
man pages section 2: System Calls

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part No: 816–1056–10
November 2001

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303-4900 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

011029@2471

Contents

Preface 9

Introduction 15

Intro(2) 16

System Calls 47

access(2) 48

acct(2) 50

acl(2) 51

adjtime(2) 53

audit(2) 55

auditon(2) 57

auditsvc(2) 62

chdir(2) 64

chmod(2) 66

chown(2) 70

chroot(2) 73

chstate(2) 75

creat(2) 76

devpolicy(2) 79

exec(2) 80

execl(2) 87

execle(2) 94

execlp(2) 101

execv(2) 108

3

execve(2) 115

execvp(2) 122

facl(2) 129

fchdir(2) 131

fchmod(2) 133

fchown(2) 137

fchroot(2) 140

fcntl(2) 142

fgetcmwfsrange(2) 151

fgetcmwlabel(2) 153

fgetfattrflag(2) 155

fgetfpriv(2) 159

fgetfsattr(2) 162

fgetmldadorn(2) 164

fgetsldname(2) 166

fork1(2) 169

fork(2) 173

fpathconf(2) 177

fsetcmwlabel(2) 181

fsetfattrflag(2) 185

fsetfpriv(2) 189

fstat(2) 192

fstatvfs(2) 196

getaudit(2) 199

getaudit_addr(2) 201

getauid(2) 203

getclearance(2) 204

getcmwfsrange(2) 205

getcmwlabel(2) 207

getcmwplabel(2) 209

getdents(2) 210

getfattrflag(2) 212

getfpriv(2) 216

getfsattr(2) 219

getgroups(2) 221

getmldadorn(2) 223

getmsgqcmwlabel(2) 225

4 man pages section 2: System Calls • November 2001

getpattr(2) 226

getpgid(2) 229

getpgrp(2) 231

getpid(2) 233

getppid(2) 235

getppriv(2) 237

getrlimit(2) 239

getsemcmwlabel(2) 243

getshmcmwlabel(2) 244

getsid(2) 245

getsldname(2) 246

kill(2) 249

lchown(2) 251

lgetcmwlabel(2) 254

link(2) 256

llseek(2) 258

lseek(2) 259

lsetcmwlabel(2) 261

lstat(2) 265

mkdir(2) 269

mknod(2) 272

mldgetfattrflag(2) 276

mldsetfattrflag(2) 280

mount(2) 284

msgctl(2) 288

msgget(2) 290

msggetl(2) 292

msgrcv(2) 294

msgsnd(2) 296

nice(2) 298

open(2) 299

pathconf(2) 305

p_online(2) 309

pread(2) 312

preadl(2) 318

priocntl(2) 324

priocntlset(2) 333

Contents 5

processor_bind(2) 335

pwrite(2) 337

pwritel(2) 344

read(2) 351

readl(2) 357

readlink(2) 363

readv(2) 365

readvl(2) 371

rename(2) 377

rmdir(2) 380

secconf(2) 382

semctl(2) 383

semget(2) 386

semgetl(2) 388

semop(2) 390

semtimedop(2) 394

setaudit(2) 398

setaudit_addr(2) 400

setauid(2) 402

setclearance(2) 403

setcmwlabel(2) 404

setcmwplabel(2) 408

setegid(2) 409

seteuid(2) 411

setfattrflag(2) 413

setfpriv(2) 417

setgid(2) 420

setgroups(2) 422

setpattr(2) 424

setppriv(2) 427

setregid(2) 429

setreuid(2) 430

setrlimit(2) 431

setuid(2) 435

shmat(2) 437

shmctl(2) 440

shmdt(2) 443

6 man pages section 2: System Calls • November 2001

shmget(2) 446

shmgetl(2) 448

shmop(2) 450

sigsend(2) 453

sigsendset(2) 455

stat(2) 457

statvfs(2) 461

stime(2) 464

swapctl(2) 465

symlink(2) 469

sysinfo(2) 471

tokmapper(2) 475

uadmin(2) 476

ulimit(2) 478

umount(2) 479

umount2(2) 481

unlink(2) 483

utimes(2) 485

vfork(2) 487

write(2) 489

writel(2) 496

writev(2) 503

writevl(2) 510

Index 517

Contents 7

8 man pages section 2: System Calls • November 2001

Preface

Overview
A man page is provided for both the naive user and the sophisticated user who is
familiar with the Trusted Solaris operating environment and is in need of online
information. A man page is intended to answer concisely the question “What does it
do?” The man pages in general comprise a reference manual. They are not intended to
be a tutorial.

Trusted Solaris Reference Manual
In the AnswerBook2™ and online man command forms of the man pages, all man
pages are available:

� Trusted Solaris man pages that are unique for the Trusted Solaris environment

� SunOS 5.8 man pages that have been changed in the Trusted Solaris environment

� SunOS 5.8 man pages that remain unchanged.

The printed manual, the Trusted Solaris 8 Reference Manual contains:

� Man pages that have been added to the SunOS operating system by the Trusted
Solaris environment

� Man pages that originated in SunOS 5.8, but have been modified in the Trusted
Solaris environment to handle security requirements.

Users of printed manuals need both manuals in order to have a full set of man pages,
since the SunOS 5.8 Reference Manual contains the common man pages that are not
modified in the Trusted Solaris environment.

9

Man Page Sections
The following contains a brief description of each section in the man pages and the
information it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2 of
this volume.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character set tables.

� Section 6 contains available games and demos.

� Section 7 describes various special files that refer to specific hardware peripherals,
and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

� Section 9 provides reference information needed to write device drivers in the
kernel operating systems environment. It describes two device driver interface
specifications: the Device Driver Interface (DDI) and the Driver⁄Kernel Interface
(DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer may include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.

� Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME
This section gives the names of the commands or functions documented, followed
by a brief description of what they do.

SYNOPSIS
This section shows the syntax of commands or functions. When a command or file
does not exist in the standard path, its full pathname is shown. Options and

10 man pages section 2: System Calls • November 2001

arguments are alphabetized, with single letter arguments first, and options with
arguments next, unless a different argument order is required.

The following special characters are used in this section:

[] The option or argument enclosed in these brackets is optional. If the
brackets are omitted, the argument must be specified.

. . . Ellipses. Several values may be provided for the previous argument, or
the previous argument can be specified multiple times, for example, ‘
"filename . . ." .

| Separator. Only one of the arguments separated by this character can be
specified at a time.

{ } Braces. The options and/or arguments enclosed within braces are
interdependent, such that everything enclosed must be treated as a unit.

PROTOCOL
This section occurs only in subsection 3R to indicate the protocol description file.

DESCRIPTION
This section defines the functionality and behavior of the service. Thus it describes
concisely what the command does. It does not discuss OPTIONS or cite
EXAMPLES. Interactive commands, subcommands, requests, macros, functions and
such, are described under USAGE.

IOCTL
This section appears on pages in Section 7 only. Only the device class which
supplies appropriate parameters to the ioctl (2) system call is called ioctl and
generates its own heading. ioctl calls for a specific device are listed alphabetically
(on the man page for that specific device). ioctl calls are used for a particular
class of devices all of which have an io ending, such as mtio(7I)

OPTIONS
This secton lists the command options with a concise summary of what each option
does. The options are listed literally and in the order they appear in the SYNOPSIS
section. Possible arguments to options are discussed under the option, and where
appropriate, default values are supplied.

OPERANDS
This section lists the command operands and describes how they affect the actions
of the command.

OUTPUT
This section describes the output – standard output, standard error, or output files –
generated by the command.

RETURN VALUES
If the man page documents functions that return values, this section lists these
values and describes the conditions under which they are returned. If a function
can return only constant values, such as 0 or –1, these values are listed in tagged

Preface 11

paragraphs. Otherwise, a single paragraph describes the return values of each
function. Functions declared void do not return values, so they are not discussed in
RETURN VALUES.

ERRORS
On failure, most functions place an error code in the global variable errno
indicating why they failed. This section lists alphabetically all error codes a
function can generate and describes the conditions that cause each error. When
more than one condition can cause the same error, each condition is described in a
separate paragraph under the error code.

USAGE
This section lists special rules, features, and commands that require in-depth
explanations. The subsections listed here are used to explain built-in functionality:

� Commands
� Modifiers
� Variables
� Expressions
� Input Grammar

EXAMPLES
This section provides examples of usage or of how to use a command or function.
Wherever possible a complete example including command-line entry and machine
response is shown. Whenever an example is given, the prompt is shown as
example%, or if the user must be root, example#. Examples are followed by
explanations, variable substitution rules, or returned values. Most examples
illustrate concepts from the SYNOPSIS, DESCRIPTION, OPTIONS, and USAGE
sections.

ENVIRONMENT VARIABLES
This section lists any environment variables that the command or function affects,
followed by a brief description of the effect.

EXIT STATUS
This section lists the values the command returns to the calling program or shell
and the conditions that cause these values to be returned. Usually, zero is returned
for successful completion, and values other than zero for various error conditions.

FILES
This section lists all file names referred to by the man page, files of interest, and
files created or required by commands. Each is followed by a descriptive summary
or explanation.

ATTRIBUTES
This section lists characteristics of commands, utilities, and device drivers by
defining the attribute type and its corresponding value. See attributes(5) for
more information.

12 man pages section 2: System Calls • November 2001

SUMMARY OF TRUSTED SOLARIS CHANGES
This section describes changes to a Solaris item by Trusted Solaris software. It is
present in man pages that have been modified from Solaris software.

SEE ALSO
This section lists references to other man pages, in-house documentation and
outside publications. The references are divided into two sections, so that users of
printed manuals can easily locate a man page in its appropriate printed manual.

DIAGNOSTICS
This section lists diagnostic messages with a brief explanation of the condition
causing the error.

WARNINGS
This section lists warnings about special conditions which could seriously affect
your working conditions. This is not a list of diagnostics.

NOTES
This section lists additional information that does not belong anywhere else on the
page. It takes the form of an aside to the user, covering points of special interest.
Critical information is never covered here.

BUGS
This section describes known bugs and, wherever possible, suggests workarounds.

Preface 13

14 man pages section 2: System Calls • November 2001

Introduction

15

Intro – introduction to system calls and error numbers

#include <errno.h>

This section describes all of the system calls in the Trusted Solaris environment.

Trusted Solaris system calls are one of the following:

� Calls that are unique to and originate in the Trusted Solaris environment, such as
secconf(2). The secconf() system call allows processes to determine the value
of a configurable security-related system variable, such as the variable that hides
upgraded file names when set.

� SunOS 5.8 system calls that have been modified to work within Trusted Solaris
security policy, such as link(2). Man pages for modified system calls have been
rewritten to remove information that is not accurate for how the system call
behaves within the Trusted Solaris environment. Modified man pages also have
added descriptions for new features and arguments.

� SunOS 5.8 system calls that remain unchanged from the Solaris 8 release, such as
exit(2).

Note – The printed Trusted Solaris 8 4/01 Reference Manual includes only those system
calls that have been modified or originate in the Trusted Solaris environment. Printed
versions of unchanged SunOS 5.8 man pages are found in the SunOS 5.8 Reference
Manual. See Trusted Solaris Manual Page Display in Intro(1) for more
discussion.

When a man page for a system call states that the calling process must have or must
assert a specified privilege or privileges, that means:

� The privilege(s) must be made available as allowed privileges on the executable,
and

� The privileges must be made available to the effective privilege set of the process in
either of these two ways:

� By inheritance from the parent process, or
� As forced privileges assigned to the executable program. See Process Privilege Sets
and Inheritable Privileges in the DEFINITIONS section, and see also the Trusted Solaris
Developer’s Guide for more complete descriptions of the topics mentioned here.

Most of these calls return one or more error conditions. An error condition is indicated
by an otherwise impossible return value. This is almost always −1 or the null pointer;
the individual descriptions specify the details. An error number is also made available
in the external variable errno, which is not cleared on successful calls, so it should be
tested only after an error has been indicated.

In the case of multithreaded applications, the _REENTRANT flag must be defined on
the command line at compilation time (-D_REENTRANT). When the _REENTRANT flag

Intro(2)

NAME

SYNOPSIS

DESCRIPTION

ERRORS

16 man pages section 2: System Calls • Last Revised 31 Aug 2001

is defined, errno becomes a macro which enables each thread to have its own errno.
This errno macro can be used on either side of the assignment, just as if it were a
variable.

Applications should use bound threads rather than the _lwp_*() functions (see
thr_create(3THR)). Using LWPs (lightweight processes) directly is not advised
because libraries are only safe to use with threads, not LWPs.

Each system call description attempts to list all possible error numbers. The following
is a complete list of the error numbers and their names as defined in <errno.h>.

1 EPERM Appropriate privilege not asserted

Typically this error indicates an attempt to modify a file
in some way forbidden except to its owner or a process
with the appropriate privilege. It is also returned for
attempts by ordinary users to do things that always
require a privilege. See Privilege in the DEFINITIONS
section.

2 ENOENT No such file or directory

A file name is specified and the file should exist but
doesn’t, or one of the directories in a path name does
not exist.

3 ESRCH No such process, LWP, or thread

No process can be found in the system that
corresponds to the specified PID, LWPID_t, or
thread_t.

4 EINTR Interrupted system call

An asynchronous signal (such as interrupt or quit),
which the user has elected to catch, occurred during a
system service function. If execution is resumed after
processing the signal, it will appear as if the
interrupted function call returned this error condition.

In a multithreaded application, EINTR may be returned
whenever another thread or LWP calls fork(2).

5 EIO I/O error

Some physical I/O error has occurred. This error may
in some cases occur on a call following the one to
which it actually applies.

6 ENXIO No such device or address

Intro(2)

Introduction 17

I/O on a special file refers to a subdevice which does
not exist, or exists beyond the limit of the device. It
may also occur when, for example, a tape drive is not
on-line or no disk pack is loaded on a drive.

7 E2BIG Arg list too long

An argument list longer than ARG_MAX bytes is
presented to a member of the exec family of functions
(see exec(2)). The argument list limit is the sum of the
size of the argument list plus the size of the
environment’s exported shell variables.

8 ENOEXEC Exec format error

A request is made to execute a file which, although it
has the appropriate permissions, does not start with a
valid format (see a.out(4)).

9 EBADF Bad file number

Either a file descriptor refers to no open file, or a
read(2) (respectively, write(2)) request is made to a
file that is open only for writing (respectively, reading).

10 ECHILD No child processes

A wait(2) function was executed by a process that had
no existing or unwaited-for child processes.

11 EAGAIN No more processes, or no more LWPs

For example, the fork(2) function failed because the
system’s process table is full or the user is not allowed
to create any more processes, or a call failed because of
insufficient memory or swap space.

12 ENOMEM Not enough space

During execution of brk() or sbrk() (see brk(2)), or
one of the exec family of functions, a program asks for
more space than the system is able to supply. This is
not a temporary condition; the maximum size is a
system parameter. On some architectures, the error
may also occur if the arrangement of text, data, and
stack segments requires too many segmentation
registers, or if there is not enough swap space during
the fork(2) function. If this error occurs on a resource
associated with Remote File Sharing (RFS), it indicates

Intro(2)

18 man pages section 2: System Calls • Last Revised 31 Aug 2001

a memory depletion which may be temporary,
dependent on system activity at the time the call was
invoked.

13 EACCES Permission denied

An attempt was made to access a file in a way
forbidden by the Trusted Solaris security policy. This
type of failure due to DAC or MAC restrictions may be
bypassed at the discretion of the security administrator
if the appropriate override privilege(s) are made
available to be asserted by the calling process (which
privilege to use depends on the type of access being
denied). See Discretionary Access Control, File Access,
Mandatory Access Control, Privilege, and Security Policy
in the DEFINITIONS section.

14 EFAULT Bad address

The system encountered a hardware fault in attempting
to use an argument of a routine. For example, errno
potentially may be set to EFAULT any time a routine
that takes a pointer argument is passed an invalid
address, if the system can detect the condition. Because
systems will differ in their ability to reliably detect a
bad address, on some implementations passing a bad
address to a routine will result in undefined behavior.

15 ENOTBLK Block device required

A non-block device or file was mentioned where a
block device was required (for example, in a call to the
mount(2) function).

16 EBUSY Device busy

An attempt was made to mount a device that was
already mounted or an attempt was made to unmount
a device on which there is an active file (open file,
current directory, mounted-on file, active text segment).
It will also occur if an attempt is made to enable
accounting when it is already enabled. The device or
resource is currently unavailable. EBUSY is also used by
mutexes, semaphores, condition variables, and r/w
locks, to indicate that a lock is held, and by the
processor control function P_ONLINE.

17 EEXIST File exists

Intro(2)

Introduction 19

An existing file was mentioned in an inappropriate
context (for example, call to the link(2) function).

18 EXDEV Cross-device link

A hard link to a file on another device was attempted.

19 ENODEV No such device

An attempt was made to apply an inappropriate
operation to a device (for example, read a write-only
device).

20 ENOTDIR Not a directory

A non-directory was specified where a directory is
required (for example, in a path prefix or as an
argument to the chdir(2) function).

21 EISDIR Is a directory

An attempt was made to write on a directory.

22 EINVAL Invalid argument

An invalid argument was specified (for example,
unmounting a non-mounted device), mentioning an
undefined signal in a call to the signal(3C) or kill(2)
function.

23 ENFILE File table overflow

The system file table is full (that is, SYS_OPEN files are
open, and temporarily no more files can be opened).

24 EMFILE Too many open files

No process may have more than OPEN_MAX file
descriptors open at a time.

25 ENOTTY Inappropriate ioctl for device

A call was made to the ioctl(2) function specifying a
file that is not a special character device.

26 ETXTBSY Text file busy (obselete)

An attempt was made to execute a pure-procedure
program that is currently open for writing. Also an
attempt to open for writing or to remove a
pure-procedure program that is being executed. (This
message is obsolete.)

27 EFBIG File too large

Intro(2)

20 man pages section 2: System Calls • Last Revised 31 Aug 2001

The size of the file exceeded the limit specified by
resource RLIMIT_FSIZE; the file size exceeds the
maximum supported by the file system; or the file size
exceeds the offset maximum of the file descriptor. See
the File Descriptor subsection of the
DEFINITIONS section below.

28 ENOSPC No space left on device

While writing an ordinary file or creating a directory
entry, there is no free space left on the device. In the
fcntl(2) function, the setting or removing of record
locks on a file cannot be accomplished because there
are no more record entries left on the system.

29 ESPIPE Illegal seek

A call to the lseek(2) function was issued to a pipe.

30 EROFS Read-only file system

An attempt to modify a file or directory was made on a
device mounted read-only.

31 EMLINK Too many links

An attempt to make more than the maximum number
of links, LINK_MAX, to a file.

32 EPIPE Broken pipe

A write on a pipe for which there is no process to read
the data. This condition normally generates a signal;
the error is returned if the signal is ignored.

33 EDOM Math arguement out of domain of func

The argument of a function in the math package (3M) is
out of the domain of the function.

34 ERANGE Math result not representable

The value of a function in the math package (3M) is not
representable within machine precision.

35 ENOMSG No message of desired type

An attempt was made to receive a message of a type
that does not exist on the specified message queue (see
msgrcv(2)).

36 EIDRM Identifier removed

Intro(2)

Introduction 21

This error is returned to processes that resume
execution due to the removal of an identifier from the
file system’s name space (see msgctl(2), semctl(2),
and shmctl(2)).

37 ECHRNG Channel number out of range

38 EL2NSYNC Level 2 not synchronized

39 EL3HLT Level 3 halted

40 EL3RST Level 3 reset

41 ELNRNG Link number out of range

42 EUNATCH Protocol driver not attached

43 ENOCSI No CSI structure available

44 EL2HLT Level 2 halted

45 EDEADLK Deadlock condition

A deadlock situation was detected and avoided. This
error pertains to file and record locking, and also
applies to mutexes, semaphores, condition variables,
and r/w locks.

46 ENOLCK No record locks available

There are no more locks available. The system lock
table is full (see fcntl(2)).

47 ECANCELED Operation canceled

The associated asynchronous operation was canceled
before completion.

48 ENOTSUP Not supported

This version of the system does not support this
feature. Future versions of the system may provide
support.

49 EDQUOT Disc quota exceeded

A write(2) to an ordinary file, the creation of a
directory or symbolic link, or the creation of a directory
entry failed because the user’s quota of disk blocks was
exhausted, or the allocation of an inode for a newly
created file failed because the user’s quota of inodes
was exhausted.

58-59 Reserved

Intro(2)

22 man pages section 2: System Calls • Last Revised 31 Aug 2001

60 ENOSTR Device not a stream

A putmsg(2) or getmsg(2) call was attempted on a file
descriptor that is not a STREAMS device.

61 ENODATA No data available

62 ETIME Timer expired

The timer set for a STREAMS ioctl(2) call has
expired. The cause of this error is device-specific and
could indicate either a hardware or software failure, or
perhaps a timeout value that is too short for the specific
operation. The status of the ioctl() operation is
indeterminate. This is also returned in the case of
_lwp_cond_timedwait(2) or _lwp_cond_wait(2).

63 ENOSR Out of stream resources

During a STREAMS open(2) call, either no STREAMS
queues or no STREAMS head data structures were
available. This is a temporary condition; one may
recover from it if other processes release resources.

64 ENONET Machine is not on the network

This error is Remote File Sharing (RFS) specific. It
occurs when users try to advertise, unadvertise, mount,
or unmount remote resources while the machine has
not done the proper startup to connect to the network.

65 ENOPKG Package not installed

This error occurs when users attempt to use a call from
a package which has not been installed.

66 EREMOTE Object is remote

This error is RFS-specific. It occurs when users try to
advertise a resource which is not on the local machine,
or try to mount/unmount a device (or pathname) that
is on a remote machine.

67 ENOLINK Link has been severed

This error is RFS-specific. It occurs when the link
(virtual circuit) connecting to a remote machine is gone.

68 EADV Advertise error

This error is RFS-specific. It occurs when users try to
advertise a resource which has been advertised already,

Intro(2)

Introduction 23

or try to stop RFS while there are resources still
advertised, or try to force unmount a resource when it
is still advertised.

69 ESRMNT Srmount error

This error is RFS-specific. It occurs when an attempt is
made to stop RFS while resources are still mounted by
remote machines, or when a resource is readvertised
with a client list that does not include a remote
machine that currently has the resource mounted.

70 ECOMM Communication error on send

This error is RFS-specific. It occurs when the current
process is waiting for a message from a remote
machine, and the virtual circuit fails.

71 EPROTO Protocol error

Some protocol error occurred. This error is
device-specific, but is generally not related to a
hardware failure.

76 EDOTDOT Error 76

This error is RFS-specific. A way for the server to tell
the client that a process has transferred back from
mount point.

77 EBADMSG Not a data message

During a read(2), getmsg(2), or ioctl(2) I_RECVFD
call to a STREAMS device, something has come to the
head of the queue that can not be processed. That
something depends on the call:

read(): control information or passed file
descriptor.

getmsg(): passed file descriptor.

ioctl(): control or data information.

78 ENAMETOOLONG File name too long

The length of the path argument exceeds PATH_MAX, or
the length of a path component exceeds NAME_MAX
while _POSIX_NO_TRUNC is in effect; see limits(4).

79 EOVERFLOW Value too large for defined data type.

80 ENOTUNIQ Name not unique on network

Intro(2)

24 man pages section 2: System Calls • Last Revised 31 Aug 2001

Given log name not unique.

81 EBADFD File descriptor in bad state

Either a file descriptor refers to no open file or a read
request was made to a file that is open only for writing.

82 EREMCHG Remote address changed

83 ELIBACC Cannot access a needed share library

Trying to exec an a.out that requires a static shared
library and the static shared library does not exist or
the user does not have permission to use it.

84 ELIBBAD Accessing a corrupted shared library

Trying to exec an a.out that requires a static shared
library (to be linked in) and exec could not load the
static shared library. The static shared library is
probably corrupted.

85 ELIBSCN .lib section in a.out corrupted

Trying to exec an a.out that requires a static shared
library (to be linked in) and there was erroneous data
in the .lib section of the a.out. The .lib section
tells exec what static shared libraries are needed. The
a.out is probably corrupted.

86 ELIBMAX Attempting to link in more shared libraries than system
limit

Trying to exec an a.out that requires more static
shared libraries than is allowed on the current
configuration of the system. See NFS Administration
Guide

87 ELIBEXEC Cannot exec a shared library directly

Attempting to exec a shared library directly.

88 EILSEQ Error 88

Illegal byte sequence. Handle multiple characters as a
single character.

89 ENOSYS Operation not applicable

90 ELOOP Number of symbolic links encountered during path
name traversal exceeds MAXSYMLINKS

91 ESTART Restartable system call

Intro(2)

Introduction 25

Interrupted system call should be restarted.

92 ESTRPIPE If pipe/FIFO, don’t sleep in stream head

Streams pipe error (not externally visible).

93 ENOTEMPTY Directory not empty

94 EUSERS Too many users

95 ENOTSOCK Socket operation on non-socket

96 EDESTADDRREQ Destination address required

A required address was omitted from an operation on a
transport endpoint. Destination address required.

97 EMGSIZE Message too long

A message sent on a transport provider was larger than
the internal message buffer or some other network
limit.

98 EPROTOTYPE Protocol wrong type for socket

A protocol was specified that does not support the
semantics of the socket type requested.

99 ENOPROTOOPT Protocol not available

A bad option or level was specified when getting or
setting options for a protocol.

120 EPROTONOSUPPORT Protocol not supported

The protocol has not been configured into the system
or no implementation for it exists.

121 ESOCKTNOSUPPORT Socket type not supported

The support for the socket type has not been
configured into the system or no implementation for it
exists.

122 EOPNOTSUPP Operation not supported on transport endpoint

For example, trying to accept a connection on a
datagram transport endpoint.

123 EPFNOSUPPORT Protocol family not supported

The protocol family has not been configured into the
system or no implementation for it exists. Used for the
Internet protocols.

Intro(2)

26 man pages section 2: System Calls • Last Revised 31 Aug 2001

124 EAFNOSUPPORT Address family not supported by protocol family

An address incompatible with the requested protocol
was used.

125 EADDRINUSE Address already in use

User attempted to use an address already in use, and
the protocol does not allow this.

126 EADDRNOTAVAIL Cannot assign requested address

Results from an attempt to create a transport endpoint
with an address not on the current machine.

127 ENETDOWN Network is down

Operation encountered a dead network.

128 ENETUNREACH Network is unreachable

Operation was attempted to an unreachable network.

129 ENETRESET Network dropped connection because of reset

The host you were connected to crashed and rebooted.

130 ECONNABORTED Software caused connection abort

A connection abort was caused internal to your host
machine.

131 ECONNRESET Connection reset by peer

A connection was forcibly closed by a peer. This
normally results from a loss of the connection on the
remote host due to a timeout or a reboot.

132 ENOBUFS No buffer space available

An operation on a transport endpoint or pipe was not
performed because the system lacked sufficient buffer
space or because a queue was full.

133 EISCONN Transport endpoint is already connected

A connect request was made on an already connected
transport endpoint; or, a sendto(3SOCKET) or
sendmsg(3SOCKET) request on a connected transport
endpoint specified a destination when already
connected.

134 ENOTCONN Transport endpoint is not connected

Intro(2)

Introduction 27

A request to send or receive data was disallowed
because the transport endpoint is not connected and
(when sending a datagram) no address was supplied.

143 ESHUTDOWN Cannot send after transport endpoint shutdown

A request to send data was disallowed because the
transport endpoint has already been shut down.

144 ETOOMANYREFS Too many references: cannot splice

145 ETIMEDOUT Connection timed out

A connect(3SOCKET) or send(3SOCKET) request
failed because the connected party did not properly
respond after a period of time; or a write(2) or
fsync(3C) request failed because a file is on an NFS
file system mounted with the soft option.

146 ECONNREFUSED Connection refused

No connection could be made because the target
machine actively refused it. This usually results from
trying to connect to a service that is inactive on the
remote host.

147 EHOSTDOWN Host is down

A transport provider operation failed because the
destination host was down.

148 EHOSTUNREACH No route to host

A transport provider operation was attempted to an
unreachable host.

149 EALREADY Operation already in progress

An operation was attempted on a non-blocking object
that already had an operation in progress.

150 EINPROGRESS Operation now in progress

An operation that takes a long time to complete (such
as a connect()) was attempted on a non-blocking
object.

151 ESTALE Stale NFS file handle

See Access Control List

Intro(2)

ACL

28 man pages section 2: System Calls • Last Revised 31 Aug 2001

Created for compatability purposes, it masks out any existing ACL entries without
destroying them when chmod(1) changes permissions on a file or directory. The
masked names can then later be restored if chmod is run again to restore the original
permissions.

A type of discretionary access control based on a list of entries that the owner can specify
for a file or directory. The access control list (ACL) restricts or permits access to any
number of individuals and groups, allowing finer-grained control than provided by
the standard UNIX permission bits.

Actually not a range, but a set made up of labels. See user accreditation range and system
accreditation range for more about the two types of accreditation ranges in the Trusted
Solaris environment.

Any process group that is not the foreground process group of a session that has
established a connection with a controlling terminal.

A wrapper structure for a sensitivity label that contains other internal and obsolete
information. This structure is part of the Trusted Solaris ABI.

The hierarchical portion of a sensitivity label or clearance, each of which has only one
classification. Each classification has an external name (text string) and an internal
number (integer), with the lowest number assigned to the lowest classification and the
other numbers assigned to the rest of the classifications in a hierarchical relationship.
In a sensitivity label assigned to a file or directory, a classification indicates a relative
level of protection based on the sensitivity of the information contained in the file or
directory. In a clearance assigned to a user and that user’s processes, a classification
indicates a level of trust.

Each process has a clearance associated with it. A clearance consists of a classification
and a set of compartments. It is similar to a sensitivity label. A process’ clearance is an
upper bound on the labels to which the process has access. A process can neither set
its sensitivity label to a label that dominates its clearance, nor access an object (file or
other process) whose sensitivity label dominates the process clearance.

A word associated with one or more compartment bits that may be defined in the
label_encodings(4) file to be part of a sensitivity label or clearance. Compartments
represent areas of interest or work groups associated with the labels that contain
compartments and are used in MAC decisions. Compartments have no intrinsic
ordering; however, the label_encodings file can impose constraints that may be
hierarchical on the allowable combinations of compartments with each other and with
classifications.

A session leader that established a connection to a controlling terminal.

A terminal that is associated with a session. Each session may have, at most, one
controlling terminal associated with it and a controlling terminal may be associated

Intro(2)

ACL Mask

Access Control List

Accreditation
Range

Background
Process Group

CMW Label

Classification

Clearance

Compartment

Controlling
Process

Controlling
Terminal

Introduction 29

with only one session. Certain input sequences from the controlling terminal cause
signals to be sent to process groups in the session associated with the controlling
terminal; see termio(7I).

See discretionary access control.

Device objects include printers, workstations, tape drives, floppy drives, audio
devices, and internal pseudo terminal devices. See mandatory access control for
definitions of MAC policy. Devices are subject to the read-equal-write-equal policy.

Directories organize files into a hierarchical system where directories are the nodes in
the hierarchy. A directory is a file that catalogs the list of files, including directories
(sub-directories), that are directly beneath it in the hierarchy. Entries in a directory file
are called links. A link associates a file identifier with a filename. By convention, a
directory contains at least two links, . (dot) and .. (dot-dot). The link called dot refers
to the directory itself while dot-dot refers to its parent directory. The root directory,
which is the top-most node of the hierarchy, has itself as its parent directory. The
pathname of the root directory is / and the parent directory of the root directory is /.

The type of access granted or denied by the owner of a file or directory at the
discretion of the owner. The Trusted Solaris environment provides two kinds of
discretionary access (DAC) controls, permission bits and access control lists.

When two labels of any type (sensitivity label or clearance) are compared and neither of
the two labels dominates the other, the labels are said to be disjoint. Information flow
between disjoint labels is considered to be a downgrade.

When any type of label (sensitivity label or clearance) has a security level equal to or
greater than the security level of another label to which it is being compared, the first
label is said to dominate the second. The classification of the dominant label must
equal or be higher than the classification of the second label, and the dominant label
must include all the words (compartments and markings, if present) in the other label.
Sensitivity labels are compared for dominance when MAC decisions are being made.
See strictly dominate and disjoint.

In a stream, the direction from stream head to driver.

In a stream, the driver provides the interface between peripheral hardware and the
stream. A driver can also be a pseudo-driver, such as a multiplexor or log driver (see
log(7D)), which is not associated with a hardware device.

An active process has an effective user ID and an effective group ID that are used to
determine file access permissions (see below). The effective user ID and effective
group ID are equal to the process’s real user ID and real group ID, respectively, unless
the process or one of its ancestors evolved from a file that had the set-user-ID bit or
set-group-ID bit set (see exec(2)).

Even though, strictly speaking, files, directories, devices and other objects are treated
as files in the UNIX system, only the access rules for file system objects are described

Intro(2)

DAC

Device Objects

Directory

Discretionary
Access Control

Disjoint

Dominate

Downstream

Driver

Effective User ID
and Effective

Group ID

File Access

30 man pages section 2: System Calls • Last Revised 31 Aug 2001

in this section. Because files, directories, and devices have slightly different mandatory
access rules, these rules are separately described. See process objects, System V IPC
objects, STREAMS objects, network endpoint objects, device objects, and X window objects for
the rules that apply to these other types of objects.

A file, directory, or device may be accessed in three ways:

� The name of the file, directory, or device may be viewed,

� The contents or the attributes of the file, directory, or device may be viewed, or

� The contents or the attributes of the file, directory, or device may be modified.

In the Trusted Solaris environment, each of these types of access is granted or denied
based on whether certain discretionary access control checks (described in File Access
Permissions) and mandatory access control checks have been passed.

All types of access require that the sensitivity label of the process dominates the
sensitivity label of all directories in the path prefix and that the owner of the process
has discretionary access for each directory in the path prefix. View access to the name
of the file, directory, or device requires only that this part of the check is passed (unless
the system is configured to hide upgraded names).

For view access (read access) to the contents or attributes of a file or directory, the
process’ sensitivity label must dominate the sensitivity label of the file or directory. For
view access to the contents of a device (for example, so you can read information on a
tape in a tape drive), the process’ sensitivity label must be equal to the sensitivity label
of the device. The owner of the process also must have discretionary read access to the
file, directory, or device.

For a process to write a file or to modify its attributes, the sensitivity label of the file
must dominate the sensitivity label of the process and must be dominated by the
process’ clearance. (See process clearance.) For a process to write into a directory (to
create a file or a symbolic link) the label of the process must equal the sensitivity label
of the directory. For a process to write to a device (for example, store information on a
tape in a tape drive), the sensitivity label of the process must equal the sensitivity label
of the device. The security policy for device files can differ from the policy for regular
files based on how the policy is defined in the device_policy(4) file, which can be
changed by the security administrator. The owner of the process must have
discretionary write access to the file, directory, or device.

For each type of failure of a MAC or DAC check, a specific override privilege may be
asserted by the process, depending on the type of access being denied. See process
privilege sets, and inheritable privileges.

These conditions and the listed override privileges apply to any type of access:

� If the sensitivity label of the process does not dominate the sensitivity label of a
directory in the path prefix, then the process must assert the privilege to search up
(search a directory whose sensitivity label dominates the process’ sensitivity label),
which is PRIV_FILE_MAC_SEARCH.

Intro(2)

Introduction 31

� If the user on whose behalf the process is being executed does not assert
discretionary search permission for a directory in the path prefix, then the process
must have the privilege to override DAC search restrictions when accessing a
directory, which is PRIV_FILE_DAC_SEARCH.

These conditions and the listed override privileges apply to view (read) access to a file
or directory or to its attributes:

� If the sensitivity label of the process does not dominate the sensitivity label of the
file or directory, then the process must assert the privilege to override MAC read
restrictions, which is PRIV_FILE_MAC_READ.

� If the user on whose behalf the process is being executed does not have
discretionary read permission for the file or directory, then the process must assert
the privilege to override DAC read restrictions, which is PRIV_FILE_DAC_READ .

These conditions and the listed override privileges apply to modify (write) access to a
file or directory or to its attributes:

� If the sensitivity label of the file does not dominate or if the sensitivity of the
directory or device does not equal the sensitivity label of the process, and if the
sensitivity label of the file, directory, or device is not dominated by the process’
clearance, the process must assert the privilege that overrides MAC write
restrictions, allowing the user to write up and to write above the process’ clearance,
which is PRIV_FILE_MAC_WRITE.

� If the user on whose behalf the process is being executed does not have
discretionary write permission for the file or directory, then the process must assert
the privilege to override DAC write restrictions, which is PRIV_FILE_DAC_WRITE
.

Read, write, and execute/search permissions for a file are granted to a process if one
or more of the following are true:

� If the effective UID of the process matches the UID of the file, access is granted if
allowed by the file’s "owner" permission set.

� If the effective UID of the process matches an ACL user entry, access is granted if
allowed by the ACL entry and the ACL mask.

� If the effective GID of the process (or one of its supplemental groups) matches the
GID of the file or the group ID of any ACL group entry, a permission set is
computed as the inclusive OR of all matching group permission sets, specified as
follows:

� If the effective GID of the process (or one of its supplemental groups) matches
the GID of the file and there is no owning group ACL entry for the file, the
"group" permission set is considered a matching group permission set.

� If the effective GID of the process (or one of its supplemental groups) matches
the GID of the file and there is an owning group ACL entry for the file, the
permissions set of that ACL entry is considered a matching group permission
set.

Intro(2)

File Access
Permissions

32 man pages section 2: System Calls • Last Revised 31 Aug 2001

� If the effective GID of the process (or one of its supplemental groups) matches
an ACL group entry, the permission set of that ACL entry is considered a
matching group permission set. Access is granted if allowed by the computed

permission set and the ACL mask, if any.

� If none of the preceding cases applies, access is granted if allowed by the file’s
"other" permission set and the ACL mask, if any.

A process is granted access if it satisfies the appropriate test above or if it asserts the
DAC override privilege corresponding to the desired operation. Otherwise, access is
denied.

A file descriptor is a small integer used to perform I/O on a file. The value of a file
descriptor is from 0 to (NOFILES−1). A process may have no more than NOFILES file
descriptors open simultaneously. A file descriptor is returned by calls such as open(2)
or pipe(2). The file descriptor is used as an argument by calls such as read(2),
write(2), ioctl(2), and close(2).

Each file descriptor has a corresponding offset maximum. For regular files that were
opened without setting the O_LARGEFILE flag, the offset maximum is 2 Gbyte − 1
byte (231 −1 bytes). For regular files that were opened with the O_LARGEFILE flag set,
the offset maximum is 263 −1 bytes.

Names consisting of 1 to NAME_MAX characters may be used to name an ordinary file,
special file or directory.

These characters may be selected from the set of all character values excluding \0
(null) and the ASCII code for / (slash).

Note that it is generally unwise to use *, ?, [, or] as part of file names because of the
special meaning attached to these characters by the shell (see sh(1), csh(1), and
ksh(1)). Although permitted, the use of unprintable characters in file names should be
avoided.

A file name is sometimes referred to as a pathname component. The interpretation of a
pathname component is dependent on the values of NAME_MAX and
_POSIX_NO_TRUNC associated with the path prefix of that component. If any
pathname component is longer than NAME_MAX and _POSIX_NO_TRUNC is in effect
for the path prefix of that component (see fpathconf(2) and limits(4)), it shall be
considered an error condition in that implementation. Otherwise, the implementation
shall use the first NAME_MAX bytes of the pathname component.

These sets consist of the allowed and forced privileges specified for use by executable
files (programs). The allowed set limits which privileges a process can use, whether
the privileges are forced on the executable file or inherited (see inheritable privileges).
Any privileges in the forced privilege set are available to any process that invokes the
program, as long as they are also in the allowed set.

File-system objects include files (regular files, process files, and device-special files),
directories, symbolic links, FIFOs (named pipes), pipes, and UNIX domain socket

Intro(2)

File Descriptor

File Name

File Privilege Sets

File System
Objects

Introduction 33

rendezvous. See mandatory access control for definitions of the MAC policies. See File
Access for the MAC rules that apply to regular files, device files, symbolic links, and
directories. The policies for the remaining file objects are as follows. UNIX domain
socket rendezvous and FIFOs (named pipes) are subject to the write up read down
policy. Pipes are subject to the read-equal-write-equal policy.

Each session that has established a connection with a controlling terminal will
distinguish one process group of the session as the foreground process group of the
controlling terminal. This group has certain privileges when accessing its controlling
terminal that are denied to background process groups.

The privileges that a process can pass to a program across an execve(2) without their
being affected by the new program’s forced or allowed privilege sets. (A child process
created through a fork(2) receives all of a parent process‘ privilege sets with no
change.) When a new program is executed by a process, the inheritable set of the
process is set to be equal to the inheritable set of the old program:
I[process]=I[program]. The inheritable set is not affected by the forced or
allowed privileges on the currently executing program, which allows allows privileges
to be passed from programs that cannot use them to programs that can.

Maximum number of entries in a struct iovec array.

A security identifier assigned to an object based on the level of protection it needs and
to a process based on the degree of trust afforded to the user on whose behalf the
process is running.

A set of sensitivity labels assigned to allocatable devices, commands and file systems,
specified by designating a maximum label and a minimum label. For allocatable
devices, the minimum and maximum labels limit the sensitivity labels at which
devices may be allocated. See allocate(1). For commands, the minimum and
maximum labels limit the sensitivity labels at which the command may be executed.
For file systems, the minimum and maximum labels limit the sensitivity labels at
which information may be stored on each file system.

The label view process attribute flags control the translation and display of the
internal admin low and admin high labels. A value of External specifies that the
admin low and admin high labels are mapped to the lowest and highest labels
defined in the label_encodings(4) file. A value of Internal specifies that the
admin low and admin high labels are translated to the respective strings specified
in the label_encodings file. If no such names are specified, the strings ADMIN_LOW
and ADMIN_HIGH are used. If no value is set, the default label view specified in the
label_encodings file is used.

These fifteen-bit flags support the GFI FLAGS= option in the label_encodings(4)
file, which allows the use of these flags by applications written to use them. These
flags are viewable and modifiable only by a trusted path process.

The braces notation, {LIMIT}, is used to denote a magnitude limitation imposed by
the implementation. This indicates a value which may be defined by a header file

Intro(2)

Foreground
Process Group

Inheritable
Privileges

{IOV_MAX}

Label

Label Range

Label View Flags

Label Translation
Flags

{LIMIT}

34 man pages section 2: System Calls • Last Revised 31 Aug 2001

(without the braces), or the actual value may be obtained at runtime by a call to the
configuration inquiry pathconf(2) with the name argument _PC_LIMIT.

See mandatory access control.

See multilevel directory.

A type of control based on comparing the sensitivity label of an object to the
sensitivity label of the process that is trying to access the object. The MAC policies that
apply to various types of objects are read equal, write equal, read down, and write up. (See
the individual definitions for each object type for the policy that applies.) When the
read equal policy applies, an object may be accessed for reading only when the
sensitivity label of the process is equal to the sensitivity label of the object. When the
write equal policy applies, an object may be accessed for writing only when the
sensitivity label of the process is equal to the sensitivity label of the object. When the
write up policy applies, an object may be accessed for writing only when the sensitivity
label of the process is dominated by the sensitivity label of the object, hence the
process "writes up" to the object. The write up policy also includes write-equal. When
the read down policy applies, an object may be accessed for reading only when the
sensitivity label of the process dominates the sensitivity label of the object, hence the
process "reads down" to the object. The read-down policy also includes read-equal.

The file mode creation mask of the process used during any create function calls to
turn off permission bits in the mode argument supplied. Bit positions that are set in
umask(cmask) are cleared in the mode of the created file.

In a stream, one or more blocks of data or information, with associated STREAMS
control structures. Messages can be of several defined types, which identify the
message contents. Messages are the only means of transferring data and
communicating within a stream.

In a stream, a linked list of messages awaiting processing by a module or driver.

A message queue identifier (msqid) is a unique positive integer created by a
msgget(2) call. Each msqid has a message queue and a data structure associated with
it. The data structure is referred to as msqid_ds and contains the following members:

struct ipc_perm msg_perm;
struct msg *msg_first;
struct msg *msg_last;
ulong_t msg_cbytes;
ulong_t msg_qnum;
ulong_t msg_qbytes;
pid_t msg_lspid;
pid_t msg_lrpid;
time_t msg_stime;
time_t msg_rtime;
time_t msg_ctime;

The following are descriptions of the msqid_ds structure members:

Intro(2)

MAC

MLD

Mandatory Access
Control

Masks

Message

Message Queue

Message Queue
Identifier

Introduction 35

The msg_perm member is an ipc_perm structure that specifies the message operation
permission (see below). This structure includes the following members:

uid_t cuid; /* creator user id */
gid_t cgid; /* creator group id */
uid_t uid; /* user id */
gid_t gid; /* group id */
mode_t mode; /* r/w permission */
ulong_t seq; /* slot usage sequence # */
key_t key; /* key */

The *msg_first member is a pointer to the first message on the queue.

The *msg_last member is a pointer to the last message on the queue.

The msg_cbytes member is the current number of bytes on the queue.

The msg_qnum member is the number of messages currently on the queue.

The msg_qbytes member is the maximum number of bytes allowed on the queue.

The msg_lspid member is the process ID of the last process that performed a
msgsnd() operation.

The msg_lrpid member is the process id of the last process that performed a
msgrcv() operation.

The msg_stime member is the time of the last msgsnd() operation.

The msg_rtime member is the time of the last msgrcv() operation.

The msg_ctime member is the time of the last msgctl() operation that changed a
member of the above structure.

In the msgctl(2), msgget(2), msgrcv(2), and msgsnd(2) function descriptions, the
permission required for an operation is given as {token}, where token is the type of
permission needed, interpreted as follows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

Read and write permissions on a msqid are granted to a process if the
read-equal-write-equal mandatory access control check is passed or if the process
asserts the appropriate override privilege (either PRIV_IPC_MAC_READ or
PRIV_IPC_MAC_WRITE), and if one of the following tests is true:

� The effective user ID of the process matches msg_perm.cuid or msg_perm.uid
in the data structure associated with msqid and the appropriate bit of the “user”
portion (0600) of msg_perm.mode is set.

Intro(2)

Message
Operation

Permissions

36 man pages section 2: System Calls • Last Revised 31 Aug 2001

� Any group ID in the process credentials from the set (cr_gid, cr_groups)
matches msg_perm.cgid or msg_perm.gid and the appropriate bit of the
“group” portion (060) of msg_perm.mode is set.

� The appropriate bit of the “other” portion (006) of msg_perm.mode is set.

� The process has asserted the appropriate DAC privilege, either
PRIV_FILE_DAC_READ or PRIV_FILE_DAC_WRITE.

Otherwise, the corresponding permissions are denied.

A module is an entity containing processing routines for input and output data. It
always exists in the middle of a stream, between the stream’s head and a driver. A
module is the STREAMS counterpart to the commands in a shell pipeline except that a
module contains a pair of functions which allow independent bidirectional
(downstream and upstream) data flow and processing.

A directory in which information at differing sensitivity labels is maintained in
separate subdirectories called single-level directories (SLDs), while appearing to most
interfaces to be a single directory under a single name. In the Trusted Solaris
environment, directories that are used by multiple standard applications to store files
at varying labels, such as the /tmp directory, /var/spool/mail, and users’ $HOME
directories are set up to be MLDs. A process can access an MLD two ways: either by
using pathname translation, or by using the adorned name. When a process refers to
an MLD without the adorned name, the Trusted Solaris process transparently extends
the reference to the SLD that corresponds to the process’ sensitivity label. If the
process is creating a file and if the correct SLD does not already exist, the Trusted
Solaris process creates the SLD and assigns it the process’ sensitivity label so that the
correct single-level directory exists for the file. If the process wants to access the MLD
directly, it should use the the MLD adornment on the final component of the path. The
text string .MLD. is the default adornment. The adornment is a file system attribute
that may be changed using setfsattr(1M). Use of the adornment allows programs
to refer directly to the MLD instead of to the SLD that has the same SL as the process.

A multiplexor is a driver that allows streams associated with several user processes to
be connected to a single driver, or several drivers to be connected to a single user
process. STREAMS does not provide a general multiplexing driver, but does provide
the facilities for constructing them and for connecting multiplexed configurations of
streams.

Network endpoint objects are sockets and the transport level interface (TLI). See
mandatory access control for definitions of the MAC policies. Network endpoint objects
are subject to the read-equal-write-equal policy.

Anything in the Trusted Solaris environment that a process attempts to access. The six
major object types are file system objects, process objects, System V IPC objects,
STREAMS objects, network endpoint objects, device objects, and X window objects.

An offset maximum is an attribute of an open file description representing the largest
value that can be used as a file offset.

Intro(2)

Module

Multilevel
Directory

Multiplexor

Network Endpoint
Objects

Object

Offset Maximum

Introduction 37

A process group in which the parent of every member in the group is either itself a
member of the group, or is not a member of the process group’s session.

A path name is a null-terminated character string starting with an optional slash (/),
followed by zero or more directory names separated by slashes, optionally followed
by a file name.

If a path name begins with a slash, the path search begins at the root directory.
Otherwise, the search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it named a
non-existent file.

Each process in the system is uniquely identified during its lifetime by a positive
integer called a process ID. A process ID may not be reused by the system until the
process lifetime, process group lifetime, and session lifetime ends for any process ID,
process group ID, and session ID equal to that process ID. Within a process, there are
threads with thread id’s, called thread_t and LWPID_t. These threads are not visible to
the outside process.

A new process is created by a currently active process (see fork(2)). The parent
process ID of a process is the process ID of its creator.

Having appropriate privilege means having the capability to override some aspect of
security policy. If a man page states that a system call needs to have or to assert "the
appropriate privilege" to bypass DAC or MAC restrictions, see File Access Permissions
for the override privilege that applies to the type of access being denied. A privilege is
only granted by a site’s security administrator after judging that the command itself or
the person will use the privilege in a trustworthy manner. See File Privilege Sets and
Process Privilege Sets.

This one-bit flag indicates that the process is in privilege debugging mode, an
operational mode where any attempt by the process to use a privilege is logged. This
flag can be viewed or cleared, but can be set only by a trusted path process. This flag is
set by runpd(1M) when executing a command in privilege debugging mode, and then
is inherited by the process. It works only if the _PRIVS_DEBUG kernel switch is also
enabled (see secconf(2)).

Trusted Solaris flags that indicate security-related values that are copied from one
process to another on fork(2) and cloned without changes on exec(2). They are: the
Trusted Path Flag, the Privilege Debugging Flag, the Network Token Mapping Process
Flag, the Label View Flag (External View or Internal View), the Label Translation
Flags, the Diskless Boot Flag, the Cut and Paste Selection Agent Flag, the Trusted
System Printing flag, and the Automount flag. See pattr(1), getpattr(2) , and
setpattr(2). Each flag has its own protection policy. Any process may view or clear
any process attributes flags except for the Label Translation flags, which are viewable
and clearable by only a process with the trusted path attribute. Any process may set

Intro(2)

Orphaned Process
Group

Path Name

Process ID

Parent Process ID

Privilege

Privilege
Debugging Flag

Process Attribute
Flags

38 man pages section 2: System Calls • Last Revised 31 Aug 2001

the Label View flags, but only processes with the trusted path attribute may set any of
the other process attribute flags.

Each process in the system is a member of a process group that is identified by a
process group ID. Any process that is not a process group leader may create a new
process group and become its leader. Any process that is not a process group leader
may join an existing process group that shares the same session as the process. A
newly created process joins the process group of its parent.

A process group leader is a process whose process ID is the same as its process group
ID.

Each active process is a member of a process group and is identified by a positive
integer called the process group ID. This ID is the process ID of the group leader. This
grouping permits the signaling of related processes (see kill(2)).

A process lifetime begins when the process is forked and ends after it exits, when its
termination has been acknowledged by its parent process. See wait(2).

A process group lifetime begins when the process group is created by its process
group leader, and ends when the lifetime of the last process in the group ends or when
the last process in the group leaves the group.

Process and lightweight processes (independently scheduled threads of execution),
which are subject to the write-up-read-down policy. See object for definitions of the
MAC policies.

The privileges used by a process are stored in sets called the inheritable, permitted,
effective, and saved sets. When a process executes a program through the execve(2)
system call, the permitted (P) and effective (E) privilege sets are reset equal to the
same value, which is the intersection of the process’ previously existing inheritable (I)
privileges and the program file’s allowed (A) privileges intersected with the program
file’s forced (F) privileges: P=E=(I[process] union F[program] restricted
by A[program]). The saved privilege set is set initially to the intersection of the
existing inheritable privilege set and the file’s allowed privileges: S=(I[process]
intersected by A), which allows the process to determine which privileges it had when
the currently executing program was invoked. When a new program is invoked, the
inheritable privilege set is initially set to be the same as the inheritable privileges of
the process that invoked the current program: I[new]=I[old]. Setting the
inheritable privileges without reference to the forced or allowed privileges on an
executing program allows privileges to be passed without change from a program that
cannot use them to one that can. For compatibility with the Solaris operating
environment’s super-user capability, if the effective UID is set by setuid(2) to be
different from the original, the effective set is copied to the saved set and the effective
set is cleared: S=E; E=0. When the process changes its effective user ID back to the
original, the saved privilege set is copied to the effective set, thus restoring its
privileged state: E=S. In addition to automatic changes in privilege sets as the result of
execve() or setuid(), a process may manipulate its own privilege sets with the

Intro(2)

Process Group

Process Group
Leader

Process Group ID

Process Lifetime

Process Group
Lifetime

Process Objects

Process Privilege
Sets

Introduction 39

getppriv(2) and setppriv(2) system calls. For example, a process can use these
calls to move permitted privileges into and out of its effective privilege set, for
privilege bracketing. A process with the PRIV_SET_FPRIV privilege in its effective set
can use setfpriv(2) to set privileges on a file. See the Trusted Solaris Developer’s Guide
for more details about how privileges may be manipulated within programs using
system calls.

Security attributes received by processes from the Solaris operating environment are:
the process ID (PID), the real, effective, and saved user ID, the real, effective, or saved
group ID, the supplementary group IDs, the user audit ID, the audit session ID, the
audit preselection mask, the terminal ID, and the umask (see Masks). Security
attributes received by processes from the Trusted Solaris system are: the process
clearance, the CMW label, the process attribute flags, and the permitted, effective,
inheritable, and saved process privilege sets.

The processors in a system may be divided into subsets, known as processor sets. A
process bound to one of these sets will run only on processors in that set, and the
processors in the set will normally run only processes that have been bound to the set.
Each active processor set is identified by a positive integer. See pset_create(2).

In a stream, the message queue in a module or driver containing messages moving
upstream.

Each user allowed on the system is identified by a positive integer (0 to MAXUID)
called a real user ID.

Each user is also a member of a group. The group is identified by a positive integer
called the real group ID.

An active process has a real user ID and real group ID that are set to the real user ID
and real group ID, respectively, of the user responsible for the creation of the process.

Each process has associated with it a concept of a root directory and a current working
directory for the purpose of resolving path name searches. The root directory of a
process need not be the root directory of the root file system.

Saved resource limits is an attribute of a process that provides some flexibility in the
handling of unrepresentable resource limits, as described in the exec family of
functions and setrlimit(2).

The saved user ID and saved group ID are the values of the effective user ID and
effective group ID prior to an exec of a file whose set user or set group file mode bit
has been set (see exec(2)).

See single-level directory.

An attribute used in enforcing the Trusted Solaris security policy. Various sets of
security attributes, both from the Solaris operating environment and the Trusted

Intro(2)

Process Security
Attributes

Processor Set ID

Read Queue

Real User ID and
Real Group ID

Root Directory and
Current Working

Directory

Saved Resource
Limits

Saved User ID and
Saved Group ID

SLD

Security Attribute

40 man pages section 2: System Calls • Last Revised 31 Aug 2001

Solaris operating environment, are assigned to processes, users, files, directories, file
systems, hosts on the trusted network, allocatable devices, and other entities. See
Process Security Attributes.

In the Trusted Solaris environment, the set of rules for DAC, MAC, and privilege
interpretation that define how information may be accessed. At a customer site, the set
of rules that define the sensitivity of the information being processed at that site and
the measures that are used to protect the information from unauthorized access.

A semaphore identifier (semid) is a unique positive integer created by a semget(2)
call. Each semid has a set of semaphores and a data structure associated with it. The
data structure is referred to as semid_ds and contains the following members:

struct ipc_perm sem_perm; /* operation permission struct */$
struct sem *sem_base; /* ptr to first semaphore in set */$
ushort_t sem_nsems; /* number of sems in set */$
time_t sem_otime; /* last operation time */$
time_t sem_ctime; /* last change time */$

/* Times measured in secs since */$
/* 00:00:00 GMT, Jan. 1, 1970 */

The following are descriptions of the semid_ds structure members:

The sem_perm member is an ipc_perm structure that specifies the semaphore
operation permission (see below). This structure includes the following members:

uid_t uid; /* user id */
gid_t gid; /* group id */
uid_t cuid; /* creator user id */
gid_t cgid; /* creator group id */
mode_t mode; /* r/a permission */
ulong_t seq; /* slot usage sequence number */
key_t key; /* key */

The sem_nsems member is equal to the number of semaphores in the set. Each
semaphore in the set is referenced by a nonnegative integer referred to as a sem_num.
sem_num values run sequentially from 0 to the value of sem_nsems minus 1.

The sem_otime member is the time of the last semop(2) operation.

The sem_ctime member is the time of the last semctl(2) operation that changed a
member of the above structure.

A semaphore is a data structure called sem that contains the following members:

ushort_t semval; /* semaphore value */
pid_t sempid; /* pid of last operation */
ushort_t semncnt; /* # awaiting semval > cval */
ushort_t semzcnt; /* # awaiting semval = 0 */

The following are descriptions of the sem structure members:

The semval member is a non-negative integer that is the actual value of the
semaphore.

Intro(2)

Security Policy

Semaphore
Identifier

Introduction 41

The sempid member is equal to the process ID of the last process that performed a
semaphore operation on this semaphore.

The semncnt member is a count of the number of processes that are currently
suspended awaiting this semaphore’s semval to become greater than its current
value.

The semzcnt member is a count of the number of processes that are currently
suspended awaiting this semaphore’s semval to become 0.

In the semop(2) and semctl(2) function descriptions, the permission required for an
operation is given as {token}, where token is the type of permission needed interpreted
as follows:

00400 READ by user
00200 ALTER by user
00040 READ by group
00020 ALTER by group
00004 READ by others

00002 ALTER by others

Read and alter permissions on a semid are granted to a process if the
read-equal-write-equal mandatory access control check is passed or if the process
asserts the appropriate override privilege (either PRIV_IPC_MAC_READ or
PRIV_IPC_MAC_WRITE), and if one of the following tests is true.

� The effective user ID of the process matches sem_perm.cuid or sem_perm.uid
in the data structure associated with semid and the appropriate bit of the “user”
portion (0600) of sem_perm.mode is set.

� The effective group ID of the process matches sem_perm.cgid or sem_perm.gid
and the appropriate bit of the “group” portion (060) of sem_perm.mode is set.

� The appropriate bit of the “other” portion (06) of sem_perm.mode is set.

� The process has asserted the appropriate DAC privilege, either
PRIV_FILE_DAC_READ or PRIV_FILE_DAC_WRITE.

Otherwise, the corresponding permissions are denied.

A sensitivity label defines the level of protection afforded to a labeled object or the level
of access granted a labeled subject. Sensitivity labels are used in all mandatory access
control (MAC) decisions by the Trusted Solaris environment. A sensitivity label
consists of a hierarchical classification and a set of non-hierarchical compartments.
This classification-and-compartments pair is known as the level of the sensitivity label.

A session is a group of processes identified by a common ID called a session ID,
capable of establishing a connection with a controlling terminal. Any process that is
not a process group leader may create a new session and process group, becoming the
session leader of the session and process group leader of the process group. A newly
created process joins the session of its creator.

Intro(2)

Semaphore
Operation

Permissions

Sensitivity Label

Session

42 man pages section 2: System Calls • Last Revised 31 Aug 2001

Each session in the system is uniquely identified during its lifetime by a positive
integer called a session ID, the process ID of its session leader.

A session leader is a process whose session ID is the same as its process and process
group ID.

A session lifetime begins when the session is created by its session leader, and ends
when the lifetime of the last process that is a member of the session ends, or when the
last process that is a member in the session leaves the session.

A shared memory identifier (shmid) is a unique positive integer created by a
semget(2) call. Each shmid has a segment of memory (referred to as a shared
memory segment) and a data structure associated with it. (Note that these shared
memory segments must be explicitly removed by the user after the last reference to
them is removed.) The data structure is referred to as shmid_ds and contains the
following members:

struct ipc_perm shm_perm; /* operation permission struct */
int shm_segsz; /* size of segment */
struct region *shm_reg; /* ptr to region structure */
char pad[4]; /* for swap compatibility */
pid_t shm_lpid; /* pid of last operation */
pid_t shm_cpid; /* creator pid */
ushort_t shm_nattch; /* number of current attaches */
ushort_t shm_cnattch; /* used only for shminfo */
time_t shm_atime; /* last attach time */
time_t shm_dtime; /* last detach time */
time_t shm_ctime; /* last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

The following are descriptions of the shmid_ds structure members:

The shm_perm member is an ipc_perm structure that specifies the shared memory
operation permission (see below). This structure includes the following members:

uid_t cuid; /* creator user id */
gid_t cgid; /* creator group id */
uid_t uid; /* user id */
gid_t gid; /* group id */
mode_t mode; /* r/w permission */
ulong_t seq; /* slot usage sequence # */
key_t key; /* key */

The shm_segsz member specifies the size of the shared memory segment in bytes.

The shm_cpid member is the process ID of the process that created the shared
memory identifier.

The shm_lpid member is the process ID of the last process that performed a
shmat() or shmdt() operation (see shmop(2)).

Intro(2)

Session ID

Session Leader

Session Lifetime

Shared Memory
Identifier

Introduction 43

The shm_nattch member is the number of processes that currently have this segment
attached.

The shm_atime member is the time of the last shmat() operation (see shmop(2)).

The shm_dtime member is the time of the last shmdt() operation (see shmop(2)).

The shm_ctime member is the time of the last shmctl(2) operation that changed one
of the members of the above structure.

In the shmctl(2), shmat(), and shmdt() (see shmop(2)) function descriptions, the
permission required for an operation is given as {token}, where token is the type of
permission needed interpreted as follows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

Read and write permissions for a shmid are granted to a process if the
read-equal-write-equal mandatory access control check is passed or if the process
asserts the appropriate override privilege (either PRIV_IPC_MAC_READ or
PRIV_IPC_MAC_WRITE), and if one of the following tests is true:

� The effective user ID of the process is super-user.

� The effective user ID of the process matches shm_perm.cuid or shm_perm.uid
in the data structure associated with shmid and the appropriate bit of the “user”
portion (0600) of shm_perm.mode is set.

� The effective group ID of the process matches shm_perm.cgid or shm_perm.gid
and the appropriate bit of the “group” portion (060) of shm_perm.mode is set.

� The appropriate bit of the “other” portion (06) of shm_perm.mode is set.

� The process has asserted the appropriate DAC privilege, either
PRIV_FILE_DAC_READ or PRIV_FILE_DAC_WRITE.

Otherwise, the corresponding permissions are denied.

A directory within an MLD containing only files at a single sensitivity label. The SLD
directory name is derived from the SL of the process that created it. For example, the
name of an SLD in /tmp would be in the form
/tmp/.SLD.<sensitivity_label_of_creating_process>/. All subsequent references to the
file in the /tmpdirectory would be made transparently as /tmp/file. Because
pathname translation is transparent, the process would not need to explicitly reference
the SLD directory, unless it chose to do so using the MLD adornment and the name of
the SLD .

Intro(2)

Shared Memory
Operation

Permissions

Single-Level
Directory

44 man pages section 2: System Calls • Last Revised 31 Aug 2001

The process with ID 0 and the process with ID 1 are special processes referred to as
proc0 and proc1; see kill(2). proc0 is the process scheduler. proc1 is the initialization
process (init); proc1 is the ancestor of every other process in the system and is used to
control the process structure.

A set of kernel mechanisms that support the development of network services and
data communication drivers. It defines interface standards for character input/output
within the kernel and between the kernel and user level processes. The STREAMS
mechanism is composed of utility routines, kernel facilities and a set of data
structures.

A stream is a full-duplex data path within the kernel between a user process and
driver routines. The primary components are a stream head, a driver, and zero or
more modules between the stream head and driver. A stream is analogous to a shell
pipeline, except that data flow and processing are bidirectional.

In a stream, the stream head is the end of the stream that provides the interface
between the stream and a user process. The principal functions of the stream head are
processing STREAMS-related system calls and passing data and information between
a user process and the stream.

When any type of label (sensitivity label or clearance) has a security level greater than
the security level of another label to which it is being compared, the first label strictly
dominates the second label. Strict dominance is dominance without equality, which
occurs either when the classification of the first label is higher than that of the second
label and the first label contains all the second label’s compartments, or when the
classifications of both labels are the same while the first label contains all the
compartments in the second label plus one or more additional compartments.

The set of all valid (well-formed) labels created according to the rules defined by each
site’s security administrator in the label_encodings(4) file, plus the two
administrative labels that are used in every Trusted Solaris environment, ADMIN_LOW
and ADMIN_HIGH.

A process is recognized as a superuser process and is granted special privileges, such
as immunity from file permissions, if its effective user ID is 0. In the Trusted Solaris
environment, superuser is replaced by administrative roles that share responsibility
for the environment.

Also called the Trusted Path Attribute, this one-bit flag indicates that the process is
executing in the trusted path.

In a stream, the direction from driver to stream head.

In a stream, the message queue in a module or driver containing messages moving
downstream.

X window objects are the windows in the common desktop environment (which is
based on the X Window system). See mandatory access control for definitions of the

Intro(2)

Special Processes

STREAMS

Stream

Stream Head

Strictly Dominate

System
Accreditation

Range

Superuser

Trusted Path Flag

Upstream

Write Queue

X Window Objects

Introduction 45

MAC policies. Window objects are generally subject to the read-equal-write-equal
policy. See the X library man pages (in /usr/openwin/man/man3) for exceptions.

Intro(2)

46 man pages section 2: System Calls • Last Revised 31 Aug 2001

System Calls

47

access – determine accessibility of a file

#include <unistd.h>

int access(const char *path, int amode);

The access() function checks the file named by the pathname pointed to by the path
argument for accessibility according to the bit pattern contained in amode, using the
real user ID in place of the effective user ID and the real group ID in place of the
effective group ID. This allows a setuid process to verify that the user running it
would have had permission to access this file.

The value of amode is either the bitwise inclusive OR of the access permissions to be
checked (R_OK, W_OK, X_OK) or the existence test, F_OK.

These constants are defined in <unistd.h> as follows:

R_OK Test for read permission.

W_OK Test for write permission.

X_OK Test for execute or search permission.

F_OK Check existence of file

See intro(2) for additional information about "File Access Permission".

If any access permissions are to be checked, each will be checked individually, as
described in intro(2). If the process has appropriate privileges, an implementation
may indicate success for X_OK even if none of the execute file permission bits are set.

If the requested access is permitted, access() succeeds and returns 0. Otherwise, −1
is returned and errno is set to indicate the error.

The access() function will fail if:

EACCES Permission bits of the file mode do not permit the requested
access. The calling process does not have mandatory read, write,
execute, or search access to the final component in path. To
override this restriction, the calling process may assert one or more
of these privileges depending on the value in amode.
PRIV_FILE_MAC_WRITE, PRIV_FILE_DAC_WRITE,
PRIV_FILE_MAC_READ, PRIV_FILE_DAC_READ,
PRIV_FILE_MAC_SEARCH (in the case of a directory),
PRIV_FILE_DAC_SEARCH, and PRIV_FILE_DAC_EXECUTE.

EFAULT path points to an illegal address.

EINTR A signal was caught during the access() function.

ELOOP Too many symbolic links were encountered in resolving path.

access(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

48 man pages section 2: System Calls • Last Revised 30 Sep 1999

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or a
pathname component is longer than NAME_MAX while
_POSIX_NO_TRUNC is in effect.

ENOENT A component of path does not name an existing file or path is an
empty string.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the path prefix is not a directory.

EROFS Write access is requested for a file on a read-only file system.

The access() function may fail if:

EINVAL The value of the amode argument is invalid.

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate
result whose length exceeds PATH_MAX.

ETXTBSY Write access is requested for a pure procedure (shared text) file
that is being executed.

Additional values of amode other than the set defined in the description may be valid,
for example, if a system has extended access controls.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

Appropriate privilege is required to override access checks.

Certain uses of this interface may present a covert channel. If a covert channel is
exploited, the execution of the process may be delayed. To avoid this delay, the
process may assert the PRIV_PROC_NODELAY privilege.

intro(2), chmod(2), stat(2)

attributes(5)

access(2)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

System Calls 49

acct – Enable or disable process accounting

#include <unistd.h>

int acct(const char *path);

The acct() function enables or disables the system process accounting routine. If the
routine is enabled, an accounting record will be written in an accounting file for each
process that terminates. The termination of a process can be caused by either an
exit(2) call or a signal(3C). The effective privilege set of the process calling acct()
must include PRIV_SYS_CONFIG.

The path argument points to the pathname of the accounting file, whose file format is
described on the acct(3HEAD) manual page.

The accounting routine is enabled if path is non-zero and no errors occur during the
function. It is disabled if path is (char *)NULL and no errors occur during the
function.

acct() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The acct() function will fail if:

EACCES The file named by path is not an ordinary file.

EBUSY An attempt is being made to enable accounting using
the same file that is currently being used.

EFAULT The path argument points to an illegal address.

ELOOP Too many symbolic links were encountered in
translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or
the length of a path argument exceeds NAME_MAX while
_POSIX_NO_TRUNC is in effect.

ENOENT One or more components of the accounting file
pathname do not exist.

ENOTDIR A component of the path prefix is not a directory.

EPERM The effective privilege set of the calling process does
not have PRIV_SYS_CONFIG.

EROFS The named file resides on a read-only file system.

The effective privilege set of the process calling acct() must include
PRIV_SYS_CONFIG.

exit(2), signal(3C), acct(3HEAD)

acct(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGESSunOS 5.8
Reference Manual

50 man pages section 2: System Calls • Last Revised 16 June 2000

acl, facl – Get or set a file’s Access Control List (ACL)

#include <sys/acl.h>

int acl(char *pathp, int cmd, int nentries, aclent_t *aclbufp);

int facl(int fildes, int cmd, int nentries, aclent_t *aclbufp);

The acl() and facl() functions get or set the ACL of a file whose name is given by
pathp or referenced by the open file descriptor fildes. The nentries argument specifies
how many ACL entries fit into buffer aclbufp. The acl() function is used to
manipulate ACL on file system objects.

The following values for cmd are supported:

SETACL nentries ACL entries, specified in buffer aclbufp, are stored in the
file’s ACL. This command can be executed only by a process that
has an effective user ID equal to the owner of the file. To override
this restriction, the calling process may assert the
PRIV_FILE_SETDAC privilege.

GETACL Buffer aclbufp is filled with the file’s ACL entries. Read access to the
file is not required, but all directories in the path name must be
searchable.

GETACLCNT The number of entries in the file’s ACL is returned. Read access to
the file is not required, but all directories in the path name must be
searchable.

Upon successful completion, acl() and facl() return 0 if cmd is SETACL. If cmd is
GETACL or GETACLCNT, the number of ACL entries is returned. Otherwise, −1 is
returned and errno is set to indicate the error.

The audit record has multiple events that represent the requested function. For
SETACL, the audit record includes the old and new ACLs.

The acl() function will fail if:

EACCESS The caller does not have access to a component of the pathname.
To override this restriction, the calling process may assert one or
both of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

The cmd argument is SETACL and nentries is less than three.

The cmd argument is SETACL and the ACL specified in aclbufp is
not valid.

EFAULT The pathp or aclbufp argument points to an illegal address.

EINVAL The cmd argument is not GETACL, SETACL, or GETACLCNT; the
cmd argument is SETACL and nentries is less than 3; or the cmd
argument is SETACL and the ACL specified in aclbufp is not valid.

acl(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 51

EIO A disk I/O error has occurred while storing or retrieving the ACL.

ENOENT A component of the path does not exist.

ENOSPC The cmd argument is GETACL and nentries is less than the number
of entries in the file’s ACL, or the cmd argument is SETACL and
there is insufficient space in the file system to store the ACL.

ENOTDIR A component of the path specified by pathp is not a directory, or
the cmd argument is SETACL and an attempt is made to set a
default ACL on a file type other than a directory.

ENOSYS The cmd argument is SETACL and the file specified by pathp resides
on a file system that does not support ACLs, or the acl()
function is not supported by this implementation.

EPERM The cmd argument is SETACL and the effective user ID of the caller
does not match the owner of the file. To override this restriction,
the calling process may assert the PRIV_FILE_SETDAC privilege.

EROFS The cmd argument is SETACL and the file specified by pathp resides
on a file system that is mounted read-only.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Appropriate privilege is required to override access or ownership checks.

The audit record has multiple events that represent the requested function. For
SETACL the audit record includes the old and new ACLs.

getfacl(1), setfacl(1), aclcheck(3SEC), aclsort(3SEC), attributes(5)

acl(2)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

SunOS 5.8
Reference Manual

52 man pages section 2: System Calls • Last Revised 30 Sep 1999

adjtime – Correct the time to allow synchronization of the system clock

#include <sys/time.h>

int adjtime(struct timeval *delta, struct timeval *olddelta);

The adjtime() function adjusts the system’s notion of the current time as returned
by gettimeofday(3C), advancing or retarding it by the amount of time specified in
the struct timeval pointed to by delta.

The adjustment is effected by speeding up (if that amount of time is positive) or
slowing down (if that amount of time is negative) the system’s clock by some small
percentage, generally a fraction of one percent. The time is always a monotonically
increasing function. A time correction from an earlier call to adjtime() may not be
finished when adjtime() is called again.

If delta is 0, then olddelta returns the status of the effects of the previous adjtime()
call with no effect on the time correction as a result of this call. If olddelta is not a null
pointer, then the structure it points to will contain, upon successful return, the number
of seconds and/or microseconds still to be corrected from the earlier call. If olddelta is a
null pointer, the corresponding information will not be returned.

This call may be used in time servers that synchronize the clocks of computers in a
local area network. Such time servers would slow down the clocks of some machines
and speed up the clocks of others to bring them to the average network time.

The calling process must have the PRIV_SYS_CONFIG privilege in order to adjust the
time of day.

The adjustment value will be silently rounded to the resolution of the system clock.

Upon successful completion, adjtime() returns 0. Otherwise, it returns −1 and sets
errno to indicate the error.

The adjtime() function will fail if:

EFAULT The delta or olddelta argument points outside the process’s
allocated address space, or olddelta points to a region of the
process’s allocated address space that is not writable.

EINVAL The tv_usec member of delta is not within valid range (−1000000
to 1000000).

EPERM The effective user of the calling process is not super-user.

Additionally, the adjtime() function will fail for 32-bit interfaces if:

EOVERFLOW The size of the tv_sec member of the timeval structure pointed
to by olddelta is too small to contain the correct number of seconds.

The calling process must have the PRIV_SYS_CONFIG privilege in order to use this
system call.

adjtime(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
System Calls 53

date(1), gettimeofday(3C)

adjtime(2)

SunOS 5.8
Reference Manual

54 man pages section 2: System Calls • Last Revised 25 Sep 1997

audit – write a record to the audit log

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/audit.h>

int audit(caddr_t record, int length);

The audit() function is used to write a record to the system audit log. The data
pointed to by record is written to the log after a minimal consistency check, with the
length parameter specifying the size of the record in bytes. The data should be a
well-formed audit record as described by audit.log(4).

The kernel validates the record header token type and length, and sets the time stamp
value before writing the record to the audit log. The kernel does not do any
preselection for user-level generated events. If the audit policy is set to include
sequence or trailer tokens, the kernel will append them to the record.

If the event number is between 2048 and 32767, the calling process must have the
PRIV_PROC_AUDIT_TCB privilege in its set of effective privileges. If the event
number is between 32768 and 65535, the caller must have the
PRIV_PROC_AUDIT_APPL privilege in its set of effective privileges.

audit() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The audit() function will fail if:

EFAULT The record argument points outside the process’s allocated address
space.

EINVAL The record header token ID is invalid or the length is either less
than the header token size or greater than MAXAUDITDATA.

EPERM The process’s effective privilege set does not contain the proper
privilege for this operation.

This functionality is active only if auditing is enabled. By default, auditing is enabled
in the Trusted Solaris environment. See Trusted Solaris Audit Administration Manual for
more information.

See the DESCRIPTION section for information about which privileges are needed to
use this call when the event number being audited is in the application set or the
kernel set.

auditwrite(3TSOL) is the preferred interface for creating audit records in the
Trusted Solaris environment.

Available only on Trusted Solaris systems with auditing enabled.

audit(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

ATTRIBUTES

System Calls 55

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

auditd(1M), auditon(2), auditsvc(2), getaudit(2), auditwrite(3TSOL),
audit.log(4)

attributes(5)

audit(2)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

56 man pages section 2: System Calls • Last Revised 30 Sep 1999

auditon – manipulate auditing

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/audit.h>

int auditon(int cmd, caddr_t data, int length);

The auditon() function performs various audit subsystem control operations. The
cmd argument designates the particular audit control command. The data argument is
a pointer to command-specific data. The length argument is the length in bytes of the
command-specific data.

The following commands are supported:

A_GETCOND Return the system audit on/off/disabled condition in the integer
long pointed to by data. The following values may be returned:

AUC_AUDITING Auditing has been turned on.

AUC_NOAUDIT Auditing has been turned off.

AUC_DISABLED Auditing package installed, not turned on.

A_SETCOND Set the system’s audit on/off condition to the value in the integer
long to which data points. The following audit states may be set:

AUC_AUDITING Turns on audit record generation.

AUC_NOAUDIT Turns off audit record generation.

A_GETCLASS Return the event to class mapping for the designated audit event.
The data argument points to the au_evclass_map structure
containing the event number. The preselection class mask is
returned in the same structure.

A_SETCLASS Set the event class preselection mask for the designated audit
event. The data argument points to the au_evclass_map
structure containing the event number and class mask.

A_GETKMASK Return the kernel preselection mask in the au_mask structure
pointed to by data. This is the mask used to preselect
non-attributable audit events.

A_SETKMASK Set the kernel preselection mask. The data argument points to the
au_mask structure containing the class mask. This is the mask
used to preselect non-attributable audit events.

A_GETPINFO Return the audit ID, preselection mask, terminal ID and audit
session ID of the specified process in the auditpinfo structure
pointed to by data.

A_SETPMASK Set the preselection mask of the specified process. The data
argument points to the auditpinfo structure containing the

auditon(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 57

process ID and the preselection mask. The other fields of the
structure are ignored and should be set to NULL.

A_SETUMASK Set the preselection mask for all processes with the specified audit
ID. The data argument points to the auditinfo structure
containing the audit ID and the preselection mask. The other fields
of the structure are ignored and should be set to NULL.

A_SETSMASK Set the preselection mask for all processes with the specified audit
session ID. The data argument points to the auditinfo structure
containing the audit session ID and the preselection mask. The
other fields of the structure are ignored and should be set to
NULL.

A_GETQCTRL Return the kernel audit queue control parameters. These control
the high and low water marks of the number of audit records
allowed in the audit queue. The high water mark is the maximum
allowed number of undelivered audit records. The low water mark
determines when threads blocked on the queue are wakened.
Another parameter controls the size of the data buffer used by
auditsvc(2) to write data to the audit trail. There is also a
parameter that specifies a maximum delay before data is
attempted to be written to the audit trail. The audit queue
parameters are returned in the au_qctrl structure pointed to by
data.

A_SETQCTRL Set the kernel audit queue control parameters as described above
in the A_GETQCTRL command. The data argument points to the
au_qctrl structure containing the audit queue control
parameters. The default and maximum values ’A/B’ for the audit
queue control parameters are:

high water 100/10000 (audit records)

low water 10/1024 (audit records)

output buffer size 1024/1048576 (bytes)

delay 20/20000 (hundredths second)

A_GETCWD Return the current working directory as kept by the audit
subsystem. This is a path anchored on the real root, rather than on
the active root. The data argument points to a buffer into which the
path is copied. The length argument is the length of the buffer.

A_GETCAR Return the current active root as kept by the audit subsystem. This
path may be used to anchor an absolute path for a path token
generated by an application. The data argument points to a buffer
into which the path is copied. The length argument is the length of
the buffer.

auditon(2)

58 man pages section 2: System Calls • Last Revised 20 Feb 2001

A_GETSTAT Return the system audit statistics in the audit_stat structure
pointed to by data.

A_SETSTAT Reset system audit statistics values. The kernel statistics value is
reset if the corresponding field in the statistics structure pointed to
by the data argument is CLEAR_VAL. Otherwise, the value is not
changed.

A_SETFSIZE Set the maximum size of an audit trail file. When the audit file
reaches the designated size, it is closed and a new file started. If
the maximum size is unset, the audit trail file generated by
auditsvc() will grow to the size of the file system. The data
argument points to the au_fstat_t structure containing the
maximum audit file size in bytes. The size can not be set less than
0x80000 bytes.

A_GETFSIZE Return the maximum audit file size and current file size in the
au_fstat_t structure pointed to by the data argument.

A_GETPOLICY Return the audit policy flags in the integer long pointed to by data.

A_SETPOLICY Set the audit policy flags to the values in the integer long pointed
to by data.

A process must have PRIV_SYS_AUDIT, PRIV_PROC_AUDIT_TCB, or
PRIV_PROC_AUDIT_APPL in its set of effective privileges in order to successfully
execute these commands: A_GETCOND, A_GETCLASS, A_GETPINFO, A_GETCWD,
A_GETCAR, and A_GETPOLICY.

A process must have PRIV_SYS_AUDIT in its set of effective privileges in order to
successfully execute these commands: A_SETCOND, A_SETCLASS, A_GETKMASK,
A_SETKMASK, A_SETPMASK, A_SETUMASK, A_SETSMASK, A_GETQCTRL,
A_SETQCTRL, A_GETSTAT, A_SETSTAT, and A_SETPOLICY.

AUDIT_ACL Include in the audit data an ACL attribute for each object
accessed. Note that regardless of policy, if there is no
ACL associated with an object, an attribute will not be
generated. This information is not included by default.

AUDIT_AHLT Halt the machine if an asynchronous audit event occurs
that cannot be delivered because the audit queue has
reached the high-water mark or because there are
insufficient resources to construct an audit record.

AUDIT_CNT Do not suspend processes when audit storage is full or
inaccessible. The default action is to suspend processes
until storage becomes available.

AUDIT_ARGV Include in the audit record the argument list for the
exec(2) system call. The default action is not to include
this information.

auditon(2)

Policy Flags

System Calls 59

AUDIT_ARGE Include in the audit record the environment variables for
the execv(2) system call. The default action is not to
include this information.

AUDIT_SEQ Add a sequence token to each audit record. The default
action is not to include this token.

AUDIT_TRAIL Append a trailer token to each audit record. The default
action is not to include this token.

AUDIT_GROUP Include the supplementary groups list in audit records.
The default action is not to include it.

AUDIT_SLABEL Include slabels in audit records. The default action is to
include slabels in audit records.

AUDIT_PASSWD Include as part of the audit record any bad
authentication data encountered during a login
operation. The default action is not to include the
password in the audit record.

AUDIT_PATH Include secondary paths in audit records. Examples of
secondary paths are dynamically loaded, shared library
modules and the command shell path for executable
scripts.

AUDIT_WINDATA_DOWN Include in an audit record any downgraded data moved
between windows. By default, this data is not included.

AUDIT_WINDATA_UP Include in an audit record any upgraded data moved
between windows. By default, this data is not included.

auditon() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The auditon() function will fail if:

E2BIG The length field for the command was too small to hold the
returned value.

EFAULT The copy of data to/from the kernel failed.

EINVAL One of the system call arguments was illegal..

EPERM The process did not have the appropriate privilege in its effective
set.

The auditon() function may be invoked only by privileged processes.

These policy flags have been added in the Trusted Solaris operating environment:
AUDIT_ACL, AUDIT_AHLT, AUDIT_SLABEL, AUDIT_PASSWD,

auditon(2)

RETURN VALUES

ERRORS

USAGE

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

60 man pages section 2: System Calls • Last Revised 20 Feb 2001

AUDIT_WINDATA_DOWN, and AUDIT_WINDATA_UP. The DESCRIPTION section
explains which privileges are required to use which audit-control commands.

auditd(1M), audit(2), auditsvc(2), audit.log(4)

Trusted Solaris Audit Administration

attributes(5)

auditon(2)

Trusted Solaris 8
4/01 Reference

Manual

SunOS 5.8
Reference Manual

System Calls 61

auditsvc – Write audit log to specified file descriptor

cc [flag…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/audit.h>

int auditsvc(int fd, int limit);

The auditsvc() function specifies the audit log file to the kernel. The kernel writes
audit records to this file until an exceptional condition occurs and then the call returns.
The fd argument is a file descriptor that identifies the audit file. Applications should
open this file for writing before calling auditsvc().

The limit argument specifies the number of free blocks that must be available in the
audit file system, and causes auditsvc() to return when the free disk space on the
audit filesystem drops below this limit. Thus, the invoking program can take action to
avoid running out of disk space.

The auditsvc() function does not return until one of the following conditions
occurs:

� The process receives a signal that is not blocked or ignored.
� An error is encountered writing to the audit log file.
� The minimum free space (as specified by limit), has been reached.

A process must have PRIV_SYS_AUDIT in its set of effective privileges in order to
execute this call successfully.

The auditsvc() function returns only on an error.

The auditsvc() function will fail if:

EAGAIN The descriptor referred to a stream, was marked for
System V-style non-blocking I/O, and no data could be
written immediately.

EBADF The fd argument is not a valid descriptor open for
writing.

EBUSY A second process attempted to perform this call.

EFBIG An attempt was made to write a file that exceeds the
process’s file size limit or the maximum file size.

EINTR The call is forced to terminate prematurely due to the
arrival of a signal whose SV_INTERRUPT bit in
sv_flags is set (see sigvec(3UCB)). The signal(3C)
function sets this bit for any signal it catches.

EINVAL Auditing is disabled. See auditon(2).

auditsvc(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

62 man pages section 2: System Calls • Last Revised 5 May 1998

fd does not refer to a file of an appropriate type.
Regular files are always appropriate.

EIO An I/O error occurred while reading from or writing to
the file system.

ENOSPC The user’s quota of disk blocks on the file system
containing the file has been exhausted; audit filesystem
space is below the specified limit; or there is no free
space remaining on the file system containing the file.

ENXIO A hangup occurred on the stream being written to.

EPERM The process did not have the proper privilege in its
effective set.

EWOULDBLOCK The file was marked for 4.2 BSD-style non-blocking
I/O, and no data could be written immediately.

This functionality is active only if auditing is enabled. By default, auditing is enabled
in the Trusted Solaris environment. See Trusted Solaris Audit Administration Manual for
more information.

A process must have PRIV_SYS_AUDIT in its set of effective privileges in order to
execute this call successfully.

auditd(1M), audit(2), auditon(2), audit.log(4)

sigvec(3UCB)

auditsvc(2)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

System Calls 63

chdir, fchdir – change working directory

#include <unistd.h>

int chdir(const char *path);

int fchdir(int fildes);

The chdir() and fchdir() functions cause a directory pointed to by path or fildes to
become the current working directory. The starting point for path searches for path
names not beginning with / (slash). The path argument points to the path name of a
directory. The fildes argument is an open file descriptor of a directory.

For a directory to become the current directory, a process must have execute (search)
access to the directory.

chdir() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The chdir() function will fail if:

EACCES Search permission is denied for some component of
path. To override this restriction, the calling process
may assert one or both of these privileges:
PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

EFAULT The path argument points to an illegal address.

EINTR A signal was caught during the execution of the
chdir() function.

EIO An I/O error occurred while reading from or writing to
the file system.

ELOOP Too many symbolic links were encountered in
translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or
the length of a path component exceeds NAME_MAX
while _POSIX_NO_TRUNC is in effect.

ENOENT Either a component of the path prefix or the directory
named by path does not exist or is a null pathname.

ENOLINK The path argument points to a remote machine and the
link to that machine is no longer active.

ENOTDIR A component of the path name is not a directory.

The fchdir() function will fail if:

chdir(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

64 man pages section 2: System Calls • Last Revised 30 Sep 1999

EACCES Search permission is denied for fildes. To override this
restriction, the calling process may assert one or both of
these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

EBADF The fildes argument is not an open file descriptor.

EINTR A signal was caught during the execution of the
fchdir() function.

EIO An I/O error occurred while reading from or writing to
the file system.

ENOLINK The fildes argument points to a remote machine and the
link to that machine is no longer active.

ENOTDIR The open file descriptor fildes does not refer to a
directory.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level chdir() is Async-Signal-Safe

Appropriate privilege is required to override access checks.

chroot(2)

attributes(5)

chdir(2)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
ManualSunOS 5.8

Reference Manual

System Calls 65

chmod, fchmod – change access permission mode of file

#include <sys/types.h>

#include <sys/stat.h>

int chmod(const char *path, mode_t mode);

int fchmod(int fildes, mode_t mode);

The chmod() and fchmod() functions set the access permission portion of the mode
of the file whose name is given by path or referenced by the open file descriptor fildes
to the bit pattern contained in mode. Access permission bits are interpreted as follows:

S_ISUID 04000 Set user ID on execution.

S_ISGID 020#0 Set group ID on execution if # is 7, 5, 3, or 1. Enable mandatory
file/record locking if # is 6, 4, 2, or 0.

S_ISVTX 01000 Save text image after execution.

S_IRWXU 00700 Read, write, execute by owner.

S_IRUSR 00400 Read by owner.

S_IWUSR 00200 Write by owner.

S_IXUSR 00100 Execute (search if a directory) by owner.

S_IRWXG 00070 Read, write, execute by group.

S_IRGRP 00040 Read by group.

S_IWGRP 00020 Write by group.

S_IXGRP 00010 Execute by group.

S_IRWXO 00007 Read, write, execute (search) by others.

S_IROTH 00004 Read by others.

S_IWOTH 00002 Write by others.

S_IXOTH 00001 Execute by others.

Modes are constructed by the bitwise OR operation of the access permission bits.

The effective user ID of the process must match the owner of the file or the process
must have the PRIV_FILE_SETDAC privilege to change the mode of a file.

If the process is not a privileged process and the file is not a directory, mode bit 01000
(save text image on execution) is cleared. The calling process may assert the
PRIV_SYS_CONFIG privilege to override this restriction.

chmod(2)

NAME

SYNOPSIS

DESCRIPTION

66 man pages section 2: System Calls • Last Revised 3 Aug 2001

If neither the process is privileged, nor the file’s group is a member of the process’s
supplementary group list, and the effective group ID of the process does not match the
group ID of the file, mode bit 02000 (set group ID on execution) is cleared.

If a directory is writable and has S_ISVTX (the sticky bit) set, files within that
directory can be removed or renamed only if one or more of the following is true (see
unlink(2) and rename(2)):

� the user owns the file
� the user owns the directory
� the file is writable by the user
� the user is a privileged user

If a directory has the set group ID bit set, a given file created within that directory will
have the same group ID as the directory, if that group ID is part of the group ID set of
the process that created the file. Otherwise, the newly created file’s group ID will be
set to the effective group ID of the creating process.

If the mode bit 02000 (set group ID on execution) is set and the mode bit 00010
(execute or search by group) is not set, mandatory file/record locking will exist on a
regular file. This may affect future calls to open(2), creat(2), read(2), and write(2)
on this file.

Upon successful completion, chmod() and fchmod() mark for update the st_ctime
field of the file.

chmod() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The chmod() function will fail if:

EACCES Search permission is denied on a component of the
path prefix of path. To override this restriction, the
calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

The calling process does not own the final object
specified in path or does not own fildes. To override this
restriction, the calling process may assert the
PRIV_FILE_SETDAC privilege.

Write permission is denied on path or fildes. To override
this restriction, the calling process may assert the
PRIV_FILE_DAC_WRITE and/or the
PRIV_FILE_MAC_WRITE privilege.

EFAULT The path argument points to an illegal address.

chmod(2)

RETURN VALUES

ERRORS

System Calls 67

EINTR A signal was caught during execution of the function.

EIO An I/O error occurred while reading from or writing to
the file system.

ELOOP Too many symbolic links were encountered in
translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or
the length of a path component exceeds NAME_MAX
while _POSIX_NO_TRUNC is in effect.

ENOENT Either a component of the path prefix or the file
referred to by path does not exist or is a null pathname.

ENOLINK The fildes argument points to a remote machine and the
link to that machine is no longer active.

ENOTDIR A component of the prefix of path is not a directory.

EPERM The effective user ID does not match the owner of the
file. To override this restriction, the calling process may
assert the PRIV_FILE_SETDAC privilege.

EROFS The file referred to by path resides on a read-only file
system.

The fchmod() function will fail if:

EBADF The fildes argument is not an open file descriptor

EIO An I/O error occurred while reading from or writing to
the file system.

EINTR A signal was caught during execution of the fchmod()
function.

ENOLINK The path argument points to a remote machine and the
link to that machine is no longer active.

EROFS The file referred to by fildes resides on a read-only file
system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level chmod() is Async-Signal-Safe

Appropriate privilege is required to override access checks.

� To override a search permission error, the calling process requires the
PRIV_FILE_MAC_SEARCH privilege.

chmod(2)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

68 man pages section 2: System Calls • Last Revised 3 Aug 2001

� To override a write permission error, the calling process requires the
PRIV_FILE_DAC_WRITE and/or the PRIV_FILE_MAC_WRITE privilege.

� If the calling process does not own the object, the calling process requires the
PRIV_FILE_SETDAC privilege.

To set the sticky bit on a file, the calling process may assert the PRIV_SYS_CONFIG
privilege.

To set the set-user-ID on a user who is not the effective user ID of the calling process,
the calling process may assert the PRIV_FILE_SETID privilege.

To set the set-group-ID bit on a group not in effective or supplementary group IDs of
the calling process, the calling process may assert the PRIV_FILE_SETID privilege.

chmod(1), chown(2), creat(2), fcntl(2), mknod(2), open(2), read(2), rename(2),
stat(2), write(2)

mkfifo(3C), stat(3HEAD), attributes(5)

System Interface Guide

If you use chmod() to change the file group owner permissions on a file with ACL
entries, both the file group owner permissions and the ACL mask are changed to the
new permissions. Be aware that the new ACL mask permissions may change the
effective permissions for additional users and groups who have ACL entries on the
file.

chmod(2)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

NOTES

System Calls 69

chown, lchown, fchown – change owner and group of a file

#include <unistd.h>

#include <sys/types.h>

int chown(const char *path, uid_t owner, gid_t group);

int lchown(const char *path, uid_t owner, gid_t group);

int fchown(int fildes, uid_t owner, gid_t group);

The chown() function sets the owner ID and group ID of the file specified by path or
referenced by the open file descriptor fildes to owner and group respectively. If owner or
group is specified as −1, chown() does not change the corresponding ID of the file.

The lchown() function sets the owner ID and group ID of the named file in the same
manner as chown(), unless the named file is a symbolic link. In this case, lchown()
changes the ownership of the symbolic link file itself, while chown() changes the
ownership of the file or directory to which the symbolic link refers.

If chown(), lchown(), or fchown() is invoked, the set-user-ID and set-group-ID
bits of the file mode, chmod(2). respectively, are cleared. See chmod(2). To bypass this
restriction, the process may assert the PRIV_FILE_SETID privilege.

The operating system has a configuration option, _POSIX_CHOWN_RESTRICTED, to
restrict ownership changes for the chown(), lchown(), and fchown() functions.
When _POSIX_CHOWN_RESTRICTED is not in effect, the effective user ID of the
process must match the owner of the file. To override this restriction, the calling
process must assert the PRIV_FILE_CHOWN privilege. When
_POSIX_CHOWN_RESTRICTED is not in effect, the effective user ID of the process must
match the owner of the file or the process must be the super-user to change the
ownership of a file. When _POSIX_CHOWN_RESTRICTED is in effect, the chown(),
lchown(), and fchown() functions require that the calling process assert the
PRIV_FILE_CHOWN privilege to change the user ID of a file. To change the group ID
of a file, the process must be the owner of the file and the new group ID must be the
group of the process ID or must be in the supplementary group list of the process. To
override this restriction, the calling process may assert the PRIV_FILE_CHOWN
privilege.

set rstchown = 1

To disable this option, include the following line in /etc/system:

set rstchown = 0

See system(4) and fpathconf(2).

Upon successful completion, chown(), fchown() and lchown() mark for update
the st_ctime field of the file.

chown(2)

NAME

SYNOPSIS

DESCRIPTION

70 man pages section 2: System Calls • Last Revised 30 Sep 1999

chown() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The chown() and lchown() functions will fail if:

EACCES Search permission is denied on a component of the
path prefix of path. To override this restriction, the
calling process may assert one or both of these
privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

Write permission is denied on path or fildes. To override
this restriction, the calling process may assert the
PRIV_FILE_MAC_WRITE privilege.

EFAULT The path argument points to an illegal address.

EINTR A signal was caught during the execution of the
chown() or lchown() function.

EINVAL The group or owner argument is out of range.

EIO An I/O error occurred while reading from or writing to
the file system.

ELOOP Too many symbolic links were encountered in
translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or
the length of a path component exceeds NAME_MAX
while _POSIX_NO_TRUNC is in effect.

ENOLINK The path argument points to a remote machine and the
link to that machine is no longer active.

ENOENT Either a component of the path prefix or the file
referred to by path does not exist or is a null pathname.

ENOTDIR A component of the path prefix of path is not a
directory.

EPERM The effective user ID does not match the owner of the
file. If _POSIX_CHOWN_RESTRICTED is set, the calling
process must assert the PRIV_FILE_CHOWN privilege.
If _POSIX_CHOWN_RESTRICTED is not set, the calling
process may assert the PRIV_FILE_CHOWN privilege.

EROFS The named file resides on a read-only file system.

The fchown() function will fail if:

EBADF The fildes argument is not an open file descriptor.

chown(2)

RETURN VALUES

ERRORS

System Calls 71

EIO An I/O error occurred while reading from or writing to
the file system.

EINTR A signal was caught during execution of the function.

ENOLINK The fildes argument points to a remote machine and the
link to that machine is no longer active.

EINVAL The group or owner argument is out of range.

EPERM The effective user ID does not match the owner of the
file, or the process is not the super-user and
_POSIX_CHOWN_RESTRICTED indicates that such
privilege is required.

EROFS The named file referred to by fildes resides on a
read-only file system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level chown() is Async-Signal-Safe

Appropriate privilege is required to override access checks.

When the ownership of path and fildes is changed, the set-user-ID and set-group-ID
bits are cleared. The calling process may assert the PRIV_FILE_SETID privilege to
bypass this restriction.

To change the user ID of the file when the calling process does not own the file and
_POSIX_CHOWN_RESTRICTED is not in effect, the calling process may assert the
PRIV_FILE_CHOWN privilege.

To change the group ID of the file when the calling process does not own the file, and
the new group ID is not in the group ID of the process or in the supplementary group
list of the process, and _POSIX_CHOWN_RESTRICTED is not in effect, the calling
process may assert the PRIV_FILE_CHOWN privilege.

chgrp(1), chown(1), chmod(2)

attributes(5)

chown(2)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

72 man pages section 2: System Calls • Last Revised 30 Sep 1999

chroot, fchroot – change root directory

#include <unistd.h>

int chroot(const char *path);

int fchroot(int fildes);

The chroot() and fchroot() functions cause a directory to become the root
directory, the starting point for path searches for path names beginning with / (slash).
The user’s working directory is unaffected by the chroot() and fchroot()
functions.

The path argument points to a path name naming a directory. The fildes argument to
fchroot() is the open file descriptor of the directory which is to become the root.

The calling process must assert the PRIV_PROC_CHROOT privilege to use this system
call. While it is always possible to change to the system root using the fchroot()
function, it is not guaranteed to succeed in any other case, even should fildes be valid
in all respects.

