
Solaris Containers: Resource
Management and Solaris Zones
Developer's Guide

Beta

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–4323–12
May 2007

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software,
including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in
the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and
other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la distribution, et la décompilation.
Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et
de ses bailleurs de licence, s'il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque déposée aux Etats-Unis et
dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, de Sun
Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L'ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L'APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION PARTICULIERE, OU
LE FAIT QU'ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S'APPLIQUERAIT PAS, DANS LA MESURE OU
IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

070402@17039

Contents

Preface ...7

1 Resource Management in the Solaris Operating System ... 11
Understanding Resource Management in the Solaris OS .. 11

Workload Organization .. 11
Resource Organization .. 12
Resource Controls .. 13
Extended Accounting Facility .. 14

Writing Resource Management Applications ... 14

2 Projects and Tasks ...15
Overview of Projects and Tasks ... 15

/etc/project File ... 16
Project and Task API Functions .. 17
Code Examples for Accessing project Database Entries .. 18
Programming Issues Associated With Projects and Tasks ... 19

3 Using the C Interface to Extended Accounting .. 21
Overview of the C Interface to Extended Accounting ... 21
Extended Accounting API Functions ... 22

exacct System Calls ... 22
Operations on the exacct File .. 22
Operations on exacct Objects ... 23
Memory Management ... 23
Miscellaneous Operations .. 25

C Code Examples for Accessing exacct Files .. 25
Programming Issues With exacct Files ... 28

3

4 Using the Perl Interface to Extended Accounting .. 31
Extended Accounting Overview .. 31
Perl Interface to libexacct .. 32

Object Model .. 32
Benefits of Using the Perl Interface to libexacct .. 32
Perl Double-Typed Scalars .. 33

Perl Modules .. 33
Sun::Solaris::Project Module ... 35
Sun::Solaris::Task Module .. 36
Sun::Solaris::Exacct Module ... 37
Sun::Solaris::Exacct::Catalog Module .. 39
Sun::Solaris::Exacct::File Module ... 40
Sun::Solaris::Exacct::Object Module .. 42
Sun::Solaris::Exacct::Object::Item Module .. 43
Sun::Solaris::Exacct::Object::Group Module .. 44
Sun::Solaris::Exacct::Object::_Array Module .. 45

Perl Code Examples ... 46
Output From dump Method .. 49

5 Resource Controls ..53
Overview of Resource Controls ... 53
Resource Controls Flags and Actions ... 54

rlimit, Resource Limit ... 54
rctl, Resource Control ... 54
Resource Control Values and Privilege Levels ... 54
Local Actions and Local Flags ... 55
Global Actions and Global Flags .. 55
Resource Control Sets Associated With a Project, Processes, and Tasks 57
Signals Used With Resource Controls ... 61

Resource Controls API Functions ... 62
Operate on Action-Value Pairs of a Resource Control .. 63
Operate on Local Modifiable Values ... 63
Retrieve Local Read-Only Values .. 64
Retrieve Global Read-Only Actions ... 64

Resource Control Code Examples ... 64

Contents

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)4

Master Observing Process for Resource Controls ... 64
List all the Value-Action Pairs for a Specific Resource Control ... 66
Set project.cpu-shares and Add a New Value .. 67
Set LWP Limit Using Resource Control Blocks ... 68

Programming Issues Associated With Resource Controls ... 69

6 Resource Pools ...71
Overview of Resource Pools ... 71

Scheduling Class .. 72
Dynamic Resource Pool Constraints and Objectives .. 72

System Properties ... 73
Pools Properties .. 73
Processor Set Properties .. 74

Using libpool to Manipulate Pool Configurations .. 75
Manipulate psets .. 75

Resource Pools API Functions ... 76
Functions for Operating on Resource Pools and Associated Elements 76
Functions for Querying Resource Pools and Associated Elements 78

Resource Pool Code Examples ... 80
Ascertain the Number of CPUs in the Resource Pool .. 80
List All Resource Pools .. 81
Report Pool Statistics for a Given Pool .. 82
Set pool.comment Property and Add New Property .. 82

Programming Issues Associated With Resource Pools ... 83

7 Design Considerations for Resource Management Applications in Solaris Zones85
Zones Overview ... 85
IP Networking in Zones .. 86
Design Considerations for Resource Management Applications in Zones 86

General Considerations When Writing Applications for Non-Global Zones 86
Specific Considerations for Shared-IP Non-Global Zones ... 88

8 Configuration Examples ...91
/etc/project Project File .. 91

Contents

5

Define Two Projects ... 91
Configure Resource Controls ... 92
Configure Resource Pools ... 92
Configure FSS project.cpu-shares for a Project .. 92
Configure Five Applications with Different Characteristics ... 93

Index ..97

Contents

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)6

Preface

The Solaris Containers: Resource Management and Solaris Zones Developer's Guide describes
how to write applications that partition and manage system resources and discusses which APIs
to use. This book provides programming examples and a discussion of programming issues to
consider when writing an application.

Who Should Use This Book
This book is for application developers and ISVs who write applications that control or monitor
the Solaris Operating System resources.

Before You Read This Book
For a detailed overview of resource management and Solaris Zones, see the System
Administration Guide: Solaris Containers-Resource Management and Solaris Zones.

How This Book Is Organized
This guide is organized as follows:

Chapter 1 introduces the Solaris 10 Resource Manager product.

Chapter 2 provides information about the projects and tasks facilities.

Chapter 3 describes the C interface to the extended accounting facility.

Chapter 4 describes the Perl interface to the extended accounting facility.

Chapter 5 discusses resource controls and their use.

Chapter 6 covers dynamic resource pools.

Chapter 7 describes the precautions that need to be taken for applications to work in Solaris
zones.

7

Chapter 8 provides configuration examples for the /etc/project file.

Documentation, Support, and Training

Sun Function URL Description

Documentation http://www.sun.com/documentation/ Download PDF and HTML
documents, and order printed
documents

Support and
Training

http://www.sun.com/supportraining/ Obtain technical support,
download patches, and learn
about Sun courses

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with a real
name or value

The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

Perform a patch analysis.

Do not save the file.

[Note that some emphasized items
appear bold online.]

Preface

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)8

http://www.sun.com/documentation/
http://www.sun.com/supportraining/

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

Preface

9

10

Resource Management in the Solaris Operating
System

The purpose of this manual is to help developers who are writing either utility applications for
managing computer resources or self-monitoring applications that can check their own usage
and adjust accordingly. This chapter provides an introduction to resource management in the
Solaris Operating System (OS). The following topics are included:

■ “Understanding Resource Management in the Solaris OS” on page 11
■ “Writing Resource Management Applications” on page 14

Understanding Resource Management in the Solaris OS
The main concept behind resource management is that workloads on a server need to be
balanced for the system to work efficiently. Without good resource management, faulty
runaway workloads can bring progress to a halt, causing unnecessary delays to priority jobs. An
additional benefit is that efficient resource management enables organizations to economize by
consolidating servers. To enable the management of resources, the Solaris OS provides a
structure for organizing workloads and resources, and provides controls for defining the
quantity of resources that a particular unit of workload can consume. For an in-depth
discussion of resource management from the system administrator's viewpoint, see Chapter 1,
“Introduction to Solaris Resource Manager,” in System Administration Guide: Solaris
Containers-Resource Management and Solaris Zones.

Workload Organization
The basic unit of workload is the process. Process IDs (PIDs) are numbered sequentially
throughout the system. By default, each user is assigned by the system administrator to a
project, which is a network–wide administrative identifier. Each successful login to a project
creates a new task, which is a grouping mechanism for processes. A task contains the login
process as well as subsequent child processes.

1C H A P T E R 1

11

For more information on projects and tasks, see Chapter 2, “Projects and Tasks (Overview),” in
System Administration Guide: Solaris Containers-Resource Management and Solaris Zones for
the system administrator's perspective or Chapter 2 for the developer's point of view.

Processes can optionally be grouped into non-global zones, which are set up by system
administrators for security purposes and to isolate processes. A zone can be thought of as a box
in which one or more applications run isolated from all other applications on the system.
Non-global zones are discussed thoroughly in Part II, “Zones,” in System Administration Guide:
Solaris Containers-Resource Management and Solaris Zones. To learn more about special
precautions for writing resource management applications that run in zones, see Chapter 7

Resource Organization
The system administrator can assign workloads to specific CPUs or defined groups of CPUs in
the system. CPUs can be grouped into processor sets, otherwise known as psets. A pset in turn
can be coupled with one or more thread scheduling classes, which define CPU priorities, into a
resource pool. Resource pools provide a convenient mechanism for a system administrator to
make system resources available to users. Chapter 12, “Resource Pools (Overview),” in System
Administration Guide: Solaris Containers-Resource Management and Solaris Zones covers
resource pools for system administrators. Programming considerations are described in
Chapter 6.

The following diagram illustrates how workload and computer resources are organized in the
Solaris OS.

Understanding Resource Management in the Solaris OS

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)12

Resource Controls
Simply assigning a workload unit to a resource unit is insufficient for managing the quantity of
resources that users consume. To manage resources, the Solaris OS provides a set of flags,
actions, and signals that are referred to collectively as resource controls. Resource controls are
stored in the /etc/project file or in a zone's configuration through the zonecfg command
described in zonecfg(1M). The Fair Share Scheduler (FSS), for example, can allocate shares of
CPU resources among workloads based on the specified importance factor for the workloads.
With these resource controls, a system administrator can set privilege levels and limit
definitions for a specific zone, project, task, or process. To learn how a system administrator

Process5

Process6

Process7

Task3

myDBProject

Process8

Process9

Task4

Process1

Process2

Task1

Process3

Process4

Task2

aDevProject
myAdminProject

Zone1 Zone2

Workload organization

CPU0 CPU2 CPU4

CPU1 CPU3 CPU5

Pset1

Resource Pool 1

CPU6 CPU8

CPU7 CPU9

Pset2

Resource Pool 2

Server1

Resource organization

FIGURE 1–1 Workload and Resource Organization in the Solaris Operating System

Understanding Resource Management in the Solaris OS

Chapter 1 • Resource Management in the Solaris Operating System 13

uses resource controls, see Chapter 6, “Resource Controls (Overview),” in System
Administration Guide: Solaris Containers-Resource Management and Solaris Zones. For
programming considerations, see Chapter 5.

Extended Accounting Facility
In addition to the workload and resource organization, the Solaris OS provides the extended
accounting facility for monitoring and recording system resource usage. The extended
accounting facility provides system administrators with a detailed set of resource consumption
statistics on processes and tasks.

The facility is described in depth for system administrators in Chapter 4, “Extended Accounting
(Overview),” in System Administration Guide: Solaris Containers-Resource Management and
Solaris Zones. The Solaris OS provides developers with both a C interface and a Perl interface to
the extended accounting facility. Refer to Chapter 3 for the C interface or Chapter 4 for the Perl
interface.

Writing Resource Management Applications
This manual focuses on resource management from the developer's point of view and presents
information for writing the following kinds of applications:

■ Resource administration applications – Utilities to perform such tasks as allocating
resources, creating partitions, and scheduling jobs.

■ Resource monitoring applications – Applications that check system statistics through
kstats to determine resource usage by systems, workloads, processes, and users.

■ Resource accounting utilities – Applications that provide accounting information for
analysis, billing, and capacity planning.

■ Self-adjusting applications – Applications that can determine their use of resources and can
adjust consumption as necessary.

Writing Resource Management Applications

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)14

Projects and Tasks

The chapter discusses the workload hierarchy and provides information about projects and
tasks. The following topics are covered:

■ “Overview of Projects and Tasks” on page 15
■ “Project and Task API Functions” on page 17
■ “Code Examples for Accessing project Database Entries” on page 18
■ “Programming Issues Associated With Projects and Tasks” on page 19

Overview of Projects and Tasks
The Solaris Operating System uses the workload hierarchy to organize the work being
performed on the system. A task is a collection of processes that represents a workload
component. A project is a collection of tasks that represents an entire workload. At any given
time, a process can be a component of only one task and one project. The relationships in the
workload hierarchy are illustrated in the following figure.

A user who is a member of more than one project can run processes in multiple projects at the
same time. All processes that are started by a process inherit the project and task created by the
parent process. When you switch to a new project in a startup script, all child processes run in
the new project.

Task1

Process1 Process2 Process3 Process1 Process2 Process1 Process2 Process3 Process4

Task3

Project1

Task2

FIGURE 2–1 Workload Hierarchy

2C H A P T E R 2

15

An executing user process has an associated user identity (uid), group identity (gid), and
project identity (projid). Process attributes and abilities are inherited from the user, group, and
project identities to form the execution context for a task.

For an in-depth discussion of projects and tasks, see Chapter 2, “Projects and Tasks
(Overview),” in System Administration Guide: Solaris Containers-Resource Management and
Solaris Zones. For the administration commands for managing projects and tasks, see Chapter
3, “Administering Projects and Tasks,” in System Administration Guide: Solaris
Containers-Resource Management and Solaris Zones.

/etc/project File
The project file is the heart of workload hierarchy. The project database is maintained on a
system through the /etc/project file or over the network through a naming service, such as
NIS or LDAP.

The /etc/project file contains five standard projects.

system This project is used for all system processes and daemons.

user.root All root processes spawned by root logins and root cron, at, and batch jobs.

noproject This special project is for IPQoS.

default A default project is assigned to every user.

group.staff This project is used for all users in the group staff.

To access the project file programmatically, use the following structure:

struct project {

char *pj_name; /* name of the project */

projid_t pj_projid; /* numerical project ID */

char *pj_comment; /* project comment */

char **pj_users; /* vector of pointers to project user names */

char **pj_groups; /* vector of pointers to project group names */

char *pj_attr; /* project attributes */

};

The project structure members include the following:

*pj_name

Name of the project.

pj_projid

Project ID.

*pj_comment

User-supplied project description.

Overview of Projects and Tasks

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)16

**pj_users

Pointers to project user members.

**pj_groups

Pointers to project group members.

*pj_attr

Project attributes. Use these attributes to set values for resource controls and project pools.

Resource usage can be controlled through project attributes, or, for zones, configured through
the zonecfg command. Four prefixes are used to group the types of resource control attributes:
■ project.* – This prefix denotes attributes that are used to control projects. For example,

project.max-locked-memory indicates the total amount of locked memory allowed,
expressed as a number of bytes. The project.pool attribute binds a project to a resource
pool. See Chapter 6.

■ task.* – This prefix is used for attributes that are applied to tasks. For example, the
task.max-cpu-time attribute sets the maximum CPU time that is available to this task's
processes, expressed as a number of seconds.

■ process.* – This prefix is used for process controls. For example, the
process.max-file-size control sets the maximum file offset that is available for writing by
this process, expressed as a number of bytes.

■ zone.* – The zone.* prefix indicates a zone-wide resource control applied to projects,
tasks, and processes in a zone. For example, zone.max-lwps prevents too many LWPs in one
zone from affecting other zones. A zone's total LWPs can be further subdivided among
projects within the zone within the zone by using project.max-lwps entries.

For the complete list of resource controls, see resource_controls(5).

Project and Task API Functions
The following functions are provided to assist developers in working with projects. The
functions use entries that describe user projects in the project database.

endprojent(3PROJECT) Close the project database and deallocate resources when
processing is complete.

fgetprojent(3PROJECT) Returns a pointer to a structure containing an entry in the
project database. Rather than using nsswitch.conf,
fgetprojent() reads a line from a stream.

getdefaultproj(3PROJECT) Check the validity of the project keyword, look up the
project, and return a pointer to the project structure if
found.

getprojbyid(3PROJECT) Search the project database for an entry with the number
that specifies the project ID.

Project and Task API Functions

Chapter 2 • Projects and Tasks 17

getprojbyname(3PROJECT) Search the project database for an entry with the string that
specifies project name.

getprojent(3PROJECT) Returns a pointer to a structure containing an entry in the
project database.

inproj(3PROJECT) Check whether the specified user is permitted to use the
specified project.

setproject(3PROJECT) Calling process joins the target project by creating a new task
in the target project.

setprojent(3PROJECT) Rewind the project database to allow repeated searches.

