
JDK for Solaris Developer's Guide

Part No: 817–7970–10
January, 2005

Copyright ©2005Sun Microsystems 4150 Network Circle, Santa Clara, CA 95054 U.S.A.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software,
including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of
Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the
Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright ©2005Sun Microsystems 4150 Network Circle, Santa Clara, CA 95054 U.S.A.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la distribution, et la décompilation.
Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et
de ses bailleurs de licence, s'il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque déposée aux Etats-Unis et
dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou marques de
service, de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des
marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L'ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L'APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION PARTICULIERE, OU
LE FAIT QU'ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S'APPLIQUERAIT PAS, DANS LA MESURE OU
IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

110418@25097

Contents

Preface ...7

New Features and Enhancements ..11
Performance Enhancements .. 13
Java Language Features ... 13

Generics .. 13
Enhanced for Loop .. 13
Autoboxing/Unboxing .. 13
Typesafe Enums ... 13
Varargs .. 14
Static Import ... 14
Metadata (Annotations) .. 14

Virtual Machine ... 14
Class Data Sharing ... 14
Garbage Collector Ergonomics .. 14
Server-Class Machine Detection .. 15
Thread Priority Changes ... 15
Fatal Error Handling .. 15
High-Precision Timing Support .. 15

Core Libraries .. 15
Lang and Util Packages .. 15
Networking ... 15
Security .. 16
Internationalization ... 16
Improved Support for Environment Variables .. 16
ProcessBuilder .. 16
Formatter .. 17
Scanner .. 17

3

Reflection .. 17
JavaBeans Component Architecture ... 17
Collections Framework ... 17
Java API for XML Processing (JAXP) .. 18
Bit Manipulation Operations ... 18
Math ... 18
Instrumentation ... 19
Serialization .. 19
Concurrency Utilities .. 19
Threads .. 20
Monitoring and Management .. 20

Integration Libraries ... 21
Remote Method Invocation (RMI) .. 21
Java Database Connectivity (JDBC) .. 21
CORBA, Java IDL and RMI-IIOP .. 22
Java Naming and Directory Interface (JNDI) ... 22

User Interface ... 22
Internationalization ... 22
Java Sound Technology ... 23
Java 2D Technology ... 23
Image I/O .. 24
AWT .. 24
Swing ... 24

Deployment ... 24
General Deployment ... 24
Java Web Start Deployment .. 25

Tools and Tool Architecture .. 25
Java Virtual Machine Tool Interface (JVMTI) ... 25
Java Platform Debugger Architecture (JPDA) ... 25
Java Compiler (javac) .. 26
Javadoc Tool ... 26
Annotation Processing Tool (apt) ... 26

OS .. 26
Supported System Configurations ... 26
64-Bit AMD Opteron Processors ... 26

Contents

JDK for Solaris Developer's Guide • January, 20054

Compatibility with Previous Releases ...27
Binary Compatibility .. 28
Source Compatibility .. 28
Incompatibilities in the Java 2 Platform Standard Edition 5 (since 1.4.2) 28

Contents

5

6

Preface

This manual is an introduction to and overview of the new features and enhancements in the
Java 2 Platform Standard Edition 5, for the Solaris Operating System.

Who Should Use This Book
This document is intended for application developers who use the Java 2 Platform Standard
Edition 5, on the Solaris Operating System. The Java software is optimized to deliver superior
performance to server-side and client-side Java technology applications in an enterprise
environment.

This document is a subset of the J2SE 5 documentation available at http://java.sun.com/j2se/
1.5.0/docs/index.html. Upon final release of this product, consider that online documentation
to be the definitive description of the Java 2 Platform Standard Edition 5 product.

How This Book Is Organized
lists the features and enhancements of the product.

discusses compatibility issues.

Related Documentation
The following documents also contain information related to this release:

■ J2SE 5 Release Notes located online at http://java.sun.com/j2se/1.5.0/relnotes.html.
■ J2SE 5 Documentation located online at http://java.sun.com/j2se/1.5.0/docs/index.html.
■ Java 2 Platform, Standard Edition, v5 API Specification located online at

http://java.sun.com/j2se/1.5.0/docs/api/index.html.

7

http://java.sun.com/j2se/1.5.0/docs/index.html
http://java.sun.com/j2se/1.5.0/docs/index.html
http://java.sun.com/j2se/1.5.0/relnotes.html
http://java.sun.com/j2se/1.5.0/docs/index.html
http://java.sun.com/j2se/1.5.0/docs/api/index.html

Accessing Sun Documentation Online
The docs.sun.com Web site enables you to access Sun technical documentation online. You can
browse the docs.sun.com archive or search for a specific book title or subject. The URL is
http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and directories;
on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with on-screen
computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with a real
name or value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words, or terms, or words to be
emphasized.

Read Chapter 6 in User's Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C shell,
Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

Preface

JDK for Solaris Developer's Guide • January, 20058

http://docs.sun.com

Preface

9

10

New Features and Enhancements

Version 1.5.0 of the Java Platform Standard Edition 5 is a major feature release. The features
listed below are introduced in 1.5.0 since the previous major release (1.4.0).

For highlights of the new features, also see J2SE 1.5 in a Nutshell (at
http://java.sun.com/developer/technicalArticles/releases/j2se15/). For issues, see the JDK 5.0
release notes (at http://java.sun.com/j2se/1.5.0/relnotes.html).

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

11

http://java.sun.com/developer/technicalArticles/releases/j2se15/
http://java.sun.com/j2se/1.5.0/relnotes.html
http://java.sun.com/j2se/1.5.0/relnotes.html

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

New Features and Enhancements

JDK for Solaris Developer's Guide • January, 200512

Performance Enhancements
For a synopsis of performance enhancements, see Performance Enhancements at
http://java.sun.com/j2se/1.5.0/docs/guide/performance/speed.html.

Java Language Features
For more information see New Language Features at
http://java.sun.com/j2se/1.5.0/docs/guide/language/index.html.

Generics
This long-awaited enhancement to the type system allows a type or method to operate on
objects of various types while providing compile-time type safety. It adds compile-time type
safety to the Collections Framework and eliminates the drudgery of casting. Refer to JSR 14 and
to the generics documentation at http://java.sun.com/j2se/1.5.0/docs/guide/language/
generics.html.

Enhanced for Loop
This new language construct eliminates the drudgery and error-proneness of iterators and
index variables when iterating over collections and arrays. Refer to JSR 201 and to the
documentation at http://java.sun.com/j2se/1.5.0/docs/guide/language/foreach.html.

Autoboxing/Unboxing
This facility eliminates the drudgery of manual conversion between primitive types (such as int)
and wrapper types (such as Integer). Refer to JSR 201 and to the documentation at
http://java.sun.com/j2se/1.5.0/docs/guide/language/autoboxing.html.

Typesafe Enums
This flexible object-oriented enumerated type facility allows you to create enumerated types
with arbitrary methods and fields. It provides all the benefits of the Typesafe Enum pattern
(Effective Java, Item 21) without the verbosity and the error-proneness. Refer to JSR 201 and to
the documentation at http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html.

