
A Sun Microsystems, Inc. Business
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Network Time Protocol User’s Guide

Part No: 805-0078-10
Revision A, March 1997

Sun Microsystems Computer Company

Please
Recycle

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from Novell, Inc., and from the Berkeley BSD system,
licensed from the University of California. UNIX is a registered trademark in the United States and other countries and is
exclusively licensed by X/Open Company Ltd. Third-party software, including font technology in this product, is protected by
copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

Sun, Sun Microsystems, the Sun logo, SunSoft, SunDocs, SunExpress, OpenWindows, Solaris, Ultra Enterprise, and OpenBoot
PROM are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the United States and other
countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International,
Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by
Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

Copyright 1997 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100, U.S.A. Tous droits
réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie,
la distribution, et la décompilation. Aucune partie de ce produit ou de sa documentation associée ne peut être reproduite sous
aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il
y en a.

Des parties de ce produit pourront être dérivées du système UNIX® licencié par Novell, Inc. et du système Berkeley BSD
licencié par l’Université de Californie. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays et licenciée
exclusivement par X/Open Company Ltd. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices
de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, SunSoft, SunDocs, SunExpress, Solaris, Ultra Enterprise, et OpenBoot PROM sont des
marques déposées ou enregistrées, ou marques de service de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes
les marques SPARC, utilisées sous licence, sont des marques déposées ou enregistrées de SPARC International, Inc. aux Etats-
Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

Les interfaces d’utilisation graphique OPEN LOOK® et Sun™ ont été développées par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de
Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant aussi les licenciés de Sun qui mettent en place
l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A RÉPONDRE A UNE UTILISATION PARTICULIERE, OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

i

Table of Contents

1. Introduction . 1-1

2. Network Time Protocol . 2-1

Configuring Your Subnet . 2-3

Synchronization . 2-3

Configuring Your Server or Client . 2-8

Time-Of-Day (TOD) . 2-9

Xntpd3 Versus Previous Versions . 2-10

Traffic Monitoring . 2-12

Address-and-Mask Restrictions . 2-12

Authentication . 2-14

Query Programs . 2-17

Runtime Reconfiguration . 2-18

Name Resolution . 2-19

Frequency Tolerance Violations (Tickadj and Friends) 2-20

Tuning Your Subnet . 2-22

ii Network Time Protocol User’s Guide—March 1997

Provisions for Leap Seconds and Accuracy Metrics 2-23

Clock Support Overview. 2-25

Towards the Ultimate Tick . 2-26

Swatting Bugs. 2-28

iii

Preface

This document describes the XNTP implementation of Network Time Protocol
(NTP), which is supported on the Ultra Enterprise 10000 server and its SSP
(System Service Processor) to maintain consistent time on both machines.

Intended Audience
This manual is intended for Ultra Enterprise 10000 users and system
administrators. It is written for users who have a working knowledge of the
Solaris operating system. If you do not have such knowledge, review the other
Sun AnswerBooks provided with this system.

Related Documentation
NTP Reference, Part Number 805-0079 — See these man pages for more
information about individual NTP commands.

iv Network Time Protocol User’s Guide—March 1997

Typographic Conventions
The following table describes the typefaces and symbols used in this manual.

Typeface or
Symbol Meaning Example

Courier
(Constant
-width)

The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
system% You have mail.

Bold What you type. Often shown
with on-screen computer output

system% su
Password:

Italics Command-line placeholder:
replace with a real name or
value

Document titles, new words or
terms, or words to be
emphasized

To delete a file, type rm filename.

Read Chapter 6 in the User’s
Guide. These are called class
options.
You must be root to do this.

1-1

Introduction 1

This document is a slightly edited version of the paper Notes on Xntpd
Configuration, dated 14 January 1993, by David L. Mills at the University of
Delaware. That document was a rewrite and update of one dated 5 November
1989 by Dennis Ferguson of the University of Toronto.

The Network Time Protocol User’s Guide explains the use of xntpd(1M) and
related programs, and of Network Time Protocol (NTP). It describes the NTP
Version 3 specification, as defined in RFC 1305, and retains compatibility with
both NTP Version 2, as defined in RFC 1119, and NTP Version 1, as defined in
RFC 1059, although this compatibility is sometimes strained. To support the
ultimate precision of about 232 picoseconds in the NTP specification,
xntpd(1M) does no floating-point arithmetic, but instead, manipulates the 64-
bit NTP timestamps as unsigned 64-bit integers. xntpd(1M) fully implements
NTP versions 2 and 3 authentication and a mode-6 control-message facility. As
extensions to the specification, a flexible address-and-mask restriction facility
has been included, along with a private mode-7 control-message facility used
to remotely reconfigure the system and monitor a considerable amount of
internal detail.

NTP is biased toward the needs of a busy time server with numerous, possibly
hundreds, of clients and other servers. Tables are hashed to allow efficient
handling of many associations, though at the expense of additional overhead
when the number of associations is small. Many features have been included to
permit efficient management and monitoring of a busy primary server, features
that are not useful to a server on a high-stratum client. NTP makes good use of
high-performance, special-purpose hardware, such as precision oscillators and

1-2 Network Time Protocol User’s Guide—March 1997

1

radio clocks. It supports a number of radio clocks, including those for the
WWV, CHU, WWVB1, DCF77, GOES and GPS radio and satellite services. The
server avoids the use of UNIX-specific library routines where possible by
implementing local versions, to aid in porting NTP to other UNIX and non-
UNIX platforms.

While this implementation follows NTP specification RFC 1305, it has been
specifically tuned to achieve the highest accuracy possible on any available
hardware and operating system platform. In general, its precision is limited
only by that of the on-board time-of-day clock maintained by the hardware
and operating system, while its stability is limited only by that of the on-board
frequency source, usually an uncompensated crystal oscillator. On modern
RISC-based processors connected directly to radio clocks via serial-
asynchronous interfaces, the accuracy is usually limited by that of the radio
clock and interface to the order of a few milliseconds. The code includes
special features to support a one-pulse-per-second (1pps) signal generated by
some radio clocks. When used in conjunction with a suitable hardware level
converter, the accuracy can be improved to the order of 100 microseconds.
Further improvement is possible using an outboard, stabilized frequency
source in which the accuracy and stability are limited only by the
characteristics of that source.

The xntp3 distribution includes, in addition to the daemon itself
(xntpd(1M)), several utility programs, including two remote-monitoring
programs (ntpq(1M) , xntpdc(1M)), a remote clock-setting program
(ntpdate(1M)) similar to the UNIX rdate(1M) program, a traceback utility
(ntptrace(1M)) useful to discover suitable synchronization sources, and
various programs for configuring the local platform and calibrating the
intrinsic errors.

NTP has been ported to a large number of platforms, including most RISC and
CISC workstations and mainframes manufactured today. While in most cases
the standard version of the implementation runs with no hardware or
operating-system modifications, not all features of the distribution are
available on all platforms. For instance, a special feature that enables Sun 4
systems to achieve accuracies in the order of 100 microseconds requires some
minor changes and additions tot he kernel and input/output support.

