
DTrace User Guide

Part No: 819–5488–10
May 2006

Copyright ©2006Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of
Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the
Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright ©2006Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

110417@25097

Contents

Preface ...5

1 Introduction ...9
DTrace Capabilities ..9
Architecture overview ... 11

DTrace Providers ... 11
DTrace Probes .. 12
DTrace Predicates .. 12
DTrace Actions .. 12
D Scripting Language .. 12

2 DTrace Basics ..13
Listing Probes ... 13
Specifying Probes in DTrace .. 15
Enabling Probes ... 16
DTrace Action Basics .. 17

Data Recording Actions .. 19
Destructive Actions ... 21

DTrace Aggregations .. 23
DTrace Aggregation Syntax .. 23

3 Scripting With the D Language ... 25
Writing D Scripts ... 25

Executable D Scripts .. 25
D Literal Strings ... 26
Creating D Scripts That Use Arguments ... 27

DTrace Built-in Variables .. 30

3

4 Using DTrace ...35
Performance Monitoring .. 35

Examining Performance Problems With The sysinfo Provider .. 35
Tracing User Processes ... 41

Using the copyin() and copyinstr() Subroutines .. 41
Eliminating dtrace Interference ... 42
syscall Provider ... 43
The ustack() Action ... 44
The pid Provider .. 45

Anonymous Tracing ... 48
Anonymous Enablings .. 48
Claiming Anonymous State .. 49
Anonymous Tracing Examples .. 49

Speculative Tracing ... 52
Speculation Interfaces ... 52
Creating a Speculation ... 52
Using a Speculation ... 53
Committing a Speculation .. 53
Discarding a Speculation .. 54
Speculation Example ... 54

Index ..59

Contents

DTrace User Guide • May 20064

Preface

The DTrace User Guide is a lightweight introduction to the powerful tracing and analysis tool
DTrace. In this book, you will find a description of DTrace and its capabilities, as well as
directions on how to use DTrace to perform relatively simple and common tasks.

Who Should Use This Book
DTrace is a comprehensive dynamic tracing facility that is built into Solaris. You can use the
DTrace facility can be used to examine the behavior of user programs or the behavior of the
operating system. DTrace can be used by system administrators or application developers on
live production systems.

DTrace allows Solaris developers and administrators to:

■ Implement custom scripts that use the DTrace facility
■ Implement layered tools that use DTrace to retrieve trace data

This book is not a comprehensive guide to DTrace or the D scripting language. Please refer to
the Solaris Dynamic Tracing Guide for in-depth reference information.

Before You Read This Book
Basic familiarity with a programming language such as C or a scripting language such as awk(1)
or perl(1) will help you learn DTrace and the D programming language faster, but you need
not be an expert in any of these areas. If you have never written a program or script before in
any language, “Related Books” on page 6 provides references to other documents you might
find useful.

5

http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=dynmctrcggd
http://www.oracle.com/pls/topic/lookup?ctx=816-5165&id=awk-1
http://www.oracle.com/pls/topic/lookup?ctx=816-5165&id=perl-1

Related Books
For an in depth reference to DTrace, see the Solaris Dynamic Tracing Guide. These books and
papers are recommended and related to the tasks that you need to perform with DTrace:

■ Kernighan, Brian W. and Ritchie, Dennis M. The C Programming Language. Prentice Hall,
1988. ISBN 0–13–110370–9

■ Mauro, Jim and McDougall, Richard. Solaris Internals: Core Kernel Components. Sun
Microsystems Press, 2001. ISBN 0-13-022496-0

■ Vahalia, Uresh. UNIX Internals: The New Frontiers. Prentice Hall, 1996. ISBN
0-13-101908-2

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

Preface

DTrace User Guide • May 20066

http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=dynmctrcggd
http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

TABLE P–1 Typographic Conventions (Continued)
Typeface Meaning Example

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Preface

7

8

Introduction

DTrace is a comprehensive dynamic tracing facility that is built into Solaris. DTrace can be used
by administrators and developers, and can safely be used on live production systems. DTrace
enables you to examine the behavior of user programs as well as the behavior of the operating
system. Users of DTrace can create custom programs with the D scripting language. Custom
programs provide the ability to dynamically instrument the system. Custom programs provide
immediate, concise answers to specific questions about the behavior of particular applications.

DTrace Capabilities
The DTrace framework provides instrumentation points that are called probes. A DTrace user
can use a probe to record and display relevant information about a kernel or user process. Each
DTrace probe is activated by a specific behavior. This probe activation is referred to as firing. As
an example, consider a probe that fires on entry into an arbitrary kernel function. This example
probe can display the following information:

1C H A P T E R 1

9

■ Any argument that is passed to the function
■ Any global variable in the kernel
■ A timestamp that indicates when the function was called
■ A stack trace that indicates the section of code that called the function
■ The process that was running at the time the function was called
■ The thread that made the function call

When a probe fires, you can specify a particular action for DTrace to take. A DTrace action
usually records an interesting aspect of system behavior, such as a timestamp or a function
argument.

DTrace Capabilities

DTrace User Guide • May 200610

Probes are implemented by providers. A probe provider is a kernel module that enables a given
probe to fire. For example, the function boundary tracing provider fbt provides entry and
return probes for almost every function in every kernel module.

DTrace has significant data management capabilities. These capabilities enable DTrace users to
prune the data reported by probes, avoiding the overhead involved in generating and then
filtering unwanted data. DTrace also provides mechanisms for tracing during the boot process
and for retrieving data from a kernel crash dump. All of the instrumentation in DTrace is
dynamic. Probes are enabled discretely at the time that the probes are used, and inactive probes
present no instrumented code.

A DTrace consumer is any process that interacts with the DTrace framework. While
dtrace(1M) is the primary DTrace consumer, other consumers exist. These additional
consumers mostly consist of new versions of existing utilities such as lockstat(1M). The
DTrace framework has no limit on the number of concurrent consumers.

The behavior of DTrace can be modified with the use of scripts that are written in the D
language, which is structured similarly to C. The D language provides access to kernel C types
and kernel static and kernel global variables. The D language supports ANSI C operators.

Architecture overview
The DTrace facility consists of the following components:

■ User level consumer programs such as dtrace
■ Providers, packaged as kernel modules, that provide probes to gather tracing data
■ A library interface that consumer programs use to access the DTrace facility through the

dtrace(7D) kernel driver

DTrace Providers
A provider represents a methodology for instrumenting the system. Providers make probes
available to the DTrace framework. DTrace sends information to a provider regarding when to
enable a probe. When an enabled probe fires, the provider transfers control to DTrace.

Providers are packaged as a set of kernel modules. Each module performs a particular kind of
instrumentation to create probes. When you use DTrace, each provider has the ability to
publish the probes it can provide to the DTrace framework. You can enable and bind tracing
actions to any of the published probes.

Some providers have the capability to create new probes based on the user's tracing requests.

Architecture overview

Chapter 1 • Introduction 11

http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=dtrace-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=lockstat-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=dtrace-7d

DTrace Probes
A probe has the following attributes:
■ It is made available by a provider
■ It identifies the module and the function that it instruments
■ It has a name

These four attributes define a 4–tuple that serves as a unique identifier for each probe, in the
format provider:module:function:name. Each probe also has a unique integer identifier.

DTrace Predicates
Predicates are expressions that are enclosed in slashes / /. Predicates are evaluated at probe
firing time to determine whether the associated actions should be executed. Predicates are the
primary conditional construct used for building more complex control flow in a D program.
You can omit the predicate section of the probe clause entirely for any probe. If the predicate
section is omitted, the actions are always executed when the probe fires.

Predicate expressions can use any of the previously described D operators. Predicate
expressions refer to D data objects such as variables and constants. The predicate expression
must evaluate to a value of integer or pointer type. As with all D expressions, a zero value is
interpreted as false and any non-zero value is interpreted as true.

DTrace Actions
Actions are user-programmable statements that the DTrace virtual machine executes within the
kernel. Actions have the following properties:
■ Actions are taken when a probe fires
■ Actions are completely programmable in the D scripting language
■ Most actions record a specified system state
■ An action can change the state of the system in a precisely described way. Such actions are

called destructive actions. Destructive actions are not allowed by default.
■ Many actions use expressions in the D scripting language

D Scripting Language
You can invoke the DTrace framework directly from the command line with the dtrace
command for simple functions. To use DTrace to perform more complex functions, write a
script in the D scripting language. Use the -s option to load a specified script for DTrace to use.
See Chapter 3, “Scripting With the D Language,” for information about using the D scripting
language.

Architecture overview

DTrace User Guide • May 200612

DTrace Basics

This chapter provides a tour of the DTrace facility and provides examples of several basic tasks.

Listing Probes
You can list all DTrace probes by passing the -l option to the dtrace command:

dtrace -l

ID PROVIDER MODULE FUNCTION NAME

1 dtrace BEGIN

2 dtrace END

3 dtrace ERROR

4 syscall nosys entry

5 syscall nosys return

6 syscall rexit entry

7 syscall rexit return

8 syscall forkall entry

9 syscall forkall return

10 syscall read entry

11 syscall read return

...

To count all the probes that are available on your system, you can type the following command:

dtrace -l | wc -l

The number of probes reported will vary depending on your operating platform and the
software you have installed. Some probes do not list an entry under the MODULE or FUNCTION
columns, such as the BEGIN and END probes in the previous example. Probes with blank entries
in these fields do not correspond to a specifically instrumented program function or location.
These probes refer to more abstract concepts, such as the end of a tracing request. A probe that
has a module and function as part of its name is called an anchored probe. A probe that is not
associated with a module and function is called an unanchored probe.

You can use additional options to list specific probes, as seen in the following examples.

2C H A P T E R 2

13

EXAMPLE 2–1 Listing Probes by Specific Function

You can list probes that are associated with a specific function by passing that function name to
DTrace with the -f option.

dtrace -l -f cv_wait

ID PROVIDER MODULE FUNCTION NAME

12921 fbt genunix cv_wait entry

12922 fbt genunix cv_wait return

EXAMPLE 2–2 Listing Probes by Specific Module

You can list probes that are associated with a specific module by passing that module name to
DTrace with the -m option.

dtrace -l -m sd

ID PROVIDER MODULE FUNCTION NAME

17147 fbt sd sdopen entry

17148 fbt sd sdopen return

17149 fbt sd sdclose entry

17150 fbt sd sdclose return

17151 fbt sd sdstrategy entry

17152 fbt sd sdstrategy return

...