Java Language Features

New Features and Enhancements 13

http://java.sun.com/j2se/1.5.0/docs/guide/performance/speed.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/index.html
http://jcp.org/en/jsr/detail?id=14
http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html
http://jcp.org/en/jsr/detail?id=201
http://java.sun.com/j2se/1.5.0/docs/guide/language/foreach.html
http://jcp.org/en/jsr/detail?id=201
http://java.sun.com/j2se/1.5.0/docs/guide/language/autoboxing.html
http://jcp.org/en/jsr/detail?id=201
http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html

Varargs
This facility eliminates the need for manually boxing up argument lists into an array when
invoking methods that accept variable-length argument lists. Refer to JSR 201 and to the
documentation at http://java.sun.com/j2se/1.5.0/docs/guide/language/varargs.html.

Static Import
This facility lets you avoid qualifying static members with class names without the
shortcomings of the Constant Interface antipattern. Refer to JSR 201 and to the documentation
at http://java.sun.com/j2se/1.5.0/docs/guide/language/static-import.html.

Metadata (Annotations)
This language feature lets you avoid writing boilerplate code under many circumstances by
enabling tools to generate it from annotations in the source code. This leads to a declarative
programming style where the programmer says what should be done and tools emit the code to
do it. Also it eliminates the need for maintaining side files that must be kept up to date with
changes in source files. Instead the information can be maintained in the source file. Refer to
JSR 175 and to the documentation at http://java.sun.com/j2se/1.5.0/docs/guide/language/
annotations.html.

Virtual Machine

Class Data Sharing
The class data sharing feature is aimed at reducing application startup time and footprint. The
installation process loads a set of classes from the system jar file into a private, internal
representation, then dumps that representation to a shared archive file. During subsequent JVM
invocations, the shared archive is memory-mapped in, saving the cost of loading those classes
and allowing much of the JVM's metadata for these classes to be shared among multiple JVM
processes. For more information, refer to the documentation at http://java.sun.com/j2se/1.5.0/
docs/guide/vm/class-data-sharing.html.

Garbage Collector Ergonomics
The parallel collector has been enhanced to monitor and adapt to the memory needs of the
application. You can specify performance goals for applications and the JVM will tune the size
of the Java heap to meet those performance goals with the smallest application footprint

Virtual Machine

JDK for Solaris Developer's Guide • January, 200514

http://jcp.org/en/jsr/detail?id=201
http://java.sun.com/j2se/1.5.0/docs/guide/language/varargs.html
http://jcp.org/en/jsr/detail?id=201
http://java.sun.com/j2se/1.5.0/docs/guide/language/static-import.html
http://jcp.org/en/jsr/detail?id=175
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://java.sun.com/j2se/1.5.0/docs/guide/vm/class-data-sharing.html
http://java.sun.com/j2se/1.5.0/docs/guide/vm/class-data-sharing.html

consistent with those goals. The goal of this adaptive policy is to eliminate the need to tune
command-line options to achieve the best performance. For a synopsis of garbage collection
features, refer to the documentation at http://java.sun.com/j2se/1.5.0/docs/guide/vm/
gc-ergonomics.html.

Server-Class Machine Detection
At application startup, the launcher can attempt to detect whether the application is running on
a server-class machine. Refer to the documentation at http://java.sun.com/j2se/1.5.0/docs/
guide/vm/server-class.html.

Thread Priority Changes
Thread priority mapping has changed somewhat allowing Java threads and native threads that
do not have explicitly set priorities to compete on an equal footing. Refer to the documentation
at http://java.sun.com/j2se/1.5.0/docs/guide/vm/thread-priorities.html.

Fatal Error Handling
The fatal error reporting mechanism has been enhanced to provide improved diagnostic output
and reliability.

High-Precision Timing Support
The method System.nanoTime() has been added, providing access to a
nanosecond-granularity time source for relative time measurements. The actual precision of
the time values returned by System.nanoTime() is platform-dependent.

Core Libraries

Lang and Util Packages
For a synopsis of java.lang and java.util enhancements, refer to the documentation at
http://java.sun.com/j2se/1.5.0/docs/guide/lang/enhancements.html.

Networking
For a synopsis of added networking features, refer to the documentation at
http://java.sun.com/j2se/1.5.0/docs/guide/net/enhancements-1.5.0.html.

Core Libraries

New Features and Enhancements 15

http://java.sun.com/j2se/1.5.0/docs/guide/vm/gc-ergonomics.html
http://java.sun.com/j2se/1.5.0/docs/guide/vm/gc-ergonomics.html
http://java.sun.com/j2se/1.5.0/docs/guide/vm/server-class.html
http://java.sun.com/j2se/1.5.0/docs/guide/vm/server-class.html
http://java.sun.com/j2se/1.5.0/docs/guide/vm/thread-priorities.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/System.html#nanoTime()
http://java.sun.com/j2se/1.5.0/docs/guide/lang/enhancements.html
http://java.sun.com/j2se/1.5.0/docs/guide/net/enhancements-1.5.0.html

Security
This release of J2SE offers significant enhancements for security. It provides better support for
security tokens, support for more security standards (SASL, OCSP, TSP), improvements for
scalability (SSLEngine) and performance, plus many enhancements in the crypto and Java GSS
areas. For details see the documentation at http://java.sun.com/j2se/1.5.0/docs/guide/security/
index.html.

Internationalization
Enhancements are as follows:
■ Character handling is now based on version 4.0 of the Unicode standard. This affects the

Character and String classes in the java.lang package, the collation and bidirectional
text analysis functionality in the java.text package, character classes in the
java.util.regex package, and many other parts of the J2SE. As part of this upgrade,
support for supplementary characters has been specified by the JSR 204 expert group and
implemented throughout the J2SE. See the article Supplementary Characters in the Java
Platform, the Java Specification Request 204, and the Character class documentation for
more information.

■ The DecimalFormat class has been enhanced to format and parse BigDecimal and
BigInteger values without loss of precision. Formatting of such values is enhanced
automatically; parsing into BigDecimal needs to be enabled using the setParseBigDecimal
method.

■ Vietnamese is now supported in all locale sensitive functionality in the java.util and
java.text packages. See the Supported Locales document for complete information on
supported locales and writing systems.

Refer also to the documentation at http://java.sun.com/j2se/1.5.0/docs/guide/intl/index.html.

Improved Support for Environment Variables
The System.getenv(String) method is no longer deprecated. The new System.getenv()

method allows access to the process environment as a Map<String,String>. Refer to the
documentation at http://java.sun.com/j2se/1.5.0/docs/api/java/lang/
System.html#getenv(java.lang.String).