1. The Sun implementation of this code supports WWVB and PST radio clocks.

2-1

Network Time Protocol 2

The approach used by NTP to achieve reliable time synchronization from a set
of remote time servers is somewhat different than other such protocols. In
particular, NTP does not attempt to synchronize clocks to each other. Rather,
each server attempts to synchronize to UTC (Universal Coordinated Time)
using the best available source and transmission paths to that source. For
example, a group of NTP- synchronized clocks may be close to each other in
time, but this is not a consequence of the clocks in the group having
synchronized to each other, but rather because each clock has synchronized
closely to UTC via the best source to which it has access. As such, trying to
synchronize a set of clocks to a set of servers whose time is not in mutual
agreement may not result in any sort of useful synchronization of the clocks,
even if UTC is not an issue. NTP assumes there is only one true standard time,
and that if several servers that claim synchronization to standard time disagree
about what that time is, one or more of them must be broken. It does not
attempt to resolve differences more gracefully, since its premise is that
substantial differences cannot exist. In essence, NTP expects that the time being
distributed from the root of the synchronization subnet is derived from some
external source of UTC (e.g., a radio clock). This makes it somewhat
inconvenient (though not impossible) to synchronize hosts without a reliable
source of UTC. If your network is isolated and you cannot access other servers
across the Internet, a radio clock may be a better solution.

Time is distributed through a hierarchy of NTP servers, with each server
adopting a “stratum” that indicates how far away from an external source of
UTC it is operating at. Stratum-1 servers have access to an external time
source, usually a radio clock synchronized to time signal broadcasts from radio

2-2 Network Time Protocol User’s Guide—March 1997

2

stations that explicitly provide a standard time service. A stratum-2 server is
one that is currently obtaining time from a stratum-1 server, a stratum-3 server
gets its time from a stratum-2 server, and so on. To avoid long-lived
synchronization loops, the number of strata is limited to 15.

Each client in the synchronization subnet (which may also be a server for other,
higher stratum clients) chooses exactly one of the available servers to
synchronize to, usually from among the lowest stratum servers to which it has
access. It is thus possible to construct a synchronization subnet where each
server has exactly one source of lower stratum time to which it can
synchronize. This is, however, not an optimal configuration, for NTP operates
under another premise as well, that each server's time should be viewed with a
certain amount of distrust. NTP prefers to have access to several sources of
lower stratum time (at least three) since it can then apply an agreement
algorithm to detect errors by any one of these. Normally, when all servers are
in agreement, NTP chooses the best, where “best” is defined in terms of lowest
stratum, closest (in terms of network delay) and claimed precision, along with
several other considerations. The implication is that, while you should aim to
provide each client with three or more sources of lower stratum time, several
of these will only be providing backup service and may be of lesser quality in
terms of network delay and stratum; that is, a same-stratum peer that receives
time from lower-stratum sources not accessed directly by the local server can
provide good backup service.

Finally, there is the issue of association modes. There are a number of modes in
which NTP servers can associate with each other, with the mode of each server
in the pair indicating the behavior the other server can expect from it. In
particular, when configuring a server to obtain time from other servers, you
have two choices:
• Configuring an association in symmetric-active mode (usually indicated by

a “peer” declaration in configuration files) indicates that one wants to obtain
time from the remote server, and is willing to supply time to it, as well. This
mode is appropriate in configurations involving a number of redundant
time servers interconnected via diverse network paths, which is presently
the case for most stratum-1 and stratum-2 servers on the Internet today.

• Configuring an association in client mode (usually indicated by a “server”
declaration in configuration files) indicates that one wants to obtain time
from the remote server, but is not willing to provide time to it. This mode is
appropriate for file-server and workstation clients that do not provide

Network Time Protocol 2-3

2

synchronization to other local clients. Client mode is also useful for boot-
date-setting programs and the like, which neither provide nor retain state
about associations over a long period of time.

Configuring Your Subnet
At start-up time the xntpd(1M) daemon running on a host reads the initial
configuration information from a file, usually
/etc/opt/SUNWxntp/ntp.conf. Putting something in this file that will
enable the host to obtain time from somewhere else is usually the first big
hurdle after installation of the software itself, which is described in other
documents included in the xntp3 distribution. At its simplest, what you need
to do in the configuration file is declare the servers that the daemon should
poll for time synchronization. In principle, no such list is needed if some other
time server explicitly mentions the host and is willing to provide
synchronization; however, this is considered dangerous, unless the access
control or authentication features (described later) are in use.

Synchronization
When a workstation is used in an enterprise network for a public or private
organization, and the addresses of appropriate servers are not available, you
can explore some portion of the existing NTP subnet running in the Internet.
Many thousands of time servers are doing so, a significant number of which
are willing to provide a public time-synchronization service. Some of these are
listed in a file maintained on the Internet host louie.udel.edu (128.175.1.3)
on the path pub/ntp/doc/clock.txt. This file is updated on a regular basis
using information provided voluntarily by various site administrators. Other
ways to explore the nearby subnet include use of the ntptrace(1M) and
ntpq(1M) programs. See the associated man pages for further information on
these programs.

It is vital to carefully consider the issues of robustness and reliability when
selecting the sources of synchronization. Normally, not less than three sources
should be available, preferably selected to avoid common points of failure. It is
usually better to choose sources that are likely to be “close” to you in terms of
network topology, though you shouldn't worry overly about this if you are
unable to determine who is close and who isn't. Normally, it is much more
serious when a server becomes faulty and delivers incorrect time than when it
simply stops operating, since an NTP-synchronized host normally can coast for

2-4 Network Time Protocol User’s Guide—March 1997

2

hours or even days without its clock accumulating serious error over one
second, for instance. Selecting at least three sources from different operating
administrations, where possible, is the minimum recommended, although a
lesser number could provide acceptable service with a degraded degree of
robustness.

Normally, it is not considered good practice for a single workstation to request
synchronization from a primary (stratum-1) time server. At present, these
servers provide synchronization for hundreds of clients in many cases and
could, along with the network access paths, become seriously overloaded if
large numbers of workstation clients requested synchronization directly.
Therefore, workstations located in sparsely populated administrative domains
with no local synchronization infrastructure should request synchronization
from nearby stratum-2 servers instead. In most cases the keepers of those
servers listed in the clock.txt file provide unrestricted access without prior
permission; however, in all cases it is considered polite to notify the
administrator listed in the file upon commencement of regular service. In all
cases the access mode and notification requirements listed in the file must be
respected.

In the case of a gateway or file server providing service to a significant number
of workstations or file servers in an enterprise network it is even more
important to provide multiple, redundant sources of synchronization and
multiple, diversity-routed, network access paths. The preferred configuration is
at least three administratively coordinated time servers providing service
throughout the administrative domain including campus networks and
subnetworks. Each of these should obtain service from at least two different
outside sources of synchronization, preferably via different gateways and
access paths. These sources should all operate at the same stratum level, which
is one less than the stratum level to be used by the local time servers
themselves. In addition, each of these time servers should peer with all of the
other time servers in the local administrative domain at the stratum level used
by the local time servers, as well as at least one (different) outside source at
this level. This configuration results in the use of six outside sources at a lower
stratum level (toward the primary source of synchronization, usually a radio
clock), plus three outside sources at the same stratum level, for a total of nine
outside sources of synchronization. While this may seem excessive, the actual
load on network resources is minimal, since the interval between polling
messages exchanged between peers usually ratchets back to no more than one
message every 17 minutes.