The “. .” entry in the root directory is interpreted to mean the root directory itself.
Therefore, “. .” cannot be used to access files outside the subtree rooted at the root
directory. Instead, fchroot() can be used to reset the root to a directory that was
opened before the root directory was changed.

chroot() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The chroot() function will fail if:

EACCES Search permission is denied for a component of the
path prefix of dirname, or search permission is denied
for the directory referred to by dirname.To override
these restrictions, the calling process may assert one or
both of these privileges: PRIV_FILE_DAC_SEARCH
and PRIV_FILE_MAC_SEARCH.

EBADF The descriptor is not valid.

EFAULT The path argument points to an illegal address.

EINVAL The fchroot() function attempted to change to a
directory that is not the system root and external
circumstances do not allow this.

EINTR A signal was caught during the execution of the
chroot() function.

chroot(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 73

EIO An I/O error occurred while reading from or writing to
the file system.

ELOOP Too many symbolic links were encountered in
translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or
the length of a path component exceeds NAME_MAX
while _POSIX_NO_TRUNC is in effect.

ENOENT The named directory does not exist or is a null
pathname.

ENOLINK The path argument points to a remote machine and the
link to that machine is no longer active.

ENOTDIR Any component of the path name is not a directory.

EPERM The calling process must assert the
PRIV_PROC_CHROOT privilege to change the root
directory.

Appropriate privilege is required to override access checks.

The calling process must assert the PRIV_PROC_CHROOT privilege to change the root
directory.

chroot(1M)

The only use of fchroot() that is appropriate is to change back to the system root.

chroot(2)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualWARNINGS

74 man pages section 2: System Calls • Last Revised 30 Sep 1999

chstate – Change the view of a host state between labeled and unlabeled

cc [flags…] file… -ltsol

#include <tsol/tndb.h>

int chstate(tsol_chstateop_t state, struct netbuf *addr);

A host regards another host as labeled or unlabeled, based on the remote host’s
database caches that are loaded in the kernel. In some cases (for example, when a
diskless client boots), the server host must initially regard the client as an unlabeled
host even though the client is a labeled host; at a later time, the server host can regard
the client as a labeled host. chstate() allows a process to toggle the view of a host
between labeled and unlabeled.

The argument state is of the following type:

typedef enum {
STATE_UNLABELED = 1,
STATE_LABELED = 2

} tsol_chstateop_t;

The argument addr is a pointer to the netbuf structure:

struct netbuf {
unsigned int maxlen;
unsigned int len;
char *buf;

};

where *buf contains the address of the host whose view is being changed. Currently,
only the IP address format is supported; and it should be specified as type
sockaddr_in.

chstate() requires the PRIV_SYS_NET_CONFIG privilege.

chstate() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

chstate() may fail for one of these reasons:

EFAULT The addr argument points to a bad address.

EINVAL Either the state argument is not one of the listed type constants, or
the remote host template for the host specified by addr is not
available (after using fallback mechanism).

EPERM The calling process does not have the PRIV_SYS_NET_CONFIG
privilege.

chstate(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 75

creat – create a new file or rewrite an existing one

#include <sys/types.h>
#include <sys/stat.h>

#include <fcntl.h>

int creat(const char *path, mode_t mode);

The creat() function creates a new ordinary file or prepares to rewrite an existing
file named by the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are unchanged.

If the file does not exist the file’s owner ID is set to the effective user ID of the process.
The group ID of the file is set to the effective group ID of the process, or if the
S_ISGID bit is set in the parent directory then the group ID of the file is inherited
from the parent directory. The access permission bits of the file mode are set to the
value of mode modified as follows:

� If the group ID of the new file does not match the effective group ID or one of the
supplementary group IDs, the S_ISGID bit is cleared. The calling process may
assert the PRIV_FILE_SETID privilege to override clearing of the S_ISGID bit.

� All bits set in the process’s file mode creation mask (see umask(2)) are
correspondingly cleared in the file’s permission mask.

� The “save text image after execution bit” of the mode is cleared. (See chmod(2) for
the values of mode.) The calling process may assert the PRIV_SYS_CONFIG
privilege to override the clearing of the S_ISVTX bit.

If the file exists, its sensitivity label is unchanged. If the file does not exist, it is created
with its sensitivity label set to the sensitivity label of the calling process.

Upon successful completion, a write-only file descriptor is returned and the file is
open for writing, even if the mode does not permit writing. The file pointer is set to
the beginning of the file. The file descriptor is set to remain open across exec functions
(see fcntl(2)). A new file may be created with a mode that forbids writing.

The call creat(path, mode) is equivalent to:

open(path, O_WRONLY | O_CREAT | O_TRUNC, mode)

Upon successful completion, a non-negative integer representing the lowest numbered
unused file descriptor is returned. Otherwise, −1 is returned, no files are created or
modified, and errno is set to indicate the error.

The creat() function will fail:

EACCES Search permission is denied on a component of the path prefix. To
override this restriction, the calling process may assert one or both
of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

creat(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

76 man pages section 2: System Calls • Last Revised 20 Feb 2001

The file does not exist and the directory in which the file is to be
created does not permit writing. To override this restriction, the
calling process may assert one or both of these privileges:
PRIV_FILE_DAC_WRITE and PRIV_FILE_MAC_WRITE.

The file exists and write permission to path is denied. To override
this restriction, the calling process may assert one or both of these
privileges: PRIV_FILE_MAC_WRITE and
PRIV_FILE_DAC_WRITE.

EAGAIN The file exists, mandatory file/record locking is set, and there are
outstanding record locks on the file. [See chmod(2).]

EDQUOT The directory where the new file entry is being placed cannot be
extended because the user’s quota of disk blocks on that file
system has been exhausted, or the user’s quota of inodes on the
file system where the file is being created has been exhausted.

EFAULT The path argument points to an illegal address.

EINTR A signal was caught during the execution of the creat()
function.

EISDIR The named file is an existing directory.

ELOOP Too many symbolic links were encountered in translating path.

EMFILE The process has too many open files. [See getrlimit(2).]

ENFILE The system file table is full.

ENOENT A component of the path prefix does not exist, or the path name is
null.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOSPC The file system is out of inodes.

ENOTDIR A component of the path prefix is not a directory.

EOVERFLOW The file is a large file at the time of creat().

EROFS The named file resides or would reside on a read-only file system.

The creat() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

creat(2)

USAGE

ATTRIBUTES

System Calls 77

Appropriate privilege is required to override access checks.

To override clearing of the S_ISVTX bit, the calling process may assert the
PRIV_SYS_CONFIG privilege. To override the clearing of the S_ISGID bit, the calling
process may assert the PRIV_FILE_SETID privilege.

If path exists, its sensitivity label is unchanged. If path does not exist, it is created with
its sensitivity label set to the sensitivity label of the calling process.

chmod(2), fcntl(2), getrlimit(2), lseek(2), open(2), read(2), write(2)

close(2), dup(2), umask(2), attributes(5), lf64(5), stat(5)

creat(2)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

78 man pages section 2: System Calls • Last Revised 20 Feb 2001

devpolicy – Get/set device driver policy table

cc [flag…] file

#include <sys/tsol/devpolicy.h>

int devpolicy(devpolicy_op_t op, devpolicy_t *tbl, int *len);

devpolicy() sets and gets the device policy table.

Allowed values for op are specified in <sys/tsol/devpolicy.h> and may be one
of the following:

TSOL_GET_DEVPOLICY Get the device policy table. The tbl
argument points to a buffer containing the
devpolicy_t array, and len contains the
length of the array. devpolicy() returns
in len the number of elements that the
kernel has filled in the array.

TSOL_SET_DEVPOLICY Set the device policy table. The tbl argument
points to the devpolicy_t structure to be
downloaded to the kernel, and len contains
the length of the array. For this call to
succeed, the calling process must have
PRIV_SYS_DEVICES in its set of effective
privileges.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

devpolicy(1M)

attributes(5)

devpolicy(2)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

System Calls 79

exec, execl, execv, execle, execve, execlp, execvp – execute a file

#include <unistd.h>

int execl(const char *path, const char *arg0, ..., const char *argn,
char * /*NULL*/);

int execv(const char *path, char *const argv[]);

int execle(const char *path, const char *arg0, ..., const char *argn,
char * /*NULL*/, char *const envp[]);

int execve(const char *path, char *const argv[], char *const envp[]);

int execlp(const char *file, const char *arg0, ..., const char *argn,
char * /*NULL*/);

int execvp(const char *file, char *const argv[]);

Each of the functions in the exec family replace the current process image with a new
process image. The new image is constructed from a regular, executable file called the
new process image file. This file is either an executable object file or a file of data for an
interpreter. There is no return from a successful call to one of these functions because
the calling process image is overlaid by the new process image.

An interpreter file begins with a line of the form

#! pathname [arg]

where pathname is the path of the interpreter, and arg is an optional argument. When
an interpreter file is executed, the system invokes the specified interpreter. The
pathname specified in the interpreter file is passed as arg0 to the interpreter. If arg was
specified in the interpreter file, it is passed as arg1 to the interpreter. The remaining
arguments to the interpreter are arg0 through argn of the originally exec’d file. The
interpreter named by pathname must not be an interpreter file.

When a C-language program is executed as a result of this call, it is entered as a
C-language function call as follows:

int main (int argc, char *argv[], char *envp[]);

where argc is the argument count, argv is an array of character pointers to the
arguments themselves, and envp is an array of character pointers to the environment
strings. The argv and environ arrays are each terminated by a null pointer. The null
pointer terminating the argv array is not counted in argc. As indicated, argc is at least
one, and the first member of the array points to a string containing the name of the
file.

The arguments specified by a program with one of the exec functions are passed on
to the new process image in the main() arguments.

exec(2)

NAME

SYNOPSIS

DESCRIPTION

80 man pages section 2: System Calls • Last Revised 18 May 2001

The path argument points to a path name that identifies the new process image file.

The file argument is used to construct a pathname that identifies the new process
image file . If the file argument contains a slash character, it is used as the pathname
for this file. Otherwise, the path prefix for this file is obtained by a search of the
directories passed in the PATH environment variable (see environ(5)). The
environment is supplied typically by the shell. If the process image file is not a valid
executable object file, execlp() and execvp() use the contents of that file as
standard input to the shell. In this case, the shell becomes the new process image. In a
standard-conforming application (see standards(5)), the exec family of functions
use /usr/bin/ksh (see ksh(1)); otherwise, they use /usr/bin/sh (see sh(1)).

The arguments represented by arg0… are pointers to null-terminated character strings.
These strings constitute the argument list available to the new process image. The list
is terminated by a null pointer. The arg0 argument should point to a filename that is
associated with the process being started by one of the exec functions.

The argv argument is an array of character pointers to null-terminated strings. The last
member of this array must be a null pointer. These strings constitute the argument list
available to the new process image. The value in argv[0] should point to a filename
that is associated with the process being started by one of the exec functions.

The envp argument is an array of character pointers to null-terminated strings. These
strings constitute the environment for the new process image. The envp array is
terminated by a null pointer. For execl(), execv(), execvp(), and execlp(), the
C-language run-time start-off routine places a pointer to the environment of the calling
process in the global object extern char **environ, and it is used to pass the
environment of the calling process to the new process image.

The number of bytes available for the new process’s combined argument and
environment lists is ARG_MAX. It is implementation-dependent whether null
terminators, pointers, and/or any alignment bytes are included in this total.

The calling process must have read and execute access to the new process file or have
the following in its set of effective privileges:

PRIV_FILE_DAC_SEARCH
PRIV_FILE_DAC_EXECUTE
PRIV_FILE_MAC_SEARCH
PRIV_FILE_MAC_READ

File descriptors open in the calling process image remain open in the new process
image, except for those whose close-on-exec flag FD_CLOEXEC is set; (see fcntl(2)).
For those file descriptors that remain open, all attributes of the open file description,
including file locks, remain unchanged.

Directory streams open in the calling process image are closed in the new process
image.

exec(2)

System Calls 81

The state of conversion descriptors and message catalogue descriptors in the new
process image is undefined. For the new process, the equivalent of:

setlocale(LC_ALL, "C")is executed at startup.

Signals set to the default action (SIG_DFL) in the calling process image are set to the
default action in the new process image (see signal(3C)). Signals set to be ignored
(SIG_IGN) by the calling process image are set to be ignored by the new process
image. Signals set to be caught by the calling process image are set to the default
action in the new process image (see signal(3HEAD)). After a successful call to any
of the exec functions, alternate signal stacks are not preserved and the SA_ONSTACK
flag is cleared for all signals.

After a successful call to any of the exec functions, any functions previously
registered by atexit(3C) are no longer registered.

The saved resource limits in the new process image are set to be a copy of the
process’s corresponding hard and soft resource limits.

If the ST_NOSUID bit is set for the file system containing the new process image file,
then the effective user ID, effective group ID, saved set-user-ID, and saved
set-group-ID are unchanged in the new process image. If the set-user-ID mode bit of
the new process image file is set (see chmod(2)), the effective user ID of the new
process image is set to the owner ID of the new process image file. Similarly, if the
set-group-ID mode bit of the new process image file is set, the effective group ID of the
new process image is set to the group ID of the new process image file. The real user
ID and real group ID of the new process image remain the same as those of the calling
process image. The effective user ID and effective group ID of the new process image
are saved (as the saved set-user-ID and the saved set-group-ID for use by setuid(2).

If the process has the PRIV_PROC_OWNER privilege, the set-user-ID and set-group-ID
bits will be honored when the process is being controlled by ptrace().

Any shared memory segments attached to the calling process image will not be
attached to the new process image (see shmop(2)). Any mappings established through
mmap() are not preserved across an exec. Memory mappings created in the process
are unmapped before the address space is rebuilt for the new process image. (see
mmap(2)).

Memory locks established by the calling process via calls to mlockall(3C) or
mlock(3C) are removed. If locked pages in the address space of the calling process are
also mapped into the address spaces the locks established by the other processes will
be unaffected by the call by this process to the exec function. If the exec function
fails, the effect on memory locks is unspecified.

If _XOPEN_REALTIME is defined and has a value other than −1, any named
semaphores open in the calling process are closed as if by appropriate calls to
sem_close(3RT)

exec(2)

82 man pages section 2: System Calls • Last Revised 18 May 2001

Profiling is disabled for the new process; see profil(2).

Timers created by the calling process with timer_create(3RT) are deleted before
replacing the current process image with the new process image.

For the SCHED_FIFO and SCHED_RR scheduling policies, the policy and priority
settings are not changed by a call to an exec function.

All open message queue descriptors in the calling process are closed, as described in
mq_close(3RT).

Any outstanding asynchronous I/O operations may be cancelled. Those asynchronous
I/O operations that are not canceled will complete as if the exec() function had not
yet occurred, but any associated signal notifications are suppressed. It is unspecified
whether the exec() function itself blocks awaiting such I/O completion. In no event,
however, will the new process image created by the exec() function be affected by
the presence of outstanding asynchronous I/O operations at the time the exec()
function is called.

The new process also inherits the following attributes from the calling process:

� nice value (see nice(2))
� scheduler class and priority (see priocntl(2))
� process ID
� parent process ID
� process group ID
� supplementary group IDs
� semadj values (see semop(2))
� session membership (see exit(2) and signal(3C))
� real user ID
� real group ID
� trace flag (see ptrace(2) request 0)
� time left until an alarm clock signal (see alarm(2))
� current working directory
� root directory
� file mode creation mask (see umask(2))
� file size limit (see ulimit(2))
� resource limits (see getrlimit(2))
� tms_utime, tms_stime, tms_cutime, and tms_cstime (see times(2))
� file-locks (see fcntl(2) and lockf(3C))
� controlling terminal
� process signal mask (see sigprocmask(2))
� pending signals (see sigpending(2))
� clearance (see getclearance(2))
� sensitivity label (see getcmwlabel(2))
� inheritable privilege set (see getppriv(2))
� process attribute flags (see getpattr(2))

exec(2)

System Calls 83

A call to any exec function from a process with more than one thread results in all
threads being terminated and the new executable image being loaded and executed.
No destructor functions will be called.

The four privilege sets of the new process are updated as described in the following
equations where E1, P1, S1, I1 are the four privilege sets of the calling process; E2, P2,
S2, I2 are the four privilege sets of the new process; and F and A are the forced set and
the allowed set of the program file:

E2 = P2 = (I1 union F) intersect Ai
S2 = I1 intersect A
I2 = I1

When a script file is run, the resulting forced privileges are the combination of the
forced privileges of the script and the forced privileges of the interpreter program; and
the resulting allowed privileges are the allowed privileges of the interpreter program.
The privilege update equations for a script executable could be expressed like this:

E2 = P2 = (I1 union Fs union Fi) intersect Ai
S2 = I1 intersect Ai
I2 = I1 where

Fs is the forced privilege set of the script, Fi is the forced privilege set of the interpreter
program, and Ai is the allowed privilege set of the interpreter program.

Upon successful completion, each of the functions in the exec family marks for
update the st_atime field of the file. If an exec function failed but was able to locate
the process image file, whether the st_atime field is marked for update is unspecified.
Should the function succeed, the process image file is considered to have been opened
with open(2). The corresponding close(2) is considered to occur at a time after this
open, but before process termination or successful completion of a subsequent call to
one of the exec functions. The argv[] and envp[] arrays of pointers and the strings to
which those arrays point will not be modified by a call to one of the exec functions,
except as a consequence of replacing the process image. The argv[] and envp[] arrays
of pointers and the strings to which those arrays point will not be modified by a call to
one of the exec functions, except as a consequence of replacing the process image.

The saved resource limits in the new process image are set to be a copy of the
process’s corresponding hard and soft limits.

If a function in the exec family returns to the calling process image, an error has
occurred; the return value is −1 and errno is set to indicate the error.

The exec functions will fail if:

E2BIG The number of bytes in the new process’s argument list is greater
than the system-imposed limit of ARG_MAX bytes. The argument

exec(2)

RETURN VALUES

ERRORS

84 man pages section 2: System Calls • Last Revised 18 May 2001

list limit is sum of the size of the argument list plus the size of the
environment’s exported shell variables.

EACCES Search permission is denied for a directory listed in the new
process file’s path prefix; the new process file is not an ordinary
file; or the new process file mode denies execute permission.
Moreover, the calling process does not have
PRIV_FILE_DAC_SEARCH and/or PRIV_FILE_MAC_SEARCH to
override the restriction.

EAGAIN Total amount of system memory available when reading using raw
I/O is temporarily insufficient.

EFAULT An argument points to an illegal address.

EINTR A signal was caught during the execution of one of the functions in
the exec family.

ELOOP Too many symbolic links were encountered in translating path or
file.

ENAMETOOLONG The length of the file or path argument exceeds PATH_MAX, or the
length of a file or path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT One or more components of the new process path name of the file
do not exist or is a null pathname.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOTDIR A component of the new process path of the file prefix is not a
directory.

The exec functions, except for execlp() and execvp(), will fail if:

ENOEXEC The new process image file has the appropriate access
permission but is not in the proper format.

The exec functions may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate
result whose length exceeds PATH_MAX.

ENOMEM The new process image requires more memory than
RLIMIT_VMEM, the limit imposed by setrlimit() (see brk(2)).

ETXTBSY The new process image file is a pure procedure (shared text) file
that is currently open for writing by some process.

As the state of conversion descriptors and message catalogue escriptors in the new
process image is undefined, portable applications should not rely on their use and
should close them prior to calling one of the exec functions.

exec(2)

USAGE

System Calls 85

Applications that require other than the default POSIX locale should call
setlocale(3C) with the appropriate parameters to establish the locale of thenew
process.

The environ array should not be accessed directly by the application.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level execle() and execve() are
Async-Signal-Safe

MAC search and execute permissions on the executable object are required. Process
privilege sets are updated upon execution of the program. Other Trusted Solaris
process attributes, such as clearance, sensitivity label, and process attribute flags, are
unchanged.

chmod(2), fcntl(2), fork(2), getrlimit(2), nice(2), priocntl(2), semop(2),
shmop(2), setlocale(3C),

ksh(1), ps(1), sh(1), alarm(2), brk(2), exit(2), mmap(2), profil(2), ptrace(2),
sigpending(2), sigprocmask(2), times(2), umask(2), lockf(3C), signal(3C),
system(3C), timer_create(3RT), a.out(4), attributes(5), environ(5),
standards(5)

exec(2)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

86 man pages section 2: System Calls • Last Revised 18 May 2001

exec, execl, execv, execle, execve, execlp, execvp – execute a file

#include <unistd.h>

int execl(const char *path, const char *arg0, ..., const char *argn,
char * /*NULL*/);

int execv(const char *path, char *const argv[]);

int execle(const char *path, const char *arg0, ..., const char *argn,
char * /*NULL*/, char *const envp[]);

int execve(const char *path, char *const argv[], char *const envp[]);

int execlp(const char *file, const char *arg0, ..., const char *argn,
char * /*NULL*/);

int execvp(const char *file, char *const argv[]);

Each of the functions in the exec family replace the current process image with a new
process image. The new image is constructed from a regular, executable file called the
new process image file. This file is either an executable object file or a file of data for an
interpreter. There is no return from a successful call to one of these functions because
the calling process image is overlaid by the new process image.

An interpreter file begins with a line of the form

#! pathname [arg]

where pathname is the path of the interpreter, and arg is an optional argument. When
an interpreter file is executed, the system invokes the specified interpreter. The
pathname specified in the interpreter file is passed as arg0 to the interpreter. If arg was
specified in the interpreter file, it is passed as arg1 to the interpreter. The remaining
arguments to the interpreter are arg0 through argn of the originally exec’d file. The
interpreter named by pathname must not be an interpreter file.

When a C-language program is executed as a result of this call, it is entered as a
C-language function call as follows:

int main (int argc, char *argv[], char *envp[]);

where argc is the argument count, argv is an array of character pointers to the
arguments themselves, and envp is an array of character pointers to the environment
strings. The argv and environ arrays are each terminated by a null pointer. The null
pointer terminating the argv array is not counted in argc. As indicated, argc is at least
one, and the first member of the array points to a string containing the name of the
file.

The arguments specified by a program with one of the exec functions are passed on
to the new process image in the main() arguments.

execl(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 87

The path argument points to a path name that identifies the new process image file.

The file argument is used to construct a pathname that identifies the new process
image file . If the file argument contains a slash character, it is used as the pathname
for this file. Otherwise, the path prefix for this file is obtained by a search of the
directories passed in the PATH environment variable (see environ(5)). The
environment is supplied typically by the shell. If the process image file is not a valid
executable object file, execlp() and execvp() use the contents of that file as
standard input to the shell. In this case, the shell becomes the new process image. In a
standard-conforming application (see standards(5)), the exec family of functions
use /usr/bin/ksh (see ksh(1)); otherwise, they use /usr/bin/sh (see sh(1)).

The arguments represented by arg0… are pointers to null-terminated character strings.
These strings constitute the argument list available to the new process image. The list
is terminated by a null pointer. The arg0 argument should point to a filename that is
associated with the process being started by one of the exec functions.

The argv argument is an array of character pointers to null-terminated strings. The last
member of this array must be a null pointer. These strings constitute the argument list
available to the new process image. The value in argv[0] should point to a filename
that is associated with the process being started by one of the exec functions.

The envp argument is an array of character pointers to null-terminated strings. These
strings constitute the environment for the new process image. The envp array is
terminated by a null pointer. For execl(), execv(), execvp(), and execlp(), the
C-language run-time start-off routine places a pointer to the environment of the calling
process in the global object extern char **environ, and it is used to pass the
environment of the calling process to the new process image.

The number of bytes available for the new process’s combined argument and
environment lists is ARG_MAX. It is implementation-dependent whether null
terminators, pointers, and/or any alignment bytes are included in this total.

The calling process must have read and execute access to the new process file or have
the following in its set of effective privileges:

PRIV_FILE_DAC_SEARCH
PRIV_FILE_DAC_EXECUTE
PRIV_FILE_MAC_SEARCH
PRIV_FILE_MAC_READ

File descriptors open in the calling process image remain open in the new process
image, except for those whose close-on-exec flag FD_CLOEXEC is set; (see fcntl(2)).
For those file descriptors that remain open, all attributes of the open file description,
including file locks, remain unchanged.

Directory streams open in the calling process image are closed in the new process
image.

execl(2)

88 man pages section 2: System Calls • Last Revised 18 May 2001

The state of conversion descriptors and message catalogue descriptors in the new
process image is undefined. For the new process, the equivalent of:

setlocale(LC_ALL, "C")is executed at startup.

Signals set to the default action (SIG_DFL) in the calling process image are set to the
default action in the new process image (see signal(3C)). Signals set to be ignored
(SIG_IGN) by the calling process image are set to be ignored by the new process
image. Signals set to be caught by the calling process image are set to the default
action in the new process image (see signal(3HEAD)). After a successful call to any
of the exec functions, alternate signal stacks are not preserved and the SA_ONSTACK
flag is cleared for all signals.

After a successful call to any of the exec functions, any functions previously
registered by atexit(3C) are no longer registered.

The saved resource limits in the new process image are set to be a copy of the
process’s corresponding hard and soft resource limits.

If the ST_NOSUID bit is set for the file system containing the new process image file,
then the effective user ID, effective group ID, saved set-user-ID, and saved
set-group-ID are unchanged in the new process image. If the set-user-ID mode bit of
the new process image file is set (see chmod(2)), the effective user ID of the new
process image is set to the owner ID of the new process image file. Similarly, if the
set-group-ID mode bit of the new process image file is set, the effective group ID of the
new process image is set to the group ID of the new process image file. The real user
ID and real group ID of the new process image remain the same as those of the calling
process image. The effective user ID and effective group ID of the new process image
are saved (as the saved set-user-ID and the saved set-group-ID for use by setuid(2).

If the process has the PRIV_PROC_OWNER privilege, the set-user-ID and set-group-ID
bits will be honored when the process is being controlled by ptrace().

Any shared memory segments attached to the calling process image will not be
attached to the new process image (see shmop(2)). Any mappings established through
mmap() are not preserved across an exec. Memory mappings created in the process
are unmapped before the address space is rebuilt for the new process image. (see
mmap(2)).

Memory locks established by the calling process via calls to mlockall(3C) or
mlock(3C) are removed. If locked pages in the address space of the calling process are
also mapped into the address spaces the locks established by the other processes will
be unaffected by the call by this process to the exec function. If the exec function
fails, the effect on memory locks is unspecified.

If _XOPEN_REALTIME is defined and has a value other than −1, any named
semaphores open in the calling process are closed as if by appropriate calls to
sem_close(3RT)

execl(2)

System Calls 89

Profiling is disabled for the new process; see profil(2).

Timers created by the calling process with timer_create(3RT) are deleted before
replacing the current process image with the new process image.

For the SCHED_FIFO and SCHED_RR scheduling policies, the policy and priority
settings are not changed by a call to an exec function.

All open message queue descriptors in the calling process are closed, as described in
mq_close(3RT).

Any outstanding asynchronous I/O operations may be cancelled. Those asynchronous
I/O operations that are not canceled will complete as if the exec() function had not
yet occurred, but any associated signal notifications are suppressed. It is unspecified
whether the exec() function itself blocks awaiting such I/O completion. In no event,
however, will the new process image created by the exec() function be affected by
the presence of outstanding asynchronous I/O operations at the time the exec()
function is called.

The new process also inherits the following attributes from the calling process:

� nice value (see nice(2))
� scheduler class and priority (see priocntl(2))
� process ID
� parent process ID
� process group ID
� supplementary group IDs
� semadj values (see semop(2))
� session membership (see exit(2) and signal(3C))
� real user ID
� real group ID
� trace flag (see ptrace(2) request 0)
� time left until an alarm clock signal (see alarm(2))
� current working directory
� root directory
� file mode creation mask (see umask(2))
� file size limit (see ulimit(2))
� resource limits (see getrlimit(2))
� tms_utime, tms_stime, tms_cutime, and tms_cstime (see times(2))
� file-locks (see fcntl(2) and lockf(3C))
� controlling terminal
� process signal mask (see sigprocmask(2))
� pending signals (see sigpending(2))
� clearance (see getclearance(2))
� sensitivity label (see getcmwlabel(2))
� inheritable privilege set (see getppriv(2))
� process attribute flags (see getpattr(2))

execl(2)

90 man pages section 2: System Calls • Last Revised 18 May 2001

A call to any exec function from a process with more than one thread results in all
threads being terminated and the new executable image being loaded and executed.
No destructor functions will be called.

The four privilege sets of the new process are updated as described in the following
equations where E1, P1, S1, I1 are the four privilege sets of the calling process; E2, P2,
S2, I2 are the four privilege sets of the new process; and F and A are the forced set and
the allowed set of the program file:

E2 = P2 = (I1 union F) intersect Ai
S2 = I1 intersect A
I2 = I1

When a script file is run, the resulting forced privileges are the combination of the
forced privileges of the script and the forced privileges of the interpreter program; and
the resulting allowed privileges are the allowed privileges of the interpreter program.
The privilege update equations for a script executable could be expressed like this:

E2 = P2 = (I1 union Fs union Fi) intersect Ai
S2 = I1 intersect Ai
I2 = I1 where

Fs is the forced privilege set of the script, Fi is the forced privilege set of the interpreter
program, and Ai is the allowed privilege set of the interpreter program.

Upon successful completion, each of the functions in the exec family marks for
update the st_atime field of the file. If an exec function failed but was able to locate
the process image file, whether the st_atime field is marked for update is unspecified.
Should the function succeed, the process image file is considered to have been opened
with open(2). The corresponding close(2) is considered to occur at a time after this
open, but before process termination or successful completion of a subsequent call to
one of the exec functions. The argv[] and envp[] arrays of pointers and the strings to
which those arrays point will not be modified by a call to one of the exec functions,
except as a consequence of replacing the process image. The argv[] and envp[] arrays
of pointers and the strings to which those arrays point will not be modified by a call to
one of the exec functions, except as a consequence of replacing the process image.

The saved resource limits in the new process image are set to be a copy of the
process’s corresponding hard and soft limits.

If a function in the exec family returns to the calling process image, an error has
occurred; the return value is −1 and errno is set to indicate the error.

The exec functions will fail if:

E2BIG The number of bytes in the new process’s argument list is greater
than the system-imposed limit of ARG_MAX bytes. The argument

execl(2)

RETURN VALUES

ERRORS

System Calls 91

list limit is sum of the size of the argument list plus the size of the
environment’s exported shell variables.

EACCES Search permission is denied for a directory listed in the new
process file’s path prefix; the new process file is not an ordinary
file; or the new process file mode denies execute permission.
Moreover, the calling process does not have
PRIV_FILE_DAC_SEARCH and/or PRIV_FILE_MAC_SEARCH to
override the restriction.

EAGAIN Total amount of system memory available when reading using raw
I/O is temporarily insufficient.

EFAULT An argument points to an illegal address.

EINTR A signal was caught during the execution of one of the functions in
the exec family.

ELOOP Too many symbolic links were encountered in translating path or
file.

ENAMETOOLONG The length of the file or path argument exceeds PATH_MAX, or the
length of a file or path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT One or more components of the new process path name of the file
do not exist or is a null pathname.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOTDIR A component of the new process path of the file prefix is not a
directory.

The exec functions, except for execlp() and execvp(), will fail if:

ENOEXEC The new process image file has the appropriate access
permission but is not in the proper format.

The exec functions may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate
result whose length exceeds PATH_MAX.

ENOMEM The new process image requires more memory than
RLIMIT_VMEM, the limit imposed by setrlimit() (see brk(2)).

ETXTBSY The new process image file is a pure procedure (shared text) file
that is currently open for writing by some process.

As the state of conversion descriptors and message catalogue escriptors in the new
process image is undefined, portable applications should not rely on their use and
should close them prior to calling one of the exec functions.

execl(2)

USAGE

92 man pages section 2: System Calls • Last Revised 18 May 2001

Applications that require other than the default POSIX locale should call
setlocale(3C) with the appropriate parameters to establish the locale of thenew
process.

The environ array should not be accessed directly by the application.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level execle() and execve() are
Async-Signal-Safe

MAC search and execute permissions on the executable object are required. Process
privilege sets are updated upon execution of the program. Other Trusted Solaris
process attributes, such as clearance, sensitivity label, and process attribute flags, are
unchanged.

chmod(2), fcntl(2), fork(2), getrlimit(2), nice(2), priocntl(2), semop(2),
shmop(2), setlocale(3C),

ksh(1), ps(1), sh(1), alarm(2), brk(2), exit(2), mmap(2), profil(2), ptrace(2),
sigpending(2), sigprocmask(2), times(2), umask(2), lockf(3C), signal(3C),
system(3C), timer_create(3RT), a.out(4), attributes(5), environ(5),
standards(5)

execl(2)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

System Calls 93

exec, execl, execv, execle, execve, execlp, execvp – execute a file

#include <unistd.h>

int execl(const char *path, const char *arg0, ..., const char *argn,
char * /*NULL*/);

int execv(const char *path, char *const argv[]);

int execle(const char *path, const char *arg0, ..., const char *argn,
char * /*NULL*/, char *const envp[]);

int execve(const char *path, char *const argv[], char *const envp[]);

int execlp(const char *file, const char *arg0, ..., const char *argn,
char * /*NULL*/);

int execvp(const char *file, char *const argv[]);

Each of the functions in the exec family replace the current process image with a new
process image. The new image is constructed from a regular, executable file called the
new process image file. This file is either an executable object file or a file of data for an
interpreter. There is no return from a successful call to one of these functions because
the calling process image is overlaid by the new process image.

An interpreter file begins with a line of the form

#! pathname [arg]

where pathname is the path of the interpreter, and arg is an optional argument. When
an interpreter file is executed, the system invokes the specified interpreter. The
pathname specified in the interpreter file is passed as arg0 to the interpreter. If arg was
specified in the interpreter file, it is passed as arg1 to the interpreter. The remaining
arguments to the interpreter are arg0 through argn of the originally exec’d file. The
interpreter named by pathname must not be an interpreter file.

When a C-language program is executed as a result of this call, it is entered as a
C-language function call as follows:

int main (int argc, char *argv[], char *envp[]);

where argc is the argument count, argv is an array of character pointers to the
arguments themselves, and envp is an array of character pointers to the environment
strings. The argv and environ arrays are each terminated by a null pointer. The null
pointer terminating the argv array is not counted in argc. As indicated, argc is at least
one, and the first member of the array points to a string containing the name of the
file.

The arguments specified by a program with one of the exec functions are passed on
to the new process image in the main() arguments.

execle(2)

NAME

SYNOPSIS

DESCRIPTION

94 man pages section 2: System Calls • Last Revised 18 May 2001

The path argument points to a path name that identifies the new process image file.

The file argument is used to construct a pathname that identifies the new process
image file . If the file argument contains a slash character, it is used as the pathname
for this file. Otherwise, the path prefix for this file is obtained by a search of the
directories passed in the PATH environment variable (see environ(5)). The
environment is supplied typically by the shell. If the process image file is not a valid
executable object file, execlp() and execvp() use the contents of that file as
standard input to the shell. In this case, the shell becomes the new process image. In a
standard-conforming application (see standards(5)), the exec family of functions
use /usr/bin/ksh (see ksh(1)); otherwise, they use /usr/bin/sh (see sh(1)).

The arguments represented by arg0… are pointers to null-terminated character strings.
These strings constitute the argument list available to the new process image. The list
is terminated by a null pointer. The arg0 argument should point to a filename that is
associated with the process being started by one of the exec functions.

The argv argument is an array of character pointers to null-terminated strings. The last
member of this array must be a null pointer. These strings constitute the argument list
available to the new process image. The value in argv[0] should point to a filename
that is associated with the process being started by one of the exec functions.

The envp argument is an array of character pointers to null-terminated strings. These
strings constitute the environment for the new process image. The envp array is
terminated by a null pointer. For execl(), execv(), execvp(), and execlp(), the
C-language run-time start-off routine places a pointer to the environment of the calling
process in the global object extern char **environ, and it is used to pass the
environment of the calling process to the new process image.

The number of bytes available for the new process’s combined argument and
environment lists is ARG_MAX. It is implementation-dependent whether null
terminators, pointers, and/or any alignment bytes are included in this total.

The calling process must have read and execute access to the new process file or have
the following in its set of effective privileges:

PRIV_FILE_DAC_SEARCH
PRIV_FILE_DAC_EXECUTE
PRIV_FILE_MAC_SEARCH
PRIV_FILE_MAC_READ

File descriptors open in the calling process image remain open in the new process
image, except for those whose close-on-exec flag FD_CLOEXEC is set; (see fcntl(2)).
For those file descriptors that remain open, all attributes of the open file description,
including file locks, remain unchanged.

Directory streams open in the calling process image are closed in the new process
image.

execle(2)

System Calls 95

The state of conversion descriptors and message catalogue descriptors in the new
process image is undefined. For the new process, the equivalent of:

setlocale(LC_ALL, "C")is executed at startup.

Signals set to the default action (SIG_DFL) in the calling process image are set to the
default action in the new process image (see signal(3C)). Signals set to be ignored
(SIG_IGN) by the calling process image are set to be ignored by the new process
image. Signals set to be caught by the calling process image are set to the default
action in the new process image (see signal(3HEAD)). After a successful call to any
of the exec functions, alternate signal stacks are not preserved and the SA_ONSTACK
flag is cleared for all signals.

After a successful call to any of the exec functions, any functions previously
registered by atexit(3C) are no longer registered.

The saved resource limits in the new process image are set to be a copy of the
process’s corresponding hard and soft resource limits.

If the ST_NOSUID bit is set for the file system containing the new process image file,
then the effective user ID, effective group ID, saved set-user-ID, and saved
set-group-ID are unchanged in the new process image. If the set-user-ID mode bit of
the new process image file is set (see chmod(2)), the effective user ID of the new
process image is set to the owner ID of the new process image file. Similarly, if the
set-group-ID mode bit of the new process image file is set, the effective group ID of the
new process image is set to the group ID of the new process image file. The real user
ID and real group ID of the new process image remain the same as those of the calling
process image. The effective user ID and effective group ID of the new process image
are saved (as the saved set-user-ID and the saved set-group-ID for use by setuid(2).

If the process has the PRIV_PROC_OWNER privilege, the set-user-ID and set-group-ID
bits will be honored when the process is being controlled by ptrace().

Any shared memory segments attached to the calling process image will not be
attached to the new process image (see shmop(2)). Any mappings established through
mmap() are not preserved across an exec. Memory mappings created in the process
are unmapped before the address space is rebuilt for the new process image. (see
mmap(2)).

Memory locks established by the calling process via calls to mlockall(3C) or
mlock(3C) are removed. If locked pages in the address space of the calling process are
also mapped into the address spaces the locks established by the other processes will
be unaffected by the call by this process to the exec function. If the exec function
fails, the effect on memory locks is unspecified.

If _XOPEN_REALTIME is defined and has a value other than −1, any named
semaphores open in the calling process are closed as if by appropriate calls to
sem_close(3RT)

execle(2)

96 man pages section 2: System Calls • Last Revised 18 May 2001

Profiling is disabled for the new process; see profil(2).

Timers created by the calling process with timer_create(3RT) are deleted before
replacing the current process image with the new process image.

For the SCHED_FIFO and SCHED_RR scheduling policies, the policy and priority
settings are not changed by a call to an exec function.

All open message queue descriptors in the calling process are closed, as described in
mq_close(3RT).

Any outstanding asynchronous I/O operations may be cancelled. Those asynchronous
I/O operations that are not canceled will complete as if the exec() function had not
yet occurred, but any associated signal notifications are suppressed. It is unspecified
whether the exec() function itself blocks awaiting such I/O completion. In no event,
however, will the new process image created by the exec() function be affected by
the presence of outstanding asynchronous I/O operations at the time the exec()
function is called.

The new process also inherits the following attributes from the calling process:

� nice value (see nice(2))
� scheduler class and priority (see priocntl(2))
� process ID
� parent process ID
� process group ID
� supplementary group IDs
� semadj values (see semop(2))
� session membership (see exit(2) and signal(3C))
� real user ID
� real group ID
� trace flag (see ptrace(2) request 0)
� time left until an alarm clock signal (see alarm(2))
� current working directory
� root directory
� file mode creation mask (see umask(2))
� file size limit (see ulimit(2))
� resource limits (see getrlimit(2))
� tms_utime, tms_stime, tms_cutime, and tms_cstime (see times(2))
� file-locks (see fcntl(2) and lockf(3C))
� controlling terminal
� process signal mask (see sigprocmask(2))
� pending signals (see sigpending(2))
� clearance (see getclearance(2))
� sensitivity label (see getcmwlabel(2))
� inheritable privilege set (see getppriv(2))
� process attribute flags (see getpattr(2))

execle(2)

System Calls 97

A call to any exec function from a process with more than one thread results in all
threads being terminated and the new executable image being loaded and executed.
No destructor functions will be called.

The four privilege sets of the new process are updated as described in the following
equations where E1, P1, S1, I1 are the four privilege sets of the calling process; E2, P2,
S2, I2 are the four privilege sets of the new process; and F and A are the forced set and
the allowed set of the program file:

E2 = P2 = (I1 union F) intersect Ai
S2 = I1 intersect A
I2 = I1

When a script file is run, the resulting forced privileges are the combination of the
forced privileges of the script and the forced privileges of the interpreter program; and
the resulting allowed privileges are the allowed privileges of the interpreter program.
The privilege update equations for a script executable could be expressed like this:

E2 = P2 = (I1 union Fs union Fi) intersect Ai
S2 = I1 intersect Ai
I2 = I1 where

Fs is the forced privilege set of the script, Fi is the forced privilege set of the interpreter
program, and Ai is the allowed privilege set of the interpreter program.

Upon successful completion, each of the functions in the exec family marks for
update the st_atime field of the file. If an exec function failed but was able to locate
the process image file, whether the st_atime field is marked for update is unspecified.
Should the function succeed, the process image file is considered to have been opened
with open(2). The corresponding close(2) is considered to occur at a time after this
open, but before process termination or successful completion of a subsequent call to
one of the exec functions. The argv[] and envp[] arrays of pointers and the strings to
which those arrays point will not be modified by a call to one of the exec functions,
except as a consequence of replacing the process image. The argv[] and envp[] arrays
of pointers and the strings to which those arrays point will not be modified by a call to
one of the exec functions, except as a consequence of replacing the process image.

The saved resource limits in the new process image are set to be a copy of the
process’s corresponding hard and soft limits.

If a function in the exec family returns to the calling process image, an error has
occurred; the return value is −1 and errno is set to indicate the error.

The exec functions will fail if:

E2BIG The number of bytes in the new process’s argument list is greater
than the system-imposed limit of ARG_MAX bytes. The argument

execle(2)

RETURN VALUES

ERRORS

98 man pages section 2: System Calls • Last Revised 18 May 2001

list limit is sum of the size of the argument list plus the size of the
environment’s exported shell variables.

EACCES Search permission is denied for a directory listed in the new
process file’s path prefix; the new process file is not an ordinary
file; or the new process file mode denies execute permission.
Moreover, the calling process does not have
PRIV_FILE_DAC_SEARCH and/or PRIV_FILE_MAC_SEARCH to
override the restriction.

EAGAIN Total amount of system memory available when reading using raw
I/O is temporarily insufficient.

EFAULT An argument points to an illegal address.

EINTR A signal was caught during the execution of one of the functions in
the exec family.

ELOOP Too many symbolic links were encountered in translating path or
file.

ENAMETOOLONG The length of the file or path argument exceeds PATH_MAX, or the
length of a file or path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT One or more components of the new process path name of the file
do not exist or is a null pathname.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOTDIR A component of the new process path of the file prefix is not a
directory.

The exec functions, except for execlp() and execvp(), will fail if:

ENOEXEC The new process image file has the appropriate access
permission but is not in the proper format.

The exec functions may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate
result whose length exceeds PATH_MAX.

ENOMEM The new process image requires more memory than
RLIMIT_VMEM, the limit imposed by setrlimit() (see brk(2)).

ETXTBSY The new process image file is a pure procedure (shared text) file
that is currently open for writing by some process.

As the state of conversion descriptors and message catalogue escriptors in the new
process image is undefined, portable applications should not rely on their use and
should close them prior to calling one of the exec functions.

execle(2)

USAGE

System Calls 99

Applications that require other than the default POSIX locale should call
setlocale(3C) with the appropriate parameters to establish the locale of thenew
process.

The environ array should not be accessed directly by the application.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level execle() and execve() are
Async-Signal-Safe

MAC search and execute permissions on the executable object are required. Process
privilege sets are updated upon execution of the program. Other Trusted Solaris
process attributes, such as clearance, sensitivity label, and process attribute flags, are
unchanged.

chmod(2), fcntl(2), fork(2), getrlimit(2), nice(2), priocntl(2), semop(2),
shmop(2), setlocale(3C),

ksh(1), ps(1), sh(1), alarm(2), brk(2), exit(2), mmap(2), profil(2), ptrace(2),
sigpending(2), sigprocmask(2), times(2), umask(2), lockf(3C), signal(3C),
system(3C), timer_create(3RT), a.out(4), attributes(5), environ(5),
standards(5)

execle(2)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

100 man pages section 2: System Calls • Last Revised 18 May 2001

exec, execl, execv, execle, execve, execlp, execvp – execute a file

#include <unistd.h>

int execl(const char *path, const char *arg0, ..., const char *argn,
char * /*NULL*/);

int execv(const char *path, char *const argv[]);

int execle(const char *path, const char *arg0, ..., const char *argn,
char * /*NULL*/, char *const envp[]);

int execve(const char *path, char *const argv[], char *const envp[]);

int execlp(const char *file, const char *arg0, ..., const char *argn,
char * /*NULL*/);

int execvp(const char *file, char *const argv[]);

Each of the functions in the exec family replace the current process image with a new
process image. The new image is constructed from a regular, executable file called the
new process image file. This file is either an executable object file or a file of data for an
interpreter. There is no return from a successful call to one of these functions because
the calling process image is overlaid by the new process image.

An interpreter file begins with a line of the form

#! pathname [arg]

where pathname is the path of the interpreter, and arg is an optional argument. When
an interpreter file is executed, the system invokes the specified interpreter. The
pathname specified in the interpreter file is passed as arg0 to the interpreter. If arg was
specified in the interpreter file, it is passed as arg1 to the interpreter. The remaining
arguments to the interpreter are arg0 through argn of the originally exec’d file. The
interpreter named by pathname must not be an interpreter file.

When a C-language program is executed as a result of this call, it is entered as a
C-language function call as follows:

int main (int argc, char *argv[], char *envp[]);

where argc is the argument count, argv is an array of character pointers to the
arguments themselves, and envp is an array of character pointers to the environment
strings. The argv and environ arrays are each terminated by a null pointer. The null
pointer terminating the argv array is not counted in argc. As indicated, argc is at least
one, and the first member of the array points to a string containing the name of the
file.

The arguments specified by a program with one of the exec functions are passed on
to the new process image in the main() arguments.

execlp(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 101

The path argument points to a path name that identifies the new process image file.

The file argument is used to construct a pathname that identifies the new process
image file . If the file argument contains a slash character, it is used as the pathname
for this file. Otherwise, the path prefix for this file is obtained by a search of the
directories passed in the PATH environment variable (see environ(5)). The
environment is supplied typically by the shell. If the process image file is not a valid
executable object file, execlp() and execvp() use the contents of that file as
standard input to the shell. In this case, the shell becomes the new process image. In a
standard-conforming application (see standards(5)), the exec family of functions
use /usr/bin/ksh (see ksh(1)); otherwise, they use /usr/bin/sh (see sh(1)).

The arguments represented by arg0… are pointers to null-terminated character strings.
These strings constitute the argument list available to the new process image. The list
is terminated by a null pointer. The arg0 argument should point to a filename that is
associated with the process being started by one of the exec functions.

The argv argument is an array of character pointers to null-terminated strings. The last
member of this array must be a null pointer. These strings constitute the argument list
available to the new process image. The value in argv[0] should point to a filename
that is associated with the process being started by one of the exec functions.

The envp argument is an array of character pointers to null-terminated strings. These
strings constitute the environment for the new process image. The envp array is
terminated by a null pointer. For execl(), execv(), execvp(), and execlp(), the
C-language run-time start-off routine places a pointer to the environment of the calling
process in the global object extern char **environ, and it is used to pass the
environment of the calling process to the new process image.

The number of bytes available for the new process’s combined argument and
environment lists is ARG_MAX. It is implementation-dependent whether null
terminators, pointers, and/or any alignment bytes are included in this total.

The calling process must have read and execute access to the new process file or have
the following in its set of effective privileges:

PRIV_FILE_DAC_SEARCH
PRIV_FILE_DAC_EXECUTE
PRIV_FILE_MAC_SEARCH
PRIV_FILE_MAC_READ

File descriptors open in the calling process image remain open in the new process
image, except for those whose close-on-exec flag FD_CLOEXEC is set; (see fcntl(2)).
For those file descriptors that remain open, all attributes of the open file description,
including file locks, remain unchanged.

Directory streams open in the calling process image are closed in the new process
image.

execlp(2)

102 man pages section 2: System Calls • Last Revised 18 May 2001

The state of conversion descriptors and message catalogue descriptors in the new
process image is undefined. For the new process, the equivalent of:

setlocale(LC_ALL, "C")is executed at startup.

Signals set to the default action (SIG_DFL) in the calling process image are set to the
default action in the new process image (see signal(3C)). Signals set to be ignored
(SIG_IGN) by the calling process image are set to be ignored by the new process
image. Signals set to be caught by the calling process image are set to the default
action in the new process image (see signal(3HEAD)). After a successful call to any
of the exec functions, alternate signal stacks are not preserved and the SA_ONSTACK
flag is cleared for all signals.

After a successful call to any of the exec functions, any functions previously
registered by atexit(3C) are no longer registered.

The saved resource limits in the new process image are set to be a copy of the
process’s corresponding hard and soft resource limits.

If the ST_NOSUID bit is set for the file system containing the new process image file,
then the effective user ID, effective group ID, saved set-user-ID, and saved
set-group-ID are unchanged in the new process image. If the set-user-ID mode bit of
the new process image file is set (see chmod(2)), the effective user ID of the new
process image is set to the owner ID of the new process image file. Similarly, if the
set-group-ID mode bit of the new process image file is set, the effective group ID of the
new process image is set to the group ID of the new process image file. The real user
ID and real group ID of the new process image remain the same as those of the calling
process image. The effective user ID and effective group ID of the new process image
are saved (as the saved set-user-ID and the saved set-group-ID for use by setuid(2).

If the process has the PRIV_PROC_OWNER privilege, the set-user-ID and set-group-ID
bits will be honored when the process is being controlled by ptrace().

Any shared memory segments attached to the calling process image will not be
attached to the new process image (see shmop(2)). Any mappings established through
mmap() are not preserved across an exec. Memory mappings created in the process
are unmapped before the address space is rebuilt for the new process image. (see
mmap(2)).

Memory locks established by the calling process via calls to mlockall(3C) or
mlock(3C) are removed. If locked pages in the address space of the calling process are
also mapped into the address spaces the locks established by the other processes will
be unaffected by the call by this process to the exec function. If the exec function
fails, the effect on memory locks is unspecified.

If _XOPEN_REALTIME is defined and has a value other than −1, any named
semaphores open in the calling process are closed as if by appropriate calls to
sem_close(3RT)

execlp(2)

System Calls 103

Profiling is disabled for the new process; see profil(2).

Timers created by the calling process with timer_create(3RT) are deleted before
replacing the current process image with the new process image.

For the SCHED_FIFO and SCHED_RR scheduling policies, the policy and priority
settings are not changed by a call to an exec function.

All open message queue descriptors in the calling process are closed, as described in
mq_close(3RT).

Any outstanding asynchronous I/O operations may be cancelled. Those asynchronous
I/O operations that are not canceled will complete as if the exec() function had not
yet occurred, but any associated signal notifications are suppressed. It is unspecified
whether the exec() function itself blocks awaiting such I/O completion. In no event,
however, will the new process image created by the exec() function be affected by
the presence of outstanding asynchronous I/O operations at the time the exec()
function is called.

The new process also inherits the following attributes from the calling process:

� nice value (see nice(2))
� scheduler class and priority (see priocntl(2))
� process ID
� parent process ID
� process group ID
� supplementary group IDs
� semadj values (see semop(2))
� session membership (see exit(2) and signal(3C))
� real user ID
� real group ID
� trace flag (see ptrace(2) request 0)
� time left until an alarm clock signal (see alarm(2))
� current working directory
� root directory
� file mode creation mask (see umask(2))
� file size limit (see ulimit(2))
� resource limits (see getrlimit(2))
� tms_utime, tms_stime, tms_cutime, and tms_cstime (see times(2))
� file-locks (see fcntl(2) and lockf(3C))
� controlling terminal
� process signal mask (see sigprocmask(2))
� pending signals (see sigpending(2))
� clearance (see getclearance(2))
� sensitivity label (see getcmwlabel(2))
� inheritable privilege set (see getppriv(2))
� process attribute flags (see getpattr(2))

execlp(2)

104 man pages section 2: System Calls • Last Revised 18 May 2001

A call to any exec function from a process with more than one thread results in all
threads being terminated and the new executable image being loaded and executed.
No destructor functions will be called.

The four privilege sets of the new process are updated as described in the following
equations where E1, P1, S1, I1 are the four privilege sets of the calling process; E2, P2,
S2, I2 are the four privilege sets of the new process; and F and A are the forced set and
the allowed set of the program file:

E2 = P2 = (I1 union F) intersect Ai
S2 = I1 intersect A
I2 = I1

When a script file is run, the resulting forced privileges are the combination of the
forced privileges of the script and the forced privileges of the interpreter program; and
the resulting allowed privileges are the allowed privileges of the interpreter program.
The privilege update equations for a script executable could be expressed like this:

E2 = P2 = (I1 union Fs union Fi) intersect Ai
S2 = I1 intersect Ai
I2 = I1 where

Fs is the forced privilege set of the script, Fi is the forced privilege set of the interpreter
program, and Ai is the allowed privilege set of the interpreter program.

Upon successful completion, each of the functions in the exec family marks for
update the st_atime field of the file. If an exec function failed but was able to locate
the process image file, whether the st_atime field is marked for update is unspecified.
Should the function succeed, the process image file is considered to have been opened
with open(2). The corresponding close(2) is considered to occur at a time after this
open, but before process termination or successful completion of a subsequent call to
one of the exec functions. The argv[] and envp[] arrays of pointers and the strings to
which those arrays point will not be modified by a call to one of the exec functions,
except as a consequence of replacing the process image. The argv[] and envp[] arrays
of pointers and the strings to which those arrays point will not be modified by a call to
one of the exec functions, except as a consequence of replacing the process image.

The saved resource limits in the new process image are set to be a copy of the
process’s corresponding hard and soft limits.

If a function in the exec family returns to the calling process image, an error has
occurred; the return value is −1 and errno is set to indicate the error.

The exec functions will fail if:

E2BIG The number of bytes in the new process’s argument list is greater
than the system-imposed limit of ARG_MAX bytes. The argument

execlp(2)

RETURN VALUES

ERRORS

System Calls 105

list limit is sum of the size of the argument list plus the size of the
environment’s exported shell variables.

EACCES Search permission is denied for a directory listed in the new
process file’s path prefix; the new process file is not an ordinary
file; or the new process file mode denies execute permission.
Moreover, the calling process does not have
PRIV_FILE_DAC_SEARCH and/or PRIV_FILE_MAC_SEARCH to
override the restriction.

EAGAIN Total amount of system memory available when reading using raw
I/O is temporarily insufficient.

EFAULT An argument points to an illegal address.

EINTR A signal was caught during the execution of one of the functions in
the exec family.

ELOOP Too many symbolic links were encountered in translating path or
file.

ENAMETOOLONG The length of the file or path argument exceeds PATH_MAX, or the
length of a file or path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT One or more components of the new process path name of the file
do not exist or is a null pathname.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOTDIR A component of the new process path of the file prefix is not a
directory.

The exec functions, except for execlp() and execvp(), will fail if:

ENOEXEC The new process image file has the appropriate access
permission but is not in the proper format.

The exec functions may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate
result whose length exceeds PATH_MAX.

ENOMEM The new process image requires more memory than
RLIMIT_VMEM, the limit imposed by setrlimit() (see brk(2)).

ETXTBSY The new process image file is a pure procedure (shared text) file
that is currently open for writing by some process.

As the state of conversion descriptors and message catalogue escriptors in the new
process image is undefined, portable applications should not rely on their use and
should close them prior to calling one of the exec functions.

execlp(2)

USAGE

106 man pages section 2: System Calls • Last Revised 18 May 2001

Applications that require other than the default POSIX locale should call
setlocale(3C) with the appropriate parameters to establish the locale of thenew
process.

The environ array should not be accessed directly by the application.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level execle() and execve() are
Async-Signal-Safe

MAC search and execute permissions on the executable object are required. Process
privilege sets are updated upon execution of the program. Other Trusted Solaris
process attributes, such as clearance, sensitivity label, and process attribute flags, are
unchanged.

chmod(2), fcntl(2), fork(2), getrlimit(2), nice(2), priocntl(2), semop(2),
shmop(2), setlocale(3C),

ksh(1), ps(1), sh(1), alarm(2), brk(2), exit(2), mmap(2), profil(2), ptrace(2),
sigpending(2), sigprocmask(2), times(2), umask(2), lockf(3C), signal(3C),
system(3C), timer_create(3RT), a.out(4), attributes(5), environ(5),
standards(5)

execlp(2)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

System Calls 107

exec, execl, execv, execle, execve, execlp, execvp – execute a file

#include <unistd.h>

int execl(const char *path, const char *arg0, ..., const char *argn,
char * /*NULL*/);

int execv(const char *path, char *const argv[]);

int execle(const char *path, const char *arg0, ..., const char *argn,
char * /*NULL*/, char *const envp[]);

int execve(const char *path, char *const argv[], char *const envp[]);

int execlp(const char *file, const char *arg0, ..., const char *argn,
char * /*NULL*/);

int execvp(const char *file, char *const argv[]);

Each of the functions in the exec family replace the current process image with a new
process image. The new image is constructed from a regular, executable file called the
new process image file. This file is either an executable object file or a file of data for an
interpreter. There is no return from a successful call to one of these functions because
the calling process image is overlaid by the new process image.

An interpreter file begins with a line of the form

#! pathname [arg]

where pathname is the path of the interpreter, and arg is an optional argument. When
an interpreter file is executed, the system invokes the specified interpreter. The
pathname specified in the interpreter file is passed as arg0 to the interpreter. If arg was
specified in the interpreter file, it is passed as arg1 to the interpreter. The remaining
arguments to the interpreter are arg0 through argn of the originally exec’d file. The
interpreter named by pathname must not be an interpreter file.

When a C-language program is executed as a result of this call, it is entered as a
C-language function call as follows:

int main (int argc, char *argv[], char *envp[]);

where argc is the argument count, argv is an array of character pointers to the
arguments themselves, and envp is an array of character pointers to the environment
strings. The argv and environ arrays are each terminated by a null pointer. The null
pointer terminating the argv array is not counted in argc. As indicated, argc is at least
one, and the first member of the array points to a string containing the name of the
file.

The arguments specified by a program with one of the exec functions are passed on
to the new process image in the main() arguments.

execv(2)

NAME

SYNOPSIS

DESCRIPTION

108 man pages section 2: System Calls • Last Revised 18 May 2001

The path argument points to a path name that identifies the new process image file.

The file argument is used to construct a pathname that identifies the new process
image file . If the file argument contains a slash character, it is used as the pathname
for this file. Otherwise, the path prefix for this file is obtained by a search of the
directories passed in the PATH environment variable (see environ(5)). The
environment is supplied typically by the shell. If the process image file is not a valid
executable object file, execlp() and execvp() use the contents of that file as
standard input to the shell. In this case, the shell becomes the new process image. In a
standard-conforming application (see standards(5)), the exec family of functions
use /usr/bin/ksh (see ksh(1)); otherwise, they use /usr/bin/sh (see sh(1)).

The arguments represented by arg0… are pointers to null-terminated character strings.
These strings constitute the argument list available to the new process image. The list
is terminated by a null pointer. The arg0 argument should point to a filename that is
associated with the process being started by one of the exec functions.

The argv argument is an array of character pointers to null-terminated strings. The last
member of this array must be a null pointer. These strings constitute the argument list
available to the new process image. The value in argv[0] should point to a filename
that is associated with the process being started by one of the exec functions.

The envp argument is an array of character pointers to null-terminated strings. These
strings constitute the environment for the new process image. The envp array is
terminated by a null pointer. For execl(), execv(), execvp(), and execlp(), the
C-language run-time start-off routine places a pointer to the environment of the calling
process in the global object extern char **environ, and it is used to pass the
environment of the calling process to the new process image.

The number of bytes available for the new process’s combined argument and
environment lists is ARG_MAX. It is implementation-dependent whether null
terminators, pointers, and/or any alignment bytes are included in this total.

The calling process must have read and execute access to the new process file or have
the following in its set of effective privileges:

PRIV_FILE_DAC_SEARCH
PRIV_FILE_DAC_EXECUTE
PRIV_FILE_MAC_SEARCH
PRIV_FILE_MAC_READ

File descriptors open in the calling process image remain open in the new process
image, except for those whose close-on-exec flag FD_CLOEXEC is set; (see fcntl(2)).
For those file descriptors that remain open, all attributes of the open file description,
including file locks, remain unchanged.

Directory streams open in the calling process image are closed in the new process
image.

execv(2)

System Calls 109

The state of conversion descriptors and message catalogue descriptors in the new
process image is undefined. For the new process, the equivalent of:

setlocale(LC_ALL, "C")is executed at startup.

Signals set to the default action (SIG_DFL) in the calling process image are set to the
default action in the new process image (see signal(3C)). Signals set to be ignored
(SIG_IGN) by the calling process image are set to be ignored by the new process
image. Signals set to be caught by the calling process image are set to the default
action in the new process image (see signal(3HEAD)). After a successful call to any
of the exec functions, alternate signal stacks are not preserved and the SA_ONSTACK
flag is cleared for all signals.

After a successful call to any of the exec functions, any functions previously
registered by atexit(3C) are no longer registered.

The saved resource limits in the new process image are set to be a copy of the
process’s corresponding hard and soft resource limits.

If the ST_NOSUID bit is set for the file system containing the new process image file,
then the effective user ID, effective group ID, saved set-user-ID, and saved
set-group-ID are unchanged in the new process image. If the set-user-ID mode bit of
the new process image file is set (see chmod(2)), the effective user ID of the new
process image is set to the owner ID of the new process image file. Similarly, if the
set-group-ID mode bit of the new process image file is set, the effective group ID of the
new process image is set to the group ID of the new process image file. The real user
ID and real group ID of the new process image remain the same as those of the calling
process image. The effective user ID and effective group ID of the new process image
are saved (as the saved set-user-ID and the saved set-group-ID for use by setuid(2).

If the process has the PRIV_PROC_OWNER privilege, the set-user-ID and set-group-ID
bits will be honored when the process is being controlled by ptrace().

Any shared memory segments attached to the calling process image will not be
attached to the new process image (see shmop(2)). Any mappings established through
mmap() are not preserved across an exec. Memory mappings created in the process
are unmapped before the address space is rebuilt for the new process image. (see
mmap(2)).

Memory locks established by the calling process via calls to mlockall(3C) or
mlock(3C) are removed. If locked pages in the address space of the calling process are
also mapped into the address spaces the locks established by the other processes will
be unaffected by the call by this process to the exec function. If the exec function
fails, the effect on memory locks is unspecified.

If _XOPEN_REALTIME is defined and has a value other than −1, any named
semaphores open in the calling process are closed as if by appropriate calls to
sem_close(3RT)

execv(2)

110 man pages section 2: System Calls • Last Revised 18 May 2001

Profiling is disabled for the new process; see profil(2).

Timers created by the calling process with timer_create(3RT) are deleted before
replacing the current process image with the new process image.

For the SCHED_FIFO and SCHED_RR scheduling policies, the policy and priority
settings are not changed by a call to an exec function.

All open message queue descriptors in the calling process are closed, as described in
mq_close(3RT).

Any outstanding asynchronous I/O operations may be cancelled. Those asynchronous
I/O operations that are not canceled will complete as if the exec() function had not
yet occurred, but any associated signal notifications are suppressed. It is unspecified
whether the exec() function itself blocks awaiting such I/O completion. In no event,
however, will the new process image created by the exec() function be affected by
the presence of outstanding asynchronous I/O operations at the time the exec()
function is called.

The new process also inherits the following attributes from the calling process:

� nice value (see nice(2))
� scheduler class and priority (see priocntl(2))
� process ID
� parent process ID
� process group ID
� supplementary group IDs
� semadj values (see semop(2))
� session membership (see exit(2) and signal(3C))
� real user ID
� real group ID
� trace flag (see ptrace(2) request 0)
� time left until an alarm clock signal (see alarm(2))
� current working directory
� root directory
� file mode creation mask (see umask(2))
� file size limit (see ulimit(2))
� resource limits (see getrlimit(2))
� tms_utime, tms_stime, tms_cutime, and tms_cstime (see times(2))
� file-locks (see fcntl(2) and lockf(3C))
� controlling terminal
� process signal mask (see sigprocmask(2))
� pending signals (see sigpending(2))
� clearance (see getclearance(2))
� sensitivity label (see getcmwlabel(2))
� inheritable privilege set (see getppriv(2))
� process attribute flags (see getpattr(2))

execv(2)

System Calls 111

A call to any exec function from a process with more than one thread results in all
threads being terminated and the new executable image being loaded and executed.
No destructor functions will be called.

The four privilege sets of the new process are updated as described in the following
equations where E1, P1, S1, I1 are the four privilege sets of the calling process; E2, P2,
S2, I2 are the four privilege sets of the new process; and F and A are the forced set and
the allowed set of the program file:

E2 = P2 = (I1 union F) intersect Ai
S2 = I1 intersect A
I2 = I1

When a script file is run, the resulting forced privileges are the combination of the
forced privileges of the script and the forced privileges of the interpreter program; and
the resulting allowed privileges are the allowed privileges of the interpreter program.
The privilege update equations for a script executable could be expressed like this:

E2 = P2 = (I1 union Fs union Fi) intersect Ai
S2 = I1 intersect Ai
I2 = I1 where

Fs is the forced privilege set of the script, Fi is the forced privilege set of the interpreter
program, and Ai is the allowed privilege set of the interpreter program.

Upon successful completion, each of the functions in the exec family marks for
update the st_atime field of the file. If an exec function failed but was able to locate
the process image file, whether the st_atime field is marked for update is unspecified.
Should the function succeed, the process image file is considered to have been opened
with open(2). The corresponding close(2) is considered to occur at a time after this
open, but before process termination or successful completion of a subsequent call to
one of the exec functions. The argv[] and envp[] arrays of pointers and the strings to
which those arrays point will not be modified by a call to one of the exec functions,
except as a consequence of replacing the process image. The argv[] and envp[] arrays
of pointers and the strings to which those arrays point will not be modified by a call to
one of the exec functions, except as a consequence of replacing the process image.

The saved resource limits in the new process image are set to be a copy of the
process’s corresponding hard and soft limits.

If a function in the exec family returns to the calling process image, an error has
occurred; the return value is −1 and errno is set to indicate the error.

The exec functions will fail if:

E2BIG The number of bytes in the new process’s argument list is greater
than the system-imposed limit of ARG_MAX bytes. The argument

execv(2)

RETURN VALUES

ERRORS

112 man pages section 2: System Calls • Last Revised 18 May 2001

list limit is sum of the size of the argument list plus the size of the
environment’s exported shell variables.

EACCES Search permission is denied for a directory listed in the new
process file’s path prefix; the new process file is not an ordinary
file; or the new process file mode denies execute permission.
Moreover, the calling process does not have
PRIV_FILE_DAC_SEARCH and/or PRIV_FILE_MAC_SEARCH to
override the restriction.

EAGAIN Total amount of system memory available when reading using raw
I/O is temporarily insufficient.

EFAULT An argument points to an illegal address.

EINTR A signal was caught during the execution of one of the functions in
the exec family.

ELOOP Too many symbolic links were encountered in translating path or
file.

ENAMETOOLONG The length of the file or path argument exceeds PATH_MAX, or the
length of a file or path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT One or more components of the new process path name of the file
do not exist or is a null pathname.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOTDIR A component of the new process path of the file prefix is not a
directory.

The exec functions, except for execlp() and execvp(), will fail if:

ENOEXEC The new process image file has the appropriate access
permission but is not in the proper format.

The exec functions may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate
result whose length exceeds PATH_MAX.

ENOMEM The new process image requires more memory than
RLIMIT_VMEM, the limit imposed by setrlimit() (see brk(2)).

ETXTBSY The new process image file is a pure procedure (shared text) file
that is currently open for writing by some process.

As the state of conversion descriptors and message catalogue escriptors in the new
process image is undefined, portable applications should not rely on their use and
should close them prior to calling one of the exec functions.

execv(2)

USAGE

System Calls 113

Applications that require other than the default POSIX locale should call
setlocale(3C) with the appropriate parameters to establish the locale of thenew
process.

The environ array should not be accessed directly by the application.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level execle() and execve() are
Async-Signal-Safe

MAC search and execute permissions on the executable object are required. Process
privilege sets are updated upon execution of the program. Other Trusted Solaris
process attributes, such as clearance, sensitivity label, and process attribute flags, are
unchanged.

chmod(2), fcntl(2), fork(2), getrlimit(2), nice(2), priocntl(2), semop(2),
shmop(2), setlocale(3C),

ksh(1), ps(1), sh(1), alarm(2), brk(2), exit(2), mmap(2), profil(2), ptrace(2),
sigpending(2), sigprocmask(2), times(2), umask(2), lockf(3C), signal(3C),
system(3C), timer_create(3RT), a.out(4), attributes(5), environ(5),
standards(5)

execv(2)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

114 man pages section 2: System Calls • Last Revised 18 May 2001

exec, execl, execv, execle, execve, execlp, execvp – execute a file

#include <unistd.h>

int execl(const char *path, const char *arg0, ..., const char *argn,
char * /*NULL*/);

int execv(const char *path, char *const argv[]);

int execle(const char *path, const char *arg0, ..., const char *argn,
char * /*NULL*/, char *const envp[]);

int execve(const char *path, char *const argv[], char *const envp[]);

int execlp(const char *file, const char *arg0, ..., const char *argn,
char * /*NULL*/);

int execvp(const char *file, char *const argv[]);

Each of the functions in the exec family replace the current process image with a new
process image. The new image is constructed from a regular, executable file called the
new process image file. This file is either an executable object file or a file of data for an
interpreter. There is no return from a successful call to one of these functions because
the calling process image is overlaid by the new process image.

An interpreter file begins with a line of the form

#! pathname [arg]

where pathname is the path of the interpreter, and arg is an optional argument. When
an interpreter file is executed, the system invokes the specified interpreter. The
pathname specified in the interpreter file is passed as arg0 to the interpreter. If arg was
specified in the interpreter file, it is passed as arg1 to the interpreter. The remaining
arguments to the interpreter are arg0 through argn of the originally exec’d file. The
interpreter named by pathname must not be an interpreter file.

When a C-language program is executed as a result of this call, it is entered as a
C-language function call as follows:

int main (int argc, char *argv[], char *envp[]);

where argc is the argument count, argv is an array of character pointers to the
arguments themselves, and envp is an array of character pointers to the environment
strings. The argv and environ arrays are each terminated by a null pointer. The null
pointer terminating the argv array is not counted in argc. As indicated, argc is at least
one, and the first member of the array points to a string containing the name of the
file.

The arguments specified by a program with one of the exec functions are passed on
to the new process image in the main() arguments.

execve(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 115

The path argument points to a path name that identifies the new process image file.

The file argument is used to construct a pathname that identifies the new process
image file . If the file argument contains a slash character, it is used as the pathname
for this file. Otherwise, the path prefix for this file is obtained by a search of the
directories passed in the PATH environment variable (see environ(5)). The
environment is supplied typically by the shell. If the process image file is not a valid
executable object file, execlp() and execvp() use the contents of that file as
standard input to the shell. In this case, the shell becomes the new process image. In a
standard-conforming application (see standards(5)), the exec family of functions
use /usr/bin/ksh (see ksh(1)); otherwise, they use /usr/bin/sh (see sh(1)).

The arguments represented by arg0… are pointers to null-terminated character strings.
These strings constitute the argument list available to the new process image. The list
is terminated by a null pointer. The arg0 argument should point to a filename that is
associated with the process being started by one of the exec functions.

The argv argument is an array of character pointers to null-terminated strings. The last
member of this array must be a null pointer. These strings constitute the argument list
available to the new process image. The value in argv[0] should point to a filename
that is associated with the process being started by one of the exec functions.

The envp argument is an array of character pointers to null-terminated strings. These
strings constitute the environment for the new process image. The envp array is
terminated by a null pointer. For execl(), execv(), execvp(), and execlp(), the
C-language run-time start-off routine places a pointer to the environment of the calling
process in the global object extern char **environ, and it is used to pass the
environment of the calling process to the new process image.

The number of bytes available for the new process’s combined argument and
environment lists is ARG_MAX. It is implementation-dependent whether null
terminators, pointers, and/or any alignment bytes are included in this total.

The calling process must have read and execute access to the new process file or have
the following in its set of effective privileges:

PRIV_FILE_DAC_SEARCH
PRIV_FILE_DAC_EXECUTE
PRIV_FILE_MAC_SEARCH
PRIV_FILE_MAC_READ

File descriptors open in the calling process image remain open in the new process
image, except for those whose close-on-exec flag FD_CLOEXEC is set; (see fcntl(2)).
For those file descriptors that remain open, all attributes of the open file description,
including file locks, remain unchanged.

Directory streams open in the calling process image are closed in the new process
image.

execve(2)

116 man pages section 2: System Calls • Last Revised 18 May 2001

The state of conversion descriptors and message catalogue descriptors in the new
process image is undefined. For the new process, the equivalent of:

setlocale(LC_ALL, "C")is executed at startup.

Signals set to the default action (SIG_DFL) in the calling process image are set to the
default action in the new process image (see signal(3C)). Signals set to be ignored
(SIG_IGN) by the calling process image are set to be ignored by the new process
image. Signals set to be caught by the calling process image are set to the default
action in the new process image (see signal(3HEAD)). After a successful call to any
of the exec functions, alternate signal stacks are not preserved and the SA_ONSTACK
flag is cleared for all signals.

After a successful call to any of the exec functions, any functions previously
registered by atexit(3C) are no longer registered.

The saved resource limits in the new process image are set to be a copy of the
process’s corresponding hard and soft resource limits.

If the ST_NOSUID bit is set for the file system containing the new process image file,
then the effective user ID, effective group ID, saved set-user-ID, and saved
set-group-ID are unchanged in the new process image. If the set-user-ID mode bit of
the new process image file is set (see chmod(2)), the effective user ID of the new
process image is set to the owner ID of the new process image file. Similarly, if the
set-group-ID mode bit of the new process image file is set, the effective group ID of the
new process image is set to the group ID of the new process image file. The real user
ID and real group ID of the new process image remain the same as those of the calling
process image. The effective user ID and effective group ID of the new process image
are saved (as the saved set-user-ID and the saved set-group-ID for use by setuid(2).

If the process has the PRIV_PROC_OWNER privilege, the set-user-ID and set-group-ID
bits will be honored when the process is being controlled by ptrace().

Any shared memory segments attached to the calling process image will not be
attached to the new process image (see shmop(2)). Any mappings established through
mmap() are not preserved across an exec. Memory mappings created in the process
are unmapped before the address space is rebuilt for the new process image. (see
mmap(2)).

Memory locks established by the calling process via calls to mlockall(3C) or
mlock(3C) are removed. If locked pages in the address space of the calling process are
also mapped into the address spaces the locks established by the other processes will
be unaffected by the call by this process to the exec function. If the exec function
fails, the effect on memory locks is unspecified.

If _XOPEN_REALTIME is defined and has a value other than −1, any named
semaphores open in the calling process are closed as if by appropriate calls to
sem_close(3RT)

execve(2)

System Calls 117

Profiling is disabled for the new process; see profil(2).

Timers created by the calling process with timer_create(3RT) are deleted before
replacing the current process image with the new process image.

For the SCHED_FIFO and SCHED_RR scheduling policies, the policy and priority
settings are not changed by a call to an exec function.

All open message queue descriptors in the calling process are closed, as described in
mq_close(3RT).

Any outstanding asynchronous I/O operations may be cancelled. Those asynchronous
I/O operations that are not canceled will complete as if the exec() function had not
yet occurred, but any associated signal notifications are suppressed. It is unspecified
whether the exec() function itself blocks awaiting such I/O completion. In no event,
however, will the new process image created by the exec() function be affected by
the presence of outstanding asynchronous I/O operations at the time the exec()
function is called.

The new process also inherits the following attributes from the calling process:

� nice value (see nice(2))
� scheduler class and priority (see priocntl(2))
� process ID
� parent process ID
� process group ID
� supplementary group IDs
� semadj values (see semop(2))
� session membership (see exit(2) and signal(3C))
� real user ID
� real group ID
� trace flag (see ptrace(2) request 0)
� time left until an alarm clock signal (see alarm(2))
� current working directory
� root directory
� file mode creation mask (see umask(2))
� file size limit (see ulimit(2))
� resource limits (see getrlimit(2))
� tms_utime, tms_stime, tms_cutime, and tms_cstime (see times(2))
� file-locks (see fcntl(2) and lockf(3C))
� controlling terminal
� process signal mask (see sigprocmask(2))
� pending signals (see sigpending(2))
� clearance (see getclearance(2))
� sensitivity label (see getcmwlabel(2))
� inheritable privilege set (see getppriv(2))
� process attribute flags (see getpattr(2))

execve(2)

118 man pages section 2: System Calls • Last Revised 18 May 2001

A call to any exec function from a process with more than one thread results in all
threads being terminated and the new executable image being loaded and executed.
No destructor functions will be called.

The four privilege sets of the new process are updated as described in the following
equations where E1, P1, S1, I1 are the four privilege sets of the calling process; E2, P2,
S2, I2 are the four privilege sets of the new process; and F and A are the forced set and
the allowed set of the program file:

E2 = P2 = (I1 union F) intersect Ai
S2 = I1 intersect A
I2 = I1

When a script file is run, the resulting forced privileges are the combination of the
forced privileges of the script and the forced privileges of the interpreter program; and
the resulting allowed privileges are the allowed privileges of the interpreter program.
The privilege update equations for a script executable could be expressed like this:

E2 = P2 = (I1 union Fs union Fi) intersect Ai
S2 = I1 intersect Ai
I2 = I1 where

Fs is the forced privilege set of the script, Fi is the forced privilege set of the interpreter
program, and Ai is the allowed privilege set of the interpreter program.

Upon successful completion, each of the functions in the exec family marks for
update the st_atime field of the file. If an exec function failed but was able to locate
the process image file, whether the st_atime field is marked for update is unspecified.
Should the function succeed, the process image file is considered to have been opened
with open(2). The corresponding close(2) is considered to occur at a time after this
open, but before process termination or successful completion of a subsequent call to
one of the exec functions. The argv[] and envp[] arrays of pointers and the strings to
which those arrays point will not be modified by a call to one of the exec functions,
except as a consequence of replacing the process image. The argv[] and envp[] arrays
of pointers and the strings to which those arrays point will not be modified by a call to
one of the exec functions, except as a consequence of replacing the process image.

The saved resource limits in the new process image are set to be a copy of the
process’s corresponding hard and soft limits.

If a function in the exec family returns to the calling process image, an error has
occurred; the return value is −1 and errno is set to indicate the error.

The exec functions will fail if:

E2BIG The number of bytes in the new process’s argument list is greater
than the system-imposed limit of ARG_MAX bytes. The argument

execve(2)

RETURN VALUES

ERRORS

System Calls 119

list limit is sum of the size of the argument list plus the size of the
environment’s exported shell variables.

EACCES Search permission is denied for a directory listed in the new
process file’s path prefix; the new process file is not an ordinary
file; or the new process file mode denies execute permission.
Moreover, the calling process does not have
PRIV_FILE_DAC_SEARCH and/or PRIV_FILE_MAC_SEARCH to
override the restriction.

EAGAIN Total amount of system memory available when reading using raw
I/O is temporarily insufficient.

EFAULT An argument points to an illegal address.

EINTR A signal was caught during the execution of one of the functions in
the exec family.

ELOOP Too many symbolic links were encountered in translating path or
file.

ENAMETOOLONG The length of the file or path argument exceeds PATH_MAX, or the
length of a file or path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT One or more components of the new process path name of the file
do not exist or is a null pathname.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOTDIR A component of the new process path of the file prefix is not a
directory.

The exec functions, except for execlp() and execvp(), will fail if:

ENOEXEC The new process image file has the appropriate access
permission but is not in the proper format.

The exec functions may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate
result whose length exceeds PATH_MAX.

ENOMEM The new process image requires more memory than
RLIMIT_VMEM, the limit imposed by setrlimit() (see brk(2)).

ETXTBSY The new process image file is a pure procedure (shared text) file
that is currently open for writing by some process.

As the state of conversion descriptors and message catalogue escriptors in the new
process image is undefined, portable applications should not rely on their use and
should close them prior to calling one of the exec functions.

execve(2)

USAGE

120 man pages section 2: System Calls • Last Revised 18 May 2001

Applications that require other than the default POSIX locale should call
setlocale(3C) with the appropriate parameters to establish the locale of thenew
process.

The environ array should not be accessed directly by the application.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level execle() and execve() are
Async-Signal-Safe

MAC search and execute permissions on the executable object are required. Process
privilege sets are updated upon execution of the program. Other Trusted Solaris
process attributes, such as clearance, sensitivity label, and process attribute flags, are
unchanged.

chmod(2), fcntl(2), fork(2), getrlimit(2), nice(2), priocntl(2), semop(2),
shmop(2), setlocale(3C),

ksh(1), ps(1), sh(1), alarm(2), brk(2), exit(2), mmap(2), profil(2), ptrace(2),
sigpending(2), sigprocmask(2), times(2), umask(2), lockf(3C), signal(3C),
system(3C), timer_create(3RT), a.out(4), attributes(5), environ(5),
standards(5)

execve(2)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

System Calls 121

exec, execl, execv, execle, execve, execlp, execvp – execute a file

#include <unistd.h>

int execl(const char *path, const char *arg0, ..., const char *argn,
char * /*NULL*/);

int execv(const char *path, char *const argv[]);

int execle(const char *path, const char *arg0, ..., const char *argn,
char * /*NULL*/, char *const envp[]);

int execve(const char *path, char *const argv[], char *const envp[]);

int execlp(const char *file, const char *arg0, ..., const char *argn,
char * /*NULL*/);

int execvp(const char *file, char *const argv[]);

Each of the functions in the exec family replace the current process image with a new
process image. The new image is constructed from a regular, executable file called the
new process image file. This file is either an executable object file or a file of data for an
interpreter. There is no return from a successful call to one of these functions because
the calling process image is overlaid by the new process image.

An interpreter file begins with a line of the form

#! pathname [arg]

where pathname is the path of the interpreter, and arg is an optional argument. When
an interpreter file is executed, the system invokes the specified interpreter. The
pathname specified in the interpreter file is passed as arg0 to the interpreter. If arg was
specified in the interpreter file, it is passed as arg1 to the interpreter. The remaining
arguments to the interpreter are arg0 through argn of the originally exec’d file. The
interpreter named by pathname must not be an interpreter file.

When a C-language program is executed as a result of this call, it is entered as a
C-language function call as follows:

int main (int argc, char *argv[], char *envp[]);

where argc is the argument count, argv is an array of character pointers to the
arguments themselves, and envp is an array of character pointers to the environment
strings. The argv and environ arrays are each terminated by a null pointer. The null
pointer terminating the argv array is not counted in argc. As indicated, argc is at least
one, and the first member of the array points to a string containing the name of the
file.

The arguments specified by a program with one of the exec functions are passed on
to the new process image in the main() arguments.

execvp(2)

NAME

SYNOPSIS

DESCRIPTION

122 man pages section 2: System Calls • Last Revised 18 May 2001

The path argument points to a path name that identifies the new process image file.

The file argument is used to construct a pathname that identifies the new process
image file . If the file argument contains a slash character, it is used as the pathname
for this file. Otherwise, the path prefix for this file is obtained by a search of the
directories passed in the PATH environment variable (see environ(5)). The
environment is supplied typically by the shell. If the process image file is not a valid
executable object file, execlp() and execvp() use the contents of that file as
standard input to the shell. In this case, the shell becomes the new process image. In a
standard-conforming application (see standards(5)), the exec family of functions
use /usr/bin/ksh (see ksh(1)); otherwise, they use /usr/bin/sh (see sh(1)).

The arguments represented by arg0… are pointers to null-terminated character strings.
These strings constitute the argument list available to the new process image. The list
is terminated by a null pointer. The arg0 argument should point to a filename that is
associated with the process being started by one of the exec functions.

The argv argument is an array of character pointers to null-terminated strings. The last
member of this array must be a null pointer. These strings constitute the argument list
available to the new process image. The value in argv[0] should point to a filename
that is associated with the process being started by one of the exec functions.

The envp argument is an array of character pointers to null-terminated strings. These
strings constitute the environment for the new process image. The envp array is
terminated by a null pointer. For execl(), execv(), execvp(), and execlp(), the
C-language run-time start-off routine places a pointer to the environment of the calling
process in the global object extern char **environ, and it is used to pass the
environment of the calling process to the new process image.

The number of bytes available for the new process’s combined argument and
environment lists is ARG_MAX. It is implementation-dependent whether null
terminators, pointers, and/or any alignment bytes are included in this total.

The calling process must have read and execute access to the new process file or have
the following in its set of effective privileges:

PRIV_FILE_DAC_SEARCH
PRIV_FILE_DAC_EXECUTE
PRIV_FILE_MAC_SEARCH
PRIV_FILE_MAC_READ

File descriptors open in the calling process image remain open in the new process
image, except for those whose close-on-exec flag FD_CLOEXEC is set; (see fcntl(2)).
For those file descriptors that remain open, all attributes of the open file description,
including file locks, remain unchanged.

Directory streams open in the calling process image are closed in the new process
image.

execvp(2)

System Calls 123

The state of conversion descriptors and message catalogue descriptors in the new
process image is undefined. For the new process, the equivalent of:

setlocale(LC_ALL, "C")is executed at startup.

Signals set to the default action (SIG_DFL) in the calling process image are set to the
default action in the new process image (see signal(3C)). Signals set to be ignored
(SIG_IGN) by the calling process image are set to be ignored by the new process
image. Signals set to be caught by the calling process image are set to the default
action in the new process image (see signal(3HEAD)). After a successful call to any
of the exec functions, alternate signal stacks are not preserved and the SA_ONSTACK
flag is cleared for all signals.

After a successful call to any of the exec functions, any functions previously
registered by atexit(3C) are no longer registered.

The saved resource limits in the new process image are set to be a copy of the
process’s corresponding hard and soft resource limits.

If the ST_NOSUID bit is set for the file system containing the new process image file,
then the effective user ID, effective group ID, saved set-user-ID, and saved
set-group-ID are unchanged in the new process image. If the set-user-ID mode bit of
the new process image file is set (see chmod(2)), the effective user ID of the new
process image is set to the owner ID of the new process image file. Similarly, if the
set-group-ID mode bit of the new process image file is set, the effective group ID of the
new process image is set to the group ID of the new process image file. The real user
ID and real group ID of the new process image remain the same as those of the calling
process image. The effective user ID and effective group ID of the new process image
are saved (as the saved set-user-ID and the saved set-group-ID for use by setuid(2).

If the process has the PRIV_PROC_OWNER privilege, the set-user-ID and set-group-ID
bits will be honored when the process is being controlled by ptrace().

Any shared memory segments attached to the calling process image will not be
attached to the new process image (see shmop(2)). Any mappings established through
mmap() are not preserved across an exec. Memory mappings created in the process
are unmapped before the address space is rebuilt for the new process image. (see
mmap(2)).

Memory locks established by the calling process via calls to mlockall(3C) or
mlock(3C) are removed. If locked pages in the address space of the calling process are
also mapped into the address spaces the locks established by the other processes will
be unaffected by the call by this process to the exec function. If the exec function
fails, the effect on memory locks is unspecified.

If _XOPEN_REALTIME is defined and has a value other than −1, any named
semaphores open in the calling process are closed as if by appropriate calls to
sem_close(3RT)

execvp(2)

124 man pages section 2: System Calls • Last Revised 18 May 2001

Profiling is disabled for the new process; see profil(2).

Timers created by the calling process with timer_create(3RT) are deleted before
replacing the current process image with the new process image.

For the SCHED_FIFO and SCHED_RR scheduling policies, the policy and priority
settings are not changed by a call to an exec function.

All open message queue descriptors in the calling process are closed, as described in
mq_close(3RT).

Any outstanding asynchronous I/O operations may be cancelled. Those asynchronous
I/O operations that are not canceled will complete as if the exec() function had not
yet occurred, but any associated signal notifications are suppressed. It is unspecified
whether the exec() function itself blocks awaiting such I/O completion. In no event,
however, will the new process image created by the exec() function be affected by
the presence of outstanding asynchronous I/O operations at the time the exec()
function is called.

The new process also inherits the following attributes from the calling process:

� nice value (see nice(2))
� scheduler class and priority (see priocntl(2))
� process ID
� parent process ID
� process group ID
� supplementary group IDs
� semadj values (see semop(2))
� session membership (see exit(2) and signal(3C))
� real user ID
� real group ID
� trace flag (see ptrace(2) request 0)
� time left until an alarm clock signal (see alarm(2))
� current working directory
� root directory
� file mode creation mask (see umask(2))
� file size limit (see ulimit(2))
� resource limits (see getrlimit(2))
� tms_utime, tms_stime, tms_cutime, and tms_cstime (see times(2))
� file-locks (see fcntl(2) and lockf(3C))
� controlling terminal
� process signal mask (see sigprocmask(2))
� pending signals (see sigpending(2))
� clearance (see getclearance(2))
� sensitivity label (see getcmwlabel(2))
� inheritable privilege set (see getppriv(2))
� process attribute flags (see getpattr(2))

execvp(2)

System Calls 125

A call to any exec function from a process with more than one thread results in all
threads being terminated and the new executable image being loaded and executed.
No destructor functions will be called.

The four privilege sets of the new process are updated as described in the following
equations where E1, P1, S1, I1 are the four privilege sets of the calling process; E2, P2,
S2, I2 are the four privilege sets of the new process; and F and A are the forced set and
the allowed set of the program file:

E2 = P2 = (I1 union F) intersect Ai
S2 = I1 intersect A
I2 = I1

When a script file is run, the resulting forced privileges are the combination of the
forced privileges of the script and the forced privileges of the interpreter program; and
the resulting allowed privileges are the allowed privileges of the interpreter program.
The privilege update equations for a script executable could be expressed like this:

E2 = P2 = (I1 union Fs union Fi) intersect Ai
S2 = I1 intersect Ai
I2 = I1 where

Fs is the forced privilege set of the script, Fi is the forced privilege set of the interpreter
program, and Ai is the allowed privilege set of the interpreter program.

Upon successful completion, each of the functions in the exec family marks for
update the st_atime field of the file. If an exec function failed but was able to locate
the process image file, whether the st_atime field is marked for update is unspecified.
Should the function succeed, the process image file is considered to have been opened
with open(2). The corresponding close(2) is considered to occur at a time after this
open, but before process termination or successful completion of a subsequent call to
one of the exec functions. The argv[] and envp[] arrays of pointers and the strings to
which those arrays point will not be modified by a call to one of the exec functions,
except as a consequence of replacing the process image. The argv[] and envp[] arrays
of pointers and the strings to which those arrays point will not be modified by a call to
one of the exec functions, except as a consequence of replacing the process image.

The saved resource limits in the new process image are set to be a copy of the
process’s corresponding hard and soft limits.

If a function in the exec family returns to the calling process image, an error has
occurred; the return value is −1 and errno is set to indicate the error.

The exec functions will fail if:

E2BIG The number of bytes in the new process’s argument list is greater
than the system-imposed limit of ARG_MAX bytes. The argument

execvp(2)

RETURN VALUES

ERRORS

126 man pages section 2: System Calls • Last Revised 18 May 2001

list limit is sum of the size of the argument list plus the size of the
environment’s exported shell variables.

EACCES Search permission is denied for a directory listed in the new
process file’s path prefix; the new process file is not an ordinary
file; or the new process file mode denies execute permission.
Moreover, the calling process does not have
PRIV_FILE_DAC_SEARCH and/or PRIV_FILE_MAC_SEARCH to
override the restriction.

EAGAIN Total amount of system memory available when reading using raw
I/O is temporarily insufficient.

EFAULT An argument points to an illegal address.

EINTR A signal was caught during the execution of one of the functions in
the exec family.

ELOOP Too many symbolic links were encountered in translating path or
file.

ENAMETOOLONG The length of the file or path argument exceeds PATH_MAX, or the
length of a file or path component exceeds {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT One or more components of the new process path name of the file
do not exist or is a null pathname.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOTDIR A component of the new process path of the file prefix is not a
directory.

The exec functions, except for execlp() and execvp(), will fail if:

ENOEXEC The new process image file has the appropriate access
permission but is not in the proper format.

The exec functions may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate
result whose length exceeds PATH_MAX.

ENOMEM The new process image requires more memory than
RLIMIT_VMEM, the limit imposed by setrlimit() (see brk(2)).

ETXTBSY The new process image file is a pure procedure (shared text) file
that is currently open for writing by some process.

As the state of conversion descriptors and message catalogue escriptors in the new
process image is undefined, portable applications should not rely on their use and
should close them prior to calling one of the exec functions.

execvp(2)

USAGE

System Calls 127

Applications that require other than the default POSIX locale should call
setlocale(3C) with the appropriate parameters to establish the locale of thenew
process.

The environ array should not be accessed directly by the application.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level execle() and execve() are
Async-Signal-Safe

MAC search and execute permissions on the executable object are required. Process
privilege sets are updated upon execution of the program. Other Trusted Solaris
process attributes, such as clearance, sensitivity label, and process attribute flags, are
unchanged.

chmod(2), fcntl(2), fork(2), getrlimit(2), nice(2), priocntl(2), semop(2),
shmop(2), setlocale(3C),

ksh(1), ps(1), sh(1), alarm(2), brk(2), exit(2), mmap(2), profil(2), ptrace(2),
sigpending(2), sigprocmask(2), times(2), umask(2), lockf(3C), signal(3C),
system(3C), timer_create(3RT), a.out(4), attributes(5), environ(5),
standards(5)

execvp(2)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

128 man pages section 2: System Calls • Last Revised 18 May 2001

acl, facl – Get or set a file’s Access Control List (ACL)

#include <sys/acl.h>

int acl(char *pathp, int cmd, int nentries, aclent_t *aclbufp);

int facl(int fildes, int cmd, int nentries, aclent_t *aclbufp);

The acl() and facl() functions get or set the ACL of a file whose name is given by
pathp or referenced by the open file descriptor fildes. The nentries argument specifies
how many ACL entries fit into buffer aclbufp. The acl() function is used to
manipulate ACL on file system objects.

The following values for cmd are supported:

SETACL nentries ACL entries, specified in buffer aclbufp, are stored in the
file’s ACL. This command can be executed only by a process that
has an effective user ID equal to the owner of the file. To override
this restriction, the calling process may assert the
PRIV_FILE_SETDAC privilege.

GETACL Buffer aclbufp is filled with the file’s ACL entries. Read access to the
file is not required, but all directories in the path name must be
searchable.

GETACLCNT The number of entries in the file’s ACL is returned. Read access to
the file is not required, but all directories in the path name must be
searchable.

Upon successful completion, acl() and facl() return 0 if cmd is SETACL. If cmd is
GETACL or GETACLCNT, the number of ACL entries is returned. Otherwise, −1 is
returned and errno is set to indicate the error.

The audit record has multiple events that represent the requested function. For
SETACL, the audit record includes the old and new ACLs.

The acl() function will fail if:

EACCESS The caller does not have access to a component of the pathname.
To override this restriction, the calling process may assert one or
both of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

The cmd argument is SETACL and nentries is less than three.

The cmd argument is SETACL and the ACL specified in aclbufp is
not valid.

EFAULT The pathp or aclbufp argument points to an illegal address.

EINVAL The cmd argument is not GETACL, SETACL, or GETACLCNT; the
cmd argument is SETACL and nentries is less than 3; or the cmd
argument is SETACL and the ACL specified in aclbufp is not valid.

facl(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 129

EIO A disk I/O error has occurred while storing or retrieving the ACL.

ENOENT A component of the path does not exist.

ENOSPC The cmd argument is GETACL and nentries is less than the number
of entries in the file’s ACL, or the cmd argument is SETACL and
there is insufficient space in the file system to store the ACL.

ENOTDIR A component of the path specified by pathp is not a directory, or
the cmd argument is SETACL and an attempt is made to set a
default ACL on a file type other than a directory.

ENOSYS The cmd argument is SETACL and the file specified by pathp resides
on a file system that does not support ACLs, or the acl()
function is not supported by this implementation.

EPERM The cmd argument is SETACL and the effective user ID of the caller
does not match the owner of the file. To override this restriction,
the calling process may assert the PRIV_FILE_SETDAC privilege.

EROFS The cmd argument is SETACL and the file specified by pathp resides
on a file system that is mounted read-only.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Appropriate privilege is required to override access or ownership checks.

The audit record has multiple events that represent the requested function. For
SETACL the audit record includes the old and new ACLs.

getfacl(1), setfacl(1), aclcheck(3SEC), aclsort(3SEC), attributes(5)

facl(2)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

SunOS 5.8
Reference Manual

130 man pages section 2: System Calls • Last Revised 30 Sep 1999

chdir, fchdir – change working directory

#include <unistd.h>

int chdir(const char *path);

int fchdir(int fildes);

The chdir() and fchdir() functions cause a directory pointed to by path or fildes to
become the current working directory. The starting point for path searches for path
names not beginning with / (slash). The path argument points to the path name of a
directory. The fildes argument is an open file descriptor of a directory.

For a directory to become the current directory, a process must have execute (search)
access to the directory.

chdir() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The chdir() function will fail if:

EACCES Search permission is denied for some component of
path. To override this restriction, the calling process
may assert one or both of these privileges:
PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

EFAULT The path argument points to an illegal address.

EINTR A signal was caught during the execution of the
chdir() function.

EIO An I/O error occurred while reading from or writing to
the file system.

ELOOP Too many symbolic links were encountered in
translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or
the length of a path component exceeds NAME_MAX
while _POSIX_NO_TRUNC is in effect.

ENOENT Either a component of the path prefix or the directory
named by path does not exist or is a null pathname.

ENOLINK The path argument points to a remote machine and the
link to that machine is no longer active.

ENOTDIR A component of the path name is not a directory.

The fchdir() function will fail if:

fchdir(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 131

EACCES Search permission is denied for fildes. To override this
restriction, the calling process may assert one or both of
these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

EBADF The fildes argument is not an open file descriptor.

EINTR A signal was caught during the execution of the
fchdir() function.

EIO An I/O error occurred while reading from or writing to
the file system.

ENOLINK The fildes argument points to a remote machine and the
link to that machine is no longer active.

ENOTDIR The open file descriptor fildes does not refer to a
directory.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level chdir() is Async-Signal-Safe

Appropriate privilege is required to override access checks.

chroot(2)

attributes(5)

fchdir(2)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
ManualSunOS 5.8

Reference Manual

132 man pages section 2: System Calls • Last Revised 30 Sep 1999

chmod, fchmod – change access permission mode of file

#include <sys/types.h>

#include <sys/stat.h>

int chmod(const char *path, mode_t mode);

int fchmod(int fildes, mode_t mode);

The chmod() and fchmod() functions set the access permission portion of the mode
of the file whose name is given by path or referenced by the open file descriptor fildes
to the bit pattern contained in mode. Access permission bits are interpreted as follows:

S_ISUID 04000 Set user ID on execution.

S_ISGID 020#0 Set group ID on execution if # is 7, 5, 3, or 1. Enable mandatory
file/record locking if # is 6, 4, 2, or 0.

S_ISVTX 01000 Save text image after execution.

S_IRWXU 00700 Read, write, execute by owner.

S_IRUSR 00400 Read by owner.

S_IWUSR 00200 Write by owner.

S_IXUSR 00100 Execute (search if a directory) by owner.

S_IRWXG 00070 Read, write, execute by group.

S_IRGRP 00040 Read by group.

S_IWGRP 00020 Write by group.