EXAMPLE 2–3 Listing Probes by Specific Name

You can list probes that have a specific name by passing that name to DTrace with the -n
option.

dtrace -l -n BEGIN

ID PROVIDER MODULE FUNCTION NAME

1 dtrace BEGIN

EXAMPLE 2–4 Listing Probes by Provider of Origin

You can list probes that are originate from a specific provider by passing the provider name to
DTrace with the -P option.

dtrace -l -P lockstat

ID PROVIDER MODULE FUNCTION NAME

469 lockstat genunix mutex_enter adaptive-acquire

470 lockstat genunix mutex_enter adaptive-block

471 lockstat genunix mutex_enter adaptive-spin

472 lockstat genunix mutex_exit adaptive-release

473 lockstat genunix mutex_destroy adaptive-release

474 lockstat genunix mutex_tryenter adaptive-acquire

...

EXAMPLE 2–5 Multiple Providers Supporting a Specific Function or Module

A specific function or specific module can be supported by multiple providers, as the following
example shows.

Listing Probes

DTrace User Guide • May 200614

EXAMPLE 2–5 Multiple Providers Supporting a Specific Function or Module (Continued)

dtrace -l -f read

ID PROVIDER MODULE FUNCTION NAME

10 syscall read entry

11 syscall read return

4036 sysinfo genunix read readch

4040 sysinfo genunix read sysread

7885 fbt genunix read entry

7886 fbt genunix read return

As the previous examples show, the output for a listing of probes displays the following
information:
■ The probe's uniquely assigned integer probe ID

Note – The probe ID is only unique within a given release or patch level of the Solaris
operating system.

■ The provider name
■ The module name, if applicable
■ The function name, if applicable
■ The probe name

Specifying Probes in DTrace
You can fully specify a probe by listing each component of the 4–tuple that uniquely identifies
that probe. The format for the probe specification is provider:module:function:name. An empty
component in a probe specification matches anything. For example, the specification
fbt::alloc:entry specifies a probe with the following attributes:
■ The probe must be from the fbt provider
■ The probe may be in any module
■ The probe must be in the alloc function
■ The probe must be named entry

Elements on the left hand side of the 4–tuple are optional. The probe specification
::open:entry is equivalent to the specification open:entry. Either specification will match
probes from all providers and kernel modules that have a function name of open and are named
entry.

dtrace -l -n open:entry

ID PROVIDER MODULE FUNCTION NAME

14 syscall open entry

7386 fbt genunix open entry

Specifying Probes in DTrace

Chapter 2 • DTrace Basics 15

You can also describe probes with a pattern matching syntax that is similar to the syntax that is
described in the File Name Generation section of the sh(1) man page. The syntax supports the
special characters *, ?, [, and]. The probe description syscall::open*:entry matches both
the open and open64 system calls. The ? character represents any single character in the name.
The [and] characters are used to specify a set of specific characters in the name.

Enabling Probes
You enable probes with the dtrace command by specifying the probes without the -l option.
Without further directions, DTrace performs the default action when the specified probe fires.
The default probe action indicates only that the specified probe has fired and does not record
any other data. The following code example enables every probe in the sd module.

EXAMPLE 2–6 Enabling Probes by Module

dtrace -m sd

CPU ID FUNCTION:NAME

0 17329 sd_media_watch_cb:entry

0 17330 sd_media_watch_cb:return

0 17167 sdinfo:entry

0 17168 sdinfo:return

0 17151 sdstrategy:entry

0 17152 sdstrategy:return

0 17661 ddi_xbuf_qstrategy:entry

0 17662 ddi_xbuf_qstrategy:return

0 17649 xbuf_iostart:entry

0 17341 sd_xbuf_strategy:entry

0 17385 sd_xbuf_init:entry

0 17386 sd_xbuf_init:return

0 17342 sd_xbuf_strategy:return

0 17177 sd_mapblockaddr_iostart:entry

0 17178 sd_mapblockaddr_iostart:return

0 17179 sd_pm_iostart:entry

0 17365 sd_pm_entry:entry

0 17366 sd_pm_entry:return

0 17180 sd_pm_iostart:return

0 17181 sd_core_iostart:entry

0 17407 sd_add_buf_to_waitq:entry

...

The output in this example shows that the default action displays the CPU where the probe
fired, the integer probe ID that is assigned by DTrace, the function where the probe fired, and
the probe name.

EXAMPLE 2–7 Enabling Probes by Provider

dtrace -P syscall

dtrace: description ’syscall’ matched 452 probes

CPU ID FUNCTION:NAME

0 99 ioctl:return

0 98 ioctl:entry

0 99 ioctl:return

Enabling Probes

DTrace User Guide • May 200616

EXAMPLE 2–7 Enabling Probes by Provider (Continued)

0 98 ioctl:entry

0 99 ioctl:return

0 234 sysconfig:entry

0 235 sysconfig:return

0 234 sysconfig:entry

0 235 sysconfig:return

0 168 sigaction:entry

0 169 sigaction:return

0 168 sigaction:entry

0 169 sigaction:return

0 98 ioctl:entry

0 99 ioctl:return

0 234 sysconfig:entry

0 235 sysconfig:return

0 38 brk:entry

0 39 brk:return

...

EXAMPLE 2–8 Enabling Probes by Name

dtrace -n zfod

dtrace: description ’zfod’ matched 3 probes

CPU ID FUNCTION:NAME

0 4080 anon_zero:zfod

0 4080 anon_zero:zfod

^C

EXAMPLE 2–9 Enabling Probes by Fully Specified Name

dtrace -n clock:entry

dtrace: description ’clock:entry’ matched 1 probe

CPU ID FUNCTION:NAME

0 4198 clock:entry

^C

DTrace Action Basics
Actions enable DTrace to interact with the system outside of the DTrace framework. The most
common actions record data to a DTrace buffer. Other actions can stop the current process,
raise a specific signal on the current process, or cease tracing. Actions that change the system
state are considered destructive actions. Data recording actions record data to the principal
buffer by default. The principal buffer is present in every DTrace invocation and is always
allocated on a per-CPU basis. Tracing and buffer allocation can be restricted to a single CPU by
using the -cpu option. See Chapter 11, “Buffers and Buffering,” in Solaris Dynamic Tracing
Guide for more information about DTrace buffering.

The examples in this section use D expressions that consist of built-in D variables. Some of the
most commonly used D variables are listed below:

pid This variable contains the current process ID.

DTrace Action Basics

Chapter 2 • DTrace Basics 17

http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-buf
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-buf

execname This variable contains the current executable name.

timestamp This variable contains the time since boot, expressed in nanoseconds.

curthread This variable contains a pointer to the kthread_t structure that represents the
current thread.

probemod This variable contains the module name of the current probe.

probefunc This variable contains the function name of the current probe.

probename This variable contains the name of the current probe.

For a complete list of the built-in variables of the D scripting language, see Variables.

The D scripting language also provides built-in functions that perform specific actions. You can
find a complete list of these built-in functions at Chapter 10, “Actions and Subroutines,” in
Solaris Dynamic Tracing Guide. The trace() function records the result of a D expression to
the trace buffer, as in the following examples:

■ trace(pid) traces the current process ID
■ trace(execname) traces the name of the current executable
■ trace(curthread->t_pri) traces the t_pri field of the current thread
■ trace(probefunc) traces the function name of the probe

To indicate a particular action you want a probe to take, type the name of the action between {}

characters, as in the following example.

EXAMPLE 2–10 Specifying a Probe's Action

dtrace -n ’readch {trace(pid)}’

dtrace: description ’readch ’ matched 4 probes

CPU ID FUNCTION:NAME

0 4036 read:readch 2040

0 4036 read:readch 2177

0 4036 read:readch 2177

0 4036 read:readch 2040

0 4036 read:readch 2181

0 4036 read:readch 2181

0 4036 read:readch 7

...

Since the requested action is trace(pid), the process identification number (PID) appears in
the last column of the output.

EXAMPLE 2–11 Tracing an Executable Name

dtrace -m ’ufs {trace(execname)}’

dtrace: description ’ufs ’ matched 889 probes

CPU ID FUNCTION:NAME

0 14977 ufs_lookup:entry ls

0 15748 ufs_iaccess:entry ls

0 15749 ufs_iaccess:return ls

DTrace Action Basics

DTrace User Guide • May 200618

http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-actsub
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-actsub

EXAMPLE 2–11 Tracing an Executable Name (Continued)

0 14978 ufs_lookup:return ls

...

0 15007 ufs_seek:entry utmpd

0 15008 ufs_seek:return utmpd

0 14963 ufs_close:entry utmpd

^C

EXAMPLE 2–12 Tracing A System Call's Time of Entry

dtrace -n ’syscall:::entry {trace(timestamp)}’

dtrace: description ’syscall:::entry ’ matched 226 probes

CPU ID FUNCTION:NAME

0 312 portfs:entry 157088479572713

0 98 ioctl:entry 157088479637542

0 98 ioctl:entry 157088479674339

0 234 sysconfig:entry 157088479767243

...

0 98 ioctl:entry 157088481033225

0 60 fstat:entry 157088481050686

0 60 fstat:entry 157088481074680

^C

EXAMPLE 2–13 Specifying Multiple Actions

To specify multiple actions, list the actions separated by the ; character.

dtrace -n ’zfod {trace(pid);trace(execname)}’

dtrace: description ’zfod ’ matched 3 probes

CPU ID FUNCTION:NAME

0 4080 anon_zero:zfod 2195 dtrace

0 4080 anon_zero:zfod 2195 dtrace

0 4080 anon_zero:zfod 2195 dtrace

0 4080 anon_zero:zfod 2195 dtrace

0 4080 anon_zero:zfod 2195 dtrace

0 4080 anon_zero:zfod 2197 bash

0 4080 anon_zero:zfod 2207 vi

0 4080 anon_zero:zfod 2207 vi

...

Data Recording Actions
The actions in this section record data to the principal buffer by default, but each action may
also be used to record data to speculative buffers. See “Speculative Tracing” on page 52 for
more details on speculative buffers.