Network Time Protocol 2-5

2

The stratum level to be used by the local time servers is an engineering choice.
As a matter of policy, and in order to reduce the load on the primary servers, it
is desirable to use the highest stratum consistent with reliable, accurate time
synchronization throughout the administrative domain. In the case of
enterprise networks serving hundreds or thousands of client file servers and
workstations, conventional practice is to obtain service from stratum-1 primary
servers such as listed in the clock.txt file. When choosing sources away
from the primary sources, the particular synchronization path in use at any
time can be verified using the ntptrace(1M) program included in the xntp3
distribution. It is important to avoid loops and possible common points of
failure when selecting these sources. Note that, while NTP detects and rejects
loops involving neighboring servers, it does not detect loops involving
intervening servers. In the unlikely case that all primary sources of
synchronization are lost throughout the subnet, the remaining servers on that
subnet can form temporary loops and, if the loss continues for an interval of
many hours, the servers will drop off the subnet and free-run with respect to
their internal (disciplined) timing sources.

In many cases the purchase of one or more radio clocks is justified, in which
cases good engineering practice is to use the configurations described above
and connect the radio clock to one of the local servers. This server is then
encouraged to participate in a special primary- server subnetwork in which
each radio-equipped server peers with several other similarly equipped
servers. In this way the radio-equipped server may provide synchronization, as
well as receive synchronization, should the local or remote radio clock(s) fail or
become faulty. xntpd(1M) treats attached radio clock(s) in the same way as
other servers and applies the same criteria and algorithms to the time
indications, so can detect when the radio fails or becomes faulty and switch to
alternate sources of synchronization. It is strongly advised, and in practice for
most primary servers today, to employ the authentication or access-control
features of the xntp3 distribution in order to protect against hostile penetration
and possible destabilization of the time service.

Using this or similar strategies, the remaining hosts in the same administrative
domain can be synchronized to the three (or more) selected time servers.
Assuming these servers are synchronized directly to stratum-1 sources and
operate normally as stratum-2, the next level away from the primary source of
synchronization, for instance various campus file servers, will operate at
stratum 3 and dependent workstations at stratum 4. Engineered correctly, such
a subnet will survive all but the most exotic failures or even hostile
penetrations of the various, distributed timekeeping resources.

2-6 Network Time Protocol User’s Guide—March 1997

2

The above arrangement should provide very good, robust time service with a
minimum of traffic to distant servers and with manageable loads on the local
servers. While it is theoretically possible to extend the synchronization subnet
to even higher strata, this is seldom justified and can make the maintenance of
configuration files unmanageable. Serving time to a higher stratum peer is very
inexpensive in terms of the load on the lower stratum server if the latter is
located on the same concatenated LAN. When justified by the accuracy
expectations, NTP can be operated in broadcast mode, so that clients need only
listen for periodic broadcasts and do not need to send anything.

When planning your network you might, beyond this, keep in mind a few
generic don'ts, in particular:

1. Don't synchronize a local time server to another peer at the same stratum,
unless the latter is receiving time from lower stratum sources the former
doesn't talk to directly. This minimizes the occurrence of common points of
failure, but does not eliminate them in cases where the usual chain of
associations to the primary sources of synchronization are disrupted due to
failures.

2. Don't configure peer associations with higher stratum servers. Let the
higher strata configure lower stratum servers, but not the reverse. This
greatly simplifies configuration file maintenance, since there is usually much
greater configuration churn in the high stratum clients such as personal
workstations.

3. Don't synchronize more than one time server in a particular administrative
domain to the same time server outside that domain. Such a practice invites
common points of failure, as well as raises the possibility of massive abuse,
should the configuration file be automatically distributed to a large number
of clients.

There are many useful exceptions to these rules. When in doubt, however,
follow them.

Dennis Ferguson writes: Note that mention was made of machines with
“good” clocks versus machines with “bad” ones. There are two things that
make a clock good, the precision of the clock (e.g. how many low order bits in
a time value are actually significant) and the frequency of occurrence (or lack
thereof) of such things as lost clock interrupts. Among the most common
computers I have observed there to be a fairly simple algorithm for
determining the goodness of its clock. If the machine is a Vax, it probably has a

Network Time Protocol 2-7

2

good clock (the low order bit in the time is in the microseconds and most of
these seem to manage to get along without losing clock interrupts). If the
machine is a Sun 3 it probably doesn't (the low order clock bit is at the 10 or 20
millisecond mark and Sun 3s like to lose clock interrupts, particularly if they
have a screen and particularly if they run SunOS 4.0.x). If you have IBM RTts
running AOS 4.3, they have fair clocks (low order clock bit at about a
millisecond and they don't lose clock interrupts, though they do have trouble
with clock rollovers while reading the low order clock bits) but I recommend
them as low stratum NTP servers anyway since they aren't much use as
anything else. Sun 4s running SunOS 4.1.1 make very good time servers, once
some native foolishness mentioned below is surmounted. However, it is very
important to avoid using the keyboard firmware, which can cause severe
interrupt latencies, in favor of the software drivers ordinarily used in
conjunction with a windowing system. If at all possible you should try to use
machines with good clocks for the lower strata.

2-8 Network Time Protocol User’s Guide—March 1997

2

Configuring Your Server or Client
As mentioned previously, the configuration file is usually called
/etc/opt/SUNWxntp/ntp.conf . This is an ASCII file conforming to the
usual comment and white space conventions. A working configuration file
might look like (In this and other examples, do not copy this directly.):

This particular host is expected to operate as a client at stratum 2 by virtue of
the “server” keyword and the fact that two of the three servers declared (the
first two, actually) have radio clocks and usually run at stratum 1. The third
server in the list has no radio clock, but is known to maintain associations with
a number of stratum 1 peers and usually operates at stratum 2. Of particular
importance with the last host is that it maintains associations with peers
besides the two stratum 1 peers mentioned. This can be verified using the
ntpq(1M) program included in the xntp3 distribution. When configured using
the “server” keyword, this host can receive synchronization from any of the
listed servers, but can never provide synchronization to them.

Unless restricted using facilities described later, this host can provide
synchronization to dependent clients, which do not have to be listed in the
configuration file. Associations maintained for these clients are transitory and
result in no persistent state in the host. These clients are normally not visible
using the ntpq(1M) program included in the xntp3 distribution; however,
xntpd(1M) includes a monitoring feature (described later) that caches a
minimal amount of client information useful for debugging administrative
purposes.

A time server expected to both receive synchronization from another server, as
well as to provide synchronization to it, is declared using the “peer” keyword
instead of the “server” keyword. In all other aspects the server operates the
same in either mode and can provide synchronization to dependent clients or
other peers. It is considered good engineering practice to declare time servers
outside the administrative domain as “peer” and those inside as “server” in
order to provide redundancy in the global Internet, while minimizing the
possibility of instability within the domain itself. A time server in one domain

peer config for 128.100.100.7 (expected to operate at stratum 2)
server 128.4.1.1 # rackety.udel.edu
server 128.8.10.1 # umd1.umd.edu
server 192.35.82.50 # lilben.tn.cornell.edu
driftfile /etc/opt/SUNWxntp/ntp.drift

Network Time Protocol 2-9

2

can in principle heal another domain temporarily isolated from all other
sources of synchronization. However, it is probably unwise for a casual
workstation to bridge fragments of the local domain that have become
temporarily isolated.