S_IXGRP 00010 Execute by group.

S_IRWXO 00007 Read, write, execute (search) by others.

S_IROTH 00004 Read by others.

S_IWOTH 00002 Write by others.

S_IXOTH 00001 Execute by others.

Modes are constructed by the bitwise OR operation of the access permission bits.

The effective user ID of the process must match the owner of the file or the process
must have the PRIV_FILE_SETDAC privilege to change the mode of a file.

If the process is not a privileged process and the file is not a directory, mode bit 01000
(save text image on execution) is cleared. The calling process may assert the
PRIV_SYS_CONFIG privilege to override this restriction.

fchmod(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 133

If neither the process is privileged, nor the file’s group is a member of the process’s
supplementary group list, and the effective group ID of the process does not match the
group ID of the file, mode bit 02000 (set group ID on execution) is cleared.

If a directory is writable and has S_ISVTX (the sticky bit) set, files within that
directory can be removed or renamed only if one or more of the following is true (see
unlink(2) and rename(2)):

� the user owns the file
� the user owns the directory
� the file is writable by the user
� the user is a privileged user

If a directory has the set group ID bit set, a given file created within that directory will
have the same group ID as the directory, if that group ID is part of the group ID set of
the process that created the file. Otherwise, the newly created file’s group ID will be
set to the effective group ID of the creating process.

If the mode bit 02000 (set group ID on execution) is set and the mode bit 00010
(execute or search by group) is not set, mandatory file/record locking will exist on a
regular file. This may affect future calls to open(2), creat(2), read(2), and write(2)
on this file.

Upon successful completion, chmod() and fchmod() mark for update the st_ctime
field of the file.

chmod() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The chmod() function will fail if:

EACCES Search permission is denied on a component of the
path prefix of path. To override this restriction, the
calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

The calling process does not own the final object
specified in path or does not own fildes. To override this
restriction, the calling process may assert the
PRIV_FILE_SETDAC privilege.

Write permission is denied on path or fildes. To override
this restriction, the calling process may assert the
PRIV_FILE_DAC_WRITE and/or the
PRIV_FILE_MAC_WRITE privilege.

EFAULT The path argument points to an illegal address.

fchmod(2)

RETURN VALUES

ERRORS

134 man pages section 2: System Calls • Last Revised 3 Aug 2001

EINTR A signal was caught during execution of the function.

EIO An I/O error occurred while reading from or writing to
the file system.

ELOOP Too many symbolic links were encountered in
translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or
the length of a path component exceeds NAME_MAX
while _POSIX_NO_TRUNC is in effect.

ENOENT Either a component of the path prefix or the file
referred to by path does not exist or is a null pathname.

ENOLINK The fildes argument points to a remote machine and the
link to that machine is no longer active.

ENOTDIR A component of the prefix of path is not a directory.

EPERM The effective user ID does not match the owner of the
file. To override this restriction, the calling process may
assert the PRIV_FILE_SETDAC privilege.

EROFS The file referred to by path resides on a read-only file
system.

The fchmod() function will fail if:

EBADF The fildes argument is not an open file descriptor

EIO An I/O error occurred while reading from or writing to
the file system.

EINTR A signal was caught during execution of the fchmod()
function.

ENOLINK The path argument points to a remote machine and the
link to that machine is no longer active.

EROFS The file referred to by fildes resides on a read-only file
system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level chmod() is Async-Signal-Safe

Appropriate privilege is required to override access checks.

� To override a search permission error, the calling process requires the
PRIV_FILE_MAC_SEARCH privilege.

fchmod(2)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

System Calls 135

� To override a write permission error, the calling process requires the
PRIV_FILE_DAC_WRITE and/or the PRIV_FILE_MAC_WRITE privilege.

� If the calling process does not own the object, the calling process requires the
PRIV_FILE_SETDAC privilege.

To set the sticky bit on a file, the calling process may assert the PRIV_SYS_CONFIG
privilege.

To set the set-user-ID on a user who is not the effective user ID of the calling process,
the calling process may assert the PRIV_FILE_SETID privilege.

To set the set-group-ID bit on a group not in effective or supplementary group IDs of
the calling process, the calling process may assert the PRIV_FILE_SETID privilege.

chmod(1), chown(2), creat(2), fcntl(2), mknod(2), open(2), read(2), rename(2),
stat(2), write(2)

mkfifo(3C), stat(3HEAD), attributes(5)

System Interface Guide

If you use chmod() to change the file group owner permissions on a file with ACL
entries, both the file group owner permissions and the ACL mask are changed to the
new permissions. Be aware that the new ACL mask permissions may change the
effective permissions for additional users and groups who have ACL entries on the
file.

fchmod(2)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

NOTES

136 man pages section 2: System Calls • Last Revised 3 Aug 2001

chown, lchown, fchown – change owner and group of a file

#include <unistd.h>

#include <sys/types.h>

int chown(const char *path, uid_t owner, gid_t group);

int lchown(const char *path, uid_t owner, gid_t group);

int fchown(int fildes, uid_t owner, gid_t group);

The chown() function sets the owner ID and group ID of the file specified by path or
referenced by the open file descriptor fildes to owner and group respectively. If owner or
group is specified as −1, chown() does not change the corresponding ID of the file.

The lchown() function sets the owner ID and group ID of the named file in the same
manner as chown(), unless the named file is a symbolic link. In this case, lchown()
changes the ownership of the symbolic link file itself, while chown() changes the
ownership of the file or directory to which the symbolic link refers.

If chown(), lchown(), or fchown() is invoked, the set-user-ID and set-group-ID
bits of the file mode, chmod(2). respectively, are cleared. See chmod(2). To bypass this
restriction, the process may assert the PRIV_FILE_SETID privilege.

The operating system has a configuration option, _POSIX_CHOWN_RESTRICTED, to
restrict ownership changes for the chown(), lchown(), and fchown() functions.
When _POSIX_CHOWN_RESTRICTED is not in effect, the effective user ID of the
process must match the owner of the file. To override this restriction, the calling
process must assert the PRIV_FILE_CHOWN privilege. When
_POSIX_CHOWN_RESTRICTED is not in effect, the effective user ID of the process must
match the owner of the file or the process must be the super-user to change the
ownership of a file. When _POSIX_CHOWN_RESTRICTED is in effect, the chown(),
lchown(), and fchown() functions require that the calling process assert the
PRIV_FILE_CHOWN privilege to change the user ID of a file. To change the group ID
of a file, the process must be the owner of the file and the new group ID must be the
group of the process ID or must be in the supplementary group list of the process. To
override this restriction, the calling process may assert the PRIV_FILE_CHOWN
privilege.

set rstchown = 1

To disable this option, include the following line in /etc/system:

set rstchown = 0

See system(4) and fpathconf(2).

Upon successful completion, chown(), fchown() and lchown() mark for update
the st_ctime field of the file.

fchown(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 137

chown() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The chown() and lchown() functions will fail if:

EACCES Search permission is denied on a component of the
path prefix of path. To override this restriction, the
calling process may assert one or both of these
privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

Write permission is denied on path or fildes. To override
this restriction, the calling process may assert the
PRIV_FILE_MAC_WRITE privilege.

EFAULT The path argument points to an illegal address.

EINTR A signal was caught during the execution of the
chown() or lchown() function.

EINVAL The group or owner argument is out of range.

EIO An I/O error occurred while reading from or writing to
the file system.

ELOOP Too many symbolic links were encountered in
translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or
the length of a path component exceeds NAME_MAX
while _POSIX_NO_TRUNC is in effect.

ENOLINK The path argument points to a remote machine and the
link to that machine is no longer active.

ENOENT Either a component of the path prefix or the file
referred to by path does not exist or is a null pathname.

ENOTDIR A component of the path prefix of path is not a
directory.

EPERM The effective user ID does not match the owner of the
file. If _POSIX_CHOWN_RESTRICTED is set, the calling
process must assert the PRIV_FILE_CHOWN privilege.
If _POSIX_CHOWN_RESTRICTED is not set, the calling
process may assert the PRIV_FILE_CHOWN privilege.

EROFS The named file resides on a read-only file system.

The fchown() function will fail if:

EBADF The fildes argument is not an open file descriptor.

fchown(2)

RETURN VALUES

ERRORS

138 man pages section 2: System Calls • Last Revised 30 Sep 1999

EIO An I/O error occurred while reading from or writing to
the file system.

EINTR A signal was caught during execution of the function.

ENOLINK The fildes argument points to a remote machine and the
link to that machine is no longer active.

EINVAL The group or owner argument is out of range.

EPERM The effective user ID does not match the owner of the
file, or the process is not the super-user and
_POSIX_CHOWN_RESTRICTED indicates that such
privilege is required.

EROFS The named file referred to by fildes resides on a
read-only file system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level chown() is Async-Signal-Safe

Appropriate privilege is required to override access checks.

When the ownership of path and fildes is changed, the set-user-ID and set-group-ID
bits are cleared. The calling process may assert the PRIV_FILE_SETID privilege to
bypass this restriction.

To change the user ID of the file when the calling process does not own the file and
_POSIX_CHOWN_RESTRICTED is not in effect, the calling process may assert the
PRIV_FILE_CHOWN privilege.

To change the group ID of the file when the calling process does not own the file, and
the new group ID is not in the group ID of the process or in the supplementary group
list of the process, and _POSIX_CHOWN_RESTRICTED is not in effect, the calling
process may assert the PRIV_FILE_CHOWN privilege.

chgrp(1), chown(1), chmod(2)

attributes(5)

fchown(2)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

System Calls 139

chroot, fchroot – change root directory

#include <unistd.h>

int chroot(const char *path);

int fchroot(int fildes);

The chroot() and fchroot() functions cause a directory to become the root
directory, the starting point for path searches for path names beginning with / (slash).
The user’s working directory is unaffected by the chroot() and fchroot()
functions.

The path argument points to a path name naming a directory. The fildes argument to
fchroot() is the open file descriptor of the directory which is to become the root.

The calling process must assert the PRIV_PROC_CHROOT privilege to use this system
call. While it is always possible to change to the system root using the fchroot()
function, it is not guaranteed to succeed in any other case, even should fildes be valid
in all respects.

The “. .” entry in the root directory is interpreted to mean the root directory itself.
Therefore, “. .” cannot be used to access files outside the subtree rooted at the root
directory. Instead, fchroot() can be used to reset the root to a directory that was
opened before the root directory was changed.

chroot() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The chroot() function will fail if:

EACCES Search permission is denied for a component of the
path prefix of dirname, or search permission is denied
for the directory referred to by dirname.To override
these restrictions, the calling process may assert one or
both of these privileges: PRIV_FILE_DAC_SEARCH
and PRIV_FILE_MAC_SEARCH.

EBADF The descriptor is not valid.

EFAULT The path argument points to an illegal address.

EINVAL The fchroot() function attempted to change to a
directory that is not the system root and external
circumstances do not allow this.

EINTR A signal was caught during the execution of the
chroot() function.

fchroot(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

140 man pages section 2: System Calls • Last Revised 30 Sep 1999

EIO An I/O error occurred while reading from or writing to
the file system.

ELOOP Too many symbolic links were encountered in
translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or
the length of a path component exceeds NAME_MAX
while _POSIX_NO_TRUNC is in effect.

ENOENT The named directory does not exist or is a null
pathname.

ENOLINK The path argument points to a remote machine and the
link to that machine is no longer active.

ENOTDIR Any component of the path name is not a directory.

EPERM The calling process must assert the
PRIV_PROC_CHROOT privilege to change the root
directory.

Appropriate privilege is required to override access checks.

The calling process must assert the PRIV_PROC_CHROOT privilege to change the root
directory.

chroot(1M)

The only use of fchroot() that is appropriate is to change back to the system root.

fchroot(2)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualWARNINGS

System Calls 141

fcntl – file control

#include <sys/types.h>
#include <unistd.h>

#include <fcntl.h>

int fcntl(int fildes, int cmd, /* arg */ ...);

The fcntl() function provides for control over open files. The fildes argument is an
open file descriptor. [See intro(2).]

The fcntl() function may take a third argument, arg, whose data type, value and
use depend upon the value of cmd. The cmd argument specifies the operation to be
performed by fcntl().

The available values for cmd are defined in the header <fcntl.h>, which include:

F_DUPFD Return a new file descriptor which is the lowest numbered
available (that is, not already open) file descriptor greater than or
equal to the third argument, arg, taken as an integer of type int.
The new file descriptor refers to the same open file description as
the original file descriptor, and shares any locks. The FD_CLOEXEC
flag associated with the new file descriptor is cleared to keep the
file open across calls to one of the exec(2) functions.

F_DUP2FD Similar to F_DUPFD, but always returns arg. F_DUP2FD closes arg
if it is open and not equal to fildes. F_DUP2FD is equivalent to
dup2(fildes, arg).

F_GETFD Get the file descriptor flags defined in <fcntl.h> that are
associated with the file descriptor fildes. File descriptor flags are
associated with a single file descriptor and do not affect other file
descriptors that refer to the same file.

F_SETFD Set the file descriptor flags defined in <fcntl.h>, that are
associated with fildes, to the third argument, arg, taken as type int.
If the FD_CLOEXEC flag in the third argument is 0, the file will
remain open across the exec() functions; otherwise the file will
be closed upon successful execution of one of the exec()
functions.

F_GETFL Get the file status flags and file access modes, defined in
<fcntl.h>, for the file description associated with fildes. The file
access modes can be extracted from the return value using the
mask O_ACCMODE, which is defined in <fcntl.h>. File status
flags and file access modes are associated with the file description
and do not affect other file descriptors that refer to the same file
with different open file descriptions.

F_SETFL Set the file status flags, defined in <fcntl.h>, for the file
description associated with fildes from the corresponding bits in
the third argument, arg, taken as type int. Bits corresponding to

fcntl(2)

NAME

SYNOPSIS

DESCRIPTION

142 man pages section 2: System Calls • Last Revised 10 Apr 1998

the file access mode and the oflag values that are set in arg are
ignored. If any bits in arg other than those mentioned here are
changed by the application, the result is unspecified.

F_GETOWN If fildes refers to a socket, get the process or process group ID
specified to receive SIGURG signals when out-of-band data is
available. Positive values indicate a process ID; negative values,
other than −1, indicate a process group ID. If fildes does not refer to
a socket, the results are unspecified.

F_SETOWN If fildes refers to a socket, set the process or process group ID
specified to receive SIGURG signals when out-of-band data is
available, using the value of the third argument, arg, taken as type
int. Positive values indicate a process ID; negative values, other
than −1, indicate a process group ID. If fildes does not refer to a
socket, the results are unspecified.

F_FREESP Free storage space associated with a section of the ordinary file
fildes. The section is specified by a variable of data type struct
flock pointed to by arg. The data type struct flock is defined
in the <fcntl.h> header (see fcntl(5)) and is described below.
Note that all file systems might not support all possible variations
of F_FREESP arguments. In particular, many file systems allow
space to be freed only at the end of a file.

The following commands are available for advisory record locking. Record locking is
supported for regular files, and may be supported for other files.

F_GETLK Get the first lock which blocks the lock description pointed to by
the third argument, arg, taken as a pointer to type struct flock,
defined in <fcntl.h>. The information retrieved overwrites the
information passed to fcntl() in the structure flock. If no lock
is found that would prevent this lock from being created, then the
structure will be left unchanged except for the lock type which will
be set to F_UNLCK.

F_GETLK64 Equivalent to F_GETLK, but takes a struct flock64 argument
rather than a struct flock argument.

F_SETLK Set or clear a file segment lock according to the lock description
pointed to by the third argument, arg, taken as a pointer to type
struct flock, defined in <fcntl.h>. F_SETLK is used to
establish shared (or read) locks (F_RDLCK) or exclusive (or write)
locks (F_WRLCK), as well as to remove either type of lock
(F_UNLCK). F_RDLCK, F_WRLCK and F_UNLCK are defined in
<fcntl.h>. If a shared or exclusive lock cannot be set, fcntl()
will return immediately with a return value of −1.

F_SETLK64 Equivalent to F_SETLK, but takes a struct flock64 argument
rather than a struct flock argument.

fcntl(2)

System Calls 143

F_SETLKW This command is the same as F_SETLK except that if a shared or
exclusive lock is blocked by other locks, the process will wait until
the request can be satisfied. If a signal that is to be caught is
received while fcntl() is waiting for a region, fcntl() will be
interrupted. Upon return from the process’ signal handler,
fcntl() will return −1 with errno set to EINTR, and the lock
operation will not be done.

F_SETLKW64 Equivalent to F_SETLKW, but takes a struct flock64 argument
rather than a struct flock argument.

When a shared lock is set on a segment of a file, other processes will be able to set
shared locks on that segment or a portion of it. A shared lock prevents any other
process from setting an exclusive lock on any portion of the protected area. A request
for a shared lock will fail if the file descriptor was not opened with read access.

An exclusive lock will prevent any other process from setting a shared lock or an
exclusive lock on any portion of the protected area. A request for an exclusive lock will
fail if the file descriptor was not opened with write access.

The flock structure contains at least the following elements:

short l_type; /* lock operation type */
short l_whence; /* lock base indicator */
off_t l_start; /* starting offset from base */
off_t l_len; /* lock length; l_len == 0 means

until end of file */
long l_sysid; /* system ID running process holding lock */
pid_t l_pid; /* process ID of process holding lock */

The value of l_whence is SEEK_SET, SEEK_CUR, or SEEK_END, to indicate that the
relative offset l_start bytes will be measured from the start of the file, current position
or end of the file, respectively. The value of l_len is the number of consecutive bytes to
be locked. The value of l_len may be negative (where the definition of off_t permits
negative values of l_len). After a successful F_GETLK or F_GETLK64 request, that is,
one in which a lock was found, the value of l_whence will be SEEK_SET.

The l_pid and l_sysid fields are used only with F_GETLK or F_GETLK64 to return the
process ID of the process holding a blocking lock and to indicate which system is
running that process.

If l_len is positive, the area affected starts at l_start and ends at l_start + l_len − 1. If
l_len is negative, the area affected starts at l_start + l_len and ends at l_start − 1. Locks
may start and extend beyond the current end of a file, but must not be negative
relative to the beginning of the file. A lock will be set to extend to the largest possible
value of the file offset for that file by setting l_len to 0. If such a lock also has l_start set
to 0 and l_whence is set to SEEK_SET, the whole file will be locked.

If a process has an existing lock in which l_len is 0 and which includes the last byte of
the requested segment, and an unlock (F_UNLCK) request is made in which l_len is
non-zero and the offset of the last byte of the requested segment is the maximum

fcntl(2)

144 man pages section 2: System Calls • Last Revised 10 Apr 1998

value for an object of type off_t, then the F_UNLCK request will be treated as a
request to unlock from the start of the requested segment with an l_len equal to 0.
Otherwise, the request will attempt to unlock only the requested segment.

There will be at most one type of lock set for each byte in the file. Before a successful
return from an F_SETLK, F_SETLK64, F_SETLKW, or F_SETLKW64 request when the
calling process has previously existing locks on bytes in the region specified by the
request, the previous lock type for each byte in the specified region will be replaced by
the new lock type. As specified above under the descriptions of shared locks and
exclusive locks, an F_SETLK, F_SETLK64, F_SETLKW, or F_SETLKW64 request will
(respectively) fail or block when another process has existing locks on bytes in the
specified region and the type of any of those locks conflicts with the type specified in
the request.

All locks associated with a file for a given process are removed when a file descriptor
for that file is closed by that process or the process holding that file descriptor
terminates. Locks are not inherited by a child process created using fork(2)

When mandatory file and record locking is active on a file [see chmod(2), creat(2),
open(2), read(2) and write(2)] , functions issued on the file will be affected by the
record locks in effect. When mandatory file and record locking is active on a file, it
cannot be memory mapped.

A potential for deadlock occurs if a process controlling a locked region is put to sleep
by attempting to lock another process’ locked region. If the system detects that
sleeping until a locked region is unlocked would cause a deadlock, fcntl() will fail
with an EDEADLK error.

The following values for cmd are used for file share reservations. A share reservation is
placed on an entire file to allow cooperating processes to control access to the file.

F_SHARE Sets a share reservation on a file with the specified access mode
and designates which types of access to deny.

F_UNSHARE Remove an existing share reservation.

File share reservations are an advisory form of access control among cooperating
processes, on both local and remote machines. They are most often used by DOS or
Windows emulators and DOS based NFS clients. However, native UNIX versions of
DOS or Windows applications may also choose to use this form of access control.

A share reservation is described by an fshare structure defined in <sys/fcntl.h>,
which is included in <fcntl.h> as follows:

typedef struct fshare {
short f_access;
short f_deny;
long f_id;

} fshare_t;

fcntl(2)

System Calls 145

A share reservation specifies the type of access, f_access, to be requested on the open
file descriptor. If access is granted, it further specifies what type of access to deny
other processes, f_deny. A single process on the same file may hold multiple
non-conflicting reservations by specifying an identifier, f_id, unique to the process,
with each request.

An F_UNSHARE request releases the reservation with the specified f_id. The f_access
and f_deny fields are ignored.

Valid f_access values are:

F_RDACC Set a file share reservation for read-only access.

F_WRACC Set a file share reservation for write-only access.

F_RWACC Set a file share reservation for read and write access.

Valid f_deny values are:

F_COMPAT Set a file share reservation to compatibility mode.

F_RDDNY Set a file share reservation to deny read access to other processes.

F_WRDNY Set a file share reservation to deny write access to other processes.

F_RWDNY Set a file share reservation to deny read and write access to other
processes.

F_NODNY Do not deny read or write access to any other process.

Upon successful completion, the value returned depends on cmd as follows:

F_DUPFD A new file descriptor.

F_GETFD Value of flags defined in <fcntl.h>. The return value will not be
negative.

F_SETFD Value other than −1.

F_GETFL Value of file status flags and access modes. The return value will
not be negative.

F_SETFL Value other than −1.

F_GETOWN Value of the socket owner process or process group; this will not
be −1.

F_SETOWN Value other than −1.

F_FREESP Value of 0.

F_GETLK Value other than −1.

F_GETLK64 Value other than −1.

F_SETLK Value other than −1.

fcntl(2)

RETURN VALUES

146 man pages section 2: System Calls • Last Revised 10 Apr 1998

F_SETLK64 Value other than −1.

F_SETLKW Value other than −1.

F_SETLKW64 Value other than −1.

F_SHARE Value other than −1.

F_UNSHARE Value other than −1.

Otherwise, −1 is returned and errno is set to indicate the error.

The fcntl() function will fail if:

EAGAIN The cmd argument is F_SETLK or F_SETLK64, the type of lock
(l_type) is a shared (F_RDLCK) or exclusive (F_WRLCK) lock, and
the segment of a file to be locked is already exclusive-locked by
another process; or the type is an exclusive lock and some portion
of the segment of a file to be locked is already shared-locked or
exclusive-locked by another process.

The cmd argument is F_FREESP, the file exists, mandatory
file/record locking is set, and there are outstanding record locks on
the file; or the cmd argument is F_SETLK, F_SETLK64, F_SETLKW,
or F_SETLKW64, mandatory file/record locking is set, and the file
is currently being mapped to virtual memory using mmap(2).

The cmd argument is F_SHARE and f_access conflicts with an
existing f_deny share reservation.

EBADF The fildes argument is not a valid open file descriptor; or the cmd
argument is F_SETLK, F_SETLK64, F_SETLKW, or F_SETLKW64,
the type of lock, l_type, is a shared lock (F_RDLCK), and fildes is not
a valid file descriptor open for reading; or the type of lock l_type is
an exclusive lock (F_WRLCK) and fildes is not a valid file descriptor
open for writing.

The cmd argument is F_FREESP and fildes is not a valid file
descriptor open for writing.

The cmd argument is F_DUP2FD, and arg is negative or is not less
than the current resource limit for RLIMIT_NOFILE.

The cmd argument is F_SHARE, the f_access share reservation is for
write access, and fildes is not a valid file descriptor open for
writing.

The cmd argument is F_SHARE, the f_access share reservation is for
read access, and fildes is not a valid file descriptor open for
reading.

fcntl(2)

ERRORS

System Calls 147

EFAULT The cmd argument is F_GETLK, F_GETLK64, F_SETLK,
F_SETLK64, F_SETLKW, F_SETLKW64, or F_FREESP and the arg
argument points to an illegal address.

The cmd argument is F_SHARE or F_UNSHARE and arg points to an
illegal address.

EINTR The cmd argument is F_SETLKW or F_SETLKW64 and the function
was interrupted by a signal.

EINVAL The cmd argument is invalid; or the cmd argument is F_DUPFD and
arg is negative or greater than or equal to OPEN_MAX; or the cmd
argument is F_GETLK, F_GETLK64, F_SETLK, F_SETLK64,
F_SETLKW, or F_SETLKW64 and the data pointed to by arg is not
valid; or fildes refers to a file that does not support locking.

The cmd argument is F_UNSHARE and a reservation with this f_id
for this process does not exist.

EIO An I/O error occurred while reading from or writing to the file
system.

EMFILE The cmd argument is F_DUPFD and either OPEN_MAX file
descriptors are currently open in the calling process, or no file
descriptors greater than or equal to arg are available.

ENOLCK The cmd argument is F_SETLK, F_SETLK64, F_SETLKW, or
F_SETLKW64 and satisfying the lock or unlock request would
result in the number of locked regions in the system exceeding a
system-imposed limit.

ENOLINK Either the fildes argument is on a remote machine and the link to
that machine is no longer active; or the cmd argument is
F_FREESP, the file is on a remote machine, and the link to that
machine is no longer active.

EOVERFLOW One of the values to be returned cannot be represented correctly.

The cmd argument is F_GETLK, F_SETLK, or F_SETLKW and the
smallest or, if l_len is non-zero, the largest, offset of any byte in the
requested segment cannot be represented correctly in an object of
type off_t.

The cmd argument is F_GETLK64, F_SETLK64, or F_SETLKW64
and the smallest or, if l_len is non-zero, the largest, offset of any
byte in the requested segment cannot be represented correctly in
an object of type off64_t.

The fcntl() function may fail if:

fcntl(2)

148 man pages section 2: System Calls • Last Revised 10 Apr 1998

EAGAIN The cmd argument is F_SETLK, F_SETLK64, F_SETLKW, or
F_SETLKW64, and the file is currently being mapped to virtual
memory using mmap(2).

EDEADLK The cmd argument is F_SETLKW or F_SETLKW64, the lock is
blocked by some lock from another process and putting the calling
process to sleep, waiting for that lock to become free would cause
a deadlock.

The cmd argument is F_FREESP, mandatory record locking is
enabled, O_NDELAY and O_NONBLOCK are clear and a deadlock
condition was detected.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal Safe

For the F_GETLK operation, when the requested lock is blocked, mandatory access
checks are required to ensure that the sensitivity label of the calling process that is
requesting the lock dominates the sensitivity label of the process holding the blocking
lock. This is done to prevent the transmission of lock information from a process
holding the blocking lock which dominates the sensitivity label of the calling process
making the F_GETLK request. If the calling process fails this MAC check, then fixed
results are returned indicating that the entire file is locked, and with zeroes for the
process ID and system ID. The calling process may assert the PRIV_FILE_LOCK
privilege to bypass this check.

lockd(1M), chmod(2), creat(2), exec(2), fork(2), open(2), read(2), write(2)

close(2), dup(2), pipe(2), attributes(5), fcntl(5)

In the past, the variable errno was set to EACCES rather than EAGAIN when a section
of a file is already locked by another process. Therefore, portable application programs
should expect and test for either value.

Advisory locks allow cooperating processes to perform consistent operations on files,
but do not guarantee exclusive access. Files can be accessed without advisory locks,
but inconsistencies may result. The network share locking protocol does not support
the f_deny value of F_COMPAT. For network file systems, if f_access is F_RDACC,
f_deny is mapped to F_RDDNY. Otherwise, it is mapped to F_RWDNY.

To prevent possible file corruption, the system may reject mmap() requests for
advisory locked files, or it may reject advisory locking requests for mapped files.
Applications that require a file be both locked and mapped should lock the entire file
(l_start and l_len both set to 0). If a file is mapped, the system may reject an
unlock request, resulting in a lock that does not cover the entire file.

fcntl(2)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

NOTES

System Calls 149

If the file server crashes and has to be rebooted, the lock manager (see lockd(1M))
attempts to recover all locks that were associated with that server. If a lock cannot be
reclaimed, the process that held the lock is issued a SIGLOST signal.

read(2) and write(2) system calls on files are affected by mandatory file and record
locks. [See chmod(2).]

fcntl(2)

150 man pages section 2: System Calls • Last Revised 10 Apr 1998

getcmwfsrange, fgetcmwfsrange – Get file system sensitivity label range

cc [flags…] file… -ltsol

#include <tsol/label.h>

int getcmwfsrange(char *path, brange_t *range_p);

int fgetcmwfsrange(int fd, brange_t *range_p);

getcmwfsrange() returns the sensitivity label range of a mounted file system. path
is the path name of any file within the mounted filesystem. range_p is a pointer to a
sensitivity label range structure defined as follows:

struct binary_level_range {
blevel_t lower_bound;
blevel_t upper_bound;

};
typedef struct binary_level_range brange_t; /* Level Range */

fgetcmwfsrange() returns the same information about an open file referred to by
descriptor fd.

getcmwfsrange() and fgetcmwfsrange() return:

0 On success.

−1 On failure, and set errno to indicate the error.

getcmwfsrange() fails if one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix of
path. To override this restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EFAULT range_p or path points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file
system.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX.

A pathname component is longer than NAME_MAX (see
sysconf(3C)) while _POSIX_NO_TRUNC is in effect
(see pathconf(2V)).

ENOENT The file referred to by path does not exist.

ENOTDIR A component of the path prefix of path is not a directory.

fgetcmwfsrange() fails if one or more of the following are true:

fgetcmwfsrange(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 151

EBADF fd is not a valid open file descriptor.

EFAULT range_p points to an invalid address.

EINVAL fd refers to a socket, not a file.

EIO An I/O error occurred while reading from the file system.

pathconf(2)

sysconf(3C)

fgetcmwfsrange(2)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

152 man pages section 2: System Calls • Last Revised 30 Sep 1999

getcmwlabel, lgetcmwlabel, fgetcmwlabel – get file CMW label

cc [flags…] file … -ltsol [library…]

#include <tsol/label.h>

int getcmwlabel(char *path, bclabel_t *label_p);

int lgetcmwlabel(char *path, bclabel_t *label_p);

int fgetcmwlabel(int fd, bclabel_t *label_p);

getcmwlabel() obtains the CMW label of the file named by path. Mandatory read
access to the final component of path is required or the calling process must have
PRIV_FILE_MAC_READ in its set of effective privileges. Discretionary read, write or
execute permission to the final component of path is not required, but all directories in
the path prefix of path must be searchable.

lgetcmwlabel() is like getcmwlabel() except in the case where the final
component of path is a symbolic link, in which case lgetcmwlabel() returns the
CMW label of the link, while getcmwlabel() returns the CMW label of the file to
which the link refers.

fgetcmwlabel() obtains the CMW label of an open file referred to by the argument
descriptor, such as would be obtained by an open(2) call. If the descriptor is only open
for writing, then mandatory read access to the object is required or the calling process
must have PRIV_FILE_MAC_READ in its set of effective privileges.

label_p is a pointer to an opaque CMW label structure.

An exception to the access rules applies in the case of pty pseudo-terminals
(/dev/ptyp* and /dev/ttyp*). Normally mandatory read access is required or the
calling process must have PRIV_FILE_MAC_READ in its set of effective privileges. If
the specified file is a pty device file and the calling process does not have mandatory
read access or PRIV_FILE_MAC_READ is not in its set of effective privileges, each
function returns success and sets label_p to ADMIN_LOW.

getcmwlabel(), lgetcmwlabel() and fgetcmwlabel() return:

0 On success.

−1 On failure, and set errno to indicate the error.

getcmwlabel() and lgetcmwlabel() fail if one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix of
path. To override this restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

The calling process does not have mandatory read access to path
because the sensitivity label of the calling process does not

fgetcmwlabel(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 153

dominate the sensitivity label of the final component of path and
the calling process does not have PRIV_FILE_MAC_READ in its set
of effective privileges.

EFAULT label_p or path points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file
system.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX.

A pathname component is longer than NAME_MAX
while _POSIX_NO_TRUNC is in effect (see
pathconf(2)).

ENOENT The file referred to by path does not exist.

ENOTDIR A component of the path prefix of path is not a directory.

EPERM The calling process does not have mandatory read access to path
because the sensitivity label of path is outside the calling process’
clearance and the calling process does not have
PRIV_FILE_MAC_READ in its set of effective privileges.

fgetcmwlabel() fails if one or more of the following are true:

EACCES The descriptor is only open for writing and the calling process
does not have mandatory read access to the object referred to by
the descriptor because the sensitivity label of the calling process
does not dominate the sensitivity label of the object and the calling
process does not have PRIV_FILE_MAC_READ in its set of
effective privileges.

EBADF fd is not a valid open file descriptor.

EFAULT label_p points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file
system.

pathconf(2), open(2), setcmwlabel(2)

fgetcmwlabel(2)

Trusted Solaris 8
4/01 Reference

Manual

154 man pages section 2: System Calls • Last Revised 24 May 2001

getfattrflag, fsetfattrflag, fgetfattrflag, setfattrflag, mldgetfattrflag, mldsetfattrflag –
set/get the security attribute flags of a file

cc [flags…] file… -ltsol

#include <tsol/secflgs.h>

int getfattrflag(const char *path, secflgs_t *flags);

int setfattrflag(const char *path, secflgs_t which, secflgs_t flags);

int fgetfattrflag(int fildes, secflgs_t *flags);

int fsetfattrflag(int fildes, secflgs_t which, secflgs_t flags);

int mldgetfattrflag(const char *path, secflgs_t *flags);

int mldsetfattrflag(const char *path, secflgs_t which, secflgs_t
flags);

setfattrflag(), fsetfattrflag(), and mldsetfattrflag() set the security
flags of the file whose name is given by path or referred to by the open file descriptor
fildes. The bit pattern contained in which is used to indicate which flags are being
affected. The corresponding bits in flags are set to 1 or 0 to indicate whether the
affected flags are being set or unset respectively.

getfattrflag(), fgetfattrflag(), and mldgetfattrflag() get the security
flags of the file whose name is given by path or referred to by the open file descriptor
fildes and store it in the location pointed to by flags.

Attribute bits are interpreted as follows:

FAF_MLD Directory has MLD semantics.

FAF_PUBLICFilesystem object is a public object.

FAF_SLD Directory is an SLD.

Attribute flags are constructed by OR’ing the attribute flag bits.

FAF_MLD is the only flag that may be modified without privilege if the directory is
empty, the effective user ID of the process matches the directory owner, and the
process has mandatory as well as discretionary write access. The FAF_MLD flag, once
set, cannot be unset. Additionally, the FAF_MLD flag may only be set via the
mldsetfattrflag interface. The FAF_PUBLIC flag can only be read or modified by
a process possessing the PRIV_FILE_AUDIT privilege. A process attempting to read
the FAF_PUBLIC flag without the PRIV_FILE_AUDIT privilege in effect will not fail.
However the value of FAF_PUBLIC will be returned as unset. The FAF_SLD flag can
never be set. The ability to read any flag is dependant upon the process having
mandatory and discretionary read access to the file. The ability to set any flag is
dependant upon the process having mandatory and discretionary write access to the
file.

fgetfattrflag(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 155

If path is a symbolic link, the target’s attribute flags are affected rather than the link’s.
If path is a multilevel directory, getfattrflag() and setfattrflag() will affect
the underlying single-level directory beneath (unless path is adorned).
mldgetfattrflag() and mldsetfattrflag() do not translate multi-level
directories to underlying single-level directories. fgetfattrflag() and
fsetsattrflag() affect only the file referred to by fildes.

These functions return:

0 On success.

−1 On failure, and set errno to indicate the error.

getfattrflag() and mldgetfattrflag() will fail if one or more of the following
are true:

EACCES Search permission is denied on a component of the path prefix of
path. To override this restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EACCES Read permission is denied the final component of path. To override
this restriction, the calling process may assert the
PRIV_FILE_MAC_READ privilege.

EFAULT path points to an illegal address.

EINTR A signal was caught during execution of the function.

EIO An I/O error occurred while reading from the file system.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
and file system type does not allow it.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length
of a path component exceeds NAME_MAX while _POSIX_NO_TRUNC
is in effect.

ENOENT Either a component of the path prefix, or the file referred to by path
does not exist or is a null pathname.

ENOLINK fildes points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the prefix of path is not a directory.

fgetfattrflag() fails and the file mode is unchanged if:

EACCES Read permission is denied on fildes. To override this restriction, the
calling process may assert the PRIV_FILE_MAC_READ privilege.

EBADF fildes is not an open file descriptor.

fgetfattrflag(2)

RETURN VALUES

ERRORS

156 man pages section 2: System Calls • Last Revised 30 Sep 1999

EIO An I/O error occurred while reading from the file system.

EINTR A signal was caught during execution of the fgetfattrflag()
function.

setfattrflag() and mldsetfattrflag() will fail and the file mode is
unchanged if one or more of the following are true:

EACCES Search permission is denied on a component of the path prefix of
path. To override this restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EACCES Write permission is denied path. To override this restriction, the
calling process may assert the PRIV_FILE_MAC_WRITE privilege.

EACCES The calling process does not own fildes. To override this restriction,
the calling process may assert the PRIV_FILE_OWNER privilege.

EFAULT path points to an illegal address.

EINTR A signal was caught during execution of the function.

EINVAL path is not a valid pathname. When setting FAF_MLD, path must
refer to an empty directory.

EIO An I/O error occurred while writing to the file system.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
and filesystem type does not allow it.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length
of a path component exceeds NAME_MAX while _POSIX_NO_TRUNC
is in effect.

ENOENT Either a component of the path prefix, or the file referred to by path
does not exist or is a null pathname.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the prefix of path is not a directory.

EPERM The effective user ID does not match the owner of the file and the
process does not possess the privilege PRIV_FILE_OWNER.

EPERM The process does not possess the privilege PRIV_FILE_AUDIT
and is attempting to set the FAF_PUBLIC flag.

EROFS The file referred to by path resides on a read-only file system.

fsetfattrflag() fails and the file mode is unchanged if:

fgetfattrflag(2)

System Calls 157

EACCES The calling process does not own fildes. To override this restriction,
the calling process may assert the PRIV_FILE_OWNER privilege.

EACCES Write access is denied on fildes. To override this restriction, the
calling process may assert the PRIV_FILE_MAC_WRITE privilege.

EINVAL fildes is not a valid pathname. When setting FAF_MLD, fildes must
refer to an empty directory.

EBADF fildes is not an open file descriptor.

EIO An I/O error occurred while writing to the file system.

EINTR A signal was caught during execution of the fsetfattrflag()
function.

EPERM The process does not possess the privilege PRIV_FILE_AUDIT
and is attempting to set the FAF_PUBLIC flag.

EROFS The file referred to by fildes resides on a read-only file system.

setfattrflag(1), getfattrflag(1)

Trusted Solaris Developer’s Guide

fgetfattrflag(2)

Trusted Solaris 8
4/01 Reference

Manual

158 man pages section 2: System Calls • Last Revised 30 Sep 1999

getfpriv, fgetfpriv, setfpriv, fsetfpriv – return or set a privilege set associated with a file

cc [flags…] file… -ltsol

int getfpriv(char *path, priv_ftype_t type, priv_set_t *priv_set);

int setfpriv(char *path, priv_op_t op, priv_ftype_t type, priv_set_t
*priv_set);

int fgetfpriv(int fd, priv_ftype_t type, priv_set_t *priv_set);

int fsetfpriv(int fd, priv_op_t op, priv_ftype_t type, priv_set_t
*priv_set);

Set or get privileges of the file that is named by path or referred to by fd.
fgetfpriv() and fsetfpriv() function exactly like getfpriv() and
setfpriv() respectively, except that they require an open reference to a file as their
argument.

getfpriv() copies the privilege set indicated by type and associated with the named
file into the address specified by priv_set. Values for type are:

PRIV_FORCED The forced privilege set.

PRIV_ALLOWED The allowed privilege set.

MAC read permission is required for the named file unless the privilege
PRIV_FILE_MAC_READ is effective.

setfpriv() sets/modifies the privilege set (the target set) indicated by type and
associated with the named file. Modification occurs according to the value of op and
the privilege set specified by priv_set (the specified set). Values for op are:

PRIV_ON Each privilege asserted in the specified set is asserted in the target
set.

PRIV_OFF Each privilege asserted in the specified set is cleared in the target
set.

PRIV_SET The target set is set exactly equal to the specified set.

Values for type are the same as those used for getfpriv().

In all cases, the privilege PRIV_FILE_SETPRIV must be effective. In addition, only
the owner of a file may change its privilege sets, unless the privilege
PRIV_FILE_OWNER is effective.

The invoking process must have MAC write permission for the named file (unless the
privilege PRIV_FILE_MAC_WRITE is effective). DAC write access is not required.

It is an error to attempt to assert a forced privilege if the corresponding allowed
privilege is not present. For this reason, it is recommended that the allowed privilege
set be modified first whenever both privilege sets are to be modified.

fgetfpriv(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 159

If the target set is the allowed set, all privileges cleared from the target set are also
automatically cleared from the forced set.

Normally MAC read permission is required or the privilege PRIV_FILE_MAC_READ
must be effective for getfpriv() to complete its operation successfully unless the
named file is a pty pseudo-terminal. If the named file is a pseudo-terminal
(/dev/ptyp* or /dev/ttyp*) and the label of the process invoking getfpriv()
does not dominate the label of the named file and the privilege
PRIV_FILE_MAC_READ is not effective then getfpriv() returns success but sets the
privilege fields of priv_set to zero.

These routines return:

0 On success.

−1 On failure, and set errno to indicate the error.

These routines fail and the target set is not modified if:

EINVAL An illegal or undefined value is supplied for size or type.

EFAULT priv_set refers to an invalid address.

Additionally, getfpriv() and setfpriv() fail if:

EACCES Search permission is denied a component of path. To override this
restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

getfpriv() and fgetfpriv() fail if:

EACCES MAC read permission is denied for the named file, and privilege
PRIV_FILE_MAC_READ is not effective.

ENOENT A component of the specified path does not exist.

ENOTDIR A component of the specified path prefix is not a directory.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX,
oL a pathname component is longer than NAME_MAX
while _POSIX_NO_TRUNC is in effect.

setfpriv() and fsetfpriv() fail and the target set is not modified if:

EACCES MAC write permission is denied for the named file, privilege
PRIV_FILE_MAC_WRITE is not effective, and the user’s clearance
dominates the sensitivity label of the file.

EINVAL (1) The named file resides on a file system that does not support
privileges (that is, a file system other than NFS, TMPFS) or (2) an
illegal or undefined value is supplied for op. Also if privilege
PRIV_FILE_MAC_WRITE is not effective.

fgetfpriv(2)

RETURN VALUES

ERRORS

160 man pages section 2: System Calls • Last Revised 30 Sep 1999

EPERM MAC write permission is denied for the named file, and the user’s
clearance does not dominate the label of the named file, or (2)
PRIV_FILE_SETPRIV is not effective, or (3) the effective uid does
not match the owner of the named file and privilege
PRIV_FILE_OWNER is not effective.

EROFS The named file resides on a read-only file system.

getppriv(2), setppriv(2), priv_macros(5)

fgetfpriv(2)

Trusted Solaris 8
4/01 Reference

Manual

System Calls 161

getfsattr, fgetfsattr – Get filesystem security attributes

cc [flags…] file… -ltsol

#include <tsol/fsattr.h>

int getfsattr(char *path, u_long type, void *buf_p, int len);

int fgetfsattr(int fd, u_long type, void *buf_p, int len);

getfsattr() returns the file system security attributes of a mounted file system. path
is the pathname of any file within the mounted file system. type is the type of attribute
requested. Values for type are:

FSA_ACLCNT The file system access ACL count.

FSA_ACL The file system access ACL.

FSA_APRIV The file system allowed privilege set.

FSA_FPRIV The file system forced privilege set.

FSA_LABEL The file system CMW label.

FSA_AFLAGS The file system attribute flags.

FSA_LBLRNG The file system label range.

FSA_MLDPFX The file system MLD prefix string.

buf_p is a pointer to a buffer to hold the requested attribute, and len is the buffer
length.

fgetfsattr() returns the same information, but for an open file referred to by
descriptor fd. type, buf_p, and len are the same as for getfsattr(). The information
label of path or fd is unchanged.

getfsattr() and fgetfsattr() return:

0 On success.

−1 On failure and set errno to indicate the error.

getfsattr() fails if one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix of
path. To override this restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EFAULT buf_p or path points to an invalid address.

EINVAL The requested attributed is not set.

EIO An I/O error occurred while reading from the file system.

ELOOP Too many symbolic links were encountered in translating path.

fgetfsattr(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

162 man pages section 2: System Calls • Last Revised 30 Sep 1999

ENAMETOOLONG The length of the path argument exceeds PATH_MAX.

A pathname component is longer than NAME_MAX (see
sysconf(3C)) while _POSIX_NO_TRUNC is in effect
(see pathconf(2)).

ENOENT The file referred to by path does not exist.

ENOTDIR A component of the path prefix of path is not a directory.

fgetfsattr() fails if one or more of the following are true:

EBADF fd is not a valid open file descriptor.

EFAULT buf_p points to an invalid address.

EINVAL fd refers to a socket, not a file; or the requested attribute is not set.

EIO An I/O error occurred while reading from the file system.

fgetfsattr(2)

System Calls 163

getmldadorn, fgetmldadorn – Get file system multilevel directory adornment

cc [flags…] file… -ltsol

#include <tsol/mld.h>

int getmldadorn(char *path_name, char adorn_buf[MLD_ADORN_MAX]);

int fgetmldadorn(intfd, char adorn_buf[MLD_ADORN_MAX]);

getmldadorn() returns the MLD adornment of the file system on which path_name
resides. path_name is the path name of any file within the mounted filesystem.
adorn_buf is a pointer to a buffer of at least MLD_ADORN_MAX bytes in which the
null-terminated MLD adornment is returned.

fgetmldadorn() returns the same information about an open file referred to by
descriptor fd.

The information label of path_name or fd is unchanged. The information label of the
calling process is also unchanged.

getmldadorn() and fgetmldadorn() return:

0 On success.

−1 On failure and set errno to indicate the error.

getmldadorn() fails if one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix of
path_name. To override this restriction, the calling process may
assert the PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EFAULT adorn_buf or path_name points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file
system.

ELOOP Too many symbolic links were encountered in translating
path_name.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX.

A pathname component is longer than NAME_MAX (see
sysconf(3C)) while _POSIX_NO_TRUNC is in effect
(see pathconf(2)).

ENOENT The file referred to by path_name does not exist.

ENOTDIR A component of the path prefix of path_name is not a directory.

fgetmldadorn() fails if one or more of the following are true:

EBADF fd is not a valid open file descriptor.

fgetmldadorn(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

164 man pages section 2: System Calls • Last Revised 30 Sep 1999

EFAULT adorn_buf points to an invalid address.

EINVAL fd refers to a socket, not a file.

EIO An I/O error occurred while reading from the file system.

If the filesystem of the fd does not support MLDs and no mld_prefix attribute was
specified at mount time, no error is returned, and a zero-length string is returned in
the adorn_buf buffer.

fgetsldname(2), getsldname(2)

fgetmldadorn(2)

WARNINGS

Trusted Solaris 8
4/01 Reference

Manual

System Calls 165

getsldname, fgetsldname – Get file system single-level directory name

cc [flags…] file… -ltsol

#include <tsol/label.h>

int getsldname(char *path_name, bslabel_t *slabel_p, char *name_buf,
const int length);

int fgetsldname(int fd, const bslabel_t *slabel_p, char *name_buf,
const int length);

getsldname() returns the SLD name associated with the sensitivity label to which
slabel_p refers within the context of the file system on which path_name resides.
path_name is the path name of any multilevel directory within the mounted filesystem.
name_buf is a pointer to a buffer of at least SLD_NAME_MAX bytes.

fgetsldname() returns the SLD name associated with the sensitivity label to which
slabel_p refers if the MLD to which descriptor fd refers was opened by the directory
name (not by the fully adorned, multilevel directory name.) If the MLD to which
descriptor fd refers was opened using the fully adorned, multilevel directory name,
fgetsldname() returns the MLD and the SLD name associated with the sensitivity
label to which slabel_p refers.

If it does not exist, the single-level directory that corresponds to slabel_p is created with
the attributes of the parent multilevel directory, the specified sensitivity label, and an
ADMIN_LOW information label. If the sensitivity label of the calling process is equal to
slabel_p, no additional privileges are needed. If the sensitivity label of the calling
process is strictly dominated by slabel_p, the calling process may assert the
PRIV_FILE_UPGRADE_SL privilege to create the directory. Otherwise, the calling
process may assert the PRIV_FILE_DOWNGRADE_SL privilege to create the directory.

See for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

getsldname() and fgetsldname() return:

0 On success.

–1 On failure and set errno to indicate the error.

getsldname() fails if any of these conditions is true:

EACCES Search permission is denied for a component of the path prefix of
path_name. To override this restriction, the calling process may
assert one or both of these privileges: PRIV_FILE_DAC_SEARCH
and PRIV_FILE_MAC_SEARCH.

fgetsldname(2)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

RETURN VALUES

ERRORS

166 man pages section 2: System Calls • Last Revised 30 Sep 1999

The single-level directory specified does not exist, the system is
configured to require write access to create a single-level directory,
and the calling process does not have discretionary write access to
path_name. To override this restriction, the calling process may
assert the PRIV_FILE_DAC_WRITE privilege.

EFAULT name_buf, path_name, or slabel_p points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file
system

ELOOP Too many symbolic links were encountered in translating
path_name.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX.

A pathname component is longer than NAME_MAX [see
sysconf(3C)] while _POSIX_NO_TRUNC is in effect.
[See pathconf(2).]

ENOENT The file to which path_name refers does not exist.

ENOTDIR A component of the path prefix of path_name is not a directory.

EPERM The SLD that corresponds to slabel_p does not exist and one of
these conditions is true: the sensitivity label of the calling process
is strictly dominated by slabel_p and the calling process has not
asserted the PRIV_FILE_DOWNGRADE privilege; the sensitivity
label of the calling process is not dominated by slabel_p and the
calling process has not asserted the PRIV_FILE_DOWNGRADE_SL
privilege.

fgetsldname() fails if any of these conditions is true:

EBADF fd is not a valid open file descriptor.

EFAULT name_buf or slabel_p points to an invalid address.

EINVAL fd does not refer to a multilevel directory.

EIO An I/O error occurred while reading from the file system.

EPERM The SLD that corresponds to slabel_p does not exist and one of
these conditions is true: the sensitivity label of the calling process
is strictly dominated by slabel_p and the calling process has not
asserted the PRIV_FILE_UPGRADE_SL privilege; the sensitivity
label of the calling process is not dominated by slabel_p and the
calling process has not asserted the PRIV_FILE_DOWNGRADE_SL
privilege.

If the file system that contains path_name or the object referred to by fd does not
support MLDs, no error is returned and the first SLD_NAME_MAX bytes in the name_buf
are cleared.

fgetsldname(2)

WARNINGS

System Calls 167

fgetmldadorn(2), getmldadorn(2)

sysconf(3C)

fgetsldname(2)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

168 man pages section 2: System Calls • Last Revised 30 Sep 1999

fork, fork1 – create a new process

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

pid_t fork1(void);

The fork() and fork1() functions create a new process. The new process (child
process) is an exact copy of the calling process (parent process). The child process
inherits the following attributes from the parent process:

� real user ID, real group ID, effective user ID, effective group ID

� environment

� open file descriptors

� close-on-exec flags (see exec(2))

� signal handling settings (that is, SIG_DFL, SIG_IGN, SIG_HOLD, function address)

� supplementary group IDs

� set-user-ID mode bit

� set-group-ID mode bit

� profiling on/off status

� nice value (see nice(2))

� scheduler class (see priocntl(2))

� all attached shared memory segments (see shmop(2))

� process group ID -- memory mappings (see mmap(2))

� session ID (see exit(2))

� current working directory

� root directory

� file mode creation mask (see umask(2))

� resource limits (see getrlimit(2))

� controlling terminal

� saved user ID and group ID

� process attribute flags [See getpattr(2).]

� clearance [See intro(2).]

� sensitivity label [See intro(2).]

Scheduling priority and any per-process scheduling parameters that are specific to a
given scheduling class may or may not be inherited according to the policy of that
particular class (see priocntl(2)). The child process differs from the parent process in
the following ways:

fork1(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 169

� The child process has a unique process ID which does not match any active process
group ID.

� The child process has a different parent process ID (that is, the process ID of the
parent process).

� The child process has its own copy of the parent’s file descriptors and directory
streams. Each of the child’s file descriptors shares a common file pointer with the
corresponding file descriptor of the parent.

� Each shared memory segment remains attached and the value of shm_nattach is
incremented by 1.

� All semadj values are cleared (see semop(2)).

� Process locks, text locks, data locks, and other memory locks are not inherited by
the child (see plock(3C) and memcntl(2)).

� The child process’s tms structure is cleared: tms_utime, stime, cutime, and
cstime are set to 0 (see times(2)).

� The child processes resource utilizations are set to 0; see getrlimit(2). The
it_value and it_interval values for the ITIMER_REAL timer are reset to 0;
see getitimer(2).

� The set of signals pending for the child process is initialized to the empty set.

� Timers created by timer_create(3RT) are not inherited by the child process.

� No asynchronous input or asynchronous output operations are inherited by the
child.

Record locks set by the parent process are not inherited by the child process (see
fcntl(2)).

In applications that use the Solaris threads API rather than the POSIX threads API
(applications linked with -lthread but not -lpthread),fork() duplicates in the
child process all threads (see thr_create(3THR)) and LWPs in the parent process.
The fork1() function duplicates only the calling thread (LWP) in the child process.

In applications that use the POSIX threads API rather than the Solaris threads API (
applications linked with -lpthread, whether or not linked with -lthread), a call
to fork() is like a call to fork1(), which replicates only the calling thread. There is
no call that forks a child with all threads and LWPs duplicated in the child.

Note that if a program is linked with both libraries (-lthread and -lpthread), the
POSIX semantic of fork() prevails.

If a Solaris threads application calls fork1() or a POSIX threads application calls
fork(), and the child does more than simply call exec(), there is a possibility of
deadlock occurring in the child. The application should use pthread_atfork(3THR)
to ensure safety with respect to this deadlock. A Solaris threads application must
explicitly link with -lpthread to access pthread_atfork(). Should there be any
outstanding mutexes throughout the process, the application should call

fork1(2)

Solaris Threads

POSIX Threads

fork() safety

170 man pages section 2: System Calls • Last Revised 1 Feb 2001

pthread_atfork() to wait for and acquire those mutexes prior to calling fork() or
fork1(). See "MT-Level of Libraries" on the attributes(5) manual page.

Upon successful completion, fork() and fork1() return 0 to the child process and
return the process ID of the child process to the parent process. Otherwise,
(pid_t)−1 is returned to the parent process, no child process is created, and errno
is set to indicate the error.

The fork() function will fail if:

EAGAIN The system-imposed limit on the total number of processes under
execution by a single user has been exceeded, and the calling
process does not have the PRIV_SYS_MAXPROC effective privilege,
or the total amount of system memory available is temporarily
insufficient to duplicate this process.

ENOMEM There is not enough swap space.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level fork() is Async-Signal-Safe

Process attributes introduced by Trusted Solaris are all inheritable by the child process.
A calling process with the PRIV_SYS_MAXPROC privilege is able to override the limit
on the number of processes a user may have.

exec(2), fcntl(2), getrlimit(2), nice(2), priocntl(2), semop(2),
shmop(2),plock(3C)

alarm(2), exit(2), getitimer(2), memcntl(2), mmap(2), ptrace(2), times(2),
umask(2), wait(2), exit(3C), pthread_atfork(3THR), signal(3C), system(3C),
thr_create(3THR), timer_create(3RT), attributes(5), standards(5)

An applications should call _exit() rather than exit(3C) if it cannot execve(),
since exit() will flush and close standard I/O channels and thereby corrupt the
parent process’s standard I/O data structures. Using exit(3C) will flush buffered data
twice. See exit(2).

The thread (or LWP) in the child that calls fork1() must not depend on any
resources held by threads (or LWPs) that no longer exist in the child. In particular,
locks held by these threads (or LWPs) will not be released.

In a multithreaded process, fork() or fork1() can cause blocking system calls to be
interrupted and return with an EINTR error.

The fork() and fork1() functions suspend all threads in the process before
proceeding. Threads that are executing in the kernel and are in an uninterruptible wait

fork1(2)

RETURN VALUES

ERRORS

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

NOTES

System Calls 171

cannot be suspended immediately; and therefore cause a delay before fork() and
fork1() can complete. During this delay, since all other threads will have already
been suspended, the process will appear “hung.”

fork1(2)

172 man pages section 2: System Calls • Last Revised 1 Feb 2001

fork, fork1 – create a new process

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

pid_t fork1(void);

The fork() and fork1() functions create a new process. The new process (child
process) is an exact copy of the calling process (parent process). The child process
inherits the following attributes from the parent process:

� real user ID, real group ID, effective user ID, effective group ID

� environment

� open file descriptors

� close-on-exec flags (see exec(2))

� signal handling settings (that is, SIG_DFL, SIG_IGN, SIG_HOLD, function address)

� supplementary group IDs

� set-user-ID mode bit

� set-group-ID mode bit

� profiling on/off status

� nice value (see nice(2))

� scheduler class (see priocntl(2))

� all attached shared memory segments (see shmop(2))

� process group ID -- memory mappings (see mmap(2))

� session ID (see exit(2))

� current working directory

� root directory

� file mode creation mask (see umask(2))

� resource limits (see getrlimit(2))

� controlling terminal

� saved user ID and group ID

� process attribute flags [See getpattr(2).]

� clearance [See intro(2).]

� sensitivity label [See intro(2).]

Scheduling priority and any per-process scheduling parameters that are specific to a
given scheduling class may or may not be inherited according to the policy of that
particular class (see priocntl(2)). The child process differs from the parent process in
the following ways:

fork(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 173

� The child process has a unique process ID which does not match any active process
group ID.

� The child process has a different parent process ID (that is, the process ID of the
parent process).

� The child process has its own copy of the parent’s file descriptors and directory
streams. Each of the child’s file descriptors shares a common file pointer with the
corresponding file descriptor of the parent.

� Each shared memory segment remains attached and the value of shm_nattach is
incremented by 1.

� All semadj values are cleared (see semop(2)).

� Process locks, text locks, data locks, and other memory locks are not inherited by
the child (see plock(3C) and memcntl(2)).

� The child process’s tms structure is cleared: tms_utime, stime, cutime, and
cstime are set to 0 (see times(2)).

� The child processes resource utilizations are set to 0; see getrlimit(2). The
it_value and it_interval values for the ITIMER_REAL timer are reset to 0;
see getitimer(2).

� The set of signals pending for the child process is initialized to the empty set.

� Timers created by timer_create(3RT) are not inherited by the child process.

� No asynchronous input or asynchronous output operations are inherited by the
child.

Record locks set by the parent process are not inherited by the child process (see
fcntl(2)).

In applications that use the Solaris threads API rather than the POSIX threads API
(applications linked with -lthread but not -lpthread),fork() duplicates in the
child process all threads (see thr_create(3THR)) and LWPs in the parent process.
The fork1() function duplicates only the calling thread (LWP) in the child process.

In applications that use the POSIX threads API rather than the Solaris threads API (
applications linked with -lpthread, whether or not linked with -lthread), a call
to fork() is like a call to fork1(), which replicates only the calling thread. There is
no call that forks a child with all threads and LWPs duplicated in the child.

Note that if a program is linked with both libraries (-lthread and -lpthread), the
POSIX semantic of fork() prevails.

If a Solaris threads application calls fork1() or a POSIX threads application calls
fork(), and the child does more than simply call exec(), there is a possibility of
deadlock occurring in the child. The application should use pthread_atfork(3THR)
to ensure safety with respect to this deadlock. A Solaris threads application must
explicitly link with -lpthread to access pthread_atfork(). Should there be any
outstanding mutexes throughout the process, the application should call

fork(2)

Solaris Threads

POSIX Threads

fork() safety

174 man pages section 2: System Calls • Last Revised 1 Feb 2001

pthread_atfork() to wait for and acquire those mutexes prior to calling fork() or
fork1(). See "MT-Level of Libraries" on the attributes(5) manual page.

Upon successful completion, fork() and fork1() return 0 to the child process and
return the process ID of the child process to the parent process. Otherwise,
(pid_t)−1 is returned to the parent process, no child process is created, and errno
is set to indicate the error.

The fork() function will fail if:

EAGAIN The system-imposed limit on the total number of processes under
execution by a single user has been exceeded, and the calling
process does not have the PRIV_SYS_MAXPROC effective privilege,
or the total amount of system memory available is temporarily
insufficient to duplicate this process.

ENOMEM There is not enough swap space.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level fork() is Async-Signal-Safe

Process attributes introduced by Trusted Solaris are all inheritable by the child process.
A calling process with the PRIV_SYS_MAXPROC privilege is able to override the limit
on the number of processes a user may have.

exec(2), fcntl(2), getrlimit(2), nice(2), priocntl(2), semop(2),
shmop(2),plock(3C)

alarm(2), exit(2), getitimer(2), memcntl(2), mmap(2), ptrace(2), times(2),
umask(2), wait(2), exit(3C), pthread_atfork(3THR), signal(3C), system(3C),
thr_create(3THR), timer_create(3RT), attributes(5), standards(5)

An applications should call _exit() rather than exit(3C) if it cannot execve(),
since exit() will flush and close standard I/O channels and thereby corrupt the
parent process’s standard I/O data structures. Using exit(3C) will flush buffered data
twice. See exit(2).

The thread (or LWP) in the child that calls fork1() must not depend on any
resources held by threads (or LWPs) that no longer exist in the child. In particular,
locks held by these threads (or LWPs) will not be released.

In a multithreaded process, fork() or fork1() can cause blocking system calls to be
interrupted and return with an EINTR error.

The fork() and fork1() functions suspend all threads in the process before
proceeding. Threads that are executing in the kernel and are in an uninterruptible wait

fork(2)

RETURN VALUES

ERRORS

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

NOTES

System Calls 175

cannot be suspended immediately; and therefore cause a delay before fork() and
fork1() can complete. During this delay, since all other threads will have already
been suspended, the process will appear “hung.”

fork(2)

176 man pages section 2: System Calls • Last Revised 1 Feb 2001

fpathconf, pathconf – Get configurable pathname variables

#include <unistd.h>

long int fpathconf(int fildes, int name);

long int pathconf(const char *path, int name);

The fpathconf() and pathconf() functions provide a method for the application
to determine the current value of a configurable limit or option I (variable) that is
associated with a file or directory.

For pathconf(), the path argument points to the pathname of a file or directory.

For fpathconf(), the fildes argument is an open file descriptor.

The name argument represents the variable to be queried relative to that file or
directory. The variables in the following table come from <limits.h> or
<unistd.h> and the symbolic constants, defined in <unistd.h>, are the
corresponding values used for name:

Variable Value of name Notes

FILESIZEBITS _PC_FILESIZEBITS 3,4

LINK_MAX _PC_LINK_MAX 1

MAX_CANON _PC_MAX_CANON 2

MAX_INPUT _PC_MAX_INPUT 2

NAME_MAX _PC_NAME_MAX 3,4

PATH_MAX _PC_PATH_MAX 4,5

PIPE_BUF _PC_PIPE_BUF 6

_POSIX_CHOWN_RESTRICTED _PC_CHOWN_RESTRICTED 7

_POSIX_NO_TRUNC _PC_NO_TRUNC 3,4

_POSIX_VDISABLE _PC_VDISABLE 2

_POSIX_ASYNC_IO _PC_ASYNC_IO 8

_POSIX_PRIO_IO _PC_PRIO_IO 8

_POSIX_SYNC_IO _PC_SYNC_IO 8

Notes:

1. If path or fildes refers to a directory, the value returned applies to the directory itself.

2. If path or fildes does not refer to a terminal file, it is unspecified whether an
implementation supports an association of the variable name with the specified

fpathconf(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 177

file.

3. If path or fildes refers to a directory, the value returned applies to filenames within
the directory.

4. If path or fildes does not refer to a directory, it is unspecified whether an
implementation supports an association of the variable name with the specified
file.

5. If path or fildes refers to a directory, the value returned is the maximum length of a
relative pathname when the specified directory is the working directory.

6. If path refers to a FIFO, or fildes refers to a pipe or FIFO, the value returned applies
to the referenced object. If path or fildes refers to a directory, the value returned
applies to any FIFO that exists or can be created within the directory. If path or fildes
refers to any other type of file, it is unspecified whether an implementation
supports an association of the variable name with the specified file.

7. If path or fildes refers to a directory, the value returned applies to any files, other
than directories, that exist or can be created within the directory.

8. If path or fildes refers to a directory, it is unspecified whether an implementation
supports an association of the variable name with the specified file.

If name is an invalid value, both pathconf() and fpathconf() return −1 and
errno is set to indicate the error.

If the variable corresponding to name has no limit for the path or file descriptor, both
pathconf() and fpathconf() return −1 without changing errno. If the
implementation needs to use path to determine the value of name and the
implementation does not support the association of name with the file specified by
path, or if the process did not have appropriate privileges to query the appropriate
privileges file specified by path, or path does not exist, pathconf() returns −1 and
errno is set to indicate the error.

If the implementation needs to use fildes to determine the value of name and the
implementation does not support the association of name with the file specified by
fildes, or if fildes is an invalid file descriptor, fpathconf() will return −1 and errno
is set to indicate the error.

Otherwise pathconf() or fpathconf() returns the current variable value for the
file or directory without changing errno. The value returned will not be more
restrictive than the corresponding value available to the application when it was
compiled with the implementation’s <limits.h> or <unistd.h>.

The pathconf() function will fail if:

EINVAL The value of name is not valid.

ELOOP Too many symbolic links were encountered in
resolving path.

The pathconf() function may fail if:

fpathconf(2)

RETURN VALUES

ERRORS

178 man pages section 2: System Calls • Last Revised 30 Sep 1999

EACCES Search permission is denied for a component of the
path prefix.

EINVAL The implementation does not support an association of
the variable name with the specified file.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX or
a pathname component is longer than NAME_MAX.

ENAMETOOLONG Pathname resolution of a symbolic link produced an
intermediate result whose length exceeds PATH_MAX.

ENOENT A component of path does not name an existing file or
path is an empty string.

ENOTDIR A component of the path prefix is not a directory.

The fpathconf() function will fail if:

EINVAL The value of name is not valid.

EACCES fildes is open only for writing and the calling process
does not have mandatory read access to the object to
which the descriptor refers. To override this restriction,
the calling process may assert the
PRIV_FILE_MAC_READ privilege.

The fpathconf() function may fail if:

EACCES Search permission is denied for a component of the
path prefix. To override this restriction, the calling
process may assert one or both of these privileges:
PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

The calling process does not have mandatory read
access to path. To override this restriction, the calling
process may assert the PRIV_FILE_MAC_READ
privilege.

EBADF The fildes argument is not a valid file descriptor.

EINVAL The implementation does not support an association of
the variable name with the specified file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level pathconf() is Async-Signal-Safe

fpathconf(2)

ATTRIBUTES

System Calls 179

Appropriate privilege is required to override access checks.

sysconf(3C), limits(4), attributes(5), standards(5)

fpathconf(2)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
SunOS 5.8

Reference Manual

180 man pages section 2: System Calls • Last Revised 30 Sep 1999

setcmwlabel, fsetcmwlabel, lsetcmwlabel – Set CMW label of a file

cc [flags…] file … -ltsol [library…]

#include <tsol/label.h>

int setcmwlabel(const char *path, const bclabel_t *label_p, const
setting_flag_tflag);

int fsetcmwlabel(int fd, const bclabel_t *label_p, const
setting_flag_t flag);

int lsetcmwlabel(const char *path, const bclabel_t *label_p, const
setting_flag_t flag);

The file that is named by path or referred to by fd has its CMW label changed as
specified provided the file resides on a file system that supports the setting of labels on
individual objects.

If flag equals SETCL_ALL, then both parts of the file’s CMW label are to be set and the
following checks must be made:

� The sensitivity label of label_p must be in the sensitivity label range of the
containing file system.

� If the sensitivity label of label_p equals the existing sensitivity label, then neither
PRIV_FILE_UPGRADE_SL nor PRIV_FILE_DOWNGRADE_SL is required.

� If the sensitivity label of label_p dominates but does not equal the existing
sensitivity label (an upgrade), then the calling process must have
PRIV_FILE_UPGRADE_SL in its set of effective privileges.

� If the sensitivity label of label_p does not dominate the existing sensitivity label (a
downgrade), then the calling process must have PRIV_FILE_DOWNGRADE_SL in
its set of effective privileges.

� If the sensitivity label operation is a downgrade and the calling process is not the
owner of the file, then the calling process must have PRIV_FILE_OWNER in its set
of effective privileges.

If flag equals SETCL_SL, then the sensitivity label of the file’s CMW label is to be set
and the following checks must be made:

� The sensitivity label of label_p must be in the sensitivity label range of the
containing file system.

� If the sensitivity label of label_p equals the existing sensitivity label, then neither
PRIV_FILE_UPGRADE_SL nor PRIV_FILE_DOWNGRADE_SL is required.

� If the sensitivity label of label_p dominates but does not equal the existing
sensitivity label (an upgrade), then the calling process must have
PRIV_FILE_UPGRADE_SL in its set of effective privileges.

� If the sensitivity label of label_p does not dominate the existing sensitivity label (a
downgrade), then the calling process must have PRIV_FILE_DOWNGRADE_SL in

fsetcmwlabel(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 181

its set of effective privileges.

� If the operation is a sensitivity label downgrade and the calling process is not the
owner of the file, then the calling process must have PRIV_FILE_OWNER in its set
of effective privileges.

There are several checks that are applicable if the sensitivity label is being changed:

� The calling process must have discretionary write access to the file.

� If there is an open file descriptor reference to the file, then the calling process must
have PRIV_PROC_TRANQUIL in its set of effective privileges.

setcmwlabel() and lsetcmwlabel() function identically except when the final
component is a symbolic link. If the final component is a symbolic link,
lsetcmwlabel() sets the CMW label of the symbolic link, but setcmwlabel() sets
the CMW label of the object referred to by the symbolic link.

If the sensitivity label is being set, then the calling process is responsible for verifying
that sensitivity label is within the accreditation range of the system.

setcmwlabel(), fsetcmwlabel(), and lsetcmwlabel() return:

0 On success.

−1 On failure, and set errno to indicate the error.

setcmwlabel() and lsetcmwlabel() fail and the file is unchanged if any of these
conditions prevails:

EACCES Search permission is denied for a component of the path prefix of
path.

The calling process does not have mandatory write access to the
final component of path because the sensitivity label of the final
component of path does not dominate the sensitivity label of the
calling process and the calling process does not have
PRIV_FILE_MAC_WRITE in its set of effective privileges.

The calling process does not have discretionary write access to the
final component of path.

EBUSY There is an open file descriptor reference to the final component of
path and the calling process does not have PRIV_PROC_TRANQUIL
in its set of effective privileges.

EFAULT path or label_p points outside the allocated address space of the
process.

EINVAL path does not reside on a file system that supports the setting of
labels on individual objects.

fsetcmwlabel(2)

NOTES

RETURN VALUES

ERRORS

182 man pages section 2: System Calls • Last Revised 25 Aug 2000

The sensitivity label of label_p is not in the sensitivity label range of
the containing file system.

EIO An I/O error occurred while reading from or writing to the file
system.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX.

A pathname component is longer than NAME_MAX [see
sysconf(3C)] while _POSIX_NO_TRUNC is in effect.
See pathconf(2).

ENOENT The file referred to by path does not exist.

ENOTDIR A component of the path prefix of path is not a directory.

EPERM The calling process does not have mandatory write access to the
final component of path because the sensitivity label of the final
component of path is outside the clearance of the calling process
and the calling process does not have PRIV_FILE_MAC_WRITE in
its set of effective privileges.

A calling process that is not the owner of the file attempted to
downgrade the sensitivity label associated with the final
component of path but did not have PRIV_FILE_OWNER in its set
of effective privileges.

The calling process attempted to upgrade the sensitivity label
associated with the final component of path but did not have
PRIV_FILE_UPGRADE_SL in its set of effective privileges.

The calling process attempted to downgrade the sensitivity label
associated with the final component of path but did not have
PRIV_FILE_DOWNGRADE_SL in its set of effective privileges.

EROFS The file referred to by path resides on a read-only file system.

fsetcmwlabel() fails if any of these conditions prevails:

EBADF fd does not refer to a valid descriptor.

EBUSY There is an open file descriptor reference to the object referred to
by the descriptor and the calling process does not have
PRIV_PROC_TRANQUIL in its set of effective privileges.

EFAULT label_p points outside the allocated address space of the process.

EINVAL fd refers to a socket, not a file.

fd does not refer to a file on a file system that supports the setting
of labels on individual objects.

fsetcmwlabel(2)

System Calls 183

The sensitivity label of label_p is not in the sensitivity label range of
the containing file system.

EIO An I/O error occurred while reading from or writing to the file
system.

The calling process is not the owner of the file, attempted to
downgrade the sensitivity label associated with the file, but did
not have PRIV_FILE_OWNER in its set of effective privileges.

The calling process attempted to upgrade the sensitivity label
associated with the file but did not have
PRIV_FILE_UPGRADE_SL in its set of effective privileges.

The calling process attempted to downgrade the sensitivity label
associated with the file but did not have
PRIV_FILE_DOWNGRADE_SL in its set of effective privileges.

EPERM The calling process does not have mandatory write access to the
object referred to by fd because the sensitivity label of the object
referred to by fd is outside the clearance of the calling process and
the calling process does not have PRIV_FILE_MAC_WRITE in its
set of effective privileges.

A calling process that is not the owner of the file attempted to
downgrade the sensitivity label associated with the object referred
to by fd but did not have PRIV_FILE_OWNER in its set of effective
privileges.

The calling process attempted to upgrade the sensitivity label
associated with the object referred to by fd but did not have
PRIV_FILE_UPGRADE_SL in its set of effective privileges.

The calling process attempted to downgrade the sensitivity label
associated with the object referred to by fd but did not have
PRIV_FILE_DOWNGRADE_SL in its set of effective privileges.

EROFS The file referred to by fd resides on a read-only file system.

getcmwfsrange(2), getcmwlabel(2)

fsetcmwlabel(2)

Trusted Solaris 8
4/01 Reference

Manual

184 man pages section 2: System Calls • Last Revised 25 Aug 2000

getfattrflag, fsetfattrflag, fgetfattrflag, setfattrflag, mldgetfattrflag, mldsetfattrflag –
set/get the security attribute flags of a file

cc [flags…] file… -ltsol

#include <tsol/secflgs.h>

int getfattrflag(const char *path, secflgs_t *flags);

int setfattrflag(const char *path, secflgs_t which, secflgs_t flags);

int fgetfattrflag(int fildes, secflgs_t *flags);

int fsetfattrflag(int fildes, secflgs_t which, secflgs_t flags);

int mldgetfattrflag(const char *path, secflgs_t *flags);

int mldsetfattrflag(const char *path, secflgs_t which, secflgs_t
flags);

setfattrflag(), fsetfattrflag(), and mldsetfattrflag() set the security
flags of the file whose name is given by path or referred to by the open file descriptor
fildes. The bit pattern contained in which is used to indicate which flags are being
affected. The corresponding bits in flags are set to 1 or 0 to indicate whether the
affected flags are being set or unset respectively.

getfattrflag(), fgetfattrflag(), and mldgetfattrflag() get the security
flags of the file whose name is given by path or referred to by the open file descriptor
fildes and store it in the location pointed to by flags.

Attribute bits are interpreted as follows:

FAF_MLD Directory has MLD semantics.

FAF_PUBLICFilesystem object is a public object.

FAF_SLD Directory is an SLD.

Attribute flags are constructed by OR’ing the attribute flag bits.

FAF_MLD is the only flag that may be modified without privilege if the directory is
empty, the effective user ID of the process matches the directory owner, and the
process has mandatory as well as discretionary write access. The FAF_MLD flag, once
set, cannot be unset. Additionally, the FAF_MLD flag may only be set via the
mldsetfattrflag interface. The FAF_PUBLIC flag can only be read or modified by
a process possessing the PRIV_FILE_AUDIT privilege. A process attempting to read
the FAF_PUBLIC flag without the PRIV_FILE_AUDIT privilege in effect will not fail.
However the value of FAF_PUBLIC will be returned as unset. The FAF_SLD flag can
never be set. The ability to read any flag is dependant upon the process having
mandatory and discretionary read access to the file. The ability to set any flag is
dependant upon the process having mandatory and discretionary write access to the
file.

fsetfattrflag(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 185

If path is a symbolic link, the target’s attribute flags are affected rather than the link’s.
If path is a multilevel directory, getfattrflag() and setfattrflag() will affect
the underlying single-level directory beneath (unless path is adorned).
mldgetfattrflag() and mldsetfattrflag() do not translate multi-level
directories to underlying single-level directories. fgetfattrflag() and
fsetsattrflag() affect only the file referred to by fildes.

These functions return:

0 On success.

−1 On failure, and set errno to indicate the error.

getfattrflag() and mldgetfattrflag() will fail if one or more of the following
are true:

EACCES Search permission is denied on a component of the path prefix of
path. To override this restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EACCES Read permission is denied the final component of path. To override
this restriction, the calling process may assert the
PRIV_FILE_MAC_READ privilege.

EFAULT path points to an illegal address.

EINTR A signal was caught during execution of the function.

EIO An I/O error occurred while reading from the file system.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
and file system type does not allow it.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length
of a path component exceeds NAME_MAX while _POSIX_NO_TRUNC
is in effect.

ENOENT Either a component of the path prefix, or the file referred to by path
does not exist or is a null pathname.

ENOLINK fildes points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the prefix of path is not a directory.

fgetfattrflag() fails and the file mode is unchanged if:

EACCES Read permission is denied on fildes. To override this restriction, the
calling process may assert the PRIV_FILE_MAC_READ privilege.

EBADF fildes is not an open file descriptor.

fsetfattrflag(2)

RETURN VALUES

ERRORS

186 man pages section 2: System Calls • Last Revised 30 Sep 1999

EIO An I/O error occurred while reading from the file system.

EINTR A signal was caught during execution of the fgetfattrflag()
function.

setfattrflag() and mldsetfattrflag() will fail and the file mode is
unchanged if one or more of the following are true:

EACCES Search permission is denied on a component of the path prefix of
path. To override this restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EACCES Write permission is denied path. To override this restriction, the
calling process may assert the PRIV_FILE_MAC_WRITE privilege.

EACCES The calling process does not own fildes. To override this restriction,
the calling process may assert the PRIV_FILE_OWNER privilege.

EFAULT path points to an illegal address.

EINTR A signal was caught during execution of the function.

EINVAL path is not a valid pathname. When setting FAF_MLD, path must
refer to an empty directory.

EIO An I/O error occurred while writing to the file system.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
and filesystem type does not allow it.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length
of a path component exceeds NAME_MAX while _POSIX_NO_TRUNC
is in effect.

ENOENT Either a component of the path prefix, or the file referred to by path
does not exist or is a null pathname.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the prefix of path is not a directory.

EPERM The effective user ID does not match the owner of the file and the
process does not possess the privilege PRIV_FILE_OWNER.

EPERM The process does not possess the privilege PRIV_FILE_AUDIT
and is attempting to set the FAF_PUBLIC flag.

EROFS The file referred to by path resides on a read-only file system.

fsetfattrflag() fails and the file mode is unchanged if:

fsetfattrflag(2)

System Calls 187

EACCES The calling process does not own fildes. To override this restriction,
the calling process may assert the PRIV_FILE_OWNER privilege.

EACCES Write access is denied on fildes. To override this restriction, the
calling process may assert the PRIV_FILE_MAC_WRITE privilege.

EINVAL fildes is not a valid pathname. When setting FAF_MLD, fildes must
refer to an empty directory.

EBADF fildes is not an open file descriptor.

EIO An I/O error occurred while writing to the file system.

EINTR A signal was caught during execution of the fsetfattrflag()
function.

EPERM The process does not possess the privilege PRIV_FILE_AUDIT
and is attempting to set the FAF_PUBLIC flag.

EROFS The file referred to by fildes resides on a read-only file system.

setfattrflag(1), getfattrflag(1)

Trusted Solaris Developer’s Guide

fsetfattrflag(2)

Trusted Solaris 8
4/01 Reference

Manual

188 man pages section 2: System Calls • Last Revised 30 Sep 1999

getfpriv, fgetfpriv, setfpriv, fsetfpriv – return or set a privilege set associated with a file

cc [flags…] file… -ltsol

int getfpriv(char *path, priv_ftype_t type, priv_set_t *priv_set);

int setfpriv(char *path, priv_op_t op, priv_ftype_t type, priv_set_t
*priv_set);

int fgetfpriv(int fd, priv_ftype_t type, priv_set_t *priv_set);

int fsetfpriv(int fd, priv_op_t op, priv_ftype_t type, priv_set_t
*priv_set);

Set or get privileges of the file that is named by path or referred to by fd.
fgetfpriv() and fsetfpriv() function exactly like getfpriv() and
setfpriv() respectively, except that they require an open reference to a file as their
argument.

getfpriv() copies the privilege set indicated by type and associated with the named
file into the address specified by priv_set. Values for type are:

PRIV_FORCED The forced privilege set.

PRIV_ALLOWED The allowed privilege set.

MAC read permission is required for the named file unless the privilege
PRIV_FILE_MAC_READ is effective.

setfpriv() sets/modifies the privilege set (the target set) indicated by type and
associated with the named file. Modification occurs according to the value of op and
the privilege set specified by priv_set (the specified set). Values for op are:

PRIV_ON Each privilege asserted in the specified set is asserted in the target
set.

PRIV_OFF Each privilege asserted in the specified set is cleared in the target
set.

PRIV_SET The target set is set exactly equal to the specified set.

Values for type are the same as those used for getfpriv().

In all cases, the privilege PRIV_FILE_SETPRIV must be effective. In addition, only
the owner of a file may change its privilege sets, unless the privilege
PRIV_FILE_OWNER is effective.

The invoking process must have MAC write permission for the named file (unless the
privilege PRIV_FILE_MAC_WRITE is effective). DAC write access is not required.

It is an error to attempt to assert a forced privilege if the corresponding allowed
privilege is not present. For this reason, it is recommended that the allowed privilege
set be modified first whenever both privilege sets are to be modified.

fsetfpriv(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 189

If the target set is the allowed set, all privileges cleared from the target set are also
automatically cleared from the forced set.

Normally MAC read permission is required or the privilege PRIV_FILE_MAC_READ
must be effective for getfpriv() to complete its operation successfully unless the
named file is a pty pseudo-terminal. If the named file is a pseudo-terminal
(/dev/ptyp* or /dev/ttyp*) and the label of the process invoking getfpriv()
does not dominate the label of the named file and the privilege
PRIV_FILE_MAC_READ is not effective then getfpriv() returns success but sets the
privilege fields of priv_set to zero.

These routines return:

0 On success.

−1 On failure, and set errno to indicate the error.

These routines fail and the target set is not modified if:

EINVAL An illegal or undefined value is supplied for size or type.

EFAULT priv_set refers to an invalid address.

Additionally, getfpriv() and setfpriv() fail if:

EACCES Search permission is denied a component of path. To override this
restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

getfpriv() and fgetfpriv() fail if:

EACCES MAC read permission is denied for the named file, and privilege
PRIV_FILE_MAC_READ is not effective.

ENOENT A component of the specified path does not exist.

ENOTDIR A component of the specified path prefix is not a directory.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX,
oL a pathname component is longer than NAME_MAX
while _POSIX_NO_TRUNC is in effect.

setfpriv() and fsetfpriv() fail and the target set is not modified if:

EACCES MAC write permission is denied for the named file, privilege
PRIV_FILE_MAC_WRITE is not effective, and the user’s clearance
dominates the sensitivity label of the file.

EINVAL (1) The named file resides on a file system that does not support
privileges (that is, a file system other than NFS, TMPFS) or (2) an
illegal or undefined value is supplied for op. Also if privilege
PRIV_FILE_MAC_WRITE is not effective.

fsetfpriv(2)

RETURN VALUES

ERRORS

190 man pages section 2: System Calls • Last Revised 30 Sep 1999

EPERM MAC write permission is denied for the named file, and the user’s
clearance does not dominate the label of the named file, or (2)
PRIV_FILE_SETPRIV is not effective, or (3) the effective uid does
not match the owner of the named file and privilege
PRIV_FILE_OWNER is not effective.

EROFS The named file resides on a read-only file system.

getppriv(2), setppriv(2), priv_macros(5)

fsetfpriv(2)

Trusted Solaris 8
4/01 Reference

Manual

System Calls 191

stat, lstat, fstat – get file status

#include <sys/types.h>

#include <sys/stat.h>

int stat(const char *path, struct stat *buf);

int lstat(const char *path, struct stat *buf);

int fstat(int fildes, struct stat *buf);

The stat() function obtains information about the file pointed to by path. Read,
write, or execute permission of the named file is not required, but all directories listed
in the path name leading to the file must be searchable.

The lstat() function obtains file attributes similar to stat(), except when the
named file is a symbolic link; in that case lstat() returns information about the link,
while stat() returns information about the file the link references.

The fstat() function obtains information about an open file known by the file
descriptor fildes, obtained from a successful open(2), creat(2), dup(2), fcntl(2), or
pipe(2) function.

The buf argument is a pointer to a stat structure into which information is placed
concerning the file. A stat structure includes the following members:

mode_t st_mode; /* File mode (see mknod(2)) */
ino_t st_ino; /* Inode number */
dev_t st_dev; /* ID of device containing */

/* a directory entry for this file */
dev_t st_rdev; /* ID of device */

/* This entry is defined only for */
/* char special or block special files */

nlink_t st_nlink; /* Number of links */
uid_t st_uid; /* User ID of the file’s owner */
gid_t st_gid; /* Group ID of the file’s group */
off_t st_size; /* File size in bytes */
time_t st_atime; /* Time of last access */
time_t st_mtime; /* Time of last data modification */
time_t st_ctime; /* Time of last file status change */

/* Times measured in seconds since */
/* 00:00:00 UTC, Jan. 1, 1970 */

long st_blksize; /* Preferred I/O block size */
blkcnt_t st_blocks; /* Number of 512 byte blocks allocated*/

Descriptions of structure members are as follows:

st_mode The mode of the file as described in mknod(2). In addition to the
modes described in mknod(), the mode of a file may also be
S_IFLNK if the file is a symbolic link. S_IFLNK may only be
returned by lstat().

st_ino This field uniquely identifies the file in a given file system. The
pair st_ino and st_dev uniquely identifies regular files.

fstat(2)

NAME

SYNOPSIS

DESCRIPTION

192 man pages section 2: System Calls • Last Revised 20 Apr 2000

st_dev This field uniquely identifies the file system that contains the file.
Its value may be used as input to the ustat() function to
determine more information about this file system. No other
meaning is associated with this value.

st_rdev This field should be used only by administrative commands. It is
valid only for block special or character special files and only has
meaning on the system where the file was configured.

st_nlink This field should be used only by administrative commands.

st_uid The user ID of the file’s owner.

st_gid The group ID of the file’s group.

st_size For regular files, this is the address of the end of the file. For block
special or character special, this is not defined. See also pipe(2).

st_atime Time when file data was last accessed. Changed by the following
functions: creat(), mknod(), pipe(), utime(2), and read(2).

st_mtime Time when data was last modified. Changed by the following
functions: creat(), mknod(), pipe(), utime(), and write(2).

st_ctime Time when file status was last changed. Changed by the following
functions: chmod(), chown(), creat(), link(2), mknod(),
pipe(), unlink(2), utime(), and write().

st_blksize A hint as to the "best" unit size for I/O operations. This field is not
defined for block special or character special files.

st_blocks The total number of physical blocks of size 512 bytes actually
allocated on disk. This field is not defined for block special or
character special files.

stat(), lstat(), and fstat() require mandatory read access to the final
component of path. If the file descriptor is open only for writing, fstat() requires
mandatory read access to the object to which the descriptor refers. To override these
restrictions, the calling process may assert the PRIV_FILE_MAC_READ privilege in its
set of effective privileges.

If the calling process does not have mandatory read access, stat(), lstat(), and
fstat() return fixed values for some elements of the stat structure.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The stat(), fstat(), and lstat() functions will fail if:

EOVERFLOW The file size in bytes or the number of blocks allocated to the file or
the file serial number cannot be represented correctly in the
structure pointed to by buf.

fstat(2)

RETURN VALUES

ERRORS

System Calls 193

The stat() and lstat() functions will fail if:

EACCES Search permission is denied for a component of the path prefix. To
override this restriction, the calling process may assert one or both
of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

EFAULT The buf or path argument points to an illegal address.

EINTR A signal was caught during the execution of the stat() or
lstat() function.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length
of a path component exceeds NAME_MAX while _POSIX_NO_TRUNC
is in effect.

ENOENT The named file does not exist or is the null pathname.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOTDIR A component of the path prefix is not a directory.

EOVERFLOW A component is too large to store in the structure pointed to by buf.

The fstat() function will fail if:

EBADF The fildes argument is not a valid open file descriptor.

EFAULT The buf argument points to an illegal address.

EINTR A signal was caught during the execution of the fstat()
function.

ENOLINK The fildes argument points to a remote machine and the link to that
machine is no longer active.

EOVERFLOW A component is too large to store in the structure pointed to by buf.

The stat(), fstat(), and lstat() functions have transitional interfaces for 64-bit
file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level stat() and fstat() are Async-Signal-Safe

stat(), lstat(), and fstat() require mandatory read access to the final
component of path. If the file descriptor is open only for writing, fstat() requires

fstat(2)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

194 man pages section 2: System Calls • Last Revised 20 Apr 2000

mandatory read access to the object to which the descriptor refers. To override these
restrictions, the calling process may assert the PRIV_FILE_MAC_READ privilege in its
set of effective privileges.

To override access restrictions, the calling process of stat() or lstat() may also
assert one or both of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

Certain uses of this interface may present a covert channel. If a covert channel is
exploited, the execution of the process may be delayed. To bypass this delay, the
process may assert the PRIV_PROC_NODELAY privilege.

chmod(2), chown(2), creat(2), fcntl(2), link(2), mknod(2), open(2), read(2),
unlink(2), write(2)

dup(2), pipe(2), time(2), utime(2), fattach(3C), stat(3HEAD), attributes(5)

If you use chmod(2) to change the file group owner permissions on a file with ACL
entries, both the file group owner permissions and the ACL mask are changed to the
new permissions. Be aware that the new ACL mask permissions may change the
effective permissions for additional users and groups who have ACL entries on the
file.

fstat(2)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual
NOTES

System Calls 195

statvfs, fstatvfs – get file system information

#include <sys/types.h>

#include <sys/statvfs.h>

int statvfs(const char *path, struct statvfs *buf);

int fstatvfs(int fildes, struct statvfs *buf);

The statvfs() function returns a “generic superblock” describing a file system; it
can be used to acquire information about mounted file systems. The buf argument is a
pointer to a structure (described below) that is filled by the function.

The path argument should name a file that resides on that file system. The file system
type is known to the operating system. Read, write, or execute permission for the
named file is not required, but all directories listed in the path name leading to the file
must be searchable.

The statvfs structure pointed to by buf includes the following members:

u_long f_bsize; /* preferred file system block size */
u_long f_frsize; /* fundamental filesystem block

(size if supported) */
fsblkcnt_t f_blocks; /* total # of blocks on file system

in units of f_frsize */
fsblkcnt_t f_bfree; /* total # of free blocks */
fsblkcnt_t f_bavail; /* # of free blocks avail to

non-super-user */
fsfilcnt_t f_files; /* total # of file nodes (inodes) */
fsfilcnt_t f_ffree; /* total # of free file nodes */
fsfilcnt_t f_favail; /* # of inodes avail to

non-super-user*/
u_long f_fsid; /* file system id (dev for now) */
char f_basetype[FSTYPSZ]; /* target fs type name,

null-terminated */
u_long f_flag; /* bit mask of flags */
u_long f_namemax; /* maximum file name length */
char f_fstr[32]; /* file system specific string */
u_long f_filler[16]; /* reserved for future expansion */

The f_basetype member contains a null-terminated FSType name of the mounted
target.

The following values can be returned in the f_flag field:

ST_RDONLY 0x01 /* read-only file system */
ST_NOSUID 0x02 /* does not support setuid/setgid semantics */
ST_NOTRUNC 0x04 /* does not truncate file names longer than

NAME_MAX */

The fstatvfs() function is similar to statvfs(), except that the file named by path
in statvfs() is instead identified by an open file descriptor fildes obtained from a
successful open(2), creat(2), dup(2), fcntl(2), or pipe(2) function call.

fstatvfs(2)

NAME

SYNOPSIS

DESCRIPTION

196 man pages section 2: System Calls • Last Revised 30 Sep 1999

statvfs() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The statvfs() and fstatvfs() functions will fail if:

EOVERFLOW One of the values to be returned cannot be represented correctly in
the structure pointed to by buf.

The statvfs() function will fail if:

EACCES Search permission is denied on a component of the path prefix. To
override this restriction, the calling process may assert one or both
of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH

The calling process does not have mandatory read access to
path_name. To override this restriction, the calling process may
assert the PRIV_FILE_MAC_READ privilege.

EFAULT The path or buf argument points to an illegal address.

EINTR A signal was caught during the execution of the statvfs()
function.

EIO An I/O error occurred while reading the file system.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of a path component exceeds NAME_MAX characters, or
the length of path The exceeds PATH_MAX characters.

ENOENT Either a component of the path prefix or the file referred to by path
does not exist.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOTDIR A component of the path prefix of path is not a directory.

The fstatvfs() function will fail if:

EACCES The descriptor is open only for writing and the calling process
does not have mandatory read access to the object to which the
descriptor refers. To override this restriction, the calling process
may assert the PRIV_FILE_MAC_READ privilege.

EBADF The fildes argument is not an open file descriptor.

EFAULT The buf argument points to an illegal address.

EINTR A signal was caught during the execution of the fstatvfs()
function.

fstatvfs(2)

RETURN VALUES

ERRORS

System Calls 197

EIO An I/O error occurred while reading the file system.

The statvfs() and fstatvfs() functions have transitional interfaces for 64-bit file
offsets. See lf64(5).

Appropriate privilege is required to override access checks.

chmod(2), chown(2), creat(2), fcntl(2), link(2), mknod(2), open(2), read(2),
unlink(2), write(2)

dup(2), pipe(2), time(2), utime(2)

The values returned for f_files, f_ffree, and f_favail may not be valid for NFS
mounted file systems.

fstatvfs(2)

USAGE

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
Manual

SunOS 5.8
Reference Manual

BUGS

198 man pages section 2: System Calls • Last Revised 30 Sep 1999

getaudit, setaudit, getaudit_addr, setaudit_addr – Get and set process audit
information

cc [flag ...] file ... -lbsm -lsocket -lnsl -lintl [library ...]
#include <sys/param.h>

#include <bsm/audit.h>

int getaudit(struct auditinfo *info);

int setaudit(struct auditinfo *info);

int getaudit_addr(struct auditinfo_addr *info, int length);

int setaudit_addr(struct auditinfo_addr *info, int length);

getaudit() gets the audit ID, the preselection mask, the terminal ID, and the audit
session ID of the current process.

Note that getaudit() may fail and return an E2BIG errno if the address field in the
terminal ID is larger than 32 bits. In this case, getaudit_addr() should be used.

setaudit() sets the audit ID, the preselection mask, the terminal ID, and the audit
session ID for the current process.

The getaudit_addr() function returns a variable length auditinfo_addr
structure that contains the audit ID, the preselection mask, the terminal ID, and the
audit session ID for the current process. The terminal ID contains a size field that
indicates the size of the network address.

The setaudit_addr() function sets the audit ID, the preselection mask, the terminal
ID, and the audit session ID for the current process. The values are taken from the
variable length struture auditinfo_addr. The terminal ID contains a size field that
indicates the size of the network address.

The info structure used to pass the process audit information contains the following
members:

au_id_t ai_auid; /* audit user ID */
au_mask_t ai_mask; /* preselection mask */
au_tid_t ai_termid; /* terminal ID */
au_asid_t ai_asid; /* audit session ID */

To execute these commands successfully, a process needs certain privileges in its set of
effective privileges: for getaudit(), a process needs PRIV_SYS_AUDIT,
PRIV_PROC_AUDIT_TCB, or PRIV_PROC_AUDIT_APPL; for setaudit(),
PRIV_SYS_AUDIT.

getaudit() and setaudit() return:

0 On success.

−1 On failure, and set errno to indicate the error.

getaudit(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

System Calls 199

The getaudit() and setaudit() functions will fail if:

EFAULT The info parameter points outside the process’s allocated address
space.

EPERM The process did not have the appropriate privilege.

Only processes with the appropriate privileges may successfully execute these calls.

This functionality is active only if auditing is enabled. By default, auditing is enabled
in the Trusted Solaris environment. See Trusted Solaris Audit Administration Manual for
more information.

As explained in DESCRIPTION, privileges are needed to run this command
successfully.

audit(2)

getaudit(2)

ERRORS

USAGE

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual

200 man pages section 2: System Calls • Last Revised 18 Aug 1999

getaudit, setaudit, getaudit_addr, setaudit_addr – Get and set process audit
information

cc [flag ...] file ... -lbsm -lsocket -lnsl -lintl [library ...]
#include <sys/param.h>

#include <bsm/audit.h>

int getaudit(struct auditinfo *info);

int setaudit(struct auditinfo *info);

int getaudit_addr(struct auditinfo_addr *info, int length);

int setaudit_addr(struct auditinfo_addr *info, int length);

getaudit() gets the audit ID, the preselection mask, the terminal ID, and the audit
session ID of the current process.

Note that getaudit() may fail and return an E2BIG errno if the address field in the
terminal ID is larger than 32 bits. In this case, getaudit_addr() should be used.

setaudit() sets the audit ID, the preselection mask, the terminal ID, and the audit
session ID for the current process.

The getaudit_addr() function returns a variable length auditinfo_addr
structure that contains the audit ID, the preselection mask, the terminal ID, and the
audit session ID for the current process. The terminal ID contains a size field that
indicates the size of the network address.

The setaudit_addr() function sets the audit ID, the preselection mask, the terminal
ID, and the audit session ID for the current process. The values are taken from the
variable length struture auditinfo_addr. The terminal ID contains a size field that
indicates the size of the network address.

The info structure used to pass the process audit information contains the following
members:

au_id_t ai_auid; /* audit user ID */
au_mask_t ai_mask; /* preselection mask */
au_tid_t ai_termid; /* terminal ID */
au_asid_t ai_asid; /* audit session ID */

To execute these commands successfully, a process needs certain privileges in its set of
effective privileges: for getaudit(), a process needs PRIV_SYS_AUDIT,
PRIV_PROC_AUDIT_TCB, or PRIV_PROC_AUDIT_APPL; for setaudit(),
PRIV_SYS_AUDIT.

getaudit() and setaudit() return:

0 On success.

−1 On failure, and set errno to indicate the error.

getaudit_addr(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

System Calls 201

The getaudit() and setaudit() functions will fail if:

EFAULT The info parameter points outside the process’s allocated address
space.

EPERM The process did not have the appropriate privilege.

Only processes with the appropriate privileges may successfully execute these calls.

This functionality is active only if auditing is enabled. By default, auditing is enabled
in the Trusted Solaris environment. See Trusted Solaris Audit Administration Manual for
more information.

As explained in DESCRIPTION, privileges are needed to run this command
successfully.

audit(2)

getaudit_addr(2)

ERRORS

USAGE

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual

202 man pages section 2: System Calls • Last Revised 18 Aug 1999

getauid, setauid – Get and set user audit identity

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/audit.h>

int getauid(au_id_t *auid);

int setauid(au_id_t *auid);

The getauid() function returns the audit user ID for the current process. This value
is initially set at login time and inherited by all child processes. This value does not
change when the real/effective user IDs change, so it can be used to identify the
logged-in user even when running a setuid program. The audit user ID governs audit
decisions for a process.