The trace() function
void trace(expression)

DTrace Action Basics

Chapter 2 • DTrace Basics 19

The most basic action is the trace() action, which takes a D expression as its argument and
traces the result to the directed buffer.

The tracemem() function
void tracemem(address, size_t nbytes)

The tracemem() action copies data from an address in memory to a buffer . The number of
bytes that this action copies is specified in nbytes. The address that the data is copied from is
specified in addr as a D expression. The buffer that the data is copied to is specified in buf.

The printf() function
void printf(string format, ...)

Like the trace() action, the printf() action traces D expressions. However, the printf()
action lets you control formatting in ways similar to the printf(3C) function. Like the printf
function, the parameters consists of a format string followed by a variable number of
arguments. By default, the arguments are traced to the directed buffer. The arguments are later
formatted for output by the dtrace command according to the specified format string.

For more information on the printf() action, see Chapter 12, “Output Formatting,” in Solaris
Dynamic Tracing Guide.

The printa() function
void printa(aggregation)
void printa(string format, aggregation)

The printa() action enables you to display and format aggregations. See Chapter 9,
“Aggregations,” in Solaris Dynamic Tracing Guide for more detail on aggregations. If a format
value is not provided, the printa() action only traces a directive to the DTrace consumer. The
consumer that receives that directive processes and displays the aggregation with the default
format. See Chapter 12, “Output Formatting,” in Solaris Dynamic Tracing Guide for a more
detailed description of the printa() format string.

The stack() function
void stack(int nframes)
void stack(void)

The stack() action records a kernel stack trace to the directed buffer. The depth of the kernel
stack is given by the value given in nframes. If no value is given for nframes, the stack action
records a number of stack frames specified by the stackframes option.

DTrace Action Basics

DTrace User Guide • May 200620

http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=printf-3c
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-fmt
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-fmt
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-aggs
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-aggs
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-fmt

The ustack() function
void ustack(int nframes, int strsize)
void ustack(int nframes)
void ustack(void)

The ustack() action records a user stack trace to the directed buffer. The depth of the user stack
is equal to the value specified in nframes. If there is no value for nframes, the ustack action
records a number of stack frames that is specified by the ustackframes option. The ustack()
action determines the address of the calling frames when the probe fires. The ustack() action
does not translate the stack frames into symbols until the DTrace consumer processes the
ustack() action at the user level. If a value for strsize is specified and not zero, the ustack()
action allocates the specified amount of string space and uses it to perform address-to-symbol
translation directly from the kernel.

The jstack() function
void jstack(int nframes, int strsize)
void jstack(int nframes)
void jstack(void)

The jstack() action is an alias for ustack() that uses the value specified by the jstackframes
option for the number of stack frames. The jstack action uses the value specified by the
jstackstrsize option to determine the string space size. The jstacksize action defaults to a
non-zero value.

Destructive Actions
You must explicitly enable destructive actions in order to use them. You can enable destructive
actions by using the -w option. If you attempt to use destructive actions in dtrace without
explicitly enabling them, dtrace fails with a message similar to the following example:

dtrace: failed to enable ’syscall’: destructive actions not allowed

For more information on DTrace actions, including destructive actions, see Chapter 10,
“Actions and Subroutines,” in Solaris Dynamic Tracing Guide.

Process Destructive Actions
Some actions are destructive only to a particular process. These actions are available to users
with the dtrace_proc or dtrace_user privileges. See Chapter 35, “Security,” in Solaris Dynamic
Tracing Guide for details on DTrace security privileges.

DTrace Action Basics

Chapter 2 • DTrace Basics 21

http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-actsub
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-actsub
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-sec
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-sec

The stop() function

When a probe fires with the stop() action enabled, the process that fired that probe stops upon
leaving the kernel. This process stops in the same way as a process that is stopped by a proc(4)
action.

The raise() function
void raise(int signal)

The raise() action sends the specified signal to the currently running process.

The copyout() function
void copyout(void *buf, uintptr_t addr, size_t nbytes)

The copyout() action copies data from a buffer to an address in memory. The number of bytes
that this action copies is specified in nbytes. The buffer that the data is copied from is specified in
buf. The address that the data is copied to is specified in addr. That address is in the address
space of the process that is associated with the current thread.

The copyoutstr() function
void copyoutstr(string str, uintptr_t addr, size_t maxlen)

The copyoutstr() action copies a string to an address in memory. The string to copy is
specified in str. The address that the string is copied to is specified in addr. That address is in the
address space of the process that is associated with the current thread.

The system() function
void system(string program, ...)

The system() action causes the program specified by program to be executed by the system as if
it were given to the shell as input.

Kernel Destructive Actions
Some destructive actions are destructive to the entire system. Use these actions with caution.
These actions affect every process on the system and may affect other systems, depending upon
the affected system's network services.

The breakpoint() function
void breakpoint(void)

DTrace Action Basics

DTrace User Guide • May 200622

http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=proc-4

The breakpoint() action induces a kernel breakpoint, causing the system to stop and transfer
control to the kernel debugger. The kernel debugger will emit a string that denotes the DTrace
probe that triggered the action.

The panic() function
void panic(void)

When a probe with the panic() action triggers, the kernel panics. This action can force a
system crash dump at a time of interest. You can use this action in conjunction with ring
buffering and postmortem analysis to diagnose a system problem. For more information, see
Chapter 11, “Buffers and Buffering,” in Solaris Dynamic Tracing Guide and Chapter 37,
“Postmortem Tracing,” in Solaris Dynamic Tracing Guide respectively.

The chill() function
void chill(int nanoseconds)

When a probe with the chill() action triggers, DTrace spins for the specified number of
nanoseconds. The chill() action is useful for exploring problems related to timing. Because
interrupts are disabled while in DTrace probe context, any use of chill() will induce interrupt
latency, scheduling latency, dispatch latency.

DTrace Aggregations
For performance-related questions, aggregated data is often more useful than individual data
points. DTrace provides several built-in aggregating functions. When an aggregating function
is applied to subsets of a collection of data, then applied again to the results of the analysis of
those subsets, the results are identical to the results returned by the aggregating function when
it is applied to the collection as a whole.

The DTrace facility stores a running count of data items for aggregations. The aggregating
functions store only the current intermediate result and the new element that the function is
being applied to. The intermediate results are allocated on a per-CPU basis. Because this
allocation scheme does not require locks, the implementation is inherently scalable.

DTrace Aggregation Syntax
A DTrace aggregation takes the following general form:

@name[keys] = aggfunc(args);

In this general form, the variables are defined as follows:

DTrace Aggregations

Chapter 2 • DTrace Basics 23

http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-buf
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-post
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-post

name The name of the aggregation, preceded by the @ character.

keys A comma-separated list of D expressions.

aggfunc One of the DTrace aggregating functions.

args A comma-separated list of arguments appropriate to the aggregating function.

TABLE 2–1 DTrace Aggregating Functions

Function Name Arguments Result

count none The number of times that the count function is called.

sum scalar expression The total value of the specified expressions.

avg scalar expression The arithmetic average of the specified expressions.

min scalar expression The smallest value among the specified expressions.

max scalar expression The largest value among the specified expressions.

lquantize scalar expression,
lower bound, upper
bound, step value

A linear frequency distribution of the values of the specified
expressions that is sized by the specified range. This aggregating
function increments the value in the highest bucket that is less
than the specified expression.

quantize scalar expression A power-of-two frequency distribution of the values of the
specified expressions. This aggregating function increments the
value in the highest power-of-two bucket that is less than the
specified expression.

EXAMPLE 2–14 Using an Aggregating Function

This example uses the count aggregating function to count the number of write(2) system calls
per process. The aggregation does not output any data until the dtrace command is
terminated. The output data represents a summary of the data collected during the time that the
dtrace command was active.

cat writes.d

#!/usr/sbin/dtrace -s

syscall::write:entry]

{ @numWrites[execname] = count();

}

./writes.d

dtrace: script ’writes.d’ matched 1 probe

^C

dtrace 1

date 1

bash 3

grep 20

file 197

ls 201

DTrace Aggregations

DTrace User Guide • May 200624

http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=write-2

Scripting With the D Language

This chapter discusses the basic information that you need to start writing your own D language
scripts.

Writing D Scripts
Complex sets of DTrace probes can become difficult to manage on the command line. The
dtrace command supports scripts. You can specify a script by passing the -s option, along with
the script's file name, to the dtrace command. You can also create executable DTrace
interpreter files. A DTrace interpreter file always begins with the line #!/usr/sbin/dtrace -s.

Executable D Scripts
This example script, named syscall.d, traces the executable name every time the executable
enters each system call:

syscall:::entry

{

trace(execname);

}

Note that the filename ends with a .d suffix. This is the conventional ending for D scripts. You
can run this script off the DTrace command line with the following command:

dtrace -s syscall.d

dtrace: description ’syscall ’ matched 226 probes

CPU ID FUNCTION:NAME

0 312 pollsys:entry java

0 98 ioctl:entry dtrace

0 98 ioctl:entry dtrace

0 234 sysconfig:entry dtrace

0 234 sysconfig:entry dtrace

0 168 sigaction:entry dtrace

3C H A P T E R 3

25

0 168 sigaction:entry dtrace

0 98 ioctl:entry dtrace

^C

You can run the script by entering the filename at the command line by following two steps.
First, verify that the first line of the file invokes the interpreter. The interpreter invocation line is
#!/usr/sbin/dtrace -s. Then set the execute permission for the file.

EXAMPLE 3–1 Running a D Script from the Command Line

cat syscall.d

#!/usr/sbin/dtrace -s

syscall:::entry

{

trace(execname);

}

chmod +x syscall.d

ls -l syscall.d

-rwxr-xr-x 1 root other 62 May 12 11:30 syscall.d

./syscall.d

dtrace: script ’./syscall.d’ matched 226 probes

CPU ID FUNCTION:NAME

0 98 ioctl:entry dtrace

0 98 ioctl:entry dtrace

0 312 pollsys:entry java

0 312 pollsys:entry java

0 312 pollsys:entry java

0 98 ioctl:entry dtrace

0 98 ioctl:entry dtrace

0 234 sysconfig:entry dtrace

0 234 sysconfig:entry dtrace

^C

D Literal Strings
The D language supports literal strings. DTrace represents strings as an array of characters
terminated by a null byte. The visible part of the string varies in length depending on the
location of the null byte. DTrace stores each string in a fixed-size array to ensure that each probe
traces a consistent amount of data. Strings cannot exceed the length of the predefined string
limit. The limit can be modified in your D program or on the dtrace command line by tuning
the strsize option. Refer to Chapter 16, “Options and Tunables,” in Solaris Dynamic Tracing
Guide for more information on tunable DTrace options. The default string limit is 256 bytes.