Note the inclusion of a “driftfile” declaration. One of the things the NTP
daemon does when it is first started is to compute the error in the intrinsic
frequency of the clock on the computer it is running on. It usually takes about
a day or so after the daemon is started to compute a good estimate of this (and
it needs a good estimate to synchronize closely to its server). Once the initial
value is computed, it will change only by relatively small amounts during the
course of continued operation. The “driftfile” declaration indicates to the
daemon the name of a file where it may store the current value of the
frequency error so that, if the daemon is stopped and restarted, it can
reinitialize itself to the previous estimate and avoid the day's worth of time it
will take to recompute the frequency estimate. Since this is a desirable feature,
a “driftfile” declaration should always be included in the configuration file.

An implication in the above is that, should xntpd(1M) be stopped for some
reason, the local platform time will diverge from UTC by an amount that
depends on the intrinsic error of the clock oscillator and the time since last
synchronized. In view of the length of time necessary to refine the frequency
estimate, every effort should be made to operate the daemon on a continuous
basis and minimize the intervals when for some reason it is not running.

Time-Of-Day (TOD)
The Ultra Enterprise 10000 server and the SSP keep time independently, but are
kept in sync by the Network Time Protocol dameon, xntpd(1M) . During host
boot, the host’s kernel asks the SSP for the time, then sets its time to match. If
the date on the SSP is changed, xntpd(1M) changes the time on the host. The
host’s clock device has no battery backup.

If you use the date(1) command to change the time on the host, and it differs
from that of the SSP, xntpd(1M) immediately begins to gradually adjust the
host’s time toward that of the SSP. This can prove confusing to users and
programs.

2-10 Network Time Protocol User’s Guide—March 1997

2

The only time you should use the date(1) command to set the time on the
host is if a problem prevents it from getting its time from the SSP. If this
problem occurs and is detected, the following message appears during the boot
flow:

“WARNING: TOD clock not initialized -- CHECK AND RESET THE
DATE!”

If you see this message, execute, as super user, the date command from the
host. Set the time as close as possible to that shown on the SSP, and the host
time should quickly sync up with it.

Xntpd3 Versus Previous Versions
There are several items of note when dealing with a mixture of xntp3 and
previous distributions of xntp (NTP Version 2 xntpd(1M)) and ntp3.4 (NTP
Version 1 ntpd). The xntp3 implementation of xntpd(1M) is an NTP Version 3
implementation. As such, by default when no additional information is
available concerning the preferences of the peer, xntpd(1M) claims to be
version 3 in the packets that it sends.

An NTP implementation conforming to a previous version specification
ordinarily discards packets from a later version. However, in most respects
documented in RFC 1305, the previous version is compatible with the version-
3 algorithms and protocol. Ntpd, while implementing most of the version-2
algorithms, still believes itself to be a version-1 implementation. The sticky
part here is that, when either xntpd(1M) version 2 or ntpd version 1 receives
a packet claiming to be from a version-3 server, it discards it without further
processing. Hence there is a danger that in some situations synchronization
with previous versions will fail.

xntpd(1M) is aware of this problem. In particular, when xntpd(1M) is polled
first by a host claiming to be a previous version 1 or version 2 implementation,
xntpd(1M) claims to be a version 1 or 2 implementation, respectively, in
packets returned to the poller. This allows xntpd(1M) to serve previous
version clients transparently. The trouble occurs when an previous version is to
be included in an xntpd(1M) configuration file. With no further indication,
xntpd(1M) will send packets claiming to be version 3 when it polls. To get

Network Time Protocol 2-11

2

around this, xntpd(1M) allows a qualifier to be added to configuration entries
to indicate which version to use when polling. Hence, the entry will cause
version 1 packets to be sent to the host address 130.43.2.2:

If you are testing xntpd(1M) against previous version servers you will need to
be careful about this. Note that, as indicated in the RFC 1305 specification,
there is no longer support for the original NTP specification, popularly called
NTP Version 0.

There are a few other items to watch when converting an ntpd configuration
file for use with xntpd(1M) . The first is to reconsider the precision entry from
the configuration file, if there is one. There was a time when the precision
claimed by a server was mostly commentary, with no particularly useful
purpose. This is no longer the case, however, and so changing the precision a
server claims should only be done with some consideration as to how this
alters the performance of the server. The default precision claimed by
xntpd(1M) will be right for most situations. A section later on will deal with
when and how it is appropriate to change a server's precision without doing
things you don't intend.

Second, note that in the example configuration file above numeric addresses
are used in the peer and server declarations. It is also possible to use names
requiring resolution instead, but only if some additional configuration is done
(xntpd(1M) doesn't include the resolver routines itself, and requires that a
second program be used to do name resolution). If you find numeric addresses
offensive, see below.

Finally, “passive” and “client” entries in an ntpd configuration file have no
useful equivalent semantics for xntpd(1M) and should be deleted.
xntpd(1M) won't reset the kernel variable tickadj(1M) when it starts, so
you can remove anything dealing with this in the configuration file. The
configuration of radio clock peers is done using different language in
xntpd(1M) configuration files, so you will need to delete these entries from
your ntpd configuration file and see below for the equivalent language.

specify NTP version 1
peer 130.43.2.2 version 1 # apple.com (running ntpd version 1)
peer 130.43.2.2 version 2 # apple.com (running xntpd version 2)

2-12 Network Time Protocol User’s Guide—March 1997

2

Traffic Monitoring
xntpd(1M) handles peers whose stratum is higher than the stratum of the
local server and pollers using client mode by a fast path that minimizes the
work done in responding to their polls, and normally retains no memory of
these pollers. Sometimes, however, it is interesting to be able to determine who
is polling the server, and how often, as well as who has been sending other
types of queries to the server.

To allow this, xntpd(1M) implements a traffic monitoring facility that records
the source address and a minimal amount of other information from each
packet received by the server. This can be enabled by adding the following line
to the server's configuration file:

The recorded information can be displayed using the xntpdc(1M) query
program, described briefly below.

Address-and-Mask Restrictions
The address-and-mask configuration facility supported by xntpd(1M) is quite
flexible and general, but is not an integral part of the NTP Version 3
specification. The major drawback is that, while the internal implementation is
well designed, the user interface is not. For this reason it is probably worth
doing an example here. Briefly, the facility works as follows. There is an
internal list, each entry of which holds an address, a mask and a set of flags.
On receipt of a packet, the source address of the packet is compared to each
entry in the list, with a match being posted when the following is:

A particular source address may match several list entries. In this case the
entry with the most one bits in the mask is chosen. The flags associated with
this entry are used to control the access.

enable monitoring feature
monitor yes

(source_addr & mask) == (address & mask)

Network Time Protocol 2-13

2

In the current implementation the flags always add restrictions. In effect, an
entry with no flags set leaves matching hosts unrestricted. An entry can be
added to the internal list using a “restrict” declaration. The flags associated
with the entry are specified textually. For example, the “notrust” flag indicates
that hosts matching this entry, while treated normally in other respects,
shouldn't be trusted to provide synchronization even if otherwise so enabled.
The “nomodify” flag indicates that hosts matching this entry should not be
allowed to do runtime configuration. There are many more flags, see the
xntpd(1M) man page.

Now the example. Suppose you are running the server on a host whose
address is 128.100.100.7. You would like to ensure that runtime reconfiguration
requests can only be made from the local host and that the server only ever
synchronizes to one of a pair of off-campus servers or, failing that, a time
source on net 128.100. The following entries in the configuration file would
implement this policy:

The first entry is the default entry, which all hosts match and, hence, which
provides the default set of flags. The next three entries indicate that matching
hosts will only have the nomodify flag set and hence will be trusted for time. If
the mask isn't specified in the restrict keyword, it defaults to 255.255.255.255.
Note that the address 128.100.100.7 matches three entries in the table, the
default entry (mask 0.0.0.0), the entry for net 128.100 (mask 255.255.0.0) and the
entry for the host itself (mask 255.255.255.255). As expected, the flags for the
host are derived from the last entry since the mask has the most bits set.

