RPC service and returns a pointer to it.
This routine returns NULL if it fails, and an error message is logged. The users may
specify the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. The file descriptor fildes should be open
and bound. The server is not registered with the rpcbind(1M) service.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

svc_create(3NSL)

ATTRIBUTES

936 man pages section 3: Library Functions • Last Revised 1 May 2000

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when an RPC library routine
such as svc_create() binds to a transport, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_create(3NSL), rpc_svc_calls(3NSL),
rpc_svc_reg(3NSL), libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_svc_err(3NSL), attributes(5)

svc_create(3NSL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 937

rpc_svc_create, svc_control, svc_create, svc_destroy, svc_dg_create, svc_fd_create,
svc_raw_create, svc_tli_create, svc_tp_create, svc_vc_create – Library routines for the
creation of server handles

These routines are part of the RPC library which allows C language programs to make
procedure calls on servers across the network. These routines deal with the creation of
service handles. Once the handle is created, the server can be invoked by calling
svc_run().

Privileged programs can create multilevel ports, create multilevel mappings, and
access network security attributes. See SUMMARY OF TRUSTED SOLARIS CHANGES
for more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

bool_t svc_control (SVCXPRT *svc, const uint_t req, void *info);
A function to change or retrieve various information about a service object. req
indicates the type of operation and info is a pointer to the information. The
supported values of req, their argument types, and what they do are:

SVCGET_VERSQUIET If a request is received for a program number served
by this server but the version number is outside the
range registered with the server, an
RPC_PROGVERSMISMATCH error will normally be
returned. info should be a pointer to an integer.
Upon successful completion of the
SVCGET_VERSQUIET request, *info contains an
integer which describes the server’s current
behavior: 0 indicates normal server behavior, that is,
an RPC_PROGVERSMISMATCH error will be returned;
1 indicates that the out of range request will be
silently ignored.

SVCSET_VERSQUIET If a request is received for a program number served
by this server but the version number is outside the
range registered with the server, an
RPC_PROGVERSMISMATCH error will normally be
returned. It is sometimes desirable to change this
behavior. info should be a pointer to an integer
which is either 0, indicating normal server behavior
and an RPC_PROGVERSMISMATCH error will be
returned, or −1, indicating that the out of range
request should be silently ignored.

SVCGET_XID Returns the transaction ID of connection−oriented
(vc) and connectionless (dg) transport service calls.
The transaction ID assists in uniquely identifying
client requests for a given RPC version, program

svc_destroy(3NSL)

NAME

DESCRIPTION

Routines

938 man pages section 3: Library Functions • Last Revised 1 May 2000

number, procedure, and client. The transaction ID is
extracted from the service transport handle svc; info
must be a pointer to an unsigned long. Upon
successful completion of the SVCGET_XID request,
*info contains the transaction ID. Note that
rendezvous and raw service handles do not define a
transaction ID. Thus, if the service handle is of
rendezvous or raw type, and the request is of type
SVCGET_XID, svc_control() will return
FALSE. Note also that the transaction ID read by
the server can be set by the client through the
suboption CLSET_XID in clnt_control(). See
clnt_create(3NSL)

int svc_create(const void (*dispatch)(const struct svc_req *, const SVCXPRT *), const
rpcprog_t prognum, const rpcvers_t versnum, const char *nettype);

svc_create() creates server handles for all the transports belonging to the class
nettype.

nettype defines a class of transports which can be used for a particular application.
The transports are tried in left to right order in NETPATH variable or in top to
bottom order in the netconfig database. If nettype is NULL, it defaults to netpath.

svc_create() registers itself with the rpcbind service [see rpcbind(1M)].
dispatch is called when there is a remote procedure call for the given prognum and
versnum; this requires calling svc_run() (see svc_run() in
rpc_svc_reg(3NSL)). If svc_create() succeeds, it returns the number of server
handles it created, otherwise it returns 0 and an error message is logged.

void svc_destroy(SVCXPRT *xprt);
A function macro that destroys the RPC service handle xprt. Destruction usually
involves deallocation of private data structures, including xprt itself. Use of xprt is
undefined after calling this routine.

SVCXPRT *svc_dg_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a connectionless RPC service handle, and returns a pointer to it.
This routine returns NULL if it fails, and an error message is logged. sendsz and
recvsz are parameters used to specify the size of the buffers. If they are 0, suitable
defaults are chosen. The file descriptor fildes should be open and bound. The server
is not registered with rpcbind(1M).

Warning: since connectionless-based RPC messages can only hold limited amount
of encoded data, this transport cannot be used for procedures that take large
arguments or return huge results.

SVCXPRT *svc_fd_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a service on top of an open and bound file descriptor, and
returns the handle to it. Typically, this descriptor is a connected file descriptor for a
connection-oriented transport. sendsz and recvsz indicate sizes for the send and

svc_destroy(3NSL)

Introduction to Library Functions 939

receive buffers. If they are 0, reasonable defaults are chosen. This routine returns
NULL if it fails, and an error message is logged.

SVCXPRT *svc_raw_create(void);
This routine creates an RPC service handle and returns a pointer to it. The transport
is really a buffer within the process’s address space, so the corresponding RPC
client should live in the same address space; (see clnt_raw_create() in
rpc_clnt_create(3NSL)). This routine allows simulation of RPC and acquisition
of RPC overheads (such as round trip times), without any kernel and networking
interference. This routine returns NULL if it fails, and an error message is logged.

Note: svc_run() should not be called when the raw interface is being used.

SVCXPRT *svc_tli_create(const int fildes, const struct netconfig *netconf, const struct
t_bind *bindaddr, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC server handle, and returns a pointer to it. fildes is the
file descriptor on which the service is listening. If fildes is RPC_ANYFD, it opens a file
descriptor on the transport specified by netconf. If the file descriptor is unbound and
bindaddr is non-null fildes is bound to the address specified by bindaddr, otherwise
fildes is bound to a default address chosen by the transport. In the case where the
default address is chosen, the number of outstanding connect requests is set to 8 for
connection-oriented transports. The user may specify the size of the send and
receive buffers with the parameters sendsz and recvsz ; values of 0 choose suitable
defaults. This routine returns NULL if it fails, and an error message is logged. The
server is not registered with the rpcbind(1M) service.

SVCXPRT *svc_tp_create(const void (*dispatch)(const struct svc_req *, const SVCXPRT
*), const rpcprog_t prognum, const rpcvers_t versnum, const struct netconfig *netconf);

svc_tp_create() creates a server handle for the network specified by netconf,
and registers itself with the rpcbind service. dispatch is called when there is a
remote procedure call for the given prognum and versnum; this requires calling
svc_run(). svc_tp_create() returns the service handle if it succeeds,
otherwise a NULL is returned and an error message is logged.

SVCXPRT *svc_vc_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a connection-oriented RPC service and returns a pointer to it.
This routine returns NULL if it fails, and an error message is logged. The users may
specify the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. The file descriptor fildes should be open
and bound. The server is not registered with the rpcbind(1M) service.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

svc_destroy(3NSL)

ATTRIBUTES

940 man pages section 3: Library Functions • Last Revised 1 May 2000

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when an RPC library routine
such as svc_create() binds to a transport, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_create(3NSL), rpc_svc_calls(3NSL),
rpc_svc_reg(3NSL), libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_svc_err(3NSL), attributes(5)

svc_destroy(3NSL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 941

rpc_svc_create, svc_control, svc_create, svc_destroy, svc_dg_create, svc_fd_create,
svc_raw_create, svc_tli_create, svc_tp_create, svc_vc_create – Library routines for the
creation of server handles

These routines are part of the RPC library which allows C language programs to make
procedure calls on servers across the network. These routines deal with the creation of
service handles. Once the handle is created, the server can be invoked by calling
svc_run().

Privileged programs can create multilevel ports, create multilevel mappings, and
access network security attributes. See SUMMARY OF TRUSTED SOLARIS CHANGES
for more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

bool_t svc_control (SVCXPRT *svc, const uint_t req, void *info);
A function to change or retrieve various information about a service object. req
indicates the type of operation and info is a pointer to the information. The
supported values of req, their argument types, and what they do are:

SVCGET_VERSQUIET If a request is received for a program number served
by this server but the version number is outside the
range registered with the server, an
RPC_PROGVERSMISMATCH error will normally be
returned. info should be a pointer to an integer.
Upon successful completion of the
SVCGET_VERSQUIET request, *info contains an
integer which describes the server’s current
behavior: 0 indicates normal server behavior, that is,
an RPC_PROGVERSMISMATCH error will be returned;
1 indicates that the out of range request will be
silently ignored.

SVCSET_VERSQUIET If a request is received for a program number served
by this server but the version number is outside the
range registered with the server, an
RPC_PROGVERSMISMATCH error will normally be
returned. It is sometimes desirable to change this
behavior. info should be a pointer to an integer
which is either 0, indicating normal server behavior
and an RPC_PROGVERSMISMATCH error will be
returned, or −1, indicating that the out of range
request should be silently ignored.

SVCGET_XID Returns the transaction ID of connection−oriented
(vc) and connectionless (dg) transport service calls.
The transaction ID assists in uniquely identifying
client requests for a given RPC version, program

svc_dg_create(3NSL)

NAME

DESCRIPTION

Routines

942 man pages section 3: Library Functions • Last Revised 1 May 2000

number, procedure, and client. The transaction ID is
extracted from the service transport handle svc; info
must be a pointer to an unsigned long. Upon
successful completion of the SVCGET_XID request,
*info contains the transaction ID. Note that
rendezvous and raw service handles do not define a
transaction ID. Thus, if the service handle is of
rendezvous or raw type, and the request is of type
SVCGET_XID, svc_control() will return
FALSE. Note also that the transaction ID read by
the server can be set by the client through the
suboption CLSET_XID in clnt_control(). See
clnt_create(3NSL)

int svc_create(const void (*dispatch)(const struct svc_req *, const SVCXPRT *), const
rpcprog_t prognum, const rpcvers_t versnum, const char *nettype);

svc_create() creates server handles for all the transports belonging to the class
nettype.

nettype defines a class of transports which can be used for a particular application.
The transports are tried in left to right order in NETPATH variable or in top to
bottom order in the netconfig database. If nettype is NULL, it defaults to netpath.

svc_create() registers itself with the rpcbind service [see rpcbind(1M)].
dispatch is called when there is a remote procedure call for the given prognum and
versnum; this requires calling svc_run() (see svc_run() in
rpc_svc_reg(3NSL)). If svc_create() succeeds, it returns the number of server
handles it created, otherwise it returns 0 and an error message is logged.

void svc_destroy(SVCXPRT *xprt);
A function macro that destroys the RPC service handle xprt. Destruction usually
involves deallocation of private data structures, including xprt itself. Use of xprt is
undefined after calling this routine.

SVCXPRT *svc_dg_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a connectionless RPC service handle, and returns a pointer to it.
This routine returns NULL if it fails, and an error message is logged. sendsz and
recvsz are parameters used to specify the size of the buffers. If they are 0, suitable
defaults are chosen. The file descriptor fildes should be open and bound. The server
is not registered with rpcbind(1M).

Warning: since connectionless-based RPC messages can only hold limited amount
of encoded data, this transport cannot be used for procedures that take large
arguments or return huge results.

SVCXPRT *svc_fd_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a service on top of an open and bound file descriptor, and
returns the handle to it. Typically, this descriptor is a connected file descriptor for a
connection-oriented transport. sendsz and recvsz indicate sizes for the send and

svc_dg_create(3NSL)

Introduction to Library Functions 943

receive buffers. If they are 0, reasonable defaults are chosen. This routine returns
NULL if it fails, and an error message is logged.

SVCXPRT *svc_raw_create(void);
This routine creates an RPC service handle and returns a pointer to it. The transport
is really a buffer within the process’s address space, so the corresponding RPC
client should live in the same address space; (see clnt_raw_create() in
rpc_clnt_create(3NSL)). This routine allows simulation of RPC and acquisition
of RPC overheads (such as round trip times), without any kernel and networking
interference. This routine returns NULL if it fails, and an error message is logged.

Note: svc_run() should not be called when the raw interface is being used.

SVCXPRT *svc_tli_create(const int fildes, const struct netconfig *netconf, const struct
t_bind *bindaddr, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC server handle, and returns a pointer to it. fildes is the
file descriptor on which the service is listening. If fildes is RPC_ANYFD, it opens a file
descriptor on the transport specified by netconf. If the file descriptor is unbound and
bindaddr is non-null fildes is bound to the address specified by bindaddr, otherwise
fildes is bound to a default address chosen by the transport. In the case where the
default address is chosen, the number of outstanding connect requests is set to 8 for
connection-oriented transports. The user may specify the size of the send and
receive buffers with the parameters sendsz and recvsz ; values of 0 choose suitable
defaults. This routine returns NULL if it fails, and an error message is logged. The
server is not registered with the rpcbind(1M) service.

SVCXPRT *svc_tp_create(const void (*dispatch)(const struct svc_req *, const SVCXPRT
*), const rpcprog_t prognum, const rpcvers_t versnum, const struct netconfig *netconf);

svc_tp_create() creates a server handle for the network specified by netconf,
and registers itself with the rpcbind service. dispatch is called when there is a
remote procedure call for the given prognum and versnum; this requires calling
svc_run(). svc_tp_create() returns the service handle if it succeeds,
otherwise a NULL is returned and an error message is logged.

SVCXPRT *svc_vc_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a connection-oriented RPC service and returns a pointer to it.
This routine returns NULL if it fails, and an error message is logged. The users may
specify the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. The file descriptor fildes should be open
and bound. The server is not registered with the rpcbind(1M) service.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

svc_dg_create(3NSL)

ATTRIBUTES

944 man pages section 3: Library Functions • Last Revised 1 May 2000

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when an RPC library routine
such as svc_create() binds to a transport, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_create(3NSL), rpc_svc_calls(3NSL),
rpc_svc_reg(3NSL), libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_svc_err(3NSL), attributes(5)

svc_dg_create(3NSL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 945

rpc_svc_calls, svc_dg_enablecache, svc_done, svc_exit, svc_fdset, svc_freeargs,
svc_getargs, svc_getreq_common, svc_getreq_poll, svc_getreqset, svc_getrpccaller,
svc_max_pollfd, svc_pollfd, svc_run, svc_sendreply – Library routines for RPC servers

These routines are part of the RPC library which allows C language programs to make
procedure calls on other machines across the network.

These routines are associated with the server side of the RPC mechanism. Some of
them are called by the server side dispatch function, while others (such as
svc_run()) are called when the server is initiated.

In the current implementation, the service transport handle SVCXPRT contains a single
data area for decoding arguments and encoding results. Therefore, this structure
cannot be freely shared between threads that call functions that do this. However,
when a server is operating in the Automatic or User MT modes, a copy of this
structure is passed to the service dispatch procedure in order to enable concurrent
request processing. Under these circumstances, some routines which would otherwise
be unsafe, become safe. These are marked as such. Also marked are routines that are
unsafe for MT applications, and are not to be used by such applications.

Programs can retrieve network security attributes from incoming requests. Privileged
programs can create multilevel ports, create multilevel mappings, and set the security
attributes of outgoing replies. See SUMMARY OF TRUSTED SOLARIS CHANGES for
more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

int svc_dg_enablecache(SVCXPRT *xprt, const uint_t cache_size);
This function allocates a duplicate request cache for the service endpoint xprt, large
enough to hold cache_size entries. Once enabled, there is no way to disable caching.
This routine returns 1 if space necessary for a cache of the given size was
successfully allocated, and 0 otherwise.

This function is safe in MT applications.

int svc_done(SVCXPRT *xprt);
This function frees resources allocated to service a client request directed to the
service endpoint xprt. This call pertains only to servers executing in the User MT
mode. In the User MT mode, service procedures must invoke this call before
returning, either after a client request has been serviced, or after an error or
abnormal condition that prevents a reply from being sent. After svc_done() is
invoked, the service endpoint xprt should not be referenced by the service
procedure. Server multithreading modes and parameters can be set using the
rpc_control() call.

This function is safe in MT applications. It will have no effect if invoked in modes
other than the User MT mode.

svc_dg_enablecache(3NSL)

NAME

DESCRIPTION

Routines

946 man pages section 3: Library Functions • Last Revised 1 May 2000

void svc_exit(void);
This function when called by any of the RPC server procedure or otherwise,
destroys all services registered by the server and causes svc_run() to return.

If RPC server activity is to be resumed, services must be reregistered with the RPC
library either through one of the rpc_svc_create(3NSL) functions, or using
xprt_register(3NSL).

svc_exit() has global scope and ends all RPC server activity.

fd_set svc_fdset;
A global variable reflecting the RPC server’s read file descriptor bit mask. This is
only of interest if service implementors do not call svc_run(), but rather do their
own asynchronous event processing. This variable is read-only, and it may change
after calls to svc_getreqset() or any creation routines. Do not pass its address
to select(3C)! Instead, pass the address of a copy.

MT applications executing in either the Automatic MT mode or the User MT
mode should never read this variable. They should use auxiliary threads to do
asynchronous event processing.

svc_fdset is limited to 1024 file descriptors and is considered obsolete. Use of
svc_pollfd is recommended instead.

pollfd_t *svc_pollfd;
A global variable pointing to an array of pollfd_t structures reflecting the RPC
server’s read file descriptor array. This is only of interest if service service
implementors do not call svc_run() but rather do their own asynchronous event
processing. This variable is read-only, and it may change after calls to
svc_getreg_poll() or any creation routines. Do no pass its address to poll(2)!
Instead, pass the address of a copy.

By default, svc_pollfd is limited to 1024 entries. Use rpc_control(3NSL) to
remove this limitation.

MT applications executing in either the Automatic MT mode or the User MT
mode should never be read this variable. They should use auxiliary threads to do
asynchronous event processing.

int svc_max_pollfd;
A global variable containing the maximum length of the svc_pollfd array. This
variable is read-only, and it may change after calls to svc_getreg_poll() or any
creation routines.

bool_t svc_freeargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the arguments to a service procedure using svc_getargs(). This routine
returns TRUE if the results were successfully freed, and FALSE otherwise.

svc_dg_enablecache(3NSL)

Introduction to Library Functions 947

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

bool_t svc_getargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that decodes the arguments of an RPC request associated with the
RPC service transport handle xprt. The parameter in is the address where the
arguments will be placed; inproc is the XDR routine used to decode the arguments.
This routine returns TRUE if decoding succeeds, and FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

void svc_getreq_common(const int fd);
This routine is called to handle a request on the given file descriptor.

void svc_getreq_poll(struct pollfd *pfdp, const int pollretval);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
poll(2) has determined that an RPC request has arrived on some RPC file
descriptors; pollretval is the return value from poll(2) and pfdp is the array of pollfd
structures on which the poll(2) was done. It is assumed to be an array large
enough to contain the maximal number of descriptors allowed.

This function macro is unsafe in MT applications.

void svc_getreqset(fd_set *rdfds);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
select(3C) has determined that an RPC request has arrived on some RPC file
descriptors; rdfds is the resultant read file descriptor bit mask. The routine returns
when all file descriptors associated with the value of rdfds have been serviced.

This function macro is unsafe in MT applications.

struct netbuf *svc_getrpccaller(const SVCXPRT *xprt);
The approved way of getting the network address of the caller of a procedure
associated with the RPC service transport handle xprt.

This function macro is safe in MT applications.

void svc_run(void);
This routine never returns. In single threaded mode, it waits for RPC requests to
arrive, and calls the appropriate service procedure using svc_getreq_poll()
when one arrives. This procedure is usually waiting for the poll(2) library call to
return.

Applications executing in the Automatic or User MT modes should invoke this
function exactly once. It the Automatic MT mode, it will create threads to service
client requests. In the User MT mode, it will provide a framework for service
developers to create and manage their own threads for servicing client requests.

svc_dg_enablecache(3NSL)

948 man pages section 3: Library Functions • Last Revised 1 May 2000

bool_t svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc, const caddr_t
out);

Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request’s associated transport handle;
outproc is the XDR routine which is used to encode the results; and out is the
address of the results. This routine returns TRUE if it succeeds, FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when a bind(3SOCKET) call
is made, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpc(3NSL), rpc_svc_create(3NSL), rpc_svc_reg(3NSL), libt6(3NSL),
t6alloc_blk(3NSL), t6free_blk(3NSL)

rpcgen(1), poll(2), rpc_control(3NSL), rpc_svc_err(3NSL), select(3C),
xprt_register(3NSL),attributes(5)

svc_dg_enablecache() and svc_getrpccaller() are safe in multithreaded
applications. svc_freeargs(), svc_getargs(), and svc_sendreply() are safe
in MT applications utilizing the Automatic or User MT modes.

svc_dg_enablecache(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

NOTES

Introduction to Library Functions 949

svc_getreq_common(), svc_getreqset(), and svc_getreq_poll() are unsafe
in multithreaded applications and should be called only from the main thread.

svc_dg_enablecache(3NSL)

950 man pages section 3: Library Functions • Last Revised 1 May 2000

rpc_svc_calls, svc_dg_enablecache, svc_done, svc_exit, svc_fdset, svc_freeargs,
svc_getargs, svc_getreq_common, svc_getreq_poll, svc_getreqset, svc_getrpccaller,
svc_max_pollfd, svc_pollfd, svc_run, svc_sendreply – Library routines for RPC servers

These routines are part of the RPC library which allows C language programs to make
procedure calls on other machines across the network.

These routines are associated with the server side of the RPC mechanism. Some of
them are called by the server side dispatch function, while others (such as
svc_run()) are called when the server is initiated.

In the current implementation, the service transport handle SVCXPRT contains a single
data area for decoding arguments and encoding results. Therefore, this structure
cannot be freely shared between threads that call functions that do this. However,
when a server is operating in the Automatic or User MT modes, a copy of this
structure is passed to the service dispatch procedure in order to enable concurrent
request processing. Under these circumstances, some routines which would otherwise
be unsafe, become safe. These are marked as such. Also marked are routines that are
unsafe for MT applications, and are not to be used by such applications.

Programs can retrieve network security attributes from incoming requests. Privileged
programs can create multilevel ports, create multilevel mappings, and set the security
attributes of outgoing replies. See SUMMARY OF TRUSTED SOLARIS CHANGES for
more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

int svc_dg_enablecache(SVCXPRT *xprt, const uint_t cache_size);
This function allocates a duplicate request cache for the service endpoint xprt, large
enough to hold cache_size entries. Once enabled, there is no way to disable caching.
This routine returns 1 if space necessary for a cache of the given size was
successfully allocated, and 0 otherwise.

This function is safe in MT applications.

int svc_done(SVCXPRT *xprt);
This function frees resources allocated to service a client request directed to the
service endpoint xprt. This call pertains only to servers executing in the User MT
mode. In the User MT mode, service procedures must invoke this call before
returning, either after a client request has been serviced, or after an error or
abnormal condition that prevents a reply from being sent. After svc_done() is
invoked, the service endpoint xprt should not be referenced by the service
procedure. Server multithreading modes and parameters can be set using the
rpc_control() call.

This function is safe in MT applications. It will have no effect if invoked in modes
other than the User MT mode.

svc_done(3NSL)

NAME

DESCRIPTION

Routines

Introduction to Library Functions 951

void svc_exit(void);
This function when called by any of the RPC server procedure or otherwise,
destroys all services registered by the server and causes svc_run() to return.

If RPC server activity is to be resumed, services must be reregistered with the RPC
library either through one of the rpc_svc_create(3NSL) functions, or using
xprt_register(3NSL).

svc_exit() has global scope and ends all RPC server activity.

fd_set svc_fdset;
A global variable reflecting the RPC server’s read file descriptor bit mask. This is
only of interest if service implementors do not call svc_run(), but rather do their
own asynchronous event processing. This variable is read-only, and it may change
after calls to svc_getreqset() or any creation routines. Do not pass its address
to select(3C)! Instead, pass the address of a copy.

MT applications executing in either the Automatic MT mode or the User MT
mode should never read this variable. They should use auxiliary threads to do
asynchronous event processing.

svc_fdset is limited to 1024 file descriptors and is considered obsolete. Use of
svc_pollfd is recommended instead.

pollfd_t *svc_pollfd;
A global variable pointing to an array of pollfd_t structures reflecting the RPC
server’s read file descriptor array. This is only of interest if service service
implementors do not call svc_run() but rather do their own asynchronous event
processing. This variable is read-only, and it may change after calls to
svc_getreg_poll() or any creation routines. Do no pass its address to poll(2)!
Instead, pass the address of a copy.

By default, svc_pollfd is limited to 1024 entries. Use rpc_control(3NSL) to
remove this limitation.

MT applications executing in either the Automatic MT mode or the User MT
mode should never be read this variable. They should use auxiliary threads to do
asynchronous event processing.

int svc_max_pollfd;
A global variable containing the maximum length of the svc_pollfd array. This
variable is read-only, and it may change after calls to svc_getreg_poll() or any
creation routines.

bool_t svc_freeargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the arguments to a service procedure using svc_getargs(). This routine
returns TRUE if the results were successfully freed, and FALSE otherwise.

svc_done(3NSL)

952 man pages section 3: Library Functions • Last Revised 1 May 2000

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

bool_t svc_getargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that decodes the arguments of an RPC request associated with the
RPC service transport handle xprt. The parameter in is the address where the
arguments will be placed; inproc is the XDR routine used to decode the arguments.
This routine returns TRUE if decoding succeeds, and FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

void svc_getreq_common(const int fd);
This routine is called to handle a request on the given file descriptor.

void svc_getreq_poll(struct pollfd *pfdp, const int pollretval);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
poll(2) has determined that an RPC request has arrived on some RPC file
descriptors; pollretval is the return value from poll(2) and pfdp is the array of pollfd
structures on which the poll(2) was done. It is assumed to be an array large
enough to contain the maximal number of descriptors allowed.

This function macro is unsafe in MT applications.

void svc_getreqset(fd_set *rdfds);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
select(3C) has determined that an RPC request has arrived on some RPC file
descriptors; rdfds is the resultant read file descriptor bit mask. The routine returns
when all file descriptors associated with the value of rdfds have been serviced.

This function macro is unsafe in MT applications.

struct netbuf *svc_getrpccaller(const SVCXPRT *xprt);
The approved way of getting the network address of the caller of a procedure
associated with the RPC service transport handle xprt.

This function macro is safe in MT applications.

void svc_run(void);
This routine never returns. In single threaded mode, it waits for RPC requests to
arrive, and calls the appropriate service procedure using svc_getreq_poll()
when one arrives. This procedure is usually waiting for the poll(2) library call to
return.

Applications executing in the Automatic or User MT modes should invoke this
function exactly once. It the Automatic MT mode, it will create threads to service
client requests. In the User MT mode, it will provide a framework for service
developers to create and manage their own threads for servicing client requests.

svc_done(3NSL)

Introduction to Library Functions 953

bool_t svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc, const caddr_t
out);

Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request’s associated transport handle;
outproc is the XDR routine which is used to encode the results; and out is the
address of the results. This routine returns TRUE if it succeeds, FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when a bind(3SOCKET) call
is made, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpc(3NSL), rpc_svc_create(3NSL), rpc_svc_reg(3NSL), libt6(3NSL),
t6alloc_blk(3NSL), t6free_blk(3NSL)

rpcgen(1), poll(2), rpc_control(3NSL), rpc_svc_err(3NSL), select(3C),
xprt_register(3NSL),attributes(5)

svc_dg_enablecache() and svc_getrpccaller() are safe in multithreaded
applications. svc_freeargs(), svc_getargs(), and svc_sendreply() are safe
in MT applications utilizing the Automatic or User MT modes.

svc_done(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

NOTES

954 man pages section 3: Library Functions • Last Revised 1 May 2000

svc_getreq_common(), svc_getreqset(), and svc_getreq_poll() are unsafe
in multithreaded applications and should be called only from the main thread.

svc_done(3NSL)

Introduction to Library Functions 955

rpc_svc_calls, svc_dg_enablecache, svc_done, svc_exit, svc_fdset, svc_freeargs,
svc_getargs, svc_getreq_common, svc_getreq_poll, svc_getreqset, svc_getrpccaller,
svc_max_pollfd, svc_pollfd, svc_run, svc_sendreply – Library routines for RPC servers

These routines are part of the RPC library which allows C language programs to make
procedure calls on other machines across the network.

These routines are associated with the server side of the RPC mechanism. Some of
them are called by the server side dispatch function, while others (such as
svc_run()) are called when the server is initiated.

In the current implementation, the service transport handle SVCXPRT contains a single
data area for decoding arguments and encoding results. Therefore, this structure
cannot be freely shared between threads that call functions that do this. However,
when a server is operating in the Automatic or User MT modes, a copy of this
structure is passed to the service dispatch procedure in order to enable concurrent
request processing. Under these circumstances, some routines which would otherwise
be unsafe, become safe. These are marked as such. Also marked are routines that are
unsafe for MT applications, and are not to be used by such applications.

Programs can retrieve network security attributes from incoming requests. Privileged
programs can create multilevel ports, create multilevel mappings, and set the security
attributes of outgoing replies. See SUMMARY OF TRUSTED SOLARIS CHANGES for
more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

int svc_dg_enablecache(SVCXPRT *xprt, const uint_t cache_size);
This function allocates a duplicate request cache for the service endpoint xprt, large
enough to hold cache_size entries. Once enabled, there is no way to disable caching.
This routine returns 1 if space necessary for a cache of the given size was
successfully allocated, and 0 otherwise.

This function is safe in MT applications.

int svc_done(SVCXPRT *xprt);
This function frees resources allocated to service a client request directed to the
service endpoint xprt. This call pertains only to servers executing in the User MT
mode. In the User MT mode, service procedures must invoke this call before
returning, either after a client request has been serviced, or after an error or
abnormal condition that prevents a reply from being sent. After svc_done() is
invoked, the service endpoint xprt should not be referenced by the service
procedure. Server multithreading modes and parameters can be set using the
rpc_control() call.

This function is safe in MT applications. It will have no effect if invoked in modes
other than the User MT mode.

svc_exit(3NSL)

NAME

DESCRIPTION

Routines

956 man pages section 3: Library Functions • Last Revised 1 May 2000

void svc_exit(void);
This function when called by any of the RPC server procedure or otherwise,
destroys all services registered by the server and causes svc_run() to return.

If RPC server activity is to be resumed, services must be reregistered with the RPC
library either through one of the rpc_svc_create(3NSL) functions, or using
xprt_register(3NSL).

svc_exit() has global scope and ends all RPC server activity.

fd_set svc_fdset;
A global variable reflecting the RPC server’s read file descriptor bit mask. This is
only of interest if service implementors do not call svc_run(), but rather do their
own asynchronous event processing. This variable is read-only, and it may change
after calls to svc_getreqset() or any creation routines. Do not pass its address
to select(3C)! Instead, pass the address of a copy.

MT applications executing in either the Automatic MT mode or the User MT
mode should never read this variable. They should use auxiliary threads to do
asynchronous event processing.

svc_fdset is limited to 1024 file descriptors and is considered obsolete. Use of
svc_pollfd is recommended instead.

pollfd_t *svc_pollfd;
A global variable pointing to an array of pollfd_t structures reflecting the RPC
server’s read file descriptor array. This is only of interest if service service
implementors do not call svc_run() but rather do their own asynchronous event
processing. This variable is read-only, and it may change after calls to
svc_getreg_poll() or any creation routines. Do no pass its address to poll(2)!
Instead, pass the address of a copy.

By default, svc_pollfd is limited to 1024 entries. Use rpc_control(3NSL) to
remove this limitation.

MT applications executing in either the Automatic MT mode or the User MT
mode should never be read this variable. They should use auxiliary threads to do
asynchronous event processing.

int svc_max_pollfd;
A global variable containing the maximum length of the svc_pollfd array. This
variable is read-only, and it may change after calls to svc_getreg_poll() or any
creation routines.

bool_t svc_freeargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the arguments to a service procedure using svc_getargs(). This routine
returns TRUE if the results were successfully freed, and FALSE otherwise.

svc_exit(3NSL)

Introduction to Library Functions 957

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

bool_t svc_getargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that decodes the arguments of an RPC request associated with the
RPC service transport handle xprt. The parameter in is the address where the
arguments will be placed; inproc is the XDR routine used to decode the arguments.
This routine returns TRUE if decoding succeeds, and FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

void svc_getreq_common(const int fd);
This routine is called to handle a request on the given file descriptor.

void svc_getreq_poll(struct pollfd *pfdp, const int pollretval);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
poll(2) has determined that an RPC request has arrived on some RPC file
descriptors; pollretval is the return value from poll(2) and pfdp is the array of pollfd
structures on which the poll(2) was done. It is assumed to be an array large
enough to contain the maximal number of descriptors allowed.

This function macro is unsafe in MT applications.

void svc_getreqset(fd_set *rdfds);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
select(3C) has determined that an RPC request has arrived on some RPC file
descriptors; rdfds is the resultant read file descriptor bit mask. The routine returns
when all file descriptors associated with the value of rdfds have been serviced.

This function macro is unsafe in MT applications.

struct netbuf *svc_getrpccaller(const SVCXPRT *xprt);
The approved way of getting the network address of the caller of a procedure
associated with the RPC service transport handle xprt.

This function macro is safe in MT applications.

void svc_run(void);
This routine never returns. In single threaded mode, it waits for RPC requests to
arrive, and calls the appropriate service procedure using svc_getreq_poll()
when one arrives. This procedure is usually waiting for the poll(2) library call to
return.

Applications executing in the Automatic or User MT modes should invoke this
function exactly once. It the Automatic MT mode, it will create threads to service
client requests. In the User MT mode, it will provide a framework for service
developers to create and manage their own threads for servicing client requests.

svc_exit(3NSL)

958 man pages section 3: Library Functions • Last Revised 1 May 2000

bool_t svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc, const caddr_t
out);

Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request’s associated transport handle;
outproc is the XDR routine which is used to encode the results; and out is the
address of the results. This routine returns TRUE if it succeeds, FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when a bind(3SOCKET) call
is made, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpc(3NSL), rpc_svc_create(3NSL), rpc_svc_reg(3NSL), libt6(3NSL),
t6alloc_blk(3NSL), t6free_blk(3NSL)

rpcgen(1), poll(2), rpc_control(3NSL), rpc_svc_err(3NSL), select(3C),
xprt_register(3NSL),attributes(5)

svc_dg_enablecache() and svc_getrpccaller() are safe in multithreaded
applications. svc_freeargs(), svc_getargs(), and svc_sendreply() are safe
in MT applications utilizing the Automatic or User MT modes.

svc_exit(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

NOTES

Introduction to Library Functions 959

svc_getreq_common(), svc_getreqset(), and svc_getreq_poll() are unsafe
in multithreaded applications and should be called only from the main thread.

svc_exit(3NSL)

960 man pages section 3: Library Functions • Last Revised 1 May 2000

rpc_svc_create, svc_control, svc_create, svc_destroy, svc_dg_create, svc_fd_create,
svc_raw_create, svc_tli_create, svc_tp_create, svc_vc_create – Library routines for the
creation of server handles

These routines are part of the RPC library which allows C language programs to make
procedure calls on servers across the network. These routines deal with the creation of
service handles. Once the handle is created, the server can be invoked by calling
svc_run().

Privileged programs can create multilevel ports, create multilevel mappings, and
access network security attributes. See SUMMARY OF TRUSTED SOLARIS CHANGES
for more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

bool_t svc_control (SVCXPRT *svc, const uint_t req, void *info);
A function to change or retrieve various information about a service object. req
indicates the type of operation and info is a pointer to the information. The
supported values of req, their argument types, and what they do are:

SVCGET_VERSQUIET If a request is received for a program number served
by this server but the version number is outside the
range registered with the server, an
RPC_PROGVERSMISMATCH error will normally be
returned. info should be a pointer to an integer.
Upon successful completion of the
SVCGET_VERSQUIET request, *info contains an
integer which describes the server’s current
behavior: 0 indicates normal server behavior, that is,
an RPC_PROGVERSMISMATCH error will be returned;
1 indicates that the out of range request will be
silently ignored.

SVCSET_VERSQUIET If a request is received for a program number served
by this server but the version number is outside the
range registered with the server, an
RPC_PROGVERSMISMATCH error will normally be
returned. It is sometimes desirable to change this
behavior. info should be a pointer to an integer
which is either 0, indicating normal server behavior
and an RPC_PROGVERSMISMATCH error will be
returned, or −1, indicating that the out of range
request should be silently ignored.

SVCGET_XID Returns the transaction ID of connection−oriented
(vc) and connectionless (dg) transport service calls.
The transaction ID assists in uniquely identifying
client requests for a given RPC version, program

svc_fd_create(3NSL)

NAME

DESCRIPTION

Routines

Introduction to Library Functions 961

number, procedure, and client. The transaction ID is
extracted from the service transport handle svc; info
must be a pointer to an unsigned long. Upon
successful completion of the SVCGET_XID request,
*info contains the transaction ID. Note that
rendezvous and raw service handles do not define a
transaction ID. Thus, if the service handle is of
rendezvous or raw type, and the request is of type
SVCGET_XID, svc_control() will return
FALSE. Note also that the transaction ID read by
the server can be set by the client through the
suboption CLSET_XID in clnt_control(). See
clnt_create(3NSL)

int svc_create(const void (*dispatch)(const struct svc_req *, const SVCXPRT *), const
rpcprog_t prognum, const rpcvers_t versnum, const char *nettype);

svc_create() creates server handles for all the transports belonging to the class
nettype.

nettype defines a class of transports which can be used for a particular application.
The transports are tried in left to right order in NETPATH variable or in top to
bottom order in the netconfig database. If nettype is NULL, it defaults to netpath.

svc_create() registers itself with the rpcbind service [see rpcbind(1M)].
dispatch is called when there is a remote procedure call for the given prognum and
versnum; this requires calling svc_run() (see svc_run() in
rpc_svc_reg(3NSL)). If svc_create() succeeds, it returns the number of server
handles it created, otherwise it returns 0 and an error message is logged.

void svc_destroy(SVCXPRT *xprt);
A function macro that destroys the RPC service handle xprt. Destruction usually
involves deallocation of private data structures, including xprt itself. Use of xprt is
undefined after calling this routine.

SVCXPRT *svc_dg_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a connectionless RPC service handle, and returns a pointer to it.
This routine returns NULL if it fails, and an error message is logged. sendsz and
recvsz are parameters used to specify the size of the buffers. If they are 0, suitable
defaults are chosen. The file descriptor fildes should be open and bound. The server
is not registered with rpcbind(1M).

Warning: since connectionless-based RPC messages can only hold limited amount
of encoded data, this transport cannot be used for procedures that take large
arguments or return huge results.

SVCXPRT *svc_fd_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a service on top of an open and bound file descriptor, and
returns the handle to it. Typically, this descriptor is a connected file descriptor for a
connection-oriented transport. sendsz and recvsz indicate sizes for the send and

svc_fd_create(3NSL)

962 man pages section 3: Library Functions • Last Revised 1 May 2000

receive buffers. If they are 0, reasonable defaults are chosen. This routine returns
NULL if it fails, and an error message is logged.

SVCXPRT *svc_raw_create(void);
This routine creates an RPC service handle and returns a pointer to it. The transport
is really a buffer within the process’s address space, so the corresponding RPC
client should live in the same address space; (see clnt_raw_create() in
rpc_clnt_create(3NSL)). This routine allows simulation of RPC and acquisition
of RPC overheads (such as round trip times), without any kernel and networking
interference. This routine returns NULL if it fails, and an error message is logged.

Note: svc_run() should not be called when the raw interface is being used.

SVCXPRT *svc_tli_create(const int fildes, const struct netconfig *netconf, const struct
t_bind *bindaddr, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC server handle, and returns a pointer to it. fildes is the
file descriptor on which the service is listening. If fildes is RPC_ANYFD, it opens a file
descriptor on the transport specified by netconf. If the file descriptor is unbound and
bindaddr is non-null fildes is bound to the address specified by bindaddr, otherwise
fildes is bound to a default address chosen by the transport. In the case where the
default address is chosen, the number of outstanding connect requests is set to 8 for
connection-oriented transports. The user may specify the size of the send and
receive buffers with the parameters sendsz and recvsz ; values of 0 choose suitable
defaults. This routine returns NULL if it fails, and an error message is logged. The
server is not registered with the rpcbind(1M) service.

SVCXPRT *svc_tp_create(const void (*dispatch)(const struct svc_req *, const SVCXPRT
*), const rpcprog_t prognum, const rpcvers_t versnum, const struct netconfig *netconf);

svc_tp_create() creates a server handle for the network specified by netconf,
and registers itself with the rpcbind service. dispatch is called when there is a
remote procedure call for the given prognum and versnum; this requires calling
svc_run(). svc_tp_create() returns the service handle if it succeeds,
otherwise a NULL is returned and an error message is logged.

SVCXPRT *svc_vc_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a connection-oriented RPC service and returns a pointer to it.
This routine returns NULL if it fails, and an error message is logged. The users may
specify the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. The file descriptor fildes should be open
and bound. The server is not registered with the rpcbind(1M) service.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

svc_fd_create(3NSL)

ATTRIBUTES

Introduction to Library Functions 963

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when an RPC library routine
such as svc_create() binds to a transport, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_create(3NSL), rpc_svc_calls(3NSL),
rpc_svc_reg(3NSL), libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_svc_err(3NSL), attributes(5)

svc_fd_create(3NSL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

964 man pages section 3: Library Functions • Last Revised 1 May 2000

rpc_svc_calls, svc_dg_enablecache, svc_done, svc_exit, svc_fdset, svc_freeargs,
svc_getargs, svc_getreq_common, svc_getreq_poll, svc_getreqset, svc_getrpccaller,
svc_max_pollfd, svc_pollfd, svc_run, svc_sendreply – Library routines for RPC servers

These routines are part of the RPC library which allows C language programs to make
procedure calls on other machines across the network.

These routines are associated with the server side of the RPC mechanism. Some of
them are called by the server side dispatch function, while others (such as
svc_run()) are called when the server is initiated.

In the current implementation, the service transport handle SVCXPRT contains a single
data area for decoding arguments and encoding results. Therefore, this structure
cannot be freely shared between threads that call functions that do this. However,
when a server is operating in the Automatic or User MT modes, a copy of this
structure is passed to the service dispatch procedure in order to enable concurrent
request processing. Under these circumstances, some routines which would otherwise
be unsafe, become safe. These are marked as such. Also marked are routines that are
unsafe for MT applications, and are not to be used by such applications.

Programs can retrieve network security attributes from incoming requests. Privileged
programs can create multilevel ports, create multilevel mappings, and set the security
attributes of outgoing replies. See SUMMARY OF TRUSTED SOLARIS CHANGES for
more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

int svc_dg_enablecache(SVCXPRT *xprt, const uint_t cache_size);
This function allocates a duplicate request cache for the service endpoint xprt, large
enough to hold cache_size entries. Once enabled, there is no way to disable caching.
This routine returns 1 if space necessary for a cache of the given size was
successfully allocated, and 0 otherwise.

This function is safe in MT applications.

int svc_done(SVCXPRT *xprt);
This function frees resources allocated to service a client request directed to the
service endpoint xprt. This call pertains only to servers executing in the User MT
mode. In the User MT mode, service procedures must invoke this call before
returning, either after a client request has been serviced, or after an error or
abnormal condition that prevents a reply from being sent. After svc_done() is
invoked, the service endpoint xprt should not be referenced by the service
procedure. Server multithreading modes and parameters can be set using the
rpc_control() call.

This function is safe in MT applications. It will have no effect if invoked in modes
other than the User MT mode.

svc_fdset(3NSL)

NAME

DESCRIPTION

Routines

Introduction to Library Functions 965

void svc_exit(void);
This function when called by any of the RPC server procedure or otherwise,
destroys all services registered by the server and causes svc_run() to return.

If RPC server activity is to be resumed, services must be reregistered with the RPC
library either through one of the rpc_svc_create(3NSL) functions, or using
xprt_register(3NSL).

svc_exit() has global scope and ends all RPC server activity.

fd_set svc_fdset;
A global variable reflecting the RPC server’s read file descriptor bit mask. This is
only of interest if service implementors do not call svc_run(), but rather do their
own asynchronous event processing. This variable is read-only, and it may change
after calls to svc_getreqset() or any creation routines. Do not pass its address
to select(3C)! Instead, pass the address of a copy.

MT applications executing in either the Automatic MT mode or the User MT
mode should never read this variable. They should use auxiliary threads to do
asynchronous event processing.

svc_fdset is limited to 1024 file descriptors and is considered obsolete. Use of
svc_pollfd is recommended instead.

pollfd_t *svc_pollfd;
A global variable pointing to an array of pollfd_t structures reflecting the RPC
server’s read file descriptor array. This is only of interest if service service
implementors do not call svc_run() but rather do their own asynchronous event
processing. This variable is read-only, and it may change after calls to
svc_getreg_poll() or any creation routines. Do no pass its address to poll(2)!
Instead, pass the address of a copy.

By default, svc_pollfd is limited to 1024 entries. Use rpc_control(3NSL) to
remove this limitation.

MT applications executing in either the Automatic MT mode or the User MT
mode should never be read this variable. They should use auxiliary threads to do
asynchronous event processing.

int svc_max_pollfd;
A global variable containing the maximum length of the svc_pollfd array. This
variable is read-only, and it may change after calls to svc_getreg_poll() or any
creation routines.

bool_t svc_freeargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the arguments to a service procedure using svc_getargs(). This routine
returns TRUE if the results were successfully freed, and FALSE otherwise.

svc_fdset(3NSL)

966 man pages section 3: Library Functions • Last Revised 1 May 2000

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

bool_t svc_getargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that decodes the arguments of an RPC request associated with the
RPC service transport handle xprt. The parameter in is the address where the
arguments will be placed; inproc is the XDR routine used to decode the arguments.
This routine returns TRUE if decoding succeeds, and FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

void svc_getreq_common(const int fd);
This routine is called to handle a request on the given file descriptor.

void svc_getreq_poll(struct pollfd *pfdp, const int pollretval);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
poll(2) has determined that an RPC request has arrived on some RPC file
descriptors; pollretval is the return value from poll(2) and pfdp is the array of pollfd
structures on which the poll(2) was done. It is assumed to be an array large
enough to contain the maximal number of descriptors allowed.

This function macro is unsafe in MT applications.

void svc_getreqset(fd_set *rdfds);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
select(3C) has determined that an RPC request has arrived on some RPC file
descriptors; rdfds is the resultant read file descriptor bit mask. The routine returns
when all file descriptors associated with the value of rdfds have been serviced.

This function macro is unsafe in MT applications.

struct netbuf *svc_getrpccaller(const SVCXPRT *xprt);
The approved way of getting the network address of the caller of a procedure
associated with the RPC service transport handle xprt.

This function macro is safe in MT applications.

void svc_run(void);
This routine never returns. In single threaded mode, it waits for RPC requests to
arrive, and calls the appropriate service procedure using svc_getreq_poll()
when one arrives. This procedure is usually waiting for the poll(2) library call to
return.