The setauid() function sets the audit user ID for the current process.

Only a process with the PRIV_SYS_AUDIT privilege asserted may successfully set its
user identity. To get its identity successfully, a process must have PRIV_SYS_AUDIT,
PRIV_PROC_AUDIT_TCB, or PRIV_PROC_AUDIT_APPL in its set of effective
privileges.

Upon successful completion, the getauid() function returns the audit user ID of the
current process on success. Otherwise, it returns −1 and sets errno to indicate the
error.

Upon successful completion the setauid() function returns 0. Otherwise, −1 is
returned and errno is set to indicate the error.

The getauid() and setauid() functions will fail if:

EFAULT The auid argument points to an invalid address.

EPERM The process does not have the appropriate privileges.

This functionality is active only if auditing is enabled. By default, auditing is enabled
in the Trusted Solaris environment. See Trusted Solaris Audit Administration Manual for
more information.

The privileges explained in DESCRIPTION are needed to run this command
successfully.

These system calls have been superseded by getaudit() and setaudit().

audit(2), getaudit(2)

getauid(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual

System Calls 203

getclearance – Get process clearance

cc [flags…] file … -ltsol [library…]

#include <tsol/label.h>

int getclearance(bclear_t *clearance_p);

getclearance() obtains the clearance of the calling process. The clearance
information is placed into the memory pointed to by clearance_p.

getclearance() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

getclearance() will fail (and clearance_p will not refer to a valid clearance) if this
condition is true:

EFAULT clearance_p points to an invalid address.

setclearance(2)

getclearance(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Trusted Solaris 8
4/01 Reference

Manual

204 man pages section 2: System Calls • Last Revised 21 Feb 1993

getcmwfsrange, fgetcmwfsrange – Get file system sensitivity label range

cc [flags…] file… -ltsol

#include <tsol/label.h>

int getcmwfsrange(char *path, brange_t *range_p);

int fgetcmwfsrange(int fd, brange_t *range_p);

getcmwfsrange() returns the sensitivity label range of a mounted file system. path
is the path name of any file within the mounted filesystem. range_p is a pointer to a
sensitivity label range structure defined as follows:

struct binary_level_range {
blevel_t lower_bound;
blevel_t upper_bound;

};
typedef struct binary_level_range brange_t; /* Level Range */

fgetcmwfsrange() returns the same information about an open file referred to by
descriptor fd.

getcmwfsrange() and fgetcmwfsrange() return:

0 On success.

−1 On failure, and set errno to indicate the error.

getcmwfsrange() fails if one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix of
path. To override this restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EFAULT range_p or path points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file
system.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX.

A pathname component is longer than NAME_MAX (see
sysconf(3C)) while _POSIX_NO_TRUNC is in effect
(see pathconf(2V)).

ENOENT The file referred to by path does not exist.

ENOTDIR A component of the path prefix of path is not a directory.

fgetcmwfsrange() fails if one or more of the following are true:

getcmwfsrange(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 205

EBADF fd is not a valid open file descriptor.

EFAULT range_p points to an invalid address.

EINVAL fd refers to a socket, not a file.

EIO An I/O error occurred while reading from the file system.

pathconf(2)

sysconf(3C)

getcmwfsrange(2)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

206 man pages section 2: System Calls • Last Revised 30 Sep 1999

getcmwlabel, lgetcmwlabel, fgetcmwlabel – get file CMW label

cc [flags…] file … -ltsol [library…]

#include <tsol/label.h>

int getcmwlabel(char *path, bclabel_t *label_p);

int lgetcmwlabel(char *path, bclabel_t *label_p);

int fgetcmwlabel(int fd, bclabel_t *label_p);

getcmwlabel() obtains the CMW label of the file named by path. Mandatory read
access to the final component of path is required or the calling process must have
PRIV_FILE_MAC_READ in its set of effective privileges. Discretionary read, write or
execute permission to the final component of path is not required, but all directories in
the path prefix of path must be searchable.

lgetcmwlabel() is like getcmwlabel() except in the case where the final
component of path is a symbolic link, in which case lgetcmwlabel() returns the
CMW label of the link, while getcmwlabel() returns the CMW label of the file to
which the link refers.

fgetcmwlabel() obtains the CMW label of an open file referred to by the argument
descriptor, such as would be obtained by an open(2) call. If the descriptor is only open
for writing, then mandatory read access to the object is required or the calling process
must have PRIV_FILE_MAC_READ in its set of effective privileges.

label_p is a pointer to an opaque CMW label structure.

An exception to the access rules applies in the case of pty pseudo-terminals
(/dev/ptyp* and /dev/ttyp*). Normally mandatory read access is required or the
calling process must have PRIV_FILE_MAC_READ in its set of effective privileges. If
the specified file is a pty device file and the calling process does not have mandatory
read access or PRIV_FILE_MAC_READ is not in its set of effective privileges, each
function returns success and sets label_p to ADMIN_LOW.

getcmwlabel(), lgetcmwlabel() and fgetcmwlabel() return:

0 On success.

−1 On failure, and set errno to indicate the error.

getcmwlabel() and lgetcmwlabel() fail if one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix of
path. To override this restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

The calling process does not have mandatory read access to path
because the sensitivity label of the calling process does not

getcmwlabel(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 207

dominate the sensitivity label of the final component of path and
the calling process does not have PRIV_FILE_MAC_READ in its set
of effective privileges.

EFAULT label_p or path points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file
system.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX.

A pathname component is longer than NAME_MAX
while _POSIX_NO_TRUNC is in effect (see
pathconf(2)).

ENOENT The file referred to by path does not exist.

ENOTDIR A component of the path prefix of path is not a directory.

EPERM The calling process does not have mandatory read access to path
because the sensitivity label of path is outside the calling process’
clearance and the calling process does not have
PRIV_FILE_MAC_READ in its set of effective privileges.

fgetcmwlabel() fails if one or more of the following are true:

EACCES The descriptor is only open for writing and the calling process
does not have mandatory read access to the object referred to by
the descriptor because the sensitivity label of the calling process
does not dominate the sensitivity label of the object and the calling
process does not have PRIV_FILE_MAC_READ in its set of
effective privileges.

EBADF fd is not a valid open file descriptor.

EFAULT label_p points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file
system.

pathconf(2), open(2), setcmwlabel(2)

getcmwlabel(2)

Trusted Solaris 8
4/01 Reference

Manual

208 man pages section 2: System Calls • Last Revised 24 May 2001

getcmwplabel – Get process CMW label

cc [flags…] file … -ltsol [library…]

#include <tsol/label.h>

int getcmwplabel(bclabel_t *label_p);

getcmwplabel() obtains the CMW label of the calling process. The label information
is placed into the memory to which label_p points.

getcmwplabel() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

getcmwplabel() fails (and label_p does not refer to a valid CMW label) if this
condition is true:

EFAULT label_p points to an invalid address.

setcmwplabel(2)

getcmwplabel(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

SEE ALSO

System Calls 209

getdents – Read directory entries and put in a file system independent format

#include <sys/dirent.h>

int getdents(int fildes, struct dirent *buf, size_t nbyte);

The getdents() function attempts to read nbyte bytes from the directory associated
with the file descriptor fildes and to format them as file system independent directory
entries in the buffer pointed to by buf. Since the file system independent directory
entries are of variable lengths, in most cases the actual number of bytes returned will
be less than nbyte. The file system independent directory entry is specified by the
dirent structure. See dirent(3HEAD).

On devices capable of seeking, getdents() starts at a position in the file given by the
file pointer associated with fildes. Upon return from getdents(), the file pointer is
incremented to point to the next directory entry.

Upon successful completion, a non-negative integer is returned indicating the number
of bytes actually read. A return value of 0 indicates the end of the directory has been
reached. Otherwise, −1 is returned and errno is set to indicate the error.

The getdents() function will fail if:

EACCESS The calling process is not allowed to read the procfs file system. To
override this restriction, the calling process may assert one or both
of these privileges: PRIV_FILE_DAC_READ and
PRIV_FILE_MAC_READ.

The system is configured to check mandatory read access to the
directory entries. To override this restriction, the calling process
may assert the PRIV_FILE_MAC_READ privilege.

EBADF The fildes argument is not a valid file descriptor open for reading.

EFAULT The buf argument points to an illegal address.

EINVAL The nbyte argument is not large enough for one directory entry.

EIO An I/O error occurred while accessing the file system.

ENOENT The current file pointer for the directory is not located at a valid
entry.

ENOLINK The fildes argument points to a remote machine and the link to that
machine is no longer active.

ENOTDIR The fildes argument is not a directory.

EOVERFLOW The value of the dirent structure member d_ino or d_off
cannot be represented in an ino_t or off_t.

The getdents() function was developed to implement the readdir(3C) function
and should not be used for other purposes.

getdents(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

210 man pages section 2: System Calls • Last Revised 30 Sep 1999

The getdents() function has a transitional interface for 64-bit file offsets. See
lf64(5).

Appropriate privilege is required to override access checks.

readdir(3C), dirent(3HEAD), lf64(5)

getdents(2)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
SunOS 5.8

Reference Manual

System Calls 211

getfattrflag, fsetfattrflag, fgetfattrflag, setfattrflag, mldgetfattrflag, mldsetfattrflag –
set/get the security attribute flags of a file

cc [flags…] file… -ltsol

#include <tsol/secflgs.h>

int getfattrflag(const char *path, secflgs_t *flags);

int setfattrflag(const char *path, secflgs_t which, secflgs_t flags);

int fgetfattrflag(int fildes, secflgs_t *flags);

int fsetfattrflag(int fildes, secflgs_t which, secflgs_t flags);

int mldgetfattrflag(const char *path, secflgs_t *flags);

int mldsetfattrflag(const char *path, secflgs_t which, secflgs_t
flags);

setfattrflag(), fsetfattrflag(), and mldsetfattrflag() set the security
flags of the file whose name is given by path or referred to by the open file descriptor
fildes. The bit pattern contained in which is used to indicate which flags are being
affected. The corresponding bits in flags are set to 1 or 0 to indicate whether the
affected flags are being set or unset respectively.

getfattrflag(), fgetfattrflag(), and mldgetfattrflag() get the security
flags of the file whose name is given by path or referred to by the open file descriptor
fildes and store it in the location pointed to by flags.

Attribute bits are interpreted as follows:

FAF_MLD Directory has MLD semantics.

FAF_PUBLICFilesystem object is a public object.

FAF_SLD Directory is an SLD.

Attribute flags are constructed by OR’ing the attribute flag bits.

FAF_MLD is the only flag that may be modified without privilege if the directory is
empty, the effective user ID of the process matches the directory owner, and the
process has mandatory as well as discretionary write access. The FAF_MLD flag, once
set, cannot be unset. Additionally, the FAF_MLD flag may only be set via the
mldsetfattrflag interface. The FAF_PUBLIC flag can only be read or modified by
a process possessing the PRIV_FILE_AUDIT privilege. A process attempting to read
the FAF_PUBLIC flag without the PRIV_FILE_AUDIT privilege in effect will not fail.
However the value of FAF_PUBLIC will be returned as unset. The FAF_SLD flag can
never be set. The ability to read any flag is dependant upon the process having
mandatory and discretionary read access to the file. The ability to set any flag is
dependant upon the process having mandatory and discretionary write access to the
file.

getfattrflag(2)

NAME

SYNOPSIS

DESCRIPTION

212 man pages section 2: System Calls • Last Revised 30 Sep 1999

If path is a symbolic link, the target’s attribute flags are affected rather than the link’s.
If path is a multilevel directory, getfattrflag() and setfattrflag() will affect
the underlying single-level directory beneath (unless path is adorned).
mldgetfattrflag() and mldsetfattrflag() do not translate multi-level
directories to underlying single-level directories. fgetfattrflag() and
fsetsattrflag() affect only the file referred to by fildes.

These functions return:

0 On success.

−1 On failure, and set errno to indicate the error.

getfattrflag() and mldgetfattrflag() will fail if one or more of the following
are true:

EACCES Search permission is denied on a component of the path prefix of
path. To override this restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EACCES Read permission is denied the final component of path. To override
this restriction, the calling process may assert the
PRIV_FILE_MAC_READ privilege.

EFAULT path points to an illegal address.

EINTR A signal was caught during execution of the function.

EIO An I/O error occurred while reading from the file system.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
and file system type does not allow it.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length
of a path component exceeds NAME_MAX while _POSIX_NO_TRUNC
is in effect.

ENOENT Either a component of the path prefix, or the file referred to by path
does not exist or is a null pathname.

ENOLINK fildes points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the prefix of path is not a directory.

fgetfattrflag() fails and the file mode is unchanged if:

EACCES Read permission is denied on fildes. To override this restriction, the
calling process may assert the PRIV_FILE_MAC_READ privilege.

EBADF fildes is not an open file descriptor.

getfattrflag(2)

RETURN VALUES

ERRORS

System Calls 213

EIO An I/O error occurred while reading from the file system.

EINTR A signal was caught during execution of the fgetfattrflag()
function.

setfattrflag() and mldsetfattrflag() will fail and the file mode is
unchanged if one or more of the following are true:

EACCES Search permission is denied on a component of the path prefix of
path. To override this restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EACCES Write permission is denied path. To override this restriction, the
calling process may assert the PRIV_FILE_MAC_WRITE privilege.

EACCES The calling process does not own fildes. To override this restriction,
the calling process may assert the PRIV_FILE_OWNER privilege.

EFAULT path points to an illegal address.

EINTR A signal was caught during execution of the function.

EINVAL path is not a valid pathname. When setting FAF_MLD, path must
refer to an empty directory.

EIO An I/O error occurred while writing to the file system.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
and filesystem type does not allow it.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length
of a path component exceeds NAME_MAX while _POSIX_NO_TRUNC
is in effect.

ENOENT Either a component of the path prefix, or the file referred to by path
does not exist or is a null pathname.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the prefix of path is not a directory.

EPERM The effective user ID does not match the owner of the file and the
process does not possess the privilege PRIV_FILE_OWNER.

EPERM The process does not possess the privilege PRIV_FILE_AUDIT
and is attempting to set the FAF_PUBLIC flag.

EROFS The file referred to by path resides on a read-only file system.

fsetfattrflag() fails and the file mode is unchanged if:

getfattrflag(2)

214 man pages section 2: System Calls • Last Revised 30 Sep 1999

EACCES The calling process does not own fildes. To override this restriction,
the calling process may assert the PRIV_FILE_OWNER privilege.

EACCES Write access is denied on fildes. To override this restriction, the
calling process may assert the PRIV_FILE_MAC_WRITE privilege.

EINVAL fildes is not a valid pathname. When setting FAF_MLD, fildes must
refer to an empty directory.

EBADF fildes is not an open file descriptor.

EIO An I/O error occurred while writing to the file system.

EINTR A signal was caught during execution of the fsetfattrflag()
function.

EPERM The process does not possess the privilege PRIV_FILE_AUDIT
and is attempting to set the FAF_PUBLIC flag.

EROFS The file referred to by fildes resides on a read-only file system.

setfattrflag(1), getfattrflag(1)

Trusted Solaris Developer’s Guide

getfattrflag(2)

Trusted Solaris 8
4/01 Reference

Manual

System Calls 215

getfpriv, fgetfpriv, setfpriv, fsetfpriv – return or set a privilege set associated with a file

cc [flags…] file… -ltsol

int getfpriv(char *path, priv_ftype_t type, priv_set_t *priv_set);

int setfpriv(char *path, priv_op_t op, priv_ftype_t type, priv_set_t
*priv_set);

int fgetfpriv(int fd, priv_ftype_t type, priv_set_t *priv_set);

int fsetfpriv(int fd, priv_op_t op, priv_ftype_t type, priv_set_t
*priv_set);

Set or get privileges of the file that is named by path or referred to by fd.
fgetfpriv() and fsetfpriv() function exactly like getfpriv() and
setfpriv() respectively, except that they require an open reference to a file as their
argument.

getfpriv() copies the privilege set indicated by type and associated with the named
file into the address specified by priv_set. Values for type are:

PRIV_FORCED The forced privilege set.

PRIV_ALLOWED The allowed privilege set.

MAC read permission is required for the named file unless the privilege
PRIV_FILE_MAC_READ is effective.

setfpriv() sets/modifies the privilege set (the target set) indicated by type and
associated with the named file. Modification occurs according to the value of op and
the privilege set specified by priv_set (the specified set). Values for op are:

PRIV_ON Each privilege asserted in the specified set is asserted in the target
set.

PRIV_OFF Each privilege asserted in the specified set is cleared in the target
set.

PRIV_SET The target set is set exactly equal to the specified set.

Values for type are the same as those used for getfpriv().

In all cases, the privilege PRIV_FILE_SETPRIV must be effective. In addition, only
the owner of a file may change its privilege sets, unless the privilege
PRIV_FILE_OWNER is effective.

The invoking process must have MAC write permission for the named file (unless the
privilege PRIV_FILE_MAC_WRITE is effective). DAC write access is not required.

It is an error to attempt to assert a forced privilege if the corresponding allowed
privilege is not present. For this reason, it is recommended that the allowed privilege
set be modified first whenever both privilege sets are to be modified.

getfpriv(2)

NAME

SYNOPSIS

DESCRIPTION

216 man pages section 2: System Calls • Last Revised 30 Sep 1999

If the target set is the allowed set, all privileges cleared from the target set are also
automatically cleared from the forced set.

Normally MAC read permission is required or the privilege PRIV_FILE_MAC_READ
must be effective for getfpriv() to complete its operation successfully unless the
named file is a pty pseudo-terminal. If the named file is a pseudo-terminal
(/dev/ptyp* or /dev/ttyp*) and the label of the process invoking getfpriv()
does not dominate the label of the named file and the privilege
PRIV_FILE_MAC_READ is not effective then getfpriv() returns success but sets the
privilege fields of priv_set to zero.

These routines return:

0 On success.

−1 On failure, and set errno to indicate the error.

These routines fail and the target set is not modified if:

EINVAL An illegal or undefined value is supplied for size or type.

EFAULT priv_set refers to an invalid address.

Additionally, getfpriv() and setfpriv() fail if:

EACCES Search permission is denied a component of path. To override this
restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

getfpriv() and fgetfpriv() fail if:

EACCES MAC read permission is denied for the named file, and privilege
PRIV_FILE_MAC_READ is not effective.

ENOENT A component of the specified path does not exist.

ENOTDIR A component of the specified path prefix is not a directory.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX,
oL a pathname component is longer than NAME_MAX
while _POSIX_NO_TRUNC is in effect.

setfpriv() and fsetfpriv() fail and the target set is not modified if:

EACCES MAC write permission is denied for the named file, privilege
PRIV_FILE_MAC_WRITE is not effective, and the user’s clearance
dominates the sensitivity label of the file.

EINVAL (1) The named file resides on a file system that does not support
privileges (that is, a file system other than NFS, TMPFS) or (2) an
illegal or undefined value is supplied for op. Also if privilege
PRIV_FILE_MAC_WRITE is not effective.

getfpriv(2)

RETURN VALUES

ERRORS

System Calls 217

EPERM MAC write permission is denied for the named file, and the user’s
clearance does not dominate the label of the named file, or (2)
PRIV_FILE_SETPRIV is not effective, or (3) the effective uid does
not match the owner of the named file and privilege
PRIV_FILE_OWNER is not effective.

EROFS The named file resides on a read-only file system.

getppriv(2), setppriv(2), priv_macros(5)

getfpriv(2)

Trusted Solaris 8
4/01 Reference

Manual

218 man pages section 2: System Calls • Last Revised 30 Sep 1999

getfsattr, fgetfsattr – Get filesystem security attributes

cc [flags…] file… -ltsol

#include <tsol/fsattr.h>

int getfsattr(char *path, u_long type, void *buf_p, int len);

int fgetfsattr(int fd, u_long type, void *buf_p, int len);

getfsattr() returns the file system security attributes of a mounted file system. path
is the pathname of any file within the mounted file system. type is the type of attribute
requested. Values for type are:

FSA_ACLCNT The file system access ACL count.

FSA_ACL The file system access ACL.

FSA_APRIV The file system allowed privilege set.

FSA_FPRIV The file system forced privilege set.

FSA_LABEL The file system CMW label.

FSA_AFLAGS The file system attribute flags.

FSA_LBLRNG The file system label range.

FSA_MLDPFX The file system MLD prefix string.

buf_p is a pointer to a buffer to hold the requested attribute, and len is the buffer
length.

fgetfsattr() returns the same information, but for an open file referred to by
descriptor fd. type, buf_p, and len are the same as for getfsattr(). The information
label of path or fd is unchanged.

getfsattr() and fgetfsattr() return:

0 On success.

−1 On failure and set errno to indicate the error.

getfsattr() fails if one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix of
path. To override this restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EFAULT buf_p or path points to an invalid address.

EINVAL The requested attributed is not set.

EIO An I/O error occurred while reading from the file system.

ELOOP Too many symbolic links were encountered in translating path.

getfsattr(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 219

ENAMETOOLONG The length of the path argument exceeds PATH_MAX.

A pathname component is longer than NAME_MAX (see
sysconf(3C)) while _POSIX_NO_TRUNC is in effect
(see pathconf(2)).

ENOENT The file referred to by path does not exist.

ENOTDIR A component of the path prefix of path is not a directory.

fgetfsattr() fails if one or more of the following are true:

EBADF fd is not a valid open file descriptor.

EFAULT buf_p points to an invalid address.

EINVAL fd refers to a socket, not a file; or the requested attribute is not set.

EIO An I/O error occurred while reading from the file system.

getfsattr(2)

220 man pages section 2: System Calls • Last Revised 30 Sep 1999

getgroups, setgroups – Get or set supplementary group access list IDs

#include <unistd.h>

int getgroups(int gidsetsize, gid_t *grouplist);

int setgroups(int ngroups, const gid_t *grouplist);

The getgroups() function gets the current supplemental group access list of the
calling process and stores the result in the array of group IDs specified by grouplist.
This array has gidsetsize entries and must be large enough to contain the entire list.
This list cannot be larger than NGROUPS_MAX. If gidsetsize equals 0, getgroups() will
return the number of groups to which the calling process belongs without modifying
the array pointed to by grouplist.

The setgroups() function sets the supplementary group access list of the calling
process from the array of group IDs specified by grouplist. The number of entries is
specified by ngroups and can not be greater than NGROUPS_MAX. The calling process
must have PRIV_PROC_SETID in its set of effective privileges to set new groups. If
PRIV_PROC_SETID is not in the effective privilege set, the operation fails and sets
errno to EPERM.

Upon successful completion, getgroups() returns the number of supplementary
group IDs set for the calling process and setgroups() returns 0. Otherwise, −1 is
returned and errno is set to indicate the error.

The getgroups() and setgroups() functions will fail if:

EFAULT A referenced part of the array pointed to by grouplist is an illegal
address.

The getgroups() function will fail if:

EINVAL The value of gidsetsize is non-zero and less than the number of
supplementary group IDs set for the calling process.

The setgroups() function will fail if:

EINVAL The value of ngroups is greater than NGROUPS_MAX.

EPERM The calling process does not have the PRIV_PROC_SETID
privilege.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

To set new groups, the calling process must have PRIV_PROC_SETID in its set of
effective privileges.

getgroups(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
System Calls 221

chown(2), setuid(2)

groups(1), getuid(2), getgrnam(3C), initgroups(3C), attributes(5)

getgroups(2)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

222 man pages section 2: System Calls • Last Revised 28 Dec 1996

getmldadorn, fgetmldadorn – Get file system multilevel directory adornment

cc [flags…] file… -ltsol

#include <tsol/mld.h>

int getmldadorn(char *path_name, char adorn_buf[MLD_ADORN_MAX]);

int fgetmldadorn(intfd, char adorn_buf[MLD_ADORN_MAX]);

getmldadorn() returns the MLD adornment of the file system on which path_name
resides. path_name is the path name of any file within the mounted filesystem.
adorn_buf is a pointer to a buffer of at least MLD_ADORN_MAX bytes in which the
null-terminated MLD adornment is returned.

fgetmldadorn() returns the same information about an open file referred to by
descriptor fd.

The information label of path_name or fd is unchanged. The information label of the
calling process is also unchanged.

getmldadorn() and fgetmldadorn() return:

0 On success.

−1 On failure and set errno to indicate the error.

getmldadorn() fails if one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix of
path_name. To override this restriction, the calling process may
assert the PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EFAULT adorn_buf or path_name points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file
system.

ELOOP Too many symbolic links were encountered in translating
path_name.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX.

A pathname component is longer than NAME_MAX (see
sysconf(3C)) while _POSIX_NO_TRUNC is in effect
(see pathconf(2)).

ENOENT The file referred to by path_name does not exist.

ENOTDIR A component of the path prefix of path_name is not a directory.

fgetmldadorn() fails if one or more of the following are true:

EBADF fd is not a valid open file descriptor.

getmldadorn(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 223

EFAULT adorn_buf points to an invalid address.

EINVAL fd refers to a socket, not a file.

EIO An I/O error occurred while reading from the file system.

If the filesystem of the fd does not support MLDs and no mld_prefix attribute was
specified at mount time, no error is returned, and a zero-length string is returned in
the adorn_buf buffer.

fgetsldname(2), getsldname(2)

getmldadorn(2)

WARNINGS

Trusted Solaris 8
4/01 Reference

Manual

224 man pages section 2: System Calls • Last Revised 30 Sep 1999

getmsgqcmwlabel, getshmcmwlabel, getsemcmwlabel – Get the CMW labels
associated with System V IPC structures

cc [flags…] file … -ltsol [library…]

#include <sys/tsol/ipcl.h>

int getmsgqcmwlabel(int msgqid, bclabel_t *clabel);

int getshmcmwlabel(int shmid, bclabel_t *clabel);

int getsemcmwlabel(int semid, bclabel_t *clabel);

These functions return the value of the CMW labels associated with message queues,
shared memory, and semaphore structures.

getmsgqcmwlabel() returns the CMW label for the message queue identified by
msgqid into the label buffer to which clabel points. The information label portion of the
CMW label is undefined for message queues; therefore the sensitivity label portion
may have to be extracted using getcsl(3TSOL) in order to be useful.

getshmcmwlabel() returns the CMW label for the shared-memory segment
identified by shmid into the label buffer to which clabel points.

getsemcmwlabel() returns the CMW label for the semaphore array identified by
semid into the label buffer to which clabel points.

The calling process must have mandatory read access to the IPC or must have asserted
the PRIV_IPC_MAC_READ privilege, and must have discretionary read access to the
data structure or must have the PRIV_IPC_DAC_READ privilege in its set of effective
privileges.

getmsgqcmwlabel(), getshmcmwlabel(), and getsemcmwlabel() return:

0 On success.

−1 On failure, and sets errno to indicate the error.

These functions will fail if any of these conditions is true:

EACCES Read access is denied to the calling process, which does not have
one or both of these privileges in its set of effective privileges:
PRIV_IPC_DAC_READ and PRIV_IPC_MAC_READ.

EINVAL msgqid,semid, or shmid is not a valid IPC object identifier.

EFAULT clabel points to an illegal address.

msgget(2), semget(2), shmget(2)

getmsgqcmwlabel(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Trusted Solaris 8
4/01 Reference

Manual

System Calls 225

getpattr, setpattr – get/set process attribute flags

cc [flags…] file… -ltsol

#include <tsol/pattr.h>

int getpattr(pattr_type_t type, pattr_flag_t *value);

int setpattr(pattr_type_t type, pattr_flag_t value);

Process attribute flags are a set of flags that describe additional attributes that the
process has. Each flag in the set is separately addressable although all flags share the
getpattr() and the setpattr() system call interfaces. Likewise, each flag in the
set has its own protection policy although all flags use the same protection
mechanism. In the set are seven types of flags, specified in <tsol/pattr.h>, and
addressed by the type argument. These are the values for type:

PAF_TRUSTED_PATH Trusted path flag

PAF_PRIV_DBG Privilege debugging flag

PAF_TOKMAPPER Network token mapping process flag

PAF_LABEL_VIEW Label view flags

PAF_LABEL_XLATE Label translation flags

PAF_DISKLESS_BOOT Part of diskless boot flag

PAF_SELAGNT Part of selection agent flag

PAF_PRINT_SYSTEM Part of trusted printing system flag

A description of each type of process attribute flag follows.

This one-bit flag marks a trusted path process. This flag can be viewed and cleared,
but cannot be set. In other words, the call to setpattr(PAF_TRUSTED_PATH,
PAF_TP_ON) will always fail. A process inherits the trusted path flag from its parent
process. The init process receives the trusted path flag from the system. A user
session creator, such as login, clears this flag before starting a user session.

setpattr(PAF_TRUSTED_PATH, PAF_TP_OFF)

This one-bit flag indicates that the process is in privilege-debugging mode—a
process-operation mode in which privilege requirement is logged but not enforced.
This flag can be viewed or cleared, but cannot be set except by a trusted path process.

This one-bit flag, when set, identifies the process as the network token mapping
process. The network token mapping process is exempt from network token mapping.
This flag can be viewed and cleared, but cannot be set except by a trusted path
process.

getpattr(2)

NAME

SYNOPSIS

DESCRIPTION

Trusted path flag

Privilege
debugging flag

Network token
mapping process

flag

226 man pages section 2: System Calls • Last Revised 13 Jul 2001

These two-bit flags support per-process label translation. These flags are viewable and
modifiable without restriction.

These fifteen-bit flags support the GFI FLAGS= option in the label_encodings(4)
file. Only a trusted path process can view or modify these flags.

This one-bit flag identifies the process as taking part in diskless booting. This flag can
be viewed and cleared, but cannot be set except by a trusted path process.

This one-bit flag identifies the process as part of the “cut and paste” selection agent.
This flag can be viewed and cleared, but cannot be set except by a trusted path
process.

This one-bit flag identifies the process as a member of the Trusted Printing System.
This flag can be viewed and cleared, but cannot be set except by a trusted path
process.

In short, these flag-related protection policies apply. Any process may view or clear
any process attribute flag except the label translation flags; viewing or clearing the
label translation flags requires that a process have the trusted path attribute. Any
process may set label view flags; setting other flags requires that the setting process
have the trusted path attribute.

getpattr() copies the type process flag of the calling process into the pattr_flag_t
variable addressed by value. Only the lower n bits are copied, where n is the width of
the flag. The higher bits are cleared.

setpattr() copies the lower n bits of value to the type process flag of the calling
process, where n is the width of the selected process flag.

getpattr() and setpattr() return:

0 On success.

−1 On failure, and sets errno to indicate the error.

getpattr() may fail for one of these reasons:

EFAULT The value argument points to a bad address.

EINVAL The type argument is not one of the listed type constants.

EACCES The calling process is not a trusted path process as required to
view the type flag.

setpattr() may fail for one of these reasons:

EFAULT The value argument points to a bad address.

EINVAL The type argument is not one of the listed type constants.

EACCES The calling process is not a trusted path process as required to
modify the type flag.

getpattr(2)

Label view flags

Label translation
flags

Part of diskless
boot flag

Part of selection
agent flag

Part of trusted
printing system

flag

RETURN VALUES

ERRORS

System Calls 227

pattr(1)

getpattr(2)

Trusted Solaris 8
4/01 Reference

Manual

228 man pages section 2: System Calls • Last Revised 13 Jul 2001

getpid, getpgrp, getppid, getpgid – Get process, process group, and parent process IDs

#include <unistd.h>

pid_t getpid(void);

pid_t getpgrp(void);

pid_t getppid(void);

pid_t getpgid(pid_t pid);

The getpid() function returns the process ID of the calling process.

The getpgrp() function returns the process group ID of the calling process.

The getppid() function returns the parent process ID of the calling process.

The getpgid() function returns the process group ID of the process whose process
ID is equal to pid, or the process group ID of the calling process, if pid is equal to 0.

Upon successful completion, these functions return the process group ID. Otherwise,
getpgid() returns (pid_t)−1 and sets errno to indicate the error.

The getpgid() function will fail if:

EPERM The process whose process ID is equal to pid is not in the same
session as the calling process, and the implementation does not
allow access to the process group ID of that process from the
calling process.

ESRCH There is no process with a process ID equal to pid. Or, the calling
process does not have MAC read access to the target process, and
does not have PRIV_PROC_MAC_READ overriding privilege. Or,
the calling process’ real or effective user ID does not match the real
or saved user ID of the target process, and does not have
PRIV_PROC_OWNER overriding privilege.

The getpgid() function may fail if:

EINVAL The value of the pid argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

MAC and DAC policies are added to the getpgid() command. To avoid covert
channel issues, the Trusted Solaris environment does not distinguish between failures
due to policy and those due to nonexistence of the target process.

getpgid(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

System Calls 229

exec(2), fork(2), getsid(2), intro(3)

setpgid(2), setpgrp(2), setsid(2), signal(3C), attributes(5)

getpgid(2)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

230 man pages section 2: System Calls • Last Revised 28 Dec 1996

getpid, getpgrp, getppid, getpgid – Get process, process group, and parent process IDs

#include <unistd.h>

pid_t getpid(void);

pid_t getpgrp(void);

pid_t getppid(void);

pid_t getpgid(pid_t pid);

The getpid() function returns the process ID of the calling process.

The getpgrp() function returns the process group ID of the calling process.

The getppid() function returns the parent process ID of the calling process.

The getpgid() function returns the process group ID of the process whose process
ID is equal to pid, or the process group ID of the calling process, if pid is equal to 0.

Upon successful completion, these functions return the process group ID. Otherwise,
getpgid() returns (pid_t)−1 and sets errno to indicate the error.

The getpgid() function will fail if:

EPERM The process whose process ID is equal to pid is not in the same
session as the calling process, and the implementation does not
allow access to the process group ID of that process from the
calling process.

ESRCH There is no process with a process ID equal to pid. Or, the calling
process does not have MAC read access to the target process, and
does not have PRIV_PROC_MAC_READ overriding privilege. Or,
the calling process’ real or effective user ID does not match the real
or saved user ID of the target process, and does not have
PRIV_PROC_OWNER overriding privilege.

The getpgid() function may fail if:

EINVAL The value of the pid argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

MAC and DAC policies are added to the getpgid() command. To avoid covert
channel issues, the Trusted Solaris environment does not distinguish between failures
due to policy and those due to nonexistence of the target process.

getpgrp(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

System Calls 231

exec(2), fork(2), getsid(2), intro(3)

setpgid(2), setpgrp(2), setsid(2), signal(3C), attributes(5)

getpgrp(2)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

232 man pages section 2: System Calls • Last Revised 28 Dec 1996

getpid, getpgrp, getppid, getpgid – Get process, process group, and parent process IDs

#include <unistd.h>

pid_t getpid(void);

pid_t getpgrp(void);

pid_t getppid(void);

pid_t getpgid(pid_t pid);

The getpid() function returns the process ID of the calling process.

The getpgrp() function returns the process group ID of the calling process.

The getppid() function returns the parent process ID of the calling process.

The getpgid() function returns the process group ID of the process whose process
ID is equal to pid, or the process group ID of the calling process, if pid is equal to 0.

Upon successful completion, these functions return the process group ID. Otherwise,
getpgid() returns (pid_t)−1 and sets errno to indicate the error.

The getpgid() function will fail if:

EPERM The process whose process ID is equal to pid is not in the same
session as the calling process, and the implementation does not
allow access to the process group ID of that process from the
calling process.

ESRCH There is no process with a process ID equal to pid. Or, the calling
process does not have MAC read access to the target process, and
does not have PRIV_PROC_MAC_READ overriding privilege. Or,
the calling process’ real or effective user ID does not match the real
or saved user ID of the target process, and does not have
PRIV_PROC_OWNER overriding privilege.

The getpgid() function may fail if:

EINVAL The value of the pid argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

MAC and DAC policies are added to the getpgid() command. To avoid covert
channel issues, the Trusted Solaris environment does not distinguish between failures
due to policy and those due to nonexistence of the target process.

getpid(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

System Calls 233

exec(2), fork(2), getsid(2), intro(3)

setpgid(2), setpgrp(2), setsid(2), signal(3C), attributes(5)

getpid(2)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

234 man pages section 2: System Calls • Last Revised 28 Dec 1996

getpid, getpgrp, getppid, getpgid – Get process, process group, and parent process IDs

#include <unistd.h>

pid_t getpid(void);

pid_t getpgrp(void);

pid_t getppid(void);

pid_t getpgid(pid_t pid);

The getpid() function returns the process ID of the calling process.

The getpgrp() function returns the process group ID of the calling process.

The getppid() function returns the parent process ID of the calling process.

The getpgid() function returns the process group ID of the process whose process
ID is equal to pid, or the process group ID of the calling process, if pid is equal to 0.

Upon successful completion, these functions return the process group ID. Otherwise,
getpgid() returns (pid_t)−1 and sets errno to indicate the error.

The getpgid() function will fail if:

EPERM The process whose process ID is equal to pid is not in the same
session as the calling process, and the implementation does not
allow access to the process group ID of that process from the
calling process.

ESRCH There is no process with a process ID equal to pid. Or, the calling
process does not have MAC read access to the target process, and
does not have PRIV_PROC_MAC_READ overriding privilege. Or,
the calling process’ real or effective user ID does not match the real
or saved user ID of the target process, and does not have
PRIV_PROC_OWNER overriding privilege.

The getpgid() function may fail if:

EINVAL The value of the pid argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

MAC and DAC policies are added to the getpgid() command. To avoid covert
channel issues, the Trusted Solaris environment does not distinguish between failures
due to policy and those due to nonexistence of the target process.

getppid(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

System Calls 235

exec(2), fork(2), getsid(2), intro(3)

setpgid(2), setpgrp(2), setsid(2), signal(3C), attributes(5)

getppid(2)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

236 man pages section 2: System Calls • Last Revised 28 Dec 1996

getppriv, setppriv – Return or assign a privilege set associated with the invoking
process

cc [flags…] file… -ltsol

#include <tsol/priv.h>

int getppriv(priv_ptype_ttype, priv_set_t*pset);

int setppriv(priv_op_top, priv_ptype_ttype, priv_set_t*pset);

getppriv() copies the type privilege set of the invoking process into the pset address.
type may have one of four values, specified in <tsol/priv.h>:

PRIV_EFFECTIVE The effective privilege set

PRIV_INHERITABLE The inheritable privilege set

PRIV_PERMITTED The permitted privilege set

PRIV_SAVED The saved privilege set

setppriv() assigns or modifies the type privilege set (the target set) of the invoking
process. Modification occurs according to the values of op and of the pset privilege set
(the source set). op values are specified in <tsol/priv.h>:

PRIV_ON Each privilege asserted in the source set is asserted in the target
set.

PRIV_OFF Each privilege asserted in the source set is cleared in the target set.

PRIV_SET The target set is made exactly equal to the source set.

Values for type are the same as those for type in getppriv(), exclusive of
PRIV_SAVED.

If the target set is the permitted set, all privileges cleared from the target set are also
cleared from the effective set. Any attempted assignment of a privilege cleared in the
permitted set is always an error. Attempting to clear a privilege that is already cleared
is not an error.

getppriv() and setppriv() return:

0 On success.

−1 On failure, and set errno to indicate the error.

getppriv() fails if either of these conditions prevails:

EINVAL An illegal or undefined value was supplied for type.

EFAULT pset refers to an invalid address.

setppriv() fails and the target set is not modified if any of these conditions prevails:

EINVAL An illegal or undefined value is supplied for type or op.

getppriv(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 237

EFAULT set refers to an invalid address.

EINVAL In a process privilege set, an attempt is made to assert a privilege
that is cleared in the permitted set of the process.

getfpriv(2), setfpriv(2), priv_to_str(3TSOL), priv_set_to_str(3TSOL),
str_to_priv(3TSOL), str_to_priv_set(3TSOL), priv_macros(5)

getppriv(2)

Trusted Solaris 8
4/01 Reference

Manual

238 man pages section 2: System Calls • Last Revised 08 Mar 1995

getrlimit, setrlimit – Control maximum system resource consumption

#include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlp);

int setrlimit(int resource, const struct rlimit *rlp);

Limits on the consumption of a variety of system resources by a process and each
process it creates may be obtained with the getrlimit() and set with
setrlimit() functions.

Each call to either getrlimit() or setrlimit() identifies a specific resource to be
operated upon as well as a resource limit. A resource limit is a pair of values: one
specifying the current (soft) limit, the other a maximum (hard) limit. Soft limits may
be changed by a process to any value that is less than or equal to the hard limit. A
process may (irreversibly) lower its hard limit to any value that is greater than or
equal to the soft limit. Only a process that has the PRIV_SYS_CONFIG privilege can
raise a hard limit. Both hard and soft limits can be changed in a single call to
setrlimit() subject to the constraints described above. Limits may have an
“infinite” value of RLIM_INFINITY. The rlp argument is a pointer to struct rlimit
that includes the following members:

rlim_t rlim_cur; /* current (soft) limit */
rlim_t rlim_max; /* hard limit */

The type rlim_t is an arithmetic data type to which objects of type int, size_t, and
off_t can be cast without loss of information.

The possible resources, their descriptions, and the actions taken when the current limit
is exceeded are summarized as follows:

RLIMIT_CORE The maximum size of a core file in bytes that may be created by a
process. A limit of 0 will prevent the creation of a core file. The
writing of a core file will terminate at this size.

RLIMIT_CPU The maximum amount of CPU time in seconds used by a process.
This is a soft limit only. The SIGXCPU signal is sent to the process.
If the process is holding or ignoring SIGXCPU, the behavior is
scheduling class defined.

RLIMIT_DATA The maximum size of a process’s heap in bytes. The brk(2)
function will fail with errno set to ENOMEM.

RLIMIT_FSIZE The maximum size of a file in bytes that may be created by a
process. A limit of 0 will prevent the creation of a file. The
SIGXFSZ signal is sent to the process. If the process is holding or
ignoring SIGXFSZ, continued attempts to increase the size of a file
beyond the limit will fail with errno set to EFBIG.

getrlimit(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 239

RLIMIT_NOFILE One more than the maximum value that the system may assign to
a newly created descriptor. This limit constrains the number of file
descriptors that a process may create.

RLIMIT_STACK The maximum size of a process’s stack in bytes. The system will
not automatically grow the stack beyond this limit.

Within a process, setrlimit() will increase the limit on the size
of your stack, but will not move current memory segments to
allow for that growth. To guarantee that the process stack can
grow to the limit, the limit must be altered prior to the execution of
the process in which the new stack size is to be used.

Within a multithreaded process, setrlimit() has no impact on
the stack size limit for the calling thread if the calling thread is not
the main thread. A call to setrlimit() for RLIMIT_STACK
impacts only the main thread’s stack, and should be made only
from the main thread, if at all.

The SIGSEGV signal is sent to the process. If the process is holding
or ignoring SIGSEGV, or is catching SIGSEGV and has not made
arrangements to use an alternate stack (see sigaltstack(2)), the
disposition of SIGSEGV will be set to SIG_DFL before it is sent.

RLIMIT_VMEM The maximum size of a process’s mapped address space in bytes.
If this limit is exceeded, the brk(2) and mmap(2) functions will fail
with errno set to ENOMEM. In addition, the automatic stack
growth will fail with the effects outlined above.

RLIMIT_AS This is the maximum size of a process’s total available memory, in
bytes. If this limit is exceeded, the brk(2), malloc(3C), mmap(2)
and sbrk(2) functions will fail with errno set to ENOMEM. In
addition, the automatic stack growth will fail with the effects
outlined above.

Because limit information is stored in the per-process information, the shell builtin
ulimit command must directly execute this system call if it is to affect all future
processes created by the shell.

The value of the current limit of the following resources affect these implementation
defined parameters:

Limit Implementation Defined Constant

RLIMIT_FSIZE FCHR_MAX

RLIMIT_NOFILE OPEN_MAX

getrlimit(2)

240 man pages section 2: System Calls • Last Revised 1 May 2000

When using the getrlimit() function, if a resource limit can be represented
correctly in an object of type rlim_t, then its representation is returned; otherwise, if
the value of the resource limit is equal to that of the corresponding saved hard limit,
the value returned is RLIM_SAVED_MAX; otherwise the value returned is
RLIM_SAVED_CUR.

When using the setrlimit() function, if the requested new limit is
RLIM_INFINITY, the new limit will be ”no limit”; otherwise if the requested new
limit is RLIM_SAVED_MAX, the new limit will be the corresponding saved hard limit;
otherwise, if the requested new limit is RLIM_SAVED_CUR, the new limit will be the
corresponding saved soft limit; otherwise, the new limit will be the requested value. In
addition, if the corresponding saved limit can be represented correctly in an object of
type rlim_t, then it will be overwritten with the new limit.

The result of setting a limit to RLIM_SAVED_MAX or RLIM_SAVED_CUR is unspecified
unless a previous call to getrlimit() returned that value as the soft or hard limit for
the corresponding resource limit.

A limit whose value is greater than RLIM_INFINITY is permitted.

The exec family of functions also cause resource limits to be saved. See exec(2).

getrlimit() and setrlimit() return:

0 On success.

−1 On failure, and set errno to indicate the error.

The getrlimit() and setrlimit() functions will fail if:

EFAULT The rlp argument points to an illegal address.

EINVAL An invalid resource was specified; or in a setrlimit() call, the
new rlim_cur exceeds the new rlim_max.

EPERM The limit specified to setrlimit() would have raised the
maximum limit value, and the calling process does not have the
PRIV_SYS_CONFIG privilege.

The setrlimit() function may fail if:

EINVAL The limit specified cannot be lowered because current usage is
already higher than the limit.

The getrlimit() and setrlimit() functions have transitional interfaces for 64-bit
file offsets. See lf64(5).

The calling process must have the PRIV_SYS_CONFIG privilege in order to increase a
hard resource limit.

open(2)

getrlimit(2)

RETURN VALUES

ERRORS

USAGE

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

Manual

System Calls 241

brk(2), sigaltstack(2), malloc(3C), signal(3C), signal(5)

getrlimit(2)

SunOS 5.8
Reference Manual

242 man pages section 2: System Calls • Last Revised 1 May 2000

getmsgqcmwlabel, getshmcmwlabel, getsemcmwlabel – Get the CMW labels
associated with System V IPC structures

cc [flags…] file … -ltsol [library…]

#include <sys/tsol/ipcl.h>

int getmsgqcmwlabel(int msgqid, bclabel_t *clabel);

int getshmcmwlabel(int shmid, bclabel_t *clabel);

int getsemcmwlabel(int semid, bclabel_t *clabel);

These functions return the value of the CMW labels associated with message queues,
shared memory, and semaphore structures.

getmsgqcmwlabel() returns the CMW label for the message queue identified by
msgqid into the label buffer to which clabel points. The information label portion of the
CMW label is undefined for message queues; therefore the sensitivity label portion
may have to be extracted using getcsl(3TSOL) in order to be useful.

getshmcmwlabel() returns the CMW label for the shared-memory segment
identified by shmid into the label buffer to which clabel points.

getsemcmwlabel() returns the CMW label for the semaphore array identified by
semid into the label buffer to which clabel points.

The calling process must have mandatory read access to the IPC or must have asserted
the PRIV_IPC_MAC_READ privilege, and must have discretionary read access to the
data structure or must have the PRIV_IPC_DAC_READ privilege in its set of effective
privileges.

getmsgqcmwlabel(), getshmcmwlabel(), and getsemcmwlabel() return:

0 On success.

−1 On failure, and sets errno to indicate the error.

These functions will fail if any of these conditions is true:

EACCES Read access is denied to the calling process, which does not have
one or both of these privileges in its set of effective privileges:
PRIV_IPC_DAC_READ and PRIV_IPC_MAC_READ.

EINVAL msgqid,semid, or shmid is not a valid IPC object identifier.

EFAULT clabel points to an illegal address.

msgget(2), semget(2), shmget(2)

getsemcmwlabel(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Trusted Solaris 8
4/01 Reference

Manual

System Calls 243

getmsgqcmwlabel, getshmcmwlabel, getsemcmwlabel – Get the CMW labels
associated with System V IPC structures

cc [flags…] file … -ltsol [library…]

#include <sys/tsol/ipcl.h>

int getmsgqcmwlabel(int msgqid, bclabel_t *clabel);

int getshmcmwlabel(int shmid, bclabel_t *clabel);

int getsemcmwlabel(int semid, bclabel_t *clabel);

These functions return the value of the CMW labels associated with message queues,
shared memory, and semaphore structures.

getmsgqcmwlabel() returns the CMW label for the message queue identified by
msgqid into the label buffer to which clabel points. The information label portion of the
CMW label is undefined for message queues; therefore the sensitivity label portion
may have to be extracted using getcsl(3TSOL) in order to be useful.

getshmcmwlabel() returns the CMW label for the shared-memory segment
identified by shmid into the label buffer to which clabel points.

getsemcmwlabel() returns the CMW label for the semaphore array identified by
semid into the label buffer to which clabel points.

The calling process must have mandatory read access to the IPC or must have asserted
the PRIV_IPC_MAC_READ privilege, and must have discretionary read access to the
data structure or must have the PRIV_IPC_DAC_READ privilege in its set of effective
privileges.

getmsgqcmwlabel(), getshmcmwlabel(), and getsemcmwlabel() return:

0 On success.

−1 On failure, and sets errno to indicate the error.

These functions will fail if any of these conditions is true:

EACCES Read access is denied to the calling process, which does not have
one or both of these privileges in its set of effective privileges:
PRIV_IPC_DAC_READ and PRIV_IPC_MAC_READ.

EINVAL msgqid,semid, or shmid is not a valid IPC object identifier.

EFAULT clabel points to an illegal address.

msgget(2), semget(2), shmget(2)

getshmcmwlabel(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Trusted Solaris 8
4/01 Reference

Manual

244 man pages section 2: System Calls • Last Revised 30 Sep 1999

getsid – Get process group ID of session leader

#include <unistd.h>

pid_t getsid(pid_t pid);

The function getsid() returns the session ID of the process whose process ID is
equal to pid. If pid is equal to (pid_t)0, getsid() returns the session ID of the
calling process. The calling process must have MAC read access to the target process.
The calling process’ real or effective user ID must match the real or saved user ID of
the target process.

If the calling process is not already a process group leader, setsid() sets the process
group ID and session ID of the calling process to the process ID of the calling process,
and releases the process’s controlling terminal.

See intro(2) for more information on process groups and controlling terminals.

Upon successful completion, getsid() returns the process group ID of the session
leader of the specified process. Otherwise, it returns (pid_t)−1 and sets errno to
indicate the error.

The getsid() function will fail if:

EPERM The process specified by pid is not in the same session as the
calling process, and the implementation does not allow access to
the process group ID of the session leader of that process from the
calling process.

ESRCH There is no process with a process ID equal to pid. Or, the calling
process does not have MAC read access to the target process, and
does not have PRIV_PROC_MAC_READ overriding privilege. Or,
the calling process’ real or effective user ID does not match the real
or saved user ID of the target process, and does not have
PRIV_PROC_OWNER overriding privilege.

MAC and DAC policies are added to the getsid() system call.

intro(2), exec(2), fork(2), getpid(2), setpgid(2)

getsid(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
Manual

System Calls 245

getsldname, fgetsldname – Get file system single-level directory name

cc [flags…] file… -ltsol

#include <tsol/label.h>

int getsldname(char *path_name, bslabel_t *slabel_p, char *name_buf,
const int length);

int fgetsldname(int fd, const bslabel_t *slabel_p, char *name_buf,
const int length);

getsldname() returns the SLD name associated with the sensitivity label to which
slabel_p refers within the context of the file system on which path_name resides.
path_name is the path name of any multilevel directory within the mounted filesystem.
name_buf is a pointer to a buffer of at least SLD_NAME_MAX bytes.

fgetsldname() returns the SLD name associated with the sensitivity label to which
slabel_p refers if the MLD to which descriptor fd refers was opened by the directory
name (not by the fully adorned, multilevel directory name.) If the MLD to which
descriptor fd refers was opened using the fully adorned, multilevel directory name,
fgetsldname() returns the MLD and the SLD name associated with the sensitivity
label to which slabel_p refers.

If it does not exist, the single-level directory that corresponds to slabel_p is created with
the attributes of the parent multilevel directory, the specified sensitivity label, and an
ADMIN_LOW information label. If the sensitivity label of the calling process is equal to
slabel_p, no additional privileges are needed. If the sensitivity label of the calling
process is strictly dominated by slabel_p, the calling process may assert the
PRIV_FILE_UPGRADE_SL privilege to create the directory. Otherwise, the calling
process may assert the PRIV_FILE_DOWNGRADE_SL privilege to create the directory.

See for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

getsldname() and fgetsldname() return:

0 On success.

–1 On failure and set errno to indicate the error.

getsldname() fails if any of these conditions is true:

EACCES Search permission is denied for a component of the path prefix of
path_name. To override this restriction, the calling process may
assert one or both of these privileges: PRIV_FILE_DAC_SEARCH
and PRIV_FILE_MAC_SEARCH.

getsldname(2)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

RETURN VALUES

ERRORS

246 man pages section 2: System Calls • Last Revised 30 Sep 1999

The single-level directory specified does not exist, the system is
configured to require write access to create a single-level directory,
and the calling process does not have discretionary write access to
path_name. To override this restriction, the calling process may
assert the PRIV_FILE_DAC_WRITE privilege.

EFAULT name_buf, path_name, or slabel_p points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file
system

ELOOP Too many symbolic links were encountered in translating
path_name.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX.

A pathname component is longer than NAME_MAX [see
sysconf(3C)] while _POSIX_NO_TRUNC is in effect.
[See pathconf(2).]

ENOENT The file to which path_name refers does not exist.

ENOTDIR A component of the path prefix of path_name is not a directory.

EPERM The SLD that corresponds to slabel_p does not exist and one of
these conditions is true: the sensitivity label of the calling process
is strictly dominated by slabel_p and the calling process has not
asserted the PRIV_FILE_DOWNGRADE privilege; the sensitivity
label of the calling process is not dominated by slabel_p and the
calling process has not asserted the PRIV_FILE_DOWNGRADE_SL
privilege.

fgetsldname() fails if any of these conditions is true:

EBADF fd is not a valid open file descriptor.

EFAULT name_buf or slabel_p points to an invalid address.

EINVAL fd does not refer to a multilevel directory.

EIO An I/O error occurred while reading from the file system.

EPERM The SLD that corresponds to slabel_p does not exist and one of
these conditions is true: the sensitivity label of the calling process
is strictly dominated by slabel_p and the calling process has not
asserted the PRIV_FILE_UPGRADE_SL privilege; the sensitivity
label of the calling process is not dominated by slabel_p and the
calling process has not asserted the PRIV_FILE_DOWNGRADE_SL
privilege.

If the file system that contains path_name or the object referred to by fd does not
support MLDs, no error is returned and the first SLD_NAME_MAX bytes in the name_buf
are cleared.

getsldname(2)

WARNINGS

System Calls 247

fgetmldadorn(2), getmldadorn(2)

sysconf(3C)

getsldname(2)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

248 man pages section 2: System Calls • Last Revised 30 Sep 1999

kill – Send a signal to a process or a group of processes

#include <sys/types.h>

#include <signal.h>

int kill(pid_t pid, int sig);

kill() sends a signal to a process or a group of processes specified by pid. The signal
that is to be sent, specified by sig, is either one from the list given in signal() (see
signal(3HEAD)), or 0. If sig is 0 (the null signal), error checking is performed but no
signal is actually sent. This method can be used to check the validity of pid.

The sending process must have MAC write access to the receiving processes. The real
or effective user ID of the sending process must match the real or saved [from
exec(2)] user ID of the receiving process unless the sending process has the
PRIV_PROC_OWNER effective privilege, or sig is SIGCONT and the sending process has
the same session ID as the receiving process.

If pid is greater than 0, sig will be sent to the process whose process ID is equal to pid.

If pid is negative but not (pid_t)−1, sig will be sent to all processes whose process
group ID is equal to the absolute value of pid and for which the process has
permission to send a signal.

If pid is 0, sig will be sent to all processes excluding special processes (see intro(2))
whose process group ID is equal to the process group ID of the sender.

If pid is (pid_t)–1 and the sender does not have PRIV_PROC_OWNER in its effective
privilege set, sig will be sent to all processes excluding special processes whose real
user ID is equal to the effective user ID of the sender.

kill() returns:

0 On success.

−1 On failure, does not send a signal, and sets errno to indicate the error.

The kill() function will fail if:

EINVAL The sig argument is not a valid signal number.

EPERM The calling process failed in MAC write access to the receiving
process and does not have PRIV_PROC_MAC_WRITE overriding
privilege.

sig is SIGKILL and pid is (pid_t)1. (That is, the calling process
does not have permission to send the signal to any of the processes
specified by pid).

The effective user of the calling process does not match the real or
saved user and the sending process does not have

kill(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 249

PRIV_PROC_OWNER privilege, and the calling process is not
sending SIGCONT to a process that shares the same session ID.

ESRCH No process or process group can be found corresponding to that
specified by pid.

The sigsend(2) function provides a more versatile way to send signals to processes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

Process MAC write policy and the process owner policy is checked.

exec(2), getpid(2), getsid(2), sigsend(2), intro(3)

kill(1), setpgrp(2), sigaction(2), signal(3C), signal(3HEAD), attributes(5)

kill(2)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
ManualSunOS 5.8

Reference Manual

250 man pages section 2: System Calls • Last Revised 30 Jun 2000

chown, lchown, fchown – change owner and group of a file

#include <unistd.h>

#include <sys/types.h>

int chown(const char *path, uid_t owner, gid_t group);

int lchown(const char *path, uid_t owner, gid_t group);

int fchown(int fildes, uid_t owner, gid_t group);

The chown() function sets the owner ID and group ID of the file specified by path or
referenced by the open file descriptor fildes to owner and group respectively. If owner or
group is specified as −1, chown() does not change the corresponding ID of the file.

The lchown() function sets the owner ID and group ID of the named file in the same
manner as chown(), unless the named file is a symbolic link. In this case, lchown()
changes the ownership of the symbolic link file itself, while chown() changes the
ownership of the file or directory to which the symbolic link refers.

If chown(), lchown(), or fchown() is invoked, the set-user-ID and set-group-ID
bits of the file mode, chmod(2). respectively, are cleared. See chmod(2). To bypass this
restriction, the process may assert the PRIV_FILE_SETID privilege.

The operating system has a configuration option, _POSIX_CHOWN_RESTRICTED, to
restrict ownership changes for the chown(), lchown(), and fchown() functions.
When _POSIX_CHOWN_RESTRICTED is not in effect, the effective user ID of the
process must match the owner of the file. To override this restriction, the calling
process must assert the PRIV_FILE_CHOWN privilege. When
_POSIX_CHOWN_RESTRICTED is not in effect, the effective user ID of the process must
match the owner of the file or the process must be the super-user to change the
ownership of a file. When _POSIX_CHOWN_RESTRICTED is in effect, the chown(),
lchown(), and fchown() functions require that the calling process assert the
PRIV_FILE_CHOWN privilege to change the user ID of a file. To change the group ID
of a file, the process must be the owner of the file and the new group ID must be the
group of the process ID or must be in the supplementary group list of the process. To
override this restriction, the calling process may assert the PRIV_FILE_CHOWN
privilege.

set rstchown = 1

To disable this option, include the following line in /etc/system:

set rstchown = 0

See system(4) and fpathconf(2).

Upon successful completion, chown(), fchown() and lchown() mark for update
the st_ctime field of the file.

lchown(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 251

chown() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The chown() and lchown() functions will fail if:

EACCES Search permission is denied on a component of the
path prefix of path. To override this restriction, the
calling process may assert one or both of these
privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

Write permission is denied on path or fildes. To override
this restriction, the calling process may assert the
PRIV_FILE_MAC_WRITE privilege.

EFAULT The path argument points to an illegal address.

EINTR A signal was caught during the execution of the
chown() or lchown() function.

EINVAL The group or owner argument is out of range.

EIO An I/O error occurred while reading from or writing to
the file system.

ELOOP Too many symbolic links were encountered in
translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or
the length of a path component exceeds NAME_MAX
while _POSIX_NO_TRUNC is in effect.

ENOLINK The path argument points to a remote machine and the
link to that machine is no longer active.

ENOENT Either a component of the path prefix or the file
referred to by path does not exist or is a null pathname.

ENOTDIR A component of the path prefix of path is not a
directory.

EPERM The effective user ID does not match the owner of the
file. If _POSIX_CHOWN_RESTRICTED is set, the calling
process must assert the PRIV_FILE_CHOWN privilege.
If _POSIX_CHOWN_RESTRICTED is not set, the calling
process may assert the PRIV_FILE_CHOWN privilege.

EROFS The named file resides on a read-only file system.

The fchown() function will fail if:

EBADF The fildes argument is not an open file descriptor.

lchown(2)

RETURN VALUES

ERRORS

252 man pages section 2: System Calls • Last Revised 30 Sep 1999

EIO An I/O error occurred while reading from or writing to
the file system.

EINTR A signal was caught during execution of the function.

ENOLINK The fildes argument points to a remote machine and the
link to that machine is no longer active.

EINVAL The group or owner argument is out of range.

EPERM The effective user ID does not match the owner of the
file, or the process is not the super-user and
_POSIX_CHOWN_RESTRICTED indicates that such
privilege is required.

EROFS The named file referred to by fildes resides on a
read-only file system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level chown() is Async-Signal-Safe

Appropriate privilege is required to override access checks.

When the ownership of path and fildes is changed, the set-user-ID and set-group-ID
bits are cleared. The calling process may assert the PRIV_FILE_SETID privilege to
bypass this restriction.

To change the user ID of the file when the calling process does not own the file and
_POSIX_CHOWN_RESTRICTED is not in effect, the calling process may assert the
PRIV_FILE_CHOWN privilege.

To change the group ID of the file when the calling process does not own the file, and
the new group ID is not in the group ID of the process or in the supplementary group
list of the process, and _POSIX_CHOWN_RESTRICTED is not in effect, the calling
process may assert the PRIV_FILE_CHOWN privilege.

chgrp(1), chown(1), chmod(2)

attributes(5)

lchown(2)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

System Calls 253

getcmwlabel, lgetcmwlabel, fgetcmwlabel – get file CMW label

cc [flags…] file … -ltsol [library…]

#include <tsol/label.h>

int getcmwlabel(char *path, bclabel_t *label_p);

int lgetcmwlabel(char *path, bclabel_t *label_p);

int fgetcmwlabel(int fd, bclabel_t *label_p);

getcmwlabel() obtains the CMW label of the file named by path. Mandatory read
access to the final component of path is required or the calling process must have
PRIV_FILE_MAC_READ in its set of effective privileges. Discretionary read, write or
execute permission to the final component of path is not required, but all directories in
the path prefix of path must be searchable.

lgetcmwlabel() is like getcmwlabel() except in the case where the final
component of path is a symbolic link, in which case lgetcmwlabel() returns the
CMW label of the link, while getcmwlabel() returns the CMW label of the file to
which the link refers.

fgetcmwlabel() obtains the CMW label of an open file referred to by the argument
descriptor, such as would be obtained by an open(2) call. If the descriptor is only open
for writing, then mandatory read access to the object is required or the calling process
must have PRIV_FILE_MAC_READ in its set of effective privileges.

label_p is a pointer to an opaque CMW label structure.

An exception to the access rules applies in the case of pty pseudo-terminals
(/dev/ptyp* and /dev/ttyp*). Normally mandatory read access is required or the
calling process must have PRIV_FILE_MAC_READ in its set of effective privileges. If
the specified file is a pty device file and the calling process does not have mandatory
read access or PRIV_FILE_MAC_READ is not in its set of effective privileges, each
function returns success and sets label_p to ADMIN_LOW.

getcmwlabel(), lgetcmwlabel() and fgetcmwlabel() return:

0 On success.

−1 On failure, and set errno to indicate the error.

getcmwlabel() and lgetcmwlabel() fail if one or more of the following are true:

EACCES Search permission is denied for a component of the path prefix of
path. To override this restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

The calling process does not have mandatory read access to path
because the sensitivity label of the calling process does not

lgetcmwlabel(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

254 man pages section 2: System Calls • Last Revised 24 May 2001

dominate the sensitivity label of the final component of path and
the calling process does not have PRIV_FILE_MAC_READ in its set
of effective privileges.

EFAULT label_p or path points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file
system.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX.

A pathname component is longer than NAME_MAX
while _POSIX_NO_TRUNC is in effect (see
pathconf(2)).

ENOENT The file referred to by path does not exist.

ENOTDIR A component of the path prefix of path is not a directory.

EPERM The calling process does not have mandatory read access to path
because the sensitivity label of path is outside the calling process’
clearance and the calling process does not have
PRIV_FILE_MAC_READ in its set of effective privileges.

fgetcmwlabel() fails if one or more of the following are true:

EACCES The descriptor is only open for writing and the calling process
does not have mandatory read access to the object referred to by
the descriptor because the sensitivity label of the calling process
does not dominate the sensitivity label of the object and the calling
process does not have PRIV_FILE_MAC_READ in its set of
effective privileges.

EBADF fd is not a valid open file descriptor.

EFAULT label_p points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file
system.

pathconf(2), open(2), setcmwlabel(2)

lgetcmwlabel(2)

Trusted Solaris 8
4/01 Reference

Manual

System Calls 255

link – Link to a file

#include <unistd.h>

int link(const char *existing, const char *new);

The link() function creates a new link (directory entry) for the existing file and
increments its link count by one. The existing argument points to a path name naming
an existing file. The new argument points to a pathname naming the new directory
entry to be created.

For creation of hard links, both files must be on the same file system. Both the old and
the new link share equal access and rights to the underlying object. A calling process
that has asserted the PRIV_SYS_CONFIG privilege may make multiple links to a
directory.

Upon successful completion, link() marks for update the st_ctime field of the file.
Also, the st_ctime and st_mtime fields of the directory that contains the new entry
are marked for update.

Upon successful completion, 0 is returned. Otherwise, −1 is returned, no link is
created, and errno is set to indicate the error.

The link() function will fail if:

EACCES A component of either path prefix denies search permission. To
override this restriction, the calling process may assert one or both
of these privileges: PRIV_FILE_MAC_SEARCH and
PRIV_FILE_DAC_SEARCH.

The requested link requires writing in a directory with a mode that
denies write permission. To override this restriction, the calling
process may assert one or both of these privileges:
PRIV_FILE_MAC_WRITE and PRIV_FILE_DAC_WRITE.

The calling process needs both mandatory read and write access to
existing and does not have that combination. To override this
restriction, the calling process may assert one or both of these
privileges: PRIV_FILE_MAC_READ and PRIV_FILE_MAC_WRITE.

EDQUOT The directory where the entry for the new link is being placed
cannot be extended because the user’s quota of disk blocks on that
file system has been exhausted.

EEXIST The link named by new exists.

EFAULT The existing or new argument points to an illegal address.

EINTR A signal was caught during the execution of the link() function.

ELOOP Too many symbolic links were encountered in translating path.

EMLINK The maximum number of links to a file would be exceeded.

link(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

256 man pages section 2: System Calls • Last Revised 28 Dec 1996

ENAMETOOLONG The length of the existing or new argument exceeds PATH_MAX, or
the length of a existing or new component exceeds NAME_MAX
while _POSIX_NO_TRUNC is in effect.

ENOENT The existing or new argument is a null pathname; a component of
either path prefix does not exist; or the file named by existing does
not exist.

ENOLINK The existing or new argument points to a remote machine and the
link to that machine is no longer active.

ENOSPC The directory that would contain the link cannot be extended.

ENOTDIR A component of either path prefix is not a directory.

EPERM The file named by existing is a directory and the calling process has
not asserted the PRIV_SYS_CONFIG privilege.

EROFS The requested link requires writing in a directory on a read-only
file system.

EXDEV The link named by new and the file named by existing are on
different logical devices (file systems).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

Appropriate privilege is required to override access checks.

If existing is a directory, the calling process must assert the PRIV_SYS_CONFIG
privilege.

symlink(2), unlink(2)

link(2)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual

System Calls 257

llseek – move extended read/write file pointer

#include <sys/types.h>

#include <unistd.h>

offset_t llseek(int fildes, offset_t offset, int whence);

The llseek() function sets the 64-bit extended file pointer associated with the open
file descriptor specified by fildes as follows:

� If whence is SEEK_SET, the pointer is set to offset bytes.

� If whence is SEEK_CUR, the pointer is set to its current location plus offset.

� If whence is SEEK_END, the pointer is set to the size of the file plus offset.

On success, llseek() returns the resulting pointer location, measured in bytes from
the beginning of the file.

Discretionary access checks have already been performed when fildes was opened.

Most mandatory access checks have already been performed when fildes was opened.
If fildes is open for writing, a check is made that the calling process has mandatory
read access in case fildes is open for a write-up. The calling process may assert the
PRIV_FILE_MAC_READ privilege to bypass this check. If mandatory read access is not
granted, this system call succeeds, but offset data is not returned.

Upon successful completion, llseek() returns the resulting pointer location as
measured in bytes from the beginning of the file. Remote file descriptors are the only
ones that allow negative file pointers. Otherwise, −1 is returned, the file pointer
remains unchanged, and errno is set to indicate the error.

The llseek() function will fail if:

EBADF The fildes argument is not an open file descriptor.

EINVAL The whence argument is not SEEK_SET, SEEK_CUR, or SEEK_END;
the offset argument is not a valid offset for this file system type; or
the fildes argument is not a remote file descriptor, and the resulting
file pointer would be negative.

ESPIPE The fildes argument is associated with a pipe or FIFO.

Appropriate privilege is required to override access checks.

Discretionary access checks have already been performed when fildes was opened.

Most mandatory access checks have already been performed when fildes was opened.
The calling process may assert the PRIV_FILE_MAC_READ privilege to perform a
write-up.

creat(2), fcntl(2), lseek(2), open(2)

dup(2)

llseek(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

258 man pages section 2: System Calls • Last Revised 30 Sep 1999

lseek – move read/write file pointer

#include <sys/types.h>

#include <unistd.h>

off_t lseek(int fildes, off_t offset, int whence);

The lseek() function sets the file pointer associated with the open file descriptor
specified by fildes as follows:

� If whence is SEEK_SET, the pointer is set to offset bytes.

� If whence is SEEK_CUR, the pointer is set to its current location plus offset.

� If whence is SEEK_END, the pointer is set to the size of the file plus offset.

The symbolic constants SEEK_SET, SEEK_CUR, and SEEK_END are defined in the
header <unistd.h>.

Some devices are incapable of seeking. The value of the file pointer associated with
such a device is undefined.

The lseek() function allows the file pointer to be set beyond the existing data in the
file. If data are later written at this point, subsequent reads in the gap between the
previous end of data and the newly written data will return bytes of value 0 until data
are written into the gap.

If fildes is a remote file descriptor and offset is negative, lseek() returns the file
pointer even if it is negative. The lseek() function will not, by itself, extend the size
of a file.

Discretionary access checks have already been performed when fildes was opened.

Most mandatory access checks have already been performed when fildes was opened.
If fildes is open for writing, a check is made that the calling process has mandatory
read access in case fildes is open for a write-up. The calling process may assert the
PRIV_FILE_MAC_READ privilege to bypass this check. If mandatory read access is not
granted, this system call succeeds; but offset data is not returned.

Upon successful completion, the resulting offset, as measured in bytes from the
beginning of the file, is returned. Otherwise, (off_t)−1 is returned, the file offset
remains unchanged, and errno is set to indicate the error.

The lseek() function will fail if:

EBADF The fildes argument is not an open file descriptor.

EINVAL The whence argument is not SEEK_SET, SEEK_CUR, or SEEK_END;
or the fildes argument is not a remote file descriptor and the
resulting file pointer would be negative.

EOVERFLOW The resulting file offset would be a value which cannot be
represented correctly in an object of type off_t for regular files.

lseek(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 259

ESPIPE The fildes argument is associated with a pipe, a FIFO, or a socket.

The lseek() function has a transitional interface for 64-bit file offsets. See lf64(5).

In multithreaded applications, using lseek() in conjunction with a read(2) or
write(2) call on a file descriptor shared by more than one thread is not an atomic
operation. To ensure atomicity, use pread() or pwrite().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

Appropriate privilege is required to override access checks.

Discretionary access checks have already been performed when fildes was opened.

Most mandatory access checks have already been performed when fildes was opened.
The calling process may assert the PRIV_FILE_MAC_READ privilege to perform a
write-up.

creat(2), fcntl(2), lseek(2), open(2)

dup(2), attributes(5)

lseek(2)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

260 man pages section 2: System Calls • Last Revised 30 Sep 1999

setcmwlabel, fsetcmwlabel, lsetcmwlabel – Set CMW label of a file

cc [flags…] file … -ltsol [library…]

#include <tsol/label.h>

int setcmwlabel(const char *path, const bclabel_t *label_p, const
setting_flag_tflag);

int fsetcmwlabel(int fd, const bclabel_t *label_p, const
setting_flag_t flag);

int lsetcmwlabel(const char *path, const bclabel_t *label_p, const
setting_flag_t flag);

The file that is named by path or referred to by fd has its CMW label changed as
specified provided the file resides on a file system that supports the setting of labels on
individual objects.

If flag equals SETCL_ALL, then both parts of the file’s CMW label are to be set and the
following checks must be made:

� The sensitivity label of label_p must be in the sensitivity label range of the
containing file system.

� If the sensitivity label of label_p equals the existing sensitivity label, then neither
PRIV_FILE_UPGRADE_SL nor PRIV_FILE_DOWNGRADE_SL is required.

� If the sensitivity label of label_p dominates but does not equal the existing
sensitivity label (an upgrade), then the calling process must have
PRIV_FILE_UPGRADE_SL in its set of effective privileges.

� If the sensitivity label of label_p does not dominate the existing sensitivity label (a
downgrade), then the calling process must have PRIV_FILE_DOWNGRADE_SL in
its set of effective privileges.

� If the sensitivity label operation is a downgrade and the calling process is not the
owner of the file, then the calling process must have PRIV_FILE_OWNER in its set
of effective privileges.

If flag equals SETCL_SL, then the sensitivity label of the file’s CMW label is to be set
and the following checks must be made:

� The sensitivity label of label_p must be in the sensitivity label range of the
containing file system.

� If the sensitivity label of label_p equals the existing sensitivity label, then neither
PRIV_FILE_UPGRADE_SL nor PRIV_FILE_DOWNGRADE_SL is required.

� If the sensitivity label of label_p dominates but does not equal the existing
sensitivity label (an upgrade), then the calling process must have
PRIV_FILE_UPGRADE_SL in its set of effective privileges.

� If the sensitivity label of label_p does not dominate the existing sensitivity label (a
downgrade), then the calling process must have PRIV_FILE_DOWNGRADE_SL in

lsetcmwlabel(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 261

its set of effective privileges.

� If the operation is a sensitivity label downgrade and the calling process is not the
owner of the file, then the calling process must have PRIV_FILE_OWNER in its set
of effective privileges.

There are several checks that are applicable if the sensitivity label is being changed:

� The calling process must have discretionary write access to the file.

� If there is an open file descriptor reference to the file, then the calling process must
have PRIV_PROC_TRANQUIL in its set of effective privileges.

setcmwlabel() and lsetcmwlabel() function identically except when the final
component is a symbolic link. If the final component is a symbolic link,
lsetcmwlabel() sets the CMW label of the symbolic link, but setcmwlabel() sets
the CMW label of the object referred to by the symbolic link.

If the sensitivity label is being set, then the calling process is responsible for verifying
that sensitivity label is within the accreditation range of the system.

setcmwlabel(), fsetcmwlabel(), and lsetcmwlabel() return:

0 On success.

−1 On failure, and set errno to indicate the error.

setcmwlabel() and lsetcmwlabel() fail and the file is unchanged if any of these
conditions prevails:

EACCES Search permission is denied for a component of the path prefix of
path.

The calling process does not have mandatory write access to the
final component of path because the sensitivity label of the final
component of path does not dominate the sensitivity label of the
calling process and the calling process does not have
PRIV_FILE_MAC_WRITE in its set of effective privileges.

The calling process does not have discretionary write access to the
final component of path.

EBUSY There is an open file descriptor reference to the final component of
path and the calling process does not have PRIV_PROC_TRANQUIL
in its set of effective privileges.

EFAULT path or label_p points outside the allocated address space of the
process.

EINVAL path does not reside on a file system that supports the setting of
labels on individual objects.

lsetcmwlabel(2)

NOTES

RETURN VALUES

ERRORS

262 man pages section 2: System Calls • Last Revised 25 Aug 2000

The sensitivity label of label_p is not in the sensitivity label range of
the containing file system.

EIO An I/O error occurred while reading from or writing to the file
system.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX.

A pathname component is longer than NAME_MAX [see
sysconf(3C)] while _POSIX_NO_TRUNC is in effect.
See pathconf(2).

ENOENT The file referred to by path does not exist.

ENOTDIR A component of the path prefix of path is not a directory.

EPERM The calling process does not have mandatory write access to the
final component of path because the sensitivity label of the final
component of path is outside the clearance of the calling process
and the calling process does not have PRIV_FILE_MAC_WRITE in
its set of effective privileges.

A calling process that is not the owner of the file attempted to
downgrade the sensitivity label associated with the final
component of path but did not have PRIV_FILE_OWNER in its set
of effective privileges.

The calling process attempted to upgrade the sensitivity label
associated with the final component of path but did not have
PRIV_FILE_UPGRADE_SL in its set of effective privileges.

The calling process attempted to downgrade the sensitivity label
associated with the final component of path but did not have
PRIV_FILE_DOWNGRADE_SL in its set of effective privileges.

EROFS The file referred to by path resides on a read-only file system.

fsetcmwlabel() fails if any of these conditions prevails:

EBADF fd does not refer to a valid descriptor.

EBUSY There is an open file descriptor reference to the object referred to
by the descriptor and the calling process does not have
PRIV_PROC_TRANQUIL in its set of effective privileges.

EFAULT label_p points outside the allocated address space of the process.

EINVAL fd refers to a socket, not a file.

fd does not refer to a file on a file system that supports the setting
of labels on individual objects.

lsetcmwlabel(2)

System Calls 263

The sensitivity label of label_p is not in the sensitivity label range of
the containing file system.

EIO An I/O error occurred while reading from or writing to the file
system.

The calling process is not the owner of the file, attempted to
downgrade the sensitivity label associated with the file, but did
not have PRIV_FILE_OWNER in its set of effective privileges.

The calling process attempted to upgrade the sensitivity label
associated with the file but did not have
PRIV_FILE_UPGRADE_SL in its set of effective privileges.

The calling process attempted to downgrade the sensitivity label
associated with the file but did not have
PRIV_FILE_DOWNGRADE_SL in its set of effective privileges.

EPERM The calling process does not have mandatory write access to the
object referred to by fd because the sensitivity label of the object
referred to by fd is outside the clearance of the calling process and
the calling process does not have PRIV_FILE_MAC_WRITE in its
set of effective privileges.

A calling process that is not the owner of the file attempted to
downgrade the sensitivity label associated with the object referred
to by fd but did not have PRIV_FILE_OWNER in its set of effective
privileges.

The calling process attempted to upgrade the sensitivity label
associated with the object referred to by fd but did not have
PRIV_FILE_UPGRADE_SL in its set of effective privileges.

The calling process attempted to downgrade the sensitivity label
associated with the object referred to by fd but did not have
PRIV_FILE_DOWNGRADE_SL in its set of effective privileges.

EROFS The file referred to by fd resides on a read-only file system.

getcmwfsrange(2), getcmwlabel(2)

lsetcmwlabel(2)

Trusted Solaris 8
4/01 Reference

Manual

264 man pages section 2: System Calls • Last Revised 25 Aug 2000

stat, lstat, fstat – get file status

#include <sys/types.h>

#include <sys/stat.h>

int stat(const char *path, struct stat *buf);

int lstat(const char *path, struct stat *buf);

int fstat(int fildes, struct stat *buf);

The stat() function obtains information about the file pointed to by path. Read,
write, or execute permission of the named file is not required, but all directories listed
in the path name leading to the file must be searchable.

The lstat() function obtains file attributes similar to stat(), except when the
named file is a symbolic link; in that case lstat() returns information about the link,
while stat() returns information about the file the link references.

The fstat() function obtains information about an open file known by the file
descriptor fildes, obtained from a successful open(2), creat(2), dup(2), fcntl(2), or
pipe(2) function.

The buf argument is a pointer to a stat structure into which information is placed
concerning the file. A stat structure includes the following members:

mode_t st_mode; /* File mode (see mknod(2)) */
ino_t st_ino; /* Inode number */
dev_t st_dev; /* ID of device containing */

/* a directory entry for this file */
dev_t st_rdev; /* ID of device */

/* This entry is defined only for */
/* char special or block special files */

nlink_t st_nlink; /* Number of links */
uid_t st_uid; /* User ID of the file’s owner */
gid_t st_gid; /* Group ID of the file’s group */
off_t st_size; /* File size in bytes */
time_t st_atime; /* Time of last access */
time_t st_mtime; /* Time of last data modification */
time_t st_ctime; /* Time of last file status change */

/* Times measured in seconds since */
/* 00:00:00 UTC, Jan. 1, 1970 */

long st_blksize; /* Preferred I/O block size */
blkcnt_t st_blocks; /* Number of 512 byte blocks allocated*/

Descriptions of structure members are as follows:

st_mode The mode of the file as described in mknod(2). In addition to the
modes described in mknod(), the mode of a file may also be
S_IFLNK if the file is a symbolic link. S_IFLNK may only be
returned by lstat().

st_ino This field uniquely identifies the file in a given file system. The
pair st_ino and st_dev uniquely identifies regular files.

lstat(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 265

st_dev This field uniquely identifies the file system that contains the file.
Its value may be used as input to the ustat() function to
determine more information about this file system. No other
meaning is associated with this value.

st_rdev This field should be used only by administrative commands. It is
valid only for block special or character special files and only has
meaning on the system where the file was configured.

st_nlink This field should be used only by administrative commands.

st_uid The user ID of the file’s owner.

st_gid The group ID of the file’s group.

st_size For regular files, this is the address of the end of the file. For block
special or character special, this is not defined. See also pipe(2).

st_atime Time when file data was last accessed. Changed by the following
functions: creat(), mknod(), pipe(), utime(2), and read(2).

st_mtime Time when data was last modified. Changed by the following
functions: creat(), mknod(), pipe(), utime(), and write(2).

st_ctime Time when file status was last changed. Changed by the following
functions: chmod(), chown(), creat(), link(2), mknod(),
pipe(), unlink(2), utime(), and write().

st_blksize A hint as to the "best" unit size for I/O operations. This field is not
defined for block special or character special files.

st_blocks The total number of physical blocks of size 512 bytes actually
allocated on disk. This field is not defined for block special or
character special files.

stat(), lstat(), and fstat() require mandatory read access to the final
component of path. If the file descriptor is open only for writing, fstat() requires
mandatory read access to the object to which the descriptor refers. To override these
restrictions, the calling process may assert the PRIV_FILE_MAC_READ privilege in its
set of effective privileges.

If the calling process does not have mandatory read access, stat(), lstat(), and
fstat() return fixed values for some elements of the stat structure.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The stat(), fstat(), and lstat() functions will fail if:

EOVERFLOW The file size in bytes or the number of blocks allocated to the file or
the file serial number cannot be represented correctly in the
structure pointed to by buf.

lstat(2)

RETURN VALUES

ERRORS

266 man pages section 2: System Calls • Last Revised 20 Apr 2000

The stat() and lstat() functions will fail if:

EACCES Search permission is denied for a component of the path prefix. To
override this restriction, the calling process may assert one or both
of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

EFAULT The buf or path argument points to an illegal address.

EINTR A signal was caught during the execution of the stat() or
lstat() function.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length
of a path component exceeds NAME_MAX while _POSIX_NO_TRUNC
is in effect.

ENOENT The named file does not exist or is the null pathname.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOTDIR A component of the path prefix is not a directory.

EOVERFLOW A component is too large to store in the structure pointed to by buf.

The fstat() function will fail if:

EBADF The fildes argument is not a valid open file descriptor.

EFAULT The buf argument points to an illegal address.

EINTR A signal was caught during the execution of the fstat()
function.

ENOLINK The fildes argument points to a remote machine and the link to that
machine is no longer active.

EOVERFLOW A component is too large to store in the structure pointed to by buf.

The stat(), fstat(), and lstat() functions have transitional interfaces for 64-bit
file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level stat() and fstat() are Async-Signal-Safe

stat(), lstat(), and fstat() require mandatory read access to the final
component of path. If the file descriptor is open only for writing, fstat() requires

lstat(2)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

System Calls 267

mandatory read access to the object to which the descriptor refers. To override these
restrictions, the calling process may assert the PRIV_FILE_MAC_READ privilege in its
set of effective privileges.

To override access restrictions, the calling process of stat() or lstat() may also
assert one or both of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

Certain uses of this interface may present a covert channel. If a covert channel is
exploited, the execution of the process may be delayed. To bypass this delay, the
process may assert the PRIV_PROC_NODELAY privilege.

chmod(2), chown(2), creat(2), fcntl(2), link(2), mknod(2), open(2), read(2),
unlink(2), write(2)

dup(2), pipe(2), time(2), utime(2), fattach(3C), stat(3HEAD), attributes(5)

If you use chmod(2) to change the file group owner permissions on a file with ACL
entries, both the file group owner permissions and the ACL mask are changed to the
new permissions. Be aware that the new ACL mask permissions may change the
effective permissions for additional users and groups who have ACL entries on the
file.

lstat(2)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual
NOTES

268 man pages section 2: System Calls • Last Revised 20 Apr 2000

mkdir – make a directory

#include <sys/types.h>

#include <sys/stat.h>

int mkdir(const char *path, mode_t mode);

The mkdir() function creates a new directory named by the path name pointed to by
path. The mode of the new directory is initialized from mode (see chmod(2) for values
of mode). The protection part of the mode argument is modified by the process’ file
creation mask (see umask(2)).

The directory’s owner ID is set to the process’s effective user ID. The directory’s group
ID is set to the process’s effective group ID, or if the S_ISGID bit is set in the parent
directory, then the group ID of the directory is inherited from the parent. The
S_ISGID bit of the new directory is inherited from the parent directory.

If path is a symbolic link, it is not followed.

The newly created directory is empty with the exception of entries for itself (.) and its
parent directory (. .).

Upon successful completion, mkdir() marks for update the st_atime, st_ctime,
and st_mtime fields of the directory. Also, the st_ctime and st_mtime fields of the
directory that contains the new entry are marked for update. This system call will not
create a directory in a multilevel directory. Single-level directories are automatically
created as needed during path-name lookup and the getsldname(2) system call.

The Trusted Solaris operating environment distinguishes directories with sensitivity
labels from unlabeled directories through special prefixes called adornments that are
appended to the beginning of the directory’s name. See setfsattr(1M). A multilevel
directory has the default adornment ".MLD."; a single-level directory has the
adornment ".SLD.n/", where n is a number. If the directory name includes the
multilevel adornment, the directory will be created as a multilevel directory, provided
all other conditions for success are met. Use the mldpwd command within a multilevel
directory to see the adorned names of the multilevel directory and the single-level
directories. For example, executing the mldpwd command within the user_name home
directory shows this output: /export/home/.MLD.user_name/.SLD.2

Use the mldrealpath command to see the adorned name for a file or directory
within a multilevel directory. For example, mldrealpath file.c shows this output:
/export/home/.MLD.user_name/.SLD.2/file.c

The new directory is created with its sensitivity label set to the sensitivity label of the
calling process.

If the new directory’s containing directory has a default access control list (ACL), the
default and access ACLs of the new directory are set to the default ACL of the
containing directory.

mkdir(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 269

mkdir() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The mkdir() function will fail if:

EACCES Either a component of the path prefix denies search
permission or write permission is denied on the parent
directory of the directory to be created. To override
these restrictions, the calling process may assert one or
more of these privileges: PRIV_FILE_DAC_SEARCH,
PRIV_FILE_MAC_SEARCH, PRIV_FILE_DAC_WRITE,
and PRIV_FILE_MAC_WRITE.

EINVAL An attempt was made to create a directory at a
sensitivity label outside the range of the file system.

EDQUOT The directory where the new file entry is being placed
cannot be extended because the user’s quota of disk
blocks on that file system has been exhausted; the new
directory cannot be created because the user’s quota of
disk blocks on that file system has been exhausted; or
the user’s quota of inodes on the file system where the
file is being created has been exhausted.

EEXIST The named file already exists.

EFAULT The path argument points to an illegal address.

EIO An I/O error has occurred while accessing the file
system.

ELOOP Too many symbolic links were encountered in
translating path.

EMLINK The maximum number of links to the parent directory
would be exceeded.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or
the length of a path component exceeds NAME_MAX
while _POSIX_NO_TRUNC is in effect.

ENOENT A component of the path prefix does not exist or is a
null pathname.

ENOLINK The path argument points to a remote machine and the
link to that machine is no longer active.

ENOSPC No free space is available on the device containing the
directory.

ENOTDIR A component of the path prefix is not a directory.

mkdir(2)

RETURN VALUES

ERRORS

270 man pages section 2: System Calls • Last Revised 30 Sep 1999

EROFS The path prefix resides on a read-only file system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

Appropriate privilege is required to override access checks as described under File
Access in Intro(2). The Trusted Solaris environment distinguishes directories with
sensitivity labels from unlabeled directories through special prefixes called
adornments.

adornfc(1M), chmod(2), mknod(2)

umask(2), attributes(5), stat(5)

mkdir(2)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

System Calls 271

mknod – make a directory, or a special or ordinary file

#include <sys/stat.h>

int mknod(const char *path, mode_t mode, dev_t dev);

The mknod() function creates a new file named by the path name pointed to by path.
The file type and permissions of the new file are initialized from mode. This system call
will not create an object in a multilevel directory. Single-level directories are
automatically created during path-name lookup and getsldname(2).

The new object is created with its sensitivity label set to the sensitivity label of the
calling process. If the containing directory has a default access control list (ACL), the
ACL is copied to the new object as its access ACL.

The file type is specified in mode by the S_IFMT bits, which must be set to one of the
following values:

S_IFIFO fifo special

S_IFCHR character special

S_IFDIR directory

S_IFBLK block special

S_IFREG ordinary file

The file access permissions are specified in mode by the 0007777 bits, and may be
constructed by a bitwise OR operation of the following values:

S_ISUID 04000 Set user ID on execution.

S_ISGID 020#0 Set group ID on execution if # is 7, 5, 3, or 1. Enable
mandatory file/record locking if # is 6, 4, 2, or 0

S_ISVTX 01000 Save text image after execution.

S_IRWXU 00700 Read, write, execute by owner.

S_IRUSR 00400 Read by owner.

S_IWUSR 00200 Write by owner.

S_IXUSR 00100 Execute (search if a directory) by owner.

S_IRWXG 00070 Read, write, execute by group.

S_IRGRP 00040 Read by group.

S_IWGRP 00020 Write by group.

S_IXGRP 00010 Execute by group.

S_IRWXO 00007 Read, write, execute (search) by others.

mknod(2)

NAME

SYNOPSIS

DESCRIPTION

272 man pages section 2: System Calls • Last Revised 1 May 2000

S_IROTH 00004 Read by others.

S_IWOTH 00002 Write by others

S_IXOTH 00001 Execute by others.

S_ISVTX On directories, restricted deletion flag.

The owner ID of the file is set to the effective user ID of the process. The group ID of
the file is set to the effective group ID of the process. However, if the S_ISGID bit is
set in the parent directory, then the group ID of the file is inherited from the parent. If
the group ID of the new file does not match the effective group ID or one of the
supplementary group IDs, the S_ISGID bit is cleared. To override this restriction,the
calling process may assert the PRIV_FILE_SETID privilege.

If the file is not a directory, mode bit 01000 (save text image on execution) is cleared.
The calling process may assert the PRIV_SYS_CONFIG privilege to override this
restriction.

The access permission bits of mode are modified by the process’ file mode creation
mask: all bits set in the process’ file mode creation mask are cleared (see umask(2)). If
mode indicates a block or character special file, dev is a configuration-dependent
specification of a character or block I/O device. If mode does not indicate a block
special or character special device, dev is ignored. See makedev(3C).

If path is a symbolic link, it is not followed.

mknod() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The mknod() function will fail if:

EACCES The calling process does not have search access to all
directories in the object’s path. To override this
restriction, the calling process may assert one or both of
these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

The calling process does not have write access to the
object’s containing directory. To override this
restriction, the calling process may assert one or both of
these privileges: PRIV_FILE_DAC_WRITE and
PRIV_FILE_MAC_WRITE.

EDQUOT The directory where the new file entry is being placed
cannot be extended because the user’s quota of disk
blocks on that file system has been exhausted, or the

mknod(2)

RETURN VALUES

ERRORS

System Calls 273

user’s quota of inodes on the file system where the file
is being created has been exhausted.

EEXIST The named file exists.

EFAULT The path argument points to an illegal address.

EINTR A signal was caught during the execution of the
mknod() function.

EINVAL An invalid argument exists.

EIO An I/O error occurred while accessing the file system.

ELOOP Too many symbolic links were encountered in
translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or
the length of a path component exceeds NAME_MAX
while _POSIX_NO_TRUNC is in effect.

ENOENT A component of the path prefix specified by path does
not name an existing directory or path is an empty
string.

ENOLINK The path argument points to a remote machine and the
link to that machine is no longer active.

ENOSPC The directory that would contain the new file cannot be
extended or the file system is out of file allocation
resources.

ENOTDIR A component of the path prefix is not a directory.

EPERM The value in mode is not a FIFO and the calling process
has not asserted the PRIV_SYS_DEVICES privilege.

EROFS The directory in which the file is to be created is located
on a read-only file system.

The mknod() function may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an
intermediate result whose length exceeds PATH_MAX.

Normally, applications should use the mkdir(2) routine to make a directory, since the
function mknod() may not establish directory entries for the directory itself (.) and
the parent directory (. .), and appropriate permissions are not required. Similarly,
mkfifo(3C) should be used in place of mknod() in order to create FIFOs.

Appropriate privilege is required to override access checks.

mknod(2)

USAGE

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

274 man pages section 2: System Calls • Last Revised 1 May 2000

The new object is created with its sensitivity label set to the sensitivity label of the
calling process. If the containing directory has a default access control list (ACL), the
ACL is copied to the new object as its access ACL.

chmod(2), exec(2), mkdir(2)

umask(2), makedev(3C), mkfifo(3C), stat(5)

mknod(2)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

System Calls 275

getfattrflag, fsetfattrflag, fgetfattrflag, setfattrflag, mldgetfattrflag, mldsetfattrflag –
set/get the security attribute flags of a file

cc [flags…] file… -ltsol

#include <tsol/secflgs.h>

int getfattrflag(const char *path, secflgs_t *flags);

int setfattrflag(const char *path, secflgs_t which, secflgs_t flags);

int fgetfattrflag(int fildes, secflgs_t *flags);

int fsetfattrflag(int fildes, secflgs_t which, secflgs_t flags);

int mldgetfattrflag(const char *path, secflgs_t *flags);

int mldsetfattrflag(const char *path, secflgs_t which, secflgs_t
flags);

setfattrflag(), fsetfattrflag(), and mldsetfattrflag() set the security
flags of the file whose name is given by path or referred to by the open file descriptor
fildes. The bit pattern contained in which is used to indicate which flags are being
affected. The corresponding bits in flags are set to 1 or 0 to indicate whether the
affected flags are being set or unset respectively.

getfattrflag(), fgetfattrflag(), and mldgetfattrflag() get the security
flags of the file whose name is given by path or referred to by the open file descriptor
fildes and store it in the location pointed to by flags.

Attribute bits are interpreted as follows:

FAF_MLD Directory has MLD semantics.

FAF_PUBLICFilesystem object is a public object.

FAF_SLD Directory is an SLD.

Attribute flags are constructed by OR’ing the attribute flag bits.

FAF_MLD is the only flag that may be modified without privilege if the directory is
empty, the effective user ID of the process matches the directory owner, and the
process has mandatory as well as discretionary write access. The FAF_MLD flag, once
set, cannot be unset. Additionally, the FAF_MLD flag may only be set via the
mldsetfattrflag interface. The FAF_PUBLIC flag can only be read or modified by
a process possessing the PRIV_FILE_AUDIT privilege. A process attempting to read
the FAF_PUBLIC flag without the PRIV_FILE_AUDIT privilege in effect will not fail.
However the value of FAF_PUBLIC will be returned as unset. The FAF_SLD flag can
never be set. The ability to read any flag is dependant upon the process having
mandatory and discretionary read access to the file. The ability to set any flag is
dependant upon the process having mandatory and discretionary write access to the
file.

mldgetfattrflag(2)

NAME

SYNOPSIS

DESCRIPTION

276 man pages section 2: System Calls • Last Revised 30 Sep 1999

If path is a symbolic link, the target’s attribute flags are affected rather than the link’s.
If path is a multilevel directory, getfattrflag() and setfattrflag() will affect
the underlying single-level directory beneath (unless path is adorned).
mldgetfattrflag() and mldsetfattrflag() do not translate multi-level
directories to underlying single-level directories. fgetfattrflag() and
fsetsattrflag() affect only the file referred to by fildes.

These functions return:

0 On success.

−1 On failure, and set errno to indicate the error.

getfattrflag() and mldgetfattrflag() will fail if one or more of the following
are true:

EACCES Search permission is denied on a component of the path prefix of
path. To override this restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EACCES Read permission is denied the final component of path. To override
this restriction, the calling process may assert the
PRIV_FILE_MAC_READ privilege.

EFAULT path points to an illegal address.

EINTR A signal was caught during execution of the function.

EIO An I/O error occurred while reading from the file system.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
and file system type does not allow it.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length
of a path component exceeds NAME_MAX while _POSIX_NO_TRUNC
is in effect.

ENOENT Either a component of the path prefix, or the file referred to by path
does not exist or is a null pathname.

ENOLINK fildes points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the prefix of path is not a directory.

fgetfattrflag() fails and the file mode is unchanged if:

EACCES Read permission is denied on fildes. To override this restriction, the
calling process may assert the PRIV_FILE_MAC_READ privilege.

EBADF fildes is not an open file descriptor.

mldgetfattrflag(2)

RETURN VALUES

ERRORS

System Calls 277

EIO An I/O error occurred while reading from the file system.

EINTR A signal was caught during execution of the fgetfattrflag()
function.

setfattrflag() and mldsetfattrflag() will fail and the file mode is
unchanged if one or more of the following are true:

EACCES Search permission is denied on a component of the path prefix of
path. To override this restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EACCES Write permission is denied path. To override this restriction, the
calling process may assert the PRIV_FILE_MAC_WRITE privilege.

EACCES The calling process does not own fildes. To override this restriction,
the calling process may assert the PRIV_FILE_OWNER privilege.

EFAULT path points to an illegal address.

EINTR A signal was caught during execution of the function.

EINVAL path is not a valid pathname. When setting FAF_MLD, path must
refer to an empty directory.

EIO An I/O error occurred while writing to the file system.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
and filesystem type does not allow it.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length
of a path component exceeds NAME_MAX while _POSIX_NO_TRUNC
is in effect.

ENOENT Either a component of the path prefix, or the file referred to by path
does not exist or is a null pathname.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the prefix of path is not a directory.

EPERM The effective user ID does not match the owner of the file and the
process does not possess the privilege PRIV_FILE_OWNER.

EPERM The process does not possess the privilege PRIV_FILE_AUDIT
and is attempting to set the FAF_PUBLIC flag.

EROFS The file referred to by path resides on a read-only file system.

fsetfattrflag() fails and the file mode is unchanged if:

mldgetfattrflag(2)

278 man pages section 2: System Calls • Last Revised 30 Sep 1999

EACCES The calling process does not own fildes. To override this restriction,
the calling process may assert the PRIV_FILE_OWNER privilege.

EACCES Write access is denied on fildes. To override this restriction, the
calling process may assert the PRIV_FILE_MAC_WRITE privilege.

EINVAL fildes is not a valid pathname. When setting FAF_MLD, fildes must
refer to an empty directory.

EBADF fildes is not an open file descriptor.

EIO An I/O error occurred while writing to the file system.

EINTR A signal was caught during execution of the fsetfattrflag()
function.

EPERM The process does not possess the privilege PRIV_FILE_AUDIT
and is attempting to set the FAF_PUBLIC flag.