The only other thing worth mentioning is that the restrict declarations apply to
packets from all hosts, including those that are configured elsewhere in the
configuration file and even including your clock pseudopeer(s), if any. Hence,

by default, don't trust and don't allow modifications
restrict default notrust nomodify
these guys are trusted for time, but no modifications allowed
restrict 128.100.0.0 mask 255.255.0.0 nomodify
restrict 128.8.10.1 nomodify
restrict 192.35.82.50 nomodify
the local addresses are unrestricted
restrict 128.100.100.7
restrict 127.0.0.1

2-14 Network Time Protocol User’s Guide—March 1997

2

if you specify a default set of restrictions that you don't wish to be applied to
your configured peers, you must remove those restrictions for the configured
peers with additional restrict declarations mentioning each peer separately.

Authentication
xntpd(1M) supports the optional authentication procedure specified in the
NTP Version 2 and 3 specifications. Briefly, when an association runs in
authenticated mode, each packet transmitted has appended to it a 32-bit key ID
and a 64-bit crypto checksum of the contents of the packet computed using
either the Data Encryption Standard (DES) or Message Digest (MD5)
algorithms. Note that this implementation provides only the MD5 algorithm.
Also note that while either of these algorithms provide sufficient protection
from message-modification attacks, distribution of the former algorithm
implementation is restricted to the U.S. and Canada, while the latter presently
is free from such restrictions. With either algorithm the receiving peer
recomputes the checksum and compares it with the one included in the packet.
For this to work, the peers must share at least one encryption key and,
furthermore, must associate the shared key with the same key ID.

This facility requires some minor modifications to the basic packet processing
procedures, as required by the specification. These modifications are enabled
by the “authenticate” configuration declaration. In particular, in authenticated
mode, peers that send unauthenticated packets, peers that send authenticated
packets that the local server is unable to decrypt and peers that send
authenticated packets encrypted using a key we don't trust are all marked
untrustworthy and unsuitable for synchronization. Note that, while the server
may know many keys (identified by many key IDs), it is possible to declare
only a subset of these as trusted. This allows the server to share keys with a
client that requires authenticated time and trusts the server, but is not trusted
by the server. Also, some additional configuration language is required to

Network Time Protocol 2-15

2

specify the key ID to be used to authenticate each configured peer association.
Hence, for a server running in authenticated mode, the configuration file might
look similar to the following:

There are a couple of previously unmentioned things in here. The
authenticate yes line enables authentication processing, while the keys
/etc/opt/SUNWxntp/ntp.keys specifies the path to the keys file (see below
and the xntpd(1M) man page for details of the file format). The “trustedkey”
declaration identifies those keys that are known to be uncompromised; the
remainder presumably represent the expired or possibly compromised keys.
Both sets of keys must be declared by key identifier in the ntp.keys file
described below. This provides a way to retire old keys while minimrequestkey
15izing the frequency of delicate key-distribution procedures. The “requestkey
15" line establishes the key to be used for mode-6 control messages as specified
in RFC 1305 and used by the ntpq(1M) utility program, while the “controlkey
15" establishes the key to be used for mode-7 private control messages used by
the xntpdc(1M) utility program these keys are used to prevent unauthorized
modification of daemon variables.

The “authdelay” declaration is an estimate of the amount of processing time
taken between the freezing of a transmit timestamp and the actual
transmission of the packet when authentication is enabled (i.e. more or less the
time it takes for the DES or MD5 routine to encrypt a single block), and is used

peer configuration for 128.100.100.7
(expected to operate at stratum 2)
fully authenticated this time
peer 128.100.49.105 key 22#suzuki.ccie.utoronto.ca
peer 128.8.10.1 key 4# umd1.umd.edu
peer 192.35.82.50 key 6# lilben.tn.cornell.edu
authenticate yes# enable authentication
keys /etc/opt/SUNWxntp/ntp.keys
path for key file
trustedkey 1 2 14 15# define trusted keys
requestkey 15# key (7) for accessing server variables
controlkey 15# key (6) for accessing server variables
#authdelay 0.000047# authentication delay (Sun4c/50 IPX DES)
authdelay 0.000094# authentication delay (Sun4c/50 IPX MD5)

2-16 Network Time Protocol User’s Guide—March 1997

2

as a correction for the transmit timestamp. This can be computed for your CPU
by the authspeed program included in the opt/SUNWxntp/bin in the xntp3
distribution. The usage is illustrated to the following:

Additional utility programs included in the authstuff directory can be used to
generate random keys, certify implementation correctness and display sample
keys. As a general rule, keys should be chosen randomly, except possibly the
request and control keys, which must be entered by the user as a password.

The ntp.keys file contains the list of keys and associated key IDs the server
knows about (for obvious reasons this file is better left unreadable by anyone
except the server). The contents of this file might look like the following. Note,
however, that this implementation of NTP supports only the MD5 algorithm.

In the keys file the first token on each line indicates the key ID, the second
token the format of the key and the third the key itself. There are four key
formats. An “A” indicates a DES key written as a 1-to-8 character string in 7-bit
ASCII representation, with each character standing for a key octet (like a UNIX
password). An “S” indicates a DES key written as a hex number in the DES
standard format, with the low order bit (LSB) of each octet being the (odd)
parity bit. An “N” indicates a DES key again written as a hex number, but in
NTP standard format with the high order bit of each octet being the (odd)
parity bit. An “M” indicates an MD5 key written as a 1-to-31 character ASCII
string in the “A” format. Note that, because of the simple tokenizing routine,

for DES keys
authspeed -n 30000 auth.samplekeys
for MD5 keys
authspeed -nd 30000 auth.samplekeys

ntp keys file (ntp.keys)
 1 N 29233E0461ECD6AE # des key in NTP format
 2 M RIrop8KPPvQvYotM # md5 key as an ASCII random string
14 M sundial # md5 key as an ASCII string
15 A sundial # des key as an ASCII string
the following 3 keys are identical
10 a SeCReT
10 N d3e54352e5548080
10 S a7cb86a4cba80101

Network Time Protocol 2-17

2

the characters ' ', '#', '\t', '\n' and '\0' can't be used in either a DES or MD5
ASCII key. Everything else is fair game, though. Key 0 (zero) is used for special
purposes and should not appear in this file.

The big trouble with the authentication facility is the keys file. It is a
maintenance headache and a security problem. This should be fixed some day.
Presumably, this whole bag of worms goes away if/when a generic security
regime for the Internet is established.

Query Programs
Three utility query programs are included with the xntp3 distribution,
ntpq(1M) , ntptrace(1M) and xntpdc(1M) . ntpq(1M) is a rather handy
program that sends queries and receives responses using NTP standard mode-
6 control messages. Since it uses the standard control protocol specified in RFC
1305, it may be used with NTP Version 2 and Version 3 implementations for
both UNIX and Fuzzball, but not Version 1 implementations. It is most useful
to query remote NTP implementations to assess timekeeping accuracy and
expose bugs in configuration or operation.

ntptrace(1M) can be used to display the current synchronization path from a
selected host through possibly intervening servers to the primary source of
synchronization, usually a radio clock. It works with both version 2 and
version 3 servers, but not version 1.