Applications executing in the Automatic or User MT modes should invoke this
function exactly once. It the Automatic MT mode, it will create threads to service
client requests. In the User MT mode, it will provide a framework for service
developers to create and manage their own threads for servicing client requests.

svc_fdset(3NSL)

Introduction to Library Functions 967

bool_t svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc, const caddr_t
out);

Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request’s associated transport handle;
outproc is the XDR routine which is used to encode the results; and out is the
address of the results. This routine returns TRUE if it succeeds, FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when a bind(3SOCKET) call
is made, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpc(3NSL), rpc_svc_create(3NSL), rpc_svc_reg(3NSL), libt6(3NSL),
t6alloc_blk(3NSL), t6free_blk(3NSL)

rpcgen(1), poll(2), rpc_control(3NSL), rpc_svc_err(3NSL), select(3C),
xprt_register(3NSL),attributes(5)

svc_dg_enablecache() and svc_getrpccaller() are safe in multithreaded
applications. svc_freeargs(), svc_getargs(), and svc_sendreply() are safe
in MT applications utilizing the Automatic or User MT modes.

svc_fdset(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

NOTES

968 man pages section 3: Library Functions • Last Revised 1 May 2000

svc_getreq_common(), svc_getreqset(), and svc_getreq_poll() are unsafe
in multithreaded applications and should be called only from the main thread.

svc_fdset(3NSL)

Introduction to Library Functions 969

rpc_svc_calls, svc_dg_enablecache, svc_done, svc_exit, svc_fdset, svc_freeargs,
svc_getargs, svc_getreq_common, svc_getreq_poll, svc_getreqset, svc_getrpccaller,
svc_max_pollfd, svc_pollfd, svc_run, svc_sendreply – Library routines for RPC servers

These routines are part of the RPC library which allows C language programs to make
procedure calls on other machines across the network.

These routines are associated with the server side of the RPC mechanism. Some of
them are called by the server side dispatch function, while others (such as
svc_run()) are called when the server is initiated.

In the current implementation, the service transport handle SVCXPRT contains a single
data area for decoding arguments and encoding results. Therefore, this structure
cannot be freely shared between threads that call functions that do this. However,
when a server is operating in the Automatic or User MT modes, a copy of this
structure is passed to the service dispatch procedure in order to enable concurrent
request processing. Under these circumstances, some routines which would otherwise
be unsafe, become safe. These are marked as such. Also marked are routines that are
unsafe for MT applications, and are not to be used by such applications.

Programs can retrieve network security attributes from incoming requests. Privileged
programs can create multilevel ports, create multilevel mappings, and set the security
attributes of outgoing replies. See SUMMARY OF TRUSTED SOLARIS CHANGES for
more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

int svc_dg_enablecache(SVCXPRT *xprt, const uint_t cache_size);
This function allocates a duplicate request cache for the service endpoint xprt, large
enough to hold cache_size entries. Once enabled, there is no way to disable caching.
This routine returns 1 if space necessary for a cache of the given size was
successfully allocated, and 0 otherwise.

This function is safe in MT applications.

int svc_done(SVCXPRT *xprt);
This function frees resources allocated to service a client request directed to the
service endpoint xprt. This call pertains only to servers executing in the User MT
mode. In the User MT mode, service procedures must invoke this call before
returning, either after a client request has been serviced, or after an error or
abnormal condition that prevents a reply from being sent. After svc_done() is
invoked, the service endpoint xprt should not be referenced by the service
procedure. Server multithreading modes and parameters can be set using the
rpc_control() call.

This function is safe in MT applications. It will have no effect if invoked in modes
other than the User MT mode.

svc_freeargs(3NSL)

NAME

DESCRIPTION

Routines

970 man pages section 3: Library Functions • Last Revised 1 May 2000

void svc_exit(void);
This function when called by any of the RPC server procedure or otherwise,
destroys all services registered by the server and causes svc_run() to return.

If RPC server activity is to be resumed, services must be reregistered with the RPC
library either through one of the rpc_svc_create(3NSL) functions, or using
xprt_register(3NSL).

svc_exit() has global scope and ends all RPC server activity.

fd_set svc_fdset;
A global variable reflecting the RPC server’s read file descriptor bit mask. This is
only of interest if service implementors do not call svc_run(), but rather do their
own asynchronous event processing. This variable is read-only, and it may change
after calls to svc_getreqset() or any creation routines. Do not pass its address
to select(3C)! Instead, pass the address of a copy.

MT applications executing in either the Automatic MT mode or the User MT
mode should never read this variable. They should use auxiliary threads to do
asynchronous event processing.

svc_fdset is limited to 1024 file descriptors and is considered obsolete. Use of
svc_pollfd is recommended instead.

pollfd_t *svc_pollfd;
A global variable pointing to an array of pollfd_t structures reflecting the RPC
server’s read file descriptor array. This is only of interest if service service
implementors do not call svc_run() but rather do their own asynchronous event
processing. This variable is read-only, and it may change after calls to
svc_getreg_poll() or any creation routines. Do no pass its address to poll(2)!
Instead, pass the address of a copy.

By default, svc_pollfd is limited to 1024 entries. Use rpc_control(3NSL) to
remove this limitation.

MT applications executing in either the Automatic MT mode or the User MT
mode should never be read this variable. They should use auxiliary threads to do
asynchronous event processing.

int svc_max_pollfd;
A global variable containing the maximum length of the svc_pollfd array. This
variable is read-only, and it may change after calls to svc_getreg_poll() or any
creation routines.

bool_t svc_freeargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the arguments to a service procedure using svc_getargs(). This routine
returns TRUE if the results were successfully freed, and FALSE otherwise.

svc_freeargs(3NSL)

Introduction to Library Functions 971

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

bool_t svc_getargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that decodes the arguments of an RPC request associated with the
RPC service transport handle xprt. The parameter in is the address where the
arguments will be placed; inproc is the XDR routine used to decode the arguments.
This routine returns TRUE if decoding succeeds, and FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

void svc_getreq_common(const int fd);
This routine is called to handle a request on the given file descriptor.

void svc_getreq_poll(struct pollfd *pfdp, const int pollretval);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
poll(2) has determined that an RPC request has arrived on some RPC file
descriptors; pollretval is the return value from poll(2) and pfdp is the array of pollfd
structures on which the poll(2) was done. It is assumed to be an array large
enough to contain the maximal number of descriptors allowed.

This function macro is unsafe in MT applications.

void svc_getreqset(fd_set *rdfds);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
select(3C) has determined that an RPC request has arrived on some RPC file
descriptors; rdfds is the resultant read file descriptor bit mask. The routine returns
when all file descriptors associated with the value of rdfds have been serviced.

This function macro is unsafe in MT applications.

struct netbuf *svc_getrpccaller(const SVCXPRT *xprt);
The approved way of getting the network address of the caller of a procedure
associated with the RPC service transport handle xprt.

This function macro is safe in MT applications.

void svc_run(void);
This routine never returns. In single threaded mode, it waits for RPC requests to
arrive, and calls the appropriate service procedure using svc_getreq_poll()
when one arrives. This procedure is usually waiting for the poll(2) library call to
return.

Applications executing in the Automatic or User MT modes should invoke this
function exactly once. It the Automatic MT mode, it will create threads to service
client requests. In the User MT mode, it will provide a framework for service
developers to create and manage their own threads for servicing client requests.

svc_freeargs(3NSL)

972 man pages section 3: Library Functions • Last Revised 1 May 2000

bool_t svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc, const caddr_t
out);

Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request’s associated transport handle;
outproc is the XDR routine which is used to encode the results; and out is the
address of the results. This routine returns TRUE if it succeeds, FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when a bind(3SOCKET) call
is made, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpc(3NSL), rpc_svc_create(3NSL), rpc_svc_reg(3NSL), libt6(3NSL),
t6alloc_blk(3NSL), t6free_blk(3NSL)

rpcgen(1), poll(2), rpc_control(3NSL), rpc_svc_err(3NSL), select(3C),
xprt_register(3NSL),attributes(5)

svc_dg_enablecache() and svc_getrpccaller() are safe in multithreaded
applications. svc_freeargs(), svc_getargs(), and svc_sendreply() are safe
in MT applications utilizing the Automatic or User MT modes.

svc_freeargs(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

NOTES

Introduction to Library Functions 973

svc_getreq_common(), svc_getreqset(), and svc_getreq_poll() are unsafe
in multithreaded applications and should be called only from the main thread.

svc_freeargs(3NSL)

974 man pages section 3: Library Functions • Last Revised 1 May 2000

rpc_svc_calls, svc_dg_enablecache, svc_done, svc_exit, svc_fdset, svc_freeargs,
svc_getargs, svc_getreq_common, svc_getreq_poll, svc_getreqset, svc_getrpccaller,
svc_max_pollfd, svc_pollfd, svc_run, svc_sendreply – Library routines for RPC servers

These routines are part of the RPC library which allows C language programs to make
procedure calls on other machines across the network.

These routines are associated with the server side of the RPC mechanism. Some of
them are called by the server side dispatch function, while others (such as
svc_run()) are called when the server is initiated.

In the current implementation, the service transport handle SVCXPRT contains a single
data area for decoding arguments and encoding results. Therefore, this structure
cannot be freely shared between threads that call functions that do this. However,
when a server is operating in the Automatic or User MT modes, a copy of this
structure is passed to the service dispatch procedure in order to enable concurrent
request processing. Under these circumstances, some routines which would otherwise
be unsafe, become safe. These are marked as such. Also marked are routines that are
unsafe for MT applications, and are not to be used by such applications.

Programs can retrieve network security attributes from incoming requests. Privileged
programs can create multilevel ports, create multilevel mappings, and set the security
attributes of outgoing replies. See SUMMARY OF TRUSTED SOLARIS CHANGES for
more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

int svc_dg_enablecache(SVCXPRT *xprt, const uint_t cache_size);
This function allocates a duplicate request cache for the service endpoint xprt, large
enough to hold cache_size entries. Once enabled, there is no way to disable caching.
This routine returns 1 if space necessary for a cache of the given size was
successfully allocated, and 0 otherwise.

This function is safe in MT applications.

int svc_done(SVCXPRT *xprt);
This function frees resources allocated to service a client request directed to the
service endpoint xprt. This call pertains only to servers executing in the User MT
mode. In the User MT mode, service procedures must invoke this call before
returning, either after a client request has been serviced, or after an error or
abnormal condition that prevents a reply from being sent. After svc_done() is
invoked, the service endpoint xprt should not be referenced by the service
procedure. Server multithreading modes and parameters can be set using the
rpc_control() call.

This function is safe in MT applications. It will have no effect if invoked in modes
other than the User MT mode.

svc_getargs(3NSL)

NAME

DESCRIPTION

Routines

Introduction to Library Functions 975

void svc_exit(void);
This function when called by any of the RPC server procedure or otherwise,
destroys all services registered by the server and causes svc_run() to return.

If RPC server activity is to be resumed, services must be reregistered with the RPC
library either through one of the rpc_svc_create(3NSL) functions, or using
xprt_register(3NSL).

svc_exit() has global scope and ends all RPC server activity.

fd_set svc_fdset;
A global variable reflecting the RPC server’s read file descriptor bit mask. This is
only of interest if service implementors do not call svc_run(), but rather do their
own asynchronous event processing. This variable is read-only, and it may change
after calls to svc_getreqset() or any creation routines. Do not pass its address
to select(3C)! Instead, pass the address of a copy.

MT applications executing in either the Automatic MT mode or the User MT
mode should never read this variable. They should use auxiliary threads to do
asynchronous event processing.

svc_fdset is limited to 1024 file descriptors and is considered obsolete. Use of
svc_pollfd is recommended instead.

pollfd_t *svc_pollfd;
A global variable pointing to an array of pollfd_t structures reflecting the RPC
server’s read file descriptor array. This is only of interest if service service
implementors do not call svc_run() but rather do their own asynchronous event
processing. This variable is read-only, and it may change after calls to
svc_getreg_poll() or any creation routines. Do no pass its address to poll(2)!
Instead, pass the address of a copy.

By default, svc_pollfd is limited to 1024 entries. Use rpc_control(3NSL) to
remove this limitation.

MT applications executing in either the Automatic MT mode or the User MT
mode should never be read this variable. They should use auxiliary threads to do
asynchronous event processing.

int svc_max_pollfd;
A global variable containing the maximum length of the svc_pollfd array. This
variable is read-only, and it may change after calls to svc_getreg_poll() or any
creation routines.

bool_t svc_freeargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the arguments to a service procedure using svc_getargs(). This routine
returns TRUE if the results were successfully freed, and FALSE otherwise.

svc_getargs(3NSL)

976 man pages section 3: Library Functions • Last Revised 1 May 2000

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

bool_t svc_getargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that decodes the arguments of an RPC request associated with the
RPC service transport handle xprt. The parameter in is the address where the
arguments will be placed; inproc is the XDR routine used to decode the arguments.
This routine returns TRUE if decoding succeeds, and FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

void svc_getreq_common(const int fd);
This routine is called to handle a request on the given file descriptor.

void svc_getreq_poll(struct pollfd *pfdp, const int pollretval);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
poll(2) has determined that an RPC request has arrived on some RPC file
descriptors; pollretval is the return value from poll(2) and pfdp is the array of pollfd
structures on which the poll(2) was done. It is assumed to be an array large
enough to contain the maximal number of descriptors allowed.

This function macro is unsafe in MT applications.

void svc_getreqset(fd_set *rdfds);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
select(3C) has determined that an RPC request has arrived on some RPC file
descriptors; rdfds is the resultant read file descriptor bit mask. The routine returns
when all file descriptors associated with the value of rdfds have been serviced.

This function macro is unsafe in MT applications.

struct netbuf *svc_getrpccaller(const SVCXPRT *xprt);
The approved way of getting the network address of the caller of a procedure
associated with the RPC service transport handle xprt.

This function macro is safe in MT applications.

void svc_run(void);
This routine never returns. In single threaded mode, it waits for RPC requests to
arrive, and calls the appropriate service procedure using svc_getreq_poll()
when one arrives. This procedure is usually waiting for the poll(2) library call to
return.

Applications executing in the Automatic or User MT modes should invoke this
function exactly once. It the Automatic MT mode, it will create threads to service
client requests. In the User MT mode, it will provide a framework for service
developers to create and manage their own threads for servicing client requests.

svc_getargs(3NSL)

Introduction to Library Functions 977

bool_t svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc, const caddr_t
out);

Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request’s associated transport handle;
outproc is the XDR routine which is used to encode the results; and out is the
address of the results. This routine returns TRUE if it succeeds, FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when a bind(3SOCKET) call
is made, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpc(3NSL), rpc_svc_create(3NSL), rpc_svc_reg(3NSL), libt6(3NSL),
t6alloc_blk(3NSL), t6free_blk(3NSL)

rpcgen(1), poll(2), rpc_control(3NSL), rpc_svc_err(3NSL), select(3C),
xprt_register(3NSL),attributes(5)

svc_dg_enablecache() and svc_getrpccaller() are safe in multithreaded
applications. svc_freeargs(), svc_getargs(), and svc_sendreply() are safe
in MT applications utilizing the Automatic or User MT modes.

svc_getargs(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

NOTES

978 man pages section 3: Library Functions • Last Revised 1 May 2000

svc_getreq_common(), svc_getreqset(), and svc_getreq_poll() are unsafe
in multithreaded applications and should be called only from the main thread.

svc_getargs(3NSL)

Introduction to Library Functions 979

rpc_svc_calls, svc_dg_enablecache, svc_done, svc_exit, svc_fdset, svc_freeargs,
svc_getargs, svc_getreq_common, svc_getreq_poll, svc_getreqset, svc_getrpccaller,
svc_max_pollfd, svc_pollfd, svc_run, svc_sendreply – Library routines for RPC servers

These routines are part of the RPC library which allows C language programs to make
procedure calls on other machines across the network.

These routines are associated with the server side of the RPC mechanism. Some of
them are called by the server side dispatch function, while others (such as
svc_run()) are called when the server is initiated.

In the current implementation, the service transport handle SVCXPRT contains a single
data area for decoding arguments and encoding results. Therefore, this structure
cannot be freely shared between threads that call functions that do this. However,
when a server is operating in the Automatic or User MT modes, a copy of this
structure is passed to the service dispatch procedure in order to enable concurrent
request processing. Under these circumstances, some routines which would otherwise
be unsafe, become safe. These are marked as such. Also marked are routines that are
unsafe for MT applications, and are not to be used by such applications.

Programs can retrieve network security attributes from incoming requests. Privileged
programs can create multilevel ports, create multilevel mappings, and set the security
attributes of outgoing replies. See SUMMARY OF TRUSTED SOLARIS CHANGES for
more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

int svc_dg_enablecache(SVCXPRT *xprt, const uint_t cache_size);
This function allocates a duplicate request cache for the service endpoint xprt, large
enough to hold cache_size entries. Once enabled, there is no way to disable caching.
This routine returns 1 if space necessary for a cache of the given size was
successfully allocated, and 0 otherwise.

This function is safe in MT applications.

int svc_done(SVCXPRT *xprt);
This function frees resources allocated to service a client request directed to the
service endpoint xprt. This call pertains only to servers executing in the User MT
mode. In the User MT mode, service procedures must invoke this call before
returning, either after a client request has been serviced, or after an error or
abnormal condition that prevents a reply from being sent. After svc_done() is
invoked, the service endpoint xprt should not be referenced by the service
procedure. Server multithreading modes and parameters can be set using the
rpc_control() call.

This function is safe in MT applications. It will have no effect if invoked in modes
other than the User MT mode.

svc_getreq_common(3NSL)

NAME

DESCRIPTION

Routines

980 man pages section 3: Library Functions • Last Revised 1 May 2000

void svc_exit(void);
This function when called by any of the RPC server procedure or otherwise,
destroys all services registered by the server and causes svc_run() to return.

If RPC server activity is to be resumed, services must be reregistered with the RPC
library either through one of the rpc_svc_create(3NSL) functions, or using
xprt_register(3NSL).

svc_exit() has global scope and ends all RPC server activity.

fd_set svc_fdset;
A global variable reflecting the RPC server’s read file descriptor bit mask. This is
only of interest if service implementors do not call svc_run(), but rather do their
own asynchronous event processing. This variable is read-only, and it may change
after calls to svc_getreqset() or any creation routines. Do not pass its address
to select(3C)! Instead, pass the address of a copy.

MT applications executing in either the Automatic MT mode or the User MT
mode should never read this variable. They should use auxiliary threads to do
asynchronous event processing.

svc_fdset is limited to 1024 file descriptors and is considered obsolete. Use of
svc_pollfd is recommended instead.

pollfd_t *svc_pollfd;
A global variable pointing to an array of pollfd_t structures reflecting the RPC
server’s read file descriptor array. This is only of interest if service service
implementors do not call svc_run() but rather do their own asynchronous event
processing. This variable is read-only, and it may change after calls to
svc_getreg_poll() or any creation routines. Do no pass its address to poll(2)!
Instead, pass the address of a copy.

By default, svc_pollfd is limited to 1024 entries. Use rpc_control(3NSL) to
remove this limitation.

MT applications executing in either the Automatic MT mode or the User MT
mode should never be read this variable. They should use auxiliary threads to do
asynchronous event processing.

int svc_max_pollfd;
A global variable containing the maximum length of the svc_pollfd array. This
variable is read-only, and it may change after calls to svc_getreg_poll() or any
creation routines.

bool_t svc_freeargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the arguments to a service procedure using svc_getargs(). This routine
returns TRUE if the results were successfully freed, and FALSE otherwise.

svc_getreq_common(3NSL)

Introduction to Library Functions 981

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

bool_t svc_getargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that decodes the arguments of an RPC request associated with the
RPC service transport handle xprt. The parameter in is the address where the
arguments will be placed; inproc is the XDR routine used to decode the arguments.
This routine returns TRUE if decoding succeeds, and FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

void svc_getreq_common(const int fd);
This routine is called to handle a request on the given file descriptor.

void svc_getreq_poll(struct pollfd *pfdp, const int pollretval);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
poll(2) has determined that an RPC request has arrived on some RPC file
descriptors; pollretval is the return value from poll(2) and pfdp is the array of pollfd
structures on which the poll(2) was done. It is assumed to be an array large
enough to contain the maximal number of descriptors allowed.

This function macro is unsafe in MT applications.

void svc_getreqset(fd_set *rdfds);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
select(3C) has determined that an RPC request has arrived on some RPC file
descriptors; rdfds is the resultant read file descriptor bit mask. The routine returns
when all file descriptors associated with the value of rdfds have been serviced.

This function macro is unsafe in MT applications.

struct netbuf *svc_getrpccaller(const SVCXPRT *xprt);
The approved way of getting the network address of the caller of a procedure
associated with the RPC service transport handle xprt.

This function macro is safe in MT applications.

void svc_run(void);
This routine never returns. In single threaded mode, it waits for RPC requests to
arrive, and calls the appropriate service procedure using svc_getreq_poll()
when one arrives. This procedure is usually waiting for the poll(2) library call to
return.

Applications executing in the Automatic or User MT modes should invoke this
function exactly once. It the Automatic MT mode, it will create threads to service
client requests. In the User MT mode, it will provide a framework for service
developers to create and manage their own threads for servicing client requests.

svc_getreq_common(3NSL)

982 man pages section 3: Library Functions • Last Revised 1 May 2000

bool_t svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc, const caddr_t
out);

Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request’s associated transport handle;
outproc is the XDR routine which is used to encode the results; and out is the
address of the results. This routine returns TRUE if it succeeds, FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when a bind(3SOCKET) call
is made, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpc(3NSL), rpc_svc_create(3NSL), rpc_svc_reg(3NSL), libt6(3NSL),
t6alloc_blk(3NSL), t6free_blk(3NSL)

rpcgen(1), poll(2), rpc_control(3NSL), rpc_svc_err(3NSL), select(3C),
xprt_register(3NSL),attributes(5)

svc_dg_enablecache() and svc_getrpccaller() are safe in multithreaded
applications. svc_freeargs(), svc_getargs(), and svc_sendreply() are safe
in MT applications utilizing the Automatic or User MT modes.

svc_getreq_common(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

NOTES

Introduction to Library Functions 983

svc_getreq_common(), svc_getreqset(), and svc_getreq_poll() are unsafe
in multithreaded applications and should be called only from the main thread.

svc_getreq_common(3NSL)

984 man pages section 3: Library Functions • Last Revised 1 May 2000

rpc_svc_calls, svc_dg_enablecache, svc_done, svc_exit, svc_fdset, svc_freeargs,
svc_getargs, svc_getreq_common, svc_getreq_poll, svc_getreqset, svc_getrpccaller,
svc_max_pollfd, svc_pollfd, svc_run, svc_sendreply – Library routines for RPC servers

These routines are part of the RPC library which allows C language programs to make
procedure calls on other machines across the network.

These routines are associated with the server side of the RPC mechanism. Some of
them are called by the server side dispatch function, while others (such as
svc_run()) are called when the server is initiated.

In the current implementation, the service transport handle SVCXPRT contains a single
data area for decoding arguments and encoding results. Therefore, this structure
cannot be freely shared between threads that call functions that do this. However,
when a server is operating in the Automatic or User MT modes, a copy of this
structure is passed to the service dispatch procedure in order to enable concurrent
request processing. Under these circumstances, some routines which would otherwise
be unsafe, become safe. These are marked as such. Also marked are routines that are
unsafe for MT applications, and are not to be used by such applications.

Programs can retrieve network security attributes from incoming requests. Privileged
programs can create multilevel ports, create multilevel mappings, and set the security
attributes of outgoing replies. See SUMMARY OF TRUSTED SOLARIS CHANGES for
more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

int svc_dg_enablecache(SVCXPRT *xprt, const uint_t cache_size);
This function allocates a duplicate request cache for the service endpoint xprt, large
enough to hold cache_size entries. Once enabled, there is no way to disable caching.
This routine returns 1 if space necessary for a cache of the given size was
successfully allocated, and 0 otherwise.

This function is safe in MT applications.

int svc_done(SVCXPRT *xprt);
This function frees resources allocated to service a client request directed to the
service endpoint xprt. This call pertains only to servers executing in the User MT
mode. In the User MT mode, service procedures must invoke this call before
returning, either after a client request has been serviced, or after an error or
abnormal condition that prevents a reply from being sent. After svc_done() is
invoked, the service endpoint xprt should not be referenced by the service
procedure. Server multithreading modes and parameters can be set using the
rpc_control() call.

This function is safe in MT applications. It will have no effect if invoked in modes
other than the User MT mode.

svc_getreq_poll(3NSL)

NAME

DESCRIPTION

Routines

Introduction to Library Functions 985

void svc_exit(void);
This function when called by any of the RPC server procedure or otherwise,
destroys all services registered by the server and causes svc_run() to return.

If RPC server activity is to be resumed, services must be reregistered with the RPC
library either through one of the rpc_svc_create(3NSL) functions, or using
xprt_register(3NSL).

svc_exit() has global scope and ends all RPC server activity.

fd_set svc_fdset;
A global variable reflecting the RPC server’s read file descriptor bit mask. This is
only of interest if service implementors do not call svc_run(), but rather do their
own asynchronous event processing. This variable is read-only, and it may change
after calls to svc_getreqset() or any creation routines. Do not pass its address
to select(3C)! Instead, pass the address of a copy.

MT applications executing in either the Automatic MT mode or the User MT
mode should never read this variable. They should use auxiliary threads to do
asynchronous event processing.

svc_fdset is limited to 1024 file descriptors and is considered obsolete. Use of
svc_pollfd is recommended instead.

pollfd_t *svc_pollfd;
A global variable pointing to an array of pollfd_t structures reflecting the RPC
server’s read file descriptor array. This is only of interest if service service
implementors do not call svc_run() but rather do their own asynchronous event
processing. This variable is read-only, and it may change after calls to
svc_getreg_poll() or any creation routines. Do no pass its address to poll(2)!
Instead, pass the address of a copy.

By default, svc_pollfd is limited to 1024 entries. Use rpc_control(3NSL) to
remove this limitation.

MT applications executing in either the Automatic MT mode or the User MT
mode should never be read this variable. They should use auxiliary threads to do
asynchronous event processing.

int svc_max_pollfd;
A global variable containing the maximum length of the svc_pollfd array. This
variable is read-only, and it may change after calls to svc_getreg_poll() or any
creation routines.

bool_t svc_freeargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the arguments to a service procedure using svc_getargs(). This routine
returns TRUE if the results were successfully freed, and FALSE otherwise.

svc_getreq_poll(3NSL)

986 man pages section 3: Library Functions • Last Revised 1 May 2000

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

bool_t svc_getargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that decodes the arguments of an RPC request associated with the
RPC service transport handle xprt. The parameter in is the address where the
arguments will be placed; inproc is the XDR routine used to decode the arguments.
This routine returns TRUE if decoding succeeds, and FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

void svc_getreq_common(const int fd);
This routine is called to handle a request on the given file descriptor.

void svc_getreq_poll(struct pollfd *pfdp, const int pollretval);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
poll(2) has determined that an RPC request has arrived on some RPC file
descriptors; pollretval is the return value from poll(2) and pfdp is the array of pollfd
structures on which the poll(2) was done. It is assumed to be an array large
enough to contain the maximal number of descriptors allowed.

This function macro is unsafe in MT applications.

void svc_getreqset(fd_set *rdfds);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
select(3C) has determined that an RPC request has arrived on some RPC file
descriptors; rdfds is the resultant read file descriptor bit mask. The routine returns
when all file descriptors associated with the value of rdfds have been serviced.

This function macro is unsafe in MT applications.

struct netbuf *svc_getrpccaller(const SVCXPRT *xprt);
The approved way of getting the network address of the caller of a procedure
associated with the RPC service transport handle xprt.

This function macro is safe in MT applications.

void svc_run(void);
This routine never returns. In single threaded mode, it waits for RPC requests to
arrive, and calls the appropriate service procedure using svc_getreq_poll()
when one arrives. This procedure is usually waiting for the poll(2) library call to
return.

Applications executing in the Automatic or User MT modes should invoke this
function exactly once. It the Automatic MT mode, it will create threads to service
client requests. In the User MT mode, it will provide a framework for service
developers to create and manage their own threads for servicing client requests.

svc_getreq_poll(3NSL)

Introduction to Library Functions 987

bool_t svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc, const caddr_t
out);

Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request’s associated transport handle;
outproc is the XDR routine which is used to encode the results; and out is the
address of the results. This routine returns TRUE if it succeeds, FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when a bind(3SOCKET) call
is made, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpc(3NSL), rpc_svc_create(3NSL), rpc_svc_reg(3NSL), libt6(3NSL),
t6alloc_blk(3NSL), t6free_blk(3NSL)

rpcgen(1), poll(2), rpc_control(3NSL), rpc_svc_err(3NSL), select(3C),
xprt_register(3NSL),attributes(5)

svc_dg_enablecache() and svc_getrpccaller() are safe in multithreaded
applications. svc_freeargs(), svc_getargs(), and svc_sendreply() are safe
in MT applications utilizing the Automatic or User MT modes.

svc_getreq_poll(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

NOTES

988 man pages section 3: Library Functions • Last Revised 1 May 2000

svc_getreq_common(), svc_getreqset(), and svc_getreq_poll() are unsafe
in multithreaded applications and should be called only from the main thread.

svc_getreq_poll(3NSL)

Introduction to Library Functions 989

rpc_svc_calls, svc_dg_enablecache, svc_done, svc_exit, svc_fdset, svc_freeargs,
svc_getargs, svc_getreq_common, svc_getreq_poll, svc_getreqset, svc_getrpccaller,
svc_max_pollfd, svc_pollfd, svc_run, svc_sendreply – Library routines for RPC servers

These routines are part of the RPC library which allows C language programs to make
procedure calls on other machines across the network.

These routines are associated with the server side of the RPC mechanism. Some of
them are called by the server side dispatch function, while others (such as
svc_run()) are called when the server is initiated.

In the current implementation, the service transport handle SVCXPRT contains a single
data area for decoding arguments and encoding results. Therefore, this structure
cannot be freely shared between threads that call functions that do this. However,
when a server is operating in the Automatic or User MT modes, a copy of this
structure is passed to the service dispatch procedure in order to enable concurrent
request processing. Under these circumstances, some routines which would otherwise
be unsafe, become safe. These are marked as such. Also marked are routines that are
unsafe for MT applications, and are not to be used by such applications.

Programs can retrieve network security attributes from incoming requests. Privileged
programs can create multilevel ports, create multilevel mappings, and set the security
attributes of outgoing replies. See SUMMARY OF TRUSTED SOLARIS CHANGES for
more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

int svc_dg_enablecache(SVCXPRT *xprt, const uint_t cache_size);
This function allocates a duplicate request cache for the service endpoint xprt, large
enough to hold cache_size entries. Once enabled, there is no way to disable caching.
This routine returns 1 if space necessary for a cache of the given size was
successfully allocated, and 0 otherwise.

This function is safe in MT applications.

int svc_done(SVCXPRT *xprt);
This function frees resources allocated to service a client request directed to the
service endpoint xprt. This call pertains only to servers executing in the User MT
mode. In the User MT mode, service procedures must invoke this call before
returning, either after a client request has been serviced, or after an error or
abnormal condition that prevents a reply from being sent. After svc_done() is
invoked, the service endpoint xprt should not be referenced by the service
procedure. Server multithreading modes and parameters can be set using the
rpc_control() call.

This function is safe in MT applications. It will have no effect if invoked in modes
other than the User MT mode.

svc_getreqset(3NSL)

NAME

DESCRIPTION

Routines

990 man pages section 3: Library Functions • Last Revised 1 May 2000

void svc_exit(void);
This function when called by any of the RPC server procedure or otherwise,
destroys all services registered by the server and causes svc_run() to return.

If RPC server activity is to be resumed, services must be reregistered with the RPC
library either through one of the rpc_svc_create(3NSL) functions, or using
xprt_register(3NSL).

svc_exit() has global scope and ends all RPC server activity.

fd_set svc_fdset;
A global variable reflecting the RPC server’s read file descriptor bit mask. This is
only of interest if service implementors do not call svc_run(), but rather do their
own asynchronous event processing. This variable is read-only, and it may change
after calls to svc_getreqset() or any creation routines. Do not pass its address
to select(3C)! Instead, pass the address of a copy.

MT applications executing in either the Automatic MT mode or the User MT
mode should never read this variable. They should use auxiliary threads to do
asynchronous event processing.

svc_fdset is limited to 1024 file descriptors and is considered obsolete. Use of
svc_pollfd is recommended instead.

pollfd_t *svc_pollfd;
A global variable pointing to an array of pollfd_t structures reflecting the RPC
server’s read file descriptor array. This is only of interest if service service
implementors do not call svc_run() but rather do their own asynchronous event
processing. This variable is read-only, and it may change after calls to
svc_getreg_poll() or any creation routines. Do no pass its address to poll(2)!
Instead, pass the address of a copy.

By default, svc_pollfd is limited to 1024 entries. Use rpc_control(3NSL) to
remove this limitation.

MT applications executing in either the Automatic MT mode or the User MT
mode should never be read this variable. They should use auxiliary threads to do
asynchronous event processing.

int svc_max_pollfd;
A global variable containing the maximum length of the svc_pollfd array. This
variable is read-only, and it may change after calls to svc_getreg_poll() or any
creation routines.

bool_t svc_freeargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the arguments to a service procedure using svc_getargs(). This routine
returns TRUE if the results were successfully freed, and FALSE otherwise.

svc_getreqset(3NSL)

Introduction to Library Functions 991

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

bool_t svc_getargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that decodes the arguments of an RPC request associated with the
RPC service transport handle xprt. The parameter in is the address where the
arguments will be placed; inproc is the XDR routine used to decode the arguments.
This routine returns TRUE if decoding succeeds, and FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

void svc_getreq_common(const int fd);
This routine is called to handle a request on the given file descriptor.

void svc_getreq_poll(struct pollfd *pfdp, const int pollretval);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
poll(2) has determined that an RPC request has arrived on some RPC file
descriptors; pollretval is the return value from poll(2) and pfdp is the array of pollfd
structures on which the poll(2) was done. It is assumed to be an array large
enough to contain the maximal number of descriptors allowed.

This function macro is unsafe in MT applications.

void svc_getreqset(fd_set *rdfds);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
select(3C) has determined that an RPC request has arrived on some RPC file
descriptors; rdfds is the resultant read file descriptor bit mask. The routine returns
when all file descriptors associated with the value of rdfds have been serviced.

This function macro is unsafe in MT applications.

struct netbuf *svc_getrpccaller(const SVCXPRT *xprt);
The approved way of getting the network address of the caller of a procedure
associated with the RPC service transport handle xprt.

This function macro is safe in MT applications.

void svc_run(void);
This routine never returns. In single threaded mode, it waits for RPC requests to
arrive, and calls the appropriate service procedure using svc_getreq_poll()
when one arrives. This procedure is usually waiting for the poll(2) library call to
return.

Applications executing in the Automatic or User MT modes should invoke this
function exactly once. It the Automatic MT mode, it will create threads to service
client requests. In the User MT mode, it will provide a framework for service
developers to create and manage their own threads for servicing client requests.

svc_getreqset(3NSL)

992 man pages section 3: Library Functions • Last Revised 1 May 2000

bool_t svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc, const caddr_t
out);

Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request’s associated transport handle;
outproc is the XDR routine which is used to encode the results; and out is the
address of the results. This routine returns TRUE if it succeeds, FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when a bind(3SOCKET) call
is made, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpc(3NSL), rpc_svc_create(3NSL), rpc_svc_reg(3NSL), libt6(3NSL),
t6alloc_blk(3NSL), t6free_blk(3NSL)

rpcgen(1), poll(2), rpc_control(3NSL), rpc_svc_err(3NSL), select(3C),
xprt_register(3NSL),attributes(5)

svc_dg_enablecache() and svc_getrpccaller() are safe in multithreaded
applications. svc_freeargs(), svc_getargs(), and svc_sendreply() are safe
in MT applications utilizing the Automatic or User MT modes.

svc_getreqset(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

NOTES

Introduction to Library Functions 993

svc_getreq_common(), svc_getreqset(), and svc_getreq_poll() are unsafe
in multithreaded applications and should be called only from the main thread.

svc_getreqset(3NSL)

994 man pages section 3: Library Functions • Last Revised 1 May 2000

rpc_svc_calls, svc_dg_enablecache, svc_done, svc_exit, svc_fdset, svc_freeargs,
svc_getargs, svc_getreq_common, svc_getreq_poll, svc_getreqset, svc_getrpccaller,
svc_max_pollfd, svc_pollfd, svc_run, svc_sendreply – Library routines for RPC servers

These routines are part of the RPC library which allows C language programs to make
procedure calls on other machines across the network.

These routines are associated with the server side of the RPC mechanism. Some of
them are called by the server side dispatch function, while others (such as
svc_run()) are called when the server is initiated.

In the current implementation, the service transport handle SVCXPRT contains a single
data area for decoding arguments and encoding results. Therefore, this structure
cannot be freely shared between threads that call functions that do this. However,
when a server is operating in the Automatic or User MT modes, a copy of this
structure is passed to the service dispatch procedure in order to enable concurrent
request processing. Under these circumstances, some routines which would otherwise
be unsafe, become safe. These are marked as such. Also marked are routines that are
unsafe for MT applications, and are not to be used by such applications.

Programs can retrieve network security attributes from incoming requests. Privileged
programs can create multilevel ports, create multilevel mappings, and set the security
attributes of outgoing replies. See SUMMARY OF TRUSTED SOLARIS CHANGES for
more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

int svc_dg_enablecache(SVCXPRT *xprt, const uint_t cache_size);
This function allocates a duplicate request cache for the service endpoint xprt, large
enough to hold cache_size entries. Once enabled, there is no way to disable caching.
This routine returns 1 if space necessary for a cache of the given size was
successfully allocated, and 0 otherwise.

This function is safe in MT applications.

int svc_done(SVCXPRT *xprt);
This function frees resources allocated to service a client request directed to the
service endpoint xprt. This call pertains only to servers executing in the User MT
mode. In the User MT mode, service procedures must invoke this call before
returning, either after a client request has been serviced, or after an error or
abnormal condition that prevents a reply from being sent. After svc_done() is
invoked, the service endpoint xprt should not be referenced by the service
procedure. Server multithreading modes and parameters can be set using the
rpc_control() call.

This function is safe in MT applications. It will have no effect if invoked in modes
other than the User MT mode.

svc_getrpccaller(3NSL)

NAME

DESCRIPTION

Routines

Introduction to Library Functions 995

void svc_exit(void);
This function when called by any of the RPC server procedure or otherwise,
destroys all services registered by the server and causes svc_run() to return.

If RPC server activity is to be resumed, services must be reregistered with the RPC
library either through one of the rpc_svc_create(3NSL) functions, or using
xprt_register(3NSL).

svc_exit() has global scope and ends all RPC server activity.

fd_set svc_fdset;
A global variable reflecting the RPC server’s read file descriptor bit mask. This is
only of interest if service implementors do not call svc_run(), but rather do their
own asynchronous event processing. This variable is read-only, and it may change
after calls to svc_getreqset() or any creation routines. Do not pass its address
to select(3C)! Instead, pass the address of a copy.

MT applications executing in either the Automatic MT mode or the User MT
mode should never read this variable. They should use auxiliary threads to do
asynchronous event processing.

svc_fdset is limited to 1024 file descriptors and is considered obsolete. Use of
svc_pollfd is recommended instead.

pollfd_t *svc_pollfd;
A global variable pointing to an array of pollfd_t structures reflecting the RPC
server’s read file descriptor array. This is only of interest if service service
implementors do not call svc_run() but rather do their own asynchronous event
processing. This variable is read-only, and it may change after calls to
svc_getreg_poll() or any creation routines. Do no pass its address to poll(2)!
Instead, pass the address of a copy.

By default, svc_pollfd is limited to 1024 entries. Use rpc_control(3NSL) to
remove this limitation.

MT applications executing in either the Automatic MT mode or the User MT
mode should never be read this variable. They should use auxiliary threads to do
asynchronous event processing.

int svc_max_pollfd;
A global variable containing the maximum length of the svc_pollfd array. This
variable is read-only, and it may change after calls to svc_getreg_poll() or any
creation routines.

bool_t svc_freeargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the arguments to a service procedure using svc_getargs(). This routine
returns TRUE if the results were successfully freed, and FALSE otherwise.

svc_getrpccaller(3NSL)

996 man pages section 3: Library Functions • Last Revised 1 May 2000

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

bool_t svc_getargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that decodes the arguments of an RPC request associated with the
RPC service transport handle xprt. The parameter in is the address where the
arguments will be placed; inproc is the XDR routine used to decode the arguments.
This routine returns TRUE if decoding succeeds, and FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

void svc_getreq_common(const int fd);
This routine is called to handle a request on the given file descriptor.

void svc_getreq_poll(struct pollfd *pfdp, const int pollretval);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
poll(2) has determined that an RPC request has arrived on some RPC file
descriptors; pollretval is the return value from poll(2) and pfdp is the array of pollfd
structures on which the poll(2) was done. It is assumed to be an array large
enough to contain the maximal number of descriptors allowed.

This function macro is unsafe in MT applications.

void svc_getreqset(fd_set *rdfds);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
select(3C) has determined that an RPC request has arrived on some RPC file
descriptors; rdfds is the resultant read file descriptor bit mask. The routine returns
when all file descriptors associated with the value of rdfds have been serviced.

This function macro is unsafe in MT applications.

struct netbuf *svc_getrpccaller(const SVCXPRT *xprt);
The approved way of getting the network address of the caller of a procedure
associated with the RPC service transport handle xprt.

This function macro is safe in MT applications.

void svc_run(void);
This routine never returns. In single threaded mode, it waits for RPC requests to
arrive, and calls the appropriate service procedure using svc_getreq_poll()
when one arrives. This procedure is usually waiting for the poll(2) library call to
return.

Applications executing in the Automatic or User MT modes should invoke this
function exactly once. It the Automatic MT mode, it will create threads to service
client requests. In the User MT mode, it will provide a framework for service
developers to create and manage their own threads for servicing client requests.

svc_getrpccaller(3NSL)

Introduction to Library Functions 997

bool_t svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc, const caddr_t
out);

Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request’s associated transport handle;
outproc is the XDR routine which is used to encode the results; and out is the
address of the results. This routine returns TRUE if it succeeds, FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when a bind(3SOCKET) call
is made, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpc(3NSL), rpc_svc_create(3NSL), rpc_svc_reg(3NSL), libt6(3NSL),
t6alloc_blk(3NSL), t6free_blk(3NSL)

rpcgen(1), poll(2), rpc_control(3NSL), rpc_svc_err(3NSL), select(3C),
xprt_register(3NSL),attributes(5)

svc_dg_enablecache() and svc_getrpccaller() are safe in multithreaded
applications. svc_freeargs(), svc_getargs(), and svc_sendreply() are safe
in MT applications utilizing the Automatic or User MT modes.

svc_getrpccaller(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

NOTES

998 man pages section 3: Library Functions • Last Revised 1 May 2000

svc_getreq_common(), svc_getreqset(), and svc_getreq_poll() are unsafe
in multithreaded applications and should be called only from the main thread.

svc_getrpccaller(3NSL)

Introduction to Library Functions 999

rpc_svc_calls, svc_dg_enablecache, svc_done, svc_exit, svc_fdset, svc_freeargs,
svc_getargs, svc_getreq_common, svc_getreq_poll, svc_getreqset, svc_getrpccaller,
svc_max_pollfd, svc_pollfd, svc_run, svc_sendreply – Library routines for RPC servers

These routines are part of the RPC library which allows C language programs to make
procedure calls on other machines across the network.

These routines are associated with the server side of the RPC mechanism. Some of
them are called by the server side dispatch function, while others (such as
svc_run()) are called when the server is initiated.

In the current implementation, the service transport handle SVCXPRT contains a single
data area for decoding arguments and encoding results. Therefore, this structure
cannot be freely shared between threads that call functions that do this. However,
when a server is operating in the Automatic or User MT modes, a copy of this
structure is passed to the service dispatch procedure in order to enable concurrent
request processing. Under these circumstances, some routines which would otherwise
be unsafe, become safe. These are marked as such. Also marked are routines that are
unsafe for MT applications, and are not to be used by such applications.

Programs can retrieve network security attributes from incoming requests. Privileged
programs can create multilevel ports, create multilevel mappings, and set the security
attributes of outgoing replies. See SUMMARY OF TRUSTED SOLARIS CHANGES for
more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

int svc_dg_enablecache(SVCXPRT *xprt, const uint_t cache_size);
This function allocates a duplicate request cache for the service endpoint xprt, large
enough to hold cache_size entries. Once enabled, there is no way to disable caching.
This routine returns 1 if space necessary for a cache of the given size was
successfully allocated, and 0 otherwise.

This function is safe in MT applications.

int svc_done(SVCXPRT *xprt);
This function frees resources allocated to service a client request directed to the
service endpoint xprt. This call pertains only to servers executing in the User MT
mode. In the User MT mode, service procedures must invoke this call before
returning, either after a client request has been serviced, or after an error or
abnormal condition that prevents a reply from being sent. After svc_done() is
invoked, the service endpoint xprt should not be referenced by the service
procedure. Server multithreading modes and parameters can be set using the
rpc_control() call.

This function is safe in MT applications. It will have no effect if invoked in modes
other than the User MT mode.

svc_max_pollfd(3NSL)

NAME

DESCRIPTION

Routines

1000 man pages section 3: Library Functions • Last Revised 1 May 2000

void svc_exit(void);
This function when called by any of the RPC server procedure or otherwise,
destroys all services registered by the server and causes svc_run() to return.

If RPC server activity is to be resumed, services must be reregistered with the RPC
library either through one of the rpc_svc_create(3NSL) functions, or using
xprt_register(3NSL).

svc_exit() has global scope and ends all RPC server activity.

fd_set svc_fdset;
A global variable reflecting the RPC server’s read file descriptor bit mask. This is
only of interest if service implementors do not call svc_run(), but rather do their
own asynchronous event processing. This variable is read-only, and it may change
after calls to svc_getreqset() or any creation routines. Do not pass its address
to select(3C)! Instead, pass the address of a copy.

MT applications executing in either the Automatic MT mode or the User MT
mode should never read this variable. They should use auxiliary threads to do
asynchronous event processing.

svc_fdset is limited to 1024 file descriptors and is considered obsolete. Use of
svc_pollfd is recommended instead.

pollfd_t *svc_pollfd;
A global variable pointing to an array of pollfd_t structures reflecting the RPC
server’s read file descriptor array. This is only of interest if service service
implementors do not call svc_run() but rather do their own asynchronous event
processing. This variable is read-only, and it may change after calls to
svc_getreg_poll() or any creation routines. Do no pass its address to poll(2)!
Instead, pass the address of a copy.

By default, svc_pollfd is limited to 1024 entries. Use rpc_control(3NSL) to
remove this limitation.

MT applications executing in either the Automatic MT mode or the User MT
mode should never be read this variable. They should use auxiliary threads to do
asynchronous event processing.

int svc_max_pollfd;
A global variable containing the maximum length of the svc_pollfd array. This
variable is read-only, and it may change after calls to svc_getreg_poll() or any
creation routines.

bool_t svc_freeargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the arguments to a service procedure using svc_getargs(). This routine
returns TRUE if the results were successfully freed, and FALSE otherwise.

svc_max_pollfd(3NSL)

Introduction to Library Functions 1001

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

bool_t svc_getargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that decodes the arguments of an RPC request associated with the
RPC service transport handle xprt. The parameter in is the address where the
arguments will be placed; inproc is the XDR routine used to decode the arguments.
This routine returns TRUE if decoding succeeds, and FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

void svc_getreq_common(const int fd);
This routine is called to handle a request on the given file descriptor.

void svc_getreq_poll(struct pollfd *pfdp, const int pollretval);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
poll(2) has determined that an RPC request has arrived on some RPC file
descriptors; pollretval is the return value from poll(2) and pfdp is the array of pollfd
structures on which the poll(2) was done. It is assumed to be an array large
enough to contain the maximal number of descriptors allowed.

This function macro is unsafe in MT applications.

void svc_getreqset(fd_set *rdfds);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
select(3C) has determined that an RPC request has arrived on some RPC file
descriptors; rdfds is the resultant read file descriptor bit mask. The routine returns
when all file descriptors associated with the value of rdfds have been serviced.

This function macro is unsafe in MT applications.

struct netbuf *svc_getrpccaller(const SVCXPRT *xprt);
The approved way of getting the network address of the caller of a procedure
associated with the RPC service transport handle xprt.