Code Examples for Accessing projectDatabase Entries
EXAMPLE 2–1 Printing the First Three Fields of Each Entry in the projectDatabase

The key points for this example include the following:

■ setprojent() rewinds the project database to start at the beginning.
■ getprojent() is called with a conservative maximum buffer size that is defined in

project.h.
■ endprojent() closes the project database and frees resources.

#include <project.h>

struct project projent;

char buffer[PROJECT_BUFSZ]; /* Use safe buffer size from project.h */

...

struct project *pp;

setprojent(); /* Rewind the project database to start at the beginning */

while (1) {

pp = getprojent(&projent, buffer, PROJECT_BUFSZ);

if (pp == NULL)

break;

printf("%s:%d:%s\n", pp->pj_name, pp->pj_projid, pp->pj_comment);

...

};

endprojent(); /* Close the database and free project resources */

Code Examples for Accessing projectDatabase Entries

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)18

EXAMPLE 2–2 Getting a projectDatabase Entry That Matches the Caller's Project ID

The following example calls getprojbyid() to get a project database entry that matches the
caller's project ID. The example then prints the project name and the project ID.

#include <project.h>

struct project *pj;

char buffer[PROJECT_BUFSZ]; /* Use safe buffer size from project.h */

main()

{

projid_t pjid;

pjid = getprojid();

pj = getprojbyid(pjid, &projent, buffer, PROJECT_BUFSZ);

if (pj == NULL) {

/* fail; */

}

printf("My project (name, id) is (%s, %d)\n", pp->pj_name, pp->pj_projid);

}

Programming Issues Associated With Projects and Tasks
Consider the following issues when writing your application:

■ No function exists to explicitly create a new project.
■ A user cannot log in if no default project for the user exists in the project database.
■ A new task in the user's default project is created when the user logs in.
■ When a process joins a project, the project's resource control and pool settings are applied to

the process.
■ setproject() requires privilege. The newtask command does not require privilege if you

own the process. Either can be used to create a task, but only newtask can change the project
of a running process.

■ No parent/child relationship exists between tasks.
■ Finalized tasks can be created by using newtask -F or by using setproject() to associate

the caller with a new project. Finalized tasks are useful when trying to accurately estimate
aggregate resource accounting.

■ The reentrant functions, getprojent(), getprojbyname(), getprojbyid(),
getdefaultproj(), and inproj(), use buffers supplied by the caller to store returned
results. These functions are safe for use in both single-threaded applications and
multithreaded applications.

Programming Issues Associated With Projects and Tasks

Chapter 2 • Projects and Tasks 19

■ Reentrant functions require these additional arguments: proj, buffer, and bufsize. The
proj argument must be a pointer to a project structure allocated by the caller. On
successful completion, these functions return the project entry in this structure. Storage
referenced by the project structure is allocated from the memory specified by the buffer
argument. bufsize specifies the size in number of bytes.

■ If an incorrect buffer size is used, getprojent() returns NULL and sets errno to ERANGE.

Programming Issues Associated With Projects and Tasks

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)20

Using the C Interface to Extended Accounting

This chapter describes the C interface to extended accounting and covers the following topics:

■ “Overview of the C Interface to Extended Accounting” on page 21
■ “Extended Accounting API Functions” on page 22
■ “C Code Examples for Accessing exacct Files” on page 25

Overview of the C Interface to Extended Accounting
Projects and tasks are used to label and separate workloads. The extended accounting
subsystem is used to monitor resource consumption by workloads that are running on the
system. Extended accounting produces accounting records for the workload tasks and
processes.

For an overview of extended accounting and example procedures for administering extended
accounting, see Chapter 4, “Extended Accounting (Overview),” in System Administration
Guide: Solaris Containers-Resource Management and Solaris Zones and Chapter 5,
“Administering Extended Accounting (Tasks),” in System Administration Guide: Solaris
Containers-Resource Management and Solaris Zones.

The extended accounting framework has been expanded for zones. Each zone has its own
extended accounting files for task and process-based accounting. The extended accounting files
in the global zone contain accounting records for the global zone and for all non-global zones.
The accounting records contain a zone name tag. The global zone administrator can use the tag
during the extraction of per zone accounting data from the accounting files in the global zone.

3C H A P T E R 3

21

Extended Accounting API Functions
The extended accounting API contains functions that perform the following:

■ exacct system calls
■ Operations on the exacct file
■ Operations on exacct objects
■ Miscellaneous Operations

exacct System Calls
The following table lists the system calls that interact with the extended accounting subsystem.

TABLE 3–1 Extended Accounting System Calls

Function Description

putacct(2) Provides privileged processes with the ability to tag accounting records with additional
data that is specific to the process

getacct(2) Enables privileged processes to request extended accounting buffers from the kernel for
currently executing tasks and processes

wracct(2) Requests the kernel to write resource usage data for a specified task or process

Operations on the exacct File
These functions provide access to the exacct files:

TABLE 3–2 exacctFile Functions

Function Description

ea_open(3EXACCT) Opens an exacct file.

ea_close(3EXACCT) Closes an exacct file.

ea_get_object(3EXACCT) First time use on a group of objects reads data into an ea_object_t

structure. Subsequent use on the group cycles through the objects in the
group.

ea_write_object(3EXACCT) Appends the specified object to the open exacct file.

ea_next_object(3EXACCT) Reads the basic fields (eo_catalog and eo_type) into an ea_object_t

structure and rewinds to the head of the record.

Extended Accounting API Functions

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)22

TABLE 3–2 exacct File Functions (Continued)
Function Description

ea_previous_object(3EXACCT) Skips back one object in the exacct file and reads the basic fields
(eo_catalog and eo_type) into an ea_object_t.

ea_get_hostname(3EXACCT) Gets the name of the host on which the exacct file was created.

ea_get_creator(3EXACCT) Determines the creator of the exacct file.

Operations on exacctObjects
These functions are used to access exacct objects:

TABLE 3–3 exacctObject Functions

Function Description

ea_set_item(3EXACCT) Assigns an exacct object and sets the value(s).

ea_set_group(3EXACCT) Sets the values of a group of exacct objects.

ea_match_object_catalog(3EXACCT)Checks an exacct object's mask to see if that object has a specific catalog
tag.

ea_attach_to_object(3EXACCT) Attaches an exacct object to a specified exacct object.

ea_attach_to_group(3EXACCT) Attaches a chain of exacct objects as member items of a specified group.

ea_free_item(3EXACCT) Frees the value fields in the specified exacct object.

ea_free_object(3EXACCT) Frees the specified exacct object and any attached hierarchies of objects.

Memory Management
The following table lists the functions associated with extended accounting memory
management. The function name is a link to its man page.

TABLE 3–4 Extended Accounting Memory Management Functions

Link to man page Description

ea_pack_object(3EXACCT) Converts an exacct object from unpacked (in-memory)
representation to packed (in-file) representation.

ea_unpack_object(3EXACCT) Converts an exacct object from packed (in-file) representation
to unpacked (in-memory) representation.

Extended Accounting API Functions

Chapter 3 • Using the C Interface to Extended Accounting 23

TABLE 3–4 Extended Accounting Memory Management Functions (Continued)
Link to man page Description

ea_strdup(3EXACCT) Duplicates a string that is to be stored inside an ea_object_t

structure.

ea_strfree(3EXACCT) Frees a string previously copied by ea_strdup().

ea_alloc(3EXACCT) Allocates a block of memory of the requested size. This block can
be safely passed to libexacct functions, and can be safely freed
by any of the ea_free functions.

ea_free(3EXACCT) Frees a block of memory previously allocated by ea_alloc().

ea_free_object(3EXACCT) Frees variable-length data in object hierarchy.

ea_free_item(3EXACCT) Frees value fields of designated object, if EUP_ALLOC is
specified. The object is not freed. ea_free_object() frees the
specified object and any attached hierarchy of objects. If the flag
argument is set to EUP_ALLOC, ea_free_object() also frees
any variable-length data in the object hierarchy. If the flag
argument is set to EUP_NOALLOC, ea_free_object() does
not free the variable-length data. In particular, these flags should
correspond to the flags specified in calls to
ea_unpack_object(3EXACCT).

ea_copy_object(3EXACCT) Copies an ea_object_t. If the source object is part of a chain,
only the current object is copied. If the source object is a group,
only the group object is copied without its list of members. The
group object eg_nobjs and eg_objs fields are set to 0 and
NULL respectively. Use ea_copy_tree() to copy recursively a
group or a list of items.

ea_copy_object_tree(3EXACCT) ea_copy_object_tree recursively copies an ea_object_t. All
elements in the eo_next list are copied. Any group objects are
recursively copied. The returned object can be completely freed
with ea_free_object(3EXACCT) by specifying the
EUP_ALLOC flag.

ea_get_object_tree() Reads in nobj top-level objects from the file, returning the same
data structure that would have originally been passed to
ea_write_object(). On encountering a group
object,ea_get_object() reads only the group header part of the
group. ea_get_object_tree() reads the group and all its
member items, recursing into subrecords if necessary. The
returned object data structure can be completely freed with
ea_free_object() by specifying the EUP_ALLOC flag.

Extended Accounting API Functions

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)24

Miscellaneous Operations
These functions are associated with miscellaneous operations:

ea_error(3EXACCT)
ea_match_object_catalog(3EXACCT)

C Code Examples for Accessing exacct Files
This section provides code examples for accessing exacct files.

EXAMPLE 3–1 Displaying exacctData for a Designated pid

This example displays a specific pid's exacct data snapshot from the kernel.

...

ea_object_t *scratch;

int unpk_flag = EUP_ALLOC; /* use the same allocation flag */

/* for unpack and free */

/* Omit return value checking, to keep code samples short */

bsize = getacct(P_PID, pid, NULL, 0);

buf = malloc(bsize);

/* Retrieve exacct object and unpack */

getacct(P_PID, pid, buf, bsize);

ea_unpack_object(&scratch, unpk_flag, buf, bsize);

/* Display the exacct record */

disp_obj(scratch);

if (scratch->eo_type == EO_GROUP) {

disp_group(scratch);

}

ea_free_object(scratch, unpk_flag);

...

EXAMPLE 3–2 Identifying Individual Tasks During a Kernel Build

This example evaluates kernel builds and displays a string that describes the portion of the
source tree being built by this task make. Display the portion of the source being built to aid in
the per-source-directory analysis.

The key points for this example include the following:

C Code Examples for Accessing exacct Files

Chapter 3 • Using the C Interface to Extended Accounting 25

EXAMPLE 3–2 Identifying Individual Tasks During a Kernel Build (Continued)

■ To aggregate the time for a make, which could include many processes, each make is initiated
as a task. Child make processes are created as different tasks. To aggregate across the
makefile tree, the parent-child task relationship must be identified.

■ Add a tag with this information to the task's exacct file. Add a current working directory
string that describes the portion of the source tree being built by this task make.

ea_set_item(&cwd, EXT_STRING | EXC_LOCAL | MY_CWD,

cwdbuf, strlen(cwdbuf));

...

/* Omit return value checking and error processing */

/* to keep code sample short */

ptid = gettaskid(); /* Save "parent" task-id */

tid = settaskid(getprojid(), TASK_NORMAL); /* Create new task */

/* Set data for item objects ptskid and cwd */

ea_set_item(&ptskid, EXT_UINT32 | EXC_LOCAL | MY_PTID, &ptid, 0);

ea_set_item(&cwd, EXT_STRING | EXC_LOCAL | MY_CWD, cwdbuf, strlen(cwdbuf));

/* Set grp object and attach ptskid and cwd to grp */

ea_set_group(&grp, EXT_GROUP | EXC_LOCAL | EXD_GROUP_HEADER);

ea_attach_to_group(&grp, &ptskid);

ea_attach_to_group(&grp, &cwd);

/* Pack the object and put it back into the accounting stream */

ea_buflen = ea_pack_object(&grp, ea_buf, sizeof(ea_buf));

putacct(P_TASKID, tid, ea_buf, ea_buflen, EP_EXACCT_OBJECT);

/* Memory management: free memory allocate in ea_set_item */

ea_free_item(&cwd, EUP_ALLOC);

...

EXAMPLE 3–3 Reading and Displaying the Contents of a System exacct File

This example shows how to read and display a system exacct file for a process or a task.

The key points for this example include the following:

■ Call ea_get_object() to get the next object in the file. Call ea_get_object() in a loop until
EOF enables a complete traversal of the exacct file.

■ catalog_name() uses the catalog_item structure to convert a Solaris catalog's type ID to a
meaningful string that describes the content of the object's data. The type ID is obtained by
masking the lowest 24 bits, or 3 bytes.

C Code Examples for Accessing exacct Files

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)26

EXAMPLE 3–3 Reading and Displaying the Contents of a System exacct File (Continued)

switch(o->eo_catalog & EXT_TYPE_MASK) {

case EXT_UINT8:

printf(" 8: %u", o->eo_item.ei_uint8);

break;

case EXT_UINT16:

...

}

■ The upper 4 bits of TYPE_MASK are used to find out the data type to print the object's actual
data.

■ disp_group() takes a pointer to a group object and the number of objects in the group. For
each object in the group, disp_group() calls disp_obj() and recursively calls
disp_group() if the object is a group object.

/* Omit return value checking and error processing */

/* to keep code sample short */

main(int argc, char *argv)

{

ea_file_t ef;

ea_object_t scratch;

char *fname;

fname = argv[1];

ea_open(&ef, fname, NULL, EO_NO_VALID_HDR, O_RDONLY, 0);

bzero(&scratch, sizeof (ea_object_t));

while (ea_get_object(&ef, &scratch) != -1) {

disp_obj(&scratch);

if (scratch.eo_type == EO_GROUP)

disp_group(&ef, scratch.eo_group.eg_nobjs);

bzero(&scratch, sizeof (ea_object_t));

}

ea_close(&ef);

}

struct catalog_item { /* convert Solaris catalog’s type ID */

/* to a meaningful string */

int type;

char *name;

} catalog[] = {

{ EXD_VERSION, "version\t" },

...

{ EXD_PROC_PID, " pid\t" },

...

};

static char *

C Code Examples for Accessing exacct Files

Chapter 3 • Using the C Interface to Extended Accounting 27

EXAMPLE 3–3 Reading and Displaying the Contents of a System exacct File (Continued)

catalog_name(int type)

{

int i = 0;

while (catalog[i].type != EXD_NONE) {

if (catalog[i].type == type)

return (catalog[i].name);

else

i++;

}

return ("unknown\t");

}

static void disp_obj(ea_object_t *o)

{

printf("%s\t", catalog_name(o->eo_catalog & 0xffffff));

switch(o->eo_catalog & EXT_TYPE_MASK) {

case EXT_UINT8:

printf(" 8: %u", o->eo_item.ei_uint8);

break;

case EXT_UINT16:

...

}

static void disp_group(ea_file_t *ef, uint_t nobjs)

{

for (i = 0; i < nobjs; i++) {

ea_get_object(ef, &scratch));

disp_obj(&scratch);

if (scratch.eo_type == EO_GROUP)

disp_group(ef, scratch.eo_group.eg_nobjs);

}

}

Programming Issues With exacct Files
■ Memory management

■ Use the same allocation flags for ea_free_object() and ea_unpack_object().
■ For string objects, an ea_set_item() results in allocation, and should be followed by

ea_free_item(obj, EUP_ALLOC) to free internal storage.
■ ea_pack_object() and getacct() use zero size. To get size. getacct() should be called

twice: first time with NULL buffer to size buffer to be passed in the second call. See
Example 3-1 in “C Code Examples for Accessing exacct Files” on page 25.

■ Applications should skip unknown exacct records in exacct files produced by the system,
to be robust in the face of changes to exacct file content.

Programming Issues With exacct Files

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)28

■ Use EXC_LOCAL for customized accounting. Application-specific records can be created
using EXC_LOCAL. Use libexacct as general tracing or debugging facility.
■ See <sys/exacct_catalog.h>.
■ Data id field of ea_catalog_t can be customized.