EROFS The file referred to by fildes resides on a read-only file system.

setfattrflag(1), getfattrflag(1)

Trusted Solaris Developer’s Guide

mldgetfattrflag(2)

Trusted Solaris 8
4/01 Reference

Manual

System Calls 279

getfattrflag, fsetfattrflag, fgetfattrflag, setfattrflag, mldgetfattrflag, mldsetfattrflag –
set/get the security attribute flags of a file

cc [flags…] file… -ltsol

#include <tsol/secflgs.h>

int getfattrflag(const char *path, secflgs_t *flags);

int setfattrflag(const char *path, secflgs_t which, secflgs_t flags);

int fgetfattrflag(int fildes, secflgs_t *flags);

int fsetfattrflag(int fildes, secflgs_t which, secflgs_t flags);

int mldgetfattrflag(const char *path, secflgs_t *flags);

int mldsetfattrflag(const char *path, secflgs_t which, secflgs_t
flags);

setfattrflag(), fsetfattrflag(), and mldsetfattrflag() set the security
flags of the file whose name is given by path or referred to by the open file descriptor
fildes. The bit pattern contained in which is used to indicate which flags are being
affected. The corresponding bits in flags are set to 1 or 0 to indicate whether the
affected flags are being set or unset respectively.

getfattrflag(), fgetfattrflag(), and mldgetfattrflag() get the security
flags of the file whose name is given by path or referred to by the open file descriptor
fildes and store it in the location pointed to by flags.

Attribute bits are interpreted as follows:

FAF_MLD Directory has MLD semantics.

FAF_PUBLICFilesystem object is a public object.

FAF_SLD Directory is an SLD.

Attribute flags are constructed by OR’ing the attribute flag bits.

FAF_MLD is the only flag that may be modified without privilege if the directory is
empty, the effective user ID of the process matches the directory owner, and the
process has mandatory as well as discretionary write access. The FAF_MLD flag, once
set, cannot be unset. Additionally, the FAF_MLD flag may only be set via the
mldsetfattrflag interface. The FAF_PUBLIC flag can only be read or modified by
a process possessing the PRIV_FILE_AUDIT privilege. A process attempting to read
the FAF_PUBLIC flag without the PRIV_FILE_AUDIT privilege in effect will not fail.
However the value of FAF_PUBLIC will be returned as unset. The FAF_SLD flag can
never be set. The ability to read any flag is dependant upon the process having
mandatory and discretionary read access to the file. The ability to set any flag is
dependant upon the process having mandatory and discretionary write access to the
file.

mldsetfattrflag(2)

NAME

SYNOPSIS

DESCRIPTION

280 man pages section 2: System Calls • Last Revised 30 Sep 1999

If path is a symbolic link, the target’s attribute flags are affected rather than the link’s.
If path is a multilevel directory, getfattrflag() and setfattrflag() will affect
the underlying single-level directory beneath (unless path is adorned).
mldgetfattrflag() and mldsetfattrflag() do not translate multi-level
directories to underlying single-level directories. fgetfattrflag() and
fsetsattrflag() affect only the file referred to by fildes.

These functions return:

0 On success.

−1 On failure, and set errno to indicate the error.

getfattrflag() and mldgetfattrflag() will fail if one or more of the following
are true:

EACCES Search permission is denied on a component of the path prefix of
path. To override this restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EACCES Read permission is denied the final component of path. To override
this restriction, the calling process may assert the
PRIV_FILE_MAC_READ privilege.

EFAULT path points to an illegal address.

EINTR A signal was caught during execution of the function.

EIO An I/O error occurred while reading from the file system.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
and file system type does not allow it.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length
of a path component exceeds NAME_MAX while _POSIX_NO_TRUNC
is in effect.

ENOENT Either a component of the path prefix, or the file referred to by path
does not exist or is a null pathname.

ENOLINK fildes points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the prefix of path is not a directory.

fgetfattrflag() fails and the file mode is unchanged if:

EACCES Read permission is denied on fildes. To override this restriction, the
calling process may assert the PRIV_FILE_MAC_READ privilege.

EBADF fildes is not an open file descriptor.

mldsetfattrflag(2)

RETURN VALUES

ERRORS

System Calls 281

EIO An I/O error occurred while reading from the file system.

EINTR A signal was caught during execution of the fgetfattrflag()
function.

setfattrflag() and mldsetfattrflag() will fail and the file mode is
unchanged if one or more of the following are true:

EACCES Search permission is denied on a component of the path prefix of
path. To override this restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EACCES Write permission is denied path. To override this restriction, the
calling process may assert the PRIV_FILE_MAC_WRITE privilege.

EACCES The calling process does not own fildes. To override this restriction,
the calling process may assert the PRIV_FILE_OWNER privilege.

EFAULT path points to an illegal address.

EINTR A signal was caught during execution of the function.

EINVAL path is not a valid pathname. When setting FAF_MLD, path must
refer to an empty directory.

EIO An I/O error occurred while writing to the file system.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
and filesystem type does not allow it.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length
of a path component exceeds NAME_MAX while _POSIX_NO_TRUNC
is in effect.

ENOENT Either a component of the path prefix, or the file referred to by path
does not exist or is a null pathname.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the prefix of path is not a directory.

EPERM The effective user ID does not match the owner of the file and the
process does not possess the privilege PRIV_FILE_OWNER.

EPERM The process does not possess the privilege PRIV_FILE_AUDIT
and is attempting to set the FAF_PUBLIC flag.

EROFS The file referred to by path resides on a read-only file system.

fsetfattrflag() fails and the file mode is unchanged if:

mldsetfattrflag(2)

282 man pages section 2: System Calls • Last Revised 30 Sep 1999

EACCES The calling process does not own fildes. To override this restriction,
the calling process may assert the PRIV_FILE_OWNER privilege.

EACCES Write access is denied on fildes. To override this restriction, the
calling process may assert the PRIV_FILE_MAC_WRITE privilege.

EINVAL fildes is not a valid pathname. When setting FAF_MLD, fildes must
refer to an empty directory.

EBADF fildes is not an open file descriptor.

EIO An I/O error occurred while writing to the file system.

EINTR A signal was caught during execution of the fsetfattrflag()
function.

EPERM The process does not possess the privilege PRIV_FILE_AUDIT
and is attempting to set the FAF_PUBLIC flag.

EROFS The file referred to by fildes resides on a read-only file system.

setfattrflag(1), getfattrflag(1)

Trusted Solaris Developer’s Guide

mldsetfattrflag(2)

Trusted Solaris 8
4/01 Reference

Manual

System Calls 283

mount – Mount a file system

#include <sys/types.h>
#include <sys/mount.h>

#include <sys/mntent.h>

int mount(const char *spec, const char *dir, int mflag, char *fstype,
char *dataptr, int datalen, char *optptr, int optlen);

The mount() function requests that a removable file system contained on the block
special file identified by spec be mounted on the directory identified by dir. The spec
and dir arguments are pointers to path names. After a successful call to mount(), all
references to the file dir refer to the root directory on the mounted file system. The
mounted file system is inserted into the kernel list of all mounted file systems. This list
can be examined through the mounted file system table (see mnttab(4)). The fstype
argument is the file system type name. Standard file system names are defined with
the prefix MNTTYPE_ in <sys/mntent.h>. The dataptr argument is 0 if no file
system-specific data is to be passed; otherwise it points to an area of size datalen that
contains the file system-specific data for this mount and the MS_DATA flag should be
set. If the MS_OPTIONSTR flag is set, then optptr points to a buffer containing the list of
options to be used for this mount. The optlen argument specifies the length of the
buffer. On completion of the mount() call, the options in effect for the mounted file
system are returned in this buffer. If MS_OPTIONSTR is not specified, then the options
for this mount will not appear in the mounted file systems table. The mflag argument
is constructed by a bitwise-inclusive-OR of flags from the following list, defined in
<sys/mount.h>.

MS_DATA If this flag is set, the dataptr and datalen arguments describe a
block of file system-specific binary data at address dataptr of
length datalen. This is interpreted by file system-specific code
within the operating system and its format depends on the file
system type. If a particular file system type does not require this
data, dataptr and datalen should both be 0.

MS_OPTIONSTR If this flag is set, the optptr and optlen arguments describe a
character buffer at address optptr of size optlen. When calling
mount(), the character buffer should contain a null-terminated
string of options to be passed to the file system-specific code
within the operating system. On a successful return, the file
system-specific code will return the list of options recognized.
Unrecognized options are ignored. The format of the string is a
list of option names separated by commas. Options that have
values (rather than binary options such as suid or nosuid), are
separated by "=" such as dev=2c4046c. Standard option names
are defined in <sys/mntent.h>. The slabel, low_range, and
hi_range values must be hexadecimal strings starting with 0x
followed by exactly 68 hex digits. The allowed and forced values
must be hexadecimal strings starting with 0x followed by exactly
32 hex digits. Only strings defined in the "C" locale are supported.

mount(2)

NAME

SYNOPSIS

DESCRIPTION

284 man pages section 2: System Calls • Last Revised 11 Apr 2000

The maximum length option string that can be passed to or
returned from a mount() call is defined by the
MAX_MNTOPT_STR constant. The buffer should be long enough to
contain more options than were passed in, as the state of any
default options that were not passed in the input option string
may also be returned in the recognized options list that is
returned.

MS_RDONLY The file system should be mounted for reading only. This flag
should also be specified for file systems that are incapable of
writing (for example, CDROM). Without this flag, writing is
permitted according to individual file accessibility.

MS_NOSUID This option prevents programs that are marked set-user-ID or
set-group-ID from executing (see chmod(1)). It also causes
open(2) to return ENXIO when attempting to open block or
character special files.

MS_REMOUNT Remounts a read-only file system as read-write.

MS_OVERLAY Allow the file system to be mounted over an existing file system
mounted on dir, making the underlying file system inaccessible. If
a mount is attempted on a pre-existing mount point without
setting this flag, the mount will fail.

MS_GLOBAL Mount a file system globally if the system is configured and
booted as part of a cluster (see clinfo(1M)).

The mount() system call may be invoked for all file system types except namefs by a
calling process with the PRIV_SYS_MOUNT privilege. For the namefs file system, the
calling process must either be the owner of dir or assert the PRIV_FILE_OWNER
privilege. When mounting a UFS file system, the calling process should assert the
PRIV_SYS_FS_CONFIG privilege. Otherwise, the mount succeeds, but logging is not
enabled/disabled, errno is set to EPERM, and the user sees an error message.

mount() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The mount() function will fail if:

EACCES Search permission is denied on a component of spec or
dir. To override this restriction, the calling process may
assert one or both of these privileges:
PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

Write permission is denied to the namefs file system
specified in dir. To override this restriction, the calling
process may assert one or both of these privileges:

mount(2)

RETURN VALUES

ERRORS

System Calls 285

PRIV_FILE_DAC_WRITE and
PRIV_FILE_MAC_WRITE.

EBUSY The dir argument is currently mounted on, is
someone’s current working directory, or is otherwise
busy; the device associated with spec is currently
mounted; or there are no more mount table entries.

EFAULT The spec, dir, fstype, or dataptr argument points outside
the allocated address space of the process.

EINVAL The super block has an invalid magic number or the
fstype is invalid.

ELOOP Too many symbolic links were encountered in
translating spec or dir.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or
the length of a path component exceeds NAME_MAX
while _POSIX_NO_TRUNC is in effect.

ENOENT None of the named files exists or is a null pathname.

ENOLINK The path argument points to a remote machine and the
link to that machine is no longer active.

ENOSPC The file system state in the super block is not FsOKAY
and mflag requests write permission.

ENOTBLK The spec argument is not a block special device.

ENOTDIR The dir argument is not a directory, or a component of a
path prefix is not a directory.

ENOTSUP A global mount is attempted (the MS_GLOBAL flag is
set in mflag) on a machine which is not booted as a
cluster or a local mount is attempted and dir is within a
globally mounted file system.

ENXIO The device associated with spec does not exist.

EOVERFLOW The length of the option string to be returned in the
dataptr argument exceeds the size of the buffer specified
by datalen.

EPERM The calling process does not own dir and dir is type
namefs. To override this restriction, the calling process
may assert the PRIV_FILE_OWNER privilege.

dir is not a file system of type namefs and the calling
process has not asserted the PRIV_SYS_MOUNT
privilege.

EREMOTE The spec argument is remote and cannot be mounted.

mount(2)

286 man pages section 2: System Calls • Last Revised 11 Apr 2000

EROFS The spec argument is write protected and mflag requests
write permission.

The mount() function will succeed, but logging will not be enabled/disabled if:

EPERM dir is a UFS file system and the calling process has not asserted the
PRIV_SYS_FS_CONFIG privilege.

Appropriate privilege is required to override access, logging, or ownership checks.

The mount() system call may be invoked for all file system types except namefs by a
calling process with the PRIV_SYS_MOUNT privilege. For the namefs file system, the
calling process must either be the owner of dir or assert the PRIV_FILE_OWNER
privilege. When mounting a UFS file system, the calling process should assert the
PRIV_SYS_FS_CONFIG privilege. Otherwise, the mount succeeds, but logging is not
enabled/disabled and errno is set to EPERM.

mount(1M), umount(2), mnttab(4)

MS_OPTIONSTR-type option strings should be used.

Some flag bits set file system options that can also be passed in an option string.
Options are first set from the option string with the last setting of an option in the
string determining the value to be set by the option string. Any options controlled by
flags are then applied, overriding any value set by the option string.

mount(2)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualNOTES

System Calls 287

msgctl – Message control operations

#include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

The msgctl() function provides a variety of message control operations as specified
by cmd. The following cmds are available:

IPC_STAT Place the current value of each member of the data structure
associated with msqid into the structure pointed to by buf. The
contents of this structure are defined in intro(2).

If it does not have discretionary read access to the data structure,
the calling process must have PRIV_IPC_DAC_READ in its set of
effective privileges. If it does not have mandatory read access to
the data structure, the calling process must have
PRIV_IPC_MAC_READ in its set of effective privileges.

IPC_SET Set the value of the following members of the data structure
associated with msqid to the corresponding value found in the
structure pointed to by buf:

msg_perm.uid
msg_perm.gid
msg_perm.mode /* access permission bits only */

msg_qbytes

A process whose effective user ID does not match the value of
msg_perm.cuid or msg_perm.uid must have the
PRIV_IPC_OWNER privilege in its set of effective privileges. A
process must have mandatory write access to the data structure or
must have asserted the PRIV_IPC_MAC_WRITE privilege. Only a
process with PRIV_SYS_IPC_CONFIG asserted can raise the value
of msg_qbytes.

IPC_RMID Remove from the system the message-queue identifier specified by
msqid and destroy the message queue and data structure
associated with it. This cmd can be executed only by a process that
has an effective user ID equal to that of msg_perm.cuid or
msg_perm.uid in the data structure associated with msqid, or has
the PRIV_IPC_OWNER privilege asserted. A process must also
have mandatory write access to the data structure or must have
asserted the PRIV_IPC_MAC_WRITE privilege. buf is ignored.

msgctl() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The msgctl() function will fail if:

msgctl(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

288 man pages section 2: System Calls • Last Revised 9 Sep 1997

EACCES cmd is IPC_STAT, operation permission is denied to the calling
process (see intro(2)), and the calling process does not have the
appropriate privilege(s) in its set of effective privileges.

EFAULT The buf argument points to an illegal address.

EINVAL The msqid argument is not a valid message queue identifier; or the
cmd argument is not a valid command or is IPC_SET and
msg_perm.uid or msg_perm.gid is not valid.

EPERM cmd is IPC_RMID or IPC_SET, the discretionary and/or
mandatory access checks failed, and the process did not have the
appropriate override privilege asserted.

cmd is IPC_SET, an attempt is being made to increase to the value
of msg_qbytes, and the process did not have the appropriate
override privilege asserted.

EOVERFLOW The cmd argument is IPC_STAT and uid or gid is too large to be
stored in the structure pointed to by buf.

Appropriate privilege is required to override access checks.

intro(2), msgget(2)

msgctl(2)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
Manual

System Calls 289

msgget, msggetl – Get message queue

#include <sys/msg.h>

int msgget(key_t key, int msgflg);

cc [flags…] file… -ltsol [library…]

#include <sys/tsol/ipcl.h>

int msggetl(key_t key, int msgflg, const bslabel_ t *slabel);

A message queue is identified by a unique combination of key and sensitivity label.
This qualification of keys by sensitivity labels allows applications that use message
queues to be run at multiple process sensitivity labels without inadvertently sharing
data.

msgget() returns the message-queue identifier associated with the union of key and
the sensitivity label of the calling process.

msggetl() returns the message-queue identifier associated with the union of key and
slabel. If the value of slabel does not match the sensitivity label of the calling process,
then the effective privilege set of the process must contain PRIV_IPC_MAC_READ or
PRIV_IPC_MAC_WRITE.

If discretionary read/write access as specified by the low-order 9 bits of msgflg is
denied to the calling process, msgget() and msggetl() require one or both of these
privileges: PRIV_IPC_DAC_READ and PRIV_IPC_DAC_WRITE.

A message-queue identifier and associated message queue and data structure (see
intro(2)) are created for key if one of the following is true:

� key is IPC_PRIVATE.

� key does not already have a message queue identifier associated with it, and
(msgflg&IPC_CREAT) is true.

On creation, the data structure associated with the new message queue identifier is
initialized as follows:

� msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid are set
to the effective user ID and effective group ID, respectively, of the calling process.

� The low-order 9 bits of msg_perm.mode are set to the low-order 9 bits of msgflg.

� msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are set to 0.

� msg_ctime is set to the current time.

� msg_qbytes is set to the system limit.

The sensitivity label on the message-queue internal is set either to the sensitivity label
of the process or to slabel, depending on which interface was used.

msgget(2)

NAME

SYNOPSIS

DESCRIPTION

290 man pages section 2: System Calls • Last Revised 1 May 2000

Upon successful completion, a non-negative integer representing a message queue
identifier is returned. Otherwise, −1 is returned and errno is set to indicate the error.

The msgget() function will fail if:

EACCES A semaphore-structure identifier exists for the union of key and
sensitivity label, but operation permission [see intro(2)] as
specified by the low-order 9 bits of semflg would not be granted; or
the sensitivity label check did not pass, and the calling process
does not have the appropriate privilege override(s) in its set of
effective privileges.

EEXIST A message queue identifier exists for key but (msgflg&IPC_CREAT)
and (msgflg&IPC_EXCL) are both true.

EFAULT slabel points to an illegal address.

EINVAL The label to which slabel points is not a valid sensitivity label.

ENOENT A message queue identifier does not exist for the union of key and
sensitivity label; and (msgflg&IPC_CREAT) is false.

ENOSPC A message queue identifier is to be created but the
system-imposed limit on the maximum number of allowed
message queue identifiers system wide would be exceeded.

Appropriate privilege is required to override access checks.

Sensitivity labels are used together with key to determine message-queue identifiers.

intro(2), msgctl(2)

stdio(3C)

msgget(2)

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
ManualSunOS 5.8

Reference Manual

System Calls 291

msgget, msggetl – Get message queue

#include <sys/msg.h>

int msgget(key_t key, int msgflg);

cc [flags…] file… -ltsol [library…]

#include <sys/tsol/ipcl.h>

int msggetl(key_t key, int msgflg, const bslabel_ t *slabel);

A message queue is identified by a unique combination of key and sensitivity label.
This qualification of keys by sensitivity labels allows applications that use message
queues to be run at multiple process sensitivity labels without inadvertently sharing
data.

msgget() returns the message-queue identifier associated with the union of key and
the sensitivity label of the calling process.

msggetl() returns the message-queue identifier associated with the union of key and
slabel. If the value of slabel does not match the sensitivity label of the calling process,
then the effective privilege set of the process must contain PRIV_IPC_MAC_READ or
PRIV_IPC_MAC_WRITE.

If discretionary read/write access as specified by the low-order 9 bits of msgflg is
denied to the calling process, msgget() and msggetl() require one or both of these
privileges: PRIV_IPC_DAC_READ and PRIV_IPC_DAC_WRITE.

A message-queue identifier and associated message queue and data structure (see
intro(2)) are created for key if one of the following is true:

� key is IPC_PRIVATE.

� key does not already have a message queue identifier associated with it, and
(msgflg&IPC_CREAT) is true.

On creation, the data structure associated with the new message queue identifier is
initialized as follows:

� msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid are set
to the effective user ID and effective group ID, respectively, of the calling process.

� The low-order 9 bits of msg_perm.mode are set to the low-order 9 bits of msgflg.

� msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are set to 0.

� msg_ctime is set to the current time.

� msg_qbytes is set to the system limit.

The sensitivity label on the message-queue internal is set either to the sensitivity label
of the process or to slabel, depending on which interface was used.

msggetl(2)

NAME

SYNOPSIS

DESCRIPTION

292 man pages section 2: System Calls • Last Revised 1 May 2000

Upon successful completion, a non-negative integer representing a message queue
identifier is returned. Otherwise, −1 is returned and errno is set to indicate the error.

The msgget() function will fail if:

EACCES A semaphore-structure identifier exists for the union of key and
sensitivity label, but operation permission [see intro(2)] as
specified by the low-order 9 bits of semflg would not be granted; or
the sensitivity label check did not pass, and the calling process
does not have the appropriate privilege override(s) in its set of
effective privileges.

EEXIST A message queue identifier exists for key but (msgflg&IPC_CREAT)
and (msgflg&IPC_EXCL) are both true.

EFAULT slabel points to an illegal address.

EINVAL The label to which slabel points is not a valid sensitivity label.

ENOENT A message queue identifier does not exist for the union of key and
sensitivity label; and (msgflg&IPC_CREAT) is false.

ENOSPC A message queue identifier is to be created but the
system-imposed limit on the maximum number of allowed
message queue identifiers system wide would be exceeded.

Appropriate privilege is required to override access checks.

Sensitivity labels are used together with key to determine message-queue identifiers.

intro(2), msgctl(2)

stdio(3C)

msggetl(2)

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
ManualSunOS 5.8

Reference Manual

System Calls 293

msgrcv – message receive operation

#include <sys/msg.h>

int msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int
msgflg);

The msgrcv() function reads a message from the queue associated with the message
queue identifier specified by msqid and places it in the user-defined buffer pointed to
by msgp.

The msgp argument points to a user-defined buffer that must contain first a field of
type long int that will specify the type of the message, and then a data portion that
will hold the data bytes of the message.

The structure below is an example of what this user-defined buffer might look like:

struct mymsg {
long mtype; /* message type */
char mtext[1]; /* message text */

}

The mtype member is the received message’s type as specified by the sending process.

The mtext member is the text of the message.

The msgsz argument specifies the size in bytes of mtext. The received message is
truncated to msgsz bytes if it is larger than msgsz and (msgflg&MSG_NOERROR) is
non-zero. The truncated part of the message is lost and no indication of the truncation
is given to the calling process.

The msgtyp argument specifies the type of message requested as follows:

� If msgtyp is 0, the first message on the queue is received.

� If msgtyp is greater than 0, the first message of type msgtyp is received.

� If msgtyp is less than 0, the first message of the lowest type that is less than or equal
to the absolute value of msgtyp is received.

The msgflg argument specifies which of the following actions is to be taken if a
message of the desired type is not on the queue:

� If (msgflg&IPC_NOWAIT) is non-zero, the calling process will return immediately
with a return value of −1 and errno set to ENOMSG.

� If (msgflg&IPC_NOWAIT) is 0, the calling process will suspend execution until one
of the following occurs:

� A message of the desired type is placed on the queue.

� The message queue identifier msqid is removed from the system (see
msgctl(2)); when this occurs, errno is set equal to EIDRM and −1 is returned.

msgrcv(2)

NAME

SYNOPSIS

DESCRIPTION

294 man pages section 2: System Calls • Last Revised 1 May 2000

� The calling process receives a signal that is to be caught; in this case a message
is not received and the calling process resumes execution in the manner
prescribed in sigaction(2).

Upon successful completion, the following actions are taken with respect to the data
structure associated with msqid (see intro(2)):

� msg_qnum is decremented by 1.
� msg_lrpid is set equal to the process ID of the calling process.
� msg_rtime is set equal to the current time.

Upon successful completion, msgrcv() returns a value equal to the number of bytes
actually placed into the buffer mtext. Otherwise, −1 is returned, no message is
received, and errno is set to indicate the error.

The msgrcv() function will fail if:

E2BIG The value of mtext is greater than msgsz and
(msgflg&MSG_NOERROR) is 0.

EACCES Operation permission is denied to the calling process, and the
calling process does not have the appropriate privilege override(s)
in its set of effective privileges. See intro(2).

The sensitivity label of msqid does not match the sensitivity label of
the calling process, and the calling process does not have the
appropriate privilege override(s) in its set of effective privileges.

EIDRM The message queue identifier msqid is removed from the system.

EINTR The msgrcv() function was interrupted by a signal.

EINVAL The msqid argument is not a valid message queue identifier; or the
value of msgsz is less than 0.

ENOMSG The queue does not contain a message of the desired type and
(msgflg&IPC_NOWAIT) is non-zero.

The msgrcv() function may fail if:

EFAULT The msgp argument points to an illegal address.

The value passed as the msgp argument should be converted to type void *.

Appropriate privilege is required to override access checks.

intro(2), msgctl(2), msgget(2), msgsnd(2)

sigaction(2), signal(3C)

msgrcv(2)

RETURN VALUES

ERRORS

USAGE

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
ManualSunOS 5.8

Reference Manual

System Calls 295

msgsnd – message send operation

#include <sys/msg.h>

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

The msgsnd() function is used to send a message to the queue associated with the
message queue identifier specified by msqid.

The msgp argument points to a user-defined buffer that must contain first a field of
type long int that will specify the type of the message, and then a data portion that
will hold the data bytes of the message.

msgsnd() requires either that a process have discretionary and mandatory write
access to msqid, or that the effective privilege set of the calling process includes
PRIV_IPC_DAC_WRITE and PRIV_IPC_MAC_WRITE.

The structure below is an example of what this user-defined buffer might look like:

struct mymsg {
long mtype; /* message type */
char mtext[1]; /* message text */

}

The mtype member is a non-zero positive type long int that can be used by the
receiving process for message selection.

The mtext member is any text of length msgsz bytes. The msgsz argument can range
from 0 to a system-imposed maximum.

The msgflg argument specifies the action to be taken if one or more of the following are
true:

� The number of bytes already on the queue is equal to msg_qbytes; see intro(2).

� The total number of messages on all queues system-wide is equal to the
system-imposed limit.

These actions are as follows:

� If (msgflg&IPC_NOWAIT) is non-zero, the message will not be sent and the calling
process will return immediately.

� If (msgflg&IPC_NOWAIT) is 0, the calling process will suspend execution until one
of the following occurs:

� The condition responsible for the suspension no longer exists, in which case the
message is sent.

� The message queue identifier msqid is removed from the system (see
msgctl(2)); when this occurs, errno is set equal to EIDRM and −1 is returned.

� The calling process receives a signal that is to be caught; in this case the
message is not sent and the calling process resumes execution in the manner
prescribed in sigaction(2).

msgsnd(2)

NAME

SYNOPSIS

DESCRIPTION

296 man pages section 2: System Calls • Last Revised 1 May 2000

Upon successful completion, the following actions are taken with respect to the data
structure associated with msqid (see intro(2)):

� msg_qnum is incremented by 1.
� msg_lspid is set equal to the process ID of the calling process.
� msg_stime is set equal to the current time.

msgsnd() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The msgsnd() function will fail if:

EACCES Operation permission is denied to the calling process, and the
process did not have the appropriate privilege in its set of effective
privileges. See intro(2).

The sensitivity label of msqid does not match the sensitivity label of
the calling process, and the calling process does not have the
appropriate privilege override(s) in its set of effective privileges.

EAGAIN The message cannot be sent for one of the reasons cited above and
(msgflg&IPC_NOWAIT) is non-zero.

EIDRM The message queue identifier msgid is removed from the system.

EINTR The msgsnd() function was interrupted by a signal.

EINVAL The value of msqid is not a valid message queue identifier, or the
value of mtype is less than 1; or the value of msgsz is less than 0 or
greater than the system-imposed limit.

The msgsnd() function may fail if:

EFAULT The msgp argument points to an illegal address.

The value passed as the msgp argument should be converted to type void *.

Appropriate privilege is required to override access checks.

intro(2), msgctl(2), msgget(2), msgrcv(2)

sigaction(2), signal(3C)

msgsnd(2)

RETURN VALUES

ERRORS

USAGE

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
ManualSunOS 5.8

Reference Manual

System Calls 297

nice – Change priority of a process

#include <unistd.h>

int nice(int incr);

The nice() function allows a process to change its priority. The invoking process
must be in a scheduling class that supports the nice().

The nice() function adds the value of incr to the nice value of the calling process. A
process’s nice value is a non-negative number for which a greater positive value
results in lower CPU priority.

A maximum nice value of (2 * NZERO)−1 and a minimum nice value of 0 are imposed
by the system. NZERO is defined in <limits.h> with a default value of 20. Requests
for values above or below these limits result in the nice value being set to the
corresponding limit. A nice value of 40 is treated as 39.

Upon successful completion, nice() returns the new nice value minus NZERO.
Otherwise, −1 is returned, the process’s nice value is not changed, and errno is set to
indicate the error.

The nice() function will fail if:

EINVAL The nice() function is called by a process in a scheduling class
other than time-sharing.

EPERM incr is negative or greater than 40 and the PRIV_SYS_CONFIG
privilege of the calling process is not asserted.

The priocntl(2) function is a more general interface to scheduler functions.

Since −1 is a permissible return value in a successful situation, an application wishing
to check for error situations should set errno to 0, then call nice(), and if it returns
−1, check to see if errno is non-zero.

Use of the PRIV_SYS_CONFIG privilege replaces the check for super-user.

exec(2), priocntl(2)

nice(1)

nice(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
ManualSunOS 5.8

Reference Manual

298 man pages section 2: System Calls • Last Revised 27 Feb 1996

open – Open a file

#include <sys/types.h>
#include <sys/stat.h>

#include <fcntl.h>

int open(const char *path, int oflag, /* mode_t mode */...);

The open() function establishes the connection between a file and a file descriptor. It
creates an open file description that refers to a file and a file descriptor that refers to
that open file description. The file descriptor is used by other I/O functions to refer to
that file. The path argument points to a pathname naming the file.

The open() function returns a file descriptor for the named file that is the lowest file
descriptor not currently open for that process. The open file description is new, and
therefore the file descriptor does not share it with any other process in the system. The
FD_CLOEXEC file descriptor flag associated with the new file descriptor is cleared.

The file offset used to mark the current position within the file is set to the beginning
of the file.

The file status flags and file access modes of the open file description is set according
to the value of oflag.

Values for oflag are constructed by a bitwise-inclusive-OR of flags from the following
list, defined in <fcntl.h>. Applications must specify exactly one of the first three
values (file access modes) below in the value of oflag:

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing. The result is undefined if this flag is
applied to a FIFO.

Any combination of the following may be used:

O_APPEND If set, the file offset is set to the end of the file prior to each write.

O_CREAT If the file exists, this flag has no effect except as noted under
O_EXCL. Otherwise, the file is created and the owner ID of the file
is set to the effective user ID of the process; the group ID of the file
is set to the effective group ID of the process; or if the S_ISGID bit
is set in the directory in which the file is being created, the file’s
group ID is set to the group ID of its parent directory. If the group
ID of the new file does not match the effective group ID or one of
the supplementary groups IDs, the S_ISGID bit is cleared. The
calling process must assert the PRIV_FILE_SETID privilege to
override clearing the S_ISGID bit. The access permission bits of
the file mode are set to the value of mode, modified as follows: [See
creat(2).]

open(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 299

� All bits set in the file mode-creation mask of the process are
cleared. [See umask(2).]

� The “save text image after execution bit” of the mode is cleared.
[See chmod(2) .] O_SYNC write I/O operations on the file
descriptor complete as defined by synchronized I/O file
integrity completion. [See fcntl(5) definition of O_SYNC .]

� The calling process must assert the PRIV_SYS_CONFIG
privilege to override clearing the S_ISVTX bit.

O_DSYNC Write I/O operations on the file descriptor complete as defined by
synchronized I/O data integrity completion.

O_EXCL If O_CREAT and O_EXCL are set, open() fails if the file exists. The
check for the existence of the file and the creation of the file if it
does not exist is atomic with respect to other processes executing
open() naming the same filename in the same directory with
O_EXCL and O_CREAT set. If O_CREAT is not set, the effect is
undefined.

O_LARGEFILE If set, the offset maximum in the open file description is the largest
value that can be represented correctly in an object of type
off64_t.

O_NOCTTY If set and path identifies a terminal device, open() does not cause
the terminal device to become the controlling terminal for the
process.

O_NONBLOCK or O_NDELAY
These flags may affect subsequent reads and writes (see read(2) and write(2)). If
both O_NDELAY and O_NONBLOCK are set, O_NONBLOCK takes precedence.

When opening a FIFO with O_RDONLY or O_WRONLY set:

If O_NONBLOCK or O_NDELAY is set:
An open() for reading only returns without delay. An open() for writing only
returns an error if no process currently has the file open for reading.

If O_NONBLOCK and O_NDELAY are clear:
An open() for reading only blocks until a process opens the file for writing. An
open() for writing only blocks until a process opens the file for reading.

After both ends of a FIFO have been opened, there is no guarantee that further calls to
open() O_RDONLY (O_WRONLY) will synchronize with later calls to open()
O_WRONLY (O_RDONLY) until both ends of the FIFO have been closed by all readers
and writers. Any data written into a FIFO will be lost if both ends of the FIFO are
closed before the data is read.

When opening a block special or character special file that supports non-blocking
opens:

open(2)

300 man pages section 2: System Calls • Last Revised 1 May 2000

If O_NONBLOCK or O_NDELAY is set:
The open() function returns without blocking for the device to be ready or
available. Subsequent behavior of the device is device-specific.

If O_NONBLOCK and O_NDELAY are clear:
The open() function blocks until the device is ready or available before returning.

Otherwise, the behavior of O_NONBLOCK and O_NDELAY is unspecified.

O_RSYNC Read I/O operations on the file descriptor complete at the same
level of integrity as specified by the O_DSYNC and O_SYNC flags. If
both O_DSYNC and O_RSYNC are set in oflag, all I/O operations on
the file descriptor complete as defined by synchronized I/O data
integrity completion. If both O_SYNC and O_RSYNC are set in oflag,
all I/O operations on the file descriptor complete as defined by
synchronized I/O file integrity completion.

O_SYNC When opening a regular file, this flag affects subsequent writes. If
set, each write(2) will wait for both the file data and file status to
be physically updated. Write I/O operations on the file descriptor
complete as defined by synchronized I/O file integrity completion.

O_TRUNC If the file exists and is a regular file, and the file is successfully
opened O_RDWR or O_WRONLY, its length is truncated to 0 and the
mode and owner are unchanged. It has no effect on FIFO special
files or terminal device files. Its effect on other file types is
implementation-dependent. The result of using O_TRUNC with
O_RDONLY is undefined.

If O_CREAT is set and the file did not previously exist, upon successful completion,
open() marks for update the st_atime, st_ctime, and st_mtime fields of the file
and the st_ctime and st_mtime fields of the parent directory.

If O_TRUNC is set and the file did previously exist, upon successful completion,
open() marks for update the st_ctime and st_mtime fields of the file.

If path refers to a STREAMS file, oflag may be constructed from O_NONBLOCK or
O_NODELAY OR-ed with either O_RDONLY, O_WRONLY, or O_RDWR. Other flag values
are not applicable to STREAMS devices and have no effect on them. The values
O_NONBLOCK and O_NODELAY affect the operation of STREAMS drivers and certain
functions (see read(2) and write(2)) applied to file descriptors associated with
STREAMS files. For STREAMS drivers, the implementation of O_NONBLOCK and
O_NODELAY is device-specific.

When open() is invoked to open a named stream, and the connld module (see
connld(7M)) has been pushed on the pipe, open() blocks until the server process
has issued an I_RECVFD ioctl() (see streamio(7I)) to receive the file descriptor.

open(2)

System Calls 301

If path names the master side of a pseudo-terminal device, then it is unspecified
whether open() locks the slave side so that it cannot be opened. Portable applications
must call unlockpt(3C) before opening the slave side.

If path is a symbolic link and O_CREAT and O_EXCL are set, the link is not followed.

Certain flag values can be set following open() as described in fcntl(2).

The largest value that can be represented correctly in an object of type off_t is
established as the offset maximum in the open file description.

Upon successful completion, the open() function opens the file and return a
non-negative integer representing the lowest numbered unused file descriptor.
Otherwise, −1 is returned, errno is set to indicate the error, and no files are created or
modified.

The open() function will fail if:

EACCES Search permission is denied on a component of the path prefix, or
the file exists and the permissions specified by oflag are denied, or
the file does not exist and write permission is denied for the parent
directory of the file to be created, or O_TRUNC is specified and
write permission is denied.

EDQUOT The file does not exist, O_CREAT is specified, and either the
directory where the new file entry is being placed cannot be
extended because the user’s quota of disk blocks on that file
system has been exhausted, or the user’s quota of inodes on the
file system where the file is being created has been exhausted.

EEXIST The O_CREAT and O_EXCL flags are set, and the named file exists.

EINTR A signal was caught during open().

EFAULT The path argument points to an illegal address.

EIO The path argument names a STREAMS file and a hangup or error
occurred during the open().

EISDIR The named file is a directory and oflag includes O_WRONLY or
O_RDWR.

ELOOP Too many symbolic links were encountered in resolving path.

EMFILE The process has too many open files. (See getrlimit(2).)

EMULTIHOP Components of path require hopping to multiple remote machines
and the file system does not allow it.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX or
a pathname component is longer than NAME_MAX.

ENFILE The maximum allowable number of files is currently open in the
system.

open(2)

RETURN VALUES

ERRORS

302 man pages section 2: System Calls • Last Revised 1 May 2000

ENOENT The O_CREAT flag is not set and the named file does not exist; or
the O_CREAT flash is set and either the path prefix does not exist
or the path argument points to an empty string.

ENOLINK The path argument points to a remote machine, and the link to that
machine is no longer active.

ENOSR The path argument names a STREAMS-based file and the system is
unable to allocate a STREAM.

ENOSPC The directory or file system that would contain the new file cannot
be expanded, the file does not exist, and O_CREAT is specified.

ENOTDIR A component of the path prefix is not a directory.

ENXIO The O_NONBLOCK flag is set, the named file is a FIFO, the
O_WRONLY flag is set, and no process has the file open for reading;
or the named file is a character special or block special file and the
device associated with this special file does not exist.

EOPNOTSUPP An attempt was made to open a path that corresponds to a
AF_UNIX socket.

EOVERFLOW The named file is a regular file and either O_LARGEFILE is not set
and the size of the file cannot be represented correctly in an object
of type off_t or O_LARGEFILE is set and the size of the file
cannot be represented correctly in an object of type off64_t.

EROFS The named file resides on a read-only file system and either
O_WRONLY, O_RDWR, O_CREAT (if file does not exist), or O_TRUNC
is set in the oflag argument.

The open() function may fail if:

EAGAIN The path argument names the slave side of a pseudo-terminal
device that is locked.

EINVAL The value of the oflag argument is not valid.

ENAMETOOLONG Pathname resolution of a symbolic link produced an
intermediate result whose length exceeds PATH_MAX.

ENOMEM The path argument names a STREAMS file and the system is
unable to allocate resources.

ETXTBSY The file is a pure procedure (shared text) file that is being executed
and oflag is O_WRONLY or O_RDWR.

The open() function has a transitional interface for 64-bit file offsets. See lf64(5).
Note that using open64() is equivalent to using open() with O_LARGEFILE set in
oflag.

See attributes(5) for descriptions of the following attributes:

open(2)

USAGE

ATTRIBUTES

System Calls 303

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

Appropriate privilege is required to override access checks.

To open a file system object that supports exclusive open or exclusive access, the
calling process may assert the PRIV_SYS_DEVICES privilege. In the case of procfs, the
calling process cannot open a process whose program file has the S_ISUID or
S_ISGUID mode bits set or has the use of privilege. The calling process may assert the
PRIV_PROC_OWNER privilege. When used to create a new file, the calling process may
need to assert one or both of these privileges: PRIV_SYS_CONFIG to override clearing
the S_ISVTX bit, and PRIV_FILE_SETID to override clearing the S_ISGID bit.

intro(2), chmod(2), creat(2), exec(2), fcntl(2), getrlimit(2), lseek(2), read(2),
stat(2), write(2)

close(2), dup(2), getmsg(2), putmsg(2), umask(2), fcntl(5), stat(5), connld(7M),
streamio(7I)

Hierarchical Storage Management (HSM) file systems can sometimes cause long
delays when opening a file, since HSM files must be recalled from secondary storage.

open(2)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

NOTES

304 man pages section 2: System Calls • Last Revised 1 May 2000

fpathconf, pathconf – Get configurable pathname variables

#include <unistd.h>

long int fpathconf(int fildes, int name);

long int pathconf(const char *path, int name);

The fpathconf() and pathconf() functions provide a method for the application
to determine the current value of a configurable limit or option I (variable) that is
associated with a file or directory.

For pathconf(), the path argument points to the pathname of a file or directory.

For fpathconf(), the fildes argument is an open file descriptor.

The name argument represents the variable to be queried relative to that file or
directory. The variables in the following table come from <limits.h> or
<unistd.h> and the symbolic constants, defined in <unistd.h>, are the
corresponding values used for name:

Variable Value of name Notes

FILESIZEBITS _PC_FILESIZEBITS 3,4

LINK_MAX _PC_LINK_MAX 1

MAX_CANON _PC_MAX_CANON 2

MAX_INPUT _PC_MAX_INPUT 2

NAME_MAX _PC_NAME_MAX 3,4

PATH_MAX _PC_PATH_MAX 4,5

PIPE_BUF _PC_PIPE_BUF 6

_POSIX_CHOWN_RESTRICTED _PC_CHOWN_RESTRICTED 7

_POSIX_NO_TRUNC _PC_NO_TRUNC 3,4

_POSIX_VDISABLE _PC_VDISABLE 2

_POSIX_ASYNC_IO _PC_ASYNC_IO 8

_POSIX_PRIO_IO _PC_PRIO_IO 8

_POSIX_SYNC_IO _PC_SYNC_IO 8

Notes:

1. If path or fildes refers to a directory, the value returned applies to the directory itself.

2. If path or fildes does not refer to a terminal file, it is unspecified whether an
implementation supports an association of the variable name with the specified

pathconf(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 305

file.

3. If path or fildes refers to a directory, the value returned applies to filenames within
the directory.

4. If path or fildes does not refer to a directory, it is unspecified whether an
implementation supports an association of the variable name with the specified
file.

5. If path or fildes refers to a directory, the value returned is the maximum length of a
relative pathname when the specified directory is the working directory.

6. If path refers to a FIFO, or fildes refers to a pipe or FIFO, the value returned applies
to the referenced object. If path or fildes refers to a directory, the value returned
applies to any FIFO that exists or can be created within the directory. If path or fildes
refers to any other type of file, it is unspecified whether an implementation
supports an association of the variable name with the specified file.

7. If path or fildes refers to a directory, the value returned applies to any files, other
than directories, that exist or can be created within the directory.

8. If path or fildes refers to a directory, it is unspecified whether an implementation
supports an association of the variable name with the specified file.

If name is an invalid value, both pathconf() and fpathconf() return −1 and
errno is set to indicate the error.

If the variable corresponding to name has no limit for the path or file descriptor, both
pathconf() and fpathconf() return −1 without changing errno. If the
implementation needs to use path to determine the value of name and the
implementation does not support the association of name with the file specified by
path, or if the process did not have appropriate privileges to query the appropriate
privileges file specified by path, or path does not exist, pathconf() returns −1 and
errno is set to indicate the error.

If the implementation needs to use fildes to determine the value of name and the
implementation does not support the association of name with the file specified by
fildes, or if fildes is an invalid file descriptor, fpathconf() will return −1 and errno
is set to indicate the error.

Otherwise pathconf() or fpathconf() returns the current variable value for the
file or directory without changing errno. The value returned will not be more
restrictive than the corresponding value available to the application when it was
compiled with the implementation’s <limits.h> or <unistd.h>.

The pathconf() function will fail if:

EINVAL The value of name is not valid.

ELOOP Too many symbolic links were encountered in
resolving path.

The pathconf() function may fail if:

pathconf(2)

RETURN VALUES

ERRORS

306 man pages section 2: System Calls • Last Revised 30 Sep 1999

EACCES Search permission is denied for a component of the
path prefix.

EINVAL The implementation does not support an association of
the variable name with the specified file.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX or
a pathname component is longer than NAME_MAX.

ENAMETOOLONG Pathname resolution of a symbolic link produced an
intermediate result whose length exceeds PATH_MAX.

ENOENT A component of path does not name an existing file or
path is an empty string.

ENOTDIR A component of the path prefix is not a directory.

The fpathconf() function will fail if:

EINVAL The value of name is not valid.

EACCES fildes is open only for writing and the calling process
does not have mandatory read access to the object to
which the descriptor refers. To override this restriction,
the calling process may assert the
PRIV_FILE_MAC_READ privilege.

The fpathconf() function may fail if:

EACCES Search permission is denied for a component of the
path prefix. To override this restriction, the calling
process may assert one or both of these privileges:
PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

The calling process does not have mandatory read
access to path. To override this restriction, the calling
process may assert the PRIV_FILE_MAC_READ
privilege.

EBADF The fildes argument is not a valid file descriptor.

EINVAL The implementation does not support an association of
the variable name with the specified file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level pathconf() is Async-Signal-Safe

pathconf(2)

ATTRIBUTES

System Calls 307

Appropriate privilege is required to override access checks.

sysconf(3C), limits(4), attributes(5), standards(5)

pathconf(2)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
SunOS 5.8

Reference Manual

308 man pages section 2: System Calls • Last Revised 30 Sep 1999

p_online – Return or change processor operational status

#include <sys/types.h>

#include <sys/processor.h>

int p_online(processorid_t processorid, int flag);

The p_online() function changes or returns the operational status of processors. The
state of the processor specified by the processorid argument is changed to the state
represented by the flag argument.

Legal values for flag are P_STATUS, P_ONLINE, P_OFFLINE, and P_NOINTR.

When flag is P_STATUS, no processor status change occurs, but the current processor
status is returned.

The P_ONLINE, P_OFFLINE, and P_NOINTR values for flag refer to valid processor
states. A processor in the P_ONLINE state is allowed to process LWPs (lightweight
processes) and perform system activities. The processor is also interruptible by I/O
devices attached to the system. The PRIV_SYS_CONFIG privilege is required.

A processor in the P_OFFLINE state is not allowed to process LWPs. The processor is
as inactive as possible. If the hardware supports such a feature, the processor is not
interruptible by attached I/O devices.The PRIV_SYS_CONFIG privilege is required.

A processor in the P_NOINTR state is allowed to process LWPs, but it is not
interruptible by attached I/O devices. Typically, interrupts, when they occur are
routed to other processors in the system. Not all systems support putting a processor
into the P_NOINTR state. It is not permitted to put all the processors of a system into
the P_NOINTR state. At least one processor must always be available to service system
clock interrupts.

Processor numbers are integers, greater than or equal to 0, and are defined by the
hardware platform. Processor numbers are not necessarily contiguous, but “not too
sparse.” Processor numbers should always be printed in decimal.

The number of processors present can be determined by calling
sysconf(_SC_NPROCESSORS_CONF). The list of valid processor numbers can be
determined by calling p_online() with processorid values starting at 0 until all
processors have been found. The EINVAL error is returned for invalid processor
numbers. See EXAMPLES below.

On successful completion, the value returned is the previous state of the processor,
P_ONLINE, P_OFFLINE, P_NOINTR, or P_POWEROFF. Otherwise, −1 is returned and
errno is set to indicate the error.

The p_online() function will fail if:

EPERM The calling process does not have the PRIV_SYS_CONFIG
privilege.

p_online(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 309

EINVAL A non-existent processor ID was specified or flag was invalid.

EBUSY The flag was P_OFFLINE and the specified processor is the only
on-line processor, there are currently LWPs bound to the processor,
or the processor performs some essential function that cannot be
performed by another processor.

EBUSY The flag was P_NOINTR and the specified processor is the only
interruptible processor in the system, or it handles interrupts that
cannot be handled by another processor.

EBUSY The specified processor is powered off and cannot be powered on
because some platform-specific resource is not available.

ENOTSUP The specified processor is powered off, and the platform does not
support power on of individual processors.

EXAMPLE 1 List the legal processor numbers.

The following code sample will list the legal processor numbers:

#include <sys/unistd.h>
#include <sys/processor.h>
#include <sys/types.h>
#include <stdio.h>
#include <errno.h>

int
main()
{

processorid_t i;
int status;
int n = sysconf(_SC_NPROCESSORS_ONLN);
for (i = 0; n > 0; i++) {

status = p_online(i, P_STATUS);
if (status == −1 && errno == EINVAL)

continue;
printf("processor %d present\n", i);
n--;

}
return (0);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

The calling process must have the PRIV_SYS_CONFIG privilege in order to perform
the P_ONLINE and P_OFFLINE operations.

p_online(2)

EXAMPLES

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

310 man pages section 2: System Calls • Last Revised 16 Mar 1998

psradm(1M), processor_bind(2)

psrinfo(1M), processor_info(2), pset_create(2), sysconf(3C),
attributes(5)

p_online(2)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

System Calls 311

read, readl, pread, preadl, readv, readvl – read from a file

#include <sys/types.h>
#include <sys/uio.h>

#include <unistd.h>

ssize_t read(int fildes, void *buf, size_t nbyte);

ssize_t pread(int fildes, void *buf, size_t nbyte, off_t offset);

ssize_t readv(int fildes, struct iovec *iov, int iovcnt);

#include <tsol/rdwrl.h>

ssize_t readl(int fildes, void *buf, size_t nbyte, bclabel_t *label_p);

ssize_t preadl(int fildes, void *buf, size_t nbyte, off_t offset,
bclabel_t *label_p);

ssize_t readvl(int fildes, struct iovec *iov, int iovcnt, bclabel_t
*label_p);

The read() function attempts to read nbyte bytes from the file associated with the
open file descriptor, fildes, into the buffer pointed to by buf.

If nbyte is 0, read() will return 0 and have no other results.

On files that support seeking (for example, a regular file), the read() starts at a
position in the file given by the file offset associated with fildes. The file offset is
incremented by the number of bytes actually read.

Files that do not support seeking (for example, terminals) always read from the
current position. The value of a file offset associated with such a file is undefined.

If fildes refers to a socket, read() is equivalent to recv(3SOCKET) with no flags set.

No data transfer will occur past the current end-of-file. If the starting position is at or
after the end-of-file, 0 will be returned. If the file refers to a device special file, the
result of subsequent read() requests is implementation-dependent.

If the value of nbyte is greater than SSIZE_MAX, the result is
implementation-dependent.

When attempting to read from a regular file with mandatory file/record locking set
(see chmod(2)), and there is a write lock owned by another process on the segment of
the file to be read:

� If O_NDELAY or O_NONBLOCK is set, read() returns −1 and sets errno to
EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() sleeps until the blocking record
lock is removed.

When attempting to read from an empty pipe (or FIFO):

pread(2)

NAME

SYNOPSIS

DESCRIPTION

312 man pages section 2: System Calls • Last Revised 1 May 2000

� If no process has the pipe open for writing, read() returns 0 to indicate
end-of-file.

� If some process has the pipe open for writing and O_NDELAY is set, read()
returns 0.

� If some process has the pipe open for writing and O_NONBLOCK is set, read()
returns −1 and sets errno to EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() blocks until data is written to the
pipe or the pipe is closed by all processes that had opened the pipe for writing.

When attempting to read a file associated with a terminal that has no data currently
available:

� If O_NDELAY is set, read() returns 0.

� If O_NONBLOCK is set, read() returns −1 and sets errno to EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() blocks until data become
available.

When attempting to read a file associated with a socket or a stream that is not a pipe, a
FIFO, or a terminal, and the file has no data currently available:

� If O_NDELAY or O_NONBLOCK is set, read() returns −1 and sets errno to
EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() blocks until data becomes
available.

The read() function reads data previously written to a file. If any portion of a regular
file prior to the end-of-file has not been written, read() returns bytes with value 0.
For example, lseek(2) allows the file offset to be set beyond the end of existing data
in the file. If data is later written at this point, subsequent reads in the gap between the
previous end of data and the newly written data will return bytes with value 0 until
data is written into the gap.

For regular files, no data transfer will occur past the offset maximum established in the
open file description associated with fildes.

Upon successful completion, where nbyte is greater than 0, read() will mark for
update the st_atime field of the file, and return the number of bytes read. This
number will never be greater than nbyte. The value returned may be less than nbyte if
the number of bytes left in the file is less than nbyte, if the read() request was
interrupted by a signal, or if the file is a pipe or FIFO or special file and has fewer than
nbyte bytes immediately available for reading. For example, a read() from a file
associated with a terminal may return one typed line of data.

If a read() is interrupted by a signal before it reads any data, it will return −1 with
errno set to EINTR.

pread(2)

System Calls 313

If a read() is interrupted by a signal after it has successfully read some data, it will
return the number of bytes read.

A read() or readv() from a STREAMS (see intro(2)) file can read data in three
different modes: byte-stream mode, message-nondiscard mode, and message-discard
mode. The default is byte-stream mode. This can be changed using the I_SRDOPT
ioctl(2) request, and can be tested with the I_GRDOPT ioctl(). In byte-stream
mode, read() retrieves data from the STREAM until as many bytes as were
requested are transferred, or until there is no more data to be retrieved. Byte-stream
mode ignores message boundaries.

In STREAMS message-nondiscard mode, read() retrieves data until as many bytes as
were requested are transferred, or until a message boundary is reached. If read()
does not retrieve all the data in a message, the remaining data is left on the STREAM,
and can be retrieved by the next read() call. Message-discard mode also retrieves
data until as many bytes as were requested are transferred, or a message boundary is
reached. However, unread data remaining in a message after the read() returns is
discarded, and is not available for a subsequent read(), readv() or getmsg(2) call.

How read() handles zero-byte STREAMS messages is determined by the current
read mode setting. In byte-stream mode, read() accepts data until it has read nbyte
bytes, or until there is no more data to read, or until a zero-byte message block is
encountered. The read() function then returns the number of bytes read, and places
the zero-byte message back on the STREAM to be retrieved by the next read(),
readv() or getmsg(2). In message-nondiscard mode or message-discard mode, a
zero-byte message returns 0 and the message is removed from the STREAM. When a
zero-byte message is read as the first message on a STREAM, the message is removed
from the STREAM and 0 is returned, regardless of the read mode.

A read() from a STREAMS file returns the data in the message at the front of the
STREAM head read queue, regardless of the priority band of the message.

By default, STREAMS are in control-normal mode, in which a read() from a
STREAMS file can only process messages that contain a data part but do not contain a
control part. The read() fails if a message containing a control part is encountered at
the STREAM head. This default action can be changed by placing the STREAM in
either control-data mode or control-discard mode with the I_SRDOPT ioctl()
command. In control-data mode, read() converts any control part to data and passes
it to the application before passing any data part originally present in the same
message. In control-discard mode, read() discards message control parts but returns
to the process any data part in the message.

readl(), preadl(), and readvl() perform the same actions as read(), pread(),
and readv(), respectively, and additionally return in label_p the CMW label of the
data read. The label returned is determined according to these conditions:

� If the descriptor refers to a regular file or FIFO, the sensitivity label portion of
label_p is set to the sensitivity label associated with the filesystem object.

pread(2)

314 man pages section 2: System Calls • Last Revised 1 May 2000

In all other respects, the readl(), preadl(), and readvl() interfaces are
analogous to the read(), pread(), and readv() interfaces.

In the Solaris environment, read() normally allows a process to read the contents of
directories on some local file systems. This functionality is not supported in the
Trusted Solaris operating environment. If the file descriptor refers to a directory,
read() will return EISDIR.

The last access time is updated only when the calling process has both mandatory
read and write access to the filesystem object. There is no privilege to override this
restriction.

In addition, read() and readv() will fail if the STREAM head had processed an
asynchronous error before the call. In this case, the value of errno does not reflect the
result of read() or readv() but reflects the prior error. If a hangup occurs on the
STREAM being read, read() continues to operate normally until the STREAM head
read queue is empty. Thereafter, it returns 0.

The readv() function is equivalent to read(), but places the input data into the
iovcnt buffers specified by the members of the iov array: iov0, iov1, …, iov[iovcnt−1].
The iovcnt argument is valid if greater than 0 and less than or equal to IOV_MAX.

The iovec structure contains the following members:

caddr_t iov_base;
int iov_len;

Each iovec entry specifies the base address and length of an area in memory where
data should be placed. The readv() function always fills an area completely before
proceeding to the next.

Upon successful completion, readv() marks for update the st_atime field of the
file.

The pread() function performs the same action as read(), except that it reads from
a given position in the file without changing the file pointer. The first three arguments
to pread() are the same as read() with the addition of a fourth argument offset for
the desired position inside the file. pread() will read up to the maximum offset value
that can be represented in an off_t for regular files. An attempt to perform a
pread() on a file that is incapable of seeking results in an error.

Upon successful completion, read() and readv() return a non-negative integer
indicating the number of bytes actually read. Otherwise, the functions return −1 and
set errno to indicate the error.

read(), readl(), pread(), preadl(), readv(), and readvl() fail if any of these
conditions is true:

EAGAIN Mandatory file/record locking was set, O_NDELAY or
O_NONBLOCK was set, and there was a blocking record lock; total

pread(2)

readv()

pread()

RETURN VALUES

ERRORS

System Calls 315

amount of system memory available when reading using raw I/O
is temporarily insufficient; no data is waiting to be read on a file
associated with a tty device and O_NONBLOCK was set; or no
message is waiting to be read on a stream and O_NDELAY or
O_NONBLOCK was set.

EBADF The fildes argument is not a valid file descriptor open for reading.

EBADMSG Message waiting to be read on a stream is not a data message.

EDEADLK The read was going to go to sleep and cause a deadlock to occur.

EFAULT The buf argument points to an illegal address.

EINTR A signal was caught during the read operation and no data was
transferred.

EINVAL An attempt was made to read from a stream linked to a
multiplexor.

EIO A physical I/O error has occurred, or the process is in a
background process group and is attempting to read from its
controlling terminal, and either the process is ignoring or blocking
the SIGTTIN signal or the process group of the process is
orphaned.

EISDIR The fildes argument refers to a directory on a file system type that
does not support read operations on directories.

ENOLCK The system record lock table was full, so the read() or readv()
could not go to sleep until the blocking record lock was removed.

ENOLINK The fildes argument is on a remote machine and the link to that
machine is no longer active.

ENXIO The device associated with fildes is a block special or character
special file and the value of the file pointer is out of range.

The read() and readv() functions will fail if:

EOVERFLOW The file is a regular file, nbyte is greater than 0, the starting position
is before the end-of-file, and the starting position is greater than or
equal to the offset maximum established in the open file
description associated with fildes.

The readv() function may fail if:

EFAULT The iov argument points outside the allocated address space.

EINVAL The iovcnt argument was less than or equal to 0, or greater than or
equal to IOV_MAX. (See intro(2) for a definition of IOV_MAX).

EINVAL The sum of the iov_len values in the iov array overflowed an int.

The pread() function will fail and the file pointer remain unchanged if:

pread(2)

316 man pages section 2: System Calls • Last Revised 1 May 2000

EFAULT label_p points to an illegal address.

The pread() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level read() is Async-Signal-Safe

readl(), preadl(), and readvl() return in the buffer that was referenced by
label_p, the CMW label associated with the data that was read.

The last access time is updated only when the calling process has both mandatory
read and write access to the filesystem object. There is no privilege to override this
restriction.

For conduits, a sensitivity label is associated with each byte of data.

intro(2), chmod(2), creat(2), fcntl(2), open(2)

dup(2), getmsg(2), ioctl(2), pipe(2), attributes(5), streamio(7I), termio(7I)

pread(2)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

System Calls 317

read, readl, pread, preadl, readv, readvl – read from a file

#include <sys/types.h>
#include <sys/uio.h>

#include <unistd.h>

ssize_t read(int fildes, void *buf, size_t nbyte);

ssize_t pread(int fildes, void *buf, size_t nbyte, off_t offset);

ssize_t readv(int fildes, struct iovec *iov, int iovcnt);

#include <tsol/rdwrl.h>

ssize_t readl(int fildes, void *buf, size_t nbyte, bclabel_t *label_p);

ssize_t preadl(int fildes, void *buf, size_t nbyte, off_t offset,
bclabel_t *label_p);

ssize_t readvl(int fildes, struct iovec *iov, int iovcnt, bclabel_t
*label_p);

The read() function attempts to read nbyte bytes from the file associated with the
open file descriptor, fildes, into the buffer pointed to by buf.

If nbyte is 0, read() will return 0 and have no other results.

On files that support seeking (for example, a regular file), the read() starts at a
position in the file given by the file offset associated with fildes. The file offset is
incremented by the number of bytes actually read.

Files that do not support seeking (for example, terminals) always read from the
current position. The value of a file offset associated with such a file is undefined.

If fildes refers to a socket, read() is equivalent to recv(3SOCKET) with no flags set.

No data transfer will occur past the current end-of-file. If the starting position is at or
after the end-of-file, 0 will be returned. If the file refers to a device special file, the
result of subsequent read() requests is implementation-dependent.

If the value of nbyte is greater than SSIZE_MAX, the result is
implementation-dependent.

When attempting to read from a regular file with mandatory file/record locking set
(see chmod(2)), and there is a write lock owned by another process on the segment of
the file to be read:

� If O_NDELAY or O_NONBLOCK is set, read() returns −1 and sets errno to
EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() sleeps until the blocking record
lock is removed.

When attempting to read from an empty pipe (or FIFO):

preadl(2)

NAME

SYNOPSIS

DESCRIPTION

318 man pages section 2: System Calls • Last Revised 1 May 2000

� If no process has the pipe open for writing, read() returns 0 to indicate
end-of-file.

� If some process has the pipe open for writing and O_NDELAY is set, read()
returns 0.

� If some process has the pipe open for writing and O_NONBLOCK is set, read()
returns −1 and sets errno to EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() blocks until data is written to the
pipe or the pipe is closed by all processes that had opened the pipe for writing.

When attempting to read a file associated with a terminal that has no data currently
available:

� If O_NDELAY is set, read() returns 0.

� If O_NONBLOCK is set, read() returns −1 and sets errno to EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() blocks until data become
available.

When attempting to read a file associated with a socket or a stream that is not a pipe, a
FIFO, or a terminal, and the file has no data currently available:

� If O_NDELAY or O_NONBLOCK is set, read() returns −1 and sets errno to
EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() blocks until data becomes
available.

The read() function reads data previously written to a file. If any portion of a regular
file prior to the end-of-file has not been written, read() returns bytes with value 0.
For example, lseek(2) allows the file offset to be set beyond the end of existing data
in the file. If data is later written at this point, subsequent reads in the gap between the
previous end of data and the newly written data will return bytes with value 0 until
data is written into the gap.

For regular files, no data transfer will occur past the offset maximum established in the
open file description associated with fildes.

Upon successful completion, where nbyte is greater than 0, read() will mark for
update the st_atime field of the file, and return the number of bytes read. This
number will never be greater than nbyte. The value returned may be less than nbyte if
the number of bytes left in the file is less than nbyte, if the read() request was
interrupted by a signal, or if the file is a pipe or FIFO or special file and has fewer than
nbyte bytes immediately available for reading. For example, a read() from a file
associated with a terminal may return one typed line of data.

If a read() is interrupted by a signal before it reads any data, it will return −1 with
errno set to EINTR.

preadl(2)

System Calls 319

If a read() is interrupted by a signal after it has successfully read some data, it will
return the number of bytes read.

A read() or readv() from a STREAMS (see intro(2)) file can read data in three
different modes: byte-stream mode, message-nondiscard mode, and message-discard
mode. The default is byte-stream mode. This can be changed using the I_SRDOPT
ioctl(2) request, and can be tested with the I_GRDOPT ioctl(). In byte-stream
mode, read() retrieves data from the STREAM until as many bytes as were
requested are transferred, or until there is no more data to be retrieved. Byte-stream
mode ignores message boundaries.

In STREAMS message-nondiscard mode, read() retrieves data until as many bytes as
were requested are transferred, or until a message boundary is reached. If read()
does not retrieve all the data in a message, the remaining data is left on the STREAM,
and can be retrieved by the next read() call. Message-discard mode also retrieves
data until as many bytes as were requested are transferred, or a message boundary is
reached. However, unread data remaining in a message after the read() returns is
discarded, and is not available for a subsequent read(), readv() or getmsg(2) call.

How read() handles zero-byte STREAMS messages is determined by the current
read mode setting. In byte-stream mode, read() accepts data until it has read nbyte
bytes, or until there is no more data to read, or until a zero-byte message block is
encountered. The read() function then returns the number of bytes read, and places
the zero-byte message back on the STREAM to be retrieved by the next read(),
readv() or getmsg(2). In message-nondiscard mode or message-discard mode, a
zero-byte message returns 0 and the message is removed from the STREAM. When a
zero-byte message is read as the first message on a STREAM, the message is removed
from the STREAM and 0 is returned, regardless of the read mode.

A read() from a STREAMS file returns the data in the message at the front of the
STREAM head read queue, regardless of the priority band of the message.

By default, STREAMS are in control-normal mode, in which a read() from a
STREAMS file can only process messages that contain a data part but do not contain a
control part. The read() fails if a message containing a control part is encountered at
the STREAM head. This default action can be changed by placing the STREAM in
either control-data mode or control-discard mode with the I_SRDOPT ioctl()
command. In control-data mode, read() converts any control part to data and passes
it to the application before passing any data part originally present in the same
message. In control-discard mode, read() discards message control parts but returns
to the process any data part in the message.

readl(), preadl(), and readvl() perform the same actions as read(), pread(),
and readv(), respectively, and additionally return in label_p the CMW label of the
data read. The label returned is determined according to these conditions:

� If the descriptor refers to a regular file or FIFO, the sensitivity label portion of
label_p is set to the sensitivity label associated with the filesystem object.

preadl(2)

320 man pages section 2: System Calls • Last Revised 1 May 2000

In all other respects, the readl(), preadl(), and readvl() interfaces are
analogous to the read(), pread(), and readv() interfaces.

In the Solaris environment, read() normally allows a process to read the contents of
directories on some local file systems. This functionality is not supported in the
Trusted Solaris operating environment. If the file descriptor refers to a directory,
read() will return EISDIR.

The last access time is updated only when the calling process has both mandatory
read and write access to the filesystem object. There is no privilege to override this
restriction.

In addition, read() and readv() will fail if the STREAM head had processed an
asynchronous error before the call. In this case, the value of errno does not reflect the
result of read() or readv() but reflects the prior error. If a hangup occurs on the
STREAM being read, read() continues to operate normally until the STREAM head
read queue is empty. Thereafter, it returns 0.

The readv() function is equivalent to read(), but places the input data into the
iovcnt buffers specified by the members of the iov array: iov0, iov1, …, iov[iovcnt−1].
The iovcnt argument is valid if greater than 0 and less than or equal to IOV_MAX.

The iovec structure contains the following members:

caddr_t iov_base;
int iov_len;

Each iovec entry specifies the base address and length of an area in memory where
data should be placed. The readv() function always fills an area completely before
proceeding to the next.

Upon successful completion, readv() marks for update the st_atime field of the
file.

The pread() function performs the same action as read(), except that it reads from
a given position in the file without changing the file pointer. The first three arguments
to pread() are the same as read() with the addition of a fourth argument offset for
the desired position inside the file. pread() will read up to the maximum offset value
that can be represented in an off_t for regular files. An attempt to perform a
pread() on a file that is incapable of seeking results in an error.

Upon successful completion, read() and readv() return a non-negative integer
indicating the number of bytes actually read. Otherwise, the functions return −1 and
set errno to indicate the error.

read(), readl(), pread(), preadl(), readv(), and readvl() fail if any of these
conditions is true:

EAGAIN Mandatory file/record locking was set, O_NDELAY or
O_NONBLOCK was set, and there was a blocking record lock; total

preadl(2)

readv()

pread()

RETURN VALUES

ERRORS

System Calls 321

amount of system memory available when reading using raw I/O
is temporarily insufficient; no data is waiting to be read on a file
associated with a tty device and O_NONBLOCK was set; or no
message is waiting to be read on a stream and O_NDELAY or
O_NONBLOCK was set.

EBADF The fildes argument is not a valid file descriptor open for reading.

EBADMSG Message waiting to be read on a stream is not a data message.

EDEADLK The read was going to go to sleep and cause a deadlock to occur.

EFAULT The buf argument points to an illegal address.

EINTR A signal was caught during the read operation and no data was
transferred.

EINVAL An attempt was made to read from a stream linked to a
multiplexor.

EIO A physical I/O error has occurred, or the process is in a
background process group and is attempting to read from its
controlling terminal, and either the process is ignoring or blocking
the SIGTTIN signal or the process group of the process is
orphaned.

EISDIR The fildes argument refers to a directory on a file system type that
does not support read operations on directories.

ENOLCK The system record lock table was full, so the read() or readv()
could not go to sleep until the blocking record lock was removed.

ENOLINK The fildes argument is on a remote machine and the link to that
machine is no longer active.

ENXIO The device associated with fildes is a block special or character
special file and the value of the file pointer is out of range.

The read() and readv() functions will fail if:

EOVERFLOW The file is a regular file, nbyte is greater than 0, the starting position
is before the end-of-file, and the starting position is greater than or
equal to the offset maximum established in the open file
description associated with fildes.

The readv() function may fail if:

EFAULT The iov argument points outside the allocated address space.

EINVAL The iovcnt argument was less than or equal to 0, or greater than or
equal to IOV_MAX. (See intro(2) for a definition of IOV_MAX).

EINVAL The sum of the iov_len values in the iov array overflowed an int.

The pread() function will fail and the file pointer remain unchanged if:

preadl(2)

322 man pages section 2: System Calls • Last Revised 1 May 2000

EFAULT label_p points to an illegal address.

The pread() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level read() is Async-Signal-Safe

readl(), preadl(), and readvl() return in the buffer that was referenced by
label_p, the CMW label associated with the data that was read.

The last access time is updated only when the calling process has both mandatory
read and write access to the filesystem object. There is no privilege to override this
restriction.

For conduits, a sensitivity label is associated with each byte of data.

intro(2), chmod(2), creat(2), fcntl(2), open(2)

dup(2), getmsg(2), ioctl(2), pipe(2), attributes(5), streamio(7I), termio(7I)

preadl(2)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

System Calls 323

priocntl – process scheduler control

#include <sys/types.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>

#include <sys/tspriocntl.h>

long priocntl(idtype_t idtype, id_t id, int cmd, /* arg */ ...);

The priocntl() function provides for control over the scheduling of an active light
weight process (LWP).

LWPs fall into distinct classes with a separate scheduling policy applied to each class.
The two classes currently supported are the realtime class and the time-sharing class.
The characteristics of these classes are described under the corresponding headings
below. The class attribute of an LWP is inherited across the fork(2) and
_lwp_create(2) functions and the exec family of functions (see exec(2)). The
priocntl() function can be used to dynamically change the class and other
scheduling parameters associated with a running LWP or set of LWPs given the
appropriate permissions as explained below.

In the default configuration, a runnable realtime LWP runs before any other LWP.
Therefore, inappropriate use of realtime LWP can have a dramatic negative impact on
system performance.

The priocntl() function provides an interface for specifying a process, set of
processes or an LWP to which the function is to apply. The priocntlset(2) function
provides the same functions as priocntl(), but allows a more general interface for
specifying the set of LWPs to which the function is to apply.

For priocntl(), the idtype and id arguments are used together to specify the set of
LWPs. The interpretation of id depends on the value of idtype. The possible values for
idtype and corresponding interpretations of id are as follows:

P_LWPID The id argument is an LWP ID. The priocntl function applies to the
LWP with the specified ID within the calling process.

P_PID The id argument is a process ID specifying a single process. The
priocntl() function applies to all LWPs currently associated
with the specified process.

P_PPID The id argument is a parent process ID. The priocntl() function
applies to all LWPs currently associated with processes with the
specified parent process ID.

P_PGID The id argument is a process group ID. The priocntl() function
applies to all LWPs currently associated with processes in the
specified process group.

P_SID The id argument is a session ID. The priocntl() function applies
to all LWPs currently associated with processes in the specified
session.

priocntl(2)

NAME

SYNOPSIS

DESCRIPTION

324 man pages section 2: System Calls • Last Revised 1 Feb 2001

P_CID The id argument is a class ID (returned by the priocntl()
PC_GETCID command as explained below). The priocntl()
function applies to all LWPs in the specified class.

P_UID The id argument is a user ID. The priocntl() function applies to
all LWPs with this effective user ID.

P_GID The id argument is a group ID. The priocntl() function applies
to all LWPs with this effective group ID.

P_ALL The priocntl() function applies to all existing LWPs. The value
of id is ignored. The permission restrictions described below still
apply.

An id value of P_MYID can be used in conjunction with the idtype value to specify the
calling LWP’s LWP ID, parent process ID, process group ID, session ID, class ID, user
ID, or group ID.

In order to change the scheduling parameters of an LWP (using the PC_SETPARMS
command as explained hereafter) the calling LWP must have process MAC write
access, and the real or effective user ID of the LWP calling priocntl must match the
real or effective user ID of the receiving LWP or the calling LWP must have the
PRIV_PROC_OWNER privilege. These are the minimum permission requirements
enforced for all classes. An individual class may impose additional permissions
requirements when setting LWPs to that class and/or when setting class-specific
scheduling parameters.

A special sys scheduling class exists for the purpose of scheduling the execution of
certain special system processes (such as the swapper process). It is not possible to
change the class of any LWP to sys. In addition, any processes in the sys class that
are included in a specified set of processes are disregarded by priocntl(). For
example, an idtype of P_UID and an id value of 0 would specify all processes with a
user ID of 0 except processes in the sys class and (if changing the parameters using
PC_SETPARMS) the init(1M) process.

The init process is a special case. In order for a priocntl() call to change the class or
other scheduling parameters of the init process (process ID 1), it must be the only
process specified by idtype and id. The init process may be assigned to any class
configured on the system, but the time-sharing class is almost always the appropriate
choice. (Other choices may be highly undesirable; see the System Administration Guide,
Volume 1 for more information.)

The data type and value of arg are specific to the type of command specified by cmd.

A structure with the following members is used by the PC_GETCID and
PC_GETCLINFO commands.

id_t pc_cid; /* Class id */
char pc_clname[PC_CLNMSZ]; /* Class name */
int pc_clinfo[PC_CLINFOSZ]; /* Class information */

priocntl(2)

System Calls 325

The pc_cid member is a class ID returned by the priocntl() PC_GETCID
command. The pc_clname member is a buffer of size PC_CLNMSZ (defined in
<sys/priocntl.h>) used to hold the class name (RT for realtime or TS for
time-sharing).

The pc_clinfo member is a buffer of size PC_CLINFOSZ (defined in
<sys/priocntl.h>) used to return data describing the attributes of a specific class.
The format of this data is class-specific and is described under the appropriate
heading (REALTIME CLASS or TIME-SHARING CLASS) below.

A structure with the following elements is used by the PC_SETPARMS and
PC_GETPARMS commands.

id_t pc_cid; /* LWP class */
int pc_clparms[PC_CLPARMSZ]; /* Class-specific params */

The pc_cid member is a class ID (returned by the priocntl() PC_GETCID
command). The special class ID PC_CLNULL can also be assigned to pc_cid when
using the PC_GETPARMS command as explained below.

The pc_clparms buffer holds class-specific scheduling parameters. The format of this
parameter data for a particular class is described under the appropriate heading
below. PC_CLPARMSZ is the length of the pc_clparms buffer and is defined in
<sys/priocntl.h>.

Available priocntl() commands are:

PC_GETCID
Get class ID and class attributes for a specific class given class name. The idtype and
id arguments are ignored. If arg is non-null, it points to a structure of type
pcinfo_t. The pc_clname buffer contains the name of the class whose attributes
you are getting.

On success, the class ID is returned in pc_cid, the class attributes are returned in
the pc_clinfo buffer, and the priocntl() call returns the total number of
classes configured in the system (including the sys class). If the class specified by
pc_clname is invalid or is not currently configured the priocntl() call returns
−1 with errno set to EINVAL. The format of the attribute data returned for a given
class is defined in the <sys/rtpriocntl.h> or <sys/tspriocntl.h> header
and described under the appropriate heading below.

If arg is a null pointer, no attribute data is returned but the priocntl() call still
returns the number of configured classes.

PC_GETCLINFO
Get class name and class attributes for a specific class given class ID. The idtype and
id arguments are ignored. If arg is non-null, it points to a structure of type
pcinfo_t. The pc_cid member is the class ID of the class whose attributes you
are getting.

priocntl(2)

COMMANDS

326 man pages section 2: System Calls • Last Revised 1 Feb 2001

On success, the class name is returned in the pc_clname buffer, the class attributes
are returned in the pc_clinfo buffer, and the priocntl() call returns the total
number of classes configured in the system (including the sys class). The format of
the attribute data returned for a given class is defined in the
<sys/rtpriocntl.h> or <sys/tspriocntl.h> header file and described
under the appropriate heading below.

If arg is a null pointer, no attribute data is returned but the priocntl() call still
returns the number of configured classes.

PC_SETPARMS
Set the class and class-specific scheduling parameters of the specified LWP(s)
associated with the specified process(es). When this command is used with the
idtype of P_LWPID, it will set the class and class-specific scheduling parameters of
the LWP. The arg argument points to a structure of type pcparms_t. The pc_cid
member specifies the class you are setting and the pc_clparms buffer contains the
class-specific parameters you are setting. The format of the class-specific parameter
data is defined in the <sys/rtpriocntl.h> or <sys/tspriocntl.h> header
and described under the appropriate class heading below.

When setting parameters for a set of LWPs, priocntl() acts on the LWPs in the
set in an implementation-specific order. If priocntl() encounters an error for one
or more of the target processes, it may or may not continue through the set of
LWPs, depending on the nature of the error. If the error is related to permissions
(EPERM), priocntl() continues through the LWP set, resetting the parameters for
all target LWPs for which the calling LWP has appropriate permissions. The
priocntl() function then returns −1 with errno set to EPERM to indicate that the
operation failed for one or more of the target LWPs. If priocntl() encounters an
error other than permissions, it does not continue through the set of target LWPs
but returns the error immediately.

PC_GETPARMS
Get the class and/or class-specific scheduling parameters of an LWP. The arg
member points to a structure of type pcparms_t.

If pc_cid specifies a configured class and a single LWP belonging to that class is
specified by the idtype and id values or the procset structure, then the scheduling
parameters of that LWP are returned in the pc_clparms buffer. If the LWP
specified does not exist or does not belong to the specified class, the priocntl()
call returns −1 with errno set to ESRCH.

If pc_cid specifies a configured class and a set of LWPs is specified, the scheduling
parameters of one of the specified LWP belonging to the specified class are returned
in the pc_clparms buffer and the priocntl() call returns the process ID of the
selected LWP. The criteria for selecting an LWP to return in this case is class
dependent. If none of the specified LWPs exist or none of them belong to the
specified class the priocntl() call returns −1 with errno set to ESRCH.

priocntl(2)

System Calls 327

If pc_cid is PC_CLNULL and a single LWP is specified the class of the specified
LWP is returned in pc_cid and its scheduling parameters are returned in the
pc_clparms buffer.

PC_ADMIN
This command provides functionality needed for the implementation of the
dispadmin(1) utility. It is not intended for general use by other applications.

The realtime class provides a fixed priority preemptive scheduling policy for those
LWPs requiring fast and deterministic response and absolute user/application control
of scheduling priorities. If the realtime class is configured in the system it should have
exclusive control of the highest range of scheduling priorities on the system. This
ensures that a runnable realtime LWP is given CPU service before any LWP belonging
to any other class.

The realtime class has a range of realtime priority (rt_pri) values that may be
assigned to an LWP within the class. Real-time priorities range from 0 to x, where the
value of x is configurable and can be determined for a specific installation by using the
priocntl() PC_GETCID or PC_GETCLINFO command.

The realtime scheduling policy is a fixed priority policy. The scheduling priority of a
realtime LWP is never changed except as the result of an explicit request by the
user/application to change the rt_pri value of the LWP.

For an LWP in the realtime class, the rt_pri value is, for all practical purposes,
equivalent to the scheduling priority of the LWP. The rt_pri value completely
determines the scheduling priority of a realtime LWP relative to other LWPs within its
class. Numerically higher rt_pri values represent higher priorities. Since the
realtime class controls the highest range of scheduling priorities in the system it is
guaranteed that the runnable realtime LWP with the highest rt_pri value is always
selected to run before any other LWPs in the system.

In addition to providing control over priority, priocntl() provides for control over
the length of the time quantum allotted to the LWP in the realtime class. The time
quantum value specifies the maximum amount of time an LWP may run assuming
that it does not complete or enter a resource or event wait state (sleep). Note that if
another LWP becomes runnable at a higher priority, the currently running LWP may
be preempted before receiving its full time quantum.

The system’s process scheduler keeps the runnable realtime LWPs on a set of
scheduling queues. There is a separate queue for each configured realtime priority and
all realtime LWPs with a given rt_pri value are kept together on the appropriate
queue. The LWPs on a given queue are ordered in FIFO order (that is, the LWP at the
front of the queue has been waiting longest for service and receives the CPU first).
Real-time LWPs that wake up after sleeping, LWPs which change to the realtime class
from some other class, LWPs which have used their full time quantum, and runnable
LWPs whose priority is reset by priocntl() are all placed at the back of the
appropriate queue for their priority. An LWP that is preempted by a higher priority
LWP remains at the front of the queue (with whatever time is remaining in its time

priocntl(2)

REALTIME
CLASS

328 man pages section 2: System Calls • Last Revised 1 Feb 2001

quantum) and runs before any other LWP at this priority. Following a fork(2) or
_lwp_create(2) function call by a realtime LWP, the parent LWP continues to run
while the child LWP (which inherits its parent’s rt_pri value) is placed at the back of
the queue.

A structure with the following members (defined in <sys/rtpriocntl.h>) defines
the format used for the attribute data for the realtime class.

short rt_maxpri; /* Maximum realtime priority */

The priocntl() PC_GETCID and PC_GETCLINFO commands return realtime class
attributes in the pc_clinfo buffer in this format.

The rt_maxpri member specifies the configured maximum rt_pri value for the
realtime class (if rt_maxpri is x, the valid realtime priorities range from 0 to x).

A structure with the following members (defined in <sys/rtpriocntl.h>) defines
the format used to specify the realtime class-specific scheduling parameters of an LWP.

short rt_pri; /* Real-Time priority */
uint_t rt_tqsecs; /* Seconds in time quantum */
int rt_tqnsecs; /* Additional nanoseconds in quantum */

When using the priocntl() PC_SETPARMS or PC_GETPARMS commands, if pc_cid
specifies the realtime class, the data in the pc_clparms buffer is in this format.

The above commands can be used to set the realtime priority to the specified value or
get the current rt_pri value. Setting the rt_pri value of an LWP that is currently
running or runnable (not sleeping) causes the LWP to be placed at the back of the
scheduling queue for the specified priority. The LWP is placed at the back of the
appropriate queue regardless of whether the priority being set is different from the
previous rt_pri value of the LWP. Note that a running LWP can voluntarily release
the CPU and go to the back of the scheduling queue at the same priority by resetting
its rt_pri value to its current realtime priority value. In order to change the time
quantum of an LWP without setting the priority or affecting the LWP’s position on the
queue, the rt_pri member should be set to the special value RT_NOCHANGE (defined
in <sys/rtpriocntl.h>). Specifying RT_NOCHANGE when changing the class of an
LWP to realtime from some other class results in the realtime priority being set to 0.

For the priocntl() PC_GETPARMS command, if pc_cid specifies the realtime class
and more than one realtime LWP is specified, the scheduling parameters of the
realtime LWP with the highest rt_pri value among the specified LWPs are returned
and the LWP ID of this LWP is returned by the priocntl() call. If there is more than
one LWP sharing the highest priority, the one returned is implementation-dependent.

The rt_tqsecs and rt_tqnsecs members are used for getting or setting the time
quantum associated with an LWP or group of LWPs. rt_tqsecs is the number of
seconds in the time quantum and rt_tqnsecs is the number of additional
nanoseconds in the quantum. For example setting rt_tqsecs to 2 and rt_tqnsecs
to 500,000,000 (decimal) would result in a time quantum of two and one-half seconds.

priocntl(2)

System Calls 329

Specifying a value of 1,000,000,000 or greater in the rt_tqnsecs member results in
an error return with errno set to EINVAL. Although the resolution of the tq_nsecs
member is very fine, the specified time quantum length is rounded up by the system
to the next integral multiple of the system clock’s resolution. The maximum time
quantum that can be specified is implementation-specific and equal to LONG_MAX1
ticks (defined in <limits.h>). Requesting a quantum greater than this maximum
results in an error return with errno set to ERANGE (although infinite quantums may
be requested using a special value as explained below). Requesting a time quantum of
0 (setting both rt_tqsecs and rt_tqnsecs to 0) results in an error return with
errno set to EINVAL.

The rt_tqnsecs member can also be set to one of the following special values
(defined in <sys/rtpriocntl.h>), in which case the value of rt_tqsecs is
ignored:

RT_TQINF Set an infinite time quantum.

RT_TQDEF Set the time quantum to the default for this priority (see
rt_dptbl(4)).

RT_NOCHANGE Do not set the time quantum. This value is useful when you wish
to change the realtime priority of an LWP without affecting the
time quantum. Specifying this value when changing the class of an
LWP to realtime from some other class is equivalent to specifying
RT_TQDEF.

In order to change the class of an LWP to real-time (from any other class), the LWP
invoking priocntl() must have the PRIV_SYS_CONFIG privilege. In order to
change the priority or time quantum setting of a real-time LWP, the LWP invoking
priocntl() must have the PRIV_PROC_OWNER privilege or must itself be a real-time
LWP whose real or effective user ID matches the real of effective user ID of the target
LWP.

The real-time priority and time quantum are inherited across the fork(2) and exec(2)
system calls.

The time-sharing scheduling policy provides for a fair and effective allocation of the
CPU resource among LWPs with varying CPU consumption characteristics. The
objectives of the time-sharing policy are to provide good response time to interactive
LWPs and good throughput to CPU-bound jobs while providing a degree of
user/application control over scheduling.

The time-sharing class has a range of time-sharing user priority (see ts_upri below)
values that may be assigned to LWPs within the class. A ts_upri value of 0 is
defined as the default base priority for the time-sharing class. User priorities range
from -x to +x where the value of x is configurable and can be determined for a specific
installation by using the priocntl() PC_GETCID or PC_GETCLINFO command.

The purpose of the user priority is to provide some degree of user/application control
over the scheduling of LWPs in the time-sharing class. Raising or lowering the

priocntl(2)

TIME-SHARING
CLASS

330 man pages section 2: System Calls • Last Revised 1 Feb 2001

ts_upri value of an LWP in the time-sharing class raises or lowers the scheduling
priority of the LWP. It is not guaranteed, however, that an LWP with a higher
ts_upri value will run before one with a lower ts_upri value. This is because the
ts_upri value is just one factor used to determine the scheduling priority of a
time-sharing LWP. The system may dynamically adjust the internal scheduling
priority of a time-sharing LWP based on other factors such as recent CPU usage.

In addition to the system-wide limits on user priority (returned by the PC_GETCID
and PC_GETCLINFO commands) there is a per LWP user priority limit (see
ts_uprilim below), which specifies the maximum ts_upri value that may be set
for a given LWP; by default, ts_uprilim is 0.

A structure with the following members (defined in <sys/tspriocntl.h>) defines
the format used for the attribute data for the time-sharing class.

short ts_maxupri; /* Limits of user priority range */

The priocntl() PC_GETCID and PC_GETCLINFO commands return time-sharing
class attributes in the pc_clinfo buffer in this format.

ts_maxupri specifies the configured maximum user priority value for the
time-sharing class. If ts_maxupri is x, the valid range for both user priorities and
user priority limits is from -x to +x.

A structure with the following members (defined in <sys/tspriocntl.h>) defines
the format used to specify the time-sharing class-specific scheduling parameters of an
LWP.

short ts_uprilim; /* Time-Sharing user priority limit */
short ts_upri; /* Time-Sharing user priority */

When using the priocntl() PC_SETPARMS or PC_GETPARMS commands, if pc_cid
specifies the time-sharing class, the data in the pc_clparms buffer is in this format.

For the priocntl() PC_GETPARMS command, if pc_cid specifies the time-sharing
class and more than one time-sharing LWP is specified, the scheduling parameters of
the time-sharing LWP with the highest ts_upri value among the specified LWPs is
returned and the LWP ID of this LWP is returned by the priocntl() call. If there is
more than one LWP sharing the highest user priority, the one returned is
implementation-dependent.

Any time-sharing LWP may lower its own ts_uprilim (or that of another LWP with
the same user ID). Only a time-sharing LWP with the PRIV_SYS_CONFIG privilege
may raise a ts_uprilim. When changing the class of an LWP to time-sharing from
some other class, the PRIV_SYS_CONFIG privilege is required in order to set the
initial ts_uprilim to a value greater than zero. Attempts by a nonprivileged LWP to
raise a ts_uprilim or set an initial ts_uprilim greater than zero fail with a return
value of –1 and errno set to EPERM.

priocntl(2)

System Calls 331

Any time-sharing LWP may set its own ts_upri (or that of another LWP with the
same user ID) to any value less than or equal to the LWP’s ts_uprilim. Attempts to
set the ts_upri above the ts_uprilim (and/or set the ts_uprilim below the
ts_upri) result in the ts_upri being set equal to the ts_uprilim.

Either of the ts_uprilim or ts_upri members may be set to the special value
TS_NOCHANGE (defined in <sys/tspriocntl.h>) in order to set one of the values
without affecting the other. Specifying TS_NOCHANGE for the ts_upri when the
ts_uprilim is being set to a value below the current ts_upri causes the ts_upri
to be set equal to the ts_uprilim being set. Specifying TS_NOCHANGE for a
parameter when changing the class of an LWP to time-sharing (from some other class)
causes the parameter to be set to a default value. The default value for the
ts_uprilim is 0 and the default for the ts_upri is to set it equal to the
ts_uprilim which is being set.

The time-sharing user priority and user priority limit are inherited across fork() and
the exec family of functions.

Unless otherwise noted above, priocntl() returns a value of 0 on success. On
failure, priocntl() returns −1 and sets errno to indicate the error.

The priocntl() function fails if:

EAGAIN An attempt to change the class of an LWP failed because of
insufficient resources other than memory (for example,
class-specific kernel data structures).

EFAULT One of the arguments points to an illegal address.

EINVAL The argument cmd was invalid, an invalid or unconfigured class
was specified, or one of the parameters specified was invalid.

ENOMEM An attempt to change the class of an LWP failed because of
insufficient memory.

EPERM The calling LWP does not have required privileges.

ERANGE The requested time quantum is out of range.

ESRCH None of the specified LWPs exist.

The Trusted Solaris environment replaces the checks of super-user in the Solaris
environment with privilege checks. MAC policy is enforced in addition to DAC.

dispadmin(1M), init(1M), exec(2), fork(2), nice(2), priocntlset(2)

priocntl(1), _lwp_create(2), rt_dptbl(4)

System Administration Guide, Volume 1 System Interface Guide

priocntl(2)

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

332 man pages section 2: System Calls • Last Revised 1 Feb 2001

priocntlset – Generalized process scheduler control

#include <sys/types.h>
#include <sys/procset.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>

#include <sys/tspriocntl.h>

long priocntlset(procset_t *psp, int cmd, /* arg */ ...);

The priocntlset() function changes the scheduling properties of running
processes. priocntlset() has the same functions as the priocntl() function, but
a more general way of specifying the set of processes whose scheduling properties are
to be changed.

cmd specifies the function to be performed. arg is a pointer to a structure whose type
depends on cmd. See priocntl(2) for the valid values of cmd and the corresponding
arg structures.

psp is a pointer to a procset structure, which priocntlset() uses to specify the set
of processes whose scheduling properties are to be changed. The procset structure
contains the following members:

idop_t p_op; /* operator connecting left/right sets */
idtype_t p_lidtype; /* left set ID type */
id_t p_lid; /* left set ID */
idtype_t p_ridtype; /* right set ID type */

id_t p_rid; /* right set ID */

The p_lidtype and p_lid members specify the ID type and ID of one (“left”) set of
processes; the p_ridtype and p_rid members specify the ID type and ID of a
second (“right”) set of processes. ID types and IDs are specified just as for the
priocntl() function. The p_op member specifies the operation to be performed on
the two sets of processes to get the set of processes the function is to apply to. The
valid values for p_op and the processes they specify are:

POP_DIFF Set difference: processes in left set and not in right set.

POP_AND Set intersection: processes in both left and right sets.

POP_OR Set union: processes in either left or right sets or both.

POP_XOR Set exclusive-or: processes in left or right set but not in both.

The following macro, which is defined in <procset.h>, offers a convenient way to
initialize a procset structure:

#define setprocset(psp, op, ltype, lid, rtype, rid) \
(psp)⇒p_op = (op), \
(psp)⇒p_lidtype = (ltype), \
(psp)⇒p_lid = (lid), \
(psp)⇒p_ridtype = (rtype), \
(psp)⇒p_rid = (rid),

priocntlset(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 333

Unless otherwise noted above, priocntlset() returns 0 on success. Otherwise, it
returns −1 and sets errno to indicate the error.

The priocntlset() function will fail if:

EAGAIN An attempt to change the class of a process failed because of
insufficient resources other than memory (for example,
class-specific kernel data structures).

EFAULT One of the arguments points to an illegal address.

EINVAL The argument cmd was invalid, an invalid or unconfigured class
was specified, or one of the parameters specified was invalid.

ENOMEM An attempt to change the class of a process failed because of
insufficient memory.

EPERM The calling process does not have required privileges.

ERANGE The requested time quantum is out of range.

ESRCH None of the specified processes exist.

The Trusted Solaris environment replaces the checks of super-user in the Solaris
environment with privilege checks.

priocntl(2)

priocntl(1)

priocntlset(2)

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

334 man pages section 2: System Calls • Last Revised 27 Feb 1996

processor_bind – bind LWPs to a processor

#include <sys/types.h>
#include <sys/processor.h>

#include <sys/procset.h>

int processor_bind(idtype_t idtype, id_t id, processorid_t processorid,
processorid_t *obind);

The processor_bind() function binds the LWP (lightweight process) or set of
LWPs specified by idtype and id to the processor specified by processorid. If obind is not
NULL, this function also sets the processorid_t variable pointed to by obind to the
previous binding of one of the specified LWPs, or to PBIND_NONE if the selected LWP
was not bound.

If idtype is P_PID, the binding affects all LWPs of the process with process ID (PID) id.

If idtype is P_LWPID, the binding affects the LWP of the current process with LWP ID
id.

If idtype is P_TASKID, the binding affects all LWPs of all processes with task ID id.

If id is P_MYID, the specified LWP, process, or task is the current one.

If processorid is PBIND_NONE, the processor bindings of the specified LWPs are cleared.

If processorid is PBIND_QUERY, the processor bindings are not changed.

The effective user of the calling process must be superuser, or its real or effective user
ID must match the real or effective user ID of the LWPs being bound. If the calling
process does not have permission to change all of the specified LWPs, the bindings of
the LWPs for which it does have permission will be changed even though an error is
returned.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The processor_bind() function will fail if:

EFAULT The location pointed to by obind was not NULL and not writable by
the user.

EINVAL The specified processor is not on-line, or the idtype argument was
not P_PID, P_LWPID, or P_TASKID.

EPERM The effective user of the calling process is not superuser, and its
real or effective user ID does not match the real or effective user ID
of one of the LWPs being bound.

ESRCH No processes, LWPs, or tasks were found to match the criteria
specified by idtype and id.

processor_bind(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 335

psradm(1M), psrinfo(1M), p_online(2), pset_bind(2), sysconf(3C)

processor_bind(2)

SEE ALSO

336 man pages section 2: System Calls • Last Revised 14 Jul 2000

write, pwrite, writev, writel, pwritel, writevl – write on a file

#include <unistd.h>

ssize_t write(int fildes, const void *buf, size_t nbyte);

ssize_t pwrite(int fildes, const void *buf, size_t nbyte, off_t offset);

#include <sys/uio.h>

ssize_t writev(int fildes, const struct iovec *iov, int iovcnt);

#include <tsol/rdwrl.h>

ssize_t writel(int fildes, void *buf, size_t nbyte, bclabel_t *label_p);

ssize_t pwritel(int fildes, void *buf, size_t nbyte, off_t offset,
bclabel_t *label_p);

ssize_t writevl(int fildes, struct iovec *iov, int iovcnt, bclabel_t
*label_p);

The write() function attempts to write nbyte bytes from the buffer pointed to by buf
to the file associated with the open file descriptor, fildes.

If nbyte is 0, write() will return 0 and have no other results if the file is a regular file;
otherwise, the results are unspecified.

On a regular file or other file capable of seeking, the actual writing of data proceeds
from the position in the file indicated by the file offset associated with fildes. Before
successful return from write(), the file offset is incremented by the number of bytes
actually written. On a regular file, if this incremented file offset is greater than the
length of the file, the length of the file will be set to this file offset.

If the O_SYNC flag of the file status flags is set and fildes refers to a regular file, a
successful write() does not return until the data is delivered to the underlying
hardware.

If fildes refers to a socket, write() is equivalent to send(3SOCKET) with no flags set.

On a file not capable of seeking, writing always takes place starting at the current
position. The value of a file offset associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file offset will be set to the end of
the file prior to each write and no intervening file modification operation will occur
between changing the file offset and the write operation.

For regular files, no data transfer will occur past the offset maximum established in the
open file description with fildes.

A write() to a regular file is blocked if mandatory file/record locking is set (see
chmod(2)), and there is a record lock owned by another process on the segment of the
file to be written:

pwrite(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 337

� If O_NDELAY or O_NONBLOCK is set, write() returns −1 and sets errno to
EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, write() sleeps until all blocking locks
are removed or the write() is terminated by a signal.

If a write() requests that more bytes be written than there is room for—for example,
if the write would exceed the process file size limit (see getrlimit(2) and
ulimit(2)), the system file size limit, or the free space on the device—only as many
bytes as there is room for will be written. For example, suppose there is space for 20
bytes more in a file before reaching a limit. A write() of 512-bytes returns 20. The
next write() of a non-zero number of bytes gives a failure return (except as noted for
pipes and FIFO below).

If write() is interrupted by a signal before it writes any data, it will return −1 with
errno set to EINTR.

If write() is interrupted by a signal after it successfully writes some data, it will
return the number of bytes written.

If the value of nbyte is greater than SSIZE_MAX, the result is
implementation-dependent.

After a write() to a regular file has successfully returned:

� Any successful read(2) from each byte position in the file that was modified by
that write will return the data specified by the write() for that position until such
byte positions are again modified.

� Any subsequent successful write() to the same byte position in the file will
overwrite that file data.

Write requests to a pipe or FIFO are handled the same as a regular file with the
following exceptions:

� There is no file offset associated with a pipe, hence each write request appends to
the end of the pipe.

� Write requests of {PIPE_BUF} bytes or less are guaranteed not to be interleaved
with data from other processes doing writes on the same pipe. Writes of greater
than {PIPE_BUF} bytes may have data interleaved, on arbitrary boundaries, with
writes by other processes, whether or not the O_NONBLOCK or O_NDELAY flags are
set.

� If O_NONBLOCK and O_NDELAY are clear, a write request may cause the process to
block, but on normal completion it returns nbyte.

� If O_NONBLOCK and O_NDELAY are set, write() does not block the process. If a
write() request for PIPE_BUF or fewer bytes succeeds completely write()
returns nbyte. Otherwise, if O_NONBLOCK is set, it returns −1 and sets errno to
EAGAIN or if O_NDELAY is set, it returns 0. A write() request for greater than
{PIPE_BUF} bytes transfers what it can and returns the number of bytes written

pwrite(2)

338 man pages section 2: System Calls • Last Revised 1 May 2000

or it transfers no data and, if O_NONBLOCK is set, returns −1 with errno set to
EAGAIN or if O_NDELAY is set, it returns 0. Finally, if a request is greater than
PIPE_BUF bytes and all data previously written to the pipe has been read,
write() transfers at least PIPE_BUF bytes.

