
Send comments about this document to:
docfeedback@sun.com
Sun HIPPI/P 1.0 Character
Device Interface User’s Guide
and Reference Manual
Part No.: 805-7707-10
March 1999, Revision A
Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303-4900
U.S.A

1999 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, SunSoft, SunDocs, SunExpress, and Solaris are trademarks, registered trademarks, or service marks of

Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered

trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture

developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR

52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,

ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, SunSoft, SunDocs, SunExpress, et Solaris sont des marques de fabrique ou des marques déposées, ou

marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et

sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant

les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.
Please

Recycle

Contents

1. Overview 17

Understanding HIPPI 17

HIPPI Network Hardware Overview 18

HIPPI Connection Processing 18

HIPPI Packets 19

HIPPI I-Field 19

HIPPI-FP Operation 19

HIPPI-PH Operation 20

General Operation 20

Unexpected Packets 22

Undelivered Packets 22

NIC State 22

Special Files 23

Error Management 23

Byte Order 24

Data Buffers 24

NIC Limits 24

Data Movement Timeouts 25

Upper Layer Protocols 25
Contents iii

2. Management 27

Device Management 27

Opening Devices 27

Binding a Read ULP 28

HIPPI-FP and HIPPI-PH Modes 28

Data and Header Processing 29

Closing Devices 29

Obtaining Device Statistics 29

Multiple Packet Connections 30

Connection Management 30

Establishing a Connection 31

Specifying Destination Devices 31

Specifying Destination ULP 32

Many-Packet Connections 32

3. Processing 33

Received Packets 33

HIPPI-FP Separate Headers and Data 33

HIPPI-FP Combined Headers and Data 34

Unknown Packet Sizes 34

HIPPI-PH Packet Read 35

Packet Truncate 35

Packet Read Errors 35

Process Interrupt 36

Receive Queues 36

Sent Packets 36

I-Field Processing 37

FP Header Management 37
iv Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

HIPPI-PH Mode 38

Unknown Packet Sizes 39

Short Bursts 39

Transmit Queue 39

write() and writev() Calls 40

Process Interrupt 41

Transmit Errors 41

I/O Multiplexing 42

Read Devices 42

Write Devices 42

Exception Devices 42

4. Portability 43

Application Portability 43

Maximum read() and write() Length 43

Buffer Alignment 43

Endian 44

Maximum Packet Length 44

5. CDI Reference 45

Header File 45

Interface Functions 45

HIP_APP_OPEN Call 46

Usage 46

Arguments 46

Failures and Errors 46

close() Call 46

Usage 47

Arguments 47
Contents v

Failures and Errors 47

ioctl() Call 47

open() Call 47

Usage 48

Arguments 48

Failures and Errors 48

read() and readv() Calls 48

Usage 49

Arguments 49

Failures and Errors 50

select() Call 50

Usage 50

Arguments 51

Failures and Errors 51

write() and writev() Calls 51

Usage 52

Arguments 52

Failures and Errors 53

Ioctls 53

HIPIOC_BIND_ULP Call 53

Usage 54

Arguments 54

Failures and Errors 54

HIPIOC_GET_DEV Call 55

Usage 55

Arguments 55

Failures and Errors 55

HIPIOC_GET_DEVICE_STATE Call 55
vi Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

Usage 55

Arguments 56

Failures and Errors 56

HIPIOC_GET_NICS Call 56

Usage 56

Arguments 56

Failures and Errors 57

HIPIOC_UNBIND_ULP Call 57

Usage 57

Argument 57

Failures and Errors 57

HIPIOCR_EIO Call 58

Usage 58

Arguments 58

Failures and Errors 58

HIPIOCR_ERRS Call 59

Usage 59

Arguments 59

Failures and Errors 59

HIPIOCR_GET_D1 Call 60

Usage 60

Arguments 60

Failures and Errors 60

HIPIOCR_GET_FP Call 61

Usage 61

Arguments 61

Failures and Errors 61

HIPIOCR_PKT_OFFSET Call 62
Contents vii

Usage 62

Arguments 62

Failures and Errors 62

HIPIOCR_SEP_HDR Call 63

Usage 63

Arguments 63

Failures and Errors 63

HIPIOCR_TRUNCATE_PKT Call 64

Usage 64

Arguments 64

Failures and Errors 64

HIPIOCW_CONNECT Call 64

Usage 65

Arguments 65

Failures and Errors 65

HIPIOCW_D1_AREA Call 66

Usage 66

Arguments 66

Failures and Errors 66

HIPIOCW_D1_AREA_PTR Call 67

Usage 67

Arguments 67

Failures and Errors 67

HIPIOCW_D1_SIZE Call 68

Usage 68

Arguments 68

Failures and Errors 68

HIPIOCW_DISCONN Call 69
viii Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

Usage 69

Arguments 69

Failures and Errors 69

HIPIOCW_END_PKT Call 69

Usage 70

Arguments 70

Failures and Errors 70

HIPIOCW_ERR Call 70

Usage 70

Arguments 70

Failures and Errors 71

HIPIOCW_I Call 71

Usage 71

Arguments 72

Failures and Errors 72

HIPIOCW_SEP_HDR Call 72

Usage 73

Arguments 73

Failures and Errors 73

HIPIOCW_SET_ULP Call 73

Usage 74

Arguments 74

Failures and Errors 74

HIPIOCW_SHBURST Call 74

Usage 75

Arguments 75

Failures and Errors 75

HIPIOCW_START_PKT Call 75
Contents ix

Usage 76

Arguments 76

Failures and Errors 76

6. Troubleshooting 77

NIC Installation and Operation 77

▼ To Test the Installation and Operation of the NIC 77

Optical Modules and Cables 79

Optical Connections 79

▼ To Turn On RunCode and Check the Status 79

Optical Loopback Test 80

▼ To Set Up the Loop-Back Test 80

Optical Loop-Back Through a Switch 81

▼ To Set Up Optical Loop-Back Through a Switch 81

Optical Testing Between NICs 83

▼ To Test the Optical Connection Between NICs 83

Long Packets Between NICs 86

▼ To Set Up the NIC for Long Packets 86

▼ To Change the EEPROM for Long Packets 87
x Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

Preface

The HIPPI Character Device Interface User’s Guide and Reference Manual describes

the operation and use of the High Performance Parallel Interface (HIPPI) Network

Interface Card (NIC).

Before You Read This Book

This manual is intended for Sun Enterprise system administrators and application

developers, who should have a working knowledge of UNIX systems, particularly

those based on the Solaris operating environment. If you do not have such

knowledge, you should first read the Solaris User and System Administration

AnswerBook documentation provided with your Sun Enterprise server and

consider UNIX system administration training.

How This Book Is Organized

This manual contains the following chapters:

Chapter 1 “Overview” describes the general operation of the HIPPI network

interface card.

Chapter 2 “Management” describes the process that an application uses to access the

HIPPI network interface card.

Chapter 3 “Processing” explains how packets are received and sent over the HIPPI

network.
xi

Chapter 4 “Portability” explains the compatibility and portability issues of the HIPPI

network.

Chapter 5 “CDI Reference” contains the Character Device Interface (CDI) reference

pages that include the header file, the interface functions, the ioctls, and special files.

Chapter 6 “Troubleshooting” outlines techniques that are helpful in isolating

problems.

Appendix A “Special Files” describes how the CDI supports multiple NICs in the

domain and multiple devices on each NIC.

Appendix B “HIPPI-SC Excerpts” contains information that is excerpted from the

HIPPI-SC specification.

Appendix C “HIPPI-FP Excerpts” contains information that is excerpted from the

HIPPI-FP specification.

Appendix D “HIPPI-PH Excerpts” contains information that is excerpted from the

HIPPI-PH specification.

Chapter “Glossary” contains a list of words and phrases and their definitions.

Chapter 1 describes entrance requirements for 14 trade schools. The chapter includes

an application form.

Appendix A should be used only by experienced technical writers in panic

situations.

Glossary is a list of words and phrases found in this book and their definitions.

Using UNIX Commands

This document may not contain information on basic UNIX commands and

procedures such as shutting down the system, booting the system, and configuring

devices.

See one or more of the following for this information:

■ AnswerBook online documentation for the Solaris operating environment

■ Other software documentation that you received with your system

■ Other software documentation that you received with your system
xii Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

Typographic Conventions

Shell Prompts

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when

contrasted with on-screen

computer output

% su
Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Command-line variable; replace

with a real name or value

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

To delete a file, type rm filename.

TABLE P-2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
xiii

Related Documentation

Sun Documentation on the Web

The docs.sun.com web site enables you to access Sun technical documentation on

the Web. You can browse the docs.sun.com archive or search for a specific book

title or subject at:

http://docs.sun.com

TABLE P-3 Related Documentation

Application Title Part Number

Reference HIPPI/P 1.0 CDI Reference Manual 805-7708-10

Sun HIPPI/P 1.0 Installation and User’s
Guide

805-7133-10

Background information ANSI X3.183-1991, High-Performance
Parallel Interface, Mechanical, Electrical,
and Signaling Protocol Specification
(HIPPI-PH)

N/A

Serial-HIPPI Specification, Revision 1.0,
Serial HIPPI Implementors Group, May
17, 1991

N/A

ANSI X3.218-199x, High-Performance

Parallel Interface – Framing Protocol

(HIPPI-FP)

N/A

ANSI X3.218-199x, High-Performance

Parllel Interface – Encapsulation of ISO

8802-2 (IEEE Std. 802.2) Logical Link

Control Protocol Data Units (HIPPI-LE)

N/A

ANSI X3.222-199x, High-Performance

Parallel Interface – Physical Switch

Control (HIPPI-SC)

N/A

IEEE Standard 802.1A N/A
xiv Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments

and suggestions. You can email your comments to us at:

smcc-docs@sun.com

Please include the part number of your document in the subject line of your email.
xv

xvi Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

1

Overview

The Character Device Interface (CDI) enables application programs to access the

HIPPI (High-Performance Parallel Interface) network using a UNIX® character

device interface. The CDI passes HIPPI packets to and from the HIPPI network and

controls the operation of the HIPPI NIC (Network Interface Card) that is configured

into the host system. The CDI supports multiple NICs in a host as well as hosts with

multiple processors (SMP).

The usual open() , close() , read() , write() , ioctl() , and select()
interfaces can control the operation of the NIC and pass packets over the HIPPI

network. When an operation fails, -1 is returned, and errno is set to a value in /usr/
include/sys/errno.h . Throughout this guide, error numbers that are listed are in

addition to generic errors that may occur when calling the interface. The host system

man page details the generic errors.

The application opens one or more HIPPI Transfer Device special files and uses

read() , write(), and ioctl() to manage the transfers. Each transfer device can

be exclusively opened by one process at a time for read only, write only, or both read

and write.

Understanding HIPPI

This section contains background information that is helpful in understanding the

underlying HIPPI technology.
Chapter 1 Overview 17

HIPPI Network Hardware Overview

HIPPI is a switched point-to-point connection-based network technology. A source

NIC (transmitter) connects to a destination NIC (receiver). When the connection is

established, one or more packets are passed over the connection. When the data

transfer has been completed, the connection is terminated. The sender can wait for a

connection (CampON) or give up if the destination is busy.

The source and destination are independent and may operate concurrently. The NIC

is capable of transferring 1,600,000,000 bits per second (burst) over the HIPPI media

because HIPPI transfers 800,000,000 bits per second independently on the source and

on the destination. HIPPI provides a hardware flow control mechanism when the

maximum rates cannot be sustained due to host constraints such as I/O bus

capability, system memory bandwidth, and general system load.

HIPPI packets are routed through HIPPI switches by placing a routing control field,

called the CCI field, or I-Field, ahead of the packet. The routing control field contains

the destination address and optionally the source address (for use in returning

packets to the sender). There are two forms of addresses logical and source. Logical

addressing identifies a destination with a 12-bit address. The switch is responsible

for establishing the physical route through the switch. Source routing specifies the

physical path from the source to the destination (see Appendix B “HIPPI-SC

Excerpts” for more information).

A HIPPI network consists of a HIPPI fabric and a set of HIPPI end-points. The fabric

consists of a collection of interconnected HIPPI switches. It can be viewed as a cloud
that handles passing packets between end-points. HIPPI end-points are HIPPI NICs

in the host and on other peripherals. Usually, the administrator assigns a unique

logical address to each end-point in the HIPPI fabric.

HIPPI media may be either copper cables or optical cables. Sun provides NICs that

are based on the RoadRunner ASIC and have optical media connections. The Sun

NICs include both source and destination interfaces.

HIPPI hardware does not support broadcast or multicast. However, logical

addresses are reserved for pseudo broadcast mechanisms. The pseudo broadcast

mechanisms are used by the network driver.

HIPPI Connection Processing

HIPPI passes data packets over a point-to-point connection. The connection must be

established before packets can be transferred. After a connection is established, one

or more packets can be transferred from the source to the destination.
18 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

The connection is usually opened for a single packet and closed after the packet is

transferred. However, this interface permits the connection to be opened for multiple

packets or opened indefinitely. Connections that are opened indefinitely, or for

multiple packets, must be explicitly closed by the application.

HIPPI Packets

HIPPI packets are sent as a set of 1024-byte bursts. The packet ends when the data

has been sent. A packet may have one short burst (a burst that is less than 1024

bytes). The short burst is usually the last burst in the packet. However, it may be the

first burst in the packet. When it is the first burst, the application must ensure that

the last burst is full size. Each burst is followed by a hardware-managed LLRC field.

Even though there is one I-Field for a connection, the CDI and RoadRunner ASCI

require each packet to be preceded by an I-Field.

When HIPPI-FP headers are used, the presence of a short, first burst may be noted

by a flag in the header (see Appendix C “HIPPI-FP Excerpts” for more information).

HIPPI I-Field

An I-Field introduces each connection (see Appendix B “HIPPI-SC Excerpts” for

more information). The I-Field is used by the switch to route the packet to its

destination. The CDI requires an I-Field before every packet, even when more than

one packet is passed during a connection (even though the extra I-Fields do not

appear on the HIPPI media). The I-Field is stripped during reception and is not

available to the application.

HIPPI-FP Operation

The HIPPI-FP header contains information about the packet (see Appendix C

“HIPPI-FP Excerpts” for more information). The header is always in Big Endian byte

order. The header is always at the start of the first burst.

Following the FP header is the optional D1 header. The D1 header is managed by the

application. It can be up to 1016-bytes long and is in the first burst. When a short,

first burst is indicated, the FP header and D1 area are in the first burst.

Following the D1 area is the optional D2 area (user data). This area is managed by

the application. When a short, first burst is indicated, the D2 area starts at the

beginning of the second burst and is a whole number of bursts long.
Chapter 1 Overview 19

HIPPI-PH Operation

HIPPI-PH does not use headers. The packet starts with a start-packet indicator and

ends with an end-packet indicator. The packet consists of one or more bursts. A full-

size burst is 1024 bytes. Only one short burst can be in a packet. The short burst may

be either the first or last burst of the packet. The packet length must be a multiple of

4 bytes in length.

General Operation

When a connection is established, all of the HIPPI resources (that is, NICs, paths,

and through switches) that are needed by the connection are exclusively dedicated

to the connection until the disconnect. The I-Field can request that a connection wait

until a busy resource is released (CampON) or immediately fail.

A NIC that is operational will always accept a connection request and will accept

packets even if no application, or an unexpected application, is ready to receive the

data. The sender has no way of determining whether the data was received by the

destination application or just discarded.

The application treats HIPPI as a datagram service, similar in behavior to UDP/IP.

HIPPI provides a best effort transport. Packets may or may not be delivered to the

destination. If the destination NIC is running, the packets will be accepted. If an

application is not ready to receive the packets, they are discarded. If an unexpected

application is ready to receive the packets, the packets are delivered to the waiting

application. Because any source can send to any destination, the receiving

application must verify the source of the data before the data is processed by the

application. The application must be able to discard unwanted data.

