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Preface

This Device Driver Tutorial is a hands-on guide that shows you how to develop a simple device
driver for the Solaris Operating System (Solaris OS). Device Driver Tutorial also explains how
device drivers work in the Solaris OS. This book is a companion to Writing Device Drivers.
Writing Device Drivers is a thorough reference document that discusses many types of devices
and drivers. Device Driver Tutorial examines complete drivers but does not provide a
comprehensive treatment of all driver types. Device Driver Tutorial often points to Writing
Device Drivers and other books for further information.

Note – This Solaris release supports systems that use the SPARC and x86 families of processor
architectures: UltraSPARC, SPARC64, AMD64, Pentium, and Xeon EM64T. The supported
systems appear in the Solaris OS Hardware Compatibility Lists at http://www.sun.com/
bigadmin/hcl/. This document cites any implementation differences between the platform
types.

Who Should Use This Book
You should read this tutorial if you need to develop, install, and configure device drivers for the
Solaris OS. You also should read this book if you need to maintain existing drivers or add new
functionality to existing Solaris OS drivers. Information about the kernel provided in this book
also will help you troubleshoot any problems you might encounter installing or configuring
Solaris systems.

User Background
To write device drivers for the Solaris OS, you should have the following background:

■ Be a confident C programmer
■ Have experience with data structures, especially with linked lists
■ Understand bit operations
■ Understand indirect function calls
■ Understand caching
■ Understand multithreading (see the Multithreaded Programming Guide)
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■ Be familiar with a UNIX shell
■ Understand the basics of UNIX system and I/O architecture

The most important information you need to have to write a device driver are the
characteristics of the device. Get a detailed specification for the device you want to drive.

Experience with Solaris OS compilers, debuggers, and other tools will be very helpful to you.
You also need to understand where the file system fits with the kernel and the application layer.
These topics are discussed in this tutorial.

How This Book Is Organized
This book is organized into the following chapters:

Chapter 1, “Introduction to Device Drivers,” provides an overview of the Solaris Operating
System and kernel. This chapter also discusses the driver development environment and tools.

Chapter 2, “Template Driver Example,” shows a simple template driver. This chapter shows in
detail the steps to develop, build, install, load, and test this simple driver.

Chapter 3, “Reading and Writing Data in Kernel Memory,” describes how to develop a driver
that reads data from and writes data to kernel memory.

Chapter 4, “Tips for Developing Device Drivers,” discusses some common errors in driver
development and how to avoid them or handle them. This chapter also introduces driver
analysis and debugging tools.

Related Books
For detailed reference information about the device driver interfaces, see the section 9 man
pages. Section 9E, Intro(9E), describes DDI/DKI (Device Driver Interface, Driver-Kernel
Interface) driver entry points. Section 9F, Intro(9F), describes DDI/DKI kernel functions.
Sections 9P and 9S, Intro(9S), describe DDI/DKI properties and data structures.

For information on other driver-related tools and issues, see these books from Sun
Microsystems:

■ Writing Device Drivers. Sun Microsystems, Inc., 2007.
■ Multithreaded Programming Guide. Sun Microsystems, Inc., 2005.
■ STREAMS Programming Guide. Sun Microsystems, Inc., 2005.
■ Solaris 64-bit Developer’s Guide. Sun Microsystems, Inc., 2005.
■ Sun Studio 12: C User’s Guide. Sun Microsystems, Inc., 2007.

Click Sun Studio 12 Collection at the top left of this page to see Sun Studio books about dbx,
dmake, Performance Analyzer, and other software development topics.

Preface
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■ Solaris Modular Debugger Guide. Sun Microsystems, Inc., 2007.
■ Solaris Dynamic Tracing Guide. Sun Microsystems, Inc., 2007.
■ DTrace User Guide. Sun Microsystems, Inc., 2006.
■ System Administration Guide: Devices and File Systems. Sun Microsystems, Inc., 2007.
■ Application Packaging Developer’s Guide. Sun Microsystems, Inc., 2005.

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Preface
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Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Preface
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Introduction to Device Drivers

This chapter gives an overview of the Solaris Operating System and kernel. This chapter also
gives an overview of the driver development environment and the development tools available
to you.

Solaris Operating System Definition
The Solaris Operating System (Solaris OS) is implemented as an executable file that runs at boot
time. The Solaris OS is referred to as the kernel. The kernel contains all of the routines that are
necessary for the system to run. Because the kernel is essential for the running of the machine,
the kernel runs in a special, protected mode that is called kernel mode. In contrast, user-level
applications operate in a restricted mode called user mode that has no access to kernel
instructions or to the kernel address space. Device drivers run in kernel mode and are prevented
from directly accessing processes in user mode.

Kernel Overview
The kernel manages the system resources, including file systems, processes, and physical
devices. The kernel provides applications with system services such as I/O management, virtual
memory, and scheduling. The kernel coordinates interactions of all user processes and system
resources. The kernel assigns priorities, services resource requests, and services hardware
interrupts and exceptions. The kernel schedules and switches threads, pages memory, and
swaps processes.

Differences Between Kernel Modules and User
Programs
This section discusses several important differences between kernel modules and user
programs.

1C H A P T E R 1
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Execution Differences Between Kernel Modules and User Programs
The following characteristics of kernel modules highlight important differences between the
execution of kernel modules and the execution of user programs:

■ Kernel modules have separate address space. A module runs in kernel space. An
application runs in user space. System software is protected from user programs. Kernel
space and user space have their own memory address spaces. See “User and Kernel Address
Spaces on x86 and SPARC Machines” on page 18 for important information about address
spaces.

■ Kernel modules have higher execution privilege. Code that runs in kernel space has
greater privilege than code that runs in user space. Driver modules potentially have a much
greater impact on the system than user programs. Test and debug your driver modules
carefully and thoroughly to avoid adverse impact on the system. See “Device Driver Testing
Tips” on page 106.

■ Kernel modules do not execute sequentially. A user program typically executes
sequentially and performs a single task from beginning to end. A kernel module does not
execute sequentially. A kernel module registers itself in order to serve future requests.

■ Kernel modules can be interrupted. More than one process can request your driver at the
same time. An interrupt handler can request your driver at the same time that your driver is
serving a system call. In a symmetric multiprocessor (SMP) system, your driver could be
executing concurrently on more than one CPU.

■ Kernel modules must be preemptable. You cannot assume that your driver code is safe just
because your driver code does not block. Design your driver assuming your driver might be
preempted.

■ Kernel modules can share data. Different threads of an application program usually do not
share data. By contrast, the data structures and routines that constitute a driver are shared
by all threads that use the driver. Your driver must be able to handle contention issues that
result from multiple requests. Design your driver data structures carefully to keep multiple
threads of execution separate. Driver code must access shared data without corrupting the
data. See Chapter 3, “Multithreading,” in Writing Device Drivers and Multithreaded
Programming Guide.

Kernel Overview
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Structural Differences Between Kernel Modules and User Programs
The following characteristics of kernel modules highlight important differences between the
structure of kernel modules and the structure of user programs:

■ Kernel modules do not define a main program. Kernel modules, including device drivers,
have no main() routine. Instead, a kernel module is a collection of subroutines and data. A
device driver is a kernel module that forms a software interface to an input/output (I/O)
device. The subroutines in a device driver provide entry points to the device. The kernel uses
a device number attribute to locate the open() routine and other routines of the correct
device driver. See “Device Drivers” on page 19 for more information on entry points. See
“Device Numbers” on page 25 for a description of device numbers.

■ Kernel modules are linked only to the kernel. Kernel modules do not link in the same
libraries that user programs link in. The only functions a kernel module can call are
functions that are exported by the kernel. If your driver references symbols that are not
defined in the kernel, your driver will compile but will fail to load. Solaris OS driver modules
should use prescribed DDI/DKI (Device Driver Interface, Driver-Kernel Interface)
interfaces. When you use these standard interfaces you can upgrade to a new Solaris release
or migrate to a new platform without recompiling your driver. For more information on the
DDI, see“DDI/DKI Interfaces” in Writing Device Drivers. Kernel modules can depend on
other kernel modules by using the -N option during link editing. See the ld(1) man page for
more information.

■ Kernel modules use different header files. Kernel modules require a different set of header
files than user programs require. The required header files are listed in the man page for
each function. See man pages section 9: DDI and DKI Kernel Functions for DDI/DKI
functions, man pages section 9: DDI and DKI Driver Entry Points for entry points, and man
pages section 9: DDI and DKI Properties and Data Structures for structures. Kernel modules
can include header files that are shared by user programs if the user and kernel interfaces
within such shared header files are defined conditionally using the _KERNEL macro.

■ Kernel modules should avoid global variables. Avoiding global variables in kernel
modules is even more important than avoiding global variables in user programs. As much
as possible, declare symbols as static. When you must use global symbols, give them a
prefix that is unique within the kernel. Using this prefix for private symbols within the
module also is a good practice.

■ Kernel modules can be customized for hardware. Kernel modules can dedicate process
registers to specific roles. Kernel code can be optimized for a specific processor.

■ Kernel modules can be dynamically loaded. The collection of subroutines and data that
constitute a device driver can be compiled into a single loadable module of object code. This
loadable module can then be statically or dynamically linked into the kernel and unlinked
from the kernel. You can add functionality to the kernel while the system is up and running.
You can test new versions of your driver without rebooting your system.

Kernel Overview
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Data Transfer Differences Between Kernel Modules and User Programs
Data transfer between a device and the system typically is slower than data transfer within the
CPU. Therefore, a driver typically suspends execution of the calling thread until the data
transfer is complete. While the thread that called the driver is suspended, the CPU is free to
execute other threads. When the data transfer is complete, the device sends an interrupt. The
driver handles the interrupt that the driver receives from the device. The driver then tells the
CPU to resume execution of the calling thread. See Chapter 8, “Interrupt Handlers,” in Writing
Device Drivers.

Drivers must work with user process (virtual) addresses, system (kernel) addresses, and I/O bus
addresses. Drivers sometimes copy data from one address space to another address space and
sometimes just manipulate address-mapping tables. See “Bus Architectures” in Writing Device
Drivers.

User and Kernel Address Spaces on x86 and SPARC
Machines
On SPARC machines, the system panics when a kernel module attempts to directly access user
address space. You must make sure your driver does not attempt to directly access user address
space on a SPARC machine.

On x86 machines, the system does not enter an error state when a kernel module attempts to
directly access user address space. You still should make sure your driver does not attempt to
directly access user address space on an x86 machine. Drivers should be written to be as
portable as possible. Any driver that directly accesses user address space is a poorly written
driver.

Caution – A driver that works on an x86 machine might not work on a SPARC machine because
the driver might access an invalid address.

Do not access user data directly. A driver that directly accesses user address space is using poor
programming practice. Such a driver is not portable and is not supportable. Use the
ddi_copyin(9F) and ddi_copyout(9F) routines to transfer data to and from user address space.
These two routines are the only supported interfaces for accessing user memory. “Modifying
Data Stored in Kernel Memory” on page 78 shows an example driver that uses ddi_copyin(9F)
and ddi_copyout(9F).

The mmap(2) system call maps pages of memory between a process's address space and a file or
shared memory object. In response to an mmap(2) system call, the system calls the devmap(9E)
entry point to map device memory into user space. This information is then available for direct
access by user applications.

Kernel Overview
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Device Drivers
A device driver is a loadable kernel module that manages data transfers between a device and
the OS. Loadable modules are loaded at boot time or by request and are unloaded by request. A
device driver is a collection of C routines and data structures that can be accessed by other
kernel modules. These routines must use standard interfaces called entry points. Through the
use of entry points, the calling modules are shielded from the internal details of the driver. See
“Device Driver Entry Points” in Writing Device Drivers for more information on entry points.

A device driver declares its general entry points in its dev_ops(9S) structure. A driver declares
entry points for routines that are related to character or block data in its cb_ops(9S) structure.
Some entry points and structures that are common to most drivers are shown in the following
diagram.

FIGURE 1–1 Typical Device Driver Entry Points

cb_ops Structure

xxopen(9E)
xxclose(9E)
...
xxprop_op(9E)For property information

dev_ops Structure

xxattach(9E)
xxdetach(9E)
xxgetinfo(9E)
xxprobe(9E)
...
xx_init(9E)
xx_fini(9E)
xx_info(9E)
...
xxks_snapshot(9E)
xxks_update(9E)
...
xxpower(9E)
...
xxdump(9E)

For autoconfiguration

For kernel statistics

For operating on 
loadable modules

For power management

For dumping memory during
 system failure

Kernel Overview

Chapter 1 • Introduction to Device Drivers 19

http://www.oracle.com/pls/topic/lookup?ctx=816-4854&id=eqbqy
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=dev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=cb-ops-9s


The Solaris OS provides many driver entry points. Different types of devices require different
entry points in the driver. The following diagram shows some of the available entry points,
grouped by driver type. No single device driver would use all the entry points shown in the
diagram.

In the Solaris OS, drivers can manage physical devices, such as disk drives, or software (pseudo)
devices, such as bus nexus devices or ramdisk devices. In the case of hardware devices, the
device driver communicates with the hardware controller that manages the device. The device
driver shields the user application layer from the details of a specific device so that application
level or system calls can be generic or device independent.

FIGURE 1–2 Entry Points for Different Types of Drivers

Generic LAN Device
Driver Entry Points

...
gldm_(9E)
gldm_get_stats(9E)
gldm_intr(9E)
gldm_ioctl(9E)
gldm_reset(9E)
gldm_send(9E)
gldm_set_mac_addr(9E)
gldm_set_multicast(9E)
gldm_set_promiscuous(9E)
gldm_start(9E)
gldm_stop(9E)
...

SCSI HBA Device
Driver Entry Points

...
tran_abort(9E)
tran_bus_reset(9E)
tran_destroy_pkt(9E)
tran_dma_free(9E)
tran_getcap(9E)
tran_init_pkt(9E)
tran_quiesce(9E)
tran_reset(9E)
tran_reset_notify(9E)
tran_setcap(9E)
tran_start(9E)
tran_sync_pkt(9E)
tran_tgt_free(9E)
tran_tgt_init(9E)
tran_tgt_probe(9E)
tran_unquiesce(9E)
...

Block Driver
Entry Points

...
aread(9E)
awrite(9E)
print(9E)
strategy(9E)
...

Memory Mapped  Device
Driver Entry Points

...
devmap9E)
devmap_access(9E)
devmap_contextmgt(9E)
devmap_dup(9E)
devmap_map(9E)
devmap_unmap(9E)
...

Character Device
Driver Entry Points

...
chpoll9E)
ioctl(9E)
read(9E)
write(9E)
segmap(9E)
...

STREAMS Device
Driver Entry Points

...
put9E)
srv(9E)
...

PC Card Device
Driver Entry Points

...
csx_event_handler(9E)
...
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Drivers are accessed in the following situations:

■ System initialization. The kernel calls device drivers during system initialization to
determine which devices are available and to initialize those devices.

■ System calls from user processes. The kernel calls a device driver to perform I/O operations
on the device such as open(2), read(2), and ioctl(2).

■ User-level requests. The kernel calls device drivers to service requests from commands such
as prtconf(1M).

■ Device interrupts. The kernel calls a device driver to handle interrupts generated by a
device.

■ Bus reset. The kernel calls a device driver to re-initialize the driver, the device, or both when
the bus is reset. The bus is the path from the CPU to the device.

The following diagram illustrates how a device driver interacts with the rest of the system.

Driver Directory Organization
Device drivers and other kernel modules are organized into the following directories in the
Solaris OS. See the kernel(1M) and system(4) man pages for more information about kernel
organization and how to add directories to your kernel module search path.

FIGURE 1–3 Typical Device Driver Interactions
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/kernel These modules are common across most platforms.
Modules that are required for booting or for system
initialization belong in this directory.

/platform/‘uname -i‘/kernel These modules are specific to the platform identified by the
command uname -i.

/platform/‘uname -m‘/kernel These modules are specific to the platform identified by the
command uname -m. These modules are specific to a
hardware class but more generic than modules in the uname
-i kernel directory.

/usr/kernel These are user modules. Modules that are not essential to
booting belong in this directory. This tutorial instructs you
to put all your drivers in the /usr/kernel directory.

One benefit of organizing drivers into different directories is that you can selectively load
different groups of drivers on startup when you boot interactively at the boot prompt as shown
in the following example. See the boot(1M) man page for more information.

Type b [file-name] [boot-flags] <ENTER> to boot with options

or i <ENTER> to enter boot interpreter

or <ENTER> to boot with defaults

<<< timeout in 5 seconds >>>

Select (b)oot or (i)nterpreter: b -a

bootpath: /pci@0,0/pci8086,2545@3/pci8086,

Enter default directory for modules [/platform/i86pc/kernel /kernel

/usr/kernel]: /platform/i86pc/kernel /kernel

In this example, the /usr/kernel location is omitted from the list of directories to search for
modules to load. You might want to do this if you have a driver in /usr/kernel that causes the
kernel to panic during startup or on attach. Instead of omitting all /usr/kernel modules, a
better method for testing drivers is to put them in their own directory. Use the moddir kernel
variable to add this test directory to your kernel modules search path. The moddir kernel
variable is described in kernel(1M) and system(4). Another method for working with drivers
that might have startup problems is described in “Device Driver Testing Tips” on page 106.

Devices as Files
In UNIX, almost everything can be treated as a file. UNIX user applications access devices as if
the devices were files. Files that represent devices are called special files or device nodes. Device
special files are divided into two classes: block devices and character devices. See “Character and
Block Devices” on page 24 for more information.
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Every I/O service request initially refers to a named file. Most I/O operations that read or write
data perform equally well on ordinary or special files. For example, the same read(2) system call
reads bytes from a file created with a text editor and reads bytes from a terminal device.

Control signals also are handled as files. Use the ioctl(9E) function to manipulate control
signals.

Devices Directories
The Solaris OS includes both /dev and /devices directories for device drivers. Almost all the
drivers in the /dev directory are links to the /devices directory. The /dev directory is UNIX
standard. The /devices directory is specific to the Solaris OS.

By convention, file names in the /dev directory are more readable. For example, the /dev
directory might contain files with names such as kdb and mouse that are links to files such as
/devices/pseudo/conskbd@0:kbd and /devices/pseudo/consms@0:mouse. The
prtconf(1M) command shows device names that are very similar to the file names in the
/devices directory. In the following example, only selected output of the command is shown.

% prtconf -P

conskbd, instance #0

consms, instance #0

Entries in the /dev directory that are not links to the /devices directory are device nodes or
special files created by mknod(1M) or mknod(2). These are zero-length files that just have a major
number and minor number attached to them. Linking to the physical name of the device in the
/devices directory is preferred to using mknod(1M).

Prior to the Solaris 10 OS, /devices was an on-disk filesystem composed of subdirectories and
files. Beginning with the Solaris 10 OS, /devices is a virtual filesystem that creates these
subdirectories and special files on demand.

For more information about the devices file system, see the devfs(7FS) man page.

Device Tree
The device files in the /devices directory are also called the device tree.

The device tree shows relationships among devices. In the device tree, a directory represents a
nexus device. A nexus is a device that can be a parent of other devices. In the following example,
pci@1f,0 is a nexus device. Only selected output from the command is shown.

# ls -l /devices

drwxr-xr-x 4 root sys 512 date time pci@1f,0/
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crw------- 1 root sys 111,255 date time pci@1f,0:devctl

You can use prtconf(1M) or prtpicl(1M) to see a graphic representation of the device tree.
See “Overview of the Device Tree” in Writing Device Drivers for more information about the
device tree.

Character and Block Devices
A file in the device tree that is not a directory represents either a character device or a block
device.

A block device can contain addressable, reusable data. An example of a block device is a file
system. Any device can be a character device. Most block devices also have character interfaces.
Disks have both block and character interfaces. In your /devices/pseudo directory, you might
find devices such as the following:

brw-r----- 1 root sys 85, 0 Nov 3 09:43 md@0:0,0,blk

crw-r----- 1 root sys 85, 0 Nov 3 09:43 md@0:0,0,raw

brw-r----- 1 root sys 85, 1 Nov 3 09:43 md@0:0,1,blk

crw-r----- 1 root sys 85, 1 Nov 3 09:43 md@0:0,1,raw

brw-r----- 1 root sys 85, 2 Nov 3 09:43 md@0:0,2,blk

crw-r----- 1 root sys 85, 2 Nov 3 09:43 md@0:0,2,raw

Block devices have a b as the first character of their file mode. Character devices have a c as the
first character of their file mode. In this example, the block devices have blk in their names and
the character devices have raw in their names.

The md(7D) device is a metadevice that provides disk services. The block devices access the disk
using the system's normal buffering mechanism. The character devices provide for direct
transmission between the disk and the user's read or write buffer.

Device Names
This section shows a complex device name and explains the meaning of each part of the name in
/dev and also in /devices. The following example is the name of a disk slice:

/dev/dsk/c0t0d0s7 -> ../../devices/pci@1c,600000/scsi@2/sd@0,0:h

First, examine the name of the file in the /dev directory. These names are managed by the
devfsadmd(1M) daemon.

c0 Controller 0

t0 Target 0. On SCSI controllers, this value is the disk number.

d0 SCSI LUN. This value indicates a virtual partitioning of a target or single physical device.
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s7 Slice 7 on the target 0 disk.

For the same device, compare the name of the file in the /devices directory. These names show
the physical structure and real device names. Note that some of the components of the device
name in the /devices directory are subdirectories.

pci@1c,600000 PCI bus at address 1c,600000. These addresses are meaningful only to the
parent device.

scsi@2 SCSI controller at address 2 on the PCI bus at address 1c,600000. This
name corresponds to the c0 in /dev/dsk/c0t0d0s7.

sd@0,0 SCSI disk at address 0,0 on the SCSI controller at address 2. This name
represents target 0, LUN 0 and corresponds to the t0d0 in
/dev/dsk/c0t0d0s7. The sd name and driver can also apply to IDE
CD-ROM devices.

sd@0,0:h Minor node h on the SCSI disk at address 0,0. This name corresponds to
the s7 in /dev/dsk/c0t0d0s7.

Device Numbers
A device number identifies a particular device and minor node in the device tree. The dev_t
parameter that is required in many DDI/DKI routines is this device number.

Each device has a major number and a minor number. A device number is a major,minor pair.
A long file listing shows the device number in the column where file sizes are usually listed. In
the following example, the device number is 86,255. The device major number is 86, and the
device minor number is 255.

% ls -l /devices/pci@0,0:devctl

crw------- 1 root sys 86,255 date time /devices/pci@0,0:devctl

In the Solaris OS, the major number is chosen for you when you install the driver so that it will
not conflict with any other major number. The kernel uses the major number to associate the
I/O request with the correct driver code. The kernel uses this association to decide which driver
to execute when the user reads or writes the device file. All devices and their major numbers are
listed in the file /etc/name_to_major.

% grep 86 /etc/name_to_major

pci 86

The minor number is assigned in the driver. The minor number must map each driver to a
specific device instance. Minor numbers usually refer to sub-devices. For example, a disk driver
might communicate with a hardware controller device that has several disk drives attached.
Minor nodes do not necessarily have a physical representation.
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The following example shows instances 0, 1, and 2 of the md device. The numbers 0, 1, and 2 are
the minor numbers.

brw-r----- 1 root sys 85, 0 Nov 3 09:43 md@0:0,0,blk

crw-r----- 1 root sys 85, 0 Nov 3 09:43 md@0:0,0,raw

brw-r----- 1 root sys 85, 1 Nov 3 09:43 md@0:0,1,blk

crw-r----- 1 root sys 85, 1 Nov 3 09:43 md@0:0,1,raw

brw-r----- 1 root sys 85, 2 Nov 3 09:43 md@0:0,2,blk

crw-r----- 1 root sys 85, 2 Nov 3 09:43 md@0:0,2,raw

In the name sd@0,0:h,, h represents a minor node. When the driver receives a request for
minor node h, the driver actually receives a corresponding minor number. The driver for the sd
node interprets that minor number to be a particular section of disk, such as slice 7 mounted on
/export.