Xnptdc is a horrid program that uses NTP private mode-7 control messages to
query local or remote servers. The format and contents of these messages are
specific to xntpd(1M) . The program does allow inspection of a wide variety of
internal counters and other state data, and hence does make a pretty good
debugging tool, even if it is frustrating to use. The other thing of note about
xntpdc(1M) is that it provides a user interface to the runtime reconfiguration
facility.

See the respective man pages for details on the use of these programs. The
primary reason for mentioning them here is to point out an inconsistency that
can be awfully annoying if it catches you, and that is worth keeping firmly in
mind. Both xntpdc(1M) and xntpd(1M) demand that anything that has
dimensions of time be specified in units of seconds, both in the configuration
file and when doing runtime reconfiguration. Both programs also print the
values in seconds. ntpq(1M) on the other hand, obeys the standard by
printing all time values in milliseconds. This makes the process of looking at

2-18 Network Time Protocol User’s Guide—March 1997

2

values with ntpq(1M) and then changing them in the configuration file or
with xntpdc(1M) very prone to errors (by three orders of magnitude). I wish
this problem didn't exist, but xntpd(1M) and its love of seconds predate the
mode-6 protocol and the latter's (Fuzzball-inspired) millisecond orientation,
making the inconsistency unresolvable without considerable work.

Runtime Reconfiguration
xntpd(1M) was written specifically to allow its configuration to be fully
modifiable at runtime. Indeed, the only way to configure the server is at
runtime. The configuration file is read only after the rest of the server has been
initialized into a running, but default unconfigured, state. This facility was
included not so much for the benefit of UNIX, where it is handy but not strictly
essential, but rather for dedicated platforms where the feature is more
important for maintenance. Nevertheless, runtime configuration works very
nicely for UNIX servers as well.

Nearly all of the things it is possible to configure in the configuration file may
be altered via NTP mode-7 messages using the xntpdc(1M) program. Mode-6
messages may also provide some limited configuration functionality (though
the only thing you can currently do with mode-6 messages is set the leap-
second warning bits) and the ntpq(1M) program provides generic support for
the latter.

Mode-6 and mode-7 messages that would modify the configuration of the
server are required to be authenticated using standard NTP authentication. To
enable the facilities one must, in addition to specifying the location of a keys
file, indicate in the configuration file the key IDs to be used for authenticating
reconfiguration commands. Hence the following fragment might be added to a
configuration file to enable the mode-6 (ntpq(1M)) and mode-7 (xntpdc(1M))
facilities in the daemon:

If the “requestkey” and/or the “controlkey” configuration declarations are
omitted from the configuration file, the corresponding runtime reconfiguration
facility is disabled.

specify mode-6 and mode-7 trusted keys
requestkey 65535 # for mode-7 requests
controlkey 65534 # for mode-6 requests

Network Time Protocol 2-19

2

The query programs require the user to specify a key ID and a key to use for
authenticating requests to be sent. The key ID provided should be the same as
the one mentioned in the configuration file, while the key should match that
corresponding to the key ID in the keys file. As the query programs prompt for
the key as a password, it is useful to make the request and control
authentication keys typeable (in ASCII format) from the keyboard.

Name Resolution
xntpd(1M) includes the capability to specify host names requiring resolution
in “peer” and “server” declarations in the configuration file. There are several
reasons why this was not permitted in the past. Chief among these is the fact
that name service is unreliable and the interface to the UNIX resolver routines
is synchronous. The hang-ups and delays resulting from name-resolver
clanking can be unacceptable once the NTP server is running (and remember it
is up and running before the configuration file is read). However, it is
advantageous to resolve time server names, since their addresses are
occasionally changed.

Instead of running the resolver itself the daemon can defer this task to a
separate program, xntpres . When the daemon comes across a “peer” or
“server” entry with a non-numeric host address it records the relevant
information in a temporary file and continues on. When the end of the
configuration file has been reached and one or more entries requiring name
resolution have been found, the server runs an instance of xntpres with the
temporary file as an argument. The server then continues on normally but with
the offending peers/servers omitted from its configuration.

When xntpres successfully resolves a name from this file, it configures the
associated entry into the server using the same mode-7 runtime
reconfiguration facility that xntpdc(1M) uses. If temporary resolver failures
occur, xntpres will periodically retry the offending requests until a definite
response is received. The program will continue to run until all entries have
been resolved.

2-20 Network Time Protocol User’s Guide—March 1997

2

There are several configuration requirements if xntpres is to be used. The
path to the xntpres program must be made known to the daemon via a
“resolver” configuration entry, and mode-7 runtime reconfiguration must be
enabled. The following fragment might be used to accomplish this:

Note that xntpres sends packets to the server with a source address of
127.0.0.1. You should obviously avoid “restrict” modification requests from this
address or xntpres will fail.

Frequency Tolerance Violations (Tickadj and Friends)
The NTP Version 3 specification RFC 1305 calls for a maximum oscillator
frequency tolerance of +-100 parts-per-million (ppm), which is representative
of those components suitable for use in relatively inexpensive workstation
platforms. For those platforms meeting this tolerance, NTP will automatically
compensate for the frequency errors of the individual oscillator and no further
adjustments are required, either to the configuration file or to various kernel
variables.

However, in the case of certain notorious platforms, in particular Sun 4s, the
100-ppm tolerance is routinely violated. In such cases it may be necessary to
adjust the values of certain kernel variables; in particular, tick and
tickadj(1M) . The variable tick is the increment in microseconds added to the
system time on each interval-timer interrupt, while the variable tickadj(1M)
is used by the time adjustment code as a slew rate. When the time is being
adjusted via a call to the system routine adjtime(2) , the kernel increases or
reduces tick by tickadj(1M) microseconds until the specified adjustment has
been completed. Unfortunately, in most UNIX implementations the tick
increment must be either zero or plus/minus exactly tickadj(1M)
microseconds, meaning that adjustments are truncated to be an integral
multiple of tickadj(1M) (this latter behavior is a misfeature, and is the only
reason the xntpd(1M) code needs to concern itself with the internal
implementation of adjtime(2) at all). In addition, the stock UNIX
implementation considers it an error to request another adjustment before a
prior one has completed.

specify host name resolver data
resolver /opt/SUNWxntp/bin
keys /etc/opt/SUNWxntp
requestkey 65535

Network Time Protocol 2-21

2

Thus, to make very sure it avoids problems related to the roundoff, the
xntpd(1M) daemon reads the values of tick and tickadj(1M) from
/dev/kmem when it starts. It then ensures that all adjustments given to
adjtime(2) are an even multiple of tickadj(1M) microseconds and
computes the largest adjustment that can be completed in the adjustment
interval (using both the value of tickadj(1M) and the value of tick) so it can
avoid exceeding this limit.

Unfortunately, the value of tickadj(1M) set by default is almost always too
large for xntpd(1M) . NTP operates by continuously making small adjustments
to the clock, usually at one-second intervals. If tickadj(1M) is set too large,
the adjustments will disappear in the roundoff; while, if tickadj(1M) is too
small, NTP will have difficulty if it needs to make an occasional large
adjustment. While the daemon itself will read the kernel's values of tick and
tickadj(1M) , it will not change the values, even if they are unsuitable.