When attempting to write to a file descriptor (other than a pipe, a FIFO, a socket, or a
STREAM) that supports nonblocking writes and cannot accept the data immediately:

� If O_NONBLOCK and O_NDELAY are clear, write() blocks until the data can be
accepted.

� If O_NONBLOCK or O_NDELAY is set, write() does not block the process. If some
data can be written without blocking the process, write() writes what it can and
returns the number of bytes written. Otherwise, if O_NONBLOCK is set, it returns −1
and sets errno to EAGAIN or if O_NDELAY is set, it returns 0.

Upon successful completion, where nbyte is greater than 0, write() will mark for
update the st_ctime and st_mtime fields of the file, and if the file is a regular file,
the S_ISUID and S_ISGID bits of the file mode may be cleared.

For STREAMS files (see intro(3) and streamio(7I)), the operation of write() is
determined by the values of the minimum and maximum nbyte range (“packet size”)
accepted by the STREAM. These values are contained in the topmost STREAM
module, and cannot be set or tested from user level. If nbyte falls within the packet size
range, nbyte bytes are written. If nbyte does not fall within the range and the minimum
packet size value is zero, write() breaks the buffer into maximum packet size
segments prior to sending the data downstream (the last segment may be smaller than
the maximum packet size). If nbyte does not fall within the range and the minimum
value is non-zero, write() fails and sets errno to ERANGE. Writing a zero-length
buffer (nbyte is zero) to a STREAMS device sends a zero length message with zero
returned. However, writing a zero-length buffer to a pipe or FIFO sends no message
and zero is returned. The user program may issue the I_SWROPT ioctl(2) to enable
zero-length messages to be sent across the pipe or FIFO (see streamio(7I)).

When writing to a STREAM, data messages are created with a priority band of zero.
When writing to a socket or to a STREAM that is not a pipe or a FIFO:

� If O_NDELAY and O_NONBLOCK are not set, and the STREAM cannot accept data
(the STREAM write queue is full due to internal flow control conditions), write()
blocks until data can be accepted.

� If O_NDELAY or O_NONBLOCK is set and the STREAM cannot accept data, write()
returns −1 and sets errno to EAGAIN.

� If O_NDELAY or O_NONBLOCK is set and part of the buffer has already been written
when a condition occurs in which the STREAM cannot accept additional data,
write() terminates and returns the number of bytes written.

The write() and writev() functions will fail if the STREAM head had processed
an asynchronous error before the call. In this case, the value of errno does not reflect
the result of write() or writev() but reflects the prior error.

pwrite(2)

System Calls 339

The pwrite() function performs the same action as write(), except that it writes
into a given position without changing the file pointer. The first three arguments to
pwrite() are the same as write() with the addition of a fourth argument offset for
the desired position inside the file.

The writev() function performs the same action as write(), but gathers the output
data from the iovcnt buffers specified by the members of the iov array: iov[0], iov[1], …,
iov[iovcnt − 1]. The iovcnt buffer is valid if greater than 0 and less than or equal to
IOV_MAX. See intro(2) for a definition of IOV_MAX.

The iovec structure contains the following members:

caddr_t iov_base;
int iov_len;

Each iovec entry specifies the base address and length of an area in memory from
which data should be written. The writev() function always writes all data from an
area before proceeding to the next.

If fildes refers to a regular file and all of the iov_len members in the array pointed to
by iov are 0, writev() will return 0 and have no other effect. For other file types, the
behavior is unspecified.

If the sum of the iov_len values is greater than SSIZE_MAX, the operation fails and
no data is transferred.

writel(), pwritel(), and writevl() perform the same actions as write(),
pwrite(), and writev(), respectively, and additionally provide the CMW label
label_p to associate with the data that is written. The label associated with the data that
is written to fd has this restriction:

� If the descriptor refers to a file or a FIFO, then the sensitivity label portion of label_p
is ignored.

In all other respects, the writel(), pwritel(), and writevl() interfaces are
analogous to the write(), pwrite(), and writev() interfaces.

If the set-user-ID or get-group-ID bits of fildes are set, they are cleared by the write.
The calling process may assert the PRIV_FILE_SETID privilege to suppress this
action.

If the forced or allowed privilege sets of fildes are not empty, they are cleared by the
write. The calling process may assert the PRIV_FILE_SETPRIV privilege to suppress
this action.

If the public object attributes flag, FAF_PUBLIC, of fildes is set, the flag is cleared by
the write. The calling process may assert the PRIV_FILE_AUDIT privilege to suppress
this action.

pwrite(2)

pwrite()

writev()

writel(),
pwritel(), and

writevl()

340 man pages section 2: System Calls • Last Revised 1 May 2000

If the write causes the file-system free space to fall below its minimum level, the write
fails. The calling process may assert the PRIV_SYS_MINFREE privilege to bypass this
restriction.

Upon successful completion, write() returns the number of bytes actually written to
the file associated with fildes. This number is never greater than nbyte. Otherwise, −1 is
returned, the file-pointer remains unchanged, and errno is set to indicate the error.

Upon successful completion, writev() returns the number of bytes actually written.
Otherwise, it returns −1, the file-pointer remains unchanged, and errno is set to
indicate an error.

The write(), pwrite(), writev() writel(), pwritel(), and writevl()
functions will fail if:

EAGAIN Mandatory file/record locking is set, O_NDELAY or O_NONBLOCK
is set, and there is a blocking record lock; total amount of system
memory available when reading using raw I/O is temporarily
insufficient; an attempt is made to write to a STREAM that can not
accept data with the O_NDELAY or O_NONBLOCK flag set; or a write
to a pipe or FIFO of PIPE_BUF bytes or less is requested and less
than nbytes of free space is available.

EBADF The fildes argument is not a valid file descriptor open for writing.

EDEADLK The write was going to go to sleep and cause a deadlock situation
to occur.

EDQUOT The user’s quota of disk blocks on the file system containing the
file has been exhausted.

EFAULT The buf argument points to an illegal address.

EFBIG An attempt is made to write a file that exceeds the process’s file
size limit or the maximum file size (see getrlimit(2) and
ulimit(2)).

The file is a regular file, nbyte is greater than 0, and the starting
position is greater than or equal to the offset maximum established
in the file description associated with fildes.

EINTR A signal was caught during the write operation and no data was
transferred.

EIO The process is in the background and is attempting to write to its
controlling terminal whose TOSTOP flag is set, or the process is
neither ignoring nor blocking SIGTTOU signals and the process
group of the process is orphaned.

pwrite(2)

RETURN VALUES

ERRORS

System Calls 341

ENOLCK Enforced record locking was enabled and LOCK_MAX regions are
already locked in the system, or the system record lock table was
full and the write could not go to sleep until the blocking record
lock was removed.

ENOLINK The fildes argument is on a remote machine and the link to that
machine is no longer active.

ENOSPC During a write to an ordinary file, there is no free space left on the
device.

ENOSR An attempt is made to write to a STREAMS with insufficient
STREAMS memory resources available in the system.

ENXIO A hangup occurred on the STREAM being written to.

EPIPE An attempt is made to write to a pipe or a FIFO that is not open
for reading by any process, or that has only one end open (or to a
file descriptor created by socket(3SOCKET), using type
SOCK_STREAM that is no longer connected to a peer endpoint). A
SIGPIPE signal will also be sent to the process. The process dies
unless special provisions were taken to catch or ignore the signal.

ERANGE The transfer request size was outside the range supported by the
STREAMS file associated with fildes.

The pwrite() function fails and the file pointer remains unchanged if:

ESPIPE The fildes argument is associated with a pipe or FIFO.

The writev() function will fail if:

EINVAL The sum of the iov_len values in the iov array would overflow
an ssize_t.

The write() and writev() functions may fail if:

EINVAL The STREAM or multiplexer referenced by fildes is linked (directly
or indirectly) downstream from a multiplexer.

ENXIO A request was made of a non-existent device, or the request was
outside the capabilities of the device.

ENXIO A hangup occurred on the STREAM being written to.

A write to a STREAMS file may fail if an error message has been received at the
STREAM head. In this case, errno is set to the value included in the error message.

The writev() function may fail if:

EINVAL The iovcnt argument was less than or equal to 0 or greater than
IOV_MAX; one of the iov_len values in the iov array was
negative; or the sum of the iov_len values in the iov array
overflowed an int.

pwrite(2)

342 man pages section 2: System Calls • Last Revised 1 May 2000

In addition, writel(), pwritel(), and writevl() may set errno to:

EFAULT label_p points outside the allocated address space of the process.
The seek pointer remains unchanged if this error occurs.

The pwrite() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level write() is Async-Signal-Safe

If set-user-ID or get-group-ID permission bits of fildes are set, they are cleared by the
write. The calling process may assert the PRIV_FILE_SETID privilege to suppress
this action.

If the forced or allowed privilege set of fildes is not empty, it is cleared by the write.
The calling process may assert the PRIV_FILE_SETPRIV privilege to suppress this
action.

If the public object attributes flag, FAF_PUBLIC, of fildes is set, the flag is cleared by
the write. The calling process may assert the PRIV_FILE_AUDIT privilege to suppress
this action.

If the write causes the file-system free space to fall below its minimum level, the write
fails. The calling process may assert the PRIV_SYS_MINFREE privilege to bypass this
restriction.

Mandatory and discretionary access checks have already been performed when the
object was opened.

chmod(2), creat(2), fcntl(2), getrlimit(2), lseek(2), open(2), ulimit(2),
intro(3), send(3SOCKET), socket(3SOCKET)

dup(2), ioctl(2), pipe(2), attributes(5), lf64(5), streamio(7I)

pwrite(2)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

System Calls 343

write, pwrite, writev, writel, pwritel, writevl – write on a file

#include <unistd.h>

ssize_t write(int fildes, const void *buf, size_t nbyte);

ssize_t pwrite(int fildes, const void *buf, size_t nbyte, off_t offset);

#include <sys/uio.h>

ssize_t writev(int fildes, const struct iovec *iov, int iovcnt);

#include <tsol/rdwrl.h>

ssize_t writel(int fildes, void *buf, size_t nbyte, bclabel_t *label_p);

ssize_t pwritel(int fildes, void *buf, size_t nbyte, off_t offset,
bclabel_t *label_p);

ssize_t writevl(int fildes, struct iovec *iov, int iovcnt, bclabel_t
*label_p);

The write() function attempts to write nbyte bytes from the buffer pointed to by buf
to the file associated with the open file descriptor, fildes.

If nbyte is 0, write() will return 0 and have no other results if the file is a regular file;
otherwise, the results are unspecified.

On a regular file or other file capable of seeking, the actual writing of data proceeds
from the position in the file indicated by the file offset associated with fildes. Before
successful return from write(), the file offset is incremented by the number of bytes
actually written. On a regular file, if this incremented file offset is greater than the
length of the file, the length of the file will be set to this file offset.

If the O_SYNC flag of the file status flags is set and fildes refers to a regular file, a
successful write() does not return until the data is delivered to the underlying
hardware.

If fildes refers to a socket, write() is equivalent to send(3SOCKET) with no flags set.

On a file not capable of seeking, writing always takes place starting at the current
position. The value of a file offset associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file offset will be set to the end of
the file prior to each write and no intervening file modification operation will occur
between changing the file offset and the write operation.

For regular files, no data transfer will occur past the offset maximum established in the
open file description with fildes.

A write() to a regular file is blocked if mandatory file/record locking is set (see
chmod(2)), and there is a record lock owned by another process on the segment of the
file to be written:

pwritel(2)

NAME

SYNOPSIS

DESCRIPTION

344 man pages section 2: System Calls • Last Revised 1 May 2000

� If O_NDELAY or O_NONBLOCK is set, write() returns −1 and sets errno to
EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, write() sleeps until all blocking locks
are removed or the write() is terminated by a signal.

If a write() requests that more bytes be written than there is room for—for example,
if the write would exceed the process file size limit (see getrlimit(2) and
ulimit(2)), the system file size limit, or the free space on the device—only as many
bytes as there is room for will be written. For example, suppose there is space for 20
bytes more in a file before reaching a limit. A write() of 512-bytes returns 20. The
next write() of a non-zero number of bytes gives a failure return (except as noted for
pipes and FIFO below).

If write() is interrupted by a signal before it writes any data, it will return −1 with
errno set to EINTR.

If write() is interrupted by a signal after it successfully writes some data, it will
return the number of bytes written.

If the value of nbyte is greater than SSIZE_MAX, the result is
implementation-dependent.

After a write() to a regular file has successfully returned:

� Any successful read(2) from each byte position in the file that was modified by
that write will return the data specified by the write() for that position until such
byte positions are again modified.

� Any subsequent successful write() to the same byte position in the file will
overwrite that file data.

Write requests to a pipe or FIFO are handled the same as a regular file with the
following exceptions:

� There is no file offset associated with a pipe, hence each write request appends to
the end of the pipe.

� Write requests of {PIPE_BUF} bytes or less are guaranteed not to be interleaved
with data from other processes doing writes on the same pipe. Writes of greater
than {PIPE_BUF} bytes may have data interleaved, on arbitrary boundaries, with
writes by other processes, whether or not the O_NONBLOCK or O_NDELAY flags are
set.

� If O_NONBLOCK and O_NDELAY are clear, a write request may cause the process to
block, but on normal completion it returns nbyte.

� If O_NONBLOCK and O_NDELAY are set, write() does not block the process. If a
write() request for PIPE_BUF or fewer bytes succeeds completely write()
returns nbyte. Otherwise, if O_NONBLOCK is set, it returns −1 and sets errno to
EAGAIN or if O_NDELAY is set, it returns 0. A write() request for greater than
{PIPE_BUF} bytes transfers what it can and returns the number of bytes written

pwritel(2)

System Calls 345

or it transfers no data and, if O_NONBLOCK is set, returns −1 with errno set to
EAGAIN or if O_NDELAY is set, it returns 0. Finally, if a request is greater than
PIPE_BUF bytes and all data previously written to the pipe has been read,
write() transfers at least PIPE_BUF bytes.

When attempting to write to a file descriptor (other than a pipe, a FIFO, a socket, or a
STREAM) that supports nonblocking writes and cannot accept the data immediately:

� If O_NONBLOCK and O_NDELAY are clear, write() blocks until the data can be
accepted.

� If O_NONBLOCK or O_NDELAY is set, write() does not block the process. If some
data can be written without blocking the process, write() writes what it can and
returns the number of bytes written. Otherwise, if O_NONBLOCK is set, it returns −1
and sets errno to EAGAIN or if O_NDELAY is set, it returns 0.

Upon successful completion, where nbyte is greater than 0, write() will mark for
update the st_ctime and st_mtime fields of the file, and if the file is a regular file,
the S_ISUID and S_ISGID bits of the file mode may be cleared.

For STREAMS files (see intro(3) and streamio(7I)), the operation of write() is
determined by the values of the minimum and maximum nbyte range (“packet size”)
accepted by the STREAM. These values are contained in the topmost STREAM
module, and cannot be set or tested from user level. If nbyte falls within the packet size
range, nbyte bytes are written. If nbyte does not fall within the range and the minimum
packet size value is zero, write() breaks the buffer into maximum packet size
segments prior to sending the data downstream (the last segment may be smaller than
the maximum packet size). If nbyte does not fall within the range and the minimum
value is non-zero, write() fails and sets errno to ERANGE. Writing a zero-length
buffer (nbyte is zero) to a STREAMS device sends a zero length message with zero
returned. However, writing a zero-length buffer to a pipe or FIFO sends no message
and zero is returned. The user program may issue the I_SWROPT ioctl(2) to enable
zero-length messages to be sent across the pipe or FIFO (see streamio(7I)).

When writing to a STREAM, data messages are created with a priority band of zero.
When writing to a socket or to a STREAM that is not a pipe or a FIFO:

� If O_NDELAY and O_NONBLOCK are not set, and the STREAM cannot accept data
(the STREAM write queue is full due to internal flow control conditions), write()
blocks until data can be accepted.

� If O_NDELAY or O_NONBLOCK is set and the STREAM cannot accept data, write()
returns −1 and sets errno to EAGAIN.

� If O_NDELAY or O_NONBLOCK is set and part of the buffer has already been written
when a condition occurs in which the STREAM cannot accept additional data,
write() terminates and returns the number of bytes written.

The write() and writev() functions will fail if the STREAM head had processed
an asynchronous error before the call. In this case, the value of errno does not reflect
the result of write() or writev() but reflects the prior error.

pwritel(2)

346 man pages section 2: System Calls • Last Revised 1 May 2000

The pwrite() function performs the same action as write(), except that it writes
into a given position without changing the file pointer. The first three arguments to
pwrite() are the same as write() with the addition of a fourth argument offset for
the desired position inside the file.

The writev() function performs the same action as write(), but gathers the output
data from the iovcnt buffers specified by the members of the iov array: iov[0], iov[1], …,
iov[iovcnt − 1]. The iovcnt buffer is valid if greater than 0 and less than or equal to
IOV_MAX. See intro(2) for a definition of IOV_MAX.

The iovec structure contains the following members:

caddr_t iov_base;
int iov_len;

Each iovec entry specifies the base address and length of an area in memory from
which data should be written. The writev() function always writes all data from an
area before proceeding to the next.

If fildes refers to a regular file and all of the iov_len members in the array pointed to
by iov are 0, writev() will return 0 and have no other effect. For other file types, the
behavior is unspecified.

If the sum of the iov_len values is greater than SSIZE_MAX, the operation fails and
no data is transferred.

writel(), pwritel(), and writevl() perform the same actions as write(),
pwrite(), and writev(), respectively, and additionally provide the CMW label
label_p to associate with the data that is written. The label associated with the data that
is written to fd has this restriction:

� If the descriptor refers to a file or a FIFO, then the sensitivity label portion of label_p
is ignored.

In all other respects, the writel(), pwritel(), and writevl() interfaces are
analogous to the write(), pwrite(), and writev() interfaces.

If the set-user-ID or get-group-ID bits of fildes are set, they are cleared by the write.
The calling process may assert the PRIV_FILE_SETID privilege to suppress this
action.

If the forced or allowed privilege sets of fildes are not empty, they are cleared by the
write. The calling process may assert the PRIV_FILE_SETPRIV privilege to suppress
this action.

If the public object attributes flag, FAF_PUBLIC, of fildes is set, the flag is cleared by
the write. The calling process may assert the PRIV_FILE_AUDIT privilege to suppress
this action.

pwritel(2)

pwrite()

writev()

writel(),
pwritel(), and

writevl()

System Calls 347

If the write causes the file-system free space to fall below its minimum level, the write
fails. The calling process may assert the PRIV_SYS_MINFREE privilege to bypass this
restriction.

Upon successful completion, write() returns the number of bytes actually written to
the file associated with fildes. This number is never greater than nbyte. Otherwise, −1 is
returned, the file-pointer remains unchanged, and errno is set to indicate the error.

Upon successful completion, writev() returns the number of bytes actually written.
Otherwise, it returns −1, the file-pointer remains unchanged, and errno is set to
indicate an error.

The write(), pwrite(), writev() writel(), pwritel(), and writevl()
functions will fail if:

EAGAIN Mandatory file/record locking is set, O_NDELAY or O_NONBLOCK
is set, and there is a blocking record lock; total amount of system
memory available when reading using raw I/O is temporarily
insufficient; an attempt is made to write to a STREAM that can not
accept data with the O_NDELAY or O_NONBLOCK flag set; or a write
to a pipe or FIFO of PIPE_BUF bytes or less is requested and less
than nbytes of free space is available.

EBADF The fildes argument is not a valid file descriptor open for writing.

EDEADLK The write was going to go to sleep and cause a deadlock situation
to occur.

EDQUOT The user’s quota of disk blocks on the file system containing the
file has been exhausted.

EFAULT The buf argument points to an illegal address.

EFBIG An attempt is made to write a file that exceeds the process’s file
size limit or the maximum file size (see getrlimit(2) and
ulimit(2)).

The file is a regular file, nbyte is greater than 0, and the starting
position is greater than or equal to the offset maximum established
in the file description associated with fildes.

EINTR A signal was caught during the write operation and no data was
transferred.

EIO The process is in the background and is attempting to write to its
controlling terminal whose TOSTOP flag is set, or the process is
neither ignoring nor blocking SIGTTOU signals and the process
group of the process is orphaned.

pwritel(2)

RETURN VALUES

ERRORS

348 man pages section 2: System Calls • Last Revised 1 May 2000

ENOLCK Enforced record locking was enabled and LOCK_MAX regions are
already locked in the system, or the system record lock table was
full and the write could not go to sleep until the blocking record
lock was removed.

ENOLINK The fildes argument is on a remote machine and the link to that
machine is no longer active.

ENOSPC During a write to an ordinary file, there is no free space left on the
device.

ENOSR An attempt is made to write to a STREAMS with insufficient
STREAMS memory resources available in the system.

ENXIO A hangup occurred on the STREAM being written to.

EPIPE An attempt is made to write to a pipe or a FIFO that is not open
for reading by any process, or that has only one end open (or to a
file descriptor created by socket(3SOCKET), using type
SOCK_STREAM that is no longer connected to a peer endpoint). A
SIGPIPE signal will also be sent to the process. The process dies
unless special provisions were taken to catch or ignore the signal.

ERANGE The transfer request size was outside the range supported by the
STREAMS file associated with fildes.

The pwrite() function fails and the file pointer remains unchanged if:

ESPIPE The fildes argument is associated with a pipe or FIFO.

The writev() function will fail if:

EINVAL The sum of the iov_len values in the iov array would overflow
an ssize_t.

The write() and writev() functions may fail if:

EINVAL The STREAM or multiplexer referenced by fildes is linked (directly
or indirectly) downstream from a multiplexer.

ENXIO A request was made of a non-existent device, or the request was
outside the capabilities of the device.

ENXIO A hangup occurred on the STREAM being written to.

A write to a STREAMS file may fail if an error message has been received at the
STREAM head. In this case, errno is set to the value included in the error message.

The writev() function may fail if:

EINVAL The iovcnt argument was less than or equal to 0 or greater than
IOV_MAX; one of the iov_len values in the iov array was
negative; or the sum of the iov_len values in the iov array
overflowed an int.

pwritel(2)

System Calls 349

In addition, writel(), pwritel(), and writevl() may set errno to:

EFAULT label_p points outside the allocated address space of the process.
The seek pointer remains unchanged if this error occurs.

The pwrite() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level write() is Async-Signal-Safe

If set-user-ID or get-group-ID permission bits of fildes are set, they are cleared by the
write. The calling process may assert the PRIV_FILE_SETID privilege to suppress
this action.

If the forced or allowed privilege set of fildes is not empty, it is cleared by the write.
The calling process may assert the PRIV_FILE_SETPRIV privilege to suppress this
action.

If the public object attributes flag, FAF_PUBLIC, of fildes is set, the flag is cleared by
the write. The calling process may assert the PRIV_FILE_AUDIT privilege to suppress
this action.

If the write causes the file-system free space to fall below its minimum level, the write
fails. The calling process may assert the PRIV_SYS_MINFREE privilege to bypass this
restriction.

Mandatory and discretionary access checks have already been performed when the
object was opened.

chmod(2), creat(2), fcntl(2), getrlimit(2), lseek(2), open(2), ulimit(2),
intro(3), send(3SOCKET), socket(3SOCKET)

dup(2), ioctl(2), pipe(2), attributes(5), lf64(5), streamio(7I)

pwritel(2)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

350 man pages section 2: System Calls • Last Revised 1 May 2000

read, readl, pread, preadl, readv, readvl – read from a file

#include <sys/types.h>
#include <sys/uio.h>

#include <unistd.h>

ssize_t read(int fildes, void *buf, size_t nbyte);

ssize_t pread(int fildes, void *buf, size_t nbyte, off_t offset);

ssize_t readv(int fildes, struct iovec *iov, int iovcnt);

#include <tsol/rdwrl.h>

ssize_t readl(int fildes, void *buf, size_t nbyte, bclabel_t *label_p);

ssize_t preadl(int fildes, void *buf, size_t nbyte, off_t offset,
bclabel_t *label_p);

ssize_t readvl(int fildes, struct iovec *iov, int iovcnt, bclabel_t
*label_p);

The read() function attempts to read nbyte bytes from the file associated with the
open file descriptor, fildes, into the buffer pointed to by buf.

If nbyte is 0, read() will return 0 and have no other results.

On files that support seeking (for example, a regular file), the read() starts at a
position in the file given by the file offset associated with fildes. The file offset is
incremented by the number of bytes actually read.

Files that do not support seeking (for example, terminals) always read from the
current position. The value of a file offset associated with such a file is undefined.

If fildes refers to a socket, read() is equivalent to recv(3SOCKET) with no flags set.

No data transfer will occur past the current end-of-file. If the starting position is at or
after the end-of-file, 0 will be returned. If the file refers to a device special file, the
result of subsequent read() requests is implementation-dependent.

If the value of nbyte is greater than SSIZE_MAX, the result is
implementation-dependent.

When attempting to read from a regular file with mandatory file/record locking set
(see chmod(2)), and there is a write lock owned by another process on the segment of
the file to be read:

� If O_NDELAY or O_NONBLOCK is set, read() returns −1 and sets errno to
EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() sleeps until the blocking record
lock is removed.

When attempting to read from an empty pipe (or FIFO):

read(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 351

� If no process has the pipe open for writing, read() returns 0 to indicate
end-of-file.

� If some process has the pipe open for writing and O_NDELAY is set, read()
returns 0.

� If some process has the pipe open for writing and O_NONBLOCK is set, read()
returns −1 and sets errno to EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() blocks until data is written to the
pipe or the pipe is closed by all processes that had opened the pipe for writing.

When attempting to read a file associated with a terminal that has no data currently
available:

� If O_NDELAY is set, read() returns 0.

� If O_NONBLOCK is set, read() returns −1 and sets errno to EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() blocks until data become
available.

When attempting to read a file associated with a socket or a stream that is not a pipe, a
FIFO, or a terminal, and the file has no data currently available:

� If O_NDELAY or O_NONBLOCK is set, read() returns −1 and sets errno to
EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() blocks until data becomes
available.

The read() function reads data previously written to a file. If any portion of a regular
file prior to the end-of-file has not been written, read() returns bytes with value 0.
For example, lseek(2) allows the file offset to be set beyond the end of existing data
in the file. If data is later written at this point, subsequent reads in the gap between the
previous end of data and the newly written data will return bytes with value 0 until
data is written into the gap.

For regular files, no data transfer will occur past the offset maximum established in the
open file description associated with fildes.

Upon successful completion, where nbyte is greater than 0, read() will mark for
update the st_atime field of the file, and return the number of bytes read. This
number will never be greater than nbyte. The value returned may be less than nbyte if
the number of bytes left in the file is less than nbyte, if the read() request was
interrupted by a signal, or if the file is a pipe or FIFO or special file and has fewer than
nbyte bytes immediately available for reading. For example, a read() from a file
associated with a terminal may return one typed line of data.

If a read() is interrupted by a signal before it reads any data, it will return −1 with
errno set to EINTR.

read(2)

352 man pages section 2: System Calls • Last Revised 1 May 2000

If a read() is interrupted by a signal after it has successfully read some data, it will
return the number of bytes read.

A read() or readv() from a STREAMS (see intro(2)) file can read data in three
different modes: byte-stream mode, message-nondiscard mode, and message-discard
mode. The default is byte-stream mode. This can be changed using the I_SRDOPT
ioctl(2) request, and can be tested with the I_GRDOPT ioctl(). In byte-stream
mode, read() retrieves data from the STREAM until as many bytes as were
requested are transferred, or until there is no more data to be retrieved. Byte-stream
mode ignores message boundaries.

In STREAMS message-nondiscard mode, read() retrieves data until as many bytes as
were requested are transferred, or until a message boundary is reached. If read()
does not retrieve all the data in a message, the remaining data is left on the STREAM,
and can be retrieved by the next read() call. Message-discard mode also retrieves
data until as many bytes as were requested are transferred, or a message boundary is
reached. However, unread data remaining in a message after the read() returns is
discarded, and is not available for a subsequent read(), readv() or getmsg(2) call.

How read() handles zero-byte STREAMS messages is determined by the current
read mode setting. In byte-stream mode, read() accepts data until it has read nbyte
bytes, or until there is no more data to read, or until a zero-byte message block is
encountered. The read() function then returns the number of bytes read, and places
the zero-byte message back on the STREAM to be retrieved by the next read(),
readv() or getmsg(2). In message-nondiscard mode or message-discard mode, a
zero-byte message returns 0 and the message is removed from the STREAM. When a
zero-byte message is read as the first message on a STREAM, the message is removed
from the STREAM and 0 is returned, regardless of the read mode.

A read() from a STREAMS file returns the data in the message at the front of the
STREAM head read queue, regardless of the priority band of the message.

By default, STREAMS are in control-normal mode, in which a read() from a
STREAMS file can only process messages that contain a data part but do not contain a
control part. The read() fails if a message containing a control part is encountered at
the STREAM head. This default action can be changed by placing the STREAM in
either control-data mode or control-discard mode with the I_SRDOPT ioctl()
command. In control-data mode, read() converts any control part to data and passes
it to the application before passing any data part originally present in the same
message. In control-discard mode, read() discards message control parts but returns
to the process any data part in the message.

readl(), preadl(), and readvl() perform the same actions as read(), pread(),
and readv(), respectively, and additionally return in label_p the CMW label of the
data read. The label returned is determined according to these conditions:

� If the descriptor refers to a regular file or FIFO, the sensitivity label portion of
label_p is set to the sensitivity label associated with the filesystem object.

read(2)

System Calls 353

In all other respects, the readl(), preadl(), and readvl() interfaces are
analogous to the read(), pread(), and readv() interfaces.

In the Solaris environment, read() normally allows a process to read the contents of
directories on some local file systems. This functionality is not supported in the
Trusted Solaris operating environment. If the file descriptor refers to a directory,
read() will return EISDIR.

The last access time is updated only when the calling process has both mandatory
read and write access to the filesystem object. There is no privilege to override this
restriction.

In addition, read() and readv() will fail if the STREAM head had processed an
asynchronous error before the call. In this case, the value of errno does not reflect the
result of read() or readv() but reflects the prior error. If a hangup occurs on the
STREAM being read, read() continues to operate normally until the STREAM head
read queue is empty. Thereafter, it returns 0.

The readv() function is equivalent to read(), but places the input data into the
iovcnt buffers specified by the members of the iov array: iov0, iov1, …, iov[iovcnt−1].
The iovcnt argument is valid if greater than 0 and less than or equal to IOV_MAX.

The iovec structure contains the following members:

caddr_t iov_base;
int iov_len;

Each iovec entry specifies the base address and length of an area in memory where
data should be placed. The readv() function always fills an area completely before
proceeding to the next.

Upon successful completion, readv() marks for update the st_atime field of the
file.

The pread() function performs the same action as read(), except that it reads from
a given position in the file without changing the file pointer. The first three arguments
to pread() are the same as read() with the addition of a fourth argument offset for
the desired position inside the file. pread() will read up to the maximum offset value
that can be represented in an off_t for regular files. An attempt to perform a
pread() on a file that is incapable of seeking results in an error.

Upon successful completion, read() and readv() return a non-negative integer
indicating the number of bytes actually read. Otherwise, the functions return −1 and
set errno to indicate the error.

read(), readl(), pread(), preadl(), readv(), and readvl() fail if any of these
conditions is true:

EAGAIN Mandatory file/record locking was set, O_NDELAY or
O_NONBLOCK was set, and there was a blocking record lock; total

read(2)

readv()

pread()

RETURN VALUES

ERRORS

354 man pages section 2: System Calls • Last Revised 1 May 2000

amount of system memory available when reading using raw I/O
is temporarily insufficient; no data is waiting to be read on a file
associated with a tty device and O_NONBLOCK was set; or no
message is waiting to be read on a stream and O_NDELAY or
O_NONBLOCK was set.

EBADF The fildes argument is not a valid file descriptor open for reading.

EBADMSG Message waiting to be read on a stream is not a data message.

EDEADLK The read was going to go to sleep and cause a deadlock to occur.

EFAULT The buf argument points to an illegal address.

EINTR A signal was caught during the read operation and no data was
transferred.

EINVAL An attempt was made to read from a stream linked to a
multiplexor.

EIO A physical I/O error has occurred, or the process is in a
background process group and is attempting to read from its
controlling terminal, and either the process is ignoring or blocking
the SIGTTIN signal or the process group of the process is
orphaned.

EISDIR The fildes argument refers to a directory on a file system type that
does not support read operations on directories.

ENOLCK The system record lock table was full, so the read() or readv()
could not go to sleep until the blocking record lock was removed.

ENOLINK The fildes argument is on a remote machine and the link to that
machine is no longer active.

ENXIO The device associated with fildes is a block special or character
special file and the value of the file pointer is out of range.

The read() and readv() functions will fail if:

EOVERFLOW The file is a regular file, nbyte is greater than 0, the starting position
is before the end-of-file, and the starting position is greater than or
equal to the offset maximum established in the open file
description associated with fildes.

The readv() function may fail if:

EFAULT The iov argument points outside the allocated address space.

EINVAL The iovcnt argument was less than or equal to 0, or greater than or
equal to IOV_MAX. (See intro(2) for a definition of IOV_MAX).

EINVAL The sum of the iov_len values in the iov array overflowed an int.

The pread() function will fail and the file pointer remain unchanged if:

read(2)

System Calls 355

EFAULT label_p points to an illegal address.

The pread() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level read() is Async-Signal-Safe

readl(), preadl(), and readvl() return in the buffer that was referenced by
label_p, the CMW label associated with the data that was read.

The last access time is updated only when the calling process has both mandatory
read and write access to the filesystem object. There is no privilege to override this
restriction.

For conduits, a sensitivity label is associated with each byte of data.

intro(2), chmod(2), creat(2), fcntl(2), open(2)

dup(2), getmsg(2), ioctl(2), pipe(2), attributes(5), streamio(7I), termio(7I)

read(2)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

356 man pages section 2: System Calls • Last Revised 1 May 2000

read, readl, pread, preadl, readv, readvl – read from a file

#include <sys/types.h>
#include <sys/uio.h>

#include <unistd.h>

ssize_t read(int fildes, void *buf, size_t nbyte);

ssize_t pread(int fildes, void *buf, size_t nbyte, off_t offset);

ssize_t readv(int fildes, struct iovec *iov, int iovcnt);

#include <tsol/rdwrl.h>

ssize_t readl(int fildes, void *buf, size_t nbyte, bclabel_t *label_p);

ssize_t preadl(int fildes, void *buf, size_t nbyte, off_t offset,
bclabel_t *label_p);

ssize_t readvl(int fildes, struct iovec *iov, int iovcnt, bclabel_t
*label_p);

The read() function attempts to read nbyte bytes from the file associated with the
open file descriptor, fildes, into the buffer pointed to by buf.

If nbyte is 0, read() will return 0 and have no other results.

On files that support seeking (for example, a regular file), the read() starts at a
position in the file given by the file offset associated with fildes. The file offset is
incremented by the number of bytes actually read.

Files that do not support seeking (for example, terminals) always read from the
current position. The value of a file offset associated with such a file is undefined.

If fildes refers to a socket, read() is equivalent to recv(3SOCKET) with no flags set.

No data transfer will occur past the current end-of-file. If the starting position is at or
after the end-of-file, 0 will be returned. If the file refers to a device special file, the
result of subsequent read() requests is implementation-dependent.

If the value of nbyte is greater than SSIZE_MAX, the result is
implementation-dependent.

When attempting to read from a regular file with mandatory file/record locking set
(see chmod(2)), and there is a write lock owned by another process on the segment of
the file to be read:

� If O_NDELAY or O_NONBLOCK is set, read() returns −1 and sets errno to
EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() sleeps until the blocking record
lock is removed.

When attempting to read from an empty pipe (or FIFO):

readl(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 357

� If no process has the pipe open for writing, read() returns 0 to indicate
end-of-file.

� If some process has the pipe open for writing and O_NDELAY is set, read()
returns 0.

� If some process has the pipe open for writing and O_NONBLOCK is set, read()
returns −1 and sets errno to EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() blocks until data is written to the
pipe or the pipe is closed by all processes that had opened the pipe for writing.

When attempting to read a file associated with a terminal that has no data currently
available:

� If O_NDELAY is set, read() returns 0.

� If O_NONBLOCK is set, read() returns −1 and sets errno to EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() blocks until data become
available.

When attempting to read a file associated with a socket or a stream that is not a pipe, a
FIFO, or a terminal, and the file has no data currently available:

� If O_NDELAY or O_NONBLOCK is set, read() returns −1 and sets errno to
EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() blocks until data becomes
available.

The read() function reads data previously written to a file. If any portion of a regular
file prior to the end-of-file has not been written, read() returns bytes with value 0.
For example, lseek(2) allows the file offset to be set beyond the end of existing data
in the file. If data is later written at this point, subsequent reads in the gap between the
previous end of data and the newly written data will return bytes with value 0 until
data is written into the gap.

For regular files, no data transfer will occur past the offset maximum established in the
open file description associated with fildes.

Upon successful completion, where nbyte is greater than 0, read() will mark for
update the st_atime field of the file, and return the number of bytes read. This
number will never be greater than nbyte. The value returned may be less than nbyte if
the number of bytes left in the file is less than nbyte, if the read() request was
interrupted by a signal, or if the file is a pipe or FIFO or special file and has fewer than
nbyte bytes immediately available for reading. For example, a read() from a file
associated with a terminal may return one typed line of data.

If a read() is interrupted by a signal before it reads any data, it will return −1 with
errno set to EINTR.

readl(2)

358 man pages section 2: System Calls • Last Revised 1 May 2000

If a read() is interrupted by a signal after it has successfully read some data, it will
return the number of bytes read.

A read() or readv() from a STREAMS (see intro(2)) file can read data in three
different modes: byte-stream mode, message-nondiscard mode, and message-discard
mode. The default is byte-stream mode. This can be changed using the I_SRDOPT
ioctl(2) request, and can be tested with the I_GRDOPT ioctl(). In byte-stream
mode, read() retrieves data from the STREAM until as many bytes as were
requested are transferred, or until there is no more data to be retrieved. Byte-stream
mode ignores message boundaries.

In STREAMS message-nondiscard mode, read() retrieves data until as many bytes as
were requested are transferred, or until a message boundary is reached. If read()
does not retrieve all the data in a message, the remaining data is left on the STREAM,
and can be retrieved by the next read() call. Message-discard mode also retrieves
data until as many bytes as were requested are transferred, or a message boundary is
reached. However, unread data remaining in a message after the read() returns is
discarded, and is not available for a subsequent read(), readv() or getmsg(2) call.

How read() handles zero-byte STREAMS messages is determined by the current
read mode setting. In byte-stream mode, read() accepts data until it has read nbyte
bytes, or until there is no more data to read, or until a zero-byte message block is
encountered. The read() function then returns the number of bytes read, and places
the zero-byte message back on the STREAM to be retrieved by the next read(),
readv() or getmsg(2). In message-nondiscard mode or message-discard mode, a
zero-byte message returns 0 and the message is removed from the STREAM. When a
zero-byte message is read as the first message on a STREAM, the message is removed
from the STREAM and 0 is returned, regardless of the read mode.

A read() from a STREAMS file returns the data in the message at the front of the
STREAM head read queue, regardless of the priority band of the message.

By default, STREAMS are in control-normal mode, in which a read() from a
STREAMS file can only process messages that contain a data part but do not contain a
control part. The read() fails if a message containing a control part is encountered at
the STREAM head. This default action can be changed by placing the STREAM in
either control-data mode or control-discard mode with the I_SRDOPT ioctl()
command. In control-data mode, read() converts any control part to data and passes
it to the application before passing any data part originally present in the same
message. In control-discard mode, read() discards message control parts but returns
to the process any data part in the message.

readl(), preadl(), and readvl() perform the same actions as read(), pread(),
and readv(), respectively, and additionally return in label_p the CMW label of the
data read. The label returned is determined according to these conditions:

� If the descriptor refers to a regular file or FIFO, the sensitivity label portion of
label_p is set to the sensitivity label associated with the filesystem object.

readl(2)

System Calls 359

In all other respects, the readl(), preadl(), and readvl() interfaces are
analogous to the read(), pread(), and readv() interfaces.

In the Solaris environment, read() normally allows a process to read the contents of
directories on some local file systems. This functionality is not supported in the
Trusted Solaris operating environment. If the file descriptor refers to a directory,
read() will return EISDIR.

The last access time is updated only when the calling process has both mandatory
read and write access to the filesystem object. There is no privilege to override this
restriction.

In addition, read() and readv() will fail if the STREAM head had processed an
asynchronous error before the call. In this case, the value of errno does not reflect the
result of read() or readv() but reflects the prior error. If a hangup occurs on the
STREAM being read, read() continues to operate normally until the STREAM head
read queue is empty. Thereafter, it returns 0.

The readv() function is equivalent to read(), but places the input data into the
iovcnt buffers specified by the members of the iov array: iov0, iov1, …, iov[iovcnt−1].
The iovcnt argument is valid if greater than 0 and less than or equal to IOV_MAX.

The iovec structure contains the following members:

caddr_t iov_base;
int iov_len;

Each iovec entry specifies the base address and length of an area in memory where
data should be placed. The readv() function always fills an area completely before
proceeding to the next.

Upon successful completion, readv() marks for update the st_atime field of the
file.

The pread() function performs the same action as read(), except that it reads from
a given position in the file without changing the file pointer. The first three arguments
to pread() are the same as read() with the addition of a fourth argument offset for
the desired position inside the file. pread() will read up to the maximum offset value
that can be represented in an off_t for regular files. An attempt to perform a
pread() on a file that is incapable of seeking results in an error.

Upon successful completion, read() and readv() return a non-negative integer
indicating the number of bytes actually read. Otherwise, the functions return −1 and
set errno to indicate the error.

read(), readl(), pread(), preadl(), readv(), and readvl() fail if any of these
conditions is true:

EAGAIN Mandatory file/record locking was set, O_NDELAY or
O_NONBLOCK was set, and there was a blocking record lock; total

readl(2)

readv()

pread()

RETURN VALUES

ERRORS

360 man pages section 2: System Calls • Last Revised 1 May 2000

amount of system memory available when reading using raw I/O
is temporarily insufficient; no data is waiting to be read on a file
associated with a tty device and O_NONBLOCK was set; or no
message is waiting to be read on a stream and O_NDELAY or
O_NONBLOCK was set.

EBADF The fildes argument is not a valid file descriptor open for reading.

EBADMSG Message waiting to be read on a stream is not a data message.

EDEADLK The read was going to go to sleep and cause a deadlock to occur.

EFAULT The buf argument points to an illegal address.

EINTR A signal was caught during the read operation and no data was
transferred.

EINVAL An attempt was made to read from a stream linked to a
multiplexor.

EIO A physical I/O error has occurred, or the process is in a
background process group and is attempting to read from its
controlling terminal, and either the process is ignoring or blocking
the SIGTTIN signal or the process group of the process is
orphaned.

EISDIR The fildes argument refers to a directory on a file system type that
does not support read operations on directories.

ENOLCK The system record lock table was full, so the read() or readv()
could not go to sleep until the blocking record lock was removed.

ENOLINK The fildes argument is on a remote machine and the link to that
machine is no longer active.

ENXIO The device associated with fildes is a block special or character
special file and the value of the file pointer is out of range.

The read() and readv() functions will fail if:

EOVERFLOW The file is a regular file, nbyte is greater than 0, the starting position
is before the end-of-file, and the starting position is greater than or
equal to the offset maximum established in the open file
description associated with fildes.

The readv() function may fail if:

EFAULT The iov argument points outside the allocated address space.

EINVAL The iovcnt argument was less than or equal to 0, or greater than or
equal to IOV_MAX. (See intro(2) for a definition of IOV_MAX).

EINVAL The sum of the iov_len values in the iov array overflowed an int.

The pread() function will fail and the file pointer remain unchanged if:

readl(2)

System Calls 361

EFAULT label_p points to an illegal address.

The pread() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level read() is Async-Signal-Safe

readl(), preadl(), and readvl() return in the buffer that was referenced by
label_p, the CMW label associated with the data that was read.

The last access time is updated only when the calling process has both mandatory
read and write access to the filesystem object. There is no privilege to override this
restriction.

For conduits, a sensitivity label is associated with each byte of data.

intro(2), chmod(2), creat(2), fcntl(2), open(2)

dup(2), getmsg(2), ioctl(2), pipe(2), attributes(5), streamio(7I), termio(7I)

readl(2)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

362 man pages section 2: System Calls • Last Revised 1 May 2000

readlink – read the contents of a symbolic link

#include <unistd.h>

int readlink(const char *path, char *buf, size_t bufsiz);

The readlink() function places the contents of the symbolic link referred to by path
in the buffer buf which has size bufsiz. If the number of bytes in the symbolic link is
less than bufsiz, the contents of the remainder of buf are unspecified.

Upon successful completion, readlink() returns the count of bytes placed in the
buffer. Otherwise, it returns −1, leaves the buffer unchanged, and sets errno to
indicate the error.

The readlink() function will fail if:

EACCES Search permission is denied for a component of the
path prefix of path. To override this restriction, the
calling process may assert one or both of these
privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

Read permission is denied to the link. To override this
restriction, the calling process may assert the
PRIV_FILE_MAC_READ privilege.

EFAULT path or buf points to an illegal address.

EINVAL The path argument names a file that is not a symbolic
link.

EIO An I/O error occurred while reading from the file
system.

ENOENT A component of path does not name an existing file or
path is an empty string.

ELOOP Too many symbolic links were encountered in
resolving path.

ENAMETOOLONG The length of path exceeds PATH_MAX, or a pathname
component is longer than NAME_MAX while
_POSIX_NO_TRUNC is in effect.

ENOTDIR A component of the path prefix is not a directory.

ENOSYS The file system does not support symbolic links.

The readlink() function may fail if:

EACCES Read permission is denied for the directory.

ENAMETOOLONG Path name resolution of a symbolic link produced an
intermediate result whose length exceeds PATH_MAX.

readlink(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 363

Portable applications should not assume that the returned contents of the symbolic
link are null-terminated.

Appropriate privilege is required to override access checks.

stat(2), symlink(2)

readlink(2)

USAGE

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
Manual

364 man pages section 2: System Calls • Last Revised 30 Sep 1999

read, readl, pread, preadl, readv, readvl – read from a file

#include <sys/types.h>
#include <sys/uio.h>

#include <unistd.h>

ssize_t read(int fildes, void *buf, size_t nbyte);

ssize_t pread(int fildes, void *buf, size_t nbyte, off_t offset);

ssize_t readv(int fildes, struct iovec *iov, int iovcnt);

#include <tsol/rdwrl.h>

ssize_t readl(int fildes, void *buf, size_t nbyte, bclabel_t *label_p);

ssize_t preadl(int fildes, void *buf, size_t nbyte, off_t offset,
bclabel_t *label_p);

ssize_t readvl(int fildes, struct iovec *iov, int iovcnt, bclabel_t
*label_p);

The read() function attempts to read nbyte bytes from the file associated with the
open file descriptor, fildes, into the buffer pointed to by buf.

If nbyte is 0, read() will return 0 and have no other results.

On files that support seeking (for example, a regular file), the read() starts at a
position in the file given by the file offset associated with fildes. The file offset is
incremented by the number of bytes actually read.

Files that do not support seeking (for example, terminals) always read from the
current position. The value of a file offset associated with such a file is undefined.

If fildes refers to a socket, read() is equivalent to recv(3SOCKET) with no flags set.

No data transfer will occur past the current end-of-file. If the starting position is at or
after the end-of-file, 0 will be returned. If the file refers to a device special file, the
result of subsequent read() requests is implementation-dependent.

If the value of nbyte is greater than SSIZE_MAX, the result is
implementation-dependent.

When attempting to read from a regular file with mandatory file/record locking set
(see chmod(2)), and there is a write lock owned by another process on the segment of
the file to be read:

� If O_NDELAY or O_NONBLOCK is set, read() returns −1 and sets errno to
EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() sleeps until the blocking record
lock is removed.

When attempting to read from an empty pipe (or FIFO):

readv(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 365

� If no process has the pipe open for writing, read() returns 0 to indicate
end-of-file.

� If some process has the pipe open for writing and O_NDELAY is set, read()
returns 0.

� If some process has the pipe open for writing and O_NONBLOCK is set, read()
returns −1 and sets errno to EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() blocks until data is written to the
pipe or the pipe is closed by all processes that had opened the pipe for writing.

When attempting to read a file associated with a terminal that has no data currently
available:

� If O_NDELAY is set, read() returns 0.

� If O_NONBLOCK is set, read() returns −1 and sets errno to EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() blocks until data become
available.

When attempting to read a file associated with a socket or a stream that is not a pipe, a
FIFO, or a terminal, and the file has no data currently available:

� If O_NDELAY or O_NONBLOCK is set, read() returns −1 and sets errno to
EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() blocks until data becomes
available.

The read() function reads data previously written to a file. If any portion of a regular
file prior to the end-of-file has not been written, read() returns bytes with value 0.
For example, lseek(2) allows the file offset to be set beyond the end of existing data
in the file. If data is later written at this point, subsequent reads in the gap between the
previous end of data and the newly written data will return bytes with value 0 until
data is written into the gap.

For regular files, no data transfer will occur past the offset maximum established in the
open file description associated with fildes.

Upon successful completion, where nbyte is greater than 0, read() will mark for
update the st_atime field of the file, and return the number of bytes read. This
number will never be greater than nbyte. The value returned may be less than nbyte if
the number of bytes left in the file is less than nbyte, if the read() request was
interrupted by a signal, or if the file is a pipe or FIFO or special file and has fewer than
nbyte bytes immediately available for reading. For example, a read() from a file
associated with a terminal may return one typed line of data.

If a read() is interrupted by a signal before it reads any data, it will return −1 with
errno set to EINTR.

readv(2)

366 man pages section 2: System Calls • Last Revised 1 May 2000

If a read() is interrupted by a signal after it has successfully read some data, it will
return the number of bytes read.

A read() or readv() from a STREAMS (see intro(2)) file can read data in three
different modes: byte-stream mode, message-nondiscard mode, and message-discard
mode. The default is byte-stream mode. This can be changed using the I_SRDOPT
ioctl(2) request, and can be tested with the I_GRDOPT ioctl(). In byte-stream
mode, read() retrieves data from the STREAM until as many bytes as were
requested are transferred, or until there is no more data to be retrieved. Byte-stream
mode ignores message boundaries.

In STREAMS message-nondiscard mode, read() retrieves data until as many bytes as
were requested are transferred, or until a message boundary is reached. If read()
does not retrieve all the data in a message, the remaining data is left on the STREAM,
and can be retrieved by the next read() call. Message-discard mode also retrieves
data until as many bytes as were requested are transferred, or a message boundary is
reached. However, unread data remaining in a message after the read() returns is
discarded, and is not available for a subsequent read(), readv() or getmsg(2) call.

How read() handles zero-byte STREAMS messages is determined by the current
read mode setting. In byte-stream mode, read() accepts data until it has read nbyte
bytes, or until there is no more data to read, or until a zero-byte message block is
encountered. The read() function then returns the number of bytes read, and places
the zero-byte message back on the STREAM to be retrieved by the next read(),
readv() or getmsg(2). In message-nondiscard mode or message-discard mode, a
zero-byte message returns 0 and the message is removed from the STREAM. When a
zero-byte message is read as the first message on a STREAM, the message is removed
from the STREAM and 0 is returned, regardless of the read mode.

A read() from a STREAMS file returns the data in the message at the front of the
STREAM head read queue, regardless of the priority band of the message.

By default, STREAMS are in control-normal mode, in which a read() from a
STREAMS file can only process messages that contain a data part but do not contain a
control part. The read() fails if a message containing a control part is encountered at
the STREAM head. This default action can be changed by placing the STREAM in
either control-data mode or control-discard mode with the I_SRDOPT ioctl()
command. In control-data mode, read() converts any control part to data and passes
it to the application before passing any data part originally present in the same
message. In control-discard mode, read() discards message control parts but returns
to the process any data part in the message.

readl(), preadl(), and readvl() perform the same actions as read(), pread(),
and readv(), respectively, and additionally return in label_p the CMW label of the
data read. The label returned is determined according to these conditions:

� If the descriptor refers to a regular file or FIFO, the sensitivity label portion of
label_p is set to the sensitivity label associated with the filesystem object.

readv(2)

System Calls 367

In all other respects, the readl(), preadl(), and readvl() interfaces are
analogous to the read(), pread(), and readv() interfaces.

In the Solaris environment, read() normally allows a process to read the contents of
directories on some local file systems. This functionality is not supported in the
Trusted Solaris operating environment. If the file descriptor refers to a directory,
read() will return EISDIR.

The last access time is updated only when the calling process has both mandatory
read and write access to the filesystem object. There is no privilege to override this
restriction.

In addition, read() and readv() will fail if the STREAM head had processed an
asynchronous error before the call. In this case, the value of errno does not reflect the
result of read() or readv() but reflects the prior error. If a hangup occurs on the
STREAM being read, read() continues to operate normally until the STREAM head
read queue is empty. Thereafter, it returns 0.

The readv() function is equivalent to read(), but places the input data into the
iovcnt buffers specified by the members of the iov array: iov0, iov1, …, iov[iovcnt−1].
The iovcnt argument is valid if greater than 0 and less than or equal to IOV_MAX.

The iovec structure contains the following members:

caddr_t iov_base;
int iov_len;

Each iovec entry specifies the base address and length of an area in memory where
data should be placed. The readv() function always fills an area completely before
proceeding to the next.

Upon successful completion, readv() marks for update the st_atime field of the
file.

The pread() function performs the same action as read(), except that it reads from
a given position in the file without changing the file pointer. The first three arguments
to pread() are the same as read() with the addition of a fourth argument offset for
the desired position inside the file. pread() will read up to the maximum offset value
that can be represented in an off_t for regular files. An attempt to perform a
pread() on a file that is incapable of seeking results in an error.

Upon successful completion, read() and readv() return a non-negative integer
indicating the number of bytes actually read. Otherwise, the functions return −1 and
set errno to indicate the error.

read(), readl(), pread(), preadl(), readv(), and readvl() fail if any of these
conditions is true:

EAGAIN Mandatory file/record locking was set, O_NDELAY or
O_NONBLOCK was set, and there was a blocking record lock; total

readv(2)

readv()

pread()

RETURN VALUES

ERRORS

368 man pages section 2: System Calls • Last Revised 1 May 2000

amount of system memory available when reading using raw I/O
is temporarily insufficient; no data is waiting to be read on a file
associated with a tty device and O_NONBLOCK was set; or no
message is waiting to be read on a stream and O_NDELAY or
O_NONBLOCK was set.

EBADF The fildes argument is not a valid file descriptor open for reading.

EBADMSG Message waiting to be read on a stream is not a data message.

EDEADLK The read was going to go to sleep and cause a deadlock to occur.

EFAULT The buf argument points to an illegal address.

EINTR A signal was caught during the read operation and no data was
transferred.

EINVAL An attempt was made to read from a stream linked to a
multiplexor.

EIO A physical I/O error has occurred, or the process is in a
background process group and is attempting to read from its
controlling terminal, and either the process is ignoring or blocking
the SIGTTIN signal or the process group of the process is
orphaned.

EISDIR The fildes argument refers to a directory on a file system type that
does not support read operations on directories.

ENOLCK The system record lock table was full, so the read() or readv()
could not go to sleep until the blocking record lock was removed.

ENOLINK The fildes argument is on a remote machine and the link to that
machine is no longer active.

ENXIO The device associated with fildes is a block special or character
special file and the value of the file pointer is out of range.

The read() and readv() functions will fail if:

EOVERFLOW The file is a regular file, nbyte is greater than 0, the starting position
is before the end-of-file, and the starting position is greater than or
equal to the offset maximum established in the open file
description associated with fildes.

The readv() function may fail if:

EFAULT The iov argument points outside the allocated address space.

EINVAL The iovcnt argument was less than or equal to 0, or greater than or
equal to IOV_MAX. (See intro(2) for a definition of IOV_MAX).

EINVAL The sum of the iov_len values in the iov array overflowed an int.

The pread() function will fail and the file pointer remain unchanged if:

readv(2)

System Calls 369

EFAULT label_p points to an illegal address.

The pread() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level read() is Async-Signal-Safe

readl(), preadl(), and readvl() return in the buffer that was referenced by
label_p, the CMW label associated with the data that was read.

The last access time is updated only when the calling process has both mandatory
read and write access to the filesystem object. There is no privilege to override this
restriction.

For conduits, a sensitivity label is associated with each byte of data.

intro(2), chmod(2), creat(2), fcntl(2), open(2)

dup(2), getmsg(2), ioctl(2), pipe(2), attributes(5), streamio(7I), termio(7I)

readv(2)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

370 man pages section 2: System Calls • Last Revised 1 May 2000

read, readl, pread, preadl, readv, readvl – read from a file

#include <sys/types.h>
#include <sys/uio.h>

#include <unistd.h>

ssize_t read(int fildes, void *buf, size_t nbyte);

ssize_t pread(int fildes, void *buf, size_t nbyte, off_t offset);

ssize_t readv(int fildes, struct iovec *iov, int iovcnt);

#include <tsol/rdwrl.h>

ssize_t readl(int fildes, void *buf, size_t nbyte, bclabel_t *label_p);

ssize_t preadl(int fildes, void *buf, size_t nbyte, off_t offset,
bclabel_t *label_p);

ssize_t readvl(int fildes, struct iovec *iov, int iovcnt, bclabel_t
*label_p);

The read() function attempts to read nbyte bytes from the file associated with the
open file descriptor, fildes, into the buffer pointed to by buf.

If nbyte is 0, read() will return 0 and have no other results.

On files that support seeking (for example, a regular file), the read() starts at a
position in the file given by the file offset associated with fildes. The file offset is
incremented by the number of bytes actually read.

Files that do not support seeking (for example, terminals) always read from the
current position. The value of a file offset associated with such a file is undefined.

If fildes refers to a socket, read() is equivalent to recv(3SOCKET) with no flags set.

No data transfer will occur past the current end-of-file. If the starting position is at or
after the end-of-file, 0 will be returned. If the file refers to a device special file, the
result of subsequent read() requests is implementation-dependent.

If the value of nbyte is greater than SSIZE_MAX, the result is
implementation-dependent.

When attempting to read from a regular file with mandatory file/record locking set
(see chmod(2)), and there is a write lock owned by another process on the segment of
the file to be read:

� If O_NDELAY or O_NONBLOCK is set, read() returns −1 and sets errno to
EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() sleeps until the blocking record
lock is removed.

When attempting to read from an empty pipe (or FIFO):

readvl(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 371

� If no process has the pipe open for writing, read() returns 0 to indicate
end-of-file.

� If some process has the pipe open for writing and O_NDELAY is set, read()
returns 0.

� If some process has the pipe open for writing and O_NONBLOCK is set, read()
returns −1 and sets errno to EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() blocks until data is written to the
pipe or the pipe is closed by all processes that had opened the pipe for writing.

When attempting to read a file associated with a terminal that has no data currently
available:

� If O_NDELAY is set, read() returns 0.

� If O_NONBLOCK is set, read() returns −1 and sets errno to EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() blocks until data become
available.

When attempting to read a file associated with a socket or a stream that is not a pipe, a
FIFO, or a terminal, and the file has no data currently available:

� If O_NDELAY or O_NONBLOCK is set, read() returns −1 and sets errno to
EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, read() blocks until data becomes
available.

The read() function reads data previously written to a file. If any portion of a regular
file prior to the end-of-file has not been written, read() returns bytes with value 0.
For example, lseek(2) allows the file offset to be set beyond the end of existing data
in the file. If data is later written at this point, subsequent reads in the gap between the
previous end of data and the newly written data will return bytes with value 0 until
data is written into the gap.

For regular files, no data transfer will occur past the offset maximum established in the
open file description associated with fildes.

Upon successful completion, where nbyte is greater than 0, read() will mark for
update the st_atime field of the file, and return the number of bytes read. This
number will never be greater than nbyte. The value returned may be less than nbyte if
the number of bytes left in the file is less than nbyte, if the read() request was
interrupted by a signal, or if the file is a pipe or FIFO or special file and has fewer than
nbyte bytes immediately available for reading. For example, a read() from a file
associated with a terminal may return one typed line of data.

If a read() is interrupted by a signal before it reads any data, it will return −1 with
errno set to EINTR.

readvl(2)

372 man pages section 2: System Calls • Last Revised 1 May 2000

If a read() is interrupted by a signal after it has successfully read some data, it will
return the number of bytes read.

A read() or readv() from a STREAMS (see intro(2)) file can read data in three
different modes: byte-stream mode, message-nondiscard mode, and message-discard
mode. The default is byte-stream mode. This can be changed using the I_SRDOPT
ioctl(2) request, and can be tested with the I_GRDOPT ioctl(). In byte-stream
mode, read() retrieves data from the STREAM until as many bytes as were
requested are transferred, or until there is no more data to be retrieved. Byte-stream
mode ignores message boundaries.

In STREAMS message-nondiscard mode, read() retrieves data until as many bytes as
were requested are transferred, or until a message boundary is reached. If read()
does not retrieve all the data in a message, the remaining data is left on the STREAM,
and can be retrieved by the next read() call. Message-discard mode also retrieves
data until as many bytes as were requested are transferred, or a message boundary is
reached. However, unread data remaining in a message after the read() returns is
discarded, and is not available for a subsequent read(), readv() or getmsg(2) call.

How read() handles zero-byte STREAMS messages is determined by the current
read mode setting. In byte-stream mode, read() accepts data until it has read nbyte
bytes, or until there is no more data to read, or until a zero-byte message block is
encountered. The read() function then returns the number of bytes read, and places
the zero-byte message back on the STREAM to be retrieved by the next read(),
readv() or getmsg(2). In message-nondiscard mode or message-discard mode, a
zero-byte message returns 0 and the message is removed from the STREAM. When a
zero-byte message is read as the first message on a STREAM, the message is removed
from the STREAM and 0 is returned, regardless of the read mode.

A read() from a STREAMS file returns the data in the message at the front of the
STREAM head read queue, regardless of the priority band of the message.

By default, STREAMS are in control-normal mode, in which a read() from a
STREAMS file can only process messages that contain a data part but do not contain a
control part. The read() fails if a message containing a control part is encountered at
the STREAM head. This default action can be changed by placing the STREAM in
either control-data mode or control-discard mode with the I_SRDOPT ioctl()
command. In control-data mode, read() converts any control part to data and passes
it to the application before passing any data part originally present in the same
message. In control-discard mode, read() discards message control parts but returns
to the process any data part in the message.

readl(), preadl(), and readvl() perform the same actions as read(), pread(),
and readv(), respectively, and additionally return in label_p the CMW label of the
data read. The label returned is determined according to these conditions:

� If the descriptor refers to a regular file or FIFO, the sensitivity label portion of
label_p is set to the sensitivity label associated with the filesystem object.

readvl(2)

System Calls 373

In all other respects, the readl(), preadl(), and readvl() interfaces are
analogous to the read(), pread(), and readv() interfaces.

In the Solaris environment, read() normally allows a process to read the contents of
directories on some local file systems. This functionality is not supported in the
Trusted Solaris operating environment. If the file descriptor refers to a directory,
read() will return EISDIR.

The last access time is updated only when the calling process has both mandatory
read and write access to the filesystem object. There is no privilege to override this
restriction.

In addition, read() and readv() will fail if the STREAM head had processed an
asynchronous error before the call. In this case, the value of errno does not reflect the
result of read() or readv() but reflects the prior error. If a hangup occurs on the
STREAM being read, read() continues to operate normally until the STREAM head
read queue is empty. Thereafter, it returns 0.

The readv() function is equivalent to read(), but places the input data into the
iovcnt buffers specified by the members of the iov array: iov0, iov1, …, iov[iovcnt−1].
The iovcnt argument is valid if greater than 0 and less than or equal to IOV_MAX.

The iovec structure contains the following members:

caddr_t iov_base;
int iov_len;

Each iovec entry specifies the base address and length of an area in memory where
data should be placed. The readv() function always fills an area completely before
proceeding to the next.

Upon successful completion, readv() marks for update the st_atime field of the
file.

The pread() function performs the same action as read(), except that it reads from
a given position in the file without changing the file pointer. The first three arguments
to pread() are the same as read() with the addition of a fourth argument offset for
the desired position inside the file. pread() will read up to the maximum offset value
that can be represented in an off_t for regular files. An attempt to perform a
pread() on a file that is incapable of seeking results in an error.

Upon successful completion, read() and readv() return a non-negative integer
indicating the number of bytes actually read. Otherwise, the functions return −1 and
set errno to indicate the error.

read(), readl(), pread(), preadl(), readv(), and readvl() fail if any of these
conditions is true:

EAGAIN Mandatory file/record locking was set, O_NDELAY or
O_NONBLOCK was set, and there was a blocking record lock; total

readvl(2)

readv()

pread()

RETURN VALUES

ERRORS

374 man pages section 2: System Calls • Last Revised 1 May 2000

amount of system memory available when reading using raw I/O
is temporarily insufficient; no data is waiting to be read on a file
associated with a tty device and O_NONBLOCK was set; or no
message is waiting to be read on a stream and O_NDELAY or
O_NONBLOCK was set.

EBADF The fildes argument is not a valid file descriptor open for reading.

EBADMSG Message waiting to be read on a stream is not a data message.

EDEADLK The read was going to go to sleep and cause a deadlock to occur.

EFAULT The buf argument points to an illegal address.

EINTR A signal was caught during the read operation and no data was
transferred.

EINVAL An attempt was made to read from a stream linked to a
multiplexor.

EIO A physical I/O error has occurred, or the process is in a
background process group and is attempting to read from its
controlling terminal, and either the process is ignoring or blocking
the SIGTTIN signal or the process group of the process is
orphaned.

EISDIR The fildes argument refers to a directory on a file system type that
does not support read operations on directories.

ENOLCK The system record lock table was full, so the read() or readv()
could not go to sleep until the blocking record lock was removed.

ENOLINK The fildes argument is on a remote machine and the link to that
machine is no longer active.

ENXIO The device associated with fildes is a block special or character
special file and the value of the file pointer is out of range.

The read() and readv() functions will fail if:

EOVERFLOW The file is a regular file, nbyte is greater than 0, the starting position
is before the end-of-file, and the starting position is greater than or
equal to the offset maximum established in the open file
description associated with fildes.

The readv() function may fail if:

EFAULT The iov argument points outside the allocated address space.

EINVAL The iovcnt argument was less than or equal to 0, or greater than or
equal to IOV_MAX. (See intro(2) for a definition of IOV_MAX).

EINVAL The sum of the iov_len values in the iov array overflowed an int.

The pread() function will fail and the file pointer remain unchanged if:

readvl(2)

System Calls 375

EFAULT label_p points to an illegal address.

The pread() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level read() is Async-Signal-Safe

readl(), preadl(), and readvl() return in the buffer that was referenced by
label_p, the CMW label associated with the data that was read.

The last access time is updated only when the calling process has both mandatory
read and write access to the filesystem object. There is no privilege to override this
restriction.

For conduits, a sensitivity label is associated with each byte of data.

intro(2), chmod(2), creat(2), fcntl(2), open(2)

dup(2), getmsg(2), ioctl(2), pipe(2), attributes(5), streamio(7I), termio(7I)

readvl(2)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

376 man pages section 2: System Calls • Last Revised 1 May 2000

rename – change the name of a file

#include <stdio.h>

int rename(const char *old, const char *new);

The rename() function changes the name of a file. The old argument points to the
pathname of the file to be renamed. The new argument points to the new pathname of
the file.

If old and new both refer to the same existing file, the rename() function returns
successfully and performs no other action.

If old points to the pathname of a file that is not a directory, new must not point to the
pathname of a directory. If the link named by new exists, it will be removed and old
will be renamed to new. In this case, a link named new must remain visible to other
processes throughout the renaming operation and will refer to either the file referred
to by new or the file referred to as old before the operation began.

If old points to the pathname of a directory, new must not point to the pathname of a
file that is not a directory. If the directory named by new exists, it will be removed and
old will be renamed to new. In this case, a link named new will exist throughout the
renaming operation and will refer to either the file referred to by new or the file
referred to as old before the operation began. Thus, if new names an existing directory,
it must be an empty directory.

The new pathname must not contain a path prefix that names old. Write access
permission is required for both the directory containing old and the directory
containing new. If old points to the pathname of a directory, write access permission is
required for the directory named by old, and, if it exists, the directory named by new.

If the directory containing old has the sticky bit set, at least one of the following
conditions listed below must be true:

� The user must own old
� The user must own the directory containing old
� old must be writable by the user
� The user must be a privileged user

If new exists, and the directory containing new is writable and has the sticky bit set, at
least one of the following conditions must be true:

� the user must own new
� the user must own the directory containing new
� new must be writable by the user
� the user must be a privileged user

If the link named by new exists, the file’s link count becomes zero when it is removed,
and no process has the file open, then the space occupied by the file will be freed and
the file will no longer be accessible. If one or more processes have the file open when

rename(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 377

the last link is removed, the link will be removed before rename() returns, but the
removal of the file contents will be postponed until all references to the file have been
closed.

Upon successful completion, the rename() function will mark for update the
st_ctime and st_mtime fields of the parent directory of each file.

A single-level directory cannot be renamed (single-level directories are always
contained in multilevel directories). A multilevel directory cannot be the new
containing directory. There is no privilege to bypass these restrictions.

rename() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The rename() function will fail if:

EACCES A component of either path prefix denies search
permission; one of the directories containing old and
new denies write permissions; or write permission is
denied by a directory pointed to by old or new. To
bypass ownership restrictions, the calling process may
assert one or more of these privileges:
PRIV_FILE_DAC_SEARCH,
PRIV_FILE_MAC_SEARCH, PRIV_FILE_MAC_WRITE,
PRIV_FILE_DAC_WRITE, and PRIV_FILE_OWNER.

EBUSY The new argument is a directory and the mount point
for a mounted file system.

EDQUOT The directory where the new name entry is being
placed cannot be extended because the user’s quota of
disk blocks on that file system has been exhausted.

EEXIST The link named by new is a directory containing entries
other than ‘.’ (the directory itself) and ‘..’ (the parent
directory).

EINVAL The new argument directory pathname contains a path
prefix that names the old directory.

EISDIR The new argument points to a directory but old points
to a file that is not a directory.

ELOOP Too many symbolic links were encountered in
translating the pathname.

ENAMETOOLONG The length of old or new exceeds PATH_MAX, or a
pathname component is longer than NAME_MAX while
_POSIX_NO_TRUNC is in effect.

rename(2)

RETURN VALUES

ERRORS

378 man pages section 2: System Calls • Last Revised 30 Sep 1999

EMLINK The file named by old is a directory, and the link count
of the parent directory of new would exceed
LINK_MAX.

ENOENT The link named by old does not exist, or either old or
new points to an empty string.

ENOSPC The directory that would contain new cannot be
extended.

ENOTDIR A component of either path prefix is not a directory, or
old names a directory and new names a nondirectory
file.

EROFS The requested operation requires writing in a directory
on a read-only file system.

EXDEV The links named by old and new are on different file
systems.

EIO An I/O error occurred while making or updating a
directory entry.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

Appropriate privilege is required to override access checks.

A single-level directory cannot be renamed. A multilevel directory cannot be the new
containing directory. There is no privilege to bypass these restrictions.

chmod(2), link(2), unlink(2)

attributes(5)

The system can deadlock if there is a loop in the file system graph. Such a loop can
occur if there is an entry in directory a, a/name1, that is a hard link to directory b,
and an entry in directory b, b/name2, that is a hard link to directory a. When such a
loop exists and two separate processes attempt to rename a/name1 to b/name2 and
b/name2 to a/name1, the system may deadlock attempting to lock both directories
for modification. The solution is to use symbolic links instead of hard links for
directories.

rename(2)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

WARNINGS

System Calls 379

rmdir – remove a directory

#include <unistd.h>

int rmdir(const char *path);

The rmdir() function removes the directory named by the path name pointed to by
path. The directory must not have any entries other than “.” and “..”.

If the directory’s link count becomes zero and no process has the directory open, the
space occupied by the directory is freed and the directory is no longer accessible. If
one or more processes have the directory open when the last link is removed, the “.”
and “..” entries, if present, are removed before rmdir() returns and no new entries
may be created in the directory, but the directory is not removed until all references to
the directory have been closed.

Upon successful completion rmdir() marks for update the st_ctime and
st_mtime fields of the parent directory. A multilevel directory can be removed only
when all its contained single-level directories are empty.

rmdir() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The rmdir() function will fail if:

EACCES Search permission is denied for a component of the path prefix. To
override this restriction, the calling process must assert one or both
of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

EACCES Write permission is denied on the directory containing the
directory to be removed. To bypass discretionary or mandatory
write restrictions, the calling process must assert one or both of
these privileges: PRIV_FILE_DAC_WRITE and
PRIV_FILE_MAC_WRITE.

EACCES If the containing directory has the the S_ISVTX variable set, the
calling process must either be the owner of the containing
directory or the directory to be deleted, or must have write access
to the directory to be deleted. To override this restriction, the
calling process may assert one or more of these privileges:
PRIV_FILE_MAC_WRITE, PRIV_FILE_DAC_WRITE, and
PRIV_FILE_OWNER.

EBUSY The directory to be removed is the mount point for a mounted file
system.

EEXIST The directory contains entries other than those for “.” and “..”.

EFAULT The path argument points to an illegal address.

rmdir(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

380 man pages section 2: System Calls • Last Revised 30 Sep 1999

EINVAL The directory to be removed is the current directory, or the final
component of path is “.”.

EIO An I/O error occurred while accessing the file system.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length
of a path component exceeds NAME_MAX while
_POSIX_NO_TRUNC is in effect.

ENOENT The named directory does not exist or is the null pathname.

ENOLINK The path argument points to a remote machine, and the connection
to that machine is no longer active.

ENOTDIR A component of the path prefix is not a directory.

EROFS The directory entry to be removed is part of a read-only file
system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

Appropriate privilege is required to override access checks.

A multilevel directory can be removed only when all its contained single-level
directories are empty.

mkdir(1), rm(1), mkdir(2)

attributes(5)

rmdir(2)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

System Calls 381

secconf – get security configuration information

cc [flags…] file… -ltsol

#include <tsol/secconf.h>

long secconf(int name);

The secconf() system call provides a method for an application to determine the
current value of a configurable security system limit or option.

The name argument represents the system variable to be queried.

int name _TSOL_CLEAN_WINDOWS

Variable name tsol_clean_windows

Force cleaning of unused register windows before return from
system call (SPARC architecture only).

int name _TSOL_FLUSH_BUFFERS

Variable name tsol_flush_buffers

Force flushing of file data blocks before inode updates.

int name _TSOL_HIDE_UPGRADED_NAMES

Variable name tsol_hide_upgraded_names

Hide upgrade directory entries.

int name _TSOL_PRIVS_DEBUG

Variable name tsol_privs_debug

Enables privilege debugging mode.

secconf() returns:

0 On success.

−1 When name is an invalid value. Also sets errno to indicate the error.

When name is not defined on the system. The value of errno will not be
set.

The function will return the following errors:

EINVAL The parameter name is unknown.

system(4) System configuration information file.

pathconf(2)

sysconf(3C)

secconf(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

FILES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

382 man pages section 2: System Calls • Last Revised 20 Feb 2001

semctl – semaphore control operations

#include <sys/types.h>
#include <sys/ipc.h>

#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, ...);

The semctl() function provides a variety of semaphore control operations as
specified by cmd. The fourth argument is optional, depending upon the operation
requested. If required, it is of type union semun, which must be explicitly declared
by the application program.

union semun {
int val;
struct semid_ds *buf;
ushort_t *array;

} arg ;

The permission required for a semaphore operation is given as {token}, where token is
the type of permission needed. The types of permission are interpreted as follows:

00400 READ by user
00200 ALTER by user
00040 READ by group
00020 ALTER by group
00004 READ by others
00002 ALTER by others

The commands described hereafter as [READ] operations all require that the calling
process have discretionary read access to the data structure referenced by semid, or
that the effective privilege set of the process include PRIV_IPC_DAC_READ. Likewise,
the commands described as [ALTER] operations all require that the calling process
have discretionary write access to the data structure referenced by semid, or that the
effective privilege set of the process include PRIV_IPC_DAC_WRITE.

If the sensitivity label of the object does not match the sensitivity label of the calling
process, then the process must have these privileges asserted: PRIV_IPC_MAC_READ
for [READ] operations; PRIV_IPC_MAC_WRITE for [ALTER] operations.

See the Semaphore Operation Permissions subsection of the DEFINITIONS
section of intro(2) for more information. The following semaphore operations as
specified by cmd are executed with respect to the semaphore specified by semid and
semnum.

GETVAL Return the value of semval (see intro(2)). {READ}

SETVAL Set the value of semval to arg.val. {ALTER} When this command is
successfully executed, the semadj value corresponding to the
specified semaphore in all processes is cleared.

GETPID Return the value of (int) sempid. {READ}

GETNCNT Return the value of semncnt. {READ}

semctl(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 383

GETZCNT Return the value of semzcnt. {READ}

The following operations return and set, respectively, every semval in the set of
semaphores.

GETALL Place semvals into array pointed to by arg.array. {READ}

SETALL Set semvals according to the array pointed to by arg.array.
{ALTER}. When this cmd is successfully executed, the semadj
values corresponding to each specified semaphore in all processes
are cleared.

The following operations are also available.

IPC_STAT Place the current value of each member of the data structure
associated with semid into the structure pointed to by arg.buf. The
contents of this structure are defined in intro(2). {READ}

IPC_SET Set the value of the following members of the data structure
associated with semid to the corresponding value found in the
structure pointed to by arg.buf:

sem_perm.uid
sem_perm.gid
sem_perm.mode /* access permission bits only */

This command can be executed only by a process that either has an
effective user ID equal to sem_perm.cuid or sem_perm.uid in
the data structure associated with semid, or has the
PRIV_IPC_OWNER privilege in its set of effective privileges. In
addition, the process must either have mandatory write access to
the Semaphore set or have asserted the PRIV_IPC_MAC_WRITE
privilege.

IPC_RMID Remove from the system the semaphore identifier specified by
semid and destroy the set of semaphores and data structure
associated with that identifier. This command can be executed only
by a process that either has an effective user ID equal to
sem_perm.cuid or sem_perm.uid in the data structure
associated with semid, or has the PRIV_IPC_OWNER privilege
asserted. In addition, the process must also have mandatory write
access to the Semaphore set or have asserted the
PRIV_IPC_MAC_WRITE privilege.

Upon successful completion, the value returned depends on cmd as follows:

GETVAL the value of semval

GETPID the value of (int) sempid

GETNCNT the value of semncnt

GETZCNT the value of semzcnt

semctl(2)

RETURN VALUES

384 man pages section 2: System Calls • Last Revised 30 Sep 1999

All other successful completions return 0; otherwise, −1 is returned and errno is set
to indicate the error.

The semctl() function will fail if:

EACCES Operation permission is denied to the calling process (see
intro(2)), and the process lacks the appropriate privilege
override(s) in its set of effective privileges.

EINVAL The semid argument is not a valid semaphore identifier; the
semnum argument is less than 0 or greater than sem_nsems −1; or
the cmd argument is not a valid command or is IPC_SET and
sem_perm.uid or sem_perm.gid is not valid.

EPERM cmd is equal to IPC_RMID or IPC_SET and the effective user of the
calling process is not equal to the value of sem_perm.cuid or
sem_perm.uid in the data structure associated with semid, and
the appropriate privilege is not asserted.

EOVERFLOW The cmd argument is IPC_STAT and uid or gid is too large to be
stored in the structure pointed to by arg.buf.

ERANGE The cmd argument is SETVAL or SETALL and the value to which
semval is to be set is greater than the system imposed maximum.

Appropriate privilege is required to override access checks.

ipcs(1), intro(2), semget(2), semop(2)

semctl(2)

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
Manual

System Calls 385

semget, semgetl – get set of semaphores

#include <sys/types.h>
#include <sys/ipc.h>

#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

cc [flags…] file … -ltsol [library…]

#include <sys/tsol/ipcl.h>

int semgetl(key_t key, int nsems, int semflg, const bslabel_t *slabel);

A semaphore structure is identified by a unique combination of key and sensitivity
label. This qualification of keys by sensitivity labels allows applications that use
semaphore structures to be run at multiple process sensitivity labels without
inadvertently sharing data.

The semget() function returns the semaphore identifier associated with the union of
key and the sensitivity label of the calling process. semgetl() returns the
semaphore-structure identifier associated with the union of key and slabel. If the value
of slabel does not match the sensitivity label of the calling process, then the effective
privilege set of the process must include both PRIV_IPC_MAC_READ and
PRIV_IPC_MAC_WRITE.

If discretionary read/write access as specified by the low-order 9 bits of semflg is
denied to the calling process, semget() and semgetl() require one or both of these
privileges: PRIV_IPC_DAC_READ and PRIV_IPC_DAC_WRITE.

A semaphore identifier and associated data structure and set containing nsems
semaphores (see intro(2)) are created for key if one of the following is true:

� key is equal to IPC_PRIVATE.

� key does not already have a semaphore identifier associated with it, and
(semflg&IPC_CREAT) is true.

On creation, the data structure associated with the new semaphore identifier is
initialized as follows:

� sem_perm.cuid, sem_perm.uid, sem_perm.cgid, and sem_perm.gid are set
equal to the effective user ID and effective group ID, respectively, of the calling
process.

� The access permission bits of sem_perm.mode are set equal to the access
permission bits of semflg.

� sem_nsems is set equal to the value of nsems.

� sem_otime is set equal to 0 and sem_ctime is set equal to the current time.

Upon successful completion, a non-negative integer representing a semaphore
identifier is returned. Otherwise, −1 is returned and errno is set to indicate the error.

semget(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

386 man pages section 2: System Calls • Last Revised 1 May 2000

The semget() function will fail if:

EACCES A semaphore-structure identifier exists for the union of key and
sensitivity label, but operation permission [see intro(2)] as
specified by the low-order 9 bits of semflg would not be granted; or
the sensitivity label check did not pass, and the calling process
does not have the appropriate privilege override(s) in its set of
effective privileges.

EEXIST A semaphore identifier exists for key but both (semflg&IPC_CREAT)
and (semflg&IPC_EXCL) are both true.

EFAULT slabel points to an illegal address.

EINVAL The label to which slabel points is not a valid sensitivity label.

EINVAL The nsems argument is either less than or equal to 0 or greater than
the system-imposed limit; or a semaphore identifier exists for key,
but the number of semaphores in the set associated with it is less
than nsems and nsems is not equal to 0.

ENOENT A semaphore identifier does not exist for key and
(semflg&IPC_CREAT) is false.

ENOSPC A semaphore identifier is to be created but the system-imposed
limit on the maximum number of allowed semaphores or
semaphore identifiers system-wide would be exceeded.

A semaphore identifier is to be created but the system-imposed
limit on the maximum number of allowed semaphores
systemwide would be exceeded.

Appropriate privilege is required to override access checks.

Sensitivity labels are used together with key to determine semaphore-group
identifiers.

ipcs(1), ipcrm(1), intro(2), semctl(2), semop(2)

stdio(3C)

semget(2)

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

System Calls 387

semget, semgetl – get set of semaphores

#include <sys/types.h>
#include <sys/ipc.h>

#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

cc [flags…] file … -ltsol [library…]

#include <sys/tsol/ipcl.h>

int semgetl(key_t key, int nsems, int semflg, const bslabel_t *slabel);

A semaphore structure is identified by a unique combination of key and sensitivity
label. This qualification of keys by sensitivity labels allows applications that use
semaphore structures to be run at multiple process sensitivity labels without
inadvertently sharing data.

The semget() function returns the semaphore identifier associated with the union of
key and the sensitivity label of the calling process. semgetl() returns the
semaphore-structure identifier associated with the union of key and slabel. If the value
of slabel does not match the sensitivity label of the calling process, then the effective
privilege set of the process must include both PRIV_IPC_MAC_READ and
PRIV_IPC_MAC_WRITE.

If discretionary read/write access as specified by the low-order 9 bits of semflg is
denied to the calling process, semget() and semgetl() require one or both of these
privileges: PRIV_IPC_DAC_READ and PRIV_IPC_DAC_WRITE.

A semaphore identifier and associated data structure and set containing nsems
semaphores (see intro(2)) are created for key if one of the following is true:

� key is equal to IPC_PRIVATE.

� key does not already have a semaphore identifier associated with it, and
(semflg&IPC_CREAT) is true.

On creation, the data structure associated with the new semaphore identifier is
initialized as follows:

� sem_perm.cuid, sem_perm.uid, sem_perm.cgid, and sem_perm.gid are set
equal to the effective user ID and effective group ID, respectively, of the calling
process.

� The access permission bits of sem_perm.mode are set equal to the access
permission bits of semflg.

� sem_nsems is set equal to the value of nsems.

� sem_otime is set equal to 0 and sem_ctime is set equal to the current time.

Upon successful completion, a non-negative integer representing a semaphore
identifier is returned. Otherwise, −1 is returned and errno is set to indicate the error.

semgetl(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

388 man pages section 2: System Calls • Last Revised 1 May 2000

The semget() function will fail if:

EACCES A semaphore-structure identifier exists for the union of key and
sensitivity label, but operation permission [see intro(2)] as
specified by the low-order 9 bits of semflg would not be granted; or
the sensitivity label check did not pass, and the calling process
does not have the appropriate privilege override(s) in its set of
effective privileges.

EEXIST A semaphore identifier exists for key but both (semflg&IPC_CREAT)
and (semflg&IPC_EXCL) are both true.

EFAULT slabel points to an illegal address.

EINVAL The label to which slabel points is not a valid sensitivity label.

EINVAL The nsems argument is either less than or equal to 0 or greater than
the system-imposed limit; or a semaphore identifier exists for key,
but the number of semaphores in the set associated with it is less
than nsems and nsems is not equal to 0.

ENOENT A semaphore identifier does not exist for key and
(semflg&IPC_CREAT) is false.

ENOSPC A semaphore identifier is to be created but the system-imposed
limit on the maximum number of allowed semaphores or
semaphore identifiers system-wide would be exceeded.

A semaphore identifier is to be created but the system-imposed
limit on the maximum number of allowed semaphores
systemwide would be exceeded.

Appropriate privilege is required to override access checks.

Sensitivity labels are used together with key to determine semaphore-group
identifiers.

ipcs(1), ipcrm(1), intro(2), semctl(2), semop(2)

stdio(3C)

semgetl(2)

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

System Calls 389

semop, semtimedop – semaphore operations

#include <sys/types.h>
#include <sys/ipc.h>

#include <sys/sem.h>

int semop(int semid, struct sembuf *sops, size_t nsops);

int semtimedop(int semid, struct sembuf *sops, size_t nsops, const
struct timespec *timeout);

The semop() function is used to perform atomically an array of semaphore
operations on the set of semaphores associated with the semaphore identifier specified
by semid. The sops argument is a pointer to the array of semaphore-operation
structures. The nsops argument is the number of such structures in the array.

Each sembuf structure contains the following members:

short sem_num; /* semaphore number */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

Each semaphore operation specified by sem_op() is performed on the corresponding
semaphore specified by semid and sem_num. The permission required for a semaphore
operation is given as {token}, where token is the type of permission needed. The types
of permission are interpreted as follows:

00400 READ by user
00200 ALTER by user
00040 READ by group
00020 ALTER by group
00004 READ by others
00002 ALTER by others

See the Semaphore Operation Permissions section of intro(2) for more information.

The sem_op member specifies one of three semaphore operations:

1. The sem_op member is a negative integer; {ALTER}

� If semval (see intro(2)) is greater than or equal to the absolute value of
sem_op, the absolute value of sem_op is subtracted from semval. Also, if
(sem_flg&SEM_UNDO) is true, the absolute value of sem_op is added to the
calling process’s semadj value (see exit(2)) for the specified semaphore.

� If semval is less than the absolute value of sem_op and
(sem_flg&IPC_NOWAIT) is true, semop() returns immediately.

� If semval is less than the absolute value of sem_op and
(sem_flg&IPC_NOWAIT) is false, semop() increments the semncnt associated
with the specified semaphore and suspends execution of the calling process
until one of the following conditions occur:

semop(2)

NAME

SYNOPSIS

DESCRIPTION

390 man pages section 2: System Calls • Last Revised 15 Oct 2000

� The value of semval becomes greater than or equal to the absolute value of
sem_op. When this occurs, the value of semncnt associated with the
specified semaphore is decremented, the absolute value of sem_op is
subtracted from semval and, if (sem_flg&SEM_UNDO) is true, the absolute
value of sem_op is added to the calling process’s semadj value for the
specified semaphore.

� The semid for which the calling process is awaiting action is removed from
the system (see semctl(2)). When this occurs, errno is set to EIDRM and −1
is returned.

� The calling process receives a signal that is to be caught. When this occurs,
the value of semncnt associated with the specified semaphore is
decremented, and the calling process resumes execution in the manner
prescribed in signal(3C).

2. The sem_op member is a positive integer; {ALTER}

The value of sem_op is added to semval and, if (sem_flg&SEM_UNDO) is true, the
value of sem_op is subtracted from the calling process’s semadj value for the
specified semaphore.

3. The sem_op member is 0; {READ}

� If semval is 0, semop() returns immediately.

� If semval is not equal to 0 and (sem_flg&IPC_NOWAIT) is true, semop()
returns immediately.

� If semval is not equal to 0 and (sem_flg&IPC_NOWAIT) is false, semop()
increments the semzcnt associated with the specified semaphore and suspends
execution of the calling process until one of the following occurs:

� The value of semval becomes 0, at which time the value of semzcnt
associated with the specified semaphore is decremented.

� The semid for which the calling process is awaiting action is removed from
the system. When this occurs, errno is set to EIDRM and −1 is returned.

� The calling process receives a signal that is to be caught. When this occurs,
the value of semzcnt associated with the specified semaphore is
decremented, and the calling process resumes execution in the manner
prescribed in signal(3C).

If sem_op() is zero {READ}, the process must have discretionary and mandatory read
access to the semaphore structure to which semid refers. Overriding these checks
requires that the effective privilege set of the process include one or both of these
privileges as necessary: PRIV_IPC_DAC_READ and PRIV_IPC_MAC_READ.

If sem_op() is a positive or a negative number {ALTER}, the process must have
discretionary and mandatory write access to the semaphore structure to which semid
refers. Overriding these checks requires that the effective privilege set of the process
include one or both of these privileges as necessary: PRIV_IPC_DAC_WRITE and
PRIV_IPC_MAC_WRITE.

semop(2)

System Calls 391

Upon successful completion, the value of semid for each semaphore specified in the
array pointed to by sops is set to the process ID of the calling process.

The semtimedop() function behaves as semop() except when it must suspend
execution of the calling process to complete its operation. If semtimedop() must
suspend the calling process after the time interval specified in timeout expires, or if the
timeout expires while the process is suspended, semtimedop() returns with an error.
If the timespec structure pointed to by timeout is zero-valued and semtimedop()
needs to suspend the calling process to complete the requested operation(s), it returns
immediately with an error. If timeout is the NULL pointer, the behavior of
semtimedop() is identical to that of semop().

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The semop() and semtimedop() functions will fail if:

E2BIG The nsops argument is greater than the system-imposed maximum.

EACCES Operation permission is denied to the calling process (see
intro(2)), and the calling process does not have the appropriate
privilege(s) in its set of effective privileges.

EAGAIN The operation would result in suspension of the calling process
but (sem_flg&IPC_NOWAIT) is true.

EFAULT The sops argument points to an illegal address.

EFBIG The value of sem_num is less than 0 or greater than or equal to the
number of semaphores in the set associated with semid.

EIDRM A semid was removed from the system.

EINTR A signal was received.

EINVAL The semid argument is not a valid semaphore identifier, or the
number of individual semaphores for which the calling process
requests a SEM_UNDO would exceed the limit.

ENOSPC The limit on the number of individual processes requesting an
SEM_UNDO would be exceeded.

ERANGE An operation would cause a semval or a semadj value to
overflow the system-imposed limit.

The semtimedop() function will fail if:

EAGAIN The timeout expired before the requested operation could be
completed.

The semtimedop() function will fail if one of the following is detected:

EFAULT The timeout argument points to an illegal address.

semop(2)

RETURN VALUES

ERRORS

392 man pages section 2: System Calls • Last Revised 15 Oct 2000

EINVAL The timeout argument specified a tv_sec or tv_nsec value less
than 0, or a tv_nsec value greater than or equal to 1000 million.

Appropriate privilege is required to override access checks.

ipcs(1), Intro(2), exec(2), fork(2), semctl(2), semget(2)

signal(3C)

semop(2)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
ManualSunOS 5.8

Reference Manual

System Calls 393

semop, semtimedop – semaphore operations

#include <sys/types.h>
#include <sys/ipc.h>

#include <sys/sem.h>

int semop(int semid, struct sembuf *sops, size_t nsops);

int semtimedop(int semid, struct sembuf *sops, size_t nsops, const
struct timespec *timeout);

The semop() function is used to perform atomically an array of semaphore
operations on the set of semaphores associated with the semaphore identifier specified
by semid. The sops argument is a pointer to the array of semaphore-operation
structures. The nsops argument is the number of such structures in the array.

Each sembuf structure contains the following members:

short sem_num; /* semaphore number */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

Each semaphore operation specified by sem_op() is performed on the corresponding
semaphore specified by semid and sem_num. The permission required for a semaphore
operation is given as {token}, where token is the type of permission needed. The types
of permission are interpreted as follows:

00400 READ by user
00200 ALTER by user
00040 READ by group
00020 ALTER by group
00004 READ by others
00002 ALTER by others

See the Semaphore Operation Permissions section of intro(2) for more information.

The sem_op member specifies one of three semaphore operations:

1. The sem_op member is a negative integer; {ALTER}

� If semval (see intro(2)) is greater than or equal to the absolute value of
sem_op, the absolute value of sem_op is subtracted from semval. Also, if
(sem_flg&SEM_UNDO) is true, the absolute value of sem_op is added to the
calling process’s semadj value (see exit(2)) for the specified semaphore.

� If semval is less than the absolute value of sem_op and
(sem_flg&IPC_NOWAIT) is true, semop() returns immediately.

� If semval is less than the absolute value of sem_op and
(sem_flg&IPC_NOWAIT) is false, semop() increments the semncnt associated
with the specified semaphore and suspends execution of the calling process
until one of the following conditions occur:

semtimedop(2)

NAME

SYNOPSIS

DESCRIPTION

394 man pages section 2: System Calls • Last Revised 15 Oct 2000

� The value of semval becomes greater than or equal to the absolute value of
sem_op. When this occurs, the value of semncnt associated with the
specified semaphore is decremented, the absolute value of sem_op is
subtracted from semval and, if (sem_flg&SEM_UNDO) is true, the absolute
value of sem_op is added to the calling process’s semadj value for the
specified semaphore.

� The semid for which the calling process is awaiting action is removed from
the system (see semctl(2)). When this occurs, errno is set to EIDRM and −1
is returned.

� The calling process receives a signal that is to be caught. When this occurs,
the value of semncnt associated with the specified semaphore is
decremented, and the calling process resumes execution in the manner
prescribed in signal(3C).

2. The sem_op member is a positive integer; {ALTER}

The value of sem_op is added to semval and, if (sem_flg&SEM_UNDO) is true, the
value of sem_op is subtracted from the calling process’s semadj value for the
specified semaphore.

3. The sem_op member is 0; {READ}

� If semval is 0, semop() returns immediately.

� If semval is not equal to 0 and (sem_flg&IPC_NOWAIT) is true, semop()
returns immediately.

� If semval is not equal to 0 and (sem_flg&IPC_NOWAIT) is false, semop()
increments the semzcnt associated with the specified semaphore and suspends
execution of the calling process until one of the following occurs:

� The value of semval becomes 0, at which time the value of semzcnt
associated with the specified semaphore is decremented.

� The semid for which the calling process is awaiting action is removed from
the system. When this occurs, errno is set to EIDRM and −1 is returned.

� The calling process receives a signal that is to be caught. When this occurs,
the value of semzcnt associated with the specified semaphore is
decremented, and the calling process resumes execution in the manner
prescribed in signal(3C).

If sem_op() is zero {READ}, the process must have discretionary and mandatory read
access to the semaphore structure to which semid refers. Overriding these checks
requires that the effective privilege set of the process include one or both of these
privileges as necessary: PRIV_IPC_DAC_READ and PRIV_IPC_MAC_READ.

If sem_op() is a positive or a negative number {ALTER}, the process must have
discretionary and mandatory write access to the semaphore structure to which semid
refers. Overriding these checks requires that the effective privilege set of the process
include one or both of these privileges as necessary: PRIV_IPC_DAC_WRITE and
PRIV_IPC_MAC_WRITE.

semtimedop(2)

System Calls 395

Upon successful completion, the value of semid for each semaphore specified in the
array pointed to by sops is set to the process ID of the calling process.

The semtimedop() function behaves as semop() except when it must suspend
execution of the calling process to complete its operation. If semtimedop() must
suspend the calling process after the time interval specified in timeout expires, or if the
timeout expires while the process is suspended, semtimedop() returns with an error.
If the timespec structure pointed to by timeout is zero-valued and semtimedop()
needs to suspend the calling process to complete the requested operation(s), it returns
immediately with an error. If timeout is the NULL pointer, the behavior of
semtimedop() is identical to that of semop().

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The semop() and semtimedop() functions will fail if:

E2BIG The nsops argument is greater than the system-imposed maximum.

EACCES Operation permission is denied to the calling process (see
intro(2)), and the calling process does not have the appropriate
privilege(s) in its set of effective privileges.

EAGAIN The operation would result in suspension of the calling process
but (sem_flg&IPC_NOWAIT) is true.

EFAULT The sops argument points to an illegal address.

EFBIG The value of sem_num is less than 0 or greater than or equal to the
number of semaphores in the set associated with semid.

EIDRM A semid was removed from the system.

EINTR A signal was received.

EINVAL The semid argument is not a valid semaphore identifier, or the
number of individual semaphores for which the calling process
requests a SEM_UNDO would exceed the limit.

ENOSPC The limit on the number of individual processes requesting an
SEM_UNDO would be exceeded.

ERANGE An operation would cause a semval or a semadj value to
overflow the system-imposed limit.

The semtimedop() function will fail if:

EAGAIN The timeout expired before the requested operation could be
completed.

The semtimedop() function will fail if one of the following is detected:

EFAULT The timeout argument points to an illegal address.

semtimedop(2)

RETURN VALUES

ERRORS

396 man pages section 2: System Calls • Last Revised 15 Oct 2000

EINVAL The timeout argument specified a tv_sec or tv_nsec value less
than 0, or a tv_nsec value greater than or equal to 1000 million.

Appropriate privilege is required to override access checks.

ipcs(1), Intro(2), exec(2), fork(2), semctl(2), semget(2)

signal(3C)

semtimedop(2)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
ManualSunOS 5.8

Reference Manual

System Calls 397

getaudit, setaudit, getaudit_addr, setaudit_addr – Get and set process audit
information

cc [flag ...] file ... -lbsm -lsocket -lnsl -lintl [library ...]
#include <sys/param.h>

#include <bsm/audit.h>

int getaudit(struct auditinfo *info);

int setaudit(struct auditinfo *info);

int getaudit_addr(struct auditinfo_addr *info, int length);

int setaudit_addr(struct auditinfo_addr *info, int length);

getaudit() gets the audit ID, the preselection mask, the terminal ID, and the audit
session ID of the current process.

Note that getaudit() may fail and return an E2BIG errno if the address field in the
terminal ID is larger than 32 bits. In this case, getaudit_addr() should be used.

setaudit() sets the audit ID, the preselection mask, the terminal ID, and the audit
session ID for the current process.

The getaudit_addr() function returns a variable length auditinfo_addr
structure that contains the audit ID, the preselection mask, the terminal ID, and the
audit session ID for the current process. The terminal ID contains a size field that
indicates the size of the network address.

The setaudit_addr() function sets the audit ID, the preselection mask, the terminal
ID, and the audit session ID for the current process. The values are taken from the
variable length struture auditinfo_addr. The terminal ID contains a size field that
indicates the size of the network address.