Chapter 2, “Template Driver Example,” shows how to use the ddi_get_instance(9F) routine in
your driver to get an instance number for the device you are driving.

Development Environment and Tools
This section summarizes the driver development process and provides some pointers to
resources. For more information on the development process, see “Driver Development
Summary” in Writing Device Drivers.

Sun offers training courses in Solaris OS internals, crash dump analysis, writing device drivers,
DTrace, Sun Studio, and other topics useful to Solaris developers. See http://www.sun.com/
training/ for more information.

The general steps in writing a device driver are as follows:

1. Write a .c source file using the interfaces and structures defined in man page sections 9E, 9F,
and 9S. Most of the include files you need are in /usr/include/sys. The function and
structure man pages show which include files you need.

2. Write a .conf hardware configuration file to define property values for your driver.
3. Compile and link your driver. Always use the -D_KERNEL option when you compile a driver

for the Solaris OS. The default compile result is 32-bit. To get a 64-bit result on a 64-bit
platform, specify the appropriate 64-bit option as described in “Building a Driver” on
page 28.

4. Copy your driver binary file and your driver configuration file to the appropriate
[platform]/kernel directories. See “Driver Directory Organization” on page 21 for
descriptions of driver directories.

5. Use the add_drv(1M) command to load your driver. When your driver is loaded, you can
see your driver in /dev and /devices. You can also see an entry for your driver in the
/etc/name_to_major file.
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Writing a Driver
A driver consists of a C source file and a hardware configuration file.

Writing a Driver Module
The C code for a driver is a collection of data and functions that define a kernel module. As
noted in “Structural Differences Between Kernel Modules and User Programs” on page 17, a
driver has no main() routine. Many of the subroutines of a driver are special functions called
entry points. See “Device Drivers” on page 19 for information about entry points.

The function man pages provide both the function declaration that you need in your driver and
the list of header files you need to include. Make sure you consult the correct man page. For
example, the following command displays the ioctl(2) man page. The ioctl(2) system call
cannot be used in a device driver.

% man ioctl

Use one of the following commands to display the ioctl(9E) man page. The ioctl(9E)
subroutine is a device driver entry point.

% man ioctl.9e

% man -s 9e ioctl

By convention, the names of functions and data that are unique to this driver begin with a
common prefix. The prefix is the name of this driver or an abbreviation of the name of this
driver. Use the same prefix for all names that are specific to this driver. This practice makes
debugging much easier. Instead of seeing an error related to an ambiguous attach() function,
you see an error message about mydriver_attach() or newdriver_attach().

A 64-bit system can run both 32-bit user programs and 64-bit user programs. A 64-bit system
runs 32-bit programs by converting all data needed between the two data models. A 64-bit
kernel supports both 64-bit and 32-bit user data. Whenever a 64-bit driver copies data between
kernel space and user space, the driver must use the ddi_model_convert_from(9F) function to
determine whether the data must be converted between 32-bit and 64-bit models. For an
example, see “Reporting and Setting Device Size and Re-initializing the Device” on page 86.

The Sun Studio IDE includes the following three source editors: GVIM, XEmacs, and the
built-in Source Editor provided by NetBeans. The IDE provides online help for these tools. You
can also run GVIM and XEmacs from the command line. See vim(1) and xemacs(1).
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For more information, see the following resources:

■ For more information about writing device drivers, see “Device Driver Coding Tips” on
page 103 and Writing Device Drivers.

■ For simple example source files, see Chapter 2, “Template Driver Example,” and Chapter 3,
“Reading and Writing Data in Kernel Memory.”

■ For production driver sources, go to http://www.opensolaris.org/ and click “Source
Browser.”

■ For more driver source and documentation, go to the driver development OpenSolaris
community at http://www.opensolaris.org/os/community/device_drivers/.

■ For advice and examples on a wide variety of driver topics, see the Driver Development FAQ
(Frequently Asked Questions).

■ For more help, search the Driver Development Solaris forum at http://
forum.java.sun.com/forum.jspa?forumID=866 or the Kernel forum at
http://forum.java.sun.com/forum.jspa?forumID=865. See all the Solaris forums at
http://forum.java.sun.com/index.jspa?tab=solaris.

Writing a Configuration File
A driver that is not self-identifying must have a configuration file named node_name.conf,
where node_name is the prefix for the device. A self-identifying driver is a driver that can obtain
all the property information it needs from the DDI property interfaces such as
ddi_prop_get_int(9F) and ddi_prop_lookup(9F). The minimum information that a
configuration file must contain is the name of the device node and the name or type of the
device's parent.

For more information about device driver configuration files, see the driver.conf(4) man
page. For an example configuration file, see “Writing the Device Configuration File” on
page 56.

Building a Driver
This section tells you how to compile and link a driver for different architectures.

Make sure you have installed the Solaris OS at the Developer level or above. Follow the
instructions in Chapter 2, “Installing With the Solaris Installation Program (Tasks),” in
Solaris 10 Installation Guide: Basic Installations. Select Custom Install, and select the Developer
cluster or above.

In your path environment variable, include /opt/SUNWspro/bin followed by /usr/ccs/bin.
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A 64-bit kernel cannot use a 32-bit driver. A 64-bit kernel can use only 64-bit drivers. All parts
of any particular program must use the same data model. A device driver is not a complete
program. The kernel is a complete program. A driver is a part of the kernel program. If you
want your device to work with the Solaris OS in 32-bit mode and with the Solaris OS in 64-bit
mode, then you must provide both a 32-bit driver and a 64-bit driver.

By default, compilation on the Solaris OS yields a 32-bit result on every architecture. To obtain
a 64-bit result, use the compilation options specified in this section for 64-bit architectures.

Use the prtconf(1M) command with the -x option to determine whether the firmware on this
system is 64-bit ready.

Compiling with Sun Studio
Use the -D_KERNEL option to indicate that this code defines a kernel module.

■ If you are compiling for a 64-bit SPARC architecture using Sun Studio 9, Sun Studio 10, or
Sun Studio 11, use the -xarch=v9 option:

% cc -D_KERNEL -xarch=v9 -c mydriver.c

% /usr/ccs/bin/ld -r -o mydriver mydriver.o

If you are compiling for a 64-bit SPARC architecture using Sun Studio 12, use the -m64
option:

% cc -D_KERNEL -m64 -c mydriver.c

% /usr/ccs/bin/ld -r -o mydriver mydriver.o

■ If you are compiling for a 64-bit x86 architecture using Sun Studio 10 or Sun Studio 11, use
both the -xarch=amd64 option and the -xmodel=kernel option:

% cc -D_KERNEL -xarch=amd64 -xmodel=kernel -c mydriver.c

% /usr/ccs/bin/ld -r -o mydriver mydriver.o

If you are compiling for a 64-bit x86 architecture using Sun Studio 12, use the -m64 option,
the -xarch=sse2a option, and the -xmodel=kernel option:

% cc -D_KERNEL -m64 -xarch=sse2a -xmodel=kernel -c mydriver.c

% /usr/ccs/bin/ld -r -o mydriver mydriver.o

■ If you are compiling for a 32-bit architecture, use the following build commands:

% cc -D_KERNEL -c mydriver.c

% /usr/ccs/bin/ld -r -o mydriver mydriver.o

Note – Sun Studio 9 does not support 64-bit x86 architectures. Use Sun Studio 10, Sun Studio 11,
or Sun Studio 12 to compile and debug drivers for 64-bit x86 architectures.

For more information on compile and link options, see the Sun Studio Man Pages and the Sun
Studio 12: C User’s Guide. See the Sun Studio Information Center in the Sun Studio 12
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Collection for Sun Studio books about dbx, dmake, Performance Analyzer, and other software
development topics. To read technical articles about Sun Studio, see Sun Studio Technical
Articles. To download Sun Studio, go to http://developers.sun.com/sunstudio/.

Compiling with the GNU C Compiler
To get the GNU C compiler, you must install the Solaris OS at the Developer level or above.
Follow the instructions in Chapter 2, “Installing With the Solaris Installation Program (Tasks),”
in Solaris 10 Installation Guide: Basic Installations. Select Custom Install, and select the
Developer cluster or above. The GNU C compiler is installed in /usr/sfw.

Use the -D_KERNEL option to indicate that this code defines a kernel module. These examples
show options that are required for correct functionality of the result.

■ If you are compiling for a 64-bit SPARC architecture, use the following build commands:

% gcc -D_KERNEL -m64 -mcpu=v9 -mcmodel=medlow -fno-pic -mno-fpu

-ffreestanding -nodefaultlibs -c mydriver.c

% /usr/ccs/bin/ld -r -o mydriver mydriver.o

You might also want to use the -mtune=ultrasparc option and the -O2 option.
■ If you are compiling for a 64-bit x86 architecture, use the following build commands:

% gcc -D_KERNEL -m64 -mcmodel=kernel -mno-red-zone -ffreestanding

-nodefaultlibs -c mydriver.c

% /usr/ccs/bin/ld -r -o mydriver mydriver.o

You might also want to use the -mtune=opteron option and the -O2 option.
■ If you are compiling for a 32-bit architecture, use the following build commands:

% gcc -D_KERNEL -ffreestanding -nodefaultlibs -c mydriver.c

% /usr/ccs/bin/ld -r -o mydriver mydriver.o

For more information on these and other options, see the gcc(1) man page. See also the GCC
web site at http://gcc.gnu.org/. More information about using the gcc compiler with the
Solaris OS is on the OpenSolaris web site at http://opensolaris.org/os/community/tools/
gcc/.

Installing a Driver
After you write and build your driver, you must install the driver binary. To install a driver,
copy the driver binary and the configuration file to the appropriate /kernel/drv directory.

Make sure you are user root when you install a driver.

Copy the configuration file to the kernel driver area of the system.
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# cp mydriver.conf /usr/kernel/drv

Install drivers in the /tmp directory until you are finished modifying and testing the _info(),
_init(), and attach() routines. See “Device Driver Testing Tips” on page 106 for more
information.

Copy the driver binary to the /tmp directory.

# cp mydriver /tmp

Link to the driver from the kernel driver directory.

■ On a 64-bit SPARC architecture, link to the sparcv9 directory:

# ln -s /tmp/mydriver /usr/kernel/drv/sparcv9/mydriver

■ On a 64-bit x86 architecture, link to the amd64 directory:

# ln -s /tmp/mydriver /usr/kernel/drv/amd64/mydriver

■ On a 32-bit architecture, create the link as follows:

# ln -s /tmp/mydriver /usr/kernel/drv/mydriver

When the driver is well tested, copy the driver directly to the appropriate kernel driver area of
the system.

■ On a 64-bit SPARC architecture, copy the driver to the sparcv9 directory:

# cp mydriver /usr/kernel/drv/sparcv9/mydriver

■ On a 64-bit x86 architecture, copy the driver to the amd64 directory:

# cp mydriver /usr/kernel/drv/amd64/mydriver

■ On a 32-bit architecture, copy the driver to the kernel driver area of the system:

# cp mydriver /usr/kernel/drv/mydriver

Adding, Updating, and Removing a Driver
Use the add_drv(1M) command to make the installed driver usable. Be sure you are user root
when you use the add_drv(1M) command.

# add_drv mydriver

The following events take place when you add a driver:

■ The _info(9E), _init(9E), and attach(9E) entry points are called in that order.
■ The driver is added to the /devices directory.
■ The driver is the most recent module listed by modinfo(1M).
■ The driver is the most recent module listed in the file /etc/name_to_major.
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The file /etc/driver_aliases might be updated. The /etc/driver_aliases file shows which
devices are bound to which drivers. If a driver is not listed in the /etc/driver_aliases file,
then the Solaris OS does not load that driver or attach to that driver. Each line of the
/etc/driver_aliases file shows a driver name followed by a device name. You can search this
file to determine which driver is managing your device.

Note – Do not edit the /etc/driver_aliases file manually. Use the add_drv(1M) command to
establish a device binding. Use the update_drv(1M) command to change a device binding.

The example drivers shown in this book manage pseudo devices. If your driver manages real
hardware, then you need to use the -c and -i options on the add_drv(1M) command or the -i
option on the update_drv(1M) command. To specify a device class or device ID, you might find
the following sites useful. This information also is useful to search the /etc/driver_aliases
file to find out whether a device already is supported.

■ List of devices currently supported by the Solaris OS: http://www.sun.com/bigadmin/hcl/
devicelist/

■ Searchable PCI vendor and device lists: http://www.pcidatabase.com/
■ Repository of vendor IDs, device IDs, subsystems, and device classes used in PCI devices:

http://pciids.sourceforge.net/

Use the update_drv(1M) command to notify the system about attribute changes to an installed
device driver. By default, the update_drv(1M) command reloads the hardware configuration
file for the specified driver. Use the prtconf(1M) command to review the current configuration
information for a device and driver. For example, the -D option shows which driver manages a
particular device. The -P option shows information about pseudo devices.

Use the rem_drv(1M) command to update the system driver configuration files so that the
driver is no longer usable. The rem_drv(1M) command does not physically delete driver files. If
possible, the rem_drv(1M) command unloads the driver from memory.

Loading and Unloading a Driver
A driver is loaded into memory when a device that the driver manages is accessed. A driver
might be unloaded from memory when the driver is not being used. Normally, you do not need
to load a driver into memory manually or unload a driver from memory manually.

To manually load a loadable module into memory, use the modload(1M) command.

While you are developing your driver, you might want to manually unload the driver and then
update the driver. To manually unload a loadable module from memory, use the
modunload(1M) command.
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Testing a Driver
Drivers should be thoroughly tested in the following areas:

■ Configuration
■ Functionality
■ Error handling
■ Loading, unloading, and removing

All drivers will need to be removed eventually. Make sure that your driver can be
successfully removed.

■ Stress, performance, and interoperability
■ DDI/DKI compliance
■ Installation and packaging

For detailed information on how to test your driver and how to avoid problems during testing,
see the following references:

■ “Device Driver Testing Tips” on page 106
■ “Criteria for Testing Drivers” in Writing Device Drivers
■ Chapter 22, “Debugging, Testing, and Tuning Device Drivers,” in Writing Device Drivers

Additional testing is specific to the type of driver.
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Template Driver Example

This chapter shows you how to develop a very simple, working driver. This chapter explains
how to write the driver and configuration file, compile the driver, load the driver, and test the
driver.

The driver that is shown in this chapter is a pseudo device driver that merely writes a message to
a system log every time an entry point is entered. This driver demonstrates the minimum
functionality that any character driver must implement. You can use this driver as a template
for building a complex driver.

This chapter discusses the following driver development steps:

■ “Overview of the Template Driver Example” on page 35
■ “Writing the Template Driver” on page 36
■ “Writing the Device Configuration File” on page 56
■ “Building and Installing the Template Driver” on page 56
■ “Testing the Template Driver” on page 57
■ “Complete Template Driver Source” on page 60

Overview of the Template Driver Example
This example guides you through the following steps:

1. Create a directory where you can develop your driver and open a new text file named
dummy.c.

2. Write the entry points for loadable module configuration: _init(9E), _info(9E), and
_fini(9E).

3. Write the entry points for autoconfiguration: attach(9E), detach(9E), getinfo(9E), and
prop_op(9E).

4. Write the entry points for user context: open(9E), close(9E), read(9E), and write(9E).

2C H A P T E R 2

35

http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-init-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-info-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=getinfo-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=prop-op-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=open-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=close-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=read-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=write-9e


5. Define the data structures: the character and block operations structure cb_ops(9S), the
device operations structure dev_ops(9S), and the module linkage structures modldrv(9S)
and modlinkage(9S).

6. Create the driver configuration file dummy.conf.
7. Build and install the driver.
8. Test the driver by loading the driver, reading from and writing to the device node, and

unloading the driver.

The entry points that are to be created in this example are shown in the following diagram.

Writing the Template Driver
This section describes the entry points and data structures that are included in this driver and
shows you how to define them. All of these data structures and almost all of these entry points
are required for any character device driver.

This section describes the following entry points and data structures:
■ Loadable module configuration entry points
■ Autoconfiguration entry points
■ User context entry points
■ Character and block operations structure
■ Device operations structure
■ Module linkage structures

First, create a directory where you can develop your driver. This driver is named dummy because
this driver does not do any real work. Next, open a new text file named dummy.c.

FIGURE 2–1 Entry Points for the dummyExample

dummy_dev_ops Structure

dummy_getinfo
dummy_attach
dummy_detach

dummy_cb_ops Structure

dummy_open
dummy_close
dummy_read
dummy_write
dummy_prop_op
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Writing the Loadable Module Configuration Entry
Points
Every kernel module of any type must define at least the following three loadable module
configuration entry points:
■ The _init(9E) routine initializes a loadable module. The _init(9E) routine must at least

call the mod_install(9F) function and return the success or failure value that is returned by
mod_install(9F).

■ The _info(9E) routine returns information about a loadable module. The _info(9E)
routine must at least call the mod_info(9F) function and return the value that is returned by
mod_info(9F).

■ The _fini(9E) routine prepares a loadable module for unloading. The _fini(9E) routine
must at least call the mod_remove(9F) function and return the success or failure value that is
returned by mod_remove(9F). When mod_remove(9F) is successful, the _fini(9E) routine
must undo everything that the _init(9E) routine did.

The mod_install(9F), mod_info(9F), and mod_remove(9F) functions are used in exactly the
same way in every driver, regardless of the functionality of the driver. You do not need to
investigate what the values of the arguments of these functions should be. You can copy these
function calls from this example and paste them into every driver you write.

In this section, the following code is added to the dummy.c source file:

/* Loadable module configuration entry points */

int

_init(void)

{

cmn_err(CE_NOTE, "Inside _init");
return(mod_install(&ml));

}

int

_info(struct modinfo *modinfop)

{

cmn_err(CE_NOTE, "Inside _info");
return(mod_info(&ml, modinfop));

}

int

_fini(void)

{

cmn_err(CE_NOTE, "Inside _fini");
return(mod_remove(&ml));

}

Declaring the Loadable Module Configuration Entry Points
The _init(9E), _info(9E), and _fini(9E) routine names are not unique to any particular
kernel module. You customize the behavior of these routines when you define them in your
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module, but the names of these routines are not unique. These three routines are declared in the
modctl.h header file. You need to include the modctl.h header file in your dummy.c file. Do not
declare these three routines in dummy.c.

Defining the Module Initialization Entry Point
The _init(9E) routine returns type int and takes no arguments. The _init(9E) routine must
call the mod_install(9F) function and return the success or failure value that is returned by
mod_install(9F).

The mod_install(9F) function takes an argument that is a modlinkage(9S) structure. See
“Defining the Module Linkage Structures” on page 55 for information about the
modlinkage(9S) structure.

This driver is supposed to write a message each time an entry point is entered. Use the
cmn_err(9F) function to write a message to a system log. The cmn_err(9F) function usually is
used to report an error condition. The cmn_err(9F) function also is useful for debugging in the
same way that you might use print statements in a user program. Be sure to remove cmn_err()
calls that are used for development or debugging before you compile your production version
driver. You might want to use cmn_err() calls in a production driver to write error messages
that would be useful to a system administrator.

The cmn_err(9F) function requires you to include the cmn_err.h header file, the ddi.h header
file, and the sunddi.h header file. The cmn_err(9F) function takes two arguments. The first
argument is a constant that indicates the severity of the error message. The message written by
this driver is not an error message but is simply a test message. Use CE_NOTE for the value of this
severity constant. The second argument the cmn_err(9F) function takes is a string message.

The following code is the _init(9E) routine that you should enter into your dummy.c file. The
ml structure is the modlinkage(9S) structure that is discussed in “Defining the Module Linkage
Structures” on page 55.

int

_init(void)

{

cmn_err(CE_NOTE, "Inside _init");
return(mod_install(&ml));

}

Defining the Module Information Entry Point
The _info(9E) routine returns type int and takes an argument that is a pointer to an opaque
modinfo structure. The _info(9E) routine must return the value that is returned by the
mod_info(9F) function.

The mod_info(9F) function takes two arguments. The first argument to mod_info(9F) is a
modlinkage(9S) structure. See “Defining the Module Linkage Structures” on page 55 for
information about the modlinkage(9S) structure. The second argument to mod_info(9F) is the
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same modinfo structure pointer that is the argument to the _info(9E) routine. The
mod_info(9F) function returns the module information or returns zero if an error occurs.

Use the cmn_err(9F) function to write a message to the system log in the same way that you
used the cmn_err(9F) function in your _init(9E) entry point.

The following code is the _info(9E) routine that you should enter into your dummy.c file. The
ml structure is discussed in “Defining the Module Linkage Structures” on page 55. The
modinfop argument is a pointer to an opaque structure that the system uses to pass module
information.

int

_info(struct modinfo *modinfop)

{

cmn_err(CE_NOTE, "Inside _info");
return(mod_info(&ml, modinfop));

}

Defining the Module Unload Entry Point
The _fini(9E) routine returns type int and takes no arguments. The _fini(9E) routine must
call the mod_remove(9F) function and return the success or failure value that is returned by
mod_remove(9F).

When mod_remove(9F) is successful, the _fini(9E) routine must undo everything that the
_init(9E) routine did. The _fini(9E) routine must call mod_remove(9F) because the _init(9E)
routine called mod_install(9F). The _fini(9E) routine must deallocate anything that was
allocated, close anything that was opened, and destroy anything that was created in the
_init(9E) routine.

The _fini(9E) routine can be called at any time when a module is loaded. In normal operation,
the _fini(9E) routine often fails. This behavior is normal because the kernel allows the module
to determine whether the module can be unloaded. If mod_remove(9F) is successful, the module
determines that devices were detached, and the module can be unloaded. If mod_remove(9F)
fails, the module determines that devices were not detached, and the module cannot be
unloaded.

The following actions take place when mod_remove(9F) is called:
■

The kernel checks whether this driver is busy. This driver is busy if one of the following
conditions is true:
■ A device node that is managed by this driver is open.
■ Another module that depends on this driver is open. A module depends on this driver if

the module was linked using the -N option with this driver named as the argument to
that -N option. See the ld(1) man page for more information.

■ If the driver is busy, then mod_remove(9F) fails and _fini(9E) fails.
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■ If the driver is not busy, then the kernel calls the detach(9E) entry point of the driver.
■ If detach(9E) fails, then mod_remove(9F) fails and _fini(9E) fails.
■ If detach(9E) succeeds, then mod_remove(9F) succeeds, and _fini(9E) continues its

cleanup work.

The mod_remove(9F) function takes an argument that is a modlinkage(9S) structure. See
“Defining the Module Linkage Structures” on page 55 for information about the
modlinkage(9S) structure.

Use the cmn_err(9F) function to write a message to the system log in the same way that you
used the cmn_err(9F) function in your _init(9E) entry point.

The following code is the _fini(9E) routine that you should enter into your dummy.c file. The
ml structure is discussed in “Defining the Module Linkage Structures” on page 55.

int

_fini(void)

{

cmn_err(CE_NOTE, "Inside _fini");
return(mod_remove(&ml));

}

Including Loadable Module Configuration Header Files
The _init(9E), _info(9E), _fini(9E), and mod_install(9F) functions require you to include
the modctl.h header file. The cmn_err(9F) function requires you to include the cmn_err.h
header file, the ddi.h header file, and the sunddi.h header file.

