

Oracle® Fusion Middleware
Command Reference for Oracle WebLogic Server

11g Release 1 (10.3.4)

E13749-04

January 2011

This document describes Oracle WebLogic Server
command-line reference features and Java utilities and how
to use them to administer Oracle WebLogic Server.

Oracle Fusion Middleware Command Reference for Oracle WebLogic Server, 11g Release 1 (10.3.4)

E13749-04

Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface .. vii

Documentation Accessibility .. vii
Conventions .. vii

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1
1.2 Guide to This Document.. 1-1
1.3 Related Documentation.. 1-1
1.4 New and Changed Features in This Release... 1-2

2 Using the Oracle WebLogic Server Java Utilities

2.1 appc... 2-2
2.2 AppletArchiver ... 2-2
2.2.1 Syntax .. 2-3
2.3 autotype (deprecated) .. 2-3
2.4 BuildXMLGen.. 2-3
2.5 CertGen... 2-3
2.5.1 Syntax .. 2-3
2.5.2 Example... 2-5
2.6 ClientDeployer .. 2-5
2.7 clientgen ... 2-5
2.8 Conversion (deprecated).. 2-5
2.9 dbping... 2-6
2.9.1 Creating a DB2 Package with dbping... 2-6
2.9.2 Syntax .. 2-6
2.9.3 Examples ... 2-8
2.10 ddcreate (deprecated)... 2-9
2.11 DDInit ... 2-9
2.11.1 WebInit .. 2-9
2.11.2 EarInit (deprecated)... 2-9
2.12 Deployer ... 2-9
2.13 der2pem... 2-10
2.13.1 Syntax ... 2-10
2.13.2 Example.. 2-10
2.14 Derby ... 2-10

iv

2.15 ejbc (deprecated) .. 2-10
2.16 EJBGen... 2-11
2.17 encrypt ... 2-11
2.17.1 Syntax ... 2-11
2.17.2 Examples .. 2-12
2.18 getProperty ... 2-12
2.18.1 Syntax ... 2-12
2.18.2 Example.. 2-12
2.19 host2ior .. 2-13
2.19.1 Syntax ... 2-13
2.20 ImportPrivateKey .. 2-13
2.20.1 Syntax ... 2-13
2.20.2 Example.. 2-14
2.21 jhtml2jsp .. 2-15
2.21.1 Syntax ... 2-15
2.22 jspc (deprecated) .. 2-15
2.23 logToZip .. 2-15
2.23.1 Syntax ... 2-15
2.23.2 Examples .. 2-16
2.24 MBean Commands .. 2-16
2.25 MulticastTest... 2-16
2.25.1 Syntax ... 2-17
2.25.2 Example.. 2-17
2.26 myip ... 2-18
2.26.1 Syntax ... 2-18
2.26.2 Example.. 2-18
2.27 pem2der... 2-18
2.27.1 Syntax ... 2-18
2.27.2 Example.. 2-18
2.28 rmic .. 2-18
2.29 Schema... 2-18
2.29.1 Syntax ... 2-19
2.29.2 Example.. 2-19
2.30 servicegen (deprecated) .. 2-19
2.31 SearchAndBuild ... 2-19
2.31.1 Example.. 2-20
2.32 source2wsdd (deprecated).. 2-20
2.33 system .. 2-20
2.33.1 Syntax ... 2-20
2.33.2 Example.. 2-20
2.34 ValidateCertChain ... 2-21
2.35 verboseToZip.. 2-21
2.35.1 Syntax ... 2-21
2.35.2 Example.. 2-21
2.36 wlappc ... 2-22
2.37 wlcompile.. 2-22
2.38 wlconfig ... 2-22

v

2.39 wldeploy.. 2-22
2.40 wlpackage ... 2-22
2.41 wlserver ... 2-22
2.42 wsdl2Service ... 2-22
2.43 wsdlgen (deprecated) .. 2-23
2.44 wspackage (deprecated).. 2-23

3 weblogic.Server Command-Line Reference

3.1 Required Environment and Syntax for weblogic.Server... 3-1
3.1.1 Environment... 3-2
3.1.2 Modifying the Classpath .. 3-2
3.1.3 Syntax .. 3-3
3.2 Default Behavior ... 3-3
3.3 weblogic.Server Configuration Options.. 3-4
3.3.1 JVM Parameters ... 3-4
3.3.2 Location of Configuration Data ... 3-5
3.3.2.1 Example.. 3-6
3.3.3 Options that Override a Server's Configuration ... 3-6
3.3.3.1 Server Communication .. 3-7
3.3.3.2 SSL ... 3-10
3.3.3.2.1 Setting Additional SSL Attributes.. 3-13
3.3.3.3 Security.. 3-14
3.3.3.4 Message Output and Logging ... 3-17
3.3.3.4.1 Setting Logging Attributes.. 3-18
3.3.3.5 Clusters ... 3-19
3.3.3.6 Deployment .. 3-19
3.3.3.7 Other Server Configuration Options .. 3-19
3.4 Using the weblogic.Server Command Line to Start a Server Instance............................. 3-22
3.5 Using the weblogic.Server Command Line to Limit the WebLogic Server

Run-Time Footprint ... 3-23
3.6 Using the weblogic.Server Command Line to Create a Domain 3-24
3.7 Verifying Attribute Values That Are Set on the Command Line 3-25

4 WebLogic SNMP Agent Command-Line Reference (Deprecated)

4.1 Required Environment for the SNMP Command-Line Interface .. 4-1
4.2 Syntax and Common Arguments for the SNMP Command-Line Interface 4-2
4.3 Commands for Retrieving WebLogic Server Managed Objects .. 4-3
4.3.1 snmpwalk.. 4-4
4.3.1.1 Syntax ... 4-4
4.3.1.2 Example ... 4-4
4.3.2 snmpgetnext ... 4-5
4.3.2.1 Syntax ... 4-5
4.3.2.2 Example ... 4-5
4.3.3 snmpget... 4-6
4.3.3.1 Syntax ... 4-6
4.3.3.2 Example ... 4-7

vi

4.4 Commands for Testing Traps.. 4-7
4.4.1 snmptrapd... 4-7
4.4.1.1 Syntax .. 4-7
4.4.1.2 Example ... 4-8
4.4.2 snmpv1trap... 4-8
4.4.2.1 Syntax ... 4-8
4.4.2.2 Example.. 4-9
4.4.3 Example: Using snmpv1trap to Send Traps to the Trap Daemon............................. 4-10
4.4.4 Example: Using the WebLogic SNMP Agent to Send Traps to the Trap Daemon . 4-10

vii

Preface

This preface describes the document accessibility features and conventions used in this
guide—Command Reference for Oracle WebLogic Server.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

viii

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

This section describes the contents and organization of this guide—Command Reference
for Oracle WebLogic Server.

■ Section 1.1, "Document Scope and Audience"

■ Section 1.2, "Guide to This Document"

■ Section 1.3, "Related Documentation"

■ Section 1.4, "New and Changed Features in This Release"

1.1 Document Scope and Audience
This document describes Oracle WebLogic Server command-line reference features
and Java utilities and how to use them to administer Oracle WebLogic Server.

This document is written for system administrators and application developers
deploying e-commerce applications using the Java Platform, Enterprise Edition (Java
EE) from Sun Microsystems. It is assumed that readers are familiar with Web
technologies and the operating system and platform where Oracle WebLogic Server is
installed.

1.2 Guide to This Document
The document is organized as follows:

■ This chapter, Chapter 1, "Introduction and Roadmap," describes the scope of this
guide and lists related documentation.

■ Chapter 2, "Using the Oracle WebLogic Server Java Utilities," describes various
Java utilities you can use to manage and troubleshoot an Oracle WebLogic Server
domain.

■ Chapter 3, "weblogic.Server Command-Line Reference," describes how to start
Oracle WebLogic Server instances from a command shell or from a script.

■ Chapter 4, "WebLogic SNMP Agent Command-Line Reference (Deprecated),"
describes using Simple Network Management Protocol (SNMP) to communicate
with enterprise-wide management systems.

1.3 Related Documentation
■ "Using Ant Tasks to Configure and Use a WebLogic Server Domain" in Developing

Applications with Oracle WebLogic Server.

■ Oracle WebLogic Scripting Tool

New and Changed Features in This Release

1-2 Command Reference for Oracle WebLogic Server

■ Configuring Server Environments for Oracle WebLogic Server

■ Oracle WebLogic Server Administration Console Help

1.4 New and Changed Features in This Release
For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

2

Using the Oracle WebLogic Server Java Utilities 2-1

2Using the Oracle WebLogic Server Java
Utilities

Oracle WebLogic Server provides a number of Java utilities and Ant tasks for
performing administrative and programming tasks.

To use these utilities and tasks, you must set your CLASSPATH correctly. For more
information, see Section 3.1.2, "Modifying the Classpath."

Oracle WebLogic Server provides several Java programs that simplify installation and
configuration tasks, provide services, and offer convenient shortcuts. The Java utilities
provided with Oracle WebLogic Server are all described below. The command-line
syntax is specified for all utilities and, for some, examples are provided.

Oracle WebLogic Server also provides a number of Ant tasks that automate common
application server programming tasks. The Apache Web site provides other useful Ant
tasks as well, including tasks for packaging EAR, WAR, and JAR files. For more
information, see http://jakarta.apache.org/ant/manual/.

■ Section 2.1, "appc"

■ Section 2.2, "AppletArchiver"

■ Section 2.3, "autotype (deprecated)"

■ Section 2.4, "BuildXMLGen"

■ Section 2.5, "CertGen"

■ Section 2.6, "ClientDeployer"

■ Section 2.7, "clientgen"

■ Section 2.8, "Conversion (deprecated)"

■ Section 2.9, "dbping"

■ Section 2.10, "ddcreate (deprecated)"

■ Section 2.11, "DDInit"

■ Section 2.12, "Deployer"

■ Section 2.13, "der2pem"

■ Section 2.14, "Derby"

■ Section 2.15, "ejbc (deprecated)"

■ Section 2.16, "EJBGen"

■ Section 2.17, "encrypt"

appc

2-2 Command Reference for Oracle WebLogic Server

■ Section 2.18, "getProperty"

■ Section 2.19, "host2ior"

■ Section 2.20, "ImportPrivateKey"

■ Section 2.21, "jhtml2jsp"

■ Section 2.22, "jspc (deprecated)"

■ Section 2.23, "logToZip"

■ Section 2.24, "MBean Commands"

■ Section 2.25, "MulticastTest"

■ Section 2.26, "myip"

■ Section 2.27, "pem2der"

■ Section 2.28, "rmic"

■ Section 2.29, "Schema"

■ Section 2.30, "servicegen (deprecated)"

■ Section 2.31, "SearchAndBuild"

■ Section 2.32, "source2wsdd (deprecated)"

■ Section 2.33, "system"

■ Section 2.34, "ValidateCertChain"

■ Section 2.35, "verboseToZip"

■ Section 2.36, "wlappc"

■ Section 2.37, "wlcompile"

■ Section 2.38, "wlconfig"

■ Section 2.39, "wldeploy"

■ Section 2.40, "wlpackage"

■ Section 2.41, "wlserver"

■ Section 2.42, "wsdl2Service"

■ Section 2.43, "wsdlgen (deprecated)"

■ Section 2.44, "wspackage (deprecated)"

2.1 appc
The appc compiler generates and compiles the classes needed to deploy EJBs and JSPs
to Oracle WebLogic Server. It also validates the deployment descriptors for compliance
with the current specifications at both the individual module level and the application
level. See "appc Reference" in Programming WebLogic Enterprise JavaBeans for Oracle
WebLogic Server.

2.2 AppletArchiver
The AppletArchiver utility runs an applet in a separate frame, keeps a record of all
of the downloaded classes and resources used by the applet, and packages these into
either a .jar file or a .cab file. (The cabarc utility is available from Microsoft.)

CertGen

Using the Oracle WebLogic Server Java Utilities 2-3

2.2.1 Syntax
$ java utils.applet.archiver.AppletArchiver URL filename

Table 2–1 describes the arguments passed to the AppletArchiver utility.

2.3 autotype (deprecated)
Use the autotype Ant task to generate non-built-in data type components, such as
the serialization class, for Web Services. The fully qualified name for the autotype
Ant task is weblogic.ant.taskdefs.webservices.javaschema.JavaSchema.

For a complete list of Web Services Ant tasks, see "Ant Task Reference" in WebLogic
Web Services Reference for Oracle WebLogic Server.

2.4 BuildXMLGen
Use BuildXMLGen to generate a build.xml file for enterprise applications in the
split-directory structure. For complete documentation of this utility, see "Building
Applications in a Split Development Directory" in Developing Applications for Oracle
WebLogic Server.

2.5 CertGen
The CertGen utility generates certificates that should only be used for demonstration
or testing purposes, not in a production environment.

2.5.1 Syntax
$ java utils.CertGen
 -certfile <cert_file> -keyfile <private_key_file>
 -keyfilepass <private_key_password>
 [-cacert <ca_cert_file>][-cakey <ca_key_file>]
 [-cakeypass <ca_key_password>]
 [-selfsigned][-strength <key_strength>]
 [-e <email_address>][-cn <common_name>]
 [-ou <org_unit>][-o <organization>]
 [-l <locality>][-s <state>][-c <country_code>]
 [-keyusage [digitalSignature,nonRepudiation,keyEncipherment,
 dataEncipherment,keyAgreement,keyCertSign,
 cRLSign,encipherOnly,decipherOnly]]
 [-keyusagecritical true|false]
 [-subjectkeyid <subject_key_identifier>]
 [-subjectkeyidformat UTF-8|BASE64]
 [-help]

Table 2–2 describes the arguments that are passed to the CertGen utility.

Table 2–1 AppletArchiver Arguments

Argument Definition

URL URL for the applet.

filename Local filename that is the destination for the .jar/.cab archive.

CertGen

2-4 Command Reference for Oracle WebLogic Server

Table 2–2 CertGen Arguments

Argument Definition

-certfile cert_file
-keyfile private_key_file

Respectively, the output file names without
extensions of the generated public certificate and
private key. The appropriate extensions are
appended when the pem and der files are created.

-keyfilepass private_key_password The password for the generated private key.

-cacert ca_cert_file
-cakey ca_key_file
-cakeypass ca_key_password

Respectively, the public certificate, private key file,
and private key password of the CA that will be
used as the issuer of the generated certificate. If one
or more of these options are not specified, the
relevant demonstration CA files will be used:
CertGenCA.der and CertGenCAKey.der. The
CertGen utility first looks in the current working
directory, then in the WL_HOME/lib directory.

-selfsigned Generates a self-signed certificate that can be used
as a trusted CA certificate. If this argument is
specified, the ca_cert_filename, ca_key_
filename, and ca_key_password arguments
should not be specified.

-strength key_strength The length (in bits) of the keys to be generated. The
longer the key, the more difficult it is for someone
to break the encryption.

-e email_address The email address associated with the generated
certificate.

-cn common_name The name associated with the generated certificate.

-ou org_unit The name of the organizational unit associated
with the generated certificate.

-o organization The name of the organization associated with the
generated certificate.

-l locality The name of a city or town.

-s state The name of the state or province in which the
organizational unit (ou) operates if your
organization is in the United States or Canada,
respectively. Do not abbreviate.

-c country_code Two-letter ISO code for your country. The code for
the United States is US.

-keyusage [digitalSignature,
nonRepudiation,keyEncipherment,
dataEncipherment,keyAgreement,
keyCertSign,cRLSign,
encipherOnly,decipherOnly]

Generate certificate with a keyusage extension, and
with bits set according to the comma-separated list
of bit names.

Specify a key usage when you want to restrict the
operation for a key that could be used for more
than one operation.

-keyusagecritical true|false By default, a keyusage extension is marked critical.
To generate a certificate with a non-critical
extension, use -keyusagecritical false.

-subjectkeyid subject_key_
identifier

Generates a certificate with the specified subject
key identifier.