This function macro is safe in MT applications.

void svc_run(void);
This routine never returns. In single threaded mode, it waits for RPC requests to
arrive, and calls the appropriate service procedure using svc_getreq_poll()
when one arrives. This procedure is usually waiting for the poll(2) library call to
return.

Applications executing in the Automatic or User MT modes should invoke this
function exactly once. It the Automatic MT mode, it will create threads to service
client requests. In the User MT mode, it will provide a framework for service
developers to create and manage their own threads for servicing client requests.

svc_max_pollfd(3NSL)

1002 man pages section 3: Library Functions • Last Revised 1 May 2000

bool_t svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc, const caddr_t
out);

Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request’s associated transport handle;
outproc is the XDR routine which is used to encode the results; and out is the
address of the results. This routine returns TRUE if it succeeds, FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when a bind(3SOCKET) call
is made, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpc(3NSL), rpc_svc_create(3NSL), rpc_svc_reg(3NSL), libt6(3NSL),
t6alloc_blk(3NSL), t6free_blk(3NSL)

rpcgen(1), poll(2), rpc_control(3NSL), rpc_svc_err(3NSL), select(3C),
xprt_register(3NSL),attributes(5)

svc_dg_enablecache() and svc_getrpccaller() are safe in multithreaded
applications. svc_freeargs(), svc_getargs(), and svc_sendreply() are safe
in MT applications utilizing the Automatic or User MT modes.

svc_max_pollfd(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

NOTES

Introduction to Library Functions 1003

svc_getreq_common(), svc_getreqset(), and svc_getreq_poll() are unsafe
in multithreaded applications and should be called only from the main thread.

svc_max_pollfd(3NSL)

1004 man pages section 3: Library Functions • Last Revised 1 May 2000

rpc_svc_calls, svc_dg_enablecache, svc_done, svc_exit, svc_fdset, svc_freeargs,
svc_getargs, svc_getreq_common, svc_getreq_poll, svc_getreqset, svc_getrpccaller,
svc_max_pollfd, svc_pollfd, svc_run, svc_sendreply – Library routines for RPC servers

These routines are part of the RPC library which allows C language programs to make
procedure calls on other machines across the network.

These routines are associated with the server side of the RPC mechanism. Some of
them are called by the server side dispatch function, while others (such as
svc_run()) are called when the server is initiated.

In the current implementation, the service transport handle SVCXPRT contains a single
data area for decoding arguments and encoding results. Therefore, this structure
cannot be freely shared between threads that call functions that do this. However,
when a server is operating in the Automatic or User MT modes, a copy of this
structure is passed to the service dispatch procedure in order to enable concurrent
request processing. Under these circumstances, some routines which would otherwise
be unsafe, become safe. These are marked as such. Also marked are routines that are
unsafe for MT applications, and are not to be used by such applications.

Programs can retrieve network security attributes from incoming requests. Privileged
programs can create multilevel ports, create multilevel mappings, and set the security
attributes of outgoing replies. See SUMMARY OF TRUSTED SOLARIS CHANGES for
more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

int svc_dg_enablecache(SVCXPRT *xprt, const uint_t cache_size);
This function allocates a duplicate request cache for the service endpoint xprt, large
enough to hold cache_size entries. Once enabled, there is no way to disable caching.
This routine returns 1 if space necessary for a cache of the given size was
successfully allocated, and 0 otherwise.

This function is safe in MT applications.

int svc_done(SVCXPRT *xprt);
This function frees resources allocated to service a client request directed to the
service endpoint xprt. This call pertains only to servers executing in the User MT
mode. In the User MT mode, service procedures must invoke this call before
returning, either after a client request has been serviced, or after an error or
abnormal condition that prevents a reply from being sent. After svc_done() is
invoked, the service endpoint xprt should not be referenced by the service
procedure. Server multithreading modes and parameters can be set using the
rpc_control() call.

This function is safe in MT applications. It will have no effect if invoked in modes
other than the User MT mode.

svc_pollfd(3NSL)

NAME

DESCRIPTION

Routines

Introduction to Library Functions 1005

void svc_exit(void);
This function when called by any of the RPC server procedure or otherwise,
destroys all services registered by the server and causes svc_run() to return.

If RPC server activity is to be resumed, services must be reregistered with the RPC
library either through one of the rpc_svc_create(3NSL) functions, or using
xprt_register(3NSL).

svc_exit() has global scope and ends all RPC server activity.

fd_set svc_fdset;
A global variable reflecting the RPC server’s read file descriptor bit mask. This is
only of interest if service implementors do not call svc_run(), but rather do their
own asynchronous event processing. This variable is read-only, and it may change
after calls to svc_getreqset() or any creation routines. Do not pass its address
to select(3C)! Instead, pass the address of a copy.

MT applications executing in either the Automatic MT mode or the User MT
mode should never read this variable. They should use auxiliary threads to do
asynchronous event processing.

svc_fdset is limited to 1024 file descriptors and is considered obsolete. Use of
svc_pollfd is recommended instead.

pollfd_t *svc_pollfd;
A global variable pointing to an array of pollfd_t structures reflecting the RPC
server’s read file descriptor array. This is only of interest if service service
implementors do not call svc_run() but rather do their own asynchronous event
processing. This variable is read-only, and it may change after calls to
svc_getreg_poll() or any creation routines. Do no pass its address to poll(2)!
Instead, pass the address of a copy.

By default, svc_pollfd is limited to 1024 entries. Use rpc_control(3NSL) to
remove this limitation.

MT applications executing in either the Automatic MT mode or the User MT
mode should never be read this variable. They should use auxiliary threads to do
asynchronous event processing.

int svc_max_pollfd;
A global variable containing the maximum length of the svc_pollfd array. This
variable is read-only, and it may change after calls to svc_getreg_poll() or any
creation routines.

bool_t svc_freeargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the arguments to a service procedure using svc_getargs(). This routine
returns TRUE if the results were successfully freed, and FALSE otherwise.

svc_pollfd(3NSL)

1006 man pages section 3: Library Functions • Last Revised 1 May 2000

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

bool_t svc_getargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that decodes the arguments of an RPC request associated with the
RPC service transport handle xprt. The parameter in is the address where the
arguments will be placed; inproc is the XDR routine used to decode the arguments.
This routine returns TRUE if decoding succeeds, and FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

void svc_getreq_common(const int fd);
This routine is called to handle a request on the given file descriptor.

void svc_getreq_poll(struct pollfd *pfdp, const int pollretval);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
poll(2) has determined that an RPC request has arrived on some RPC file
descriptors; pollretval is the return value from poll(2) and pfdp is the array of pollfd
structures on which the poll(2) was done. It is assumed to be an array large
enough to contain the maximal number of descriptors allowed.

This function macro is unsafe in MT applications.

void svc_getreqset(fd_set *rdfds);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
select(3C) has determined that an RPC request has arrived on some RPC file
descriptors; rdfds is the resultant read file descriptor bit mask. The routine returns
when all file descriptors associated with the value of rdfds have been serviced.

This function macro is unsafe in MT applications.

struct netbuf *svc_getrpccaller(const SVCXPRT *xprt);
The approved way of getting the network address of the caller of a procedure
associated with the RPC service transport handle xprt.

This function macro is safe in MT applications.

void svc_run(void);
This routine never returns. In single threaded mode, it waits for RPC requests to
arrive, and calls the appropriate service procedure using svc_getreq_poll()
when one arrives. This procedure is usually waiting for the poll(2) library call to
return.

Applications executing in the Automatic or User MT modes should invoke this
function exactly once. It the Automatic MT mode, it will create threads to service
client requests. In the User MT mode, it will provide a framework for service
developers to create and manage their own threads for servicing client requests.

svc_pollfd(3NSL)

Introduction to Library Functions 1007

bool_t svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc, const caddr_t
out);

Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request’s associated transport handle;
outproc is the XDR routine which is used to encode the results; and out is the
address of the results. This routine returns TRUE if it succeeds, FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when a bind(3SOCKET) call
is made, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpc(3NSL), rpc_svc_create(3NSL), rpc_svc_reg(3NSL), libt6(3NSL),
t6alloc_blk(3NSL), t6free_blk(3NSL)

rpcgen(1), poll(2), rpc_control(3NSL), rpc_svc_err(3NSL), select(3C),
xprt_register(3NSL),attributes(5)

svc_dg_enablecache() and svc_getrpccaller() are safe in multithreaded
applications. svc_freeargs(), svc_getargs(), and svc_sendreply() are safe
in MT applications utilizing the Automatic or User MT modes.

svc_pollfd(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

NOTES

1008 man pages section 3: Library Functions • Last Revised 1 May 2000

svc_getreq_common(), svc_getreqset(), and svc_getreq_poll() are unsafe
in multithreaded applications and should be called only from the main thread.

svc_pollfd(3NSL)

Introduction to Library Functions 1009

rpc_svc_create, svc_control, svc_create, svc_destroy, svc_dg_create, svc_fd_create,
svc_raw_create, svc_tli_create, svc_tp_create, svc_vc_create – Library routines for the
creation of server handles

These routines are part of the RPC library which allows C language programs to make
procedure calls on servers across the network. These routines deal with the creation of
service handles. Once the handle is created, the server can be invoked by calling
svc_run().

Privileged programs can create multilevel ports, create multilevel mappings, and
access network security attributes. See SUMMARY OF TRUSTED SOLARIS CHANGES
for more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

bool_t svc_control (SVCXPRT *svc, const uint_t req, void *info);
A function to change or retrieve various information about a service object. req
indicates the type of operation and info is a pointer to the information. The
supported values of req, their argument types, and what they do are:

SVCGET_VERSQUIET If a request is received for a program number served
by this server but the version number is outside the
range registered with the server, an
RPC_PROGVERSMISMATCH error will normally be
returned. info should be a pointer to an integer.
Upon successful completion of the
SVCGET_VERSQUIET request, *info contains an
integer which describes the server’s current
behavior: 0 indicates normal server behavior, that is,
an RPC_PROGVERSMISMATCH error will be returned;
1 indicates that the out of range request will be
silently ignored.

SVCSET_VERSQUIET If a request is received for a program number served
by this server but the version number is outside the
range registered with the server, an
RPC_PROGVERSMISMATCH error will normally be
returned. It is sometimes desirable to change this
behavior. info should be a pointer to an integer
which is either 0, indicating normal server behavior
and an RPC_PROGVERSMISMATCH error will be
returned, or −1, indicating that the out of range
request should be silently ignored.

SVCGET_XID Returns the transaction ID of connection−oriented
(vc) and connectionless (dg) transport service calls.
The transaction ID assists in uniquely identifying
client requests for a given RPC version, program

svc_raw_create(3NSL)

NAME

DESCRIPTION

Routines

1010 man pages section 3: Library Functions • Last Revised 1 May 2000

number, procedure, and client. The transaction ID is
extracted from the service transport handle svc; info
must be a pointer to an unsigned long. Upon
successful completion of the SVCGET_XID request,
*info contains the transaction ID. Note that
rendezvous and raw service handles do not define a
transaction ID. Thus, if the service handle is of
rendezvous or raw type, and the request is of type
SVCGET_XID, svc_control() will return
FALSE. Note also that the transaction ID read by
the server can be set by the client through the
suboption CLSET_XID in clnt_control(). See
clnt_create(3NSL)

int svc_create(const void (*dispatch)(const struct svc_req *, const SVCXPRT *), const
rpcprog_t prognum, const rpcvers_t versnum, const char *nettype);

svc_create() creates server handles for all the transports belonging to the class
nettype.

nettype defines a class of transports which can be used for a particular application.
The transports are tried in left to right order in NETPATH variable or in top to
bottom order in the netconfig database. If nettype is NULL, it defaults to netpath.

svc_create() registers itself with the rpcbind service [see rpcbind(1M)].
dispatch is called when there is a remote procedure call for the given prognum and
versnum; this requires calling svc_run() (see svc_run() in
rpc_svc_reg(3NSL)). If svc_create() succeeds, it returns the number of server
handles it created, otherwise it returns 0 and an error message is logged.

void svc_destroy(SVCXPRT *xprt);
A function macro that destroys the RPC service handle xprt. Destruction usually
involves deallocation of private data structures, including xprt itself. Use of xprt is
undefined after calling this routine.

SVCXPRT *svc_dg_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a connectionless RPC service handle, and returns a pointer to it.
This routine returns NULL if it fails, and an error message is logged. sendsz and
recvsz are parameters used to specify the size of the buffers. If they are 0, suitable
defaults are chosen. The file descriptor fildes should be open and bound. The server
is not registered with rpcbind(1M).

Warning: since connectionless-based RPC messages can only hold limited amount
of encoded data, this transport cannot be used for procedures that take large
arguments or return huge results.

SVCXPRT *svc_fd_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a service on top of an open and bound file descriptor, and
returns the handle to it. Typically, this descriptor is a connected file descriptor for a
connection-oriented transport. sendsz and recvsz indicate sizes for the send and

svc_raw_create(3NSL)

Introduction to Library Functions 1011

receive buffers. If they are 0, reasonable defaults are chosen. This routine returns
NULL if it fails, and an error message is logged.

SVCXPRT *svc_raw_create(void);
This routine creates an RPC service handle and returns a pointer to it. The transport
is really a buffer within the process’s address space, so the corresponding RPC
client should live in the same address space; (see clnt_raw_create() in
rpc_clnt_create(3NSL)). This routine allows simulation of RPC and acquisition
of RPC overheads (such as round trip times), without any kernel and networking
interference. This routine returns NULL if it fails, and an error message is logged.

Note: svc_run() should not be called when the raw interface is being used.

SVCXPRT *svc_tli_create(const int fildes, const struct netconfig *netconf, const struct
t_bind *bindaddr, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC server handle, and returns a pointer to it. fildes is the
file descriptor on which the service is listening. If fildes is RPC_ANYFD, it opens a file
descriptor on the transport specified by netconf. If the file descriptor is unbound and
bindaddr is non-null fildes is bound to the address specified by bindaddr, otherwise
fildes is bound to a default address chosen by the transport. In the case where the
default address is chosen, the number of outstanding connect requests is set to 8 for
connection-oriented transports. The user may specify the size of the send and
receive buffers with the parameters sendsz and recvsz ; values of 0 choose suitable
defaults. This routine returns NULL if it fails, and an error message is logged. The
server is not registered with the rpcbind(1M) service.

SVCXPRT *svc_tp_create(const void (*dispatch)(const struct svc_req *, const SVCXPRT
*), const rpcprog_t prognum, const rpcvers_t versnum, const struct netconfig *netconf);

svc_tp_create() creates a server handle for the network specified by netconf,
and registers itself with the rpcbind service. dispatch is called when there is a
remote procedure call for the given prognum and versnum; this requires calling
svc_run(). svc_tp_create() returns the service handle if it succeeds,
otherwise a NULL is returned and an error message is logged.

SVCXPRT *svc_vc_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a connection-oriented RPC service and returns a pointer to it.
This routine returns NULL if it fails, and an error message is logged. The users may
specify the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. The file descriptor fildes should be open
and bound. The server is not registered with the rpcbind(1M) service.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

svc_raw_create(3NSL)

ATTRIBUTES

1012 man pages section 3: Library Functions • Last Revised 1 May 2000

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when an RPC library routine
such as svc_create() binds to a transport, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_create(3NSL), rpc_svc_calls(3NSL),
rpc_svc_reg(3NSL), libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_svc_err(3NSL), attributes(5)

svc_raw_create(3NSL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 1013

rpc_svc_reg, rpc_reg, svc_reg, svc_unreg, svc_auth_reg, xprt_register, xprt_unregister
– Library routines for registering servers

These routines are a part of the RPC library which allows the RPC servers to register
themselves with rpcbind() [see rpcbind(1M)], and associate the given program
and version number with the dispatch function. When the RPC server receives an RPC
request, the library invokes the dispatch routine with the appropriate arguments.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

bool_t rpc_reg(const rpcprog_t prognum, const rpcvers_t versnum, const rpcproc_t
procnum, char * (*procname)(), const xdrproc_t inproc, const xdrproc_t outproc, const
char *nettype);

Register program prognum, procedure procname, and version versnum with the RPC
service package. If a request arrives for program prognum, version versnum, and
procedure procnum, procname is called with a pointer to its parameter(s); procname
should return a pointer to its static result(s). The arg parameter to procname is a
pointer to the (decoded) procedure argument. inproc is the XDR function used to
decode the parameters while outproc is the XDR function used to encode the results.
Procedures are registered on all available transports of the class nettype. See
rpc(3NSL) . This routine returns 0 if the registration succeeded, −1 otherwise.

If the server has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a transport that uses a privileged
address, the server must have the PRIV_NET_PRIVADDR privilege.

int svc_reg(const SVCXPRT *xprt, const rpcprog_t prognum, const rpcvers_t versnum,
const void (*dispatch)(), const struct netconfig *netconf);

Associates prognum and versnum with the service dispatch procedure, dispatch. If
netconf is NULL, the service is not registered with the rpcbind service. For example,
if a service has already been registered using some other means, such as inetd (see
inetd(1M)), it will not need to be registered again. If netconf is non-zero, then a
mapping of the triple [prognum, versnum, netconf⇒nc_netid] to xprt⇒xp_ltaddr is
established with the local rpcbind service.

The svc_reg() routine returns 1 if it succeeds, and 0 otherwise.

If the server has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a transport that uses a privileged
address, the server must have the PRIV_NET_PRIVADDR privilege.

void svc_unreg(const rpcprog_t prognum, const rpcvers_t versnum);
Remove from the rpcbind service, all mappings of the triple [prognum, versnum,
all-transports] to network address and all mappings within the RPC service package
of the double [prognum, versnum] to dispatch routines.

svc_reg(3NSL)

NAME

DESCRIPTION

Routines

1014 man pages section 3: Library Functions • Last Revised 1 May 2000

If the server has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping being deleted is to a transport that uses a privileged
address, the server must have the PRIV_NET_PRIVADDR privilege.

The PRIV_NET_SETID privilege is required in order for anyone other than the
owner of a mapping to delete the mapping.

int svc_auth_reg(const int cred_flavor, const enum auth_stat (*handler)());
Registers the service authentication routine handler with the dispatch mechanism so
that it can be invoked to authenticate RPC requests received with authentication
type cred_flavor. This interface allows developers to add new authentication types to
their RPC applications without needing to modify the libraries. Service
implementors usually do not need this routine.

Typical service application would call svc_auth_reg() after registering the
service and prior to calling svc_run(). When needed to process an RPC credential
of type cred_flavor, the handler procedure will be called with two parameters
(struct svc_req *rqst, struct rpc_msg *msg) and is expected to return a
valid enum auth_stat value. There is no provision to change or delete an
authentication handler once registered.

The svc_auth_reg() routine returns 0 if the registration is successful, 1 if
cred_flavor already has an authentication handler registered for it, and −1 otherwise.

void xprt_register(const SVCXPRT *xprt);
After RPC service transport handle xprt is created, it is registered with the RPC
service package. This routine modifies the global variable svc_fdset (see
rpc_svc_calls(3NSL)). Service implementors usually do not need this routine.

void xprt_unregister(const SVCXPRT *xprt);
Before an RPC service transport handle xprt is destroyed, it unregisters itself with
the RPC service package. This routine modifies the global variable svc_fdset [see
rpc_svc_calls(3NSL)]. Service implementors usually do not need this routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind
services. If the privilege is on when rpc_reg() or rpc_svc() is called, a multilevel
mapping is created. To delete a multilevel mapping, svc_unreg() must be called
with the privilege on.

svc_reg(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Introduction to Library Functions 1015

The PRIV_NET_PRIVADDR privilege is required for rpc_reg(), rpc_svc(), or
svc_unreg() calls that create or delete mappings for a transport that uses a
privileged address.

The PRIV_NET_SETID privilege is required by svc_unreg() in order for anyone
other than the owner of a mapping to delete the mapping.

inetd(1M), rpcbind(1M), rpc(3NSL), rpc_svc_calls(3NSL),
rpc_svc_create(3NSL), rpcbind(3NSL)

select(3C), rpc_svc_err(3NSL), attributes(5)

svc_reg(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

1016 man pages section 3: Library Functions • Last Revised 1 May 2000

rpc_svc_calls, svc_dg_enablecache, svc_done, svc_exit, svc_fdset, svc_freeargs,
svc_getargs, svc_getreq_common, svc_getreq_poll, svc_getreqset, svc_getrpccaller,
svc_max_pollfd, svc_pollfd, svc_run, svc_sendreply – Library routines for RPC servers

These routines are part of the RPC library which allows C language programs to make
procedure calls on other machines across the network.

These routines are associated with the server side of the RPC mechanism. Some of
them are called by the server side dispatch function, while others (such as
svc_run()) are called when the server is initiated.

In the current implementation, the service transport handle SVCXPRT contains a single
data area for decoding arguments and encoding results. Therefore, this structure
cannot be freely shared between threads that call functions that do this. However,
when a server is operating in the Automatic or User MT modes, a copy of this
structure is passed to the service dispatch procedure in order to enable concurrent
request processing. Under these circumstances, some routines which would otherwise
be unsafe, become safe. These are marked as such. Also marked are routines that are
unsafe for MT applications, and are not to be used by such applications.

Programs can retrieve network security attributes from incoming requests. Privileged
programs can create multilevel ports, create multilevel mappings, and set the security
attributes of outgoing replies. See SUMMARY OF TRUSTED SOLARIS CHANGES for
more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

int svc_dg_enablecache(SVCXPRT *xprt, const uint_t cache_size);
This function allocates a duplicate request cache for the service endpoint xprt, large
enough to hold cache_size entries. Once enabled, there is no way to disable caching.
This routine returns 1 if space necessary for a cache of the given size was
successfully allocated, and 0 otherwise.

This function is safe in MT applications.

int svc_done(SVCXPRT *xprt);
This function frees resources allocated to service a client request directed to the
service endpoint xprt. This call pertains only to servers executing in the User MT
mode. In the User MT mode, service procedures must invoke this call before
returning, either after a client request has been serviced, or after an error or
abnormal condition that prevents a reply from being sent. After svc_done() is
invoked, the service endpoint xprt should not be referenced by the service
procedure. Server multithreading modes and parameters can be set using the
rpc_control() call.

This function is safe in MT applications. It will have no effect if invoked in modes
other than the User MT mode.

svc_run(3NSL)

NAME

DESCRIPTION

Routines

Introduction to Library Functions 1017

void svc_exit(void);
This function when called by any of the RPC server procedure or otherwise,
destroys all services registered by the server and causes svc_run() to return.

If RPC server activity is to be resumed, services must be reregistered with the RPC
library either through one of the rpc_svc_create(3NSL) functions, or using
xprt_register(3NSL).

svc_exit() has global scope and ends all RPC server activity.

fd_set svc_fdset;
A global variable reflecting the RPC server’s read file descriptor bit mask. This is
only of interest if service implementors do not call svc_run(), but rather do their
own asynchronous event processing. This variable is read-only, and it may change
after calls to svc_getreqset() or any creation routines. Do not pass its address
to select(3C)! Instead, pass the address of a copy.

MT applications executing in either the Automatic MT mode or the User MT
mode should never read this variable. They should use auxiliary threads to do
asynchronous event processing.

svc_fdset is limited to 1024 file descriptors and is considered obsolete. Use of
svc_pollfd is recommended instead.

pollfd_t *svc_pollfd;
A global variable pointing to an array of pollfd_t structures reflecting the RPC
server’s read file descriptor array. This is only of interest if service service
implementors do not call svc_run() but rather do their own asynchronous event
processing. This variable is read-only, and it may change after calls to
svc_getreg_poll() or any creation routines. Do no pass its address to poll(2)!
Instead, pass the address of a copy.

By default, svc_pollfd is limited to 1024 entries. Use rpc_control(3NSL) to
remove this limitation.

MT applications executing in either the Automatic MT mode or the User MT
mode should never be read this variable. They should use auxiliary threads to do
asynchronous event processing.

int svc_max_pollfd;
A global variable containing the maximum length of the svc_pollfd array. This
variable is read-only, and it may change after calls to svc_getreg_poll() or any
creation routines.

bool_t svc_freeargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the arguments to a service procedure using svc_getargs(). This routine
returns TRUE if the results were successfully freed, and FALSE otherwise.

svc_run(3NSL)

1018 man pages section 3: Library Functions • Last Revised 1 May 2000

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

bool_t svc_getargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that decodes the arguments of an RPC request associated with the
RPC service transport handle xprt. The parameter in is the address where the
arguments will be placed; inproc is the XDR routine used to decode the arguments.
This routine returns TRUE if decoding succeeds, and FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

void svc_getreq_common(const int fd);
This routine is called to handle a request on the given file descriptor.

void svc_getreq_poll(struct pollfd *pfdp, const int pollretval);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
poll(2) has determined that an RPC request has arrived on some RPC file
descriptors; pollretval is the return value from poll(2) and pfdp is the array of pollfd
structures on which the poll(2) was done. It is assumed to be an array large
enough to contain the maximal number of descriptors allowed.

This function macro is unsafe in MT applications.

void svc_getreqset(fd_set *rdfds);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
select(3C) has determined that an RPC request has arrived on some RPC file
descriptors; rdfds is the resultant read file descriptor bit mask. The routine returns
when all file descriptors associated with the value of rdfds have been serviced.

This function macro is unsafe in MT applications.

struct netbuf *svc_getrpccaller(const SVCXPRT *xprt);
The approved way of getting the network address of the caller of a procedure
associated with the RPC service transport handle xprt.

This function macro is safe in MT applications.

void svc_run(void);
This routine never returns. In single threaded mode, it waits for RPC requests to
arrive, and calls the appropriate service procedure using svc_getreq_poll()
when one arrives. This procedure is usually waiting for the poll(2) library call to
return.

Applications executing in the Automatic or User MT modes should invoke this
function exactly once. It the Automatic MT mode, it will create threads to service
client requests. In the User MT mode, it will provide a framework for service
developers to create and manage their own threads for servicing client requests.

svc_run(3NSL)

Introduction to Library Functions 1019

bool_t svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc, const caddr_t
out);

Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request’s associated transport handle;
outproc is the XDR routine which is used to encode the results; and out is the
address of the results. This routine returns TRUE if it succeeds, FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when a bind(3SOCKET) call
is made, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpc(3NSL), rpc_svc_create(3NSL), rpc_svc_reg(3NSL), libt6(3NSL),
t6alloc_blk(3NSL), t6free_blk(3NSL)

rpcgen(1), poll(2), rpc_control(3NSL), rpc_svc_err(3NSL), select(3C),
xprt_register(3NSL),attributes(5)

svc_dg_enablecache() and svc_getrpccaller() are safe in multithreaded
applications. svc_freeargs(), svc_getargs(), and svc_sendreply() are safe
in MT applications utilizing the Automatic or User MT modes.

svc_run(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

NOTES

1020 man pages section 3: Library Functions • Last Revised 1 May 2000

svc_getreq_common(), svc_getreqset(), and svc_getreq_poll() are unsafe
in multithreaded applications and should be called only from the main thread.

svc_run(3NSL)

Introduction to Library Functions 1021

rpc_svc_calls, svc_dg_enablecache, svc_done, svc_exit, svc_fdset, svc_freeargs,
svc_getargs, svc_getreq_common, svc_getreq_poll, svc_getreqset, svc_getrpccaller,
svc_max_pollfd, svc_pollfd, svc_run, svc_sendreply – Library routines for RPC servers

These routines are part of the RPC library which allows C language programs to make
procedure calls on other machines across the network.

These routines are associated with the server side of the RPC mechanism. Some of
them are called by the server side dispatch function, while others (such as
svc_run()) are called when the server is initiated.

In the current implementation, the service transport handle SVCXPRT contains a single
data area for decoding arguments and encoding results. Therefore, this structure
cannot be freely shared between threads that call functions that do this. However,
when a server is operating in the Automatic or User MT modes, a copy of this
structure is passed to the service dispatch procedure in order to enable concurrent
request processing. Under these circumstances, some routines which would otherwise
be unsafe, become safe. These are marked as such. Also marked are routines that are
unsafe for MT applications, and are not to be used by such applications.

Programs can retrieve network security attributes from incoming requests. Privileged
programs can create multilevel ports, create multilevel mappings, and set the security
attributes of outgoing replies. See SUMMARY OF TRUSTED SOLARIS CHANGES for
more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

int svc_dg_enablecache(SVCXPRT *xprt, const uint_t cache_size);
This function allocates a duplicate request cache for the service endpoint xprt, large
enough to hold cache_size entries. Once enabled, there is no way to disable caching.
This routine returns 1 if space necessary for a cache of the given size was
successfully allocated, and 0 otherwise.

This function is safe in MT applications.

int svc_done(SVCXPRT *xprt);
This function frees resources allocated to service a client request directed to the
service endpoint xprt. This call pertains only to servers executing in the User MT
mode. In the User MT mode, service procedures must invoke this call before
returning, either after a client request has been serviced, or after an error or
abnormal condition that prevents a reply from being sent. After svc_done() is
invoked, the service endpoint xprt should not be referenced by the service
procedure. Server multithreading modes and parameters can be set using the
rpc_control() call.

This function is safe in MT applications. It will have no effect if invoked in modes
other than the User MT mode.

svc_sendreply(3NSL)

NAME

DESCRIPTION

Routines

1022 man pages section 3: Library Functions • Last Revised 1 May 2000

void svc_exit(void);
This function when called by any of the RPC server procedure or otherwise,
destroys all services registered by the server and causes svc_run() to return.

If RPC server activity is to be resumed, services must be reregistered with the RPC
library either through one of the rpc_svc_create(3NSL) functions, or using
xprt_register(3NSL).

svc_exit() has global scope and ends all RPC server activity.

fd_set svc_fdset;
A global variable reflecting the RPC server’s read file descriptor bit mask. This is
only of interest if service implementors do not call svc_run(), but rather do their
own asynchronous event processing. This variable is read-only, and it may change
after calls to svc_getreqset() or any creation routines. Do not pass its address
to select(3C)! Instead, pass the address of a copy.

MT applications executing in either the Automatic MT mode or the User MT
mode should never read this variable. They should use auxiliary threads to do
asynchronous event processing.

svc_fdset is limited to 1024 file descriptors and is considered obsolete. Use of
svc_pollfd is recommended instead.

pollfd_t *svc_pollfd;
A global variable pointing to an array of pollfd_t structures reflecting the RPC
server’s read file descriptor array. This is only of interest if service service
implementors do not call svc_run() but rather do their own asynchronous event
processing. This variable is read-only, and it may change after calls to
svc_getreg_poll() or any creation routines. Do no pass its address to poll(2)!
Instead, pass the address of a copy.

By default, svc_pollfd is limited to 1024 entries. Use rpc_control(3NSL) to
remove this limitation.

MT applications executing in either the Automatic MT mode or the User MT
mode should never be read this variable. They should use auxiliary threads to do
asynchronous event processing.

int svc_max_pollfd;
A global variable containing the maximum length of the svc_pollfd array. This
variable is read-only, and it may change after calls to svc_getreg_poll() or any
creation routines.

bool_t svc_freeargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that frees any data allocated by the RPC/XDR system when it
decoded the arguments to a service procedure using svc_getargs(). This routine
returns TRUE if the results were successfully freed, and FALSE otherwise.

svc_sendreply(3NSL)

Introduction to Library Functions 1023

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

bool_t svc_getargs(const SVCXPRT *xprt, const xdrproc_t inproc, caddr_t in);
A function macro that decodes the arguments of an RPC request associated with the
RPC service transport handle xprt. The parameter in is the address where the
arguments will be placed; inproc is the XDR routine used to decode the arguments.
This routine returns TRUE if decoding succeeds, and FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

void svc_getreq_common(const int fd);
This routine is called to handle a request on the given file descriptor.

void svc_getreq_poll(struct pollfd *pfdp, const int pollretval);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
poll(2) has determined that an RPC request has arrived on some RPC file
descriptors; pollretval is the return value from poll(2) and pfdp is the array of pollfd
structures on which the poll(2) was done. It is assumed to be an array large
enough to contain the maximal number of descriptors allowed.

This function macro is unsafe in MT applications.

void svc_getreqset(fd_set *rdfds);
This routine is only of interest if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
select(3C) has determined that an RPC request has arrived on some RPC file
descriptors; rdfds is the resultant read file descriptor bit mask. The routine returns
when all file descriptors associated with the value of rdfds have been serviced.

This function macro is unsafe in MT applications.

struct netbuf *svc_getrpccaller(const SVCXPRT *xprt);
The approved way of getting the network address of the caller of a procedure
associated with the RPC service transport handle xprt.

This function macro is safe in MT applications.

void svc_run(void);
This routine never returns. In single threaded mode, it waits for RPC requests to
arrive, and calls the appropriate service procedure using svc_getreq_poll()
when one arrives. This procedure is usually waiting for the poll(2) library call to
return.

Applications executing in the Automatic or User MT modes should invoke this
function exactly once. It the Automatic MT mode, it will create threads to service
client requests. In the User MT mode, it will provide a framework for service
developers to create and manage their own threads for servicing client requests.

svc_sendreply(3NSL)

1024 man pages section 3: Library Functions • Last Revised 1 May 2000

bool_t svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc, const caddr_t
out);

Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request’s associated transport handle;
outproc is the XDR routine which is used to encode the results; and out is the
address of the results. This routine returns TRUE if it succeeds, FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or User
MT modes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when a bind(3SOCKET) call
is made, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpc(3NSL), rpc_svc_create(3NSL), rpc_svc_reg(3NSL), libt6(3NSL),
t6alloc_blk(3NSL), t6free_blk(3NSL)

rpcgen(1), poll(2), rpc_control(3NSL), rpc_svc_err(3NSL), select(3C),
xprt_register(3NSL),attributes(5)

svc_dg_enablecache() and svc_getrpccaller() are safe in multithreaded
applications. svc_freeargs(), svc_getargs(), and svc_sendreply() are safe
in MT applications utilizing the Automatic or User MT modes.

svc_sendreply(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

NOTES

Introduction to Library Functions 1025

svc_getreq_common(), svc_getreqset(), and svc_getreq_poll() are unsafe
in multithreaded applications and should be called only from the main thread.

svc_sendreply(3NSL)

1026 man pages section 3: Library Functions • Last Revised 1 May 2000

rpc_svc_create, svc_control, svc_create, svc_destroy, svc_dg_create, svc_fd_create,
svc_raw_create, svc_tli_create, svc_tp_create, svc_vc_create – Library routines for the
creation of server handles

These routines are part of the RPC library which allows C language programs to make
procedure calls on servers across the network. These routines deal with the creation of
service handles. Once the handle is created, the server can be invoked by calling
svc_run().

Privileged programs can create multilevel ports, create multilevel mappings, and
access network security attributes. See SUMMARY OF TRUSTED SOLARIS CHANGES
for more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

bool_t svc_control (SVCXPRT *svc, const uint_t req, void *info);
A function to change or retrieve various information about a service object. req
indicates the type of operation and info is a pointer to the information. The
supported values of req, their argument types, and what they do are:

SVCGET_VERSQUIET If a request is received for a program number served
by this server but the version number is outside the
range registered with the server, an
RPC_PROGVERSMISMATCH error will normally be
returned. info should be a pointer to an integer.
Upon successful completion of the
SVCGET_VERSQUIET request, *info contains an
integer which describes the server’s current
behavior: 0 indicates normal server behavior, that is,
an RPC_PROGVERSMISMATCH error will be returned;
1 indicates that the out of range request will be
silently ignored.

SVCSET_VERSQUIET If a request is received for a program number served
by this server but the version number is outside the
range registered with the server, an
RPC_PROGVERSMISMATCH error will normally be
returned. It is sometimes desirable to change this
behavior. info should be a pointer to an integer
which is either 0, indicating normal server behavior
and an RPC_PROGVERSMISMATCH error will be
returned, or −1, indicating that the out of range
request should be silently ignored.

SVCGET_XID Returns the transaction ID of connection−oriented
(vc) and connectionless (dg) transport service calls.
The transaction ID assists in uniquely identifying
client requests for a given RPC version, program

svc_tli_create(3NSL)

NAME

DESCRIPTION

Routines

Introduction to Library Functions 1027

number, procedure, and client. The transaction ID is
extracted from the service transport handle svc; info
must be a pointer to an unsigned long. Upon
successful completion of the SVCGET_XID request,
*info contains the transaction ID. Note that
rendezvous and raw service handles do not define a
transaction ID. Thus, if the service handle is of
rendezvous or raw type, and the request is of type
SVCGET_XID, svc_control() will return
FALSE. Note also that the transaction ID read by
the server can be set by the client through the
suboption CLSET_XID in clnt_control(). See
clnt_create(3NSL)

int svc_create(const void (*dispatch)(const struct svc_req *, const SVCXPRT *), const
rpcprog_t prognum, const rpcvers_t versnum, const char *nettype);

svc_create() creates server handles for all the transports belonging to the class
nettype.

nettype defines a class of transports which can be used for a particular application.
The transports are tried in left to right order in NETPATH variable or in top to
bottom order in the netconfig database. If nettype is NULL, it defaults to netpath.

svc_create() registers itself with the rpcbind service [see rpcbind(1M)].
dispatch is called when there is a remote procedure call for the given prognum and
versnum; this requires calling svc_run() (see svc_run() in
rpc_svc_reg(3NSL)). If svc_create() succeeds, it returns the number of server
handles it created, otherwise it returns 0 and an error message is logged.

void svc_destroy(SVCXPRT *xprt);
A function macro that destroys the RPC service handle xprt. Destruction usually
involves deallocation of private data structures, including xprt itself. Use of xprt is
undefined after calling this routine.

SVCXPRT *svc_dg_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a connectionless RPC service handle, and returns a pointer to it.
This routine returns NULL if it fails, and an error message is logged. sendsz and
recvsz are parameters used to specify the size of the buffers. If they are 0, suitable
defaults are chosen. The file descriptor fildes should be open and bound. The server
is not registered with rpcbind(1M).

Warning: since connectionless-based RPC messages can only hold limited amount
of encoded data, this transport cannot be used for procedures that take large
arguments or return huge results.

SVCXPRT *svc_fd_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a service on top of an open and bound file descriptor, and
returns the handle to it. Typically, this descriptor is a connected file descriptor for a
connection-oriented transport. sendsz and recvsz indicate sizes for the send and

svc_tli_create(3NSL)

1028 man pages section 3: Library Functions • Last Revised 1 May 2000

receive buffers. If they are 0, reasonable defaults are chosen. This routine returns
NULL if it fails, and an error message is logged.

SVCXPRT *svc_raw_create(void);
This routine creates an RPC service handle and returns a pointer to it. The transport
is really a buffer within the process’s address space, so the corresponding RPC
client should live in the same address space; (see clnt_raw_create() in
rpc_clnt_create(3NSL)). This routine allows simulation of RPC and acquisition
of RPC overheads (such as round trip times), without any kernel and networking
interference. This routine returns NULL if it fails, and an error message is logged.

Note: svc_run() should not be called when the raw interface is being used.

SVCXPRT *svc_tli_create(const int fildes, const struct netconfig *netconf, const struct
t_bind *bindaddr, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC server handle, and returns a pointer to it. fildes is the
file descriptor on which the service is listening. If fildes is RPC_ANYFD, it opens a file
descriptor on the transport specified by netconf. If the file descriptor is unbound and
bindaddr is non-null fildes is bound to the address specified by bindaddr, otherwise
fildes is bound to a default address chosen by the transport. In the case where the
default address is chosen, the number of outstanding connect requests is set to 8 for
connection-oriented transports. The user may specify the size of the send and
receive buffers with the parameters sendsz and recvsz ; values of 0 choose suitable
defaults. This routine returns NULL if it fails, and an error message is logged. The
server is not registered with the rpcbind(1M) service.

SVCXPRT *svc_tp_create(const void (*dispatch)(const struct svc_req *, const SVCXPRT
*), const rpcprog_t prognum, const rpcvers_t versnum, const struct netconfig *netconf);

svc_tp_create() creates a server handle for the network specified by netconf,
and registers itself with the rpcbind service. dispatch is called when there is a
remote procedure call for the given prognum and versnum; this requires calling
svc_run(). svc_tp_create() returns the service handle if it succeeds,
otherwise a NULL is returned and an error message is logged.

SVCXPRT *svc_vc_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a connection-oriented RPC service and returns a pointer to it.
This routine returns NULL if it fails, and an error message is logged. The users may
specify the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. The file descriptor fildes should be open
and bound. The server is not registered with the rpcbind(1M) service.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

svc_tli_create(3NSL)

ATTRIBUTES

Introduction to Library Functions 1029

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when an RPC library routine
such as svc_create() binds to a transport, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_create(3NSL), rpc_svc_calls(3NSL),
rpc_svc_reg(3NSL), libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_svc_err(3NSL), attributes(5)

svc_tli_create(3NSL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

1030 man pages section 3: Library Functions • Last Revised 1 May 2000

rpc_svc_create, svc_control, svc_create, svc_destroy, svc_dg_create, svc_fd_create,
svc_raw_create, svc_tli_create, svc_tp_create, svc_vc_create – Library routines for the
creation of server handles

These routines are part of the RPC library which allows C language programs to make
procedure calls on servers across the network. These routines deal with the creation of
service handles. Once the handle is created, the server can be invoked by calling
svc_run().

Privileged programs can create multilevel ports, create multilevel mappings, and
access network security attributes. See SUMMARY OF TRUSTED SOLARIS CHANGES
for more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

bool_t svc_control (SVCXPRT *svc, const uint_t req, void *info);
A function to change or retrieve various information about a service object. req
indicates the type of operation and info is a pointer to the information. The
supported values of req, their argument types, and what they do are:

SVCGET_VERSQUIET If a request is received for a program number served
by this server but the version number is outside the
range registered with the server, an
RPC_PROGVERSMISMATCH error will normally be
returned. info should be a pointer to an integer.
Upon successful completion of the
SVCGET_VERSQUIET request, *info contains an
integer which describes the server’s current
behavior: 0 indicates normal server behavior, that is,
an RPC_PROGVERSMISMATCH error will be returned;
1 indicates that the out of range request will be
silently ignored.

SVCSET_VERSQUIET If a request is received for a program number served
by this server but the version number is outside the
range registered with the server, an
RPC_PROGVERSMISMATCH error will normally be
returned. It is sometimes desirable to change this
behavior. info should be a pointer to an integer
which is either 0, indicating normal server behavior
and an RPC_PROGVERSMISMATCH error will be
returned, or −1, indicating that the out of range
request should be silently ignored.

SVCGET_XID Returns the transaction ID of connection−oriented
(vc) and connectionless (dg) transport service calls.
The transaction ID assists in uniquely identifying
client requests for a given RPC version, program

svc_tp_create(3NSL)

NAME

DESCRIPTION

Routines

Introduction to Library Functions 1031

number, procedure, and client. The transaction ID is
extracted from the service transport handle svc; info
must be a pointer to an unsigned long. Upon
successful completion of the SVCGET_XID request,
*info contains the transaction ID. Note that
rendezvous and raw service handles do not define a
transaction ID. Thus, if the service handle is of
rendezvous or raw type, and the request is of type
SVCGET_XID, svc_control() will return
FALSE. Note also that the transaction ID read by
the server can be set by the client through the
suboption CLSET_XID in clnt_control(). See
clnt_create(3NSL)

int svc_create(const void (*dispatch)(const struct svc_req *, const SVCXPRT *), const
rpcprog_t prognum, const rpcvers_t versnum, const char *nettype);

svc_create() creates server handles for all the transports belonging to the class
nettype.

nettype defines a class of transports which can be used for a particular application.
The transports are tried in left to right order in NETPATH variable or in top to
bottom order in the netconfig database. If nettype is NULL, it defaults to netpath.

svc_create() registers itself with the rpcbind service [see rpcbind(1M)].
dispatch is called when there is a remote procedure call for the given prognum and
versnum; this requires calling svc_run() (see svc_run() in
rpc_svc_reg(3NSL)). If svc_create() succeeds, it returns the number of server
handles it created, otherwise it returns 0 and an error message is logged.

void svc_destroy(SVCXPRT *xprt);
A function macro that destroys the RPC service handle xprt. Destruction usually
involves deallocation of private data structures, including xprt itself. Use of xprt is
undefined after calling this routine.

SVCXPRT *svc_dg_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a connectionless RPC service handle, and returns a pointer to it.
This routine returns NULL if it fails, and an error message is logged. sendsz and
recvsz are parameters used to specify the size of the buffers. If they are 0, suitable
defaults are chosen. The file descriptor fildes should be open and bound. The server
is not registered with rpcbind(1M).

Warning: since connectionless-based RPC messages can only hold limited amount
of encoded data, this transport cannot be used for procedures that take large
arguments or return huge results.

SVCXPRT *svc_fd_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a service on top of an open and bound file descriptor, and
returns the handle to it. Typically, this descriptor is a connected file descriptor for a
connection-oriented transport. sendsz and recvsz indicate sizes for the send and

svc_tp_create(3NSL)

1032 man pages section 3: Library Functions • Last Revised 1 May 2000

receive buffers. If they are 0, reasonable defaults are chosen. This routine returns
NULL if it fails, and an error message is logged.

SVCXPRT *svc_raw_create(void);
This routine creates an RPC service handle and returns a pointer to it. The transport
is really a buffer within the process’s address space, so the corresponding RPC
client should live in the same address space; (see clnt_raw_create() in
rpc_clnt_create(3NSL)). This routine allows simulation of RPC and acquisition
of RPC overheads (such as round trip times), without any kernel and networking
interference. This routine returns NULL if it fails, and an error message is logged.

Note: svc_run() should not be called when the raw interface is being used.

SVCXPRT *svc_tli_create(const int fildes, const struct netconfig *netconf, const struct
t_bind *bindaddr, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC server handle, and returns a pointer to it. fildes is the
file descriptor on which the service is listening. If fildes is RPC_ANYFD, it opens a file
descriptor on the transport specified by netconf. If the file descriptor is unbound and
bindaddr is non-null fildes is bound to the address specified by bindaddr, otherwise
fildes is bound to a default address chosen by the transport. In the case where the
default address is chosen, the number of outstanding connect requests is set to 8 for
connection-oriented transports. The user may specify the size of the send and
receive buffers with the parameters sendsz and recvsz ; values of 0 choose suitable
defaults. This routine returns NULL if it fails, and an error message is logged. The
server is not registered with the rpcbind(1M) service.

SVCXPRT *svc_tp_create(const void (*dispatch)(const struct svc_req *, const SVCXPRT
*), const rpcprog_t prognum, const rpcvers_t versnum, const struct netconfig *netconf);

svc_tp_create() creates a server handle for the network specified by netconf,
and registers itself with the rpcbind service. dispatch is called when there is a
remote procedure call for the given prognum and versnum; this requires calling
svc_run(). svc_tp_create() returns the service handle if it succeeds,
otherwise a NULL is returned and an error message is logged.

SVCXPRT *svc_vc_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a connection-oriented RPC service and returns a pointer to it.
This routine returns NULL if it fails, and an error message is logged. The users may
specify the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. The file descriptor fildes should be open
and bound. The server is not registered with the rpcbind(1M) service.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

svc_tp_create(3NSL)

ATTRIBUTES

Introduction to Library Functions 1033

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when an RPC library routine
such as svc_create() binds to a transport, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_create(3NSL), rpc_svc_calls(3NSL),
rpc_svc_reg(3NSL), libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_svc_err(3NSL), attributes(5)

svc_tp_create(3NSL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

1034 man pages section 3: Library Functions • Last Revised 1 May 2000

rpc_svc_reg, rpc_reg, svc_reg, svc_unreg, svc_auth_reg, xprt_register, xprt_unregister
– Library routines for registering servers

These routines are a part of the RPC library which allows the RPC servers to register
themselves with rpcbind() [see rpcbind(1M)], and associate the given program
and version number with the dispatch function. When the RPC server receives an RPC
request, the library invokes the dispatch routine with the appropriate arguments.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

bool_t rpc_reg(const rpcprog_t prognum, const rpcvers_t versnum, const rpcproc_t
procnum, char * (*procname)(), const xdrproc_t inproc, const xdrproc_t outproc, const
char *nettype);

Register program prognum, procedure procname, and version versnum with the RPC
service package. If a request arrives for program prognum, version versnum, and
procedure procnum, procname is called with a pointer to its parameter(s); procname
should return a pointer to its static result(s). The arg parameter to procname is a
pointer to the (decoded) procedure argument. inproc is the XDR function used to
decode the parameters while outproc is the XDR function used to encode the results.
Procedures are registered on all available transports of the class nettype. See
rpc(3NSL) . This routine returns 0 if the registration succeeded, −1 otherwise.