The following header files are required by the three loadable module configuration routines that
you have written in this section. Include this code near the top of your dummy.c file.

#include <sys/modctl.h> /* used by _init, _info, _fini */

#include <sys/cmn_err.h> /* used by all entry points for this driver */

#include <sys/ddi.h> /* used by all entry points for this driver */

#include <sys/sunddi.h> /* used by all entry points for this driver */

Writing the Autoconfiguration Entry Points
Every character driver must define at least the following autoconfiguration entry points. The
kernel calls these routines when the device driver is loaded.

■ The attach(9E) routine must call ddi_create_minor_node(9F). The
ddi_create_minor_node(9F) function provides the information the system needs to create
the device files.

■ The detach(9E) routine must call ddi_remove_minor_node(9F) to deallocate everything
that was allocated by ddi_create_minor_node(9F). The detach(9E) routine must undo
everything that the attach(9E) routine did.
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■ The getinfo(9E) routine returns requested device driver information through one of its
arguments.

■ The prop_op(9E) routine returns requested device driver property information through a
pointer. You can call the ddi_prop_op(9F) function instead of writing your own
prop_op(9E) entry point. Use the prop_op(9E) entry point to customize the behavior of the
ddi_prop_op(9F) function.

In this section, the following code is added:

/* Device autoconfiguration entry points */

static int

dummy_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)

{

cmn_err(CE_NOTE, "Inside dummy_attach");
switch(cmd) {

case DDI_ATTACH:

dummy_dip = dip;

if (ddi_create_minor_node(dip, "0", S_IFCHR,

ddi_get_instance(dip), DDI_PSEUDO,0)

!= DDI_SUCCESS) {

cmn_err(CE_NOTE,

"%s%d: attach: could not add character node.",
"dummy", 0);

return(DDI_FAILURE);

} else

return DDI_SUCCESS;

default:

return DDI_FAILURE;

}

}

static int

dummy_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)

{

cmn_err(CE_NOTE, "Inside dummy_detach");
switch(cmd) {

case DDI_DETACH:

dummy_dip = 0;

ddi_remove_minor_node(dip, NULL);

return DDI_SUCCESS;

default:

return DDI_FAILURE;

}

}

static int

dummy_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg,

void **resultp)

{

cmn_err(CE_NOTE, "Inside dummy_getinfo");
switch(cmd) {

case DDI_INFO_DEVT2DEVINFO:

*resultp = dummy_dip;

return DDI_SUCCESS;

case DDI_INFO_DEVT2INSTANCE:

*resultp = 0;
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return DDI_SUCCESS;

default:

return DDI_FAILURE;

}

}

static int

dummy_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,

int flags, char *name, caddr_t valuep, int *lengthp)

{

cmn_err(CE_NOTE, "Inside dummy_prop_op");
return(ddi_prop_op(dev,dip,prop_op,flags,name,valuep,lengthp));

}

Declaring the Autoconfiguration Entry Points
The attach(9E), detach(9E), getinfo(9E), and prop_op(9E) entry point routines need to be
uniquely named for this driver. Choose a prefix to use with each entry point routine.

Note – By convention, the prefix used for function and data names that are unique to this driver
is either the name of this driver or an abbreviation of the name of this driver. Use the same
prefix throughout the driver. This practice makes debugging much easier.

In the example shown in this chapter, dummy_ is used for the prefix to each function and data
name that is unique to this example.

The following declarations are the autoconfiguration entry point declarations you should have
in your dummy.c file. Note that each of these functions is declared static.

static int dummy_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);

static int dummy_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);

static int dummy_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg,

void **resultp);

static int dummy_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,

int flags, char *name, caddr_t valuep, int *lengthp);

Defining the Device Attach Entry Point
The attach(9E) routine returns type int. The attach(9E) routine must return either
DDI_SUCCESS or DDI_FAILURE. These two constants are defined in sunddi.h. All of the
autoconfiguration entry point routines except for prop_op(9E) return either DDI_SUCCESS or
DDI_FAILURE.

The attach(9E) routine takes two arguments. The first argument is a pointer to the dev_info
structure for this driver. All of the autoconfiguration entry point routines take a dev_info
argument. The second argument is a constant that specifies the attach type. The value that is
passed through this second argument is either DDI_ATTACH or DDI_RESUME. Every attach(9E)
routine must define behavior for at least DDI_ATTACH.
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The DDI_ATTACH code must initialize a device instance. In a realistic driver, you define and
manage multiple instances of the driver by using a state structure and the ddi_soft_state(9F)
functions. Each instance of the driver has its own copy of the state structure that holds data
specific to that instance. One of the pieces of data that is specific to each instance is the device
instance pointer. Each instance of the device driver is represented by a separate device file in
/devices. Each device instance file is pointed to by a separate device instance pointer. See
“Managing Device State” on page 69 for information about state structures and
ddi_soft_state(9F) functions. See “Devices as Files” on page 22 for information about device
files and instances.

This dummy driver allows only one instance. Because this driver allows only one instance, this
driver does not use a state structure. This driver still must declare a device instance pointer and
initialize the pointer value in the attach(9E) routine. Enter the following code near the
beginning of dummy.c to declare a device instance pointer for this driver:

dev_info_t *dummy_dip; /* keep track of one instance */

The following code is the dummy_attach() routine that you should enter into your dummy.c file.
You can copy the name portion of this function definition directly from the declaration you
entered in “Declaring the Autoconfiguration Entry Points” on page 42.

static int

dummy_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)

{

cmn_err(CE_NOTE, "Inside dummy_attach");
switch(cmd) {

case DDI_ATTACH:

dummy_dip = dip;

if (ddi_create_minor_node(dip, "0", S_IFCHR,

ddi_get_instance(dip), DDI_PSEUDO,0)

!= DDI_SUCCESS) {

cmn_err(CE_NOTE,

"%s%d: attach: could not add character node.",
"dummy", 0);

return(DDI_FAILURE);

} else

return DDI_SUCCESS;

default:

return DDI_FAILURE;

}

}

First, use cmn_err(9F) to write a message to the system log, as you did in your _init(9E) entry
point. Then provide DDI_ATTACH behavior. Within the DDI_ATTACH code, first assign the device
instance pointer from the dummy_attach() argument to the dummy_dip variable that you
declared above. You need to save this pointer value in the global variable so that you can use this
pointer to get information about this instance from dummy_getinfo() and detach this instance
in dummy_detach(). In this dummy_attach() routine, the device instance pointer is used by the
ddi_get_instance(9F) function to return the instance number. The device instance pointer
and the instance number both are used by ddi_create_minor_node(9F) to create a new device
node.

Writing the Template Driver

Chapter 2 • Template Driver Example 43

http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-soft-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get-instance-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-create-minor-node-9f


A realistic driver probably would use the ddi_soft_state(9F) functions to create and manage a
device node. This dummy driver uses the ddi_create_minor_node(9F) function to create a
device node. The ddi_create_minor_node(9F) function takes six arguments. The first
argument to the ddi_create_minor_node(9F) function is the device instance pointer that
points to the dev_info structure of this device. The second argument is the name of this minor
node. The third argument is S_IFCHR if this device is a character minor device or is S_IFBLK if
this device is a block minor device. This dummy driver is a character driver.

The fourth argument to the ddi_create_minor_node(9F) function is the minor number of this
minor device. This number is also called the instance number. The ddi_get_instance(9F)
function returns this instance number. The fifth argument to the ddi_create_minor_node(9F)
function is the node type. The ddi_create_minor_node(9F) man page lists the possible node
types. The DDI_PSEUDO node type is for pseudo devices. The sixth argument to the
ddi_create_minor_node(9F) function specifies whether this is a clone device. This is not a
clone device, so set this argument value to 0.

If the ddi_create_minor_node(9F) call is not successful, write a message to the system log and
return DDI_FAILURE. If the ddi_create_minor_node(9F) call is successful, return DDI_SUCCESS.
If this dummy_attach() routine receives any cmd other than DDI_ATTACH, return DDI_FAILURE.

Defining the Device Detach Entry Point
The detach(9E) routine takes two arguments. The first argument is a pointer to the dev_info
structure for this driver. The second argument is a constant that specifies the detach type. The
value that is passed through this second argument is either DDI_DETACH or DDI_SUSPEND. Every
detach(9E) routine must define behavior for at least DDI_DETACH.

The DDI_DETACH code must undo everything that the DDI_ATTACH code did. In the DDI_ATTACH
code in your attach(9E) routine, you saved the address of a new dev_info structure and you
called the ddi_create_minor_node(9F) function to create a new node. In the DDI_DETACH code
in this detach(9E) routine, you need to reset the variable that pointed to the dev_info structure
for this node. You also need to call the ddi_remove_minor_node(9F) function to remove this
node. The detach(9E) routine must deallocate anything that was allocated, close anything that
was opened, and destroy anything that was created in the attach(9E) routine.

The following code is the dummy_detach() routine that you should enter into your dummy.c file.
You can copy the name portion of this function definition directly from the declaration you
entered in “Declaring the Autoconfiguration Entry Points” on page 42.

static int

dummy_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)

{

cmn_err(CE_NOTE, "Inside dummy_detach");
switch(cmd) {

case DDI_DETACH:

dummy_dip = 0;

ddi_remove_minor_node(dip, NULL);
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return DDI_SUCCESS;

default:

return DDI_FAILURE;

}

}

First, use cmn_err(9F) to write a message to the system log, as you did in your _init(9E) entry
point. Then provide DDI_DETACH behavior. Within the DDI_DETACH code, first reset the
dummy_dip variable that you set in dummy_attach() above. You cannot reset this device
instance pointer unless you remove all instances of the device. This dummy driver supports only
one instance.

Next, call the ddi_remove_minor_node(9F) function to remove this device node. The
ddi_remove_minor_node(9F) function takes two arguments. The first argument is the device
instance pointer that points to the dev_info structure of this device. The second argument is
the name of the minor node you want to remove. If the value of the minor node argument is
NULL, then ddi_remove_minor_node(9F) removes all instances of this device. Because the
DDI_DETACH code of this driver always removes all instances, this dummy driver supports only
one instance.

If the value of the cmd argument to this dummy_detach() routine is DDI_DETACH, remove all
instances of this device and return DDI_SUCCESS. If this dummy_detach() routine receives any
cmd other than DDI_DETACH, return DDI_FAILURE.

Defining the Get Driver Information Entry Point
The getinfo(9E) routine takes a pointer to a device number and returns a pointer to a device
information structure or returns a device instance number. The return value of the getinfo(9E)
routine is DDI_SUCCESS or DDI_FAILURE. The pointer or instance number requested from the
getinfo(9E) routine is returned through a pointer argument.

The getinfo(9E) routine takes four arguments. The first argument is a pointer to the dev_info
structure for this driver. This dev_info structure argument is obsolete and is no longer used by
the getinfo(9E) routine.

The second argument to the getinfo(9E) routine is a constant that specifies what information
the getinfo(9E) routine must return. The value of this second argument is either
DDI_INFO_DEVT2DEVINFO or DDI_INFO_DEVT2INSTANCE. The third argument to the
getinfo(9E) routine is a pointer to a device number. The fourth argument is a pointer to the
place where the getinfo(9E) routine must store the requested information. The information
stored at this location depends on the value you passed in the second argument to the
getinfo(9E) routine.

The following table describes the relationship between the second and fourth arguments to the
getinfo(9E) routine.
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TABLE 2–1 Get Driver Information Entry Point Arguments

cmd arg resultp

DDI_INFO_DEVT2DEVINFO Device number Device information structure
pointer

DDI_INFO_DEVT2INSTANCE Device number Device instance number

The following code is the dummy_getinfo() routine that you should enter into your dummy.c
file. You can copy the name portion of this function definition directly from the declaration you
entered in “Declaring the Autoconfiguration Entry Points” on page 42.

static int

dummy_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg,

void **resultp)

{

cmn_err(CE_NOTE, "Inside dummy_getinfo");
switch(cmd) {

case DDI_INFO_DEVT2DEVINFO:

*resultp = dummy_dip;

return DDI_SUCCESS;

case DDI_INFO_DEVT2INSTANCE:

*resultp = 0;

return DDI_SUCCESS;

default:

return DDI_FAILURE;

}

}

First, use cmn_err(9F) to write a message to the system log, as you did in your _init(9E) entry
point. Then provide DDI_INFO_DEVT2DEVINFO behavior. A realistic driver would use arg to get
the instance number of this device node. A realistic driver would then call the
ddi_get_soft_state(9F) function and return the device information structure pointer from
that state structure. This dummy driver supports only one instance and does not use a state
structure. In the DDI_INFO_DEVT2DEVINFO code of this dummy_getinfo() routine, simply return
the one device information structure pointer that the dummy_attach() routine saved.

Next, provide DDI_INFO_DEVT2INSTANCE behavior. Within the DDI_INFO_DEVT2INSTANCE code,
simply return 0. This dummy driver supports only one instance. The instance number of that one
instance is 0.

Defining the Report Driver Property Information Entry Point
The prop_op(9E) entry point is required for every driver. If your driver does not need to
customize the behavior of the prop_op(9E) entry point, then your driver can use the
ddi_prop_op(9F) function for the prop_op(9E) entry point. Drivers that create and manage
their own properties need a custom prop_op(9E) routine. This dummy driver uses a prop_op(9E)
routine to call cmn_err(9F) before calling the ddi_prop_op(9F) function.
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The prop_op(9E) entry point and the ddi_prop_op(9F) function both require that you include
the types.h header file. The prop_op(9E) entry point and the ddi_prop_op(9F) function both
take the same seven arguments. These arguments are not discussed here because this dummy
driver does not create and manage its own properties. See the prop_op(9E) man page to learn
about the prop_op(9E) arguments.

The following code is the dummy_prop_op() routine that you should enter into your dummy.c
file. You can copy the name portion of this function definition directly from the declaration you
entered in “Declaring the Autoconfiguration Entry Points” on page 42.

static int

dummy_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,

int flags, char *name, caddr_t valuep, int *lengthp)

{

cmn_err(CE_NOTE, "Inside dummy_prop_op");
return(ddi_prop_op(dev,dip,prop_op,flags,name,valuep,lengthp));

}

First, use cmn_err(9F) to write a message to the system log, as you did in your _init(9E) entry
point. Then call the ddi_prop_op(9F) function with exactly the same arguments as the
dummy_prop_op() function.

Including Autoconfiguration Header Files
All of the autoconfiguration entry point routines and all of the user context entry point routines
require that you include the ddi.h and sunddi.h header files. You already included these two
header files for the cmn_err(9F) function.

The ddi_create_minor_node(9F) function requires the stat.h header file. The
dummy_attach() routine calls the ddi_create_minor_node(9F) function. The prop_op(9E) and
the ddi_prop_op(9F) functions require the types.h header file.

The following code is the list of header files that you now should have included in your dummy.c
file for the four autoconfiguration routines you have written in this section and the three
loadable module configuration routines you wrote in the previous section.

#include <sys/modctl.h> /* used by _init, _info, _fini */

#include <sys/types.h> /* used by prop_op, ddi_prop_op */

#include <sys/stat.h> /* defines S_IFCHR used by ddi_create_minor_node */

#include <sys/cmn_err.h> /* used by all entry points for this driver */

#include <sys/ddi.h> /* used by all entry points for this driver */

/* also used by ddi_get_instance, ddi_prop_op */

#include <sys/sunddi.h> /* used by all entry points for this driver */

/* also used by ddi_create_minor_node, */

/* ddi_get_instance, and ddi_prop_op */

Writing the User Context Entry Points
User context entry points correspond closely to system calls. When a system call opens a device
file, then the open(9E) routine in the driver for that device is called.
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All character and block drivers must define the open(9E) user context entry point. However, the
open(9E) routine can be nulldev(9F). The close(9E), read(9E), and write(9E) user context
routines are optional.

■ The open(9E) routine gains access to the device.
■ The close(9E) routine relinquishes access to the device. The close(9E) routine must undo

everything that the open(9E) routine did.
■ The read(9E) routine reads data from the device node.
■ The write(9E) routine writes data to the device node.

In this section, the following code is added:

/* Use context entry points */

static int

dummy_open(dev_t *devp, int flag, int otyp, cred_t *cred)

{

cmn_err(CE_NOTE, "Inside dummy_open");
return DDI_SUCCESS;

}

static int

dummy_close(dev_t dev, int flag, int otyp, cred_t *cred)

{

cmn_err(CE_NOTE, "Inside dummy_close");
return DDI_SUCCESS;

}

static int

dummy_read(dev_t dev, struct uio *uiop, cred_t *credp)

{

cmn_err(CE_NOTE, "Inside dummy_read");
return DDI_SUCCESS;

}

static int

dummy_write(dev_t dev, struct uio *uiop, cred_t *credp)

{

cmn_err(CE_NOTE, "Inside dummy_write");
return DDI_SUCCESS;

}

Declaring the User Context Entry Points
The user context entry point routines need to be uniquely named for this driver. Use the same
prefix for each of the user context entry points that you used for each of the autoconfiguration
entry point routines. The following declarations are the entry point declarations you should
have in your dummy.c file:

static int dummy_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);

static int dummy_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);

static int dummy_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg,

void **resultp);
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static int dummy_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,

int flags, char *name, caddr_t valuep, int *lengthp);

static int dummy_open(dev_t *devp, int flag, int otyp, cred_t *cred);

static int dummy_close(dev_t dev, int flag, int otyp, cred_t *cred);

static int dummy_read(dev_t dev, struct uio *uiop, cred_t *credp);

static int dummy_write(dev_t dev, struct uio *uiop, cred_t *credp);

Defining the Open Device Entry Point
The open(9E) routine returns type int. The open(9E) routine should return either DDI_SUCCESS
or the appropriate error number.

The open(9E) routine takes four arguments. This dummy driver is so simple that this
dummy_open() routine does not use any of the open(9E) arguments. The examples in Chapter 3,
“Reading and Writing Data in Kernel Memory,” show the open(9E) routine in more detail.

The following code is the dummy_open() routine that you should enter into your dummy.c file.
You can copy the name portion of this function definition directly from the declaration you
entered in “Declaring the User Context Entry Points” on page 48. Write a message to the system
log and return success.

static int

dummy_open(dev_t *devp, int flag, int otyp, cred_t *cred)

{

cmn_err(CE_NOTE, "Inside dummy_open");
return DDI_SUCCESS;

}

Defining the Close Device Entry Point
The close(9E) routine returns type int. The close(9E) routine should return either
DDI_SUCCESS or the appropriate error number.

The close(9E) routine takes four arguments. This dummy driver is so simple that this
dummy_close() routine does not use any of the close(9E) arguments. The examples in
Chapter 3, “Reading and Writing Data in Kernel Memory,” show the close(9E) routine in more
detail.

The close(9E) routine must undo everything that the open(9E) routine did. The close(9E)
routine must deallocate anything that was allocated, close anything that was opened, and
destroy anything that was created in the open(9E) routine. In this dummy driver, the open(9E)
routine is so simple that nothing needs to be reclaimed or undone in the close(9E) routine.

The following code is the dummy_close() routine that you should enter into your dummy.c file.
You can copy the name portion of this function definition directly from the declaration you
entered in “Declaring the User Context Entry Points” on page 48. Write a message to the system
log and return success.

static int

dummy_close(dev_t dev, int flag, int otyp, cred_t *cred)

{
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cmn_err(CE_NOTE, "Inside dummy_close");
return DDI_SUCCESS;

}

Defining the Read Device Entry Point
The read(9E) routine returns type int. The read(9E) routine should return either DDI_SUCCESS
or the appropriate error number.

The read(9E) routine takes three arguments. This dummy driver is so simple that this
dummy_read() routine does not use any of the read(9E) arguments. The examples in Chapter 3,
“Reading and Writing Data in Kernel Memory,” show the read(9E) routine in more detail.

The following code is the dummy_read() routine that you should enter into your dummy.c file.
You can copy the name portion of this function definition directly from the declaration you
entered in “Declaring the User Context Entry Points” on page 48. Write a message to the system
log and return success.

static int

dummy_read(dev_t dev, struct uio *uiop, cred_t *credp)

{

cmn_err(CE_NOTE, "Inside dummy_read");
return DDI_SUCCESS;

}

Defining the Write Device Entry Point
The write(9E) routine returns type int. The write(9E) routine should return either
DDI_SUCCESS or the appropriate error number.

The write(9E) routine takes three arguments. This dummy driver is so simple that this
dummy_write() routine does not use any of the write(9E) arguments. The examples in
Chapter 3, “Reading and Writing Data in Kernel Memory,” show the write(9E) routine in more
detail.

The following code is the dummy_write() routine that you should enter into your dummy.c file.
You can copy the name portion of this function definition directly from the declaration you
entered in “Declaring the User Context Entry Points” on page 48. Write a message to the system
log and return success.

static int

dummy_write(dev_t dev, struct uio *uiop, cred_t *credp)

{

cmn_err(CE_NOTE, "Inside dummy_write");
return DDI_SUCCESS;

}
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Including User Context Header Files
The four user context entry point routines require your module to include several header files.
You already have included the types.h header file, the ddi.h header file, and the sunddi.h
header file. You need to include the file.h, errno.h, open.h, cred.h, and uio.h header files.

The following code is the list of header files that you now should have included in your dummy.c
file for all the entry points you have written in this section and the previous two sections:

#include <sys/modctl.h> /* used by modlinkage, modldrv, _init, _info, */

/* and _fini */

#include <sys/types.h> /* used by open, close, read, write, prop_op, */

/* and ddi_prop_op */

#include <sys/file.h> /* used by open, close */

#include <sys/errno.h> /* used by open, close, read, write */

#include <sys/open.h> /* used by open, close, read, write */

#include <sys/cred.h> /* used by open, close, read */

#include <sys/uio.h> /* used by read */

#include <sys/stat.h> /* defines S_IFCHR used by ddi_create_minor_node */

#include <sys/cmn_err.h> /* used by all entry points for this driver */

#include <sys/ddi.h> /* used by all entry points for this driver */

/* also used by ddi_get_instance and */

/* ddi_prop_op */

#include <sys/sunddi.h> /* used by all entry points for this driver */

/* also used by ddi_create_minor_node, */

/* ddi_get_instance, and ddi_prop_op */

Writing the Driver Data Structures
All of the data structures described in this section are required for every device driver. All
drivers must define a dev_ops(9S) device operations structure. Because the dev_ops(9S)
structure includes a pointer to the cb_ops(9S) character and block operations structure, you
must define the cb_ops(9S) structure first. The modldrv(9S) linkage structure for loadable
drivers includes a pointer to the dev_ops(9S) structure. The modlinkage(9S) module linkage
structure includes a pointer to the modldrv(9S) structure.

Except for the loadable module configuration entry points, all of the required entry points for a
driver are initialized in the character and block operations structure or in the device operations
structure. Some optional entry points and other related data also are initialized in these data
structures. Initializing the entry points in these data structures enables the driver to be
dynamically loaded.

The loadable module configuration entry points are not initialized in driver data structures. The
_init(9E), _info(9E), and _fini(9E) entry points are required for all kernel modules and are
not specific to device driver modules.