The D language provides an explicit string type rather than using the type char * to refer to
strings. See Chapter 6, “Strings,” in Solaris Dynamic Tracing Guide for more information about
D literal strings.

Writing D Scripts

DTrace User Guide • May 200626

http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-opt
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-opt
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-strings

EXAMPLE 3–2 Using D Literal Strings With The trace() Function

cat string.d

#!/usr/sbin/dtrace -s

fbt::bdev_strategy:entry

{

trace(execname);

trace(" is initiating a disk I/O\n");
}

The \n symbol at the end of the literal string produces a new line. To run this script, enter the
following command:

dtrace -s string.d

dtrace: script ’string.d’ matched 1 probes

CPU ID FUNCTION:NAME

0 9215 bdev_strategy:entry bash is initiating a disk I/O

0 9215 bdev_strategy:entry vi is initiating a disk I/O

0 9215 bdev_strategy:entry vi is initiating a disk I/O

0 9215 bdev_strategy:entry sched is initiating a disk I/O

^C

The -q option of the dtrace command only records the actions that are explicitly stated in the
script or command line invocation. This option suppresses the default output that the dtrace
command normally produces.

dtrace -q -s string.d

ls is initiating a disk I/O

cat is initiating a disk I/O

fsflush is initiating a disk I/O

vi is initiating a disk I/O

^C

Creating D Scripts That Use Arguments
You can use the dtrace command to create executable interpreter files. The file must have
execute permission. The initial line of the file must be #!/usr/sbin/dtrace -s. You can specify
other options to the dtrace command on this line. You must specify the options with only one
dash (-). List the s option last, as in the following example.

#!/usr/sbin/dtrace -qvs

You can specify options for the dtrace command by using #pragma lines in the D script, as in
the following D fragment:

Writing D Scripts

Chapter 3 • Scripting With the D Language 27

cat -n mem2.d

1 #!/usr/sbin/dtrace -s

2

3 #pragma D option quiet

4 #pragma D option verbose

5

6 vminfo:::

...

The following table lists the option names that you can use in #pragma lines.

TABLE 3–1 DTrace Consumer Options

Option Name Value dtraceAlias Description

aggrate time Rate of aggregation
reading

aggsize size Aggregation buffer size

bufresize auto or manual Buffer resizing policy

bufsize size -b Principal buffer size

cleanrate time Cleaning rate

cpu scalar -c CPU on which to enable
tracing

defaultargs — Allow references to
unspecified macro
arguments

destructive — -w Allow destructive actions

dynvarsize size Dynamic variable space
size

flowindent — -F Indent function entry and
prefix with ->; unindent
function return and prefix
with <-

grabanon — -a Claim anonymous state

jstackframes scalar Number of default stack
frames jstack()

jstackstrsize scalar Default string space size
for jstack()

nspec scalar Number of speculations

quiet — -q Output only explicitly
traced data

Writing D Scripts

DTrace User Guide • May 200628

TABLE 3–1 DTrace Consumer Options (Continued)
Option Name Value dtraceAlias Description

specsize size Speculation buffer size

strsize size String size

stackframes scalar Number of stack frames

stackindent scalar Number of whitespace
characters to use when
indenting stack() and
ustack() output

statusrate time Rate of status checking

switchrate time Rate of buffer switching

ustackframes scalar Number of user stack
frames

A D script can refer to a set of built in macro variables. These macro variables are defined by the
D compiler.

$[0-9]+ Macro arguments

$egid Effective group-ID

$euid Effective user-ID

$gid Real group-ID

$pid Process ID

$pgid Process group ID

$ppid Parent process ID

$projid Project ID

$sid Session ID

$target Target process ID

$taskid Task ID

$uid Real user-ID

EXAMPLE 3–3 PID Argument Example

This example passes the PID of a running vi process to the syscalls2.d D script. The D script
terminates when the vi command exits.

Writing D Scripts

Chapter 3 • Scripting With the D Language 29

EXAMPLE 3–3 PID Argument Example (Continued)

cat -n syscalls2.d

1 #!/usr/sbin/dtrace -qs

2

3 syscall:::entry

4 /pid == $1/

5 {

6 @[probefunc] = count();

7 }

8 syscall::rexit:entry

9 {

10 exit(0);

11 }

pgrep vi

2208

./syscalls2.d 2208

rexit 1

setpgrp 1

creat 1

getpid 1

open 1

lstat64 1

stat64 1

fdsync 1

unlink 1

close 1

alarm 1

lseek 1

sigaction 1

ioctl 1

read 1

write 1

DTrace Built-in Variables
The following list includes all of the built-in variables for the DTrace framework.

int64_t arg0, ..., arg9 The first ten input arguments to a probe represented as raw
64-bit integers. If fewer than ten arguments are passed to the
current probe, the remaining variables return zero.

args[] The typed arguments to the current probe, if any. The args[]
array is accessed using an integer index, but each element is
defined to be the type corresponding to the given probe
argument. For example, if the args[] array is referenced by a
read(2) system call probe, args[0] is of type int, args[1] is of
type void *, and args[2] is of type size_t.

DTrace Built-in Variables

DTrace User Guide • May 200630

http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=read-2

uintptr_t caller The program counter location of the current thread just before
entering the current probe.

chipid_t chip The CPU chip identifier for the current physical chip. See
Chapter 26, “sched Provider,” in Solaris Dynamic Tracing Guide
for more information.

processorid_t cpu The CPU identifier for the current CPU. See Chapter 26, “sched
Provider,” in Solaris Dynamic Tracing Guide for more
information.

cpuinfo_t *curcpu The CPU information for the current CPU. See Chapter 26,
“sched Provider,” in Solaris Dynamic Tracing Guide for more
information.

lwpsinfo_t *curlwpsinfo The lightweight process (LWP) state of the LWP associated with
the current thread. This structure is described in further detail
in the proc(4) man page.

psinfo_t *curpsinfo The process state of the process associated with the current
thread. This structure is described in further detail in the This
structure is described in further detail in the proc(4) man page.

kthread_t *curthread The address of the operating system kernel's internal data
structure for the current thread, the kthread_t. The kthread_t
is defined in <sys/thread.h>. Refer to Solaris Internals for
more information on this variable and other operating system
data structures.

string cwd The name of the current working directory of the process
associated with the current thread.

uint_t epid The enabled probe ID (EPID) for the current probe. This
integer uniquely identifiers a particular probe that is enabled
with a specific predicate and set of actions.

int errno The error value returned by the last system call executed by this
thread.

string execname The name that was passed to exec(2) to execute the current
process.

gid_t gid The real group ID of the current process.

uint_t id The probe ID for the current probe. This ID is the system-wide
unique identifier for the probe as published by DTrace and
listed in the output of dtrace -l.

DTrace Built-in Variables

Chapter 3 • Scripting With the D Language 31

http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-sched
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-sched
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-sched
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-sched
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-sched
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=proc-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=proc-4
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=exec-2

uint_t ipl The interrupt priority level (IPL) on the current CPU at the
time that the probe fires. Refer to Solaris Internals for more
information on interrupt levels and interrupt handling in the
Solaris operating system kernel.

lgrp_id_t lgrp The locality group ID for the latency group of which the current
CPU is a member. See Chapter 26, “sched Provider,” in Solaris
Dynamic Tracing Guide for more information on CPU
management in DTrace. See Chapter 4, “Locality Group APIs,”
in Programming Interfaces Guide for more information about
locality groups.

pid_t pid The process ID of the current process.

pid_t ppid The parent process ID of the current process.

string probefunc The function name portion of the current probe's description.

string probemod The module name portion of the current probe's description.

string probename The name portion of the current probe's description.

string probeprov The provider name portion of the current probe's description.

psetid_t pset The processor set ID for the processor set that contains the
current CPU. See Chapter 26, “sched Provider,” in Solaris
Dynamic Tracing Guide for more information.

string root The name of the root directory of the process associated with
the current thread.

uint_t stackdepth The current thread's stack frame depth at probe firing time.

id_t tid The thread ID of the current thread. For threads that are
associated with user processes, this value is equal to the result of
a call to pthread_self(3C).

uint64_t timestamp The current value of a nanosecond timestamp counter. This
counter increments from an arbitrary point in the past and
should only be used for relative computations.

uid_t uid The real user ID of the current process.

uint64_t uregs[] The current thread's saved user-mode register values at probe
firing time. Use of the uregs[] array is discussed in Chapter 33,
“User Process Tracing,” in Solaris Dynamic Tracing Guide.

uint64_t vtimestamp The current value of a nanosecond timestamp counter. The
counter is virtualized to the amount of time that the current
thread has been running on a CPU. The counter does not
include the time that is spent in DTrace predicates and actions.

DTrace Built-in Variables

DTrace User Guide • May 200632

http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-sched
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-sched
http://www.oracle.com/pls/topic/lookup?ctx=817-4415&id=lgroups-1
http://www.oracle.com/pls/topic/lookup?ctx=817-4415&id=lgroups-1
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-sched
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-sched
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=pthread-self-3c
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-user
http://www.oracle.com/pls/topic/lookup?ctx=817-6223&id=chp-user

This counter increments from an arbitrary point in the past and
should only be used for relative time computations.

uint64_t walltimestamp The current number of nanoseconds since 00:00 Universal
Coordinated Time, January 1, 1970.

DTrace Built-in Variables

Chapter 3 • Scripting With the D Language 33

34

Using DTrace

This chapter examines the use of DTrace for common basic tasks, and has information on
several different types of tracing.

Performance Monitoring
Several DTrace providers implement probes that correspond to existing performance
monitoring tools:

■ The vminfo provider implements probes that correspond to the vmstat(1M) tool
■ The sysinfo provider implements probes that correspond to the mpstat(1M) tool
■ The io provider implements probes that correspond to the iostat(1M) tool
■ The syscall provider implements probes that correspond to the truss(1) tool

You can use the DTrace facility to extract the same information that the bundled tools provide,
but with greater flexibility. The DTrace facility provides arbitrary kernel information that is
available at the time that the probes fire. The DTrace facility enables you to receive information
such as process identification, thread identification, and stack traces.