If the server has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a transport that uses a privileged
address, the server must have the PRIV_NET_PRIVADDR privilege.

int svc_reg(const SVCXPRT *xprt, const rpcprog_t prognum, const rpcvers_t versnum,
const void (*dispatch)(), const struct netconfig *netconf);

Associates prognum and versnum with the service dispatch procedure, dispatch. If
netconf is NULL, the service is not registered with the rpcbind service. For example,
if a service has already been registered using some other means, such as inetd (see
inetd(1M)), it will not need to be registered again. If netconf is non-zero, then a
mapping of the triple [prognum, versnum, netconf⇒nc_netid] to xprt⇒xp_ltaddr is
established with the local rpcbind service.

The svc_reg() routine returns 1 if it succeeds, and 0 otherwise.

If the server has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a transport that uses a privileged
address, the server must have the PRIV_NET_PRIVADDR privilege.

void svc_unreg(const rpcprog_t prognum, const rpcvers_t versnum);
Remove from the rpcbind service, all mappings of the triple [prognum, versnum,
all-transports] to network address and all mappings within the RPC service package
of the double [prognum, versnum] to dispatch routines.

svc_unreg(3NSL)

NAME

DESCRIPTION

Routines

Introduction to Library Functions 1035

If the server has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping being deleted is to a transport that uses a privileged
address, the server must have the PRIV_NET_PRIVADDR privilege.

The PRIV_NET_SETID privilege is required in order for anyone other than the
owner of a mapping to delete the mapping.

int svc_auth_reg(const int cred_flavor, const enum auth_stat (*handler)());
Registers the service authentication routine handler with the dispatch mechanism so
that it can be invoked to authenticate RPC requests received with authentication
type cred_flavor. This interface allows developers to add new authentication types to
their RPC applications without needing to modify the libraries. Service
implementors usually do not need this routine.

Typical service application would call svc_auth_reg() after registering the
service and prior to calling svc_run(). When needed to process an RPC credential
of type cred_flavor, the handler procedure will be called with two parameters
(struct svc_req *rqst, struct rpc_msg *msg) and is expected to return a
valid enum auth_stat value. There is no provision to change or delete an
authentication handler once registered.

The svc_auth_reg() routine returns 0 if the registration is successful, 1 if
cred_flavor already has an authentication handler registered for it, and −1 otherwise.

void xprt_register(const SVCXPRT *xprt);
After RPC service transport handle xprt is created, it is registered with the RPC
service package. This routine modifies the global variable svc_fdset (see
rpc_svc_calls(3NSL)). Service implementors usually do not need this routine.

void xprt_unregister(const SVCXPRT *xprt);
Before an RPC service transport handle xprt is destroyed, it unregisters itself with
the RPC service package. This routine modifies the global variable svc_fdset [see
rpc_svc_calls(3NSL)]. Service implementors usually do not need this routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind
services. If the privilege is on when rpc_reg() or rpc_svc() is called, a multilevel
mapping is created. To delete a multilevel mapping, svc_unreg() must be called
with the privilege on.

svc_unreg(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

1036 man pages section 3: Library Functions • Last Revised 1 May 2000

The PRIV_NET_PRIVADDR privilege is required for rpc_reg(), rpc_svc(), or
svc_unreg() calls that create or delete mappings for a transport that uses a
privileged address.

The PRIV_NET_SETID privilege is required by svc_unreg() in order for anyone
other than the owner of a mapping to delete the mapping.

inetd(1M), rpcbind(1M), rpc(3NSL), rpc_svc_calls(3NSL),
rpc_svc_create(3NSL), rpcbind(3NSL)

select(3C), rpc_svc_err(3NSL), attributes(5)

svc_unreg(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 1037

rpc_svc_create, svc_control, svc_create, svc_destroy, svc_dg_create, svc_fd_create,
svc_raw_create, svc_tli_create, svc_tp_create, svc_vc_create – Library routines for the
creation of server handles

These routines are part of the RPC library which allows C language programs to make
procedure calls on servers across the network. These routines deal with the creation of
service handles. Once the handle is created, the server can be invoked by calling
svc_run().

Privileged programs can create multilevel ports, create multilevel mappings, and
access network security attributes. See SUMMARY OF TRUSTED SOLARIS CHANGES
for more information.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

bool_t svc_control (SVCXPRT *svc, const uint_t req, void *info);
A function to change or retrieve various information about a service object. req
indicates the type of operation and info is a pointer to the information. The
supported values of req, their argument types, and what they do are:

SVCGET_VERSQUIET If a request is received for a program number served
by this server but the version number is outside the
range registered with the server, an
RPC_PROGVERSMISMATCH error will normally be
returned. info should be a pointer to an integer.
Upon successful completion of the
SVCGET_VERSQUIET request, *info contains an
integer which describes the server’s current
behavior: 0 indicates normal server behavior, that is,
an RPC_PROGVERSMISMATCH error will be returned;
1 indicates that the out of range request will be
silently ignored.

SVCSET_VERSQUIET If a request is received for a program number served
by this server but the version number is outside the
range registered with the server, an
RPC_PROGVERSMISMATCH error will normally be
returned. It is sometimes desirable to change this
behavior. info should be a pointer to an integer
which is either 0, indicating normal server behavior
and an RPC_PROGVERSMISMATCH error will be
returned, or −1, indicating that the out of range
request should be silently ignored.

SVCGET_XID Returns the transaction ID of connection−oriented
(vc) and connectionless (dg) transport service calls.
The transaction ID assists in uniquely identifying
client requests for a given RPC version, program

svc_vc_create(3NSL)

NAME

DESCRIPTION

Routines

1038 man pages section 3: Library Functions • Last Revised 1 May 2000

number, procedure, and client. The transaction ID is
extracted from the service transport handle svc; info
must be a pointer to an unsigned long. Upon
successful completion of the SVCGET_XID request,
*info contains the transaction ID. Note that
rendezvous and raw service handles do not define a
transaction ID. Thus, if the service handle is of
rendezvous or raw type, and the request is of type
SVCGET_XID, svc_control() will return
FALSE. Note also that the transaction ID read by
the server can be set by the client through the
suboption CLSET_XID in clnt_control(). See
clnt_create(3NSL)

int svc_create(const void (*dispatch)(const struct svc_req *, const SVCXPRT *), const
rpcprog_t prognum, const rpcvers_t versnum, const char *nettype);

svc_create() creates server handles for all the transports belonging to the class
nettype.

nettype defines a class of transports which can be used for a particular application.
The transports are tried in left to right order in NETPATH variable or in top to
bottom order in the netconfig database. If nettype is NULL, it defaults to netpath.

svc_create() registers itself with the rpcbind service [see rpcbind(1M)].
dispatch is called when there is a remote procedure call for the given prognum and
versnum; this requires calling svc_run() (see svc_run() in
rpc_svc_reg(3NSL)). If svc_create() succeeds, it returns the number of server
handles it created, otherwise it returns 0 and an error message is logged.

void svc_destroy(SVCXPRT *xprt);
A function macro that destroys the RPC service handle xprt. Destruction usually
involves deallocation of private data structures, including xprt itself. Use of xprt is
undefined after calling this routine.

SVCXPRT *svc_dg_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a connectionless RPC service handle, and returns a pointer to it.
This routine returns NULL if it fails, and an error message is logged. sendsz and
recvsz are parameters used to specify the size of the buffers. If they are 0, suitable
defaults are chosen. The file descriptor fildes should be open and bound. The server
is not registered with rpcbind(1M).

Warning: since connectionless-based RPC messages can only hold limited amount
of encoded data, this transport cannot be used for procedures that take large
arguments or return huge results.

SVCXPRT *svc_fd_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a service on top of an open and bound file descriptor, and
returns the handle to it. Typically, this descriptor is a connected file descriptor for a
connection-oriented transport. sendsz and recvsz indicate sizes for the send and

svc_vc_create(3NSL)

Introduction to Library Functions 1039

receive buffers. If they are 0, reasonable defaults are chosen. This routine returns
NULL if it fails, and an error message is logged.

SVCXPRT *svc_raw_create(void);
This routine creates an RPC service handle and returns a pointer to it. The transport
is really a buffer within the process’s address space, so the corresponding RPC
client should live in the same address space; (see clnt_raw_create() in
rpc_clnt_create(3NSL)). This routine allows simulation of RPC and acquisition
of RPC overheads (such as round trip times), without any kernel and networking
interference. This routine returns NULL if it fails, and an error message is logged.

Note: svc_run() should not be called when the raw interface is being used.

SVCXPRT *svc_tli_create(const int fildes, const struct netconfig *netconf, const struct
t_bind *bindaddr, const uint_t sendsz, const uint_t recvsz);

This routine creates an RPC server handle, and returns a pointer to it. fildes is the
file descriptor on which the service is listening. If fildes is RPC_ANYFD, it opens a file
descriptor on the transport specified by netconf. If the file descriptor is unbound and
bindaddr is non-null fildes is bound to the address specified by bindaddr, otherwise
fildes is bound to a default address chosen by the transport. In the case where the
default address is chosen, the number of outstanding connect requests is set to 8 for
connection-oriented transports. The user may specify the size of the send and
receive buffers with the parameters sendsz and recvsz ; values of 0 choose suitable
defaults. This routine returns NULL if it fails, and an error message is logged. The
server is not registered with the rpcbind(1M) service.

SVCXPRT *svc_tp_create(const void (*dispatch)(const struct svc_req *, const SVCXPRT
*), const rpcprog_t prognum, const rpcvers_t versnum, const struct netconfig *netconf);

svc_tp_create() creates a server handle for the network specified by netconf,
and registers itself with the rpcbind service. dispatch is called when there is a
remote procedure call for the given prognum and versnum; this requires calling
svc_run(). svc_tp_create() returns the service handle if it succeeds,
otherwise a NULL is returned and an error message is logged.

SVCXPRT *svc_vc_create(const int fildes, const uint_t sendsz, const uint_t recvsz);
This routine creates a connection-oriented RPC service and returns a pointer to it.
This routine returns NULL if it fails, and an error message is logged. The users may
specify the size of the send and receive buffers with the parameters sendsz and
recvsz; values of 0 choose suitable defaults. The file descriptor fildes should be open
and bound. The server is not registered with the rpcbind(1M) service.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

svc_vc_create(3NSL)

ATTRIBUTES

1040 man pages section 3: Library Functions • Last Revised 1 May 2000

The PRIV_NET_MAC_READ privilege affects the operation of trusted network services
for binding to transport addresses. If the privilege is on when an RPC library routine
such as svc_create() binds to a transport, a multilevel port will be created.

Most rpcbind() services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind()
services. If the privilege is on when a library routine calls rpcbind() to create a
mapping, a multilevel mapping is created.

The PRIV_NET_PRIVADDR privilege is required when a library routine calls
rpcbind() to create a mapping for a transport that uses a privileged address.

The SVCXPRT structure allows a server to provide t6attr_t pointers to opaque
structures for receiving security attributes with a client request or setting the security
attributes of a reply. When a new SVCXPRT structure is created, the pointers are
initialized to NULL. If it needs to access the security attributes, the server must use the
t6alloc_blk() routine to allocate attribute-control structures and set the t6attr_t
pointers in the SVCXPRT structure. When svc_destroy() is used to destroy a
service handle, the server should also use t6free_blk() to free any attribute-control
structures previously allocated for that service handle.

rpcbind(1M), rpc(3NSL), rpc_clnt_create(3NSL), rpc_svc_calls(3NSL),
rpc_svc_reg(3NSL), libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

rpc_svc_err(3NSL), attributes(5)

svc_vc_create(3NSL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 1041

t6alloc_blk, t6free_blk – Allocate and free security-attribute control structure and
buffer

cc [flags…] file … -lt6

#include <tsix/t6attrs.h>

t6attr_t t6alloc_blk(t6mask_t mask);

void t6free_blk(t6attr_t t6ctl);

t6alloc_blk() allocates a t6attr_t structure, which is an opaque handle used to
access the full set of security attributes supported on the system. See man pages for
t6get_attr(3NSL) and t6set_attr(3NSL) for more information on how generic
TSIX application programs can access security attributes referenced by t6attr_t
without knowing how references are built between the t6attr_t structure and the
sets of security attributes for each individual TSIX operating system vendor. If
t6alloc_blk() is successful, the opaque handle is returned that can be used to set
or get individual attributes to or from this control structure. t6alloc_blk()
allocates space in the control structure for all attributes specified in the mask
parameter.

t6free_blk() should be used in conjunction with t6alloc_blk() to free the
opaque control structure and any space within it.

Upon successful completion, t6alloc_blk() returns a pointer to the t6attr_t
structure. Upon failure, t6alloc_blk() returns a NULL pointer.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

libt6(3NSL), t6get_attr(3NSL), t6set_attr(3NSL)

attributes(5)

For generic TSIX applications, use t6free_blk() to free memory allocated by
t6alloc_blk() for better portability.

This man page is based on the version from the TSIX(RE) 1.1 Application
Programming Interface (API) document; this interface is available in TSIX(RE)
1.1-API-compliant systems.

t6alloc_blk(3NSL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

WARNINGS

NOTES

1042 man pages section 3: Library Functions • Last Revised 13 Feb 1997

t6attr_query – Get mask indicating which attributes came from templates

cc [flags…] file … -lt6

#include <tsix/t6attrs.h>

int t6attr_query(int fd , t6mask_t *mask);

Not all security attributes are transmitted with the data. Missing security attributes are
taken from a database on the receiving machine. t6attr_query() allows a process
to determine when a security attribute comes from a database. A bit value of 1 in the
mask indicates that the attribute comes from a database.

t6attr_query() returns:

0 On success.

−1 If an error is encountered.

This interface is specific to the Trusted Solaris environment.

t6attr_query(3NSL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

NOTES

Introduction to Library Functions 1043

t6clear_blk – Clear security attributes

cc [flags…] file … -lt6

#include <tsix/t6attrs.h>

void t6clear_blk(t6mask_t mask, t6attr_t src);

t6clear_blk() clears attributes specified in mask from the t6attr_t control
structure src, which is passed in as an argument.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

libt6(3NSL), t6alloc_blk(3NSL)

attributes(5)

This man page is based on the version from the TSIX(RE) 1.1 Application
Programming Interface (API) document; this interface is available in TSIX(RE)
1.1-API-compliant systems.

t6clear_blk(3NSL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

1044 man pages section 3: Library Functions • Last Revised 13 Feb 1997

t6cmp_blk – Compare security attributes

cc [flags…] file … -lt6

#include <tsix/t6attrs.h>

int t6cmp_blk(const t6attr_t ctl1, const t6attr_t ctl2);

t6cmp_blk() compares two t6attr_t control structures for the attributes
contained. The two t6attr_t control structures are regarded as equal if each type of
attribute that exists in ctl1 exists in ctl2 and vice versa, and if the attribute values of
each type in ctl1 and ctl2 are the same.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

This call returns zero if ctl1 equals ctl2; otherwise, the call returns a nonzero value.

libt6(3NSL), t6alloc_blk(3NSL)

attributes(5)

This man page is based on the version from the TSIX(RE) 1.1 Application
Programming Interface (API) document; and this interface is available in TSIX(RE)
1.1-API-compliant systems.

t6cmp_blk(3NSL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

RETURN VALUES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 1045

t6copy_blk – copy security attributes

cc [flags…] file … -lt6

#include <tsix/t6attrs.h>

int t6copy_blk(const t6attr_t attr1, t6attr_t attr2);

t6copy_blk() copies a set of attributes specified by attr1 into the buffers controlled
by attr2 after both attr1 and attr2 have been allocated by t6alloc_blk(). See man
pages for t6alloc_blk(3NSL) for more details.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

t6copy_blk() returns:

0 On success.

−1 On failure. This call will fail if an attribute in attr1 is not allocated in attr2.
Nothing is copied for this failure case.

libt6(3NSL), t6alloc_blk(3NSL)

attributes(5)

This man page is based on the version from the TSIX(RE) 1.1 Application
Programming Interface (API) document; and this interface is available in TSIX(RE)
1.1-API-compliant systems.

t6copy_blk(3NSL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

RETURN VALUES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

1046 man pages section 3: Library Functions • Last Revised 13 Feb 1997

t6dup_blk – Duplicate security attributes

cc [flags…] file … -lt6

#include <tsix/t6attrs.h>

t6attr_t t6dup_blk(const t6attr_t src);

t6dup_blk() allocates a new t6attr_t control structure and buffer space large
enough to hold the set of security attributes in the t6attr_t control structure src,
which is passed in as an argument. t6dup_blk() then copies that set of attributes
specified by src into the newly allocated structure. Upon successful completion, the
newly created t6attr_t handle is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

Upon successful completion, t6attr_t returns a new handle. If it is unable to
allocate sufficient memory for the new attributes, t6dup() returns NULL and sets
errno to an appropriate value.

ENOMEM Out of memory for allocation

libt6(3NSL), t6alloc_blk(3NSL)

attributes(5)

This man page is based on the version from the TSIX(RE) 1.1 Application
Programming Interface (API) document; and this interface is available in TSIX(RE)
1.1-API-compliant systems.

t6dup_blk(3NSL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

RETURN VALUES

DIAGNOSTICS

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 1047

t6ext_attr, t6new_attr – manipulate network-endpoint security options

cc [flags…] file … -lt6

#include <tsix/t6attrs.h>

int t6ext_attr(int fd, t6cmd_t cmd);

int t6new_attr(int fd, t6cmd_t cmd);

t6ext_attr() turns on extended security operations on the trusted IPC mechanism.
fd is the descriptor associated with the IPC mechanism. cmd must be either ON to turn
on extended operations or OFF to turn them off. When first created, the trusted IPC
mechanism appears the same as an untrusted IPC mechanism. The trusted mechanism
can be used in the same way to send and receive data as long as communications do
not violate the security policies of the system. Between systems that support
mandatory access control, for example, communications can occur only between
processes at the same sensitivity level. Before it allows a process to specify security
attributes or manipulate the endpoint’s security options, the network endpoint must
call t6ext_attr().

t6new_attr() with a cmd value of ON tells the underlying TSIX software that the
receiving process is interested in security attributes only if they differ from the last set
of attributes received. After this call, t6recvfrom(3NSL) returns valid security
attributes only when a change in the attributes is detected. This situation is indicated
by setting the t6recvfrom() parameter *new_mask to nonzero. When new attributes
are returned, the full set of requested attributes is returned, not just those that have
changed. When cmd is OFF, the default situation prevails: attributes are returned with
each call to t6recvfrom().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

libt6(3NSL), t6recvfrom(3NSL)

attributes(5)

In the Trusted Solaris environment, t6ext_attr() is a NULL function.

This man page is based on the version from the TSIX(RE) 1.1 Application
Programming Interface (API) document; and this interface is available in TSIX(RE)
1.1-API-compliant systems.

t6ext_attr(3NSL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

1048 man pages section 3: Library Functions • Last Revised 13 Feb 1997

t6alloc_blk, t6free_blk – Allocate and free security-attribute control structure and
buffer

cc [flags…] file … -lt6

#include <tsix/t6attrs.h>

t6attr_t t6alloc_blk(t6mask_t mask);

void t6free_blk(t6attr_t t6ctl);

t6alloc_blk() allocates a t6attr_t structure, which is an opaque handle used to
access the full set of security attributes supported on the system. See man pages for
t6get_attr(3NSL) and t6set_attr(3NSL) for more information on how generic
TSIX application programs can access security attributes referenced by t6attr_t
without knowing how references are built between the t6attr_t structure and the
sets of security attributes for each individual TSIX operating system vendor. If
t6alloc_blk() is successful, the opaque handle is returned that can be used to set
or get individual attributes to or from this control structure. t6alloc_blk()
allocates space in the control structure for all attributes specified in the mask
parameter.

t6free_blk() should be used in conjunction with t6alloc_blk() to free the
opaque control structure and any space within it.

Upon successful completion, t6alloc_blk() returns a pointer to the t6attr_t
structure. Upon failure, t6alloc_blk() returns a NULL pointer.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

libt6(3NSL), t6get_attr(3NSL), t6set_attr(3NSL)

attributes(5)

For generic TSIX applications, use t6free_blk() to free memory allocated by
t6alloc_blk() for better portability.

This man page is based on the version from the TSIX(RE) 1.1 Application
Programming Interface (API) document; this interface is available in TSIX(RE)
1.1-API-compliant systems.

t6free_blk(3NSL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

WARNINGS

NOTES

Introduction to Library Functions 1049

t6get_attr, t6set_attr – get security attributes from or set security attributes in the
security-attribute buffer handled by a control structure

cc [flags…] file … -lt6

#include <tsix/t6attrs.h>

void *t6get_attr(t6attr_id_t attr_type, const t6attr_t t6ctl);

int t6set_attr(t6attr_id_t attr_type, const void *attr_buf, t6attr_t
t6ctl);

t6get_attr() takes a control structure, t6ctl, and attribute type, attr_type, and
returns a pointer to the requested attribute value (type) from the opaque control
structure t6ctl. attr_type contains a number (defined in <tsix/t6attrs.h>) that
specifies which type of attribute the caller is interested in getting. Only one type can
be specified per call.

Returned value by t6get_attr() should be type cast to the standard type that
represents the type indicated by attr_type.

t6set_attr() replaces the requested attribute value (type) in t6ctl with the value to
which attr_buf points. The type of the attribute is specified in attr_type as one of the
numbers defined in <tsix/t6attrs.h>.

Upon successful completion, t6get_attr() returns a pointer to the appropriate
value if it exists in the attribute structure. Upon failure, t6get_attr() returns NULL.
t6set_attr() returns 0 if the attribute structure can contain the requested attribute;
if not, t6set_attr() returns −1 and does not change the attribute structure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

attributes(5)

In the Trusted Solaris environment, t6get_attr() returns values of these types:

au_id_t Audit ID

auditinfo_t Audit info

bclear_t Clearance

bslabel_t Sensitivity label

t6get_attr(3NSL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

1050 man pages section 3: Library Functions • Last Revised 1 May 2000

gid_t Effective group ID

gid_t Supplemental group IDs

pattr_t Process attributes

priv_set_t Effective privileges

sid_t Session ID

pid_t Process ID

uid_t Effective user ID

This man page is based on the version from the TSIX(RE) 1.1 Application
Programming Interface (API) document; and this interface is available in TSIX(RE)
1.1-API-compliant systems.

t6get_attr(3NSL)

Introduction to Library Functions 1051

t6get_endpt_mask, t6set_endpt_mask, t6get_endpt_default, t6set_endpt_default – get
and set endpoint mask, or get and set endpoint default attributes

cc [flags…] file … -lt6

#include <tsix/t6attrs.h>

int t6get_endpt_mask(int fd, t6mask_t *mask);

int t6set_endpt_mask(int fd, t6mask_t mask);

int t6get_endpt_default(int fd, t6mask_t *mask, t6attr_t attr_ptr);

int t6set_endpt_default(int fd, t6mask_t mask, const t6attr_t
attr_ptr);

The security extensions on the communication endpoint include a set of default
security attributes that may be applied to outgoing data and an attribute mask that
designates which attributes are taken from the endpoint’s default attributes and which
are taken from the process’ effective attributes.

By default, data written to an endpoint has associated with it the security attributes of
the process that wrote the data. However, a privileged process may change the value
of the default attribute mask on an endpoint the process had created, and the
endpoint’s default attributes.

t6get_endpt_mask() allows a process to obtain the current setting of the default
attribute mask for the endpoint specified by fd. The attribute mask is returned in the
parameter mask.

t6set_endpt_mask() allows a process to set the bit values of the default attribute
mask for the endpoint specified by fd to the value specified by mask. A bit value of 0
indicates the attribute is taken from the process’s effective attributes; and a bit value of
1 indicates the the attribute is taken from the endpoint’s default attributes.

t6get_endpt_default() allows a process to get the current setting of the default
attributes of the endpoint specified by fd. mask indicates which attributes are present in
the attr_ptr parameter. To access attr_ptr, see t6get_attr(3NSL).

t6set_endpt_default() allows a process to set the default attributes of the
endpoint specified by fd to the attributes specified by attr_ptr. mask indicates which
attributes are present in attr_ptr. To set up attr_ptr, see t6set_attr(3NSL).

Only a process with the appropriate override privileges can change the endpoint’s
attribute mask or default attributes. To change an endpoint’s default attribute or its
mask bit, a process must have the override privilege corresponding to the attribute.
The override privilege required to specify a default attribute is
implementation-specific.

See attributes(5) for descriptions of the following attributes:

t6get_endpt_default(3NSL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

1052 man pages section 3: Library Functions • Last Revised 29 Apr 1998

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

Upon successful completion, these calls return 0. If either call encounters an error, the
call returns –1.

libt6(3NSL), t6sendto(3NSL), t6set_attr(3NSL)

attributes(5)

This man page is based on the version from the TSIX(RE) 1.1 Application
Programming Interface (API) document; and this interface is available in TSIX(RE)
1.1-API-compliant systems.

t6get_endpt_default(3NSL)

RETURN VALUES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 1053

t6get_endpt_mask, t6set_endpt_mask, t6get_endpt_default, t6set_endpt_default – get
and set endpoint mask, or get and set endpoint default attributes

cc [flags…] file … -lt6

#include <tsix/t6attrs.h>

int t6get_endpt_mask(int fd, t6mask_t *mask);

int t6set_endpt_mask(int fd, t6mask_t mask);

int t6get_endpt_default(int fd, t6mask_t *mask, t6attr_t attr_ptr);

int t6set_endpt_default(int fd, t6mask_t mask, const t6attr_t
attr_ptr);

The security extensions on the communication endpoint include a set of default
security attributes that may be applied to outgoing data and an attribute mask that
designates which attributes are taken from the endpoint’s default attributes and which
are taken from the process’ effective attributes.

By default, data written to an endpoint has associated with it the security attributes of
the process that wrote the data. However, a privileged process may change the value
of the default attribute mask on an endpoint the process had created, and the
endpoint’s default attributes.

t6get_endpt_mask() allows a process to obtain the current setting of the default
attribute mask for the endpoint specified by fd. The attribute mask is returned in the
parameter mask.

t6set_endpt_mask() allows a process to set the bit values of the default attribute
mask for the endpoint specified by fd to the value specified by mask. A bit value of 0
indicates the attribute is taken from the process’s effective attributes; and a bit value of
1 indicates the the attribute is taken from the endpoint’s default attributes.

t6get_endpt_default() allows a process to get the current setting of the default
attributes of the endpoint specified by fd. mask indicates which attributes are present in
the attr_ptr parameter. To access attr_ptr, see t6get_attr(3NSL).

t6set_endpt_default() allows a process to set the default attributes of the
endpoint specified by fd to the attributes specified by attr_ptr. mask indicates which
attributes are present in attr_ptr. To set up attr_ptr, see t6set_attr(3NSL).

Only a process with the appropriate override privileges can change the endpoint’s
attribute mask or default attributes. To change an endpoint’s default attribute or its
mask bit, a process must have the override privilege corresponding to the attribute.
The override privilege required to specify a default attribute is
implementation-specific.

See attributes(5) for descriptions of the following attributes:

t6get_endpt_mask(3NSL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

1054 man pages section 3: Library Functions • Last Revised 29 Apr 1998

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

Upon successful completion, these calls return 0. If either call encounters an error, the
call returns –1.

libt6(3NSL), t6sendto(3NSL), t6set_attr(3NSL)

attributes(5)

This man page is based on the version from the TSIX(RE) 1.1 Application
Programming Interface (API) document; and this interface is available in TSIX(RE)
1.1-API-compliant systems.

t6get_endpt_mask(3NSL)

RETURN VALUES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 1055

t6peek_attr, t6last_attr – Examine the security attributes on the next or the previous
byte of data

cc [flags…] file … -lt6

#include <tsix/t6attrs.h>

int t6peek_attr(int fd, t6attr_t attr_ptr, t6mask_t *new_attrs);

int t6last_attr (int fd, t6attr_t attr_ptr, t6mask_t *new_attrs);

t6peek_attr() allows a process to peek ahead at the security attributes of the next
byte of data. fd is the descriptor of the endpoint; attr_ptr specifies a structure in which
to store those attributes the caller wishes to retrieve. new_attrs points to a mask that
indicates which attributes were actually retrieved on return from t6peek_attr().

t6last_attr() allows a process to retrieve the attributes of the last byte of data
read from the indicated file descriptor. The parameters for t6last_attr() are
identical to those for the t6peek_attr() routine.

If no messages are available at the socket, the examining call waits for a message to
arrive, unless the socket is non-blocking (see fcntl(2)), in which case –1 is returned
with the external variable errno set to EWOULDBLOCK.

In order to obtain audit ID, additional audit information, and supplementary group
IDs when using connectionless transports, connect(3SOCKET) must be used to
associate the peer network address with the local transport endpoint before calling
t6peek_attr() or t6last_attr().

Upon successful completion, these calls return 0, place the retrieved security attributes
in the t6attr_t structure, and set *new_attrs to the mask of those attributes actually
returned. If either call encounters an error, it returns −1. When they generate errors,
t6peek_attr() and t6last_attrs() set errno.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

libt6(3NSL), fcntl(2)

connect(3SOCKET), attributes(5)

This man page is based on the version from the TSIX(RE) 1.1 Application
Programming Interface (API) document; and this interface is available in TSIX(RE)
1.1-API-compliant systems.

t6last_attr(3NSL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

1056 man pages section 3: Library Functions • Last Revised 6 Oct 2000

t6ext_attr, t6new_attr – manipulate network-endpoint security options

cc [flags…] file … -lt6

#include <tsix/t6attrs.h>

int t6ext_attr(int fd, t6cmd_t cmd);

int t6new_attr(int fd, t6cmd_t cmd);

t6ext_attr() turns on extended security operations on the trusted IPC mechanism.
fd is the descriptor associated with the IPC mechanism. cmd must be either ON to turn
on extended operations or OFF to turn them off. When first created, the trusted IPC
mechanism appears the same as an untrusted IPC mechanism. The trusted mechanism
can be used in the same way to send and receive data as long as communications do
not violate the security policies of the system. Between systems that support
mandatory access control, for example, communications can occur only between
processes at the same sensitivity level. Before it allows a process to specify security
attributes or manipulate the endpoint’s security options, the network endpoint must
call t6ext_attr().

t6new_attr() with a cmd value of ON tells the underlying TSIX software that the
receiving process is interested in security attributes only if they differ from the last set
of attributes received. After this call, t6recvfrom(3NSL) returns valid security
attributes only when a change in the attributes is detected. This situation is indicated
by setting the t6recvfrom() parameter *new_mask to nonzero. When new attributes
are returned, the full set of requested attributes is returned, not just those that have
changed. When cmd is OFF, the default situation prevails: attributes are returned with
each call to t6recvfrom().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

libt6(3NSL), t6recvfrom(3NSL)

attributes(5)

In the Trusted Solaris environment, t6ext_attr() is a NULL function.

This man page is based on the version from the TSIX(RE) 1.1 Application
Programming Interface (API) document; and this interface is available in TSIX(RE)
1.1-API-compliant systems.

t6new_attr(3NSL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 1057

t6peek_attr, t6last_attr – Examine the security attributes on the next or the previous
byte of data

cc [flags…] file … -lt6

#include <tsix/t6attrs.h>

int t6peek_attr(int fd, t6attr_t attr_ptr, t6mask_t *new_attrs);

int t6last_attr (int fd, t6attr_t attr_ptr, t6mask_t *new_attrs);

t6peek_attr() allows a process to peek ahead at the security attributes of the next
byte of data. fd is the descriptor of the endpoint; attr_ptr specifies a structure in which
to store those attributes the caller wishes to retrieve. new_attrs points to a mask that
indicates which attributes were actually retrieved on return from t6peek_attr().

t6last_attr() allows a process to retrieve the attributes of the last byte of data
read from the indicated file descriptor. The parameters for t6last_attr() are
identical to those for the t6peek_attr() routine.

If no messages are available at the socket, the examining call waits for a message to
arrive, unless the socket is non-blocking (see fcntl(2)), in which case –1 is returned
with the external variable errno set to EWOULDBLOCK.

In order to obtain audit ID, additional audit information, and supplementary group
IDs when using connectionless transports, connect(3SOCKET) must be used to
associate the peer network address with the local transport endpoint before calling
t6peek_attr() or t6last_attr().

Upon successful completion, these calls return 0, place the retrieved security attributes
in the t6attr_t structure, and set *new_attrs to the mask of those attributes actually
returned. If either call encounters an error, it returns −1. When they generate errors,
t6peek_attr() and t6last_attrs() set errno.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

libt6(3NSL), fcntl(2)

connect(3SOCKET), attributes(5)

This man page is based on the version from the TSIX(RE) 1.1 Application
Programming Interface (API) document; and this interface is available in TSIX(RE)
1.1-API-compliant systems.

t6peek_attr(3NSL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

1058 man pages section 3: Library Functions • Last Revised 6 Oct 2000

t6recvfrom – read security attributes and data from a trusted endpoint

cc [flags…] file … -lsocket -lnsl -lt6 [library…]

#include <tsix/t6attrs.h>

ssize_t t6recvfrom(int sock, void *buffer, size_t len, int flags, struct
sockaddr *name, Psocklen_t namelenp, t6attr_t handle, t6mask_t
*new_mask);

t6recvfrom() receives data and its associated security attributes from a
communication endpoint. The name and namelenp parameters are used only if you
wish to receive the source address for the data. This information may not be
applicable for some trusted endpoints. If not used, these fields should be set to 0. If
name is not a NULL pointer, the source address of the message is filled in. namelenp is a
value-result parameter, initialized to the size of the buffer associated with name, and
modified on return to indicate the actual size of the address stored there. The length of
the message is returned. If a message is too long to fit in the supplied buffer, excess
bytes may be discarded depending on the type of socket from which the message is
received. (See socket(3SOCKET).)

The flags parameter is formed by ORing one or more of these values:

MSG_OOB Read any out-of-band data present on the socket rather than the
regular in-band data. If handle is not NULL, out-of-band data
security attributes are also retrieved.

MSG_PEEK Peek at the data present on the socket; the data is returned but not
consumed, so that a subsequent receive operation will see the
same data. If handle is not NULL, security attributes of the data are
also peeked.

handle specifies a control structure in which to store those attributes the caller wishes
to retrieve. To get an attribute from the control structure, see t6get_attr(3NSL). Any
attribute that the receiving process does not care to receive may not be specified in the
control structure. This selectivity minimizes the attribute-translation time when
passing the attributes out of the kernel.

If the t6new_attr(3NSL) call was made previously with a setting of ON, the security
attributes of the received data will be returned only if they have changed from the last
set read. *new_mask is set to the mask of those attributes actually returned. If new
attributes are detected, all attributes requested by the receiving process are returned,
not just those that have changed.

In order to obtain audit ID, additional audit information, and supplementary group
IDs when using connectionless transports, connect(3SOCKET) must be used to
associate the peer network address with the local transport endpoint before calling
t6recvfrom().

Upon success, t6recvfrom() returns the number of bytes read. Upon failure,
t6recvfrom() returns –1 and sets errno.

t6recvfrom(3NSL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Introduction to Library Functions 1059

Always checking the return value is critical. Revocation of access is possible if the
received data changes to a level not accessible to the receiving process.

The calls fail if any of these conditions is true:

EBADF sock is an invalid file descriptor.

EINTR The operation was interrupted by delivery of a signal before any
data was available to be received.

EIO An I/O error occurred while reading from or writing to the file
system.

ENOMEM There was insufficient user memory available for the operation to
complete.

ENOSR There were insufficient STREAMS resources available for the
operation to complete.

ENOTSOCK sock is not a socket.

ESTALE A stale NFS file handle exists.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

libt6(3NSL), t6get_attr(3NSL), t6sendto(3NSL), socket(3SOCKET)

connect(3SOCKET), attributes(5)

This man page is based on the version from the TSIX(RE) 1.1 Application
Programming Interface (API) document; and this interface is available in TSIX(RE)
1.1-API-compliant systems.

Only SOCK_STREAM sockets created in the AF_INET address family support
out-of-band data.

t6recvfrom(3NSL)

ERRORS

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

1060 man pages section 3: Library Functions • Last Revised 6 Oct 2000

t6sendto – specify security attributes to send with data on a trusted endpoint

cc [flags…] file … -lsocket -lnsl -lt6 [library…]

#include <tsix/t6attrs.h>

ssize_t t6sendto(int sock, const char *msg, size_t len, int flags,
const struct sockaddr *name, socklen_t namelen, const t6attr_t
handle);

t6sendto() allows a privileged process to specify the security attributes to send
with an IPC message. A process may specify only those attributes for which it
possesses the appropriate override privilege and need not specify a full set. Any
unspecified attributes are supplied by the kernel.

sock is a socket created with socket(3SOCKET). The address of the target is given by
name with namelen specifying its size. The length of the message is given by len.

The name pointer and namelen parameter are used only if you are specifying the
destination address; otherwise they should be set to 0. You may not specify the
address if the trusted endpoint was created for a connection-oriented protocol, such as
TCP. If the message is too long to pass atomically through the underlying protocol,
then the message is not transmitted and the error EMSGSIZE is returned.

A return value of –1 indicates locally detected errors only, not implicitly that the
message was not delivered.

The flags parameter is formed from the bitwise OR of zero or more of these values:

MSG_OOB Send out-of-band data and any security attributes
specified by a privileged process on sockets that
support this notion provided that the underlying
protocol also supports out-of-band data. Data and
attributes sent with this flag are typically not subject to
the internal buffering normally applied by the network
to improve network efficiency.

MSG_DONTROUTE The SO_DONTROUTE option is turned on for the
duration of the operation. This option is used only by
diagnostic or routing programs.

The security attributes are specified by the handle parameter. To set up handle, see
t6set_attr(3NSL).

Only a process with the appropriate override privileges can specify the security
attributes associated with the data it sends. To specify an attribute, a process must
have the override privilege corresponding to the attribute. The override privilege
required to specify an attribute is implementation specific. For Trusted Solaris, one or
more of these privileges may be required: PRIV_NET_DOWNGRADE_SL,
PRIV_NET_UPGRADE_SL, PRIV_NET_SETCLR, PRIV_NET_SETID,
PRIV_NET_SETPRIV, PRIV_NET_BROADCAST.

t6sendto(3NSL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 1061

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

Upon success, the return value is the number of bytes actually sent. Upon failure, the
call returns –1 and sets the error code in errno.

Always checking the return value is critical, for the addition of security means that
access to an endpoint may be revoked in response to a security violation.

t6sendto() fails if any of these conditions is true:

EBADF sock is an invalid file descriptor.

EDESTADDRREQ A destination address is not specified.

EINTR The operation was interrupted by delivery of a signal before any
data could be buffered to be sent.

EINVAL namelen is not the size of a valid address for the specified address
family.

EMSGSIZE The socket requires that message be sent atomically, and the
message was too long.

ENOMEM There was insufficient memory available to complete the
operation.

ENOSR There were insufficient STREAMS resources available for the
operation to complete.

ENOTSOCK sock is not a socket.

libt6(3NSL), t6set_attr(3NSL), t6set_endpt_default(3NSL),
socket(3SOCKET), Trusted Solaris Developer’s Guide

attributes(5)

This man page is based on the version from the TSIX(RE) 1.1 Application
Programming Interface (API) document; and this interface is available in TSIX(RE)
1.1-API-compliant systems.

Only SOCK_STREAM sockets created in the AF_INET address family support
out-of-band data.

t6sendto(3NSL)

ATTRIBUTES

RETURN VALUES

ERRORS

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual
NOTES

1062 man pages section 3: Library Functions • Last Revised 23 Feb 2001

t6get_attr, t6set_attr – get security attributes from or set security attributes in the
security-attribute buffer handled by a control structure

cc [flags…] file … -lt6

#include <tsix/t6attrs.h>

void *t6get_attr(t6attr_id_t attr_type, const t6attr_t t6ctl);

int t6set_attr(t6attr_id_t attr_type, const void *attr_buf, t6attr_t
t6ctl);

t6get_attr() takes a control structure, t6ctl, and attribute type, attr_type, and
returns a pointer to the requested attribute value (type) from the opaque control
structure t6ctl. attr_type contains a number (defined in <tsix/t6attrs.h>) that
specifies which type of attribute the caller is interested in getting. Only one type can
be specified per call.

Returned value by t6get_attr() should be type cast to the standard type that
represents the type indicated by attr_type.

t6set_attr() replaces the requested attribute value (type) in t6ctl with the value to
which attr_buf points. The type of the attribute is specified in attr_type as one of the
numbers defined in <tsix/t6attrs.h>.

Upon successful completion, t6get_attr() returns a pointer to the appropriate
value if it exists in the attribute structure. Upon failure, t6get_attr() returns NULL.
t6set_attr() returns 0 if the attribute structure can contain the requested attribute;
if not, t6set_attr() returns −1 and does not change the attribute structure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

libt6(3NSL), t6alloc_blk(3NSL), t6free_blk(3NSL)

attributes(5)

In the Trusted Solaris environment, t6get_attr() returns values of these types:

au_id_t Audit ID

auditinfo_t Audit info

bclear_t Clearance

bslabel_t Sensitivity label

t6set_attr(3NSL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 1063

gid_t Effective group ID

gid_t Supplemental group IDs

pattr_t Process attributes

priv_set_t Effective privileges

sid_t Session ID

pid_t Process ID

uid_t Effective user ID

This man page is based on the version from the TSIX(RE) 1.1 Application
Programming Interface (API) document; and this interface is available in TSIX(RE)
1.1-API-compliant systems.

t6set_attr(3NSL)

1064 man pages section 3: Library Functions • Last Revised 1 May 2000

t6get_endpt_mask, t6set_endpt_mask, t6get_endpt_default, t6set_endpt_default – get
and set endpoint mask, or get and set endpoint default attributes

cc [flags…] file … -lt6

#include <tsix/t6attrs.h>

int t6get_endpt_mask(int fd, t6mask_t *mask);

int t6set_endpt_mask(int fd, t6mask_t mask);

int t6get_endpt_default(int fd, t6mask_t *mask, t6attr_t attr_ptr);

int t6set_endpt_default(int fd, t6mask_t mask, const t6attr_t
attr_ptr);

The security extensions on the communication endpoint include a set of default
security attributes that may be applied to outgoing data and an attribute mask that
designates which attributes are taken from the endpoint’s default attributes and which
are taken from the process’ effective attributes.

By default, data written to an endpoint has associated with it the security attributes of
the process that wrote the data. However, a privileged process may change the value
of the default attribute mask on an endpoint the process had created, and the
endpoint’s default attributes.

t6get_endpt_mask() allows a process to obtain the current setting of the default
attribute mask for the endpoint specified by fd. The attribute mask is returned in the
parameter mask.

t6set_endpt_mask() allows a process to set the bit values of the default attribute
mask for the endpoint specified by fd to the value specified by mask. A bit value of 0
indicates the attribute is taken from the process’s effective attributes; and a bit value of
1 indicates the the attribute is taken from the endpoint’s default attributes.

t6get_endpt_default() allows a process to get the current setting of the default
attributes of the endpoint specified by fd. mask indicates which attributes are present in
the attr_ptr parameter. To access attr_ptr, see t6get_attr(3NSL).

t6set_endpt_default() allows a process to set the default attributes of the
endpoint specified by fd to the attributes specified by attr_ptr. mask indicates which
attributes are present in attr_ptr. To set up attr_ptr, see t6set_attr(3NSL).

Only a process with the appropriate override privileges can change the endpoint’s
attribute mask or default attributes. To change an endpoint’s default attribute or its
mask bit, a process must have the override privilege corresponding to the attribute.
The override privilege required to specify a default attribute is
implementation-specific.

See attributes(5) for descriptions of the following attributes:

t6set_endpt_default(3NSL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Introduction to Library Functions 1065

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

Upon successful completion, these calls return 0. If either call encounters an error, the
call returns –1.

libt6(3NSL), t6sendto(3NSL), t6set_attr(3NSL)

attributes(5)

This man page is based on the version from the TSIX(RE) 1.1 Application
Programming Interface (API) document; and this interface is available in TSIX(RE)
1.1-API-compliant systems.

t6set_endpt_default(3NSL)

RETURN VALUES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

1066 man pages section 3: Library Functions • Last Revised 29 Apr 1998

t6get_endpt_mask, t6set_endpt_mask, t6get_endpt_default, t6set_endpt_default – get
and set endpoint mask, or get and set endpoint default attributes

cc [flags…] file … -lt6

#include <tsix/t6attrs.h>

int t6get_endpt_mask(int fd, t6mask_t *mask);

int t6set_endpt_mask(int fd, t6mask_t mask);

int t6get_endpt_default(int fd, t6mask_t *mask, t6attr_t attr_ptr);

int t6set_endpt_default(int fd, t6mask_t mask, const t6attr_t
attr_ptr);

The security extensions on the communication endpoint include a set of default
security attributes that may be applied to outgoing data and an attribute mask that
designates which attributes are taken from the endpoint’s default attributes and which
are taken from the process’ effective attributes.

By default, data written to an endpoint has associated with it the security attributes of
the process that wrote the data. However, a privileged process may change the value
of the default attribute mask on an endpoint the process had created, and the
endpoint’s default attributes.

t6get_endpt_mask() allows a process to obtain the current setting of the default
attribute mask for the endpoint specified by fd. The attribute mask is returned in the
parameter mask.

t6set_endpt_mask() allows a process to set the bit values of the default attribute
mask for the endpoint specified by fd to the value specified by mask. A bit value of 0
indicates the attribute is taken from the process’s effective attributes; and a bit value of
1 indicates the the attribute is taken from the endpoint’s default attributes.

t6get_endpt_default() allows a process to get the current setting of the default
attributes of the endpoint specified by fd. mask indicates which attributes are present in
the attr_ptr parameter. To access attr_ptr, see t6get_attr(3NSL).

t6set_endpt_default() allows a process to set the default attributes of the
endpoint specified by fd to the attributes specified by attr_ptr. mask indicates which
attributes are present in attr_ptr. To set up attr_ptr, see t6set_attr(3NSL).

Only a process with the appropriate override privileges can change the endpoint’s
attribute mask or default attributes. To change an endpoint’s default attribute or its
mask bit, a process must have the override privilege corresponding to the attribute.
The override privilege required to specify a default attribute is
implementation-specific.

See attributes(5) for descriptions of the following attributes:

t6set_endpt_mask(3NSL)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Introduction to Library Functions 1067

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

Upon successful completion, these calls return 0. If either call encounters an error, the
call returns –1.

libt6(3NSL), t6sendto(3NSL), t6set_attr(3NSL)

attributes(5)

This man page is based on the version from the TSIX(RE) 1.1 Application
Programming Interface (API) document; and this interface is available in TSIX(RE)
1.1-API-compliant systems.

t6set_endpt_mask(3NSL)

RETURN VALUES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

1068 man pages section 3: Library Functions • Last Revised 29 Apr 1998

t6size_attr – Get the size of a particular attribute from the control structure

cc [flags…] file … -lt6

#include <tsix/t6attrs.h>

int t6size_attr(t6attr_id_t attr_type, const t6attr_t t6ctl);

t6size_attr() returns the size of an attribute indicated by attr_type.