-subjectkeyidformat UTF-8|BASE64 The format of the subjectkeyid value; UTF-8 is
the default.

Conversion (deprecated)

Using the Oracle WebLogic Server Java Utilities 2-5

2.5.2 Example
By default, the CertGen utility looks for the CertGenCA.der and
CertGenCAKey.der files in the current directory, or in the WL_HOME directory, as
specified in the weblogic.home system property or the CLASSPATH. Alternatively,
you can specify CA files on the command line.

Enter the following command to generate certificate files named testcert with
private key files named testkey:

$ java utils.CertGen -keyfilepass mykeypass
-certfile testcert -keyfile testkey
Generating a certificate with common name return and key strength 1024
issued by CA with certificate from CertGenCA.der file and key from
CertGenCAKey.der file

2.6 ClientDeployer
You use weblogic.ClientDeployer to extract the client-side JAR file from a Java
EE EAR file, creating a deployable JAR file. The weblogic.ClientDeployer class is
executed on the Java command line with the following syntax:

java weblogic.ClientDeployer ear-file client

The ear-file argument is an expanded directory (or Java archive file with a .ear
extension) that contains one or more client application JAR files.

For example:

java weblogic.ClientDeployer app.ear myclient

In the preceding example, app.ear is the EAR file that contains a Java EE client
packaged in myclient.jar.

Once the client-side JAR file is extracted from the EAR file, use the
weblogic.j2eeclient.Main utility to bootstrap the client-side application and
point it to a WebLogic Server instance as follows:

java weblogic.j2eeclient.Main clientjar URL [application args]

For example:

java weblogic.j2eeclient.Main helloWorld.jar t3://localhost:7001 Greetings

2.7 clientgen
Use clientgen to generate the client-side artifacts, such as the JAX-RPC stubs,
needed to invoke a Web Service. See "Ant Task Reference" in WebLogic Web Services
Reference for Oracle WebLogic Server.

2.8 Conversion (deprecated)
WebLogic Server 9.0 does not support conversion or upgrading from a pre-6.0 version
of Oracle WebLogic Server. To upgrade from version 6.1 or later, see Upgrade Guide for
Oracle WebLogic Server.

dbping

2-6 Command Reference for Oracle WebLogic Server

2.9 dbping
The dbping command-line utility tests the connection between a DBMS and your
client machine via a JDBC driver. You must complete the installation of the driver
before attempting to use this utility. For more information on how to install a driver,
see the documentation from your driver vendor. Also see "Using Third-Party Drivers
with WebLogic Server" in Programming JDBC for Oracle WebLogic Server.

2.9.1 Creating a DB2 Package with dbping
With the WebLogic Type 4 JDBC Driver for DB2, you can also use the dbping utility to
create a package on the DB2 server. When you ping the database with the dbping
utility, the driver automatically creates the default package on the database server if it
does not already exist. If the default package already exists on the database server, the
dbping utility uses the existing package.

The default DB2 package includes 200 dynamic sections. You can specify a different
number of dynamic sections to create in the DB2 package with the -d option. The -d
option also sets CreateDefaultPackage=true and ReplacePackage=true on
the connection used in the connection test, which forces the DB2 driver to replace the
DB2 package on the DB2 server. (See "DB2 Connection Properties" in Type 4 JDBC
Drivers for Oracle WebLogic Server for more information.) You can use the -d option
with dynamic sections set at 200 to forcibly recreate a default package on the DB2
server.

2.9.2 Syntax
$ java utils.dbping DBMS [-d dynamicSections] user password DB

Table 2–3 describes the arguments that are passed to the dbping command-line utility.

Notes: When you specify the -d option, the dbping utility recreates
the default package and uses the value you specify for the number of
dynamic sections. It does not modify the existing package.

To create a DB2 package, the user that you specify must have CREATE
PACKAGE privileges on the database.

dbping

Using the Oracle WebLogic Server Java Utilities 2-7

Table 2–3 dbping Arguments

Argument Definition

DBMS Varies by DBMS and JDBC driver:

DB2B—WebLogic Type 4 JDBC Driver for DB2

DERBY—Embedded Derby driver

JCONN2—Sybase JConnect 5.5 (JDBC 2.0) driver

JCONN3—Sybase JConnect 6.0 (JDBC 2.0) driver

JCONNECT—Sybase JConnect driver

INFORMIXB—WebLogic Type 4 JDBC Driver for Informix

MSSQLSERVER4—WebLogic jDriver for Microsoft SQL Server

MSSQLSERVERB—WebLogic Type 4 JDBC Driver for Microsoft SQL
Server

MYSQL— MySQL's Type 4 Driver

ORACLE—WebLogic jDriver for Oracle

ORACLEB—WebLogic Type 4 JDBC Driver for Oracle

ORACLE_THIN—Oracle Thin Driver

POINTBASE—PointBase Universal Driver

SYBASEB—WebLogic Type 4 JDBC Driver for Sybase

[-d dynamicSections] Specifies the number of dynamic sections to create in the DB2
package. This option is for use with the WebLogic Type 4 JDBC
Driver for DB2 only.

If the -d option is specified, the driver automatically sets
CreateDefaultPackage=true and ReplacePackage=true on the
connection and creates a DB2 package with the number of dynamic
sections specified.

user Valid database username for login. Use the same values you use with
isql, sqlplus, or other SQL command-line tools.

For DB2 with the -d option, the user must have CREATE PACKAGE
privileges on the database.

password Valid database password for the user. Use the same values you use
with isql or sqlplus.

dbping

2-8 Command Reference for Oracle WebLogic Server

2.9.3 Examples
The following is an example using the Oracle Thin Driver.

C:\>java utils.dbping ORACLE_THIN scott tiger dbserver1:1561:demo

**** Success!!! ****

You can connect to the database in your app using:

java.util.Properties props = new java.util.Properties();
 props.put("user", "scott");
 props.put("password", "tiger");
 props.put("dll", "ocijdbc9");
 props.put("protocol", "thin");
 java.sql.Driver d =
 Class.forName("oracle.jdbc.driver.OracleDriver").newInstance();
 java.sql.Connection conn =
 Driver.connect("jdbc:oracle:thin:@dbserver1:1561:demo", props);

The following is an example using the Derby driver. Derby is an open source relational
database management system bundled with WebLogic Server for use by the sample
applications and code examples as a demonstration database.

$ java utils.dbping DERBY examples examples localhost:1527/demo
**** Success!!! ****
You can connect to the database in your app using:

DB Name and location of the database. Use the following format,
depending on which JDBC driver you use:

DB2B—Host:Port/DBName

DERBY—Host:Port/DBName

JCONN2—Host:Port/DBName

JCONN3—Host:Port/DBName

JCONNECT—Host:Port/DBName

INFORMIXB—Host:Port/DBName/InformixServer

MSSQLSERVER4—Host:Port/DBName or [DBName@]Host[:Port]

MSSQLSERVERB—Host:Port/DBName

MYSQL—Host:Port/DBName

ORACLE—DBName (as listed in tnsnames.ora)

ORACLEB—Host:Port/DBName

ORACLE_THIN—Host:Port/DBName

POINTBASE—Host[:Port]/DBName

SYBASEB—Host:Port/DBName

Where:

■ Host is the name of the machine hosting the DBMS.

■ Port is port on the database host where the DBMS is listening
for connections.

■ DBName is the name of a database on the DBMS.

■ InformixServer is an Informix-specific environment variable
that identifies the Informix DBMS server.

Table 2–3 (Cont.) dbping Arguments

Argument Definition

Deployer

Using the Oracle WebLogic Server Java Utilities 2-9

 java.util.Properties props = new java.util.Properties();
 props.put("user", "examples");
 props.put("password", "examples");
 java.sql.Driver d =
 Class.forName("org.apache.derby.jdbc.ClientDriver").newInstance();
 java.sql.Connection conn =
 Driver.connect("jdbc:derby://localhost:1527/demo", props);

2.10 ddcreate (deprecated)
This Ant task calls EARInit, which generates an application.xml and a
weblogic-application.xml file for an EAR. For more information, see
Section 2.11.2, "EarInit (deprecated)."

2.11 DDInit
DDInit is a utility for generating deployment descriptors for applications to be
deployed on Oracle WebLogic Server. Target a module's archive or folder and DDInit
uses information from the module's class files to create appropriate deployment
descriptor files.

In its command-line version, DDInit writes new files that overwrite existing
descriptor files. If META-INF or WEB-INF does not exist, DDInit creates it.

Specify the type of Java EE deployable unit (either Web Application or Enterprise
Application) for which you want deployment descriptors generated by using the
DDInit command specific to the type, as described below.

2.11.1 WebInit
Target a WAR file or a folder containing files that you intend to archive as a WAR file,
and WebInit will create web.xml and weblogic.xml files for the module.

prompt> java weblogic.marathon.ddinit.WebInit <module>

2.11.2 EarInit (deprecated)
The EarInit tool is deprecated in this version of Oracle WebLogic Server. As a result,
you should not:

■ Use the DDInit utility to generate deployment descriptors for Enterprise
applications.

■ Use the ddcreate ant task, which calls EarInit.

Generate an application.xml and a weblogic-application.xml file for an
EAR using this command. Target an existing EAR or a folder containing JAR or WAR
files you intend to archive into an EAR file.

prompt> java weblogic.marathon.ddinit.EarInit <module>

2.12 Deployer
Using the weblogic.Deployer tool, you can deploy Java EE applications and
components to WebLogic Servers in a command-line or scripting environment. For
detailed information on using this tool, see "weblogic.Deployer Command-Line
Reference" in Deploying Applications to Oracle WebLogic Server.

der2pem

2-10 Command Reference for Oracle WebLogic Server

The weblogic.Deployer utility replaces the weblogic.deploy utility, which has
been deprecated.

2.13 der2pem
The der2pem utility converts an X509 certificate from DER format to PEM format. The
.pem file is written in the same directory and has the same filename as the source
.der file.

2.13.1 Syntax
$ java utils.der2pem derFile [headerFile] [footerFile]

Table 2–4 describes the arguments that are passed to the der2pem utility.

2.13.2 Example
$ java utils.der2pem graceland_org.der
Decoding
..

2.14 Derby
Derby is an open source relational database management system based on Java, JDBC,
and SQL standards. It is bundled with WebLogic Server for use by the sample
applications and code examples as a demonstration database. For more information
about Derby, see http://db.apache.org/derby.

2.15 ejbc (deprecated)
See "appc Reference" in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic
Server.

Table 2–4 der2pem Arguments

Argument Description

derFile The name of the file to convert. The filename must end with a .der
extension, and must contain a valid certificate in .der format.

headerFile The header to place in the PEM file. The default header is "-----BEGIN
CERTIFICATE-----".

Use a header file if the DER file being converted is a private key file, and
create the header file containing one of the following:

■ "-----BEGIN RSA PRIVATE KEY-----" for an unencrypted private key.

■ "-----BEGIN ENCRYPTED PRIVATE KEY-----" for an encrypted private
key.

Note: There must be a new line at the end of the header line in the file.

footerFile The header to place in the PEM file. The default header is "-----END
CERTIFICATE-----".

Use a footer file if the DER file being converted is a private key file, and
create the footer file containing one of the following in the header:

■ "-----END RSA PRIVATE KEY-----" for an unencrypted private key.

■ "-----END ENCRYPTED PRIVATE KEY-----" for an encrypted private key.

Note: There must be a new line at the end of the header line in the file.

encrypt

Using the Oracle WebLogic Server Java Utilities 2-11

2.16 EJBGen
EJBGen is an Enterprise JavaBeans 2.0 code generator. You can annotate your Bean
class file with javadoc tags and then use EJBGen to generate the Remote and Home
classes and the deployment descriptor files for an EJB application, reducing to one the
number of EJB files you need to edit and maintain.

See "EJBGen Reference" in Programming WebLogic Enterprise JavaBeans for Oracle
WebLogic Server.

2.17 encrypt
The weblogic.security.Encrypt utility encrypts cleartext strings for use with
Oracle WebLogic Server. The utility uses the encryption service of the current
directory, or the encryption service for a specified Oracle WebLogic Server domain
root directory.

You can only run the weblogic.security.Encrypt utility on a machine that has at
least one server instance in an Oracle WebLogic Server domain; it cannot be run from a
client.

2.17.1 Syntax
java [-Dweblogic.RootDirectory=dirname]
 [-Dweblogic.management.allowPasswordEcho=true]
 weblogic.security.Encrypt [password]

Table 2–5 describes the arguments that are passed to the
weblogic.security.Encrypt utility.

Note: An encrypted string must have been encrypted by the
encryption service in the Oracle WebLogic Server domain where it
will be used. If not, the server will not be able to decrypt the string.

Note: Oracle recommends running the utility from the
Administration Server domain directory or on the machine hosting
the Administration Server and specifying a domain root directory.

Table 2–5 Encrypt Arguments

Argument Definition

dirname Optional. Oracle WebLogic Server domain directory in
which the encrypted string will be used. If not specified,
the default domain root directory is the current directory
(the directory in which the utility is being run).

weblogic.management.allowPass
wordEcho

Optional. Allows echoing characters entered on the
command line. weblogic.security.Encryptexpects
that no-echo is available; if no-echo is not available, set this
property to true.

password Optional. Cleartext string to be encrypted. If omitted from
the command line, you will be prompted to enter a
password.

getProperty

2-12 Command Reference for Oracle WebLogic Server

2.17.2 Examples
The utility returns an encrypted string using the encryption service of the domain
located in the current directory.

java weblogic.security.Encrypt xxxxxx
{AES}yWv/i0qhfM4/IvzoghzjHj/xpJUkQPF8OWuSfh0f0Ss=

The utility returns an encrypted string using the encryption service of the specified
domain location.

java -Dweblogic.RootDirectory=./mydomain weblogic.security.Encrypt xxxxxx
{AES}wr86u9Z5DHr+5p7WIbzTDSy4M/sl7EYnX/K5xzcarDQ=

The utility returns an encrypted string in the current directory, without echoing the
password.

java weblogic.security.Encrypt
Password:
{AES}LIX8hoiStcAhph0PGCpveouw/0UO0lciODuj+TQh/bs=

2.18 getProperty
The getProperty utility gives you details about your Java setup and your system. It
takes no arguments.

2.18.1 Syntax
$ java utils.getProperty

2.18.2 Example
$ java utils.getProperty
-- listing properties --
user.language=en
java.home=c:\java11\bin\..
awt.toolkit=sun.awt.windows.WToolkit
file.encoding.pkg=sun.io
java.version=1.1_Final
file.separator=\
line.separator=
user.region=US
file.encoding=8859_1
java.vendor=Sun Microsystems Inc.
user.timezone=PST
user.name=mary
os.arch=x86
os.name=Windows NT
java.vendor.url=http://www.sun.com/
user.dir=C:\weblogic
java.class.path=c:\weblogic\classes;c:\java\lib\cla...
java.class.version=45.3
os.version=4.0
path.separator=;
user.home=C:\

ImportPrivateKey

Using the Oracle WebLogic Server Java Utilities 2-13

2.19 host2ior
The host2ior utility obtains the Interoperable Object Reference (IOR) of an Oracle
WebLogic Server.

2.19.1 Syntax
$ java utils.host2ior hostname port

2.20 ImportPrivateKey
The ImportPrivateKey utility is used to load a private key into a private keystore
file.

2.20.1 Syntax
$ java utils.ImportPrivateKey
 -certfile <cert_file> -keyfile <private_key_file>
 [-keyfilepass <private_key_password>]
 -keystore <keystore> -storepass <storepass> [-storetype <storetype>]
 -alias <alias> [-keypass <keypass>]
 [-help]

Table 2–6 describes the arguments that are passed to the ImportPrivateKey utility.

Table 2–6 ImportPrivateKey Arguments

Argument Definition

cert_file The name of the certificate associated with the private key.

private_key_file The name of the generated private key file.

private_key_password The password for the private key.

keystore The name of the keystore file. A new keystore is created if one
does not exist.

storepass The password for the keystore.

storetype The type (format) of the keystore.