HIPPI is defined as a low-level transfer protocol, HIPPI-PH, which is frequently

used as a dedicated link between systems. HIPPI-FP is layered on HIPPI-PH,

providing a packet transfer protocol that passes packets among users of the HIPPI

network. Applications should consider using HIPPI-PH in a direct-connection

configuration where the resources can be dedicated to the connection. HIPPI-FP

should be used in a general network configuration. The administrator uses the

hippi(1M) utility to set the NIC to operate in HIPPI-FP or HIPPI-PH mode.

The CDI manages the connection process and the details of passing HIPPI-FP and

HIPPI-PH packets. It also provides error management and statistics gathering

services. It uses blocking I/O (attempts to use non-blocking I/O are ignored). When

a read() or write() is executed, the process sleeps until the request is completely

processed. The select() system call may be used to avoid long pauses in

processing.
20 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

The CDI independently transmits packets and receives packets. During the

transmission, the CDI uses an ioctl() to manage headers and control the transfer

and a write() or writev() to send the data. During the reception, the CDI uses an

ioctl() to control the transfer and read() or readv() to receive the data. The

NIC uses DMA transfers to move data directly between the application data buffers

and its local memory. The data does not pass through operating system buffers.

All transmit requests are funneled to a single transmit queue. Transmit requests are

added to the queue in the order in which they arrive. Each sender has exclusive

access to the transmit queue until all of the packets for the connection have been

queued.

Receive processing is different for HIPPI-FP and HIPPI-PH. In HIPPI-FP mode the

application binds to an Upper Layer Protocol (ULP). The NIC analyzes the HIPPI-FP

header and routes packets based on the ULP in the HIPPI-FP header directly to the

application program. When there is no application initialized to receive packets to

the ULP, the packets are discarded (the sender does not receive an error indication).

Because HIPPI-PH does not have defined headers, all received packets are passed to

the single HIPPI-PH ULP.

The CDI supports server applications by allowing multiple applications to be

concurrently bound to a single ULP. As packets arrive for the ULP, they are

distributed among the applications that are bound to the ULP, based on the order of

each read() that is queued and waiting for data. This has the effect of randomly

distributing packets among the waiting applications.

When an error occurs in transferring a packet, read() , readv() , write(), and

writev() return –1 and set errno to EIO . An ioctl() provides detailed

information about the failure.

The CDI supports multiple NICs in the host system. The application directs the CDI

to a specific NIC by opening the proper special file for the NIC (for example, NIC0 ,

NIC1 , NIC2 , NICn).

The hippi(1M) utility controls the operating mode of the NIC (for example, FP

verses PH). It can be used to start and stop the NIC. It can also be used to provide

operating statistics. The CDI provides an ioctl() to get the current mode settings.

Because the HIPPI resources are assigned for the duration of the transfer, a process

that unexpectedly stops sending or receiving data will indefinitely tie up the HIPPI

channel. To prevent this, timeouts are used on both the receive and transmit

channels. After a packet starts to transfer it must continue to transfer. If data is not

transferred during the timeout period, the packet is truncated, and the connection is

closed. You can configure the timeout by using the hippitune(1M) command.
Chapter 1 Overview 21

Unexpected Packets

Usually, when an application starts, it opens a HIPPI transfer device and binds to a

ULP that it uses for receiving packets. The application then sends and receives

packets. The method of determining the destination NIC address and ULP that the

application should use is not defined in the CDI.

The result is any HIPPI source can pass packets to any HIPPI destination. The

packets are passed to a NIC and ULP. The desired application is expected to be

bound to the destination ULP before the first packet arrives. The source does not

know for sure that the destination is the expected application or that the application

is actually set up as expected.

With HIPPI, you cannot establish a session as you can if you are using TCP/IP).

Usually, connections are established and broken for each packet instead of being

established for the duration of time the application need to execute the transmission.

Thus, an application may receive packets that it is not expecting.

The application must validate the source of every packet it receives before the packet

is processed. The application must ensure that unexpected packets are handled

properly (usually discarded). When the source application sends packets to the

wrong destination application, the source is not notified of the error.

Undelivered Packets

Usually, the destination NIC accepts a packet whether or not an application is ready

to receive it. If an application is not running, and the ULP is not bound, the packet is

discarded by the NIC. The source application is not notified of this error.

NIC State

The NIC is a programmable device that executes a firmware program called

RunCode. The hippi(1M) utility is used to manage the NIC including loading

RunCode into the NIC’s local memory (SRAM), starting the RunCode and setting

the operating state (see the hippi(1M) man page for more information).

The operating states include:

■ on – The NIC is executing RunCode.

■ off – The NIC is stopped.

■ long – The CDI can send packets that are longer than 64 kilobytes.

■ short – The CDI is limited to sending 64-kilobyte packets.

■ fp – The CDI is in the HIPPI-FP mode.

■ ph – The CDI is in the HIPPI-PH mode.
22 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

In fp mode the network driver can operate concurrently with the CDI. When you

configure the network driver, you should limit the maximum packet size to the

network MTU-size (64 bytes) by setting it to short . Send requests are queued to be

sent one at a time. Permitting CDI applications to send long packets ties up the NIC

for extended periods of time and results in lengthy delays in sending network

packets. The NIC receives a single packet at a time; therefore, receiving long packets

delays the arrival of network packets. When the CDI is set to short , the CDI

prevents long packets from being sent, although it still receives long packets. The

delays can be long enough for network protocols to time out. Forcing the CDI to

limit packets to network MTU ensures that the network applications get a reasonable

share of HIPPI bandwidth.

Special Files

The CDI accesses each NIC through a set of special files that are created when the

product is installed. Each NIC has one special file that is used for device control,

called the control device, and a series of special files, called transfer devices.

Applications use the transfer devices to access the NIC for data transfer (read()
and write()).

Error Management

Errors are reported as soon as practical after they are detected. Errors in calling the

access functions are reported immediately. The function returns -1 and the error

code is placed in errno . Values for errno are found in the host system /usr/
include/sys/errno.h header file.

When an error occurs in transferring a packet the packet is truncated, and the

connection is terminated. When using multiple-packets-per-connection, the next

packet sent by the application establishes a new connection.

When calling an interface function, such as open() , close() , ioctl() , read() ,

and write() , on a transfer device while the NIC is off, ENODEVis returned.

Because read() and write() are not supported on the control device, EINVAL is

returned. The following list includes other conditions that return specific errno
values:

■ Parameter errors return EINVAL.

■ Invalid buffer pointers return EFAULT.
■ Insufficient permissions return EPERM.
Chapter 1 Overview 23

The response to read() I/O transfer errors may be configured using the

HIPIOCR_EIO ioctl() . The application may discard the data and return EIO
(default action), or it may ignore the error and return the length of the available

data. In the later case the application must call the HIPIOCR_ERRS ioctl() after

every read() to determine the true return status.

Byte Order

The HIPPI network is Big Endian. The I-Field and HIPPI-FP headers must be in Big

Endian byte order. Little Endian systems will likely have to byte swap these headers

to host order for local processing.

The D1 area (optional) and D2 area (optional) are in whatever endian the application

desires. When an application operates with an application on a different endian

system, the applications must properly manage the endian of the data.

Data Buffers

The CDI restricts buffers to be aligned on 8-byte boundaries. When multiple

write() or read() functions are used to process a packet, the buffer for each

write() or read() , except the last, must be a multiple of 8 bytes. When writev()
or readv() is used each segment must be 8-byte aligned. All segments except the

last segment for the packet must be a multiple of 8 bytes in length. The CDI does not

restrict packet length. Host systems may further restrict length or alignment.

NIC Limits

Up to 31 unique, receive ULPs may be bound at a time. The product is installed with

one control device and 31 transfer devices per NIC.

The NIC is shared among all concurrent users. The latency and available bandwidth

vary as the number of active users change as well as usage of the HIPPI network

change. It is possible for an application to have to wait a considerable time to send

or receive a packet.
24 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

Data Movement Timeouts

The NIC uses separate receive and transmit data-movement timeouts to monitor

data movement. After a connection is opened and packet data starts to flow, the

timeout is active. If data is not passed during the timeout period, the packet is

truncated; the connection is dropped, and an error is returned. The timeout values

are set by the administrator using the hippitune(1M) utility.

Upper Layer Protocols

The HIPPI-FP header defines an 8-bit Upper Layer Protocol (ULP) field that is used

by the NIC to directly route a received packet to an application. HIPPI-FP explicitly

specifies the use of some of the ULPs and reserves a range of ULPs for later

assignment. ULPs in the range of 128 to 255 (decimal) are available for general

application use. ULPs in the range of 0 to 127 (decimal) are reserved by HIPPI-FP

and should not be used by the application. The application must have superuser

privilege to bind to ULPs in the reserved range.

Within the reserved range, certain ULPs have been reserved for specific uses. The

specific ULPs that are reserved by HIPPI-FP must not be used by the application.

The CDI does not permit access to the following ULPs:

■ 2 – Memory interface

■ 3 – Memory interface initialization

■ 4 – ISO 8802.2 link encapsulation

■ 6 – IPI-3 slave

■ 7 – IPI-3 master

■ 8 – IPI-3 peer

■ 10 – HIPPI-FC mapping to fibre channel
Chapter 1 Overview 25

26 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

2

Management

This chapter contains information about the process that an application uses to

access the HIPPI NIC, including how it opens and closes devices and connections.

This chapter also contains information about multiple-packet connections and many-

packet connections.

Device Management

This section contains information about how devices are opened, what operating

modes are available, how the data and headers are processed, how the devices are

closed, and what statistics can be obtained.

Opening Devices

The application uses the HIP_APP_OPENmacro to open a CDI, transfer-device,

special file. Each CDI transfer device is opened for exclusive access by the

application. Because the transfer devices are opened for exclusive access, they must

be closed before a process calls fork() . (Failure to close the device before the

fork() command may result in unpredictable behavior).

HIP_APP_OPENopens a transfer device on the given NIC for, read (O_RDONLY),
write (O_WRONLY), or both read and write (O_RDWR). An application can have more

than one transfer device open at a time and call HIPIOC_GET_NICS ioctl() to

determine the number of configured NICs.
Chapter 2 Management 27

Binding a Read ULP

While in HIPPI-FP mode, the NIC routes packets to applications based on the ULP

field in the HIPPI-FP header. When an application opens a transfer device for read,

it must use the HIPIOC_BIND_ULP ioctl() to bind the transfer device to a ULP.

Until a ULP is bound no packets can be received. The bind may be for exclusive

access or shared access. When the NIC is in HIPPI-PH mode, no ULP exists.

However, the application must still bind the transfer device to establish shared or

exclusive access.

Multiple transfer devices may be bound to the same ULP. When this occurs, a

read() from the applications are queued and completed, in turn, as packets arrive.

This results in the received packets appearing to be randomly distributed among the

applications. This feature permits server applications to have multiple processes

monitoring the same ULP.

The open transfer device may be bound to a single ULP (or no ULP) at any point in

time. The HIPIOC_UNBIND_ULP ioctl() removes the ULP binding. The

application may then use HIPIOC_BIND_ULP to bind the transfer device to another

ULP. A transfer device that is open for write-only does not bind to a ULP.

The sending and receiving applications must negotiate a suitable ULP. The CDI does

not provide a means of determining suitable ULPs. The CDI also does not provide a

means for a destination to validate the source of a packet.

HIPPI-FP and HIPPI-PH Modes

The NIC operating mode is set by the hippi(1M) utility (there is no ioctl() in the

CDI to set the operating mode). However, the application can determine the current

mode by using the HIPIOC_GET_DEVICE_STATE ioctl() .

In HIPPI-FP mode, the NIC multiplexes received packets based on ULP. The

application binds a ULP to a transfer device then it reads the transfer device file by

using the read() function. When a packet arrives for an unbound ULP, the packet is

received and discarded.

Every packet that is sent must have an I–Field and a valid HIPPI-FP header. Even

though the I-Field is only needed at the first packet of a connection, the CDI and

hardware consistently require an I-Field before every packet. The HIPPI-FP mode

must be set when the network driver is configured.

HIPPI-PH mode does not use headers. All packets arrive at the same place and are

passed to the next request in the receive queue. Every connection that is established

must have an I-Field.
28 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

Data and Header Processing

While in HIPPI-FP mode, the CDI supports two methods of handling headers and

data. One mode, called separate headers, uses an ioctl() to process headers and a

read() or write() function to process data. The other mode, called combined

headers, treats the entire packet as data.

Separate-header mode is the default for sending packets. The FP header and,

optionally, the D1 area are cached in the CDI then they are affixed to each packet

before it is sent.

Combined-headers mode is the default for receive. The entire packet (starting with

the FP header) is read by the read() function.

Receive processing and send processing differ in the following ways:

■ Send processing includes an I-Field before each packet; receive processing does

not include the I-Field.

■ Send processing permits passing a short, first burst; receive processing does not

notice burst length.

HIPPI-PH does not support headers, so all header related ioctl() functions are

invalid in this mode.

Closing Devices

The device may be explicitly closed by the application or implicitly closed during

process termination. When the device is closed, an outstanding read() or write()
is completed with EIO . When the last transfer device that is bound to a ULP is

closed, the ULP is unbound. Subsequent packets to the ULP are discarded.

On close, a packet that is partially transmitted is truncated. The connection,

including a multiple-packet connection, is closed as well.

All CDI transfer devices must be closed before calling fork() ; otherwise, the

behavior of the CDI is unpredictable.

Obtaining Device Statistics

Operating statistics for the NIC are maintained by the CDI. The application may get

the current statistics by using the HIPIOC_GET_STATS ioctl() . Also, you can

invoke hippi status or hippistat -x to display NIC statistics.
Chapter 2 Management 29

Multiple Packet Connections

An application may need to send a group of packets to a destination without packets

from other applications being interspersed. The CDI provides a multiple-packet

connection that is managed by using the ioctl() function. Because a multiple-

packet connection ties up the two NICs and the paths through the switches, you

should dedicate resources to multiple-packet connections or limit their use.

The application can send multiple packets over the same connection in the following

way. The connection is announced by a HIPIOCW_CONNECT ioctl() . The next

write() starts a new packet and opens the connection. As many packets as desired

may be sent over the connection. After the connection is opened, it remains open

until one of the following conditions occur:

■ It is closed by a HIPIOCW_DISCONN ioctl() .

■ An error occurs (including Tx Idle).

■ The transfer file is closed.

■ The NIC stops.

After the connection is opened, the Tx Idle watchdog is in effect. It remains in

effect until the connection is closed. For this reason, the Tx Idle timeout must be

configured to be longer than the time between packets on the connection.

HIPIOCW_CONNECTcan be used between packets. It fails if the application is

between a write() of a multiple write() packet.

Connection Management

A connection is established between a source and a destination before packets can be

sent. Additionally, when FP headers are used, the source must also know the ULP at

the destination.

HIPPI provides a datagram service. It behaves in a similar fashion to UDP/IP. In this

context, the HIPPI connection lasts long enough to pass a packet between the source

NIC and the destination NIC. It is not a connection that is similar to TCP/IP.

The connection attempt is performed on the open NIC. In a multiple NIC

configuration, the application must open the correct NIC. The CDI does not provide

a mechanism for managing the various NICs in a configuration.
30 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

Establishing a Connection

Before a packet is sent, the source must establish a connection. This is done by

transmitting an I-Field. The I-Field is routed through the HIPPI network to a

destination device using information in the I-Field to control processing.

The I-Field contains either a logical address or a source route. Bits in the I-Fields

specify the address format. HIPPI switches use the address to route the connection

through the switches.