Examining Performance Problems With The sysinfo
Provider
The sysinfo provider makes available probes that correspond to the sys kernel statistics. These
statistics provide the input for system monitoring utilities such as mpstat. The sysinfo
provider probes fire immediately before the sys named kstat increments. The probes that are
provided by the sysinfo provider are in the following list.

bawrite Probe that fires whenever a buffer is about to be asynchronously written
out to a device.

4C H A P T E R 4

35

http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=vmstat-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=mpstat-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=iostat-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5165&id=truss-1

bread Probe that fires whenever a buffer is physically read from a device.
bread fires after the buffer has been requested from the device, but
before blocking pending its completion.

bwrite Probe that fires whenever a buffer is about to be written out to a device,
whether synchronously or asynchronously.

cpu_ticks_idle Probe that fires when the periodic system clock has made the
determination that a CPU is idle. Note that this probe fires in the
context of the system clock and therefore fires on the CPU running the
system clock. The cpu_t argument (arg2) indicates the CPU that has
been deemed idle.

cpu_ticks_kernel Probe that fires when the periodic system clock has made the
determination that a CPU is executing in the kernel. This probe fires in
the context of the system clock and therefore fires on the CPU running
the system clock. The cpu_t argument (arg2) indicates the CPU that
has been deemed to be executing in the kernel.

cpu_ticks_user Probe that fires when the periodic system clock has made the
determination that a CPU is executing in user mode. This probe fires in
the context of the system clock and therefore fires on the CPU running
the system clock. The cpu_t argument (arg2) indicates the CPU that
has been deemed to be running in user-mode.

cpu_ticks_wait Probe that fires when the periodic system clock has made the
determination that a CPU is otherwise idle, but some threads are
waiting for I/O on the CPU. This probe fires in the context of the
system clock and therefore fires on the CPU running the system clock.
The cpu_t argument (arg2) indicates the CPU that has been deemed
waiting on I/O.

idlethread Probe that fires whenever a CPU enters the idle loop.

intrblk Probe that fires whenever an interrupt thread blocks.

inv_swtch Probe that fires whenever a running thread is forced to involuntarily
give up the CPU.

lread Probe that fires whenever a buffer is logically read from a device.

lwrite Probe that fires whenever a buffer is logically written to a device

modload Probe that fires whenever a kernel module is loaded.

modunload Probe that fires whenever a kernel module is unloaded.

msg Probe that fires whenever a msgsnd(2) or msgrcv(2) system call is made,
but before the message queue operations have been performed.

Performance Monitoring

DTrace User Guide • May 200636

http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=msgsnd-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=msgrcv-2

mutex_adenters Probe that fires whenever an attempt is made to acquire an owned
adaptive lock. If this probe fires, one of the lockstat provider's
adaptive-block or adaptive-spin probes also fires.

namei Probe that fires whenever a name lookup is attempted in the filesystem.

nthreads Probe that fires whenever a thread is created.

phread Probe that fires whenever a raw I/O read is about to be performed.

phwrite Probe that fires whenever a raw I/O write is about to be performed.

procovf Probe that fires whenever a new process cannot be created because the
system is out of process table entries.

pswitch Probe that fires whenever a CPU switches from executing one thread to
executing another.

readch Probe that fires after each successful read, but before control is returned
to the thread that is performing the read. A read can occur through the
read(2), readv(2) or pread(2) system calls. arg0 contains the number
of bytes that were successfully read.

rw_rdfails Probe that fires whenever an attempt is made to read-lock a reader or
writer when the lock is held by a writer or desired by a writer. If this
probe fires, the lockstat provider's rw-block probe also fires.

rw_wrfails Probe that fires whenever an attempt is made to write-lock a reader or
writer lock when the lock is held by readers or by another writer. If this
probe fires, the lockstat provider's rw-block probe also fires.

sema Probe that fires whenever a semop(2) system call is made, but before any
semaphore operations have been performed.

sysexec Probe that fires whenever an exec(2) system call is made.

sysfork Probe that fires whenever a fork(2) system call is made.

sysread Probe that fires whenever a read, readv, or pread system call is made.

sysvfork Probe that fires whenever a vfork(2) system call is made.

syswrite Probe that fires whenever a write(2), writev(2), or pwrite(2) system
call is made.

trap Probe that fires whenever a processor trap occurs. Note that some
processors, in particular UltraSPARC variants, handle some lightweight
traps through a mechanism that does not cause this probe to fire.

ufsdirblk Probe that fires whenever a directory block is read from the UFS file
system. See ufs(7FS) for details on UFS.

Performance Monitoring

Chapter 4 • Using DTrace 37

http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=read-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=readv-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=pread-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=semop-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=exec-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=fork-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=vfork-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=write-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=writev-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=pwrite-2
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=ufs-7fs

ufsiget Probe that fires whenever an inode is retrieved. See ufs(7FS) for details
on UFS.

ufsinopage Probe that fires after an in-core inode without any associated data pages
has been made available for reuse. See ufs(7FS) for details on UFS.

ufsipage Probe that fires after an in-core inode with associated data pages has
been made available for reuse. This probe fires after the associated data
pages have been flushed to disk. See ufs(7FS) for details on UFS.

wait_ticks_io Probe that fires when the periodic system clock has made the
determination that a CPU is otherwise idle but some threads are
waiting for I/O on the CPU. This probe fires in the context of the
system clock and therefore fires on the CPU running the system clock.
The cpu_t argument (arg2) indicates the CPU that is described as
waiting for I/O. No semantic difference between wait_ticks_io and
cpu_ticks_wait; wait_ticks_io exists solely for historical reasons.

writech Probe that fires after each successful write, but before control is
returned to the thread performing the write. A write can occur through
the write, writev, or pwrite system calls. arg0 contains the number of
bytes that were successfully written.

xcalls Probe that fires whenever a cross-call is about to be made. A cross-call is
the operating system's mechanism for one CPU to request immediate
work of another CPU.

EXAMPLE 4–1 Using the quantizeAggregation Function With the sysinfo Probes

The quantize aggregation function displays a power-of-two frequency distribution bar graph of
its argument. The following example uses the quantize function to determine the size of the
read calls that are performed by all processes on the system over a period of ten seconds. The
arg0 argument for the sysinfo probes states the amount by which to increment the statistic.
This value is 1 for most sysinfo probes. Two exceptions are the readch and writech probes.
For these probes, the arg0 argument is set to the actual number of bytes that are read or are
written, respectively.

cat -n read.d

1 #!/usr/sbin/dtrace -s

2 sysinfo:::readch

3 {

4 @[execname] = quantize(arg0);

5 }

6

7 tick-10sec

8 {

9 exit(0);

10 }

dtrace -s read.d

Performance Monitoring

DTrace User Guide • May 200638

http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=ufs-7fs
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=ufs-7fs
http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=ufs-7fs

EXAMPLE 4–1 Using the quantizeAggregation Function With the sysinfo Probes (Continued)

dtrace: script ’read.d’ matched 5 probes

CPU ID FUNCTION:NAME

0 36754 :tick-10sec

bash

value ---------- Distribution ---------- count

0 | 0

1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 13

2 | 0

file

value ---------- Distribution ---------- count

-1 | 0

0 | 2

1 | 0

2 | 0

4 | 6

8 | 0

16 | 0

32 | 6

64 | 6

128 |@@ 16

256 |@@@@ 30

512 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 199

1024 | 0

2048 | 0

4096 | 1

8192 | 1

16384 | 0

grep

value ---------- Distribution ---------- count

-1 | 0

0 |@@@@@@@@@@@@@@@@@@@ 99

1 | 0

2 | 0

4 | 0

8 | 0

16 | 0

32 | 0

64 | 0

128 | 1

256 |@@@@ 25

512 |@@@@ 23

1024 |@@@@ 24

2048 |@@@@ 22

4096 | 4

8192 | 3

16384 | 0

EXAMPLE 4–2 Finding the Source of Cross-Calls

In this example, consider the following output form the mpstat(1M) command:

Performance Monitoring

Chapter 4 • Using DTrace 39

http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=mpstat-1m

EXAMPLE 4–2 Finding the Source of Cross-Calls (Continued)

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl

0 2189 0 1302 14 1 215 12 54 28 0 12995 13 14 0 73

1 3385 0 1137 218 104 195 13 58 33 0 14486 19 15 0 66

2 1918 0 1039 12 1 226 15 49 22 0 13251 13 12 0 75

3 2430 0 1284 220 113 201 10 50 26 0 13926 10 15 0 75

The values in the xcal and syscl columns are atypically high, reflecting a possible drain on
system performance. The system is relatively idle and is not spending an unusual amount of
time waiting for I/O. The numbers in the xcal column are scaled per second and are read from
the xcalls field of the sys kstat. To see which executables are responsible for the cross-calls,
enter the following dtrace command:

dtrace -n ’xcalls {@[execname] = count()}’

dtrace: description ’xcalls ’ matched 3 probes

^C

find 2

cut 2

snmpd 2

mpstat 22

sendmail 101

grep 123

bash 175

dtrace 435

sched 784

xargs 22308

file 89889

#

This output indicates that the bulk of the cross calls are originating from file(1) and xargs(1)
processes. You can find these processes with the pgrep(1) and ptree(1) commands.

pgrep xargs

15973

ptree 15973

204 /usr/sbin/inetd -s

5650 in.telnetd

5653 -sh

5657 bash

15970 /bin/sh ./findtxt configuration

15971 cut -f1 -d:

15973 xargs file

16686 file /usr/bin/tbl /usr/bin/troff /usr/bin/ul /usr/bin/vgrind /usr/bin/catman

This output indicates that the xargs and file commands form part of a custom user shell
script. To locate this script, you can perform the following commands:

find / -name findtxt

/usrs1/james/findtxt

cat /usrs1/james/findtxt

#!/bin/sh

find / -type f | xargs file | grep text | cut -f1 -d: > /tmp/findtxt$$

Performance Monitoring

DTrace User Guide • May 200640

http://www.oracle.com/pls/topic/lookup?ctx=816-5165&id=file-1
http://www.oracle.com/pls/topic/lookup?ctx=816-5165&id=xargs-1
http://www.oracle.com/pls/topic/lookup?ctx=816-5165&id=pgrep-1
http://www.oracle.com/pls/topic/lookup?ctx=816-5165&id=ptree-1

EXAMPLE 4–2 Finding the Source of Cross-Calls (Continued)

cat /tmp/findtxt$$ | xargs grep $1

rm /tmp/findtxt$$

#

This script runs many process concurrently. A large amount of interprocess communication is
happening through pipes. The number of pipes makes the script resource intensive. The script
attempts to find every text file on the system and then searches each file for a specific text.