Programming Issues With exacct Files

Chapter 3 • Using the C Interface to Extended Accounting 29

30

Using the Perl Interface to Extended
Accounting

The Perl interface provides a Perl binding to the extended accounting tasks and projects. The
interface allows the accounting files produced by the exacct framework to be read by Perl
scripts. The interface also allows the writing of exacct files by Perl scripts.

This chapter includes the following topics:

■ “Extended Accounting Overview” on page 31
■ “Perl Code Examples” on page 46
■ “Output From dump Method” on page 49

Extended Accounting Overview
The exacct is a new accounting framework for the Solaris operating system provides additional
functionality to that provided by the traditional SVR4 accounting mechanism. Traditional
SVR4 accounting has these drawbacks:

■ The data collected by SVR4 accounting cannot be modified.
The type or quantity of statistics SVR4 accounting gathers cannot be customized for each
application. Changes to the data SVR4 accounting collects would not work with all of the
existing applications that use the accounting files.

■ The SVR4 accounting mechanism is not open.
Applications cannot embed their own data in the system accounting data stream.

■ The SVR4 accounting mechanism has no aggregation facilities.
The Solaris Operating system writes an individual record for each process that exists. No
facilities are provided for grouping sets of accounting records into higher-level aggregates.

The exacct framework addresses the limitations of SVR4 accounting and provides a
configurable, open, and extensible framework for the collection of accounting data.

■ The data that is collected can be configured using the exacct API.

4C H A P T E R 4

31

■ Applications can either embed their own data inside the system accounting files, or create
and manipulate their own custom accounting files.

■ The lack of data aggregation facilities in the traditional accounting mechanism are
addressed by tasks and projects. Tasks identify a set of processes that are to be considered as
a unit of work. Projects allow the processes executed by a set of users to be aggregated into a
higher-level entity. See theproject(4) man page for more details about tasks and projects.

For a more extensive overview of extended accounting, see Chapter 4, “Extended Accounting
(Overview),” in System Administration Guide: Solaris Containers-Resource Management and
Solaris Zones.

Perl Interface to libexacct

Object Model
The Sun::Solaris::Exacct module is the parent of all the classes provided by
libexacct(3LIB) library. libexacct(3LIB) provides operations on types of entities: exacct
format files, catalog tags and exacct objects. exacct objects are subdivided into two types.

■ Items
Single data values

■ Groups
Lists of items

Benefits of Using the Perl Interface to libexacct

The Perl extensions to extended accounting provide a Perl interface to the underlying
libexacct(3LIB) API and offer the following enhancements.

■ Full equivalence to C API provide a Perl interface that is functionally equivalent to the
underlying C API.
The interface provides a mechanism for accessing exacct files that does not require C
coding. All the functionality that is available from C is also available by using the Perl
interface.

■ Ease of use.
Data obtained from the underlying C API is presented as Perl data types. Perl data types ease
access to the data and remove the need for buffer pack and unpack operations.

■ Automated memory management.

Perl Interface to libexacct

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)32

The C API requires that the programmer take responsibility for managing memory when
accessing exacct files. Memory management takes the form of passing the appropriate flags
to functions, such as ea_unpack_object(3EXACCT), and explicitly allocating buffers to
pass to the API. The Perl API removes these requirements, as all memory management is
performed by the Perl library.

■ Prevent incorrect use of API.

The ea_object_t structure provides the in-memory representation of exacct records. The
ea_object_t structure is a union type that is used for manipulating both Group and Item
records. As a result, an incorrectly typed structure can be passed to some of the API
functions. The addition of a class hierarchy prevents this type of programming error.

Perl Double-Typed Scalars
The modules described in this document make extensive use of the Perl double-typed scalar
facility. The double-typed scalar facility allows a scalar value to behave either as an integer or as a
string, depending upon the context. This behavior is the same as exhibited by the $! Perl
variable (errno). The double-typed scalar facility avoids the need to map from an integer value
into the corresponding string in order to display a value. The following example illustrates the
use of double-typed scalars.

Assume $obj is a Sun::Solaris::Item

my $type = $obj->type();

prints out "2 EO_ITEM"

printf("%d %s\n", $type, $type);

Behaves as an integer, $i == 2

my $i = 0 + $type;

Behaves as a string, $s = "abc EO_ITEM xyx"

my $s = "abc $type xyz";

Perl Modules
The various project, task and exacct-related functions have been separated into groups, and
each group is placed in a separate Perl module. Each function has the Sun Microsystems
standard Sun::Solaris:: Perl package prefix.

Perl Modules

Chapter 4 • Using the Perl Interface to Extended Accounting 33

TABLE 4–1 Perl Modules

Module Description

“Sun::Solaris::Project Module” on page 35 Provides functions to access the project
manipulation functions: getprojid(2),
setproject(3PROJECT),
project_walk(3PROJECT),
getprojent(3PROJECT),
getprojbyname(3PROJECT),
getprojbyid(3PROJECT),
getdefaultproj(3PROJECT),
inproj(3PROJECT),
getprojidbyname(3PROJECT),
setprojent(3PROJECT),
endprojent(3PROJECT),
fgetprojent(3PROJECT).

“Sun::Solaris::Task Module” on page 36 Provides functions to access the task
manipulation functions settaskid(2) and
gettaskid(2).

“Sun::Solaris::Exacct Module” on page 37 Top-level exacct module. Functions in this
module access both the exacct-related system
calls getacct(2), putacct(2), and wracct(2) as
well as the libexacct(3LIB) library function
ea_error(3EXACCT). This module contains
constants for all the various exacct EO_*, EW_*,
EXR_*, P_* and TASK_* macros.

“Sun::Solaris::Exacct::Catalog Module” on page 39 Provides object-oriented methods to access the
bitfields within an exacct catalog tag as well as
the EXC_*, EXD_* and EXD_* macros.

“Sun::Solaris::Exacct::File Module” on page 40 Provides object-oriented methods to access the
libexacct(3LIB) accounting file functions:
ea_open(3EXACCT), ea_close(3EXACCT),
ea_get_creator(3EXACCT),
ea_get_hostname(3EXACCT),
ea_next_object(3XACCT),
ea_previous_object(3EXACCT),
ea_write_object(3EXACCT).

Perl Modules

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)34

TABLE 4–1 Perl Modules (Continued)
Module Description

“Sun::Solaris::Exacct::Object Module” on page 42 Provides object-oriented methods to access the
individual exacct accounting file object. An
exacct object is represented as an opaque
reference that is blessed into the appropriate
Sun::Solaris::Exacct::Object subclass. This
module is further subdivided into the two types
of possible object: Item and Group. Methods are
also provided to access the
ea_match_object_catalog(3EXACCT),
ea_attach_to_object(3EXACCT) functions.

“Sun::Solaris::Exacct::Object::Item Module” on
page 43

Provides object-oriented methods to access an
individual exacct accounting file Item. Objects
of this type inherit from
Sun::Solaris::Exacct::Object.

“Sun::Solaris::Exacct::Object::Group Module” on
page 44

Provides object-oriented methods to access an
individual exacct accounting file Group. Objects
of this type inherit from
Sun::Solaris::Exacct::Object, and provide
access to the ea_attach_to_group(3EXACCT)
function. The Items contained within the Group
are presented as a perl array.

“Sun::Solaris::Exacct::Object::_Array Module” on
page 45

Private array type, used as the type of the array
within a
Sun::Solaris::Exacct::Object::Group.

Sun::Solaris::ProjectModule
The Sun::Solaris::Project module provides wrappers for the project-related system calls
and the libproject(3LIB) library.

Sun::Solaris::ProjectConstants
The Sun::Solaris::Project module uses constants from the project-related header files.

MAXPROJID

PROJNAME_MAX

PROJF_PATH

PROJECT_BUFSZ

SETPROJ_ERR_TASK

SETPROJ_ERR_POOL

Perl Modules

Chapter 4 • Using the Perl Interface to Extended Accounting 35

Sun::Solaris::Project Functions, Class Methods, and Object
Methods
The perl extensions to the libexacct(3LIB) API provide the following functions for projects.

setproject(3PROJECT)
setprojent(3PROJECT)
getdefaultproj(3PROJECT)
inproj(3PROJECT)
getprojent(3PROJECT)
fgetprojent(3PROJECT)
getprojbyname(3PROJECT)
getprojbyid(3PROJECT)
getprojbyname(3PROJECT)
endprojent(3PROJECT)

The Sun::Solaris::Project module has no class methods.

The Sun::Solaris::Project module has no object methods.

Sun::Solaris::Project Exports
By default, nothing is exported from this module. The following tags can be used to selectively
import constants and functions defined in this module.

Tag Constant or Function

:SYSCALLS getprojid()

:LIBCALLS setproject(), activeprojects(), getprojent(), setprojent(),
endprojent(), getprojbyname(), getprojbyid(), getdefaultproj(),
fgetprojent(), inproj(), getprojidbyname()

:CONSTANTS MAXPROJID_TASK, PROJNAME_MAX, PROJF_PATH, PROJECT_BUFSZ, SETPROJ_ERR,
SETPROJ_ERR_POOL

:ALL :SYSCALLS, :LIBCALLS, :CONSTANTS

Sun::Solaris::TaskModule
The Sun::Solaris::Task module provides wrappers for the settaskid(2) and gettaskid(2)
system calls.

Perl Modules

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)36

Sun::Solaris::TaskConstants
The Sun::Solaris::Task module uses the following constants.

TASK_NORMAL

TASK_FINAL

Sun::Solaris::Task Functions, Class Methods, and Object Methods
The perl extensions to the libexacct(3LIB) API provides the following functions for tasks.

settaskid(2)
gettaskid(2)

The Sun::Solaris::Task module has no class methods.

The Sun::Solaris::Task module has no object methods.

Sun::Solaris::Task Exports
By default, nothing is exported from this module. The following tags can be used to selectively
import constants and functions defined in this module.

Tag Constant or Function

:SYSCALLS settaskid(), gettaskid()

:CONSTANTS TASK_NORMAL and TASK_FINAL

:ALL :SYSCALLS and :CONSTANTS

Sun::Solaris::ExacctModule
The Sun::Solaris::Exacct module provides wrappers for the ea_error(3EXACCT)
function, and for all the exacct system calls.

Sun::Solaris::ExacctConstants
The Sun::Solaris::Exacct module provides constants from the various exacct header files.
The P_PID, P_TASKID, P_PROJID and all the EW_*, EP_*, EXR_* macros are extracted during the
module build process. The macros are extracted from the exacct header files under
/usr/include and provided as Perl constants. Constants passed to the Sun::Solaris::Exacct
functions can either be an integer value such as. EW_FINAL or a string representation of the same
variable such as. “EW_FINAL”.

Perl Modules

Chapter 4 • Using the Perl Interface to Extended Accounting 37

Sun::Solaris::Exacct Functions, Class Methods, and Object Methods
The perl extensions to the libexacct(3LIB) API provide the following functions for the
Sun::Solaris::Exacct module.

getacct(2)
putacct(2)
wracct(2)
ea_error(3EXACCT)
ea_error_str

ea_register_catalog

ea_new_file

ea_new_item

ea_new_group

ea_dump_object

Note – ea_error_str() is provided as a convenience, so that repeated blocks of code like the
following can be avoided:

if (ea_error() == EXR_SYSCALL_FAIL) {

print("error: $!\n");

} else {

print("error: ", ea_error(), "\n");

}

The Sun::Solaris::Exacct module has no class methods.

The Sun::Solaris::Exacct module has no object methods.

Sun::Solaris::Exacct Exports
By default, nothing is exported from this module. The following tags can be used to selectively
import constants and functions defined in this module.

Tag Constant or Function

:SYSCALLS getacct(), putacct(), wracct()

:LIBCALLS ea_error(), ea_error_str()

:CONSTANTS P_PID, P_TASKID, P_PROJID

, EW_*, EP_*, EXR_*

Perl Modules

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)38

Tag Constant or Function

:SHORTAND ea_register_catalog(), ea_new_catalog(), ea_new_file(),
ea_new_item(), ea_new_group(), ea_dump_object()

:ALL :SYSCALLS, :LIBCALLS, :CONSTANTS and :SHORTHAND

:EXACCT_CONSTANTS :CONSTANTS, plus the :CONSTANTS tags for Sun::Solaris::Catalog,
Sun::Solaris::File, Sun::Solaris::Object

:EXACCT_ALL :ALL, plus the :ALL tags for Sun::Solaris::Catalog, Sun::Solaris::File,
Sun::Solaris::Object

Sun::Solaris::Exacct::CatalogModule
The Sun::Solaris::Exacct::Catalog module provides a wrapper around the 32-bit integer
used as a catalog tag. The catalog tag is represented as a Perl object blessed into the
Sun::Solaris::Exacct::Catalog class. Methods can be used to manipulate fields in a catalog
tag.

Sun::Solaris::Exacct::Catalog Constants
All the EXT_*, EXC_* and EXD_* macros are extracted during the module build process from the
/usr/include/sys/exact_catalog.h file and are provided as constants. Constants passed to
the Sun::Solaris::Exacct::Catalog methods can either be an integer value, such as
EXT_UINT8, or the string representation of the same variable, such as “EXT_UINT8”.

Sun::Solaris::Exacct::Catalog Functions, Class Methods, and
Object Methods
The Perl extensions to the libexacct(3LIB) API provide the following class methods
forSun::Solaris::Exacct::Catalog. Exacct(3PERL) andExacct::Catalog(3PERL)

register

new

The Perl extensions to the libexacct(3LIB) API provide the following object methods for
Sun::Solaris::Exacct::Catalog.

value

type

catalog

id

type_str

catalog_str

Perl Modules

Chapter 4 • Using the Perl Interface to Extended Accounting 39

id_str

Sun::Solaris::Exacct::Catalog Exports
By default, nothing is exported from this module. The following tags can be used to selectively
import constants and functions defined in this module.

Tag Constant or Function

:CONSTANTS EXT_*, EXC_* and EXD_*.

:ALL :CONSTANTS

Additionally, any constants defined with the register() function can optionally be exported
into the caller's package.

Sun::Solaris::Exacct::FileModule
The Sun::Solaris::Exacct::File module provides wrappers for the exacct functions that
manipulate accounting files. The interface is object-oriented, and allows the creation and
reading of exacct files. The C library calls that are wrapped by this module are:

ea_open(3EXACCT)
ea_close(3EXACCT)
ea_next_object(3EXACCT)
ea_previous_object(3EXACCT)
ea_write_object(3EXACCT)
ea_get_object(3EXACCT)
ea_get_creator(3EXACCT)
ea_get_hostname(3EXACCT)

The file read and write methods operate on Sun::Solaris::Exacct::Object objects. These
methods perform all the necessary memory management, packing, unpacking and structure
conversions that are required.

Sun::Solaris::Exacct::File Constants
Sun::Solaris::Exacct::File provides the EO_HEAD, EO_TAIL, EO_NO_VALID_HDR,
EO_POSN_MSK and EO_VALIDATE_MSK constants. Other constants that are needed by the new()
method are in the standard Perl Fcntl module. Table 4–2 describes the action of new() for
various values of $oflags and $aflags.

Perl Modules

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)40

Sun::Solaris::Exacct::File Functions, Class Methods, and Object
Methods
The Sun::Solaris::Exacct::File module has no functions.

The Perl extensions to the libexacct(3LIB) API provide the following class method
forSun::Solaris::Exacct::File.

new

The following table describes the new() action for combinations of the $oflags and $aflags

parameters.

TABLE 4–2 $oflags and $aflagsParameters

$oflags $aflags Action

O_RDONLY Absent or EO_HEAD Open for reading at the start of the file.

O_RDONLY EO_TAIL Open for reading at the end of the file.

O_WRONLY Ignored File must exist, open for writing at the end of
the file.

O_WRONLY | O_CREAT Ignored Create file if the file does not exist. Otherwise,
truncate, and open for writing.

O_RDWR Ignored File must exist, open for reading or writing, at
the end of the file.

O_RDWR | O_CREAT Ignored Create file if the file does not exist. Otherwise,
truncate, and open for reading or writing.