If the t6attr_t control structure t6ctl is a NULL pointer, t6size_attr() returns
either the size of a fixed-size attribute or the maximum size of a variable-size attribute.
If the attr_type is invalid, t6size_attr() returns 0.

If the t6attr_t control structure t6ctl is not NULL, t6size_attr() returns either
the size of a fixed-size attribute or the actual size occupied by a variable-size attribute
in the control structure t6ctl. If the attr_type is invalid or not in the t6ctl,
t6size_attr() returns 0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

t6copy_blk(3NSL), t6dup_blk(3NSL)

attributes(5)

This man page is based on the version from the TSIX(RE) 1.1 Application
Programming Interface (API) document; and this interface is available in TSIX(RE)
1.1-API-compliant systems.

t6size_attr(3NSL)

NAME

SYNOPSIS

RETURN VALUES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 1069

t_accept – Accept a connection request

#include <xti.h>

int t_accept(int fd, int resfd, const struct t_call *call);

This routine is part of the XTI interfaces that evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are
supported for compatibility. When using a TLI routine that has the same name as an
XTI routine, a different header file, <tiuser.h>, must be used. Refer to the TLI
COMPATIBILITY section for a description of differences between the two interfaces.

This function is issued by a transport user to accept a connection request. The
parameter fd identifies the local transport endpoint where the connection indication
arrived; resfd specifies the local transport endpoint where the connection is to be
established, and call contains information required by the transport provider to
complete the connection. The parameter call points to a t_call structure which
contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;In call, addr is the protocol address of the calling transport user, opt
indicates any options associated with the connection, udata points to any user data to
be returned to the caller, and sequence is the value returned by t_listen(3NSL) that
uniquely associates the response with a previously received connection indication. The
address of the caller, addr may be null (length zero). Where addr is not null then it may
optionally be checked by XTI.

A transport user may accept a connection on either the same, or on a different, local
transport endpoint than the one on which the connection indication arrived. Before the
connection can be accepted on the same endpoint (resfd==fd), the user must have
responded to any previous connection indications received on that transport endpoint
by means of t_accept() or t_snddis(3NSL). Otherwise, t_accept() will fail and
set t_errno to TINDOUT.

If a different transport endpoint is specified (resfd!=fd), then the user may or may not
choose to bind the endpoint before the t_accept() is issued. If the endpoint is not
bound prior to the t_accept(), the endpoint must be in the T_UNBND state before
the t_accept() is issued, and the transport provider will automatically bind it to an
address that is appropriate for the protocol concerned. If the transport user chooses to
bind the endpoint it must be bound to a protocol address with a qlen of zero and must
be in the T_IDLE state before the t_accept() is issued.

Responding endpoints should be supplied to t_accept() in the state T_UNBND.

The call to t_accept() may fail with t_errno set to TLOOK if there are indications (for
example connect or disconnect) waiting to be received on endpoint fd. Applications
should be prepared for such a failure.

t_accept(3NSL)

NAME

SYNOPSIS

DESCRIPTION

1070 man pages section 3: Library Functions • Last Revised 1 May 1998

The udata argument enables the called transport user to send user data to the caller
and the amount of user data must not exceed the limits supported by the transport
provider as returned in the connect field of the info argument of t_open(3NSL) or
t_getinfo(3NSL). If the len field of udata is zero, no data will be sent to the caller. All
the maxlen fields are meaningless.

When the user does not indicate any option (call→opt.len = 0) the connection shall be
accepted with the option values currently set for the responding endpoint resfd.

t_accept() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

fd: T_INCON
resfd (fd!=resfd): T_IDLE, T_UNBND

On failure, t_errno is set to one of the following:

TACCES The user does not have permission to accept a
connection on the responding transport endpoint or to
use the specified options.

TBADADDR The specified protocol address was in an incorrect
format or contained illegal information.

TBADDATA The amount of user data specified was not within the
bounds allowed by the transport provider.

TBADF The file descriptor fd or resfd does not refer to a
transport endpoint.

TBADOPT The specified options were in an incorrect format or
contained illegal information.

TBADSEQ Either an invalid sequence number was specified, or a
valid sequence number was specified but the
connection request was aborted by the peer. In the
latter case, its T_DISCONNECT event will be received
on the listening endpoint.

TINDOUT The function was called with fd==resfd but there are
outstanding connection indications on the endpoint.
Those other connection indications must be handled
either by rejecting them by means of t_snddis(3NSL)
or accepting them on a different endpoint by means of
t_accept().

TLOOK An asynchronous event has occurred on the transport
endpoint referenced by fd and requires immediate
attention.

t_accept(3NSL)

RETURN VALUES

VALID STATES

ERRORS

Introduction to Library Functions 1071

TNOTSUPPORT This function is not supported by the underlying
transport provider.

TOUTSTATE The communications endpoint referenced by fd or resfd
is not in one of the states in which a call to this function
is valid.

TPROTO This error indicates that a communication problem has
been detected between XTI and the transport provider
for which there is no other suitable XTI error
(t_errno).

TPROVMISMATCH The file descriptors fd and resfd do not refer to the same
transport provider.

TRESADDR This transport provider requires both fd and resfd to be
bound to the same address. This error results if they are
not.

TRESQLEN The endpoint referenced by resfd (where resfd != fd) was
bound to a protocol address with a qlen that is greater
than zero.

TSYSERR A system error has occurred during execution of this
function.

The XTI and TLI interface definitions have common names but use different header
files. This, and other semantic differences between the two interfaces are described in
the subsections below.

The XTI interfaces use the header file, <xti.h>. TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

The t_errno values that can be set by the XTI interface and cannot be set by the TLI
interface are:

TPROTO
TINDOUT
TPROVMISMATCH
TRESADDR
TRESQLEN

The format of the options in an opt buffer is dictated by the transport provider. Unlike
the XTI interface, the TLI interface does not specify the buffer format.

For more information refer to the Transport Interfaces Programming Guide

See attributes(5) for descriptions of the following attributes:

t_accept(3NSL)

TLI
COMPATIBILITY

Interface Header

Error Description
Values

Option Buffer

ATTRIBUTES

1072 man pages section 3: Library Functions • Last Revised 1 May 1998

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

If the calling process possesses the PRIV_NET_MAC_READ privilege and the socket has
been bound to a multilevel port (MLP), the connection is accepted on a MLP;
otherwise, the connection is accepted on a single-level port (SLP). See
bind(3SOCKET) for more information.

bind(3SOCKET), t_optmgmt(3NSL), t_bind(3NSL)

t_connect(3NSL), t_getinfo(3NSL), t_getstate(3NSL), t_listen(3NSL),
t_open(3NSL), t_rcvconnect(3NSL), t_snddis(3NSL), attributes(5)

Transport Interfaces Programming Guide

There may be transport provider-specific restrictions on address binding.

Some transport providers do not differentiate between a connection indication and the
connection itself. If the connection has already been established after a successful
return of t_listen(3NSL), t_accept() will assign the existing connection to the
transport endpoint specified by resfd.

t_accept(3NSL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

WARNINGS

Introduction to Library Functions 1073

t_bind – Bind an address to a transport endpoint

#include <xti.h>

int t_bind(int fd, const struct t_bind *req, struct t_bind *ret);

This routine is part of the XTI interfaces that evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are
supported for compatibility. When using a TLI routine that has the same name as an
XTI routine, the <tiuser.h> header file must be used. Refer to the TLI
COMPATIBILITY section for a description of differences between the two interfaces.

This function associates a protocol address with the transport endpoint specified by fd
and activates that transport endpoint. In connection mode, the transport provider may
begin enqueuing incoming connect indications, or servicing a connection request on
the transport endpoint. In connectionless mode, the transport user may send or
receive data units through the transport endpoint.

The req and ret arguments point to a t_bind structure containing the following
members:

struct netbuf addr;
unsigned qlen;

The addr field of the t_bind structure specifies a protocol address, and the qlen field is
used to indicate the maximum number of outstanding connection indications.

The parameter req is used to request that an address, represented by the netbuf
structure, be bound to the given transport endpoint. The parameter len specifies the
number of bytes in the address, and buf points to the address buffer. The parameter
maxlen has no meaning for the req argument. On return, ret contains an encoding for
the address that the transport provider actually bound to the transport endpoint; if an
address was specified in req, this will be an encoding of the same address. In ret, the
user specifies maxlen, which is the maximum size of the address buffer, and buf which
points to the buffer where the address is to be placed. On return, len specifies the
number of bytes in the bound address, and buf points to the bound address. If maxlen
equals zero, no address is returned. If maxlen is greater than zero and less than the
length of the address, t_bind() fails with t_errno set to TBUFOVFLW.

If the requested address is not available, t_bind() will return –1 with t_errno set
as appropriate. If no address is specified in req (the len field of addr in req is zero or req
is NULL), the transport provider will assign an appropriate address to be bound, and
will return that address in the addr field of ret. If the transport provider could not
allocate an address, t_bind() will fail with t_errno set to TNOADDR.

The parameter req may be a null pointer if the user does not wish to specify an address
to be bound. Here, the value of qlen is assumed to be zero, and the transport provider
will assign an address to the transport endpoint. Similarly, ret may be a null pointer if
the user does not care what address was bound by the provider and is not interested

t_bind(3NSL)

NAME

SYNOPSIS

DESCRIPTION

1074 man pages section 3: Library Functions • Last Revised 7 May 1998

in the negotiated value of qlen. It is valid to set req and ret to the null pointer for the
same call, in which case the provider chooses the address to bind to the transport
endpoint and does not return that information to the user.

The qlen field has meaning only when initializing a connection-mode service. It
specifies the number of outstanding connection indications that the transport provider
should support for the given transport endpoint. An outstanding connection
indication is one that has been passed to the transport user by the transport provider
but which has not been accepted or rejected. A value of qlen greater than zero is only
meaningful when issued by a passive transport user that expects other users to call it.
The value of qlen will be negotiated by the transport provider and may be changed if
the transport provider cannot support the specified number of outstanding connection
indications. However, this value of qlen will never be negotiated from a requested
value greater than zero to zero. This is a requirement on transport providers; see
WARNINGS below. On return, the qlen field in ret will contain the negotiated value.

If fd refers to a connection-mode service, this function allows more than one transport
endpoint to be bound to the same protocol address. But it is not possible to bind more
than one protocol address to the same transport endpoint. However, the transport
provider must also support this capability. If a user binds more than one transport
endpoint to the same protocol address, only one endpoint can be used to listen for
connection indications associated with that protocol address. In other words, only one
t_bind() for a given protocol address may specify a value of qlen greater than zero.
In this way, the transport provider can identify which transport endpoint should be
notified of an incoming connection indication. If a user attempts to bind a protocol
address to a second transport endpoint with a value of qlen greater than zero,
t_bind() will return –1 and set t_errno to TADDRBUSY. When a user accepts a
connection on the transport endpoint that is being used as the listening endpoint, the
bound protocol address will be found to be busy for the duration of the connection,
until a t_unbind(3NSL) or t_close(3NSL) call has been issued. No other transport
endpoints may be bound for listening on that same protocol address while that initial
listening endpoint is active (in the data transfer phase or in the T_IDLE state). This
will prevent more than one transport endpoint bound to the same protocol address
from accepting connection indications.

If fd refers to connectionless mode service, this function allows for more than one
transport endpoint to be associated with a protocol address, where the underlying
transport provider supports this capability (often in conjunction with value of a
protocol-specific option). If a user attempts to bind a second transport endpoint to an
already bound protocol address when such capability is not supported for a transport
provider, t_bind() will return −1 and set t_errno to TADDRBUSY.

t_bind() returns:

0 On success.

−1 On failure, and sets t_errno to indicate the error.

T_UNBND

t_bind(3NSL)

RETURN VALUES

VALID STATES

Introduction to Library Functions 1075

On failure, t_errno is set to one of the following:

TACCES The user does not have permission to use the specified address.

TADDRBUSY The requested address is in use.

TBADADDR The specified protocol address was in an incorrect format or
contained illegal information.

TBADF The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW The number of bytes allowed for an incoming argument (maxlen) is
greater than 0 but not sufficient to store the value of that argument.
The provider’s state will change to T_IDLE and the information to
be returned in ret will be discarded.

TOUTSTATE The communications endpoint referenced by fd is not in one of the
states in which a call to this function is valid.

TNOADDR The transport provider could not allocate an address.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which there is
no other suitable XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header
files. This, and other semantic differences between the two interfaces are described in
the subsections below.

The XTI interfaces use the header file, <xti.h>. TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

The user can compare the addresses in req and ret to determine whether the transport
provider bound the transport endpoint to a different address than that requested.

The t_errno values TPROTO and TADDRBUSY can be set by the XTI interface but
cannot be set by the TLI interface.

A t_errno value that this routine can return under different circumstances than its
XTI counterpart is TBUFOVFLW. It can be returned even when the maxlen field of the
corresponding buffer has been set to zero.

For more information refer to the Transport Interfaces Programming Guide

See attributes(5) for descriptions of the following attributes:

t_bind(3NSL)

ERRORS

TLI
COMPATIBILITY

Interface Header

Address Bound

Error Description
Values

ATTRIBUTES

1076 man pages section 3: Library Functions • Last Revised 7 May 1998

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

If the calling process possesses the PRIV_NET_MAC_READ privilege, the socket is
bound to a multilevel port (MLP); otherwise, the connection is bound to a single-level
port (SLP). See bind(3SOCKET) for more information.

bind(3SOCKET), t_accept(3NSL)

t_alloc(3NSL), t_close(3NSL), t_connect(3NSL), t_unbind(3NSL),
attributes(5)

The requirement that the value of qlen never be negotiated from a requested value
greater than zero to zero implies that transport providers, rather than the XTI
implementation itself, accept this restriction.

An implementation need not allow an application explicitly to bind more than one
communications endpoint to a single protocol address, while permitting more than
one connection to be accepted to the same protocol address. That means that although
an attempt to bind a communications endpoint to some address with qlen=0 might be
rejected with TADDRBUSY, the user may nevertheless use this (unbound) endpoint as a
responding endpoint in a call to t_accept(3NSL). To become independent of such
implementation differences, the user should supply unbound responding endpoints to
t_accept(3NSL).

The local address bound to an endpoint may change as result of a t_accept(3NSL) or
t_connect(3NSL) call. Such changes are not necessarily reversed when the
connection is released.

t_bind(3NSL)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

WARNINGS

Introduction to Library Functions 1077

t_optmgmt – Manage options for a transport endpoint

#include <xti.h>

int t_optmgmt(int fd, const struct t_optmgmt *req, struct t_optmgmt
*ret);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are
supported for compatibility. When using a TLI routine that has the same name as an
XTI routine, the <tiuser.h> header file must be used. Refer to the TLI
COMPATIBILITY section for a description of differences between the two interfaces.

The t_optmgmt() function enables a transport user to retrieve, verify or negotiate
protocol options with the transport provider. The argument fd identifies a transport
endpoint.

The req and ret arguments point to a t_optmgmt structure containing the following
members:

struct netbuf opt;
t_scalar_t flags;The opt field identifies protocol options and the flags field is
used to specify the action to take with those options.

The options are represented by a netbuf structure in a manner similar to the address
in t_bind(3NSL). The argument req is used to request a specific action of the provider
and to send options to the provider. The argument len specifies the number of bytes in
the options, buf points to the options buffer, and maxlen has no meaning for the req
argument. The transport provider may return options and flag values to the user
through ret. For ret, maxlen specifies the maximum size of the options buffer and buf
points to the buffer where the options are to be placed. If maxlen in ret is set to zero, no
options values are returned. On return, len specifies the number of bytes of options
returned. The value in maxlen has no meaning for the req argument, but must be set in
the ret argument to specify the maximum number of bytes the options buffer can hold.

Each option in the options buffer is of the form struct t_opthdr possibly followed
by an option value.

The level field of struct t_opthdr identifies the XTI level or a protocol of the
transport provider. The name field identifies the option within the level, and len
contains its total length; that is, the length of the option header t_opthdr plus the
length of the option value. If t_optmgmt() is called with the action T_NEGOTIATE
set, the status field of the returned options contains information about the success or
failure of a negotiation.

Several options can be concatenated. The option user has, however to ensure that each
options header and value part starts at a boundary appropriate for the
architecture-specific alignment rules. The macros T_OPT_FIRSTHDR(nbp),
T_OPT_NEXTHDR(nbp,tohp), T_OPT_DATA(tohp) are provided for that purpose.

t_optmgmt(3NSL)

NAME

SYNOPSIS

DESCRIPTION

1078 man pages section 3: Library Functions • Last Revised 7 May 1998

T_OPT_DATA(nhp)
If argument is a pointer to a t_opthdr structure, this macro returns an unsigned
character pointer to the data associated with the t_opthdr.

T_OPT_NEXTHDR(nbp,tohp)
If the first argument is a pointer to a netbuf structure associated with an option
buffer and second argument is a pointer to a t_opthdr structure within that
option buffer, this macro returns a pointer to the next t_opthdr structure or a null
pointer if this t_opthdr is the last t_opthdr in the option buffer.

T_OPT_FIRSTHDR(nbp)
If the argument is a pointer to a netbuf structure associated with an option buffer,
this macro returns the pointer to the first t_opthdr structure in the associated
option buffer, or a null pointer if there is no option buffer associated with this
netbuf or if it is not possible or the associated option buffer is too small to
accommodate even the first aligned option header.

T_OPT_FIRSTHDR is useful for finding an appropriately aligned start of the option
buffer. T_OPT_NEXTHDR is useful for moving to the start of the next appropriately
aligned option in the option buffer. Note that T_OPT_NEXTHDR is also available for
backward compatibility requirements. T_OPT_DATA is useful for finding the start of
the data part in the option buffer where the contents of its values start on an
appropriately aligned boundary.

If the transport user specifies several options on input, all options must address the
same level.

If any option in the options buffer does not indicate the same level as the first
option, or the level specified is unsupported, then the t_optmgmt() request will
fail with TBADOPT. If the error is detected, some options have possibly been
successfully negotiated. The transport user can check the current status by calling
t_optmgmt() with the T_CURRENT flag set.

The flags field of req must specify one of the following actions:

T_NEGOTIATE
This action enables the transport user to negotiate option values.

The user specifies the options of interest and their values in the buffer specified by
req→opt.buf and req→opt.len. The negotiated option values are returned in the buffer
pointed to by ret->opt.buf. The status field of each returned option is set to indicate
the result of the negotiation. The value is T_SUCCESS if the proposed value was
negotiated, T_PARTSUCCESS if a degraded value was negotiated, T_FAILURE if
the negotiation failed (according to the negotiation rules), T_NOTSUPPORT if the
transport provider does not support this option or illegally requests negotiation of a
privileged option, and T_READONLY if modification of a read-only option was
requested. If the status is T_SUCCESS, T_FAILURE, T_NOTSUPPORT or
T_READONLY, the returned option value is the same as the one requested on input.

The overall result of the negotiation is returned in ret→flags.

t_optmgmt(3NSL)

Introduction to Library Functions 1079

This field contains the worst single result, whereby the rating is done according to
the order T_NOTSUPPORT, T_READONLY, T_FAILURE, T_PARTSUCCESS,
T_SUCCESS. The value T_NOTSUPPORT is the worst result and T_SUCCESS is the
best.

For each level, the option T_ALLOPT can be requested on input. No value is given
with this option; only the t_opthdr part is specified. This input requests to
negotiate all supported options of this level to their default values. The result is
returned option by option in ret→opt.buf. Note that depending on the state of the
transport endpoint, not all requests to negotiate the default value may be
successful.

T_CHECK
This action enables the user to verify whether the options specified in req are
supported by the transport provider. If an option is specified with no option value
(it consists only of a t_opthdr structure), the option is returned with its status field
set to T_SUCCESS if it is supported, T_NOTSUPPORT if it is not or needs additional
user privileges, and T_READONLY if it is read-only (in the current XTI state). No
option value is returned.

If an option is specified with an option value, the status field of the returned option
has the same value, as if the user had tried to negotiate this value with
T_NEGOTIATE. If the status is T_SUCCESS, T_FAILURE, T_NOTSUPPORT or
T_READONLY, the returned option value is the same as the one requested on input.

The overall result of the option checks is returned in ret→flags. This field contains
the worst single result of the option checks, whereby the rating is the same as for
T_NEGOTIATE.

Note that no negotiation takes place. All currently effective option values remain
unchanged.

T_DEFAULT
This action enables the transport user to retrieve the default option values. The user
specifies the options of interest in req→opt.buf. The option values are irrelevant and
will be ignored; it is sufficient to specify the t_opthdr part of an option only. The
default values are then returned in ret→opt.buf.

The status field returned is T_NOTSUPPORT if the protocol level does not support
this option or the transport user illegally requested a privileged option,
T_READONLY if the option is read-only, and set to T_SUCCESS in all other cases.
The overall result of the request is returned in ret→flags. This field contains the
worst single result, whereby the rating is the same as for T_NEGOTIATE.

For each level, the option T_ALLOPT can be requested on input. All supported
options of this level with their default values are then returned. In this case,
ret→opt.maxlen must be given at least the value info→options before the call. See
t_getinfo(3NSL) and t_open(3NSL).

t_optmgmt(3NSL)

1080 man pages section 3: Library Functions • Last Revised 7 May 1998

T_CURRENT
This action enables the transport user to retrieve the currently effective option
values. The user specifies the options of interest in req→opt.buf. The option values
are irrelevant and will be ignored; it is sufficient to specifiy the t_opthdr part of
an option only. The currently effective values are then returned in req→opt.buf.

The status field returned is T_NOTSUPPORT if the protocol level does not support
this option or the transport user illegally requested a privileged option,
T_READONLY if the option is read-only, and set to T_SUCCESS in all other cases.
The overall result of the request is returned in ret→flags. This field contains the
worst single result, whereby the rating is the same as for T_NEGOTIATE.

For each level, the option T_ALLOPT can be requested on input. All supported
options of this level with their currently effective values are then returned.

The option T_ALLOPT can only be used with t_optmgmt() and the actions
T_NEGOTIATE, T_DEFAULT and T_CURRENT. It can be used with any supported
level and addresses all supported options of this level. The option has no value; it
consists of a t_opthdr only. Since in a t_optmgmt() call only options of one level
may be addressed, this option should not be requested together with other options.
The function returns as soon as this option has been processed.

Options are independently processed in the order they appear in the input option
buffer. If an option is multiply input, it depends on the implementation whether it
is multiply output or whether it is returned only once.

Transport providers may not be able to provide an interface capable of supporting
T_NEGOTIATE and/or T_CHECK functionalities. When this is the case, the error
TNOTSUPPORT is returned.

The function t_optmgmt() may block under various circumstances and
depending on the implementation. The function will block, for instance, if the
protocol addressed by the call resides on a separate controller. It may also block due
to flow control constraints; that is, if data sent previously across this transport
endpoint has not yet been fully processed. If the function is interrupted by a signal,
the option negotiations that have been done so far may remain valid. The behavior
of the function is not changed if O_NONBLOCK is set.

t_optmgmt() returns:

0 On success.

−1 On failure, and sets t_errno to indicate the error.

ALL - apart from T_UNINIT.

On failure, t_errno is set to one of the following:

TBADF The specified file descriptor does not refer to a transport endpoint.

TBADFLAG An invalid flag was specified.

t_optmgmt(3NSL)

RETURN VALUES

VALID STATES

ERRORS

Introduction to Library Functions 1081

TBADOPT The specified options were in an incorrect format or contained
illegal information.

TBUFOVFLW The number of bytes allowed for an incoming argument (maxlen) is
greater than 0 but not sufficient to store the value of that
argument. The information to be returned in ret will be discarded.

TNOTSUPPORT This action is not supported by the transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the
states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which there is
no other suitable XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function, or
the specified option requires PRIV_NET_RAWACCESS privilege.

The XTI and TLI interface definitions have common names but use different header
files. This, and other semantic differences between the two interfaces are described in
the subsections below.

The XTI interfaces use the header file, <xti.h>. TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

The t_errno value TPROTO can be set by the XTI interface but not by the TLI
interface.

The t_errno values that this routine can return under different circumstances than its
XTI counterpart are TACCES and TBUFOVFLW.

TACCES can be returned to indicate that the user does not have permission
to negotiate the specified options.

TBUFOVFLW can be returned even when the maxlen field of the corresponding
buffer has been set to zero.

The format of the options in an opt buffer is dictated by the transport provider. Unlike
the XTI interface, the TLI interface does not fix the buffer format. The macros
T_OPT_DATA, T_OPT_NEXTHDR, and T_OPT_FIRSTHDR described for XTI are not
available for use by TLI interfaces.

The semantic meaning of various action values for the flags field of req differs between
the TLI and XTI interfaces. TLI interface users should heed the following descriptions
of the actions:

T_NEGOTIATE This action enables the user to negotiate the values of the options
specified in req with the transport provider. The provider will

t_optmgmt(3NSL)

TLI
COMPATIBILITY

Interface Header

Error Description
Values

Option Buffers

Actions

1082 man pages section 3: Library Functions • Last Revised 7 May 1998

evaluate the requested options and negotiate the values, returning
the negotiated values through ret.

T_CHECK This action enables the user to verify whether the options specified
in req are supported by the transport provider. On return, the flags
field of ret will have either T_SUCCESS or T_FAILURE set to
indicate to the user whether the options are supported. These flags
are only meaningful for the T_CHECK request.

T_DEFAULT This action enables a user to retrieve the default options supported
by the transport provider into the opt field of ret. In req, the len
field of opt must be zero and the buf field may be NULL.

If issued as part of the connectionless-mode service, t_optmgmt() may block due to
flow control constraints. The function will not complete until the transport provider
has processed all previously sent data units.

For more information refer to the Transport Interfaces Programming Guide

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

A process must have the PRIV_NET_RAWACCESS privilege in order to specify IP
options 130 or 134. The former refers to the RIPSO Basic Security Option and the later
refers to the CIPSO option.

t_accept(3NSL), t_bind(3NSL)

close(2), poll(2), select(3C), t_alloc(3NSL), t_close(3NSL),
t_connect(3NSL), t_getinfo(3NSL), t_listen(3NSL), t_open(3NSL),
t_rcv(3NSL), t_rcvconnect(3NSL), t_rcvudata(3NSL), t_snddis(3NSL),
attributes(5)

Transport Interfaces Programming Guide

t_optmgmt(3NSL)

Connectionless-Mode

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

Introduction to Library Functions 1083

t_snd – Send data or expedited data over a connection

#include <xti.h>

int t_snd(int fd, void *buf, unsigned int nbytes, int flags);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are
supported for compatibility. When using a TLI routine that has the same name as an
XTI routine, the <tiuser.h> header file must be used. Refer to the TLI
COMPATIBILITY section for a description of differences between the two interfaces.

This function is used to send either normal or expedited data. The argument fd
identifies the local transport endpoint over which data should be sent, buf points to the
user data, nbytes specifies the number of bytes of user data to be sent, and flags
specifies any optional flags described below:

T_EXPEDITED If set in flags, the data will be sent as expedited data and will be
subject to the interpretations of the transport provider.

T_MORE If set in flags, this indicates to the transport provider that the
transport service data unit (TSDU) (or expedited transport service
data unit - ETSDU) is being sent through multiple t_snd() calls.
Each t_snd() with the T_MORE flag set indicates that another
t_snd() will follow with more data for the current TSDU (or
ETSDU).

The end of the TSDU (or ETSDU) is identified by a t_snd() call
with the T_MORE flag not set. Use of T_MORE enables a user to
break up large logical data units without losing the boundaries of
those units at the other end of the connection. The flag implies
nothing about how the data is packaged for transfer below the
transport interface. If the transport provider does not support the
concept of a TSDU as indicated in the info argument on return
from t_open(3NSL) or t_getinfo(3NSL), the T_MORE flag is not
meaningful and will be ignored if set.

The sending of a zero-length fragment of a TSDU or ETSDU is
only permitted where this is used to indicate the end of a TSDU or
ETSDU; that is, when the T_MORE flag is not set. Some transport
providers also forbid zero-length TSDUs and ETSDUs.

T_PUSH If set in flags, requests that the provider transmit all data that it has
accumulated but not sent. The request is a local action on the
provider and does not affect any similarly named protocol flag (for
example, the TCP PUSH flag). This effect of setting this flag is
protocol-dependent, and it may be ignored entirely by transport
providers which do not support the use of this feature.

t_snd(3NSL)

NAME

SYNOPSIS

DESCRIPTION

1084 man pages section 3: Library Functions • Last Revised 7 May 1998

Note that the communications provider is free to collect data in a send buffer until it
accumulates a sufficient amount for transmission.

By default, t_snd() operates in synchronous mode and may wait if flow control
restrictions prevent the data from being accepted by the local transport provider at the
time the call is made. However, if O_NONBLOCK is set by means of t_open(3NSL) or
fcntl(2), t_snd() will execute in asynchronous mode, and will fail immediately if
there are flow control restrictions. The process can arrange to be informed when the
flow control restrictions are cleared by means of either t_look(3NSL) or the EM
interface.

On successful completion, t_snd() returns the number of bytes (octets) accepted by
the communications provider. Normally this will equal the number of octets specified
in nbytes. However, if O_NONBLOCK is set or the function is interrupted by a signal, it
is possible that only part of the data has actually been accepted by the
communications provider. In this case, t_snd() returns a value that is less than the
value of nbytes. If t_snd() is interrupted by a signal before it could transfer data to
the communications provider, it returns −1 with t_errno set to TSYSERR and errno
set to EINTR.

If nbytes is zero and sending of zero bytes is not supported by the underlying
communications service, t_snd() returns −1 with t_errno set to TBADDATA.

The size of each TSDU or ETSDU must not exceed the limits of the transport provider
as specified by the current values in the TSDU or ETSDU fields in the info argument
returned by t_getinfo(3NSL).

The error TLOOK is returned for asynchronous events. It is required only for an
incoming disconnect event but may be returned for other events.

On successful completion, t_snd() returns the number of bytes accepted by the
transport provider. Otherwise, −1 is returned on failure and t_errno is set to indicate
the error.

Note that if the number of bytes accepted by the communications provider is less than
the number of bytes requested, this may either indicate that O_NONBLOCK is set and
the communications provider is blocked due to flow control, or that O_NONBLOCK is
clear and the function was interrupted by a signal.

On failure, t_errno is set to one of the following:

TBADDATA Illegal amount of data:

� A single send was attempted specifying a TSDU (ETSDU) or
fragment TSDU (ETSDU) greater than that specified by the
current values of the TSDU or ETSDU fields in the info
argument.

� A send of a zero byte TSDU (ETSDU) or zero byte fragment of a
TSDU (ETSDU) is not supported by the provider.

t_snd(3NSL)

RETURN VALUES

ERRORS

Introduction to Library Functions 1085

� Multiple sends were attempted resulting in a TSDU (ETSDU)
larger than that specified by the current value of the TSDU or
ETSDU fields in the info argument – the ability of an XTI
implementation to detect such an error case is
implementation-dependent. See WARNINGS, below.

TBADF The specified file descriptor does not refer to a transport endpoint.

TBADFLAG An invalid flag was specified.

TFLOW O_NONBLOCK was set, but the flow control mechanism prevented
the transport provider from accepting any data at this time.

TLOOK An asynchronous event has occurred on this transport endpoint.

TNOTSUPPORT This function is not supported by the underlying transport
provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the
states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which there is
no other suitable XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header
files. This, and other semantic differences between the two interfaces are described in
the subsections below.

The XTI interfaces use the header file, <xti.h>. TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

The t_errno values that can be set by the XTI interface and cannot be set by the TLI
interface are:

TPROTO
TLOOK
TBADFLAG
TOUTSTATE

The t_errno value that this routine can return under different circumstances than its
XTI counterpart is TBADDATA.

In the case of a TBADDATA error, TBADDATA is returned, only for illegal zero byte TSDU
(ETSDU) send attempts.

For more information refer to the Transport Interfaces Programming Guide

t_snd(3NSL)

TLI
COMPATIBILITY

Interface Header

Error Description
Values

1086 man pages section 3: Library Functions • Last Revised 7 May 1998

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

If the process calling these routines possesses the PRIV_NET_REPLY_EQUAL privilege,
the packets that the process sends will carry the same CMW label and clearance as
that of the last packet received from the destination. If no packet from the destination
has ever been received, this privilege has no effect.

fcntl(2)

t_getinfo(3NSL), t_look(3NSL), t_open(3NSL), t_t_rcv(3NSL),
attributes(5)

Transport Interfaces Programming Guide

It is important to remember that the transport provider treats all users of a transport
endpoint as a single user. Therefore if several processes issue concurrent t_snd()
calls then the different data may be intermixed.

Multiple sends which exceed the maximum TSDU or ETSDU size may not be
discovered by XTI. In this case an implementation-dependent error will result,
generated by the transport provider, perhaps on a subsequent XTI call. This error may
take the form of a connection abort, a TSYSERR, a TBADDATA or a TPROTO error.

If multiple sends which exceed the maximum TSDU or ETSDU size are detected by
XTI, t_snd() fails with TBADDATA.

t_snd(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

WARNINGS

Introduction to Library Functions 1087

t_sndudata – Send a data unit

#include <xti.h>

int t_sndudata(int fd, const struct t_unitdata *unitdata);

This routine is part of the XTI interfaces which evolved from the TLI interfaces. XTI
represents the future evolution of these interfaces. However, TLI interfaces are
supported for compatibility. When using a TLI routine that has the same name as an
XTI routine, the <tiuser.h> header file must be used. Refer to the TLI
COMPATIBILITY section for a description of differences between the two interfaces.

This function is used in connectionless-mode to send a data unit to another transport
user. The argument fd identifies the local transport endpoint through which data will
be sent, and unitdata points to a t_unitdata structure containing the following
members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;In unitdata, addr specifies the protocol address of the
destination user, opt identifies options that the user wants associated with this request,
and udata specifies the user data to be sent. The user may choose not to specify what
protocol options are associated with the transfer by setting the len field of opt to zero.
In this case, the provider uses the option values currently set for the communications
endpoint.

If the len field of udata is zero, and sending of zero octets is not supported by the
underlying transport service, the t_sndudata() will return set to TBADDATA.

By default, t_sndudata() operates in synchronous mode and may wait if flow
control restrictions prevent the data from being accepted by the local transport
provider at the time the call is made. However, if O_NONBLOCK is set by means of
t_open(3NSL) or fcntl(2), t_sndudata() will execute in asynchronous mode and
will fail under such conditions. The process can arrange to be notified of the clearance
of a flow control restriction by means of either t_look(3NSL) or the EM interface.

If the amount of data specified in udata exceeds the TSDU size as returned in the tsdu
field of the info argument of t_open(3NSL) or t_getinfo(3NSL), a TBADDATA error
will be generated. If t_sndudata() is called before the destination user has activated
its transport endpoint (see t_bind(3NSL)), the data unit may be discarded.

If it is not possible for the transport provider to immediately detect the conditions that
cause the errors TBADDADDR and TBADOPT, these errors will alternatively be returned
by t_rcvuderr. Therefore, an application must be prepared to receive these errors in
both of these ways.

If the call is interrupted, t_sndudata() will return EINTR and the datagram will not
be sent.

t_sndudata(3NSL)

NAME

SYNOPSIS

DESCRIPTION

1088 man pages section 3: Library Functions • Last Revised 7 May 1998

t_sndudata() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

T_IDLE.

On failure, t_errno is set to one of the following:

TBADADDR The specified protocol address was in an incorrect format or
contained illegal information.

TBADDATA Illegal amount of data. A single send was attempted specifying a
TSDU greater than that specified in the info argument, or a send of
a zero byte TSDU is not supported by the provider.

TBADF The specified file descriptor does not refer to a transport endpoint.

TBADOPT The specified options were in an incorrect format or contained
illegal information.

TFLOW O_NONBLOCK was set, but the flow control mechanism prevented
the transport provider from accepting any data at this time.

TLOOK An asynchronous event has occurred on this transport endpoint.

TNOTSUPPORT This function is not supported by the underlying transport
provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the
states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which there is
no other suitable XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

The XTI and TLI interface definitions have common names but use different header
files. This, and other semantic differences between the two interfaces are described in
the subsections below.

The XTI interfaces use the header file, <xti.h>. TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

The t_errno values that can be set by the XTI interface and cannot be set by the TLI
interface are:

TPROTO
TPROTO

t_sndudata(3NSL)

RETURN VALUES

VALID STATES

ERRORS

TLI
COMPATIBILITY

Interface Header

Error Description
Values

Introduction to Library Functions 1089

TBADADDR
TBADOPT
TLOOK
TOUTSTATE

Whenever this function fails with t_error set to TFLOW, O_NONBLOCK must have
been set.

The format of the options in an opt buffer is dictated by the transport provider. Unlike
the XTI interface, the TLI interface does not fix the buffer format.

For more information refer to the Transport Interfaces Programming Guide

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

If the process calling these routines possesses the PRIV_NET_REPLY_EQUAL privilege,
the packets that the process sends will carry the same CMW label and clearance as
that of the last packet received from the destination. If no packet from the destination
has ever been received, this privilege has no effect.

fcntl(2), t_bind(3NSL)

t_alloc(3NSL), t_error(3NSL), t_getinfo(3NSL), t_look(3NSL),
t_open(3NSL), t_rcvudata(3NSL), t_rcvuderr(3NSL), attributes(5)

Transport Interfaces Programming Guide

t_sndudata(3NSL)

Notes

Option Buffers

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

1090 man pages section 3: Library Functions • Last Revised 7 May 1998

labelbuilder, tsol_lbuild_create, tsol_lbuild_get, tsol_lbuild_set, tsol_lbuild_destroy –
create a Motif-based user interface for interactively building a valid label or clearance

cc [flag…] file… -ltsol -lDtTsol [library…]

#include <Dt/ModLabel.h>

ModLabelData *tsol_lbuild_create(Widget widget void (*event_handler)()
ok_callback lbuild_attributes extended_operation, , NULL);

void *tsol_lbuild_get(ModLabelData *data, lbuild_attributes
extended_operation);

void tsol_lbuild_set(ModLabelData *data lbuild_attributes
extended_operation, , NULL);

void tsol_lbuild_destroy(ModLabelData *data);

The label builder user interface prompts the end user for information and generates a
valid CMW label, information label, sensitivity label, or clearance from the user input
based on specifications in the label_encodings(4) file on the system where the
application runs. The end user can build the label or clearance by typing a text value
or by interactively choosing options.

Application-specific functionality is implemented in the callback for the OK
pushbutton. This callback is passed to the tsol_lbuild_create() call where it is
mapped to the OK pushbutton widget.

When choosing options, the label builder shows the user only those classifications
(and related compartments and markings) dominated by the workspace sensitivity
label unless the executable has the PRIV_SYS_TRANS_LABEL privilege in its effective
set.

If the end user does not have the authorization to upgrade or downgrade labels, or if
the user-built label is out of the user’s accreditation range, the OK and Reset
pushbuttons are grayed. There are no privileges to override these restrictions.

tsol_lbuild_create() creates the graphical user interface and returns a pointer
variable of type ModLabeldata* that contains information on the user interface. This
information is a combination of values passed in the tsol_lbuild_create() input
parameter list, default values for information not provided, and information on the
widgets used by the label builder to create the user interface. All information except
the widget information should be accessed with the tsol_lbuild_get() and
tsol_lbuild_set() routines.

The widget information is accessed directly by referencing the following fields of the
ModLabelData structure.

lbuild_dialog The label builder dialog box.

ok The OK pushbutton.

cancel The Cancel pushbutton.

tsol_lbuild_create(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 1091

reset The Reset pushbutton.

help The Help pushbutton.

The tsol_lbuild_create() parameter list takes the following values:

widget The widget from which the dialog box is created. Any Motif
widget can be passed.

ok_callback A callback function that implements the behavior of the OK
pushbutton on the dialog box.

..., NULL A NULL terminated list of extended operations and value pairs that
define the characteristics and behavior of the label builder dialog
box.

tsol_lbuild_destroy() destroys the ModLabelData structure returned by
tsol_lbuild_create().

tsol_lbuild_get() and tsol_lbuild_set() access the information stored in
the ModLabelData structure returned by tsol_lbuild_create().

The following extended operations can be passed to tsol_lbuild_create() to
build the user interface, to tsol_lbuild_get() to retrieve information on the user
interface, and to tsol_lbuild_set() to change the user interface information. All
extended operations are valid for tsol_lbuild_get(), but the *WORK* operations
are not valid for tsol_lbuild_set() or tsol_lbuild_create() because these
values are set from input supplied by the end user. These exceptions are noted in the
descriptions.

LBUILD_MODE
Create a user interface to build an information label, sensitivity label, CMW label,
or clearance. Value is LBUILD_MODE_CMW by default.

LBUILD_MODE_IL Build an information label.

An information label is fixed at ADMIN_LOW.

LBUILD_MODE_SL Build a sensitivity label.

LBUILD_MODE_CMW Build a CMW label.

LBUILD_MODE_CLR Build a clearance.

LBUILD_VALUE_SL
The starting sensitivity label. This value is ADMIN_LOW by default and is used when
the mode is LBUILD_MODE_SL.

LBUILD_VALUE_IL
The starting information label. This value is ADMIN_LOW by default and is used
when the mode is LBUILD_MODE_IL.

tsol_lbuild_create(3TSOL)

1092 man pages section 3: Library Functions • Last Revised 24 May 2001

LBUILD_VALUE_CMW
The starting CMW label. This value is ADMIN_LOW[ADMIN_LOW] by default and is
used when the mode is LBUILD_MODE_CMW.

LBUILD_VALUE_CLR
The starting clearance. This value is ADMIN_LOW by default and is used when the
mode is LBUILD_MODE_CLR.

LBUILD_USERFIELD
A character string prompt that displays at the top of the label builder dialog box.
Value is NULL by default.

LBUILD_SHOW
Show or hide the label builder dialog box. Value is FALSE by default.

TRUE Show the label builder dialog box.

FALSE Hide the label builder dialog box.

LBUILD_TITLE
A character string title that appears at the top of the label builder dialog box. Value
is NULL by default.

LBUILD_WORK_SL
Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The sensitivity
label the end user is building. Value is updated to the end user’s input when the
end user selects the Update pushbutton or interactively chooses an option.

LBUILD_WORK_IL
Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The
information label the end user is building. Value is updated to the end user’s input
when the end user selects the Update pushbutton or interactively chooses an
option.

LBUILD_WORK_CMW
Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The CMW label
the end user is building. Value is updated to the end user’s input when the end
user selects the Update pushbutton or interactively chooses an option.

LBUILD_WORK_CLR
Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The clearance
the end user is building. Value is updated to the end user’s input when the end
user selects the Update pushbutton or interactively chooses an option.

LBUILD_X
The X position in pixels of the top-left corner of the label buider dialog box in
relation to the top-left corner of the screen. By default the label builder dialog box is
positioned in the middle of the screen.

LBUILD_Y
The Y position in pixels of the top-left corner of the label builder dialog box in
relation to the top-left corner of the screen. By default the label builder dialog box is
positioned in the middle of the screen.

tsol_lbuild_create(3TSOL)

Introduction to Library Functions 1093

LBUILD_LOWER_BOUND
The lowest classification (and related compartments and markings) available to the
user as radio buttons for interactively building a label or clearance. This value is the
user’s minimum label.

LBUILD_UPPER_BOUND
The highest classification (and related compartments and markings) available to the
user as radio buttons for interactively building a label or clearance. A supplied
value should be within the user’s accreditation range. If no value is specified, the
value is the user’s workspace sensitivity label, or if the executable has the
PRIV_SYS_TRANS_LABEL privilege, the value is the user’s clearance.

LBUILD_CHECK_AR
Check that the user-built label entered in the Update With field is within the user’s
accreditation range. A value of 1 means check, and a value of 0 means do not check.
If checking is on and the label is out of range, an error message is raised to the end
user.

LBUILD_VIEW
Use the internal or external label representation. Value is
LBUILD_VIEW_EXTERNAL by default.

LBUILD_VIEW_INTERNAL Use the internal names for the highest and lowest
labels in the system: ADMIN_HIGH and ADMIN_LOW.

LBUILD_VIEW_EXTERNAL Promote an ADMIN_LOW label to the next highest
label, and demote an ADMIN_HIGH label to the next
lowest label.

The tsol_lbuild_get() returns −1 if it is unable to get the value.

The tsol_lbuild_create() routine returns a variable of type ModLabelData that
contains the information provided in the tsol_lbuild_create() input parameter
list, default values for information not provided, and information on the widgets used
by the label builder to create the user interface.

EXAMPLE 1 To create a Label Builder

(ModLabelData *)lbldata = tsol_lbuild_create(widget0, callback_function,
LBUILD_MODE, LBUILD_MODE_CMW,
LBUILD_TITLE, "Setting CMW Label",
LBUILD_VIEW, LBUILD_VIEW_INTERNAL,
LBUILD_X, 200,
LBUILD_Y, 200,
LBUILD_USERFIELD, "Pathname:",
LBUILD_SHOW, FALSE,

NULL);

EXAMPLE 2 To query the mode and display the Label Builder

These examples call the tsol_lbuild_get() routine to query the mode being used,
and call the tsol_lbuild_set() routine so the label builder dialog box displays.

tsol_lbuild_create(3TSOL)

RETURN VALUES

EXAMPLES

1094 man pages section 3: Library Functions • Last Revised 24 May 2001

EXAMPLE 2 To query the mode and display the Label Builder (Continued)

mode = (int)tsol_lbuild_get(lbldata, LBUILD_MODE);

tsol_lbuild_set(lbldata, LBUILD_SHOW, TRUE,

NULL);

EXAMPLE 3 To destroy the ModLabelData variable

This example destroys the ModLabelData variable returned in the call to
tsol_lbuild_create().

tsol_lbuild_destroy(lbldata);

/usr/dt/include/Dt/ModLabel.h
Header file for label builder functions

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

label_encodings(4)

Trusted Solaris Developer’s Guide

attributes(5)

tsol_lbuild_create(3TSOL)

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction to Library Functions 1095

labelbuilder, tsol_lbuild_create, tsol_lbuild_get, tsol_lbuild_set, tsol_lbuild_destroy –
create a Motif-based user interface for interactively building a valid label or clearance

cc [flag…] file… -ltsol -lDtTsol [library…]

#include <Dt/ModLabel.h>

ModLabelData *tsol_lbuild_create(Widget widget void (*event_handler)()
ok_callback lbuild_attributes extended_operation, , NULL);

void *tsol_lbuild_get(ModLabelData *data, lbuild_attributes
extended_operation);

void tsol_lbuild_set(ModLabelData *data lbuild_attributes
extended_operation, , NULL);

void tsol_lbuild_destroy(ModLabelData *data);

The label builder user interface prompts the end user for information and generates a
valid CMW label, information label, sensitivity label, or clearance from the user input
based on specifications in the label_encodings(4) file on the system where the
application runs. The end user can build the label or clearance by typing a text value
or by interactively choosing options.

Application-specific functionality is implemented in the callback for the OK
pushbutton. This callback is passed to the tsol_lbuild_create() call where it is
mapped to the OK pushbutton widget.

When choosing options, the label builder shows the user only those classifications
(and related compartments and markings) dominated by the workspace sensitivity
label unless the executable has the PRIV_SYS_TRANS_LABEL privilege in its effective
set.

If the end user does not have the authorization to upgrade or downgrade labels, or if
the user-built label is out of the user’s accreditation range, the OK and Reset
pushbuttons are grayed. There are no privileges to override these restrictions.

tsol_lbuild_create() creates the graphical user interface and returns a pointer
variable of type ModLabeldata* that contains information on the user interface. This
information is a combination of values passed in the tsol_lbuild_create() input
parameter list, default values for information not provided, and information on the
widgets used by the label builder to create the user interface. All information except
the widget information should be accessed with the tsol_lbuild_get() and
tsol_lbuild_set() routines.