Tracing User Processes
This section focuses on the DTrace facilities that are useful for tracing user process activity and
provides examples to illustrate their use.

Using the copyin() and copyinstr() Subroutines
DTrace probes execute in the Solaris kernel. Probes use the copyin() or copyinstr()
subroutines to copy user process data into the kernel's address space.

Consider the following write() system call:

ssize_t write(int fd, const void *buf, size_t nbytes);

The following D program illustrates an incorrect attempt to print the contents of a string that is
passed to the write system call:

syscall::write:entry

{

printf("%s", stringof(arg1)); /* incorrect use of arg1 */

}

When you run this script, DTrace produces error messages similar to the following example.

dtrace: error on enabled probe ID 1 (ID 37: syscall::write:entry): \

invalid address (0x10038a000) in action #1

The arg1 variable is an address that refers to memory in the process that is executing the system
call. Use the copyinstr() subroutine to read the string at that address. Record the result with
the printf() action:

syscall::write:entry

{

printf("%s", copyinstr(arg1)); /* correct use of arg1 */

The output of this script shows all of the strings that are passed to the write system call.

Tracing User Processes

Chapter 4 • Using DTrace 41

Avoiding Errors
The copyin() and copyinstr() subroutines cannot read from user addresses which have not
yet been touched. A valid address might cause an error if the page that contains that address has
not been faulted in by an access attempt. Consider the following example:

dtrace -n syscall::open:entry’{ trace(copyinstr(arg0)); }’

dtrace: description ’syscall::open:entry’ matched 1 probe

CPU ID FUNCTION:NAME

dtrace: error on enabled probe ID 2 (ID 50: syscall::open:entry): invalid address

(0x9af1b) in action #1 at DIF offset 52

In the output from the previous example, the application was functioning properly and the
address in arg0 was valid. However, the address in arg0 referred to a page that the
corresponding process had not accessed. To resolve this issue, wait for the kernel or application
to use the data before tracing the data. For example, you might wait until the system call returns
to apply copyinstr(), as shown in the following example:

dtrace -n syscall::open:entry’{ self->file = arg0; }’ \

-n syscall::open:return’{ trace(copyinstr(self->file)); self->file = 0; }’

dtrace: description ’syscall::open:entry’ matched 1 probe

CPU ID FUNCTION:NAME

2 51 open:return /dev/null

Eliminating dtrace Interference
If you trace every call to the write system call, you will cause a cascade of output. Each call to
the write() function causes the dtrace command to call the write() function as it displays the
output. This feedback loop is a good example of how the dtrace command can interfere with
the desired data. You can use a simple predicate to avoid this behavior, as shown in the
following example:

syscall::write:entry

/pid != $pid/

{

printf("%s", stringof(copyin(arg1, arg2)));

}

The $pid macro variable expands to the process identifier of the process that enabled the
probes. The pid variable contains the process identifier of the process whose thread was
running on the CPU where the probe was fired. The predicate /pid != $pid/ ensures that the
script does not trace any events related to the running of this script.

Tracing User Processes

DTrace User Guide • May 200642

syscallProvider
The syscall provider enables you to trace every system call entry and return. You can use the
prstat(1M) command to see examine process behavior.

$ prstat -m -p 31337

PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/NLWP

13499 user1 53 44 0.0 0.0 0.0 0.0 2.5 0.0 4K 24 9K 0 mystery/6

This example shows that the process is consuming a large amount of system time. One possible
explanation for this behavior is that the process is executing a large number of system calls. You
can use a simple D program specified on the command line to see which system calls are
happening most often:

dtrace -n syscall:::entry’/pid == 31337/{ @syscalls[probefunc] = count(); }’

dtrace: description ’syscall:::entry’ matched 215 probes

^C

open 1

lwp_park 2

times 4

fcntl 5

close 6

sigaction 6

read 10

ioctl 14

sigprocmask 106

write 1092

This report shows a large number of system calls to the write() function. You can use the
syscall provider to further examine the source of all the write() system calls:

dtrace -n syscall::write:entry’/pid == 31337/{ @writes[arg2] = quantize(); }’

dtrace: description ’syscall::write:entry’ matched 1 probe

^C

value ------------- Distribution ------------- count

0 | 0

1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1037

2 |@ 3

4 | 0

8 | 0

16 | 0

32 |@ 3

64 | 0

128 | 0

256 | 0

512 | 0

1024 |@ 5

2048 | 0

The output shows that the process is executing many write() system calls with a relatively
small amount of data.

Tracing User Processes

Chapter 4 • Using DTrace 43

http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=prstat-1m

The ustack()Action
The ustack() action traces the user thread's stack. If a process that opens many files
occasionally fails in the open() system call, you can use the ustack() action to discover the
code path that executes the failed open():

syscall::open:entry

/pid == $1/

{

self->path = copyinstr(arg0);

}

syscall::open:return

/self->path != NULL && arg1 == -1/

{

printf("open for ’%s’ failed", self->path);

ustack();

}

This script also illustrates the use of the $1 macro variable. This macro variable takes the value
of the first operand that is specified on the dtrace command line:

dtrace -s ./badopen.d 31337

dtrace: script ’./badopen.d’ matched 2 probes

CPU ID FUNCTION:NAME

0 40 open:return open for ’/usr/lib/foo’ failed

libc.so.1‘__open+0x4
libc.so.1‘open+0x6c
420b0

tcsh‘dosource+0xe0
tcsh‘execute+0x978
tcsh‘execute+0xba0
tcsh‘process+0x50c
tcsh‘main+0x1d54
tcsh‘_start+0xdc

The ustack() action records program counter (PC) values for the stack. The dtrace command
resolves those PC values to symbol names by looking though the process's symbol tables. The
dtrace command prints out PC values that cannot be resolved as hexadecimal integers.

When a process exits or is killed before the ustack() data is formatted for output, the dtrace
command might be unable to convert the PC values in the stack trace to symbol names. In that
event the dtrace command displays these values as hexadecimal integers. To work around this
limitation, specify a process of interest with the -c or -p option to dtrace. If the process ID or
command is not known in advance, the following example D program that can be used to work
around the limitation. The example uses the open system call probe, but this technique can be
used with any script that uses the ustack action.

syscall::open:entry

{

ustack();

Tracing User Processes

DTrace User Guide • May 200644

stop_pids[pid] = 1;

}

syscall::rexit:entry

/stop_pids[pid] != 0/

{

printf("stopping pid %d", pid);

stop();

stop_pids[pid] = 0;

}

The previous script stops a process just before the process exits, if the ustack() action has been
applied to a thread in that process. This technique ensures that the dtrace command can
resolve the PC values to symbolic names. The value of stop_pids[pid] is set to 0 after clearing
the dynamic variable.

The pidProvider
The pid provider enables you to trace any instruction in a process. Unlike most other providers,
pid probes are created on demand, based on the probe descriptions found in your D programs.

User Function Boundary Tracing
The simplest mode of operation for the pid provider is as the user space analogue to the fbt
provider. The following example program traces all function entries and returns that are made
from a single function. The $1 macro variable expands to the first operand on the command
line. This macro variable is the process ID for the process to trace. The $2 macro variable
expands to the second operand on the command line. This macro variable is the name of the
function that all function calls are traced from.

EXAMPLE 4–3 userfunc.d: Trace User Function Entry and Return

pid$1::$2:entry

{

self->trace = 1;

}

pid$1::$2:return

/self->trace/

{

self->trace = 0;

}

pid$1:::entry,

pid$1:::return

/self->trace/

{

}

Tracing User Processes

Chapter 4 • Using DTrace 45

This script produces output that is similar to the following example:

./userfunc.d 15032 execute

dtrace: script ’./userfunc.d’ matched 11594 probes

0 -> execute

0 -> execute

0 -> Dfix

0 <- Dfix

0 -> s_strsave

0 -> malloc

0 <- malloc

0 <- s_strsave

0 -> set

0 -> malloc

0 <- malloc

0 <- set

0 -> set1

0 -> tglob

0 <- tglob

0 <- set1

0 -> setq

0 -> s_strcmp

0 <- s_strcmp

...

The pid provider can only be used on processes that are already running. You can use the
$target macro variable and the dtrace options -c and -p to create and instrument processes of
interest using the dtrace facility. The following D script determines the distribution of function
calls that are made to libc by a particular subject process:

pid$target:libc.so::entry

{

@[probefunc] = count();

}

To determine the distribution of such calls made by the date(1) command, execute the
following command:

dtrace -s libc.d -c date

dtrace: script ’libc.d’ matched 2476 probes

Fri Jul 30 14:08:54 PDT 2004

dtrace: pid 109196 has exited

pthread_rwlock_unlock 1

_fflush_u 1

rwlock_lock 1

rw_write_held 1

strftime 1

_close 1

_read 1

__open 1

_open 1

strstr 1

load_zoneinfo 1

Tracing User Processes

DTrace User Guide • May 200646

http://www.oracle.com/pls/topic/lookup?ctx=816-5165&id=date-1

...

_ti_bind_guard 47

_ti_bind_clear 94

Tracing Arbitrary Instructions
You can use the pid provider to trace any instruction in any user function. Upon demand, the
pid provider creates a probe for every instruction in a function. The name of each probe is the
offset of its corresponding instruction in the function expressed as a hexadecimal integer. To
enable a probe that is associated with the instruction at offset 0x1c in function foo of module
bar.so in the process with PID 123, use the following command.

dtrace -n pid123:bar.so:foo:1c

To enable all of the probes in the function foo, including the probe for each instruction, you can
use the command:

dtrace -n pid123:bar.so:foo:

The following example demonstrates how to combine the pid provider with speculative tracing
to trace every instruction in a function.