In this section, the following code is added:

/* cb_ops structure */

static struct cb_ops dummy_cb_ops = {

dummy_open,
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dummy_close,

nodev, /* no strategy - nodev returns ENXIO */

nodev, /* no print */

nodev, /* no dump */

dummy_read,

dummy_write,

nodev, /* no ioctl */

nodev, /* no devmap */

nodev, /* no mmap */

nodev, /* no segmap */

nochpoll, /* returns ENXIO for non-pollable devices */

dummy_prop_op,

NULL, /* streamtab struct; if not NULL, all above */

/* fields are ignored */

D_NEW | D_MP, /* compatibility flags: see conf.h */

CB_REV, /* cb_ops revision number */

nodev, /* no aread */

nodev /* no awrite */

};

/* dev_ops structure */

static struct dev_ops dummy_dev_ops = {

DEVO_REV,

0, /* reference count */

dummy_getinfo,

nulldev, /* no identify - nulldev returns 0 */

nulldev, /* no probe */

dummy_attach,

dummy_detach,

nodev, /* no reset - nodev returns ENXIO */

&dummy_cb_ops,

(struct bus_ops *)NULL,

nodev /* no power */

};

/* modldrv structure */

static struct modldrv md = {

&mod_driverops, /* Type of module. This is a driver. */

"dummy driver", /* Name of the module. */

&dummy_dev_ops

};

/* modlinkage structure */

static struct modlinkage ml = {

MODREV_1,

&md,

NULL

};

/* dev_info structure */

dev_info_t *dummy_dip; /* keep track of one instance */

Defining the Character and Block Operations Structure
The cb_ops(9S) structure initializes standard character and block interfaces. See the cb_ops(9S)
man page to learn what each element is and what the value of each element should be. This
dummy driver does not use all of the elements in the cb_ops(9S) structure. See the description
that follows the code sample.
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When you name this structure, use the same dummy_ prefix that you used for the names of the
autoconfiguration routines and the names of the user context routines. Prepend the static
type modifier to the declaration.

The following code is the cb_ops(9S) structure that you should enter into your dummy.c file:

static struct cb_ops dummy_cb_ops = {

dummy_open,

dummy_close,

nodev, /* no strategy - nodev returns ENXIO */

nodev, /* no print */

nodev, /* no dump */

dummy_read,

dummy_write,

nodev, /* no ioctl */

nodev, /* no devmap */

nodev, /* no mmap */

nodev, /* no segmap */

nochpoll, /* returns ENXIO for non-pollable devices */

dummy_prop_op,

NULL, /* streamtab struct; if not NULL, all above */

/* fields are ignored */

D_NEW | D_MP, /* compatibility flags: see conf.h */

CB_REV, /* cb_ops revision number */

nodev, /* no aread */

nodev /* no awrite */

};

Enter the names of the open(9E) and close(9E) entry points for this driver as the values of the
first two elements of this structure. Enter the names of the read(9E) and write(9E) entry points
for this driver as the values of the sixth and seventh elements of this structure. Enter the name of
the prop_op(9E) entry point for this driver as the value of the thirteenth element in this
structure.

The strategy(9E), print(9E), and dump(9E) routines are for block drivers only. This dummy
driver does not define these three routines because this driver is a character driver. This driver
does not define an ioctl(9E) entry point because this driver does not use I/O control
commands. This driver does not define devmap(9E), mmap(9E), or segmap(9E) entry points
because this driver does not support memory mapping. This driver does not does not define
aread(9E) or awrite(9E) entry points because this driver does not perform any asynchronous
reads or writes. Initialize all of these unused function elements to nodev(9F). The nodev(9F)
function returns the ENXIO error code.

Specify the nochpoll(9F) function for the chpoll(9E) element of the cb_ops(9S) structure
because this driver is not for a pollable device. Specify NULL for the streamtab(9S) STREAMS
entity declaration structure because this driver is not a STREAMS driver.

The compatibility flags are defined in the conf.h header file. The D_NEW flag means this driver is
a new-style driver. The D_MP flag means this driver safely allows multiple threads of execution.
All drivers must be multithreaded-safe, and must specify this D_MP flag. The D_64BIT flag means
this driver supports 64-bit offsets and block numbers. See the conf.h header file for more
compatibility flags.
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The CB_REV element of the cb_ops(9S) structure is the cb_ops(9S) revision number. CB_REV is
defined in the devops.h header file.

Defining the Device Operations Structure
The dev_ops(9S) structure initializes interfaces that are used for operations such as attaching
and detaching the driver. See the dev_ops(9S) man page to learn what each element is and what
the value of each element should be. This dummy driver does not use all of the elements in the
dev_ops(9S) structure. See the description that follows the code sample.

When you name this structure, use the same dummy_ prefix that you used for the names of the
autoconfiguration routines and the names of the user context routines. Prepend the static
type modifier to the declaration.

The following code is the dev_ops(9S) structure that you should enter into your dummy.c file:

static struct dev_ops dummy_dev_ops = {

DEVO_REV,

0, /* reference count */

dummy_getinfo,

nulldev, /* no identify - nulldev returns 0 */

nulldev, /* no probe */

dummy_attach,

dummy_detach,

nodev, /* no reset - nodev returns ENXIO */

&dummy_cb_ops,

(struct bus_ops *)NULL,

nodev /* no power */

};

The DEVO_REV element of the dev_ops(9S) structure is the driver build version. DEVO_REV is
defined in the devops.h header file. The second element in this structure is the driver reference
count. Initialize this value to zero. The driver reference count is the number of instances of this
driver that are currently open. The driver cannot be unloaded if any instances of the driver are
still open.

The next six elements of the dev_ops(9S) structure are the names of the getinfo(9E),
identify(9E), probe(9E), attach(9E), detach(9E), and reset() functions for this particular
driver. The identify(9E) function is obsolete. Initialize this structure element to nulldev(9F).
The probe(9E) function determines whether the corresponding device exists and is valid. This
dummy driver does not define a probe(9E) function. Initialize this structure element to nulldev.
The nulldev(9F) function returns success. The reset() function is obsolete. Initialize the
reset() function to nodev(9F).

The next element of the dev_ops(9S) structure is a pointer to the cb_ops(9S) structure for this
driver. You initialized the cb_ops(9S) structure for this driver in “Defining the Character and
Block Operations Structure” on page 52. Enter &dummy_cb_ops for the value of the pointer to
the cb_ops(9S) structure.
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The next element of the dev_ops(9S) structure is a pointer to the bus operations structure. Only
nexus drivers have bus operations structures. This dummy driver is not a nexus driver. Set this
value to NULL because this driver is a leaf driver.

The last element of the dev_ops(9S) structure is the name of the power(9E) routine for this
driver. The power(9E) routine operates on a hardware device. This driver does not drive a
hardware device. Set the value of this structure element to nodev.

Defining the Module Linkage Structures
Two other module loading structures are required for every driver. The modlinkage(9S)
module linkage structure is used by the _init(9E), _info(9E), and _fini(9E) routines to
install, remove, and retrieve information from a module. The modldrv(9S) linkage structure for
loadable drivers exports driver-specific information to the kernel. See the man pages for each
structure to learn what each element is and what the value of each element should be.

The following code defines the modldrv(9S) and modlinkage(9S) structures for the driver
shown in this chapter:

static struct modldrv md = {

&mod_driverops, /* Type of module. This is a driver. */

"dummy driver", /* Name of the module. */

&dummy_dev_ops

};

static struct modlinkage ml = {

MODREV_1,

&md,

NULL

};

The first element in the modldrv(9S) structure is a pointer to a structure that tells the kernel
what kind of module this is. Set this value to the address of the mod_driverops structure. The
mod_driverops structure tells the kernel that the dummy.c module is a loadable driver module.
The mod_driverops structure is declared in the modctl.h header file. You already included the
modctl.h header file in your dummy.c file, so do not declare the mod_driverops structure in
dummy.c. The mod_driverops structure is defined in the modctl.c source file.

The second element in the modldrv(9S) structure is a string that describes this module. Usually
this string contains the name of this module and the version number of this module. The last
element of the modldrv(9S) structure is a pointer to the dev_ops(9S) structure for this driver.
You initialized the dev_ops(9S) structure for this driver in “Defining the Device Operations
Structure” on page 54.

The first element in the modlinkage(9S) structure is the revision number of the loadable
modules system. Set this value to MODREV_1. The next element of the modlinkage(9S) structure
is the address of a null-terminated array of pointers to linkage structures. Driver modules have
only one linkage structure. Enter the address of the md structure for the value of this element of
the modlinkage(9S) structure. Enter the value NULL to terminate this list of linkage structures.
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Including Data Structures Header Files
The cb_ops(9S) and dev_ops(9S) structures require you to include the conf.h and devops.h

header files. The modlinkage(9S) and modldrv(9S) structures require you to include the
modctl.h header file. You already included the modctl.h header file for the loadable module
configuration entry points.

The following code is the complete list of header files that you now should have included in
your dummy.c file:

#include <sys/devops.h> /* used by dev_ops */

#include <sys/conf.h> /* used by dev_ops and cb_ops */

#include <sys/modctl.h> /* used by modlinkage, modldrv, _init, _info, */

/* and _fini */

#include <sys/types.h> /* used by open, close, read, write, prop_op, */

/* and ddi_prop_op */

#include <sys/file.h> /* used by open, close */

#include <sys/errno.h> /* used by open, close, read, write */

#include <sys/open.h> /* used by open, close, read, write */

#include <sys/cred.h> /* used by open, close, read */

#include <sys/uio.h> /* used by read */

#include <sys/stat.h> /* defines S_IFCHR used by ddi_create_minor_node */

#include <sys/cmn_err.h> /* used by all entry points for this driver */

#include <sys/ddi.h> /* used by all entry points for this driver */

/* also used by cb_ops, ddi_get_instance, and */

/* ddi_prop_op */

#include <sys/sunddi.h> /* used by all entry points for this driver */

/* also used by cb_ops, ddi_create_minor_node, */

/* ddi_get_instance, and ddi_prop_op */

Writing the Device Configuration File
This driver requires a configuration file. The minimum information that a configuration file
must contain is the name of the device node and the name or type of the device's parent. In this
simple example, the node name of the device is the same as the file name of the driver. Create a
file named dummy.conf in your working directory. Put the following single line of information
into dummy.conf:

name="dummy" parent="pseudo";

Building and Installing the Template Driver
This section shows you how to build and install the driver for a 32-bit platform. See “Building a
Driver” on page 28 and “Installing a Driver” on page 30 for build and install instructions for
SPARC architectures and for 64-bit x86 architectures.

Compile and link the driver. Use the -D_KERNEL option to indicate that this code defines a
kernel module. The following example shows compiling and linking for a 32-bit architecture
using the Sun Studio C compiler:

Writing the Device Configuration File

Device Driver Tutorial • April 200856

http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=cb-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=dev-ops-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=modlinkage-9s
http://www.oracle.com/pls/topic/lookup?ctx=816-5181&id=modldrv-9s


% cc -D_KERNEL -c dummy.c

% ld -r -o dummy dummy.o

Make sure you are user root when you install the driver.

Install drivers in the /tmp directory until you are finished modifying and testing the _info(),
_init(), and attach() routines. Copy the driver binary to the /tmp directory. Link to the
driver from the kernel driver directory. See “Device Driver Testing Tips” on page 106 for more
information.

# cp dummy /tmp

Link to the following directory for a 32-bit architecture:

# ln -s /tmp/dummy /usr/kernel/drv/dummy

Copy the configuration file to the kernel driver area of the system.

# cp dummy.conf /usr/kernel/drv

Testing the Template Driver
This dummy driver merely writes a message to a system log each time an entry point routine is
entered. To test this driver, watch for these messages to confirm that each entry point routine is
successfully entered.

The cmn_err(9F) function writes low priority messages such as the messages defined in this
dummy driver to /dev/log. The syslogd(1M) daemon reads messages from /dev/log and writes
low priority messages to /var/adm/messages.

In a separate window, enter the following command and monitor the output as you perform the
tests described in the remainder of this section:

% tail -f /var/adm/messages

Adding the Template Driver
Make sure you are user root when you add the driver. Use the add_drv(1M) command to add
the driver:

# add_drv dummy

You should see the following messages in the window where you are viewing
/var/adm/messages:

date time machine dummy: [ID 513080 kern.notice] NOTICE: Inside _info

date time machine dummy: [ID 874762 kern.notice] NOTICE: Inside _init

date time machine dummy: [ID 678704 kern.notice] NOTICE: Inside dummy_attach
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The _info(9E), _init(9E), and attach(9E) entry points are called in that order when you add a
driver.

The dummy driver has been added to the /devices directory:

% ls -l /devices/pseudo | grep dummy

drwxr-xr-x 2 root sys 512 date time dummy@0

crw------- 1 root sys 92, 0 date time dummy@0:0

The dummy driver also is the most recent module listed by modinfo(1M):

% modinfo

Id Loadaddr Size Info Rev Module Name

180 ed192b70 544 92 1 dummy (dummy driver)

The module name, dummy driver, is the value you entered for the second member of the
modldrv(9S) structure. The value 92 is the major number of this module.

% grep dummy /etc/name_to_major

dummy 92

The Loadaddr address of ed192b70 is the address of the first instruction in the dummy driver.
This address might be useful, for example, in debugging.

% mdb -k

> dummy‘_init $m

BASE LIMIT SIZE NAME

ed192b70 ed192ff0 480 dummy

> $q

The dummy driver also is the most recent module listed by prtconf(1M) in the pseudo device
section:

% prtconf -P

pseudo, instance #0

dummy, instance #0 (driver not attached)

A driver is automatically loaded when a device that the driver manages is accessed. A driver
might be automatically unloaded when the driver is not in use.

If your driver is in the /devices directory but modinfo(1M) does not list your driver, you can
use either of the following methods to load your driver:

■ Use the modload(1M) command.
■ Access the device. The driver is loaded automatically when a device that the driver manages

is accessed. The following section describes how to access the dummy device.
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Reading and Writing the Device
Make sure you are user root when you perform the tests described in this section. If you are not
user root, you will receive “Permission denied” error messages when you try to access the
/devices/pseudo/dummy@0:0 special file. Notice the permissions that are shown for
/devices/pseudo/dummy@0:0 in “Adding the Template Driver” on page 57.

Test reading from the device. Your dummy device probably is named
/devices/pseudo/dummy@0:0. The following command reads from your dummy device even if it
has a slightly different name:

# cat /devices/pseudo/dummy*

You should see the following messages in the window where you are viewing
/var/adm/messages:

date time machine dummy: [ID 136952 kern.notice] NOTICE: Inside dummy_open

date time machine dummy: [ID 623947 kern.notice] NOTICE: Inside dummy_getinfo

date time machine dummy: [ID 891851 kern.notice] NOTICE: Inside dummy_prop_op

date time machine dummy: [ID 623947 kern.notice] NOTICE: Inside dummy_getinfo

date time machine dummy: [ID 891851 kern.notice] NOTICE: Inside dummy_prop_op

date time machine dummy: [ID 623947 kern.notice] NOTICE: Inside dummy_getinfo

date time machine dummy: [ID 709590 kern.notice] NOTICE: Inside dummy_read

date time machine dummy: [ID 550206 kern.notice] NOTICE: Inside dummy_close

Test writing to the device:

# echo hello > ‘ls /devices/pseudo/dummy*‘

You should see the following messages in the window where you are viewing
/var/adm/messages:

date time machine dummy: [ID 136952 kern.notice] NOTICE: Inside dummy_open

date time machine dummy: [ID 623947 kern.notice] NOTICE: Inside dummy_getinfo

date time machine dummy: [ID 891851 kern.notice] NOTICE: Inside dummy_prop_op

date time machine dummy: [ID 623947 kern.notice] NOTICE: Inside dummy_getinfo

date time machine dummy: [ID 891851 kern.notice] NOTICE: Inside dummy_prop_op

date time machine dummy: [ID 623947 kern.notice] NOTICE: Inside dummy_getinfo

date time machine dummy: [ID 672780 kern.notice] NOTICE: Inside dummy_write

date time machine dummy: [ID 550206 kern.notice] NOTICE: Inside dummy_close

As you can see, this output from the write test is almost identical to the output you saw from the
read test. The only difference is in the seventh line of the output. Using the cat(1) command
causes the kernel to access the read(9E) entry point of the driver. Using the echo(1) command
causes the kernel to access the write(9E) entry point of the driver. The text argument that you
give to echo(1) is ignored because this driver does not do anything with that data.
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Removing the Template Driver
Make sure you are user root when you unload the driver. Use the rem_drv(1M) command to
unload the driver and remove the device from the /devices directory:

# rem_drv dummy

You should see the following messages in the window where you are viewing
/var/adm/messages:

date time machine dummy: [ID 513080 kern.notice] NOTICE: Inside _info

date time machine dummy: [ID 617648 kern.notice] NOTICE: Inside dummy_detach

date time machine dummy: [ID 812373 kern.notice] NOTICE: Inside _fini

The dummy device is no longer in the /devices directory:

# ls /devices/pseudo/dummy*

/devices/pseudo/dummy*: No such file or directory

The next time you want to read from or write to the dummy device, you must load the driver
again using add_drv(1M).

You can use the modunload(1M) command to unload the driver but not remove the device from
/devices. Then the next time you read from or write to the dummy device, the driver is
automatically loaded.

Press Control-C to stop tailing the /var/adm/messages messages.

Complete Template Driver Source
The following code is the complete source for the dummy driver described in this chapter:

/*

* Minimalist pseudo-device.

* Writes a message whenever a routine is entered.

*

* Build the driver:

* cc -D_KERNEL -c dummy.c

* ld -r -o dummy dummy.o

* Copy the driver and the configuration file to /usr/kernel/drv:

* cp dummy.conf /usr/kernel/drv

* cp dummy /tmp

* ln -s /tmp/dummy /usr/kernel/drv/dummy

* Add the driver:

* add_drv dummy

* Test (1) read from driver (2) write to driver:

* cat /devices/pseudo/dummy@*

* echo hello > ‘ls /devices/pseudo/dummy@*‘
* Verify the tests in another window:

* tail -f /var/adm/messages
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* Remove the driver:

* rem_drv dummy

*/

#include <sys/devops.h> /* used by dev_ops */

#include <sys/conf.h> /* used by dev_ops and cb_ops */

#include <sys/modctl.h> /* used by modlinkage, modldrv, _init, _info, */

/* and _fini */

#include <sys/types.h> /* used by open, close, read, write, prop_op, */

/* and ddi_prop_op */

#include <sys/file.h> /* used by open, close */

#include <sys/errno.h> /* used by open, close, read, write */

#include <sys/open.h> /* used by open, close, read, write */

#include <sys/cred.h> /* used by open, close, read */

#include <sys/uio.h> /* used by read */

#include <sys/stat.h> /* defines S_IFCHR used by ddi_create_minor_node */

#include <sys/cmn_err.h> /* used by all entry points for this driver */

#include <sys/ddi.h> /* used by all entry points for this driver */

/* also used by cb_ops, ddi_get_instance, and */

/* ddi_prop_op */

#include <sys/sunddi.h> /* used by all entry points for this driver */

/* also used by cb_ops, ddi_create_minor_node, */

/* ddi_get_instance, and ddi_prop_op */

static int dummy_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);

static int dummy_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);

static int dummy_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg,

void **resultp);

static int dummy_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,

int flags, char *name, caddr_t valuep, int *lengthp);

static int dummy_open(dev_t *devp, int flag, int otyp, cred_t *cred);

static int dummy_close(dev_t dev, int flag, int otyp, cred_t *cred);

static int dummy_read(dev_t dev, struct uio *uiop, cred_t *credp);

static int dummy_write(dev_t dev, struct uio *uiop, cred_t *credp);

/* cb_ops structure */

static struct cb_ops dummy_cb_ops = {

dummy_open,

dummy_close,

nodev, /* no strategy - nodev returns ENXIO */

nodev, /* no print */

nodev, /* no dump */

dummy_read,

dummy_write,

nodev, /* no ioctl */

nodev, /* no devmap */

nodev, /* no mmap */

nodev, /* no segmap */

nochpoll, /* returns ENXIO for non-pollable devices */

dummy_prop_op,

NULL, /* streamtab struct; if not NULL, all above */

/* fields are ignored */

D_NEW | D_MP, /* compatibility flags: see conf.h */

CB_REV, /* cb_ops revision number */

nodev, /* no aread */

nodev /* no awrite */

};

/* dev_ops structure */
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static struct dev_ops dummy_dev_ops = {

DEVO_REV,

0, /* reference count */

dummy_getinfo,

nulldev, /* no identify - nulldev returns 0 */

nulldev, /* no probe */

dummy_attach,

dummy_detach,

nodev, /* no reset - nodev returns ENXIO */

&dummy_cb_ops,

(struct bus_ops *)NULL,

nodev /* no power */

};

/* modldrv structure */

static struct modldrv md = {

&mod_driverops, /* Type of module. This is a driver. */

"dummy driver", /* Name of the module. */

&dummy_dev_ops

};

/* modlinkage structure */

static struct modlinkage ml = {

MODREV_1,

&md,

NULL

};

/* dev_info structure */

dev_info_t *dummy_dip; /* keep track of one instance */

/* Loadable module configuration entry points */

int

_init(void)

{

cmn_err(CE_NOTE, "Inside _init");
return(mod_install(&ml));

}

int

_info(struct modinfo *modinfop)

{

cmn_err(CE_NOTE, "Inside _info");
return(mod_info(&ml, modinfop));

}

int

_fini(void)

{

cmn_err(CE_NOTE, "Inside _fini");
return(mod_remove(&ml));

}

/* Device configuration entry points */

static int

dummy_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)

{

cmn_err(CE_NOTE, "Inside dummy_attach");
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switch(cmd) {

case DDI_ATTACH:

dummy_dip = dip;

if (ddi_create_minor_node(dip, "0", S_IFCHR,

ddi_get_instance(dip), DDI_PSEUDO,0)

!= DDI_SUCCESS) {

cmn_err(CE_NOTE,

"%s%d: attach: could not add character node.",
"dummy", 0);

return(DDI_FAILURE);

} else

return DDI_SUCCESS;

default:

return DDI_FAILURE;

}

}

static int

dummy_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)

{

cmn_err(CE_NOTE, "Inside dummy_detach");
switch(cmd) {

case DDI_DETACH:

dummy_dip = 0;

ddi_remove_minor_node(dip, NULL);

return DDI_SUCCESS;

default:

return DDI_FAILURE;

}

}

static int

dummy_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg,

void **resultp)

{

cmn_err(CE_NOTE, "Inside dummy_getinfo");
switch(cmd) {

case DDI_INFO_DEVT2DEVINFO:

*resultp = dummy_dip;

return DDI_SUCCESS;

case DDI_INFO_DEVT2INSTANCE:

*resultp = 0;

return DDI_SUCCESS;

default:

return DDI_FAILURE;

}

}

/* Main entry points */

static int

dummy_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,

int flags, char *name, caddr_t valuep, int *lengthp)

{

cmn_err(CE_NOTE, "Inside dummy_prop_op");
return(ddi_prop_op(dev,dip,prop_op,flags,name,valuep,lengthp));

}

static int

dummy_open(dev_t *devp, int flag, int otyp, cred_t *cred)
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{

cmn_err(CE_NOTE, "Inside dummy_open");
return DDI_SUCCESS;

}

static int

dummy_close(dev_t dev, int flag, int otyp, cred_t *cred)

{

cmn_err(CE_NOTE, "Inside dummy_close");
return DDI_SUCCESS;

}

static int

dummy_read(dev_t dev, struct uio *uiop, cred_t *credp)

{

cmn_err(CE_NOTE, "Inside dummy_read");
return DDI_SUCCESS;

}

static int

dummy_write(dev_t dev, struct uio *uiop, cred_t *credp)

{

cmn_err(CE_NOTE, "Inside dummy_write");
return DDI_SUCCESS;

}
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Reading and Writing Data in Kernel Memory

In this chapter, you will extend the very simple prototype driver you developed in the previous
chapter. The driver you will develop in this chapter displays data read from kernel memory. The
first version of this driver writes data to a system log every time the driver is loaded. The second
version of this driver displays data at user request. In the third version of this driver, the user
can write new data to the device.