The destination device may be in one of the following states:

■ Available to accept the connection

■ Already connected to another source

■ Not available (disconnected, turned off, or missing)

When the destination is available, a connection is immediately established, and the

source can start to pass packet data. Packets may be passed until a disconnect occurs

(usually at the end of a packet).

When the destination is already connected to another source, the CAMP_ONbit in the

I-Field is used to direct processing. When CAMP_ONis set, the source waits for the

destination to become available. The use of CAMP_ONis very common. When the

destination disconnects, it immediately connects to a source that is camped on.

Because CAMP_ONties up the source and all of the HIPPI switch ports along the path

from source to destination (even though no data is being passed), a CAMP_ON
timeout is provided so that the source can break the connection attempt after a

configured period of time. The hippitune(1M) utility is used to set this timeout.

When the destination is busy and CAMP_ONis not set, the connection is immediately

rejected. The hippitune(1M) command can be used to configure the number of

times that the connection is retried before giving up and how long the source should

wait between retries. When the destination is not available, the connection attempt is

immediately rejected.

When two HIPPI devices are directly connected (instead of going through a HIPPI

switch), the I-Field is not really needed. However, it must still appear in the

expected places even though its content is not examined.

Specifying Destination Devices

When HIPPI NICs are connected using HIPPI-SC switches, the address of the

destination device must be known to the application before HIPPI packets can be

sent. There is no standard method of finding the address of a destination device

using HIPPI packets. It is up to the application to determine the destination address.
Chapter 2 Management 31

When two HIPPI NICs are directly connected, the address of the destination device

is not used. The address of the destination device is placed in the I-Field.

Specifying Destination ULP

When the destination NIC is in HIPPI-FP mode, the transmitted packets must have a

valid HIPPI-FP header. The destination ULP must be known to the application

before HIPPI packets can be sent. A standard method does not exist for finding a

destination ULP by using HIPPI packets. The application must determine the

destination. All packets that are sent to a destination are accepted. Error messages

are not returned if the ULP is not valid or if it is in use by another application.

Many-Packet Connections

The HIPIOCW_CONNECT ioctl() is used to open a many-packet connection when

the next write() is executed. A many-packet connection is closed by using

HIPIOCW_DISCONNor by any error. The data movement timeouts are in effect.
32 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

3

Processing

This chapter explains how packets are received and sent over the HIPPI network.

Received Packets

The received packets are read by read() or readv() . See the host-system man

pages for the general behavior of these interfaces. Alternatively, read() or readv()
can read the data, the D2 area, and an ioctl() can read headers and track the

progress of packet processing.

A single read() never returns more than one packet. A single packet may be read

by using one or more read() calls. When multiple read() calls are used, all buffers

must be 8-byte aligned, and all but the last buffer must be a multiple of 8 bytes in

length. Each read() returns the actual number of bytes that are read by that call.

The FP header is always in Big Endian. The other headers and data are in whatever

byte order the application chooses. The application must completely process each

packet that arrives (both expected and unexpected packets). An ioctl() call can be

used to track the progress of receiving packets and to discard unwanted packets.

HIPPI-FP Separate Headers and Data

When separate-header mode is set by the HIPIOCR_SEP_HDR ioctl() , the CDI

caches the FP header and D1 area in the driver. The application reads the FP header

by using the HIPIOCR_GET_FP ioctl() . HIPIOCR_GET_FP is used before the

read() call so that it blocks the transmission until the packet arrives instead of the

read() call blocking the transmission.
Chapter 3 Processing 33

The FP header is always in Big Endian byte order. The D1-size field indicates the size

of the D1 area (if any), and the D2-size field indicates the size of the D2 area (if any).

Using the D1-size field and the D2-size field, the application can determine the

overall length of the packet. When the D2-size field contains 0xFFFFFFFF, the

length is not known. See “Unknown Packet Sizes” on page 34 for processing details.

When the D1-size field is not zero (0), HIPIOCR_GET_D1 ioctl() gets the D1

header for the latest packet. HIPIOCR_GET_FPmust be called before

HIPIOCR_GET_D1. A series of read() calls may be used to read the D2-data area.

The headers must be processed before the D2 area.

If the application is not concerned with headers, the packets (D2 data) may be

processed by just using read() calls because the headers are discarded. When

headers are ignored, the read() call blocks the data until a packet arrives.

HIPPI-FP Combined Headers and Data

When combined-header mode (the default) is set by the HIPIOCR_SEP_HDR
ioctl() , a series of read() calls are used to read the whole packet, starting at the

FP header. The FP header is always in Big Endian byte order. The D1-size field

indicates the size of the D1 area (if any), and the D2-size field indicates the size of

the D2 area (if any). Using the D1-size field and the D2-size field, the application can

determine the overall length of the packet. When the D2-size field contains

0xFFFFFFFF, the length is not known. See “Unknown Packet Sizes” on page 34 for

processing details. The read() call blocks the calling thread until data is available

to be read.

Unknown Packet Sizes

In HIPPI-FP mode, when the D2 size of a packet is not known and when the packet

is sent, D2 is set to D2SIZE_UNKNOWN(-1 or 0xFFFFFFFF). The application is

expected to read as much data in the packet as it can, or it should read a portion of

the data and discard the rest.

When the NIC is in FP mode, the packet must be a multiple of 8 bytes in length.

HIPPI-PH mode does not use headers, so all packets are of unknown length. When

the NIC is in PH mode, the packet must be a multiple of 4 bytes in length. When a

short, first burst is used, the remainder of the packet must be a multiple of 1024

bytes in length.

The application can use the HIPIOCR_PKT_OFFSET ioctl() to report the byte

offset into the current packet. When the maximum byte count (MAX_PKT_OFFSET) is

reached, the remainder of the packet can still be read; however, the byte count will
34 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

not advance. MAX_PKT_OFFSETis 2048 times 4096 bytes or 0x7FFFFFFF bytes.

When the whole packet has been read, the counter is reset to zero (0), and the

ioctl() returns a 0-byte offset.

HIPPI-PH Packet Read

HIPPI-PH mode does not use headers. The header related ioctl() is not valid and

returns EINVAL. The application can use the HIPIOCR_PKT_OFFSET ioctl() to

keep track of how much data has been read (up to MAX_PKT_OFFSETbytes) and to

determine packet boundaries (see “Unknown Packet Sizes” on page 34).

Packet Truncate

When a packet is not expected by the application or is longer than the application is

prepared to handle, the HIPIOCR_TRUNCATE_PKT ioctl() can be used to discard

the remainder of the packet. This is useful when processing packets with multiple

read() calls.

Packet Read Errors

Errors may be detected as the host system processes the read() or as the CDI

attempts to receive packets. Using the default, UNIX error management, read()
returns -1 and sets a return code in errno . The values of errno are found in

/usr/include/sys/errno.h . When an error occurs, data in the NIC is discarded.

This data would have been returned to the application.

Data errors return EIO . When processing has been interrupted by a signal, EIO is

returned. When an EIO or EIO error is returned, the HIPIOCR_ERRS ioctl() can

be used to get a more detailed analysis of the error.

The HIPIOCR_EIO ioctl() can be used to place the CDI in error- monitor mode. In

this mode, the application will never receive an EIO from a read() , and it will

never lose data that is available to the NIC. Thus, the application must use the

HIPIOCR_ERRS ioctl() after each read() to check the error status. When using

this mode, the application receives all of the available data, whether it is corrupted

or not.
Chapter 3 Processing 35

Process Interrupt

When a process interrupt is signaled (usually ^C or kill()), a pending read or

write returns EIO , and the packet is truncated (unprocessed data is discarded). The

next read() starts a new packet.

Receive Queues

When the first transfer device is bound to a ULP, a receive queue is set up for the

ULP. In shared mode many transfer devices may be bound to the same ULP. Each

transfer device can perform packet reads independent of the other transfer devices,

even if more than one read is needed to receive the packet.

Each read is queued in the ULP queue and processed in turn. When a packet

requires more than one read, other readers must wait for the whole packet to be

received before their requests can be queued.

Sent Packets

HIPPI provides a means of sending packets through switches over an established

connection to a destination. Every connection is established by a switch control

block called an I-Field. HIPPI packets are passed over the established connection.

The content and format of the HIPPI packets depends on the HIPPI protocol in use.

HIPPI-FP packets consists of a HIPPI-FP header followed by a D1 header (optional),

which is followed by the D2-data area (optional). The FP header and D1 header can

be sent as a short, first burst.

HIPPI-PH packets do not have headers. The packet is preceded by a packet-start

byte and is terminated by a packet-end byte.

Normally, when an application communicates with another application, the I-Field,

FP header, and D1 header to not change much from packet to packet. Thus, the

application can cache the header information in the CDI so that the CDI can format

the packets by using the cached headers.

Packets can be sent by using one or more write() calls. One or more packets can be

sent over a single connection. Multiple packets cannot be sent in a single write()
call.
36 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

I-Field Processing

Every connection is established by using a HIPPI-SC I-Field. The I-Field is set by

using the HIPIOCW_I or HIPIOCW_CONNECT ioctl() as described in “Connection

Management” on page 30. The I-Field is cached in the CDI. After it is set, it is used

on successive packets until a new value is set. The I-Field needs to be set before the

first connection is established or whenever a packet is sent to a different destination.

The application must ensure that the I-field is always in Big Endian order. The I-

Field is always set by ioctl() ; it is never part of a user buffer.

FP Header Management

In HIPPI-FP mode, the FP header is required. The header may be cached in the

driver and reused from packet to packet, or it may be placed at the beginning of the

data buffer. The write mode is set by using HIPIOCW_SEP_HDR ioctl() . When the

FP header is in the application buffer, the length of the fields must be correct, and it

must be in Big Endian order (see Appendix B “HIPPI-SC Excerpts” for the FP header

format). When the FP header is cached by the CDI, the application uses a set of

ioctl() calls to manage the various fields. The cached values are used until they

are changed or the mode is changed to combined-header-and-data-mode. Entering

separate-headers-and-data mode clears the cached FP header.

HIPIOCW_SET_ULPsets the destination ULP. Observe the rules for reserved ULPs

described in “Data Movement Timeouts” on page 25. HIPIOCW_SHBURSTforces the

first burst to be short (see “HIPPI-PH Mode” on page 38). All remaining bursts must

be a full 1024 bytes in length.

HIPIOCW_D1_SIZE sets the size of the D1 area. The D1 area is a multiple of 8 bytes

in length, up to 1016 bytes. If the D1-data area is not present, the D1 length is set to

zero (0). The application manages the content of the D1 space. When the D1-size

field is zero (0), the packet does not have a D1 header.

HIPIOCW_D1_AREA_PTRtells the CDI the location of the D1 buffer in the

application. HIPIOCW_D1_AREA_PTRis used when the application manages the D1

area in a private buffer. When this option is used, the first write() call of the

packet causes the current D1 area to be copied to the kernel cache and sent along

with the FP header. The application can change the content of the D1 header up to

the write() call. The remainder of the packet is transferred directly from the

application buffer to the NIC. When the buffer pointer is set to NULL, the D1 user-

buffer is no longer used, and the D1 area is part of the application buffer.

HIPIOCW_D1_AREAcopies the D1 area to a cache in the CDI driver. The application

can replace the D1 data in the cache if needed. HIPIOCW_D1_SIZE must be called

first to set the size. When the buffer pointer is NULL, the D1 cache is cleared, and the

D1 area is part of the application buffer.
Chapter 3 Processing 37

The application can do the following:

■ Not use a D1 header.

■ Place the D1 area before the data in the data buffer.

■ Place the D1 area in a separate buffer.

■ Cache the data in the kernel.

Cached data is used in multiple packets until it is changed. If HIPIOCW_D1_AREAor

HIPIOCW_D1_AREA_PTRis not used, the write buffer contains the D1 area.

You cannot set the D2-offset field. The D2-size field is set indirectly by one of the

following:

■ By calling the write() call without calling the HIPIOCW_START_PKT ioctl()
creates a packet with a single write() call. When the D1 area is in the user

buffer, the length of the write() call includes the D1 area, and the write()
length must be at least as large as the D1 size. When HIPIOCW_SEP_HDRis set,

the FP and D1 headers are included in the write() call. In this case, the D2 size

is the length of the write() call less the headers.

■ By using HIPIOCW_START_PKTto start a new packet of the specified D2 length.

Multiple write() calls may be used to complete the packet. The packet will have

the specified D2 length. When the D1 area is in the user buffer, the first write()
call must be at least as long as the D1 area. When in separate-header mode, the

first write() call must be at least the same size as the FP and D1 headers. Extra

bytes from the write() calls are returned to the application. When the length is

D2SIZE_UNKNOWN, HIPIOCW_END_PKTis used to terminate the packet.

When the CDI is set to combined-header-and-data mode, the entire packet,

beginning with the FP header, is processed by using a write() call. None of the

header manipulation ioctl() calls are available. The application must ensure that

the FP header is in Big Endian and that the ULP is valid. The I-Field is always set by

an ioctl() .

HIPPI-PH Mode

Headers are not used in the HIPPI-PH mode. Therefore, you can take one of two

approaches to writing packets:

■ By using the HIPIOCW_START_PKT ioctl() to specify the length of the packet,

followed by one or more write() calls to send the packet

■ By writing the packet using one or more write() calls and terminating the

packet by calling the HIPIOCW_END_PKT ioctl()

The I-Field is set by using the HIPIOCW_I or HIPIOCW_CONNECT ioctl() .
38 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

Unknown Packet Sizes

In HIPPI-FP mode, the sender can start to send a packet before it determines the

final length of the packet. The FP header’s D2 field is set to D2SIZE_UNKNOWN(-1 or

0xFFFFFFFF) by the HIPIOCW_START_PKT ioctl() . The other ioctl() calls that

are used to manipulate the FP header still operate. The first write() call of the

packet must be long enough to pass all of the needed headers. When the packet is

complete, HIPIOCW_END_PKT ioctl() is called to terminate the packet.

When the NIC is in FP mode, the packet must be a multiple of 8 bytes in length.

When the NIC is in PH mode, the packet must be a multiple of 4 bytes in length.

When a short, first burst is used, the first write() call writes the short, first burst.

The remainder of the packet must be a multiple of 1024 bytes.

Short Bursts

HIPPI permits one short burst in a packet. The short burst can be either the first

burst or the last burst. Usually, the short burst is at the end of the packet. However,

the application can call HIPIOCW_SHBURSTto force the first burst of a packet to be

short.

A short, first burst is useful in communicating with hardware that can read the first

burst, analyze the content, and pass the remainder of the data. Unless there is a

hardware assist or some specific reason to use a short burst, you should not use it.

Sun’s HIPPI NIC performs the needed analysis of the header without requiring a

short, first burst. Also, you should not use a short, first burst when the first burst is

a full-size burst (for example, if D1 is 1016 bytes).

The short burst can be used in both HIPPI-PH and HIPPI-FP modes. In HIPPI-FP

mode, the burst size is not used because it is calculated from the FP and D1 sizes. In

HIPPI-PH mode, the burst size is set from the ioctl() . The short-burst size must

be a multiple of 8 bytes in length and less than or equal to 1016 bytes. A standard

HIPPI burst is 1024 bytes. When a short, first burst is used, the D2 area must be a

multiple of 1024 bytes in length.

Transmit Queue

The CDI has a single transmit queue. Applications place the packets at the tail of the

queue. The NIC takes packets from the head of the queue and sends them to their

destination.
Chapter 3 Processing 39

Because the queue is shared by all applications, access is restricted to one application

at a time. The first (or only) write() call for a packet waits for the queue to become

available. When the application is granted access, it holds the queue until the last

packet for the connection is queued (not transferred). The application can generate

packets by using multiple write() calls and multiple packets over the connection.

The application blocks the queue from the time that the write() call is called until

the time when the NIC sends the data and the write() call completes. When

sending packets using multiple write() calls, the application should perform the

calls as quickly as possible. The transmit-idle-timeout limits the delay between calls.