ProcessBuilder
The new ProcessBuilder class provides a more convenient way to invoke subprocesses than
does Runtime.exec. In particular, ProcessBuilder makes it easy to start a subprocess with a

Core Libraries

JDK for Solaris Developer's Guide • January, 200516

http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html
http://java.sun.com/developer/technicalArticles/Intl/Supplementary/
http://java.sun.com/developer/technicalArticles/Intl/Supplementary/
http://jcp.org/en/jsr/detail?id=204
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Character.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/DecimalFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/ DecimalFormat.html#setParseBigDecimal(boolean)
http://java.sun.com/j2se/1.5.0/docs/guide/intl/locale.doc.html
http://java.sun.com/j2se/1.5.0/docs/guide/intl/index.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/System.html#getenv(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/System.html#getenv()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/System.html#getenv(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/System.html#getenv(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Runtime.html#exec(java.lang.String,java.lang.String[],java.io.File)

modified process environment (that is, one based on the parent's process environment, but with
a few changes). Refer also to the documentation at http://java.sun.com/j2se/1.5.0/docs/api/
java/lang/ProcessBuilder.html.

Formatter
An interpreter for printf-style format strings, the Formatter class provides support for layout
justification and alignment, common formats for numeric, string, and date/time data, and
locale-specific output. Common Java types such as byte, java.math.BigDecimal , and
java.util.Calendar are supported. Limited formatting customization for arbitrary user types
is provided through the java.util.Formattable interface.

Refer to the documentation at
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html.

Scanner
The java.util.Scanner class can be used to convert text into primitives or Strings. Since it is
based on the java.util.regex package, it also offers a way to conduct regular expression based
searches on streams, file data, strings, or implementors of the Readable interface. Refer to the
documentation at http://java.sun.com/j2se/1.5.0/docs/api/java/util/Scanner.html.

Reflection
Support for generics, annotations, enums, and convenience methods has been added. Also,
java.lang.Class has been generified. Refer to the documentation at http://java.sun.com/j2se/
1.5.0/docs/guide/reflection/enhancements.html.

JavaBeans Component Architecture
A subclass of PropertyChangeEvent called IndexedPropertyChangeEvent has been added to
support bound properties that use an index to identify the part of the bean that changed. Also,
methods have been added to the PropertyChangeSupport class to support firing indexed
property change events. Refer to the documentation at http://java.sun.com/j2se/1.5.0/docs/
guide/beans/index.html.

Collections Framework
The Collections Framework has been enhanced in the following ways:

Core Libraries

New Features and Enhancements 17

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ProcessBuilder.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ProcessBuilder.html
http://java.sun.com/j2se/1.5.0/docs/api/java/math/BigDecimal.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Calendar.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formattable.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Readable.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Scanner.html
http://java.sun.com/j2se/1.5.0/docs/guide/reflection/enhancements.html
http://java.sun.com/j2se/1.5.0/docs/guide/reflection/enhancements.html
http://java.sun.com/j2se/1.5.0/docs/guide/beans/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/beans/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/collections/changes5.html

■ Three new language features are targeted at collections: Generics, Enhanced for Loop, and
Autoboxing.

■ Three new interfaces have been added to the framework (two of which are part of
java.util.concurrent): Queue, BlockingQueue, and ConcurrentMap.

■ Two concrete implementations of Queue have been added, as well as one skeletal
implementation.

■ Five blocking queue implementations have been added, and one ConcurrentMap
implementation.

■ Special-purpose Map and Set implementations are provided for use with typesafe enums.
■ Special-purpose copy-on-write List and Set implementations have been added.
■ Wrapper implementations are provided to add dynamic type-safety for most collection

interfaces.
■ Several new algorithms are provided for manipulating collections.
■ Methods are provided to compute hash codes and string representations for arrays.

Refer to the documentation at http://java.sun.com/j2se/1.5.0/docs/guide/collections/
index.html.

Java API for XML Processing (JAXP)
For details refer to JSR 206 or to the documentation at http://java.sun.com/j2se/1.5.0/docs/
guide/xml/jaxp/index.html.

Bit Manipulation Operations
The wrapper classes (Integer, Long, Short, Byte, and Char) now support common bit
manipulation operations which include highestOneBit, lowestOneBit,
numberOfLeadingZeros, numberOfTrailingZeros, bitCount, rotateLeft, rotateRight,
reverse, signum, and reverseBytes.

Math
The numerical functionality provided by the libraries has been augmented in several ways:

■ The BigDecimal class has added support for fixed-precision floating-point computation.
Refer to JSR 13.

■ The Math and StrictMath libraries include hyperbolic transcendental functions (sinh, cosh,
tanh), cube root, base 10 logarithm, etc.

Core Libraries

JDK for Solaris Developer's Guide • January, 200518

http://java.sun.com/j2se/1.5.0/docs/guide/collections/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/collections/index.html
http://jcp.org/en/jsr/detail?id=206
http://java.sun.com/j2se/1.5.0/docs/guide/xml/jaxp/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/xml/jaxp/index.html
http://jcp.org/en/jsr/detail?id=13

■ Hexadecimal floating-point support - To allow precise and predictable specification of
particular floating-point values, hexadecimal notation can be used for floating-point literals
and for string to floating-point conversion methods in Float and Double.

Refer to the documentation at http://java.sun.com/j2se/1.5.0/docs/guide/math/index.html.

Instrumentation
The new java.lang.instrument package provides services that allow Java programming
agents to instrument programs running on the Java virtual machine. The intrumentation
mechanism is modification of the bytecodes of methods.

Serialization
Support has been added to handle enumerated types which are new in version 1.5.0. The rules
for serializing an enum instance differ from those for serializing an ordinary serializable object:
the serialized form of an enum instance consists only of its enum constant name, along with
information identifying its base enum type. Deserialization behavior differs as well--the class
information is used to find the appropriate enum class, and the Enum.valueOf method is called
with that class and the received constant name in order to obtain the enum constant to return.

Refer to the documentation at http://java.sun.com/j2se/1.5.0/docs/guide/serialization/
index.html.

Concurrency Utilities
The java.util.concurrent, java.util.concurrent.atomic, and
java.util.concurrent.locks packages provide a powerful, extensible framework of
high-performance, scalable, thread-safe building blocks for developing concurrent classes and
applications, including thread pools, thread-safe collections, semaphores, a task scheduling
framework, task synchronization utilities, atomic variables, and locks. The addition of these
packages to the core class library frees the programmer from the need to craft these utilities by
hand, in much the same manner that the Collections Framework did for data structures.
Additionally, these packages provide low-level primitives for advanced concurrent
programming which take advantage of concurrency support provided by the processor,
enabling programmers to implement high-performance, highly scalable concurrent algorithms
in the Java language to a degree not previously possible without resorting to native code.

Refer to JSR 166 and to the documentation at http://java.sun.com/j2se/1.5.0/docs/guide/
concurrency/index.html.

Core Libraries

New Features and Enhancements 19

http://java.sun.com/j2se/1.5.0/docs/guide/math/index.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/instrument/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/guide/serialization/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/serialization/index.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/atomic/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/locks/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/locks/package-summary.html
http://jcp.org/en/jsr/detail?id=166
http://java.sun.com/j2se/1.5.0/docs/guide/concurrency/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/concurrency/index.html

Threads
The java.lang.Thread class has the following enhancements:

■ Thread priority handling has changed; see the above link for details.
■ Thread.State enum class and the new getState() API are provided for querying the

execution state of a thread.
■ The new thread dump API - the getStackTrace and getAllStackTraces methods in the

Thread class - provides a programmatic way to obtain the stack trace of a thread or all
threads.