Displaying Data Stored in Kernel Memory
The pseudo device driver presented in this section writes a constant string to a system log when
the driver is loaded.

This first version of the Quote Of The Day driver (qotd_1) is even more simple than the dummy
driver from the previous chapter. The dummy driver includes all functions that are required to
drive hardware. This qotd_1 driver includes only the bare minimum functions it needs to make
a string available to a user command. For example, this qotd_1 driver has no cb_ops(9S)
structure. Therefore, this driver defines no open(9E), close(9E), read(9E), or write(9E)
function. If you examine the dev_ops(9S) structure for this qotd_1 driver, you see that no
getinfo(9E), attach(9E), or detach(9E) function is defined. This driver contains no function
declarations because all the functions that are defined in this driver are declared in the modctl.h
header file. You must include the modctl.h header file in your qotd_1.c file.

This qotd_1 driver defines a global variable to hold its text data. The _init(9E) entry point for
this driver uses the cmn_err(9F) function to write the string to a system log. The dummy driver
also uses the cmn_err(9F) function to display messages. The qotd_1 driver is different from the
dummy driver because the qotd_1 driver stores its string in kernel memory.

Writing Quote Of The Day Version 1
Enter the source code shown in the following example into a text file named qotd_1.c.
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EXAMPLE 3–1 Quote Of The Day Version 1 Source File

#include <sys/modctl.h>

#include <sys/conf.h>

#include <sys/devops.h>

#include <sys/cmn_err.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

#define QOTD_MAXLEN 128

static const char qotd[QOTD_MAXLEN]

= "Be careful about reading health books. \

You may die of a misprint. - Mark Twain\n";

static struct dev_ops qotd_dev_ops = {

DEVO_REV, /* devo_rev */

0, /* devo_refcnt */

ddi_no_info, /* devo_getinfo */

nulldev, /* devo_identify */

nulldev, /* devo_probe */

nulldev, /* devo_attach */

nulldev, /* devo_detach */

nodev, /* devo_reset */

(struct cb_ops *)NULL, /* devo_cb_ops */

(struct bus_ops *)NULL, /* devo_bus_ops */

nulldev /* devo_power */

};

static struct modldrv modldrv = {

&mod_driverops,

"Quote of the Day 1.0",
&qotd_dev_ops};

static struct modlinkage modlinkage = {

MODREV_1,

(void *)&modldrv,

NULL

};

int

_init(void)

{

cmn_err(CE_CONT, "QOTD: %s\n", qotd);

return (mod_install(&modlinkage));

}

int

_info(struct modinfo *modinfop)

{

return (mod_info(&modlinkage, modinfop));

}

int

_fini(void)

{

return (mod_remove(&modlinkage));

}
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Enter the configuration information shown in the following example into a text file named
qotd_1.conf.

EXAMPLE 3–2 Quote Of The Day Version 1 Configuration File

name="qotd_1" parent="pseudo" instance=0;

Building, Installing, and Using Quote Of The Day
Version 1
Compile and link the driver. Use the -D_KERNEL option to indicate that this code defines a
kernel module. The following example shows compiling and linking for a 32-bit architecture
using the Sun Studio C compiler:

% cc -D_KERNEL -c qotd_1.c

% ld -r -o qotd_1 qotd_1.o

Note that the name of the driver, qotd_1, must match the name property in the configuration
file.

Make sure you are user root when you install the driver.

Copy the driver binary to the /tmp directory as discussed in “Device Driver Testing Tips” on
page 106.

# cp qotd_1 /tmp

# ln -s /tmp/qotd_1 /usr/kernel/drv/qotd_1

Copy the configuration file to the kernel driver area of the system.

# cp qotd_1.conf /usr/kernel/drv

This qotd_1 driver writes a message to a system log each time the driver is loaded. The
cmn_err(9F) function writes low priority messages such as the message defined in this qotd_1
driver to /dev/log. The syslogd(1M) daemon reads messages from /dev/log and writes low
priority messages to /var/adm/messages.

To test this driver, watch for the message in /var/adm/messages. In a separate window, enter
the following command:

% tail -f /var/adm/messages

Make sure you are user root when you load the driver. Use the add_drv(1M) command to load
the driver:

# add_drv qotd_1

You should see the following messages in the window where you are viewing
/var/adm/messages:
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date time machine pseudo: [ID 129642 kern.info] pseudo-device: devinfo0

date time machine genunix: [ID 936769 kern.info] devinfo0 is /pseudo/devinfo@0

date time machine qotd: [ID 197678 kern.notice] QOTD_1: Be careful about

reading health books. You may die of a misprint. - Mark Twain

This last line is the content of the variable output by the cmn_err(9F) function in the _init(9E)
entry point. The _init(9E) entry point is called when the driver is loaded.

Displaying Data on Demand
The sample code in this section creates a pseudo device that is controlled by the driver. The
driver stores data in the device and makes the data available when the user accesses the device
for reading.

This section first discusses the important code differences between these two versions of the
Quote Of The Day driver. This section then shows you how you can access the device to cause
the quotation to display.

Writing Quote Of The Day Version 2
The driver that controls the pseudo device is more complex than the driver shown in the
previous section. This section first explains some important features of this version of the
driver. This section then shows all the source for this driver.

The following list summarizes the differences between the two versions of the Quote Of The
Day driver:

■ Version 2 of the driver defines a state structure that holds information about each instance
of the device.

■ Version 2 defines a cb_ops(9S) structure and a more complete dev_ops(9S) structure.
■ Version 2 defines open(9E), close(9E), read(9E), getinfo(9E), attach(9E), and

detach(9E) entry points.
■ Version 1 uses the cmn_err(9F) function to write a constant string to a system log in the

_init(9E) entry point of the driver. The _init(9E) entry point is called when the driver is
loaded. Version 2 uses the uiomove(9F) function to copy the quotation from kernel
memory. The copied data is returned by the read(9E) entry point. The read(9E) entry point
is called when the driver is accessed for reading.

■ Version 2 of the driver uses ASSERT(9F) statements to check the validity of data.

The following sections provide more detail about the additions and changes in Version 2 of the
Quote Of The Day driver.
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Managing Device State
The _init(9E) and _fini(9E) entry points and all six new entry points defined in this driver
maintain a soft state for the device. Most device drivers maintain state information with each
instance of the device they control. An instance usually is a sub-device. For example, a disk
driver might communicate with a hardware controller device that has several disk drives
attached. See “Retrieving Driver Soft State Information” in Writing Device Drivers for more
information about soft states.

This sample driver allows only one instance. The instance number is assigned in the
configuration file. See Example 3–4. Most device drivers allow any number of instances of a
device to be created. The system manages the device instance numbers, and the DDI soft state
functions manage the instances.

The following flow gives an overview of how DDI soft state functions manage a state pointer
and the state of a device instance:

1. The ddi_soft_state_init(9F) function initializes the state pointer. The state pointer is an
opaque handle that enables allocation, deallocation, and tracking of a state structure for
each instance of a device. The state structure is a user-defined type that maintains data
specific to this instance of the device. In this example, the state pointer and state structure
are declared after the entry point declarations. See qotd_state_head and qotd_state in
Example 3–3.

2. The ddi_soft_state_zalloc(9F) function uses the state pointer and the device instance to
create the state structure for this instance.

3. The ddi_get_soft_state(9F) function uses the state pointer and the device instance to
retrieve the state structure for this instance of the device.

4. The ddi_soft_state_free(9F) function uses the state pointer and the device instance to
free the state structure for this instance.

5. The ddi_soft_state_fini(9F) function uses the state pointer to destroy the state pointer
and the state structures for all instances of this device.

The ddi_soft_state_zalloc(9F), ddi_get_soft_state(9F), and ddi_soft_state_free(9F)
functions coordinate access to the underlying data structures in a way that is safe for
multithreading. No additional locks should be necessary.

Initializing and Unloading
The _init(9E) entry point first calls the ddi_soft_state_init(9F) function to initialize the
soft state. If the soft state initialization fails, that error code is returned. If the soft state
initialization succeeds, the _init(9E) entry point calls the mod_install(9F) function to load a
new module. If the module install fails, the _init(9E) entry point calls the
ddi_soft_state_fini(9F) function and returns the error code from the failed module install.

Your code must undo everything that it does. You must call ddi_soft_state_fini(9F) if the
module install fails because the _init(9E) call succeeded and created a state pointer.
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The _fini(9E) entry point must undo everything the _init(9E) entry point did. The _fini(9E)
entry point first calls the mod_remove(9F) function to remove the module that the _init(9E)
entry point installed. If the module remove fails, that error code is returned. If the module
remove succeeds, the _fini(9E) entry point calls the ddi_soft_state_fini(9F) function to
destroy the state pointer and the state structures for all instances of this device.

Attaching and Detaching
The attach(9E) entry point first calls the ddi_get_instance(9F) function to retrieve the
instance number of the device information node. The attach(9E) entry point uses this instance
number to call the ddi_soft_state_zalloc(9F), ddi_get_soft_state(9F), and
ddi_create_minor_node(9F) functions.

The attach(9E) entry point calls the ddi_soft_state_zalloc(9F) function to create a state
structure for this device instance. If creation of the soft state structure fails, attach(9E) writes
an error message to a system log and returns failure. This device instance is not attached. If
creation of the soft state structure succeeds, attach(9E) calls the ddi_get_soft_state(9F)
function to retrieve the state structure for this device instance.

If retrieval of the state structure fails, attach(9E) writes an error message to a system log, calls
the ddi_soft_state_free(9F) function to destroy the state structure that was created by
ddi_soft_state_zalloc(9F), and returns failure. This device instance is not attached. If
retrieval of the state structure succeeds, attach(9E) calls the ddi_create_minor_node(9F)
function to create the device node.

At the top of this driver source file, a constant named QOTD_NAME is defined that holds the string
name of the device. This constant is one of the arguments that is passed to
ddi_create_minor_node(9F). If creation of the device node fails, attach(9E) writes an error
message to a system log, calls the ddi_soft_state_free(9F) function to destroy the state
structure that was created by ddi_soft_state_zalloc(9F), calls the
ddi_remove_minor_node(9F) function, and returns failure. This device instance is not attached.

If creation of the device node succeeds, this device instance is attached. The attach(9E) entry
point assigns the instance number that was retrieved with ddi_get_instance(9F) to the
instance member of the state structure for this instance. Then attach(9E) assigns the dev_info
structure pointer that was passed in the attach(9E) call to the dev_info structure pointer
member of the state structure for this instance. The ddi_report_dev(9F) function writes a
message in the system log file when the device is added or when the system is booted. The
message announces this device as shown in the following example:

% dmesg

date time machine pseudo: [ID 129642 kern.info] pseudo-device: qotd_20

date time machine genunix: [ID 936769 kern.info] qotd_20 is /pseudo/qotd_2@0

The detach(9E) entry point first calls the ddi_get_instance(9F) function to retrieve the
instance number of the device information node. The detach(9E) entry point uses this instance
number to call the ddi_soft_state_free(9F) function to destroy the state structure that was

Displaying Data on Demand

Device Driver Tutorial • April 200870

http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=u-fini-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mod-remove-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-soft-state-fini-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=attach-9e
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get-instance-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-soft-state-zalloc-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-get-soft-state-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-create-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-soft-state-free-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-remove-minor-node-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=ddi-report-dev-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5179&id=detach-9e


created by ddi_soft_state_zalloc(9F) in the attach(9E) entry point. The detach(9E) entry
point then calls the ddi_remove_minor_node(9F) function to remove the device that was
created by ddi_create_minor_node(9F) in the attach(9E) entry point.

Opening the Device, Closing the Device, and Getting Module
Information
The open(9E) and close(9E) entry points are identical in this sample driver. In each case, the
entry point first calls the getminor(9F) function to retrieve the minor number of the device.
Then each entry point uses this instance number to call the ddi_get_soft_state(9F) function
to retrieve the state structure for this device instance. If no state structure is retrieved, an error
code is returned. If a state structure is retrieved, the open(9E) and close(9E) entry points both
verify the type of this device. If this device is not a character device, the EINVAL (invalid) error
code is returned.

If the user wants device information for this device instance, the getinfo(9E) entry point
returns the device information from the state structure. If the user wants the instance number of
this device instance, the getinfo(9E) entry point uses the getminor(9F) function to return the
minor number.

Reading the Data
The read(9E) entry point first calls the getminor(9F) function to retrieve the minor number of
the device. The read(9E) entry point uses this instance number to call the
ddi_get_soft_state(9F) function to retrieve the state structure for this device instance. If no
state structure is retrieved, read(9E) returns an error code. If a state structure is retrieved,
read(9E) calls the uiomove(9F) function to copy the quotation from the driver to the uio(9S)
I/O request structure.

Checking Data Validity
Version 2 of the driver uses ASSERT(9F) statements to check the validity of data. If the asserted
expression is true, the ASSERT(9F) statement does nothing. If the asserted expression is false, the
ASSERT(9F) statement writes an error message to the console and causes the system to panic.

To use ASSERT(9F) statements, include the sys/debug.h header file in your source and define
the DEBUG preprocessor symbol. If you do not define the DEBUG preprocessor symbol, then the
ASSERT(9F) statements do nothing. Simply recompile to activate or inactivate ASSERT(9F)
statements.

Quote Of The Day Version 2 Source
Enter the source code shown in the following example into a text file named qotd_2.c.
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EXAMPLE 3–3 Quote Of The Day Version 2 Source File

#include <sys/types.h>

#include <sys/file.h>

#include <sys/errno.h>

#include <sys/open.h>

#include <sys/cred.h>

#include <sys/uio.h>

#include <sys/stat.h>

#include <sys/modctl.h>

#include <sys/conf.h>

#include <sys/devops.h>

#include <sys/debug.h>

#include <sys/cmn_err.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

#define QOTD_NAME "qotd"
#define QOTD_MAXLEN 128

static const char qotd[QOTD_MAXLEN]

= "You can’t have everything. \

Where would you put it? - Steven Wright\n";

static void *qotd_state_head;

struct qotd_state {

int instance;

dev_info_t *devi;

};

static int qotd_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);

static int qotd_attach(dev_info_t *, ddi_attach_cmd_t);

static int qotd_detach(dev_info_t *, ddi_detach_cmd_t);

static int qotd_open(dev_t *, int, int, cred_t *);

static int qotd_close(dev_t, int, int, cred_t *);

static int qotd_read(dev_t, struct uio *, cred_t *);

static struct cb_ops qotd_cb_ops = {

qotd_open, /* cb_open */

qotd_close, /* cb_close */

nodev, /* cb_strategy */

nodev, /* cb_print */

nodev, /* cb_dump */

qotd_read, /* cb_read */

nodev, /* cb_write */

nodev, /* cb_ioctl */

nodev, /* cb_devmap */

nodev, /* cb_mmap */

nodev, /* cb_segmap */

nochpoll, /* cb_chpoll */

ddi_prop_op, /* cb_prop_op */

(struct streamtab *)NULL, /* cb_str */

D_MP | D_64BIT, /* cb_flag */

CB_REV, /* cb_rev */

nodev, /* cb_aread */

nodev /* cb_awrite */

};
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EXAMPLE 3–3 Quote Of The Day Version 2 Source File (Continued)

static struct dev_ops qotd_dev_ops = {

DEVO_REV, /* devo_rev */

0, /* devo_refcnt */

qotd_getinfo, /* devo_getinfo */

nulldev, /* devo_identify */

nulldev, /* devo_probe */

qotd_attach, /* devo_attach */

qotd_detach, /* devo_detach */

nodev, /* devo_reset */

&qotd_cb_ops, /* devo_cb_ops */

(struct bus_ops *)NULL, /* devo_bus_ops */

nulldev /* devo_power */

};

static struct modldrv modldrv = {

&mod_driverops,

"Quote of the Day 2.0",
&qotd_dev_ops};

static struct modlinkage modlinkage = {

MODREV_1,

(void *)&modldrv,

NULL

};

int

_init(void)

{

int retval;

if ((retval = ddi_soft_state_init(&qotd_state_head,

sizeof (struct qotd_state), 1)) != 0)

return retval;

if ((retval = mod_install(&modlinkage)) != 0) {

ddi_soft_state_fini(&qotd_state_head);

return (retval);

}

return (retval);

}

int

_info(struct modinfo *modinfop)

{

return (mod_info(&modlinkage, modinfop));

}

int

_fini(void)

{

int retval;

if ((retval = mod_remove(&modlinkage)) != 0)

return (retval);

ddi_soft_state_fini(&qotd_state_head);
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EXAMPLE 3–3 Quote Of The Day Version 2 Source File (Continued)

return (retval);

}

/*ARGSUSED*/

static int

qotd_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **resultp)

{

struct qotd_state *qsp;

int retval = DDI_FAILURE;

ASSERT(resultp != NULL);

switch (cmd) {

case DDI_INFO_DEVT2DEVINFO:

if ((qsp = ddi_get_soft_state(qotd_state_head,

getminor((dev_t)arg))) != NULL) {

*resultp = qsp->devi;

retval = DDI_SUCCESS;

} else

*resultp = NULL;

break;

case DDI_INFO_DEVT2INSTANCE:

*resultp = (void *)getminor((dev_t)arg);

retval = DDI_SUCCESS;

break;

}

return (retval);

}

static int

qotd_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)

{

int instance = ddi_get_instance(dip);

struct qotd_state *qsp;

switch (cmd) {

case DDI_ATTACH:

if (ddi_soft_state_zalloc(qotd_state_head, instance)

!= DDI_SUCCESS) {

cmn_err(CE_WARN, "Unable to allocate state for %d",
instance);

return (DDI_FAILURE);

}

if ((qsp = ddi_get_soft_state(qotd_state_head, instance))

== NULL) {

cmn_err(CE_WARN, "Unable to obtain state for %d",
instance);

ddi_soft_state_free(dip, instance);

return (DDI_FAILURE);

}

if (ddi_create_minor_node(dip, QOTD_NAME, S_IFCHR, instance,

DDI_PSEUDO, 0) != DDI_SUCCESS) {

cmn_err(CE_WARN, "Cannot create minor node for %d",
instance);

ddi_soft_state_free(dip, instance);
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EXAMPLE 3–3 Quote Of The Day Version 2 Source File (Continued)

ddi_remove_minor_node(dip, NULL);

return (DDI_FAILURE);

}

qsp->instance = instance;

qsp->devi = dip;

ddi_report_dev(dip);

return (DDI_SUCCESS);

case DDI_RESUME:

return (DDI_SUCCESS);

default:

return (DDI_FAILURE);

}

}

static int

qotd_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)

{

int instance = ddi_get_instance(dip);

switch (cmd) {

case DDI_DETACH:

ddi_soft_state_free(qotd_state_head, instance);

ddi_remove_minor_node(dip, NULL);

return (DDI_SUCCESS);

case DDI_SUSPEND:

return (DDI_SUCCESS);

default:

return (DDI_FAILURE);

}

}

/*ARGSUSED*/

static int

qotd_open(dev_t *devp, int flag, int otyp, cred_t *credp)

{

int instance = getminor(*devp);

struct qotd_state *qsp;

if ((qsp = ddi_get_soft_state(qotd_state_head, instance)) == NULL)

return (ENXIO);

ASSERT(qsp->instance == instance);

if (otyp != OTYP_CHR)

return (EINVAL);

return (0);

}

/*ARGSUSED*/

static int

qotd_close(dev_t dev, int flag, int otyp, cred_t *credp)

{

struct qotd_state *qsp;

int instance = getminor(dev);
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EXAMPLE 3–3 Quote Of The Day Version 2 Source File (Continued)

if ((qsp = ddi_get_soft_state(qotd_state_head, instance)) == NULL)

return (ENXIO);

ASSERT(qsp->instance == instance);

if (otyp != OTYP_CHR)

return (EINVAL);

return (0);

}

/*ARGSUSED*/

static int

qotd_read(dev_t dev, struct uio *uiop, cred_t *credp)

{

struct qotd_state *qsp;

int instance = getminor(dev);

if ((qsp = ddi_get_soft_state(qotd_state_head, instance)) == NULL)

return (ENXIO);

ASSERT(qsp->instance == instance);

return (uiomove((void *)qotd, min(uiop->uio_resid, strlen(qotd)),

UIO_READ, uiop));

}

Enter the configuration information shown in the following example into a text file named
qotd_2.conf.

EXAMPLE 3–4 Quote Of The Day Version 2 Configuration File

name="qotd_2" parent="pseudo" instance=0;

Building, Installing, and Using Quote Of The Day
Version 2
Version 2 of the driver uses ASSERT(9F) statements to check the validity of data. To use
ASSERT(9F) statements, include the sys/debug.h header file in your source and define the
DEBUG preprocessor symbol.

Compile and link the driver. If you use ASSERT(9F) statements to check the validity of data, you
must define the DEBUG preprocessor symbol:

% cc -D_KERNEL -DDEBUG -c qotd_2.c

% ld -r -o qotd_2 qotd_2.o

The following example shows compiling and linking for a 32-bit architecture if you are not
using ASSERT(9F) statements:

Displaying Data on Demand

Device Driver Tutorial • April 200876

http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=assert-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=assert-9f


% cc -D_KERNEL -c qotd_2.c

% ld -r -o qotd_2 qotd_2.o

Make sure you are user root when you install the driver.

Copy the driver binary to the /tmp directory as discussed in “Building and Installing the
Template Driver” on page 56.

# cp qotd_2 /tmp

# ln -s /tmp/qotd_2 /usr/kernel/drv/qotd_2

Copy the configuration file to the kernel driver area of the system.

# cp qotd_2.conf /usr/kernel/drv

In a separate window, enter the following command:

% tail -f /var/adm/messages

Make sure you are user root when you load the driver. Use the add_drv(1M) command to load
the driver:

# add_drv qotd_2

You should see the following messages in the window where you are viewing
/var/adm/messages:

date time machine pseudo: [ID 129642 kern.info] pseudo-device: devinfo0

date time machine genunix: [ID 936769 kern.info] devinfo0 is /pseudo/devinfo@0

date time machine pseudo: [ID 129642 kern.info] pseudo-device: qotd_20

date time machine genunix: [ID 936769 kern.info] qotd_20 is /pseudo/qotd_2@0

When this version of the Quote Of The Day driver loads, it does not display its quotation. The
qotd_1 driver wrote a message to a system log through its _init(9E) entry point. This qotd_2
driver stores its data and makes the data available through its read(9E) entry point.

You can use the modinfo(1M) command to display the module information for this version of
the Quote Of The Day driver. The module name is the value you entered for the second member
of the modldrv structure. The value 96 is the major number of this module.

% modinfo | grep qotd

182 ed115948 754 96 1 qotd_2 (Quote of the Day 2.0)

% grep qotd /etc/name_to_major

qotd_1 94

qotd_2 96

This driver also is the most recent module listed by prtconf(1M) in the pseudo device section:

% prtconf -P | grep qotd

qotd_1, instance #0 (driver not attached)

qotd_2, instance #0
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When you access this qotd_2 device for reading, the command you use to access the device
retrieves the data from the device node. The command then displays the data in the same way
that the command displays any other input. To get the name of the device special file, look in the
/devices directory:

% ls -l /devices/pseudo/qotd*

crw------- 1 root sys 96, 0 date time /devices/pseudo/qotd_2@0:qotd

This output shows that qotd_2@0:qotd is a character device. This listing also shows that only
the root user has permission to read or write this device. Make sure you are user root when you
test this driver. To test the qotd_2 driver, you can use the more(1) command to access the device
file for reading:

# more /devices/pseudo/qotd_2@0:qotd

You can’t have everything. Where would you put it? - Steven Wright

You can’t have everything. Where would you put it? - Steven Wright

Modifying Data Stored in Kernel Memory
In this third version of the Quote Of The Day driver, the user can write to the data that is stored
in kernel memory. The pseudo device that is created in this section is a pseudo-disk device or
ramdisk device. A ramdisk device simulates a disk device by allocating kernel memory that is
subsequently used as data storage. See ramdisk(7D) for more information about ramdisk
devices.