The info structure used to pass the process audit information contains the following
members:

au_id_t ai_auid; /* audit user ID */
au_mask_t ai_mask; /* preselection mask */
au_tid_t ai_termid; /* terminal ID */
au_asid_t ai_asid; /* audit session ID */

To execute these commands successfully, a process needs certain privileges in its set of
effective privileges: for getaudit(), a process needs PRIV_SYS_AUDIT,
PRIV_PROC_AUDIT_TCB, or PRIV_PROC_AUDIT_APPL; for setaudit(),
PRIV_SYS_AUDIT.

getaudit() and setaudit() return:

0 On success.

−1 On failure, and set errno to indicate the error.

setaudit(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

398 man pages section 2: System Calls • Last Revised 18 Aug 1999

The getaudit() and setaudit() functions will fail if:

EFAULT The info parameter points outside the process’s allocated address
space.

EPERM The process did not have the appropriate privilege.

Only processes with the appropriate privileges may successfully execute these calls.

This functionality is active only if auditing is enabled. By default, auditing is enabled
in the Trusted Solaris environment. See Trusted Solaris Audit Administration Manual for
more information.

As explained in DESCRIPTION, privileges are needed to run this command
successfully.

audit(2)

setaudit(2)

ERRORS

USAGE

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual

System Calls 399

getaudit, setaudit, getaudit_addr, setaudit_addr – Get and set process audit
information

cc [flag ...] file ... -lbsm -lsocket -lnsl -lintl [library ...]
#include <sys/param.h>

#include <bsm/audit.h>

int getaudit(struct auditinfo *info);

int setaudit(struct auditinfo *info);

int getaudit_addr(struct auditinfo_addr *info, int length);

int setaudit_addr(struct auditinfo_addr *info, int length);

getaudit() gets the audit ID, the preselection mask, the terminal ID, and the audit
session ID of the current process.

Note that getaudit() may fail and return an E2BIG errno if the address field in the
terminal ID is larger than 32 bits. In this case, getaudit_addr() should be used.

setaudit() sets the audit ID, the preselection mask, the terminal ID, and the audit
session ID for the current process.

The getaudit_addr() function returns a variable length auditinfo_addr
structure that contains the audit ID, the preselection mask, the terminal ID, and the
audit session ID for the current process. The terminal ID contains a size field that
indicates the size of the network address.

The setaudit_addr() function sets the audit ID, the preselection mask, the terminal
ID, and the audit session ID for the current process. The values are taken from the
variable length struture auditinfo_addr. The terminal ID contains a size field that
indicates the size of the network address.

The info structure used to pass the process audit information contains the following
members:

au_id_t ai_auid; /* audit user ID */
au_mask_t ai_mask; /* preselection mask */
au_tid_t ai_termid; /* terminal ID */
au_asid_t ai_asid; /* audit session ID */

To execute these commands successfully, a process needs certain privileges in its set of
effective privileges: for getaudit(), a process needs PRIV_SYS_AUDIT,
PRIV_PROC_AUDIT_TCB, or PRIV_PROC_AUDIT_APPL; for setaudit(),
PRIV_SYS_AUDIT.

getaudit() and setaudit() return:

0 On success.

−1 On failure, and set errno to indicate the error.

setaudit_addr(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

400 man pages section 2: System Calls • Last Revised 18 Aug 1999

The getaudit() and setaudit() functions will fail if:

EFAULT The info parameter points outside the process’s allocated address
space.

EPERM The process did not have the appropriate privilege.

Only processes with the appropriate privileges may successfully execute these calls.

This functionality is active only if auditing is enabled. By default, auditing is enabled
in the Trusted Solaris environment. See Trusted Solaris Audit Administration Manual for
more information.

As explained in DESCRIPTION, privileges are needed to run this command
successfully.

audit(2)

setaudit_addr(2)

ERRORS

USAGE

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual

System Calls 401

getauid, setauid – Get and set user audit identity

cc [flags…] file … -lbsm -lsocket -lnsl -lintl [library…]

#include <sys/param.h>

#include <bsm/audit.h>

int getauid(au_id_t *auid);

int setauid(au_id_t *auid);

The getauid() function returns the audit user ID for the current process. This value
is initially set at login time and inherited by all child processes. This value does not
change when the real/effective user IDs change, so it can be used to identify the
logged-in user even when running a setuid program. The audit user ID governs audit
decisions for a process.

The setauid() function sets the audit user ID for the current process.

Only a process with the PRIV_SYS_AUDIT privilege asserted may successfully set its
user identity. To get its identity successfully, a process must have PRIV_SYS_AUDIT,
PRIV_PROC_AUDIT_TCB, or PRIV_PROC_AUDIT_APPL in its set of effective
privileges.

Upon successful completion, the getauid() function returns the audit user ID of the
current process on success. Otherwise, it returns −1 and sets errno to indicate the
error.

Upon successful completion the setauid() function returns 0. Otherwise, −1 is
returned and errno is set to indicate the error.

The getauid() and setauid() functions will fail if:

EFAULT The auid argument points to an invalid address.

EPERM The process does not have the appropriate privileges.

This functionality is active only if auditing is enabled. By default, auditing is enabled
in the Trusted Solaris environment. See Trusted Solaris Audit Administration Manual for
more information.

The privileges explained in DESCRIPTION are needed to run this command
successfully.

These system calls have been superseded by getaudit() and setaudit().

audit(2), getaudit(2)

setauid(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual

402 man pages section 2: System Calls • Last Revised 5 May 1998

setclearance – Set process clearance

cc [flags…] file … -ltsol [library…]

#include <tsol/label.h>

int setclearance(bclear_t *clearance_p);

setclearance() is used to set the clearance for the calling process provided it has
the PRIV_PROC_SETCLR privilege in its set of effective privileges. setclearance()
verifies that the information pointed to by clearance_p is formatted correctly, and that
the resulting clearance will dominate the sensitivity label of the process.

setclearance() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

setclearance() fails and does not set the process clearance if any of these
conditions prevails:

EFAULT The clearance_p argument points to an invalid address.

EINVAL The clearance_p argument does not point to a properly formatted
clearance.

The clearance pointed to by clearance_p does not dominate the
process sensitivity label.

EPERM The calling process does not have the necessary privilege
(PRIV_PROC_SETCLR) to set the clearance.

getclearance(2)

setclearance(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Trusted Solaris 8
4/01 Reference

Manual

System Calls 403

setcmwlabel, fsetcmwlabel, lsetcmwlabel – Set CMW label of a file

cc [flags…] file … -ltsol [library…]

#include <tsol/label.h>

int setcmwlabel(const char *path, const bclabel_t *label_p, const
setting_flag_tflag);

int fsetcmwlabel(int fd, const bclabel_t *label_p, const
setting_flag_t flag);

int lsetcmwlabel(const char *path, const bclabel_t *label_p, const
setting_flag_t flag);

The file that is named by path or referred to by fd has its CMW label changed as
specified provided the file resides on a file system that supports the setting of labels on
individual objects.

If flag equals SETCL_ALL, then both parts of the file’s CMW label are to be set and the
following checks must be made:

� The sensitivity label of label_p must be in the sensitivity label range of the
containing file system.

� If the sensitivity label of label_p equals the existing sensitivity label, then neither
PRIV_FILE_UPGRADE_SL nor PRIV_FILE_DOWNGRADE_SL is required.

� If the sensitivity label of label_p dominates but does not equal the existing
sensitivity label (an upgrade), then the calling process must have
PRIV_FILE_UPGRADE_SL in its set of effective privileges.

� If the sensitivity label of label_p does not dominate the existing sensitivity label (a
downgrade), then the calling process must have PRIV_FILE_DOWNGRADE_SL in
its set of effective privileges.

� If the sensitivity label operation is a downgrade and the calling process is not the
owner of the file, then the calling process must have PRIV_FILE_OWNER in its set
of effective privileges.

If flag equals SETCL_SL, then the sensitivity label of the file’s CMW label is to be set
and the following checks must be made:

� The sensitivity label of label_p must be in the sensitivity label range of the
containing file system.

� If the sensitivity label of label_p equals the existing sensitivity label, then neither
PRIV_FILE_UPGRADE_SL nor PRIV_FILE_DOWNGRADE_SL is required.

� If the sensitivity label of label_p dominates but does not equal the existing
sensitivity label (an upgrade), then the calling process must have
PRIV_FILE_UPGRADE_SL in its set of effective privileges.

� If the sensitivity label of label_p does not dominate the existing sensitivity label (a
downgrade), then the calling process must have PRIV_FILE_DOWNGRADE_SL in

setcmwlabel(2)

NAME

SYNOPSIS

DESCRIPTION

404 man pages section 2: System Calls • Last Revised 25 Aug 2000

its set of effective privileges.

� If the operation is a sensitivity label downgrade and the calling process is not the
owner of the file, then the calling process must have PRIV_FILE_OWNER in its set
of effective privileges.

There are several checks that are applicable if the sensitivity label is being changed:

� The calling process must have discretionary write access to the file.

� If there is an open file descriptor reference to the file, then the calling process must
have PRIV_PROC_TRANQUIL in its set of effective privileges.

setcmwlabel() and lsetcmwlabel() function identically except when the final
component is a symbolic link. If the final component is a symbolic link,
lsetcmwlabel() sets the CMW label of the symbolic link, but setcmwlabel() sets
the CMW label of the object referred to by the symbolic link.

If the sensitivity label is being set, then the calling process is responsible for verifying
that sensitivity label is within the accreditation range of the system.

setcmwlabel(), fsetcmwlabel(), and lsetcmwlabel() return:

0 On success.

−1 On failure, and set errno to indicate the error.

setcmwlabel() and lsetcmwlabel() fail and the file is unchanged if any of these
conditions prevails:

EACCES Search permission is denied for a component of the path prefix of
path.

The calling process does not have mandatory write access to the
final component of path because the sensitivity label of the final
component of path does not dominate the sensitivity label of the
calling process and the calling process does not have
PRIV_FILE_MAC_WRITE in its set of effective privileges.

The calling process does not have discretionary write access to the
final component of path.

EBUSY There is an open file descriptor reference to the final component of
path and the calling process does not have PRIV_PROC_TRANQUIL
in its set of effective privileges.

EFAULT path or label_p points outside the allocated address space of the
process.

EINVAL path does not reside on a file system that supports the setting of
labels on individual objects.

setcmwlabel(2)

NOTES

RETURN VALUES

ERRORS

System Calls 405

The sensitivity label of label_p is not in the sensitivity label range of
the containing file system.

EIO An I/O error occurred while reading from or writing to the file
system.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX.

A pathname component is longer than NAME_MAX [see
sysconf(3C)] while _POSIX_NO_TRUNC is in effect.
See pathconf(2).

ENOENT The file referred to by path does not exist.

ENOTDIR A component of the path prefix of path is not a directory.

EPERM The calling process does not have mandatory write access to the
final component of path because the sensitivity label of the final
component of path is outside the clearance of the calling process
and the calling process does not have PRIV_FILE_MAC_WRITE in
its set of effective privileges.

A calling process that is not the owner of the file attempted to
downgrade the sensitivity label associated with the final
component of path but did not have PRIV_FILE_OWNER in its set
of effective privileges.

The calling process attempted to upgrade the sensitivity label
associated with the final component of path but did not have
PRIV_FILE_UPGRADE_SL in its set of effective privileges.

The calling process attempted to downgrade the sensitivity label
associated with the final component of path but did not have
PRIV_FILE_DOWNGRADE_SL in its set of effective privileges.

EROFS The file referred to by path resides on a read-only file system.

fsetcmwlabel() fails if any of these conditions prevails:

EBADF fd does not refer to a valid descriptor.

EBUSY There is an open file descriptor reference to the object referred to
by the descriptor and the calling process does not have
PRIV_PROC_TRANQUIL in its set of effective privileges.

EFAULT label_p points outside the allocated address space of the process.

EINVAL fd refers to a socket, not a file.

fd does not refer to a file on a file system that supports the setting
of labels on individual objects.

setcmwlabel(2)

406 man pages section 2: System Calls • Last Revised 25 Aug 2000

The sensitivity label of label_p is not in the sensitivity label range of
the containing file system.

EIO An I/O error occurred while reading from or writing to the file
system.

The calling process is not the owner of the file, attempted to
downgrade the sensitivity label associated with the file, but did
not have PRIV_FILE_OWNER in its set of effective privileges.

The calling process attempted to upgrade the sensitivity label
associated with the file but did not have
PRIV_FILE_UPGRADE_SL in its set of effective privileges.

The calling process attempted to downgrade the sensitivity label
associated with the file but did not have
PRIV_FILE_DOWNGRADE_SL in its set of effective privileges.

EPERM The calling process does not have mandatory write access to the
object referred to by fd because the sensitivity label of the object
referred to by fd is outside the clearance of the calling process and
the calling process does not have PRIV_FILE_MAC_WRITE in its
set of effective privileges.

A calling process that is not the owner of the file attempted to
downgrade the sensitivity label associated with the object referred
to by fd but did not have PRIV_FILE_OWNER in its set of effective
privileges.

The calling process attempted to upgrade the sensitivity label
associated with the object referred to by fd but did not have
PRIV_FILE_UPGRADE_SL in its set of effective privileges.

The calling process attempted to downgrade the sensitivity label
associated with the object referred to by fd but did not have
PRIV_FILE_DOWNGRADE_SL in its set of effective privileges.

EROFS The file referred to by fd resides on a read-only file system.

getcmwfsrange(2), getcmwlabel(2)

setcmwlabel(2)

Trusted Solaris 8
4/01 Reference

Manual

System Calls 407

setcmwplabel – set process CMW label

cc [flag…] file… -ltsol [library…]

#include <tsol/label.h>

int setcmwplabel(bclabel_t *label_p, setting_flag_t flag);

setcmwplabel() sets the sensitivity label or the CMW label for the process making
the call. The flag argument identifies which label to set:

SETCL_ALL Set the entire CMW label of the process.

SETCL_SL Set only the sensitivity label.

setcmwplabel() verifies that the CMW label to which label_p points is formatted
correctly and that the resulting label would satisfy the requirement that the clearance
must dominate the sensitivity label of the process.

When flag limits the setting to a single portion of the CMW label, setcmwplabel()
ignores the other value in label_p. If the specified value for sensitivity label does not
match current value of the process, the set of effective privileges of the calling process
must include PRIV_PROC_SETSL.

setcmwplabel() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

setcmwplabel() fails and does not set the process CMW label if any of these
conditions is true:

EBUSY The process is being accessed through the /proc filesystem, which
can happen when the process is either being traced or debugged,
and the caller of setcmwplabel() lacks the
PRIV_PROC_TRANQUIL privilege.

The label_p argument points to an invalid address.

EFAULT The label_p argument points to an invalid address.

EINVAL The label_p argument points to an improperly formatted label.

The label_p argument and the flag argument would cause the
process sensitivity label not to be dominated by the clearance.

EPERM The calling process lacks the PRIV_PROC_SETSL privilege
necessary to set the sensitivity label specified by flag.

getcmwplabel(2)

setcmwplabel(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Trusted Solaris 8
4/01 Reference

Manual

408 man pages section 2: System Calls • Last Revised 30 Sep 1999

setuid, setegid, seteuid, setgid – set user and group IDs

#include <sys/types.h>

#include <unistd.h>

int setuid(uid_t uid);

int setegid(gid_t egid);

int seteuid(uid_t euid);

int setgid(gid_t gid);

The setuid() function sets the real user ID, effective user ID, and saved user ID of
the calling process. The setgid() function sets the real group ID, effective group ID,
and saved group ID of the calling process. The setegid() and seteuid() functions
set the effective group and user IDs respectively for the calling process. See intro(2)
for more information on real, effective, and saved user and group IDs.

Privilege-unaware programs change their UIDs either to gain or give up rights
associated with the new UID. To simulate that action in a privilege-based system
rather than a UID-based system, the effective and saved privilege sets are modified
across setuid calls according to the following algorithm:

if ((old_uid == start_uid) && (new_uid != start_uid)) {
saved_privileges = effective_privileges;
effective_privileges = empty;

} else if ((old_uid != start_uid) && (new_uid == start_uid)) {
effective_privileges = saved_privileges;

}

Since set UID programs may not be aware of privileges, their privilege bracketing
(their use of UID changes to obtain or give up rights) is tracked in the privilege sets.
When a set UID program changes from its saved UID ID to the calling user ID, it gives
up its privilege. When it changes back to the saved UID ID, it regains privilege.

At login time, the real user ID, effective user ID, and saved user ID of the login process
are set to the login ID of the user responsible for the creation of the process. The same
is true for the real, effective, and saved group IDs; they are set to the group ID of the
user responsible for the creation of the process.

When a process calls one of the exec family of functions (see exec(2)) to execute a
file (program), the user and/or group identifiers associated with the process can
change. If the file executed is a set-user-ID file, the effective and saved user IDs of the
process are set to the owner of the file executed. If the file executed is a set-group-ID
file, the effective and saved group IDs of the process are set to the group of the file
executed. If the file executed is not a set-user-ID or set-group-ID file, the effective user
ID, saved user ID, effective group ID, and saved group ID are not changed.

If the process calling setuid() has the PRIV_PROC_SETID privilege, the real,
effective, and saved user IDs are set to the uid parameter.

setegid(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 409

If the process calling setuid() does not have the PRIV_PROC_SETID privilege, but
uid is either the real user ID or the saved user ID of the calling process, the effective
user ID is set to uid.

If the new user ID differs from the initial user ID under which this program began
execution, the saved privilege set is replaced by the effective privilege set, and the
effective privilege set is cleared.

If the process calling setgid() has the PRIV_PROC_SETID privilege, the real,
effective, and saved group IDs are set to the gid parameter.

If the process calling setgid() does not have the PRIV_PROC_SETID privilege, but
gid is either the real group ID or the saved group ID of the calling process, the effective
group ID is set to gid.

setuid() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The setuid() and setgid() functions will fail if:

EINVAL The value of uid or gid is out of range.

EPERM For setuid() and seteuid(), the calling process does not have
PRIV_PROC_SETID in its effective set of privileges, and the uid
parameter does not match either the real or saved user IDs.

For setgid() and setegid(), the calling process does not have
PRIV_PROC_SETID in its effective set of privileges, and the gid
parameter does not match either the real or the saved group ID.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level setuid() and setgid() are
Async-Signal-Safe

The Trusted Solaris environment replaces the checks of super-user in the Solaris
environment with a check for PRIV_PROC_SETID.

intro(2), exec(2), getgroups(2)

getuid(2), attributes(5), stat(5)

setegid(2)

RETURN VALUES

ERRORS

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

410 man pages section 2: System Calls • Last Revised 20 Jul 2001

setuid, setegid, seteuid, setgid – set user and group IDs

#include <sys/types.h>

#include <unistd.h>

int setuid(uid_t uid);

int setegid(gid_t egid);

int seteuid(uid_t euid);

int setgid(gid_t gid);

The setuid() function sets the real user ID, effective user ID, and saved user ID of
the calling process. The setgid() function sets the real group ID, effective group ID,
and saved group ID of the calling process. The setegid() and seteuid() functions
set the effective group and user IDs respectively for the calling process. See intro(2)
for more information on real, effective, and saved user and group IDs.

Privilege-unaware programs change their UIDs either to gain or give up rights
associated with the new UID. To simulate that action in a privilege-based system
rather than a UID-based system, the effective and saved privilege sets are modified
across setuid calls according to the following algorithm:

if ((old_uid == start_uid) && (new_uid != start_uid)) {
saved_privileges = effective_privileges;
effective_privileges = empty;

} else if ((old_uid != start_uid) && (new_uid == start_uid)) {
effective_privileges = saved_privileges;

}

Since set UID programs may not be aware of privileges, their privilege bracketing
(their use of UID changes to obtain or give up rights) is tracked in the privilege sets.
When a set UID program changes from its saved UID ID to the calling user ID, it gives
up its privilege. When it changes back to the saved UID ID, it regains privilege.

At login time, the real user ID, effective user ID, and saved user ID of the login process
are set to the login ID of the user responsible for the creation of the process. The same
is true for the real, effective, and saved group IDs; they are set to the group ID of the
user responsible for the creation of the process.

When a process calls one of the exec family of functions (see exec(2)) to execute a
file (program), the user and/or group identifiers associated with the process can
change. If the file executed is a set-user-ID file, the effective and saved user IDs of the
process are set to the owner of the file executed. If the file executed is a set-group-ID
file, the effective and saved group IDs of the process are set to the group of the file
executed. If the file executed is not a set-user-ID or set-group-ID file, the effective user
ID, saved user ID, effective group ID, and saved group ID are not changed.

If the process calling setuid() has the PRIV_PROC_SETID privilege, the real,
effective, and saved user IDs are set to the uid parameter.

seteuid(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 411

If the process calling setuid() does not have the PRIV_PROC_SETID privilege, but
uid is either the real user ID or the saved user ID of the calling process, the effective
user ID is set to uid.

If the new user ID differs from the initial user ID under which this program began
execution, the saved privilege set is replaced by the effective privilege set, and the
effective privilege set is cleared.

If the process calling setgid() has the PRIV_PROC_SETID privilege, the real,
effective, and saved group IDs are set to the gid parameter.

If the process calling setgid() does not have the PRIV_PROC_SETID privilege, but
gid is either the real group ID or the saved group ID of the calling process, the effective
group ID is set to gid.

setuid() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The setuid() and setgid() functions will fail if:

EINVAL The value of uid or gid is out of range.

EPERM For setuid() and seteuid(), the calling process does not have
PRIV_PROC_SETID in its effective set of privileges, and the uid
parameter does not match either the real or saved user IDs.

For setgid() and setegid(), the calling process does not have
PRIV_PROC_SETID in its effective set of privileges, and the gid
parameter does not match either the real or the saved group ID.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level setuid() and setgid() are
Async-Signal-Safe

The Trusted Solaris environment replaces the checks of super-user in the Solaris
environment with a check for PRIV_PROC_SETID.

intro(2), exec(2), getgroups(2)

getuid(2), attributes(5), stat(5)

seteuid(2)

RETURN VALUES

ERRORS

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

412 man pages section 2: System Calls • Last Revised 20 Jul 2001

getfattrflag, fsetfattrflag, fgetfattrflag, setfattrflag, mldgetfattrflag, mldsetfattrflag –
set/get the security attribute flags of a file

cc [flags…] file… -ltsol

#include <tsol/secflgs.h>

int getfattrflag(const char *path, secflgs_t *flags);

int setfattrflag(const char *path, secflgs_t which, secflgs_t flags);

int fgetfattrflag(int fildes, secflgs_t *flags);

int fsetfattrflag(int fildes, secflgs_t which, secflgs_t flags);

int mldgetfattrflag(const char *path, secflgs_t *flags);

int mldsetfattrflag(const char *path, secflgs_t which, secflgs_t
flags);

setfattrflag(), fsetfattrflag(), and mldsetfattrflag() set the security
flags of the file whose name is given by path or referred to by the open file descriptor
fildes. The bit pattern contained in which is used to indicate which flags are being
affected. The corresponding bits in flags are set to 1 or 0 to indicate whether the
affected flags are being set or unset respectively.

getfattrflag(), fgetfattrflag(), and mldgetfattrflag() get the security
flags of the file whose name is given by path or referred to by the open file descriptor
fildes and store it in the location pointed to by flags.

Attribute bits are interpreted as follows:

FAF_MLD Directory has MLD semantics.

FAF_PUBLICFilesystem object is a public object.

FAF_SLD Directory is an SLD.

Attribute flags are constructed by OR’ing the attribute flag bits.

FAF_MLD is the only flag that may be modified without privilege if the directory is
empty, the effective user ID of the process matches the directory owner, and the
process has mandatory as well as discretionary write access. The FAF_MLD flag, once
set, cannot be unset. Additionally, the FAF_MLD flag may only be set via the
mldsetfattrflag interface. The FAF_PUBLIC flag can only be read or modified by
a process possessing the PRIV_FILE_AUDIT privilege. A process attempting to read
the FAF_PUBLIC flag without the PRIV_FILE_AUDIT privilege in effect will not fail.
However the value of FAF_PUBLIC will be returned as unset. The FAF_SLD flag can
never be set. The ability to read any flag is dependant upon the process having
mandatory and discretionary read access to the file. The ability to set any flag is
dependant upon the process having mandatory and discretionary write access to the
file.

setfattrflag(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 413

If path is a symbolic link, the target’s attribute flags are affected rather than the link’s.
If path is a multilevel directory, getfattrflag() and setfattrflag() will affect
the underlying single-level directory beneath (unless path is adorned).
mldgetfattrflag() and mldsetfattrflag() do not translate multi-level
directories to underlying single-level directories. fgetfattrflag() and
fsetsattrflag() affect only the file referred to by fildes.

These functions return:

0 On success.

−1 On failure, and set errno to indicate the error.

getfattrflag() and mldgetfattrflag() will fail if one or more of the following
are true:

EACCES Search permission is denied on a component of the path prefix of
path. To override this restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EACCES Read permission is denied the final component of path. To override
this restriction, the calling process may assert the
PRIV_FILE_MAC_READ privilege.

EFAULT path points to an illegal address.

EINTR A signal was caught during execution of the function.

EIO An I/O error occurred while reading from the file system.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
and file system type does not allow it.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length
of a path component exceeds NAME_MAX while _POSIX_NO_TRUNC
is in effect.

ENOENT Either a component of the path prefix, or the file referred to by path
does not exist or is a null pathname.

ENOLINK fildes points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the prefix of path is not a directory.

fgetfattrflag() fails and the file mode is unchanged if:

EACCES Read permission is denied on fildes. To override this restriction, the
calling process may assert the PRIV_FILE_MAC_READ privilege.

EBADF fildes is not an open file descriptor.

setfattrflag(2)

RETURN VALUES

ERRORS

414 man pages section 2: System Calls • Last Revised 30 Sep 1999

EIO An I/O error occurred while reading from the file system.

EINTR A signal was caught during execution of the fgetfattrflag()
function.

setfattrflag() and mldsetfattrflag() will fail and the file mode is
unchanged if one or more of the following are true:

EACCES Search permission is denied on a component of the path prefix of
path. To override this restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

EACCES Write permission is denied path. To override this restriction, the
calling process may assert the PRIV_FILE_MAC_WRITE privilege.

EACCES The calling process does not own fildes. To override this restriction,
the calling process may assert the PRIV_FILE_OWNER privilege.

EFAULT path points to an illegal address.

EINTR A signal was caught during execution of the function.

EINVAL path is not a valid pathname. When setting FAF_MLD, path must
refer to an empty directory.

EIO An I/O error occurred while writing to the file system.

ELOOP Too many symbolic links were encountered in translating path.

EMULTIHOP Components of path require hopping to multiple remote machines
and filesystem type does not allow it.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length
of a path component exceeds NAME_MAX while _POSIX_NO_TRUNC
is in effect.

ENOENT Either a component of the path prefix, or the file referred to by path
does not exist or is a null pathname.

ENOLINK path points to a remote machine and the link to that machine is no
longer active.

ENOTDIR A component of the prefix of path is not a directory.

EPERM The effective user ID does not match the owner of the file and the
process does not possess the privilege PRIV_FILE_OWNER.

EPERM The process does not possess the privilege PRIV_FILE_AUDIT
and is attempting to set the FAF_PUBLIC flag.

EROFS The file referred to by path resides on a read-only file system.

fsetfattrflag() fails and the file mode is unchanged if:

setfattrflag(2)

System Calls 415

EACCES The calling process does not own fildes. To override this restriction,
the calling process may assert the PRIV_FILE_OWNER privilege.

EACCES Write access is denied on fildes. To override this restriction, the
calling process may assert the PRIV_FILE_MAC_WRITE privilege.

EINVAL fildes is not a valid pathname. When setting FAF_MLD, fildes must
refer to an empty directory.

EBADF fildes is not an open file descriptor.

EIO An I/O error occurred while writing to the file system.

EINTR A signal was caught during execution of the fsetfattrflag()
function.

EPERM The process does not possess the privilege PRIV_FILE_AUDIT
and is attempting to set the FAF_PUBLIC flag.

EROFS The file referred to by fildes resides on a read-only file system.

setfattrflag(1), getfattrflag(1)

Trusted Solaris Developer’s Guide

setfattrflag(2)

Trusted Solaris 8
4/01 Reference

Manual

416 man pages section 2: System Calls • Last Revised 30 Sep 1999

getfpriv, fgetfpriv, setfpriv, fsetfpriv – return or set a privilege set associated with a file

cc [flags…] file… -ltsol

int getfpriv(char *path, priv_ftype_t type, priv_set_t *priv_set);

int setfpriv(char *path, priv_op_t op, priv_ftype_t type, priv_set_t
*priv_set);

int fgetfpriv(int fd, priv_ftype_t type, priv_set_t *priv_set);

int fsetfpriv(int fd, priv_op_t op, priv_ftype_t type, priv_set_t
*priv_set);

Set or get privileges of the file that is named by path or referred to by fd.
fgetfpriv() and fsetfpriv() function exactly like getfpriv() and
setfpriv() respectively, except that they require an open reference to a file as their
argument.

getfpriv() copies the privilege set indicated by type and associated with the named
file into the address specified by priv_set. Values for type are:

PRIV_FORCED The forced privilege set.

PRIV_ALLOWED The allowed privilege set.

MAC read permission is required for the named file unless the privilege
PRIV_FILE_MAC_READ is effective.

setfpriv() sets/modifies the privilege set (the target set) indicated by type and
associated with the named file. Modification occurs according to the value of op and
the privilege set specified by priv_set (the specified set). Values for op are:

PRIV_ON Each privilege asserted in the specified set is asserted in the target
set.

PRIV_OFF Each privilege asserted in the specified set is cleared in the target
set.

PRIV_SET The target set is set exactly equal to the specified set.

Values for type are the same as those used for getfpriv().

In all cases, the privilege PRIV_FILE_SETPRIV must be effective. In addition, only
the owner of a file may change its privilege sets, unless the privilege
PRIV_FILE_OWNER is effective.

The invoking process must have MAC write permission for the named file (unless the
privilege PRIV_FILE_MAC_WRITE is effective). DAC write access is not required.

It is an error to attempt to assert a forced privilege if the corresponding allowed
privilege is not present. For this reason, it is recommended that the allowed privilege
set be modified first whenever both privilege sets are to be modified.

setfpriv(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 417

If the target set is the allowed set, all privileges cleared from the target set are also
automatically cleared from the forced set.

Normally MAC read permission is required or the privilege PRIV_FILE_MAC_READ
must be effective for getfpriv() to complete its operation successfully unless the
named file is a pty pseudo-terminal. If the named file is a pseudo-terminal
(/dev/ptyp* or /dev/ttyp*) and the label of the process invoking getfpriv()
does not dominate the label of the named file and the privilege
PRIV_FILE_MAC_READ is not effective then getfpriv() returns success but sets the
privilege fields of priv_set to zero.

These routines return:

0 On success.

−1 On failure, and set errno to indicate the error.

These routines fail and the target set is not modified if:

EINVAL An illegal or undefined value is supplied for size or type.

EFAULT priv_set refers to an invalid address.

Additionally, getfpriv() and setfpriv() fail if:

EACCES Search permission is denied a component of path. To override this
restriction, the calling process may assert the
PRIV_FILE_DAC_SEARCH privilege and/or the
PRIV_FILE_MAC_SEARCH privilege.

getfpriv() and fgetfpriv() fail if:

EACCES MAC read permission is denied for the named file, and privilege
PRIV_FILE_MAC_READ is not effective.

ENOENT A component of the specified path does not exist.

ENOTDIR A component of the specified path prefix is not a directory.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX,
oL a pathname component is longer than NAME_MAX
while _POSIX_NO_TRUNC is in effect.

setfpriv() and fsetfpriv() fail and the target set is not modified if:

EACCES MAC write permission is denied for the named file, privilege
PRIV_FILE_MAC_WRITE is not effective, and the user’s clearance
dominates the sensitivity label of the file.

EINVAL (1) The named file resides on a file system that does not support
privileges (that is, a file system other than NFS, TMPFS) or (2) an
illegal or undefined value is supplied for op. Also if privilege
PRIV_FILE_MAC_WRITE is not effective.

setfpriv(2)

RETURN VALUES

ERRORS

418 man pages section 2: System Calls • Last Revised 30 Sep 1999

EPERM MAC write permission is denied for the named file, and the user’s
clearance does not dominate the label of the named file, or (2)
PRIV_FILE_SETPRIV is not effective, or (3) the effective uid does
not match the owner of the named file and privilege
PRIV_FILE_OWNER is not effective.

EROFS The named file resides on a read-only file system.

getppriv(2), setppriv(2), priv_macros(5)

setfpriv(2)

Trusted Solaris 8
4/01 Reference

Manual

System Calls 419

setuid, setegid, seteuid, setgid – set user and group IDs

#include <sys/types.h>

#include <unistd.h>

int setuid(uid_t uid);

int setegid(gid_t egid);

int seteuid(uid_t euid);

int setgid(gid_t gid);

The setuid() function sets the real user ID, effective user ID, and saved user ID of
the calling process. The setgid() function sets the real group ID, effective group ID,
and saved group ID of the calling process. The setegid() and seteuid() functions
set the effective group and user IDs respectively for the calling process. See intro(2)
for more information on real, effective, and saved user and group IDs.

Privilege-unaware programs change their UIDs either to gain or give up rights
associated with the new UID. To simulate that action in a privilege-based system
rather than a UID-based system, the effective and saved privilege sets are modified
across setuid calls according to the following algorithm:

if ((old_uid == start_uid) && (new_uid != start_uid)) {
saved_privileges = effective_privileges;
effective_privileges = empty;

} else if ((old_uid != start_uid) && (new_uid == start_uid)) {
effective_privileges = saved_privileges;

}

Since set UID programs may not be aware of privileges, their privilege bracketing
(their use of UID changes to obtain or give up rights) is tracked in the privilege sets.
When a set UID program changes from its saved UID ID to the calling user ID, it gives
up its privilege. When it changes back to the saved UID ID, it regains privilege.

At login time, the real user ID, effective user ID, and saved user ID of the login process
are set to the login ID of the user responsible for the creation of the process. The same
is true for the real, effective, and saved group IDs; they are set to the group ID of the
user responsible for the creation of the process.

When a process calls one of the exec family of functions (see exec(2)) to execute a
file (program), the user and/or group identifiers associated with the process can
change. If the file executed is a set-user-ID file, the effective and saved user IDs of the
process are set to the owner of the file executed. If the file executed is a set-group-ID
file, the effective and saved group IDs of the process are set to the group of the file
executed. If the file executed is not a set-user-ID or set-group-ID file, the effective user
ID, saved user ID, effective group ID, and saved group ID are not changed.

If the process calling setuid() has the PRIV_PROC_SETID privilege, the real,
effective, and saved user IDs are set to the uid parameter.

setgid(2)

NAME

SYNOPSIS

DESCRIPTION

420 man pages section 2: System Calls • Last Revised 20 Jul 2001

If the process calling setuid() does not have the PRIV_PROC_SETID privilege, but
uid is either the real user ID or the saved user ID of the calling process, the effective
user ID is set to uid.

If the new user ID differs from the initial user ID under which this program began
execution, the saved privilege set is replaced by the effective privilege set, and the
effective privilege set is cleared.

If the process calling setgid() has the PRIV_PROC_SETID privilege, the real,
effective, and saved group IDs are set to the gid parameter.

If the process calling setgid() does not have the PRIV_PROC_SETID privilege, but
gid is either the real group ID or the saved group ID of the calling process, the effective
group ID is set to gid.

setuid() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The setuid() and setgid() functions will fail if:

EINVAL The value of uid or gid is out of range.

EPERM For setuid() and seteuid(), the calling process does not have
PRIV_PROC_SETID in its effective set of privileges, and the uid
parameter does not match either the real or saved user IDs.

For setgid() and setegid(), the calling process does not have
PRIV_PROC_SETID in its effective set of privileges, and the gid
parameter does not match either the real or the saved group ID.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level setuid() and setgid() are
Async-Signal-Safe

The Trusted Solaris environment replaces the checks of super-user in the Solaris
environment with a check for PRIV_PROC_SETID.

intro(2), exec(2), getgroups(2)

getuid(2), attributes(5), stat(5)

setgid(2)

RETURN VALUES

ERRORS

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

System Calls 421

getgroups, setgroups – Get or set supplementary group access list IDs

#include <unistd.h>

int getgroups(int gidsetsize, gid_t *grouplist);

int setgroups(int ngroups, const gid_t *grouplist);

The getgroups() function gets the current supplemental group access list of the
calling process and stores the result in the array of group IDs specified by grouplist.
This array has gidsetsize entries and must be large enough to contain the entire list.
This list cannot be larger than NGROUPS_MAX. If gidsetsize equals 0, getgroups() will
return the number of groups to which the calling process belongs without modifying
the array pointed to by grouplist.

The setgroups() function sets the supplementary group access list of the calling
process from the array of group IDs specified by grouplist. The number of entries is
specified by ngroups and can not be greater than NGROUPS_MAX. The calling process
must have PRIV_PROC_SETID in its set of effective privileges to set new groups. If
PRIV_PROC_SETID is not in the effective privilege set, the operation fails and sets
errno to EPERM.

Upon successful completion, getgroups() returns the number of supplementary
group IDs set for the calling process and setgroups() returns 0. Otherwise, −1 is
returned and errno is set to indicate the error.

The getgroups() and setgroups() functions will fail if:

EFAULT A referenced part of the array pointed to by grouplist is an illegal
address.

The getgroups() function will fail if:

EINVAL The value of gidsetsize is non-zero and less than the number of
supplementary group IDs set for the calling process.

The setgroups() function will fail if:

EINVAL The value of ngroups is greater than NGROUPS_MAX.

EPERM The calling process does not have the PRIV_PROC_SETID
privilege.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

To set new groups, the calling process must have PRIV_PROC_SETID in its set of
effective privileges.

setgroups(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
422 man pages section 2: System Calls • Last Revised 28 Dec 1996

chown(2), setuid(2)

groups(1), getuid(2), getgrnam(3C), initgroups(3C), attributes(5)

setgroups(2)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

System Calls 423

getpattr, setpattr – get/set process attribute flags

cc [flags…] file… -ltsol

#include <tsol/pattr.h>

int getpattr(pattr_type_t type, pattr_flag_t *value);

int setpattr(pattr_type_t type, pattr_flag_t value);

Process attribute flags are a set of flags that describe additional attributes that the
process has. Each flag in the set is separately addressable although all flags share the
getpattr() and the setpattr() system call interfaces. Likewise, each flag in the
set has its own protection policy although all flags use the same protection
mechanism. In the set are seven types of flags, specified in <tsol/pattr.h>, and
addressed by the type argument. These are the values for type:

PAF_TRUSTED_PATH Trusted path flag

PAF_PRIV_DBG Privilege debugging flag

PAF_TOKMAPPER Network token mapping process flag

PAF_LABEL_VIEW Label view flags

PAF_LABEL_XLATE Label translation flags

PAF_DISKLESS_BOOT Part of diskless boot flag

PAF_SELAGNT Part of selection agent flag

PAF_PRINT_SYSTEM Part of trusted printing system flag

A description of each type of process attribute flag follows.

This one-bit flag marks a trusted path process. This flag can be viewed and cleared,
but cannot be set. In other words, the call to setpattr(PAF_TRUSTED_PATH,
PAF_TP_ON) will always fail. A process inherits the trusted path flag from its parent
process. The init process receives the trusted path flag from the system. A user
session creator, such as login, clears this flag before starting a user session.

setpattr(PAF_TRUSTED_PATH, PAF_TP_OFF)

This one-bit flag indicates that the process is in privilege-debugging mode—a
process-operation mode in which privilege requirement is logged but not enforced.
This flag can be viewed or cleared, but cannot be set except by a trusted path process.

This one-bit flag, when set, identifies the process as the network token mapping
process. The network token mapping process is exempt from network token mapping.
This flag can be viewed and cleared, but cannot be set except by a trusted path
process.

setpattr(2)

NAME

SYNOPSIS

DESCRIPTION

Trusted path flag

Privilege
debugging flag

Network token
mapping process

flag

424 man pages section 2: System Calls • Last Revised 13 Jul 2001

These two-bit flags support per-process label translation. These flags are viewable and
modifiable without restriction.

These fifteen-bit flags support the GFI FLAGS= option in the label_encodings(4)
file. Only a trusted path process can view or modify these flags.

This one-bit flag identifies the process as taking part in diskless booting. This flag can
be viewed and cleared, but cannot be set except by a trusted path process.

This one-bit flag identifies the process as part of the “cut and paste” selection agent.
This flag can be viewed and cleared, but cannot be set except by a trusted path
process.

This one-bit flag identifies the process as a member of the Trusted Printing System.
This flag can be viewed and cleared, but cannot be set except by a trusted path
process.

In short, these flag-related protection policies apply. Any process may view or clear
any process attribute flag except the label translation flags; viewing or clearing the
label translation flags requires that a process have the trusted path attribute. Any
process may set label view flags; setting other flags requires that the setting process
have the trusted path attribute.

getpattr() copies the type process flag of the calling process into the pattr_flag_t
variable addressed by value. Only the lower n bits are copied, where n is the width of
the flag. The higher bits are cleared.

setpattr() copies the lower n bits of value to the type process flag of the calling
process, where n is the width of the selected process flag.

getpattr() and setpattr() return:

0 On success.

−1 On failure, and sets errno to indicate the error.

getpattr() may fail for one of these reasons:

EFAULT The value argument points to a bad address.

EINVAL The type argument is not one of the listed type constants.

EACCES The calling process is not a trusted path process as required to
view the type flag.

setpattr() may fail for one of these reasons:

EFAULT The value argument points to a bad address.

EINVAL The type argument is not one of the listed type constants.

EACCES The calling process is not a trusted path process as required to
modify the type flag.

setpattr(2)

Label view flags

Label translation
flags

Part of diskless
boot flag

Part of selection
agent flag

Part of trusted
printing system

flag

RETURN VALUES

ERRORS

System Calls 425

pattr(1)

setpattr(2)

Trusted Solaris 8
4/01 Reference

Manual

426 man pages section 2: System Calls • Last Revised 13 Jul 2001

getppriv, setppriv – Return or assign a privilege set associated with the invoking
process

cc [flags…] file… -ltsol

#include <tsol/priv.h>

int getppriv(priv_ptype_ttype, priv_set_t*pset);

int setppriv(priv_op_top, priv_ptype_ttype, priv_set_t*pset);

getppriv() copies the type privilege set of the invoking process into the pset address.
type may have one of four values, specified in <tsol/priv.h>:

PRIV_EFFECTIVE The effective privilege set

PRIV_INHERITABLE The inheritable privilege set

PRIV_PERMITTED The permitted privilege set

PRIV_SAVED The saved privilege set

setppriv() assigns or modifies the type privilege set (the target set) of the invoking
process. Modification occurs according to the values of op and of the pset privilege set
(the source set). op values are specified in <tsol/priv.h>:

PRIV_ON Each privilege asserted in the source set is asserted in the target
set.

PRIV_OFF Each privilege asserted in the source set is cleared in the target set.

PRIV_SET The target set is made exactly equal to the source set.

Values for type are the same as those for type in getppriv(), exclusive of
PRIV_SAVED.

If the target set is the permitted set, all privileges cleared from the target set are also
cleared from the effective set. Any attempted assignment of a privilege cleared in the
permitted set is always an error. Attempting to clear a privilege that is already cleared
is not an error.

getppriv() and setppriv() return:

0 On success.

−1 On failure, and set errno to indicate the error.

getppriv() fails if either of these conditions prevails:

EINVAL An illegal or undefined value was supplied for type.

EFAULT pset refers to an invalid address.

setppriv() fails and the target set is not modified if any of these conditions prevails:

EINVAL An illegal or undefined value is supplied for type or op.

setppriv(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 427

EFAULT set refers to an invalid address.

EINVAL In a process privilege set, an attempt is made to assert a privilege
that is cleared in the permitted set of the process.

getfpriv(2), setfpriv(2), priv_to_str(3TSOL), priv_set_to_str(3TSOL),
str_to_priv(3TSOL), str_to_priv_set(3TSOL), priv_macros(5)

setppriv(2)

Trusted Solaris 8
4/01 Reference

Manual

428 man pages section 2: System Calls • Last Revised 08 Mar 1995

setregid – Set real and effective group IDs

#include <unistd.h>

int setregid(gid_t rgid, gid_t egid);

The setregid() function is used to set the real and effective group IDs of the calling
process. If rgid is −1, the real group ID is not changed; if egid is −1, the effective group
ID is not changed. The real and effective group IDs may be set to different values in
the same call.

If the calling process has the PRIV_PROC_SETID privilege, the real GID and the
effective GID can be set to any legal value.

If the calling process does not have the PRIV_PROC_SETID privilege, either the real
GID can be set to the saved setGID from execve(2), or the effective GID can either be
set to the saved setGID or the real GID. Note: if a setGID process sets its effective GID
to its real GID, it can still set its effective GID back to the saved setGID.

In either case, if the real group ID is being changed (that is, if rgid is not −1), or the
effective group ID is being changed to a value not equal to the real group ID, the saved
set-group-ID is set equal to the new effective group ID.

setregid() returns:

0 On success.

–1 On failure and sets errno to indicate the error.

The setregid() function will fail if:

EINVAL The value of rgid or egid is less than 0 or greater than UID_MAX
(defined in <limits.h>).

EPERM The calling process does not have the PRIV_PROC_SETID
privilege and a change other than changing the real GID to the
saved setGID, or changing the effective GID to the real GID or the
saved GID, was specified.

If a set-group-ID process sets its effective group ID to its real group ID, it can still set
its effective group ID back to the saved set-group- ID.

The Trusted Solaris environment replaces the checks of super-user in the Solaris
environment with privilege checks.

execve(2), setreuid(2), setuid(2)

getgid(2)

setregid(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

System Calls 429

setreuid – Set real and effective user IDs

#include <unistd.h>

int setreuid(uid_t ruid, uid_t euid);

The setreuid() function is used to set the real and effective user IDs of the calling
process. If ruid is −1, the real user ID is not changed; if euid is −1, the effective user ID
is not changed. The real and effective user IDs may be set to different values in the
same call.

If the calling process has the PRIV_PROC_SETID privilege, the real user ID and the
effective user ID can be set to any legal value.

If the calling process does not have the PRIV_PROC_SETID privilege, either the real
user ID can be set to the effective user ID, or the effective user ID can either be set to
the saved set-user ID from execve(2) or the real user ID. Note: if a set-UID process
sets its effective user ID to its real user ID, it can still set its effective user ID back to
the saved set-user ID.

In either case, if the real user ID is being changed (that is, if ruid is not −1), or the
effective user ID is being changed to a value not equal to the real user ID, the saved
set-user ID is set equal to the new effective user ID.

setreuid() returns:

0 On success.

–1 On failure and sets errno to indicate the error.

The setreuid() function will fail if:

EINVAL The value of ruid or euid is less than 0 or greater than UID_MAX
(defined in <limits.h>).

EPERM The calling process does not have the PRIV_PROC_SETID
privilege and a change other than changing the real user ID to the
effective user ID, or changing the effective user ID to the real user
ID or the saved set-user ID, was specified.

If a set-user-ID process sets its effective user ID to its real user ID, it can still set its
effective user ID back to the saved set-user ID.

The Trusted Solaris environment replaces the checks of super-user in the Solaris
environment with privilege checks.

execve(2), setregid(2), setuid(2)

getuid(2)

setreuid(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

430 man pages section 2: System Calls • Last Revised 21 Nov 1996

getrlimit, setrlimit – Control maximum system resource consumption

#include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlp);

int setrlimit(int resource, const struct rlimit *rlp);

Limits on the consumption of a variety of system resources by a process and each
process it creates may be obtained with the getrlimit() and set with
setrlimit() functions.

Each call to either getrlimit() or setrlimit() identifies a specific resource to be
operated upon as well as a resource limit. A resource limit is a pair of values: one
specifying the current (soft) limit, the other a maximum (hard) limit. Soft limits may
be changed by a process to any value that is less than or equal to the hard limit. A
process may (irreversibly) lower its hard limit to any value that is greater than or
equal to the soft limit. Only a process that has the PRIV_SYS_CONFIG privilege can
raise a hard limit. Both hard and soft limits can be changed in a single call to
setrlimit() subject to the constraints described above. Limits may have an
“infinite” value of RLIM_INFINITY. The rlp argument is a pointer to struct rlimit
that includes the following members:

rlim_t rlim_cur; /* current (soft) limit */
rlim_t rlim_max; /* hard limit */

The type rlim_t is an arithmetic data type to which objects of type int, size_t, and
off_t can be cast without loss of information.

The possible resources, their descriptions, and the actions taken when the current limit
is exceeded are summarized as follows:

RLIMIT_CORE The maximum size of a core file in bytes that may be created by a
process. A limit of 0 will prevent the creation of a core file. The
writing of a core file will terminate at this size.

RLIMIT_CPU The maximum amount of CPU time in seconds used by a process.
This is a soft limit only. The SIGXCPU signal is sent to the process.
If the process is holding or ignoring SIGXCPU, the behavior is
scheduling class defined.

RLIMIT_DATA The maximum size of a process’s heap in bytes. The brk(2)
function will fail with errno set to ENOMEM.

RLIMIT_FSIZE The maximum size of a file in bytes that may be created by a
process. A limit of 0 will prevent the creation of a file. The
SIGXFSZ signal is sent to the process. If the process is holding or
ignoring SIGXFSZ, continued attempts to increase the size of a file
beyond the limit will fail with errno set to EFBIG.

setrlimit(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 431

RLIMIT_NOFILE One more than the maximum value that the system may assign to
a newly created descriptor. This limit constrains the number of file
descriptors that a process may create.

RLIMIT_STACK The maximum size of a process’s stack in bytes. The system will
not automatically grow the stack beyond this limit.

Within a process, setrlimit() will increase the limit on the size
of your stack, but will not move current memory segments to
allow for that growth. To guarantee that the process stack can
grow to the limit, the limit must be altered prior to the execution of
the process in which the new stack size is to be used.

Within a multithreaded process, setrlimit() has no impact on
the stack size limit for the calling thread if the calling thread is not
the main thread. A call to setrlimit() for RLIMIT_STACK
impacts only the main thread’s stack, and should be made only
from the main thread, if at all.

The SIGSEGV signal is sent to the process. If the process is holding
or ignoring SIGSEGV, or is catching SIGSEGV and has not made
arrangements to use an alternate stack (see sigaltstack(2)), the
disposition of SIGSEGV will be set to SIG_DFL before it is sent.

RLIMIT_VMEM The maximum size of a process’s mapped address space in bytes.
If this limit is exceeded, the brk(2) and mmap(2) functions will fail
with errno set to ENOMEM. In addition, the automatic stack
growth will fail with the effects outlined above.

RLIMIT_AS This is the maximum size of a process’s total available memory, in
bytes. If this limit is exceeded, the brk(2), malloc(3C), mmap(2)
and sbrk(2) functions will fail with errno set to ENOMEM. In
addition, the automatic stack growth will fail with the effects
outlined above.

Because limit information is stored in the per-process information, the shell builtin
ulimit command must directly execute this system call if it is to affect all future
processes created by the shell.

The value of the current limit of the following resources affect these implementation
defined parameters:

Limit Implementation Defined Constant

RLIMIT_FSIZE FCHR_MAX

RLIMIT_NOFILE OPEN_MAX

setrlimit(2)

432 man pages section 2: System Calls • Last Revised 1 May 2000

When using the getrlimit() function, if a resource limit can be represented
correctly in an object of type rlim_t, then its representation is returned; otherwise, if
the value of the resource limit is equal to that of the corresponding saved hard limit,
the value returned is RLIM_SAVED_MAX; otherwise the value returned is
RLIM_SAVED_CUR.

When using the setrlimit() function, if the requested new limit is
RLIM_INFINITY, the new limit will be ”no limit”; otherwise if the requested new
limit is RLIM_SAVED_MAX, the new limit will be the corresponding saved hard limit;
otherwise, if the requested new limit is RLIM_SAVED_CUR, the new limit will be the
corresponding saved soft limit; otherwise, the new limit will be the requested value. In
addition, if the corresponding saved limit can be represented correctly in an object of
type rlim_t, then it will be overwritten with the new limit.

The result of setting a limit to RLIM_SAVED_MAX or RLIM_SAVED_CUR is unspecified
unless a previous call to getrlimit() returned that value as the soft or hard limit for
the corresponding resource limit.

A limit whose value is greater than RLIM_INFINITY is permitted.

The exec family of functions also cause resource limits to be saved. See exec(2).

getrlimit() and setrlimit() return:

0 On success.

−1 On failure, and set errno to indicate the error.

The getrlimit() and setrlimit() functions will fail if:

EFAULT The rlp argument points to an illegal address.

EINVAL An invalid resource was specified; or in a setrlimit() call, the
new rlim_cur exceeds the new rlim_max.

EPERM The limit specified to setrlimit() would have raised the
maximum limit value, and the calling process does not have the
PRIV_SYS_CONFIG privilege.

The setrlimit() function may fail if:

EINVAL The limit specified cannot be lowered because current usage is
already higher than the limit.

The getrlimit() and setrlimit() functions have transitional interfaces for 64-bit
file offsets. See lf64(5).

The calling process must have the PRIV_SYS_CONFIG privilege in order to increase a
hard resource limit.

open(2)

setrlimit(2)

RETURN VALUES

ERRORS

USAGE

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

Manual

System Calls 433

brk(2), sigaltstack(2), malloc(3C), signal(3C), signal(5)

setrlimit(2)

SunOS 5.8
Reference Manual

434 man pages section 2: System Calls • Last Revised 1 May 2000

setuid, setegid, seteuid, setgid – set user and group IDs

#include <sys/types.h>

#include <unistd.h>

int setuid(uid_t uid);

int setegid(gid_t egid);

int seteuid(uid_t euid);

int setgid(gid_t gid);

The setuid() function sets the real user ID, effective user ID, and saved user ID of
the calling process. The setgid() function sets the real group ID, effective group ID,
and saved group ID of the calling process. The setegid() and seteuid() functions
set the effective group and user IDs respectively for the calling process. See intro(2)
for more information on real, effective, and saved user and group IDs.

Privilege-unaware programs change their UIDs either to gain or give up rights
associated with the new UID. To simulate that action in a privilege-based system
rather than a UID-based system, the effective and saved privilege sets are modified
across setuid calls according to the following algorithm:

if ((old_uid == start_uid) && (new_uid != start_uid)) {
saved_privileges = effective_privileges;
effective_privileges = empty;

} else if ((old_uid != start_uid) && (new_uid == start_uid)) {
effective_privileges = saved_privileges;

}

Since set UID programs may not be aware of privileges, their privilege bracketing
(their use of UID changes to obtain or give up rights) is tracked in the privilege sets.
When a set UID program changes from its saved UID ID to the calling user ID, it gives
up its privilege. When it changes back to the saved UID ID, it regains privilege.

At login time, the real user ID, effective user ID, and saved user ID of the login process
are set to the login ID of the user responsible for the creation of the process. The same
is true for the real, effective, and saved group IDs; they are set to the group ID of the
user responsible for the creation of the process.

When a process calls one of the exec family of functions (see exec(2)) to execute a
file (program), the user and/or group identifiers associated with the process can
change. If the file executed is a set-user-ID file, the effective and saved user IDs of the
process are set to the owner of the file executed. If the file executed is a set-group-ID
file, the effective and saved group IDs of the process are set to the group of the file
executed. If the file executed is not a set-user-ID or set-group-ID file, the effective user
ID, saved user ID, effective group ID, and saved group ID are not changed.

If the process calling setuid() has the PRIV_PROC_SETID privilege, the real,
effective, and saved user IDs are set to the uid parameter.

setuid(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 435

If the process calling setuid() does not have the PRIV_PROC_SETID privilege, but
uid is either the real user ID or the saved user ID of the calling process, the effective
user ID is set to uid.

If the new user ID differs from the initial user ID under which this program began
execution, the saved privilege set is replaced by the effective privilege set, and the
effective privilege set is cleared.

If the process calling setgid() has the PRIV_PROC_SETID privilege, the real,
effective, and saved group IDs are set to the gid parameter.

If the process calling setgid() does not have the PRIV_PROC_SETID privilege, but
gid is either the real group ID or the saved group ID of the calling process, the effective
group ID is set to gid.

setuid() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The setuid() and setgid() functions will fail if:

EINVAL The value of uid or gid is out of range.

EPERM For setuid() and seteuid(), the calling process does not have
PRIV_PROC_SETID in its effective set of privileges, and the uid
parameter does not match either the real or saved user IDs.

For setgid() and setegid(), the calling process does not have
PRIV_PROC_SETID in its effective set of privileges, and the gid
parameter does not match either the real or the saved group ID.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level setuid() and setgid() are
Async-Signal-Safe

The Trusted Solaris environment replaces the checks of super-user in the Solaris
environment with a check for PRIV_PROC_SETID.

intro(2), exec(2), getgroups(2)

getuid(2), attributes(5), stat(5)

setuid(2)

RETURN VALUES

ERRORS

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

436 man pages section 2: System Calls • Last Revised 20 Jul 2001

shmop, shmat, shmdt – shared memory operations

#include <sys/types.h>

#include <sys/shm.h>

void *shmat(int shmid, const void *shmaddr, int shmflg);

int shmdt(char *shmaddr);

int shmdt(const void *shmaddr);

The shmat() function attaches the shared memory segment associated with the
shared memory identifier specified by shmid to the data segment of the calling process.

The permission required for a shared memory control operation is given as {token},
where token is the type of permission needed. The types of permission are interpreted
as follows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

See the Shared Memory Operation Permissions section of intro(2) for more information.

A process attempting to map a shared-memory segment as read-only
(shmflg&SHM_RDONLY) must either have discretionary and mandatory read access to
the shared-memory object or have the necessary privileges in its set of effective
privileges: PRIV_IPC_DAC_READ and PRIV_IPC_MAC_READ. Otherwise, mapping
the shared-memory segment for reading and writing requires that the process have
discretionary and mandatory read access and discretionary and mandatory write
access to the shared memory object, or that the effective privilege set of the process
include these privileges as necessary: PRIV_IPC_DAC_READ, PRIV_IPC_MAC_READ,
PRIV_IPC_DAC_WRITE, and PRIV_IPC_MAC_WRITE.

When (shmflg&SHM_SHARE_MMU) is true, virtual memory resources in addition to
shared memory itself are shared among processes that use the same shared memory.

The shared memory segment is attached to the data segment of the calling process at
the address specified based on one of the following criteria:

� If shmaddr is equal to (void *) 0, the segment is attached to the first available
address as selected by the system.

� If shmaddr is equal to (void *) 0 and (shmflg&SHM_SHARE_MMU) is true, then the
segment is attached to the first available suitably aligned address. When
(shmflg&SHM_SHARE_MMU) is set, however, the permission given by shmget()
determines whether the segment is attached for reading or reading and writing.

� If shmaddr is not equal to (void *) 0 and (shmflg&SHM_RND) is true, the segment
is attached to the address given by (shmaddr - (shmaddr modulus SHMLBA)).

shmat(2)

NAME

SYNOPSIS

Default

Standard-conforming

DESCRIPTION

System Calls 437

� If shmaddr is not equal to (void *) 0 and (shmflg&SHM_RND) is false, the segment
is attached to the address given by shmaddr.

The segment is attached for reading if (shmflg&SHM_RDONLY) is true {READ}, otherwise
it is attached for reading and writing {READ/WRITE}.

The shmdt() function detaches from the calling process’s data segment the shared
memory segment located at the address specified by shmaddr. If the application is
standard-conforming [see standards(5)], the shmaddr argument is of type const
void *. Otherwise it is of type char *.

Shared memory segments must be explicitly removed after the last reference to them
has been removed.

Upon successful completion, shmat() returns the data segment start address of the
attached shared memory segment; shmdt() returns 0. Otherwise, −1 is returned, the
shared memory segment is not attached, and errno is set to indicate the error.

The shmat() function will fail if:

EACCES Operation permission is denied to the calling process [see
intro(2)], and the calling process does not have the appropriate
privilege(s) in its set of effective privileges.

EINVAL The shmid argument is not a valid shared memory identifier.

EINVAL The shmaddr argument is not equal to 0, and the value of (shmaddr
- (shmaddr modulus SHMLBA)) is an illegal address.

EINVAL The shmaddr argument is not equal to 0, is an illegal address, and
(shmflg&SHM_RND) is false.

EINVAL The shmaddr argument is not equal to 0, is not properly aligned,
and (shmfg&SHM_SHARE_MMU) is true.

EINVAL SHM_SHARE_MMU is not supported in certain architectures.

EMFILE The number of shared memory segments attached to the calling
process would exceed the system-imposed limit.

ENOMEM The available data space is not large enough to accommodate the
shared memory segment.

EPERM The LOCK and UNLOCK operation does not have the appropriate
privilege in its set of effective privileges.

The shmdt() function will fail if:

EINVAL The shmaddr argument is not the data segment start address of a
shared memory segment.

Appropriate privilege is required to override access checks.

shmat(2)

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

438 man pages section 2: System Calls • Last Revised 30 Sep 1999

intro(2), exec(2), fork(2), shmctl(2), shmget(2)

exit(2), xpg4(5)

shmat(2)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

System Calls 439

shmctl – Shared memory control operations

#include <sys/types.h>
#include <sys/ipc.h>

#include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

The shmctl() function provides a variety of shared memory control operations as
specified by cmd. The permission required for a shared memory control operation is
given as {token}, where token is the type of permission needed. The types of permission
are interpreted as follows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

See the Shared Memory Operation Permissions section of intro(2) for more information.

The following operations require the specified tokens:

IPC_STAT Place the current value of each member of the data structure
associated with shmid into the structure pointed to by buf. The
contents of this structure are defined in intro(2) {READ}

The calling process must either have mandatory read access to the
shared-memory segment or have asserted the
PRIV_IPC_MAC_READ privilege, and either have discretionary
read access to the data structure or have PRIV_IPC_DAC_READ in
its set of effective privileges.

IPC_SET Set the value of the following members of the data structure
associated with shmid to the corresponding value found in the
structure pointed to by buf:

shm_perm.uid
shm_perm.gid
shm_perm.mode /* access permission bits only */

This command can be executed only by a process that either has an
effective user ID equal to sem_perm.cuid or sem_perm.uid in
the data structure associated with semid, or has PRIV_IPC_OWNER
in its set of effective privileges. In addition, the process must either
have mandatory write access to the semaphore set or have asserted
the PRIV_IPC_MAC_WRITE privilege.

IPC_RMID Remove from the system the shared-memory identifier specified
by shmid and destroy the shared-memory segment and data
structure associated with the identifier. This command can be
executed only by a process that either has an effective user ID

shmctl(2)

NAME

SYNOPSIS

DESCRIPTION

440 man pages section 2: System Calls • Last Revised 27 Nov 1996

equal to shm_perm.cuid or shm_perm.uid in the data structure
associated with shmid, or has PRIV_IPC_OWNER in its set of
effective privileges. In addition, the process must either have
mandatory write access to the shared memory segment or have
asserted the PRIV_IPC_MAC_WRITE privilege.

SHM_LOCK Lock the shared-memory segment specified by shmid in memory.
This command can be executed only by a process that has
discretionary and mandatory read access (or the appropriate
privilege override) and also has PRIV_SYS_CONFIG in its effective
privilege set.

SHM_UNLOCK Unlock the shared-memory segment specified by shmid. This
command can be executed only by a process that has discretionary
and mandatory read access (or the appropriate privilege override)
and also has PRIV_SYS_CONFIG in its effective privilege set.

Shared memory segments must be explicitly removed after the last reference to them
has been removed.

shmctl() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The shmctl() function will fail if:

EACCES cmd is equal to IPC_STAT. {READ} operation permission is denied
to the calling process, and the calling process does not have the
appropriate privilege(s) in its set of effective privileges.

EFAULT The buf argument points to an illegal address.

EINVAL The shmid argument is not a valid shared memory identifier; or the
cmd argument is not a valid command or is IPC_SET and
shm_perm.uid or shm_perm.gid is not valid.

ENOMEM The cmd argument is equal to SHM_LOCK and there is not enough
memory.

EOVERFLOW The cmd argument is IPC_STAT and uid or gid is too large to be
stored in the structure pointed to by buf.

EPERM cmd is equal to IPC_RMID or IPC_SET. The effective user ID of the
calling process does not match the value of shm_perm.cuid or
shm_perm.uid in the data structure associated with shmid; or the
mandatory access check failed; and the calling process does not
have the appropriate privilege overrides(s) in its set of effective
privileges.

cmd is equal to SHM_LOCK or SHM_UNLOCK and
PRIV_SYS_CONFIG is not in the effective privilege set of the

shmctl(2)

RETURN VALUES

ERRORS

System Calls 441

process.

Appropriate privilege is required to override access checks.

ipcs(1), intro(2), shmget(2), shmop(2)

shmctl(2)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
Manual

442 man pages section 2: System Calls • Last Revised 27 Nov 1996

shmop, shmat, shmdt – shared memory operations

#include <sys/types.h>

#include <sys/shm.h>

void *shmat(int shmid, const void *shmaddr, int shmflg);

int shmdt(char *shmaddr);

int shmdt(const void *shmaddr);

The shmat() function attaches the shared memory segment associated with the
shared memory identifier specified by shmid to the data segment of the calling process.

The permission required for a shared memory control operation is given as {token},
where token is the type of permission needed. The types of permission are interpreted
as follows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

See the Shared Memory Operation Permissions section of intro(2) for more information.

A process attempting to map a shared-memory segment as read-only
(shmflg&SHM_RDONLY) must either have discretionary and mandatory read access to
the shared-memory object or have the necessary privileges in its set of effective
privileges: PRIV_IPC_DAC_READ and PRIV_IPC_MAC_READ. Otherwise, mapping
the shared-memory segment for reading and writing requires that the process have
discretionary and mandatory read access and discretionary and mandatory write
access to the shared memory object, or that the effective privilege set of the process
include these privileges as necessary: PRIV_IPC_DAC_READ, PRIV_IPC_MAC_READ,
PRIV_IPC_DAC_WRITE, and PRIV_IPC_MAC_WRITE.

When (shmflg&SHM_SHARE_MMU) is true, virtual memory resources in addition to
shared memory itself are shared among processes that use the same shared memory.

The shared memory segment is attached to the data segment of the calling process at
the address specified based on one of the following criteria:

� If shmaddr is equal to (void *) 0, the segment is attached to the first available
address as selected by the system.

� If shmaddr is equal to (void *) 0 and (shmflg&SHM_SHARE_MMU) is true, then the
segment is attached to the first available suitably aligned address. When
(shmflg&SHM_SHARE_MMU) is set, however, the permission given by shmget()
determines whether the segment is attached for reading or reading and writing.

� If shmaddr is not equal to (void *) 0 and (shmflg&SHM_RND) is true, the segment
is attached to the address given by (shmaddr - (shmaddr modulus SHMLBA)).

shmdt(2)

NAME

SYNOPSIS

Default

Standard-conforming

DESCRIPTION

System Calls 443

� If shmaddr is not equal to (void *) 0 and (shmflg&SHM_RND) is false, the segment
is attached to the address given by shmaddr.

The segment is attached for reading if (shmflg&SHM_RDONLY) is true {READ}, otherwise
it is attached for reading and writing {READ/WRITE}.

The shmdt() function detaches from the calling process’s data segment the shared
memory segment located at the address specified by shmaddr. If the application is
standard-conforming [see standards(5)], the shmaddr argument is of type const
void *. Otherwise it is of type char *.

Shared memory segments must be explicitly removed after the last reference to them
has been removed.

Upon successful completion, shmat() returns the data segment start address of the
attached shared memory segment; shmdt() returns 0. Otherwise, −1 is returned, the
shared memory segment is not attached, and errno is set to indicate the error.

The shmat() function will fail if:

EACCES Operation permission is denied to the calling process [see
intro(2)], and the calling process does not have the appropriate
privilege(s) in its set of effective privileges.

EINVAL The shmid argument is not a valid shared memory identifier.

EINVAL The shmaddr argument is not equal to 0, and the value of (shmaddr
- (shmaddr modulus SHMLBA)) is an illegal address.

EINVAL The shmaddr argument is not equal to 0, is an illegal address, and
(shmflg&SHM_RND) is false.

EINVAL The shmaddr argument is not equal to 0, is not properly aligned,
and (shmfg&SHM_SHARE_MMU) is true.

EINVAL SHM_SHARE_MMU is not supported in certain architectures.

EMFILE The number of shared memory segments attached to the calling
process would exceed the system-imposed limit.

ENOMEM The available data space is not large enough to accommodate the
shared memory segment.

EPERM The LOCK and UNLOCK operation does not have the appropriate
privilege in its set of effective privileges.

The shmdt() function will fail if:

EINVAL The shmaddr argument is not the data segment start address of a
shared memory segment.

Appropriate privilege is required to override access checks.

shmdt(2)

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

444 man pages section 2: System Calls • Last Revised 30 Sep 1999

intro(2), exec(2), fork(2), shmctl(2), shmget(2)

exit(2), xpg4(5)

shmdt(2)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

System Calls 445

shmget, shmgetl – Get shared memory segment identifier

cc [flags…] file … -ltsol [library…]

#include <sys/types.h>
#include <sys/ipc.h>

#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

#include <sys/tsol/ipcl.h>

int shmgetl(key_t key, size_t size, int shmflg, const bslabel_t
*slabel);

A shared-memory segment is identified by a unique combination of key and
sensitivity label. This qualification of keys by sensitivity labels allows applications that
use shared-memory segments to be run at multiple process sensitivity labels without
inadvertently sharing data. shmget() returns the shared-memory identifier
associated with the union of key and the sensitivity label of the calling process.

shmgetl() returns the shared-memory identifier associated with the union of key and
slabel. If the value of slabel does not match the sensitivity label of the calling process,
then the effective privilege set of the process must include the necessary privileges:
PRIV_IPC_MAC_READ and PRIV_IPC_MAC_WRITE.

If discretionary read/write access is denied to the calling process as specified by the
low-order 9 bits of shmflg, both shmget() and shmgetl() require one or both of
these privileges: PRIV_IPC_DAC_READ and PRIV_IPC_DAC_WRITE.

The shmget() function returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory
segment of at least size bytes (see intro(3)) are created for key if one of the following
are true:

� The key argument is equal to IPC_PRIVATE.

� The key argument does not already have a shared memory identifier associated
with it, and (shmflg&IPC_CREAT) is true.

Upon creation, the data structure associated with the new shared memory identifier is
initialized as follows:

� The values of shm_perm.cuid, shm_perm.uid, shm_perm.cgid, and
shm_perm.gid are set equal to the effective user ID and effective group ID,
respectively, of the calling process.

� The access permission bits of shm_perm.mode are set equal to the access
permission bits of shmflg. shm_segsz is set equal to the value of size.

� The values of shm_lpid, shm_nattch shm_atime, and shm_dtime are set equal
to 0.

shmget(2)

NAME

SYNOPSIS

DESCRIPTION

446 man pages section 2: System Calls • Last Revised 1 May 2000

� The shm_ctime is set equal to the current time.

Shared memory segments must be explicitly removed after the last reference to them
has been removed.

Upon successful completion, a non-negative integer representing a shared memory
identifier is returned. Otherwise, −1 is returned and errno is set to indicate the error.

The shmget() function will fail if:

EACCES A shared memory identifier exists for the union of key and
sensitivity label, but operation permission (see intro(3)) as
specified by the low-order 9 bits of shmflg would not be granted.

The calling process, which failed the check for discretionary or
mandatory access, does not have the appropriate privilege
override(s) in its set of effective privileges.

EEXIST A shared memory identifier exists for key but both
(shmflg&IPC_CREATE) and (shmflg&IPC_EXCL) are true.

EFAULT slabel points to an illegal address.

EINVAL The size argument is less than the system-imposed minimum or
greater than the system-imposed maximum.

EINVAL A shared memory identifier exists for key but the size of the
segment associated with it is less than size and size is not equal to
0.

The label pointed to by slabel is not a valid sensitivity label.

ENOENT A shared memory identifier does not exist for the union of key and
sensitivity label, and (shmflg&IPC_CREATE) is false.

ENOMEM A shared memory identifier and associated shared memory
segment are to be created but the amount of available memory is
not sufficient to fill the request.

ENOSPC A shared memory identifier is to be created but the
system-imposed limit on the maximum number of allowed shared
memory identifiers system-wide would be exceeded.

Appropriate privilege is required to override access checks.

Sensitivity labels are used together with key to determine shared-memory identifiers.

shmctl(2), shmop(2), intro(3)

ftok(3C)

shmget(2)

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
ManualSunOS 5.8

Reference Manual

System Calls 447

shmget, shmgetl – Get shared memory segment identifier

cc [flags…] file … -ltsol [library…]

#include <sys/types.h>
#include <sys/ipc.h>

#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

#include <sys/tsol/ipcl.h>

int shmgetl(key_t key, size_t size, int shmflg, const bslabel_t
*slabel);

A shared-memory segment is identified by a unique combination of key and
sensitivity label. This qualification of keys by sensitivity labels allows applications that
use shared-memory segments to be run at multiple process sensitivity labels without
inadvertently sharing data. shmget() returns the shared-memory identifier
associated with the union of key and the sensitivity label of the calling process.

shmgetl() returns the shared-memory identifier associated with the union of key and
slabel. If the value of slabel does not match the sensitivity label of the calling process,
then the effective privilege set of the process must include the necessary privileges:
PRIV_IPC_MAC_READ and PRIV_IPC_MAC_WRITE.

If discretionary read/write access is denied to the calling process as specified by the
low-order 9 bits of shmflg, both shmget() and shmgetl() require one or both of
these privileges: PRIV_IPC_DAC_READ and PRIV_IPC_DAC_WRITE.

The shmget() function returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory
segment of at least size bytes (see intro(3)) are created for key if one of the following
are true:

� The key argument is equal to IPC_PRIVATE.

� The key argument does not already have a shared memory identifier associated
with it, and (shmflg&IPC_CREAT) is true.

Upon creation, the data structure associated with the new shared memory identifier is
initialized as follows:

� The values of shm_perm.cuid, shm_perm.uid, shm_perm.cgid, and
shm_perm.gid are set equal to the effective user ID and effective group ID,
respectively, of the calling process.

� The access permission bits of shm_perm.mode are set equal to the access
permission bits of shmflg. shm_segsz is set equal to the value of size.

� The values of shm_lpid, shm_nattch shm_atime, and shm_dtime are set equal
to 0.

shmgetl(2)

NAME

SYNOPSIS

DESCRIPTION

448 man pages section 2: System Calls • Last Revised 1 May 2000

� The shm_ctime is set equal to the current time.

Shared memory segments must be explicitly removed after the last reference to them
has been removed.

Upon successful completion, a non-negative integer representing a shared memory
identifier is returned. Otherwise, −1 is returned and errno is set to indicate the error.

The shmget() function will fail if:

EACCES A shared memory identifier exists for the union of key and
sensitivity label, but operation permission (see intro(3)) as
specified by the low-order 9 bits of shmflg would not be granted.

The calling process, which failed the check for discretionary or
mandatory access, does not have the appropriate privilege
override(s) in its set of effective privileges.

EEXIST A shared memory identifier exists for key but both
(shmflg&IPC_CREATE) and (shmflg&IPC_EXCL) are true.

EFAULT slabel points to an illegal address.

EINVAL The size argument is less than the system-imposed minimum or
greater than the system-imposed maximum.

EINVAL A shared memory identifier exists for key but the size of the
segment associated with it is less than size and size is not equal to
0.

The label pointed to by slabel is not a valid sensitivity label.

ENOENT A shared memory identifier does not exist for the union of key and
sensitivity label, and (shmflg&IPC_CREATE) is false.

ENOMEM A shared memory identifier and associated shared memory
segment are to be created but the amount of available memory is
not sufficient to fill the request.

ENOSPC A shared memory identifier is to be created but the
system-imposed limit on the maximum number of allowed shared
memory identifiers system-wide would be exceeded.

Appropriate privilege is required to override access checks.

Sensitivity labels are used together with key to determine shared-memory identifiers.

shmctl(2), shmop(2), intro(3)

ftok(3C)

shmgetl(2)

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
ManualSunOS 5.8

Reference Manual

System Calls 449

shmop, shmat, shmdt – shared memory operations

#include <sys/types.h>

#include <sys/shm.h>

void *shmat(int shmid, const void *shmaddr, int shmflg);

int shmdt(char *shmaddr);

int shmdt(const void *shmaddr);

The shmat() function attaches the shared memory segment associated with the
shared memory identifier specified by shmid to the data segment of the calling process.

The permission required for a shared memory control operation is given as {token},
where token is the type of permission needed. The types of permission are interpreted
as follows:

00400 READ by user
00200 WRITE by user
00040 READ by group
00020 WRITE by group
00004 READ by others
00002 WRITE by others

See the Shared Memory Operation Permissions section of intro(2) for more information.

A process attempting to map a shared-memory segment as read-only
(shmflg&SHM_RDONLY) must either have discretionary and mandatory read access to
the shared-memory object or have the necessary privileges in its set of effective
privileges: PRIV_IPC_DAC_READ and PRIV_IPC_MAC_READ. Otherwise, mapping
the shared-memory segment for reading and writing requires that the process have
discretionary and mandatory read access and discretionary and mandatory write
access to the shared memory object, or that the effective privilege set of the process
include these privileges as necessary: PRIV_IPC_DAC_READ, PRIV_IPC_MAC_READ,
PRIV_IPC_DAC_WRITE, and PRIV_IPC_MAC_WRITE.

When (shmflg&SHM_SHARE_MMU) is true, virtual memory resources in addition to
shared memory itself are shared among processes that use the same shared memory.

The shared memory segment is attached to the data segment of the calling process at
the address specified based on one of the following criteria:

� If shmaddr is equal to (void *) 0, the segment is attached to the first available
address as selected by the system.

� If shmaddr is equal to (void *) 0 and (shmflg&SHM_SHARE_MMU) is true, then the
segment is attached to the first available suitably aligned address. When
(shmflg&SHM_SHARE_MMU) is set, however, the permission given by shmget()
determines whether the segment is attached for reading or reading and writing.

� If shmaddr is not equal to (void *) 0 and (shmflg&SHM_RND) is true, the segment
is attached to the address given by (shmaddr - (shmaddr modulus SHMLBA)).

shmop(2)

NAME

SYNOPSIS

Default

Standard-conforming

DESCRIPTION

450 man pages section 2: System Calls • Last Revised 30 Sep 1999

� If shmaddr is not equal to (void *) 0 and (shmflg&SHM_RND) is false, the segment
is attached to the address given by shmaddr.

The segment is attached for reading if (shmflg&SHM_RDONLY) is true {READ}, otherwise
it is attached for reading and writing {READ/WRITE}.

The shmdt() function detaches from the calling process’s data segment the shared
memory segment located at the address specified by shmaddr. If the application is
standard-conforming [see standards(5)], the shmaddr argument is of type const
void *. Otherwise it is of type char *.

Shared memory segments must be explicitly removed after the last reference to them
has been removed.

Upon successful completion, shmat() returns the data segment start address of the
attached shared memory segment; shmdt() returns 0. Otherwise, −1 is returned, the
shared memory segment is not attached, and errno is set to indicate the error.

The shmat() function will fail if:

EACCES Operation permission is denied to the calling process [see
intro(2)], and the calling process does not have the appropriate
privilege(s) in its set of effective privileges.

EINVAL The shmid argument is not a valid shared memory identifier.

EINVAL The shmaddr argument is not equal to 0, and the value of (shmaddr
- (shmaddr modulus SHMLBA)) is an illegal address.

EINVAL The shmaddr argument is not equal to 0, is an illegal address, and
(shmflg&SHM_RND) is false.

EINVAL The shmaddr argument is not equal to 0, is not properly aligned,
and (shmfg&SHM_SHARE_MMU) is true.

EINVAL SHM_SHARE_MMU is not supported in certain architectures.

EMFILE The number of shared memory segments attached to the calling
process would exceed the system-imposed limit.

ENOMEM The available data space is not large enough to accommodate the
shared memory segment.

EPERM The LOCK and UNLOCK operation does not have the appropriate
privilege in its set of effective privileges.

The shmdt() function will fail if:

EINVAL The shmaddr argument is not the data segment start address of a
shared memory segment.

Appropriate privilege is required to override access checks.

shmop(2)

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

System Calls 451

intro(2), exec(2), fork(2), shmctl(2), shmget(2)

exit(2), xpg4(5)

shmop(2)

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

452 man pages section 2: System Calls • Last Revised 30 Sep 1999

sigsend, sigsendset – Send a signal to a process or a group of processes

#include <signal.h>

int sigsend(idtype_t idtype, id_t id, int sig);

int sigsendset(procset_t *psp, int sig);

The sigsend() function sends a signal to the process or group of processes specified
by id and idtype. The signal to be sent is specified by sig and is either 0 or one of the
values listed in signal(3HEAD). If sig is 0 (the null signal), error checking is
performed but no signal is actually sent. This value can be used to check the validity
of id and idtype.

The sending process must have MAC write access to the receiving processes. The real
or effective user ID of the sending process must match the real or saved user ID of the
receiving process, unless the sending process has the PRIV_PROC_OWNER privilege, or
sig is SIGCONT and the sending process has the same session ID as the receiving
process.

If idtype is P_PID, sig is sent to the process with process ID id.

If idtype is P_PGID, sig is sent to all process with process group ID id.

If idtype is P_SID, sig is sent to all process with session ID id.

If idtype is P_UID, sig is sent to any process with effective user ID id.

If idtype is P_GID, sig is sent to any process with effective group ID id.

If idtype is P_CID, sig is sent to any process with scheduler class ID id (see
priocntl(2)).

If idtype is P_ALL, sig is sent to all processes and id is ignored.

If id is P_MYID, the value of id is taken from the calling process.

The process with a process ID of 0 is always excluded. The process with a process ID
of 1 is excluded unless idtype is equal to P_PID.

The sigsendset() function provides an alternate interface for sending signals to
sets of processes. This function sends signals to the set of processes specified by psp.
psp is a pointer to a structure of type procset_t, defined in <sys/procset.h>,
which includes the following members:

idop_t p_op;
idtype_t p_lidtype;
id_t p_lid;
idtype_t p_ridtype;
id_t p_rid;

The p_lidtype and p_lid members specify the ID type and ID of one (“left”) set of
processes; the p_ridtype and p_rid members specify the ID type and ID of a

sigsend(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 453

second (“right”) set of processes. ID types and IDs are specified just as for the idtype
and id arguments to sigsend(). The p_op member specifies the operation to be
performed on the two sets of processes to get the set of processes the function is to
apply to. The valid values for p_op and the processes they specify are:

POP_DIFF Set difference: processes in left set and not in right set.

POP_AND Set intersection: processes in both left and right sets.

POP_OR Set union: processes in either left or right set or both.

POP_XOR Set exclusive-or: processes in left or right set but not in both.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The sigsend() and sigsendset() functions will fail if:

EINVAL The sig argument is not a valid signal number, or the idtype
argument is not a valid idtype field.

EINVAL The sig argument is SIGKILL, idtype is P_PID and id is 1 (proc1).

EPERM The calling process does not have the PRIV_PROC_OWNER
privilege, and its real or effective user ID does not match the real
or effective user ID of the receiving process, and the calling process
is not sending SIGCONT to a process that shares the same session.

ESRCH No process can be found corresponding to that specified by id
and idtype. Or, the sending process does not have MAC write
access to the specified process.

The sigsendset() function will fail if:

EFAULT The psp argument points to an illegal address.

The sending process is required to have MAC write access to the target processes. The
PRIV_PROC_MAC_WRITE and PRIV_PROC_OWNER privileges are recognized.

getpid(2), kill(2), priocntl(2)

kill(1), signal(3C), signal(3HEAD)

sigsend(2)

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

454 man pages section 2: System Calls • Last Revised 20 Apr 2000

sigsend, sigsendset – Send a signal to a process or a group of processes

#include <signal.h>

int sigsend(idtype_t idtype, id_t id, int sig);

int sigsendset(procset_t *psp, int sig);

The sigsend() function sends a signal to the process or group of processes specified
by id and idtype. The signal to be sent is specified by sig and is either 0 or one of the
values listed in signal(3HEAD). If sig is 0 (the null signal), error checking is
performed but no signal is actually sent. This value can be used to check the validity
of id and idtype.

The sending process must have MAC write access to the receiving processes. The real
or effective user ID of the sending process must match the real or saved user ID of the
receiving process, unless the sending process has the PRIV_PROC_OWNER privilege, or
sig is SIGCONT and the sending process has the same session ID as the receiving
process.

If idtype is P_PID, sig is sent to the process with process ID id.

If idtype is P_PGID, sig is sent to all process with process group ID id.

If idtype is P_SID, sig is sent to all process with session ID id.

If idtype is P_UID, sig is sent to any process with effective user ID id.

If idtype is P_GID, sig is sent to any process with effective group ID id.

If idtype is P_CID, sig is sent to any process with scheduler class ID id (see
priocntl(2)).

If idtype is P_ALL, sig is sent to all processes and id is ignored.

If id is P_MYID, the value of id is taken from the calling process.

The process with a process ID of 0 is always excluded. The process with a process ID
of 1 is excluded unless idtype is equal to P_PID.

The sigsendset() function provides an alternate interface for sending signals to
sets of processes. This function sends signals to the set of processes specified by psp.
psp is a pointer to a structure of type procset_t, defined in <sys/procset.h>,
which includes the following members:

idop_t p_op;
idtype_t p_lidtype;
id_t p_lid;
idtype_t p_ridtype;
id_t p_rid;

The p_lidtype and p_lid members specify the ID type and ID of one (“left”) set of
processes; the p_ridtype and p_rid members specify the ID type and ID of a

sigsendset(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 455

second (“right”) set of processes. ID types and IDs are specified just as for the idtype
and id arguments to sigsend(). The p_op member specifies the operation to be
performed on the two sets of processes to get the set of processes the function is to
apply to. The valid values for p_op and the processes they specify are:

POP_DIFF Set difference: processes in left set and not in right set.

POP_AND Set intersection: processes in both left and right sets.

POP_OR Set union: processes in either left or right set or both.

POP_XOR Set exclusive-or: processes in left or right set but not in both.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The sigsend() and sigsendset() functions will fail if:

EINVAL The sig argument is not a valid signal number, or the idtype
argument is not a valid idtype field.

EINVAL The sig argument is SIGKILL, idtype is P_PID and id is 1 (proc1).

EPERM The calling process does not have the PRIV_PROC_OWNER
privilege, and its real or effective user ID does not match the real
or effective user ID of the receiving process, and the calling process
is not sending SIGCONT to a process that shares the same session.

ESRCH No process can be found corresponding to that specified by id
and idtype. Or, the sending process does not have MAC write
access to the specified process.

The sigsendset() function will fail if:

EFAULT The psp argument points to an illegal address.

The sending process is required to have MAC write access to the target processes. The
PRIV_PROC_MAC_WRITE and PRIV_PROC_OWNER privileges are recognized.

getpid(2), kill(2), priocntl(2)

kill(1), signal(3C), signal(3HEAD)

sigsendset(2)

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

456 man pages section 2: System Calls • Last Revised 20 Apr 2000

stat, lstat, fstat – get file status

#include <sys/types.h>

#include <sys/stat.h>

int stat(const char *path, struct stat *buf);

int lstat(const char *path, struct stat *buf);

int fstat(int fildes, struct stat *buf);

The stat() function obtains information about the file pointed to by path. Read,
write, or execute permission of the named file is not required, but all directories listed
in the path name leading to the file must be searchable.

The lstat() function obtains file attributes similar to stat(), except when the
named file is a symbolic link; in that case lstat() returns information about the link,
while stat() returns information about the file the link references.

The fstat() function obtains information about an open file known by the file
descriptor fildes, obtained from a successful open(2), creat(2), dup(2), fcntl(2), or
pipe(2) function.

The buf argument is a pointer to a stat structure into which information is placed
concerning the file. A stat structure includes the following members:

mode_t st_mode; /* File mode (see mknod(2)) */
ino_t st_ino; /* Inode number */
dev_t st_dev; /* ID of device containing */

/* a directory entry for this file */
dev_t st_rdev; /* ID of device */

/* This entry is defined only for */
/* char special or block special files */

nlink_t st_nlink; /* Number of links */
uid_t st_uid; /* User ID of the file’s owner */
gid_t st_gid; /* Group ID of the file’s group */
off_t st_size; /* File size in bytes */
time_t st_atime; /* Time of last access */
time_t st_mtime; /* Time of last data modification */
time_t st_ctime; /* Time of last file status change */

/* Times measured in seconds since */
/* 00:00:00 UTC, Jan. 1, 1970 */

long st_blksize; /* Preferred I/O block size */
blkcnt_t st_blocks; /* Number of 512 byte blocks allocated*/

Descriptions of structure members are as follows:

st_mode The mode of the file as described in mknod(2). In addition to the
modes described in mknod(), the mode of a file may also be
S_IFLNK if the file is a symbolic link. S_IFLNK may only be
returned by lstat().

st_ino This field uniquely identifies the file in a given file system. The
pair st_ino and st_dev uniquely identifies regular files.

stat(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 457

st_dev This field uniquely identifies the file system that contains the file.
Its value may be used as input to the ustat() function to
determine more information about this file system. No other
meaning is associated with this value.

st_rdev This field should be used only by administrative commands. It is
valid only for block special or character special files and only has
meaning on the system where the file was configured.

st_nlink This field should be used only by administrative commands.

st_uid The user ID of the file’s owner.

st_gid The group ID of the file’s group.

st_size For regular files, this is the address of the end of the file. For block
special or character special, this is not defined. See also pipe(2).

st_atime Time when file data was last accessed. Changed by the following
functions: creat(), mknod(), pipe(), utime(2), and read(2).

st_mtime Time when data was last modified. Changed by the following
functions: creat(), mknod(), pipe(), utime(), and write(2).

st_ctime Time when file status was last changed. Changed by the following
functions: chmod(), chown(), creat(), link(2), mknod(),
pipe(), unlink(2), utime(), and write().

st_blksize A hint as to the "best" unit size for I/O operations. This field is not
defined for block special or character special files.

st_blocks The total number of physical blocks of size 512 bytes actually
allocated on disk. This field is not defined for block special or
character special files.

stat(), lstat(), and fstat() require mandatory read access to the final
component of path. If the file descriptor is open only for writing, fstat() requires
mandatory read access to the object to which the descriptor refers. To override these
restrictions, the calling process may assert the PRIV_FILE_MAC_READ privilege in its
set of effective privileges.

If the calling process does not have mandatory read access, stat(), lstat(), and
fstat() return fixed values for some elements of the stat structure.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The stat(), fstat(), and lstat() functions will fail if:

EOVERFLOW The file size in bytes or the number of blocks allocated to the file or
the file serial number cannot be represented correctly in the
structure pointed to by buf.

stat(2)

RETURN VALUES

ERRORS

458 man pages section 2: System Calls • Last Revised 20 Apr 2000

The stat() and lstat() functions will fail if:

EACCES Search permission is denied for a component of the path prefix. To
override this restriction, the calling process may assert one or both
of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

EFAULT The buf or path argument points to an illegal address.

EINTR A signal was caught during the execution of the stat() or
lstat() function.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length
of a path component exceeds NAME_MAX while _POSIX_NO_TRUNC
is in effect.

ENOENT The named file does not exist or is the null pathname.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOTDIR A component of the path prefix is not a directory.

EOVERFLOW A component is too large to store in the structure pointed to by buf.

The fstat() function will fail if:

EBADF The fildes argument is not a valid open file descriptor.

EFAULT The buf argument points to an illegal address.

EINTR A signal was caught during the execution of the fstat()
function.

ENOLINK The fildes argument points to a remote machine and the link to that
machine is no longer active.

EOVERFLOW A component is too large to store in the structure pointed to by buf.

The stat(), fstat(), and lstat() functions have transitional interfaces for 64-bit
file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level stat() and fstat() are Async-Signal-Safe

stat(), lstat(), and fstat() require mandatory read access to the final
component of path. If the file descriptor is open only for writing, fstat() requires

stat(2)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

System Calls 459

mandatory read access to the object to which the descriptor refers. To override these
restrictions, the calling process may assert the PRIV_FILE_MAC_READ privilege in its
set of effective privileges.

To override access restrictions, the calling process of stat() or lstat() may also
assert one or both of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

Certain uses of this interface may present a covert channel. If a covert channel is
exploited, the execution of the process may be delayed. To bypass this delay, the
process may assert the PRIV_PROC_NODELAY privilege.

chmod(2), chown(2), creat(2), fcntl(2), link(2), mknod(2), open(2), read(2),
unlink(2), write(2)

dup(2), pipe(2), time(2), utime(2), fattach(3C), stat(3HEAD), attributes(5)

If you use chmod(2) to change the file group owner permissions on a file with ACL
entries, both the file group owner permissions and the ACL mask are changed to the
new permissions. Be aware that the new ACL mask permissions may change the
effective permissions for additional users and groups who have ACL entries on the
file.

stat(2)

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual
NOTES

460 man pages section 2: System Calls • Last Revised 20 Apr 2000

statvfs, fstatvfs – get file system information

#include <sys/types.h>

#include <sys/statvfs.h>

int statvfs(const char *path, struct statvfs *buf);

int fstatvfs(int fildes, struct statvfs *buf);

The statvfs() function returns a “generic superblock” describing a file system; it
can be used to acquire information about mounted file systems. The buf argument is a
pointer to a structure (described below) that is filled by the function.

The path argument should name a file that resides on that file system. The file system
type is known to the operating system. Read, write, or execute permission for the
named file is not required, but all directories listed in the path name leading to the file
must be searchable.

The statvfs structure pointed to by buf includes the following members:

u_long f_bsize; /* preferred file system block size */
u_long f_frsize; /* fundamental filesystem block

(size if supported) */
fsblkcnt_t f_blocks; /* total # of blocks on file system

in units of f_frsize */
fsblkcnt_t f_bfree; /* total # of free blocks */
fsblkcnt_t f_bavail; /* # of free blocks avail to

non-super-user */
fsfilcnt_t f_files; /* total # of file nodes (inodes) */
fsfilcnt_t f_ffree; /* total # of free file nodes */
fsfilcnt_t f_favail; /* # of inodes avail to

non-super-user*/
u_long f_fsid; /* file system id (dev for now) */
char f_basetype[FSTYPSZ]; /* target fs type name,

null-terminated */
u_long f_flag; /* bit mask of flags */
u_long f_namemax; /* maximum file name length */
char f_fstr[32]; /* file system specific string */
u_long f_filler[16]; /* reserved for future expansion */

The f_basetype member contains a null-terminated FSType name of the mounted
target.

The following values can be returned in the f_flag field:

ST_RDONLY 0x01 /* read-only file system */
ST_NOSUID 0x02 /* does not support setuid/setgid semantics */
ST_NOTRUNC 0x04 /* does not truncate file names longer than

NAME_MAX */

The fstatvfs() function is similar to statvfs(), except that the file named by path
in statvfs() is instead identified by an open file descriptor fildes obtained from a
successful open(2), creat(2), dup(2), fcntl(2), or pipe(2) function call.

statvfs(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 461

statvfs() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The statvfs() and fstatvfs() functions will fail if:

EOVERFLOW One of the values to be returned cannot be represented correctly in
the structure pointed to by buf.

The statvfs() function will fail if:

EACCES Search permission is denied on a component of the path prefix. To
override this restriction, the calling process may assert one or both
of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH

The calling process does not have mandatory read access to
path_name. To override this restriction, the calling process may
assert the PRIV_FILE_MAC_READ privilege.

EFAULT The path or buf argument points to an illegal address.

EINTR A signal was caught during the execution of the statvfs()
function.

EIO An I/O error occurred while reading the file system.

ELOOP Too many symbolic links were encountered in translating path.

ENAMETOOLONG The length of a path component exceeds NAME_MAX characters, or
the length of path The exceeds PATH_MAX characters.

ENOENT Either a component of the path prefix or the file referred to by path
does not exist.

ENOLINK The path argument points to a remote machine and the link to that
machine is no longer active.

ENOTDIR A component of the path prefix of path is not a directory.

The fstatvfs() function will fail if:

EACCES The descriptor is open only for writing and the calling process
does not have mandatory read access to the object to which the
descriptor refers. To override this restriction, the calling process
may assert the PRIV_FILE_MAC_READ privilege.

EBADF The fildes argument is not an open file descriptor.

EFAULT The buf argument points to an illegal address.

EINTR A signal was caught during the execution of the fstatvfs()
function.

statvfs(2)

RETURN VALUES

ERRORS

462 man pages section 2: System Calls • Last Revised 30 Sep 1999

EIO An I/O error occurred while reading the file system.

The statvfs() and fstatvfs() functions have transitional interfaces for 64-bit file
offsets. See lf64(5).

Appropriate privilege is required to override access checks.

chmod(2), chown(2), creat(2), fcntl(2), link(2), mknod(2), open(2), read(2),
unlink(2), write(2)

dup(2), pipe(2), time(2), utime(2)

The values returned for f_files, f_ffree, and f_favail may not be valid for NFS
mounted file systems.

statvfs(2)

USAGE

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
Manual

SunOS 5.8
Reference Manual

BUGS

System Calls 463

stime – Set system time and date

#include <unistd.h>

int stime(const time_t *tp);

The stime() function sets the system’s idea of the time and date. The tp argument
points to the value of time as measured in seconds from 00:00:00 UTC January 1, 1970.
The calling process must have the PRIV_SYS_CONFIG privilege in order to use this
system call.

stime() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The stime() function will fail if:

EINVAL The tp argument points to an invalid (negative) time value.

EPERM The calling process does not have the PRIV_SYS_CONFIG
privilege.

The calling process must have the PRIV_SYS_CONFIG privilege in order to use this
system call.

time(2)

stime(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGESSunOS 5.8
Reference Manual

464 man pages section 2: System Calls • Last Revised 9 Sep 1997

swapctl – Manage swap space

#include <sys/stat.h>

#include <sys/swap.h>

int swapctl(int cmd, void *arg);

The swapctl() function adds, deletes, or returns information about swap resources.
cmd specifies one of the following options contained in <sys/swap.h>:

SC_ADD /* add a resource for swapping */
SC_LIST /* list the resources for swapping */
SC_REMOVE /* remove a resource for swapping */
SC_GETNSWP /* return number of swap resources */

When SC_ADD or SC_REMOVE is specified, arg is a pointer to a swapres structure
containing the following members:

char *sr_name; /* pathname of resource */
off_t sr_start; /* offset to start of swap area */
off_t sr_length; /* length of swap area */

The sr_start and sr_length members are specified in 512-byte blocks. A swap
resource can only be removed by specifying the same values for the sr_start and
sr_length members as were specified when it was added. Swap resources need not
be removed in the order in which they were added.

When SC_LIST is specified, arg is a pointer to a swaptable structure containing the
following members:

int swt_n; /* number of swapents following */
struct swapent swt_ent[]; /* array of swt_n swapents */

A swapent structure contains the following members:

char *ste_path; /* name of the swap file */
off_t ste_start; /* starting block for swapping */
off_t ste_length; /* length of swap area */
long ste_pages; /* number of pages for swapping */
long ste_free; /* number of ste_pages free */
long ste_flags; /* ST_INDEL bit set if swap file */

/* is now being deleted */

The SC_LIST function causes swapctl() to return at most swt_n entries. The return
value of swapctl() is the number actually returned. The ST_INDEL bit is turned on
in ste_flags if the swap file is in the process of being deleted.

When SC_GETNSWP is specified, swapctl() returns as its value the number of swap
resources in use. arg is ignored for this operation.

The SC_ADD and SC_REMOVE functions will fail if calling process does not have
appropriate privileges.

swapctl(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 465

Upon successful completion, swapctl() returns a value of 0 for SC_ADD or
SC_REMOVE, the number of struct swapent entries actually returned for SC_LIST,
or the number of swap resources in use for SC_GETNSWP. Upon failure, swapctl()
returns a value of −1 and sets errno to indicate an error.

Under the following conditions, the function swapctl() fails and sets errno to:

EEXIST Part of the range specified by sr_start and
sr_length is already being used for swapping on the
specified resource (SC_ADD).

EFAULT Either arg, sr_name, or ste_path points to an illegal
address.

EINVAL The specified function value is not valid, the path
specified is not a swap resource (SC_REMOVE), part of
the range specified by sr_start and sr_length lies
outside the resource specified (SC_ADD), or the
specified swap area is less than one page (SC_ADD).