If data is not transmitted during the timeout period, the connection is broken, and

the packet is discarded. You can set the transmit-idle-timeout by using the

hippitune(1M) command. If the application does not want to wait for the transmit

queue to become available, the select() call can be used to terminate the

transmission (see “I/O Multiplexing” on page 42 for more information).

write() and writev() Calls

The write() and writev() calls can be used to send packets. The packet

processing details are set before calling the write() call. See the host-system man

pages for the general behavior of these interfaces.

All application buffers must be 8-byte aligned. All buffers for a packet, except for the

last buffer, must be a multiple of 8 bytes in length. The last write() call can be any

number of bytes in length if you send a packet with a known length.

Depending on the various conditions described above, the first write() call for a

packet ensures that the I-Field and necessary headers precede the data. Subsequent

write() calls for the packet pass packet data.

In HIPPI-FP mode, the packet must be the length that is specified in the D2-size field

in the FP header. The packet is held open until the required number of bytes have

been transferred. If the application attempts to write too many bytes, the extra bytes

are returned by the write() call. (The return value from the write() call is not the

same as the length.)

You can use one or more write() calls to send a single packet. When multiple

write() calls are used, the packet length is set by an HIPIOCW_START_PKT
ioctl() . If the application attempts to send more bytes than specified in the

HIPIOCW_START_PKT ioctl() , the extra bytes are not sent, and the write() call

returns the actual number of bytes that were sent. Multiple packets may not be sent

in a single write() call.

You can send one or more packets over a single connection. By default, the

connection is established when a packet is sent. The HIPIOCW_CONNECT ioctl() is

used to open a connection for multiple packets (the connection is actually opened on
40 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

the write() call at the start of the next packet). When HIPIOCW_CONNECTis used,

HIPIOCW_DISCONNmust be used to close the connection when the last packet ends.

If the packet has already ended, the connection is closed immediately.

When multiple write() calls are used or when unknown-length packets are sent,

the length of each write() call must conform to the following rules:

■ The first write() call must be long enough to pass all of the headers.

■ The HIPPI-FP mode length, except for the last write() call, must be a multiple

of 8 bytes in length.

■ The HIPPI-PH mode length must be a multiple of 8 bytes, and the total length

must be a multiple of 4 bytes (the length of the last write() call in the packet

may be a multiple of 4 bytes).

■ The length of the short, first-burst must be a multiple of 8 bytes, and the total

length must be a multiple of 1024 bytes.

Process Interrupt

When a process that is sending is interrupted, the write() is truncated; a

disconnect is performed; and, write() returns EIO . The next write() starts a new

packet. The application must be ready to receive and process (usually discard)

truncated packets.

When close() is called while sending a packet, the packet is truncated, and the

connection is closed. No further packets can be sent because the transfer device is

closed.

Transmit Errors

Errors in setting up the write() call (for example, a bad buffer pointer or invalid

parameter) are returned immediately. The write() call returns -1 and errno
contains the error code.

Errors in transmitting the data result in an EIO error. The packet is truncated, and a

disconnect is performed. When this error occurs, the application can get additional

information about the error by calling the HIPIOCW_ERR ioctl() .

When the process is interrupted by using ^C or kill(1M) , the packet is truncated,

and a disconnect is performed. The errno value is set to EIO . The write() call

cannot be restarted.
Chapter 3 Processing 41

I/O Multiplexing

All read() calls and write() calls block the calling thread until data has been

received or sent, respectively. (The CDI implements blocking of I/O). The

application can use the select() call to avoid using the read() call until data is

ready to be received. The application can also use the select() call to avoid

blocking the transmission while another process is sending. The call to select() is

described in the host-system man page. The CDI does not change the processing for

the select() call.

Read Devices

The select() call for the read() call completes when data is available to be read.

When multiple read() calls are used to process a packet, the select() call should

be used only to wait for the arrival of the packet. It should not be called between

successive read() calls of the same packet. If it is called while the application

already has a connection open, it will return immediately with EINVAL.

When multiple processes are using the select() call for the same bound ULP, the

process that has been waiting the longest will complete first. The other processes

will continue to wait. This eliminates races for the receive queue.

Write Devices

The select() call for the write() call completes when the transmit queue is not

busy. This does not guarantee that the queue will be available by the time that a

write() call can be performed. When multiple transfer devices are using the

select() call for the write() call, only the most recently queued select() call

will complete.

When the application uses multiple write() calls in each packet or multiple

packets for each connection, the select() call should be called only when the

application is ready to send the first packet of a new connection. If it is called while

the application already has a connection open, it will return immediately with

EINVAL.

Exception Devices

The CDI does not support exception processing using the select() call.
42 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

4

Portability

This chapter explains the portability issues of the HIPPI network.

Application Portability

Applications may be made more portable by using system features that exist on all

systems and observing hardware restrictions that exist on some systems.

Maximum read() and write() Length

Host systems place restrictions on the maximum length of a single read() or

write() call. Systems can pass as much as 2 megabytes (2 times 1024 times 1024) in

read() and write() calls. Because multiple read() and write() calls can be

used in a single packet, this doesn't restrict packet size.

Buffer Alignment

To improve efficiency on some host systems, the buffers should be aligned to cache

line boundaries (usually 32 bytes). For large transfers, the buffers should be aligned

to page boundaries. Pages are usually 4096, 8192, or 16384 bytes.
Chapter 4 Portability 43

Endian

The D1 and D2 areas in HIPPI-FP packets, and the entire HIPPI-PH packet, can be in

either Big Endian or Little Endian. When both the source machine and the

destination machine are the same endian, they should not have a problem

transferring packets. When they have an opposite order, byte swapping may be

needed. The applications should coordinate the packet contents and agree to the

needed conversions.

Maximum Packet Length

Some systems limit the maximum length of a packet to 4096 times 4096 minus 8

bytes (0xFFFFFFF8).
44 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

5

CDI Reference

This chapter contains the Character Device Interface (CDI) reference pages,

including the header file, the interface functions, the ioctls, and any special files.

In general, the interfaces behave as described in the host-system man pages. Specific

details are presented in this document. Error codes that are returned in errno are

sent to /usr/include/sys/errno.h on each host system. The general error codes

are described in the host-system man pages. Specific error codes are described in this

document.

Header File

The ioctl.h header file contains information that is needed by applications to call

ioctl() and open special files. The header file is located in different directories on

different host-system architectures.

Two utilities, blast(1M) and sink(1M) are distributed as source. These utilities

provide examples of how the CDI can be used.

Interface Functions

The interface functions are standard, UNIX character device-driver functions. Host-

system man pages describe the general behavior. Any unexpected processing is

noted in the function description.
Chapter 5 CDI Reference 45

HIP_APP_OPENCall

The HIP_APP_OPENcall is a macro that opens a transfer device on the given NIC. A

transfer device can be opened by a single process at a time. Additional attempts to

open the transfer device return EBUSY. This macro tries to open transfer devices until

it succeeds or until all transfer devices have been tried. The macro calls open() and

HIPIOC_GET_DEV ioctl() .

Usage

#include <sys/fcntl.h>

#include <ioctl.h>

int fd_hippi, flags;

HIP_APP_OPEN(NIC0, flags, fd_hippi);

Arguments

The following arguments can be used:

■ NIC0 – Represents the name of the control-device special file for the NIC. NIC0
represents the first NIC. ioctl.h defines the first 16 NICs (NIC0 to NIC15).

■ flags – Contains the open() flags as defined in sys/fcntl.h . The application

should only call HIP_APP_OPEN() with the flags that are really needed. The flags

are O_RDONLY, O_WRONLY, O_RDWR. Unsupported flags are ignored.

■ fd_hippi – Represents the file-descriptor variable of the newly opened CDI

transfer device. It is not a pointer to the variable.

Failures and Errors

When an error occurs, fd_hippi is set to -1 and errno is set to the error code. The

following list explains the possible errors:

■ EBUSY– All special files have been tried and are busy.

■ ENODEV– The NIC is not running.

close() Call

The close() call is used to close an open CDI device. See the close() man page

for more details on the general operation of close() .
46 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

When close() is called, any outstanding read() or write() calls are completed

with EIO . Any incoming packet is truncated, and the connection is closed. A

transmitting packet is also truncated, and the connection, including multiple-packet

connections, is closed. Any packets for the special file that are in the transmit queue

are returned with EIO .

If the close() call is the last UNBINDfor a receive ULP, the ULP becomes invalid,

and future packets to the ULP are discarded.

Usage

close(fd_hippi)

Arguments

fd_hippi – Represents the file descriptor of the CDI special file that is open.

Failures and Errors

The close() call has no special failures.

ioctl() Call

The ioctl() calls that control the operation of the CDI are described in “Ioctls” on

page 53.

open() Call

The open() call is used to open a control device or open a transfer device for

reading or writing. This call returns a file descriptor that is used for future calls to

read() , write() , ioctl() , and close() (see the open() man page for more

details).

The open() call of the control device (sub-device 0) for a NIC always succeeds as

long as the name of the control device is valid and accessible. The open() call of

transfer devices for the NIC fail if the NIC is stopped or the file is already open.

The open() call is not called directly by applications. Rather, HIP_APP_OPEN() is

used to open a transfer device for processing.
Chapter 5 CDI Reference 47

Usage

#include <fcntl.h>

#include <sys/fcntl.h>

#include <sys/types.h>

int fd_hippi, flags;

static char path[] = “/dev/hippi/h0”;

mode_t mode;

fd_hippi = open(path, flags, mode);

Arguments

The following arguments are supported:

■ fd_hippi – Represents the file descriptor of a CDI special file that is open.

■ flags – Can contain O_RDONLY, O_WRONLY, or O_RDWR. All other flags (in

particular, O_NDELAY) are ignored.

Failures and Errors

The follow list explains the failures and errors that are associated with the open()
call:

■ ENODEV– The NIC is stopped.

■ EBUSY– The device is already open.

■ ENOMEM– The system ran out of memory while initializing the device.

■ EINVAL – An invalid minor number was specified.

read() and readv() Calls

The read() , or readv() , call reads data from the HIPPI device (see the read()
man page for more details). The supplied buffers must be 8-byte aligned. The last

read() of a packet can be any length; all other read() calls must be a multiple of 8

bytes in length.

The application must validate the received packet because any source can send to

any destination. The application supplied buffer can be any length and start at any

byte offset. You can obtain a minor performance advantage in aligning the buffer to
48 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

a 32-byte (cache line) boundary for small packets and to a page boundary (usually

4096, 8192, or 16384 bytes) for large packets. Some host systems run faster by using

buffers that are a length that is a multiple of the cache-line.

The read() call blocks transmission until data is available in HIPPI-PH mode or

until data is available for the bound ULP in HIPPI-FP mode. The read() call

returns the number of bytes that have been read. The content of the data is

determined by the ioctl() calls that have been used to condition the read() call.

In combined-header-and-data mode (the default), the read() call passes the entire

packet, starting with the FP header. Because multiple read() calls can be used for a

packet, the FP header can be read with a read() call that is 8 bytes in length. The

FP header includes the D1 size and D2 size and is in Big Endian.

In separate-header-and-data mode, the read() call returns data from the D2 area.

The HIPIOCR_GET_FP ioctl() is used to retrieve the FP header. The entire packet

must be processed. When the data is not needed, the HIPIOCR_TRUNCATE_PKT
ioctl() can be used to discard the remainder of the packet. If data arrives, and if

there is no read() pending, the NIC controls the flow of the HIPPI network until

the data is read or the Receive-Idle-Timeout truncates the packet.

In HIPPI-FP mode, packets to unbound ULPs are discarded. When a packet of

unknown length is being received, use the HIPIOCR_PKT_OFFSET ioctl() to

detect the end of the packet. If an EIO error occurs, the HIPIOCR_ERRS ioctl()
can be used to get more detailed information.

Usage

#include <unistd.h>

int fd_hippi, len;

char buf[BUF_SIZE];

len = read(fd_hippi, buf, BUF_SIZE);

Arguments

The following arguments are supported by the read() and readv() calls:

■ fd_hippi – The file descriptor of a CDI special file that is open

■ buf – The user-space buffer that will receive the data

■ BUF_SIZE – The size of the buffer

■ len – The actual number of bytes that were read (-1 if an error occurred)
Chapter 5 CDI Reference 49

Failures and Errors

The following lists explains the failures and errors that can occur:

■ ENODEV– The NIC is stopped.

■ EINVAL – The read of a sub-device returned zero (0).

■ EINVAL – An invalid minor number was specified.

■ EINVAL – The device was not open for O_RDONLYor O_RDWR.
■ EINVAL – The HIPPI-PH mode and length was not a multiple of 8 bytes in length

and greater than zero (0).

■ EIO – A data reception error occurred (use HIPIOCR_ERRSfor more details).

■ EIO – A process was killed (^C).

select() Call

The select() call enables the application to determine if data is waiting to be read

or if the transmit queue is empty for write() (see the select() man page for

more details).

The select() for read() completes when a packet is available to be read. When

multiple processes are waiting for the same ULP, the process that has been waiting

the longest will complete. The others will continue to wait.

The select() for write() completes when the send queue is free. If multiple

processes are waiting for the same ULP, the process that has been waiting the longest

completes. The other processes continue to wait.

The FD_SET() macro in sys/select.h can be used to set the file descriptor bits in

readfds and writefds . HIPPI file descriptors can be intermixed with other file

descriptors (for example, files and sockets).

The details of calling select() are specific to the host system. The following is

OSF1.

Usage

#include <sys/types.h>

#include <sys/time.h>

#include <sys/select.h>

int fds, fd_hippi, width;

struct timeval timeout;

fd_set readfds, writefds;
50 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

FD_ZERO(&writefds);

FD_SET(fd_hippi, &writefds);

FD_ZERO(&readfds);

FD_SET(fd_hippi, &readfds);

width = fd_hippi + 1;

timeout.tv_sec = 1;

timeout.tv_usec = 0;

fds = select(width, &readfds, &writefds, NULL, &timeout);

Arguments

The following arguments are supported:

■ width – The maximum number of descriptors to check (the highest file descriptor

is +1)

■ readfds – The FD_SETthat refers to all of the file descriptors that check for

available data

■ writefds – The FD_SETthat refers to all of the file descriptors that check to see

if the transmit queue is empty

■ timeout – The timeout value for select() (if conditions do not change during

this time, select() returns zero)

■ fds – The number of file descriptors that are ready to be processed

Failures and Errors

The select() call has no special failures or errors.

write() and writev() Calls

The write() , and writev() , call is used to write data to the HIPPI device (see the

write() man page for more details on general operation). The write() call accepts

a single buffer, and the writev() call accepts a vector of buffers. The supplied

buffers must be 8-byte aligned. The last write() of a packet can be any length; all

other write() calls must be a multiple of 8 bytes in length. A minor performance

advantage can be achieved by aligning the buffer to a 32-byte (cache line) boundary

for small packets and to a page boundary (usually 4096, 8192, or 16384 bytes) for

large packets. Another minor performance advantage can be achieved by making

buffers a multiple of the cache-line size.
Chapter 5 CDI Reference 51

Generally, the write() , and writev() , call writes the data immediately to the

device and then returns its status. However, there are cases where internal states,

such as network flow control and long transfers from other applications, can cause

the write() call to block the transmission. The write() call does not return an exit

status until the data is written or an error has occurred.

The write() call’s operation is based on the ioctl() calls that have been used to

condition packet transmission. The packet length is the length of the write() call

unless the HIPIOCW_START_PKT ioctl() is used to specify a length. If the

application attempts to send too much data, the write() call returns the actual

number of bytes that were sent (the extra data is not sent). The packet remains open

until all of the expected data is sent.