The storetype argument, which is the same as that used by the
keytool command, specifies the type of Java keystore. The
default storetype is jks, defined by the keystore.type
property in the java.security file:

keystore.type=jks

You can specify another storetype (for example, pcks12 or
nCipher.SWorld) if a configured security provider supports
that type.

alias The name that is used for looking up the certificate and private
key being imported into the keystore.

keypass The password of the private key entry being imported into the
keystore. If keypass is not specified, the first default is
private_key_password, and the second default is
storepass.

ImportPrivateKey

2-14 Command Reference for Oracle WebLogic Server

2.20.2 Example
Use the following steps to:

■ Generate a certificate and private key using the CertGen utility

■ Create a keystore and store a private key using the ImportPrivateKey utility

To generate a certificate:

1. Enter the following command to generate certificate files named testcert with
private key files named testkey:

$ java utils.CertGen -keyfilepass mykeyfilepass
-certfile testcert -keyfile testkey
Generating a certificate with common name return and key strength 1024
issued by CA with certificate from CertGenCA.der file and key from
CertGenCAKey.der file

2. Convert the certificate from DER format to PEM format.

$ java utils.der2pem CertGenCA.der

3. Concatenate the certificate and the Certificate Authority (CA).

$ cat testcert.pem CertGenCA.pem >> newcerts.pem

4. Create a new keystore named mykeystore and load the private key located in the
testkey.pem file.

$ java utils.ImportPrivateKey -keystore mykeystore -storepass mypasswd
-keyfile mykey -keyfilepass mykeyfilepass -certfile newcerts.pem -keyfile
testkey.pem -alias passalias

No password was specified for the key entry
Key file password will be used

Imported private key testkey.pem and certificate newcerts.pem
into a new keystore mykeystore of type jks under alias passalias

Note: If you used CertGen to create a private key file protected by a
password (-keyfilepass private_key_password), that
password is the one required by ImportPrivateKey to extract the
key from the key file and insert the key in the newly created keystore
(which will contain both the certificate(s) from cert_file and the
private key from private_key_file).

Note: By default, the CertGen utility looks for the CertGenCA.der
and CertGenCAKey.der files in the current directory, or in the WL_
HOME/server/lib directory, as specified in the weblogic.home
system property or the CLASSPATH.

Alternatively, you can specify CA files on the command line. If you
want to use the default settings, there is no need to specify CA files on
the command line.

logToZip

Using the Oracle WebLogic Server Java Utilities 2-15

2.21 jhtml2jsp
Converts JHTML files to JSP files. Be sure to inspect the results carefully. Given the
unpredictability of the JHTML code, jhtml2jsp will not necessarily produce flawless
translations.

The output is a new JSP file named after the original file.

The HTTP servlets auto-generated from JSP pages differ from the regular HTTP
servlets generated from JHTML. JSP servlets extend
weblogic.servlet.jsp.JspBase, and so do not have access to the methods
available to a regular HTTP servlet.

If your JHTML pages reference these methods to access the servlet context or
config objects, you must substitute these methods with the reserved words in JSP
that represent these implicit objects.

If your JHTML uses variables that have the same name as the reserved words in JSP,
the tool will output a warning. You must edit your Java code in the generated JSP page
to change the variable name to something other than a reserved word.

2.21.1 Syntax
$ java weblogic.utils.jhtml2jsp [-d directory] filename.jhtml

Table 2–7 describes the argument that is passed to the jhtml2jsp tool.

2.22 jspc (deprecated)
JSP-specific compiler task. Use Section 2.1, "appc."

2.23 logToZip
The logToZip utility searches an HTTP server log file, finds the Java classes loaded
into it by the server, and creates an uncompressed .zip file that contains those Java
classes. It is executed from the document root directory of your HTTP server.

To use this utility, you must have access to the log files created by the HTTP server.

2.23.1 Syntax
$ java utils.logToZip logfile codebase zipfile

Table 2–8 describes the arguments that are passed to the logToZip utility.

Table 2–7 html2jsp Arguments

Argument Definition

-d directory Optional. The target directory. If the target directory isn't
specified, output is written to the current directory.

Table 2–8 logToZip Arguments

Argument Definition

logfile Required. Fully-qualified pathname of the log file.

MBean Commands

2-16 Command Reference for Oracle WebLogic Server

2.23.2 Examples
The following example shows how a .zip file is created for an applet that resides in
the document root itself, that is, with no code base:

$ cd /HTTP/Serv/docs
$ java utils.logToZip /HTTP/Serv/logs/access "" app2.zip

The following example shows how a .zip file is created for an applet that resides in a
subdirectory of the document root:

C:\>cd \HTTP\Serv
C:\HTTP\Serv>java utils.logToZip \logs\applets\classes app3.zip

2.24 MBean Commands
Use the MBean commands (CREATE, DELETE, GET, INVOKE, and SET) to administer
MBeans. See "Editing Commands" in WebLogic Scripting Tool Command Reference.

2.25 MulticastTest
The MulticastTest utility helps you debug multicast problems when configuring a
WebLogic Cluster. The utility sends out multicast packets and returns information
about how effectively multicast is working on your network. Specifically,
MulticastTest displays the following types of information via standard output:

1. A confirmation and sequence ID for each message sent out by the current server.

2. The sequence and sender ID of each message received from any clustered server,
including the current server.

3. A missed-sequenced warning when a message is received out of sequence.

4. A missed-message warning when an expected message is not received.

To use MulticastTest, start one copy of the utility on each node on which you want
to test multicast traffic.

codebase Required. Code base for the applet, or "" if there is no code base.
By concatenating the code base with the full package name of the
applet, you get the full pathname of the applet (relative to the
HTTP document root).

zipfile Required. Name of the .zip file to create. The resulting .zip file
is created in the directory in which you run the program. The
pathname for the specified file can be relative or absolute. In the
examples shown below, a relative pathname is given, so the .zip
file is created in the current directory.

Tip: Do NOT run the MulticastTest utility by specifying the
same multicast address (the -a parameter) as that of a currently
running WebLogic Cluster. The utility is intended to verify that
multicast is functioning properly before starting your clustered
WebLogic Servers.

Table 2–8 (Cont.) logToZip Arguments

Argument Definition

MulticastTest

Using the Oracle WebLogic Server Java Utilities 2-17

For information about setting up multicast, see the configuration documentation for
the operating system and hardware of the WebLogic Server host machine. For more
information about configuring a cluster, see Using Clusters for Oracle WebLogic Server.

2.25.1 Syntax
$ java utils.MulticastTest -n name -a address [-p portnumber]
 [-t timeout] [-s send]

Table 2–9 describes the arguments that are passed to the MulticastTest utility.

2.25.2 Example
$ java utils.MulticastTest -N server100 -A 237.155.155.1
Set up to send and receive on Multicast on Address 237.155.155.1 on port 7001
Will send a sequenced message under the name server100 every 2 seconds.
Received message 506 from server100
Received message 533 from server200
 I (server100) sent message num 507
Received message 507 from server100
Received message 534 from server200
 I (server100) sent message num 508
Received message 508 from server100
Received message 535 from server200
 I (server100) sent message num 509
Received message 509 from server100
Received message 536 from server200
 I (server100) sent message num 510
Received message 510 from server100
Received message 537 from server200
 I (server100) sent message num 511
Received message 511 from server100
Received message 538 from server200
 I (server100) sent message num 512
Received message 512 from server100
Received message 539 from server200
 I (server100) sent message num 513

Table 2–9 MulticastTest Arguments

Argument Definition

-n name Required. A name that identifies the sender of the sequenced
messages. Use a different name for each test process you
start.

-a address The multicast address on which: (a) the sequenced messages
should be broadcast; and (b) the servers in the clusters are
communicating with each other. (The default is 237.0.0.1.)

-p portnumber Optional. The multicast port on which all the servers in the
cluster are communicating. (The multicast port is the same as
the listen port set for WebLogic Server, which defaults to 7001
if unset.)

-t timeout Optional. Idle timeout, in seconds, if no multicast messages
are received. If unset, the default is 600 seconds (10 minutes).
If a timeout is exceeded, a positive confirmation of the
timeout is sent to stdout.

-s send Optional. Interval, in seconds, between sends. If unset, the
default is 2 seconds. A positive confirmation of each message
sent out is sent to stdout.

myip

2-18 Command Reference for Oracle WebLogic Server

Received message 513 from server100

2.26 myip
The myip utility returns the IP address of the host.

2.26.1 Syntax
$ java utils.myip

2.26.2 Example
$ java utils.myip
Host toyboat.toybox.com is assigned IP address: 192.0.0.1

2.27 pem2der
The pem2der utility converts an X509 certificate from PEM format to DER format. The
.der file is written in the same directory as the source .pem file.

2.27.1 Syntax
$ java utils.pem2der pemFile

Table 2–10 describes the argument that is passed to the pem2der utility.

2.27.2 Example
$ java utils.pem2der graceland_org.pem
Decoding
..
..
..
..
..

2.28 rmic
The WebLogic RMI compiler is a command-line utility for generating and compiling
remote objects. Use weblogic.rmic to generate dynamic proxies on the client-side
for custom remote object interfaces in your application, and to provide hot code
generation for server-side objects. See "Using the WebLogic RMI Compiler" in
Programming RMI for Oracle WebLogic Server.

2.29 Schema
The Schema utility lets you upload SQL statements to a database using the WebLogic
JDBC drivers. For additional information about database connections, see Programming
JDBC for Oracle WebLogic Server.

Table 2–10 pem2der Arguments

Argument Description

pemFile The name of the file to be converted. The filename must end
with a .pem extension, and it must contain a valid certificate
in .pem format.

SearchAndBuild

Using the Oracle WebLogic Server Java Utilities 2-19

2.29.1 Syntax
$ java utils.Schema driverURL driverClass [-u username]
 [-p password] [-verbose] SQLfile

Table 2–11 describes the arguments that are passed to the Schema utility.

2.29.2 Example
The following code shows a Schema command line for the examples.utils
package:

$ java utils.Schema
"jdbc:derby://localhost:1527/demo"
"org.apache.derby.jdbc.ClientDriver" -u examples
-p examples examples/utils/ddl/demo.ddl

utils.Schema will use these parameters:
 url: jdbc:derby://localhost:1527/demo
 driver: org.apache.derby.jdbc.ClientDriver
 user: examples
 password: examples
 SQL file: examples/utils/ddl/demo.ddl

2.30 servicegen (deprecated)
The servicegen Ant task takes as input an EJB JAR file or a list of Java classes, and
creates all the needed Web Service components and packages them into a deployable
EAR file.

Web Services are now a Java EE standard, which has resulted in many changes
between 8.1 and 9.0 WebLogic Web Services.

For a complete list of Web Services Ant tasks, see "Ant Task Reference" in WebLogic
Web Services Reference for Oracle WebLogic Server.

2.31 SearchAndBuild
This Ant task executes build.xml files that are included within the FileSet. The
task assumes that all of the files defined in FileSet are valid build files, and executes
the Ant task of each of them.

Make certain that your FileSet filtering is correct. If you include the build.xml file
that SearchAndBuildTask is being called from, you will be stuck in an infinite loop
as this task will execute the top level build file—itself—forever.

Table 2–11 Schema Arguments

Argument Definition

driverURL Required. URL for the JDBC driver.

driverClass Required. Pathname of the JDBC driver class.

-u username Optional. Valid username.

-p password Optional. Valid password for the user.

-verbose Optional. Prints SQL statements and database messages.

SQLfile Required. Text file with SQL statements.

source2wsdd (deprecated)

2-20 Command Reference for Oracle WebLogic Server

2.31.1 Example
<project name="all_modules" default="all" basedir=".">
<taskdef name="buildAll"
classname="weblogic.ant.taskdefs.build.SearchAndBuildTask"/>
<target name="all">
<buildAll>
<fileset dir="${basedir}">
<include name="**\build.xml"/>
<exclude name="build.xml"/>
</fileset>
</buildAll>
</target>
</project>

2.32 source2wsdd (deprecated)
Generates a web-services.xml deployment descriptor file from the Java source file
for a Java class-implemented WebLogic Web Service.

Web Services are now a Java EE standard, which has resulted in many changes
between 8.1 and 9.0 WebLogic Web Services.

For a complete list of Web Services Ant tasks, see "Ant Task Reference" in WebLogic
Web Services Reference for Oracle WebLogic Server.

2.33 system
The system utility displays basic information about your computer's operating
environment, including the manufacturer and version of your JDK, your CLASSPATH,
and details about your operating system.

2.33.1 Syntax
$ java utils.system

2.33.2 Example
$ java utils.system
* * * * * * * java.version * * * * * * *
1.5.0_03
* * * * * * * java.vendor * * * * * * *

* * * * * * * java.class.path * * * * * * *
C:\Oracle\Middleware\wlserver_10.3\server\classes;
C:\dev\src\build\JROCKI~2.0_0\lib\tools.jar;
...
* * * * * * * os.name * * * * * * *
Windows 2000
* * * * * * * os.arch * * * * * * *
x86
* * * * * * * os.version * * * * * * *
5.0

2.34 ValidateCertChain
WebLogic Server provides the ValidateCertChain utility to check whether or not
an existing certificate chain will be rejected by WebLogic Server. The utility uses

wlappc

Using the Oracle WebLogic Server Java Utilities 2-21

certificate chains from PEM files, PKCS-12 files, PKCS-12 keystores, and JKS keystores.
A complete certificate chain must be used with the utility. The following is the syntax
for the ValidateCertChain utility:

java utils.ValidateCertChain -file pemcertificatefilenamejava
utils.ValidateCertChain -pem pemcertificatefilenamejava
utils.ValidateCertChain -pkcs12store pkcs12storefilenamejava
utils.ValidateCertChain -pkcs12file pkcs12filename passwordjava
utils.ValidateCertChain -jks alias storefilename [storePass]

Example of valid certificate chain:

java utils.ValidateCertChain -pem zippychain.pemCert[0]: CN=zippy,
OU=FORTESTINGONLY,O=MyOrganization,L=MyTown,ST=MyState,C=USCert[1]:
 CN=CertGenCAB,OU=FOR TESTINGONLY,O=MyOrganization,L=MyTown,ST=MyState,C=US

Certificate chain appears valid

Example of invalid certificate chain:

java utils.ValidateCertChain -jks mykey mykeystoreCert[0]: CN=corba1,
OU=FOR TESTING ONLY, O=MyOrganization,L=MyTown,ST=MyState,C=US

CA cert not marked with critical BasicConstraint indicating it is a
CACert[1]: CN=CACERT,OU=FOR TESTING ONLY,
 O=MyOrganization,L=MyTown,ST=MyState,C=USCertificate chain is invalid

2.35 verboseToZip
When executed from the document root directory of your HTTP server,
verboseToZip takes the standard output from a Java application run in verbose
mode, finds the Java classes referenced, and creates an uncompressed .zip file that
contains those Java classes.

2.35.1 Syntax
$ java utils.verboseToZip inputFile zipFileToCreate

Table 2–12 describes the arguments that are passed to verboseToZip.

2.35.2 Example
$ java -verbose myapplication > & classList.tmp
$ java utils.verboseToZip classList.tmp app2.zip

2.36 wlappc
This utility compiles and validates a Java EE EAR file, an EJB JAR file, or a WAR file
for deployment.

Table 2–12 verboseToZip Arguments

Argument Definition

inputFile Required. Temporary file that contains the output of the
application running in verbose mode.

zipFileToCreate Required. Name of the .zip file to be created. The resulting
.zip file is be created in the directory in which you run the
program.

wlcompile

2-22 Command Reference for Oracle WebLogic Server

For more information, see "Building Modules and Applications Using wlappc" in
Developing Applications for Oracle WebLogic Server.

2.37 wlcompile
Use the wlcompile Ant task to invoke the javac compiler to compile your
application's Java files in a split development directory structure. See "Building
Applications in a Split Development Directory" in Developing Applications for Oracle
WebLogic Server.