The widget information is accessed directly by referencing the following fields of the
ModLabelData structure.

lbuild_dialog The label builder dialog box.

ok The OK pushbutton.

cancel The Cancel pushbutton.

tsol_lbuild_destroy(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

1096 man pages section 3: Library Functions • Last Revised 24 May 2001

reset The Reset pushbutton.

help The Help pushbutton.

The tsol_lbuild_create() parameter list takes the following values:

widget The widget from which the dialog box is created. Any Motif
widget can be passed.

ok_callback A callback function that implements the behavior of the OK
pushbutton on the dialog box.

..., NULL A NULL terminated list of extended operations and value pairs that
define the characteristics and behavior of the label builder dialog
box.

tsol_lbuild_destroy() destroys the ModLabelData structure returned by
tsol_lbuild_create().

tsol_lbuild_get() and tsol_lbuild_set() access the information stored in
the ModLabelData structure returned by tsol_lbuild_create().

The following extended operations can be passed to tsol_lbuild_create() to
build the user interface, to tsol_lbuild_get() to retrieve information on the user
interface, and to tsol_lbuild_set() to change the user interface information. All
extended operations are valid for tsol_lbuild_get(), but the *WORK* operations
are not valid for tsol_lbuild_set() or tsol_lbuild_create() because these
values are set from input supplied by the end user. These exceptions are noted in the
descriptions.

LBUILD_MODE
Create a user interface to build an information label, sensitivity label, CMW label,
or clearance. Value is LBUILD_MODE_CMW by default.

LBUILD_MODE_IL Build an information label.

An information label is fixed at ADMIN_LOW.

LBUILD_MODE_SL Build a sensitivity label.

LBUILD_MODE_CMW Build a CMW label.

LBUILD_MODE_CLR Build a clearance.

LBUILD_VALUE_SL
The starting sensitivity label. This value is ADMIN_LOW by default and is used when
the mode is LBUILD_MODE_SL.

LBUILD_VALUE_IL
The starting information label. This value is ADMIN_LOW by default and is used
when the mode is LBUILD_MODE_IL.

tsol_lbuild_destroy(3TSOL)

Introduction to Library Functions 1097

LBUILD_VALUE_CMW
The starting CMW label. This value is ADMIN_LOW[ADMIN_LOW] by default and is
used when the mode is LBUILD_MODE_CMW.

LBUILD_VALUE_CLR
The starting clearance. This value is ADMIN_LOW by default and is used when the
mode is LBUILD_MODE_CLR.

LBUILD_USERFIELD
A character string prompt that displays at the top of the label builder dialog box.
Value is NULL by default.

LBUILD_SHOW
Show or hide the label builder dialog box. Value is FALSE by default.

TRUE Show the label builder dialog box.

FALSE Hide the label builder dialog box.

LBUILD_TITLE
A character string title that appears at the top of the label builder dialog box. Value
is NULL by default.

LBUILD_WORK_SL
Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The sensitivity
label the end user is building. Value is updated to the end user’s input when the
end user selects the Update pushbutton or interactively chooses an option.

LBUILD_WORK_IL
Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The
information label the end user is building. Value is updated to the end user’s input
when the end user selects the Update pushbutton or interactively chooses an
option.

LBUILD_WORK_CMW
Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The CMW label
the end user is building. Value is updated to the end user’s input when the end
user selects the Update pushbutton or interactively chooses an option.

LBUILD_WORK_CLR
Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The clearance
the end user is building. Value is updated to the end user’s input when the end
user selects the Update pushbutton or interactively chooses an option.

LBUILD_X
The X position in pixels of the top-left corner of the label buider dialog box in
relation to the top-left corner of the screen. By default the label builder dialog box is
positioned in the middle of the screen.

LBUILD_Y
The Y position in pixels of the top-left corner of the label builder dialog box in
relation to the top-left corner of the screen. By default the label builder dialog box is
positioned in the middle of the screen.

tsol_lbuild_destroy(3TSOL)

1098 man pages section 3: Library Functions • Last Revised 24 May 2001

LBUILD_LOWER_BOUND
The lowest classification (and related compartments and markings) available to the
user as radio buttons for interactively building a label or clearance. This value is the
user’s minimum label.

LBUILD_UPPER_BOUND
The highest classification (and related compartments and markings) available to the
user as radio buttons for interactively building a label or clearance. A supplied
value should be within the user’s accreditation range. If no value is specified, the
value is the user’s workspace sensitivity label, or if the executable has the
PRIV_SYS_TRANS_LABEL privilege, the value is the user’s clearance.

LBUILD_CHECK_AR
Check that the user-built label entered in the Update With field is within the user’s
accreditation range. A value of 1 means check, and a value of 0 means do not check.
If checking is on and the label is out of range, an error message is raised to the end
user.

LBUILD_VIEW
Use the internal or external label representation. Value is
LBUILD_VIEW_EXTERNAL by default.

LBUILD_VIEW_INTERNAL Use the internal names for the highest and lowest
labels in the system: ADMIN_HIGH and ADMIN_LOW.

LBUILD_VIEW_EXTERNAL Promote an ADMIN_LOW label to the next highest
label, and demote an ADMIN_HIGH label to the next
lowest label.

The tsol_lbuild_get() returns −1 if it is unable to get the value.

The tsol_lbuild_create() routine returns a variable of type ModLabelData that
contains the information provided in the tsol_lbuild_create() input parameter
list, default values for information not provided, and information on the widgets used
by the label builder to create the user interface.

EXAMPLE 1 To create a Label Builder

(ModLabelData *)lbldata = tsol_lbuild_create(widget0, callback_function,
LBUILD_MODE, LBUILD_MODE_CMW,
LBUILD_TITLE, "Setting CMW Label",
LBUILD_VIEW, LBUILD_VIEW_INTERNAL,
LBUILD_X, 200,
LBUILD_Y, 200,
LBUILD_USERFIELD, "Pathname:",
LBUILD_SHOW, FALSE,

NULL);

EXAMPLE 2 To query the mode and display the Label Builder

These examples call the tsol_lbuild_get() routine to query the mode being used,
and call the tsol_lbuild_set() routine so the label builder dialog box displays.

tsol_lbuild_destroy(3TSOL)

RETURN VALUES

EXAMPLES

Introduction to Library Functions 1099

EXAMPLE 2 To query the mode and display the Label Builder (Continued)

mode = (int)tsol_lbuild_get(lbldata, LBUILD_MODE);

tsol_lbuild_set(lbldata, LBUILD_SHOW, TRUE,

NULL);

EXAMPLE 3 To destroy the ModLabelData variable

This example destroys the ModLabelData variable returned in the call to
tsol_lbuild_create().

tsol_lbuild_destroy(lbldata);

/usr/dt/include/Dt/ModLabel.h
Header file for label builder functions

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

label_encodings(4)

Trusted Solaris Developer’s Guide

attributes(5)

tsol_lbuild_destroy(3TSOL)

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

1100 man pages section 3: Library Functions • Last Revised 24 May 2001

labelbuilder, tsol_lbuild_create, tsol_lbuild_get, tsol_lbuild_set, tsol_lbuild_destroy –
create a Motif-based user interface for interactively building a valid label or clearance

cc [flag…] file… -ltsol -lDtTsol [library…]

#include <Dt/ModLabel.h>

ModLabelData *tsol_lbuild_create(Widget widget void (*event_handler)()
ok_callback lbuild_attributes extended_operation, , NULL);

void *tsol_lbuild_get(ModLabelData *data, lbuild_attributes
extended_operation);

void tsol_lbuild_set(ModLabelData *data lbuild_attributes
extended_operation, , NULL);

void tsol_lbuild_destroy(ModLabelData *data);

The label builder user interface prompts the end user for information and generates a
valid CMW label, information label, sensitivity label, or clearance from the user input
based on specifications in the label_encodings(4) file on the system where the
application runs. The end user can build the label or clearance by typing a text value
or by interactively choosing options.

Application-specific functionality is implemented in the callback for the OK
pushbutton. This callback is passed to the tsol_lbuild_create() call where it is
mapped to the OK pushbutton widget.

When choosing options, the label builder shows the user only those classifications
(and related compartments and markings) dominated by the workspace sensitivity
label unless the executable has the PRIV_SYS_TRANS_LABEL privilege in its effective
set.

If the end user does not have the authorization to upgrade or downgrade labels, or if
the user-built label is out of the user’s accreditation range, the OK and Reset
pushbuttons are grayed. There are no privileges to override these restrictions.

tsol_lbuild_create() creates the graphical user interface and returns a pointer
variable of type ModLabeldata* that contains information on the user interface. This
information is a combination of values passed in the tsol_lbuild_create() input
parameter list, default values for information not provided, and information on the
widgets used by the label builder to create the user interface. All information except
the widget information should be accessed with the tsol_lbuild_get() and
tsol_lbuild_set() routines.

The widget information is accessed directly by referencing the following fields of the
ModLabelData structure.

lbuild_dialog The label builder dialog box.

ok The OK pushbutton.

cancel The Cancel pushbutton.

tsol_lbuild_get(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

Introduction to Library Functions 1101

reset The Reset pushbutton.

help The Help pushbutton.

The tsol_lbuild_create() parameter list takes the following values:

widget The widget from which the dialog box is created. Any Motif
widget can be passed.

ok_callback A callback function that implements the behavior of the OK
pushbutton on the dialog box.

..., NULL A NULL terminated list of extended operations and value pairs that
define the characteristics and behavior of the label builder dialog
box.

tsol_lbuild_destroy() destroys the ModLabelData structure returned by
tsol_lbuild_create().

tsol_lbuild_get() and tsol_lbuild_set() access the information stored in
the ModLabelData structure returned by tsol_lbuild_create().

The following extended operations can be passed to tsol_lbuild_create() to
build the user interface, to tsol_lbuild_get() to retrieve information on the user
interface, and to tsol_lbuild_set() to change the user interface information. All
extended operations are valid for tsol_lbuild_get(), but the *WORK* operations
are not valid for tsol_lbuild_set() or tsol_lbuild_create() because these
values are set from input supplied by the end user. These exceptions are noted in the
descriptions.

LBUILD_MODE
Create a user interface to build an information label, sensitivity label, CMW label,
or clearance. Value is LBUILD_MODE_CMW by default.

LBUILD_MODE_IL Build an information label.

An information label is fixed at ADMIN_LOW.

LBUILD_MODE_SL Build a sensitivity label.

LBUILD_MODE_CMW Build a CMW label.

LBUILD_MODE_CLR Build a clearance.

LBUILD_VALUE_SL
The starting sensitivity label. This value is ADMIN_LOW by default and is used when
the mode is LBUILD_MODE_SL.

LBUILD_VALUE_IL
The starting information label. This value is ADMIN_LOW by default and is used
when the mode is LBUILD_MODE_IL.

tsol_lbuild_get(3TSOL)

1102 man pages section 3: Library Functions • Last Revised 24 May 2001

LBUILD_VALUE_CMW
The starting CMW label. This value is ADMIN_LOW[ADMIN_LOW] by default and is
used when the mode is LBUILD_MODE_CMW.

LBUILD_VALUE_CLR
The starting clearance. This value is ADMIN_LOW by default and is used when the
mode is LBUILD_MODE_CLR.

LBUILD_USERFIELD
A character string prompt that displays at the top of the label builder dialog box.
Value is NULL by default.

LBUILD_SHOW
Show or hide the label builder dialog box. Value is FALSE by default.

TRUE Show the label builder dialog box.

FALSE Hide the label builder dialog box.

LBUILD_TITLE
A character string title that appears at the top of the label builder dialog box. Value
is NULL by default.

LBUILD_WORK_SL
Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The sensitivity
label the end user is building. Value is updated to the end user’s input when the
end user selects the Update pushbutton or interactively chooses an option.

LBUILD_WORK_IL
Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The
information label the end user is building. Value is updated to the end user’s input
when the end user selects the Update pushbutton or interactively chooses an
option.

LBUILD_WORK_CMW
Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The CMW label
the end user is building. Value is updated to the end user’s input when the end
user selects the Update pushbutton or interactively chooses an option.

LBUILD_WORK_CLR
Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The clearance
the end user is building. Value is updated to the end user’s input when the end
user selects the Update pushbutton or interactively chooses an option.

LBUILD_X
The X position in pixels of the top-left corner of the label buider dialog box in
relation to the top-left corner of the screen. By default the label builder dialog box is
positioned in the middle of the screen.

LBUILD_Y
The Y position in pixels of the top-left corner of the label builder dialog box in
relation to the top-left corner of the screen. By default the label builder dialog box is
positioned in the middle of the screen.

tsol_lbuild_get(3TSOL)

Introduction to Library Functions 1103

LBUILD_LOWER_BOUND
The lowest classification (and related compartments and markings) available to the
user as radio buttons for interactively building a label or clearance. This value is the
user’s minimum label.

LBUILD_UPPER_BOUND
The highest classification (and related compartments and markings) available to the
user as radio buttons for interactively building a label or clearance. A supplied
value should be within the user’s accreditation range. If no value is specified, the
value is the user’s workspace sensitivity label, or if the executable has the
PRIV_SYS_TRANS_LABEL privilege, the value is the user’s clearance.

LBUILD_CHECK_AR
Check that the user-built label entered in the Update With field is within the user’s
accreditation range. A value of 1 means check, and a value of 0 means do not check.
If checking is on and the label is out of range, an error message is raised to the end
user.

LBUILD_VIEW
Use the internal or external label representation. Value is
LBUILD_VIEW_EXTERNAL by default.

LBUILD_VIEW_INTERNAL Use the internal names for the highest and lowest
labels in the system: ADMIN_HIGH and ADMIN_LOW.

LBUILD_VIEW_EXTERNAL Promote an ADMIN_LOW label to the next highest
label, and demote an ADMIN_HIGH label to the next
lowest label.

The tsol_lbuild_get() returns −1 if it is unable to get the value.

The tsol_lbuild_create() routine returns a variable of type ModLabelData that
contains the information provided in the tsol_lbuild_create() input parameter
list, default values for information not provided, and information on the widgets used
by the label builder to create the user interface.

EXAMPLE 1 To create a Label Builder

(ModLabelData *)lbldata = tsol_lbuild_create(widget0, callback_function,
LBUILD_MODE, LBUILD_MODE_CMW,
LBUILD_TITLE, "Setting CMW Label",
LBUILD_VIEW, LBUILD_VIEW_INTERNAL,
LBUILD_X, 200,
LBUILD_Y, 200,
LBUILD_USERFIELD, "Pathname:",
LBUILD_SHOW, FALSE,

NULL);

EXAMPLE 2 To query the mode and display the Label Builder

These examples call the tsol_lbuild_get() routine to query the mode being used,
and call the tsol_lbuild_set() routine so the label builder dialog box displays.

tsol_lbuild_get(3TSOL)

RETURN VALUES

EXAMPLES

1104 man pages section 3: Library Functions • Last Revised 24 May 2001

EXAMPLE 2 To query the mode and display the Label Builder (Continued)

mode = (int)tsol_lbuild_get(lbldata, LBUILD_MODE);

tsol_lbuild_set(lbldata, LBUILD_SHOW, TRUE,

NULL);

EXAMPLE 3 To destroy the ModLabelData variable

This example destroys the ModLabelData variable returned in the call to
tsol_lbuild_create().

tsol_lbuild_destroy(lbldata);

/usr/dt/include/Dt/ModLabel.h
Header file for label builder functions

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

label_encodings(4)

Trusted Solaris Developer’s Guide

attributes(5)

tsol_lbuild_get(3TSOL)

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction to Library Functions 1105

labelbuilder, tsol_lbuild_create, tsol_lbuild_get, tsol_lbuild_set, tsol_lbuild_destroy –
create a Motif-based user interface for interactively building a valid label or clearance

cc [flag…] file… -ltsol -lDtTsol [library…]

#include <Dt/ModLabel.h>

ModLabelData *tsol_lbuild_create(Widget widget void (*event_handler)()
ok_callback lbuild_attributes extended_operation, , NULL);

void *tsol_lbuild_get(ModLabelData *data, lbuild_attributes
extended_operation);

void tsol_lbuild_set(ModLabelData *data lbuild_attributes
extended_operation, , NULL);

void tsol_lbuild_destroy(ModLabelData *data);

The label builder user interface prompts the end user for information and generates a
valid CMW label, information label, sensitivity label, or clearance from the user input
based on specifications in the label_encodings(4) file on the system where the
application runs. The end user can build the label or clearance by typing a text value
or by interactively choosing options.

Application-specific functionality is implemented in the callback for the OK
pushbutton. This callback is passed to the tsol_lbuild_create() call where it is
mapped to the OK pushbutton widget.

When choosing options, the label builder shows the user only those classifications
(and related compartments and markings) dominated by the workspace sensitivity
label unless the executable has the PRIV_SYS_TRANS_LABEL privilege in its effective
set.

If the end user does not have the authorization to upgrade or downgrade labels, or if
the user-built label is out of the user’s accreditation range, the OK and Reset
pushbuttons are grayed. There are no privileges to override these restrictions.

tsol_lbuild_create() creates the graphical user interface and returns a pointer
variable of type ModLabeldata* that contains information on the user interface. This
information is a combination of values passed in the tsol_lbuild_create() input
parameter list, default values for information not provided, and information on the
widgets used by the label builder to create the user interface. All information except
the widget information should be accessed with the tsol_lbuild_get() and
tsol_lbuild_set() routines.

The widget information is accessed directly by referencing the following fields of the
ModLabelData structure.

lbuild_dialog The label builder dialog box.

ok The OK pushbutton.

cancel The Cancel pushbutton.

tsol_lbuild_set(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

1106 man pages section 3: Library Functions • Last Revised 24 May 2001

reset The Reset pushbutton.

help The Help pushbutton.

The tsol_lbuild_create() parameter list takes the following values:

widget The widget from which the dialog box is created. Any Motif
widget can be passed.

ok_callback A callback function that implements the behavior of the OK
pushbutton on the dialog box.

..., NULL A NULL terminated list of extended operations and value pairs that
define the characteristics and behavior of the label builder dialog
box.

tsol_lbuild_destroy() destroys the ModLabelData structure returned by
tsol_lbuild_create().

tsol_lbuild_get() and tsol_lbuild_set() access the information stored in
the ModLabelData structure returned by tsol_lbuild_create().

The following extended operations can be passed to tsol_lbuild_create() to
build the user interface, to tsol_lbuild_get() to retrieve information on the user
interface, and to tsol_lbuild_set() to change the user interface information. All
extended operations are valid for tsol_lbuild_get(), but the *WORK* operations
are not valid for tsol_lbuild_set() or tsol_lbuild_create() because these
values are set from input supplied by the end user. These exceptions are noted in the
descriptions.

LBUILD_MODE
Create a user interface to build an information label, sensitivity label, CMW label,
or clearance. Value is LBUILD_MODE_CMW by default.

LBUILD_MODE_IL Build an information label.

An information label is fixed at ADMIN_LOW.

LBUILD_MODE_SL Build a sensitivity label.

LBUILD_MODE_CMW Build a CMW label.

LBUILD_MODE_CLR Build a clearance.

LBUILD_VALUE_SL
The starting sensitivity label. This value is ADMIN_LOW by default and is used when
the mode is LBUILD_MODE_SL.

LBUILD_VALUE_IL
The starting information label. This value is ADMIN_LOW by default and is used
when the mode is LBUILD_MODE_IL.

tsol_lbuild_set(3TSOL)

Introduction to Library Functions 1107

LBUILD_VALUE_CMW
The starting CMW label. This value is ADMIN_LOW[ADMIN_LOW] by default and is
used when the mode is LBUILD_MODE_CMW.

LBUILD_VALUE_CLR
The starting clearance. This value is ADMIN_LOW by default and is used when the
mode is LBUILD_MODE_CLR.

LBUILD_USERFIELD
A character string prompt that displays at the top of the label builder dialog box.
Value is NULL by default.

LBUILD_SHOW
Show or hide the label builder dialog box. Value is FALSE by default.

TRUE Show the label builder dialog box.

FALSE Hide the label builder dialog box.

LBUILD_TITLE
A character string title that appears at the top of the label builder dialog box. Value
is NULL by default.

LBUILD_WORK_SL
Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The sensitivity
label the end user is building. Value is updated to the end user’s input when the
end user selects the Update pushbutton or interactively chooses an option.

LBUILD_WORK_IL
Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The
information label the end user is building. Value is updated to the end user’s input
when the end user selects the Update pushbutton or interactively chooses an
option.

LBUILD_WORK_CMW
Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The CMW label
the end user is building. Value is updated to the end user’s input when the end
user selects the Update pushbutton or interactively chooses an option.

LBUILD_WORK_CLR
Not valid for tsol_lbuild_set() or tsol_lbuild_create(). The clearance
the end user is building. Value is updated to the end user’s input when the end
user selects the Update pushbutton or interactively chooses an option.

LBUILD_X
The X position in pixels of the top-left corner of the label buider dialog box in
relation to the top-left corner of the screen. By default the label builder dialog box is
positioned in the middle of the screen.

LBUILD_Y
The Y position in pixels of the top-left corner of the label builder dialog box in
relation to the top-left corner of the screen. By default the label builder dialog box is
positioned in the middle of the screen.

tsol_lbuild_set(3TSOL)

1108 man pages section 3: Library Functions • Last Revised 24 May 2001

LBUILD_LOWER_BOUND
The lowest classification (and related compartments and markings) available to the
user as radio buttons for interactively building a label or clearance. This value is the
user’s minimum label.

LBUILD_UPPER_BOUND
The highest classification (and related compartments and markings) available to the
user as radio buttons for interactively building a label or clearance. A supplied
value should be within the user’s accreditation range. If no value is specified, the
value is the user’s workspace sensitivity label, or if the executable has the
PRIV_SYS_TRANS_LABEL privilege, the value is the user’s clearance.

LBUILD_CHECK_AR
Check that the user-built label entered in the Update With field is within the user’s
accreditation range. A value of 1 means check, and a value of 0 means do not check.
If checking is on and the label is out of range, an error message is raised to the end
user.

LBUILD_VIEW
Use the internal or external label representation. Value is
LBUILD_VIEW_EXTERNAL by default.

LBUILD_VIEW_INTERNAL Use the internal names for the highest and lowest
labels in the system: ADMIN_HIGH and ADMIN_LOW.

LBUILD_VIEW_EXTERNAL Promote an ADMIN_LOW label to the next highest
label, and demote an ADMIN_HIGH label to the next
lowest label.

The tsol_lbuild_get() returns −1 if it is unable to get the value.

The tsol_lbuild_create() routine returns a variable of type ModLabelData that
contains the information provided in the tsol_lbuild_create() input parameter
list, default values for information not provided, and information on the widgets used
by the label builder to create the user interface.

EXAMPLE 1 To create a Label Builder

(ModLabelData *)lbldata = tsol_lbuild_create(widget0, callback_function,
LBUILD_MODE, LBUILD_MODE_CMW,
LBUILD_TITLE, "Setting CMW Label",
LBUILD_VIEW, LBUILD_VIEW_INTERNAL,
LBUILD_X, 200,
LBUILD_Y, 200,
LBUILD_USERFIELD, "Pathname:",
LBUILD_SHOW, FALSE,

NULL);

EXAMPLE 2 To query the mode and display the Label Builder

These examples call the tsol_lbuild_get() routine to query the mode being used,
and call the tsol_lbuild_set() routine so the label builder dialog box displays.

tsol_lbuild_set(3TSOL)

RETURN VALUES

EXAMPLES

Introduction to Library Functions 1109

EXAMPLE 2 To query the mode and display the Label Builder (Continued)

mode = (int)tsol_lbuild_get(lbldata, LBUILD_MODE);

tsol_lbuild_set(lbldata, LBUILD_SHOW, TRUE,

NULL);

EXAMPLE 3 To destroy the ModLabelData variable

This example destroys the ModLabelData variable returned in the call to
tsol_lbuild_create().

tsol_lbuild_destroy(lbldata);

/usr/dt/include/Dt/ModLabel.h
Header file for label builder functions

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

label_encodings(4)

Trusted Solaris Developer’s Guide

attributes(5)

tsol_lbuild_set(3TSOL)

FILES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

1110 man pages section 3: Library Functions • Last Revised 24 May 2001

getutxent, getutxid, getutxline, pututxline, setutxent, endutxent, utmpxname,
getutmp, getutmpx, updwtmp, updwtmpx – User accounting database functions

#include <utmpx.h>

struct utmpx *getutxent(void);

struct utmpx *getutxid(const struct utmpx *id);

struct utmpx *getutxline(const struct utmpx *line);

struct utmpx *pututxline(const struct utmpx *utmpx);

void setutxent(void);

void endutxent(void);

int utmpxname(const char *file);

void getutmp(struct utmpx *utmpx, struct utmp *utmp);

void getutmpx(struct utmp *utmp, struct utmpx *utmpx);

void updwtmp(char *wfile, struct utmp *utmp);

void updwtmpx(char *wfilex, struct utmpx *utmpx);

These functions provide access to the user accounting database, utmpx (see utmpx(4)).
Entries in the database are described by the definitions and data structures in
<utmpx.h>.

char ut_user[32]; /* user login name */
char ut_id[4]; /* /etc/inittab id (usually line #) */
char ut_line[32]; /* device name (console, lnxx) */
pid_t ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */
struct timeval ut_tv; /* time entry was made */
long ut_session; /* session ID, used for windowing */
long pad[5]; /* reserved for future use */
short ut_syslen; /* significant length of ut_host */

/* including terminating null */

char ut_host[257]; /* host name, if remote */

The structure exit status includes the following members:

short e_termination; /* termination status */

short e_exit; /* exit status */

The getutxent() function reads in the next entry from a utmpx database. If the
database is not already open, it opens it. If it reaches the end of the database, it fails.

The getutxid() function searches forward from the current point in the utmpx
database until it finds an entry with a ut_type matching id⇒ut_type, if the type
specified is RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in

updwtmp(3C)

NAME

SYNOPSIS

DESCRIPTION

getutxent()

getutxid()

Introduction to Library Functions 1111

id is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then
getutxid() will return a pointer to the first entry whose type is one of these four
and whose ut_id member matches id⇒ut_id. If the end of database is reached
without a match, it fails.

The getutxline() function searches forward from the current point in the utmpx
database until it finds an entry of the type LOGIN_PROCESS or USER_PROCESS which
also has a ut_line string matching the line⇒ut_line string. If the end of the database
is reached without a match, it fails.

The pututxline() function writes the supplied utmpx structure into the utmpx file.
It uses getutxid() to search forward for the proper place if it finds that it is not
already at the proper place. It is expected that normally the user of pututxline()
will have searched for the proper entry using one of the getutx() routines. If so,
pututxline() will not search. If pututxline() does not find a matching slot for
the new entry, it will add a new entry to the end of the database. It returns a pointer to
the utmpx structure.

When called by a process that does not have an effective uid of 0 and a sensitivity
label of ADMIN_LOW, pututxline() invokes a program (that has the appropriate
forced privileges) to verify and write the entry, since /etc/utmpx is normally
writable only by a process with a UID of 0 and a sensitivity label of ADMIN_LOW. In
this event, the ut_name member must correspond to the actual user name associated
with the process; the ut_type member must be either USER_PROCESS or
DEAD_PROCESS; and the ut_line member must be a device special file and be
writable by the user. If the process does not have the PAF_TRUSTED_PATH process
attribute, all other fields in the entry are cleared.

The setutxent() function resets the input stream to the beginning. This should be
done before each search for a new entry if it is desired that the entire database be
examined.

The endutxent() function closes the currently open database.

The utmpxname() function allows the user to change the name of the database file
examined from /var/adm/utmpx to any other file, most often /var/adm/wtmpx. If
the file does not exist, this will not be apparent until the first attempt to reference the
file is made. The utmpxname() function does not open the file, but closes the old file
if it is currently open and saves the new file name. The new file name must end with
the “x” character to allow the name of the corresponding utmp file to be easily
obtainable.; otherwise, an error value of 0 is returned. The function returns 1 on
success.

The getutmp() function copies the information stored in the members of the utmpx
structure to the corresponding members of the utmp structure. If the information in
any member of utmpx does not fit in the corresponding utmp member, the data is
silently truncated. (See getutent(3C) for utmp structure)

updwtmp(3C)

getutxline()

pututxline()

setutxent()

endutxent()

utmpxname()

getutmp()

1112 man pages section 3: Library Functions • Last Revised 6 Oct 1999

The getutmpx() function copies the information stored in the members of the utmp
structure to the corresponding members of the utmpx structure. (See getutent(3C)
for utmp structure)

The updwtmp() function can be used in two ways.

If wfile is /var/adm/wtmp, the utmp format record supplied by the caller is converted
to a utmpx format record and the /var/adm/wtmpx file is updated (because the
/var/adm/wtmp file no longer exists, operations on wtmp are converted to operations
on wtmpx by the library functions.

If wfile is a file other than /var/adm/wtmp, it is assumed to be an old file in utmp
format and is updated directly with the utmp format record supplied by the caller.

The updwtmpx() function writes the contents of the utmpx structure pointed to by
utmpx to the database.

The values of the e_termination and e_exit members of the ut_exit structure
are valid only for records of type DEAD_PROCESS. For utmpx entries created by
init(1M), these values are set according to the result of the wait() call that init
performs on the process when the process exits. See the wait(2) manual page for the
values init uses. Applications creating utmpx entries can set ut_exit values using
the following code example:

u->ut_exit.e_termination = WTERMSIG(process->p_exit)
u->ut_exit.e_exit = WEXITSTATUS(process->p_exit)

See wstat(3XFN) for descriptions of the WTERMSIG and WEXITSTATUS macros.

The ut_session member is not acted upon by the operating system. It is used by
applications interested in creating utmpx entries.

For records of type USER_PROCESS, the nonuser() and nonuserx() macros use the
value of the ut_exit.e_exit member to mark utmpx entries as real logins (as
opposed to multiple xterms started by the same user on a window system). This
allows the system utilities that display users to obtain an accurate indication of the
number of actual users, while still permitting each pty to have a utmpx record (as
most applications expect.). The NONROOT_USER macro defines the value that login
places in the ut_exit.e_exit member.

Upon successful completion, getutxent(), getutxid(), and getutxline() each
return a pointer to a utmpx structure containing a copy of the requested entry in the
user accounting database. Otherwise a null pointer is returned.

The return value may point to a static area which is overwritten by a subsequent call
to getutxid () or getutxline().

Upon successful completion, pututxline() returns a pointer to a utmpx structure
containing a copy of the entry added to the user accounting database. Otherwise a null
pointer is returned.

updwtmp(3C)

getutmpx()

updwtmp()

updwtmpx()

utmpx
structure

RETURN VALUES

Introduction to Library Functions 1113

The endutxent() and setutxent() functions return no value.

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write.

These functions use buffered standard I/O for input, but pututxline() uses an
unbuffered write to avoid race conditions between processes trying to modify the
utmpx and wtmpx files.

Applications should not access the utmpx and wtmpx databases directly, but should
use these functions to ensure that these databases are maintained consistently.

/var/adm/utmpx User access and accounting information

/var/adm/wtmpx History of user access and accounting information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

pututxline() invokes a program with appropriate forced privileges to verify and
write the utmpx structure. pututxline clears fields in an entry if the process does
not have the PAF_TRUSTED_PATH process attribute

getutent(3C)

wait(2), ttyslot(3C), utmpx(4), attributes(5), wstat(3XFN)

The most current entry is saved in a static structure. Multiple accesses require that it
be copied before further accesses are made. On each call to either getutxid() or
getutxline(), the routine examines the static structure before performing more
I/O. If the contents of the static structure match what it is searching for, it looks no
further. For this reason, to use getutxline() to search for multiple occurrences it
would be necessary to zero out the static after each success, or getutxline() would
just return the same structure over and over again. There is one exception to the rule
about emptying the structure before further reads are done. The implicit read done by
pututxline() (if it finds that it is not already at the correct place in the file) will not
hurt the contents of the static structure returned by the getutxent(), getutxid(),
or getutxline() routines, if the user has just modified those contents and passed
the pointer back to pututxline().

updwtmp(3C)

USAGE

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

1114 man pages section 3: Library Functions • Last Revised 6 Oct 1999

getutxent, getutxid, getutxline, pututxline, setutxent, endutxent, utmpxname,
getutmp, getutmpx, updwtmp, updwtmpx – User accounting database functions

#include <utmpx.h>

struct utmpx *getutxent(void);

struct utmpx *getutxid(const struct utmpx *id);

struct utmpx *getutxline(const struct utmpx *line);

struct utmpx *pututxline(const struct utmpx *utmpx);

void setutxent(void);

void endutxent(void);

int utmpxname(const char *file);

void getutmp(struct utmpx *utmpx, struct utmp *utmp);

void getutmpx(struct utmp *utmp, struct utmpx *utmpx);

void updwtmp(char *wfile, struct utmp *utmp);

void updwtmpx(char *wfilex, struct utmpx *utmpx);

These functions provide access to the user accounting database, utmpx (see utmpx(4)).
Entries in the database are described by the definitions and data structures in
<utmpx.h>.

char ut_user[32]; /* user login name */
char ut_id[4]; /* /etc/inittab id (usually line #) */
char ut_line[32]; /* device name (console, lnxx) */
pid_t ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */
struct timeval ut_tv; /* time entry was made */
long ut_session; /* session ID, used for windowing */
long pad[5]; /* reserved for future use */
short ut_syslen; /* significant length of ut_host */

/* including terminating null */

char ut_host[257]; /* host name, if remote */

The structure exit status includes the following members:

short e_termination; /* termination status */

short e_exit; /* exit status */

The getutxent() function reads in the next entry from a utmpx database. If the
database is not already open, it opens it. If it reaches the end of the database, it fails.

The getutxid() function searches forward from the current point in the utmpx
database until it finds an entry with a ut_type matching id⇒ut_type, if the type
specified is RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in

updwtmpx(3C)

NAME

SYNOPSIS

DESCRIPTION

getutxent()

getutxid()

Introduction to Library Functions 1115

id is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then
getutxid() will return a pointer to the first entry whose type is one of these four
and whose ut_id member matches id⇒ut_id. If the end of database is reached
without a match, it fails.

The getutxline() function searches forward from the current point in the utmpx
database until it finds an entry of the type LOGIN_PROCESS or USER_PROCESS which
also has a ut_line string matching the line⇒ut_line string. If the end of the database
is reached without a match, it fails.

The pututxline() function writes the supplied utmpx structure into the utmpx file.
It uses getutxid() to search forward for the proper place if it finds that it is not
already at the proper place. It is expected that normally the user of pututxline()
will have searched for the proper entry using one of the getutx() routines. If so,
pututxline() will not search. If pututxline() does not find a matching slot for
the new entry, it will add a new entry to the end of the database. It returns a pointer to
the utmpx structure.

When called by a process that does not have an effective uid of 0 and a sensitivity
label of ADMIN_LOW, pututxline() invokes a program (that has the appropriate
forced privileges) to verify and write the entry, since /etc/utmpx is normally
writable only by a process with a UID of 0 and a sensitivity label of ADMIN_LOW. In
this event, the ut_name member must correspond to the actual user name associated
with the process; the ut_type member must be either USER_PROCESS or
DEAD_PROCESS; and the ut_line member must be a device special file and be
writable by the user. If the process does not have the PAF_TRUSTED_PATH process
attribute, all other fields in the entry are cleared.

The setutxent() function resets the input stream to the beginning. This should be
done before each search for a new entry if it is desired that the entire database be
examined.

The endutxent() function closes the currently open database.

The utmpxname() function allows the user to change the name of the database file
examined from /var/adm/utmpx to any other file, most often /var/adm/wtmpx. If
the file does not exist, this will not be apparent until the first attempt to reference the
file is made. The utmpxname() function does not open the file, but closes the old file
if it is currently open and saves the new file name. The new file name must end with
the “x” character to allow the name of the corresponding utmp file to be easily
obtainable.; otherwise, an error value of 0 is returned. The function returns 1 on
success.

The getutmp() function copies the information stored in the members of the utmpx
structure to the corresponding members of the utmp structure. If the information in
any member of utmpx does not fit in the corresponding utmp member, the data is
silently truncated. (See getutent(3C) for utmp structure)

updwtmpx(3C)

getutxline()

pututxline()

setutxent()

endutxent()

utmpxname()

getutmp()

1116 man pages section 3: Library Functions • Last Revised 6 Oct 1999

The getutmpx() function copies the information stored in the members of the utmp
structure to the corresponding members of the utmpx structure. (See getutent(3C)
for utmp structure)

The updwtmp() function can be used in two ways.

If wfile is /var/adm/wtmp, the utmp format record supplied by the caller is converted
to a utmpx format record and the /var/adm/wtmpx file is updated (because the
/var/adm/wtmp file no longer exists, operations on wtmp are converted to operations
on wtmpx by the library functions.

If wfile is a file other than /var/adm/wtmp, it is assumed to be an old file in utmp
format and is updated directly with the utmp format record supplied by the caller.

The updwtmpx() function writes the contents of the utmpx structure pointed to by
utmpx to the database.

The values of the e_termination and e_exit members of the ut_exit structure
are valid only for records of type DEAD_PROCESS. For utmpx entries created by
init(1M), these values are set according to the result of the wait() call that init
performs on the process when the process exits. See the wait(2) manual page for the
values init uses. Applications creating utmpx entries can set ut_exit values using
the following code example:

u->ut_exit.e_termination = WTERMSIG(process->p_exit)
u->ut_exit.e_exit = WEXITSTATUS(process->p_exit)

See wstat(3XFN) for descriptions of the WTERMSIG and WEXITSTATUS macros.

The ut_session member is not acted upon by the operating system. It is used by
applications interested in creating utmpx entries.

For records of type USER_PROCESS, the nonuser() and nonuserx() macros use the
value of the ut_exit.e_exit member to mark utmpx entries as real logins (as
opposed to multiple xterms started by the same user on a window system). This
allows the system utilities that display users to obtain an accurate indication of the
number of actual users, while still permitting each pty to have a utmpx record (as
most applications expect.). The NONROOT_USER macro defines the value that login
places in the ut_exit.e_exit member.

Upon successful completion, getutxent(), getutxid(), and getutxline() each
return a pointer to a utmpx structure containing a copy of the requested entry in the
user accounting database. Otherwise a null pointer is returned.

The return value may point to a static area which is overwritten by a subsequent call
to getutxid () or getutxline().

Upon successful completion, pututxline() returns a pointer to a utmpx structure
containing a copy of the entry added to the user accounting database. Otherwise a null
pointer is returned.

updwtmpx(3C)

getutmpx()

updwtmp()

updwtmpx()

utmpx
structure

RETURN VALUES

Introduction to Library Functions 1117

The endutxent() and setutxent() functions return no value.

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write.

These functions use buffered standard I/O for input, but pututxline() uses an
unbuffered write to avoid race conditions between processes trying to modify the
utmpx and wtmpx files.

Applications should not access the utmpx and wtmpx databases directly, but should
use these functions to ensure that these databases are maintained consistently.

/var/adm/utmpx User access and accounting information

/var/adm/wtmpx History of user access and accounting information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

pututxline() invokes a program with appropriate forced privileges to verify and
write the utmpx structure. pututxline clears fields in an entry if the process does
not have the PAF_TRUSTED_PATH process attribute

getutent(3C)

wait(2), ttyslot(3C), utmpx(4), attributes(5), wstat(3XFN)

The most current entry is saved in a static structure. Multiple accesses require that it
be copied before further accesses are made. On each call to either getutxid() or
getutxline(), the routine examines the static structure before performing more
I/O. If the contents of the static structure match what it is searching for, it looks no
further. For this reason, to use getutxline() to search for multiple occurrences it
would be necessary to zero out the static after each success, or getutxline() would
just return the same structure over and over again. There is one exception to the rule
about emptying the structure before further reads are done. The implicit read done by
pututxline() (if it finds that it is not already at the correct place in the file) will not
hurt the contents of the static structure returned by the getutxent(), getutxid(),
or getutxline() routines, if the user has just modified those contents and passed
the pointer back to pututxline().

updwtmpx(3C)

USAGE

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

1118 man pages section 3: Library Functions • Last Revised 6 Oct 1999

getutent, getutid, getutline, pututline, setutent, endutent, utmpname – Access utmp
file entry

#include <utmp.h>

struct utmp *getutent(void);

struct utmp *getutid(const struct utmp *id);

struct utmp *getutline(const struct utmp *line);

struct utmp *pututline(const struct utmp *utmp);

void setutent(void);

void endutent(void);

int utmpname(const char *file);

The getutent(), getutid(), getutline(), and pututline() functions each
return a pointer to a utmp structure with the following members:

char ut_user[8]; /* user login name */
char ut_id[4]; /* /sbin/inittab id (usually line #) */
char ut_line[12]; /* device name (console, lnxx) */
short ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */

time_t ut_time; /* time entry was made */

The structure exit_status includes the following members:

short e_termination; /* termination status */
short e_exit; /* exit status */

The getutent() function reads in the next entry from a utmp-like file. If the file is
not already open, it opens it. If it reaches the end of the file, it fails.

The getutid() function searches forward from the current point in the utmp file
until it finds an entry with a ut_type matching id⇒ut_type if the type specified is
RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in id is
INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then
getutid() will return a pointer to the first entry whose type is one of these four and
whose ut_id member matches id⇒ut_id. If the end of file is reached without a
match, it fails.

The getutline() function searches forward from the current point in the utmp file
until it finds an entry of the type LOGIN_PROCESS or ut_line string matching the
line⇒ut_line string. If the end of file is reached without a match, it fails.

The pututline() function writes the supplied utmp structure into the utmp file. It
uses getutid() to search forward for the proper place if it finds that it is not already

utmpname(3C)

NAME

SYNOPSIS

DESCRIPTION

getutent()

getutid()

getutline()

pututline()

Introduction to Library Functions 1119

at the proper place. It is expected that normally the user of pututline() will have
searched for the proper entry using one of the these functions. If so, pututline()
will not search. If pututline() does not find a matching slot for the new entry, it
will add a new entry to the end of the file. It returns a pointer to the utmp structure.

When called by a process that does not have an effective uid of 0 and a sensitivity
label of ADMIN_LOW, pututline() invokes a program (that has the appropriate
forced privileges) to verify and write the entry, since /etc/utmpx is normally
writable only by a process with a UID of 0 and a sensitivity label of ADMIN_LOW. In
this event, the ut_name member must correspond to the actual user name associated
with the process; the ut_type member must be either USER_PROCESS or
DEAD_PROCESS; and the ut_line member must be a device special file and be
writable by the user. If the process does not have the PAF_TRUSTED_PATH process
attribute, all other fields in the entry are cleared.

The setutent() function resets the input stream to the beginning of the file. This
reset should be done before each search for a new entry if it is desired that the entire
file be examined.

The endutent() function closes the currently open file.

The utmpname() function allows the user to change the name of the file examined,
from /var/adm/utmp to any other file. It is most often expected that this other file
will be /var/adm/wtmp. If the file does not exist, this will not be apparent until the
first attempt to reference the file is made. The utmpname() function does not open the
file but closes the old file if it is currently open and saves the new file name.

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write. If the file name given is longer than 79
characters, utmpname() returns 0. Otherwise, it returns 1.

These functions use buffered standard I/O for input, but pututline() uses an
unbuffered non-standard write to avoid race conditions between processes trying to
modify the utmp and wtmp files.

Applications should not access the utmp and wtmp databases directly, but should use
these functions to ensure that these databases are maintained consistently. Using these
functions, however, may cause applications to fail if user accounting data cannot be
represented properly in the utmp structure (for example, on a system where PIDs can
exceed 32767). Use the functions described on the getutxent(3C) manual page
instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

utmpname(3C)

setutent()

endutent()

utmpname()

RETURN VALUES

USAGE

ATTRIBUTES

1120 man pages section 3: Library Functions • Last Revised 16 Oct 1997

pututline() invokes a program with appropriate forced privileges to verify and
write the utmpx structure. pututline() clears fields in an entry if the process does
not have the PAF_TRUSTED_PATH process attribute.

ttyslot(3C), utmp(4), utmpx(4), attributes(5)

The most current entry is saved in a static structure. Multiple accesses require that it
be copied before further accesses are made. On each call to either getutid() or
getutline(), the function examines the static structure before performing more I/O.
If the contents of the static structure match what it is searching for, it looks no further.
For this reason, to use getutline() to search for multiple occurrences, it would be
necessary to zero out the static area after each success, or getutline() would just
return the same structure over and over again. There is one exception to the rule about
emptying the structure before further reads are done. The implicit read done by
pututline() (if it finds that it is not already at the correct place in the file) will not
hurt the contents of the static structure returned by the getutent(), getutid() or
getutline() functions, if the user has just modified those contents and passed the
pointer back to pututline().

utmpname(3C)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

SunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 1121

getutxent, getutxid, getutxline, pututxline, setutxent, endutxent, utmpxname,
getutmp, getutmpx, updwtmp, updwtmpx – User accounting database functions

#include <utmpx.h>

struct utmpx *getutxent(void);

struct utmpx *getutxid(const struct utmpx *id);

struct utmpx *getutxline(const struct utmpx *line);

struct utmpx *pututxline(const struct utmpx *utmpx);

void setutxent(void);

void endutxent(void);

int utmpxname(const char *file);

void getutmp(struct utmpx *utmpx, struct utmp *utmp);

void getutmpx(struct utmp *utmp, struct utmpx *utmpx);

void updwtmp(char *wfile, struct utmp *utmp);

void updwtmpx(char *wfilex, struct utmpx *utmpx);

These functions provide access to the user accounting database, utmpx (see utmpx(4)).
Entries in the database are described by the definitions and data structures in
<utmpx.h>.

char ut_user[32]; /* user login name */
char ut_id[4]; /* /etc/inittab id (usually line #) */
char ut_line[32]; /* device name (console, lnxx) */
pid_t ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */
struct timeval ut_tv; /* time entry was made */
long ut_session; /* session ID, used for windowing */
long pad[5]; /* reserved for future use */
short ut_syslen; /* significant length of ut_host */

/* including terminating null */

char ut_host[257]; /* host name, if remote */

The structure exit status includes the following members:

short e_termination; /* termination status */

short e_exit; /* exit status */

The getutxent() function reads in the next entry from a utmpx database. If the
database is not already open, it opens it. If it reaches the end of the database, it fails.

The getutxid() function searches forward from the current point in the utmpx
database until it finds an entry with a ut_type matching id⇒ut_type, if the type
specified is RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in

utmpxname(3C)

NAME

SYNOPSIS

DESCRIPTION

getutxent()

getutxid()

1122 man pages section 3: Library Functions • Last Revised 6 Oct 1999

id is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then
getutxid() will return a pointer to the first entry whose type is one of these four
and whose ut_id member matches id⇒ut_id. If the end of database is reached
without a match, it fails.

The getutxline() function searches forward from the current point in the utmpx
database until it finds an entry of the type LOGIN_PROCESS or USER_PROCESS which
also has a ut_line string matching the line⇒ut_line string. If the end of the database
is reached without a match, it fails.

The pututxline() function writes the supplied utmpx structure into the utmpx file.
It uses getutxid() to search forward for the proper place if it finds that it is not
already at the proper place. It is expected that normally the user of pututxline()
will have searched for the proper entry using one of the getutx() routines. If so,
pututxline() will not search. If pututxline() does not find a matching slot for
the new entry, it will add a new entry to the end of the database. It returns a pointer to
the utmpx structure.