■ The uncaughtExceptionHandler mechanism, previously available only through the
ThreadGroup class, is now available directly through the Thread class.

■ A new form of the sleep() method is provided which allows for sleep times smaller than
one millisecond.

Monitoring and Management
This release of J2SE offers significant enhancements for monitoring and management for the
Java platform.

■ Monitoring and management API for the Java virtual machine The new
java.lang.management package provides the interface for monitoring and managing the
Java virtual machine.

■ Monitoring and management API for the logging facility The new
java.util.logging.LoggingMXBean interface is the management interface for the logging
facility.

■ JMX instrumentation of the Java virtual machine The Java virtual machine (JVM) has
built-in instrumentation that enables you to monitor and manage it using JMX. You can
easily start a JMX agent for monitoring and managing remote or local Java VMs
instrumentation or of any application with JMX instrumentation. See Monitoring and
Management Using JMX at
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html for details.

■ The SNMP agent publishes the standard MIB for the Java virtual machine instrumentation
as defined by JSR 163. For more information, see SNMP Monitoring and Management.

■ Java Management Extensions JMX API version 1.2 and the RMI connector of the JMX
Remote API version 1.0 are included in J2SE 5 release. The JMX API allows you to
instrument libraries and applications for monitoring and management. The RMI connector
allows this instrumentation to be remotely accessible. For more details, see the JMX
documentation at http://java.sun.com/j2se/1.5.0/docs/guide/management/index.html.

Core Libraries

JDK for Solaris Developer's Guide • January, 200520

http://java.sun.com/j2se/1.5.0/docs/guide/vm/thread-priorities.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Thread.State.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Thread.html#getState()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Thread.html#getStackTrace()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Thread.html#getAllStackTraces()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Thread.html#setUncaughtExceptionHandler(java.lang.Thread.UncaughtExceptionH andler)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/management/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/LoggingMXBean.html
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html
http://jcp.org/en/jsr/detail?id=163
http://java.sun.com/j2se/1.5.0/docs/guide/management/SNMP.html
http://java.sun.com/j2se/1.5.0/docs/guide/jmx/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/jmx/index.html

Integration Libraries

Remote Method Invocation (RMI)
RMI has been enhanced in the following areas:
■ Dynamic Generation of Stub Classes - This release adds support for the dynamic generation

of stub classes at runtime, obviating the need to use the Java Remote Method Invocation
(Java RMI) stub compiler, rmic, to pregenerate stub classes for remote objects. Note that
rmic must still be used to pregenerate stub classes for remote objects that need to support
clients running on earlier versions.

■ Standard SSL/TLS Socket Factory Classes - This release adds standard Java RMI socket
factory classes, javax.rmi.ssl.SslRMIClientSocketFactory and
javax.rmi.ssl.SslRMIServer SocketFactory, which communicate over the Secure
Sockets Layer (SSL) or Transport Layer Security (TLS) protocols using the Java Secure
Socket Extension (JSSE).

■ Launching rmid or a Java RMI Server from inetd/xinetd - A new feature, provided by the
System.inheritedChannel method, allows an application to obtain a channel
(java.nio.channels.SocketChannel or java.nio.channels.ServerSocketChannel, for
example) inherited from the process that launched the virtual machine (VM). Such an
inherited channel can be used to either service a single incoming connection (as with
SocketChannel) or accept multiple incoming connections (as with ServerSocketChannel).
Therefore, Java networking applications launched by inetd (Solaris(tm) Operating System)
or xinetd (Linux) can now obtain the SocketChannel or ServerSocketChannel inherited
from inetd/xinetd.

Refer to the documentation at http://java.sun.com/j2se/1.5.0/docs/guide/rmi/index.html.

Java Database Connectivity (JDBC)
RowSet interface, part of the javax.sql package, introduced in J2SE version 1.4, provides a
lightweight means of passing data between components.

At this release, as an aid to developers, the RowSet interface has been implemented (as JSR 114)
in five of the more common ways a RowSet object can be used. These implementations provide a
standard that developers are free to use as is or to extend. Following are the five standard
implementations:
■ JdbcRowSet - used to encapsulate a result set or a driver that is implemented to use JDBC

technology
■ CachedRowSet - disconnects from its data source and operates independently except when it

is getting data from the data source or writing modified data back to the data source. This
makes it a lightweight container for as much data as it can store in memory.

Integration Libraries

New Features and Enhancements 21

http://java.sun.com/j2se/1.5.0/docs/api/javax/rmi/ssl/SslRMIClientSocketFactory.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/rmi/ssl/SslRMIServerSocketFactory.html
http://java.sun.com/j2se/1.5.0/docs/guide/rmi/index.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/sql/RowSet.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/sql/package-summary.html

■ FilteredRowSet - extends CachedRowSet and is used to get a subset of data
■ JoinRowSet - extends CachedRowSet and is used to get an SQL JOIN of data from multiple

RowSet objects
■ WebRowSet - extends CachedRowSet and is used for XML data. It describes tabular

components in XML using a standardized XML schema.

Refer to the documentation at http://java.sun.com/j2se/1.5.0/docs/guide/jdbc/index.html.

CORBA, Java IDL and RMI-IIOP
Enhancements to CORBA, Java IDL, and Java RMI-IIOP are discussed in Changes in CORBA
Features Between J2SE 1.4.x and 1.5.0. Refer to the Java IDL documentation at
http://java.sun.com/j2se/1.5.0/docs/guide/idl/index.html and to the Java RMI-IIOP
documentation at http://java.sun.com/j2se/1.5.0/docs/guide/rmi-iiop/index.html.

Java Naming and Directory Interface (JNDI)
JNDI provides the following new features.

■ Enhancements to javax.naming.NameClassPair to access the fullname from the
directory/naming service

■ Support for standard LDAP controls: Manage Referral Control, Paged Results Control and
Sort Control

■ Support for manipulation of LDAP names.

Refer to the documentation at http://java.sun.com/j2se/1.5.0/docs/guide/jndi/index.html.

User Interface

Internationalization
■ To render multilingual text, using logical fonts, 2D now takes advantage of installed host OS

fonts for all supported writing systems. For example, if you run in a Thai locale
environment, but have Korean fonts installed, both Thai and Korean are rendered. The
J2RE now also automatically detects physical fonts that are installed into its
lib/fonts/fallback directory and adds these physical fonts to all logical fonts for 2D
rendering.

User Interface

JDK for Solaris Developer's Guide • January, 200522

http://java.sun.com/j2se/1.5.0/docs/guide/jdbc/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/idl/jidlChanges.html
http://java.sun.com/j2se/1.5.0/docs/guide/idl/jidlChanges.html
http://java.sun.com/j2se/1.5.0/docs/guide/idl/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/rmi-iiop/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/jndi/index.html

■ AWT now uses the Unicode APIs on Windows 2000/XP. As a result, some of its components
can handle text without being restricted by Windows locale settings. For example, AWT text
components can accept and display text in the Devanagari writing system regardless of the
Windows locale settings.