Note – The only valid values for $oflags are the combinations of O_RDONLY, O_WRONLY, O_RDWR
or O_CREAT. $aflags describes the required positioning in the file for O_RDONLY. Either EO_HEAD
or EO_TAIL are allowed. If absent, EO_HEAD is assumed.

The perl extensions to the libexacct(3LIB) API provide the following object methods
forSun::Solaris::Exacct::File.

creator

hostname

next

previous

get

write

Perl Modules

Chapter 4 • Using the Perl Interface to Extended Accounting 41

Note – Close a Sun::Solaris::Exacct::File. There is no explicit close() method for a
Sun::Solaris::Exacct::File. The file is closed when the filehandle object is undefined or
reassigned.

Sun::Solaris::Exacct::File Exports
By default, nothing is exported from this module. The following tags can be used to selectively
import constants that are defined in this module.

Tag Constant or Function

:CONSTANTS EO_HEAD, EO_TAIL, EO_NO_VALID_HDR, EO_POSN_MSK, EO_VALIDATE_MSK.

:ALL :CONSTANTS and Fcntl(:DEFAULT).

Sun::Solaris::Exacct::ObjectModule
The Sun::Solaris::Exacct::Object module serves as a parent of the two possible types of
exacct objects: Items and Groups. An exacct Item is a single data value, an embedded exacct

object, or a block of raw data. An example of a single data value is the number of seconds of user
CPU time consumed by a process. An exacct Group is an ordered collection of exacct Items
such as all of the resource usage values for a particular process or task. If Groups need to be
nested within each other, the inner Groups can be stored as embedded exacct objects inside the
enclosing Group.

The Sun::Solaris::Exacct::Object module contains methods that are common to both
exacct Items and Groups. Note that the attributes of Sun::Solaris::Exacct::Object and all
classes derived from it are read-only after initial creation via new(). The attributes made
read-only prevents the inadvertent modification of the attributes which could give rise to
inconsistent catalog tags and data values. The only exception to the read-only attributes is the
array used to store the Items inside a Group object. This array can be modified using the normal
perl array operators.

Sun::Solaris::Exacct::Object Constants
Sun::Solaris::Exacct::Object provides the EO_ERROR, EO_NONE, EO_ITEM and EO_GROUP

constants.

Sun::Solaris::Exacct::Object Functions, Class Methods, and Object
Methods
The Sun::Solaris::Exacct::Object module has no functions.

Perl Modules

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)42

The Perl extensions to the libexacct(3LIB) API provide the following class method
forSun::Solaris::Exacct::Object.

dump

The Perl extensions to the libexacct(3LIB) API provide the following object methods
forSun::Solaris::Exacct::Object.

type

catalog

match_catalog

value

Sun::Solaris::Exacct::Object Exports
By default, nothing is exported from this module. The following tags can be used to selectively
import constants and functions defined in this module.

Tag Constant or Function

:CONSTANTS EO_ERROR, EO_NONE, EO_ITEM and EO_GROUP

:ALL :CONSTANTS

Sun::Solaris::Exacct::Object::ItemModule
The Sun::Solaris::Exacct::Object::Item module is used for exacct data Items. An exacct

data Item is represented as an opaque reference, blessed into the
Sun::Solaris::Exacct::Object::Item class, which is a subclass of the
Sun::Solaris::Exacct::Object class. The underlying exacct data types are mapped onto
Perl types as follows.

TABLE 4–3 exacctData Types Mapped to Perl Data Types

exacct type Perl internal type

EXT_UINT8 IV (integer)

EXT_UINT16 IV (integer)

EXT_UINT32 IV (integer)

EXT_UINT64 IV (integer)

Perl Modules

Chapter 4 • Using the Perl Interface to Extended Accounting 43

TABLE 4–3 exacctData Types Mapped to Perl Data Types (Continued)
exacct type Perl internal type

EXT_DOUBLE NV (double)

EXT_STRING PV (string)

EXT_EXACCT_OBJECT Sun::Solaris::Exacct::Object subclass

EXT_RAW PV (string)

Sun::Solaris::Exacct::Object::Item Constants
Sun::Solaris::Exacct::Object::Item has no constants.

Sun::Solaris::Exacct::Object::Item Functions, Class Methods, and
Object Methods
Sun::Solaris::Exacct::Object::Item has no functions.

Sun::Solaris::Exacct::Object::Item inherits all class methods from the
Sun::Solaris::Exacct::Object base class, plus the new() class method.

new

Sun::Solaris::Exacct::Object::Item inherits all object methods from the
Sun::Solaris::Exacct::Object base class.

Sun::Solaris::Exacct::Object::Item Exports
Sun::Solaris::Exacct::Object::Item has no exports.

Sun::Solaris::Exacct::Object::GroupModule
The Sun::Solaris::Exacct::Object::Group module is used for exacct Group objects. An
exacct Group object is represented as an opaque reference, blessed into the
Sun::Solaris::Exacct::Object::Group class, which is a subclass of the
Sun::Solaris::Exacct::Object class. The Items within a Group are stored inside a Perl array,
and a reference to the array can be accessed via the inherited value() method. This means that
the individual Items within a Group can be manipulated with the normal Perl array syntax and
operators. All data elements of the array must be derived from the
Sun::Solaris::Exacct::Object class. Group objects can also be nested inside each other
merely by adding an existing Group as a data Item.

Sun::Solaris::Exacct::Object::Group Constants
Sun::Solaris::Exacct::Object::Group has no constants.

Perl Modules

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)44

Sun::Solaris::Exacct::Object::Group Functions, Class Methods,
and Object Methods
Sun::Solaris::Exacct::Object::Group has no functions.

Sun::Solaris::Exacct::Object::Group inherits all class methods from the
Sun::Solaris::Exacct::Object base class, plus the new() class method.

new

Sun::Solaris::Exacct::Object::Group inherits all object methods from the
Sun::Solaris::Exacct::Object base class, plus the new() class method.

as_hash

as_hashlist

Sun::Solaris::Exacct::Object::Group Exports
Sun::Solaris::Exacct::Object::Group has no exports.

Sun::Solaris::Exacct::Object::_Array Module
The Sun::Solaris::Exacct::Object::_Array class is used internally for enforcing type
checking of the data Items that are placed in an exacct Group.
Sun::Solaris::Exacct::Object::_Array should not be created directly by the user.

Sun::Solaris::Exacct::Object::_Array Constants
Sun::Solaris::Exacct::Object::_Array has no constants.

Sun::Solaris::Exacct::Object::_Array Functions, Class Methods,
and Object Methods
Sun::Solaris::Exacct::Object::_Array has no functions.

Sun::Solaris::Exacct::Object::_Array has internal-use class methods.

Sun::Solaris::Exacct::Object::_Array uses perl TIEARRAY methods.

Sun::Solaris::Exacct::Object::_Array Exports
Sun::Solaris::Exacct::Object::_Array has no exports.

Perl Modules

Chapter 4 • Using the Perl Interface to Extended Accounting 45

Perl Code Examples
This section shows perl code examples for accessing exacct files.

EXAMPLE 4–1 Using the Pseudocode Prototype

In typical use the Perl exacct library reads existing exacct files. Use pseudocode to show the
relationships of the various Perl exacct classes. Illustrate in pseudocode the process of opening
and scanning an exacct file, and processing objects of interest. In the following pseudocode, the
‘convenience’ functions are used in the interest of clarity.

-- Open the exacct file ($f is a Sun::Solaris::Exacct::File)

my $f = ea_new_file(...)

-- While not EOF ($o is a Sun::Solaris::Exacct::Object)

while (my $o = $f->get())

-- Check to see if object is of interest

if ($o->type() == &EO_ITEM)

...

-- Retrieve the catalog ($c is a Sun::Solaris::Exacct::Catalog)

$c = $o->catalog()

-- Retrieve the value

$v = $o->value();

-- $v is a reference to a Sun::Solaris::Exacct::Group for a Group

if (ref($v))

....

-- $v is perl scalar for Items

else

EXAMPLE 4–2 Recursively dumping an exacctObject

sub dump_object

{

my ($obj, $indent) = @_;

my $istr = ’ ’ x $indent;

#

Retrieve the catalog tag. Because we are doing this in an array

context, the catalog tag will be returned as a (type, catalog, id)

triplet, where each member of the triplet will behave as an integer

or a string, depending on context. If instead this next line provided

a scalar context, e.g.

Perl Code Examples

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)46

EXAMPLE 4–2 Recursively dumping an exacctObject (Continued)

my $cat = $obj->catalog()->value();

then $cat would be set to the integer value of the catalog tag.

#

my @cat = $obj->catalog()->value();

#

If the object is a plain item

#

if ($obj->type() == &EO_ITEM) {

#

Note: The ’%s’ formats provide s string context, so the

components of the catalog tag will be displayed as the

symbolic values. If we changed the ’%s’ formats to ’%d’,

the numeric value of the components would be displayed.

#

printf("%sITEM\n%s Catalog = %s|%s|%s\n",

$istr, $istr, @cat);

$indent++;

#

Retrieve the value of the item. If the item contains in

turn a nested exacct object (i.e. a item or group), then

the value method will return a reference to the appropriate

sort of perl object (Exacct::Object::Item or

Exacct::Object::Group). We could of course figure out that

the item contained a nested item or group by examining

the catalog tag in @cat and looking for a type of

EXT_EXACCT_OBJECT or EXT_GROUP.

my $val = $obj->value();

if (ref($val)) {

If it is a nested object, recurse to dump it.

dump_object($val, $indent);

} else {

Otherwise it is just a ’plain’ value, so display it.

printf("%s Value = %s\n", $istr, $val);

}

#

Otherwise we know we are dealing with a group. Groups represent

contents as a perl list or array (depending on context), so we

can process the contents of the group with a ’foreach’ loop, which

provides a list context. In a list context the value method

returns the content of the group as a perl list, which is the

quickest mechanism, but doesn’t allow the group to be modified.

If we wanted to modify the contents of the group we could do so

like this:

Perl Code Examples

Chapter 4 • Using the Perl Interface to Extended Accounting 47

EXAMPLE 4–2 Recursively dumping an exacctObject (Continued)

my $grp = $obj->value(); # Returns an array reference

$grp->[0] = $newitem;

but accessing the group elements this way is much slower.

#

} else {

printf("%sGROUP\n%s Catalog = %s|%s|%s\n",

$istr, $istr, @cat);

$indent++;

’foreach’ provides a list context.

foreach my $val ($obj->value()) {

dump_object($val, $indent);

}

printf("%sENDGROUP\n", $istr);

}

}

EXAMPLE 4–3 Creating a New Group Record and Writing to a File

Prototype list of catalog tags and values.

my @items = (

[&EXT_STRING | &EXC_DEFAULT | &EXD_CREATOR => "me"],

[&EXT_UINT32 | &EXC_DEFAULT | &EXD_PROC_PID => $$],

[&EXT_UINT32 | &EXC_DEFAULT | &EXD_PROC_UID => $<],

[&EXT_UINT32 | &EXC_DEFAULT | &EXD_PROC_GID => $(],

[&EXT_STRING | &EXC_DEFAULT | &EXD_PROC_COMMAND => "/bin/stuff"],

);

Create a new group catalog object.

my $cat = new_catalog(&EXT_GROUP | &EXC_DEFAULT | &EXD_NONE);

Create a new Group object and retrieve its data array.

my $group = new_group($cat);

my $ary = $group->value();

Push the new Items onto the Group array.

foreach my $v (@items) {

push(@$ary, new_item(new_catalog($v->[0]), $v->[1]));

}

Nest the group within itself (performs a deep copy).

push(@$ary, $group);

Dump out the group.

dump_object($group);

Perl Code Examples

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)48

EXAMPLE 4–4 Dumping an exacct File

#!/usr/bin/perl

use strict;

use warnings;

use blib;

use Sun::Solaris::Exacct qw(:EXACCT_ALL);

die("Usage is dumpexacct

Open the exact file and display the header information.

my $ef = ea_new_file($ARGV[0], &O_RDONLY) || die(error_str());

printf("Creator: %s\n", $ef->creator());

printf("Hostname: %s\n\n", $ef->hostname());

Dump the file contents

while (my $obj = $ef->get()) {

ea_dump_object($obj);

}

Report any errors

if (ea_error() != EXR_OK && ea_error() != EXR_EOF) {

printf("\nERROR: %s\n", ea_error_str());

exit(1);

}

exit(0);

Output From dumpMethod
This example shows the formatted output of the Sun::Solaris::Exacct::Object->dump()
method.

GROUP

Catalog = EXT_GROUP|EXC_DEFAULT|EXD_GROUP_PROC_PARTIAL

ITEM

Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_PID

Value = 3

ITEM

Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_UID

Value = 0

ITEM

Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_GID

Value = 0

ITEM

Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_PROJID

Output From dumpMethod

Chapter 4 • Using the Perl Interface to Extended Accounting 49

Value = 0

ITEM

Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_TASKID

Value = 0

ITEM

Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_CPU_USER_SEC

Value = 0

ITEM

Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_CPU_USER_NSEC

Value = 0

ITEM

Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_CPU_SYS_SEC

Value = 890

ITEM

Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_CPU_SYS_NSEC

Value = 760000000

ITEM

Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_START_SEC

Value = 1011869897

ITEM

Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_START_NSEC

Value = 380771911

ITEM

Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_FINISH_SEC

Value = 0

ITEM

Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_FINISH_NSEC

Value = 0

ITEM

Catalog = EXT_STRING|EXC_DEFAULT|EXD_PROC_COMMAND

Value = fsflush

ITEM

Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_TTY_MAJOR

Value = 4294967295

ITEM

Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_TTY_MINOR

Value = 4294967295

ITEM

Catalog = EXT_STRING|EXC_DEFAULT|EXD_PROC_HOSTNAME

Value = mower

ITEM

Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_FAULTS_MAJOR

Value = 0

ITEM

Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_FAULTS_MINOR

Value = 0

ITEM

Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_MESSAGES_SND

Output From dumpMethod

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)50

Value = 0

ITEM

Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_MESSAGES_RCV

Value = 0

ITEM

Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_BLOCKS_IN

Value = 19

ITEM

Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_BLOCKS_OUT

Value = 40833

ITEM

Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_CHARS_RDWR

Value = 0

ITEM

Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_CONTEXT_VOL

Value = 129747

ITEM

Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_CONTEXT_INV

Value = 79

ITEM

Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_SIGNALS

Value = 0

ITEM

Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_SYSCALLS

Value = 0

ITEM

Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_ACCT_FLAGS

Value = 1

ITEM

Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_ANCPID

Value = 0

ITEM

Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_WAIT_STATUS

Value = 0

ENDGROUP

Output From dumpMethod

Chapter 4 • Using the Perl Interface to Extended Accounting 51

52

Resource Controls

This chapter describes resource controls and their properties.

■ “Overview of Resource Controls” on page 53
■ “Resource Controls Flags and Actions” on page 54
■ “Resource Controls API Functions” on page 62
■ “Resource Control Code Examples” on page 64
■ “Programming Issues Associated With Resource Controls” on page 69

Overview of Resource Controls
Use the extended accounting facility to determine the resource consumption of workloads on
your system. After the resource consumption has been determined, use the resource control
facility to place bounds on resource usage. Bounds that are placed on resources prevent
workloads from over-consuming resources.

For an overview of resource controls and example commands for administering resource
controls, see Chapter 6, “Resource Controls (Overview),” in System Administration Guide:
Solaris Containers-Resource Management and Solaris Zones and Chapter 7, “Administering
Resource Controls (Tasks),” in System Administration Guide: Solaris Containers-Resource
Management and Solaris Zones.

The resource control facility adds the following benefits.

■ Dynamically set

Resource controls can be adjusted while the system is running.
■ Containment level granularity

Resource controls are arranged in a containment level of zone, project, task, or process. The
containment level simplifies the configuration and aligns the collected values closer to the
particular zone, project, task, or process.