EISDIR The path specified for SC_ADD is a directory.

ELOOP Too many symbolic links were encountered in
translating the pathname provided to SC_ADD or
SC_REMOVE.

ENAMETOOLONG The length of a component of the path specified for
SC_ADD or SC_REMOVE exceeds NAME_MAX characters
or the length of the path exceeds PATH_MAX characters
and _POSIX_NO_TRUNC is in effect.

ENOENT The pathname specified for SC_ADD or SC_REMOVE
does not exist.

ENOMEM An insufficient number of struct swapent structures
were provided to SC_LIST, or there were insufficient
system storage resources available during an SC_ADD
or SC_REMOVE, or the system would not have enough
swap space after an SC_REMOVE.

ENOSYS The pathname specified for SC_ADD or SC_REMOVE is
not a file or block special device.

ENOTDIR Pathname provided to SC_ADD or SC_REMOVE
contained a component in the path prefix that was not
a directory.

EPERM The effective user of the calling process is not
super-user. To override this restriction, the calling
process must assert the PRIV_SYS_MOUNT privilege.

EROFS The pathname specified for SC_ADD is a read-only file
system.

swapctl(2)

RETURN VALUES

ERRORS

466 man pages section 2: System Calls • Last Revised 25 Sep 1997

Additionally, the swapctl() function will fail for 32-bit interfaces if:

EOVERFLOW The amount of swap space configured on the machine
is too large to be represented by a 32-bit quantity.

EXAMPLE 1 The usage of the SC_GETNSWP and SC_LIST commands.

The following example demonstrates the usage of the SC_GETNSWP and SC_LIST
commands.

#include <sys/stat.h>
#include <sys/swap.h>
#include <stdio.h>

#define MAXSTRSIZE 80

main(argc, argv)
int argc;
char *argv[];

{
swaptbl_t *s;
int i, n, num;
char *strtab; /* string table for path names */

again:
if ((num = swapctl(SC_GETNSWP, 0)) == -1) {

perror("swapctl: GETNSWP");
exit(1);

}
if (num == 0) {

fprintf(stderr, "No Swap Devices Configured\n");
exit(2);

}
/* allocate swaptable for num+1 entries */
if ((s = (swaptbl_t *)

malloc(num * sizeof(swapent_t) +
sizeof(struct swaptable))) ==

(void *) 0) {
fprintf(stderr, "Malloc Failed\n");
exit(3);

}
/* allocate num+1 string holders */
if ((strtab = (char *)

malloc((num + 1) * MAXSTRSIZE)) == (void *) 0) {
fprintf(stderr, "Malloc Failed\n");
exit(3);

}
/* initialize string pointers */
for (i = 0; i < (num + 1); i++) {

s->swt_ent[i].ste_path = strtab + (i * MAXSTRSIZE);
}

s->swt_n = num + 1;
if ((n = swapctl(SC_LIST, s)) < 0) {

perror("swapctl");
exit(1);

swapctl(2)

EXAMPLES

System Calls 467

EXAMPLE 1 The usage of the SC_GETNSWP and SC_LIST commands. (Continued)

}
if (n > num) { /* more were added */

free(s);
free(strtab);
goto again;

}
for (i = 0; i < n; i++)

printf("%s %ld\n",
s->swt_ent[i].ste_path, s->swt_ent[i].ste_pages);

}

For a successful call, the calling process must assert the PRIV_SYS_MOUNT privilege.

swapctl(2)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

468 man pages section 2: System Calls • Last Revised 25 Sep 1997

symlink – make a symbolic link to a file

#include <unistd.h>

int symlink(const char *name1, const char *name2);

The symlink() function creates a symbolic link name2 to the file name1. Either name
may be an arbitrary pathname, the files need not be on the same file system, and
name1 may be nonexistent.

The file to which the symbolic link points is used when an open(2) operation is
performed on the link. A stat() operation performed on a symbolic link returns the
linked-to file, while an lstat() operation returns information about the link itself.
See stat(2). Unexpected results may occur when a symbolic link is made to a
directory. To avoid confusion in applications, the readlink(2) call can be used to read
the contents of a symbolic link.

The containing directory cannot be a multilevel directory. There is no privilege to
bypass this restriction.

The link is created with its sensitivity label set to the sensitivity label of the calling
process, and its user ID set to the effective user ID of the calling process. If the file
system was not mounted with the BSD file-creation semantics flag and the set-gid bit
of the parent directory is clear, the new link’s group ID is set to the group ID of the
directory in which the link is created. The new link’s permission bits are set to 0777.
Even when the containing directory has a default access control list (ACL), no ACL is
set on the new link.

symlink() returns:

0 On success.

−1 On failure, sets errno to indicate the error, and the symbolic link is not
made.

EACCES Search permission is denied for a component of the path prefix of
name2. To override this restriction, the calling process may assert
one or both of these privileges: PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

Write permission is denied to the containing directory of name2. To
override this restriction, the calling process may assert one or both
of these privileges: PRIV_FILE_DAC_WRITE and
PRIV_FILE_MAC_WRITE.

EDQUOT The directory where the entry for the new symbolic link is being
placed cannot be extended because the user’s quota of disk blocks
on that file system has been exhausted; the new symbolic link
cannot be created because the user’s quota of disk blocks on that
file system has been exhausted; or the user’s quota of inodes on
the file system where the file is being created has been exhausted.

symlink(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 469

EEXIST The file referred to by name2 already exists.

EFAULT The name1 or name2 argument points to an illegal address.

EIO An I/O error occurs while reading from or writing to the file
system.

ELOOP Too many symbolic links are encountered in translating name2.

ENAMETOOLONG The length of the name2 argument exceeds PATH_MAX, or the
length of a name2 component exceeds NAME_MAX while
_POSIX_NO_TRUNC is in effect.

ENOENT A component of the path prefix of name2 does not exist.

ENOSPC The directory in which the entry for the new symbolic link is being
placed cannot be extended because no space is left on the file
system containing the directory; the new symbolic link cannot be
created because no space is left on the file system which will
contain the link; or there are no free inodes on the file system on
which the file is being created.

ENOSYS The file system does not support symbolic links

ENOTDIR A component of the path prefix of name2 is not a directory.

EROFS The file name2 would reside on a read-only file system.

Appropriate privilege is required to override access checks.

The containing directory cannot be a multilevel directory.

link(2), open(2), readlink(2), stat(2), unlink(2)

cp(1)

symlink(2)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
ManualSunOS 5.8

Reference Manual

470 man pages section 2: System Calls • Last Revised 30 Sep 1999

sysinfo – Get and set system information strings

#include <sys/systeminfo.h>

long sysinfo(int command, char *buf, long count);

The sysinfo() function copies information relating to the operating system on
which the process is executing into the buffer pointed to by buf. It can also set certain
information where appropriate commands are available. The count parameter indicates
the size of the buffer.

The POSIX P1003.1 interface (see standards(5)) sysconf(3C) provides a similar
class of configuration information, but returns an integer rather than a string.

The values for command are as follows:

SI_SYSNAME Copy into the array pointed to by buf the string that
would be returned by uname(2) in the sysname field.
This is the name of the implementation of the operating
system, for example, SunOS or UTS.

SI_HOSTNAME Copy into the array pointed to by buf a string that
names the present host machine. This is the string that
would be returned by uname(2) in the nodename field.
This hostname or nodename is often the name the
machine is known by locally. The hostname is the name
of this machine as a node in some network. Different
networks may have different names for the node, but
presenting the nodename to the appropriate network
directory or name-to-address mapping service should
produce a transport end point address. The name may
not be fully qualified. Internet host names may be up to
256 bytes in length (plus the terminating null).

SI_SET_HOSTNAME Copy the null-terminated contents of the array pointed
to by buf into the string maintained by the kernel
whose value will be returned by succeeding calls to
sysinfo() with the command SI_HOSTNAME. This
command requires that the calling process have the
PRIV_SYS_NET_CONFIG privilege.

SI_RELEASE Copy into the array pointed to by buf the string that
would be returned by uname(2) in the release field.
Typical values might be 5.2 or 4.1.

SI_VERSION Copy into the array pointed to by buf the string that
would be returned by uname(2) in the version field. The
syntax and semantics of this string are defined by the
system provider.

sysinfo(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 471

SI_MACHINE Copy into the array pointed to by buf the string that
would be returned by uname(2) in the machine field, for
example, sun4u, sun4d, or sun4m.

SI_ARCHITECTURE Copy into the array pointed to by buf a string
describing the basic instruction set architecture of the
current system, for example, sparc, mc68030, m32100,
or i386. These names may not match predefined names
in the C language compilation system.

SI_ISALIST Copy into the array pointed to by buf the names of the
variant instruction set architectures executable on the
current system.

The names are space-separated and are ordered in the
sense of best performance. That is, earlier-named
instruction sets may contain more instructions than
later-named instruction sets; a program that is
compiled for an earlier-named instruction set will most
likely run faster on this machine than the same
program compiled for a later-named instruction set.

Programs compiled for an instruction set that does not
appear in the list will most likely experience
performance degradation or not run at all on this
machine.

The instruction set names known to the system are
listed in isalist(5); these names may or may not
match predefined names or compiler options in the C
language compilation system.

SI_PLATFORM Copy into the array pointed to by buf a string
describing the specific model of the hardware platform,
for example, SUNW,Sun_4_75,
SUNW,SPARCsystem-600, or i86pc.

SI_HW_PROVIDER Copies the name of the hardware manufacturer into the
array pointed to by buf.

SI_HW_SERIAL Copy into the array pointed to by buf a string which is
the text representation of the hardware-specific serial
number of the physical machine on which the function
is executed. Note that this may be implemented in
Read-Only Memory, using software constants set when
building the operating system, or by other means, and
may contain non-numeric characters. It is anticipated
that manufacturers will not issue the same “serial
number” to more than one physical machine. The pair
of strings returned by SI_HW_PROVIDER and

sysinfo(2)

472 man pages section 2: System Calls • Last Revised 20 Apr 2000

SI_HW_SERIAL is likely to be unique across all
vendor’s SVR4 implementations.

SI_SRPC_DOMAIN Copies the Secure Remote Procedure Call domain
name into the array pointed to by buf.

SI_SET_SRPC_DOMAIN Set the string to be returned by sysinfo() with the
SI_SRPC_DOMAIN command to the value contained in
the array pointed to by buf. This command requires
that the calling process have the
PRIV_SYS_NET_CONFIG privilege.

SI_DHCP_CACHE Copy into the array pointed to by buf an ASCII string
consisting of the ASCII hexidecimal encoding of the
name of the interface configured by boot(1M)
followed by the DHCPACK reply from the server. This
command is intended for use only by the
dhcpagent(1M) DHCP client daemon for the purpose
of adopting the DHCP maintenance of the interface
configured by boot.

Upon successful completion, the value returned indicates the buffer size in bytes
required to hold the complete value and the terminating null character. If this value is
no greater than the value passed in count, the entire string was copied. If this value is
greater than count, the string copied into buf has been truncated to count −1 bytes plus
a terminating null character.

Otherwise, −1 is returned and errno is set to indicate the error.

The sysinfo() function will fail if:

EFAULT The buf argument does not point to a valid address.

EINVAL The data for a SET command exceeds the limits established by the
implementation.

EPERM The calling process does not have the PRIV_SYS_NET_CONFIG
privilege.

In many cases there is no corresponding programmatic interface to set these values;
such strings are typically settable only by the system administrator modifying entries
in the /etc/system directory or the code provided by the particular OEM reading a
serial number or code out of read-only memory, or hard-coded in the version of the
operating system.

A good estimation for count is 257, which is likely to cover all strings returned by this
interface in typical installations.

The calling process must have the PRIV_SYS_NET_CONFIG privilege in order to
perform the SI_SET_HOSTNAME, and SI_SET_SRPC_DOMAIN operations.

sysinfo(2)

RETURN VALUES

ERRORS

USAGE

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

System Calls 473

boot(1M), dhcpagent(1M), uname(2), gethostid(3C), gethostname(3C),
sysconf(3C), isalist(5), standards(5)

sysinfo(2)

SunOS 5.8
Reference Manual

474 man pages section 2: System Calls • Last Revised 20 Apr 2000

tokmapper – Manipulate kernel token mapping caches

cc [flags…] file… -ltsol

#include <netinet/in.h>
#include <sys/tiuser.h>

#include <sys/tsol/tndb.h>

int tokmapper(int cmd, void *buf);

tokmapper() manipulates kernel token mapping caches. cmd is the operation to be
performed. Currently, the only operation supported is MSIX_FLUSH, which flushes
kernel token mappings for the specified MSIX host. For the MSIX_FLUSH operation,
buf should point to a netbuf structure declared in <sys/tiuser.h>. The network
address in the netbuf structure should be a sockaddr_in structure declared in
<netinet/in.h>.

To make this call successfully, a process must have the PRIV_SYS_NET_CONFIG
privilege.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

tokmapper() returns:

0 On success.

−1 On failure and sets errno to indicate the error.

EFAULT buf points to an invalid address.

EINVAL A field in the netbuf or sockaddr_in structure is invalid; or the
operation specified in cmd is not supported.

EPERM The process has insufficient privilege to perform the operation. To
make this call successfully, a process must have the
PRIV_SYS_NET_CONFIG privilege.

tokmapd(1M), tokmapctl(1M)

attributes(5)

tokmapper(2)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

RETURN VALUES

ERRORS

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

System Calls 475

uadmin – administrative control

#include <sys/uadmin.h>

int uadmin(int cmd, int fcn, uintptr_t mdep);

The uadmin() function provides control for basic administrative functions. This
function is tightly coupled to the system administrative procedures and is not
intended for general use. The argument mdep is provided for machine-dependent use
and is not defined here.

As specified by cmd, the following commands are available:

A_SHUTDOWN The system is shut down. All user processes are killed, the buffer
cache is flushed, and the root file system is unmounted. The action
to be taken after the system has been shut down is specified by fcn.
The functions are generic; the hardware capabilities vary on
specific machines.

AD_HALT Halt the processor(s).

AD_POWEROFF Halt the processor(s) and turn off the power.

AD_BOOT Reboot the system, using the kernel file.

AD_IBOOT Interactive reboot; user is prompted for
bootable program name.

The calling process must have the PRIV_SYS_BOOT privilege in
order to perform this command.

A_REBOOT The system stops immediately without any further processing. The
action to be taken next is specified by fcn as above.

The calling process must have the PRIV_SYS_BOOT privilege in
order to perform this command.

A_REMOUNT The root file system is mounted again after having been fixed. This
should be used only during the startup process.

The calling process must have the PRIV_SYS_BOOT privilege in
order to perform this command.

A_FREEZE Suspend the whole system. The system state is preserved in the
state file. The following three subcommands are available.

AD_COMPRESS Save the system state to the state file with
compression of data.

AD_CHECK Check if your system supports suspend and
resume. Without performing a system
suspend/resume, this command checks if this
feature is currently available on your system.

uadmin(2)

NAME

SYNOPSIS

DESCRIPTION

476 man pages section 2: System Calls • Last Revised 10 Aug 2001

A_DUMP The system is forced to panic immediately
without any further processing and a crash
dump is written to the dump device (see
dumpadm(1M)). The action to be taken next is
specified by fcn as above.

AD_FORCE Force AD_COMPRESS even when threads of
drivers are not suspendable.

The calling process must have the PRIV_SYS_BOOT privilege in
order to perform this command.

Upon successful completion, the value returned depends on cmd as follows:

A_SHUTDOWN Never returns.

A_REBOOT Never returns.

A_FREEZE 0 upon resume.

A_REMOUNT 0.

Otherwise, −1 is returned and errno is set to indicate the error.

The uadmin() function will fail if:

EPERM The calling process does not have sufficient privilege.

ENOMEM Suspend/resume ran out of physical memory.

ENOSPC Suspend/resume could not allocate enough space on the root file
system to store system information.

ENOTSUP Suspend/resume not supported on this platform.

ENXIO Unable to successfully suspend system.

EBUSY Suspend already in progress.

The calling process must have the PRIV_SYS_BOOT privilege in order to perform the
A_FREEZE, A_REBOOT, A_REMOUNT, and A_SHUTDOWN commands.

uadmin(1M)

kernel(1M)

uadmin(2)

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

System Calls 477

ulimit – Get and set process limits

#include <ulimit.h>

long ulimit(int cmd, /* newlimit */...);

The ulimit() function provides for control over process limits. It is effective in
limiting the growth of regular files. Pipes are limited to PIPE_MAX bytes.

The cmd values, defined in <ulimit.h>, include:

UL_GETFSIZE Return the soft file size limit of the process. The limit is in units of
512-byte blocks and is inherited by child processes. Files of any
size can be read. The return value is the integer part of the soft file
size limit divided by 512. If the result cannot be represented as a
long int, the result is unspecified.

UL_SETFSIZE Set the hard and soft file size limits for output operations of the
process to the value of the second argument, taken as a long int.
Any process may decrease its own hard limit, but only a process
with an effective PRIV_SYS_CONFIG privilege may increase the
limit. The new file size limit is returned. The hard and soft file size
limits are set to the specified value multiplied by 512. If the result
would overflow an rlimit_t, the actual value set is unspecified.

UL_GMEMLIM Get the maximum possible break value (see brk(2)).

UL_GDESLIM Get the current value of the maximum number of open files per
process configured in the system.

Upon successful completion, ulimit() returns the value of the requested limit.
Otherwise, −1 is returned, the limit is not changed, and errno is set to indicate the
error.

The ulimit() function will fail if:

EINVAL The cmd argument is not valid.

EPERM A process not having an effective PRIV_SYS_CONFIG privilege
attempts to increase its file size limit.

Since all return values are permissible in a successful situation, an application wishing
to check for error situations should set errno to 0, then call ulimit(), and if it
returns −1, check if errno is non-zero.

The getrlimit() and setrlimit() functions provide a more general interface for
controlling process limits, and are preferred over ulimit(). See getrlimit(2).

The PRIV_SYS_CONFIG privilege is checked.

getrlimit(2), write(2)

brk(2)

ulimit(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

4/01 Reference
ManualSunOS 5.8

Reference Manual

478 man pages section 2: System Calls • Last Revised 18 Apr 1997

umount, umount2 – unmount a file system

#include <sys/mount.h>

int umount(const char *file);

int umount2(const char *file, int mflag);

The umount() function requests that a previously mounted file system contained on
the block special device or directory identified by file be unmounted. The file argument
is a pointer to a path name. After unmounting the file system, the directory upon
which the file system was mounted reverts to its ordinary interpretation.

For all file system types except namefs, umount() may be invoked by a calling process
with the PRIV_SYS_MOUNT privilege. For the namefs file system, the calling process
must either be the owner of file or assert the PRIV_FILE_OWNER privilege.

umount() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The umount() function will fail if:

EACCES Search permission is denied on a component of file. To
override this restriction, the calling process may assert
one or both of these privileges:
PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

EBUSY A file on file is busy.

EFAULT The file pointed to by file points to an illegal address.

EINVAL The file pointed to by file is not mounted.

ENOENT The file pointed to by file does not exist.

ELOOP Too many symbolic links were encountered in
translating the path pointed to by file.

ENAMETOOLONG The length of the file argument exceeds PATH_MAX, or
the length of a file component exceeds NAME_MAX while
_POSIX_NO_TRUNC is in effect.

ENOLINK The file pointed to by file is on a remote machine, and
the link to that machine is no longer active.

ENOTBLK The file pointed to by file is not a block special device.

EPERM The calling process does not own file and file is a file
system of type namefs. To override this restriction, the
calling process may assert the PRIV_FILE_OWNER.

umount(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 479

file is not a file system of type namefs and the calling
process has not asserted the PRIV_SYS_MOUNT
privilege.

EREMOTE The file pointed to by file is remote.

The umount() function may be invoked by a calling process with the appropriate
privilege.

Appropriate privilege is required to override access or ownership checks.

For all file system types except namefs, the umount() system call may be invoked by a
calling process with the PRIV_SYS_MOUNT privilege. For the namefs file system, the
calling process must either be the owner of file or assert the PRIV_FILE_OWNER
privilege.

mount(2)

umount(2)

USAGE

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual

480 man pages section 2: System Calls • Last Revised 30 Sep 1999

umount, umount2 – unmount a file system

#include <sys/mount.h>

int umount(const char *file);

int umount2(const char *file, int mflag);

The umount() function requests that a previously mounted file system contained on
the block special device or directory identified by file be unmounted. The file argument
is a pointer to a path name. After unmounting the file system, the directory upon
which the file system was mounted reverts to its ordinary interpretation.

For all file system types except namefs, umount() may be invoked by a calling process
with the PRIV_SYS_MOUNT privilege. For the namefs file system, the calling process
must either be the owner of file or assert the PRIV_FILE_OWNER privilege.

umount() returns:

0 On success.

−1 On failure, and sets errno to indicate the error.

The umount() function will fail if:

EACCES Search permission is denied on a component of file. To
override this restriction, the calling process may assert
one or both of these privileges:
PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

EBUSY A file on file is busy.

EFAULT The file pointed to by file points to an illegal address.

EINVAL The file pointed to by file is not mounted.

ENOENT The file pointed to by file does not exist.

ELOOP Too many symbolic links were encountered in
translating the path pointed to by file.

ENAMETOOLONG The length of the file argument exceeds PATH_MAX, or
the length of a file component exceeds NAME_MAX while
_POSIX_NO_TRUNC is in effect.

ENOLINK The file pointed to by file is on a remote machine, and
the link to that machine is no longer active.

ENOTBLK The file pointed to by file is not a block special device.

EPERM The calling process does not own file and file is a file
system of type namefs. To override this restriction, the
calling process may assert the PRIV_FILE_OWNER.

umount2(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 481

file is not a file system of type namefs and the calling
process has not asserted the PRIV_SYS_MOUNT
privilege.

EREMOTE The file pointed to by file is remote.

The umount() function may be invoked by a calling process with the appropriate
privilege.

Appropriate privilege is required to override access or ownership checks.

For all file system types except namefs, the umount() system call may be invoked by a
calling process with the PRIV_SYS_MOUNT privilege. For the namefs file system, the
calling process must either be the owner of file or assert the PRIV_FILE_OWNER
privilege.

mount(2)

umount2(2)

USAGE

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual

482 man pages section 2: System Calls • Last Revised 30 Sep 1999

unlink – remove directory entry

#include <unistd.h>

int unlink(const char *path);

The unlink() function removes a link to a file. If path names a symbolic link,
unlink() removes the symbolic link named by path and does not affect any file or
directory named by the contents of the symbolic link. Otherwise, unlink() removes
the link named by the pathname pointed to by path and decrements the link count of
the file referenced by the link.

When the file’s link count becomes 0 and no process has the file open, the space
occupied by the file will be freed and the file will no longer be accessible. If one or
more processes have the file open when the last link is removed, the link will be
removed before unlink() returns, but the removal of the file contents will be
postponed until all references to the file are closed.

The path argument must not name a directory unless the process has asserted the
PRIV_SYS_CONFIG privilege and the implementation supports using unlink() on
directories.

Upon successful completion, unlink() will mark for update the st_ctime and
st_mtime fields of the parent directory. If the file’s link count is not 0, the st_ctime
field of the file will be marked for update.

Upon successful completion, 0 is returned. Otherwise, −1 is returned, errno is set to
indicate the error, and the file is not unlinked.

The unlink() function will fail if:

EACCES Search permission is denied for a component of the
path prefix.

Write permission is denied on the directory containing
the link to be removed. To override this restriction, the
calling process must assert one or both of these
privileges: PRIV_FILE_DAC_WRITE and
PRIV_FILE_MAC_WRITE.

The parent directory has the sticky bit set and the file is
not writable by the user; or the user does not own the
parent directory and the user does not own the file. To
override this restriction, the calling process must assert
one or more of these privileges:
PRIV_FILE_DAC_WRITE, PRIV_FILE_MAC_WRITE,
and PRIV_FILE_OWNER.

EBUSY The entry to be unlinked is the mount point for a
mounted file system.

unlink(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 483

EFAULT The path argument points to an illegal address.

EINTR A signal was caught during the execution of the
unlink() function.

ELOOP Too many symbolic links were encountered in
translating path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or
the length of a path component exceeds NAME_MAX
while _POSIX_NO_TRUNC is in effect.

ENOENT The named file does not exist or is a null pathname.

ENOLINK The path argument points to a remote machine and the
link to that machine is no longer active.

ENOTDIR A component of the path prefix is not a directory.

EPERM The named file is a directory and the calling process
must assert the PRIV_SYS_CONFIG privilege.

EROFS The directory entry to be unlinked is part of a
read-only file system.

The unlink() function may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an
intermediate result whose length exceeds PATH_MAX.

ETXTBSY The entry to be unlinked is the last directory entry to a
pure procedure (shared text) file that is being executed.

Applications should use rmdir(2) to remove a directory.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

Appropriate privilege is required to override access checks.

If the named file is a directory, the calling process must assert the PRIV_SYS_CONFIG
privilege.

rm(1), link(2), open(2), rmdir(2)

close(2), remove(3C), attributes(5)

unlink(2)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

484 man pages section 2: System Calls • Last Revised 30 Sep 1999

utimes – set file access and modification times

#include <sys/time.h>

int utimes(const char *path, const struct timeval times[2]);

The utimes() function sets the access and modification times of the file pointed to by
the path argument to the value of the times argument. It allows time specifications
accurate to the microsecond.

The times argument is an array of timeval structures. The first array member
represents the date and time of last access, and the second member represents the date
and time of last modification. The times in the timeval structure are measured in
seconds and microseconds since the Epoch, although rounding toward the nearest
second may occur.

If the times argument is a null pointer, the access and modification times of the file are
set to the current time. A process must be the owner of the file or must assert the
PRIV_FILE_OWNER privilege to use this call in this manner. Upon completion,
utimes() will mark the time of the last file status change, st_ctime, for update.

utimes() returns:

0 On success.

−1 On failure, sets errno to indicate the error, and the file times will not be
affected

The utimes() function will fail if:

EACCES Search permission is denied by a component of the
path prefix. To override the calling process may assert
one or both of these privileges:
PRIV_FILE_DAC_SEARCH and
PRIV_FILE_MAC_SEARCH.

The times argument is a null pointer and the effective
user ID of the process does not match the owner of the
file and write access is denied. To override this
restriction, the calling process may assert one or both of
these privileges: PRIV_FILE_DAC_WRITE and
PRIV_FILE_MAC_WRITE.

EFAULT The path or times argument points to an illegal address.

EINTR A signal was caught during the execution of the
utimes() function.

EINVAL The number of microseconds specified in one or both of
the timeval structures pointed to by times was greater
than or equal to 1,000,000 or less than 0.

utimes(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

System Calls 485

EIO An I/O error occurred while reading from or writing to
the file system.

ELOOP Too many symbolic links were encountered in
resolving path.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX or
a pathname component is longer than NAME_MAX.

ENOLINK The path argument points to a remote machine and the
link to that machine is no longer active.

ENOENT A component of path does not name an existing file or
path is an empty string.

ENOTDIR A component of the path prefix is not a directory.

EPERM The times argument is not a null pointer and the calling
process’s effective user ID has write access to the file
but does not match the owner of the file and the calling
process does not have the appropriate privileges.To
override this restriction, the calling process may assert
the PRIV_FILE_OWNER privilege.

EROFS The file system containing the file is read-only.

The utimes() function may fail if:

ENAMETOOLONG Path name resolution of a symbolic link produced an
intermediate result whose length exceeds PATH_MAX.

Appropriate privilege is required to override access checks.

To change the access and modification times on a file not owned by the calling process,
the calling process may assert the PRIV_FILE_OWNER privilege.

stat(2)

utimes(2)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual

486 man pages section 2: System Calls • Last Revised 30 Sep 1999

vfork – Spawn new process in a virtual memory efficient way

#include <unistd.h>

pid_t vfork(void);

The vfork() function creates new processes without fully copying the address space
of the old process. This function is useful in instances where the purpose of a fork(2)
operation would be to create a new system context for an execve() operation (see
exec(2)).

Unlike with the fork() function, the child process borrows the parent’s memory and
thread of control until a call to execve() or an exit (either abnormally or by a call to
_exit() (see exit(2)). The parent process is suspended while the child is using its
resources.

In a multithreaded application, vfork() borrows only the thread of control that
called vfork() in the parent; that is, the child contains only one thread. In that sense,
vfork() behaves like fork().

The vfork() function can normally be used the same way as fork(). The procedure
that called vfork(), however, should not return while running in the child’s context,
since the eventual return from vfork() would be to a stack frame that no longer
exists. The _exit() function should be used in favor of exit(3C) if unable to
perform an execve() operation, since exit() will flush and close standard I/O
channels, and thereby corrupt the parent process’s standard I/O data structures. The
_exit() function should be used even with fork() to avoid flushing the buffered
data twice.

Upon successful completion, vfork() returns 0 to the child process and returns the
process ID of the child process to the parent process. Otherwise, −1 is returned to the
parent process, no child process is created, and errno is set to indicate the error.

The vfork() function will fail if:

EAGAIN The system-imposed limit on the total number of processes under
execution (either system-quality or by a single user) would be
exceeded. Moreover, the calling process does not have the
PRIV_SYS_MAXPROC privilege to override the limit. This limit is
determined when the system is generated.

ENOMEM There is insufficient swap space for the new process.

A process with the PRIV_SYS_MAXPROC privilege may override the limit on the
number of processes a user may have.

exec(2), fork(2)

exit(2), ioctl(2), wait(2), exit(3C)

vfork(2)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
4/01 Reference

ManualSunOS 5.8
Reference Manual

System Calls 487

The use of vfork() for any purpose other than as a prelude to an immediate call to a
function from the exec family or to _exit() is not advised.

The vfork() function is unsafe in multithreaded applications.

This function will be eliminated in a future release. The memory sharing semantics of
vfork() can be obtained through other mechanisms.

To avoid a possible deadlock situation, processes that are children in the middle of a
vfork() are never sent SIGTTOU or SIGTTIN signals; rather, output or ioctls are
allowed and input attempts result in an EOF indication.

On some systems, the implementation of vfork() causes the parent to inherit register
values from the child. This can create problems for certain optimizing compilers if
<unistd.h> is not included in the source calling vfork().

vfork(2)

NOTES

488 man pages section 2: System Calls • Last Revised 30 Sep 1999

write, pwrite, writev, writel, pwritel, writevl – write on a file

#include <unistd.h>

ssize_t write(int fildes, const void *buf, size_t nbyte);

ssize_t pwrite(int fildes, const void *buf, size_t nbyte, off_t offset);

#include <sys/uio.h>

ssize_t writev(int fildes, const struct iovec *iov, int iovcnt);

#include <tsol/rdwrl.h>

ssize_t writel(int fildes, void *buf, size_t nbyte, bclabel_t *label_p);

ssize_t pwritel(int fildes, void *buf, size_t nbyte, off_t offset,
bclabel_t *label_p);

ssize_t writevl(int fildes, struct iovec *iov, int iovcnt, bclabel_t
*label_p);

The write() function attempts to write nbyte bytes from the buffer pointed to by buf
to the file associated with the open file descriptor, fildes.

If nbyte is 0, write() will return 0 and have no other results if the file is a regular file;
otherwise, the results are unspecified.

On a regular file or other file capable of seeking, the actual writing of data proceeds
from the position in the file indicated by the file offset associated with fildes. Before
successful return from write(), the file offset is incremented by the number of bytes
actually written. On a regular file, if this incremented file offset is greater than the
length of the file, the length of the file will be set to this file offset.

If the O_SYNC flag of the file status flags is set and fildes refers to a regular file, a
successful write() does not return until the data is delivered to the underlying
hardware.

If fildes refers to a socket, write() is equivalent to send(3SOCKET) with no flags set.

On a file not capable of seeking, writing always takes place starting at the current
position. The value of a file offset associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file offset will be set to the end of
the file prior to each write and no intervening file modification operation will occur
between changing the file offset and the write operation.

For regular files, no data transfer will occur past the offset maximum established in the
open file description with fildes.

A write() to a regular file is blocked if mandatory file/record locking is set (see
chmod(2)), and there is a record lock owned by another process on the segment of the
file to be written:

write(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 489

� If O_NDELAY or O_NONBLOCK is set, write() returns −1 and sets errno to
EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, write() sleeps until all blocking locks
are removed or the write() is terminated by a signal.

If a write() requests that more bytes be written than there is room for—for example,
if the write would exceed the process file size limit (see getrlimit(2) and
ulimit(2)), the system file size limit, or the free space on the device—only as many
bytes as there is room for will be written. For example, suppose there is space for 20
bytes more in a file before reaching a limit. A write() of 512-bytes returns 20. The
next write() of a non-zero number of bytes gives a failure return (except as noted for
pipes and FIFO below).

If write() is interrupted by a signal before it writes any data, it will return −1 with
errno set to EINTR.

If write() is interrupted by a signal after it successfully writes some data, it will
return the number of bytes written.

If the value of nbyte is greater than SSIZE_MAX, the result is
implementation-dependent.

After a write() to a regular file has successfully returned:

� Any successful read(2) from each byte position in the file that was modified by
that write will return the data specified by the write() for that position until such
byte positions are again modified.

� Any subsequent successful write() to the same byte position in the file will
overwrite that file data.

Write requests to a pipe or FIFO are handled the same as a regular file with the
following exceptions:

� There is no file offset associated with a pipe, hence each write request appends to
the end of the pipe.

� Write requests of {PIPE_BUF} bytes or less are guaranteed not to be interleaved
with data from other processes doing writes on the same pipe. Writes of greater
than {PIPE_BUF} bytes may have data interleaved, on arbitrary boundaries, with
writes by other processes, whether or not the O_NONBLOCK or O_NDELAY flags are
set.

� If O_NONBLOCK and O_NDELAY are clear, a write request may cause the process to
block, but on normal completion it returns nbyte.

� If O_NONBLOCK and O_NDELAY are set, write() does not block the process. If a
write() request for PIPE_BUF or fewer bytes succeeds completely write()
returns nbyte. Otherwise, if O_NONBLOCK is set, it returns −1 and sets errno to
EAGAIN or if O_NDELAY is set, it returns 0. A write() request for greater than
{PIPE_BUF} bytes transfers what it can and returns the number of bytes written

write(2)

490 man pages section 2: System Calls • Last Revised 1 May 2000

or it transfers no data and, if O_NONBLOCK is set, returns −1 with errno set to
EAGAIN or if O_NDELAY is set, it returns 0. Finally, if a request is greater than
PIPE_BUF bytes and all data previously written to the pipe has been read,
write() transfers at least PIPE_BUF bytes.

When attempting to write to a file descriptor (other than a pipe, a FIFO, a socket, or a
STREAM) that supports nonblocking writes and cannot accept the data immediately:

� If O_NONBLOCK and O_NDELAY are clear, write() blocks until the data can be
accepted.

� If O_NONBLOCK or O_NDELAY is set, write() does not block the process. If some
data can be written without blocking the process, write() writes what it can and
returns the number of bytes written. Otherwise, if O_NONBLOCK is set, it returns −1
and sets errno to EAGAIN or if O_NDELAY is set, it returns 0.

Upon successful completion, where nbyte is greater than 0, write() will mark for
update the st_ctime and st_mtime fields of the file, and if the file is a regular file,
the S_ISUID and S_ISGID bits of the file mode may be cleared.

For STREAMS files (see intro(3) and streamio(7I)), the operation of write() is
determined by the values of the minimum and maximum nbyte range (“packet size”)
accepted by the STREAM. These values are contained in the topmost STREAM
module, and cannot be set or tested from user level. If nbyte falls within the packet size
range, nbyte bytes are written. If nbyte does not fall within the range and the minimum
packet size value is zero, write() breaks the buffer into maximum packet size
segments prior to sending the data downstream (the last segment may be smaller than
the maximum packet size). If nbyte does not fall within the range and the minimum
value is non-zero, write() fails and sets errno to ERANGE. Writing a zero-length
buffer (nbyte is zero) to a STREAMS device sends a zero length message with zero
returned. However, writing a zero-length buffer to a pipe or FIFO sends no message
and zero is returned. The user program may issue the I_SWROPT ioctl(2) to enable
zero-length messages to be sent across the pipe or FIFO (see streamio(7I)).

When writing to a STREAM, data messages are created with a priority band of zero.
When writing to a socket or to a STREAM that is not a pipe or a FIFO:

� If O_NDELAY and O_NONBLOCK are not set, and the STREAM cannot accept data
(the STREAM write queue is full due to internal flow control conditions), write()
blocks until data can be accepted.

� If O_NDELAY or O_NONBLOCK is set and the STREAM cannot accept data, write()
returns −1 and sets errno to EAGAIN.

� If O_NDELAY or O_NONBLOCK is set and part of the buffer has already been written
when a condition occurs in which the STREAM cannot accept additional data,
write() terminates and returns the number of bytes written.

The write() and writev() functions will fail if the STREAM head had processed
an asynchronous error before the call. In this case, the value of errno does not reflect
the result of write() or writev() but reflects the prior error.

write(2)

System Calls 491

The pwrite() function performs the same action as write(), except that it writes
into a given position without changing the file pointer. The first three arguments to
pwrite() are the same as write() with the addition of a fourth argument offset for
the desired position inside the file.

The writev() function performs the same action as write(), but gathers the output
data from the iovcnt buffers specified by the members of the iov array: iov[0], iov[1], …,
iov[iovcnt − 1]. The iovcnt buffer is valid if greater than 0 and less than or equal to
IOV_MAX. See intro(2) for a definition of IOV_MAX.

The iovec structure contains the following members:

caddr_t iov_base;
int iov_len;

Each iovec entry specifies the base address and length of an area in memory from
which data should be written. The writev() function always writes all data from an
area before proceeding to the next.

If fildes refers to a regular file and all of the iov_len members in the array pointed to
by iov are 0, writev() will return 0 and have no other effect. For other file types, the
behavior is unspecified.

If the sum of the iov_len values is greater than SSIZE_MAX, the operation fails and
no data is transferred.

writel(), pwritel(), and writevl() perform the same actions as write(),
pwrite(), and writev(), respectively, and additionally provide the CMW label
label_p to associate with the data that is written. The label associated with the data that
is written to fd has this restriction:

� If the descriptor refers to a file or a FIFO, then the sensitivity label portion of label_p
is ignored.

In all other respects, the writel(), pwritel(), and writevl() interfaces are
analogous to the write(), pwrite(), and writev() interfaces.

If the set-user-ID or get-group-ID bits of fildes are set, they are cleared by the write.
The calling process may assert the PRIV_FILE_SETID privilege to suppress this
action.

If the forced or allowed privilege sets of fildes are not empty, they are cleared by the
write. The calling process may assert the PRIV_FILE_SETPRIV privilege to suppress
this action.

If the public object attributes flag, FAF_PUBLIC, of fildes is set, the flag is cleared by
the write. The calling process may assert the PRIV_FILE_AUDIT privilege to suppress
this action.

write(2)

pwrite()

writev()

writel(),
pwritel(), and

writevl()

492 man pages section 2: System Calls • Last Revised 1 May 2000

If the write causes the file-system free space to fall below its minimum level, the write
fails. The calling process may assert the PRIV_SYS_MINFREE privilege to bypass this
restriction.

Upon successful completion, write() returns the number of bytes actually written to
the file associated with fildes. This number is never greater than nbyte. Otherwise, −1 is
returned, the file-pointer remains unchanged, and errno is set to indicate the error.

Upon successful completion, writev() returns the number of bytes actually written.
Otherwise, it returns −1, the file-pointer remains unchanged, and errno is set to
indicate an error.

The write(), pwrite(), writev() writel(), pwritel(), and writevl()
functions will fail if:

EAGAIN Mandatory file/record locking is set, O_NDELAY or O_NONBLOCK
is set, and there is a blocking record lock; total amount of system
memory available when reading using raw I/O is temporarily
insufficient; an attempt is made to write to a STREAM that can not
accept data with the O_NDELAY or O_NONBLOCK flag set; or a write
to a pipe or FIFO of PIPE_BUF bytes or less is requested and less
than nbytes of free space is available.

EBADF The fildes argument is not a valid file descriptor open for writing.

EDEADLK The write was going to go to sleep and cause a deadlock situation
to occur.

EDQUOT The user’s quota of disk blocks on the file system containing the
file has been exhausted.

EFAULT The buf argument points to an illegal address.

EFBIG An attempt is made to write a file that exceeds the process’s file
size limit or the maximum file size (see getrlimit(2) and
ulimit(2)).

The file is a regular file, nbyte is greater than 0, and the starting
position is greater than or equal to the offset maximum established
in the file description associated with fildes.

EINTR A signal was caught during the write operation and no data was
transferred.

EIO The process is in the background and is attempting to write to its
controlling terminal whose TOSTOP flag is set, or the process is
neither ignoring nor blocking SIGTTOU signals and the process
group of the process is orphaned.

write(2)

RETURN VALUES

ERRORS

System Calls 493

ENOLCK Enforced record locking was enabled and LOCK_MAX regions are
already locked in the system, or the system record lock table was
full and the write could not go to sleep until the blocking record
lock was removed.

ENOLINK The fildes argument is on a remote machine and the link to that
machine is no longer active.

ENOSPC During a write to an ordinary file, there is no free space left on the
device.

ENOSR An attempt is made to write to a STREAMS with insufficient
STREAMS memory resources available in the system.

ENXIO A hangup occurred on the STREAM being written to.

EPIPE An attempt is made to write to a pipe or a FIFO that is not open
for reading by any process, or that has only one end open (or to a
file descriptor created by socket(3SOCKET), using type
SOCK_STREAM that is no longer connected to a peer endpoint). A
SIGPIPE signal will also be sent to the process. The process dies
unless special provisions were taken to catch or ignore the signal.

ERANGE The transfer request size was outside the range supported by the
STREAMS file associated with fildes.

The pwrite() function fails and the file pointer remains unchanged if:

ESPIPE The fildes argument is associated with a pipe or FIFO.

The writev() function will fail if:

EINVAL The sum of the iov_len values in the iov array would overflow
an ssize_t.

The write() and writev() functions may fail if:

EINVAL The STREAM or multiplexer referenced by fildes is linked (directly
or indirectly) downstream from a multiplexer.

ENXIO A request was made of a non-existent device, or the request was
outside the capabilities of the device.

ENXIO A hangup occurred on the STREAM being written to.

A write to a STREAMS file may fail if an error message has been received at the
STREAM head. In this case, errno is set to the value included in the error message.

The writev() function may fail if:

EINVAL The iovcnt argument was less than or equal to 0 or greater than
IOV_MAX; one of the iov_len values in the iov array was
negative; or the sum of the iov_len values in the iov array
overflowed an int.

write(2)

494 man pages section 2: System Calls • Last Revised 1 May 2000

In addition, writel(), pwritel(), and writevl() may set errno to:

EFAULT label_p points outside the allocated address space of the process.
The seek pointer remains unchanged if this error occurs.

The pwrite() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level write() is Async-Signal-Safe

If set-user-ID or get-group-ID permission bits of fildes are set, they are cleared by the
write. The calling process may assert the PRIV_FILE_SETID privilege to suppress
this action.

If the forced or allowed privilege set of fildes is not empty, it is cleared by the write.
The calling process may assert the PRIV_FILE_SETPRIV privilege to suppress this
action.

If the public object attributes flag, FAF_PUBLIC, of fildes is set, the flag is cleared by
the write. The calling process may assert the PRIV_FILE_AUDIT privilege to suppress
this action.

If the write causes the file-system free space to fall below its minimum level, the write
fails. The calling process may assert the PRIV_SYS_MINFREE privilege to bypass this
restriction.

Mandatory and discretionary access checks have already been performed when the
object was opened.

chmod(2), creat(2), fcntl(2), getrlimit(2), lseek(2), open(2), ulimit(2),
intro(3), send(3SOCKET), socket(3SOCKET)

dup(2), ioctl(2), pipe(2), attributes(5), lf64(5), streamio(7I)

write(2)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

System Calls 495

write, pwrite, writev, writel, pwritel, writevl – write on a file

#include <unistd.h>

ssize_t write(int fildes, const void *buf, size_t nbyte);

ssize_t pwrite(int fildes, const void *buf, size_t nbyte, off_t offset);

#include <sys/uio.h>

ssize_t writev(int fildes, const struct iovec *iov, int iovcnt);

#include <tsol/rdwrl.h>

ssize_t writel(int fildes, void *buf, size_t nbyte, bclabel_t *label_p);

ssize_t pwritel(int fildes, void *buf, size_t nbyte, off_t offset,
bclabel_t *label_p);

ssize_t writevl(int fildes, struct iovec *iov, int iovcnt, bclabel_t
*label_p);

The write() function attempts to write nbyte bytes from the buffer pointed to by buf
to the file associated with the open file descriptor, fildes.

If nbyte is 0, write() will return 0 and have no other results if the file is a regular file;
otherwise, the results are unspecified.

On a regular file or other file capable of seeking, the actual writing of data proceeds
from the position in the file indicated by the file offset associated with fildes. Before
successful return from write(), the file offset is incremented by the number of bytes
actually written. On a regular file, if this incremented file offset is greater than the
length of the file, the length of the file will be set to this file offset.

If the O_SYNC flag of the file status flags is set and fildes refers to a regular file, a
successful write() does not return until the data is delivered to the underlying
hardware.

If fildes refers to a socket, write() is equivalent to send(3SOCKET) with no flags set.

On a file not capable of seeking, writing always takes place starting at the current
position. The value of a file offset associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file offset will be set to the end of
the file prior to each write and no intervening file modification operation will occur
between changing the file offset and the write operation.

For regular files, no data transfer will occur past the offset maximum established in the
open file description with fildes.

A write() to a regular file is blocked if mandatory file/record locking is set (see
chmod(2)), and there is a record lock owned by another process on the segment of the
file to be written:

writel(2)

NAME

SYNOPSIS

DESCRIPTION

496 man pages section 2: System Calls • Last Revised 1 May 2000

� If O_NDELAY or O_NONBLOCK is set, write() returns −1 and sets errno to
EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, write() sleeps until all blocking locks
are removed or the write() is terminated by a signal.

If a write() requests that more bytes be written than there is room for—for example,
if the write would exceed the process file size limit (see getrlimit(2) and
ulimit(2)), the system file size limit, or the free space on the device—only as many
bytes as there is room for will be written. For example, suppose there is space for 20
bytes more in a file before reaching a limit. A write() of 512-bytes returns 20. The
next write() of a non-zero number of bytes gives a failure return (except as noted for
pipes and FIFO below).

If write() is interrupted by a signal before it writes any data, it will return −1 with
errno set to EINTR.

If write() is interrupted by a signal after it successfully writes some data, it will
return the number of bytes written.

If the value of nbyte is greater than SSIZE_MAX, the result is
implementation-dependent.

After a write() to a regular file has successfully returned:

� Any successful read(2) from each byte position in the file that was modified by
that write will return the data specified by the write() for that position until such
byte positions are again modified.

� Any subsequent successful write() to the same byte position in the file will
overwrite that file data.

Write requests to a pipe or FIFO are handled the same as a regular file with the
following exceptions:

� There is no file offset associated with a pipe, hence each write request appends to
the end of the pipe.

� Write requests of {PIPE_BUF} bytes or less are guaranteed not to be interleaved
with data from other processes doing writes on the same pipe. Writes of greater
than {PIPE_BUF} bytes may have data interleaved, on arbitrary boundaries, with
writes by other processes, whether or not the O_NONBLOCK or O_NDELAY flags are
set.

� If O_NONBLOCK and O_NDELAY are clear, a write request may cause the process to
block, but on normal completion it returns nbyte.

� If O_NONBLOCK and O_NDELAY are set, write() does not block the process. If a
write() request for PIPE_BUF or fewer bytes succeeds completely write()
returns nbyte. Otherwise, if O_NONBLOCK is set, it returns −1 and sets errno to
EAGAIN or if O_NDELAY is set, it returns 0. A write() request for greater than
{PIPE_BUF} bytes transfers what it can and returns the number of bytes written

writel(2)

System Calls 497

or it transfers no data and, if O_NONBLOCK is set, returns −1 with errno set to
EAGAIN or if O_NDELAY is set, it returns 0. Finally, if a request is greater than
PIPE_BUF bytes and all data previously written to the pipe has been read,
write() transfers at least PIPE_BUF bytes.

When attempting to write to a file descriptor (other than a pipe, a FIFO, a socket, or a
STREAM) that supports nonblocking writes and cannot accept the data immediately:

� If O_NONBLOCK and O_NDELAY are clear, write() blocks until the data can be
accepted.

� If O_NONBLOCK or O_NDELAY is set, write() does not block the process. If some
data can be written without blocking the process, write() writes what it can and
returns the number of bytes written. Otherwise, if O_NONBLOCK is set, it returns −1
and sets errno to EAGAIN or if O_NDELAY is set, it returns 0.

Upon successful completion, where nbyte is greater than 0, write() will mark for
update the st_ctime and st_mtime fields of the file, and if the file is a regular file,
the S_ISUID and S_ISGID bits of the file mode may be cleared.

For STREAMS files (see intro(3) and streamio(7I)), the operation of write() is
determined by the values of the minimum and maximum nbyte range (“packet size”)
accepted by the STREAM. These values are contained in the topmost STREAM
module, and cannot be set or tested from user level. If nbyte falls within the packet size
range, nbyte bytes are written. If nbyte does not fall within the range and the minimum
packet size value is zero, write() breaks the buffer into maximum packet size
segments prior to sending the data downstream (the last segment may be smaller than
the maximum packet size). If nbyte does not fall within the range and the minimum
value is non-zero, write() fails and sets errno to ERANGE. Writing a zero-length
buffer (nbyte is zero) to a STREAMS device sends a zero length message with zero
returned. However, writing a zero-length buffer to a pipe or FIFO sends no message
and zero is returned. The user program may issue the I_SWROPT ioctl(2) to enable
zero-length messages to be sent across the pipe or FIFO (see streamio(7I)).

When writing to a STREAM, data messages are created with a priority band of zero.
When writing to a socket or to a STREAM that is not a pipe or a FIFO:

� If O_NDELAY and O_NONBLOCK are not set, and the STREAM cannot accept data
(the STREAM write queue is full due to internal flow control conditions), write()
blocks until data can be accepted.

� If O_NDELAY or O_NONBLOCK is set and the STREAM cannot accept data, write()
returns −1 and sets errno to EAGAIN.

� If O_NDELAY or O_NONBLOCK is set and part of the buffer has already been written
when a condition occurs in which the STREAM cannot accept additional data,
write() terminates and returns the number of bytes written.

The write() and writev() functions will fail if the STREAM head had processed
an asynchronous error before the call. In this case, the value of errno does not reflect
the result of write() or writev() but reflects the prior error.

writel(2)

498 man pages section 2: System Calls • Last Revised 1 May 2000

The pwrite() function performs the same action as write(), except that it writes
into a given position without changing the file pointer. The first three arguments to
pwrite() are the same as write() with the addition of a fourth argument offset for
the desired position inside the file.

The writev() function performs the same action as write(), but gathers the output
data from the iovcnt buffers specified by the members of the iov array: iov[0], iov[1], …,
iov[iovcnt − 1]. The iovcnt buffer is valid if greater than 0 and less than or equal to
IOV_MAX. See intro(2) for a definition of IOV_MAX.

The iovec structure contains the following members:

caddr_t iov_base;
int iov_len;

Each iovec entry specifies the base address and length of an area in memory from
which data should be written. The writev() function always writes all data from an
area before proceeding to the next.

If fildes refers to a regular file and all of the iov_len members in the array pointed to
by iov are 0, writev() will return 0 and have no other effect. For other file types, the
behavior is unspecified.

If the sum of the iov_len values is greater than SSIZE_MAX, the operation fails and
no data is transferred.

writel(), pwritel(), and writevl() perform the same actions as write(),
pwrite(), and writev(), respectively, and additionally provide the CMW label
label_p to associate with the data that is written. The label associated with the data that
is written to fd has this restriction:

� If the descriptor refers to a file or a FIFO, then the sensitivity label portion of label_p
is ignored.

In all other respects, the writel(), pwritel(), and writevl() interfaces are
analogous to the write(), pwrite(), and writev() interfaces.

If the set-user-ID or get-group-ID bits of fildes are set, they are cleared by the write.
The calling process may assert the PRIV_FILE_SETID privilege to suppress this
action.

If the forced or allowed privilege sets of fildes are not empty, they are cleared by the
write. The calling process may assert the PRIV_FILE_SETPRIV privilege to suppress
this action.

If the public object attributes flag, FAF_PUBLIC, of fildes is set, the flag is cleared by
the write. The calling process may assert the PRIV_FILE_AUDIT privilege to suppress
this action.

writel(2)

pwrite()

writev()

writel(),
pwritel(), and

writevl()

System Calls 499

If the write causes the file-system free space to fall below its minimum level, the write
fails. The calling process may assert the PRIV_SYS_MINFREE privilege to bypass this
restriction.

Upon successful completion, write() returns the number of bytes actually written to
the file associated with fildes. This number is never greater than nbyte. Otherwise, −1 is
returned, the file-pointer remains unchanged, and errno is set to indicate the error.

Upon successful completion, writev() returns the number of bytes actually written.
Otherwise, it returns −1, the file-pointer remains unchanged, and errno is set to
indicate an error.

The write(), pwrite(), writev() writel(), pwritel(), and writevl()
functions will fail if:

EAGAIN Mandatory file/record locking is set, O_NDELAY or O_NONBLOCK
is set, and there is a blocking record lock; total amount of system
memory available when reading using raw I/O is temporarily
insufficient; an attempt is made to write to a STREAM that can not
accept data with the O_NDELAY or O_NONBLOCK flag set; or a write
to a pipe or FIFO of PIPE_BUF bytes or less is requested and less
than nbytes of free space is available.

EBADF The fildes argument is not a valid file descriptor open for writing.

EDEADLK The write was going to go to sleep and cause a deadlock situation
to occur.

EDQUOT The user’s quota of disk blocks on the file system containing the
file has been exhausted.

EFAULT The buf argument points to an illegal address.

EFBIG An attempt is made to write a file that exceeds the process’s file
size limit or the maximum file size (see getrlimit(2) and
ulimit(2)).

The file is a regular file, nbyte is greater than 0, and the starting
position is greater than or equal to the offset maximum established
in the file description associated with fildes.

EINTR A signal was caught during the write operation and no data was
transferred.

EIO The process is in the background and is attempting to write to its
controlling terminal whose TOSTOP flag is set, or the process is
neither ignoring nor blocking SIGTTOU signals and the process
group of the process is orphaned.

writel(2)

RETURN VALUES

ERRORS

500 man pages section 2: System Calls • Last Revised 1 May 2000

ENOLCK Enforced record locking was enabled and LOCK_MAX regions are
already locked in the system, or the system record lock table was
full and the write could not go to sleep until the blocking record
lock was removed.

ENOLINK The fildes argument is on a remote machine and the link to that
machine is no longer active.

ENOSPC During a write to an ordinary file, there is no free space left on the
device.

ENOSR An attempt is made to write to a STREAMS with insufficient
STREAMS memory resources available in the system.

ENXIO A hangup occurred on the STREAM being written to.

EPIPE An attempt is made to write to a pipe or a FIFO that is not open
for reading by any process, or that has only one end open (or to a
file descriptor created by socket(3SOCKET), using type
SOCK_STREAM that is no longer connected to a peer endpoint). A
SIGPIPE signal will also be sent to the process. The process dies
unless special provisions were taken to catch or ignore the signal.

ERANGE The transfer request size was outside the range supported by the
STREAMS file associated with fildes.

The pwrite() function fails and the file pointer remains unchanged if:

ESPIPE The fildes argument is associated with a pipe or FIFO.

The writev() function will fail if:

EINVAL The sum of the iov_len values in the iov array would overflow
an ssize_t.

The write() and writev() functions may fail if:

EINVAL The STREAM or multiplexer referenced by fildes is linked (directly
or indirectly) downstream from a multiplexer.

ENXIO A request was made of a non-existent device, or the request was
outside the capabilities of the device.

ENXIO A hangup occurred on the STREAM being written to.

A write to a STREAMS file may fail if an error message has been received at the
STREAM head. In this case, errno is set to the value included in the error message.

The writev() function may fail if:

EINVAL The iovcnt argument was less than or equal to 0 or greater than
IOV_MAX; one of the iov_len values in the iov array was
negative; or the sum of the iov_len values in the iov array
overflowed an int.

writel(2)

System Calls 501

In addition, writel(), pwritel(), and writevl() may set errno to:

EFAULT label_p points outside the allocated address space of the process.
The seek pointer remains unchanged if this error occurs.

The pwrite() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level write() is Async-Signal-Safe

If set-user-ID or get-group-ID permission bits of fildes are set, they are cleared by the
write. The calling process may assert the PRIV_FILE_SETID privilege to suppress
this action.

If the forced or allowed privilege set of fildes is not empty, it is cleared by the write.
The calling process may assert the PRIV_FILE_SETPRIV privilege to suppress this
action.

If the public object attributes flag, FAF_PUBLIC, of fildes is set, the flag is cleared by
the write. The calling process may assert the PRIV_FILE_AUDIT privilege to suppress
this action.

If the write causes the file-system free space to fall below its minimum level, the write
fails. The calling process may assert the PRIV_SYS_MINFREE privilege to bypass this
restriction.

Mandatory and discretionary access checks have already been performed when the
object was opened.

chmod(2), creat(2), fcntl(2), getrlimit(2), lseek(2), open(2), ulimit(2),
intro(3), send(3SOCKET), socket(3SOCKET)

dup(2), ioctl(2), pipe(2), attributes(5), lf64(5), streamio(7I)

writel(2)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

502 man pages section 2: System Calls • Last Revised 1 May 2000

write, pwrite, writev, writel, pwritel, writevl – write on a file

#include <unistd.h>

ssize_t write(int fildes, const void *buf, size_t nbyte);

ssize_t pwrite(int fildes, const void *buf, size_t nbyte, off_t offset);

#include <sys/uio.h>

ssize_t writev(int fildes, const struct iovec *iov, int iovcnt);

#include <tsol/rdwrl.h>

ssize_t writel(int fildes, void *buf, size_t nbyte, bclabel_t *label_p);

ssize_t pwritel(int fildes, void *buf, size_t nbyte, off_t offset,
bclabel_t *label_p);

ssize_t writevl(int fildes, struct iovec *iov, int iovcnt, bclabel_t
*label_p);

The write() function attempts to write nbyte bytes from the buffer pointed to by buf
to the file associated with the open file descriptor, fildes.

If nbyte is 0, write() will return 0 and have no other results if the file is a regular file;
otherwise, the results are unspecified.

On a regular file or other file capable of seeking, the actual writing of data proceeds
from the position in the file indicated by the file offset associated with fildes. Before
successful return from write(), the file offset is incremented by the number of bytes
actually written. On a regular file, if this incremented file offset is greater than the
length of the file, the length of the file will be set to this file offset.

If the O_SYNC flag of the file status flags is set and fildes refers to a regular file, a
successful write() does not return until the data is delivered to the underlying
hardware.

If fildes refers to a socket, write() is equivalent to send(3SOCKET) with no flags set.

On a file not capable of seeking, writing always takes place starting at the current
position. The value of a file offset associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file offset will be set to the end of
the file prior to each write and no intervening file modification operation will occur
between changing the file offset and the write operation.

For regular files, no data transfer will occur past the offset maximum established in the
open file description with fildes.

A write() to a regular file is blocked if mandatory file/record locking is set (see
chmod(2)), and there is a record lock owned by another process on the segment of the
file to be written:

writev(2)

NAME

SYNOPSIS

DESCRIPTION

System Calls 503

� If O_NDELAY or O_NONBLOCK is set, write() returns −1 and sets errno to
EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, write() sleeps until all blocking locks
are removed or the write() is terminated by a signal.

If a write() requests that more bytes be written than there is room for—for example,
if the write would exceed the process file size limit (see getrlimit(2) and
ulimit(2)), the system file size limit, or the free space on the device—only as many
bytes as there is room for will be written. For example, suppose there is space for 20
bytes more in a file before reaching a limit. A write() of 512-bytes returns 20. The
next write() of a non-zero number of bytes gives a failure return (except as noted for
pipes and FIFO below).

If write() is interrupted by a signal before it writes any data, it will return −1 with
errno set to EINTR.

If write() is interrupted by a signal after it successfully writes some data, it will
return the number of bytes written.

If the value of nbyte is greater than SSIZE_MAX, the result is
implementation-dependent.

After a write() to a regular file has successfully returned:

� Any successful read(2) from each byte position in the file that was modified by
that write will return the data specified by the write() for that position until such
byte positions are again modified.

� Any subsequent successful write() to the same byte position in the file will
overwrite that file data.

Write requests to a pipe or FIFO are handled the same as a regular file with the
following exceptions:

� There is no file offset associated with a pipe, hence each write request appends to
the end of the pipe.

� Write requests of {PIPE_BUF} bytes or less are guaranteed not to be interleaved
with data from other processes doing writes on the same pipe. Writes of greater
than {PIPE_BUF} bytes may have data interleaved, on arbitrary boundaries, with
writes by other processes, whether or not the O_NONBLOCK or O_NDELAY flags are
set.

� If O_NONBLOCK and O_NDELAY are clear, a write request may cause the process to
block, but on normal completion it returns nbyte.

� If O_NONBLOCK and O_NDELAY are set, write() does not block the process. If a
write() request for PIPE_BUF or fewer bytes succeeds completely write()
returns nbyte. Otherwise, if O_NONBLOCK is set, it returns −1 and sets errno to
EAGAIN or if O_NDELAY is set, it returns 0. A write() request for greater than
{PIPE_BUF} bytes transfers what it can and returns the number of bytes written

writev(2)

504 man pages section 2: System Calls • Last Revised 1 May 2000

or it transfers no data and, if O_NONBLOCK is set, returns −1 with errno set to
EAGAIN or if O_NDELAY is set, it returns 0. Finally, if a request is greater than
PIPE_BUF bytes and all data previously written to the pipe has been read,
write() transfers at least PIPE_BUF bytes.

When attempting to write to a file descriptor (other than a pipe, a FIFO, a socket, or a
STREAM) that supports nonblocking writes and cannot accept the data immediately:

� If O_NONBLOCK and O_NDELAY are clear, write() blocks until the data can be
accepted.

� If O_NONBLOCK or O_NDELAY is set, write() does not block the process. If some
data can be written without blocking the process, write() writes what it can and
returns the number of bytes written. Otherwise, if O_NONBLOCK is set, it returns −1
and sets errno to EAGAIN or if O_NDELAY is set, it returns 0.

Upon successful completion, where nbyte is greater than 0, write() will mark for
update the st_ctime and st_mtime fields of the file, and if the file is a regular file,
the S_ISUID and S_ISGID bits of the file mode may be cleared.

For STREAMS files (see intro(3) and streamio(7I)), the operation of write() is
determined by the values of the minimum and maximum nbyte range (“packet size”)
accepted by the STREAM. These values are contained in the topmost STREAM
module, and cannot be set or tested from user level. If nbyte falls within the packet size
range, nbyte bytes are written. If nbyte does not fall within the range and the minimum
packet size value is zero, write() breaks the buffer into maximum packet size
segments prior to sending the data downstream (the last segment may be smaller than
the maximum packet size). If nbyte does not fall within the range and the minimum
value is non-zero, write() fails and sets errno to ERANGE. Writing a zero-length
buffer (nbyte is zero) to a STREAMS device sends a zero length message with zero
returned. However, writing a zero-length buffer to a pipe or FIFO sends no message
and zero is returned. The user program may issue the I_SWROPT ioctl(2) to enable
zero-length messages to be sent across the pipe or FIFO (see streamio(7I)).

When writing to a STREAM, data messages are created with a priority band of zero.
When writing to a socket or to a STREAM that is not a pipe or a FIFO:

� If O_NDELAY and O_NONBLOCK are not set, and the STREAM cannot accept data
(the STREAM write queue is full due to internal flow control conditions), write()
blocks until data can be accepted.

� If O_NDELAY or O_NONBLOCK is set and the STREAM cannot accept data, write()
returns −1 and sets errno to EAGAIN.

� If O_NDELAY or O_NONBLOCK is set and part of the buffer has already been written
when a condition occurs in which the STREAM cannot accept additional data,
write() terminates and returns the number of bytes written.

The write() and writev() functions will fail if the STREAM head had processed
an asynchronous error before the call. In this case, the value of errno does not reflect
the result of write() or writev() but reflects the prior error.

writev(2)

System Calls 505

The pwrite() function performs the same action as write(), except that it writes
into a given position without changing the file pointer. The first three arguments to
pwrite() are the same as write() with the addition of a fourth argument offset for
the desired position inside the file.

The writev() function performs the same action as write(), but gathers the output
data from the iovcnt buffers specified by the members of the iov array: iov[0], iov[1], …,
iov[iovcnt − 1]. The iovcnt buffer is valid if greater than 0 and less than or equal to
IOV_MAX. See intro(2) for a definition of IOV_MAX.

The iovec structure contains the following members:

caddr_t iov_base;
int iov_len;

Each iovec entry specifies the base address and length of an area in memory from
which data should be written. The writev() function always writes all data from an
area before proceeding to the next.

If fildes refers to a regular file and all of the iov_len members in the array pointed to
by iov are 0, writev() will return 0 and have no other effect. For other file types, the
behavior is unspecified.

If the sum of the iov_len values is greater than SSIZE_MAX, the operation fails and
no data is transferred.

writel(), pwritel(), and writevl() perform the same actions as write(),
pwrite(), and writev(), respectively, and additionally provide the CMW label
label_p to associate with the data that is written. The label associated with the data that
is written to fd has this restriction:

� If the descriptor refers to a file or a FIFO, then the sensitivity label portion of label_p
is ignored.

In all other respects, the writel(), pwritel(), and writevl() interfaces are
analogous to the write(), pwrite(), and writev() interfaces.

If the set-user-ID or get-group-ID bits of fildes are set, they are cleared by the write.
The calling process may assert the PRIV_FILE_SETID privilege to suppress this
action.

If the forced or allowed privilege sets of fildes are not empty, they are cleared by the
write. The calling process may assert the PRIV_FILE_SETPRIV privilege to suppress
this action.

If the public object attributes flag, FAF_PUBLIC, of fildes is set, the flag is cleared by
the write. The calling process may assert the PRIV_FILE_AUDIT privilege to suppress
this action.

writev(2)

pwrite()

writev()

writel(),
pwritel(), and

writevl()

506 man pages section 2: System Calls • Last Revised 1 May 2000

If the write causes the file-system free space to fall below its minimum level, the write
fails. The calling process may assert the PRIV_SYS_MINFREE privilege to bypass this
restriction.

Upon successful completion, write() returns the number of bytes actually written to
the file associated with fildes. This number is never greater than nbyte. Otherwise, −1 is
returned, the file-pointer remains unchanged, and errno is set to indicate the error.

Upon successful completion, writev() returns the number of bytes actually written.
Otherwise, it returns −1, the file-pointer remains unchanged, and errno is set to
indicate an error.

The write(), pwrite(), writev() writel(), pwritel(), and writevl()
functions will fail if:

EAGAIN Mandatory file/record locking is set, O_NDELAY or O_NONBLOCK
is set, and there is a blocking record lock; total amount of system
memory available when reading using raw I/O is temporarily
insufficient; an attempt is made to write to a STREAM that can not
accept data with the O_NDELAY or O_NONBLOCK flag set; or a write
to a pipe or FIFO of PIPE_BUF bytes or less is requested and less
than nbytes of free space is available.

EBADF The fildes argument is not a valid file descriptor open for writing.

EDEADLK The write was going to go to sleep and cause a deadlock situation
to occur.

EDQUOT The user’s quota of disk blocks on the file system containing the
file has been exhausted.

EFAULT The buf argument points to an illegal address.

EFBIG An attempt is made to write a file that exceeds the process’s file
size limit or the maximum file size (see getrlimit(2) and
ulimit(2)).

The file is a regular file, nbyte is greater than 0, and the starting
position is greater than or equal to the offset maximum established
in the file description associated with fildes.

EINTR A signal was caught during the write operation and no data was
transferred.

EIO The process is in the background and is attempting to write to its
controlling terminal whose TOSTOP flag is set, or the process is
neither ignoring nor blocking SIGTTOU signals and the process
group of the process is orphaned.

writev(2)

RETURN VALUES

ERRORS

System Calls 507

ENOLCK Enforced record locking was enabled and LOCK_MAX regions are
already locked in the system, or the system record lock table was
full and the write could not go to sleep until the blocking record
lock was removed.

ENOLINK The fildes argument is on a remote machine and the link to that
machine is no longer active.

ENOSPC During a write to an ordinary file, there is no free space left on the
device.

ENOSR An attempt is made to write to a STREAMS with insufficient
STREAMS memory resources available in the system.

ENXIO A hangup occurred on the STREAM being written to.

EPIPE An attempt is made to write to a pipe or a FIFO that is not open
for reading by any process, or that has only one end open (or to a
file descriptor created by socket(3SOCKET), using type
SOCK_STREAM that is no longer connected to a peer endpoint). A
SIGPIPE signal will also be sent to the process. The process dies
unless special provisions were taken to catch or ignore the signal.

ERANGE The transfer request size was outside the range supported by the
STREAMS file associated with fildes.

The pwrite() function fails and the file pointer remains unchanged if:

ESPIPE The fildes argument is associated with a pipe or FIFO.

The writev() function will fail if:

EINVAL The sum of the iov_len values in the iov array would overflow
an ssize_t.

The write() and writev() functions may fail if:

EINVAL The STREAM or multiplexer referenced by fildes is linked (directly
or indirectly) downstream from a multiplexer.

ENXIO A request was made of a non-existent device, or the request was
outside the capabilities of the device.

ENXIO A hangup occurred on the STREAM being written to.

A write to a STREAMS file may fail if an error message has been received at the
STREAM head. In this case, errno is set to the value included in the error message.

The writev() function may fail if:

EINVAL The iovcnt argument was less than or equal to 0 or greater than
IOV_MAX; one of the iov_len values in the iov array was
negative; or the sum of the iov_len values in the iov array
overflowed an int.

writev(2)

508 man pages section 2: System Calls • Last Revised 1 May 2000

In addition, writel(), pwritel(), and writevl() may set errno to:

EFAULT label_p points outside the allocated address space of the process.
The seek pointer remains unchanged if this error occurs.

The pwrite() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level write() is Async-Signal-Safe

If set-user-ID or get-group-ID permission bits of fildes are set, they are cleared by the
write. The calling process may assert the PRIV_FILE_SETID privilege to suppress
this action.

If the forced or allowed privilege set of fildes is not empty, it is cleared by the write.
The calling process may assert the PRIV_FILE_SETPRIV privilege to suppress this
action.

If the public object attributes flag, FAF_PUBLIC, of fildes is set, the flag is cleared by
the write. The calling process may assert the PRIV_FILE_AUDIT privilege to suppress
this action.

If the write causes the file-system free space to fall below its minimum level, the write
fails. The calling process may assert the PRIV_SYS_MINFREE privilege to bypass this
restriction.

Mandatory and discretionary access checks have already been performed when the
object was opened.

chmod(2), creat(2), fcntl(2), getrlimit(2), lseek(2), open(2), ulimit(2),
intro(3), send(3SOCKET), socket(3SOCKET)

dup(2), ioctl(2), pipe(2), attributes(5), lf64(5), streamio(7I)

writev(2)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

System Calls 509

write, pwrite, writev, writel, pwritel, writevl – write on a file

#include <unistd.h>

ssize_t write(int fildes, const void *buf, size_t nbyte);

ssize_t pwrite(int fildes, const void *buf, size_t nbyte, off_t offset);

#include <sys/uio.h>

ssize_t writev(int fildes, const struct iovec *iov, int iovcnt);

#include <tsol/rdwrl.h>

ssize_t writel(int fildes, void *buf, size_t nbyte, bclabel_t *label_p);

ssize_t pwritel(int fildes, void *buf, size_t nbyte, off_t offset,
bclabel_t *label_p);

ssize_t writevl(int fildes, struct iovec *iov, int iovcnt, bclabel_t
*label_p);

The write() function attempts to write nbyte bytes from the buffer pointed to by buf
to the file associated with the open file descriptor, fildes.

If nbyte is 0, write() will return 0 and have no other results if the file is a regular file;
otherwise, the results are unspecified.

On a regular file or other file capable of seeking, the actual writing of data proceeds
from the position in the file indicated by the file offset associated with fildes. Before
successful return from write(), the file offset is incremented by the number of bytes
actually written. On a regular file, if this incremented file offset is greater than the
length of the file, the length of the file will be set to this file offset.

If the O_SYNC flag of the file status flags is set and fildes refers to a regular file, a
successful write() does not return until the data is delivered to the underlying
hardware.

If fildes refers to a socket, write() is equivalent to send(3SOCKET) with no flags set.

On a file not capable of seeking, writing always takes place starting at the current
position. The value of a file offset associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file offset will be set to the end of
the file prior to each write and no intervening file modification operation will occur
between changing the file offset and the write operation.

For regular files, no data transfer will occur past the offset maximum established in the
open file description with fildes.

A write() to a regular file is blocked if mandatory file/record locking is set (see
chmod(2)), and there is a record lock owned by another process on the segment of the
file to be written:

writevl(2)

NAME

SYNOPSIS

DESCRIPTION

510 man pages section 2: System Calls • Last Revised 1 May 2000

� If O_NDELAY or O_NONBLOCK is set, write() returns −1 and sets errno to
EAGAIN.

� If O_NDELAY and O_NONBLOCK are clear, write() sleeps until all blocking locks
are removed or the write() is terminated by a signal.

If a write() requests that more bytes be written than there is room for—for example,
if the write would exceed the process file size limit (see getrlimit(2) and
ulimit(2)), the system file size limit, or the free space on the device—only as many
bytes as there is room for will be written. For example, suppose there is space for 20
bytes more in a file before reaching a limit. A write() of 512-bytes returns 20. The
next write() of a non-zero number of bytes gives a failure return (except as noted for
pipes and FIFO below).

If write() is interrupted by a signal before it writes any data, it will return −1 with
errno set to EINTR.

If write() is interrupted by a signal after it successfully writes some data, it will
return the number of bytes written.

If the value of nbyte is greater than SSIZE_MAX, the result is
implementation-dependent.

After a write() to a regular file has successfully returned:

� Any successful read(2) from each byte position in the file that was modified by
that write will return the data specified by the write() for that position until such
byte positions are again modified.

� Any subsequent successful write() to the same byte position in the file will
overwrite that file data.

Write requests to a pipe or FIFO are handled the same as a regular file with the
following exceptions:

� There is no file offset associated with a pipe, hence each write request appends to
the end of the pipe.

� Write requests of {PIPE_BUF} bytes or less are guaranteed not to be interleaved
with data from other processes doing writes on the same pipe. Writes of greater
than {PIPE_BUF} bytes may have data interleaved, on arbitrary boundaries, with
writes by other processes, whether or not the O_NONBLOCK or O_NDELAY flags are
set.

� If O_NONBLOCK and O_NDELAY are clear, a write request may cause the process to
block, but on normal completion it returns nbyte.

� If O_NONBLOCK and O_NDELAY are set, write() does not block the process. If a
write() request for PIPE_BUF or fewer bytes succeeds completely write()
returns nbyte. Otherwise, if O_NONBLOCK is set, it returns −1 and sets errno to
EAGAIN or if O_NDELAY is set, it returns 0. A write() request for greater than
{PIPE_BUF} bytes transfers what it can and returns the number of bytes written

writevl(2)

System Calls 511

or it transfers no data and, if O_NONBLOCK is set, returns −1 with errno set to
EAGAIN or if O_NDELAY is set, it returns 0. Finally, if a request is greater than
PIPE_BUF bytes and all data previously written to the pipe has been read,
write() transfers at least PIPE_BUF bytes.

When attempting to write to a file descriptor (other than a pipe, a FIFO, a socket, or a
STREAM) that supports nonblocking writes and cannot accept the data immediately:

� If O_NONBLOCK and O_NDELAY are clear, write() blocks until the data can be
accepted.

� If O_NONBLOCK or O_NDELAY is set, write() does not block the process. If some
data can be written without blocking the process, write() writes what it can and
returns the number of bytes written. Otherwise, if O_NONBLOCK is set, it returns −1
and sets errno to EAGAIN or if O_NDELAY is set, it returns 0.

Upon successful completion, where nbyte is greater than 0, write() will mark for
update the st_ctime and st_mtime fields of the file, and if the file is a regular file,
the S_ISUID and S_ISGID bits of the file mode may be cleared.

For STREAMS files (see intro(3) and streamio(7I)), the operation of write() is
determined by the values of the minimum and maximum nbyte range (“packet size”)
accepted by the STREAM. These values are contained in the topmost STREAM
module, and cannot be set or tested from user level. If nbyte falls within the packet size
range, nbyte bytes are written. If nbyte does not fall within the range and the minimum
packet size value is zero, write() breaks the buffer into maximum packet size
segments prior to sending the data downstream (the last segment may be smaller than
the maximum packet size). If nbyte does not fall within the range and the minimum
value is non-zero, write() fails and sets errno to ERANGE. Writing a zero-length
buffer (nbyte is zero) to a STREAMS device sends a zero length message with zero
returned. However, writing a zero-length buffer to a pipe or FIFO sends no message
and zero is returned. The user program may issue the I_SWROPT ioctl(2) to enable
zero-length messages to be sent across the pipe or FIFO (see streamio(7I)).

When writing to a STREAM, data messages are created with a priority band of zero.
When writing to a socket or to a STREAM that is not a pipe or a FIFO:

� If O_NDELAY and O_NONBLOCK are not set, and the STREAM cannot accept data
(the STREAM write queue is full due to internal flow control conditions), write()
blocks until data can be accepted.

� If O_NDELAY or O_NONBLOCK is set and the STREAM cannot accept data, write()
returns −1 and sets errno to EAGAIN.

� If O_NDELAY or O_NONBLOCK is set and part of the buffer has already been written
when a condition occurs in which the STREAM cannot accept additional data,
write() terminates and returns the number of bytes written.

The write() and writev() functions will fail if the STREAM head had processed
an asynchronous error before the call. In this case, the value of errno does not reflect
the result of write() or writev() but reflects the prior error.

writevl(2)

512 man pages section 2: System Calls • Last Revised 1 May 2000

The pwrite() function performs the same action as write(), except that it writes
into a given position without changing the file pointer. The first three arguments to
pwrite() are the same as write() with the addition of a fourth argument offset for
the desired position inside the file.

The writev() function performs the same action as write(), but gathers the output
data from the iovcnt buffers specified by the members of the iov array: iov[0], iov[1], …,
iov[iovcnt − 1]. The iovcnt buffer is valid if greater than 0 and less than or equal to
IOV_MAX. See intro(2) for a definition of IOV_MAX.

The iovec structure contains the following members:

caddr_t iov_base;
int iov_len;

Each iovec entry specifies the base address and length of an area in memory from
which data should be written. The writev() function always writes all data from an
area before proceeding to the next.

If fildes refers to a regular file and all of the iov_len members in the array pointed to
by iov are 0, writev() will return 0 and have no other effect. For other file types, the
behavior is unspecified.

If the sum of the iov_len values is greater than SSIZE_MAX, the operation fails and
no data is transferred.

writel(), pwritel(), and writevl() perform the same actions as write(),
pwrite(), and writev(), respectively, and additionally provide the CMW label
label_p to associate with the data that is written. The label associated with the data that
is written to fd has this restriction:

� If the descriptor refers to a file or a FIFO, then the sensitivity label portion of label_p
is ignored.

In all other respects, the writel(), pwritel(), and writevl() interfaces are
analogous to the write(), pwrite(), and writev() interfaces.

If the set-user-ID or get-group-ID bits of fildes are set, they are cleared by the write.
The calling process may assert the PRIV_FILE_SETID privilege to suppress this
action.

If the forced or allowed privilege sets of fildes are not empty, they are cleared by the
write. The calling process may assert the PRIV_FILE_SETPRIV privilege to suppress
this action.

If the public object attributes flag, FAF_PUBLIC, of fildes is set, the flag is cleared by
the write. The calling process may assert the PRIV_FILE_AUDIT privilege to suppress
this action.

writevl(2)

pwrite()

writev()

writel(),
pwritel(), and

writevl()

System Calls 513

If the write causes the file-system free space to fall below its minimum level, the write
fails. The calling process may assert the PRIV_SYS_MINFREE privilege to bypass this
restriction.

Upon successful completion, write() returns the number of bytes actually written to
the file associated with fildes. This number is never greater than nbyte. Otherwise, −1 is
returned, the file-pointer remains unchanged, and errno is set to indicate the error.

Upon successful completion, writev() returns the number of bytes actually written.
Otherwise, it returns −1, the file-pointer remains unchanged, and errno is set to
indicate an error.

The write(), pwrite(), writev() writel(), pwritel(), and writevl()
functions will fail if:

EAGAIN Mandatory file/record locking is set, O_NDELAY or O_NONBLOCK
is set, and there is a blocking record lock; total amount of system
memory available when reading using raw I/O is temporarily
insufficient; an attempt is made to write to a STREAM that can not
accept data with the O_NDELAY or O_NONBLOCK flag set; or a write
to a pipe or FIFO of PIPE_BUF bytes or less is requested and less
than nbytes of free space is available.

EBADF The fildes argument is not a valid file descriptor open for writing.

EDEADLK The write was going to go to sleep and cause a deadlock situation
to occur.

EDQUOT The user’s quota of disk blocks on the file system containing the
file has been exhausted.

EFAULT The buf argument points to an illegal address.

EFBIG An attempt is made to write a file that exceeds the process’s file
size limit or the maximum file size (see getrlimit(2) and
ulimit(2)).

The file is a regular file, nbyte is greater than 0, and the starting
position is greater than or equal to the offset maximum established
in the file description associated with fildes.

EINTR A signal was caught during the write operation and no data was
transferred.

EIO The process is in the background and is attempting to write to its
controlling terminal whose TOSTOP flag is set, or the process is
neither ignoring nor blocking SIGTTOU signals and the process
group of the process is orphaned.

writevl(2)

RETURN VALUES

ERRORS

514 man pages section 2: System Calls • Last Revised 1 May 2000

ENOLCK Enforced record locking was enabled and LOCK_MAX regions are
already locked in the system, or the system record lock table was
full and the write could not go to sleep until the blocking record
lock was removed.

ENOLINK The fildes argument is on a remote machine and the link to that
machine is no longer active.

ENOSPC During a write to an ordinary file, there is no free space left on the
device.

ENOSR An attempt is made to write to a STREAMS with insufficient
STREAMS memory resources available in the system.

ENXIO A hangup occurred on the STREAM being written to.

EPIPE An attempt is made to write to a pipe or a FIFO that is not open
for reading by any process, or that has only one end open (or to a
file descriptor created by socket(3SOCKET), using type
SOCK_STREAM that is no longer connected to a peer endpoint). A
SIGPIPE signal will also be sent to the process. The process dies
unless special provisions were taken to catch or ignore the signal.

ERANGE The transfer request size was outside the range supported by the
STREAMS file associated with fildes.

The pwrite() function fails and the file pointer remains unchanged if:

ESPIPE The fildes argument is associated with a pipe or FIFO.

The writev() function will fail if:

EINVAL The sum of the iov_len values in the iov array would overflow
an ssize_t.

The write() and writev() functions may fail if:

EINVAL The STREAM or multiplexer referenced by fildes is linked (directly
or indirectly) downstream from a multiplexer.

ENXIO A request was made of a non-existent device, or the request was
outside the capabilities of the device.

ENXIO A hangup occurred on the STREAM being written to.

A write to a STREAMS file may fail if an error message has been received at the
STREAM head. In this case, errno is set to the value included in the error message.

The writev() function may fail if:

EINVAL The iovcnt argument was less than or equal to 0 or greater than
IOV_MAX; one of the iov_len values in the iov array was
negative; or the sum of the iov_len values in the iov array
overflowed an int.

writevl(2)

System Calls 515

In addition, writel(), pwritel(), and writevl() may set errno to:

EFAULT label_p points outside the allocated address space of the process.
The seek pointer remains unchanged if this error occurs.

The pwrite() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level write() is Async-Signal-Safe

If set-user-ID or get-group-ID permission bits of fildes are set, they are cleared by the
write. The calling process may assert the PRIV_FILE_SETID privilege to suppress
this action.

If the forced or allowed privilege set of fildes is not empty, it is cleared by the write.
The calling process may assert the PRIV_FILE_SETPRIV privilege to suppress this
action.

If the public object attributes flag, FAF_PUBLIC, of fildes is set, the flag is cleared by
the write. The calling process may assert the PRIV_FILE_AUDIT privilege to suppress
this action.

If the write causes the file-system free space to fall below its minimum level, the write
fails. The calling process may assert the PRIV_SYS_MINFREE privilege to bypass this
restriction.

Mandatory and discretionary access checks have already been performed when the
object was opened.

chmod(2), creat(2), fcntl(2), getrlimit(2), lseek(2), open(2), ulimit(2),
intro(3), send(3SOCKET), socket(3SOCKET)

dup(2), ioctl(2), pipe(2), attributes(5), lf64(5), streamio(7I)

writevl(2)

USAGE

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
4/01 Reference

Manual
SunOS 5.8

Reference Manual

516 man pages section 2: System Calls • Last Revised 1 May 2000

Index

A
access — determine accessibility of a file, 48
Access Control List, 29
access permission mode of file

change — chmod, 66, 133
accounting

enable or disable process accounting —
acct, 50

accreditation range, 29
acct — enable or disable process

accounting, 50
acl — get or set a file’s Access Control List

(ACL), 51, 129
ACL, 28
ACL Mask, 29
adjtime — correct the time to allow

synchronization of the system clock, 53
audit — write an audit record, 55
auditon — manipulate auditing, 57
auditsvc — write audit log to specified file

descriptor, 62

B
bind LWPs to a processor —

processor_bind, 335

C
change

CMW label of file — setcmwlabel, 181, 261,
404

view of a host state between labeled and
unlabeled — chstate, 75

chdir — change working directory, 64, 131
chmod — change access permission mode of

file, 66, 133
chown — change owner and group of a

file, 70, 137, 251
chroot — change root directory, 73, 140
chstate — change the view of a host state

between labeled and unlabeled, 75
classification, 29
clearance, 29
CMW label, 29
CMW label of file

— fgetcmwlabel, 153, 207, 254
— getcmwlabel, 153, 207, 254
— lgetcmwlabel, 153, 207, 254

compartment, 29
creat — create a new file or rewrite an existing

one, 76
create a new process — fork, 169, 173

fork1, 169, 173

D
DAC, 30
determine accessibility of a file — access, 48

517

device objects, 30
devpolicy — get/set device driver policy

table, 79
directories

change working directory — chdir, 64, 131
create a new one — mknod, 272
get configurable pathname variables —

pathconf, 177, 305
make a new one — mkdir, 269
read directory entries and put in a file system

independent format — getdents, 210
remove — rmdir, 380

discretionary access control, 30
disjoint, 30
dominance, 30
dominate, 30

E
effective group ID

set — setregid, 429
effective user IDs

set — setreuid, 430
exec — execute a file, 80, 87, 94, 101, 108, 115,

122
execl — execute a file, 80, 87, 94, 101, 108, 115,

122
execle — execute a file, 80, 87, 94, 101, 108, 115,

122
execlp — execute a file, 80, 87, 94, 101, 108,

115, 122
execv — execute a file, 80, 87, 94, 101, 108, 115,

122
execve — execute a file, 80, 87, 94, 101, 108,

115, 122
execvp — execute a file, 80, 87, 94, 101, 108,

115, 122

F
facl — get or set a file’s Access Control List

(ACL), 51, 129
fchdir — change working directory, 64, 131
fchmod — change access permission mode of

file, 66, 133

fchown — change owner and group of a
file, 70, 137, 251

fcntl — file control, 142
fgetcmwfsrange — get file system sensitivity

label range, 151, 205
fgetcmwlabel — get file CMW label, 153, 207,

254
fgetfattrflag — get the security attribute flags of

a file, 155, 185, 212, 276, 280, 413
fgetfpriv — return a privilege set associated

with a file, 159, 189, 216, 417
fgetfsattr — get file system security

attributes, 162, 219
fgetmldadorn — get file system MLD

adornment, 164, 223
fgetsldname — obtain file system SLD

name, 166, 246
file access, 30
file control — fcntl, 142
file label

fgetcmwlabel, 153, 207, 254
getcmwlabel, 153, 207, 254
lgetcmwlabel, 153, 207, 254

file pointer, read/write
move — lseek, 258, 259

file privilege sets, 33
file status

get — stat, lstat, fstat, 192, 265, 457
file system

get information — statvfs, fstatvfs, 196, 461
make a symbolic link to a file —

symlink, 469
MLD adornment — fgetmldadorn,

getmldadorn, 164, 223
remove link — unlink, 483
security attributes — fgetfsattr,

getfsattr, 162, 219
sensitivity label range — fgetcmwfsrange,

getcmwfsrange, 151, 205
set label — fsetcmwlabel, 181, 261, 404
set label — lsetcmwlabel, 181, 261, 404
set label— setcmwlabel, 181, 261, 404
SLD name — fgetsldname, getsldname, 166,

246
unmount — umount, 479, 481

file system objects, 33

518 man pages section 2: System Calls • November 2001

files
change access permission mode of file —

chmod, 66, 70, 133, 137, 251
change the name of a file — rename, 377
create a new file or rewrite an existing one —

creat, 76
execute — exec, 80, 87, 94, 101, 108, 115, 122
get configurable pathname variables —

pathconf, 177, 305
link to a file — link, 256
move read/write file pointer — lseek, 258,

259
set security flags of a file — setfattrflag, 155,

185, 212, 276, 280, 413
fork — create a new process, 169, 173
fork

spawn new process in a virtual memory
efficient way — vfork, 487

fork1 — create a new process, 169, 173
fpathconf — get configurable pathname

variables, 177, 305
fsetcmwlabel — set CMW label of a file, 181,

261, 404
fsetfattrflag — set security flags of a file, 155,

185, 212, 276, 280, 413
fsetfpriv — set a privilege set associated with a

file, 159, 189, 216, 417
fstat — get status on open file known by file

descriptor, 192, 265, 457
fstatvfs — get file system information, 196, 461

G
get and set process limits — ulimit, 478
get or change processor operational status —

p_online, 309
get or set a file’s Access Control List (ACL)

— acl, 51, 129
— facl, 51, 129

get security configuration information —
secconf, 382

getaudit — get process audit information, 199,
201, 398, 400

getclearance — obtain process clearance, 204
getcmwfsrange — get file system sensitivity

label range, 151, 205

getcmwlabel — get file CMW label, 153, 207,
254

getcmwplabel — get process CMW label, 209
getdents — read directory entries and put in a

file system independent format, 210
getfattrflag — get the security attribute flags of

a file, 155, 185, 212, 276, 280, 413
getfpriv — return a privilege set associated with

a file, 159, 189, 216, 417
getfsattr — get file system security

attributes, 162, 219
getgroups — get supplementary group access

list IDs, 221, 422
getmldadorn — get file system MLD

adornment, 164, 223
getmsgqcmwlabel — get the CMW labels

associated with System V IPC
structures, 225, 243, 244

getpattr — get process attribute flags, 226, 424
getpgid — get process group IDs, 229, 231,

233, 235
getpgrp — get process group IDs, 229, 231,

233, 235
getpid — get process IDs, 229, 231, 233, 235
getppid — get parent process IDs, 229, 231,

233, 235
getppriv — return a privilege set associated

with the invoking process, 237, 427
getrlimit — control maximum system resource

consumption, 239, 431
getsemcmwlabel — get the CMW labels

associated with System V IPC
structures, 225, 243, 244

getshmcmwlabel — get the CMW labels
associated with System V IPC
structures, 225, 243, 244

getsid — get session ID, 245
getsldname — get file system SLD name, 166,

246
group ID

set real and effective — setregid, 429
group IDs

set — setgid, 409, 411, 420, 435
supplementary group access list IDs —

getgroups, setgroups, 221, 422

Index 519

H
halt system — uadmin, 476

I
inheritable privileges, 34
I/O

audit — audit, 55

K
kill — send a signal to a process or a group of

processes, 249

L
label, 34
label range, 34
label translation flags, 34
label view flags, 34
lchown — change owner and group of a

file, 70, 137, 251
lgetcmwlabel — get file CMW label, 153, 207,

254
link — link to a file, 256
link

remove — unlink, 483
link, symbolic

make one to a file — symlink, 469
lseek — move extended read/write file

pointer, 258
llseek — move extended read/write file

pointer, 258
lseek — move read/write file pointer, 259
lsetcmwlabel — set CMW label of a file, 181,

261, 404
lstat — get status on symbolic link file, 192,

265, 457
LWP

scheduler control — priocntl, 324

M
MAC, 35
make a directory, or a special or ordinary file —

mknod, 272
mandatory access control, 35
manipulate auditing — auditon, 57
memory, shared

control operations — shmctl, 440
get segment identifier — shmget, 446, 448
operations — shmop, 437, 443, 450

message control operations
— msgctl, 288

message queue
get — msgget, 290, 292

message receive operation — msgrcv, 294
message send operation — msgsnd, 296
mkdir — make a directory, 269
mknod — make a directory, or a special or

ordinary file, 272
MLD, 35
MLD adornment of file system

fgetmldadorn, getmldadorn, 164, 223
mldgetfattrflag — get the security attribute flags

of a file, 155, 185, 212, 276, 280, 413
mldsetfattrflag — set security flags of a

file, 155, 185, 212, 276, 280, 413
mount — mount a file system, 284
mount a file system — mount, 284
msgctl — message control operations, 288
msgget — get message queue, 290, 292
msgrcv — message receive operation, 294
msgsnd — message send operation, 296
multilevel directory, 37

N
network endpoint objects, 37
nice — change priority of a time-sharing

process, 298

O
object, 37
open — open a file, 299
open a file — open, 299

520 man pages section 2: System Calls • November 2001

owner of file
change — chown, 70, 137, 251

P
pathconf — get configurable pathname

variables, 177, 305
pathname

get configurable variables — pathconf, 177,
305

p_online — get or change processor operational
status, 309

pread — read from a file, 312, 318, 351, 357,
365, 371

preadl — read from a file, 312, 318, 351, 357,
365, 371

priocntl — process scheduler control, 324
priocntlset — generalized process scheduler

control, 333
privilege debugging flag, 38
process accounting

enable or disable — acct, 50
process attribute flags, 38

get — getpattr, 226, 424
set — setpattr, 226, 424

process audit information
set process audit information —

setaudit, 199, 201, 398, 400
process CMW label — getcmwplabel, 209
process objects, 39
process privilege sets, 39
process scheduler

control — priocntl, 324
generalized control — priocntlset, 333

process security attribute, 40
process, time-sharing

change priority — nice, 298
processes

change priority of a time-sharing process —
nice, 298

create a new one — fork, 169, 173
execute a file — exec, 80, 87, 94, 101, 108,

115, 122
generalized scheduler control —

priocntlset, 333

processes (continued)
get identification — getpid, getpgrp, getppid,
getpgid, 229, 231, 233, 235
get or set session ID — getsid, setsid, 245
read from a file — read, 312, 318, 351, 357,

365, 371
read directory entries and put in a file system

independent format — getdents, 210
send a signal to a process or a group of

processes — kill, 249
spawn new process in a virtual memory

efficient way — vfork, 487
supplementary group access list IDs —

getgroups, setgroups, 221, 422
processes and protection

set group IDs — setregid, 429
set user IDs — setreuid, 430

processor_bind — bind LWPs to a
processor, 335

pwrite — write on a file, 340, 347, 492, 499,
506, 513

pwritel — write on a file, 340, 347, 492, 499,
506, 513

R
read from a file

pread, preadl, read, readv, readvl, 312, 318,
351, 357, 365, 371

read — read from a file, 312, 318, 351, 357, 365,
371

read the contents of a symbolic link —
readlink, 363

readl — read from a file, 312, 318, 351, 357,
365, 371

readlink — read the contents of a symbolic
link, 363

readv — read from a file, 312, 318, 351, 357,
365, 371

readvl — read from a file, 312, 318, 351, 357,
365, 371

read/write file pointer
move — lseek, 258, 259

real group ID
set — setregid, 429

Index 521

real user IDs
set — setreuid, 430

reboot system
— uadmin, 476

remount root file system
— uadmin, 476

rename — change the name of a file, 377
rmdir — remove a directory, 380
root directory

change — chroot, 73, 140

S
secconf — get security configuration

information, 382
security attribute, 40
security attributes of file system

— fgetfsattr, getfsattr, 162, 219
security flags of a file

set — setfattrflag, 155, 185, 212, 276, 280,
413

security policy, 41
semaphore operations — semop, 390, 394
semaphores

control operations — semctl, 383
get a set — semget, 386, 388

semctl — semaphore control operations, 383
semget — get set of semaphores, 386, 388
semop — semaphore operations, 390, 394
semtimedop — semaphore operations, 390,

394
sensitivity label, 42
sensitivity label of file system

— fgetcmwfsrange, 151, 205
— getcmwfsrange, 151, 205

session ID
get or set — getsid, setsid, 245

set file access and modification times —
utimes, 485

set process CMW label — setcmwplabel, 408
setaudit — set process audit information, 199,

201, 398, 400
setclearance — set process clearance, 403
setcmwlabel — set CMW label of a file, 181,

261, 404
setcmwplabel — set process CMW label, 408

setegid — set effective group ID, 409, 411, 420,
435

seteuid — set effective user ID, 409, 411, 420,
435

setfattrflag — set security flags of file, 155, 185,
212, 276, 280, 413

setfpriv — set a privilege set associated with a
file, 159, 189, 216, 417

setgid — set group ID, 409, 411, 420, 435
setgroups — set supplementary group access

list IDs, 221, 422
setpattr — set process attribute flags, 226, 424
setppriv — assign a privilege set associated

with the invoking process, 237, 427
setregid — set real and effective group ID, 429
setreuid — set real and effective user IDs, 430
setrlimit — control maximum system resource

consumption, 239, 431
setsid — set session ID, 245
setuid — set user ID, 409, 411, 420, 435
shared memory

control operations — shmctl, 440
get segment identifier — shmget, 446, 448
operations — shmop, 437, 443, 450

shmctl — shared memory control
operations, 440

shmget — get shared memory segment
identifier, 446, 448

shmgetl — get shared memory segment
identifier, 446, 448

shmop — shared memory operations, 437, 443,
450

shutdown
— uadmin, 476

sigsend — send a signal to a process or a group
of processes, 453, 455

sigsendset — provides an alternate interface to
sigsend for sending signals to sets of
processes, 453, 455

single-level directory, 44
SLD, 40
SLD name of file system

— fgetsldname, 166, 246
— getsldname, 166, 246

special files
create a new one — mknod, 272

stat — get file status, 192, 265, 457

522 man pages section 2: System Calls • November 2001

statvfs — get file system information, 196, 461
stime — set system time and date, 464
strictly dominate, 45
swap space

manage — swapctl, 465
swapctl — manage swap space, 465
symbolic link

make one to a file — symlink, 469
symlink — make a symbolic link to a file, 469
sysinfo — get and set system information

strings, 471
system accreditation range, 45
system administration

administrative control — uadmin, 476
system clock

synchronization — adjtime, 53
system information

get and set strings — sysinfo, 471
system resources

control maximum system resource
consumption — getrlimit, setrlimit, 239,
431

T
time

correct the time to allow synchronization of
the system clock — adjtime, 53

set system time and date — stime, 464
tokmapper — manipulates kernel token

mapping caches, 475
trusted path flag, 45

U
uadmin — administrative control, 476
ulimit — get and set process limits, 478
umount — unmount a file system, 479, 481
unlink — remove directory entry, 483
unmount a file system — umount, 479, 481
user audit identity

get process audit information —
getaudit, 199, 201, 398, 400

user IDs
set — setuid, 409, 411, 420, 435

user IDs (continued)
set real and effective — setreuid, 430

utimes — set file access and modification
times, 485

V
vfork — spawn new process in a virtual

memory efficient way, 487

W
write — write on a file, 337, 344, 489, 496, 503,

510
write on a file

— pwrite, pwritel, write, writel, writev,
writevl, 337, 344, 489, 496, 503, 510

writel — write on a file, 340, 347, 492, 499, 506,
513

writev — write on a file, 340, 347, 492, 499,
506, 513

writevl — write on a file, 340, 347, 492, 499,
506, 513

Index 523

524 man pages section 2: System Calls • November 2001