2.38 wlconfig
The wlconfig Ant task enables you to configure a WebLogic Server domain by
creating, querying, or modifying configuration MBeans on a running Administration
Server instance. For complete documentation on this Ant task, see "Using Ant Tasks to
Configure a WebLogic Server Domain" in Developing Applications for Oracle WebLogic
Server.

2.39 wldeploy
The wldeploy Ant task enables you to perform Deployer functions (see Section 2.12,
"Deployer") using attributes specified in an Ant task. See "Deploying and Packaging
from a Split Development Directory" in Developing Applications for Oracle WebLogic
Server.

2.40 wlpackage
You use the wlpackage Ant task to package your split development directory
application as a traditional EAR file that can be deployed to WebLogic Server. See
"Deploying and Packaging from a Split Development Directory" in Developing
Applications for Oracle WebLogic Server.

2.41 wlserver
The wlserver Ant task enables you to start, reboot, shutdown, or connect to a
WebLogic Server instance. The server instance may already exist in a configured
WebLogic Server domain, or you can create a new single-server domain for
development by using the generateconfig=true attribute. For complete
documentation on this Ant task, see "Starting Servers and Creating Domains Using the
wlserver Ant Task" in Developing Applications for Oracle WebLogic Server.

2.42 wsdl2Service
The wsdl2Service Ant task is a Web Services tool that takes as input an existing
WSDL file and generates the Java interface that represents the implementation of your
Web Service and the web-services.xml file that describes the Web Service. See
"Developing WebLogic Web Services Starting From a WSDL File: Main Steps" in
Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

2.43 wsdlgen (deprecated)
The wsdlgen Ant task is a Web Services tool that generates a WSDL file from the EAR
and WAR files that implement your Web Service.

wspackage (deprecated)

Using the Oracle WebLogic Server Java Utilities 2-23

Web Services are now a Java EE standard, which has resulted in many changes
between 8.1 and 9.0 WebLogic Web Services.

For a complete list of Web Services Ant tasks, see "Ant Task Reference" in WebLogic
Web Services Reference for Oracle WebLogic Server.

2.44 wspackage (deprecated)
Use the Web Services wspackage Ant task to package the various components of a
WebLogic Web Service into a new deployable EAR file and add extra components to
an already existing EAR file.

Web Services are now a Java EE standard, which has resulted in many changes
between 8.1 and 9.0 WebLogic Web Services.

For a complete list of Web Services Ant tasks, see "Ant Task Reference" in WebLogic
Web Services Reference for Oracle WebLogic Server.

wspackage (deprecated)

2-24 Command Reference for Oracle WebLogic Server

3

weblogic.Server Command-Line Reference 3-1

3weblogic.Server Command-Line Reference

The weblogic.Server class is the main class for a WebLogic Server instance. You
start a server instance by invoking weblogic.Server in a Java command. You can
invoke the class directly in a command prompt (shell), indirectly through scripts, or
through the Node Manager.

Oracle recommends using java weblogic.Server primarily for initial
development but not as a standard mechanism for starting production systems for the
following reasons:

■ java weblogic.Server will not function if you select a product directory
outside of the MW_HOME directory.

■ When executing java weblogic.Server, patches will not be recognized by the
WebLogic Server run time.

This section describes the following:

■ Section 3.1, "Required Environment and Syntax for weblogic.Server"

■ Section 3.2, "Default Behavior"

■ Section 3.3, "weblogic.Server Configuration Options"

■ Section 3.4, "Using the weblogic.Server Command Line to Start a Server Instance"

■ Section 3.5, "Using the weblogic.Server Command Line to Limit the WebLogic
Server Run-Time Footprint"

■ Section 3.6, "Using the weblogic.Server Command Line to Create a Domain"

■ Section 3.7, "Verifying Attribute Values That Are Set on the Command Line"

For information about using scripts to start an instance of WebLogic Server, see
"Starting an Administration Server with a Startup Script" and "Starting Managed
Servers With a Startup Script" in Managing Server Startup and Shutdown for Oracle
WebLogic Server.

For information about using the Node Manager to start an instance of WebLogic
Server, see "Using Node Manager to Control Servers" in the Node Manager
Administrator's Guide for Oracle WebLogic Server.

3.1 Required Environment and Syntax for weblogic.Server
This section describes the environment that you must set up before you can start a
server instance. Then it describes the syntax for invoking weblogic.Server.

Required Environment and Syntax for weblogic.Server

3-2 Command Reference for Oracle WebLogic Server

3.1.1 Environment
To set up your environment for the weblogic.Server command:

1. Install and configure the WebLogic Server software, as described in Oracle
WebLogic Server Installation Guide.

2. If desired, modify the CLASSPATH environment variable, as described in
Section 3.1.2, "Modifying the Classpath."

3. Include a Java Virtual Machine (JVM) in your PATH environment variable. You can
use any JVM that is listed in the Oracle Fusion Middleware Supported System
Configurations page at
http://www.oracle.com/technology/software/products/ias/files/
fusion_certification.html.

If you do not include a JVM in the PATH environment variable, you must provide
a pathname for the Java executable file that the JVM provides.

3.1.2 Modifying the Classpath
After installation, WebLogic Server's classpath is already set, but you may choose to
modify it for a number of reasons such as adding a patch to WebLogic Server,
updating the version of Derby you are using, or adding support for Log4j logging.

To apply a patch to ALL of your WebLogic Server domains without the need to modify
the classpath of a domain, give the patch JAR file the name, weblogic_sp.jar, and
copy it into the WL_HOME/server/lib directory. The commEnv.cmd/sh script will
automatically include a JAR named weblogic_sp on the classpath for you.

If you would rather not use the name weblogic_sp.jar for your patch file or you
would just like to make sure a JAR file, such as one mentioned below, comes before
weblogic.jar on the classpath:

■ For ALL domains, edit the commEnv.cmd/sh script in WL_HOME/common/bin
and prepend your JAR file to the WEBLOGIC_CLASSPATH environment variable.

■ To apply a patch to a SPECIFIC WebLogic Server domain, edit the
setDomainEnv.cmd/sh script in that domain's bin directory, and prepend the
JAR file to the PRE_CLASSPATH environment variable.

If you use Derby, the open-source all-Java database management system included with
Oracle WebLogic Server for use by the sample applications and code examples,
include the following files on the classpath:

■ WL_HOME/common/derby/lib/derbyclient.jar - for the driver on the client
side

■ WL_HOME/common/derby/lib/derbynet.jar and WL_
HOME/common/derby/lib/derby.jar - for running the Derby network server

If you use WebLogic Enterprise Connectivity, include the following files on the
classpath:

WL_HOME/server/lib/wlepool.jar

WL_HOME/server/lib/wleorb.jar

If you use Log4j logging, include the following file on the classpath:

WL_HOME/server/lib/log4j.jar

Default Behavior

weblogic.Server Command-Line Reference 3-3

The shell environment in which you run a server determines which character you use
to separate path elements. On Windows, you typically use a semicolon (;). In a BASH
shell, you typically use a colon (:).

3.1.3 Syntax
The syntax for invoking weblogic.Server is as follows:

java [options] weblogic.Server [-help]

The java weblogic.Server -help command returns a list of frequently used
options.

3.2 Default Behavior
If you have set up the required environment described in Section 3.1.1, "Environment,"
when you enter the command java weblogic.Server with no options, WebLogic
Server does the following:

1. Looks in the domain_name/config directory for a file named config.xml.

2. If config.xml exists in the domain_name/config directory, WebLogic Server
does the following:

a. If only one server instance is defined in config/config.xml, it starts that
server instance.

For example, if you issue java weblogic.Server from WL_
HOME\samples\domains\medrec, WebLogic Server starts the MedRec
server.

b. If there are multiple server instances defined in config/config.xml:

– If an Administration Server is defined, it looks for the server with that
name.

– If an Administration Server is not defined, it looks for a server
configuration named myserver. If it finds such a server configuration, it
starts the myserver instance.

– If it does not find a server named myserver, WebLogic Server exits the
weblogic.Server process and generates an error message.

3. If there is no config.xml file in the current directory, WebLogic Server prompts
you to create one. If you respond y, WebLogic Server does the following:

a. Creates a server configuration named myserver, and persists the
configuration in a file named config/config.xml.

Any options that you specify are persisted to the config.xml file. For
example, if you specify -Dweblogic.ListenPort=8001, then WebLogic
Server saves 8001 in the config.xml file. For any options that you do not
specify, the server instance uses default values.

You can configure WebLogic Server to make backup copies of the
configuration files. This facilitates recovery in cases where configuration
changes need to be reversed or the unlikely case that configuration files
become corrupted. For more information, see "Configuration File Archiving"
in Understanding Domain Configuration for Oracle WebLogic Server.

b. Uses the username and password that you supply to create a user with
administrative privileges. It stores the definition of this user along with other

weblogic.Server Configuration Options

3-4 Command Reference for Oracle WebLogic Server

basic, security-related data in domain_name/security files named
DefaultAuthenticatorInit.ldift,
DefaultRoleMapperInit.ldift, and SerializedSystemIni.dat.

WebLogic Server also encrypts and stores your username and password in a
server_name/security/boot.properties file, which enables you to
bypass the login prompt during subsequent instantiations of the server. For
more information, see "Boot Identity Files" in Managing Server Startup and
Shutdown for Oracle WebLogic Server.

c. Creates two scripts, bin/startWebLogic.cmd and
bin/startWebLogic.sh, which you can use to start subsequent
instantiations of the server. You can use a text editor to modify startup options
such as whether the server starts in production mode or development mode.
The startWebLogic script contains comments that describe each option.

Note that the server starts as an Administration Server in a new domain. There are
no other servers in this domain, nor are any of your deployments or third-party
solutions included. You can add them as you would add them to any WebLogic
domain.

3.3 weblogic.Server Configuration Options
You can use weblogic.Server options to configure the attributes of a server
instance. The following attributes are commonly used when starting a server instance:

■ Section 3.3.1, "JVM Parameters"

■ Section 3.3.2, "Location of Configuration Data"

■ Section 3.3.3, "Options that Override a Server's Configuration"

WebLogic Server provides other startup options that enable you to temporarily
override a server's saved configuration. For information about these startup options,
see Section 3.3.3, "Options that Override a Server's Configuration."

Unless you are creating a new domain as described in Section 3.6, "Using the
weblogic.Server Command Line to Create a Domain," all startup options apply to the
current server instantiation; they do not modify the persisted values in an existing
config.xml file. Use the Administration Console or WebLogic Scripting Tool (WLST)
to modify the config.xml file. See "Creating Domains Using WLST Offline" in Oracle
WebLogic Scripting Tool.

For information on verifying the WebLogic Server attribute values that you set, see
Section 3.7, "Verifying Attribute Values That Are Set on the Command Line."

3.3.1 JVM Parameters
Table 3–1 describes frequently used options that configure the Java Virtual Machine
(JVM) in which the server instance runs. For a complete list of JVM options, see the
documentation for your specific JVM. For a list of JVMs that can be used with
WebLogic Server, see the Oracle Fusion Middleware Supported System Configurations
page at
http://www.oracle.com/technology/software/products/ias/files/fus
ion_certification.html.

weblogic.Server Configuration Options

weblogic.Server Command-Line Reference 3-5

3.3.2 Location of Configuration Data
All server instances must have access to configuration data. Table 3–2 provides options
for indicating the location of this data.

Table 3–1 Frequently Used Options for Setting JVM Parameters

Option Description

-Xms and -Xmx Specify the minimum and maximum values (in
megabytes) for Java heap memory.

For example, you might want to start the server with the
default allocation of 256 megabytes of Java heap memory
to the WebLogic Server. To do so, start the server using the
java -Xms256m and -Xmx512m options.

The values assigned to these parameters can dramatically
affect the performance of your WebLogic Server and are
provided here only as general defaults. In a production
environment you should carefully consider the correct
memory heap size to use for your applications and
environment.

-classpath The minimum content for this option is described under
Section 3.1.2, "Modifying the Classpath."

Instead of using this argument, you can use the
CLASSPATH environment variable to specify the classpath.

-client
-server

Used by some JVMs to start a HotSpot virtual machine,
which enhances performance. For a list of JVMs that can
be used with WebLogic Server, see the Oracle Fusion
Middleware Supported System Configurations page at
http://www.oracle.com/technology/software/p
roducts/ias/files/fusion_
certification.html.

-Dfile.encoding=Canonical Name weblogic.Server To display special characters on Linux browsers, set the
JVM's file.encoding system property to ISO8859_1.
For example:

java -Dfile.encoding=ISO8859_1 weblogic.Server

For a complete listing, see Sun's Supported Encodings
page for J2SE 1.6, available at
http://java.sun.com/javase/6/docs/technotes
/guides/intl/encoding.doc.html.

Table 3–2 Options for Indicating the Location of Configuration Data

Option Description

-Dweblogic.home=WL_HOME Specifies the location of the WebLogic home directory,
which contains essential information.

By default, weblogic.Server determines the location
of the WebLogic home directory based on values in the
classpath.

-Dweblogic.RootDirectory=path Specifies the server's root directory. See "A Server's Root
Directory" in Understanding Domain Configuration for
Oracle WebLogic Server.

By default, the root directory is the directory from which
you issue the start command.

weblogic.Server Configuration Options

3-6 Command Reference for Oracle WebLogic Server

For information on how a Managed Server retrieves its configuration data, see the
-Dweblogic.management.server entry in Table 3–3.

The Administration Console does not display values that you set on the command
line. For information on verifying the attribute values that you set, see Section 3.7,
"Verifying Attribute Values That Are Set on the Command Line."

3.3.2.1 Example
The following example starts a Managed Server instance named
SimpleManagedServer. Specifying a config.xml file is not valid because Managed
Servers contact the Administration Server for their configuration data. Multiple
instances of WebLogic Server can use the same root directory. However, if your server
instances share a root directory, make sure that all relative filenames are unique. In this
example, SimpleManagedServer shares its root directory with SimpleServer. The
command itself is issued from the D:\ directory after running WL_
HOME\server\bin\setWLSEnv.cmd:

D:\> java -Dweblogic.Name=SimpleManagedServer
 -Dweblogic.management.server=http://localhost:7001
 -Dweblogic.RootDirectory=c:\my_domains\SimpleDomain weblogic.Server

3.3.3 Options that Override a Server's Configuration
In most cases, you do not use startup options to override the configuration that is
saved in the domain's config.xml file. However, in some extraordinary cases you
might need to do so.

-Dweblogic.management.GenerateDefaultConfig=true Prevents the weblogic.Server class from prompting
for confirmation when creating a config.xml file.

Valid only if you invoke weblogic.Server in an
empty directory. See Section 3.2, "Default Behavior".

-Dweblogic.Domain=domain Specifies the name of the domain.

If you are using weblogic.Server to create a domain,
you can use this option to give the domain a specific
name.

In addition, this option supports a directory structure
that WebLogic Server required in releases prior to 7.0
and continues to support in current releases. Prior to 7.0,
all configuration files were required to be located in the
following pathname:

.../config/domain_name/config.xml

where domain_name is the name of the domain.

If your domain's configuration file conforms to that
pathname, and if you invoke the weblogic.Server
command from a directory other than
config/domain_name, you can include the
-Dweblogic.Domain=domain argument to cause
WebLogic Server to search for a config.xml file in a
pathname that matches config/domain_
name/config.xml.

Table 3–2 (Cont.) Options for Indicating the Location of Configuration Data

Option Description

weblogic.Server Configuration Options

weblogic.Server Command-Line Reference 3-7

For example, in a production environment, your organization might have a policy
against modifying the domain's config.xml file, but you need to shut down the
Administration Server and restart it using a temporary listen port. In this case, when
you use the weblogic.Server command to start the Administration Server, you can
include the -Dweblogic.ListenPort=7501 startup option to change the listen port
for the current server session. The server instance initializes its configuration MBeans
from the config.xml file but substitutes 7501 as the value of its listen port. When
you subsequently restart the server without passing the startup option, it will revert to
using the value from the config.xml file, 8010. (See Figure 3–1.)