EXAMPLE 4–4 errorpath.d: Trace User Function Call Error Path

pid$1::$2:entry

{

self->spec = speculation();

speculate(self->spec);

printf("%x %x %x %x %x", arg0, arg1, arg2, arg3, arg4);

}

pid$1::$2:

/self->spec/

{

speculate(self->spec);

}

pid$1::$2:return

/self->spec && arg1 == 0/

{

discard(self->spec);

self->spec = 0;

}

pid$1::$2:return

/self->spec && arg1 != 0/

{

commit(self->spec);

self->spec = 0;

}

When errorpath.d executes, the output of the script is similar to the following example.

Tracing User Processes

Chapter 4 • Using DTrace 47

./errorpath.d 100461 _chdir

dtrace: script ’./errorpath.d’ matched 19 probes

CPU ID FUNCTION:NAME

0 25253 _chdir:entry 81e08 6d140 ffbfcb20 656c73 0

0 25253 _chdir:entry

0 25269 _chdir:0

0 25270 _chdir:4

0 25271 _chdir:8

0 25272 _chdir:c

0 25273 _chdir:10

0 25274 _chdir:14

0 25275 _chdir:18

0 25276 _chdir:1c

0 25277 _chdir:20

0 25278 _chdir:24

0 25279 _chdir:28

0 25280 _chdir:2c

0 25268 _chdir:return

Anonymous Tracing
This section describes tracing that is not associated with any DTrace consumer. Anonymous
tracing is used in situations when no DTrace consumer processes can run. Only the super user
may create an anonymous enabling. Only one anonymous enabling can exist at any time.

Anonymous Enablings
To create an anonymous enabling, use the -A option with a dtrace command invocation that
specifies the desired probes, predicates, actions and options. The dtrace command adds a series
of driver properties that represent your request to the configuration file for the dtrace(7D)
driver. The configuration file is typically /kernel/drv/dtrace.conf. The dtrace driver reads
these properties when the driver is loaded. The driver enables the specified probes with the
specified actions and creates an anonymous state to associate with the new enabling. The dtrace
driver is normally loaded on demand, along with any drivers that act as dtrace providers. To
allow tracing during boot, the dtrace driver must be loaded as early as possible. The dtrace
command adds the necessary forceload statements to /etc/system (see system(4) for each
required dtrace provider and for the dtrace driver.

When the system boots, the dtrace driver sends a message indicating that the configuration file
has been successfully processed. An anonymous enabling can set any of the options that are
available during normal use of the dtrace command.

To remove an anonymous enabling, specify the -A option to the dtrace command without any
probe descriptions.

Anonymous Tracing

DTrace User Guide • May 200648

http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=dtrace-7d
http://www.oracle.com/pls/topic/lookup?ctx=816-5174&id=system-4

Claiming Anonymous State
When the machine has completely booted, you can claim an existing anonymous state by
specifying the -a option with the dtrace command. By default, the -a option claims the
anonymous state and processes the existing data, then continues to run. To consume the
anonymous state and exit, add the -e option.

When the anonymous state has been consumed from the kernel, the anonymous state cannot be
replaced. If you attempt to claim an anonymous tracing state that does not exist, the dtrace
command generates a message that is similar to the following example:

dtrace: could not enable tracing: No anonymous tracing state

If drops or errors occur, the dtrace command generates the appropriate messages when the
anonymous state is claimed. The messages for drops and errors are the same for both
anonymous and non-anonymous state.

Anonymous Tracing Examples
The following example shows an anonymous DTrace enabling for every probe in the iprb(7D)
module:

dtrace -A -m iprb

dtrace: saved anonymous enabling in /kernel/drv/dtrace.conf

dtrace: added forceload directives to /etc/system

dtrace: run update_drv(1M) or reboot to enable changes

reboot

After rebooting, the dtrace driver prints a message on the console to indicate that the driver is
enabling the specified probes:

...

Copyright 1983-2003 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

NOTICE: enabling probe 0 (:iprb::)

NOTICE: enabling probe 1 (dtrace:::ERROR)

configuring IPv4 interfaces: iprb0.

...

After rebooting the machine, specifying the -a option with the dtrace command consumes the
anonymous state:

dtrace -a

CPU ID FUNCTION:NAME

0 22954 _init:entry

0 22955 _init:return

0 22800 iprbprobe:entry

0 22934 iprb_get_dev_type:entry

Anonymous Tracing

Chapter 4 • Using DTrace 49

http://www.oracle.com/pls/topic/lookup?ctx=816-5177&id=iprb-7d

0 22935 iprb_get_dev_type:return

0 22801 iprbprobe:return

0 22802 iprbattach:entry

0 22874 iprb_getprop:entry

0 22875 iprb_getprop:return

0 22934 iprb_get_dev_type:entry

0 22935 iprb_get_dev_type:return

0 22870 iprb_self_test:entry

0 22871 iprb_self_test:return

0 22958 iprb_hard_reset:entry

0 22959 iprb_hard_reset:return

0 22862 iprb_get_eeprom_size:entry

0 22826 iprb_shiftout:entry

0 22828 iprb_raiseclock:entry

0 22829 iprb_raiseclock:return

...

The following example focuses only on functions that are called from iprbattach().

fbt::iprbattach:entry

{

self->trace = 1;

}

fbt:::

/self->trace/

{}

fbt::iprbattach:return

{

self->trace = 0;

}

Run the following commands to clear the previous settings from the driver configuration file,
install the new anonymous tracing request, and reboot:

dtrace -AFs iprb.d

dtrace: cleaned up old anonymous enabling in /kernel/drv/dtrace.conf

dtrace: cleaned up forceload directives in /etc/system

dtrace: saved anonymous enabling in /kernel/drv/dtrace.conf

dtrace: added forceload directives to /etc/system

dtrace: run update_drv(1M) or reboot to enable changes

reboot

After rebooting, the dtrace driver prints a different message on the console to indicate the
slightly different enabling:

...

Copyright 1983-2003 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

NOTICE: enabling probe 0 (fbt::iprbattach:entry)

NOTICE: enabling probe 1 (fbt:::)

NOTICE: enabling probe 2 (fbt::iprbattach:return)

NOTICE: enabling probe 3 (dtrace:::ERROR)

Anonymous Tracing

DTrace User Guide • May 200650

configuring IPv4 interfaces: iprb0.

...

After the machine has finished booting, run the dtrace command with the -a and the -e
options to consume the anonymous data and then exit.

dtrace -ae

CPU FUNCTION

0 -> iprbattach

0 -> gld_mac_alloc

0 -> kmem_zalloc

0 -> kmem_cache_alloc

0 -> kmem_cache_alloc_debug

0 -> verify_and_copy_pattern

0 <- verify_and_copy_pattern

0 -> tsc_gethrtime

0 <- tsc_gethrtime

0 -> getpcstack

0 <- getpcstack

0 -> kmem_log_enter

0 <- kmem_log_enter

0 <- kmem_cache_alloc_debug

0 <- kmem_cache_alloc

0 <- kmem_zalloc

0 <- gld_mac_alloc

0 -> kmem_zalloc

0 -> kmem_alloc

0 -> vmem_alloc

0 -> highbit

0 <- highbit

0 -> lowbit

0 <- lowbit

0 -> vmem_xalloc

0 -> highbit

0 <- highbit

0 -> lowbit

0 <- lowbit

0 -> segkmem_alloc

0 -> segkmem_xalloc

0 -> vmem_alloc

0 -> highbit

0 <- highbit

0 -> lowbit

0 <- lowbit

0 -> vmem_seg_alloc

0 -> highbit

0 <- highbit

0 -> highbit

0 <- highbit

0 -> vmem_seg_create

...

Anonymous Tracing

Chapter 4 • Using DTrace 51

Speculative Tracing
This section discusses the DTrace facility for speculative tracing. Speculative tracing is the
ability to tentatively trace data and decide whether to commit the data to a tracing buffer or
discard it. The primary mechanism to filter out uninteresting events is the predicate
mechanism. Predicates are useful when you know at the time that a probe fires whether or not
the probe event is of interest. Predicates are not well suited to dealing with situations where you
do not know if a given probe event is of interest or not until after the probe fires.

If a system call is occasionally failing with a common error code, you might want to examine the
code path that leads to the error condition. You can use the speculative tracing facility to
tentatively trace data at one or more probe locations, then decide to commit the data to the
principal buffer at another probe location. The resulting trace data contains only the output of
interest and requires no postprocessing.

Speculation Interfaces
The following table describes the DTrace speculation functions.

TABLE 4–1 DTrace Speculation Functions

Function Name Arguments Description

speculation None Returns an identifier for a new speculative buffer

speculate ID Denotes that the remainder of the clause should be
traced to the speculative buffer specified by ID

commit ID Commits the speculative buffer that is associated
with ID

discard ID Discards the speculative buffer associated with ID

Creating a Speculation
The speculation() function allocates a speculative buffer and returns a speculation identifier.
Use the speculation identifier in subsequent calls to the speculate() function. A speculation
identifier of zero is always invalid, but can be passed to speculate(), commit() or discard(). If
a call to speculation() fails, the dtrace command generates a message that is similar to the
following example.

dtrace: 2 failed speculations (no speculative buffer space available)

Speculative Tracing

DTrace User Guide • May 200652

Using a Speculation
To use a speculation, use a clause to pass an identifier that has been returned from
speculation() to the speculate() function before any data-recording actions. All
data-recording actions in a clause that contains a speculate() are speculatively traced. The D
compiler generates a compile-time error if a call to speculate() follows data recording actions
in a D probe clause. Clauses can contain either speculative tracing requests or non-speculative
tracing requests, but not both.

Aggregating actions, destructive actions, and the exit action may never be speculative. Any
attempt to take one of these actions in a clause that contains a speculate() results in a
compile-time error. A speculate() function may not follow a previous speculate() function.
Only one speculation is permitted per clause. A clause that contains only a speculate()
function will speculatively trace the default action, which is defined to trace only the enabled
probe ID.

The typical use of the speculation() function is to assign the result of the speculation()
function to a thread-local variable. That thread-local variable acts as a subsequent predicate to
other probes, as well as an argument to speculate().