As in Version 2 of the Quote Of The Day driver, this Version 3 driver stores its data and makes
the data available through its read(9E) entry point. This Version 3 driver overwrites characters
from the beginning of the data when the user writes to the device.

This section first discusses the important code differences between this version and the previous
version of the Quote Of The Day driver. This section then shows you how you can modify and
display the quotation.

In addition to changes in the driver, Quote Of The Day Version 3 introduces a header file and
an auxiliary program. The header file is discussed in the following section. The utility program
is discussed in “Using Quote Of The Day Version 3” on page 98.

Writing Quote Of The Day Version 3
This third version of the Quote Of The Day driver is more complex than the second version
because this third version enables a user to change the text that is stored in the device.

This section first explains some important features of this version of the driver. This section
then shows all the source for this driver, including the header file and the configuration file.
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The following list summarizes the new features in Version 3 of the Quote Of The Day driver:

■ Version 3 of the driver allocates and frees kernel memory.
■ Version 3 uses condition variables and mutexes to manage thread synchronization.
■ Version 3 copies data from user space to kernel space to enable the user to change the

quotation.
■ Version 3 adds two new entry points: write(9E) and ioctl(9E).
■ Version 3 adds a third new routine. The qotd_rw() routine is called by both the read(9E)

entry point and the write(9E) entry point.
■ As in Version 2, Version 3 of the driver uses the uiomove(9F) function to make the

quotation available to the user. Version 3 uses the ddi_copyin(9F) function to copy the new
quotation and the new device size from user space to kernel space. Version 3 uses the
ddi_copyout(9F) function to report the current device size back to the user.

■ Because the driver copies data between kernel space and user space, Version 3 of the driver
uses the ddi_model_convert_from(9F) function to determine whether the data must be
converted between 32-bit and 64-bit models. The 64-bit kernel supports both 64-bit and
32-bit user data.

■ Version 3 defines one new constant to tell the driver whether the device is busy. Another
new constant tells the driver whether the quotation has been modified. Version 3 defines
four new constants to help the driver undo everything it has done.

■ Version 3 includes a separate utility program to test the driver's I/O controls.

The following sections provide more detail about the additions and changes in Version 3 of the
Quote Of The Day driver. The dev_ops(9S) structure and the modlinkage(9S) structure are the
same as they were in Version 2 of the driver. The modldrv(9S) structure has not changed except
for the version number of the driver. The _init(9E), _info(9E), _fini(9E), getinfo(9E),
open(9E), and close(9E) functions are the same as in Version 2 of the driver.

Attaching, Allocating Memory, and Initializing a Mutex and a Condition
Variable
The qotd_attach() entry point first allocates and gets the device soft state. The qotd_attach()
routine then creates a minor node. All of this code is the same as in Version 2 of the Quote Of
The Day driver. If the call to ddi_create_minor_node(9F) is successful, the qotd_attach()
routine sets the QOTD_DIDMINOR flag in the new flags member of the qotd_state state
structure.

Version 3 of the Quote Of The Day driver defines four new constants that keep track of four
different events. A routine can test these flags to determine whether to deallocate, close, or
remove resources. All four of these flags are set in the qotd_attach() entry point. All four of
these conditions are checked in the qotd_detach() entry point, and the appropriate action is
taken for each condition.
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Note that operations are undone in the qotd_detach() entry point in the opposite order in
which they were done in the qotd_attach() entry point. The qotd_attach() routine creates a
minor node, allocates memory for the quotation, initializes a mutex, and initializes a condition
variable. The qotd_detach() routine destroys the condition variable, destroys the mutex, frees
the memory, and removes the minor node.

After the minor node is created, the qotd_attach() routine allocates memory for the
quotation. For information on allocating and freeing memory in this driver, see “Allocating and
Freeing Kernel Memory” on page 81. If memory is allocated, the qotd_attach() routine sets
the QOTD_DIDALLOC flag in the flags member of the state structure.

The qotd_attach() routine then calls the mutex_init(9F) function to initialize a mutex. If this
operation is successful, the qotd_attach() routine sets the QOTD_DIDMUTEX flag. The
qotd_attach() routine then calls the cv_init(9F) function to initialize a condition variable. If
this operation is successful, the qotd_attach() routine sets the QOTD_DIDCV flag.

The qotd_attach() routine then calls the strlcpy(9F) function to copy the initial quotation
string to the new quotation member of the device state structure. Note that the strlcpy(9F)
function is used instead of the strncpy(9F) function. The strncpy(9F) function can be wasteful
because it always copies n characters, even if the destination is smaller than n characters. Try
using strncpy(9F) instead of strlcpy(9F) and note the difference in the behavior of the driver.

Finally, the initial quotation length is copied to the new quotation length member of the state
structure. The remainder of the qotd_attach() routine is the same as in Version 2.

Checking for Changes, Cleaning Up, and Detaching
The qotd_detach() routine is almost all new. The qotd_detach() routine must first get the soft
state because the qotd_detach() routine needs to check the flags member of the state
structure.

The first flag the qotd_detach() routine checks is the QOTD_CHANGED flag. The QOTD_CHANGED
flag indicates whether the device is in the initial state. The QOTD_CHANGED flag is set in the
qotd_rw() routine and in the qotd_ioctl() entry point. The QOTD_CHANGED flag is set any time
the user does anything to the device other than simply inspect the device. If the QOTD_CHANGED
flag is set, the size or content of the storage buffer has been modified. See “Writing New Data”
on page 85 for more information on the QOTD_CHANGED flag. When the QOTD_CHANGED flag is set,
the detach operation fails because the device might contain data that is valuable to the user and
the device should not be removed. If the QOTD_CHANGED flag is set, the qotd_detach() routine
returns an error that the device is busy.

Once the quotation has been modified, the device cannot be detached until the user runs the
qotdctl command with the -r option. The -r option reinitializes the quotation and indicates
that the user is no longer interested in the contents of the device. See “Exercising the Driver's
I/O Controls” on page 98 for more information about the qotdctl command.
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The qotd_detach() routine then checks the four flags that were set in the qotd_attach()
routine. If the QOTD_DIDCV flag is set, the qotd_detach() routine calls the cv_destroy(9F)
function. If the QOTD_DIDMUTEX flag is set, the qotd_detach() routine calls the
mutex_destroy(9F) function. If the QOTD_DIDALLOC flag is set, the qotd_detach() routine calls
the ddi_umem_free(9F) function. Finally, if the QOTD_DIDMINOR flag is set, the qotd_detach()
routine calls the ddi_remove_minor_node(9F) function.

Allocating and Freeing Kernel Memory
One of the new members of the device state structure supports memory allocation and
deallocation. The qotd_cookie member receives a value from the ddi_umem_alloc(9F)
function. The qotd_cookie value is then used by the ddi_umem_free(9F) function to free the
memory.

Version 3 of the Quote Of The Day driver allocates kernel memory in three places:
■ After the minor node is created
■ In the QOTDIOCSSZ case of the qotd_ioctl() entry point
■ In the QOTDIOCDISCARD case of the qotd_ioctl() entry point

The qotd_attach() routine allocates memory after the minor node is created. Memory must be
allocated to enable the user to modify the quotation. The qotd_attach() routine calls the
ddi_umem_alloc(9F) function with the DDI_UMEM_NOSLEEP flag so that the
ddi_umem_alloc(9F) function will return immediately. If the requested amount of memory is
not available, ddi_umem_alloc(9F) returns NULL immediately and does not wait for memory to
become available. If no memory is allocated, qotd_attach() calls qotd_detach() and returns
an error. If memory is allocated, qotd_attach() sets the QOTD_DIDALLOC flag so that this
memory will be freed by qotd_detach() later.

The second place the driver allocates memory is in the QOTDIOCSSZ case of the qotd_ioctl()
entry point. The QOTDIOCSSZ case sets a new size for the device. A new size is set when the user
runs the qotdctl command with the -s option. See “Exercising the Driver's I/O Controls” on
page 98 for more information about the qotdctl command. This time, the
ddi_umem_alloc(9F) function is called with the DDI_UMEM_SLEEP flag so that
ddi_umem_alloc(9F) will wait for the requested amount of memory to be available. When the
ddi_umem_alloc(9F) function returns, the requested memory has been allocated.

Note that you cannot always use the DDI_UMEM_SLEEP flag. See the CONTEXT sections of the
ddi_umem_alloc(9F), kmem_alloc(9F), and kmem_zalloc(9F) man pages. Also note the
behavioral differences among these three functions. The kmem_zalloc(9F) function is more
efficient for small amounts of memory. The ddi_umem_alloc(9F) function is faster and better
for large allocations. The ddi_umem_alloc(9F) function is used in this qotd_3 driver because
ddi_umem_alloc(9F) allocates whole pages of memory. The kmem_zalloc(9F) function might
save memory because it might allocate smaller chunks of memory. This qotd_3 driver
demonstrates a ramdisk device. In a production ramdisk device, you would use
ddi_umem_alloc(9F) to allocate page-aligned memory.
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After the current quotation is copied to the new space, the qotd_ioctl() routine calls the
ddi_umem_free(9F) function to free the memory that was previously allocated.

The third place the driver allocates memory is in the QOTDIOCDISCARD case of the qotd_ioctl()
entry point. The QOTDIOCDISCARD case is called from the qotdctl command. The qotdctl
command with the -r option sets the quotation back to its initial value. If the number of bytes
allocated for the current quotation is different from the initial number of bytes, then new
memory is allocated to reinitialize the quotation. Again, the DDI_UMEM_SLEEP flag is used so that
when the ddi_umem_alloc(9F) function returns, the requested memory has been allocated. The
qotd_ioctl() routine then calls the ddi_umem_free(9F) function to free the memory that was
previously allocated.

Managing Thread Synchronization
The Quote Of The Day Version 3 driver uses condition variables and mutual exclusion locks
(mutexes) together to manage thread synchronization. See the Multithreaded Programming
Guide for more information about mutexes, condition variables, and thread synchronization.

In this driver, the mutex and condition variable both are initialized in the qotd_attach() entry
point and destroyed in the qotd_detach() entry point. The condition variable is tested in the
qotd_rw() routine and in the qotd_ioctl() entry point.

The condition variable waits on the QOTD_BUSY condition. This condition is needed because the
driver must do some operations that rely on exclusive access to internal structures without
holding a lock. Accessing the storage buffer or its metadata requires mutual exclusion, but the
driver cannot hold a lock if the operation might sleep. Instead of holding a lock in this case, the
driver waits on the QOTD_BUSY condition.

The driver acquires a mutex when the driver tests the condition variable and when the driver
accesses the storage buffer. The mutex protects the storage buffer. Failure to use a mutual
exclusion when accessing the storage buffer could allow one user process to resize the buffer
while another user process tries to read the buffer, for example. The result of unprotected buffer
access could be data corruption or a panic.

The condition variable is used when functions are called that might need to sleep. The
ddi_copyin(9F), ddi_copyout(9F), and uiomove(9F) functions can sleep. Memory allocation
can sleep if you use the SLEEP flag. Functions must not hold a mutex while they are sleeping.
Sleeping while holding a mutex can cause deadlock. When a function might sleep, set the
QOTD_BUSY flag and take the condition variable, which drops the mutex. To avoid race
conditions, the QOTD_BUSY flag can be set or cleared only when holding the mutex. For more
information on deadlock, see “Using Mutual Exclusion Locks” in Multithreaded Programming
Guide and “Avoiding Deadlock” in Multithreaded Programming Guide.
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Locking Rules for Quote Of The Day Version 3

The locking rules for this qotd_3 driver are as follows:

1. You must have exclusive access to do any of the following operations. To have exclusive
access, you must own the mutex or you must set QOTD_BUSY. Threads must wait on
QOTD_BUSY.
■ Test the contents of the storage buffer.
■ Modify the contents of the storage buffer.
■ Modify the size of the storage buffer.
■ Modify variables that refer to the address of the storage buffer.

2.
If your operation does not need to sleep, do the following actions:
a. Acquire the mutex.
b. Wait until QOTD_BUSY is cleared. When the thread that set QOTD_BUSY clears QOTD_BUSY,

that thread also should signal threads waiting on the condition variable and then drop
the mutex.

c. Perform your operation. You do not need to set QOTD_BUSY before you perform your
operation.

d. Drop the mutex.

The following code sample illustrates this rule:

mutex_enter(&qsp->lock);

while (qsp->flags & QOTD_BUSY) {

if (cv_wait_sig(&qsp->cv, &qsp->lock) == 0) {

mutex_exit(&qsp->lock);

ddi_umem_free(new_cookie);

return (EINTR);

}

}

memcpy(new_qotd, qsp->qotd, min(qsp->qotd_len, new_len));

ddi_umem_free(qsp->qotd_cookie);

qsp->qotd = new_qotd;

qsp->qotd_cookie = new_cookie;

qsp->qotd_len = new_len;

qsp->flags |= QOTD_CHANGED;

mutex_exit(&qsp->lock);

3.
If your operation must sleep, do the following actions:
a. Acquire the mutex.
b. Set QOTD_BUSY.
c. Drop the mutex.
d. Perform your operation.
e. Reacquire the mutex.
f. Signal any threads waiting on the condition variable.
g. Drop the mutex.
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These locking rules are very simple. These three rules ensure consistent access to the buffer and
its metadata. Realistic drivers probably have more complex locking requirements. For example,
drivers that use ring buffers or drivers that manage multiple register sets or multiple devices
have more complex locking requirements.

Lock and Condition Variable Members of the State Structure

The device state structure for Version 3 of the Quote Of The Day driver contains two new
members to help manage thread synchronization:
■ The lock member is used to acquire and exit mutexes for the current instance of the device.

The lock member is an argument to each mutex(9F) function call. The lock member also is
an argument to the cv_wait_sig(9F) function call. In the cv_wait_sig(9F) function call,
the lock value ensures that the condition will not be changed before the cv_wait_sig(9F)
function returns.

■ The cv member is a condition variable. The cv member is an argument to each condvar(9F)
(cv_) function call.

Creating and Destroying Locks and Condition Variables

Version 3 of the Quote Of The Day driver defines two constants to make sure the mutex and
condition variable are destroyed when the driver is finished with them. The driver uses these
constants to set and reset the new flags member of the device state structure.
■ The QOTD_DIDMUTEX flag is set in the qotd_attach() entry point immediately after a

successful call to mutex_init(9F). If the QOTD_DIDMUTEX flag is set when the qotd_detach()
entry point is called, the qotd_detach() entry point calls the mutex_destroy(9F) function.

■ The QOTD_DIDCV flag is set in the qotd_attach() entry point immediately after a successful
call to cv_init(9F). If the QOTD_DIDCV flag is set when the qotd_detach() entry point is
called, the qotd_detach() entry point calls the cv_destroy(9F) function.

Waiting on Signals

In the qotd_rw() and qotd_ioctl() routines, the cv_wait_sig(9F) calls wait until the
condition variable is signaled to proceed or until a signal(3C) is received. Either the
cv_signal(9F) function or the cv_broadcast(9F) function signals the cv condition variable to
proceed.

A thread can wait on a condition variable until either the condition variable is signaled or a
signal(3C) is received by the process. The cv_wait(9F) function waits until the condition
variable is signaled but ignores signal(3C) signals. This driver uses the cv_wait_sig(9F)
function instead of the cv_wait(9F) function because this driver responds if a signal is received
by the process performing the operation. If a signal(3C) is taken by the process, this driver
returns an interrupt error and does not complete the operation. The cv_wait_sig(9F) function
usually is preferred to the cv_wait(9F) function because this implementation offers the user
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program more precise response. The signal(3C) causes an effect closer to the point at which
the process was executing when the signal(3C) was received.

In some cases, you cannot use the cv_wait_sig(9F) function because your driver cannot be
interrupted by a signal(3C). For example, you cannot use the cv_wait_sig(9F) function
during a DMA transfer that will result in an interrupt later. In this case, if you abandon the
cv_wait_sig(9F) call, you have nowhere to put the data when the DMA transfer is finished, and
your driver will panic.

Writing New Data
The cb_ops(9S) structure for Version 3 of the Quote Of The Day driver declares two new entry
points that support modifying the quotation. The two new entry points are write(9E) and
ioctl(9E). The qotd_rw() routine is a third new routine in Version 3 of the driver. The
qotd_rw() routine is called by both the read(9E) entry point and the write(9E) entry point.

The device state structure for Version 3 of the Quote Of The Day driver contains two new
members that are used to modify the quotation. The qotd string holds the quotation for the
current instance of the device. The qotd_len member holds the length in bytes of the current
quotation.

Version 3 of the driver also defines two new constants that support modifying the quotation. In
place of QOTD_MAXLEN, Version 3 of the driver defines QOTD_MAX_LEN. QOTD_MAX_LEN is used in
the qotd_ioctl() entry point to test whether the user has entered a string that is too long.
Version 3 of the driver also defines QOTD_CHANGED. The QOTD_CHANGED flag is set in the
qotd_rw() routine and in the qotd_ioctl() entry point when a new quotation is copied from
the user.

When the qotd_3 device is opened for writing, the kernel calls the qotd_write() entry point.
The qotd_write() entry point then calls the qotd_rw() routine and passes a UIO_WRITE flag.
The new qotd_read() entry point is exactly the same as the qotd_write() entry point, except
that the qotd_read() entry point passes a UIO_READ flag. The qotd_rw() routine supports both
reading and writing the device and thereby eliminates much duplicate code.

The qotd_rw() routine first gets the device soft state. Then the qotd_rw() routine checks the
length of the I/O request in the uio(9S) I/O request structure. If this length is zero, the
qotd_rw() routine returns zero. If this length is not zero, the qotd_rw() routine enters a mutex.

While the device is busy, the qotd_rw() routine checks whether the condition variable has been
signaled or a signal(3C) is pending. If either of these conditions is true, the qotd_rw() routine
exits the mutex and returns an error.

When the device is not busy, the qotd_rw() routine checks whether the data offset in the
uio(9S) I/O request structure is valid. If the offset is not valid, the qotd_rw() routine exits the
mutex and returns an error. If the offset is valid, the local length variable is set to the difference
between the offset in the I/O request structure and the length in the device state structure. If this
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difference is zero, the qotd_rw() routine exits the mutex and returns. If the device was opened
for writing, the qotd_rw() routine returns a space error. Otherwise, the qotd_rw() routine
returns zero.

The qotd_rw() routine then sets the QOTD_BUSY flag in the flags member of the device state
structure and exits the mutex. The qotd_rw() routine then calls the uiomove(9F) function to
copy the quotation. If the rw argument is UIO_READ, then the quotation is transferred from the
state structure to the I/O request structure. If the rw argument is UIO_WRITE, then the quotation
is transferred from the I/O request structure to the state structure.

The qotd_rw() routine then enters a mutex again. If the device was opened for writing, the
qotd_rw() routine sets the QOTD_CHANGED flag. The qotd_rw() routine then sets the device to
not busy, calls cv_broadcast(9F) to unblock any threads that were blocked on this condition
variable, and exits the mutex.

Finally, the qotd_rw() routine returns the quotation. The quotation is written to the device
node.

Reporting and Setting Device Size and Re-initializing the Device
The behavior of the ioctl(9E) entry point depends on the command value passed in to the
entry point. These constants are defined in the new qotd.h header file. The qotd_ioctl()
routine reports the size of the space allocated for the quotation, sets a new amount of space to
allocate for the quotation, or resets the quotation back to its initial value.

If the request is to report the size of the space allocated for the quotation, then the
qotd_ioctl() routine first sets a local size variable to the value of the quotation length in the
state structure. If the device was not opened for reading, the qotd_ioctl() routine returns an
error.

Because the qotd_ioctl() routine transfers data between kernel space and user space, the
qotd_ioctl() routine must check whether both spaces are using the same data model. If the
return value of the ddi_model_convert_from(9F) function is DDI_MODEL_ILP32, then the
driver must convert to 32-bit data before calling ddi_copyout(9F) to transfer the current size of
the quotation space. If the return value of the ddi_model_convert_from(9F) function is
DDI_MODEL_NONE, then no data type conversion is necessary.

If the request is to set a new size for the space allocated for the quotation, then the
qotd_ioctl() routine first sets local variables for the new size, the new quotation, and a new
memory allocation cookie. If the device was not opened for writing, the qotd_ioctl() routine
returns an error.

The qotd_ioctl() routine then checks again for data model mismatch. If the return value of
the ddi_model_convert_from(9F) function is DDI_MODEL_ILP32, then the driver declares a
32-bit size variable to receive the new size from ddi_copyin(9F). When the new size is received,
the size is converted to the data type of the kernel space.
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If the new size is zero or is greater than QOTD_MAX_LEN, the qotd_ioctl() routine returns an
error. If the new size is valid, then the qotd_ioctl() routine allocates new memory for the
quotation and enters a mutex.

While the device is busy, the qotd_ioctl() routine checks whether the condition variable has
been signaled or a signal(3C) is pending. If either of these conditions is true, the qotd_ioctl()
routine exits the mutex, frees the new memory it allocated, and returns an error.

When the device is not busy, the qotd_ioctl() routine uses memcpy(9F) to copy the quotation
from the driver's state structure to the new space. The qotd_ioctl() routine then frees the
memory currently pointed to by the state structure, and updates the state structure members to
the new values. The qotd_ioctl() routine then sets the QOTD_CHANGED flag, exits the mutex,
and returns.

If the request is to discard the current quotation and reset to the initial quotation, then the
qotd_ioctl() routine first sets local variables for the new quotation and a new memory
allocation cookie. If the device was not opened for writing, the qotd_ioctl() routine returns an
error. If the space allocated for the current quotation is different from the space allocated for the
initial quotation, then the qotd_ioctl() routine allocates new memory that is the size of the
initial space and enters a mutex.

While the device is busy, the qotd_ioctl() routine checks whether the condition variable has
been signaled or a signal(3C) is pending. If either of these conditions is true, the qotd_ioctl()
routine exits the mutex, frees the new memory it allocated, and returns an error.

When the device is not busy, the qotd_ioctl() routine frees the memory currently pointed to
by the state structure, updates the memory state structure members to the new values, and
resets the length to its initial value. If the size of the current quotation space was the same as the
initial size and no new memory was allocated, then qotd_ioctl() calls bzero(9F) to clear the
current quotation. The qotd_ioctl() routine then calls the strlcpy(9F) function to copy the
initial quotation string to the quotation member of the state structure. The qotd_ioctl()
routine then unsets the QOTD_CHANGED flag, exits the mutex, and returns.

Once the QOTD_CHANGED flag has been set, the only way to unset it is to run the qotdctl
command with the -r option. See “Exercising the Driver's I/O Controls” on page 98 for more
information about the qotdctl command.

Quote Of The Day Version 3 Source
Enter the source code shown in the following example into a text file named qotd_3.c.