Refer to the documentation at http://java.sun.com/j2se/1.5.0/docs/guide/intl/index.html.

Java Sound Technology
■ Ports are now available on all platforms (RFE 4782900).
■ MIDI device i/o is now available on all platforms (RFE's 4812168, 4782924).
■ Optimized direct audio access is implemented on all platforms (RFEs 4908240 and

4908879). It is enabled by default on systems which offer native mixing (i.e. Linux ALSA
with hardware mixing, Solaris Mixer enabled, Windows DirectSound).

■ The new real-time Sequencer works with all MIDI devices and allows unlimited
Transmitters (RFE 4773012).

■ The sound.properties configuration file allows choice of default devices (RFE 4776511).
For details, see MidiSystem and AudioSystem for details.

■ MidiDevices can query connected Receivers and Transmitters (RFE 4931387, methods
MidiDevice.getReceiver and MidiDevice.getTransmitter).

■ AudioFormat, AudioFileFormat, and MidiFileFormat now have properties that allow
further description and qualification of the format (RFEs 4925767 and 4666845).

■ A set of ease-of-use methods allow easier retrieval of lines from AudioSystem (RFE
4896221).

■ The Sequencer interface is extended with loop methods, for seamless looping of specific
portions of a MIDI sequence (RFE 4204105).

■ Java Sound no longer prevents the VM from exiting (bug 4735740).

Refer to the documentation at http://java.sun.com/j2se/1.5.0/docs/guide/sound/index.html.

Java 2D Technology
Added 2D features include expanded Linux and Solaris printer support, new methods for
creating fonts from files and streams, and new methods related to VolatileImages and hardware
acceleration of images. A number of internal changes to text rendering code greatly improve its
robustness, performance, and scalability. Other performance work includes
hardware-accelerated rendering using OpenGL (disabled by default).

Refer to the documentation at http://java.sun.com/j2se/1.5.0/docs/guide/2d/index.html.

User Interface

New Features and Enhancements 23

http://java.sun.com/j2se/1.5.0/docs/guide/intl/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/sound/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/2d/index.html

Image I/O
The Image I/O system now has readers and writers for BMP and WBMP formats.

Refer to the documentation at http://java.sun.com/j2se/1.5.0/docs/guide/imageio/index.html.

AWT
Version 1.5.0 features many AWT enhancements and bug fixes, including some that have often
been requested by our customers. Most notably, the new MouseInfo class makes it possible to
determine the mouse location on the desktop. New Window methods make it possible to specify
the default location for a newly created window (or frame), appropriate to the platform.
Another Window enhancement makes it possible to ensure that a window (or frame) is always on
top. (This feature does not work for some window managers on Solaris/Linux.) In the area of
data transfer, the new DropTargetDragEvent API allows the drop target to access transfer data
during the drag operation.

AWT http://java.sun.com/j2se/1.5.0/docs/guide/awt/index.html.

Swing
With the 1.4.2 release we provided two new look and feels for Swing: XP and GTK. Rather than
taking a break, in 1.5.0 we're providing two more look and feels: Synth, a skinnable look and
feel, and Ocean, a new theme for Metal. Beyond look and feels, we've added printing support to
JTable, which makes it trivial to get a beautiful printed copy of a JTable. Lastly, after seven
years, we've made jFrame.add equivalent to jFrame.getContentPane().add().

Refer to the documentation at Swing http://java.sun.com/j2se/1.5.0/docs/guide/swing/
index.html.

Deployment

General Deployment
Pack200, a new hyper-compression format for JAR files defined by JSR 200, can siginificantly
reduce the download size of JAR files used in Java Webstart applications and Java Plug-in
applets.

For a synopsis of general deployment features and enhancements, refer to
http://java.sun.com/j2se/1.5.0/docs/guide/deployment/enhancements-1.5.0.html.

Deployment

JDK for Solaris Developer's Guide • January, 200524

http://java.sun.com/j2se/1.5.0/docs/guide/imageio/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/awt/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/swing/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/swing/index.html
http://jcp.org/en/jsr/detail?id=200
http://java.sun.com/j2se/1.5.0/docs/guide/deployment/enhancements-1.5.0.html

Java Web Start Deployment
For a synopsis of Java Web Start deployment features and enhancements, refer to
http://java.sun.com/j2se/1.5.0/docs/guide/javaws/enhancements-1.5.0.html

Tools and Tool Architecture

Java Virtual Machine Tool Interface (JVMTI)
JVMTI is a new native programming interface for use by development and monitoring tools. It
provides both a way to inspect the state and to control the execution of applications running in
the Java virtual machine (VM). JVMTI is intended to provide a VM interface for the full
breadth of tools that need access to VM state, including but not limited to: profiling, debugging,
monitoring, thread analysis, and coverage analysis tools.

JVMTI will replace the now deprecated JVMPI and JVMDI in the next major release of J2SE.

Refer to the documentation at http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/index.html.

Java Platform Debugger Architecture (JPDA)
JPDA itself has many new features, described in more detail on the JPDA enhancements page.

■ A read-only subset of JDI has been defined. This subset can be used on a debuggee in which
no debug code can be executed (such as a core file or a process that is hung or was not started
in debug mode). The subset allows creation of JDI connectors for use in debugging such
debuggees.

■ A service provider interface for connectors and transports allows debugger vendors, or even
end users, to create their own JDI connectors and transports and plug them into the JPDA
reference implementation. For example, a connector could be provided to use SSL to
communicate between the debugger and debuggee.

■ JDI supports the new language features (generics, enums, and varargs).
■ The lowest layer of JPDA, the Java Virtual Machine Debugger Interface (JVMDI), has been

deprecated and will be removed in the next major J2SE release. Replacing it is the Java
Virtual Machine Tool Interface (JVMTI). This is a more general interface that allows
profiling to be done as well as debugging. The current profiling interface, Java Virtual
Machine Profiling Interface(JVMPI) is also deprecated and will be removed in the next
major release.

■ The JPDA reference implementation includes new JDI connectors that allow corefiles and
hung processes to be debugged.

Tools and Tool Architecture

New Features and Enhancements 25

http://java.sun.com/j2se/1.5.0/docs/guide/javaws/enhancements-1.5.0.html
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/jpda/enhancements.html

Refer to the documentation at http://java.sun.com/j2se/1.5.0/docs/guide/jpda/index.html.

Java Compiler (javac)
Compiler options include:
■ -source 1.5 - Enable 1.5 specific language features to be used in source files. (-target 1.5

is implied.)
■ -target 1.5 - Allow javac to use 1.5 specific features in the libraries and virtual machine.
■ -Xlint - Enable javac to produce warning messages about legal, but suspect and often

problematic, program constructs. An example would be declaring a class that implements
Serializable but does not define a serialVersionUID.

■ -d32 - Indicate a 32-bit Solaris or Linux platform.
■ -d64 - Indicate a 64-bit Solaris or Linux platform.

Refer to the man page documentation at http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/
javac.html.