Figure 3–1 Overriding config.xml Values

The following options temporarily override a server's configuration:

■ Section 3.3.3.1, "Server Communication"

■ Section 3.3.3.2, "SSL"

■ Section 3.3.3.3, "Security"

■ Section 3.3.3.4, "Message Output and Logging"

■ Section 3.3.3.7, "Other Server Configuration Options"

■ Section 3.3.3.5, "Clusters"

■ Section 3.3.3.6, "Deployment"

3.3.3.1 Server Communication
Table 3–3 describes the options for configuring how servers communicate.

Tip: When you use a startup option to override a configuration
value, the server instance uses this value for the duration of its life
cycle. Even if you use the Administration Console, the WebLogic
Scripting Tool, or some other utility to change the value in the
configuration, the value will remain overridden until you restart the
server without using the override.

weblogic.Server Configuration Options

3-8 Command Reference for Oracle WebLogic Server

Table 3–3 Options for Configuring Server Communication

Option Description

-Dweblogic.management.server=
[protocol://]Admin-host:port

Starts a server instance as a Managed Server and specifies the
Administration Server that will configure and manage the
server instance.

The domain's configuration file does not specify whether a
server configuration is an Administration Server or a
Managed Server. You determine whether a server instance is
in the role of Administration Server or Managed Server with
the options that you use to start the instance. If you omit the
-Dweblogic.management.server option in the start
command, the server starts as an Administration Server
(although within a given domain, there can be only one active
Administration Server instance). Once an Administration
Server is running, you must start all other server
configurations as Managed Servers by including the
-Dweblogic.management.server option in the start
command.

For protocol, specify HTTP, HTTPS, T3, or T3S. The T3S
and HTTPS protocols require you to enable SSL on the
Managed Server and the Administration Server and specify
the Administration Server's SSL listen port.

Note: Regardless of which protocol you specify, the initial
download of a Managed Server's configuration is over HTTP
or HTTPS. After the RMI subsystem initializes, the server
instance can use the T3 or T3S protocol.

For Admin-host, specify localhost or the DNS name or IP
address of the machine where the Administration Server is
running.

For port, specify the Administration Server's listen port. If
you set up the domain-wide administration port, port must
specify the domain-wide administration port.

For more information on configuring a connection to the
Administration Server, see "Configuring Managed Server
Connections to the Administration Server" in Managing Server
Startup and Shutdown for Oracle WebLogic Server.

-Dweblogic.ListenAddress=host Specifies the address at which this server instance listens for
requests. The host value must be either the DNS name or the
IP address of the computer that is hosting the server instance.

This startup option overrides any listen address value
specified in the config.xml file. The override applies to the
current server instantiation; it does not modify the value in
the config.xml file. Use the Administration Console or
WLST to modify the config.xml file.

For more information, see "Configure listen addresses" in the
Oracle WebLogic Server Administration Console Help and
"Creating Domains Using WLST Offline" in Oracle WebLogic
Scripting Tool.

weblogic.Server Configuration Options

weblogic.Server Command-Line Reference 3-9

The Administration Console does not display values that you set on the command
line. For information on verifying the attribute values that you set, see Section 3.7,
"Verifying Attribute Values That Are Set on the Command Line."

-Dweblogic.ListenPort=portnumber Enables and specifies the plain-text (non-SSL) listen port for
the server instance.

This startup option overrides any listen port value specified
in the config.xml file. The override applies to the current
server instantiation; it does not modify the value in the
config.xml file. Use the Administration Console or WLST
to modify the config.xml file.

The default listen port is 7001.

For more information, see "Configure listen ports" in the
Oracle WebLogic Server Administration Console Help and
"Creating Domains Using WLST Offline" in Oracle WebLogic
Scripting Tool.

-Dweblogic.ssl.ListenPort=portnumber Enables and specifies the port at which this WebLogic Server
instance listens for SSL connection requests.

This startup option overrides any SSL listen port value
specified in the config.xml file. The override applies to the
current server instantiation; it does not modify the value in
the config.xml file. Use the Administration Console or
WLST to modify the config.xml file.

The default SSL listen port is 7002.

For more information, see "Configure listen ports" in the
Oracle WebLogic Server Administration Console Help and
"Creating Domains Using WLST Offline" in Oracle WebLogic
Scripting Tool.

-Dweblogic.management.discover={true|false} Note: This option was removed as of WebLogic Server 9.0.

Determines whether an Administration Server recovers
control of a domain after the server fails and is restarted.

A true value causes an Administration Server to
communicate with all known Managed Servers and inform
them that the Administration Server is running.

A false value prevents an Administration Server from
communicating with any Managed Servers that are currently
active in the domain.

Tip: Specify false for this option only in the development
environment of a single server. Specifying false can cause
server instances in the domain to have an inconsistent set of
deployed modules.

In WebLogic Server 9.0, this command is deprecated because
if an Administration Server stops running while the Managed
Servers in the domain continue to run, each Managed Server
will periodically attempt to reconnect to the Administration
Server at the interval specified by the ServerMBean attribute
AdminReconnectIntervalSecs. For more information,
see "Managed Servers and Re-started Administration Server"
in Managing Server Startup and Shutdown for Oracle WebLogic
Server.

Table 3–3 (Cont.) Options for Configuring Server Communication

Option Description

weblogic.Server Configuration Options

3-10 Command Reference for Oracle WebLogic Server

3.3.3.2 SSL
Each Weblogic Server instance uses an instance of
weblogic.management.configuration.SSLMBean to represent its SSL
configuration.

All of the options in the following table that start with -Dweblogic.security.SSL
modify the configuration of the server's SSLMBean. For example, the
-Dweblogic.security.SSL.ignoreHostnameVerification option sets the
value of the SSLMBean's ignoreHostnameVerification attribute.

The SSLMBean has been modified to support enabling and disabling the JSSE adapter.

Table 3–4 describes the options for configuring a server to communicate using Secure
Sockets Layer (SSL). The table describes differences required by JSSE where
appropriate.

weblogic.Server Configuration Options

weblogic.Server Command-Line Reference 3-11

Table 3–4 Options for Configuring SSL

Option Description JSSE Applicability

-Dweblogic.security.SSL.
ignoreHostnameVerification=tr
ue

Disables host name verification, which
enables you to use the demonstration
digital certificates that are shipped with
WebLogic Server.

By default, when a WebLogic Server
instance is in the role of SSL client (it is
trying to connect to some other server or
application via SSL), it verifies that the host
name that the SSL server returns in its
digital certificate matches the host name of
the URL used to connect to the SSL server.
If the host names do not match, the
connection is dropped.

If you disable host name verification, either
by using this option or by modifying the
server's configuration in the config.xml
file, the server instance does not verify host
names when it is in the role of SSL client.

Note: Oracle does not recommend using
the demonstration digital certificates or
turning off host name verification in a
production environment.

This startup option overrides any Host
Name Verification setting in the
config.xml file. The override applies to
the current server instantiation; it does not
modify the value in the config.xml file.
Use the Administration Console or WLST
to modify the config.xml file.

For more information, see "Using
Hostname Verification" in Securing Oracle
WebLogic Server.

No changes required by JSSE.

-Dweblogic.security.SSL.Hostn
ameVerifier=
hostnameverifierimplementatio
n

Specifies the name of a custom Host Name
Verifier class. The class must implement the
weblogic.security.SSL.HostnameVe
rifier interface.

No changes required by JSSE.

-Dweblogic.security.SSL.nojce
=true

Specifies server uses a FIPS-compliant
(FIPS 140-2) crypto module for SSL.

Note: To start a server instance so that it
uses a FIPS-compliant (FIPS 140-2) crypto
module in its SSL implementation, you
must also ensure that cryptojFIPS.jar
is added to the PRE_CLASSPATH variable
in the server start script (for example,
startWebLogic.cmd/sh).

JSSE in FIPS mode is not
supported in this release.

weblogic.Server Configuration Options

3-12 Command Reference for Oracle WebLogic Server

-Dweblogic.security.SSL.sessi
onCache.ttl=
sessionCacheTimeToLive

Modifies the default server-session
time-to-live for SSL session caching.

The sessionCacheTimeToLive value
specifies (in milliseconds) the time to live
for the SSL session. The default value is
90000 milliseconds (90 seconds). This
means if a client accesses the server again
(via the same session ID) within 90
seconds, WebLogic Server will use the
existing SSL session. You can change this
value by setting
-Dweblogic.security.SSL.sessionCache.ttl in
the server startup script.

For sessionCache.ttl:

■ The minimum value is 1

■ The maximum value is
Integer.MAX_VALUE

■ The default value is 90000

No changes required by JSSE.

Table 3–4 (Cont.) Options for Configuring SSL

Option Description JSSE Applicability

weblogic.Server Configuration Options

weblogic.Server Command-Line Reference 3-13

The Administration Console does not display values that you set on the command
line. For information on verifying the attribute values that you set, see Section 3.7,
"Verifying Attribute Values That Are Set on the Command Line."

3.3.3.2.1 Setting Additional SSL Attributes To set additional SSL attributes from the
startup command, do the following:

1. To determine which SSL attributes can be configured from startup options, view
the WebLogic Server Javadoc for the SSLMBean and ServerMBean, described in
Oracle WebLogic Server MBean Reference. The Javadoc also indicates valid values for
each attribute.

-Dweblogic.security.SSL.Certi
ficateCallback=callback-handl
er

Specifies a certificate callback handler class,
which evaluates details contained the
end-user certificate passed in a secure
connection request to WebLogic Server.

Depending on the details contained in the
certificate, the callback handler returns a
true or false, which determines whether
authentication is successful.

Note: If you use a certificate callback
implementation in WebLogic Server, a
callback is generated whenever a request is
received over a secure port. As a result,
using certificate callbacks may impose a
performance overhead that should be taken
into consideration. For more information,
see "Checking the Validity of End User
Certificates" in Securing Oracle WebLogic
Server.

No changes required by JSSE.

-Dweblogic.management.pkpassw
ord=pkpassword

Specifies the password for retrieving SSL
private keys from an encrypted flat file.

Use this option if you store private keys in
an encrypted flat file.

No changes required by JSSE.

-Dweblogic.security.SSL.trust
edCAKeyStore=
path

Deprecated.

If you configure a server instance to use the
SSL features that were available before
WebLogic Server 8.1, you can use this
argument to specify the certificate
authorities that the server or client trusts.
The path value must be a relative or
qualified name to the Sun JKS keystore file
(contains a repository of keys and
certificates).

If a server instance is using the SSL features
that were available before 8.1, and if you do
not specify this argument, the WebLogic
Server or client trusts all of the certificates
that are specified in JAVA_
HOME\jre\lib\security.

Oracle recommends that you do not use the
demonstration certificate authorities in any
type of production deployment.

For more information, see "Configuring
SSL" in Securing Oracle WebLogic Server.

No changes required by JSSE.

Table 3–4 (Cont.) Options for Configuring SSL

Option Description JSSE Applicability

weblogic.Server Configuration Options

3-14 Command Reference for Oracle WebLogic Server

Each attribute that SSLMBean and ServerMBean expose as a setter method can
be set by a startup option.

2. To set attributes in the SSLMBean, add the following option to the start command:

-Dweblogic.ssl.attribute-name=value
where attribute-name is the name of the MBean's setter method without the
set prefix.

3. To set attributes in the ServerMBean, add the following option to the start
command:

-Dweblogic.server.attribute-name=value

where attribute-name is the name of the MBean's setter method without the
set prefix.

For example, the SSLMBean exposes its Enabled attribute with the following setter
method:

setEnabled()

To enable SSL for a server instance named MedRecServer, use the following command
when you start MedRecServer:

java -Dweblogic.Name=MedRecServer
 -Dweblogic.ssl.Enabled=true weblogic.Server

The Administration Console does not display values that you set on the command
line. For information on verifying the attribute values that you set, see Section 3.7,
"Verifying Attribute Values That Are Set on the Command Line."

3.3.3.3 Security
Table 3–5 describes the options for configuring general security parameters.

Table 3–5 Options for General Security Parameters

Option Description

-Dweblogic.management.username=username Specifies the username under which the server instance will
run.

The username must belong to a role that has permission to
start a server. For information on roles and permissions, see
"Users, Groups, and Security Roles" in Securing Resources
Using Roles and Policies for Oracle WebLogic Server.

This option prevents a server instance from using any boot
identity file and overrides other startup options that cause a
server to use boot identity files. For more information, see
"Boot Identity Files" in Managing Server Startup and Shutdown
for Oracle WebLogic Server.

-Dweblogic.management.password=password Specifies the user password.

This option prevents a server instance from using any boot
identity file and overrides other startup options that cause a
server to use boot identity files. For more information, see
"Boot Identity Files" in Managing Server Startup and Shutdown
for Oracle WebLogic Server.

Note: If you supply the password, but no username, you will
be prompted for both the username and the password.

weblogic.Server Configuration Options

weblogic.Server Command-Line Reference 3-15

-Dweblogic.system.StoreBootIdentity=true Creates a boot.properties file in the server's root
directory. The file contains the username and an encrypted
version of the password that was used to start the server.

Do not specify this argument in a server's
ServerStartMBean. For more information, see "Specifying
User Credentials When Starting a Server with the Node
Manager" in Managing Server Startup and Shutdown for Oracle
WebLogic Server.

Oracle recommends that you do not add this argument to a
startup script. Instead, use it only when you want to create a
boot.properties file.

For more information, see "Boot Identity Files" in Managing
Server Startup and Shutdown for Oracle WebLogic Server.

-Dweblogic.system.
BootIdentityFile=filename

Specifies a boot identity file that contains a username and
password.

The filename value must be the fully qualified pathname of
a valid boot identity file. For example:

-Dweblogic.system.BootIdentityFile=
WL_HOME\mydomain\servers\myserver\security
\boot.properties

If you do not specify a filename, a server instance, or the
WLST SHUTDOWN command, use the boot.properties file
in the server's root directory.

If there is no boot identity file, when starting a server, the
server instance prompts you to enter a username and
password.

-Dweblogic.system.RemoveBootIdentity=true Removes the boot identity file after a server starts.

-Dweblogic.security.anonymous
UserName=name

Assigns a user ID to anonymous users. By default, all
anonymous users are identified with the string
<anonymous>.

To emulate the security behavior of WebLogic Server 6.x,
specify guest for the name value and create a user named
guest in your security realm.

For more information, see "Users, Groups, and Security
Roles" in Securing Resources Using Roles and Policies for Oracle
WebLogic Server.

-Djava.security.manager
-Djava.security.policy[=]=filename

Standard Java EE options that enable the Java security
manager and specify a filename (using a relative or
fully-qualified pathname) that contains Java 2 security
policies.

To use the WebLogic Server sample policy file, specify WL_
HOME\server\lib\weblogic.policy.

Using -Djava.security.policy==filename (note the
double equal sign (==)) causes the policy file to override any
default security policy. This causes WebLogic Server to ignore
any policy files that are used for servlet and EJB authorization
when JACC is enabled. A single equal sign (=) causes the
policy file to be appended to an existing security policy.

For more information, see "Using the Java Security Manager
to Protect WebLogic Resources" in Programming Security for
Oracle WebLogic Server.

Table 3–5 (Cont.) Options for General Security Parameters

Option Description

weblogic.Server Configuration Options

3-16 Command Reference for Oracle WebLogic Server

-Dweblogic.security.
fullyDelegateAuthorization=true

By default, roles and security policies cannot be set for an EJB
or Web application through the Administration Console
unless security constraints were defined in the deployment
descriptor for the EJB or Web application.

Use this option when starting WebLogic Server to override
this problem.

This startup option does not work with EJBs or EJB methods
that use <unchecked> or <restricted> tags or Web
applications that do not have a role-name specified in the
<auth-constraint> tag.

-Dweblogic.management.
anonymousAdminLookupEnabled=true

Enables you to retrieve an MBeanHome interface without
specifying user credentials. The MBeanHome interface is part
of the WebLogic Server JMX API.