EXAMPLE 3–5 Quote Of The Day Version 3 Source File

#include <sys/types.h>

#include <sys/file.h>

#include <sys/errno.h>

#include <sys/open.h>

#include <sys/cred.h>

Modifying Data Stored in Kernel Memory

Chapter 3 • Reading and Writing Data in Kernel Memory 87

http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=signal-3c
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=memcpy-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5168&id=signal-3c
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=bzero-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=strlcpy-9f


EXAMPLE 3–5 Quote Of The Day Version 3 Source File (Continued)

#include <sys/uio.h>

#include <sys/stat.h>

#include <sys/ksynch.h>

#include <sys/modctl.h>

#include <sys/conf.h>

#include <sys/devops.h>

#include <sys/debug.h>

#include <sys/cmn_err.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

#include "qotd.h"

#define QOTD_NAME "qotd_3"

static const char init_qotd[]

= "On the whole, I’d rather be in Philadelphia. - W. C. Fields\n";
static const size_t init_qotd_len = 128;

#define QOTD_MAX_LEN 65536 /* Maximum quote in bytes */

#define QOTD_CHANGED 0x1 /* User has made modifications */

#define QOTD_DIDMINOR 0x2 /* Created minors */

#define QOTD_DIDALLOC 0x4 /* Allocated storage space */

#define QOTD_DIDMUTEX 0x8 /* Created mutex */

#define QOTD_DIDCV 0x10 /* Created cv */

#define QOTD_BUSY 0x20 /* Device is busy */

static void *qotd_state_head;

struct qotd_state {

int instance;

dev_info_t *devi;

kmutex_t lock;

kcondvar_t cv;

char *qotd;

size_t qotd_len;

ddi_umem_cookie_t qotd_cookie;

int flags;

};

static int qotd_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);

static int qotd_attach(dev_info_t *, ddi_attach_cmd_t);

static int qotd_detach(dev_info_t *, ddi_detach_cmd_t);

static int qotd_open(dev_t *, int, int, cred_t *);

static int qotd_close(dev_t, int, int, cred_t *);

static int qotd_read(dev_t, struct uio *, cred_t *);

static int qotd_write(dev_t, struct uio *, cred_t *);

static int qotd_rw(dev_t, struct uio *, enum uio_rw);

static int qotd_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);

static struct cb_ops qotd_cb_ops = {

qotd_open, /* cb_open */

qotd_close, /* cb_close */

nodev, /* cb_strategy */

nodev, /* cb_print */

nodev, /* cb_dump */
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EXAMPLE 3–5 Quote Of The Day Version 3 Source File (Continued)

qotd_read, /* cb_read */

qotd_write, /* cb_write */

qotd_ioctl, /* cb_ioctl */

nodev, /* cb_devmap */

nodev, /* cb_mmap */

nodev, /* cb_segmap */

nochpoll, /* cb_chpoll */

ddi_prop_op, /* cb_prop_op */

(struct streamtab *)NULL, /* cb_str */

D_MP | D_64BIT, /* cb_flag */

CB_REV, /* cb_rev */

nodev, /* cb_aread */

nodev /* cb_awrite */

};

static struct dev_ops qotd_dev_ops = {

DEVO_REV, /* devo_rev */

0, /* devo_refcnt */

qotd_getinfo, /* devo_getinfo */

nulldev, /* devo_identify */

nulldev, /* devo_probe */

qotd_attach, /* devo_attach */

qotd_detach, /* devo_detach */

nodev, /* devo_reset */

&qotd_cb_ops, /* devo_cb_ops */

(struct bus_ops *)NULL, /* devo_bus_ops */

nulldev /* devo_power */

};

static struct modldrv modldrv = {

&mod_driverops,

"Quote of the day 3.0",
&qotd_dev_ops};

static struct modlinkage modlinkage = {

MODREV_1,

(void *)&modldrv,

NULL

};

int

_init(void)

{

int retval;

if ((retval = ddi_soft_state_init(&qotd_state_head,

sizeof (struct qotd_state), 1)) != 0)

return retval;

if ((retval = mod_install(&modlinkage)) != 0) {

ddi_soft_state_fini(&qotd_state_head);

return (retval);

}

return (retval);

}
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EXAMPLE 3–5 Quote Of The Day Version 3 Source File (Continued)

int

_info(struct modinfo *modinfop)

{

return (mod_info(&modlinkage, modinfop));

}

int

_fini(void)

{

int retval;

if ((retval = mod_remove(&modlinkage)) != 0)

return (retval);

ddi_soft_state_fini(&qotd_state_head);

return (retval);

}

/*ARGSUSED*/

static int

qotd_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **resultp)

{

struct qotd_state *qsp;

int retval = DDI_FAILURE;

ASSERT(resultp != NULL);

switch (cmd) {

case DDI_INFO_DEVT2DEVINFO:

if ((qsp = ddi_get_soft_state(qotd_state_head,

getminor((dev_t)arg))) != NULL) {

*resultp = qsp->devi;

retval = DDI_SUCCESS;

} else

*resultp = NULL;

break;

case DDI_INFO_DEVT2INSTANCE:

*resultp = (void *)getminor((dev_t)arg);

retval = DDI_SUCCESS;

break;

}

return (retval);

}

static int

qotd_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)

{

int instance = ddi_get_instance(dip);

struct qotd_state *qsp;

switch (cmd) {

case DDI_ATTACH:

if (ddi_soft_state_zalloc(qotd_state_head, instance)

!= DDI_SUCCESS) {

cmn_err(CE_WARN, "Unable to allocate state for %d",
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EXAMPLE 3–5 Quote Of The Day Version 3 Source File (Continued)

instance);

return (DDI_FAILURE);

}

if ((qsp = ddi_get_soft_state(qotd_state_head, instance))

== NULL) {

cmn_err(CE_WARN, "Unable to obtain state for %d",
instance);

ddi_soft_state_free(dip, instance);

return (DDI_FAILURE);

}

if (ddi_create_minor_node(dip, QOTD_NAME, S_IFCHR, instance,

DDI_PSEUDO, 0) != DDI_SUCCESS) {

cmn_err(CE_WARN, "Unable to create minor node for %d",
instance);

(void)qotd_detach(dip, DDI_DETACH);

return (DDI_FAILURE);

}

qsp->flags |= QOTD_DIDMINOR;

qsp->qotd = ddi_umem_alloc(init_qotd_len, DDI_UMEM_NOSLEEP,

&qsp->qotd_cookie);

if (qsp->qotd == NULL) {

cmn_err(CE_WARN, "Unable to allocate storage for %d",
instance);

(void)qotd_detach(dip, DDI_DETACH);

return (DDI_FAILURE);

}

qsp->flags |= QOTD_DIDALLOC;

mutex_init(&qsp->lock, NULL, MUTEX_DRIVER, NULL);

qsp->flags |= QOTD_DIDMUTEX;

cv_init(&qsp->cv, NULL, CV_DRIVER, NULL);

qsp->flags |= QOTD_DIDCV;

(void)strlcpy(qsp->qotd, init_qotd, init_qotd_len);

qsp->qotd_len = init_qotd_len;

qsp->instance = instance;

qsp->devi = dip;

ddi_report_dev(dip);

return (DDI_SUCCESS);

case DDI_RESUME:

return (DDI_SUCCESS);

default:

return (DDI_FAILURE);

}

}

static int

qotd_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)

{

int instance = ddi_get_instance(dip);

struct qotd_state *qsp;

switch (cmd) {

case DDI_DETACH:

qsp = ddi_get_soft_state(qotd_state_head, instance);
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EXAMPLE 3–5 Quote Of The Day Version 3 Source File (Continued)

if (qsp != NULL) {

ASSERT(!(qsp->flags & QOTD_BUSY));

if (qsp->flags & QOTD_CHANGED)

return (EBUSY);

if (qsp->flags & QOTD_DIDCV)

cv_destroy(&qsp->cv);

if (qsp->flags & QOTD_DIDMUTEX)

mutex_destroy(&qsp->lock);

if (qsp->flags & QOTD_DIDALLOC) {

ASSERT(qsp->qotd != NULL);

ddi_umem_free(qsp->qotd_cookie);

}

if (qsp->flags & QOTD_DIDMINOR)

ddi_remove_minor_node(dip, NULL);

}

ddi_soft_state_free(qotd_state_head, instance);

return (DDI_SUCCESS);

case DDI_SUSPEND:

return (DDI_SUCCESS);

default:

return (DDI_FAILURE);

}

}

/*ARGSUSED*/

static int

qotd_open(dev_t *devp, int flag, int otyp, cred_t *credp)

{

int instance = getminor(*devp);

struct qotd_state *qsp;

if ((qsp = ddi_get_soft_state(qotd_state_head, instance)) == NULL)

return (ENXIO);

ASSERT(qsp->instance == instance);

if (otyp != OTYP_CHR)

return (EINVAL);

return (0);

}

/*ARGSUSED*/

static int

qotd_close(dev_t dev, int flag, int otyp, cred_t *credp)

{

struct qotd_state *qsp;

int instance = getminor(dev);

if ((qsp = ddi_get_soft_state(qotd_state_head, instance)) == NULL)

return (ENXIO);

ASSERT(qsp->instance == instance);

if (otyp != OTYP_CHR)

return (EINVAL);
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EXAMPLE 3–5 Quote Of The Day Version 3 Source File (Continued)

return (0);

}

/*ARGSUSED*/

static int

qotd_read(dev_t dev, struct uio *uiop, cred_t *credp)

{

return qotd_rw(dev, uiop, UIO_READ);

}

/*ARGSUSED*/

static int

qotd_write(dev_t dev, struct uio *uiop, cred_t *credp)

{

return qotd_rw(dev, uiop, UIO_WRITE);

}

static int

qotd_rw(dev_t dev, struct uio *uiop, enum uio_rw rw)

{

struct qotd_state *qsp;

int instance = getminor(dev);

size_t len = uiop->uio_resid;

int retval;

if ((qsp = ddi_get_soft_state(qotd_state_head, instance)) == NULL)

return (ENXIO);

ASSERT(qsp->instance == instance);

if (len == 0)

return (0);

mutex_enter(&qsp->lock);

while (qsp->flags & QOTD_BUSY) {

if (cv_wait_sig(&qsp->cv, &qsp->lock) == 0) {

mutex_exit(&qsp->lock);

return (EINTR);

}

}

if (uiop->uio_offset < 0 || uiop->uio_offset > qsp->qotd_len) {

mutex_exit(&qsp->lock);

return (EINVAL);

}

if (len > qsp->qotd_len - uiop->uio_offset)

len = qsp->qotd_len - uiop->uio_offset;

if (len == 0) {

mutex_exit(&qsp->lock);

return (rw == UIO_WRITE ? ENOSPC : 0);

}
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EXAMPLE 3–5 Quote Of The Day Version 3 Source File (Continued)

qsp->flags |= QOTD_BUSY;

mutex_exit(&qsp->lock);

retval = uiomove((void *)(qsp->qotd + uiop->uio_offset), len, rw, uiop);

mutex_enter(&qsp->lock);

if (rw == UIO_WRITE)

qsp->flags |= QOTD_CHANGED;

qsp->flags &= ~QOTD_BUSY;

cv_broadcast(&qsp->cv);

mutex_exit(&qsp->lock);

return (retval);

}

/*ARGSUSED*/

static int

qotd_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,

int *rvalp)

{

struct qotd_state *qsp;

int instance = getminor(dev);

if ((qsp = ddi_get_soft_state(qotd_state_head, instance)) == NULL)

return (ENXIO);

ASSERT(qsp->instance == instance);

switch (cmd) {

case QOTDIOCGSZ: {

/* We are not guaranteed that ddi_copyout(9F) will read

* automatically anything larger than a byte. Therefore we

* must duplicate the size before copying it out to the user.

*/

size_t sz = qsp->qotd_len;

if (!(mode & FREAD))

return (EACCES);

#ifdef _MULTI_DATAMODEL

switch (ddi_model_convert_from(mode & FMODELS)) {

case DDI_MODEL_ILP32: {

size32_t sz32 = (size32_t)sz;

if (ddi_copyout(&sz32, (void *)arg, sizeof (size32_t),

mode) != 0)

return (EFAULT);

return (0);

}

case DDI_MODEL_NONE:

if (ddi_copyout(&sz, (void *)arg, sizeof (size_t),

mode) != 0)

return (EFAULT);

return (0);

default:

cmn_err(CE_WARN, "Invalid data model %d in ioctl\n",
ddi_model_convert_from(mode & FMODELS));
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EXAMPLE 3–5 Quote Of The Day Version 3 Source File (Continued)

return (ENOTSUP);

}

#else /* ! _MULTI_DATAMODEL */

if (ddi_copyout(&sz, (void *)arg, sizeof (size_t), mode) != 0)

return (EFAULT);

return (0);

#endif /* _MULTI_DATAMODEL */

}

case QOTDIOCSSZ: {

size_t new_len;

char *new_qotd;

ddi_umem_cookie_t new_cookie;

uint_t model;

if (!(mode & FWRITE))

return (EACCES);

#ifdef _MULTI_DATAMODEL

model = ddi_model_convert_from(mode & FMODELS);

switch (model) {

case DDI_MODEL_ILP32: {

size32_t sz32;

if (ddi_copyin((void *)arg, &sz32, sizeof (size32_t),

mode) != 0)

return (EFAULT);

new_len = (size_t)sz32;

break;

}

case DDI_MODEL_NONE:

if (ddi_copyin((void *)arg, &new_len, sizeof (size_t),

mode) != 0)

return (EFAULT);

break;

default:

cmn_err(CE_WARN, "Invalid data model %d in ioctl\n",
model);

return (ENOTSUP);

}

#else /* ! _MULTI_DATAMODEL */

if (ddi_copyin((void *)arg, &new_len, sizeof (size_t),

mode) != 0)

return (EFAULT);

#endif /* _MULTI_DATAMODEL */

if (new_len == 0 || new_len > QOTD_MAX_LEN)

return (EINVAL);

new_qotd = ddi_umem_alloc(new_len, DDI_UMEM_SLEEP, &new_cookie);

mutex_enter(&qsp->lock);

while (qsp->flags & QOTD_BUSY) {

if (cv_wait_sig(&qsp->cv, &qsp->lock) == 0) {

mutex_exit(&qsp->lock);

ddi_umem_free(new_cookie);

return (EINTR);
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EXAMPLE 3–5 Quote Of The Day Version 3 Source File (Continued)

}

}

memcpy(new_qotd, qsp->qotd, min(qsp->qotd_len, new_len));

ddi_umem_free(qsp->qotd_cookie);

qsp->qotd = new_qotd;

qsp->qotd_cookie = new_cookie;

qsp->qotd_len = new_len;

qsp->flags |= QOTD_CHANGED;

mutex_exit(&qsp->lock);

return (0);

}

case QOTDIOCDISCARD: {

char *new_qotd = NULL;

ddi_umem_cookie_t new_cookie;

if (!(mode & FWRITE))

return (EACCES);

if (qsp->qotd_len != init_qotd_len) {

new_qotd = ddi_umem_alloc(init_qotd_len,

DDI_UMEM_SLEEP, &new_cookie);

}

mutex_enter(&qsp->lock);

while (qsp->flags & QOTD_BUSY) {

if (cv_wait_sig(&qsp->cv, &qsp->lock) == 0) {

mutex_exit(&qsp->lock);

if (new_qotd != NULL)

ddi_umem_free(new_cookie);

return (EINTR);

}

}

if (new_qotd != NULL) {

ddi_umem_free(qsp->qotd_cookie);

qsp->qotd = new_qotd;

qsp->qotd_cookie = new_cookie;

qsp->qotd_len = init_qotd_len;

} else {

bzero(qsp->qotd, qsp->qotd_len);

}

(void)strlcpy(qsp->qotd, init_qotd, init_qotd_len);

qsp->flags &= ~QOTD_CHANGED;

mutex_exit(&qsp->lock);

return (0);

}

default:

return (ENOTTY);

}

}

Enter the definitions shown in the following example into a text file named qotd.h.
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EXAMPLE 3–6 Quote Of The Day Version 3 Header File

#ifndef _SYS_QOTD_H

#define _SYS_QOTD_H

#define QOTDIOC (’q’ << 24 | ’t’ << 16 | ’d’ << 8)

#define QOTDIOCGSZ (QOTDIOC | 1) /* Get quote buffer size */

#define QOTDIOCSSZ (QOTDIOC | 2) /* Set new quote buffer size */

#define QOTDIOCDISCARD (QOTDIOC | 3) /* Discard quotes and reset */

#endif /* _SYS_QOTD_H */

Enter the configuration information shown in the following example into a text file named
qotd_3.conf.

EXAMPLE 3–7 Quote Of The Day Version 3 Configuration File

name="qotd_3" parent="pseudo" instance=0;

Building and Installing Quote Of The Day Version 3
Compile and link the driver. The following example shows compiling and linking for a 32-bit
architecture:

% cc -D_KERNEL -c qotd_3.c

% ld -r -o qotd_3 qotd_3.o

Make sure you are user root when you install the driver.

Copy the driver binary to the /tmp directory as discussed in “Building and Installing the
Template Driver” on page 56.

# cp qotd_3 /tmp

# ln -s /tmp/qotd_3 /usr/kernel/drv/qotd_3

Copy the configuration file to the kernel driver area of the system.

# cp qotd_3.conf /usr/kernel/drv

In a separate window, enter the following command:

% tail -f /var/adm/messages

Make sure you are user root when you load the driver. Use the add_drv(1M) command to load
the driver:

# add_drv qotd_3

You should see the following messages in the window where you are viewing
/var/adm/messages:
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date time machine pseudo: [ID 129642 kern.info] pseudo-device: qotd_30

date time machine genunix: [ID 936769 kern.info] qotd_30 is /pseudo/qotd_3@0

Using Quote Of The Day Version 3
This section describes how to read and write the qotd_3 device and how to test the driver's I/O
controls. The I/O controls include retrieving the size of the storage buffer, setting a new size for
the storage buffer, and reinitializing the storage buffer size and contents.

Reading the Device
When you access this qotd_3 device for reading, the command you use to access the device
retrieves the data from the device node. The command then displays the data in the same way
that the command displays any other input. To get the name of the device special file, look in the
/devices directory:

% ls -l /devices/pseudo/qotd*

crw------- 1 root sys 122, 0 date time /devices/pseudo/qotd_3@0:qotd_3

To read the qotd_3 device, you can use the cat(1) command:

# cat /devices/pseudo/qotd_3@0:qotd_3

On the whole, I’d rather be in Philadelphia. - W. C. Fields

Writing the Device
To write to the qotd_3 device, you can redirect command-line input:

# echo "A life is not important except in the impact it has on others.

- Jackie Robinson" >> /devices/pseudo/qotd_3@0:qotd_3

# cat /devices/pseudo/qotd_3@0:qotd_3

A life is not important except in the impact it has on others. - Jackie

Robinson

Exercising the Driver's I/O Controls
In addition to changes in the driver, Quote Of The Day Version 3 introduces a new utility
program. The qotdctl command enables you to test the driver's I/O controls.

The source for this command is shown in Example 3–8. Compile the qotdctl utility as follows:

% cc -o qotdctl qotdctl.c

The qotdctl command has the following options:

-g Get the size that is currently allocated. Call the ioctl(9E) entry point of the driver
with the QOTDIOCGSZ request. The QOTDIOCGSZ request reports the current size of
the space allocated for the quotation.
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-s size Set the new size to be allocated. Call the ioctl(9E) entry point of the driver with
the QOTDIOCSSZ request. The QOTDIOCSSZ request sets a new size for the quotation
space.

-r Discard the contents and reset the device. Call the ioctl(9E) entry point of the
driver with the QOTDIOCDISCARD request.

Invoking qotdctl with the -r option is the only way to unset the QOTD_CHANGED
flag in the device. The device cannot be detached while the QOTD_CHANGED flag is
set. This protects the contents of the ramdisk device from being unintentionally or
automatically removed. For example, a device might be automatically removed by
the automatic device unconfiguration thread.

When you are no longer interested in the contents of the device, run the qotdctl
command with the -r option. Then you can remove the device.

-h Display help text.

-V Display the version number of the qotdctl command.

-d device Specify the device node to use. The default value is /dev/qotd0.

Use the qotdctl command to test the driver's I/O controls:

# ./qotdctl -V

qotdctl 1.0

# ./qotdctl -h

Usage: ./qotdctl [-d device] {-g | -h | -r | -s size | -V}

# ./qotdctl -g

open: No such file or directory

By default, the qotdctl command accesses the /dev/qotd0 device. The qotd_3 device in this
example is /devices/pseudo/qotd_3@0:qotd_3. Either define a link from /dev/qotd0 to
/devices/pseudo/qotd_3@0:qotd_3 or use the -d option to specify the correct device:

# ./qotdctl -d /devices/pseudo/qotd_3@0:qotd_3 -g

128

# ./qotdctl -d /devices/pseudo/qotd_3@0:qotd_3 -s 512

# ./qotdctl -d /devices/pseudo/qotd_3@0:qotd_3 -g

512

# ./qotdctl -d /devices/pseudo/qotd_3@0:qotd_3 -r

# cat /devices/pseudo/qotd_3@0:qotd_3

On the whole, I’d rather be in Philadelphia. - W. C. Fields

If you try to remove the device now, you will receive an error message:

# rem_drv qotd_3

Device busy

Cannot unload module: qotd_3

Will be unloaded upon reboot.
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The device is still marked busy because you have not told the driver that you are no longer
interested in this device. Run the qotdctl command with the -r option to unset the
QOTD_CHANGED flag in the driver and mark the device not busy:

# ./qotdctl -r

Enter the source code shown in the following example into a text file named qotdctl.c.

EXAMPLE 3–8 Quote Of The Day I/O Control Command Source File

#include <sys/ioctl.h>

#include <fcntl.h>

#include <stdio.h>

#include <unistd.h>

#include <errno.h>

#include <stdlib.h>

#include "qotd.h"

static const char *DEFAULT_DEVICE = "/dev/qotd0";
static const char *VERSION = "1.0";

static void show_usage(const char *);

static void get_size(const char *);

static void set_size(const char *, size_t);

static void reset_dev(const char *);

int

main(int argc, char *argv[])

{

int op = -1;

int opt;

int invalid_usage = 0;

size_t sz_arg;

const char *device = DEFAULT_DEVICE;

while ((opt = getopt(argc, argv,

"d:(device)g(get-size)h(help)r(reset)s:(set-size)V(version)"))
!= -1) {

switch (opt) {

case ’d’:

device = optarg;

break;

case ’g’:

if (op >= 0)

invalid_usage++;

op = QOTDIOCGSZ;

break;

case ’h’:

show_usage(argv[0]);

exit(0);

/*NOTREACHED*/

case ’r’:

if (op >= 0)

invalid_usage++;

op = QOTDIOCDISCARD;
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EXAMPLE 3–8 Quote Of The Day I/O Control Command Source File (Continued)

break;

case ’s’:

if (op >= 0)

invalid_usage++;

op = QOTDIOCSSZ;

sz_arg = (size_t)atol(optarg);

break;

case ’V’:

(void) printf("qotdctl %s\n", VERSION);

exit(0);

/*NOTREACHED*/

default:

invalid_usage++;

break;

}

}

if (invalid_usage > 0 || op < 0) {

show_usage(argv[0]);

exit(1);

}

switch (op) {

case QOTDIOCGSZ:

get_size(device);

break;

case QOTDIOCSSZ:

set_size(device, sz_arg);

break;

case QOTDIOCDISCARD:

reset_dev(device);

break;

default:

(void) fprintf(stderr,

"internal error - invalid operation %d\n", op);

exit(2);

}

return (0);

}

static void

show_usage(const char *execname)

{

(void) fprintf(stderr,

"Usage: %s [-d device] {-g | -h | -r | -s size | -V}\n", execname);

}

static void

get_size(const char *dev)

{

size_t sz;

int fd;

if ((fd = open(dev, O_RDONLY)) < 0) {
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EXAMPLE 3–8 Quote Of The Day I/O Control Command Source File (Continued)

perror("open");
exit(3);

}

if (ioctl(fd, QOTDIOCGSZ, &sz) < 0) {

perror("QOTDIOCGSZ");
exit(4);

}

(void) close(fd);

(void) printf("%zu\n", sz);

}

static void

set_size(const char *dev, size_t sz)

{

int fd;

if ((fd = open(dev, O_RDWR)) < 0) {

perror("open");
exit(3);

}

if (ioctl(fd, QOTDIOCSSZ, &sz) < 0) {

perror("QOTDIOCSSZ");
exit(4);

}

(void) close(fd);

}

static void

reset_dev(const char *dev)

{

int fd;

if ((fd = open(dev, O_RDWR)) < 0) {

perror("open");
exit(3);

}

if (ioctl(fd, QOTDIOCDISCARD) < 0) {

perror("QOTDIOCDISCARD");
exit(4);

}

(void) close(fd);

}
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Tips for Developing Device Drivers

This chapter provides some general guidelines for writing device drivers.