NOTE: If you need to reinitialize the xntp daemon, use the following start-up
script (you need to be root in order to execute it):

where server1 and server2 are the Internet addresses of the time servers.

The tickadj(1M) program can reset several other kernel variables if asked. It
can also change the value of tick if asked, this being necessary on a few
machines with very broken clocks, like Sun 4s. With these machines it should
also set the value of the kernel dosynctodr variable to zero. This variable
controls whether to synchronize the system clock to the time-of-day clock,
something you really don't want to be happen when xntpd(1M) is trying to
keep it under control.

In order to maintain reasonable correctness bounds, as well as reasonably good
accuracy with acceptable polling intervals, xntpd(1M) will complain if the
frequency error is greater than 100 ppm. For machines with a value of tick in
the 10-ms range, a change of one in the value of tick will change the frequency

tickadj -s -a 1000
ntpdate -v server1 server2
sleep 20
ntpdate -v server1 server2
sleep 20
tickadj -a 200
xntpd

2-22 Network Time Protocol User’s Guide—March 1997

2

by about 100 ppm. In order to determine the value of tick for a particular CPU,
disconnect the machine from all sources of time (dosynctodr = 0) and record its
actual time compared to an outside source (eyeball-and-wristwatch will do)
over a day or more. Multiply the time change over the day by 0.116 and add or
subtract the result to tick, depending on whether the CPU is fast or slow. An
example call to tickadj(1M) useful on Sun 4s is:

which sets tick 100 ppm fast, tickadj(1M) to 5 microseconds and turns off the
clock/calendar chip fiddle. This line can be added to the rc.local configuration
file to automatically set the kernel variables at boot time.

Tuning Your Subnet
There are several parameters available for tuning the NTP subnet for
maximum accuracy and minimum jitter. Two important parameters are the
“precision” and “prefer” configuration declarations. The precision declaration
specifies the number of significant bits of the system clock representation
relative to one second. For instance, the default value of -6 corresponds to 1/64
second or about 16 milliseconds.

The NTP protocol makes use of the precision parameter in several places. It is
included in packets sent to peers and is used by them to calculate the
maximum absolute error and maximum statistical error. When faced with
selecting one of several servers of the same stratum and about the same
network path delay for synchronization purposes, clients will usually prefer to
synchronize to those servers claiming the smallest (most negative) precision,
since this maximizes the accuracy and minimizes the jitter apparent to
application programs running on the client platform. Therefore, when the
maximum attainable accuracy is required, it is important that every platform
configure an accurate value for the precision variable. This can be done using
the optional “precision” declaration in the configuration file:

tickadj -t 9999 -a 5 -s

precision declaration
precision -18 # for microsecond clocks (Sun 4s, DEC 5000/240)

Network Time Protocol 2-23

2

When more than one eligible server exists, the NTP clock-selection and
combining algorithms act to winnow out all except the “best” set of servers
using several criteria based on differences between the readings of different
servers and between successive readings of the same server. The result is
usually a set of surviving servers that are apparently statistically equivalent in
accuracy, jitter and stability. The population of survivors remaining in this set
depends on the individual server characteristics measured during the selection
process and may vary from time to time as the result of normal statistical
variations. In LANs with high speed RISC-based time servers, the population
can become somewhat unstable, with individual servers popping in and out of
the surviving population, generally resulting in a regime called clockhopping.

When only the smallest residual jitter can be tolerated, it may be convenient to
elect one of the servers at each stratum level as the preferred one using the
keyword “prefer” on the configuration declaration for the selected server:

The preferred server will always be included in the surviving population,
regardless of its characteristics and as long as it survives preliminary sanity
checks and validation procedures.

The most useful application of the prefer keyword is in high speed LANs
equipped with precision radio clocks, such as a GPS receiver. In order to insure
robustness, the hosts need to include outside peers as well as the GPS-
equipped server; however, as long as that server is running, the
synchronization preference should be that server. The keyword should
normally be used in all cases in order to prefer an attached radio clock. It is
probably inadvisable to use this keyword for peers outside the LAN, since it
interferes with the carefully crafted judgement of the selection and combining
algorithms.

Provisions for Leap Seconds and Accuracy Metrics
xntpd(1M) understands leap seconds and will attempt to take appropriate
action when one occurs. In principle, every host running xntpd(1M) will
insert a leap second in the local timescale in precise synchronization with UTC.
This requires that the leap-warning bits be manually activated some time prior
to the occurrence of a leap second at the primary (stratum 1) servers.

preferred server declaration
peer 128.4.1.1 prefer # preferred server

2-24 Network Time Protocol User’s Guide—March 1997

2

Subsequently, these bits are propagated throughout the subnet depending on
these servers by the NTP protocol itself and automatically implemented by
xntpd(1M) and the time-conversion routines of each host. The
implementation is independent of the idiosyncracies of the particular radio
clock, which vary widely among the various devices, as long as the
idiosyncratic behavior does not last for more than about 20 minutes following
the leap. Provisions are included to modify the behavior in cases where this
cannot be guaranteed.

While provisions for leap seconds have been carefully crafted so that correct
timekeeping immediately before, during and after the occurrence of a leap
second is scrupulously correct, stock UNIX systems are mostly inept in
responding to the available information. This caveat goes also for the
maximum-error and statistical-error bounds carefully calculated for all clients
and servers, which could be very useful for application programs needing to
calibrate the delays and offsets to achieve a near- simultaneous commit
procedure, for example. While this information is maintained in the
xntpd(1M) data structures, there is at present no way for application
programs to access it. This may be a topic for further development.

Network Time Protocol 2-25

2

Clock Support Overview
xntpd(1M) was designed to support radio (and other external) clocks and
does some parts of this function with utmost care. Clocks are treated by the
protocol as ordinary NTP peers, even to the point of referring to them with an
(invalid) IP host address. Clock addresses are of the form 127.127.t.u, where t
specifies the particular type of clock (i.e. refers to a particular clock driver) and
u is a unit number whose interpretation is clock-driver dependent. This is
analogous to the use of major and minor device numbers by UNIX and permits
multiple instances of clocks of the same type on the same server, should such
magnificent redundancy be required.

Because clocks look much like peers, both configuration file syntax and
runtime reconfiguration commands can be used to control clocks in the same
way as ordinary peers. Clocks are configured via “server” declarations in the
configuration file, can be started and stopped using xntpdc(1M) and are
subject to address-and-mask restrictions much like a normal peer, should this
stretch of imagination ever be useful. As a concession to the need to sometimes
transmit additional information to clock drivers, an additional configuration
file is available: the “fudge” statement. This enables one to specify the values
two time quantities, two integral values and two flags, the use of which is
dependent on the particular clock driver. For example, to configure a PST radio
clock that can be accessed through the serial device /dev/pst1 , with
propagation delays to WWV and WWVH of 7.5 and 26.5 milliseconds,
respectively, on a machine with an imprecise system clock and with the driver
set to disbelieve the radio clock once it has gone 30 minutes without an update,
one might use the following configuration file entries:

Additional information on the interpretation of these data with respect to
various radio clock drivers is given in the xntpd(1M) man page.

radio clock fudge fiddles
server 127.127.3.1
fudge 127.127.3.1 time1 0.0075 time2 0.0265
fudge 127.127.3.1 value2 30 flag1 1

2-26 Network Time Protocol User’s Guide—March 1997

2

Towards the Ultimate Tick
This section considers issues in providing precision time synchronization in
NTP subnets that need the highest quality time available in the present
technology. These issues are important in subnets supporting real-time services
such as distributed multimedia conferencing and wide-area experiment control
and monitoring.