If you retrieve MBeanHome without specifying user
credentials, the interface gives you read-only access to the
value of any MBean attribute that is not explicitly marked as
protected by the Weblogic Server MBean authorization
process.

This startup option overrides the Anonymous Admin
Lookup Enabled setting on the domain_name > Security >
General page in the Administration Console.

By default, the MBeanHome API allows access to MBeans only
for WebLogic users who are in one of the default security
roles. more information, see "Users, Groups, an Security
Roles" in Securing Resources Using Roles and Policies for Oracle
WebLogic Server.

-Dweblogic.security.
identityAssertionTTL=seconds

Configures the number of seconds that the Identity Assertion
cache stores a Subject.

When using an Identity Assertion provider (either for an
X.509 certificate or some other type of token), Subjects are
cached within the server. This greatly enhances performance
for servlets and EJB methods with <run-as> tags as well as
for other places where identity assertion is used but not
cached (for example, signing and encrypting XML
documents). There might be some cases where this caching
violates the desired semantics.

By default, Subjects remain in the cache for 300 seconds,
which is also the maximum allowed value. Setting the value
to -1 disables the cache.

Setting a high value generally improves the performance of
identity assertion, but makes the Identity Assertion provider
less responsive to changes in the configured Authentication
provider. For example, a change in the user's group will not
be reflected until the Subject is flushed from the cache and
recreated.

Table 3–5 (Cont.) Options for General Security Parameters

Option Description

weblogic.Server Configuration Options

weblogic.Server Command-Line Reference 3-17

The Administration Console does not display values that you set on the command
line. For information on verifying the attribute values that you set, see Section 3.7,
"Verifying Attribute Values That Are Set on the Command Line."

3.3.3.4 Message Output and Logging
Table 3–6 describes options for configuring a server instance's message output.

-Djava.security.manager
-Djava.security.policy=
<insert the location of your policy file
here>

-Djavax.security.jacc.PolicyConfigurationFac
tory
.provider=weblogic.security.jacc.simpleprovi
der
.PolicyConfigurationFactoryImpl

-Djavax.security.jacc.policy.provider=
weblogic.security.jacc.simpleprovider
.SimpleJACCPolicy

-Dweblogic.security.jacc.RoleMapperFactory.p
rovider=
weblogic.security.jacc.simpleprovider
.RoleMapperFactoryImpl

Defining these five system properties is required to enable the
use of the JACC provider in the security realm. When these
providers are in use, the JACC handles authorization
decisions for the EJB and Servlet containers for external
applications. Any other authorization decisions for internal
applications are handled by the authorization in the
WebLogic Security framework. JACC authorization requires
the use of J2SE security and therefore requires that WebLogic
Server be booted with a Java EE security manager and a
policy file (specified by the server startup properties,
java.security.manager and
java.security.policy). For more information, see
"Using the Java Security Manager to Protect WebLogic
Resources" in Programming Security for Oracle WebLogic Server.

The WebLogic JACC implementation expects that the policy
object is the default
sun.security.provider.PolicyFile class.

When starting, WebLogic Server attempts to locate and
instantiate the classes specified by the JACC startup
properties and fails if it cannot find or instantiate them (if, for
example, the files specified by the startup properties are not
valid classes).

-Dweblogic.security.ldap.
maxSize=<max bytes>

Limits the size of the data file used by the embedded LDAP
server. When the data file exceeds the specified size,
WebLogic Server eliminates from the data file space occupied
by deleted entries.

-Dweblogic.security.ldap.
changeLogThreshold=<number of entries>

Limits the size of the change log file used by the embedded
LDAP server. When the change log file exceeds the specified
number of entries, WebLogic Server truncates the change log
by removing all entries that have been sent to all Managed
Servers.

Table 3–5 (Cont.) Options for General Security Parameters

Option Description

weblogic.Server Configuration Options

3-18 Command Reference for Oracle WebLogic Server

The Administration Console does not display values that you set on the command
line. For information on verifying the attribute values that you set, see Section 3.7,
"Verifying Attribute Values That Are Set on the Command Line."

3.3.3.4.1 Setting Logging Attributes Each Weblogic Server instance uses an instance of
weblogic.management.configuration.LogMBean to represent the
configuration of its logging services.

To set values for LogMBean attributes from the startup command, do the following:

1. To determine which log attributes can be configured from startup options, see
LogMBean in Oracle WebLogic Server MBean Reference. The Javadoc also indicates
valid values for each attribute.

Each attribute that the LogMBean exposes as a setter method can be set by a
startup option.

2. Add the following option to the start command:

-Dweblogic.log.attribute-name=value

where attribute-name is the name of the MBean's setter method without the
set prefix.

The LogMBean exposes its FileName attribute with the following setter method:

setFileName()

To specify the name of the MedRecServer instance's local log file, use the following
command when you start MedRecServer:

java -Dweblogic.Name=MedRecServer
 -Dweblogic.log.FileName="C:\logfiles\myServer.log"
 weblogic.Server

Table 3–6 Options for Configuring Message Output

Option Description

-Dweblogic.Stdout="filename" Redirects the server and JVM's standard output stream to a
file. You can specify a pathname that is fully qualified or
relative to the WebLogic Server root directory.

For more information, see "Redirect JVM output" in the Oracle
WebLogic Server Administration Console Help.

-Dweblogic.Stderr="filename" Redirects the server and JVM's standard error stream to a file.
You can specify a pathname that is fully qualified or relative
to the WebLogic Server root directory.

For more information, see "Redirecting JVM Output" in
Configuring Log Files and Filtering Log Messages for Oracle
WebLogic Server.

-Dweblogic.
AdministrationMBeanAuditingEnabled=
{true | false}

Determines whether the Administration Server emits
configuration auditing log messages when a user changes the
configuration or invokes management operations on any
resource within a domain.

By default, the Administration Server does not emit
configuration auditing messages.

See "Enable configuration auditing" in the Oracle WebLogic
Server Administration Console Help.

weblogic.Server Configuration Options

weblogic.Server Command-Line Reference 3-19

The Administration Console does not display values that you set on the command
line. For information on verifying the attribute values that you set, see Section 3.7,
"Verifying Attribute Values That Are Set on the Command Line."

3.3.3.5 Clusters
Table 3–7 describes options for configuring additional attributes of a cluster.

3.3.3.6 Deployment
Table 3–8 describes options for configuring additional attributes for deployment.

3.3.3.7 Other Server Configuration Options
Table 3–9 describes options for configuring additional attributes of a server instance.

Table 3–7 Options for Configuring Cluster Attributes

Option Description

-Dweblogic.cluster.multicastAddress Determines the Multicast Address that clustered servers use
to send and receive cluster-related communications. By
default, a clustered server refers to the Multicast Address that
is defined in the config.xml file. Use this option to override
the value in config.xml.

Note: The Administration Console does not display values
that you set on the command line. For information on
verifying the attribute values that you set, see Section 3.7,
"Verifying Attribute Values That Are Set on the Command
Line."

Regardless of how you set the Multicast Address, all servers
in a cluster must communicate at the same Multicast
Address.

Table 3–8 Options for Configuring Deployment Attributes

Option Description

-Dweblogic.deployment.IgnorePrepareStateFail
ures=true

Overrides the default deployment behavior by allowing a
server to transition to Running even with static deployment
Prepare failures.

Note: This server level flag may cause inconsistent
deployment behavior within clusters, such as issues with
HttpSessionReplication or SFSB replication.

weblogic.Server Configuration Options

3-20 Command Reference for Oracle WebLogic Server

Table 3–9 Options for Configuring Server Attributes

Option Description

-DserverType={"wls" | "wlx"} Specifies the Server Type, which determines the set of
services that are started in the server runtime.

The default is "wls", which starts all WebLogic Server
services, including EJB, JMS, Connector, Clustering,
Deployment, and Management.

The "wlx" option starts a server instance that excludes the
following services, making for a lighter weight runtime
footprint:

■ Enterprise JavaBeans (EJB)

■ Java EE Connecter Architecture (JCA)

■ Java Message Service (JMS)

For an example of starting a lighter weight runtime instance
in a WebLogic domain, see Section 3.5, "Using the
weblogic.Server Command Line to Limit the WebLogic
Server Run-Time Footprint". For more information about the
lighter weight runtime, see "Limiting Runtime Footprint
When Starting WebLogic Server" in Managing Server Startup
and Shutdown for Oracle WebLogic Server.

-Dweblogic.Name=servername Specifies the name of the server instance that you want to
start. The specified value must refer to the name of a server
that has been defined in the domain's config.xml file.

-Dweblogic.ProductionModeEnabled=
{true | false}

This attribute is deprecated in WebLogic Server 9.0.

Determines whether a server starts in production mode.

A true value prevents a WebLogic Server from automatically
deploying and updating applications that are in the domain_
name/autodeploy directory.

If you do not specify this option, the assumed value is false.

To enable production mode, you can use WLST to set
DomainMBean.isProductionModeEnabled to true, or
use the Administration Console. See "Change to production
mode" in the Oracle WebLogic Server Administration Console
Help.

Note: It is recommended that you enable production mode
via the Administration Console, in config.xml, or by
supplying the production argument to startWebLogic
script, for example, startWebLogic.cmd production.
You should only enable production mode from the command
line on the Administration Server.

Note: It is important to note that when
ProductionModeEnabled is set from the command line on the
Administration Server, this value is propagated to all
Managed Servers.

weblogic.Server Configuration Options

weblogic.Server Command-Line Reference 3-21

-Dweblogic.management.startupMode=MODE The argument MODE represents either of the following:

■ STANDBY — Starts a server and places it in the STANDBY
state. See "STANDBY state" in Managing Server Startup
and Shutdown for Oracle WebLogic Server.

To use this startup argument, the domain must be
configured to use the domain-wide administration port.

For information about administration ports, see
"Administration Port and Administrative Channel" in
Configuring Server Environments for Oracle WebLogic Server
and "Configure the domain-wide administration port" in
the Oracle WebLogic Server Administration Console Help.

■ ADMIN — Starts a server and places it in the ADMIN state.
See "ADMIN state" in Managing Server Startup and
Shutdown for Oracle WebLogic Server.

Specifying the startup mode startup option overrides any
startup mode setting in the config.xml file. The override
applies to the current server instantiation; it does not modify
the value in the config.xml file. Use the Administration
Console or WLST to modify the config.xml file.

If you do not specify this value (either on the command line
or in config.xml), the default is to start in the RUNNING
state.

-Dweblogic.apache.xerces.maxentityrefs=
numerical-value

Limits the number of entities in an XML document that the
WebLogic XML parser resolves.

If you do not specify this option, the XML parser that
WebLogic Server installs resolves 10,000 entity references in
an XML document, regardless of how many an XML
document contains.

-Dweblogic.jsp.windows.caseSensitive=true Causes the JSP compiler on Windows systems to preserve
case when it creates output files names.

See "Using the WebLogic JSP Compiler" in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

-Dweblogic.servlet.optimisticSerialization=
true

When optimistic-serialization is turned on,
WebLogic Server does not serialize-deserialize context and
request attributes upon getAttribute(name) when the
request is dispatched across servlet contexts.

This means that you must make sure that the attributes
common to Web applications are scoped to a common parent
classloader (application scoped) or you must place them in
the system classpath if the two Web applications do not
belong to the same application.

When optimistic-serialization is turned off (default
value), WebLogic Server serialize-deserializes context and
request attributes upon getAttribute(name) to avoid the
possibility of ClassCastExceptions.

The optimistic-serialization value can also be specified at
domain level in the WebAppContainerMBean, which
applies for all Web applications. The value in weblogic.xml, if
specified, overrides the domain level value.

The default value is false.

-Dweblogic.jdbc.qualifyRMName=false When set, restores pre-WebLogic Server 11gR1 (10.3.1)
behavior of not not qualifying the JTA registration name with
the domain name.

Table 3–9 (Cont.) Options for Configuring Server Attributes

Option Description

Using the weblogic.Server Command Line to Start a Server Instance

3-22 Command Reference for Oracle WebLogic Server

The Administration Console does not display values that you set on the command
line. For information on verifying the attribute values that you set, see Section 3.7,
"Verifying Attribute Values That Are Set on the Command Line."

3.4 Using the weblogic.Server Command Line to Start a Server Instance
A simple way to start a server instance is as follows:

1. In a command shell, set up the required environment variables by running the
following script:

WL_HOME\server\bin\setWLSEnv.cmd (on Windows)

WL_HOME/server/bin/setWLSEnv.sh (on UNIX)

where WL_HOME is the directory in which you installed the WebLogic Server
software.

2. In the command shell, change to the root of the domain directory, usually MW_
HOME\user_projects\domains\DOMAIN_NAME. For example, change to the
WL_HOME\samples\domains\medrec directory.

3. To start an Administration Server, enter the following command:

java weblogic.Server

-Dweblogic.ScatteredReadsEnabled=true

and

-Dweblogic.GatheredWritesEnabled=true

When each is set to true, increases efficiency during I/O in
environments with high network throughput.

These command options are used together to optimize
WebLogic Server performance for use with Oracle Exalogic.
For more information, see "Enabling Exalogic-Specific
Enhancements in Oracle WebLogic Server 11g Release 1
(10.3.4)" in the Oracle Exalogic Enterprise Deployment Guide.

-Dweblogic.replication.enableLazyDeserializa
tion=true

When set to true, increases efficiency with session replication.

This command option is used to optimize WebLogic Server
performance for use with Oracle Exalogic. For more
information, see "Enabling Exalogic-Specific Enhancements in
Oracle WebLogic Server 11g Release 1 (10.3.4)" in the Oracle
Exalogic Enterprise Deployment Guide.

-Dweblogic.resourcepool.max_test_wait_
secs=seconds

The amount of time, in seconds, WebLogic Server waits
before considering a connection test failed. By default, a
server instance is assigned a value of 10 seconds. If set to
zero, the server instance waits indefinitely.

-Dweblogic.wsee.client.ssl.usejdk=true When set to true, switches from WlsSSLAdapter to
JdkSSLAdapter.

By default, WebLogic Server Web services use the
weblogic.wsee.connection.transport.https.WlsS
SLAdapter class for the SSL adapter. Setting the flag to true
forces the use of JdkSSLAdapter from
weblogic.wsee.connection.transport.https.JdkS
SLAdapter.

 The
weblogic.wsee.connection.transport.https.HTTP
SClientTransport class that defines the USE_JDK_SSL_
PROPERTY is used only in JAX-RPC. The property is not
currently supported in JAX-WS.

Table 3–9 (Cont.) Options for Configuring Server Attributes

Option Description

Using the weblogic.Server Command Line to Limit the WebLogic Server Run-Time Footprint

weblogic.Server Command-Line Reference 3-23

4. If the domain's Administration Server is already running, and if you have already
defined a Managed Server in the config.xml file, you can start a Managed
Server as follows:

java -Dweblogic.Name=managed-server-name
-Dweblogic.management.server=url-for-Administration-Server
weblogic.Server

For example, if you create a Managed Server named MedRecManagedServer in
the MedRec domain, you can enter the following command:

java -Dweblogic.Name=MedRecManagedServer
-Dweblogic.management.server=localhost:7011
weblogic.Server

3.5 Using the weblogic.Server Command Line to Limit the WebLogic
Server Run-Time Footprint

WebLogic Server provides a startup option that offers a lighter weight run-time
footprint by excluding a subset of these services from being started. The following
services are excluded:

■ Enterprise JavaBeans (EJB)

■ Java EE Connector Architecture (JCA)

■ Java Message Service (JMS)

The lighter weight run-time instance can be started in any WebLogic domain. A simple
way to start the lighter weight run-time instance is as follows:

1. In a command shell, change to the domain bin directory. For example:

cd DOMAIN_HOME\bin

2. Run the setDomainEnv script.

3. To start the lighter weight run-time instance, enter the following command:

java weblogic.Server -DserverType="wlx"

For more information, see "Limiting Run-Time Footprint When Starting WebLogic
Server" in Managing Server Startup and Shutdown for Oracle WebLogic Server.