Javadoc Tool
See What's New in Javadoc 1.5.0 at
http://java.sun.com/j2se/1.5.0/docs/guide/javadoc/whatsnew-1.5.0.html.

Annotation Processing Tool (apt)
apt is a new command-line utility for annotation processing. It includes a set of reflective APIs
and supporting infrastructure to process program annotations.

Refer to the documentation at http://java.sun.com/j2se/1.5.0/docs/guide/apt/index.html.

OS & Hardware Platforms

Supported System Configurations
For more information, refer to http://java.sun.com/j2se/1.5.0/system-configurations.html.

64-Bit AMD Opteron Processors
With J2SE 5, AMD Opteron processors are supported by the server VM on Suse Linux and on
Windows 2003.

OS & Hardware Platforms

JDK for Solaris Developer's Guide • January, 200526

http://java.sun.com/j2se/1.5.0/docs/guide/jpda/index.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/javac.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/javac.html
http://java.sun.com/j2se/1.5.0/docs/guide/javadoc/whatsnew-1.5.0.html
http://www.jcp.org/en/jsr/detail?id=175
http://java.sun.com/j2se/1.5.0/docs/guide/apt/index.html
http://java.sun.com/j2se/1.5.0/system-configurations.html

Compatibility with Previous Releases

This document contains information on the following topics:

■

■

■

The compatibility documents are divided to track incompatibility only between adjacent
versions. For example, this 1.5.0 compatibility page details only 1.5.0 incompatibility with 1.4.2
and not previous versions. Therefore, to find how 1.5.0 is incompatible with all versions, you
would need to look on all compatibility pages.

The following documents contain information about incompatibilities between adjacent
releases.

■ Incompatibilities in J2SE 1.4.2 (since 1.4.1) at http://java.sun.com/j2se/1.4.2/
compatibility.html

■ Incompatibilities in J2SE 1.4.1 (since 1.4.0) at http://java.sun.com/j2se/1.4.1/
compatibility.html

■ Incompatibilities in J2SE 1.4.0 (since 1.3) at http://java.sun.com/j2se/1.4/compatibility.html
■ Incompatibilities in J2SE 1.3 (since 1.2) at http://java.sun.com/j2se/1.3/compatibility.html

See the Java Language Specification Maintenance Page (at
http://java.sun.com/docs/books/jls/jls-maintenance.html) for a summary of changes that have
been made to the specification of the Java programming language since the publication of the
Java Language Specification, Second Edition (at
http://java.sun.com/docs/books/jls/index.html).

27

http://java.sun.com/j2se/1.4.2/compatibility.html
http://java.sun.com/j2se/1.4.2/compatibility.html
http://java.sun.com/j2se/1.4.1/compatibility.html
http://java.sun.com/j2se/1.4.1/compatibility.html
http://java.sun.com/j2se/1.4/compatibility.html
http://java.sun.com/j2se/1.3/compatibility.html
http://java.sun.com/docs/books/jls/jls-maintenance.html
http://java.sun.com/docs/books/jls/index.html

Binary Compatibility
Version 1.5.0 of the Java 2 Platform Standard Edition 5 is upwards binary-compatible with
version 1.4.2 except for the incompatibilities listed below. This means that, except for the noted
incompatibilities, class files built with version 1.4.2 compilers will run correctly on version
1.5.0.

Some early bytecode obfuscators produced class files that violated the class file format as given
in the virtual machine specification. Such improperly formatted class files will not run on the
Java 2 JDK's virtual machine, though some of them may have run on earlier versions of the
virtual machine. To remedy this problem, regenerate the class files with a newer obfuscator that
produces properly formatted class files.

Source Compatibility
Downward source compatibility is not supported. If source files use new language features or
Java 2 Platform APIs, they will not be usable with an earlier version of the Java platform.

In general, the policy is as follows, except for any incompatibilities listed further below:
■ Maintenance releases (such as 1.4.1, 1.4.2) do not introduce any new language features or

APIs, so they maintain source-compatibility with each other.
■ Functionality releases and major releases (such as 1.3.0, 1.4.0, 1.5.0) maintain upwards but

not downwards source-compatibility.

Deprecated APIs are interfaces that are supported only for backwards compatibility. The javac
compiler generates a warning message whenever one of these is used, unless the -nowarn
command-line option is used. It is recommended that programs be modified to eliminate the
use of deprecated APIs, though there are no current plans to remove such APIs, with the
exception of JVMDI and JVMPI entirely from the system. (Refer to bug 4639363.)

Some APIs in the sun.* packages have changed. These APIs are not intended for use by
developers. Developers importing from sun.* packages do so at their own risk. For more
details, see, Why Developers Should Not Write Programs That Call sun.* Packages (at
http://java.sun.com/products/jdk/faq/faq-sun-packages.html).

Incompatibilities in the Java 2 Platform Standard Edition 5
(since 1.4.2)

J2SE 5 is strongly compatible with previous versions of the Java 2 Platform. Almost all existing
programs should run on J2SE 5 without modification. However, there are some minor potential
source and binary incompatibilities in the JRE and JDK that involve rare circumstances and
corner cases that we are documenting here for completeness.

Binary Compatibility

JDK for Solaris Developer's Guide • January, 200528

http://java.sun.com/products/jdk/faq/faq-sun-packages.html
http://java.sun.com/products/jdk/faq/faq-sun-packages.html

1. Generification - Generification is the process of adding generic type parameters and
arguments to existing classes and methods in a manner that's consistent with the
specifications of those classes. JSR 14 specified the generification of many of the core
libraries, in particular the collection classes and the Class class. In the 1.5 Beta 2 release, the
effect of the core generification was propagated throughout the rest of the platform
wherever possible.

Most source code that uses generified classes, constructors, methods, and fields will
continue to compile in 1.5, though some will not. The simplest workaround for code that
fails to compile due to the generification changes is to specify -source 1.4 on the javac
command line.

For information about generics and the core generification, see JSR 14 and the generics
tutorial (at http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf).

2. Virtual Machine - Previously, the default virtual machine (VM) for Solaris/SPARC was the
client VM. However, many Solaris/SPARC boxes are used as servers, on which the server
VM is more appropriate for performance reasons. Thus, as of 1.5, server-class
Solaris/SPARC machines run the server VM by default. In general, the throughput of the
server VM is much better than the client VM, but the startup time is somewhat worse. A
server-class machine is currently defined to be one with 2 or more processors and 2 or more
gigabytes of memory.

For more information, see Server-Class Machine Detection (at
http://java.sun.com/j2se/1.5.0/docs/guide/vm/server-class.html) and Garbage Collection
Ergonomics at (http://java.sun.com/j2se/1.5.0/docs/guide/vm/gc-ergonomics.html).

3. Virtual Machine - To reflect the class sharing feature introduced in 1.5, the java.vm.info
property (which is reflected in the text displayed by java -version) now specifies the
sharing mode. Any code that parses all the way to the end of the java.vm.info property
value or the output of java -version might need to be changed.

For more information, see bug 4964160 and Class Data Sharing (at
http://java.sun.com/j2se/1.5.0/docs/guide/vm/class-data-sharing.html).