5C H A P T E R 5

53

Resource Controls Flags and Actions
This section describes flags, actions, and signals associated with resource controls.

rlimit, Resource Limit
rlimit is process-based. rlimit establishes a restricting boundary on the consumption of a
variety of system resources by a process. Each process that the process creates inherits from the
original process. A resource limit is defined by a pair of values. The values specify the current
(soft) limit and the maximum (hard) limit.

A process might irreversibly lower its hard limit to any value that is greater than or equal to the
soft limit. Only a process with superuser ID can raise the hard limit. See setrlimit() and
getrlimit().

The rlimit structure contains two members that define the soft limit and hard limit.

rlim_t rlim_cur; /* current (soft) limit */

rlim_t rlim_max /* hard limit */

rctl, Resource Control
rctl extends the process-based limits of rlimit by controlling resource consumption by
processes, tasks, and projects defined in the project database.

Note – The rctl mechanism is preferred to the use of rlimit to set resource limits. The only
reason to use the rlimit facility is when portability is required across UNIX platforms.

Applications fall into the following broad categories depending on how an application deals
with resource controls. Based on the action that is taken, resource controls can be further
classified. Most report an error and terminate operation. Other resource controls allow
applications to resume operation and adapt to the reduced resource usage. A progressive chain
of actions at increasing values can be specified for each resource control.

The list of attributes for a resource control consists of a privilege level, a threshold value, and an
action that is taken when the threshold is exceeded.

Resource Control Values and Privilege Levels
Each threshold value on a resource control must be associated with one of the following
privilege levels:

Resource Controls Flags and Actions

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)54

RCPRIV_BASIC
Privilege level can be modified by the owner of the calling process. RCPRIV_BASIC is
associated with a resource's soft limit.

RCPRIV_PRIVILEGED
Privilege level can be modified only by privileged (superuser) callers.
RCPRIV_PRIVILEGED is associated with a resource's hard limit.

RCPRIV_SYSTEM
Privilege level remains fixed for the duration of the operating system instance.

Figure 5–2 shows the timeline for setting privilege levels for signals that are defined by the
/etc/project file process.max-cpu-time resource control.

Local Actions and Local Flags
The local action and local flags are applied to the current resource control value represented by
this resource control block. Local actions and local flags are value-specific. For each threshold
value that is placed on a resource control, the following local actions and local flags are
available:

RCTL_LOCAL_NOACTION
No local action is taken when this resource control value is exceeded.

RCTL_LOCAL_SIGNAL
The specified signal, set by rctlblk_set_local_action(), is sent to the process that placed
this resource control value in the value sequence.

RCTL_LOCAL_DENY
When this resource control value is encountered, the request for the resource is denied. Set
on all values if RCTL_GLOBAL_DENY_ALWAYS is set for this control. Cleared on all
values if RCTL_GLOBAL_DENY_NEVER is set for this control.

RCTL_LOCAL_MAXIMAL
This resource control value represents a request for the maximum amount of resource for
this control. If RCTL_GLOBAL_INFINITE is set for this resource control,
RCTL_LOCAL_MAXIMAL indicates an unlimited resource control value that is never
exceeded.

Global Actions and Global Flags
Global flags apply to all current resource control values represented by this resource control
block. Global actions and global flags are set by rctladm(1M). Global actions and global flags
cannot be set with setrctl(). Global flags apply to all resource controls. For each threshold
value that is placed on a resource control, the following global actions and global flags are
available:

Resource Controls Flags and Actions

Chapter 5 • Resource Controls 55

RCTL_GLOBAL_NOACTION
No global action is taken when a resource control value is exceeded on this control.

RCTL_GLOBAL_SYSLOG
A standard message is logged by the syslog() facility when any resource control value on a
sequence associated with this control is exceeded.

RCTL_GLOBAL_SECONDS
Defines the unit string of the limit value as seconds.

RCTL_GLOBAL_COUNT
Defines the unit string of the limit value as count.

RCTL_GLOBAL_BYTES
Defines the unit string of the limit value as bytes.

RCTL_GLOBAL_SYSLOG_NEVER
Flag means that RCTL_GLOBAL_SYSLOG cannot be set for this resource control through
rctladm(1M).

RCTL_GLOBAL_NOBASIC
No values with the RCPRIV_BASIC privilege are permitted on this control.

RCTL_GLOBAL_LOWERABLE
Non-privileged callers are able to lower the value of privileged resource control values on
this control.

RCTL_GLOBAL_DENY_ALWAYS
The action that is taken when a control value is exceeded on this control always includes
denial of the resource.

RCTL_GLOBAL_DENY_NEVER
The action that is taken when a control value is exceeded on this control always excludes
denial of the resource. The resource is always granted, although other actions can also be
taken.

RCTL_GLOBAL_FILE_SIZE
The valid signals for local actions include the SIGXFSZ signal.

RCTL_GLOBAL_CPU_TIME
The valid signals for local actions include the SIGXCPU signal.

RCTL_GLOBAL_SIGNAL_NEVER
No local actions are permitted on this control. The resource is always granted.

RCTL_GLOBAL_INFINITE
This resource control supports the concept of an unlimited value. Generally, an unlimited
value applies only to accumulation-oriented resources, such as CPU time.

RCTL_GLOBAL_UNOBSERVABLE
Generally, a task or project related resource control does not support observational control
values. An RCPRIV_BASIC privileged control value placed on a task or process generates an

Resource Controls Flags and Actions

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)56

action only if the value is exceeded by the process that placed the value.

Resource Control Sets Associated With a Project,
Processes, and Tasks
The following figure shows the resource control sets associated with tasks, processes and a
project.

Resource Controls Flags and Actions

Chapter 5 • Resource Controls 57

More than one resource control can exist on a resource, each resource control at a containment
level in the process model. Resource controls can be active on the same resource for both a
process and collective task or collective project. In this case, the action for the process takes
precedence. For example, action is taken on process.max-cpu-time before
task.max-cpu-time if both controls are encountered simultaneously.

Zone

Task

Project

Task Task

Task rctl set

task.max-cpu-time
task.max-lwps

Task rctl set

task.max-cpu-time
task.max-lwps

Project rctl set

project.cpu-shares
project.max-lwps
project.max-tasks
project.max-contracts

Process rctl set

process.max-address-space
process.max-file-descriptors
process.max-core-size
process.max-stack-size
...

Process rctl set

...
process.max-data-size
process.max-file-size
process.max-cpu-time

.....

= Circle designates a process within a task

Zone-wide rctl set

zone.cpu-shares
zone.max-locked-memory

FIGURE 5–1 Resource Control Sets for Task, Project, and Process

Resource Controls Flags and Actions

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)58

Resource Controls Associated With a Project
Resource controls associated with a project include the following:

project.cpu-cap

Absolute limit on the amount of CPU resources that can be consumed by a project. A value
of 100 means 100 percent of one CPU as the project.cpu-cap setting. A value of 125 is 125
percent, because 100 percent corresponds to one full CPU on the system when using CPU
caps.

project.cpu-shares

The number of CPU shares that are granted to this project for use with the fair share
scheduler, FSS(7).

project.max-crypto-memory

Total amount of kernel memory that can be used by libpkcs11 for hardware crypto
acceleration. Allocations for kernel buffers and session-related structures are charged
against this resource control.

project.max-locked-memory

Total amount of physical locked memory allowed.

Note that this resource control replaced project.max-device-locked-memory, which has
been removed.

project.max-msg-ids

Maximum number of System V message queues allowed for a project.

project.max-port-ids

Maximum allowable number of event ports.

project.max-sem-ids

Maximum number of semaphore IDs allowed for a project.

project.max-shm-ids

Maximum number of shared memory IDs allowed for this project.

project.max-msg-ids

Maximum number of message queue IDs allowed for this project.

project.max-shm-memory

Total amount of System V shared memory allowed for this project.

project.max-lwps

Maximum number of LWPs simultaneously available to this project.

project.max-tasks

Maximum number of tasks allowable in this project.

project.max-contracts

Maximum number of contracts allowed in this project.

Resource Controls Flags and Actions

Chapter 5 • Resource Controls 59

Resource Controls Associated With Tasks
Resource controls associated with tasks include the following:

task.max-cpu-time

Maximum CPU time (seconds) available to this task's processes.

task.max-lwps

Maximum number of LWPs simultaneously available to this task's processes.

Resource Controls Associated With Processes
Resource controls associated with processes include the following:

process.max-address-space

Maximum amount of address space (bytes), as summed over segment sizes, available to this
process.

process.max-core-size

Maximum size (bytes) of a core file that is created by this process.

process.max-cpu-time

Maximum CPU time (seconds) available to this process.

process.max-file-descriptor

Maximum file descriptor index that is available to this process.

process.max-file-size

Maximum file offset (bytes) available for writing by this process.

process.max-msg-messages

Maximum number of messages on a message queue. This value is copied from the resource
control at msgget() time.

process.max-msg-qbytes

Maximum number (bytes) of messages on a message queue. This value is copied from the
resource control at msgget() time.When you set a new project.max-msg-qbytes value,
initialization occurs only on the subsequently created values. The new
project.max-msg-qbytes value does not effect existing values.

process.max-sem-nsems

Maximum number of semaphores allowed for a semaphore set.

process.max-sem-ops

Maximum number of semaphore operations that are allowed for a semop() call. This value is
copied from the resource control at msgget() time.A new project.max-sem-ops value only
affects the initialization of subsequently created values and has no effect on existing values.

process.max-port-events

Maximum number of events that are allowed per event port.

Resource Controls Flags and Actions

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)60

Zone-Wide Resource Controls
Zone-wide resource controls are available on a system with zones installed. Zone-wide resource
controls limit the total resource usage of all process entities within a zone.

zone.cpu-cap Absolute limit on the amount of CPU resources that can be
consumed by a non-global zone. A value of 100 means 100
percent of one CPU as the project.cpu-cap setting. A value of
125 is 125 percent, because 100 percent corresponds to one full
CPU on the system when using CPU caps.

zone.cpu-shares Limit on the number of fair share scheduler (FSS) CPU shares
for a zone. The scheduling class must be FSS. CPU shares are
first allocated to the zone, and then further subdivided among
projects within the zone as specified in the
project.cpu-shares entries. A zone with a higher number of
zone.cpu-shares is allowed to use more CPU than a zone with
a low number of shares.

zone.max-locked-memory Total amount of physical locked memory available to a zone.

zone.max-lwps Maximum number of LWPs simultaneously available to this
zone

zone.max-msg-ids Maximum number of message queue IDs allowed for this zone

zone.max-sem-ids Maximum number of semaphore IDs allowed for this zone

zone.max-shm-ids Maximum number of shared memory IDs allowed for this zone

zone.max-shm-memory Total amount of shared memory allowed for this zone

zone.max-swap Total amount of swap that can be consumed by user process
address space mappings and tmpfs mounts for this zone.

For information on configuring zone-wide resource controls, see Chapter 17, “Non-Global
Zone Configuration (Overview),” in System Administration Guide: Solaris Containers-Resource
Management and Solaris Zones and Chapter 18, “Planning and Configuring Non-Global Zones
(Tasks),” in System Administration Guide: Solaris Containers-Resource Management and Solaris
Zones. Note that it is possible to use the zonecfg command to apply a zone-wide resource
control to the global zone on a system with non-global zones installed.

Signals Used With Resource Controls
For each threshold value that is placed on a resource control, the following restricted set of
signals is available:

Resource Controls Flags and Actions

Chapter 5 • Resource Controls 61

SIGBART
Terminate the process.

SIGXRES
Signal generated by resource control facility when the resource control limit is exceeded.

SIGHUP
When carrier drops on an open line, the process group that controls the terminal is sent a
hangup signal, SIGHUP.

SIGSTOP
Job control signal. Stop the process. Stop signal not from terminal.

SIGTERM
Terminate the process. Termination signal sent by software.

SIGKILL
Terminate the process. Kill the program.

SIGXFSX
Terminate the process. File size limit exceeded. Available only to resource controls with the
RCTL_GLOBAL_FILE_SIZE property.

SIGXCPU
Terminate the process. CPU time limit exceeded. Available only to resource controls with
the RCTL_GLOBAL_CPUTIME property.

Other signals might be permitted due to global properties of a specific control.

Note – Calls to setrctl()with illegal signals fail.

Resource Controls API Functions

Resource Controls API Functions

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)62

The resource controls API contains functions that:
■ “Operate on Action-Value Pairs of a Resource Control” on page 63
■ “Operate on Local Modifiable Values” on page 63
■ “Retrieve Local Read-Only Values” on page 64
■ “Retrieve Global Read-Only Actions” on page 64

Operate on Action-Value Pairs of a Resource Control
The following list contains the functions that set or get the resource control block.

setrctl(2)
getrctl(2)

Operate on Local Modifiable Values
The following list contains the functions associated with the local, modifiable resource control
block.

rctlblk_set_privilege(3C)
rctlblk_get_privilege(3C)
rctlblk_set_value(3C)
rctlblk_get_value(3C)
rctlblk_set_local_action(3C)
rctlblk_get_local_action(3C)

/etc/project

cgi-bin:103:cgi-bin scripts:root,apache::\
process.max-cpu-time=(privileged,1000,signal=SIGXCPU),\

(privileged,2000,signal=SIGTERM),\
(privileged,3000,signal=SIGKILL),\

SIGXCPU SIGTERM SIGKILL

CGI
script

0 1000 2000 3000
Time (ms)

FIGURE 5–2 Setting Privilege Levels for Signals

Resource Controls API Functions

Chapter 5 • Resource Controls 63

rctlblk_set_local_flags(3C)
rctlblk_get_local_flags(3C)

Retrieve Local Read-Only Values
The following list contains the functions associated with the local, read-only resource control
block.

rctlblk_get_recipient_pid(3C)
rctlblk_get_firing_time(3C)
rctlblk_get_enforced_value(3C)

Retrieve Global Read-Only Actions
The following list contains the functions associated with the global, read-only resource control
block.

rctlblk_get_global_action(3C)
rctlblk_get_global_flags(3C)

Resource Control Code Examples

Master Observing Process for Resource Controls
The following example is the master observer process. Figure 5–3 shows the resource controls
for the master observing process.

Note – The line break is not valid in an /etc/project file. The line break is shown here only to
allow the example to display on a printed or displayed page. Each entry in the /etc/project file
must be on a separate line.

The key points for the example include the following:

Resource Control Code Examples

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)64

■ Because the task's limit is privileged, the application cannot change the limit, or specify an
action, such as a signal. A master process solves this problem by establishing the same
resource control as a basic resource control on the task. The master process uses the same
value or a little less on the resource, but with a different action, signal = XRES. The master
process creates a thread to wait for this signal.

■ The rctlblk is opaque. The struct needs to be dynamically allocated.
■ Note the blocking of all signals before creating the thread, as required by sigwait(2).
■ The thread calls sigwait(2) to block for the signal. If sigwait() returns the SIGXRES

signal, the thread notifies the master process' children, which adapts to reduce the number
of LWPs being used. Each child should also be modelled similarly, with a thread in each
child, waiting for this signal, and adapting its process' LWP usage appropriately.

rctlblk_t *mlwprcb;

sigset_t smask;

/* Omit return value checking/error processing to keep code sample short */

/* First, install a RCPRIV_BASIC, v=1000, signal=SIGXRES rctl */

mlwprcb = calloc(1, rctlblk_size()); /* rctl blocks are opaque: */

rctlblk_set_value(mlwprcb, 1000);

rctlblk_set_privilege(mlwprcb, RCPRIV_BASIC);

rctlblk_set_local_action(mlwprcb, RCTL_LOCAL_SIGNAL, SIGXRES);

if (setrctl("task.max-lwps", NULL, mlwprcb, RCTL_INSERT) == -1) {

Task N

Sun Java Server

P2 P3 P4

P1

Resource Control: task.max-lwps

RCPRIV_BASIC, v=1000,
signal=SIGXRES

Recipient PID = P1

RCPRIV_PRIVILEGED, v=1000, deny

/etc/project

...
SunJavaServer:200:Sun Java System Application Server:root::\
 task.max=lwps=(PRIVILEGED,1000,deny)

FIGURE 5–3 Master Observing Process

Resource Control Code Examples

Chapter 5 • Resource Controls 65

perror("setrctl");

exit (1);

}

/* Now, create the thread which waits for the signal */

sigemptyset(&smask);

sigaddset(&smask, SIGXRES);

thr_sigsetmask(SIG_BLOCK, &smask, NULL);

thr_create(NULL, 0, sigthread, (void *)SIGXRES, THR_DETACHED, NULL));

/* Omit return value checking/error processing to keep code sample short */

void *sigthread(void *a)

{

int sig = (int)a;

int rsig;

sigset_t sset;

sigemptyset(&sset);

sigaddset(&sset, sig);

while (1) {

rsig = sigwait(&sset);

if (rsig == SIGXRES) {

notify_all_children();

/* e.g. sigsend(P_PID, child_pid, SIGXRES); */

}

}

}

List all the Value-Action Pairs for a Specific Resource
Control
The following example lists all the value-action pairs for a specific resource control,
task.max-lwps. The key point for the example is that getrctl(2) takes two resource control
blocks, and returns the resource control block for the RCTL_NEXT flag. To iterate through all
resource control blocks, repeatedly swap the resource control block values, as shown here using
the rcb_tmp rctl block.

rctlblk_t *rcb1, *rcb2, *rcb_tmp;

...