In HIPPI-FP mode (when D2SIZE_UNKNOWNpacket length is specified), or in HIPPI-

PH mode, the HIPIOCW_END_PKT ioctl() is used to terminate the packet. Also,

every write() call for the packet must be a multiple of 8 bytes in length. In HIPPI-

PH mode, the length of the write() call must be greater than zero (0) and a

multiple of 4 bytes.

When a short, first burst is used, the application must write bursts that are a

multiple of 1024-bytes in length for the remainder of the packet. This requirement

exists because a packet can have only one short burst. Fill bytes at the end of the D2

area are undefined; they are not zero (0).

The Transmit-Idle-Timeout is active from the start of the first write() call of a

connection until the connection is closed. If the timeout is exceeded, the packet is

truncated; the connection is dropped, and EIO is returned. When EIO is returned,

you can use HIPIOCW_ERRto get more details.

Usage

#include <unistd.h>

int fd_hippi, len;

char buf[BUF_SIZE];

len = write(fd_hippi, buf, BUF_SIZE);

Arguments

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI special file that is open

■ buf – The user-space buffer that will receive the data
52 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

■ BUF_SIZE – The size of the buffer in bytes

■ len – The actual number of bytes that were written (-1 if an error occurred)

Failures and Errors

The following list explains the failures and errors that can occur:

■ ENODEV– The NIC is stopped.

■ EINVAL – The write() call to a sub-device returned zero (0).

■ EINVAL – An invalid minor number was specified.

■ EINVAL – The device was not open for O_WRONLYor O_RDWR.
■ EINVAL – The HIPPI-PH mode and length is not a multiple of 4 bytes and is not

greater than zero (0).

■ EIO – A data reception error occurred (use HIPIOCW_ERRfor more details).

■ EIO – The process was killed (^C).

Ioctls

The ioctl() calls in this section are used to control the CDI.

HIPIOC_BIND_ULP Call

This ioctl() is used to bind a receive ULP to the transfer device. A ULP must be

bound to the transfer device before packets can be read. Multiple devices can be

bound to the same ULP. The device file must be open for O_RDONLYor O_RDWR. In

addition, the NIC must be running in HIPPI-FP mode. Packets that arrive for a ULP

before the ULP is bound are discarded.

A ULP may be bound for exclusive use of the process. Alternatively, the ULP may be

bound to more than one transfer device. A positive ULP_id requests an exclusive

bind, and a negative ULP_id permits sharing the bound ULP with other

applications. There can be only one ULP bound to a transfer device at a time, and a

transfer device can accept packets to a single ULP.

ULPs in the range of 128 to 255 may be bound by any application program. ULPs 2,

3, 4, 6, 7, 8, and 10 are reserved by the HIPPI-FP standard for specific purposes and

can not be bound by a user or root application. The remaining ULPs in the range of

0 to 127 are reserved by the HIPPI-FP standard for future use. They may be bound to

applications that have root privilege.
Chapter 5 CDI Reference 53

When used with HIPPI-PH, the ULP_id value HIPPI_ULP_PH or

HIPPI_ULP_PH_EXCL(1) requests an exclusive bind; ULP_id HIPPI_ULP_PH_SHR
requests a non-exclusive bind.

If HIPIOCW_SET_ULPhas not been executed, the ULP can also be used as the

transmit ULP. A maximum of 31 different ULPs may be concurrently bound in FP

mode.

Usage

#include <ioctl.h>

int fd_hippi, ret, ULP_id;

ret = ioctl(fd_hippi, HIPIOC_BIND_ULP, ULP_id);

Arguments

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

■ ULP_id – The ULP that is being bound (When the ULP_id is greater than zero

(0), the bind is exclusive. No other devices can be concurrently bound. When the

ULP_id is less than zero (0), the bind is not exclusive, so other devices may be

bound.)

Failures and Errors

The following list explains the failures and errors that can occur:

■ EINVAL – The ULP_id is greater than 255.

■ EPERM– The ULP_id is less than 128 and is not superuser.

■ EPERM– The ULP is reserved and defined (2, 3, 4, 6, 7, 8, 10).

■ EINVAL – The ULP is already bound to this device.

■ EBUSY– The ULP is already bound to another device and an exclusive bind is

requested.

■ ENODEV– The NIC is not running.

■ EINVAL – The device was not open for O_RDONLYor O_RDWR.
■ EINVAL – The fd_hippi argument is a control device (sub-device zero).

■ EINVAL – The NIC is in HIPPI-PH mode, and the ULP is not HIPPI_ULP_PH ,

HIPPI_ULP_PH_EXCL, or HIPPI_ULP_PH_SHR.

■ EINVAL – The maximum number of ULPs are already bound.
54 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

HIPIOC_GET_DEVCall

This ioctl() is not called directly by the application. It is called by the

HIP_APP_OPEN() macro. The ioctl() returns the name of an unused transfer

device that can be opened by the application. However, the application must be

prepared to retry the call because the transfer device can be opened by another

application before the first application transmits the open() call.

Usage

#include <ioctl.h>

int fd_hippi, ret, device;

ret = ioctl(fd_hippi, HIPIOC_GET_DEV, &device);

Arguments

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

■ device – The device number that was returned

Failures and Errors

The following list explains the failures and errors that can occur:

■ EINVAL – The fd_hippi descriptor is not an open control device.

■ EBUSY– No devices are free.

■ ENODEV– The NIC is not running.

HIPIOC_GET_DEVICE_STATECall

This ioctl() returns the operating mode bits for the NIC.

Usage

#include <ioctl.h>

int fd_hippi, ret, status;
Chapter 5 CDI Reference 55

ret = ioctl(fd_hippi, HIPIOCR_GET_DEVICE_STATE, &status);

Arguments

The following arguments are supported by the HIPIOCR_GET_DEVICE_STATEcall:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

■ status – The operating mode of the device

The following list explains the possible operating modes:

■ HIP_ON (0x01) – State of the NIC (running or stopped)

■ HIP_LONG(0x02) – Long packets (or short packets—64 kilobytes)

■ HIP_PH (0x04) – HIPPI-PH mode (or HIPPI-FP mode)

■ HIP_LOOPBACK(0x08) – Internal loop-back mode (or network mode)

■ HIP_DIRECT (0x10) – Direct connect mode (or switched mode)

Failures and Errors

If ret is -1 , the following error occurred in processing the ioctl() . In this case

err_status does not contain valid data.

■ ENODEV– The NIC is not running, and this is not the controlling device.

HIPIOC_GET_NICS Call

This ioctl() returns the number of NICs in the configuration.

Usage

#include <essioctl.h>

int fd_hippi, ret, nics;

ret = ioctl(fd_hippi, HIPIOCR_GET_NICS, &nics);

Arguments

The following arguments are supported:
56 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

■ fd_hippi – The file descriptor of any open CDI control device or CDI transfer

device

■ nics – The number of NICs in the configuration

Failures and Errors

The HIPIOCR_GET_NICS() call has no special failures or errors.

HIPIOC_UNBIND_ULP Call

This ioctl() is used to unbind the currently bound receive ULP. There may be

multiple devices bound to the same ULP. When the last device is unbound, the ULP

is considered unbound, and future packets to the ULP are discarded by the NIC. The

transfer device must be open for O_RDONLYor O_RDWR.

HIPIOC_UNBIND_ULP cannot be executed while the process is receiving a packet

(for instance, if the process is between reads of a multiple-read packet.)

When hippi off is executed, all ULPs are unbound. When close() is executed,

the ULP is unbound.

Usage

#include <ioctl.h>

int fd_hippi, ret;

ret = ioctl(fd_hippi, HIPIOC_UNBIND_ULP);

Argument

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

Failures and Errors

The following list explains the failures and errors that can occur:

■ EINVAL – The ULP is not bound to this device.

■ ENODEV– The NIC not running.
Chapter 5 CDI Reference 57

■ EINVAL – The device is not open for O_RDONLYor O_RDWR.
■ EINVAL – fd_hippi is a controlling device (sub-device 0).

HIPIOCR_EIO Call

This ioctl() sets the receive error processing mode. When the argument is zero (0),

the default, a read() error results in the read() call returning -1 and errno being

set to EIO . This results in the loss of whatever data had been received up to the

error. When the argument is not zero (0), EIO is never returned, and all of the data

that is available in the NIC is passed to the application. In this mode, the application

must call HIPIOCR_ERRSafter each read() call to determine the read()
completion code.

Usage

#include <ioctl.h>

int fd_hippi, ret, mode;

ret = ioctl(fd_hippi, HIPIOCR_EIO, mode);

Arguments

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

■ mode – Mode setting that determines processing when data errors occur (When

mode is zero (0), EIO is generated if a data error occurs. When mode is not zero,

EIO is not generated if a data error occurs.)

Failures and Errors

The following list explains the failures and errors that can occur:

■ ENODEV– The NIC not running.

■ EINVAL – The device is not open for O_RDONLYor O_RDWR.
■ EINVAL – fd_hippi is a controlling device (sub-device 0).
58 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

HIPIOCR_ERRSCall

This ioctl() can be called after a read() call to provide detailed information

about an EIO error from the most recent read() call.

Usage

#include <ioctl.h>

int fd_hippi, ret, err_status;

ret = ioctl(fd_hippi, HIPIOCR_ERRS, &err_status);

Arguments

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

■ err_status – The result of the last read() call (Multiple bits can be set. A value

of zero (0) indicates that no error occurred.)

The following list contains the possible err_status values:

■ HIP_DSTERR_PARITY(0x001) – Destination parity error

■ HIP_DSTERR_LLRC(0x002) – Destination LLRC error

■ HIP_DSTERR_FRAME(0x004) – Frame error (Glink)

■ HIP_DSTERR_SYNC(0x008) – Flag sync error (Glink)

■ HIP_DSTERR_ILBURST(0x010) – Destination illegal burst error

■ HIP_DSTERR_SDIC(0x020) – State error

■ HIP_DSTERR_SHBST(0x040) – Unexpected short burst

■ HIP_DSTERR_RDY(0x080) – Lost Link ready (Glink)

■ HIP_DSTERR_RXTO(0x100) – Receive timeout

■ HIP_DSTERR_PKTLEN(0x200) – Packet length error

Failures and Errors

The following list contains the failures and errors that can occur:

■ The ioctl() returned zero (0) when an EIO error has not occurred in the current

packet.

If ret is -1 , one of the following errors occurred in processing the ioctl() . In this

case err_status does not contain valid data.

■ EINVAL – fd_hippi is a controlling device.
Chapter 5 CDI Reference 59

■ EINVAL – fd_hippi is not bound to a ULP.

■ EINVAL – fd_hippi is not open for O_RDONLYor O_RDWR.
■ ENODEV– The NIC is not running.

HIPIOCR_GET_D1Call

This ioctl() returns the D1 area from the most recently received packet. The NIC

must be in HIPPI-FP mode. The device must be in receive-separate-header mode,

HIPIOCR_SEP_HDR. The size of the D1 area in the FP header is used to control the

transfer. The application should provide a 1016-byte buffer for the D1 area

(maximum size). The FP header must be read first. HIPIOCR_GET_D1cannot be

called after a read() call.

Usage

#include <ioctl.h>

int fd_hippi, ret;

char buf[1016];

ret = ioctl(fd_hippi, HIPIOCR_GET_D1, buf);

Arguments

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

■ buf – The buffer that will receive the D1 area

Failures and Errors

The following list contains the failures and errors that can occur:

■ EINVAL – fd_hippi is a controlling device.

■ EINVAL – fd_hippi is not open for O_RDONLYor O_RDWR.
■ EINVAL – The ULP is not bound.

■ EINVAL – The system is not in HIPPI-FP mode.

■ ENODEV– The NIC is not running.
60 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

HIPIOCR_GET_FPCall

This ioctl() returns the FP header from the most recently received packet. The

header is in Big Endian order. The NIC must be in HIPPI-FP mode.

The device must be in receive-separate-header mode (HIPIOCR_SEP_HDR). The

application should provide an 8-byte buffer for the FP header. The returned FP

header is in Big Endian.

When called, HIPIOCR_GET_FPmust be called before a read() call. This ioctl()
blocks transmission until a packet arrives for the bound ULP.

Usage

#include <ioctl.h>

int fd_hippi, ret;

unsigned int fp[2];

ret = ioctl(fd_hippi, HIPIOCR_GET_FP, fp);

Arguments

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

■ fp – The buffer that will receive the FP header

Failures and Errors

The following list contains the failures and errors that can occur:

■ EINVAL – fd_hippi is a controlling device.

■ EINVAL – fd_hippi is not open for O_RDONLYor O_RDWR.
■ EINVAL – The ULP is not bound.

■ EINVAL – The network is not in HIPPI-FP mode.

■ ENODEV– The NIC is not running.
Chapter 5 CDI Reference 61

HIPIOCR_PKT_OFFSETCall

This ioctl() monitors the number of bytes that have been read for the packet. In

separate-headers-and-data mode, it contains the number of D2 bytes that have been

read. In combined-headers-and-data mode, it contains the total number of bytes that

have been read. When the whole packet has been read, zero (0) is returned,

indicating the start of a new packet.

The maximum count that is recorded is MAX_PKT_OFFSETbytes. After that, the

counter does not increment, even if the packet is longer. The file must be open for

O_RDONLYor O_RDWR, and a ULP must be bound.

Usage

#include <ioctl.h>

int fd_hippi, ret;

unsigned int offset;

ret = ioctl(fd_hippi, HIPIOCR_PKT_OFFSET, &offset);

Arguments

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

■ offset – The byte offset into the packet (The maximum reported value is

MAX_PKT_OFFSETbytes. If the packet is longer than MAX_PKT_OFFSET, the

counter stops advancing. When the whole packet has been read, the offset is

zero).

Failures and Errors

The following list contains the failures and errors that can occur:

■ EINVAL – fd_hippi is a controlling device.

■ EINVAL – fd_hippi is not bound to a ULP.

■ EINVAL – fd_hippi is not open for O_RDONLYor O_RDWR.
■ ENODEV– The NIC is not running.
62 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

HIPIOCR_SEP_HDRCall

This ioctl() sets the operating mode to use separate-headers-and-data mode or to

use combined-headers-and-data (the default) for the transfer device. This is effective

in HIPPI-FP mode only.

In separate-header-and-data mode, the FP header is read by using the

HIPIOCR_GET_FP ioctl() , and the D1 area is read by using the HIPIOCR_GET_D1
ioctl() . In combined-header-and-data mode, the application buffer contains the

complete packet, the FP header, the D1 area (optional), and the D2 area (optional).

Usage

#include <ioctl.h>

int fd_hippi, ret, mode;

ret = ioctl(fd_hippi, HIPIOCR_SEP_HDR, mode);

Arguments

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

■ mode – The operating mode (When it is zero (0), the separate-header-and-data

mode is being used. When it is not zero (0), the combined-header-and-data mode

is being used—the default.

Failures and Errors

The following list contains the failures and errors that can occur:

■ EINVAL – fd_hippi is a controlling device.

■ EINVAL – fd_hippi is not open for O_RDONLYor O_RDWR.
■ ENODEV– The NIC is not running.

■ EINVAL – The NIC is in HIPPI-PH mode.
Chapter 5 CDI Reference 63

HIPIOCR_TRUNCATE_PKTCall

This ioctl() discards the remainder of the current receive packet. The file must be

open for O_RDONLYor O_RDWR, and a ULP must be bound. If a packet is not present,

zero (0) is returned.

Usage

#include <ioctl.h>

int fd_hippi, ret;

ret = ioctl(fd_hippi, HIPIOCR_TRUNCATE_PKT);

Arguments

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

Failures and Errors

The following list contains the failures and errors that can occur:

■ EINVAL – fd_hippi is a controlling device.

■ EINVAL – fd_hippi is not bound to a ULP.

■ EINVAL – fd_hippi is not open for O_RDONLYor O_RDWR.
■ ENODEV– The NIC is not running.