4. Class Loader - Previously, it was possible to specify a non-binary class name to ClassLoader

methods that take a String class name argument. This unintended behaviour was not
compliant with the long-standing specification of class names. As of 1.5, parameter checking
of these ClassLoader methods has been modified to comply with the specification, and any
class name that is not a binary name is treated like any other unrecognized class name. Since
the APIs that explicitly require or return class names (for example, Class.forName or
Class.getName) use the binary name for reference types, it is unlikely that the typical user
would have produced a class name that would have returned a Class.

For more information, see the definition of binary name (at
http://java.sun.com/docs/books/jls/second_edition/html/binaryComp.doc.html#59876) in
the Java Language Specification, Second Edition (at http://java.sun.com/docs/books/jls/).
Also see the evaluation of bug 4986512.

Incompatibilities in the Java 2 Platform Standard Edition 5 (since 1.4.2)

Compatibility with Previous Releases 29

http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf
http://java.sun.com/j2se/1.5.0/docs/guide/vm/server-class.html
http://java.sun.com/j2se/1.5.0/docs/guide/vm/gc-ergonomics.html
http://java.sun.com/j2se/1.5.0/docs/guide/vm/gc-ergonomics.html
http://developer.java.sun.com/developer/bugParade/bugs/4964160.html
http://java.sun.com/j2se/1.5.0/docs/guide/vm/class-data-sharing.html
http://java.sun.com/docs/books/jls/second_edition/html/binaryComp.doc.html#59876
http://java.sun.com/docs/books/jls/
http://developer.java.sun.com/developer/bugParade/bugs/4986512.html

5. Serialization - Changes in compiler-generated synthetics affect the default serial version
UID, and therefore can cause serialization incompatibility when that UID is not explicitly
overridden.

For more information, see bug 4786115.

6. Logging - Previously, the java.util.logging.Level(String name, int value, String

resourceBundleName) constructor allowed a null name argument, but the parse method
did not. In 1.5, the constructor now throws a NullPointerException when the name is null.
The compatibility risk is mitigated in that you had to subclass Level to use this constructor
and would get a NullPointerException when using a Level name of null for subsequent
calls, except for simple calls such as toString.

For more information, see bug 4625722.

7. Apache - The org.apache classes, which have never been supported J2SE APIs but are used
by the javax.xml package, have moved in 1.5 to com.sun.org.apache.package.internal

so that they won't clash with more recent, developer-downloaded versions of the classes.
Any applications that depend on the org.apache classes being part of the J2SE release must
do one of the following to work in 1.5:
■ Code the application so it uses only the supported interfaces that are part of JAXP.
■ Download the org.apache.xalan classes from Apache.

For more information, see bug 4740355.

8. JAXP - The J2SE 1.4 platform included JAXP 1.1 (Crimson). The J2SE 1.5 platform includes
JAXP 1.3 (Xerces). Crimson and Xerces are not simply different versions of the same
codebase. Instead, they are entirely different implementations of the JAXP standard. So,
while they both conform to the JAXP standard, there are some subtle differences between
them.

Although Crimson was small and fast, it was ultimately less functional than Xerces (an
open-source implementation hosted at Apache). In addition, the JAXP standard has evolved
from 1.1 to 1.3. These two factors combine to create compatibility issues.

For details, see the JAXP Compatibility Guide for 1.5 at
http://java.sun.com/j2se/1.5.0/docs/guide/xml/jaxp/JAXP-Compatibility_150.html.

9. JAXP - The J2SE 1.4 platform supported the DOM Level 2 API. The J2SE 1.5 platform
supports the DOM Level 3 family of APIs. New methods have been added to DOM Level 3
interfaces, so some existing applications using DOM Level 2 will not be able to compile with
the new interfaces.

Many DOM Level 2 applications will run if DOM Level 3 is substituted for DOM Level 2 in
the class path; however, a small number will encounter a NoSuchMethodException.
Therefore, some applications will not have binary compatibility.

For details, see the JAXP Compatibility Guide for 1.5 at
http://java.sun.com/j2se/1.5.0/docs/guide/xml/jaxp/JAXP-Compatibility_150.html.

Incompatibilities in the Java 2 Platform Standard Edition 5 (since 1.4.2)

JDK for Solaris Developer's Guide • January, 200530

http://developer.java.sun.com/developer/bugParade/bugs/4786115.html
http://developer.java.sun.com/developer/bugParade/bugs/4625722.html
http://java.sun.com/j2se/1.5.0/docs/guide/xml/jaxp/index.html
http://developer.java.sun.com/developer/bugParade/bugs/4740355.html
http://java.sun.com/j2se/1.5.0/docs/guide/xml/jaxp/JAXP-Compatibility_150.html
http://java.sun.com/j2se/1.5.0/docs/guide/xml/jaxp/JAXP-Compatibility_150.html

10. JAXP - The J2SE 1.4 platform supported the SAX 2.0 API. The J2SE 1.5 platform supports
SAX 2.0.2. In general, SAX 2.0.2 is a bug-fix release, with no API changes. However, a few
clarifications done as part of SAX 2.0.2 release are possible compatibility issues:
■ ErrorHandler, EntityResolver, ContentHandler, and DTDHandler can now be set to

null by applications. SAX 2.0 required the XML processor to throw
java.lang.NullPointerException in this case. This change is relevant to the XML
processor because most parsers react to null by restoring the default settings.

■ DefaultHandler is a default implementation class for various handlers including
EntityResolver. The resolveEntity method implementation in DefaultHandler is
now declared as throws IOException, SAXException. Previously it could throw only
SAXException.

■ The addition of java.io.IOException to the list of exceptions thrown by the
resolveEntity method is a source-incompatible change. Specifically, code that invokes
resolveEntity might compile successfully with SAX 2.0 but fail compilation with SAX
2.0.2 because it needs to handle IOException along with SAXException.

For details, see the JAXP Compatibility Guide for 1.5 at
http://java.sun.com/j2se/1.5.0/docs/guide/xml/jaxp/JAXP-Compatibility_150.html.

11. JAXP - Previously, Xalan was the default transformer. Since the Apache community has
agreed to make XSLTC the default processor for developing XSLT 2.0, XSLTC is the default
transformer as of 1.5. Compatibility risks include:
■ Xalan has bugs that XSLTC does not, and vice-versa. Application code that has taken

Xalan bugs into account is likely to fail.
■ XSLTC does not support all the extensions that Xalan does. These extensions are beyond

the definition of the JAXP and XSLT specifications. For those users impacted by this, the
work around of downloading the Xalan classes from Apache is still available. Also, going
forward we expect to be supporting more and more extensions in XSLTC.

For more information, see the JAXP Compatibility Guide for 1.5 at
http://java.sun.com/j2se/1.5.0/docs/guide/xml/jaxp/JAXP-Compatibility_150.html.

12. 2D - Previously, passing a null Image parameter to a Graphics.drawImage method resulted
in a NullPointerException. As of 1.5, it doesn't. The new behavior allows applications that
worked with the Microsoft VM to work with the standard VM. Any applications that
depend on the NullPointerException need to be changed so that they'll work in 1.5.