/* Omit return value checking/error processing to keep code sample short */

rcb1 = calloc(1, rctlblk_size()); /* rctl blocks are opaque: */

/* "rctlblk_t rcb" does not work */

rcb2 = calloc(1, rctlblk_size());

getrctl("task.max-lwps", NULL, rcb1, RCTL_FIRST);

Resource Control Code Examples

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)66

while (1) {

print_rctl(rcb1);

rcb_tmp = rcb2;

rcb2 = rcb1;

rcb1 = rcb_tmp; /* swap rcb1 with rcb2 */

if (getrctl("task.max-lwps", rcb2, rcb1, RCTL_NEXT) == -1) {

if (errno == ENOENT) {

break;

} else {

perror("getrctl");

exit (1);

}

}

}

Set project.cpu-shares and Add a New Value
The key points of the example include the following:
■ This example is similar to the example shown in “Set pool.comment Property and Add New

Property” on page 82.
■ Use bcopy(), rather than buffer swapping as in “List all the Value-Action Pairs for a Specific

Resource Control” on page 66.
■ To change the resource control value, call setrctl() with the RCTL_REPLACE flag. The

new resource control block is identical to the old resource control block except for the new
control value.

rctlblk_set_value(blk1, nshares);

if (setrctl("project.cpu-shares", blk2, blk1, RCTL_REPLACE) != 0)

The example gets the project's CPU share allocation, project.cpu-shares, and changes its
value to nshares.

/* Omit return value checking/error processing to keep code sample short */

blk1 = malloc(rctlblk_size());

getrctl("project.cpu-shares", NULL, blk1, RCTL_FIRST);

my_shares = rctlblk_get_value(blk1);

printout_my_shares(my_shares);

/* if privileged, do the following to */

/* change project.cpu-shares to "nshares" */

blk1 = malloc(rctlblk_size());

blk2 = malloc(rctlblk_size());

if (getrctl("project.cpu-shares", NULL, blk1, RCTL_FIRST) != 0) {

perror("getrctl failed");

exit(1);

}

Resource Control Code Examples

Chapter 5 • Resource Controls 67

bcopy(blk1, blk2, rctlblk_size());

rctlblk_set_value(blk1, nshares);

if (setrctl("project.cpu-shares", blk2, blk1, RCTL_REPLACE) != 0) {

perror("setrctl failed");

exit(1);

}

Set LWP Limit Using Resource Control Blocks
In the following example, an application has set a privileged limit of 3000 LWPs that may not be
exceeded. In addition, the application has set a basic limit of 2000 LWPs. When this limit is
exceeded, a SIGXRES is sent to the application. Upon receiving a SIGXRES, the application
might send notification to its child processes that might in turn reduce the number of LWPs the
processes use or need.

/* Omit return value and error checking */

#include <rctl.h>

rctlblk_t *rcb1, *rcb2;

/*

* Resource control blocks are opaque

* and must be explicitly allocated.

*/

rcb1 = calloc(rctlblk_size());

rcb2 = calloc(rctlblk_size());

/* Install an RCPRIV_PRIVILEGED, v=3000: do not allow more than 3000 LWPs */

rctlblk_set_value(rcb1, 3000);

rctlblk_set_privilege(rcb1, RCPRIV_PRIVILEGED);

rctlblk_set_local_action(rcb1, RCTL_LOCAL_DENY);

setrctl("task.max-lwps", NULL, rcb1, RCTL_INSERT);

/* Install an RCPRIV_BASIC, v=2000 to send SIGXRES when LWPs exceeds 2000 */

rctlblk_set_value(rcb2, 2000);

rctlblk_set_privilege(rcb2, RCPRIV_BASIC);

rctlblk_set_local_action(rcb2, RCTL_LOCAL_SIGNAL, SIGXRES);

setrctl("task.max-lwps", NULL, rcb2, RCTL_INSERT);

Resource Control Code Examples

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)68

Programming Issues Associated With Resource Controls
Consider the following issues when writing your application:

■ The resource control block is opaque. The control block needs to be dynamically allocated.
■ If a basic resource control is established on a task or project, the process that establishes this

resource control becomes an observer. The action for this resource control block is applied
to the observer. However, some resources cannot be observed in this manner.

■ If a privileged resource control is set on a task or project, no observer process exists.
However, any process that violates the limit becomes the subject of the resource control
action.

■ Only one action is permitted for each type: global and local.
■ Only one basic rctl is allowed per process per resource control.

Programming Issues Associated With Resource Controls

Chapter 5 • Resource Controls 69

70

Resource Pools

This chapter describes resource pools and their properties.

■ “Overview of Resource Pools” on page 71
■ “Dynamic Resource Pool Constraints and Objectives” on page 72
■ “Resource Pools API Functions” on page 76
■ “Resource Pool Code Examples” on page 80
■ “Programming Issues Associated With Resource Pools” on page 83

Overview of Resource Pools
Resource pools provide a framework for managing processor sets and thread scheduling classes.
Resource pools are used for partitioning machine resources. Resource pools enable you to
separate workloads so that workload consumption of certain resources does not overlap. The
resource reservation helps to achieve predictable performance on systems with mixed
workloads.

For an overview of resource pools and example commands for administering resource pools,
see Chapter 12, “Resource Pools (Overview),” in System Administration Guide: Solaris
Containers-Resource Management and Solaris Zones and Chapter 13, “Creating and
Administering Resource Pools (Tasks),” in System Administration Guide: Solaris
Containers-Resource Management and Solaris Zones.

A processor set groups the CPUs on a system into a bounded entity, on which a process or
processes can run exclusively. Processes cannot extend beyond the processor set, nor can other
processes extend into the processor set. A processor set enables tasks of similar characteristics
to be grouped together and a hard upper boundary for CPU use to be set.

The resource pool framework allows the definition of a soft processor set with a maximum and
minimum CPU count requirement. Additionally, the framework provides a hard-defined
scheduling class for that processor set.

6C H A P T E R 6

71

A zone can be bound to a resource pool through the pool property of the zone configuration.
The zone is bound to the specified pool upon creation of the zone. The pool configuration can
be changed only from the global zone. Zones cannot span multiple pools. All processes in a zone
run in the same pool. However, multiple zones can bind to the same resource pool.

A resource pool defines:

■ Processor set groups
■ Scheduling class

Scheduling Class
Scheduling classes provide different CPU access characteristics to threads that are based on
algorithmic logic. The scheduling classes include:

■ Realtime scheduling class
■ Interactive scheduling class
■ Fixed priority scheduling class
■ Timesharing scheduling class
■ Fair share scheduling class

For an overview of fair share scheduler and example commands for administering the fair share
scheduler, see Chapter 8, “Fair Share Scheduler (Overview),” in System Administration Guide:
Solaris Containers-Resource Management and Solaris Zones and Chapter 9, “Administering the
Fair Share Scheduler (Tasks),” in System Administration Guide: Solaris Containers-Resource
Management and Solaris Zones.

Do not mix scheduling classes in a set of CPUs. If scheduling classes are mixed in a CPU set,
system performance might become erratic and unpredictable. Use processor sets to segregate
applications by their characteristics. Assign scheduling classes under which the application best
performs. For more information about the characteristics of an individual scheduling class, see
priocntl(1).

For an overview of resource pools and a discussion of when to use pools, see Chapter 6.

Dynamic Resource Pool Constraints and Objectives
The libpool library defines properties that are available to the various entities that are managed
within the pools facility. Each property falls into the following categories:

Configuration constraints

A constraint defines boundaries of a property. Typical constraints are the maximum and
minimum allocations specified in the libpool configuration.

Dynamic Resource Pool Constraints and Objectives

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)72

Objective

An objective changes the resource assignments of the current configuration to generate new
candidate configurations that observe the established constraints. An objective has the
following categories:

Workload dependent A workload-dependent objective varies according to the
conditions imposed by the workload. An example of the
workload dependent objective is the utilization objective.

Workload independent A workload-independent objective does not vary according to
the conditions imposed by the workload. An example of the
workload independent objective is the cpu locality objective.

An objective can take an optional prefix to indicate the importance of the objective. The
objective is multiplied by this prefix, which is an integer from 0 to INT64_MAX,, to
determine the significance of the objective.

For usage examples, see “How to Set Configuration Constraints” in System Administration
Guide: Solaris Containers-Resource Management and Solaris Zones and “How to Define
Configuration Objectives” in System Administration Guide: Solaris Containers-Resource
Management and Solaris Zones.

System Properties
system.bind-default (writable boolean)

If the specified pool is not found in <filename>/etc/project</filename>, bind to pool
with the pool.default property set to TRUE.

system.comment (writable string)
User description of system. system.comment is not used by the default pools commands,
except when a configuration is initiated by the poolcfg utility. In this case, the system puts
an informative message in the system.comment property for that configuration.

system.name (writable string)
User name for the configuration.

system.version (read-only integer)
libpool version required to manipulate this configuration.

Pools Properties
All pools properties except pool.default and pool.sys_id are writable.

pool.active (writable boolean)
If TRUE, mark this pool as active.

Dynamic Resource Pool Constraints and Objectives

Chapter 6 • Resource Pools 73

pool.comment (writable string)
User description of pool.

pool.default (read-only boolean)
If TRUE, mark this pool as the default pool. See the system.bind-default property.

pool.importance (writable integer)
Relative importance of this pool. Used for possible resource dispute resolution.

pool.name (writable string)
User name for pool. setproject(3PROJECT) uses pool.name as the value for the
project.pool project attribute in the project(4) database.

pool.scheduler (writable string)
Scheduler class to which consumers of this pool are bound. This property is optional and if
not specified, the scheduler bindings for consumers of this pool are not affected. For more
information about the characteristics of an individual scheduling class, see priocntl(1).
Scheduler classes include:
■ RT for realtime scheduler
■ TS for timesharing scheduler
■ IA for interactive scheduler
■ FSS for fair share scheduler
■ FX for fixed priority scheduler

pool.sys_id (read-only integer)
This is the system-assigned pool ID.

Processor Set Properties
pset.comment (writable string)

User description of resource.

pset.default (read-only boolean)
Identifies the default processor set.

pset.escapable (writable boolean)
Represents whether PSET_NOESCAPE is set for this pset. See the pset_setattr(2) man
page.

pset.load (read-only unsigned integer)
The load for this processor set. The lowest value is 0. The value increases in a linear fashion
with the load on the set, as measured by the number of jobs in the system run queue.

pset.max (writable unsigned integer)
Maximum number of CPUs that are permitted in this processor set.

pset.min (writable unsigned integer)
Minimum number of CPUs that are permitted in this processor set.

Dynamic Resource Pool Constraints and Objectives

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)74

pset.name (writable string)
User name for the resource.

pset.size (read-only unsigned integer)
Current number of CPUs in this processor set.

pset.sys_id (read-only integer)
System-assigned processor set ID.

pset.type (read-only string)
Names the resource type. Value for all processor sets is pset.

pset.units (read-only string)
Identifies the meaning of size-related properties. The value for all processor sets is
population.

cpu.comment (writable string)
User description of CPU

Using libpool to Manipulate Pool Configurations
The libpool(3LIB) pool configuration library defines the interface for reading and writing
pools configuration files. The library also defines the interface for committing an existing
configuration to becoming the running operating system configuration. The <pool.h> header
provides type and function declarations for all library services.

The resource pools facility brings together process-bindable resources into a common
abstraction that is called a pool. Processor sets and other entities can be configured, grouped,
and labelled in a persistent fashion. Workload components can be associated with a subset of a
system's total resources. The libpool(3LIB) library provides a C language API for accessing the
resource pools facility. The pooladm(1M), poolbind(1M), and poolcfg(1M) make the resource
pools facility available through command invocations from a shell.

Manipulate psets
The following list contains the functions associated with creating or destroying psets and
manipulating psets.

processor_bind(2) Bind an LWP (lightweight process) or set of LWPs to a
specified processor.

pset_assign(2) Assign a processor to a processor set.

pset_bind(2) Bind one or more LWPs (lightweight processes) to a
processor set.

Using libpool to Manipulate Pool Configurations

Chapter 6 • Resource Pools 75

pset_create(2) Create an empty processor set that contains no
processors.

pset_destroy(2) Destroy a processor set and release the associated
constituent processors and processes.

pset_setattr(2), pset_getattr(2) Set or get processor set attributes.

Resource Pools API Functions
This section lists all of the resource pool functions. Each function has a link to the man page and
a short description of the function's purpose. The functions are divided into two groups,
depending on whether the function performs an action or a query:

■ “Functions for Operating on Resource Pools and Associated Elements” on page 76
■ “Functions for Querying Resource Pools and Associated Elements” on page 78

The imported interfaces for libpool for swap sets is identical to the ones defined in this
document.

Functions for Operating on Resource Pools and
Associated Elements
The interfaces listed in this section are for performing actions related to pools and the
associated elements.

pool_associate(3POOL) Associate a resource with a specified pool.

pool_component_to_elem(3POOL) Convert specified component to the pool element
type.

pool_conf_alloc(3POOL) Create a pool configuration.

pool_conf_close(3POOL) Close the specified pool configuration and release the
associated resources.

pool_conf_commit(3POOL) Commit changes made to the specified pool
configuration to permanent storage.

pool_conf_export(3POOL) Save the given configuration to the specified location.

pool_conf_free(3POOL) Release a pool configuration.

pool_conf_open(3POOL) Create a pool configuration at the specified location.

pool_conf_remove(3POOL) Removes the permanent storage for the
configuration.

Resource Pools API Functions

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)76

pool_conf_rollback(3POOL) Restore the configuration state to the state that is held
in the pool configuration's permanent storage.

pool_conf_to_elem(3POOL) Convert specified pool configuration to the pool
element type.

pool_conf_update(3POOL) Update the library snapshot of kernel state.

pool_create(3POOL) Create a new pool with the default properties and
with default resources for each type.

pool_destroy(3POOL) Destroy the specified pool. The associated resources
are not modified.

pool_dissociate(3POOL) Remove the association between the given resource
and pool.

pool_put_property(3POOL) Set the named property on the element to the
specified value.

pool_resource_create(3POOL) Create a new resource with the specified name and
type for the provided configuration.

pool_resource_destroy(3POOL) Remove the specified resource from the
configuration file.

pool_resource_to_elem(3POOL) Convert specified pool resource to the pool element
type.

pool_resource_transfer(3POOL) Transfer basic units from the source resource to the
target resource.

pool_resource_xtransfer(3POOL) Transfer the specified components from the source
resource to the target resource.

pool_rm_property(3POOL) Remove the named property from the element.

pool_set_binding(3POOL) Bind the specified processes to the resources that are
associated with pool on the running system.

pool_set_status(3POOL) Modify the current state of the pools facility.

pool_to_elem(3POOL) Convert specified pool to the pool element type.

pool_value_alloc(3POOL) Allocate and return an opaque container for a pool
property value.

pool_value_free(3POOL) Release an allocated property values.

pool_value_set_bool(3POOL) Set a property value of type boolean.

pool_value_set_double(3POOL) Set a property value of type double.