EXAMPLE 4–5 Typical Use of The speculation() Function

syscall::open:entry

{

self->spec = speculation();

}

syscall:::

/self->spec/

{

speculate(self->spec);

printf("this is speculative");
}

Committing a Speculation
Commit speculations by using the commit() function. When you commit a speculative buffer
the buffer's data is copied into the principal buffer. If the data in the speculative buffer exceeds
the available space in the principal buffer, no data is copied and the drop count for the buffer
increments. If the buffer has been speculatively traced on more than one CPU, the speculative
data on the committing CPU is copied immediately, while speculative data on other CPUs is
copied after the commit().

A speculative buffer that is being committed is not available to subsequent speculation() calls
until each per-CPU speculative buffer is completely copied into its corresponding per-CPU
principal buffer. Subsequent attempts to write the results of a speculate() function call to the
committing buffer discard the data without generating an error. Subsequent calls to commit()

Speculative Tracing

Chapter 4 • Using DTrace 53

or discard() also fail without generating an error. A clause that contains a commit() function
cannot contain a data recording action, but a clause can contain multiple commit() calls to
commit disjoint buffers.

Discarding a Speculation
Discard speculations by using the discard() function. If the speculation has only been active
on the CPU that is calling the discard() function, the buffer is immediately available for
subsequent calls to the speculation() function. If the speculation has been active on more
than one CPU, the discarded buffer will be available for subsequent calls to the speculation()
function after the call to discard(). If no speculative buffers are available at the time that the
speculation() function is called adtrace message that is similar to the following example is
generated:

dtrace: 905 failed speculations (available buffer(s) still busy)

Speculation Example
One potential use for speculations is to highlight a particular code path. The following example
shows the entire code path under the open(2) system call when the open() fails.

EXAMPLE 4–6 specopen.d: Code Flow for Failed open()

#!/usr/sbin/dtrace -Fs

syscall::open:entry,

syscall::open64:entry

{

/*

* The call to speculation() creates a new speculation. If this fails,

* dtrace(1M) will generate an error message indicating the reason for

* the failed speculation(), but subsequent speculative tracing will be

* silently discarded.

*/

self->spec = speculation();

speculate(self->spec);

/*

* Because this printf() follows the speculate(), it is being

* speculatively traced; it will only appear in the data buffer if the

* speculation is subsequently commited.

*/

printf("%s", stringof(copyinstr(arg0)));

}

fbt:::

/self->spec/

{

/*

Speculative Tracing

DTrace User Guide • May 200654

http://www.oracle.com/pls/topic/lookup?ctx=816-5167&id=open-2

EXAMPLE 4–6 specopen.d: Code Flow for Failed open() (Continued)

* A speculate() with no other actions speculates the default action:

* tracing the EPID.

*/

speculate(self->spec);

}

syscall::open:return,

syscall::open64:return

/self->spec/

{

/*

* To balance the output with the -F option, we want to be sure that

* every entry has a matching return. Because we speculated the

* open entry above, we want to also speculate the open return.

* This is also a convenient time to trace the errno value.

*/

speculate(self->spec);

trace(errno);

}

syscall::open:return,

syscall::open64:return

/self->spec && errno != 0/

{

/*

* If errno is non-zero, we want to commit the speculation.

*/

commit(self->spec);

self->spec = 0;

}

syscall::open:return,

syscall::open64:return

/self->spec && errno == 0/

{

/*

* If errno is not set, we discard the speculation.

*/

discard(self->spec);

self->spec = 0;

}

When you run the previous script, the script generates output that is similar to the following
example.

./specopen.d

dtrace: script ’./specopen.d’ matched 24282 probes

CPU FUNCTION

1 => open /var/ld/ld.config

1 -> open

1 -> copen

1 -> falloc

1 -> ufalloc

1 -> fd_find

Speculative Tracing

Chapter 4 • Using DTrace 55

1 -> mutex_owned

1 <- mutex_owned

1 <- fd_find

1 -> fd_reserve

1 -> mutex_owned

1 <- mutex_owned

1 -> mutex_owned

1 <- mutex_owned

1 <- fd_reserve

1 <- ufalloc

1 -> kmem_cache_alloc

1 -> kmem_cache_alloc_debug

1 -> verify_and_copy_pattern

1 <- verify_and_copy_pattern

1 -> file_cache_constructor

1 -> mutex_init

1 <- mutex_init

1 <- file_cache_constructor

1 -> tsc_gethrtime

1 <- tsc_gethrtime

1 -> getpcstack

1 <- getpcstack

1 -> kmem_log_enter

1 <- kmem_log_enter

1 <- kmem_cache_alloc_debug

1 <- kmem_cache_alloc

1 -> crhold

1 <- crhold

1 <- falloc

1 -> vn_openat

1 -> lookupnameat

1 -> copyinstr

1 <- copyinstr

1 -> lookuppnat

1 -> lookuppnvp

1 -> pn_fixslash

1 <- pn_fixslash

1 -> pn_getcomponent

1 <- pn_getcomponent

1 -> ufs_lookup

1 -> dnlc_lookup

1 -> bcmp

1 <- bcmp

1 <- dnlc_lookup

1 -> ufs_iaccess

1 -> crgetuid

1 <- crgetuid

1 -> groupmember

1 -> supgroupmember

1 <- supgroupmember

1 <- groupmember

1 <- ufs_iaccess

1 <- ufs_lookup

1 -> vn_rele

1 <- vn_rele

1 -> pn_getcomponent

1 <- pn_getcomponent

1 -> ufs_lookup

1 -> dnlc_lookup

Speculative Tracing

DTrace User Guide • May 200656

1 -> bcmp

1 <- bcmp

1 <- dnlc_lookup

1 -> ufs_iaccess

1 -> crgetuid

1 <- crgetuid

1 <- ufs_iaccess

1 <- ufs_lookup

1 -> vn_rele

1 <- vn_rele

1 -> pn_getcomponent

1 <- pn_getcomponent

1 -> ufs_lookup

1 -> dnlc_lookup

1 -> bcmp

1 <- bcmp

1 <- dnlc_lookup

1 -> ufs_iaccess

1 -> crgetuid

1 <- crgetuid

1 <- ufs_iaccess

1 -> vn_rele

1 <- vn_rele

1 <- ufs_lookup

1 -> vn_rele

1 <- vn_rele

1 <- lookuppnvp

1 <- lookuppnat

1 <- lookupnameat

1 <- vn_openat

1 -> setf

1 -> fd_reserve

1 -> mutex_owned

1 <- mutex_owned

1 -> mutex_owned

1 <- mutex_owned

1 <- fd_reserve

1 -> cv_broadcast

1 <- cv_broadcast

1 <- setf

1 -> unfalloc

1 -> mutex_owned

1 <- mutex_owned

1 -> crfree

1 <- crfree

1 -> kmem_cache_free

1 -> kmem_cache_free_debug

1 -> kmem_log_enter

1 <- kmem_log_enter

1 -> tsc_gethrtime

1 <- tsc_gethrtime

1 -> getpcstack

1 <- getpcstack

1 -> kmem_log_enter

1 <- kmem_log_enter

1 -> file_cache_destructor

1 -> mutex_destroy

1 <- mutex_destroy

1 <- file_cache_destructor

Speculative Tracing

Chapter 4 • Using DTrace 57

1 -> copy_pattern

1 <- copy_pattern

1 <- kmem_cache_free_debug

1 <- kmem_cache_free

1 <- unfalloc

1 -> set_errno

1 <- set_errno

1 <- copen

1 <- open

1 <= open 2

Speculative Tracing

DTrace User Guide • May 200658

Index

A
actions

data recording, 19
destructive, 21

breakpoint, 23
chill, 23
copyout, 22
copyoutstr, 22
panic, 23
raise, 22
stop, 22
system, 22

jstack, 21
printa, 20
printf, 20
stack, 20
trace, 20
tracemem, 20
ustack, 21

anonymous enabling, 48
anonymous tracing, 48

claiming anonymous state, 49
example of use, 49

C
copyin(), 41
copyinstr(), 41

D
data recording actions, 19
destructive actions, 21

kernel, 22
process, 21

dtrace interference, 42

E
examples

anonymous tracing, 49
speculation, 54

F
function boundary testing (FBT), 45

P
pid provider, 45, 47
predicates, 12
probes, syscall(), 43

S
speculation, 52

committing, 53
creating, 52
discarding, 54

59

speculation (Continued)
example of use, 54
use, 53

speculation() function, 52
strings, 26

type, 26
subroutines

copyin(), 41
copyinstr(), 41

T
tracing instructions, 47

U
user process tracing, 41
ustack(), 44

Index

DTrace User Guide • May 200660

	DTrace User Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	Related Books
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples

	Introduction
	DTrace Capabilities
	Architecture overview
	DTrace Providers
	DTrace Probes
	DTrace Predicates
	DTrace Actions
	D Scripting Language

	DTrace Basics
	Listing Probes
	Specifying Probes in DTrace
	Enabling Probes
	DTrace Action Basics
	Data Recording Actions
	The trace() function
	The tracemem() function
	The printf() function
	The printa() function
	The stack() function
	The ustack() function
	The jstack() function

	Destructive Actions
	Process Destructive Actions
	The stop() function
	The raise() function
	The copyout() function
	The copyoutstr() function
	The system() function

	Kernel Destructive Actions
	The breakpoint() function
	The panic() function
	The chill() function

	DTrace Aggregations
	DTrace Aggregation Syntax

	Scripting With the D Language
	Writing D Scripts
	Executable D Scripts
	D Literal Strings
	Creating D Scripts That Use Arguments

	DTrace Built-in Variables

	Using DTrace
	Performance Monitoring
	Examining Performance Problems With The sysinfo Provider

	Tracing User Processes
	Using the copyin() and copyinstr() Subroutines
	Avoiding Errors

	Eliminating dtrace Interference
	syscall Provider
	The ustack() Action
	The pid Provider
	User Function Boundary Tracing
	Tracing Arbitrary Instructions

	Anonymous Tracing
	Anonymous Enablings
	Claiming Anonymous State
	Anonymous Tracing Examples

	Speculative Tracing
	Speculation Interfaces
	Creating a Speculation
	Using a Speculation
	Committing a Speculation
	Discarding a Speculation
	Speculation Example

	Index