HIPIOCW_CONNECTCall

This ioctl() , and HIPIOCW_I , sets the I-Field in the cache. The I-Field is cached in

the CDI and is used with every packet that is sent until it is changed again.

HIPIOCW_I cannot be called while a multiple-packet connection is open. The default

I-Field is zero (0). Note that when you are using a single-packet connection, you

must use HIPIOCW_I to set the I-Field.

This ioctl() causes a multiple-packet connection to be established when the next

write() call is executed. The argument is the I-Field, which is placed in the CDI

cache. The application must ensure that the I-Field is in Big Endian byte order (Little

Endian machines will likely have to byte swap the I-Field).
64 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

The connection remains open, and the send lock is held until HIPIOCW_DISCONNis

executed, an error occurs, or the transfer device is closed.

The file must be open for O_WRONLYor O_RDWR. The Transmit-Idle-Timeout is in

effect during this connection while sending packets and between successive packets.

This ioctl() cannot be called while a connection is open for the transfer device.

Usage

#include <ioctl.h>

int fd_hippi, ret;

unsigned int IField;

ret = ioctl(fd_hippi, HIPIOCW_CONNECT, IField);

Arguments

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

■ IField – The I-Field that is to be used with packets that are sent over the

connection

Failures and Errors

The following list contains the failures and errors that can occur:

■ EINVAL – fd_hippi is a controlling device.

■ EINVAL – fd_hippi is not open for O_WRONLYor O_RDWR.
■ EBUSY– Multiple-packet connection is already requested. The connection is not

established if the write() call has not been done.

■ EBUSY– A packet is currently being sent.

■ ENODEV– The NIC is not running.
Chapter 5 CDI Reference 65

HIPIOCW_D1_AREACall

This HIPPI-FP ioctl() copies the D1 area from the user buffer to the CDI’s D1

cache. The length is taken from the currently cached FP header. The ioctl() is

valid in HIPPI-FP mode only. To set the D1 area’s length, HIPIOCW_D1_SIZE must

be called before HIPIOCW_D1_AREA. The HIPIOCW_D1_SIZE ioctl() clears the

D1-area pointer that is currently cached.

Both HIPIOCR_D1_AREA ioctl() and HIPIOCR_D1_AREA_PTR ioctl() manage

the D1 area for a packet. The last ioctl() called is used on all subsequent packets

until it is changed. The ioctl() must not be called while a packet is being sent.

Usage

#include <ioctl.h>

int fd_hippi, ret;

char d1_buf[1016], d1_ptr = &d1_buf;

ret = ioctl(fd_hippi, HIPIOCW_D1_AREA, &d1_ptr);

Arguments

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

■ d1_buf – Pointer to the application-supplied, D1 buffer (NULL causes the cached

D1 image to be discarded, causing the D1 area to be set to zero.)

Failures and Errors

The following list contains the failures and errors that can occur:

■ EINVAL – fd_hippi is a controlling device.

■ EINVAL – fd_hippi is not open for O_WRONLYor O_RDWR.
■ EINVAL – D1 size is zero (0).

■ EBUSY– A packet is being sent.

■ EINVAL – The NIC is in HIPPI-PH mode.

■ ENODEV– The NIC is not running.
66 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

HIPIOCW_D1_AREA_PTRCall

This HIPPI-FP ioctl() caches a pointer to the application-supplied, D1-area buffer.

Whenever a packet is sent, the D1 area is copied to the CDI’s D1 cache and included

in the packet.

Both HIPIOCR_D1_AREA ioctl() and HIPIOCR_D1_AREA_PTR ioctl() manage

the D1 area for a packet. The last ioctl() called is used on all future packets until

it is changed. The size of the D1 area is set by using the HIPIOCW_D1_SIZE
ioctl() . When the write() call is executed, the D1 area is copied to the D1 cache

in the driver. The ioctl() must not be called while a packet is being sent.

Usage

#include <ioctl.h>

int fd_hippi, ret;

char d1_buf[1016], d1_ptr = &d1_buf;

ret = ioctl(fd_hippi, HIPIOCW_D1_AREA_PTR, &d1_ptr);

Arguments

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

■ d1_buf – Pointer to application supplied D1 buffer (NULL causes the cached D1

pointer to be discarded.)

Failures and Errors

The following list contains the failures and errors that can occur:

■ EINVAL – fd_hippi is a controlling device.

■ EINVAL – fd_hippi is not open for O_WRONLYor O_RDWR.
■ EINVAL – D1 size is zero (0).

■ EBUSY– A packet is being sent.

■ EINVAL – The NIC is in HIPPI-PH mode.

■ ENODEV– The NIC is not running.
Chapter 5 CDI Reference 67

HIPIOCW_D1_SIZE Call

This ioctl() is valid in HIPPI-FP mode only. It sets the size of the D1 area and,

when D1 is not zero (0), it also sets the HIPPI-FP P bit (see Appendix C “HIPPI-FP

Excerpts” for details about the HIPPI-FP header). The D1 area may be located in the

user buffer (default), cached in the driver by calling the HIPIOCW_D1_AREA
ioctl() , or maintained in a separate user-buffer by calling the

HIPIOCW_D1_AREA_PTR ioctl() . In all cases, the size of the D1 area is set by

HIPIOCW_D1_SIZE ioctl() . The D1 size must be a multiple of 8 bytes in length,

and it must be less than or equal to 1016 bytes.

The HIPIOCW_D1_AREA ioctl() must be called before HIPIOCW_D1_AREAor

HIPIOCW_D1_AREA_PTRis called. In addition, it must not be called while a packet is

being sent.

Usage

#include <ioctl.h>

int fd_hippi, ret, size;

ret = ioctl(fd_hippi, HIPIOCW_D1_SIZE, size);

Arguments

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

■ size – The size of the D1 area in bytes

Failures and Errors

■ EINVAL – fd_hippi is a controlling device.

■ EINVAL – fd_hippi is not open for O_WRONLYor O_RDWR.
■ EINVAL – The NIC is in HIPPI-PH mode.

■ EBUSY– A packet is being sent.

■ EINVAL – The size is invalid.

■ ENODEV– The NIC is not running.
68 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

HIPIOCW_DISCONNCall

This ioctl() disconnects a connection that was opened by HIPIOCW_CONNECT. The

disconnect happens immediately. If a packet is being transmitted, it is truncated. If

packets have not been sent, this ioctl() returns to one-packet-per-connection

mode.

Note – To terminate a packet without terminating the connection, use

HIPIOCW_END_PKT.

Usage

#include <ioctl.h>

int fd_hippi, ret;

ret = ioctl(fd_hippi, HIPIOCW_DISCONN);

Arguments

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

Failures and Errors

The following list contains the failures and errors that can occur:

■ EINVAL – fd_hippi is a controlling device.

■ EINVAL – fd_hippi is not open for O_WRONLYor O_RDWR.
■ EINVAL – There is no multiple-packet connection pending.

■ ENODEV– The NIC is not running.

HIPIOCW_END_PKTCall

This ioctl() terminates the current packet. It is usually used to terminate HIPPI-

PH packets and HIPPI-FP packets that have a D2 size of D2SIZE_UNKNOWN. When it

is used to prematurely terminate a HIPPI-FP packet that has a specified D2 size, it

causes the packet to have an invalid D2 size that appears to the destination as a

truncated packet. The device must be open for O_WRONLYor O_RDWR.
Chapter 5 CDI Reference 69

Usage

#include <ioctl.h>

int fd_hippi, ret;

ret = ioctl(fd_hippi, HIPIOCW_END_PKT);

Arguments

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

Failures and Errors

The following list contains the failures and errors that can occur:

■ EINVAL – fd_hippi is a controlling device.

■ EINVAL – fd_hippi is not open for O_WRONLYor O_RDWR.
■ EINVAL – A packet is not being sent.

■ ENODEV– The NIC is not running.

■ EIO – A packet was truncated.

HIPIOCW_ERRCall

This ioctl() returns the error status from the most recent write() call.

Usage

#include <ioctl.h>

int fd_hippi, ret, err_status;

ret = ioctl(fd_hippi, HIPIOCW_ERR, &err_status);

Arguments

The following arguments are supported:
70 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

■ fd_hippi – The file descriptor of a CDI transfer device that is open

■ err_status – The result of the last read()

The following list explains the values that appear in err_status :

■ HIP_SRCERR_NONE(0) – No error

■ HIP_SRCERR_SEQ(1) – HIPPI source-sequence error

■ HIP_SRCERR_DSIC(2) – Lost DSIC (source)

■ HIP_SRCERR_TIMEO(3) – Transmit time-out (source)

■ HIP_SRCERR_CONNLS(4) – CONNECT-signal loss (source)

■ HIP_SRCERR_RE(5) – Rejected connect request

■ HIP_SRCERR_SHUT(6) – Interface shut down

■ HIP_SRCERR_SW(7) – Unexpected driver failure

Failures and Errors

If ret is -1 , one of the following errors occurred in processing the ioctl() . In this

case err_status does not contain valid data.

The following list contains the failures and errors that can occur:

■ EINVAL – fd_hippi is a controlling device.

■ EINVAL – fd_hippi is not open for O_WRONLYor O_RDWR.
■ ENODEV– The NIC is not running.

HIPIOCW_I Call

This ioctl() , and HIPIOCW_CONNECT, sets the I-Field in the cache. The I-Field is

cached in the CDI and is used with every packet that is sent until it is changed

again.

The argument is the new I-Field. The application must ensure that the I-Field is in

Big Endian byte order (Little Endian machines will likely have to byte swap the I-

Field). The default I-Field is zero (0).

The file must be open for O_WRONLYor O_RDWR. The application must not be in the

process of sending a packet or have a multiple-packet connection active.

Note – If you are using a multiple-packet connection, use HIPIOCW_CONNECTto set

the I-Field.

Usage

#include <ioctl.h>
Chapter 5 CDI Reference 71

int fd_hippi, ret;

unsigned int IField;

ret = ioctl(fd_hippi, HIPIOCW_I, IField);

Arguments

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

■ IField – The I-Field that is to be placed in the CDI cache (IField must be in Big

Endian order.)

Failures and Errors

The following list contains the failures and errors that can occur:

■ EINVAL – fd_hippi is a controlling device.

■ EINVAL – fd_hippi is not open for O_WRONLYor O_RDWR.
■ ENODEV– The NIC is not running.

■ EBUSY– A packet is being sent.

■ EBUSY– Multiple-packet connection is active.

■ EINVAL – Multiple-packet connection is currently being used.

HIPIOCW_SEP_HDRCall

This ioctl() sets separate-header-and-data mode (default) or combined-headers-

and-data mode for the transfer device. This is effective in HIPPI-FP mode only. This

ioctl() must not be called while a packet is being sent.

In separate-header-and-data mode, the FP header is taken from the CDI FP header

cache. When the D1 size is not zero (0), the D1 header is placed in the packet. If the

CDI’s D1 cache contains a header (HIPIOCW_D1_AREAhas been called), the header

is included in the packet. Alternatively, the D1 area can be in an application buffer,

and HIPIOCW_D1_AREA_PTRcan be called to cache the pointer in the CDI.

In combined-header-and-data mode, the application buffer contains the complete

packet, and the driver header cache is cleared. The application-supplied buffers

contain the FP header, the D1 area (optional), and the D2 area (optional). The

application must ensure that the FP header is in Big Endian order. The driver

validates the ULP field in the FP header. The RunCode does more extensive analysis

and can cause the operation to fail.
72 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

Usage

#include <ioctl.h>

int fd_hippi, ret, mode;

ret = ioctl(fd_hippi, HIPIOCW_SEP_HDR, mode);

Arguments

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

■ mode – Header mode

Failures and Errors

The following list contains the failures and errors that can occur:

■ EINVAL – fd_hippi is a controlling device.

■ EINVAL – fd_hippi is not open for O_WRONLYor O_RDWR.
■ EINVAL – The NIC is in HIPPI-PH mode.

■ EBUSY– A packet is being sent.

■ ENODEV– The NIC is not running.

HIPIOCW_SET_ULPCall

This ioctl() sets the ULP in the cached, FP header for the device. The value is

used in successive packets until it is changed by another call to HIPIOCW_SET_ULP.
This ioctl() is valid only in HIPPI-FP mode. If HIPIOC_BIND_ULP is called before

HIPIOCW_SET_ULP, the bound ULP will be placed in the FP header cache.

The device file must be open for O_WRONLYor O_RDWR, and the NIC must be

running in HIPPI-FP mode. In addition, the CDI must not be actively sending a

packet, and it must be in separate-header-and-data mode for write() calls.

ULPs in the range of 128 to 255 can be bound by any application program. ULPs 2,

3, 4, 6, 7, 8, and 10 are reserved for specific purposes and can not be bound by a user

application. The remaining ULPs in the range of 0 to 127 are reserved for future use.

They can be bound to applications that have root privilege.
Chapter 5 CDI Reference 73

Usage

#include <ioctl.h>

int fd_hippi, ret, ULP_id;

ret = ioctl(fd_hippi, HIPIOC_SET_ULP, ULP_id);

Arguments

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

■ ULP_id – The ULP that is being set

Failures and Errors

The following list contains the failures and errors that can occur:

■ EINVAL – The NIC is not in separate-header-and-data mode.

■ EBUSY– A packet is being sent.

■ EINVAL – The ULP is reserved.

■ EINVAL – The ULP ID is greater than 255.

■ EPERM– The ULP ID is less than 128 and the application does not have superuser

privileges.

■ ENODEV– The NIC is not running.

■ EINVAL – The device is not open for O_WRONLYor O_RDWR.
■ EINVAL – fd_hippi is a controlling device.

■ EINVAL – The NIC is in HIPPI-PH mode.

HIPIOCW_SHBURSTCall

This ioctl() causes the first burst of the next packet that is sent to be the short

burst. The application must ensure that the remainder of the packet is a multiple of

1024 bytes in length. HIPIOCW_SHBURSTmust be called for every packet to be sent

with a short, first burst.

In HIPPI-FP mode, the short, first burst consists of the FP header and the D1 area as

set by a previous call to HIPIOCW_D1_SIZE. When the FP header and D1 area

occupy less than a burst, the B-bit is set, and the short, first burst is sent. Otherwise,

the standard, first burst is sent. The D2 size must be a multiple of 1024 bytes in

length or D2SIZE_UNKNOWN. The byte_count is ignored.
74 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

The byte_count must be a multiple of eight in the range 0 through 1024, inclusive.

The first write must be long enough to send the short, first burst. In HIPPI-PH mode,

the byte_count is the length of the short, first burst. A byte_count of zero (0)

causes a standard, first burst (1024 byte) to be used and cancels the previous call to

HIPIOCW_SHBURST.

A short, first burst is occasionally required by the destination hardware. The Sun

NICs do not require the use of a short, first burst.

Usage

#include <ioctl.h>

int fd_hippi, ret;

int byte_count;

ret = ioctl(fd_hippi, HIPIOCW_SHBURST, byte_count);

Arguments

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

■ byte_count – The length of the short, first burst

Failures and Errors

The following list contains the failures and errors that can occur:

■ EINVAL – fd_hippi is a controlling device.

■ EINVAL – An invalid byte_count is specified.

■ EINVAL – fd_hippi is not open for O_WRONLYor O_RDWR.
■ ENODEV– The NIC is not running.

HIPIOCW_START_PKTCall

This ioctl() is used to specify the length of a packet that will be sent with multiple

write() calls. If HIPIOCW_START_PKTis not called before the first write() call of

a packet, the packet is formed from a single write() call.
Chapter 5 CDI Reference 75

The byte_count is interpreted differently in different situations. In HIPPI-FP mode,

when separate-headers-and-data mode is used, the byte_count is the length of the

D2 area. In HIPPI-FP mode, when combined-header-and-data mode is used, the

byte_count is the length of the entire packet.