Resource Pools API Functions

Chapter 6 • Resource Pools 77

pool_value_set_int64(3POOL) Set a property value of type int64.

pool_value_set_name(3POOL) Set a name=value pair for a pool property.

pool_value_set_string(3POOL) Copy the string that was passed in.

pool_value_set_uint64(3POOL) Set a property value of type uint64.

Functions for Querying Resource Pools and Associated
Elements
The interfaces listed in this section are for performing queries related to pools and the
associated elements.

pool_component_info(3POOL)
Return a string that describes the given component.

pool_conf_info(3POOL)
Return a string describing the entire configuration.

pool_conf_location(3POOL)
Return the location string that was provided to pool_conf_open() for the given specified
configuration.

pool_conf_status(3POOL)
Return the validity status for a pool configuration.

pool_conf_validate(3POOL)
Check the validity of the contents of the given configuration.

pool_dynamic_location(3POOL)
Return the location that was used by the pools framework to store the dynamic
configuration.

pool_error(3POOL)
Return the error value of the last failure that was recorded by calling a resource pool
configuration library function.

pool_get_binding(3POOL)
Return the name of the pool on the running system that contains the set of resources to
which the specified process is bound.

pool_get_owning_resource(3POOL)
Return the resource that currently contains the specified component.

pool_get_pool(3POOL)
Return the pool with the specified name from the provided configuration.

pool_get_property(3POOL)
Retrieve the value of the named property from the element.

Resource Pools API Functions

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)78

pool_get_resource(3POOL)
Return the resource with the given name and type from the provided configuration.

pool_get_resource_binding(3POOL)
Return the name of the pool on the running system that contains the set of resources to
which the given process is bound.

pool_get_status(3POOL)
Retrieve the current state of the pools facility.

pool_info(3POOL)
Return a description of the specified pool.

pool_query_components(3POOL)
Retrieve all resource components that match the specified list of properties.

pool_query_pool_resources(3POOL)
Return a null-terminated array of resources currently associated with the pool.

pool_query_pools(3POOL)
Return the list of pools that match the specified list of properties.

pool_query_resource_components(3POOL)
Return a null-terminated array of the components that make up the specified resource.

pool_query_resources(3POOL)
Return the list of resources that match the specified list of properties.

pool_resource_info(3POOL)
Return a description of the specified resource.

pool_resource_type_list(3POOL)
Enumerate the resource types that are supported by the pools framework on this platform.

pool_static_location(3POOL)
Return the location that was used by the pools framework to store the default configuration
for pools framework instantiation.

pool_strerror(3POOL)
Return a description of each valid pool error code.

pool_value_get_bool(3POOL)
Get a property value of type boolean.

pool_value_get_double(3POOL)
Get a property value of type double.

pool_value_get_int64(3POOL)
Get a property value of type int64.

pool_value_get_name(3POOL)
Return the name that was assigned to the specified pool property.

Resource Pools API Functions

Chapter 6 • Resource Pools 79

pool_value_get_string(3POOL)
Get a property value of type string.

pool_value_get_type(3POOL)
Return the type of the data that is contained by the specified pool value.

pool_value_get_uint64(3POOL)
Get a property value of type uint64.

pool_version(3POOL)
Get the version number of the pool library.

pool_walk_components(3POOL)
Invoke callback on all components that are contained in the resource.

pool_walk_pools(3POOL)
Invoke callback on all pools that are defined in the configuration.

pool_walk_properties(3POOL)
Invoke callback on all properties defined for the given element.

pool_walk_resources(3POOL)
Invoke callback on all resources that are associated with the pool.

Resource Pool Code Examples
This section contains code examples of the resource pools interface.

Ascertain the Number of CPUs in the Resource Pool
sysconf(3C) provides information about the number of CPUs on an entire system. The
following example provides the granularity of ascertaining the number of CPUs that are defined
in a particular application's pools pset.

The key points for this example include the following:

■ pvals[] should be a NULL terminated array.
■ pool_query_pool_resources() returns a list of all resources that match the pvals array

type pset from the application's pool my_pool. Because a pool can have only one instance of
the pset resource, each instance is always returned in nelem. reslist[] contains only one
element, the pset resource.

pool_value_t *pvals[2] = {NULL}; /* pvals[] should be NULL terminated */

/* NOTE: Return value checking/error processing omitted */

/* in all examples for brevity */

Resource Pool Code Examples

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)80

conf_loc = pool_dynamic_location();

conf = pool_conf_alloc();

pool_conf_open(conf, conf_loc, PO_RDONLY);

my_pool_name = pool_get_binding(getpid());

my_pool = pool_get_pool(conf, my_pool_name);

pvals[0] = pool_value_alloc();

pvals2[2] = { NULL, NULL };

pool_value_set_name(pvals[0], "type");

pool_value_set_string(pvals[0], "pset");

reslist = pool_query_pool_resources(conf, my_pool, &nelem, pvals);

pool_value_free(pvals[0]);

pool_query_resource_components(conf, reslist[0], &nelem, NULL);

printf("pool %s: %u cpu", my_pool_ name, nelem);

pool_conf_close(conf);

List All Resource Pools
The following example lists all resource pools defined in an application's pools pset.

The key points of the example include the following:

■ Open the dynamic conf file read-only, PO_RDONLY. pool_query_pools() returns the list
of pools in pl and the number of pools in nelem. For each pool, call pool_get_property()
to get the pool.name property from the element into the pval value.

■ pool_get_property() calls pool_to_elem() to convert the libpool entity to an opaque
value. pool_value_get_string() gets the string from the opaque pool value.

conf = pool_conf_alloc();

pool_conf_open(conf, pool_dynamic_location(), PO_RDONLY);

pl = pool_query_pools(conf, &nelem, NULL);

pval = pool_value_alloc();

for (i = 0; i < nelem; i++) {

pool_get_property(conf, pool_to_elem(conf, pl[i]), "pool.name", pval);

pool_value_get_string(pval, &fname);

printf("%s\n", name);

}

pool_value_free(pval);

free(pl);

pool_conf_close(conf);

Resource Pool Code Examples

Chapter 6 • Resource Pools 81

Report Pool Statistics for a Given Pool
The following example reports statistics for the designated pool.

The key points for the example include the following:
■ pool_query_pool_resources() gets a list of all resources in rl. Because the last argument

to pool_query_pool_resources() is NULL, all resources are returned. For each resource,
the name, load and size properties are read, and printed.

■ The call to strdup() allocates local memory and copies the string returned by
get_string(). The call to get_string() returns a pointer that is freed by the next call to
get_property(). If the call to strdup() is not included, subsequent references to the
string(s) could cause the application to fail with a segmentation fault.

printf("pool %s\n:" pool_name);

pool = pool_get_pool(conf, pool_name);

rl = pool_query_pool_resources(conf, pool, &nelem, NULL);

for (i = 0; i < nelem; i++) {

pool_get_property(conf, pool_resource_to_elem(conf, rl[i]), "type", pval);

pool_value_get_string(pval, &type);

type = strdup(type);

snprintf(prop_name, 32, "%s.%s", type, "name");

pool_get_property(conf, pool_resource_to_elem(conf, rl[i]),

prop_name, pval);

pool_value_get_string(val, &res_name);

res_name = strdup(res_name);

snprintf(prop_name, 32, "%s.%s", type, "load");

pool_get_property(conf, pool_resource_to_elem(conf, rl[i]),

prop_name, pval);

pool_value_get_uint64(val, &load);

snprintf(prop_name, 32, "%s.%s", type, "size");

pool_get_property(conf, pool_resource_to_elem(conf, rl[i]),

prop_name, pval);

pool_value_get_uint64(val, &size);

printf("resource %s: size %llu load %llu\n", res_name, size, load);

free(type);

free(res_name);

}

free(rl);

Set pool.commentProperty and Add New Property
The following example sets the pool.comment property for the pset. The example also creates a
new property in pool.newprop.

The key point for the example includes the following:

Resource Pool Code Examples

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)82

■ In the call to pool_conf_open(), using PO_RDWR on a static configuration file, requires
the caller to be root.

■ To commit these changes to the pset after running this utility, issue a pooladm -c
command. To have the utility commit the changes, call pool_conf_commit() with a
nonzero second argument.

pool_set_comment(const char *pool_name, const char *comment)

{

pool_t *pool;

pool_elem_t *pool_elem;

pool_value_t *pval = pool_value_alloc();

pool_conf_t *conf = pool_conf_alloc();

/* NOTE: need to be root to use PO_RDWR on static configuration file */

pool_conf_open(conf, pool_static_location(), PO_RDWR);

pool = pool_get_pool(conf, pool_name);

pool_value_set_string(pval, comment);

pool_elem = pool_to_elem(conf, pool);

pool_put_property(conf, pool_elem, "pool.comment", pval);

printf("pool %s: pool.comment set to %s\n:" pool_name, comment);

/* Now, create a new property, customized to installation site */

pool_value_set_string(pval, "New String Property");

pool_put_property(conf, pool_elem, "pool.newprop", pval);

pool_conf_commit(conf, 0); /* NOTE: use 0 to ensure only */

/* static file gets updated */

pool_value_free(pval);

pool_conf_close(conf);

pool_conf_free(conf);

/* NOTE: Use "pooladm -c" later, or pool_conf_commit(conf, 1) */

/* above for changes to the running system */

}

An alternative way of modifying a pool's comment and adding a new pool property is to use
poolcfg(1M).

poolcfg -c ’modify pool pool-name (string pool.comment = "cmt-string")’

poolcfg -c ’modify pool pool-name (string pool.newprop =

"New String Property")’

Programming Issues Associated With Resource Pools
Consider the following issues when writing your application.

■ Each site can add its own list of properties to the pools configuration.

Programming Issues Associated With Resource Pools

Chapter 6 • Resource Pools 83

Multiple configurations can be maintained in multiple configuration files. The system
administrator can commit different files to reflect changes to the resource consumption at
different time slots. These time slots can include different times of the day, week, month, or
seasons depending on load conditions.

■ Resource sets can be shared between pools, but a pool has only one resource set of a given
type. So, the pset_default can be shared between the default and a particular application's
database pools.

■ Use pool_value_*() interfaces carefully. Keep in mind the memory allocation issues for
string pool values. See “Report Pool Statistics for a Given Pool” on page 82.

Programming Issues Associated With Resource Pools

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)84

Design Considerations for Resource
Management Applications in Solaris Zones

This chapter provides a brief overview of Solaris Zones technology and discusses potential
problems that may be encountered by developers who are writing resource management
applications. For more information on zones, see Part II, “Zones,” in System Administration
Guide: Solaris Containers-Resource Management and Solaris Zones.

Zones Overview
A zone is a virtualized operating system environment that is created within a single instance of
the Solaris Operating System. Zones are a partitioning technology that provides an isolated,
secure environment for applications. When you create a zone, you produce an application
execution environment in which processes are isolated from the rest of the system. This
isolation prevents a process that is running in one zone from monitoring or affecting processes
that are running in other zones. Even a process running with superuser credentials cannot view
or affect activity in other zones. A zone also provides an abstract layer that separates
applications from the physical attributes of the machine on which the zone is deployed.
Examples of these attributes include physical device paths and network interface names.

By default, all systems have a global zone. The global zone has a global view of the Solaris
environment in similar fashion to the superuser model. All other zones are referred to as
non-global zones. A non-global zone is analogous to an unprivileged user in the superuser
model. Processes in non-global zones can control only the processes and files within that zone.
Typically, system administration work is mainly performed in the global zone. In rare cases
where a system administrator needs to be isolated, privileged applications can be used in a
non-global zone. In general, though, resource management activities take place in the global
zone.

7C H A P T E R 7

85

IP Networking in Zones
IP networking in a zone can be configured in two different ways, depending on whether the
non-global zone is given its own exclusive IP instance or shares the IP layer configuration and
state with the global zone. The shared-IP type is the default.

Exclusive-IP zones are assigned zero or more network interface names, and for those network
interfaces they can send and receive any packets, snoop, and change the IP configuration,
including IP addresses and the routing table. Note that those changes do not affect any of the
other IP instances on the system.

Design Considerations for Resource Management
Applications in Zones

All applications are fully functional in the global zone as they would be in a conventional Solaris
environment. Most applications should run without problem in a non-global environment as
long as the application does not need any privileges. If an application does require privileges,
then the developer needs to take a close look at which privileges are needed and how a particular
privilege is used. If a privilege is required, then a system administrator can assign the needed
privilege to the zone. See “Configurable Privileges” in System Administration Guide: Solaris
Containers-Resource Management and Solaris Zones.

General Considerations When Writing Applications for
Non-Global Zones
The known situations that a developer needs to investigate are as follows:

■ System calls that change the system time require the PRIV_SYS_TIME privilege. These
system calls include adjtime(2), ntp_adjtime(2), and stime(2).

■ System calls that need to operate on files that have the sticky bit set require the
PRIV_SYS_CONFIG privilege. These system calls include chmod(2), creat(2), and open(2).

■ The ioctl(2) system call requires the PRIV_SYS_NET_CONFIG privilege to be able to
unlock an anchor on a STREAMS module. .

■ The link(2) and unlink(2) system calls require the PRIV_SYS_LINKDIR privilege to create
a link or unlink a directory in a non-global zone. Applications that install or configure
software or that create temporary directories could be affected by this limitation.

■ The PRIV_PROC_LOCK_MEMORY privilege is required for the mlock(3C), munlock(3C),
mlockall(3C), munlockall(3C), and plock(3C) functions and the MC_LOCK,
MC_LOCKAS, MC_UNLOCK, and MC_UNLOCKAS flags for the memcntl(2) system.

IP Networking in Zones

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)86

This privilege is a default privilege in a non-global zone. See “Privileges in a Non-Global
Zone” in System Administration Guide: Solaris Containers-Resource Management and
Solaris Zones for more information.

■ The mknod(2) system call requires the PRIV_SYS_DEVICES privilege to create a block
(S_IFBLK) or character (S_IFCHAR) special file. This limitation affects applications that
need to create device nodes on the fly.

■ The IPC_SET flag in the msgctl(2) system call requires the PRIV_SYS_IPC_CONFIG
privilege to increase the number of message queue bytes. This limitation affects any
applications that need to resize the message queue dynamically.

■ The nice(2) system call requires the PRIV_PROC_PRIOCNTL privilege to change the
priority of a process. This privilege is available by default in a non-global zone. Another way
to change the priority is to bind the non-global zone in which the application is running to a
resource pool, although scheduling processes in that zone is ultimately decided by the Fair
Share Scheduler.

■ The P_ONLINE, P_OFFLINE, P_NOINTR, P_FAULTED, P_SPARE, and PZ-FORCED
flags in the p_online(2) system call require the PRIV_SYS_RES_CONFIG privilege to
return or change process operational status. This limitation affects applications that need to
enable or disable CPUs.

■ The PC_SETPARMS and PC_SETXPARMS flags in the priocntl(2)system call requires the
PRIV_PROC_PRIOCNTL privilege to change the scheduling parameters of a lightweight
process (LWP).

■ System calls that need to manage processor sets (psets), including binding LWPs to psets
and setting pset attributes require the PRIV_SYS_RES_CONFIG privilege. This limitation
affects the following system calls: pset_assign(2), pset_bind(2), pset_create(2),
pset_destroy(2), and pset_setattr(2).

■ The SHM_LOCK and SHM_UNLOCK flags in the shmctl(2) system call require the
PRIV_PROC_LOCK_MEMORY privilege to share memory control operations. If the
application is locking memory for performance purposes, using the intimate shared
memory (ISM) feature provides a potential workaround.

■ The swapctl(2)system call requires the PRIV_SYS_CONFIG privilege to add or remove
swapping resources. This limitation affects installation and configuration software.