Note: The password you use must be a string of at least 8
case-sensitive characters. The space character is not supported. For
more information, see "Creating a WebLogic Domain" in Creating
Domains Using the Configuration Wizard.

Note: If you are using the demo certificates in a multi-server domain,
Managed Server instances will fail to boot if you specify the
fully-qualified DNS name of the Administration Server host machine,
as in the argument url-for-Administration Server. For
information about this limitation and suggested workarounds, see
"Limitation on CertGen Usage" in Securing Oracle WebLogic Server.

Using the weblogic.Server Command Line to Create a Domain

3-24 Command Reference for Oracle WebLogic Server

3.6 Using the weblogic.Server Command Line to Create a Domain
You can use weblogic.Server to create a domain that contains a single server
instance. You cannot use weblogic.Server to add Managed Server instances to a
domain, nor can you use weblogic.Server to modify an existing domain.

As described in Section 3.2, "Default Behavior," if weblogic.Server is unable to find
a config.xml file, it offers to create the file. Any command option that you specify
and that corresponds to an attribute that is persisted in the config.xml file will be
persisted. For example, the -Dweblogic.Name and -Dweblogic.Domain options
specify the name of a server configuration and the name of a domain. If
weblogic.Server is unable to find a config.xml file, both of these values are
persisted in config.xml. However, the
-Dweblogic.system.BootIdentityFile option, which specifies a file that
contains user credentials for starting a server instance, is not an attribute that the
config.xml file persists.

To create and instantiate a simple example domain and server, do the following:

1. In a command shell, set up the required environment variables by running the
following script:

WL_HOME\server\bin\setWLSEnv.cmd (on Windows)

WL_HOME/server/bin/setWLSEnv.sh (on UNIX)

where WL_HOME is the directory in which you installed the WebLogic Server
software.

2. In the command shell, create an empty directory.

3. In the empty directory, enter the following command:

java -Dweblogic.Domain=SimpleDomain -Dweblogic.Name=SimpleServer
-Dweblogic.management.username=weblogic
-Dweblogic.management.password=welcome1
-Dweblogic.ListenPort=7001 weblogic.Server

After you enter this command, WebLogic Server asks if you want to create a new
config.xml file. If you enter y, it then instantiates a domain named SimpleDomain.
The domain's Administration Server is configured as follows:

■ The name of the Administration Server is SimpleServer.

■ The domain's security realm defines one administrative user, weblogic, with a
password of welcome1.

■ For the listen address of the Administration Server, you can use localhost, the
IP address of the host computer, or the DNS name of the host computer. For more
information about setting the listen address, see "Configure listen addresses" in the
Oracle WebLogic Server Administration Console Help.

■ The Administration Server listens on port 7001.

Entering the weblogic.Server command as described in this section creates the
following files:

■ config.xml

■ DefaultAuthenticatorInit.ldift, DefaultRoleMapperInit.ldift,
and SerializedSystemIni.dat, which store basic security-related data.

■ boot.properties file, which contains the username and password in an
encrypted format. This file enables you to bypass the prompt for username and

Verifying Attribute Values That Are Set on the Command Line

weblogic.Server Command-Line Reference 3-25

password when you start the server. For more information, see "Boot Identity
Files" in Managing Server Startup and Shutdown for Oracle WebLogic Server.

■ startWebLogic.cmd and startWebLogic.sh, that you can use to start
subsequent instantiations of the server.

3.7 Verifying Attribute Values That Are Set on the Command Line
The Administration Console does not display values that you set on the command line
because the startup options set attribute values for the server's local configuration
MBean. To see the values that are in a server's local configuration MBean, use WLST as
follows:

1. Complete the procedure described in "Main Steps for Using WLST in Interactive or
Script Mode" in Oracle WebLogic Scripting Tool.

>java weblogic.WLST

2. Start a WebLogic Server instance (see "Starting and Stopping Servers" in Managing
Server Startup and Shutdown for Oracle WebLogic Server) and connect WLST to the
server using the connect command. For detailed information about the connect
command, see "connect" in the WebLogic Scripting Tool Command Reference.

wls:/(offline)> connect('username','password','t3s://localhost:7002')
Connecting to weblogic server instance running at t3s://localhost:7002 as
username weblogic ...

wls:/mydomain/serverConfig>

3. For example, to determine the multicast address that a cluster member is using,
connect WLST to that server instance and enter the following commands:

wls:/mydomain/serverConfig> cd('Clusters/cluster_name')
wls:/mydomain/serverConfig/Clusters/mycluster> cmo.getMulticastAddress()

'239.192.0.0'

4. To determine the severity level of messages that the server instance prints to
standard out, connect WLST to that server instance and enter the following
commands:

wls:/mydomain/serverConfig> cd('Servers/server_name/Log/server_name')
wls:/mydomain/serverConfig/Servers/myserver/Log/myserver>cmo.getStdoutSeverity(
)

'Notice'

For more information on using WLST, see Oracle WebLogic Scripting Tool. For more
information about configuration MBeans, see "Understanding WebLogic Server
MBeans" in Developing Custom Management Utilities With JMX for Oracle WebLogic
Server.

Note: Invoking weblogic.Server in an empty directory results in
implicit domain creation which uses the same configuration process as
WLST offline and the Configuration Wizard and thus ensures that you
always see uniform domains. As a result, implicitly creating a domain
in an empty directory using weblogic.Server may take around 15
seconds.

Verifying Attribute Values That Are Set on the Command Line

3-26 Command Reference for Oracle WebLogic Server

4

WebLogic SNMP Agent Command-Line Reference (Deprecated) 4-1

4WebLogic SNMP Agent Command-Line
Reference (Deprecated)

WebLogic Server can use Simple Network Management Protocol (SNMP) to
communicate with enterprise-wide management systems. The WebLogic Server
subsystem that gathers WebLogic management data (managed objects), converts it to
SNMP communication modules (trap notifications), and forwards the trap
notifications to third-party SNMP management systems is called the WebLogic SNMP
agent. The WebLogic SNMP agent runs on the Administration Server and collects
managed objects from all Managed Servers within a domain.

The WebLogic SNMP agent provides a command-line interface that lets you:

■ Retrieve WebLogic Server managed objects.

■ Generate and receive WebLogic Server traps for testing purposes.

The following sections describe working with the WebLogic SNMP agent through its
command-line interface:

■ Section 4.1, "Required Environment for the SNMP Command-Line Interface"

■ Section 4.2, "Syntax and Common Arguments for the SNMP Command-Line
Interface"

■ Section 4.3, "Commands for Retrieving WebLogic Server Managed Objects"

■ Section 4.4, "Commands for Testing Traps"

For more information about using SNMP with WebLogic Server, see:

■ SNMP Management Guide for Oracle WebLogic Server

■ SNMP MIB ANS1 File (zip)

4.1 Required Environment for the SNMP Command-Line Interface
To set up your environment for the WebLogic SNMP agent command-line interface:

1. Install and configure the WebLogic Server software, as described in the Oracle
WebLogic Server Installation Guide.

Note: The command-line utility that this document describes is
deprecated in WebLogic Server 10.0. Instead, use the command-line
utility that is described in "WebLogic SNMP Command-Line Utility"
in SNMP Management Guide for Oracle WebLogic Server.

Syntax and Common Arguments for the SNMP Command-Line Interface

4-2 Command Reference for Oracle WebLogic Server

2. If you want to retrieve WebLogic Server managed objects, enable the WebLogic
SNMP agent as described in "Use SNMP to monitor WebLogic Server" in the
Oracle WebLogic Server Administration Console Help.

3. Open a command prompt (shell) and invoke the following script:

WL_HOME\server\bin\setWLSEnv.sh (or setWLSEnv.cmd on Windows)

where WL_HOME is the directory in which you installed WebLogic Server.

The script adds a supported JDK to the shell's PATH environment variable and
adds WebLogic Server classes to the CLASSPATH variable.

4.2 Syntax and Common Arguments for the SNMP Command-Line
Interface

All WebLogic SNMP agent commands take the following form:

java command-name arguments

Table 4–1 describes arguments that are common to most WebLogic SNMP agent
commands.

Table 4–1 Common Command Line Arguments

Argument Definition

-d Includes debugging information and packet dumps in the
command output.

-v {v1 | v2} Specifies whether to use SNMPv1 or SNMPv2 to
communicate with the SNMP agent.

You must specify the same SNMP version that you set in the
Trap Version field when you configured the SNMP agent (as
described in "Create SNMP agents" in the Oracle WebLogic
Server Administration Console Help).

If you do not specify a value, the command assumes -v v1.

Commands for Retrieving WebLogic Server Managed Objects

WebLogic SNMP Agent Command-Line Reference (Deprecated) 4-3

4.3 Commands for Retrieving WebLogic Server Managed Objects
Table 4–2 is an overview of commands that retrieve WebLogic Server managed objects
and object instances.

-c snmpCommunity
[@server_name | @domain_name

The community name that you set for the WebLogic SNMP
agent and optionally specifies the server instance that hosts
the objects with which you want to interact.

To request a managed object on the Administration Server,
specify:

snmpCommunity

where snmpCommunity is the SNMP community name that
you set in the Community Prefix field when you configured
the SNMP agent (as described in "Create SNMP agents" in
the Oracle WebLogic Server Administration Console Help).

To request a managed object on a single Managed Server,
specify:

snmpCommunity@server_name

where server_name is the name of the Managed Server.

To request a managed object for all server instances in a
domain, specify a community string with the following
form:

snmpCommunity@domain_name

where domain_name is the name of the WebLogic Server
domain.

If you do not specify a value for this argument, the
command assumes -c public, which uses the default
community name, and assumes that the specified managed
object is on the Administration Server.

-p snmpPort The port number on which the WebLogic SNMP agent
listens for requests.

If you do not specify a value, the command assumes -p
161.

-t timeout The number of milliseconds the command waits to
successfully connect to the SNMP agent.

If you do not specify a value, the command assumes -t
5000.

-r retries The number of times the command retries unsuccessful
attempts to connect to the SNMP agent.

If you do not specify a value, the command exits on the first
unsuccessful attempt.

host The DNS name or IP address of the computer that hosts the
WebLogic Server Administration Server, which is where the
WebLogic SNMP agent runs.

Table 4–1 (Cont.) Common Command Line Arguments

Argument Definition

Commands for Retrieving WebLogic Server Managed Objects

4-4 Command Reference for Oracle WebLogic Server

4.3.1 snmpwalk
Returns all managed objects or instances that are below a specified node in the MIB.

If you specify the OID for a tabular object, the command returns all of its object
instances along with all related (child) objects and instances.

4.3.1.1 Syntax
java snmpwalk [-d] [-v (v1,v2)] [-c snmpCommunity] [-p snmpPort]
 [-t timeout] [-r retries] host OID

Table 4–3 describes the OID argument that is passed to snmpwalk.

4.3.1.2 Example
The following example retrieves the names of all applications that have been deployed
on the Administration Server. The managed object for an application name is
applicationRuntimeName, which is a child of the applicationRuntimeTable
object. (See http://download.oracle.com/docs/cd/E15523_
01/apirefs.1111/e14145/BEA-WEBLOGIC-MIB.asn1.zip.)

java snmpwalk localhost .1.3.6.1.4.1.140.625.105.1.15

If you invoke this command from a computer that is running the example
MedRecServer, the command returns output similar to the following truncated output.
Note that the output includes the full OID for each instance of the
applicationRuntimeName object.

Object ID: .1.3.6.1.4.1.140.625.105.1.15.32.49.102.98.97.100.97.102.99.57.48.50.
102.48.98.53.54.100.100.49.54.50.54.99.54.99.49.97.97.98.53.100.97
STRING: MedRecServer_uddiexplorer

Object ID: .1.3.6.1.4.1.140.625.105.1.15.32.54.98.49.101.57.56.54.98.98.50.57.10
0.54.55.48.100.56.98.101.101.97.55.48.53.57.99.49.51.56.98.97.99
STRING: MedRecServer_StartupEAR

Table 4–2 Overview of Commands for Retrieving Data from WebLogic Server Managed
Objects

Command Description

snmpwalk Returns all managed objects and instances that are below a specified node
in the MIB.

See Section 4.3.1, "snmpwalk."

snmpgetnext Returns the managed object or instance that immediately follows an OID
that you specify.

See Section 4.3.2, "snmpgetnext."

snmpget Returns managed object instances that correspond to one or more OIDs.

See Section 4.3.3, "snmpget."

Table 4–3 snmpwalk Arguments

Argument Definition

OID The object ID of the node from which you want to retrieve a set of
child objects and instances.

Start the value with '.'; otherwise, references are assumed to be
relative to the standard MIB (.1.3.6.1.2.1), not the WebLogic
Server MIB.

Commands for Retrieving WebLogic Server Managed Objects

WebLogic SNMP Agent Command-Line Reference (Deprecated) 4-5

Object ID: .1.3.6.1.4.1.140.625.105.1.15.32.56.48.97.53.50.52.99.101.53.54.57.54
.52.52.99.54.48.55.54.100.102.49.54.97.98.52.48.53.98.100.100.49
STRING: MedRecServer_wl_management_internal2
...
The following example retrieves the name of all applications that have been deployed
on all servers in the medrec domain.

java snmpwalk -c public@medrec localhost .1.3.6.1.4.1.140.625.105.1.15

The following example retrieves the name of all applications that have been deployed
on a Managed Server named MS1.

java snmpwalk -c public@MS1 localhost .1.3.6.1.4.1.140.625.105.1.15

4.3.2 snmpgetnext
Returns a description of the managed object or object instance that immediately
follows one or more OIDs that you specify. If you specify a tabular object, this
command returns the first child managed object. If you specify a scalar object, this
command returns the first instance of the object.

Instead of the recursive listing that the snmpwalk command provides, this command
returns the description of only one managed object or instance whose OID is the next
in sequence. You could string together a series of snmpgetnext commands to achieve
the same result as the snmpwalk command.

4.3.2.1 Syntax
java snmpgetnext [-d] [-v (v1,v2)] [-c snmpCommunity] [-p snmpPort]
 [-t timeout] [-r retries] host OID [OID]...

Table 4–4 describes the OID arguments that can be passed to the snmpgetnext
command.

4.3.2.2 Example
The following example retrieves the name of an application that has been deployed on
the Administration Server. The managed object for an application name is
applicationRuntimeName, which is a scalar object and is a child of the
applicationRuntimeTable object. (See
http://download.oracle.com/docs/cd/E15523_
01/apirefs.1111/e14145/BEA-WEBLOGIC-MIB.asn1.zip.)

java snmpgetnext localhost .1.3.6.1.4.1.140.625.105.1.15

If you invoke this command from a computer that is running the example
MedRecServer, the command returns output similar to the following:

Response PDU received from /127.0.0.1, community: public
Object ID: .1.3.6.1.4.1.140.625.105.1.15.32.49.102.98.97.100.97.102.99.57.48.50.

Table 4–4 snmpgetnext Arguments

Argument Definition

OID [OID]... One or more object IDs. Use a space to delimit multiple OIDs. You
can specify OIDs for objects or instances.

Start the values with '.'; otherwise, references are assumed to be
relative to the standard MIB (.1.3.6.1.2.1), not the WebLogic
Server MIB.