When called by a process that does not have an effective uid of 0 and a sensitivity
label of ADMIN_LOW, pututxline() invokes a program (that has the appropriate
forced privileges) to verify and write the entry, since /etc/utmpx is normally
writable only by a process with a UID of 0 and a sensitivity label of ADMIN_LOW. In
this event, the ut_name member must correspond to the actual user name associated
with the process; the ut_type member must be either USER_PROCESS or
DEAD_PROCESS; and the ut_line member must be a device special file and be
writable by the user. If the process does not have the PAF_TRUSTED_PATH process
attribute, all other fields in the entry are cleared.

The setutxent() function resets the input stream to the beginning. This should be
done before each search for a new entry if it is desired that the entire database be
examined.

The endutxent() function closes the currently open database.

The utmpxname() function allows the user to change the name of the database file
examined from /var/adm/utmpx to any other file, most often /var/adm/wtmpx. If
the file does not exist, this will not be apparent until the first attempt to reference the
file is made. The utmpxname() function does not open the file, but closes the old file
if it is currently open and saves the new file name. The new file name must end with
the “x” character to allow the name of the corresponding utmp file to be easily
obtainable.; otherwise, an error value of 0 is returned. The function returns 1 on
success.

The getutmp() function copies the information stored in the members of the utmpx
structure to the corresponding members of the utmp structure. If the information in
any member of utmpx does not fit in the corresponding utmp member, the data is
silently truncated. (See getutent(3C) for utmp structure)

utmpxname(3C)

getutxline()

pututxline()

setutxent()

endutxent()

utmpxname()

getutmp()

Introduction to Library Functions 1123

The getutmpx() function copies the information stored in the members of the utmp
structure to the corresponding members of the utmpx structure. (See getutent(3C)
for utmp structure)

The updwtmp() function can be used in two ways.

If wfile is /var/adm/wtmp, the utmp format record supplied by the caller is converted
to a utmpx format record and the /var/adm/wtmpx file is updated (because the
/var/adm/wtmp file no longer exists, operations on wtmp are converted to operations
on wtmpx by the library functions.

If wfile is a file other than /var/adm/wtmp, it is assumed to be an old file in utmp
format and is updated directly with the utmp format record supplied by the caller.

The updwtmpx() function writes the contents of the utmpx structure pointed to by
utmpx to the database.

The values of the e_termination and e_exit members of the ut_exit structure
are valid only for records of type DEAD_PROCESS. For utmpx entries created by
init(1M), these values are set according to the result of the wait() call that init
performs on the process when the process exits. See the wait(2) manual page for the
values init uses. Applications creating utmpx entries can set ut_exit values using
the following code example:

u->ut_exit.e_termination = WTERMSIG(process->p_exit)
u->ut_exit.e_exit = WEXITSTATUS(process->p_exit)

See wstat(3XFN) for descriptions of the WTERMSIG and WEXITSTATUS macros.

The ut_session member is not acted upon by the operating system. It is used by
applications interested in creating utmpx entries.

For records of type USER_PROCESS, the nonuser() and nonuserx() macros use the
value of the ut_exit.e_exit member to mark utmpx entries as real logins (as
opposed to multiple xterms started by the same user on a window system). This
allows the system utilities that display users to obtain an accurate indication of the
number of actual users, while still permitting each pty to have a utmpx record (as
most applications expect.). The NONROOT_USER macro defines the value that login
places in the ut_exit.e_exit member.

Upon successful completion, getutxent(), getutxid(), and getutxline() each
return a pointer to a utmpx structure containing a copy of the requested entry in the
user accounting database. Otherwise a null pointer is returned.

The return value may point to a static area which is overwritten by a subsequent call
to getutxid () or getutxline().

Upon successful completion, pututxline() returns a pointer to a utmpx structure
containing a copy of the entry added to the user accounting database. Otherwise a null
pointer is returned.

utmpxname(3C)

getutmpx()

updwtmp()

updwtmpx()

utmpx
structure

RETURN VALUES

1124 man pages section 3: Library Functions • Last Revised 6 Oct 1999

The endutxent() and setutxent() functions return no value.

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write.

These functions use buffered standard I/O for input, but pututxline() uses an
unbuffered write to avoid race conditions between processes trying to modify the
utmpx and wtmpx files.

Applications should not access the utmpx and wtmpx databases directly, but should
use these functions to ensure that these databases are maintained consistently.

/var/adm/utmpx User access and accounting information

/var/adm/wtmpx History of user access and accounting information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

pututxline() invokes a program with appropriate forced privileges to verify and
write the utmpx structure. pututxline clears fields in an entry if the process does
not have the PAF_TRUSTED_PATH process attribute

getutent(3C)

wait(2), ttyslot(3C), utmpx(4), attributes(5), wstat(3XFN)

The most current entry is saved in a static structure. Multiple accesses require that it
be copied before further accesses are made. On each call to either getutxid() or
getutxline(), the routine examines the static structure before performing more
I/O. If the contents of the static structure match what it is searching for, it looks no
further. For this reason, to use getutxline() to search for multiple occurrences it
would be necessary to zero out the static after each success, or getutxline() would
just return the same structure over and over again. There is one exception to the rule
about emptying the structure before further reads are done. The implicit read done by
pututxline() (if it finds that it is not already at the correct place in the file) will not
hurt the contents of the static structure returned by the getutxent(), getutxid(),
or getutxline() routines, if the user has just modified those contents and passed
the pointer back to pututxline().

utmpxname(3C)

USAGE

FILES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

Introduction to Library Functions 1125

labelclipping, Xbcltos, Xbsltos, Xbcleartos – translate a binary label and clip to the
specified width

cc [flag…] file… -ltsol -lDtTsol [library…]

#include <Dt/label_clipping.h>

XmString Xbcltos(Display *display, const bclabel_t *cmwlabel,
Dimension width, const XmFontList fontlist, const int flags);

XmString Xbsltos(Display*display, const bxlabel_t *senslabel,
Dimensionwidth, const XmFontList fontlist, const int flags);

XmString Xbcleartos(Display *display, const bclear_t *clearance,
Dimensionwidth, const XmFontListfontlist, const int flags);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to translate labels or clearances that dominate the current process’
sensitivity label.

display The structure controlling the connection to an X Window System
display.

cmwlabel The CMW label to be translated.

senslabel The sensitivity label to be translated.

clearance The clearance to be translated.

width The width of the translated label or clearance in pixels. If the
specified width is shorter than the full label, the label is clipped
and the presence of clipped letters is indicated by an arrow. In this
example, letters have been clipped to the right of: TS<-. See the
sbltos(3TSOL) man page for more information on the clipped
indicator. If the specified width is equal to the display width
(display), the label is not truncated, but word-wrapped using a
width of half the display width.

fontlist A list of fonts and character sets where each font is associated with
a character set.

flags The value of flags indicates which words in the
label_encodings(4) file are used for the translation. See the
bltos(3TSOL) man page for a description of the flag values:
LONG_WORDS, SHORT_WORDS, LONG_CLASSIFICATION,
SHORT_CLASSIFICATION, ALL_ENTRIES, ACCESS_RELATED,
VIEW_EXTERNAL, VIEW_INTERNAL, NO_CLASSIFICATION.
BRACKETED is an additional flag that can be used with
Xbsltos() only. It encloses the sensitivity label in square brackets
as follows: [C].

These interfaces return a compound string that represents the character-coded form of
the CMW label, sensitivity label, or clearance translated. The compound string uses

Xbcleartos(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

1126 man pages section 3: Library Functions • Last Revised 24 May 2001

the language and fonts specified in fontlist and is clipped to width. These interfaces
return NULL if the label or clearance is not a valid, required type as defined in the
label_encodings(4) file, or not dominated by the process’ sensitivity label and the
PRIV_SYS_TRANS_LABEL privilege is not asserted.

/usr/dt/include/Dt/label_clipping.h
Header file for label clipping functions

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

EXAMPLE 1 To Translate and Clip a Clearance

This example translates a clearance to text using the long words specified in the
label_encodings(4) file, a font list, and clips the translated clearance to a width of
72 pixels.

xmstr = Xbcleartos(XtDisplay(topLevel),

&clearance, 72, fontlist, LONG_WORDS

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bltos(3TSOL), label_encodings(4)

Trusted Solaris Developer’s Guide

Trusted Solaris Label Administration

attributes(5)

See XmStringDraw(3) and FontList(3) for information on the creation and structure
of a font list.

Xbcleartos(3TSOL)

FILES

EXAMPLES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction to Library Functions 1127

labelclipping, Xbcltos, Xbsltos, Xbcleartos – translate a binary label and clip to the
specified width

cc [flag…] file… -ltsol -lDtTsol [library…]

#include <Dt/label_clipping.h>

XmString Xbcltos(Display *display, const bclabel_t *cmwlabel,
Dimension width, const XmFontList fontlist, const int flags);

XmString Xbsltos(Display*display, const bxlabel_t *senslabel,
Dimensionwidth, const XmFontList fontlist, const int flags);

XmString Xbcleartos(Display *display, const bclear_t *clearance,
Dimensionwidth, const XmFontListfontlist, const int flags);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to translate labels or clearances that dominate the current process’
sensitivity label.

display The structure controlling the connection to an X Window System
display.

cmwlabel The CMW label to be translated.

senslabel The sensitivity label to be translated.

clearance The clearance to be translated.

width The width of the translated label or clearance in pixels. If the
specified width is shorter than the full label, the label is clipped
and the presence of clipped letters is indicated by an arrow. In this
example, letters have been clipped to the right of: TS<-. See the
sbltos(3TSOL) man page for more information on the clipped
indicator. If the specified width is equal to the display width
(display), the label is not truncated, but word-wrapped using a
width of half the display width.

fontlist A list of fonts and character sets where each font is associated with
a character set.

flags The value of flags indicates which words in the
label_encodings(4) file are used for the translation. See the
bltos(3TSOL) man page for a description of the flag values:
LONG_WORDS, SHORT_WORDS, LONG_CLASSIFICATION,
SHORT_CLASSIFICATION, ALL_ENTRIES, ACCESS_RELATED,
VIEW_EXTERNAL, VIEW_INTERNAL, NO_CLASSIFICATION.
BRACKETED is an additional flag that can be used with
Xbsltos() only. It encloses the sensitivity label in square brackets
as follows: [C].

These interfaces return a compound string that represents the character-coded form of
the CMW label, sensitivity label, or clearance translated. The compound string uses

Xbcltos(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

1128 man pages section 3: Library Functions • Last Revised 24 May 2001

the language and fonts specified in fontlist and is clipped to width. These interfaces
return NULL if the label or clearance is not a valid, required type as defined in the
label_encodings(4) file, or not dominated by the process’ sensitivity label and the
PRIV_SYS_TRANS_LABEL privilege is not asserted.

/usr/dt/include/Dt/label_clipping.h
Header file for label clipping functions

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

EXAMPLE 1 To Translate and Clip a Clearance

This example translates a clearance to text using the long words specified in the
label_encodings(4) file, a font list, and clips the translated clearance to a width of
72 pixels.

xmstr = Xbcleartos(XtDisplay(topLevel),

&clearance, 72, fontlist, LONG_WORDS

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bltos(3TSOL), label_encodings(4)

Trusted Solaris Developer’s Guide

Trusted Solaris Label Administration

attributes(5)

See XmStringDraw(3) and FontList(3) for information on the creation and structure
of a font list.

Xbcltos(3TSOL)

FILES

EXAMPLES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction to Library Functions 1129

labelclipping, Xbcltos, Xbsltos, Xbcleartos – translate a binary label and clip to the
specified width

cc [flag…] file… -ltsol -lDtTsol [library…]

#include <Dt/label_clipping.h>

XmString Xbcltos(Display *display, const bclabel_t *cmwlabel,
Dimension width, const XmFontList fontlist, const int flags);

XmString Xbsltos(Display*display, const bxlabel_t *senslabel,
Dimensionwidth, const XmFontList fontlist, const int flags);

XmString Xbcleartos(Display *display, const bclear_t *clearance,
Dimensionwidth, const XmFontListfontlist, const int flags);

The calling process must have PRIV_SYS_TRANS_LABEL in its set of effective
privileges to translate labels or clearances that dominate the current process’
sensitivity label.

display The structure controlling the connection to an X Window System
display.

cmwlabel The CMW label to be translated.

senslabel The sensitivity label to be translated.

clearance The clearance to be translated.

width The width of the translated label or clearance in pixels. If the
specified width is shorter than the full label, the label is clipped
and the presence of clipped letters is indicated by an arrow. In this
example, letters have been clipped to the right of: TS<-. See the
sbltos(3TSOL) man page for more information on the clipped
indicator. If the specified width is equal to the display width
(display), the label is not truncated, but word-wrapped using a
width of half the display width.

fontlist A list of fonts and character sets where each font is associated with
a character set.

flags The value of flags indicates which words in the
label_encodings(4) file are used for the translation. See the
bltos(3TSOL) man page for a description of the flag values:
LONG_WORDS, SHORT_WORDS, LONG_CLASSIFICATION,
SHORT_CLASSIFICATION, ALL_ENTRIES, ACCESS_RELATED,
VIEW_EXTERNAL, VIEW_INTERNAL, NO_CLASSIFICATION.
BRACKETED is an additional flag that can be used with
Xbsltos() only. It encloses the sensitivity label in square brackets
as follows: [C].

These interfaces return a compound string that represents the character-coded form of
the CMW label, sensitivity label, or clearance translated. The compound string uses

Xbsltos(3TSOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

1130 man pages section 3: Library Functions • Last Revised 24 May 2001

the language and fonts specified in fontlist and is clipped to width. These interfaces
return NULL if the label or clearance is not a valid, required type as defined in the
label_encodings(4) file, or not dominated by the process’ sensitivity label and the
PRIV_SYS_TRANS_LABEL privilege is not asserted.

/usr/dt/include/Dt/label_clipping.h
Header file for label clipping functions

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system.

EXAMPLE 1 To Translate and Clip a Clearance

This example translates a clearance to text using the long words specified in the
label_encodings(4) file, a font list, and clips the translated clearance to a width of
72 pixels.

xmstr = Xbcleartos(XtDisplay(topLevel),

&clearance, 72, fontlist, LONG_WORDS

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

MT-Level MT-Safe

bltos(3TSOL), label_encodings(4)

Trusted Solaris Developer’s Guide

Trusted Solaris Label Administration

attributes(5)

See XmStringDraw(3) and FontList(3) for information on the creation and structure
of a font list.

Xbsltos(3TSOL)

FILES

EXAMPLES

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

Introduction to Library Functions 1131

rpc_svc_reg, rpc_reg, svc_reg, svc_unreg, svc_auth_reg, xprt_register, xprt_unregister
– Library routines for registering servers

These routines are a part of the RPC library which allows the RPC servers to register
themselves with rpcbind() [see rpcbind(1M)], and associate the given program
and version number with the dispatch function. When the RPC server receives an RPC
request, the library invokes the dispatch routine with the appropriate arguments.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

bool_t rpc_reg(const rpcprog_t prognum, const rpcvers_t versnum, const rpcproc_t
procnum, char * (*procname)(), const xdrproc_t inproc, const xdrproc_t outproc, const
char *nettype);

Register program prognum, procedure procname, and version versnum with the RPC
service package. If a request arrives for program prognum, version versnum, and
procedure procnum, procname is called with a pointer to its parameter(s); procname
should return a pointer to its static result(s). The arg parameter to procname is a
pointer to the (decoded) procedure argument. inproc is the XDR function used to
decode the parameters while outproc is the XDR function used to encode the results.
Procedures are registered on all available transports of the class nettype. See
rpc(3NSL) . This routine returns 0 if the registration succeeded, −1 otherwise.

If the server has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a transport that uses a privileged
address, the server must have the PRIV_NET_PRIVADDR privilege.

int svc_reg(const SVCXPRT *xprt, const rpcprog_t prognum, const rpcvers_t versnum,
const void (*dispatch)(), const struct netconfig *netconf);

Associates prognum and versnum with the service dispatch procedure, dispatch. If
netconf is NULL, the service is not registered with the rpcbind service. For example,
if a service has already been registered using some other means, such as inetd (see
inetd(1M)), it will not need to be registered again. If netconf is non-zero, then a
mapping of the triple [prognum, versnum, netconf⇒nc_netid] to xprt⇒xp_ltaddr is
established with the local rpcbind service.

The svc_reg() routine returns 1 if it succeeds, and 0 otherwise.

If the server has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a transport that uses a privileged
address, the server must have the PRIV_NET_PRIVADDR privilege.

void svc_unreg(const rpcprog_t prognum, const rpcvers_t versnum);
Remove from the rpcbind service, all mappings of the triple [prognum, versnum,
all-transports] to network address and all mappings within the RPC service package
of the double [prognum, versnum] to dispatch routines.

xprt_register(3NSL)

NAME

DESCRIPTION

Routines

1132 man pages section 3: Library Functions • Last Revised 1 May 2000

If the server has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping being deleted is to a transport that uses a privileged
address, the server must have the PRIV_NET_PRIVADDR privilege.

The PRIV_NET_SETID privilege is required in order for anyone other than the
owner of a mapping to delete the mapping.

int svc_auth_reg(const int cred_flavor, const enum auth_stat (*handler)());
Registers the service authentication routine handler with the dispatch mechanism so
that it can be invoked to authenticate RPC requests received with authentication
type cred_flavor. This interface allows developers to add new authentication types to
their RPC applications without needing to modify the libraries. Service
implementors usually do not need this routine.

Typical service application would call svc_auth_reg() after registering the
service and prior to calling svc_run(). When needed to process an RPC credential
of type cred_flavor, the handler procedure will be called with two parameters
(struct svc_req *rqst, struct rpc_msg *msg) and is expected to return a
valid enum auth_stat value. There is no provision to change or delete an
authentication handler once registered.

The svc_auth_reg() routine returns 0 if the registration is successful, 1 if
cred_flavor already has an authentication handler registered for it, and −1 otherwise.

void xprt_register(const SVCXPRT *xprt);
After RPC service transport handle xprt is created, it is registered with the RPC
service package. This routine modifies the global variable svc_fdset (see
rpc_svc_calls(3NSL)). Service implementors usually do not need this routine.

void xprt_unregister(const SVCXPRT *xprt);
Before an RPC service transport handle xprt is destroyed, it unregisters itself with
the RPC service package. This routine modifies the global variable svc_fdset [see
rpc_svc_calls(3NSL)]. Service implementors usually do not need this routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind
services. If the privilege is on when rpc_reg() or rpc_svc() is called, a multilevel
mapping is created. To delete a multilevel mapping, svc_unreg() must be called
with the privilege on.

xprt_register(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Introduction to Library Functions 1133

The PRIV_NET_PRIVADDR privilege is required for rpc_reg(), rpc_svc(), or
svc_unreg() calls that create or delete mappings for a transport that uses a
privileged address.

The PRIV_NET_SETID privilege is required by svc_unreg() in order for anyone
other than the owner of a mapping to delete the mapping.

inetd(1M), rpcbind(1M), rpc(3NSL), rpc_svc_calls(3NSL),
rpc_svc_create(3NSL), rpcbind(3NSL)

select(3C), rpc_svc_err(3NSL), attributes(5)

xprt_register(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

1134 man pages section 3: Library Functions • Last Revised 1 May 2000

rpc_svc_reg, rpc_reg, svc_reg, svc_unreg, svc_auth_reg, xprt_register, xprt_unregister
– Library routines for registering servers

These routines are a part of the RPC library which allows the RPC servers to register
themselves with rpcbind() [see rpcbind(1M)], and associate the given program
and version number with the dispatch function. When the RPC server receives an RPC
request, the library invokes the dispatch routine with the appropriate arguments.

See rpc(3NSL) for the definition of the SVCXPRT data structure.

#include <rpc/rpc.h>

bool_t rpc_reg(const rpcprog_t prognum, const rpcvers_t versnum, const rpcproc_t
procnum, char * (*procname)(), const xdrproc_t inproc, const xdrproc_t outproc, const
char *nettype);

Register program prognum, procedure procname, and version versnum with the RPC
service package. If a request arrives for program prognum, version versnum, and
procedure procnum, procname is called with a pointer to its parameter(s); procname
should return a pointer to its static result(s). The arg parameter to procname is a
pointer to the (decoded) procedure argument. inproc is the XDR function used to
decode the parameters while outproc is the XDR function used to encode the results.
Procedures are registered on all available transports of the class nettype. See
rpc(3NSL) . This routine returns 0 if the registration succeeded, −1 otherwise.

If the server has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a transport that uses a privileged
address, the server must have the PRIV_NET_PRIVADDR privilege.

int svc_reg(const SVCXPRT *xprt, const rpcprog_t prognum, const rpcvers_t versnum,
const void (*dispatch)(), const struct netconfig *netconf);

Associates prognum and versnum with the service dispatch procedure, dispatch. If
netconf is NULL, the service is not registered with the rpcbind service. For example,
if a service has already been registered using some other means, such as inetd (see
inetd(1M)), it will not need to be registered again. If netconf is non-zero, then a
mapping of the triple [prognum, versnum, netconf⇒nc_netid] to xprt⇒xp_ltaddr is
established with the local rpcbind service.

The svc_reg() routine returns 1 if it succeeds, and 0 otherwise.

If the server has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping is being established to a transport that uses a privileged
address, the server must have the PRIV_NET_PRIVADDR privilege.

void svc_unreg(const rpcprog_t prognum, const rpcvers_t versnum);
Remove from the rpcbind service, all mappings of the triple [prognum, versnum,
all-transports] to network address and all mappings within the RPC service package
of the double [prognum, versnum] to dispatch routines.

xprt_unregister(3NSL)

NAME

DESCRIPTION

Routines

Introduction to Library Functions 1135

If the server has the PRIV_NET_MAC_READ privilege, a multilevel mapping is
created. If the mapping being deleted is to a transport that uses a privileged
address, the server must have the PRIV_NET_PRIVADDR privilege.

The PRIV_NET_SETID privilege is required in order for anyone other than the
owner of a mapping to delete the mapping.

int svc_auth_reg(const int cred_flavor, const enum auth_stat (*handler)());
Registers the service authentication routine handler with the dispatch mechanism so
that it can be invoked to authenticate RPC requests received with authentication
type cred_flavor. This interface allows developers to add new authentication types to
their RPC applications without needing to modify the libraries. Service
implementors usually do not need this routine.

Typical service application would call svc_auth_reg() after registering the
service and prior to calling svc_run(). When needed to process an RPC credential
of type cred_flavor, the handler procedure will be called with two parameters
(struct svc_req *rqst, struct rpc_msg *msg) and is expected to return a
valid enum auth_stat value. There is no provision to change or delete an
authentication handler once registered.

The svc_auth_reg() routine returns 0 if the registration is successful, 1 if
cred_flavor already has an authentication handler registered for it, and −1 otherwise.

void xprt_register(const SVCXPRT *xprt);
After RPC service transport handle xprt is created, it is registered with the RPC
service package. This routine modifies the global variable svc_fdset (see
rpc_svc_calls(3NSL)). Service implementors usually do not need this routine.

void xprt_unregister(const SVCXPRT *xprt);
Before an RPC service transport handle xprt is destroyed, it unregisters itself with
the RPC service package. This routine modifies the global variable svc_fdset [see
rpc_svc_calls(3NSL)]. Service implementors usually do not need this routine.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Most rpcbind services operate only on mappings that either match the sensitivity
label of the server or are multilevel.

The PRIV_NET_MAC_READ privilege affects the operation of several rpcbind
services. If the privilege is on when rpc_reg() or rpc_svc() is called, a multilevel
mapping is created. To delete a multilevel mapping, svc_unreg() must be called
with the privilege on.

xprt_unregister(3NSL)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

1136 man pages section 3: Library Functions • Last Revised 1 May 2000

The PRIV_NET_PRIVADDR privilege is required for rpc_reg(), rpc_svc(), or
svc_unreg() calls that create or delete mappings for a transport that uses a
privileged address.

The PRIV_NET_SETID privilege is required by svc_unreg() in order for anyone
other than the owner of a mapping to delete the mapping.

inetd(1M), rpcbind(1M), rpc(3NSL), rpc_svc_calls(3NSL),
rpc_svc_create(3NSL), rpcbind(3NSL)

select(3C), rpc_svc_err(3NSL), attributes(5)

xprt_unregister(3NSL)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

Introduction to Library Functions 1137

XTSOLgetClientAttributes – Get all CMW attributes associated with a client

#include <tsol/Xtsol.h>

Status XTSOLgetClientAttributes(display, windowid, clientattrp);

Display *display;
XID windowid;
XTSOLClientAttributes *clientattrp;

XTSOLgetClientAttributes() is used to get all CMW attributes associated with a
client in a single call. The attributes include process ID, user ID, IP address, audit flags
and session ID.

display Specifies a pointer to the Display structure; returned from
XOpenDisplay().

windowid Specifies window ID of X client.

clientattrp Client must provide a pointer to an XTSOLClientAttributes
structure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt (available only on Trusted
Solaris systems)

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadValue Not a valid client

XTSOLgetPropAttributes(3), XTSOLgetResAttributes(3)

XTSOLgetClientAttributes(3)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

RETURN VALUES

ERRORS

SEE ALSO

1138 man pages section 3: Library Functions • Last Revised 24 Jan 1995

XTSOLgetPropAttributes – Get all CMW attributes associated with a property hanging
on a window

#include <tsol/Xtsol.h>

Status XTSOLgetPropAttributes(display, window, property, cmwpropattrp);

Display *display;
Window window;
Atom property;
XTSOLPropAttributes *cmwpropattrp;

The client requires the PRIV_WIN_DAC_READ and PRIV_WIN_MAC_READ privileges.
XTSOLgetPropAttributes() is used to get all CMW attributes associated with a
property hanging out of a window in a single call. The attributes include UID,
information label, and sensitivity label.

display Specifies a pointer to the Display structure; returned from
XOpenDisplay().

window Specifies the ID of a window system object.

property Specifies the property atom.

cmwwinattrp Client must provide a pointer to XTSOLPropAttributes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt (available only on Trusted
Solaris systems)

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadWindow Not a valid window

BadAtom Not a valid atom

XTSOLgetClientAttributes(3), XTSOLgetResAttributes(3)

XTSOLgetPropAttributes(3)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

RETURN VALUES

ERRORS

SEE ALSO

Introduction to Library Functions 1139

XTSOLgetPropLabel – Get the CMW label associated with a property hanging on a
window

#include <tsol/Xtsol.h>

XTSOLgetPropLabel(display, window, property, cmwlabel);

Display *display;
Window window;
Atom property;
bclabel_t *cmwlabel;

Client requires the PRIV_WIN_DAC_READ and PRIV_WIN_MAC_READ privileges.
XTSOLgetPropLabel() is used to get the CMW label associated with a property
hanging on a window.

display Specifies a pointer to the Display structure; returned from
XOpenDisplay().

window Specifies the ID of the window whose property’s CMW label you
want to get.

property Specifies the property atom.

cmwlabel Returns a CMW label that is the current CMW label of the
specified property. This label contains an SL. Client needs to
provide a bclabel_t type storage and passes the address of this
storage as the function argument. Client must provide a pointer to
bclabel_t.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt (available only on Trusted
Solaris systems)

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadWindow Not a valid window

BadAtom Not a valid atom

XTSOLgetPropAttributes(3), XTSOLsetPropLabel(3)

XTSOLgetPropLabel(3)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

RETURN VALUES

ERRORS

SEE ALSO

1140 man pages section 3: Library Functions • Last Revised 30 Sep 1999

XTSOLgetPropUID – Get the UID associated with a property hanging on a window

#include <tsol/Xtsol.h>

Status XTSOLgetPropUID(display, window, property, uidp);

Display *display;
Window window;
Atom property;
uid_t *uidp;

The client requires the PRIV_WIN_DAC_READ and PRIV_WIN_MAC_READ privileges.
XTSOLgetPropUID() gets the ownership of a window’s property. This allows a
client to get the ownership of an object it did not create.

display Specifies a pointer to the Display structure; returned from
XOpenDisplay().

window Specifies the ID of the window whose property’s UID you want to
get.

property Specifies the property atom.

uidp Returns a UID which is the current UID of the specified property.
Client needs to provide a uid_t type storage and passes the
address of this storage as the function argument. Client must
provide a pointer to uid_t.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt (available only on Trusted
Solaris systems)

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadWindow Not a valid window

BadAtom Not a valid atom

XTSOLgetPropAttributes(3), XTSOLsetPropUID(3)

XTSOLgetPropUID(3)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

RETURN VALUES

ERRORS

SEE ALSO

Introduction to Library Functions 1141

XTSOLgetResAttributes – Get all CMW attributes associated with a window or a
pixmap

#include <tsol/Xtsol.h>

Status XTSOLgetResAttributes(display, object, type, cmwwinattrp);

Display *display;
XID object;
ResourceType type;
XTSOLResAttributes *cmwwinattrp;

The client requires the PRIV_WIN_DAC_READ and PRIV_WIN_MAC_READ privileges.
XTSOLgetResAttributes() is used to get all CMW attributes associated with a
window or a pixmap in a single call. The attributes include UID, information label,
sensitivity label, input information label, and workstation owner.

display Specifies a pointer to the Display structure; returned from
XOpenDisplay().

object Specifies the ID of a window system object. Possible window
system objects are windows and pixmaps.

type Specifies what type of resource is being accessed. Possible values
are IsWindow and IsPixmap

cmwwinattrp Client must provide a pointer to XTSOLResAttributes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt (available only on Trusted
Solaris systems)

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadWindow Not a valid window

BadPixmap Not a valid pixmap

BadValue Not a valid type

XTSOLgetClientAttributes(3), XTSOLgetPropAttributes(3)

XTSOLgetResAttributes(3)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

RETURN VALUES

ERRORS

SEE ALSO

1142 man pages section 3: Library Functions • Last Revised 24 Jan 1995

XTSOLgetResLabel – Get the CMW label associated with a window, a pixmap, or a
colormap

#include <tsol/Xtsol.h>

Status XTSOLgetResLabel(display, object, type, cmwlabel);

Display *display;
XID object;
ResourceType type;
bclabel_t *cmwlabel;

The client requires the PRIV_WIN_DAC_READ and PRIV_WIN_MAC_READ privileges.
XTSOLgetResLabel() is used to get the CMW label associated with a window or a
pixmap or a colormap.

display Specifies a pointer to the Display structure; returned from
XOpenDisplay().

object Specifies the ID of a window system object whose CMW label you
want to get. Possible window system objects are windows, and
pixmaps or colormaps.

type Specifies what type of resource is being accessed. Possible values
are IsWindow, IsPixmap or IsColormap.

cmwlabel Returns a CMW label which is the current CMW label of the
specified object. This label contains an SL. Client needs to provide
a bclabel_t type storage and passes the address of this storage
as the function argument. Client must provide a pointer to
bclabel_t.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt (available only on Trusted
Solaris systems)

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadPixmap Not a valid pixmap

BadValue Not a valid type

XTSOLgetClientAttributes(3), XTSOLsetResLabel(3)

XTSOLgetResLabel(3)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

RETURN VALUES

ERRORS

SEE ALSO

Introduction to Library Functions 1143

XTSOLgetResUID – Get the UID associated with a window, a pixmap

#include <tsol/Xtsol.h>

Status XTSOLgetResUID(display, object, type, uidp);

Display *display;
XID object;
ResourceType type;
uid_t *uidp;

The client requires the PRIV_WIN_DAC_READ and PRIV_WIN_MAC_READ privileges.

XTSOLgetResUID() gets the ownership of a window system object. This allows a
client to get the ownership of an object it did not create.

display Specifies a pointer to the Display structure; returned from
XOpenDisplay().

object Specifies the ID of a window system object whose UID you want
to get. Possible window system objects are windows or pixmaps.

type Specifies what type of resource is being accessed. Possible values
are IsWindow and IsPixmap.

uidp Returns a UID which is the current UID of the specified object.
Client must provide a pointer to uid_t.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt (available only on Trusted
Solaris systems)

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadWindow Not a valid window

BadPixmap Not a valid pixmap

BadValue Not a valid type

XTSOLgetClientAttributes(3), XTSOLgetResAttributes(3),
XTSOLgetResUID(3)

XTSOLgetResUID(3)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

RETURN VALUES

ERRORS

SEE ALSO

1144 man pages section 3: Library Functions • Last Revised 24 Jan 1995

XTSOLgetSSHeight – Get the height of screen stripe

#include <tsol/Xtsol.h>

XTSOLgetSSHeight(display, screen_num, newheight);

Display *display;
int screen_num;
int *newheight;

XTSOLgetSSHeight() gets the height of trusted screen stripe at the bottom of the
screen. Currently the screen stripe is only present on the default screen. Client must
have the Trusted Path process attribute.

display Specifies a pointer to the Display structure; returned from
XOpenDisplay().

screen_num Specifies the screen number.

newheight Specifies the storage area where the height of the stripe in pixels is
returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt (available only on Trusted
Solaris systems)

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadValue Not a valid screen_num or newheight

XTSOLsetSSHeight(3)

XTSOLgetSSHeight(3)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

RETURN VALUES

ERRORS

SEE ALSO

Introduction to Library Functions 1145

XTSOLgetWorkstationOwner – Get the ownership of the workstation

#include <tsol/Xtsol.h>

Status XTSOLgetWorkstationOwner(display, uidp);

Display *display;
uid_t *uidp;

XTSOLgetWorkstationOwner() is used to get the ownership of the workstation.

display Specifies a pointer to the Display structure; returned from
XOpenDisplay().

uidp Returns a UID which is the current UID of the specified Display
workstation server. Client must provide a pointer to uid_t.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt (available only on Trusted
Solaris systems)

MT-Level MT-Unsafe

None.

BadAccess Lack of privilege

XTSOLsetWorkstationOwner(3)

XTSOLgetWorkstationOwner(3)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

RETURN VALUES

ERRORS

SEE ALSO

1146 man pages section 3: Library Functions • Last Revised 7 Nov 1997

XTSOLIsWindowTrusted – Test if a window is created by a trusted client

#include <tsol/Xtsol.h>

XTSOLIsWindowTrusted(display, window);

Display *display;
Window *window;

XTSOLIsWindowTrusted() tests if a window is created by a trusted client. The
window created by a trusted client has a special bit turned on. The client does not
require any privilege to perform this operation.

display Specifies a pointer to the Display structure; returned from
XOpenDisplay().

window Specifies the ID of the window to be tested.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt (available only on Trusted
Solaris systems)

MT-Level MT-Unsafe

True if the window is created by a trusted client.

BadWindow Not a valid window

XTSOLIsWindowTrusted(3)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

RETURN VALUES

ERRORS

Introduction to Library Functions 1147

XTSOLMakeTPWindow – Make this window a Trusted Path window

#include <tsol/Xtsol.h>

Status XTSOLMakeTPWindow(display, w);

Display *display;
Window *w;

XTSOLMakeTPWindow() is used to make a window a trusted path window. Trusted
Path windows always remain on top of other windows. The client must have the
Trusted Path process attribute set.

display Specifies a pointer to the Display structure; returned from
XOpenDisplay().

w Specifies the ID of a window.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt (available only on Trusted
Solaris systems)

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadWindow Not a valid window

BadValue Not a valid type

XTSOLMakeTPWindow(3)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

RETURN VALUES

ERRORS

1148 man pages section 3: Library Functions • Last Revised 24 Jan 1995

XTSOLsetPolyInstInfo – Set polyinstantiation information

#include <tsol/Xtsol.h>

XTSOLsetPolyInstInfo(display, sl, uidp, enabled);

Display *display;
bslabel_t sl;
uid_t *uidp;
int enabled;

XTSOLsetPolyInstInfo() sets the polyinstantiated information to get property
resources. By default, when a client requests property data for a polyinstantiated
property, the data returned corresponds to the SL and UID of the requesting client. To
get the property data associated with a property with specific sl and uid a client can
use this call to set the SL and UID with enabled flag to TRUE. The client should also
restore the enabled flag to FALSE after retrieving the property value. Client must have
the PRIV_WIN_MAC_WRITE and PRIV_WIN_DAC_WRITE privileges.

display Specifies a pointer to the Display structure; returned from
XOpenDisplay().

sl Specifies the sensitivity label.

uidp Specifies the pointer to UID.

enabled Specifies whether client can set the property information retrieved.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt (available only on Trusted
Solaris systems)

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadValue Not a valid display or sl.

XTSOLsetPolyInstInfo(3)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

RETURN VALUES

ERRORS

Introduction to Library Functions 1149

XTSOLsetPropLabel – Set the CMW label associated with a property hanging on a
window

#include <tsol/Xtsol.h>

XTSOLsetPropLabel(*display, window, property, *cmwlabel, labelFlag);

Display *display;
Window window;
Atom property;
bclabel_t *cmwlabel;
enum setting_flag flag;

XTSOLsetPropLabel() is used to change the CMW label associated with a property
hanging on a window. The client must have the PRIV_WIN_DAC_WRITE,
PRIV_WIN_MAC_WRITE, and PRIV_WIN_UPGRADE_SL privileges.

display Specifies a pointer to the Display structure; returned from
XOpenDisplay().

window Specifies the ID of the window whose property’s CMW label you
want to change.

property Specifies the property atom.

cmwlabel Specifies a pointer to a CMW label structure which contains a
CMW label. Only a portion (depends on labelFlag) of the CMW
label needs to be specified. The unspecified portion of the CMW
label is not interpreted by the server.

labelFlag Specifies which portion of the CMW label will be changed.
Possible values are: SETCL_ALL and SETCL_SL.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt (available only on Trusted
Solaris systems)

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadWindow Not a valid window

BadAtom Not a valid atom

BadValue Not a valid labelFlag or cmwlabel

XTSOLgetPropAttributes(3), XTSOLgetPropLabel(3)

XTSOLsetPropLabel(3)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

RETURN VALUES

ERRORS

SEE ALSO

1150 man pages section 3: Library Functions • Last Revised 30 Sep 1999

XTSOLsetPropUID – Set the UID associated with a property hanging on a window

#include <tsol/Xtsol.h>

XTSOLsetPropUID(display, window, property, uidp);

Display *display;
Window window;
Atom property;
uid_t *uidp;

XTSOLsetPropUID() changes the ownership of a window’s property. This allows
another client to modify a property of a window that it did not create. The client must
have the PRIV_WIN_DAC_WRITE and PRIV_WIN_MAC_WRITE privileges.

display Specifies a pointer to the Display structure; returned from
XOpenDisplay().

window Specifies the ID of the window whose property’s UID you want to
change.

property Specifies the property atom.

uidp Specifies a pointer to a uid_t that contains a UID.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt (available only on Trusted
Solaris systems)

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadWindow Not a valid window

BadAtom Not a valid atom

XTSOLgetPropAttributes(3), XTSOLgetPropUID(3)

XTSOLsetPropUID(3)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

RETURN VALUES

ERRORS

SEE ALSO

Introduction to Library Functions 1151

XTSOLsetResLabel – Set the CMW label associated with a window or a pixmap

#include <tsol/Xtsol.h>

XTSOLsetResLabel(display, object, type, cmwlabel, labelFlag);

Display *display;
XID object;
ResourceType type;
bclabel_t *cmwlabel;

enum setting_flag(labelFlag);

The client must have the PRIV_WIN_DAC_WRITE, PRIV_WIN_MAC_WRITE,
PRIV_WIN_UPGRADE_SL, and PRIV_WIN_DOWNGRADE_SL privileges.

XTSOLsetResLabel() is used to change the CMW label associated with a window
or a pixmap.

display Specifies a pointer to the Display structure; returned from
XOpenDisplay().

object Specifies the ID of a window system object whose CMW label you
want to change. Possible window system objects are windows and
pixmaps. The CMW label is not interpreted by the server.

labelFlag Specifies which portion of the CMW label will be changed.
Possible values are: RES_ALL, and RES_SL.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt (available only on Trusted
Solaris systems)

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadPixmap Not a valid pixmap

BadValue Not a valid type, labelFlag, or cmwlabel

XTSOLgetResAttributes(3), XTSOLgetResLabel(3)

XTSOLsetResLabel(3)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

RETURN VALUES

ERRORS

SEE ALSO

1152 man pages section 3: Library Functions • Last Revised 30 Sep 1999

XTSOLsetResUID – Set the UID associated with a window, a pixmap, or a colormap

#include <tsol/Xtsol.h>

Status XTSOLsetResUID(display, object, type, uidp);

Display *display;
XID object;
ResourceType type;
uid_t *uidp;

The client must have the PRIV_WIN_DAC_WRITE and PRIV_WIN_MAC_WRITE
privileges. XTSOLsetResUID() changes the ownership of a window system object.
This allows a client to create an object and then change its ownership. The new owner
can then make modifications on this object as this object being created by itself.

display Specifies a pointer to the Display structure; returned from
XOpenDisplay().

object Specifies the ID of a window system object whose UID you want
to change. Possible window system objects are windows and
pixmaps.

type Specifies what type of resource is being accessed. Possible values
are: IsWindow and IsPixmap.

uidp Specifies a pointer to a uid_t structure that contains a UID.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt (available only on Trusted
Solaris systems)

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadWindow Not a valid window

BadPixmap Not a valid pixmap

BadValue Not a valid type

XTSOLgetResUID(3)

XTSOLsetResUID(3)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

RETURN VALUES

ERRORS

SEE ALSO

Introduction to Library Functions 1153

XTSOLsetSessionHI – Set the session high sensitivity label to the window server

#include <tsol/Xtsol.h>

XTSOLsetSessionHI(display, sl);

Display *display;
bslabel_t *sl;

XTSOLsetSessionHI() After the session high label has been set by a Trusted Solaris
window system TCB component, logintool, Xsun will reject connection request
from clients running at higher sensitivity labels than the session high label. The client
must have the PRIV_WIN_CONFIG privilege.

display Specifies a pointer to the Display structure; returned from
XOpenDisplay().

sl Specifies a pointer to a sensitivity label to be used as the session
HIGH label.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt (available only on Trusted
Solaris systems)

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

XTSOLsetSessionLO(3)

XTSOLsetSessionHI(3)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

RETURN VALUES

ERRORS

SEE ALSO

1154 man pages section 3: Library Functions • Last Revised 24 Jan 1995

XTSOLsetSessionLO – Set the session low sensitivity label to the window server

#include <tsol/Xtsol.h>

XTSOLsetSessionLO(display, sl);

Display *display;
bslabel_t *sl;

XTSOLsetSessionLO() sets the session low sensitivity label. After the session low
label has been set by a Trusted Solaris window system TCB component, logintool,
Xsun will reject a connection request from a client running at a lower sensitivity label
than the session low label. The client must have the PRIV_WIN_CONFIG privilege.

display Specifies a pointer to the Display structure; returned from
XOpenDisplay().

sl Specifies a pointer to a sensitivity label to be used as the session
low label.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt (available only on Trusted
Solaris systems)

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

XTSOLsetSessionHI(3)

XTSOLsetSessionLO(3)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

RETURN VALUES

ERRORS

SEE ALSO

Introduction to Library Functions 1155

XTSOLsetSSHeight – Set the height of screen stripe

#include <tsol/Xtsol.h>

XTSOLsetSSHeight(display, screen_num, newheight);

Display *display;
int screen_num;
int newheight;

XTSOLsetSSHeight() sets the height of the trusted screen stripe at the bottom of the
screen. Currently the screen stripe is present only on the default screen. The client
must have the Trusted Path process attribute.

display Specifies a pointer to the Display structure; returned from
XOpenDisplay.

screen_num Specifies the screen number.

newheight Specifies the height of the stripe in pixels.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt (available only on Trusted
Solaris systems)

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

BadValue Not a valid screen_num or newheight.