■ The uadmin(2) system call requires the PRIV_SYS_CONFIG privilege to use the A_REMOUNT,
A_FREEZE, A_DUMP, and AD_IBOOT commands. This limitation affects applications that need
to force crash dumps under certain circumstances.

■ The clock_settime(3RT) function requires the PRIV_SYS_TIME privilege to set the
CLOCK_REALTIME and CLOCK_HIRES clocks.

■ The cpc_bind_cpu(3CPC) function requires the PRIV_CPC_CPU privilege to bind request
sets to hardware counters. As a workaround, the cpc_bind_curlwp(3CPC) function can be
used to monitor CPU counters for the LWP in question.

■ The pthread_attr_setschedparam(3C) function requires the PRIV_PROC_PRIOCNTL
privilege to change the underlying scheduling policy and parameters for a thread.

Design Considerations for Resource Management Applications in Zones

Chapter 7 • Design Considerations for Resource Management Applications in Solaris Zones 87

■ The timer_create(3RT) function requires the PRIV_PROC_CLOCK_HIGHRES privilege
to create a timer using the high-resolution system clock.

■ The APIs that are provided by the following list of libraries are not supported in a
non-global zone. The shared objects are present in the zone's /usr/lib directory, so no link
time errors occur if your code includes references to these libraries. You can inspect your
make files to determine if your application has explicit bindings to any of these libraries and
use pmap(1) while the application is executing to verify that none of these libraries are
dynamically loaded.
■ libdevinfo(3LIB)
■ libcfgadm(3LIB)
■ libpool(3LIB)
■ libtnfctl(3LIB)
■ libsysevent(3LIB)

■ Zones have a restricted set of devices, consisting primarily of pseudo devices that form part
of the Solaris programming API. These pseudo devices include /dev/null, /dev/zero,
/dev/poll, /dev/random, /dev/tcp, and so on. Physical devices are not directly accessible
from within a zone unless the device has been configured by a system administrator. Since
devices, in general, are shared resources in a system, to make devices available in a zone
requires some restrictions so system security will not be compromised, as follows:
■ The /dev name space consists of symbolic links, that is, logical paths, to the physical

paths in /devices. The /devices name space, which is available only in the global zone,
reflects the current state of attached device instances that have been created by the
driver. Only the logical path /dev is visible in a non-global zone.

■ Processes within a non-global zone cannot create new device nodes . For example,
mknod(2) cannot create special files in a non-global zone. The creat(2), link(2),
mkdir(2), rename(2), symlink(2), and unlink(2) system calls fail with EACCES if a file in
/dev is specified. You can create a symbolic link to an entry in /dev, but that link cannot
be created in /dev.

■ Devices that expose system data are only available in the global zone. Examples of such
devices include dtrace(7D), kmem(7D), kmdb(7d), ksyms(7D), lockstat(7D), and
trapstat(1M).

■ The /dev name space consists of device nodes made up of a default, “safe” set of drivers
as well as device nodes that have been specified for the zone by the zonecfg(1M)
command.

Specific Considerations for Shared-IP Non-Global
Zones
For non-global zones that are configured to use the shared-IP instance, the following
restrictions apply.

Design Considerations for Resource Management Applications in Zones

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)88

■ The socket(3SOCKET) function requires the PRIV_NET_RAWACCESS privilege to create
a raw socket with the protocol set to IPPROTO_RAW or IPPROTO_IGMP. This limitation
affects applications that use raw sockets or need to create or inspect TCP/IP headers.

■ The t_open(3NSL) function requires the PRIV_NET_RAWACCESS privilege to establish a
transport endpoint. This limitation affects applications that use the /dev/rawip device to
implement network protocols as wall as applications that operate on TCP/IP headers.

■ No NIC devices that support the DLPI programming interface are accessible in a shared-IP
non-global zone, for example, hme(7D) and ce(7D).

■ Each non-global shared-IP zone has its own logical network and loopback interface.
Bindings between upper layer streams and logical interfaces are restricted such that a stream
may only establish bindings to logical interfaces in the same zone. Likewise, packets from a
logical interface can only be passed to upper layer streams in the same zone as the logical
interface. Bindings to the loopback address are kept within a zone with one exception:
When a stream in one zone attempts to access the IP address of an interface in another zone.
While applications within a zone can bind to privileged network ports, they have no control
over the network configuration, including IP addresses and the routing table.

Note that these restrictions do not apply to exclusive-IP zones.

Design Considerations for Resource Management Applications in Zones

Chapter 7 • Design Considerations for Resource Management Applications in Solaris Zones 89

90

Configuration Examples

This chapter show example configurations for the /etc/project file.

■ “Configure Resource Controls” on page 92
■ “Configure Resource Pools” on page 92
■ “Configure FSS project.cpu-shares for a Project” on page 92
■ “Configure Five Applications with Different Characteristics” on page 93

/etc/projectProject File
The project file is a local source of project information. The project file can be used in
conjunction with other project sources, including the NIS maps project.byname and
project.bynumber and the LDAP database project. Programs use the getprojent(3PROJECT)
routines to access this information.

Define Two Projects
/etc/project defines two projects: database and appserver. The user defaults are
user.database and user.appserver. The admin default can switch between user.database

or user.appserver.

hostname# cat /etc/project

.

.

.

user.database:2001:Database backend:admin::

user.appserver:2002:Application Server frontend:admin::

.

.

8C H A P T E R 8

91

Configure Resource Controls
The /etc/project file shows the resource controls for the application.

hostname# cat /etc/project

.

.

.

development:2003:Developers:::task.ax-lwps=(privileged,10,deny);

process.max-addressspace=(privileged,209715200,deny)

.

.

Configure Resource Pools
The /etc/project file shows the resource pools for the application.

hostname# cat /etc/project

.

.

.

batch:2001:Batch project:::project.pool=batch_pool

process:2002:Process control:::project.pool=process_pool

.

.

.

Configure FSS project.cpu-shares for a Project
Set up FSS for two projects: database and appserver. The database project has 20 CPU shares.
The appserver project has 10 CPU shares.

hostname# cat /etc/project

.

.

.

user.database:2001:database backend:admin::project.cpu-shares=(privileged,

20,deny)

user.appserver:2002:Application Server frontend:admin::project.cpu-shares=

(privileged,10,deny)

.

.

.

/etc/project Project File

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)92

Note – The line break in the lines that precede “20,deny” and “(privileged,” is not valid in an
/etc/project file. The line breaks are shown here only to allow the example to display on a
printed or displayed page. Each entry in the /etc/project file must be on a single line.

If the FSS is enabled but each user and application is not assigned to a unique project, then the
users and applications will all run in the same project. By running in the same project, all
compete for the same share, in a timeshare fashion. This occurs because shares are assigned to
projects, not to users or processes. To take advantage of the FSS scheduling capabilities, assign
each user and application to a unique project.

To configure a project, see “Local /etc/project File Format” in System Administration Guide:
Solaris Containers-Resource Management and Solaris Zones.

Configure Five Applications with Different
Characteristics
The following example configures five applications with different characteristics.

TABLE 8–1 Target Applications and Characteristics

Application Type and Name Characteristics

Application server, app_server. Negative scalability beyond two CPUs. Assign a two-CPU processor set
to app_server. Use TS scheduling class.

Database instance, app_db. Heavily multithreaded. Use FSS scheduling class.

Test and development, development. Motif based. Hosts untested code execution. Interactive scheduling
class ensures user interface responsiveness. Use
process.max-address-space to impose memory limitations and
minimize the effects of antisocial processing.

Transaction processing engine,
tp_engine.

Response time is paramount. Assign a dedicated set of at least two
CPUs to ensure response latency is kept to a minimum. Use timeshare
scheduling class.

Standalone database instance,
geo_db.

Heavily multithreaded. Serves multiple time zones. Use FSS scheduling
class.

Note – Consolidate database applications (app.db and geo_db) onto a single processor set of at
least four CPUs. Use FSS scheduling class. Application app_db gets 25% of the
project.cpu-shares. Application geo_db gets 75% of the project.cpu-shares.

/etc/project Project File

Chapter 8 • Configuration Examples 93

Edit the /etc/project file. Map users to resource pools for the app_server, app_db,
development, tp_engine, and geo_db project entries.

hostname# cat /etc/project

.

.

.

user.app_server:2001:Production Application Server::

project.pool=appserver_pool

user.app_db:2002:App Server DB:::project.pool=db_pool,

project.cpu-shares=(privileged,1,deny)

development:2003:Test and delopment::staff:project.pool=dev.pool,

process.max-addressspace=(privileged,536870912,deny)

user.tp_engine:Transaction Engine:::project.pool=tp_pool

user.geo_db:EDI DB:::project.pool=db_pool;

project.cpu-shares=(privileged,3,deny)

Note – The line break in the lines that begin with “project.pool” , “project.cpu-shares=”,
“process.max-addressspace”, and “project.cpu-shares=” is not valid in a project file. The line
breaks are shown here only to allow the example to display on a printed or displayed page. Each
entry must be on one and only one line.

Create the pool.host script and add entries for resource pools.

hostname# cat pool.host

create system host

create pset dev_pset (uint pset.max = 2)

create pset tp_pset (uint pset.min = 2; uint pset.max = 2)

create pset db_pset (uint pset.min = 4; uint pset.max = 6)

create pset app_pset (uint pset.min = 1; uint pset.max = 2)

create pool dev_pool (string pool.scheduler="IA")

create pool appserver_pool (string pool.scheduler="TS")

create pool db_pool (string pool.scheduler="FSS")

create pool tp_pool (string pool.scheduler="TS")

associate pool pool_default (pset pset_default)

associate pool dev_pool (pset dev_pset)

associate pool appserver_pool (pset app_pset)

associate pool db_pool (pset db_pset)

associate pool tp_pool (pset tp_pset)

Run the pool.host script and modify the configuration as specified in the pool.host file.

hostname# poolcfg —f pool.host

/etc/project Project File

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)94

Read the pool.host resource pool configuration file and initialize the resource pools on the
system.

hostname# pooladm —c

/etc/project Project File

Chapter 8 • Configuration Examples 95

96

Index

E
ea_alloc(), 24
ea_copy_object(), 24
ea_copy_object_tree(), 24
ea_free(), 24
ea_free_item(), 24
ea_free_object(), 24
ea_get_object_tree(), 24
ea_pack_object(), 23
ea_strdup(), 24
ea_strfree(), 24
ea_unpack_object(), 23
exacct file

display entry, 25
display string, 25

exacct file, display system file, 26
exacct file

dump, 49
exacct object

create record, 48
dump, 46
write file, 48

F
fair share scheduler, access resource control block, 67

L
libexacct

perl interface, 32
perl module, 33

P
programming issues

exacct files, 28
project database, 19-20
resource controls, 69

project database
get entry, 19
print entries, 18

R
resource controls

display value-action pairs, 66
global action, 55
global flag, 55
local action, 55
local flag, 55
master observer process, 64
privilege levels, 54
process, 60
project, 59
signals, 61
task, 60
zone, 61

97

resource pools
get defined pools, 81
get number of CPUS, 80
get pool statistics, 82
overview, 71
pool properties, 73
processor sets properties, 74-75
properties, 72
scheduling class, 72
set property, 82
system properties, 73

Z
zone

application design considerations, 86
IP type, 86
overview, 85
resource controls, 61

Index

Solaris Containers: Resource Management and Solaris Zones Developer's Guide • May 2007 (Beta)98

	Solaris Containers: Resource Management and Solaris Zones Developer's Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples

	Resource Management in the Solaris Operating System
	Understanding Resource Management in the Solaris OS
	Workload Organization
	Resource Organization
	Resource Controls
	Extended Accounting Facility

	Writing Resource Management Applications

	Projects and Tasks
	Overview of Projects and Tasks
	/etc/project File

	Project and Task API Functions
	Code Examples for Accessing project Database Entries
	Programming Issues Associated With Projects and Tasks

	Using the C Interface to Extended Accounting
	Overview of the C Interface to Extended Accounting
	Extended Accounting API Functions
	exacct System Calls
	Operations on the exacct File
	Operations on exacct Objects
	Memory Management
	Miscellaneous Operations

	C Code Examples for Accessing exacct Files
	Programming Issues With exacct Files

	Using the Perl Interface to Extended Accounting
	Extended Accounting Overview
	Perl Interface to libexacct
	Object Model
	Benefits of Using the Perl Interface to libexacct
	Perl Double-Typed Scalars

	Perl Modules
	Sun::Solaris::Project Module
	Sun::Solaris::Project Constants
	Sun::Solaris::Project Functions, Class Methods, and Object Methods
	Sun::Solaris::Project Exports

	Sun::Solaris::Task Module
	Sun::Solaris::Task Constants
	Sun::Solaris::Task Functions, Class Methods, and Object Methods
	Sun::Solaris::Task Exports

	Sun::Solaris::Exacct Module
	Sun::Solaris::Exacct Constants
	Sun::Solaris::Exacct Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct Exports

	Sun::Solaris::Exacct::Catalog Module
	Sun::Solaris::Exacct::Catalog Constants
	Sun::Solaris::Exacct::Catalog Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::Catalog Exports

	Sun::Solaris::Exacct::File Module
	Sun::Solaris::Exacct::File Constants
	Sun::Solaris::Exacct::File Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::File Exports

	Sun::Solaris::Exacct::Object Module
	Sun::Solaris::Exacct::Object Constants
	Sun::Solaris::Exacct::Object Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::Object Exports

	Sun::Solaris::Exacct::Object::Item Module
	Sun::Solaris::Exacct::Object::Item Constants
	Sun::Solaris::Exacct::Object::Item Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::Object::Item Exports

	Sun::Solaris::Exacct::Object::Group Module
	Sun::Solaris::Exacct::Object::Group Constants
	Sun::Solaris::Exacct::Object::Group Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::Object::Group Exports

	Sun::Solaris::Exacct::Object::_Array Module
	Sun::Solaris::Exacct::Object::_Array Constants
	Sun::Solaris::Exacct::Object::_Array Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::Object::_Array Exports

	Perl Code Examples
	Output From dump Method

	Resource Controls
	Overview of Resource Controls
	Resource Controls Flags and Actions
	rlimit, Resource Limit
	rctl, Resource Control
	Resource Control Values and Privilege Levels
	Local Actions and Local Flags
	Global Actions and Global Flags
	Resource Control Sets Associated With a Project, Processes, and Tasks
	Resource Controls Associated With a Project
	Resource Controls Associated With Tasks
	Resource Controls Associated With Processes
	Zone-Wide Resource Controls

	Signals Used With Resource Controls

	Resource Controls API Functions
	Operate on Action-Value Pairs of a Resource Control
	Operate on Local Modifiable Values
	Retrieve Local Read-Only Values
	Retrieve Global Read-Only Actions

	Resource Control Code Examples
	Master Observing Process for Resource Controls
	List all the Value-Action Pairs for a Specific Resource Control
	Set project.cpu-shares and Add a New Value
	Set LWP Limit Using Resource Control Blocks

	Programming Issues Associated With Resource Controls

	Resource Pools
	Overview of Resource Pools
	Scheduling Class

	Dynamic Resource Pool Constraints and Objectives
	System Properties
	Pools Properties
	Processor Set Properties

	Using libpool to Manipulate Pool Configurations
	Manipulate psets

	Resource Pools API Functions
	Functions for Operating on Resource Pools and Associated Elements
	Functions for Querying Resource Pools and Associated Elements

	Resource Pool Code Examples
	Ascertain the Number of CPUs in the Resource Pool
	List All Resource Pools
	Report Pool Statistics for a Given Pool
	Set pool.comment Property and Add New Property

	Programming Issues Associated With Resource Pools

	Design Considerations for Resource Management Applications in Solaris Zones
	Zones Overview
	IP Networking in Zones
	Design Considerations for Resource Management Applications in Zones
	General Considerations When Writing Applications for Non-Global Zones
	Specific Considerations for Shared-IP Non-Global Zones

	Configuration Examples
	/etc/project Project File
	Define Two Projects
	Configure Resource Controls
	Configure Resource Pools
	Configure FSS project.cpu-shares for a Project
	Configure Five Applications with Different Characteristics

	Index