In the Internet of today synchronization paths often span continents and
oceans with moderate to high variations in delay due to traffic spasms. NTP is
specifically designed to minimize timekeeping jitter due to delay variations
using intricately crafted filtering and selection algorithms; however, in cases
where these variations are as much as a second or more, the residual jitter
following these algorithms may still be excessive. Sometimes, as in the case of
some isolated NTP subnets where a local source of precision time is available,
such as a 1-pps signal produced by a calibrated cesium clock, it is possible to
remove the jitter and reset the local clock oscillator of the NTP server. This has
turned out to be a useful feature to improve the synchronization quality of
time distributed in remote places where radio clocks are not available. In these
cases special features of the xntp3 distribution are used together with the 1-pps
signal to provide a jitter-free timing signal, while NTP itself is used to provide
the coarse timing and resolve the seconds numbering.

Most available radio clocks can provide time to an accuracy in the order of
milliseconds, depending on propagation conditions, local noise levels and so
forth. However, as a practical matter, all clocks can occasionally display errors
significantly exceeding nominal specifications. Usually, the algorithms used by
NTP for ordinary network peers, as well as radio clock “peers” will detect and
discard these errors as discrepancies between the disciplined local clock
oscillator and the decoded time message produced by the radio clock. Some
radio clocks can produce a special 1-pps signal that can be interfaced to the
server platform in a number of ways and used to substantially improve the
(disciplined) clock oscillator jitter and wander characteristics by at least an
order of magnitude. Using these features it is possible to achieve accuracies in
the order of 100 microseconds with a fast RISC- based platform.

There are three ways to implement 1-pps support, depending on the radio
clock model, platform model and serial line interface. Each of these requires
circuitry to convert the TTL signal produced by most clocks to the EIA levels

Network Time Protocol 2-27

2

used by most serial interfaces. Besides being useful for this purpose, this
device includes an inexpensive modem designed for use with the Canadian
CHU time/frequency radio station.

Note – The Sun-supplied binary does not support the implementations that
follow. Proceed to the next section, “Swatting Bugs”.

In order to select the appropriate implementation, it is important to
understand the underlying 1-pps mechanism used by xntpd(1M) . The 1-pps
support depends on a continuous source of 1-pps pulses used to calculate an
offset within +-500 milliseconds relative to the local clock. The serial timecode
produced by the radio or the time determined by NTP in absence of the radio
is used to adjust the local clock within +-128 milliseconds of the actual time. As
long as the local clock is within this interval the 1-pps support is used to
discipline the local clock and the timecode used only to verify that the local
clock is in fact within the interval. Outside this interval the 1-pps support is
disabled and the timecode used directly to control the local clock.

The first method of implementation uses a dedicated serial port and either the
BSD line discipline or System V streams module, which can be found in the
kernel directory of the xntp3 distribution. This method can be used with any
radio clock or in the absence of any clock. The line discipline and streams
modules take receive timestamps in the kernel, specifically the interrupt
routine of the serial port hardware driver. Using this method the port is
dedicated to serve the 1-pps signal and cannot be used for other purposes.
Instructions for implementing the feature, which requires rebuilding the
kernel, are included in the modules themselves. Note that xndpd must be
compiled with the -DPPSDEV compiler switch in this case. There is an inherent
error in this method due to the latency of the interrupt system and remaining
serial-line protocol modules in the order of a millisecond with Sun 4s. While
the jitter in this latency is unavoidable, the systematic component can be
calibrated out using a special configuration declaration:

Note that the delay defaults to zero and the baud to 38400.

pps delay and baud rate
pps delay.0017 baud 19200 # pps delay (ms) and baud rate

2-28 Network Time Protocol User’s Guide—March 1997

2

The second method uses mechanisms embedded in the radio clock driver,
which call the 1-pps support directly and do not require a dedicated serial
port. Currently, only the DCF77 (German radio time service) driver uses this
method.

The third method and the most accurate and intrusive of all uses the carrier-
detect modem-control lead monitored by the serial port driver. This method
can be used with any radio clock and 1-pps interface mentioned above. It
requires in addition to a special streams module, replacement of the kernel
high resolution time-of-day clock routine. This method is applicable only to
Sun 4 platforms running SunOS 4.1.1 and then only with either of the two
onboard serial ports. It does not work with other platforms, operating systems
or external (SBus) serial multiplexors.

Swatting Bugs
In the Ultra Enterprise 10000 system the xntpd(1M) daemon and utility
programs (ntpq(1M) , ntptrace(1M) and xntpdc(1M)) are installed in the
/opt/SUNWxntp/bin directory along with the key file (ntp.keys), while the
configuration file (ntp.conf) and drift file (ntp.drift) are installed in the
/etc/opt/SUNWxntp directory. The daemon is usually started from the
rc.local shell script at system boot time, but could be started (and stopped) at
other times for debugging, etc. How do you verify that the daemon can form
associations with remote peers and verify correct synchronization? For this you
need the ntpq(1M) utility described in the ntpq(1M) man page.

After starting the daemon, run the ntpq(1M) program using the -n switch,
which will avoid possible distractions due to name resolutions. Use the peer
command to display a billboard showing the status of configured peers and
possibly other clients poking the daemon. After operating for a few minutes,
the display should be something like:

remote refid st when poll reach delay offset disp

+128.4.2.6 132.249.16.1 2 131 256 373 9.89 16.28 23.25

*128.4.1.20 .WWVB. 1 137 256 377 280.62 21.74 20.23

-128.8.2.88 128.8.10.1 2 49 128 376 294.14 5.94 17.47

+128.4.2.17 .WWVB. 1 173 256 377 279.95 20.56 16.40

Network Time Protocol 2-29

2

The hosts shown in the “remote” column should agree with the entries in the
configuration file, plus any peers not mentioned in the file at the same or lower
than your stratum that happen to be configured to peer with you. The “refid”
entry shows the current source of synchronization for that peer, while the “st”
reveals its stratum and the “poll” entry the polling interval, in seconds. The
“when” entry shows the time since the peer was last heard, in seconds, while
the “reach” entry shows the status of the reachability register (see
specification), which is in octal format. The remaining entries show the latest
delay, offset and dispersion computed for the peer, in milliseconds.

2-30 Network Time Protocol User’s Guide—March 1997

2

Index-1

Index

A
association modes, 2-2

C
CHU radio clock, 1-2

D
DCF77 radio clock, 1-2

G
GOES radio clock, 1-2
GPS radio clock, 1-2

I
Internet, 2-1

N
Network Time Protocol, 1-1
NTP, 1-1
ntpdate, 1-2
ntpq, 1-2
ntptrace, 1-2

R
RFC 1059, 1-1
RFC 1119, 1-1
RFC 1305, 1-1, 1-2

S
server declaration, 2-2
stratum-2 server, 2-2
stratum-3 server, 2-2
symmetric-active mode, 2-2
synchronization subnet, 2-2

U
UTC, 2-1

W
WWV, 1-2
WWV radio clock, 1-2
WWVB radio clock, 1-2

X
xntpd, 2-3
xntpdc, 1-2

Index-2 Network Time Protocol User’s Guide—March 1997