When D2SIZE_UNKNOWNis used, the packet length is not limited.

HIPIOCW_END_PKTmust be used to terminate a packet of unknown length.

Usage

#include <ioctl.h>

int fd_hippi, ret;

int byte_count;

ret = ioctl(fd_hippi, HIPIOCW_START_PKT, byte_count);

Arguments

The following arguments are supported:

■ fd_hippi – The file descriptor of a CDI transfer device that is open

■ byte_count – The length of the short, first burst

Failures and Errors

The following list contains the failures and errors that can occur:

■ EINVAL – fd_hippi is a controlling device.

■ EINVAL – An invalid byte_count is specified.

■ EINVAL – fd_hippi is not open for O_WRONLYor O_RDWR.
■ EINVAL – A multiple-write packet is already being processed.

■ ENODEV– The NIC is not running.
76 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

6

Troubleshooting

Problems could arise in communicating when you are using HIPPI. This chapter

outlines some techniques that are helpful in isolating the problems.

The CDI contains two utilities, blast(1M) and sink(1M) , that can be used to

verify the ability to send and receive packets. The blast(1M) utility sends packets,

and the sink(1M) utility receives packets (see the man pages for more details).

NIC Installation and Operation

The installation can be verified by placing the NIC in internal loopback mode and

passing some HIPPI packets. Internal loopback mode uses the entire NIC except the

optical interface module. Sent packets are electrically looped back to the receive

electronics. You must have superuser access to run these utilities.

▼ To Test the Installation and Operation of the

NIC

1. Log into the host as superuser.

2. Turn HIPPI off.

This step turns off RunCode.

/etc/opt/SUNWconn/hippi/bin/hippi off
Chapter 6 Troubleshooting 77

Note – You should be aware that the command in the example above is not the

same as the hippi start /stop script that exists in the /etc/initd directory.

3. Unplumb the HIPPI interface.

This step is needed only if you have configured the NIC for network use. If you are

unsure if the interface is configured, you can use the ifconfig hipip0 command

to check the interface’s current state.

4. Place the NIC into the internal loopback mode.

5. Set up the NIC to receive packets.

The sink(1M) command sets up the NIC to receive ten default packets (4 kilobytes

in length) in the background.

6. Send the packets.

The blast(1M) command sends the ten packets. The blast(1M) command and the

background job for the sink(1M) command should complete successfully.

7. Check the status of the jobs.

The status argument should report that ten packets have been sent from the source

and received by the destination. You should not encounter any errors.

If the above test fails, either the installation failed or the NIC is defective. In either

case, contact your Sun Service representative for assistance.

ifconfig hipip0 down

hippi on loopback

sink -n 10 &

blast -n 10

hippi status
78 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

Optical Modules and Cables

HIPPI packets are passed over an optical cable that directly connects two HIPPI

interfaces. There are two types of optical interfaces: multi-mode (short wavelength)

and single-mode (long wavelength). Multi-mode is the most common. It supports

cable runs of a few hundred meters. Single-mode is less common. It supports cable

runs of several kilometers or more. The optical modules at both ends of the cable

must be the same type, and the optical cable must be the correct type for the optical

modules.

The optical surfaces at the ends of the cables and in the optical modules must remain

clean; otherwise, erratic behavior can result from surface contamination.

Optical Connections

An optical cable connects two HIPPI interfaces, which can be one of the following

items:

■ A HIPPI NIC and a HIPPI switch port

■ Two HIPPI NICs

■ Two switch ports

Alternatively, both connectors of a HIPPI interface can be directly connected with a

loop-back cable. A loop-back cable has a single connector at each end (it is usually

half of an optical cable as described above).

Each HIPPI interface has two connectors: a transmitter and a receiver. In all cases, a

transmitter must be connected to a receiver. When two HIPPI interfaces, A and B, are

connected, the transmitter of A is connected to the receiver of B, and the transmitter

of B is connected to the receiver of A.

When correctly connected, the bulkhead link-LED of each HIPPI interface will be on.

When HIPPI NICs are connected, the RunCode must be running for the LED to

show the proper state. When two switch ports are connected together, the link LEDs

on both must illuminate.

▼ To Turn On RunCode and Check the Status

1. Log in to the host as superuser.
Chapter 6 Troubleshooting 79

2. Turn on RunCode and set the NIC to communicate over the optical cable.

3. Check the status of the NIC.

This command returns the state of the RunCode (on or off) and the state of the link

(on or off). If the link is unexpectedly off, reverse the connectors at one end of the

cable, and retry the hippi status command.

Optical Loopback Test

The optics module of the NIC may be tested by using a loop-back cable. Use the

loop-back cable to connect both connectors on the NIC. When the optical loop-back

test passes, the NIC is installed and operating properly.

▼ To Set Up the Loop-Back Test

1. Log in to the host as superuser.

2. Turn off RunCode.

3. Use ifconfig(1M) to unplumb the network if needed.

Use this command only if the NIC as been configured for network use.

4. Configure the NIC to use the optics module.

hippi on network switched

hippi status

hippi off

ifconfig hipip0 down

hippi on network switched
80 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

5. Set up the NIC to receive ten default packets (4 kilobytes) in the background.

6. Set up the NIC to send the ten packets.

7. Check the status of the sink(1M) and blast(1M) commands.

The blast(1M) and the background job for sink(1M) should complete

successfully before you perform the next step.

The hippi status command should report that ten packets have been sent to the

source and that ten packets have been received by the destination. No errors should

occur.

If these commands fail, the optics module on the NIC is defective. Contact your Sun

Service representative if the NIC is defective.

Optical Loop-Back Through a Switch

Connect a NIC to a HIPPI switch port as described above. Determine the port

number and logical address of the port (the switch administrator should provide the

needed information). Assume that the physical port is 0xA and that the port has a

logical address of 0x223 . Verify that the HIPPI interfaces are properly connected as

described above.

▼ To Set Up Optical Loop-Back Through a Switch

1. Log in to the host as superuser.

2. Turn off RunCode.

sink -n 10 &

blast -n 10

hippi status

hippi off
Chapter 6 Troubleshooting 81

3. Unplumb the network if needed.

Use this command only if the NIC as been configured for network use.

4. Configure the NIC to use the optics module.

5. Set up the NIC to receive twenty default packets (four kilobytes each) in the
background.

6. Set up the NIC to send the ten packets, using source routing (with CampON).

The packets are sent to the address of the NIC (packets are looped back through the

switch to the NIC). The background blast(1M) job should complete successfully

when the ten packets have been sent.

Note – The value of the I-Field depends on the configuration of the NIC and takes

the form I0x07000223 . Refer to Appendix B “HIPPI-SC Excerpts” for more

information on how to determine the value of the I-Field.

7. Set up the NIC to send ten packets, using the destination routing (logical address
with CampON).

The packets are sent to the address of the NIC (packets are looped back through the

switch to the NIC). Both background jobs should complete successfully when the ten

packets have been sent.

ifconfig hipip0 down

hippi on network switched

sink -n 20 &

blast -n 10 - I-Field

blast -n 10 - I-Field
82 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

Note – The value of the I-Field depends on the configuration of the NIC and takes

the form I0x07000223 . Refer to Appendix B “HIPPI-SC Excerpts” for more

information on how to determine the value of the I-Field.

8. Check the status of the NIC:

The status(1M) command should report that twenty packets have been sent by the

source and that twenty packets have been received by the destination. No errors

should occur during this procedure. If this procedure fails, the switch is improperly

configured.

Optical Testing Between NICs

The NICs may be connected through a switch or directly connected. The following

test ensures that each NIC can send packets to the other NIC. For various reasons it

is possible for NIC A to send packets to NIC B while NIC B cannot send packets to

NIC A.

For the following example, assume NIC A is in port 3 at logical address 0x143 and

NIC B is in port 8 at logical address 0x846 . When using a switch, test both the

source route and the logical addresses. With directly connected NICs, the switch I-

Field is not needed and can be omitted.

Before you perform the following procedure, verify that the HIPPI interfaces are

properly connected as described in “Optical Connections” on page 79.

▼ To Test the Optical Connection Between NICs

1. On NIC A, perform the following substeps:

a. Log in to the host as superuser.

b. Turn off RunCode.

hippi status

hippi off
Chapter 6 Troubleshooting 83

c. Unplumb the network if needed.

d. Configure the NIC to use the optical module.

e. Set up the NIC to receive twenty packets in the background.

You should wait for the background jobs to complete successfully before you

perform the next substep.

f. Check the status of the packets.

The hippi status command should report that twenty packets have been

received by the destination.

2. On NIC B, perform the following substeps:

a. Log in to the host as superuser.

b. Turn off RunCode.

c. Unplumb the NIC if needed.

d. Configure the NIC to use the optical module.

ifconfig hipip0 down

hippi on network switched

sink -n 20 &

hippi status

hippi off

ifconfig hipip0 down

hippi on network switched
84 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

e. Set up the NIC to send ten packets, using source routing (with CampON).

The packets are sent to the address of the NIC (packets are looped back through

the switch to the NIC). The blast(1M) job should complete successfully when all

ten packets have been sent.

Note – The value of the I-Field depends on the configuration of the NIC and takes

the form I0x07000223 . Refer to Appendix B “HIPPI-SC Excerpts” for more

information on how to determine the value of the I-Field.

f. Set up the NIC to send ten packets, using destination routing (logical address
with CampON).

The packets are sent to the address of the NIC (packets are looped back through

the switch to the NIC). The blast(1M) job should complete successfully when all

ten packets have been sent. You should wait for the background jobs to complete

before you perform the following substep.

Note – The value of the I-Field depends on the configuration of the NIC and takes

the form I0x07000223 . Refer to Appendix B “HIPPI-SC Excerpts” for more

information on how to determine the value of the I-Field.

g. Check the status of the packets.

The hippi status command should report that twenty packets have been sent

by the source. No errors should occur during this procedure.

If the above procedure fails, the switch is improperly configured. If the above

procedure fails with directly connected NICs, contact your Sun Service

representative for assistance. If this procedure passes, the NICs and switch ports

are properly configured.

blast -n 10 - I-Field

blast -n 10 - I-Field

hippi status
Chapter 6 Troubleshooting 85

Long Packets Between NICs

The default operation of the driver is to limit packet size to 64 kilobytes, as

suggested by the network standards. When the CDI is used with applications that

require larger packet sizes, the NIC can be configured to allow longer packets to be

sent.

If you configure the NIC to permit longer packets, the NIC allows long packets to be

sent as long as the host is running. When the host is rebooted, the operating mode

reverts to parameters that are set in the EEPROM on the NIC.

▼ To Set Up the NIC for Long Packets

1. Log in to the host as superuser.

2. Turn off RunCode.

3. Unplumb the NIC if needed.

4. Configure the NIC to use long packets.

5. Plumb the NIC if needed.

This procedure can be used when the host is running. When the host is rebooted, the

operating mode reverts to parameters that are set in the EEPROM on the NIC. You

can use the following procedure to change the EEPROM so that the NIC will

automatically come up in the desired mode when the host is booted.

hippi off

ifconfig hipip0 down

hippi on long

ifconfig hipip0 up
86 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

▼ To Change the EEPROM for Long Packets

1. Log in to the host as superuser.

2. Turn off RunCode.

3. Configure the NIC to allow long packets.

4. Turn off RunCode to access the EEPROM.

5. Write the current mode to the EEPROM.

6. Restart RunCode on the NIC.

hippi off

hippi on long

hippi off

hippitune -l -e

hippi on
Chapter 6 Troubleshooting 87

88 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

A

Special Files

The CDI supports multiple NICs in the host and multiple devices on each NIC.

Special files that may be opened to access the CDI are in /dev/hippi on the host

system. Each card has a controlling device and one or more transfer devices. The

controlling device is used by utilities and the application to manage the NIC. The

read() and write() calls are not supported and the controlling device can be

concurrently opened by more than one process. Transfer devices are opened for

exclusive access. They support the read() and write() calls.

One controlling-device special file and 31 transfer-device special files are created for

each NIC that is installed in the system. The control-device special file has sub-

device zero (0). The following list contains the naming conventions for special files:

■ hcard
■ hcard.sub-device

In these examples, card represents the card number (as determined during system

bootup) and is represented as decimal digits. The sub-device is used on all transfer

devices from 1 to 31, and it is also represented as decimal digits. The following list

contains examples of the conventions:

■ h0 – Control device for NIC 0

■ h0.1 – CDI transfer device 1 for NIC 0

■ h0.2 – CDI transfer device 2 for NIC 0

The installation process creates the control device file and the 31 transfer-device files

for each NIC. The essioctl.h header file defines NIC0 through NIC15.
Appendix A Special Files 89

90 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

B

HIPPI-SC Excerpts

The following information is excerpted from the HIPPI-SC specification; for more

information refer to the specification. When the HIPPI-SC option is set, the host

software must construct valid CCI fields (I-Fields) for proper send operation through

a HIPPI switch (see FIGURE B-1). The detailed settings must be determined after

analysis of the switch configuration.

FIGURE B-1 CCI and I-Field Format

The HIPPI-SC CCI field describes the CCI field (I-Field) as it appears on the HIPPI

media. In host memory and in the NIC, the CCI field is 8-bytes in length. This

permits the packet to be 8-byte-aligned in an 8-byte or larger buffer (which is

important for 64-bit CPUs). The first 4 bytes of the extended CCI contain zero (0).

The CCI is in Big Endian on the media. Little Endian hosts must byte swap. The

following list explains the next 4 bytes.

■ L (Locally administered bit 31) – L=0 designates that the I-Field is defined by the

standard. L=1 designates that rest of the bits (30 through 0) are locally defined

and are not defined by the standard.

■ VU(Vendor Unique bits 30 through 29) – The contents of these bits are not defined

by the standard. Switches pass these bits through to the destination.

■ W(Double Wide bit 28) – W=0designates that the source is using the 800-Mbit-per-

second data-rate option. The NIC requires that this bit be set to zero (0).

Routing Control

Word

07152431

byte 0 byte 1 byte 2 byte 3

PL V WD
0

U CS
Appendix B HIPPI-SC Excerpts 91

■ D (Direction bit 27) – D=0 designates that the right-hand end (least significant bits)

of the routing control field shall be the current sub-field. D=1 designates that the

left-hand end (most significant bits) of the routing control field shall be the

current sub-field.

■ PS (Path Selection (bits 26 and 25) – Used to select either (1) a source route (that

is, a specific route through the switches) with output-port numbers specified for

each switch, or (2) to specify the logical address.

■ PS=00 – Source routing (Source selects the route through the switches.)

■ PS=01 – Logical address (Switches select the first route from a list of possible

routes.)

■ PS=10 – Reserved

■ PS=11 – Logical address (Switches select a route.)

■ C (Camp-on bit 24) – C=0 specifies that the switch should reply with a connection-

rejected sequence if it is unable to complete the connection. C=1 specifies that the

switch should attempt to establish a connection until either the connection is

completed or the source aborts the connection request.

Note – The NIC requires that the W-bit be zero (0).

The HIPPI-SC standard reserves certain logical addresses for specially defined uses.

In general, logical addresses from 0xF90 through 0xFFF, inclusive, are reserved.
92 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

C

HIPPI-FP Excerpts

This appendix contains information that is excerpted from the HIPPI-FP

specification (for more information refer to the specification). When the HIPPI-FP

option is set, the host software must construct valid FP headers so that the packets

are sent properly through the NIC. The NIC uses the fields in this header to direct

processing. The detailed settings must be determined after analysis of processing

requirements.

The header is always in Big Endian on the media. Little Endian systems must

perform the needed byte swaps.

The packet data presented by the source ULP with an FP_TRANSFERrequest

primitive shall be transferred to the destination with a HIPPI-FP header, as shown in

the following figure.