XTSOLgetSSHeight(3)

XTSOLsetSSHeight(3)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

RETURN VALUES

ERRORS

SEE ALSO

1156 man pages section 3: Library Functions • Last Revised 24 Jan 1995

XTSOLsetWorkstationOwner – Set the ownership of the workstation

#include <tsol/Xtsol.h>

XTSOLsetWorkstationOwner(display, uidp);

Display *display;
uid_t *uidp;
XTSOLClientAttributes *clientattrp;

XTSOLsetWorkstationOwner() is used by Trusted Solaris logintool to assign a
user ID to be identified as the owner of the workstation server. The client running
under this user ID can set the server’s device objects, such as keyboard mapping,
mouse mapping, and modifier mapping. The client must have the Trusted Path
process attribute.

display Specifies a pointer to the Display structure; returned from
XOpenDisplay().

uidp Specifies a pointer to a uid_t structure that contains a UID.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt (available only on Trusted
Solaris systems)

MT-Level MT-Unsafe

None

BadAccess Lack of privilege

XTSOLgetWorkstationOwner(3)

XTSOLsetWorkstationOwner(3)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

RETURN VALUES

ERRORS

SEE ALSO

Introduction to Library Functions 1157

XTSOLShutdown – Shut down the system

#include <tsol/Xtsol.h>

XTSOLShutdown(display);

Display * display

XTSOLShutdown() shuts down the system of display. The client must have the
PRIV_SYS_BOOT privilege to perform this operation.

display Specifies a pointer to the Display structure; returned from
XOpenDisplay().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt (available only on Trusted
Solaris systems)

MT-Level MT-Unsafe

XTSOLShutdown(3)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

1158 man pages section 3: Library Functions • Last Revised 24 Apr 1998

Index

A
accept — accept a connection on a socket, 38
adornfc — adorn the final component of a

pathname, 40
audit control file information

— endac, 282, 338, 340, 342, 344, 346, 865
— getacdir, 282, 338, 340, 342, 344, 346, 865
— getacflg, 282, 338, 340, 342, 344, 346, 865
— getacinfo, 282, 338, 340, 342, 344, 346, 865
— getacmin, 282, 338, 340, 342, 344, 346, 865
— getacna, 282, 338, 340, 342, 344, 346, 865
— setac, 282, 338, 340, 342, 344, 346, 865

audit record tokens, manipulating
— au_preselect, 54

auditwrite — construct user-level audit
records, 42

au_preselect — preselect an audit record, 54
au_user_mask — get user’s binary preselection

mask, 58
aw_errno — obtain and display auditwrite error

messages, 60, 62, 64, 66, 68
aw_geterrno — obtain and display auditwrite

error messages, 60, 62, 64, 66, 68
aw_perror — obtain and display auditwrite

error messages, 60, 62, 64, 66, 68
aw_perror_r — obtain and display auditwrite

error messages, 60, 62, 64, 66, 68
aw_strerror — obtain and display auditwrite

error messages, 60, 62, 64, 66, 68

B
bclearhigh — initialize admin high binary

clearance, 70, 72, 81, 85, 87, 100, 110, 127,
129, 138

bclearlow — initialize admin low binary
clearance, 70, 72, 81, 85, 87, 100, 110, 127,
129, 138

bcleartoh — binary clearance to hexadecimal
string, 74, 76, 92, 94, 131, 133, 142, 463, 472

bcleartoh_r — binary clearance to hexadecimal
string, 74, 76, 92, 94, 131, 133, 142, 463, 472

bcleartos — binary clearance to string, 78, 96,
121, 135

bclearundef — initialize undefined binary
clearance, 70, 72, 81, 85, 87, 100, 110, 127,
129, 138

bclearvalid — check validity of binary
clearance, 83, 125, 140

bclhigh — initialize admin high binary CMW
label, 70, 72, 81, 85, 87, 100, 110, 127, 129,
138

bcllow — initialize admin low binary CMW
label, 70, 72, 81, 85, 87, 100, 110, 127, 129,
138

bcltobanner — translate binary CMW label to
printer banner page fields, 89

bcltoh — binary CMW label to hexadecimal
string, 74, 76, 92, 94, 131, 133, 142, 463, 472

bcltoh_r — binary CMW label to hexadecimal
string, 74, 76, 92, 94, 131, 133, 142, 463, 472

bcltos — binary CMW label to string, 78, 96,
121, 135

1159

bcltosl — reference sensitivity label, 99, 115,
391, 878

bclundef — initialize undefined binary CMW
label, 70, 72, 81, 85, 87, 100, 110, 127, 129,
138

bind — bind a name to a socket, 102
bind an address to a transport endpoint —

t_bind, 1074
blcompare — compare labels, 104, 105, 106,

107, 116
bldominates — compare levels for

dominance, 104, 105, 106, 107, 116
blequal — compare levels for equality, 104,

105, 106, 107, 116
blinrange — compare level to be between

bounding levels, 104, 105, 106, 107, 116
blinset — check level for set inclusion, 108
blmanifest — create manifest binary labels, 70,

72, 81, 85, 87, 100, 110, 127, 129, 138
blmaximum — least upper bound of two binary

levels, 112, 113, 114
blminimum — greatest lower bound two binary

levels, 112, 113, 114
blportion — access binary labels, 99, 115, 391,

878
blstrictdom — compare levels for strict

dominance, 104, 105, 106, 107, 116
bltocolor — get character-coded color name of

label, 117, 119
bltocolor_r — get character-coded color name of

label, 117, 119
bltype — check type of binary label, 124, 877
blvalid — check validity of binary label, 83,

125, 140
bslhigh — initialize admin high binary

sensitivity label, 70, 72, 81, 85, 87, 100, 110,
127, 129, 138

bsllow — initialize admin low binary sensitivity
label, 70, 72, 81, 85, 87, 100, 110, 127, 129,
138

bsltoh — binary sensitivity label to hexadecimal
string, 74, 76, 92, 94, 131, 133, 142, 463, 472

bsltoh_r — binary sensitivity label to
hexadecimal string, 74, 76, 92, 94, 131, 133,
142, 463, 472

bsltos — binary sensitivity label to string, 78,
96, 121, 135

bslundef — initialize undefined binary
sensitivity label, 70, 72, 81, 85, 87, 100, 110,
127, 129, 138

bslvalid — check validity of binary sensitivity
label, 83, 125, 140

btohex — convert binary label to
hexadecimal, 74, 76, 92, 94, 131, 133, 142,
463, 472

C
chkauthattr — verify user authorization, 145,

289, 318, 380, 383, 872
clnt_call — library routines for client side

calls, 148, 194, 198, 208, 212, 228, 232, 802,
806, 816, 820

clnt_control — library routines for dealing with
creation and manipulation of CLIENT
handles, 152, 158, 164, 170, 176, 182, 188,
202, 216, 222, 236, 242, 248, 254, 824, 830

clnt_create — library routines for dealing with
creation and manipulation of CLIENT
handles, 152, 158, 164, 170, 176, 182, 188,
202, 216, 222, 236, 242, 248, 254, 824, 830

clnt_create_timed — library routines for dealing
with creation and manipulation of CLIENT
handles, 152, 158, 164, 170, 176, 182, 188,
202, 216, 222, 236, 242, 248, 254, 824, 830

clnt_create_vers — library routines for dealing
with creation and manipulation of CLIENT
handles, 152, 158, 164, 170, 176, 182, 188,
202, 216, 222, 236, 242, 248, 254, 824, 830

clnt_create_vers_timed — library routines for
dealing with creation and manipulation of
CLIENT handles, 152, 158, 164, 170, 176,
182, 188, 202, 216, 222, 236, 242, 248, 254, 824,
830

clnt_destroy — library routines for dealing with
creation and manipulation of CLIENT
handles, 152, 158, 164, 170, 176, 182, 188,
202, 216, 222, 236, 242, 248, 254, 824, 830

clnt_dg_create — library routines for dealing
with creation and manipulation of CLIENT
handles, 152, 158, 164, 170, 176, 182, 188,
202, 216, 222, 236, 242, 248, 254, 824, 830

1160 man pages section 3: Library Functions • November 2001

clnt_freeres — library routines for client side
calls, 148, 194, 198, 208, 212, 228, 232, 802,
806, 816, 820

clnt_geterr — library routines for client side
calls, 148, 194, 198, 208, 212, 228, 232, 802,
806, 816, 820

clnt_pcreateerror — library routines for dealing
with creation and manipulation of CLIENT
handles, 152, 158, 164, 170, 176, 182, 188,
202, 216, 222, 236, 242, 248, 254, 824, 830

clnt_perrno — library routines for client side
calls, 148, 194, 198, 208, 212, 228, 232, 802,
806, 816, 820

clnt_perror — library routines for client side
calls, 148, 194, 198, 208, 212, 228, 232, 802,
806, 816, 820

clnt_raw_create — library routines for dealing
with creation and manipulation of CLIENT
handles, 152, 158, 164, 170, 176, 182, 188,
202, 216, 222, 236, 242, 248, 254, 824, 830

clnt_spcreateerror — library routines for
dealing with creation and manipulation of
CLIENT handles, 152, 158, 164, 170, 176,
182, 188, 202, 216, 222, 236, 242, 248, 254, 824,
830

clnt_sperrno — library routines for client side
calls, 148, 194, 198, 208, 212, 228, 232, 802,
806, 816, 820

clnt_sperror — library routines for client side
calls, 148, 194, 198, 208, 212, 228, 232, 802,
806, 816, 820

clnt_tli_create — library routines for dealing
with creation and manipulation of CLIENT
handles, 152, 158, 164, 170, 176, 182, 188,
202, 216, 222, 236, 242, 248, 254, 824, 830

clnt_tp_create — library routines for dealing
with creation and manipulation of CLIENT
handles, 152, 158, 164, 170, 176, 182, 188,
202, 216, 222, 236, 242, 248, 254, 824, 830

clnt_tp_create_timed — library routines for
dealing with creation and manipulation of
CLIENT handles, 152, 158, 164, 170, 176,
182, 188, 202, 216, 222, 236, 242, 248, 254, 824,
830

clnt_vc_create — library routines for dealing
with creation and manipulation of CLIENT
handles, 152, 158, 164, 170, 176, 182, 188,

202, 216, 222, 236, 242, 248, 254, 824, 830
clock_getres — high-resolution clock

operations, 260, 262, 264
clock_gettime — high-resolution clock

operations, 260, 262, 264
clock_settime — high-resolution clock

operations, 260, 262, 264
communications

accept a connection on a socket —
accept, 38

bind a name to a socket — bind, 102
create an endpoint for communication —

socket, 906
listen for connections on a socket —

listen, 502
send a message from a socket — send,

sendto, sendmsg, 859, 861, 863
construct user-level audit records —

auditwrite, 42
convert binary clearance to canonical string —

sbcleartos, 851, 853, 855, 857
convert binary CMW label to canonical string —

sbcltos, 851, 853, 855, 857
convert binary sensitivity label to canonical

string — sbsltos, 851, 853, 855, 857
convert hexadecimal string to binary clearance

— hextobclear, 471, 480, 481, 482
convert hexadecimal string to binary CMW

label — hextobcl, 471, 480, 481, 482
convert hexadecimal string to binary label —

hextob, 471, 480, 481, 482
convert hexadecimal string to binary sensitivity

label — hextobsl, 471, 480, 481, 482
convert string to binary clearance —

stobclear, 909, 912, 915, 918
convert string to binary CMW label —

stobcl, 909, 912, 915, 918
convert string to binary sensitivity label —

stobsl, 909, 912, 915, 918
create a door descriptor — door_create, 278
current working directory

get pathname — mldmldgetcwd, 507

Index 1161

D
directories

get pathname of current working directory
— mldgetcwd, 507

display auditwrite error messages
— aw_errno, 60, 62, 64, 66, 68
— aw_geterrno, 60, 62, 64, 66, 68
— aw_perror, 60, 62, 64, 66, 68
— aw_perror_r, 60, 62, 64, 66, 68
— aw_strerror, 60, 62, 64, 66, 68

dn_comp — resolver routines, 266, 272, 312,
465, 474, 679, 685, 691, 697, 703, 709, 715, 721,
727, 733, 739, 745, 751, 757, 763, 769

dn_expand — resolver routines, 266, 272, 312,
465, 474, 679, 685, 691, 697, 703, 709, 715, 721,
727, 733, 739, 745, 751, 757, 763, 769

door_create — create a door descriptor, 278
door_tcred — return extended credential

information associated with client of current
door invocation, 280

E
endac — get audit control file

information, 282, 338, 340, 342, 344, 346, 865
endauclass — close audit_class database

file, 284, 348, 350, 352, 354, 867
endauevent — close audit_event database

file, 286, 359, 362, 365, 368, 371, 374, 377, 869
endauthattr — get authorization database

entry, 145, 289, 318, 380, 383, 872
endauuser — get audit_user database

entry, 292, 387, 389, 875
endexecattr — get execution profile entry, 294,

322, 392, 396, 400, 503, 881
endprofattr — get profile description and

attributes, 298, 326, 409, 413, 889
enduserattr — get user_attr entry, 302, 330,

420, 425, 427, 896
endutent — user accounting database

functions, 305, 429, 432, 435, 670, 899, 1119
endutxent — user accounting database

functions, 308, 438, 442, 446, 450, 454, 673,
902, 1111, 1115, 1122

extract sensitivity label — getcsl, 99, 115, 391,
878

F
file status

get — mldstat, mldlstat, 509, 514
file tree

recursively descend — ftw, 333, 523
fp_resstat — resolver routines, 266, 272, 312,

465, 474, 679, 685, 691, 697, 703, 709, 715, 721,
727, 733, 739, 745, 751, 757, 763, 769

free_authattr — release memory, 145, 289, 318,
380, 383, 872

free_execattr — get execution profile
entry, 294, 322, 392, 396, 400, 503, 881

free_profattr — get profile description and
attributes, 298, 326, 409, 413, 889

free_proflist — get execution profile entry, 294,
298, 322, 326, 392, 396, 400, 409, 413, 503, 881,
889

free_userattr — get user_attr entry, 302, 330,
420, 425, 427, 896

ftw — walk a file tree, 333, 523

G
generate random pronounceable password —

randomword, 677
get execution profile entry — getexecattr, 294,

298, 302, 322, 326, 330, 392, 396, 400, 409, 413,
420, 425, 427, 503, 881, 889, 896

get user audit characteristics for peer —
getpeerinfo, 405

getacdir — get audit control file
information, 282, 338, 340, 342, 344, 346, 865

getacflg — get audit control file
information, 282, 338, 340, 342, 344, 346, 865

getacinfo — get audit control file
information, 282, 338, 340, 342, 344, 346, 865

getacmin — get audit control file
information, 282, 338, 340, 342, 344, 346, 865

getacna — get audit control file
information, 282, 338, 340, 342, 344, 346, 865

getauclassent — get audit_class database
entry, 284, 348, 350, 352, 354, 867

getauclassent_r — get audit_class database
entry, 284, 348, 350, 352, 354, 867

getauclassnam — get audit_class database
entry, 284, 348, 350, 352, 354, 867

1162 man pages section 3: Library Functions • November 2001

getauclassnam_r — get audit_class database
entry, 284, 348, 350, 352, 354, 867

getauditflags() — generate process audit
state, 404

getauditflagsbin — convert audit flag
specifications, 356, 357, 358

getauditflagschar — convert audit flag
specifications, 356, 357, 358

getauevent — get audit_event database
entry, 286, 359, 362, 365, 368, 371, 374, 377,
869

getauevent_r — get audit_event database
entry, 286, 359, 362, 365, 368, 371, 374, 377,
869

getauevnam — get audit_event database
entry, 286, 359, 362, 365, 368, 371, 374, 377,
869

getauevnam_r — get audit_event database
entry, 286, 359, 362, 365, 368, 371, 374, 377,
869

getauevnonam — get audit_event database
entry, 286, 359, 362, 365, 368, 371, 374, 377,
869

getauevnum — get audit_event database
entry, 286, 359, 362, 365, 368, 371, 374, 377,
869

getauevnum_r — get audit_event database
entry, 286, 359, 362, 365, 368, 371, 374, 377,
869

getauthattr — get authorization database
entry, 145, 289, 318, 380, 383, 872

getauthnam — get authorization database
entry, 145, 289, 318, 380, 383, 872

getauuserent — get audit_user database
entry, 292, 387, 389, 875

getauuserent_r — get audit_user database
entry, 292, 387, 389, 875

getauusernam — get audit_user database
entry, 292, 387, 389, 875

getauusernam_r — get audit_user database
entry, 292, 387, 389, 875

getcsl — extract sensitivity label, 99, 115, 391,
878

getexecattr — get execution profile entry, 294,
322, 392, 396, 400, 503, 881

getexecprof — get execution profile entry, 294,
322, 392, 396, 400, 503, 881

getexecuser — get execution profile entry, 294,
322, 392, 396, 400, 503, 881

getpeerinfo — get peer’s process
characteristics, 405

getprofattr — get profile description and
attributes, 298, 326, 409, 413, 889

get_profiles — get execution profile entry, 294,
322, 392, 396, 400, 503, 881

getproflist — get profile description and
attributes, 298, 326, 409, 413, 889

getprofnam — get profile description and
attributes, 298, 326, 409, 413, 889

getuserattr — get user_attr entry, 302, 330, 420,
425, 427, 896

getusernam — get user_attr entry, 302, 330,
420, 425, 427, 896

getuseruid — get user_attr entry, 302, 330, 420,
425, 427, 896

getutent — user accounting database
functions, 305, 429, 432, 435, 670, 899, 1119

getutid — user accounting database
functions, 305, 429, 432, 435, 670, 899, 1119

getutline — user accounting database
functions, 305, 429, 432, 435, 670, 899, 1119

getutmp — user accounting database
functions, 308, 438, 442, 446, 450, 454, 673,
902, 1111, 1115, 1122

getutmpx — user accounting database
functions, 308, 438, 442, 446, 450, 454, 673,
902, 1111, 1115, 1122

getutxent — user accounting database
functions, 308, 438, 442, 446, 450, 454, 673,
902, 1111, 1115, 1122

getutxid — user accounting database
functions, 308, 438, 442, 446, 450, 454, 673,
902, 1111, 1115, 1122

getutxline — user accounting database
functions, 308, 438, 442, 446, 450, 454, 673,
902, 1111, 1115, 1122

getvfsaent — get vfstab_adjunct file entry, 458,
460

getvfsafile — search for vfstab_adjunct file
entry, 458, 460

grantpt — grant access to the slave
pseudo-terminal device, 462

group IDs, supplementary
initialize — initgroups, 483

Index 1163

H
h_alloc — allocate memory for a hexadecimal

string, 74, 76, 92, 94, 131, 133, 142, 463, 472
hextob — hexadecimal string to binary

label, 471, 480, 481, 482
h_free — free hexadecimal string memory, 74,

76, 92, 94, 131, 133, 142, 463, 472
hostalias — resolver routines, 266, 272, 312,

465, 474, 679, 685, 691, 697, 703, 709, 715, 721,
727, 733, 739, 745, 751, 757, 763, 769

hstrerror — resolver routines, 266, 272, 312,
465, 474, 679, 685, 691, 697, 703, 709, 715, 721,
727, 733, 739, 745, 751, 757, 763, 769

htobcl — hexadecimal string to binary CMW
label, 471, 480, 481, 482

htobclear — hexadecimal string to binary
clearance, 471, 480, 481, 482

htobsl — hexadecimal string to binary
sensitivity label, 471, 480, 481, 482

I
initgroups — initialize the supplementary

group access list, 483

K
kernel virtual memory functions

kstat_read — read or write kstat data, 484,
485

kstat_write — read or write kstat data, 484,
485

kstat_read — read or write kstat data, 484, 485
kstat_write — read or write kstat data, 484,

485
kva_match — look up a key in a key-value

array, 486

L
label builder

tsol_lbuild_create, 487, 1091, 1096, 1101,
1106

label builder (continued)
tsol_lbuild_destroy, 487, 1091, 1096, 1101,
1106
tsol_lbuild_get, 487, 1091, 1096, 1101, 1106
tsol_lbuild_set, 487, 1091, 1096, 1101, 1106

label clipping
Xbcleartos, 492, 1126, 1128, 1130
Xbcltos, 492, 1126, 1128, 1130
Xbsltos, 492, 1126, 1128, 1130

label encodings file
get file version — labelvers, 496
information about the label encodings —

labelinfo, 494
label library

bclearhigh, 70, 72, 81, 85, 87, 100, 110, 127,
129, 138

bclearlow, 70, 72, 81, 85, 87, 100, 110, 127,
129, 138

bcleartoh, 74, 76, 92, 94, 131, 133, 142, 463,
472

bcleartoh_r, 74, 76, 92, 94, 131, 133, 142, 463,
472

bcleartos, 78, 96, 121, 135
bclearundef, 70, 72, 81, 85, 87, 100, 110, 127,

129, 138
bclearvalid, 83, 125, 140
bclhigh, 70, 72, 81, 85, 87, 100, 110, 127, 129,

138
bcllow, 70, 72, 81, 85, 87, 100, 110, 127, 129,

138
bcltobanner, 89
bcltoh, 74, 76, 92, 94, 131, 133, 142, 463, 472
bcltoh_r, 74, 76, 92, 94, 131, 133, 142, 463,

472
bcltos, 78, 96, 121, 135
bcltosl, 99, 115, 391, 878
bclundef, 70, 72, 81, 85, 87, 100, 110, 127,

129, 138
bldominates, 104, 105, 106, 107, 116
blequal, 104, 105, 106, 107, 116
blinrange, 104, 105, 106, 107, 116
blinset, 108
blmaximum, 112, 113, 114
blminimum, 112, 113, 114
blstrictdom, 104, 105, 106, 107, 116
bltocolor, 117, 119
bltocolor_r, 117, 119

1164 man pages section 3: Library Functions • November 2001

label library (continued)
bltype, 124, 877
bslhigh, 70, 72, 81, 85, 87, 100, 110, 127, 129,

138
bsllow, 70, 72, 81, 85, 87, 100, 110, 127, 129,

138
bsltoh, 74, 76, 92, 94, 131, 133, 142, 463, 472
bsltoh_r, 74, 76, 92, 94, 131, 133, 142, 463,

472
bsltos, 78, 96, 121, 135
bslundef, 70, 72, 81, 85, 87, 100, 110, 127,

129, 138
bslvalid, 83, 125, 140
getcsl, 99, 115, 391, 878
h_alloc, 74, 76, 92, 94, 131, 133, 142, 463, 472
h_free, 74, 76, 92, 94, 131, 133, 142, 463, 472
htobcl, 471, 480, 481, 482
htobclear, 471, 480, 481, 482
htobsl, 471, 480, 481, 482
labelinfo, 494
labelvers, 496
sbcleartos, 851, 853, 855, 857
sbcltos, 851, 853, 855, 857
sbsltos, 851, 853, 855, 857
setbltype, 124, 877
setcsl, 99, 115, 391, 878
stobcl, 909, 912, 915, 918
stobclear, 909, 912, 915, 918
stobsl, 909, 912, 915, 918

labelinfo — information about the label
encodings, 494

labelvers — label_encodings file version, 496
library routines for client side calls

— clnt_call, 148, 194, 198, 208, 212, 228, 232,
802, 806, 816, 820

— clnt_freeres, 148, 194, 198, 208, 212, 228,
232, 802, 806, 816, 820

— clnt_geterr, 148, 194, 198, 208, 212, 228,
232, 802, 806, 816, 820

— clnt_perrno, 148, 194, 198, 208, 212, 228,
232, 802, 806, 816, 820

— clnt_perror, 148, 194, 198, 208, 212, 228,
232, 802, 806, 816, 820

— clnt_sperrno, 148, 194, 198, 208, 212, 228,
232, 802, 806, 816, 820

— clnt_sperror, 148, 194, 198, 208, 212, 228,
232, 802, 806, 816, 820

library routines for client side calls (continued)
— rpc_broadcast, 148, 194, 198, 208, 212,
228, 232, 802, 806, 816, 820
— rpc_broadcast_exp, 148, 194, 198, 208,

212, 228, 232, 802, 806, 816, 820
— rpc_call, 148, 194, 198, 208, 212, 228, 232,

802, 806, 816, 820
— rpc_clnt_calls, 148, 194, 198, 208, 212,

228, 232, 802, 806, 816, 820
library routines for dealing with creation and

manipulation of CLIENT handles
— clnt_control, 152, 158, 164, 170, 176, 182,

188, 202, 216, 222, 236, 242, 248, 254, 824,
830

— clnt_create, 152, 158, 164, 170, 176, 182,
188, 202, 216, 222, 236, 242, 248, 254, 824,
830

— clnt_create_timed, 152, 158, 164, 170, 176,
182, 188, 202, 216, 222, 236, 242, 248, 254,
824, 830

— clnt_create_vers, 152, 158, 164, 170, 176,
182, 188, 202, 216, 222, 236, 242, 248, 254,
824, 830

— clnt_create_vers_timed, 152, 158, 164,
170, 176, 182, 188, 202, 216, 222, 236, 242,
248, 254, 824, 830

— clnt_destroy, 152, 158, 164, 170, 176, 182,
188, 202, 216, 222, 236, 242, 248, 254, 824,
830

— clnt_dg_create, 152, 158, 164, 170, 176,
182, 188, 202, 216, 222, 236, 242, 248, 254,
824, 830

— clnt_pcreateerror, 152, 158, 164, 170, 176,
182, 188, 202, 216, 222, 236, 242, 248, 254,
824, 830

— clnt_raw_create, 152, 158, 164, 170, 176,
182, 188, 202, 216, 222, 236, 242, 248, 254,
824, 830

— clnt_spcreateerror, 152, 158, 164, 170, 176,
182, 188, 202, 216, 222, 236, 242, 248, 254,
824, 830

— clnt_tli_create, 152, 158, 164, 170, 176,
182, 188, 202, 216, 222, 236, 242, 248, 254,
824, 830

— clnt_tp_create, 152, 158, 164, 170, 176,
182, 188, 202, 216, 222, 236, 242, 248, 254,
824, 830

Index 1165

library routines for dealing with creation and
manipulation of CLIENT handles (continued)

— clnt_tp_create_timed, 152, 158, 164, 170,
176, 182, 188, 202, 216, 222, 236, 242, 248, 254,
824, 830
— clnt_vc_create, 152, 158, 164, 170, 176,

182, 188, 202, 216, 222, 236, 242, 248, 254,
824, 830

— rpc_clnt_create, 152, 158, 164, 170, 176,
182, 188, 202, 216, 222, 236, 242, 248, 254,
824, 830

— rpc_createerr, 152, 158, 164, 170, 176, 182,
188, 202, 216, 222, 236, 242, 248, 254, 824,
830

library routines for RPC servers
— rpc_svc_calls, 839, 946, 951, 956, 965, 970,

975, 980, 985, 990, 995, 1000, 1005, 1017,
1022

— svc_dg_enablecache, 839, 946, 951, 956,
965, 970, 975, 980, 985, 990, 995, 1000, 1005,
1017, 1022

— svc_done, 839, 946, 951, 956, 965, 970,
975, 980, 985, 990, 995, 1000, 1005, 1017,
1022

— svc_exit, 839, 946, 951, 956, 965, 970, 975,
980, 985, 990, 995, 1000, 1005, 1017, 1022

— svc_fdset, 839, 946, 951, 956, 965, 970,
975, 980, 985, 990, 995, 1000, 1005, 1017,
1022

— svc_freeargs, 839, 946, 951, 956, 965, 970,
975, 980, 985, 990, 995, 1000, 1005, 1017,
1022

— svc_getargs, 839, 946, 951, 956, 965, 970,
975, 980, 985, 990, 995, 1000, 1005, 1017,
1022

— svc_getreq_common, 839, 946, 951, 956,
965, 970, 975, 980, 985, 990, 995, 1000, 1005,
1017, 1022

— svc_getreq_poll, 839, 946, 951, 956, 965,
970, 975, 980, 985, 990, 995, 1000, 1005,
1017, 1022

— svc_getreqset, 839, 946, 951, 956, 965,
970, 975, 980, 985, 990, 995, 1000, 1005,
1017, 1022

— svc_getrpccaller, 839, 946, 951, 956, 965,
970, 975, 980, 985, 990, 995, 1000, 1005,
1017, 1022

library routines for RPC servers (continued)
— svc_max_pollfd, 839, 946, 951, 956, 965,
970, 975, 980, 985, 990, 995, 1000, 1005, 1017,
1022
— svc_pollfd, 839, 946, 951, 956, 965, 970,

975, 980, 985, 990, 995, 1000, 1005, 1017,
1022

— svc_run, 839, 946, 951, 956, 965, 970, 975,
980, 985, 990, 995, 1000, 1005, 1017, 1022

— svc_sendreply, 839, 946, 951, 956, 965,
970, 975, 980, 985, 990, 995, 1000, 1005,
1017, 1022

libt6 — TSIX trusted IPC library, 498
listen — listen for connections on a socket, 502
lock address space

— mlockall, 517, 521
lock memory pages

— mlock, 515, 519

M
manage options for a transport endpoint —

t_optmgmt, 1078
match_execattr — get execution profile

entry, 294, 322, 392, 396, 400, 503, 881
memory lock or unlock

calling process — plock, 664
memory management

lock pages in memory — mlock, 515, 517,
519, 521

unlock pages in memory — munlock, 515,
517, 519, 521

mldgetcwd — get pathname of current working
directory, 507

mldlstat — get status on symbolic link file in
MLD, 509, 514

mldrealpath — return absolute pathname, 510,
512

mldrealpathl — return absolute
pathname, 510, 512

mldstat — get file status in MLD, 509, 514

N
nftw — walk a file tree, 333, 523

1166 man pages section 3: Library Functions • November 2001

NIS+ table functions
— nis_modify_entry, 534, 553, 579, 601, 615,

634, 653
— nis_remove_entry, 534, 553, 579, 601, 615,

634, 653
NIS+ group manipulation functions

— nis_addmember, 542, 547, 550, 573, 576,
625, 642, 661

— nis_creategroup, 542, 547, 550, 573, 576,
625, 642, 661

— nis_destroygroup, 542, 547, 550, 573, 576,
625, 642, 661

— nis_groups, 542, 547, 550, 573, 576, 625,
642, 661

— nis_ismember, 542, 547, 550, 573, 576,
625, 642, 661

— nis_print_group_entry, 542, 547, 550, 573,
576, 625, 642, 661

— nis_removemember, 542, 547, 550, 573,
576, 625, 642, 661

— nis_verifygroup, 542, 547, 550, 573, 576,
625, 642, 661

NIS+ log administration functions
— nis_checkpoint, 545, 623
— nis_ping, 545, 623

NIS+ miscellaneous functions
— nis_freeservelist, 567, 569, 571, 593, 645,

647, 649, 651
— nis_freetags, 567, 569, 571, 593, 645, 647,

649, 651
— nis_getservlist, 567, 569, 571, 593, 645,

647, 649, 651
— nis_mkdir, 567, 569, 571, 593, 645, 647,

649, 651
— nis_rmdir, 567, 569, 571, 593, 645, 647,

649, 651
— nis_server, 567, 569, 571, 593, 645, 647,

649, 651
— nis_servstate, 567, 569, 571, 593, 645, 647,

649, 651
— nis_stats, 567, 569, 571, 593, 645, 647, 649,

651
NIS+ namespace functions

— nis_add, 528, 561, 587, 595, 609, 628
— nis_freeresult, 528, 561, 587, 595, 609, 628
— nis_lookup, 528, 561, 587, 595, 609, 628
— nis_modify, 528, 561, 587, 595, 609, 628

NIS+ namespace functions (continued)
— nis_names, 528, 561, 587, 595, 609, 628
— nis_remove, 528, 561, 587, 595, 609, 628

NIS+ table functions
— nis_add_entry, 534, 553, 579, 601, 615,

634, 653
— nis_first_entry, 534, 553, 579, 601, 615,

634, 653
— nis_list, 534, 553, 579, 601, 615, 634, 653
— nis_modify_entry, 534, 553, 579, 601, 615,

634, 653
— nis_next_entry, 534, 553, 579, 601, 615,

634, 653
— nis_remove_entry, 534, 553, 579, 601, 615,

634, 653
— nis_tables, 534, 553, 579, 601, 615, 634,

653

P
plock — lock or unlock into memory process,

text, or data, 664
printing

translate binary CMW label to printer banner
page fields — bcltobanner, 89

processes
memory lock or unlock — plock, 664

pseudo-terminal device
grant access to the slave pseudo-terminal

device — grantpt, 462
pututline — user accounting database

functions, 305, 429, 432, 435, 670, 899, 1119
pututxline — user accounting database

functions, 308, 438, 442, 446, 450, 454, 673,
902, 1111, 1115, 1122

R
randomword — generate random

pronounceable password, 677
read or write kstat data

— kstat_read, 484, 485
— kstat_write, 484, 485

reference sensitivity label — bcltosl, 99, 115,
391, 878

Index 1167

remote procedure calls, library routines for —
rpc, 775

replace sensitivity label — setcsl, 99, 115, 391,
878

res_hostalias — resolver routines, 266, 272,
312, 465, 474, 679, 685, 691, 697, 703, 709, 715,
721, 727, 733, 739, 745, 751, 757, 763, 769

res_init — resolver routines, 266, 272, 312, 465,
474, 679, 685, 691, 697, 703, 709, 715, 721, 727,
733, 739, 745, 751, 757, 763, 769

res_mkquery — resolver routines, 266, 272,
312, 465, 474, 679, 685, 691, 697, 703, 709, 715,
721, 727, 733, 739, 745, 751, 757, 763, 769

res_nclose — resolver routines, 266, 272, 312,
465, 474, 679, 685, 691, 697, 703, 709, 715, 721,
727, 733, 739, 745, 751, 757, 763, 769

res_ninit — resolver routines, 266, 272, 312,
465, 474, 679, 685, 691, 697, 703, 709, 715, 721,
727, 733, 739, 745, 751, 757, 763, 769

res_nmkquery — resolver routines, 266, 272,
312, 465, 474, 679, 685, 691, 697, 703, 709, 715,
721, 727, 733, 739, 745, 751, 757, 763, 769

res_npquery — resolver routines, 266, 272,
312, 465, 474, 679, 685, 691, 697, 703, 709, 715,
721, 727, 733, 739, 745, 751, 757, 763, 769

res_nquery — resolver routines, 266, 272, 312,
465, 474, 679, 685, 691, 697, 703, 709, 715, 721,
727, 733, 739, 745, 751, 757, 763, 769

res_nquerydomain — resolver routines, 266,
272, 312, 465, 474, 679, 685, 691, 697, 703, 709,
715, 721, 727, 733, 739, 745, 751, 757, 763, 769

res_nsearch — resolver routines, 266, 272, 312,
465, 474, 679, 685, 691, 697, 703, 709, 715, 721,
727, 733, 739, 745, 751, 757, 763, 769

res_nsend — resolver routines, 266, 272, 312,
465, 474, 679, 685, 691, 697, 703, 709, 715, 721,
727, 733, 739, 745, 751, 757, 763, 769

res_nsendsigned — resolver routines, 266, 272,
312, 465, 474, 679, 685, 691, 697, 703, 709, 715,
721, 727, 733, 739, 745, 751, 757, 763, 769

resolver — resolver routines, 266, 272, 312,
465, 474, 679, 685, 691, 697, 703, 709, 715, 721,
727, 733, 739, 745, 751, 757, 763, 769

res_query — resolver routines, 266, 272, 312,
465, 474, 679, 685, 691, 697, 703, 709, 715, 721,
727, 733, 739, 745, 751, 757, 763, 769

res_querydomain — resolver routines, 266,

272, 312, 465, 474, 679, 685, 691, 697, 703, 709,
715, 721, 727, 733, 739, 745, 751, 757, 763, 769

res_search — resolver routines, 266, 272, 312,
465, 474, 679, 685, 691, 697, 703, 709, 715, 721,
727, 733, 739, 745, 751, 757, 763, 769

res_send — resolver routines, 266, 272, 312,
465, 474, 679, 685, 691, 697, 703, 709, 715, 721,
727, 733, 739, 745, 751, 757, 763, 769

res_update — resolver routines, 266, 272, 312,
465, 474, 679, 685, 691, 697, 703, 709, 715, 721,
727, 733, 739, 745, 751, 757, 763, 769

return extended credential information
associated with client of current door
invocation — door_tcred, 280

rpc — library routines for remote procedure
calls, 775

RPC bind service library routines
— rpcb_getaddr, 784, 787, 790, 793, 796, 799,

810, 813
— rpcb_getallmaps, 784, 787, 790, 793, 796,

799, 810, 813
— rpcb_getmaps, 784, 787, 790, 793, 796,

799, 810, 813
— rpcb_gettime, 784, 787, 790, 793, 796, 799,

810, 813
— rpcbind, 784, 787, 790, 793, 796, 799, 810,

813
— rpcb_rmtcall, 784, 787, 790, 793, 796, 799,

810, 813
— rpcb_set, 784, 787, 790, 793, 796, 799, 810,

813
— rpcb_unset, 784, 787, 790, 793, 796, 799,

810, 813
RPC library routines for creation and

manipulation of server handles
— rpc_svc_create, 844, 930, 934, 938, 942,

961, 1010, 1027, 1031, 1038
— svc_create, 844, 930, 934, 938, 942, 961,

1010, 1027, 1031, 1038
— svc_destroy, 844, 930, 934, 938, 942, 961,

1010, 1027, 1031, 1038
— svc_dg_create, 844, 930, 934, 938, 942,

961, 1010, 1027, 1031, 1038
— svc_fd_create, 844, 930, 934, 938, 942,

961, 1010, 1027, 1031, 1038
— svc_raw_create, 844, 930, 934, 938, 942,

961, 1010, 1027, 1031, 1038

1168 man pages section 3: Library Functions • November 2001

RPC library routines for creation and
manipulation of server handles (continued)

— svc_tli_create, 844, 930, 934, 938, 942,
961, 1010, 1027, 1031, 1038
— svc_tp_create, 844, 930, 934, 938, 942,

961, 1010, 1027, 1031, 1038
— svc_vc_create, 844, 930, 934, 938, 942,

961, 1010, 1027, 1031, 1038
RPC library routines for registering servers

— rpc_reg, 836, 848, 927, 1014, 1035, 1132,
1135

— rpc_svc_reg, 836, 848, 927, 1014, 1035,
1132, 1135

— svc_auth_reg, 836, 848, 927, 1014, 1035,
1132, 1135

— svc_reg, 836, 848, 927, 1014, 1035, 1132,
1135

— svc_unreg, 836, 848, 927, 1014, 1035,
1132, 1135

— xprt_register, 836, 848, 927, 1014, 1035,
1132, 1135

— xprt_unregister, 836, 848, 927, 1014, 1035,
1132, 1135

rpcb_getaddr — library routines for RPC bind
service, 784, 787, 790, 793, 796, 799, 810, 813

rpcb_getallmaps — library routines for RPC
bind service, 784, 787, 790, 793, 796, 799,
810, 813

rpcb_getmaps — library routines for RPC bind
service, 784, 787, 790, 793, 796, 799, 810, 813

rpcb_gettime — library routines for RPC bind
service, 784, 787, 790, 793, 796, 799, 810, 813

rpcbind — library routines for RPC bind
service, 784, 787, 790, 793, 796, 799, 810, 813

rpcb_rmtcall — library routines for RPC bind
service, 784, 787, 790, 793, 796, 799, 810, 813

rpc_broadcast — library routines for client side
calls, 148, 194, 198, 208, 212, 228, 232, 802,
806, 816, 820

rpc_broadcast_exp — library routines for client
side calls, 148, 194, 198, 208, 212, 228, 232,
802, 806, 816, 820

rpcb_set — library routines for RPC bind
service, 784, 787, 790, 793, 796, 799, 810, 813

rpcb_unset — library routines for RPC bind
service, 784, 787, 790, 793, 796, 799, 810, 813

rpc_call — library routines for client side
calls, 148, 194, 198, 208, 212, 228, 232, 802,
806, 816, 820

rpc_clnt_calls — library routines for client side
calls, 148, 194, 198, 208, 212, 228, 232, 802,
806, 816, 820

rpc_clnt_create — library routines for dealing
with creation and manipulation of CLIENT
handles, 152, 158, 164, 170, 176, 182, 188,
202, 216, 222, 236, 242, 248, 254, 824, 830

rpc_createerr — library routines for dealing
with creation and manipulation of CLIENT
handles, 152, 158, 164, 170, 176, 182, 188,
202, 216, 222, 236, 242, 248, 254, 824, 830

rpc_svc_calls — library routines for RPC
servers, 839, 946, 951, 956, 965, 970, 975,
980, 985, 990, 995, 1000, 1005, 1017, 1022

rpc_svc_create — RPC library routines for
creation and manipulation of server
handles, 844, 930, 934, 938, 942, 961, 1010,
1027, 1031, 1038

rpc_svc_reg — RPC library routines for
registering servers, 836, 848, 927, 1014, 1035,
1132, 1135

S
sbcleartos — binary clearance to canonical

string, 851, 853, 855, 857
sbcltos — binary CMW label to canonical

string, 851, 853, 855, 857
sbsltos — binary sensitivity label to canonical

string, 851, 853, 855, 857
security policy, 22
send — send message from a socket, 859, 861,

863
send a data unit — t_sndudata, 1088
send data or expedited data over a connection

— t_snd, 1084
sendmsg — send message from a socket, 859,

861, 863
sendto — send message from a socket, 859,

861, 863
setac — get audit control file information, 282,

338, 340, 342, 344, 346, 865

Index 1169

setauclass — rewind audit_class database
file, 284, 348, 350, 352, 354, 867

setauevent — rewind audit_event database
file, 286, 359, 362, 365, 368, 371, 374, 377, 869

setauthattr — get authorization database
entry, 145, 289, 318, 380, 383, 872

setauuser — get audit_user database
entry, 292, 387, 389, 875

setbltype — set type of binary label, 124, 877
setcsl — replace sensitivity label, 99, 115, 391,

878
set_effective_priv — set the effective privileges

for the current process., 879, 885, 887
setexecattr — get execution profile entry, 294,

322, 392, 396, 400, 503, 881
set_inheritable_priv — set the inheritable

privileges for the current process., 879, 885,
887

set_permitted_priv — set the permitted
privileges for the current process., 879, 885,
887

setprofattr — get profile description and
attributes, 298, 326, 409, 413, 889

setuserattr — get user_attr entry, 302, 330, 420,
425, 427, 896

setutent — user accounting database
functions, 305, 429, 432, 435, 670, 899, 1119

setutxent — user accounting database
functions, 308, 438, 442, 446, 450, 454, 673,
902, 1111, 1115, 1122

socket — create an endpoint for
communication, 906

socket
accept a connection — accept, 38
bind a name — bind, 102
get options — getsocketopt, 417, 893
listen for connections — listen, 502
send message from — send, sendto,

sendmsg, 859, 861, 863
set options — setsocketopt, 417, 893

stobcl — string to binary CMW label, 909, 912,
915, 918

stobclear — string to binary clearance, 909,
912, 915, 918

stobsl — string to binary sensitivity label, 909,
912, 915, 918

STREAMS
accept a connection on a socket —

accept, 38
bind a name to a socket — bind, 102
create an endpoint for communication —

socket, 906
get and set socket options — getsockopt,

setsockopt, 417, 893
listen for connections on a socket —

listen, 502
send a message from a socket — send,

sendto, sendmsg, 859, 861, 863
svc_auth_reg — RPC library routines for

registering servers, 836, 848, 927, 1014, 1035,
1132, 1135

svc_control — RPC library routines for creation
and manipulation of server handles, 844,
930, 934, 938, 942, 961, 1010, 1027, 1031, 1038

svc_create — RPC library routines for creation
and manipulation of server handles, 844,
930, 934, 938, 942, 961, 1010, 1027, 1031, 1038

svc_destroy — RPC library routines for creation
and manipulation of server handles, 844,
930, 934, 938, 942, 961, 1010, 1027, 1031, 1038

svc_dg_create — RPC library routines for
creation and manipulation of server
handles, 844, 930, 934, 938, 942, 961, 1010,
1027, 1031, 1038

svc_dg_enablecache — library routines for RPC
servers, 839, 946, 951, 956, 965, 970, 975,
980, 985, 990, 995, 1000, 1005, 1017, 1022

svc_done — library routines for RPC
servers, 839, 946, 951, 956, 965, 970, 975,
980, 985, 990, 995, 1000, 1005, 1017, 1022

svc_exit — library routines for RPC
servers, 839, 946, 951, 956, 965, 970, 975,
980, 985, 990, 995, 1000, 1005, 1017, 1022

svc_fdset — library routines for RPC
servers, 839, 946, 951, 956, 965, 970, 975,
980, 985, 990, 995, 1000, 1005, 1017, 1022

svc_freeargs — library routines for RPC
servers, 839, 946, 951, 956, 965, 970, 975,
980, 985, 990, 995, 1000, 1005, 1017, 1022

svc_getargs — library routines for RPC
servers, 839, 946, 951, 956, 965, 970, 975,
980, 985, 990, 995, 1000, 1005, 1017, 1022

1170 man pages section 3: Library Functions • November 2001

svc_getreq_common — library routines for RPC
servers, 839, 946, 951, 956, 965, 970, 975,
980, 985, 990, 995, 1000, 1005, 1017, 1022

svc_getreq_poll — library routines for RPC
servers, 839, 946, 951, 956, 965, 970, 975,
980, 985, 990, 995, 1000, 1005, 1017, 1022

svc_getreqset — library routines for RPC
servers, 839, 946, 951, 956, 965, 970, 975,
980, 985, 990, 995, 1000, 1005, 1017, 1022

svc_getrpccaller — library routines for RPC
servers, 839, 946, 951, 956, 965, 970, 975,
980, 985, 990, 995, 1000, 1005, 1017, 1022

svc_max_pollfd — library routines for RPC
servers, 839, 946, 951, 956, 965, 970, 975,
980, 985, 990, 995, 1000, 1005, 1017, 1022

svc_pollfd — library routines for RPC
servers, 839, 946, 951, 956, 965, 970, 975,
980, 985, 990, 995, 1000, 1005, 1017, 1022

svc_reg — RPC library routines for registering
servers, 836, 848, 927, 1014, 1035, 1132, 1135

svc_run — library routines for RPC
servers, 839, 946, 951, 956, 965, 970, 975,
980, 985, 990, 995, 1000, 1005, 1017, 1022

svc_sendreply — library routines for RPC
servers, 839, 946, 951, 956, 965, 970, 975,
980, 985, 990, 995, 1000, 1005, 1017, 1022

svc_tli_create — RPC library routines for
creation and manipulation of server
handles, 844, 930, 934, 938, 942, 961, 1010,
1027, 1031, 1038

svc_tp_create — RPC library routines for
creation and manipulation of server
handles, 844, 930, 934, 938, 942, 961, 1010,
1027, 1031, 1038

svc_vc_create — RPC library routines for
creation and manipulation of server
handles, 844, 930, 934, 938, 942, 961, 1010,
1027, 1031, 1038

T
t6alloc_blk — allocates security-attribute control

structure and buffer, 1042, 1049
t6attr_query — get mask indicating which

attributes came from templates, 1043
t6clear_blk — clear security attributes, 1044

t6cmp_blk — compare security
attributes, 1045

t6copy_blk — copy security attributes, 1046
t6dup_blk — duplicate security

attributes, 1047
t6ext_attr — manipulate network-endpoint

security options, 1048, 1057
t6free_blk — frees security-attribute control

structure and buffer, 1042, 1049
t6get_attr — get security attributes from the

security-attribute buffer handled by a control
structure, 1050, 1063

t6get_endpt_default — get endpoint default
attributes, 1052, 1054, 1065, 1067

t6get_endpt_mask — get endpoint mask, 1052,
1054, 1065, 1067

t6last_attr — examine the security attributes on
the previous byte of data, 1056, 1058

t6new_attr — manipulate network-endpoint
security options, 1048, 1057

t6peek_attr — examine the security attributes
on the next byte of data, 1056, 1058

t6recvfrom — read security attributes and data
from a trusted endpoint, 1059

t6sendto — specify security attributes to send
with data on a trusted endpoint, 1061

t6set_attr — set security attributes in the
security-attribute buffer handled by a control
structure, 1050, 1063

t6set_endpt_default — set endpoint default
attributes, 1052, 1054, 1065, 1067

t6set_endpt_mask — set endpoint mask, 1052,
1054, 1065, 1067

t6size_attr — get the size of a particular
attribute from the control structure, 1069

t_accept — accept a connection request, 1070
t_bind — bind an address to a transport

endpoint, 1074
terminal device, slave pseudo

grant access — grantpt, 462
t_optmgmt — manage options for a transport

endpoint, 1078
translate binary clearance to string —

bcleartos, 78, 96, 121, 135
translate binary CMW label to string —

bcltos, 78, 96, 121, 135

Index 1171

translate binary label to printer banner —
bcltobanner, 89

translate binary sensitivity label to string —
bsltos, 78, 96, 121, 135

TSIX trusted IPC library — libt6, 498
t_snd — send data or expedited data over a

connection, 1084
t_sndudata — send a data unit, 1088
tsol_lbuild_create — create a user interface for

interactively building a valid label or
clearance, 487, 1091, 1096, 1101, 1106

tsol_lbuild_destroy — destroy label builder user
interface, 487, 1091, 1096, 1101, 1106

tsol_lbuild_get — get user interface for label
builder, 487, 1091, 1096, 1101, 1106

tsol_lbuild_set — change user interface
information for label builder, 487, 1091,
1096, 1101, 1106

U
unlock address space

— munlockall, 517, 521
unlock memory pages

— munlock, 515, 519
updwtmp — user accounting database

functions, 308, 438, 442, 446, 450, 454, 673,
902, 1111, 1115, 1122

updwtmpx — user accounting database
functions, 308, 438, 442, 446, 450, 454, 673,
902, 1111, 1115, 1122

user accounting database functions —
getutent, 305, 308, 429, 432, 435, 438, 442,
446, 450, 454, 670, 673, 899, 902, 1111, 1115,
1119, 1122

utmpname — user accounting database
functions, 305, 429, 432, 435, 670, 899, 1119

utmpxname — user accounting database
functions, 308, 438, 442, 446, 450, 454, 673,
902, 1111, 1115, 1122

V
vfstab_adjunct file

get entry — getvfsaent, 458, 460

vfstab_adjunct file (continued)
search for entry — getvfsafile, 458, 460

W
write user-level audit records — auditwrite, 42

X
Xbcleartos — binary clearance to string with

font list, 492, 1126, 1128, 1130
Xbcltos — binary CMW label to string with font

list, 492, 1126, 1128, 1130
Xbsltos — binary sensitivity label to string with

font list, 492, 1126, 1128, 1130
XTSOLgetClientAttributes — get client

attrs, 1138
XTSOLgetPropAttributes — get all prop

attrs, 1139
XTSOLgetPropLabel — set resource label, 1140
XTSOLgetPropUID — get property uid, 1141
XTSOLgetResAttributes — get all attrs, 1142
XTSOLgetResLabel — get resource label, 1143
XTSOLgetResUID — set resource uid, 1144
XTSOLgetSSHeight — get screen stripe

height, 1145
XTSOLgetWorkstationOwner — get

ownership, 1146
XTSOLIsWindowTrusted — test Trusted

Window, 1147
XTSOLMakeTPWindow — Make Trusted path

window, 1148
XTSOLsetPolyInstInfo — set poly instantiation

info, 1149
XTSOLsetPropLabel — set resource label, 1150
XTSOLsetPropUID — set property uid, 1151
XTSOLsetResLabel — set resource label, 1152
XTSOLsetResUID — set resource uid, 1153
XTSOLsetSessionHI — set SL, 1154
XTSOLsetSessionLO — set SL, 1155
XTSOLsetSSHeight — set screen stripe

height, 1156
XTSOLsetWorkstationOwner — set

ownership, 1157
XTSOLShutdown — shutdown system, 1158

1172 man pages section 3: Library Functions • November 2001