The guidelines are organized into the following categories:

■ “Device Driver Coding Tips” on page 103
■ “Device Driver Testing Tips” on page 106
■ “Device Driver Debugging and Tuning Tips” on page 108

Device Driver Coding Tips
Use these guidelines when you write the code for your driver:

■ Use a prefix based on the name of your driver to give global variables and functions unique
names.
The name of each function, data element, and driver preprocessor definition must be
unique for each driver.
A driver module is linked into the kernel. The name of each symbol unique to a particular
driver must not collide with other kernel symbols. To avoid such collisions, each function
and data element for a particular driver must be named with a prefix common to that driver.
The prefix must be sufficient to uniquely name each driver symbol. Typically, this prefix is
the name of the driver or an abbreviation for the name of the driver. For example,
xx_open() would be the name of the open(9E) routine of driver xx.
When building a driver, a driver must necessarily include a number of system header files.
The globally-visible names within these header files cannot be predicted. To avoid collisions
with these names, each driver preprocessor definition must be given a unique name by using
an identifying prefix.
A distinguishing driver symbol prefix also is an aid to deciphering system logs and panics
when troubleshooting. Instead of seeing an error related to an ambiguous attach()
function, you see an error message about xx_attach().
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■ If you are basing your design on an existing driver, modify the configuration file before
adding the driver.

The -n option in the add_drv(1M) command enables you to update the system
configuration files for a driver without loading or attaching the driver.

■ Use the cmn_err() function to log driver activity.

You can use the cmn_err(9F) function to display information from your driver similar to the
way you might use print statements to display information from a user program. The
cmn_err(9F) function writes low priority messages to /dev/log. The syslogd(1M) daemon
reads messages from /dev/log and writes low priority messages to /var/adm/messages.
Use the following command to monitor the output from your cmn_err(9F) messages:

% tail -f /var/adm/messages

Be sure to remove cmn_err() calls that are used for development or debugging before you
compile your production version driver. You might want to use cmn_err() calls in a
production driver to write error messages that would be useful to a system administrator.

■ Clean up allocations and other initialization activities when the driver exits.

When the driver exits, whether intentionally or prematurely, you need to perform such
tasks as closing opened files, freeing allocated memory, releasing mutex locks, and
destroying any mutexes that have been created. In addition, the system must be able to close
all minor devices and detach driver instances even after the hardware fails. An orderly
approach is to reverse _init() actions in the _fini() routine, reverse open() operations in
the close() routine, and reverse attach() operations in the detach() routine.

■ Use ASSERT(9F) to catch unexpected error returns.

ASSERT() is a macro that halts the kernel execution if a condition that was expected to be
true turns out to be false. To activate ASSERT(), you need to include the sys/debug.h header
file and specify the DEBUG preprocessor symbol during compilation.

■ Use mutex_owned() to validate and document locking requirements.

The mutex_owned(9F) function helps determine whether the current thread owns a specified
mutex. To determine whether a mutex is held by a thread, use mutex_owned() within
ASSERT().

■ Use conditional compilation to toggle “costly” debugging features.

The Solaris OS provides various debugging functions, such as ASSERT() and
mutex-owned(), that can be turned on by specifying the DEBUG preprocessor symbol when
the driver is compiled. With conditional compilation, unnecessary code can be removed
from the production driver. This approach can also be accomplished by using a global
variable.

■ Use a separate instance of the driver for each device to be controlled.
■ Use DDI functions as much as possible in your device drivers.

Device Driver Coding Tips

Device Driver Tutorial • April 2008104

http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=add-drv-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=cmn-err-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5166&id=syslogd-1m
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=assert-9f
http://www.oracle.com/pls/topic/lookup?ctx=816-5180&id=mutex-owned-9f


These interfaces shield the driver from platform-specific dependencies such as mismatches
between processor and device endianness and any other data order dependencies. With
these interfaces, a single-source driver can run on the SPARC platform, x86 platform, and
related processor architectures.

■ Anticipate corrupted data.
Always check that the integrity of data before that data is used. The driver must avoid
releasing bad data to the rest of the system.

■ A device should only write to DMA buffers that are controlled solely by the driver.
This technique prevents a DMA fault from corrupting an arbitrary part of the system's main
memory.

■ Use the ddi_umem_alloc(9F) function when you need to make DMA transfers.
This function guarantees that only whole, aligned pages are transferred.

■ Set a fixed number of attempts before taking alternate action to deal with a stuck interrupt.
The device driver must not be an unlimited drain on system resources if the device locks up.
The driver should time out if a device claims to be continuously busy. The driver should also
detect a pathological (stuck) interrupt request and take appropriate action.

■ Use care when setting the sequence for mutex acquisitions and releases so as to avoid
unwanted thread interactions if a device fails.
See “Thread Interaction” in Writing Device Drivers for more information.

■ Check for malformed ioctl() requests from user applications.
User requests can be destructive. The design of the driver should take into consideration the
construction of each type of potential ioctl() request.

■ Try to avoid situations where a driver continues to function without detecting a device
failure.
A driver should switch to an alternative device rather than try to work around a device
failure.

■ All device drivers in the Solaris OS must support hotplugging.
All devices need to be able to be installed or removed without requiring a reboot of the
system.

■ All device drivers should support power management.
Power management provides the ability to control and manage the electrical power usage of
a computer system or device. Power management enables systems to conserve energy by
using less power when idle and by shutting down completely when not in use.

■ Apply the volatile keyword to any variable that references a device register.
Without the volatile keyword, the compile-time optimizer can delete important accesses
to a register.

■ Perform periodic health checks to detect and report faulty devices.
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A periodic health check should include the following activities:
■ Check any register or memory location on the device whose value might have been

altered since the last poll.
■ Timestamp outgoing requests such as transmit blocks or commands that are issued by

the driver.
■ Initiate a test action on the device that should be completed before the next scheduled

check.

Device Driver Testing Tips
Testing a device driver can cause the system to panic and can harm the kernel.

The following tips can help you avoid problems when testing your driver:

■ Install the driver in a temporary location.
Install drivers in the /tmp directory until you are finished modifying and testing the
_info(), _init(), and attach() routines. Copy the driver binary to the /tmp directory.
Link to the driver from the kernel driver directory.
If a driver has an error in its _info(), _init(), or attach() function, your machine could
get into a state of infinite panic. The Solaris OS automatically reboots itself after a panic. The
Solaris OS loads any drivers it can during boot. If you have an error in your attach()
function that panics the system when you load the driver, then the system will panic again
when it tries to reboot after the panic. The system will continue the cycle of panic, reboot,
panic as it attempts to reload the faulty driver every time it reboots after panic.
To avoid an infinite panic, keep the driver in the /tmp area until it is well tested. Link to the
driver in the /tmp area from the kernel driver area. The Solaris OS removes all files from the
/tmp area every time the system reboots. If your driver causes a panic, the Solaris OS reboots
successfully because the driver has been removed automatically from the /tmp area. The link
in the kernel driver area points to nothing. The faulty driver did not get loaded, so the
system does not go back into a panic. You can modify the driver, copy it again to the /tmp
area, and continue testing and developing. When the driver is well tested, copy it to the
/usr/kernel/drv area so that it will remain available after a reboot.
The following example shows you where to link the driver for a 32-bit platform. For other
architectures, see the instructions in “Installing a Driver” on page 30.

# cp mydriver /tmp

# ln -s /tmp/mydriver /usr/kernel/drv/mydriver

■ Enable the deadman feature to avoid a hard hang.
If your system is in a hard hang, then you cannot break into the debugger. If you enable the
deadman feature, the system panics instead of hanging indefinitely. You can then use the
kmdb(1) kernel debugger to analyze your problem.
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The deadman feature checks every second whether the system clock is updating. If the
system clock is not updating, then you are in an indefinite hang. If the system clock has not
been updated for 50 seconds, the deadman feature induces a panic and puts you in the
debugger.

Take the following steps to enable the deadman feature:
1. Make sure you are capturing crash images with dumpadm(1M).
2. Set the snooping variable in the /etc/system file.

set snooping=1

3. Reboot the system so that the /etc/system file is read again and the snooping setting
takes effect.

Note that any zones on your system inherit the deadman setting as well.

If your system hangs while the deadman feature is enabled, you should see output similar to
the following example on your console:

panic[cpu1]/thread=30018dd6cc0: deadman: timed out after 9 seconds of

clock inactivity

panic: entering debugger (continue to save dump)

Inside the debugger, use the ::cpuinfo command to investigate why the clock interrupt was
not able to fire and advance the system time.

■ Use a serial connection to control your test machine from a separate host system.
This technique is explained in “Testing With a Serial Connection” in Writing Device
Drivers.

■ Use an alternate kernel.
Booting from a copy of the kernel and the associated binaries rather than from the default
kernel avoids inadvertently rendering the system inoperable.

■ Use an additional kernel module to experiment with different kernel variable settings.
This approach isolates experiments with the kernel variable settings. See “Setting Up Test
Modules” in Writing Device Drivers.

■ Make contingency plans for potential data loss on a test system.
If your test system is set up as a client of a server, then you can boot from the network if
problems occur. You could also create a special partition to hold a copy of a bootable root
file system. See “Avoiding Data Loss on a Test System” in Writing Device Drivers.

■ Capture system crash dumps if your test system panics.
■ Use fsck(1M) to repair the damaged root file system temporarily if your system crashes

during the attach(9E) process so that any crash dumps can be salvaged. See “Recovering the
Device Directory” in Writing Device Drivers.
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■ Install drivers in the /tmp directory until you are finished modifying and testing the
_info(), _init(), and attach() routines.
Keep a driver in the /tmp directory until the driver has been well tested. If a panic occurs, the
driver will be removed from /tmp directory and the system will reboot successfully.

Device Driver Debugging and Tuning Tips
The Solaris OS provides various tools for debugging and tuning your device driver:

■ You might receive the following warning message from the add_drv(1M) command:

Warning: Driver (driver_name) successfully added to system but failed to attach

This message might have one of the following causes:
■ The hardware has not been detected properly. The system cannot find the device.
■ The configuration file is missing. See “Writing a Configuration File” on page 28 for

information on when you need a configuration file and what information goes into a
configuration file. Be sure to put the configuration file in /kernel/drv or
/usr/kernel/drv and not in the driver directory.

■ Use the kmdb(1) kernel debugger for runtime debugging.
The kmdb debugger provides typical runtime debugger facilities, such as breakpoints, watch
points, and single-stepping. For more information, see Solaris Modular Debugger Guide.

■ Use the mdb(1) modular debugger for postmortem debugging.
Postmortem debugging is performed on a system crash dump rather than on a live system.
With postmortem debugging, the same crash dump can be analyzed by different people or
processes simultaneously. In addition, mdb enables you to create special macros called
dmods to perform rigorous analysis on the dump. For more information, see Solaris
Modular Debugger Guide.

■ Use the kstat(3KSTAT) facility to export module-specific kernel statistics for your device
driver.

■ Use the DTrace facility to add instrumentation to your driver dynamically so that you can
perform tasks such as analyzing the system and measuring performance. For information
on DTrace, see the Solaris Dynamic Tracing Guide and the DTrace User Guide.

■ If your driver does not behave as expected on a 64-bit platform, make sure you are using a
64-bit driver. By default, compilation on the Solaris OS yields a 32-bit result on every
architecture. To obtain a 64-bit result, follow the instructions in “Building a Driver” on
page 28.
Use the file(1) command to determine whether you have a 64-bit driver.

% file qotd_3

qotd_3: ELF 32-bit LSB relocatable 80386 Version 1
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■ If you are using a 64-bit system and you are not certain whether you are currently running
the 64-bit kernel or the 32-bit kernel, use the -k option of the isainfo(1) command. The -v
option reports all instruction set architectures of the system. The -k option reports the
instruction set architecture that is currently in use.

% isainfo -v

64-bit sparcv9 applications

vis2 vis

32-bit sparc applications

vis2 vis v8plus div32 mul32

% isainfo -kv

64-bit sparcv9 kernel modules

■ If your driver seems to have an error in a function that you did not write, make sure you
have called that function with the correct arguments and specified the correct include files.
Many kernel functions have the same names as system calls and user functions. For
example, read() and write() can be system calls, user library functions, or kernel
functions. Similarly, ioctl() and mmap() can be system calls or kernel functions. The
man mmap command displays the mmap(2) man page. To see the arguments, description, and
include files for the kernel function, use the man mmap.9e command. If you do not know
whether the function you want is in section 9E or section 9F, use the man -l mmap command,
for example.
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close() entry point, 47–51, 71
cmn_err() kernel function, 38, 57–60, 65, 104
commands

add_drv, 31–32, 57–58, 104
boot, 22
cat, 59
cc, 29–30
dmesg, 70
echo, 59
fsck, 107

commands (Continued)
gcc, 30
kernel, 21–22
ld, 17, 29–30, 39
mknod, 23
modinfo, 31, 58, 77
modload, 58
modunload, 60
more, 78
prtconf, 23, 24, 29, 32, 58, 77
prtpicl, 24
rem_drv, 32, 60
syslogd, 57–60, 67
update_drv, 32

compiling, 28
condition variables, 82–85
conditional compilation, 104
condvar() kernel functions, 84
configuration files, 28, 56
crash dumps, use in testing, 107
cv_broadcast() kernel function, 84–85, 86
cv_destroy() kernel function, 81, 84
cv_init() kernel function, 80, 84
cv_signal() kernel function, 84–85
cv_wait() kernel function, 84–85
cv_wait_sig() kernel function, 84

D
data loss, avoiding while testing, 107
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data model
converting, 27, 79

ddi_copyin() kernel function, 18, 79, 82, 86
ddi_copyout() kernel function, 18, 79, 86
ddi_create_minor_node() kernel function, 40–47,

70–71, 79–80
ddi_get_instance() kernel function, 26, 43, 70–71
ddi_get_soft_state() kernel function, 69, 70–71, 71
ddi_model_convert_from() kernel function, 27, 79,

86
ddi_prop_get_int() kernel function, 28
ddi_prop_lookup() kernel function, 28
ddi_prop_op() kernel function, 40–47
ddi_remove_minor_node() kernel function, 40–47,

70, 81
ddi_report_dev() kernel function, 70
ddi_soft_state_fini() kernel function, 69
ddi_soft_state_free() kernel function, 69, 70
ddi_soft_state_init() kernel function, 69
ddi_soft_state() kernel function, 42–44
ddi_soft_state_zalloc() kernel function, 69, 70–71
ddi_umem_alloc() kernel function, 81–82
ddi_umem_free() kernel function, 81
deadman kernel feature, 106
debugging device drivers, tips, 108–109
detach() entry point, 40, 70
/dev directory, 23, 24–25
dev_info device structure, 43, 44–45, 45–46
dev_ops driver structure, 19–21, 51–56
devfs devices file system, 23
devfsadmd devices file system administration

command, 24–25
device drivers, 19–21

adding, 31–32
coding tips, 103–106
compiling, 28
condition variables, 82–85
conditional compilation, 104
debugging tips, 108–109
development guidelines, 103
directories, 21–22

adding, 22
entry points, 20, 36

See also entry points

device drivers (Continued)
how used, 21
I/O controls, 86–87, 98–102
installing, 30–31, 106
linking, 28
loading, 22, 32, 57–58
mutexes, 82–85
naming conventions, 103
recommended housekeeping, 104
removing, 32, 60
structures

See driver structures
test areas, 33
testing, 106–108
thread synchronization, 82–85
tuning, 108–109
unloading, 32, 60
updating, 32

device instance pointer (dip), 43, 44–45, 45–46
device number, 25–26
device structures

dev_info, 43, 44–45, 45–46
device tree, 23–24
devices

blk, 24
block, 22–26
character, 22–26, 36–56
configuration files, 28, 56
device tree, 23–24
directories, 23, 24–25
exclusive access, 83
file system

devfs, 23
devfsadmd, 24–25

instances, 25, 43, 44–45, 45–46
md metadevice, 24
names, 24–25
nexus, 20, 23
numbers, 23, 25–26, 43
prefixes, 27, 42
properties, 28, 46–47
pseudo, 20, 35
ramdisk, 20, 78
raw, 24
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devices (Continued)
reading, 59, 78, 98
special files, 22–26
state, 69
writing, 59, 78–102, 98

/devices directory, 23, 25, 31
/devices/pseudo directory, 24, 58, 78
devmap() entry point, 18
dmesg command, 70
driver.conf file, 28
driver structures

cb_ops, 19–21, 51–56, 85–86
character and block operations structure, 52–54
dev_ops, 19–21, 51–56
device operations structure, 54–55
modinfo, 38–39
modldrv, 51–56
modlinkage, 38, 51–56
module linkage structures, 55

drivers, See device drivers
DTrace analyzer, 108

E
echo command, 59
entry points

attach(), 30–31, 40–47, 70–71, 106
autoconfiguration, 40–47
close(), 47–51, 71
detach(), 40, 70
devmap(), 18
_fini(), 37–40, 69–70
getinfo(), 40–47, 71
_info(), 30–31, 37–40, 106
_init(), 30–31, 37–40, 69–70, 106
ioctl(), 23, 85–86, 86–87, 98–102
loadable module configuration, 37–40
open(), 47–51, 71
prop_op(), 40–47
read(), 47–51, 71
user context, 47–51
write(), 47–51, 85–86

/etc/driver_aliases file, 32
/etc/name_to_major file, 31, 58, 77

F
files

driver.conf, 28
/etc/name_to_major, 31, 58, 77
system, 21–22
/var/adm/messages, 57–60, 67

_fini() entry point, 37–40, 69–70
fsck command, 107
functions

kstat(), 108
printf(), 104
signal(), 84–85, 85, 87

G
gcc command, 30
getinfo() entry point, 40–47, 71
getminor() kernel function, 71
GNU C, 30

H
hotplugging, 105

I
I/O controls, 86–87, 98–102
_info() entry point, 30–31, 37–40, 106
_init() entry point, 30–31, 37–40, 69–70, 106
instance number, 25, 43, 44–45, 45–46
interrupts, avoiding problems, 105
ioctl() entry point, 23, 85–86, 86–87, 98–102
ioctl() requests, avoiding problems, 105

K
kernel, 15

address space, 16, 18
privilege

See also kernel mode
kernel command, 21–22
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kernel functions
ASSERT(), 68, 71, 76–78, 104
bzero(), 87
cmn_err(), 38, 57–60, 65, 104
condvar(), 84
cv_broadcast(), 84–85, 86
cv_destroy(), 81, 84
cv_init(), 80, 84
cv_signal(), 84–85
cv_wait(), 84–85
cv_wait_sig(), 84
ddi_copyin(), 18, 79, 82, 86
ddi_copyout(), 18, 79, 86
ddi_create_minor_node(), 40–47, 70–71, 79–80
ddi_get_instance(), 26, 43, 70–71
ddi_get_soft_state(), 69, 70–71, 71
ddi_model_convert_from(), 27, 79, 86
ddi_prop_get_int(), 28
ddi_prop_lookup(), 28
ddi_prop_op(), 40–47
ddi_remove_minor_node(), 40–47, 70, 81
ddi_report_dev(), 70
ddi_soft_state(), 42–44
ddi_soft_state_fini(), 69
ddi_soft_state_free(), 69, 70
ddi_soft_state_init(), 69
ddi_soft_state_zalloc(), 69, 70–71
ddi_umem_alloc(), 81–82
ddi_umem_free(), 81
getminor(), 71
kmem_alloc(), 81
kmem_zalloc(), 81
memcpy(), 87
mod_info(), 37–40
mod_install(), 37–40, 69–70
mod_remove(), 37–40, 69–70
mutex(), 84
mutex_destroy(), 81, 84
mutex_init(), 80, 84
mutex_owned(), 104
nochpoll(), 53
nodev(), 53, 54
nulldev(), 47–51, 54
strlcpy(), 80, 87

kernel functions (Continued)
strncpy(), 80
uiomove(), 71, 79, 82, 86

kernel mode, 15
kernel modules, use in testing, 107
kernel statistics, 108
kernel structures

uio, 71, 85
kmdb kernel debugger, 106, 108
kmem_alloc() kernel function, 81
kmem_zalloc() kernel function, 81
kstat() function, 108

L
ld command, 17, 29–30, 39
linking, 17, 28, 39

M
major number, 23, 25
mdb modular debugger, 108
memcpy() kernel function, 87
metadevice, 24
minor number, 23, 25, 43
mknod command, 23
mknod() system call, 23
mmap() system call, 18
mod_info() kernel function, 37–40
mod_install() kernel function, 37–40, 69–70
mod_remove() kernel function, 37–40, 69–70
moddir kernel variable, 22
modinfo command, 31, 58, 77
modinfo driver structure, 38–39
modldrv driver structure, 51–56
modlinkage driver structure, 38, 51–56
modload command, 58
modunload command, 60
more command, 78
mutex_destroy() kernel function, 81, 84
mutex_init() kernel function, 80, 84
mutex() kernel function, 84
mutex_owned() kernel function, 104
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mutexes, 82–85
avoiding problems, 105

N
naming, unique prefix for driver symbols, 103
naming conventions, 103
nexus device, 23
nochpoll() kernel function, 53
nodev() kernel function, 53, 54
nulldev() kernel function, 47–51, 54

O
open() entry point, 47–51, 71

P
path environment variable, 28
PCI ID numbers, 32
power management, 105
prefix, unique prefix for driver symbols, 103
prefixes, 27, 42
printf() function, 104
prop_op() entry point, 40–47
protected mode, 15
prtconf command, 23, 24, 29, 32, 58, 77
prtpicl command, 24

Q
QOTD_BUSY condition, 82, 83

R
raw device, 24
read() entry point, 47–51, 71
read() system call, 23
rem_drv command, 32, 60
restricted mode, 15

S
serial connections, use in testing, 107
signal() function, 84–85, 85, 87
snooping kernel variable, 106
soft state, 69
SPARC

address space, 18
compiling, 28

special files, 22–26
state structures, 68, 69
strlcpy() kernel function, 80, 87
strncpy() kernel function, 80
Sun Studio, 29–30
syslogd command, 57–60, 67
system calls

mknod(), 23
mmap(), 18
read(), 23

system configuration information file, 21–22
system crash dumps, use in testing, 107

T
testing device drivers, 106–108
thread synchronization, 82–85
tuning device drivers, tips, 108–109

U
uio kernel structure, 71, 85
uiomove() kernel function, 71, 79, 82, 86
update_drv command, 32
user mode, 15
/usr/kernel directory, 22

V
/var/adm/messages file, 57–60, 67
volatile keyword, 105
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write() entry point, 47–51, 85–86
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address space, 18
compiling, 28
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