HIPPI-FP Header

D2
Word

071523Bit 31

byte 0 byte 1 byte 2 byte 3

0Offset
D1_Area_SizeReservedBPULP-id

D2_Size
Header

D1_Data_Set resides in the D1_Area
Size of D1_Data_Set is self defining (0-1016)

Offset (0-7)

D1_Area

D2_data_set resides in the D2_Area

Fill (0-2047)

D2_Area
Appendix C HIPPI-FP Excerpts 93

The HIPPI-FP packets are composed of three areas: (1) the header, (2) the D1_Area,

and (3) the D2_Area. Each area starts and ends on a 64-bit boundary. If

D1_Data_Set is used as control information, the D2_Data_Set is intended as the

data associated with that control information.

Header

The header is the first 64 bits of the packet and should be completely contained in

the first burst. The following list explains the subareas within the header:

■ ULP-id (8-bits) – Designates the destination ULP to which the packet is to be

delivered. ULPs in the range of 0 to 128 are reserved by the HIPPI standards

organization. ULPs in the range of 128 through 255, inclusive, are available to the

application. The following ULPs are defined:

■ 00000010b - Memory interface

■ 00000011b - Memory interface initialization

■ 00000100b - ISO 8802.2 link encapsulation

■ 00000110b - IPI-3 slave

■ 00000111b - IPI-3 master

■ 1xxxxxxxb - Locally assigned

■ P (D1_Data_Set_Present=1) – Designates that a D1_Data_Set is present in

this packet.

■ B (Start_D2_on_Burst_Boundary=0) – Designates that the D2_Area starts at

or before the beginning of the second burst. B=1 designates that the D2_Area
starts at the beginning of the second burst.

■ Reserved (11-bits) – Must be zero (0).

■ D1_Area_Size (8-bits) – Designates the size of the D1_Area , the number of 64-

bit double words that are between the header and the start of the D2_Area .

■ D2_Offset (3-bits) – Designates the number of offset bytes from the start of the

D2_Area to the first byte of the D2_Data_Set .

■ D2_Size (32-bits) – Designates the length in bytes of the D2_Data_Set portion

of the packet. The D2_Size does not include the bytes contained in the

D2_Offset or the fill following the D2_Data_Set . A D2_Size of

D2SIZE_UNKNOWNspecifies that the D2_Data_set size is unknown. Packets with

an unknown D2_DataSet size cannot be terminated at arbitrary byte boundaries.

They can be terminated only at 64-bit, HIPPI-PH, burst boundaries. A D2_Size of

zero specifies that the D2_Area and the D2_Data_Set do not exist.
94 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

D1 Area

The D1 area immediately follows the header and should be completely contained in

the first burst. It should also contain an integral number of 64-bit double words and

the D1_Data_Set (if one is present).

If present, the D1_Data_Set is the first information in the D1 area. If the P-bit of the

header is zero (0), then the D1_Data_Set is not present. The D1_Data_Set is

intended for control information that may be delivered to the destination ULP on

receipt, without waiting for the arrival of other bursts of the packet.

The size of the D1_Data_Set is self defining; however, the maximum size is 1016

kilobytes.

D2 Area

If the D2-size field is not zero(0), the D2 area immediately follows the D1 area, and it

starts and ends on 64-bit, double-word boundaries. The D2 area contains the

D2_Data_Set . If the B-bit in the header is one, the D2 area starts at the beginning of

the second HIPPI_PH burst.

The offset is the unused bytes from the start of the D2 area to the first byte of the

D2_Data_Set . Fill is the unused bytes between the end D2_Data_Set and the end

of the D2 area. When D2_Size is all binary ones, then there is no fill.
Appendix C HIPPI-FP Excerpts 95

96 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

D

HIPPI-PH Excerpts

This appendix contains information excerpted from the HIPPI-PH specification (refer

to the specification for more information). The following physical framing hierarchy

describes the data flow over HIPPI media.

FIGURE D-1 Physical Framing Hierarchy

The NIC implements 32-bit words. Wait intervals are determined by the HIPPI flow

control mechanism. The destination tells the source how many bursts it can receive

by transmitting one ready pulse for each burst. When a connection is made the

destination sends its first set of bursts (128 are in the first set that permits 128-Kbytes

packets to be transferred at HIPPI media speed). When passing longer packets

additional bursts are issued as the target system accepts packet data from the NIC.

There is an error detection block, LLRC, after each burst. A packet can have, at most,

one short burst. The short burst may be either the first or last burst.

Wait Burst LLRC Wait Burst LLRC Wait Burst LLRC

256 Words of 32- or 64-bits

Packet Packet Wait Packet

Disabled I-Field Connection Established
Appendix D HIPPI-PH Excerpts 97

98 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

E

File Locations and Examples

The files needed to write CDI applications are installed as part of the SUNWhipc
package (see the Sun HIPPI/P 1.0 Installation and User’s Guide for instructions on how

to install the SUNWhipc package). By default, these files are located in the root

directory /opt . The following files are included in the SUNWhipc package:

■ /opt/SUNWconn/include/sys/hippi.h
■ /opt/SUNWconn/hippi/examples/blast.c
■ /opt/SUNWconn/hippi/examples/sink.c

The hippi.h file must be included in any CDI application. It contains definitions

for the various HIPPI operations defined in this document. The blast.c file and the

sink.c file contain functional, sample, CDI source code.

You can use the following commands to compile the blast.c and sink.c files can

The blast and sink options are fully described in the blast(1M) and sink(1M) man

pages. Binaries for these two utilities are also installed as part of the SUNWhip
package.

% cc -o blast -I/opt/SUNWconn/include/sys blast.c
% cc -o sink -I/opt/SUNWconn/include/sys sink.c
Appendix E File Locations and Examples 99

100 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

Glossary

Big Endian The most significant bit of data of a multiple-byte object is at the lowest, byte

address.

burst A unit of transfer on a HIPPI media. A full-size burst is 1024 bytes.

CDI Character Device Interface

Connection The path from a HIPPI source to a HIPPI destination over which packets are

passed.

Controlling Device A special file that is used to control a NIC.

Destination The HIPPI receiver that can accept packets

DMA Direct Memory Access. Data is moved directly between the NIC and the

domain’s memory without passing through a CPU.

Double Word An 8-byte object

Duplex A device that can both send and receive data

Endian The end of a multiple-byte object that has the low-order byte address (see Big

Endian and Little Endian)

End point A HIPPI source or destination

Firmware Software that is running in the NIC

Full duplex A device that can simultaneously send and receive data

HIPPI High Performance Parallel Interface (800- or 1600-Mbits-per-second

communication media)

Half word 2-byte object

Logical address A HIPPI-SC address of a HIPPI destination

Little Endian The least-significant bit of data of a multiple-byte object is at the lowest, byte

address.
Appendix Glossary 101

LLRC Error detection word at the end of each HIPPI burst

Master mode DMA DMA operations that are initiated and controlled by the NIC

NIC Network Interface Card

Road runner ASIC that is the heart of NIC, controlling processing and the domain interface

RunCode Firmware that is used during normal operation of the NIC

Simplex A one-way communication path on which a device can either send or receive

Single wide A HIPPI network operating at 800-Mbits per second

Source A HIPPI transmitter that can generate packets

Transfer device A special file opened by an application for reading and writing data

ULP Upper Layer Protocol identifier (HIPPI-FP)

Word 4-byte object
102 Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual • March 1999

	Sun HIPPI/P 1.0 Character Device Interface User’s Guide and Reference Manual
	Contents
	1. Overview�17
	2. Management�27
	3. Processing�33
	4. Portability�43
	5. CDI Reference�45
	6. Troubleshooting�77
	Preface

	Before You Read This Book
	How This Book Is Organized
	Using UNIX Commands
	Typographic Conventions
	TABLE�P�1 Typographic Conventions

	Shell Prompts
	TABLE�P�2 Shell Prompts

	Related Documentation
	TABLE�P�3 Related Documentation

	Sun Documentation on the Web
	Sun Welcomes Your Comments
	1
	Overview
	Understanding HIPPI
	HIPPI Network Hardware Overview
	HIPPI Connection Processing
	HIPPI Packets
	HIPPI I-Field
	HIPPI-FP Operation
	HIPPI-PH Operation

	General Operation
	Unexpected Packets
	Undelivered Packets
	NIC State
	Special Files
	Error Management
	Byte Order
	Data Buffers
	NIC Limits
	Data Movement Timeouts
	Upper Layer Protocols
	2
	Management

	Device Management
	Opening Devices
	Binding a Read ULP
	HIPPI-FP and HIPPI-PH Modes
	Data and Header Processing
	Closing Devices
	Obtaining Device Statistics

	Multiple Packet Connections
	Connection Management
	Establishing a Connection
	Specifying Destination Devices
	Specifying Destination ULP

	Many-Packet Connections
	3
	Processing

	Received Packets
	HIPPI-FP Separate Headers and Data
	HIPPI-FP Combined Headers and Data
	Unknown Packet Sizes
	HIPPI-PH Packet Read
	Packet Truncate
	Packet Read Errors
	Process Interrupt
	Receive Queues

	Sent Packets
	I-Field Processing
	FP Header Management
	HIPPI-PH Mode
	Unknown Packet Sizes
	Short Bursts
	Transmit Queue
	write() and writev() Calls
	Process Interrupt
	Transmit Errors

	I/O Multiplexing
	Read Devices
	Write Devices
	Exception Devices
	4
	Portability

	Application Portability
	Maximum read() and write() Length
	Buffer Alignment
	Endian
	Maximum Packet Length
	5
	CDI Reference

	Header File
	Interface Functions
	HIP_APP_OPEN Call
	Usage
	Arguments
	Failures and Errors

	close() Call
	Usage
	Arguments
	Failures and Errors

	ioctl() Call
	open() Call
	Usage
	Arguments
	Failures and Errors

	read() and readv() Calls
	Usage
	Arguments
	Failures and Errors

	select() Call
	Usage
	Arguments
	Failures and Errors

	write() and writev() Calls
	Usage
	Arguments
	Failures and Errors

	Ioctls
	HIPIOC_BIND_ULP Call
	Usage
	Arguments
	Failures and Errors

	HIPIOC_GET_DEV Call
	Usage
	Arguments
	Failures and Errors

	HIPIOC_GET_DEVICE_STATE Call
	Usage
	Arguments
	Failures and Errors

	HIPIOC_GET_NICS Call
	Usage
	Arguments
	Failures and Errors

	HIPIOC_UNBIND_ULP Call
	Usage
	Argument
	Failures and Errors

	HIPIOCR_EIO Call
	Usage
	Arguments
	Failures and Errors

	HIPIOCR_ERRS Call
	Usage
	Arguments
	Failures and Errors

	HIPIOCR_GET_D1 Call
	Usage
	Arguments
	Failures and Errors

	HIPIOCR_GET_FP Call
	Usage
	Arguments
	Failures and Errors

	HIPIOCR_PKT_OFFSET Call
	Usage
	Arguments
	Failures and Errors

	HIPIOCR_SEP_HDR Call
	Usage
	Arguments
	Failures and Errors

	HIPIOCR_TRUNCATE_PKT Call
	Usage
	Arguments
	Failures and Errors

	HIPIOCW_CONNECT Call
	Usage
	Arguments
	Failures and Errors

	HIPIOCW_D1_AREA Call
	Usage
	Arguments
	Failures and Errors

	HIPIOCW_D1_AREA_PTR Call
	Usage
	Arguments
	Failures and Errors

	HIPIOCW_D1_SIZE Call
	Usage
	Arguments
	Failures and Errors

	HIPIOCW_DISCONN Call
	Usage
	Arguments
	Failures and Errors
	HIPIOCW_END_PKT Call
	Usage
	Arguments
	Failures and Errors

	HIPIOCW_ERR Call
	Usage
	Arguments
	Failures and Errors

	HIPIOCW_I Call
	Usage
	Arguments
	Failures and Errors

	HIPIOCW_SEP_HDR Call
	Usage
	Arguments
	Failures and Errors

	HIPIOCW_SET_ULP Call
	Usage
	Arguments
	Failures and Errors

	HIPIOCW_SHBURST Call
	Usage
	Arguments
	Failures and Errors

	HIPIOCW_START_PKT Call
	Usage
	Arguments
	Failures and Errors
	6
	Troubleshooting

	NIC Installation and Operation
	To Test the Installation and Operation of the NIC
	1. Log into the host as superuser.
	2. Turn HIPPI off.
	3. Unplumb the HIPPI interface.
	4. Place the NIC into the internal loopback mode.
	5. Set up the NIC to receive packets.
	6. Send the packets.
	7. Check the status of the jobs.

	Optical Modules and Cables
	Optical Connections
	To Turn On RunCode and Check the Status
	1. Log in to the host as superuser.
	2. Turn on RunCode and set the NIC to communicate over the optical cable.
	3. Check the status of the NIC.

	Optical Loopback Test
	To Set Up the Loop-Back Test
	1. Log in to the host as superuser.
	2. Turn off RunCode.
	3. Use ifconfig(1M) to unplumb the network if needed.
	4. Configure the NIC to use the optics module.
	5. Set up the NIC to receive ten default packets (4 kilobytes) in the background.
	6. Set up the NIC to send the ten packets.
	7. Check the status of the sink(1M) and blast(1M) commands.

	Optical Loop-Back Through a Switch
	To Set Up Optical Loop-Back Through a Switch
	1. Log in to the host as superuser.
	2. Turn off RunCode.
	3. Unplumb the network if needed.
	4. Configure the NIC to use the optics module.
	5. Set up the NIC to receive twenty default packets (four kilobytes each) in the background.
	6. Set up the NIC to send the ten packets, using source routing (with CampON).
	7. Set up the NIC to send ten packets, using the destination routing (logical address with CampON).
	8. Check the status of the NIC:

	Optical Testing Between NICs
	To Test the Optical Connection Between NICs
	1. On NIC A, perform the following substeps:
	a. Log in to the host as superuser.
	b. Turn off RunCode.
	c. Unplumb the network if needed.
	d. Configure the NIC to use the optical module.
	e. Set up the NIC to receive twenty packets in the background.
	f. Check the status of the packets.

	2. On NIC B, perform the following substeps:
	a. Log in to the host as superuser.
	b. Turn off RunCode.
	c. Unplumb the NIC if needed.
	d. Configure the NIC to use the optical module.
	e. Set up the NIC to send ten packets, using source routing (with CampON).
	f. Set up the NIC to send ten packets, using destination routing (logical address with CampON).
	g. Check the status of the packets.

	Long Packets Between NICs
	To Set Up the NIC for Long Packets
	1. Log in to the host as superuser.
	2. Turn off RunCode.
	3. Unplumb the NIC if needed.
	4. Configure the NIC to use long packets.
	5. Plumb the NIC if needed.

	To Change the EEPROM for Long Packets
	1. Log in to the host as superuser.
	2. Turn off RunCode.
	3. Configure the NIC to allow long packets.
	4. Turn off RunCode to access the EEPROM.
	5. Write the current mode to the EEPROM.
	6. Restart RunCode on the NIC.
	A
	Special Files
	B

	HIPPI-SC Excerpts
	FIGURE�B�1 CCI and I-Field Format
	C

	HIPPI-FP Excerpts

	Header
	D1 Area
	D2 Area
	D
	HIPPI-PH Excerpts
	FIGURE�D�1 Physical Framing Hierarchy
	E

	File Locations and Examples
	Glossary

	Big Endian
	burst
	CDI
	Connection
	Controlling Device
	Destination
	DMA
	Double Word
	Duplex
	Endian
	End point
	Firmware
	Full duplex
	HIPPI
	Half word
	Logical address
	Little Endian
	LLRC
	Master mode DMA
	NIC
	Road runner
	RunCode
	Simplex
	Single wide
	Source
	Transfer device
	ULP
	Word