13. AWT - Previously, only containers that were focus cycle roots could provide a focus
traversal policy. As of 1.5, any container can provide a focus traversal policy; the new
FocusTraversalPolicyProvider property of Container indicates whether it does.
The focus traversal policies provided with the Java platform have been changed in 1.5 to
accommodate focus traversal policy providers. Specifically, when a policy encounters a
focus traversal policy provider during forward (backward) traversal, it should not treat its
components as belonging to the provided focus cycle root but should use the focus traversal
policy of focus traversal policy provider to get next (previous) component. If the returned

Incompatibilities in the Java 2 Platform Standard Edition 5 (since 1.4.2)

Compatibility with Previous Releases 31

http://java.sun.com/j2se/1.5.0/docs/guide/xml/jaxp/JAXP-Compatibility_150.html
http://java.sun.com/j2se/1.5.0/docs/guide/xml/jaxp/JAXP-Compatibility_150.html

component is the same as the first (last) component returned by the focus traversal policy of
the focus traversal policy provider, then invoking the policy should get the next (previous)
component in the cycle after (before) the focus traversal policy provider. Calculation of first
and last components in focus cycle roots should use the focus traversal policies of focus
traversal policy providers when necessary (when a first or last component is itself a
Container and a focus traversal policy provider).
Because this change doesn't require any new methods in focus traversal policies, third-party
focus traversal policies will continue to work, although they will not support the notion of
providers.
If you have written a focus traversal policy and wish to support providers, you need to make
changes similar to the ones made to the platform-provided policies in 1.5.
For more information, see the Focus Traversal Policy Providers section at
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/doc-files/FocusSpec.html
#FocusTraversalPolicyProviders of the focus specification, and the AWT Focus Subsystem
at http://java.sun.com/j2se/1.5.0/docs/api/java/awt/doc-files/FocusSpec.html.

14. Drag and Drop - Previously, the only drag and drop (DnD) protocol supported on X11 was
the Motif DnD protocol. In 1.5, the XDND protocol is also supported, and the Motif DnD
protocol has been reimplemented to not depend on the Motif library. It's possible that
regressions might be caused by the difference between the new Motif DnD protocol
implementation and one provided by the Motif library. However, since the Motif library's
implementation is buggy, it's believed that the new implementation is at least as high in
quality, as well as better supported.
For more information, see bug 4638443.

15. Swing - Buttons with a customized background color might require code changes to be
rendered as intended with the 1.5 Java look and feel theme, Ocean. The reason is that Ocean
draws a gradient on buttons, by default. If you don't want the gradient, either set the
contentAreaFilled property to true or set the background to a Color that is not a
UIResource. In most cases this is as simple as: button.setBackground(Color.RED); If, for
some reason, you are picking up a UIResource you can create a new Color that is not a
UIResource like this: button.setBackground(new Color(oldColor));
For more information, see bug 4908404.

16. Swing - In JTree and JList it has always been the case that the user manipulates the lead
index with the keyboard. For example, if the lead is on row four in a JList and you press the
up key, this moves the lead to row three and selects the item there. With these components,
then, the lead is considered the focused index. They pass information to their renderers
indicating whether or not to draw the focus indicator for a given index, and this is based on
whether that index is the lead.
Prior to 1.5, JTable was doing the opposite and using the anchor index in the same manner
that JTree and JList use the lead. A request to correct this was made as RFE number
4759422 and eventually fixed as part of 4303294. Now JTable is consistent with JList and
JTree. This could affect developers that assumed the previous behavior. For example,

Incompatibilities in the Java 2 Platform Standard Edition 5 (since 1.4.2)

JDK for Solaris Developer's Guide • January, 200532

http://java.sun.com/j2se/1.5.0/docs/api/java/awt/doc-files/FocusSpec.html#FocusTraversalPolicyProviders
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/doc-files/FocusSpec.html
http://developer.java.sun.com/developer/bugParade/bugs/4638443.html
http://developer.java.sun.com/developer/bugParade/bugs/4908404.html

consider an application that needs information on what is being shown as the focused cell in
a JTable, and it assumes that to be the anchor. While this would be correct pre-1.5, it could
now result in determining one index to be focused, when in reality some other index is
displaying the focus rectangle.
For more information, see bugs 4759422 and 4303294.

17. JVMDI - As of 1.5 the Java Virtual Machine Debug Interface (JVMDI) is deprecated. JVMDI
will be removed in the next major release. Any new development should use JVMTI. Existing
tools should begin moving to JVMTI.
For more information, see the JVMTI documentation (at
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/index.html).

18. JVMPI - As of 1.5 the Java Virtual Machine Profiling Interface (JVMPI) is deprecated.
JVMPI will be removed in the next major release. Any new development should use JVMTI.
Existing tools should begin moving to JVMTI.
For more information, see the JVMTI documentation at
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/index.html.

Incompatibilities in the Java 2 Platform Standard Edition 5 (since 1.4.2)

Compatibility with Previous Releases 33

http://developer.java.sun.com/developer/bugParade/bugs/4759422.html
http://developer.java.sun.com/developer/bugParade/bugs/4303294.html
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/index.html

34

	JDK for Solaris Developer's Guide
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Related Documentation
	Accessing Sun Documentation Online
	Typographic Conventions
	Shell Prompts in Command Examples

	New Features and Enhancements
	Performance Enhancements
	Java Language Features
	Generics
	Enhanced for Loop
	Autoboxing/Unboxing
	Typesafe Enums
	Varargs
	Static Import
	Metadata (Annotations)

	Virtual Machine
	Class Data Sharing
	Garbage Collector Ergonomics
	Server-Class Machine Detection
	Thread Priority Changes
	Fatal Error Handling
	High-Precision Timing Support

	Core Libraries
	Lang and Util Packages
	Networking
	Security
	Internationalization
	Improved Support for Environment Variables
	ProcessBuilder
	Formatter
	Scanner
	Reflection
	JavaBeans Component Architecture
	Collections Framework
	Java API for XML Processing (JAXP)
	Bit Manipulation Operations
	Math
	Instrumentation
	Serialization
	Concurrency Utilities
	Threads
	Monitoring and Management

	Integration Libraries
	Remote Method Invocation (RMI)
	Java Database Connectivity (JDBC)
	CORBA, Java IDL and RMI-IIOP
	Java Naming and Directory Interface (JNDI)

	User Interface
	Internationalization
	Java Sound Technology
	Java 2D Technology
	Image I/O
	AWT
	Swing

	Deployment
	General Deployment
	Java Web Start Deployment

	Tools and Tool Architecture
	Java Virtual Machine Tool Interface (JVMTI)
	Java Platform Debugger Architecture (JPDA)
	Java Compiler (javac)
	Javadoc Tool
	Annotation Processing Tool (apt)

	OS & Hardware Platforms
	Supported System Configurations
	64-Bit AMD Opteron Processors

	Compatibility with Previous Releases
	Binary Compatibility
	Source Compatibility
	Incompatibilities in the Java 2 Platform Standard Edition 5 (since 1.4.2)