Commands for Retrieving WebLogic Server Managed Objects

4-6 Command Reference for Oracle WebLogic Server

102.48.98.53.54.100.100.49.54.50.54.99.54.99.49.97.97.98.53.100.97
STRING: MedRecServer_uddiexplorer

To determine whether there are additional applications deployed on the
Administration Server, you can use the output of the snmpgetnext command as
input for an additional snmpgetnext command:

java snmpgetnext localhost
.1.3.6.1.4.1.140.625.105.1.15.32.49.102.98.97.100.97.102.99.57.48.50.102.
48.98.53.54.100.100.49.54.50.54.99.54.99.49.97.97.98.53.100.97

The command returns output similar to the following:

Response PDU received from /127.0.0.1, community: public
Object ID: .1.3.6.1.4.1.140.625.105.1.15.32.54.98.49.101.57.56.54.98.98.50.57.10
0.54.55.48.100.56.98.101.101.97.55.48.53.57.99.49.51.56.98.97.99
STRING: MedRecServer_StartupEAR

The following example specifies two OIDs to retrieve the name of an application that
has been deployed on the Administration Server and the name of a JDBC connection
pool. The OIDs in the example command are for the applicationRuntimeName
object, which is the name of an application, and
jdbcConnectionPoolRuntimeName, which is the name of a JDBC connection pool.

java snmpgetnext localhost
.1.3.6.1.4.1.140.625.105.1.15.1.3.6.1.4.1.140.625.190.1.15

If you invoke this command from a computer that is running the example
MedRecServer, the command returns output similar to the following:

Response PDU received from /127.0.0.1, community: public
Object ID:
.1.3.6.1.4.1.140.625.105.1.15.32.49.102.98.97.100.97.102.99.57.48.50.
102.48.98.53.54.100.100.49.54.50.54.99.54.99.49.97.97.98.53.100.97
STRING: MedRecServer_uddiexplorer
Object ID:
.1.3.6.1.4.1.140.625.190.1.15.32.53.53.49.48.50.55.52.57.57.49.99.102
.55.48.98.53.50.54.100.48.100.53.53.52.56.49.57.49.49.99.99.99
STRING: MedRecPool-PointBase

4.3.3 snmpget
Retrieves the value of one or more object instances. This command does not accept
OIDs for managed objects.

4.3.3.1 Syntax
java snmpget [-d] [-v (v1,v2)] [-c snmpCommunity] [-p snmpPort]
 [-t timeout] [-r retries] host object-instance-OID
 [object-instance-OID]...

Table 4–5 describes the object-instance-OID arguments that can be passed to the
snmpget command.

Commands for Testing Traps

WebLogic SNMP Agent Command-Line Reference (Deprecated) 4-7

4.3.3.2 Example
The following example retrieves the serverRuntimeState and
serverRuntimeListenPort managed object instances for the Administration
Server. Both of these objects are children of the serverRuntimeTable object. (See
http://download.oracle.com/docs/cd/E15523_
01/apirefs.1111/e14145/BEA-WEBLOGIC-MIB.asn1.zip.)

java snmpget localhost
.1.3.6.1.4.1.140.625.360.1.60.32.102.100.48.98.101.102.100.99.102.52.98.
97.48.48.49.102.57.53.51.50.100.102.53.55.97.101.52.56.99.99.97.99
.1.3.6.1.4.1.140.625.360.1.35.32.102.100.48.98.101.102.100.99.102.52.
98.97.48.48.49.102.57.53.51.50.100.102.53.55.97.101.52.56.99.99.97.99
If you invoke this command from a computer that is running the example
MedRecServer, the command returns output similar to the following:

Response PDU received from /127.0.0.1, community: public
Object ID:
.1.3.6.1.4.1.140.625.360.1.60.32.102.100.48.98.101.102.100.99.102.52.
98.97.48.48.49.102.57.53.51.50.100.102.53.55.97.101.52.56.99.99.97.99
STRING: RUNNING
Object ID:
.1.3.6.1.4.1.140.625.360.1.35.32.102.100.48.98.101.102.100.99.102.52.
98.97.48.48.49.102.57.53.51.50.100.102.53.55.97.101.52.56.99.99.97.99
INTEGER: 7001

4.4 Commands for Testing Traps
Table 4–6 is an overview of commands that generate and receive traps for testing
purposes.

4.4.1 snmptrapd
Starts a daemon that receives traps and prints information about the trap.

4.4.1.1 Syntax
java snmptrapd [-d] [-c snmpCommunity] [-p TrapDestinationPort]

Table 4–7 describes the arguments that are passed to the snmptrapd command.

Table 4–5 snmpget Arguments

Argument Definition

object-instance-OID
[object-instance-OID]...

The object ID of an object instance. This command does not
accept OIDs for managed objects.

Start the value with '.'; otherwise, references are assumed to be
relative to the standard MIB, not the WebLogic Server MIB.

Table 4–6 Overview of Commands for Retrieving Information about WebLogic Server

Command Description

snmptrapd Starts a daemon that receives traps and prints information about the trap.

See Section 4.4.1, "snmptrapd."

snmpv1trap Constructs an SNMPv1 trap and distributes it to the SNMP manager or
trap daemon that is running on the specified host and listening on the
specified port number.

See Section 4.4.2, "snmpv1trap."

Commands for Testing Traps

4-8 Command Reference for Oracle WebLogic Server

4.4.1.2 Example
The following command starts a trap daemon and instructs it to listen for requests on
port 165. The daemon runs in the shell until you kill the process or exit the shell:

java snmptrapd -p 165

If the command succeeds, the trap daemon returns a blank line with a cursor. The trap
daemon waits in this state until it receives a trap, at which point it prints the trap.

4.4.2 snmpv1trap
Constructs an SNMPv1 trap and distributes it to the SNMP manager or trap daemon
that is running on the specified host and listening on the specified port number.

As part of invoking this command, you specify the value for fields within the trap
packet that you want to send. The values that you specify must resolve to traps that
are defined in the WebLogic Server MIB. For information about WebLogic Server
traps and the fields that trap packets require, refer to "OIDs for WebLogic Server
Notifications" in the SNMP Management Guide for Oracle WebLogic Server.

4.4.2.1 Syntax
java snmpv1trap [-d] [-c snmpCommunity] [-p TrapDestinationPort]
 TrapDestinationHost .1.3.6.1.4.140.625
 agent-addr generic-trap specific-trap timestamp
 [OID {INTEGER | STRING | GAUGE | TIMETICKS | OPAQUE |
 IPADDRESS | COUNTER} value] ...

Table 4–8 describes the arguments that are passed to the snmpv1trap command.

Table 4–7 snmptrapd Arguments

Argument Definition

-c snmpCommunity The community name that the SNMP agent (or snmpv1trap
command) used to generate the trap.

If you do not specify a value, the command assumes -c public.

-p TrapDestinationPort The port number on which the trap daemon receives traps.

If you do not specify a value, the command assumes -p 162.

Table 4–8 snmpv1trap Arguments

Argument Definition

-c snmpCommunity A community name for the trap. SNMP managers (or the
trap daemon) can access the trap only if they are
configured to use this community name.

If you do not specify a value, the command assumes -c
public.

-p TrapDestinationPort The port number on which the SNMP manager or trap
daemon is listening.

If you do not specify a value, the command assumes -p
162.

TrapDestinationHost The DNS name or IP address of the computer that hosts
the SNMP manager or trap daemon.

Commands for Testing Traps

WebLogic SNMP Agent Command-Line Reference (Deprecated) 4-9

4.4.2.2 Example
The following example generates a log message trap that contains the trapTime and
trapServerName variable bindings. It broadcasts the trap through port 165. For
example:

java snmpv1trap -p 165 localhost .1.3.6.1.4.140.625 localhost 6 60 1000
.1.3.6.1.4.1.140.625.100.5 STRING "2:00 pm" .1.3.6.1.4.1.140.625.100.10
STRING localhost

In the preceding example:

■ 6 is the generic trap value that specifies "other WebLogic Server traps."

■ 60 is the specific trap value that WebLogic Server uses to identify log message
traps.

.1.3.6.1.4.140.625 The value of the trap's enterprise field, which contains
the beginning portion of the OID for all WebLogic Server
traps.

agent-addr The value of the trap's agent address field.

This field is intended to indicate the computer on which
the trap was generated.

When using the snmpv1trap command to generate a
trap, you can specify any valid DNS name or IP address.

generic-trap The value of the trap's generic trap type field.

For a list of valid values, refer to "OIDs for WebLogic
Server Notifications" in the SNMP Management Guide for
Oracle WebLogic Server.

specific-trap The value of the trap's specific trap type field.

For a list of valid values, refer to "OIDs for WebLogic
Server Notifications" in the SNMP Management Guide for
Oracle WebLogic Server.

timestamp The value of the trap's timestamp field.

This field is intended to indicate the length of time
between the last re-initialization of the SNMP agent and
the time at which the trap was issued.

When using the snmpv1trap command to generate a
trap, any number of seconds is sufficient.

OID {INTEGER | STRING |
GAUGE | TIMETICKS | OPAQUE |
 IPADDRESS | COUNTER} value

(Optional) The value of the trap's variable bindings
field, which consists of name–value pairs that further
describe the trap notification.

For each name–value pair, specify an OID, a value type,
and a value.

For example, a log message trap includes a trapTime
binding to indicate the time at which the trap is
generated. To include this variable binding in the test trap
that you generate, specify the OID for the trapTime
variable binding, the STRING keyword, and a string that
represents the time:

.1.3.6.1.4.1.140.625.100.5 STRING "2:00 pm"

Table 4–8 (Cont.) snmpv1trap Arguments

Argument Definition

Commands for Testing Traps

4-10 Command Reference for Oracle WebLogic Server

■ .1.3.6.1.4.1.140.625.100.5 is the OID for the trapTime variable binding
and .1.3.6.1.4.1.140.625.100.10 is the OID for the trapServerName
variable binding.

The SNMP manager (or trap daemon) that is listening at port number 165 receives the
trap. If the trap daemon is listening on 165, it returns the following:

Trap received from: /127.0.0.1, community: public
Enterprise: .1.3.6.1.4.140.625
Agent: /127.0.0.1
TRAP_TYPE: 6
SPECIFIC NUMBER: 60
Time: 1000
VARBINDS:
Object ID: .1.3.6.1.4.1.140.625.100.5
STRING: 2:00 pm
Object ID: .1.3.6.1.4.1.140.625.100.10
STRING: localhost

4.4.3 Example: Using snmpv1trap to Send Traps to the Trap Daemon
To use the snmpv1trap command to generate WebLogic Server traps and receive
them through the trap daemon:

1. Open a command prompt (shell) and invoke the following script:

WL_HOME\server\bin\setWLSEnv.sh (or setWLSEnv.cmd on Windows)

where WL_HOME is the directory in which you installed WebLogic Server.

2. To start the trap daemon, enter the following command:

java snmptrapd

3. Open another shell and invoke the following script:

WL_HOME\server\bin\setWLSEnv.sh (or setWLSEnv.cmd on Windows)

4. To generate a trap, enter the following command:

java snmpv1trap localhost .1.3.6.1.4.140.625 localhost 6 60 1000

The snmpv1trap command generates a serverStart trap and broadcasts it through
port 162.

In the shell in which the trap daemon is running, the daemon prints the following:

Trap received from: /127.0.0.1, community: public
Enterprise: .1.3.6.1.4.140.625
Agent: /127.0.0.1
TRAP_TYPE: 6
SPECIFIC NUMBER: 60
Time: 1000
VARBINDS:

4.4.4 Example: Using the WebLogic SNMP Agent to Send Traps to the Trap Daemon
To use WebLogic SNMP agent to generate WebLogic Server traps and receive them
through the trap daemon:

1. Start the Administration Server for a domain and enable the SNMP agent.

See "Create SNMP agents" in the Oracle WebLogic Server Administration Console
Help.

Commands for Testing Traps

WebLogic SNMP Agent Command-Line Reference (Deprecated) 4-11

2. Create a trap destination to represent the trap daemon. Configure the trap
destination to use port 165. Keep all other default settings that the Administration
Console presents.

See "Create trap destinations" in the Oracle WebLogic Server Administration Console
Help.

3. Open a command prompt (shell) and invoke the following script:

WL_HOME\server\bin\setWLSEnv.sh (or setWLSEnv.cmd on Windows)

where WL_HOME is the directory in which you installed WebLogic Server.

4. To start the trap daemon, enter the following command:

java snmptrapd -p 165

5. Restart the Administration Server.

When the Administration Server starts, the SNMP agent generates a serverStart
trap and broadcasts it through port 165.

In the shell in which the trap daemon is running, the daemon prints the following:

Trap received from: /127.0.0.1, community: public
Enterprise: .1.3.6.1.4.140.625
Agent: /127.0.0.1
TRAP_TYPE: 6
SPECIFIC NUMBER: 65
Time: 1000
VARBINDS:

Commands for Testing Traps

4-12 Command Reference for Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 New and Changed Features in This Release

	2 Using the Oracle WebLogic Server Java Utilities
	2.1 appc
	2.2 AppletArchiver
	2.2.1 Syntax

	2.3 autotype (deprecated)
	2.4 BuildXMLGen
	2.5 CertGen
	2.5.1 Syntax
	2.5.2 Example

	2.6 ClientDeployer
	2.7 clientgen
	2.8 Conversion (deprecated)
	2.9 dbping
	2.9.1 Creating a DB2 Package with dbping
	2.9.2 Syntax
	2.9.3 Examples

	2.10 ddcreate (deprecated)
	2.11 DDInit
	2.11.1 WebInit
	2.11.2 EarInit (deprecated)

	2.12 Deployer
	2.13 der2pem
	2.13.1 Syntax
	2.13.2 Example

	2.14 Derby
	2.15 ejbc (deprecated)
	2.16 EJBGen
	2.17 encrypt
	2.17.1 Syntax
	2.17.2 Examples

	2.18 getProperty
	2.18.1 Syntax
	2.18.2 Example

	2.19 host2ior
	2.19.1 Syntax

	2.20 ImportPrivateKey
	2.20.1 Syntax
	2.20.2 Example

	2.21 jhtml2jsp
	2.21.1 Syntax

	2.22 jspc (deprecated)
	2.23 logToZip
	2.23.1 Syntax
	2.23.2 Examples

	2.24 MBean Commands
	2.25 MulticastTest
	2.25.1 Syntax
	2.25.2 Example

	2.26 myip
	2.26.1 Syntax
	2.26.2 Example

	2.27 pem2der
	2.27.1 Syntax
	2.27.2 Example

	2.28 rmic
	2.29 Schema
	2.29.1 Syntax
	2.29.2 Example

	2.30 servicegen (deprecated)
	2.31 SearchAndBuild
	2.31.1 Example

	2.32 source2wsdd (deprecated)
	2.33 system
	2.33.1 Syntax
	2.33.2 Example

	2.34 ValidateCertChain
	2.35 verboseToZip
	2.35.1 Syntax
	2.35.2 Example

	2.36 wlappc
	2.37 wlcompile
	2.38 wlconfig
	2.39 wldeploy
	2.40 wlpackage
	2.41 wlserver
	2.42 wsdl2Service
	2.43 wsdlgen (deprecated)
	2.44 wspackage (deprecated)

	3 weblogic.Server Command-Line Reference
	3.1 Required Environment and Syntax for weblogic.Server
	3.1.1 Environment
	3.1.2 Modifying the Classpath
	3.1.3 Syntax

	3.2 Default Behavior
	3.3 weblogic.Server Configuration Options
	3.3.1 JVM Parameters
	3.3.2 Location of Configuration Data
	3.3.2.1 Example

	3.3.3 Options that Override a Server's Configuration
	3.3.3.1 Server Communication
	3.3.3.2 SSL
	3.3.3.2.1 Setting Additional SSL Attributes

	3.3.3.3 Security
	3.3.3.4 Message Output and Logging
	3.3.3.4.1 Setting Logging Attributes

	3.3.3.5 Clusters
	3.3.3.6 Deployment
	3.3.3.7 Other Server Configuration Options

	3.4 Using the weblogic.Server Command Line to Start a Server Instance
	3.5 Using the weblogic.Server Command Line to Limit the WebLogic Server Run-Time Footprint
	3.6 Using the weblogic.Server Command Line to Create a Domain
	3.7 Verifying Attribute Values That Are Set on the Command Line

	4 WebLogic SNMP Agent Command-Line Reference (Deprecated)
	4.1 Required Environment for the SNMP Command-Line Interface
	4.2 Syntax and Common Arguments for the SNMP Command-Line Interface
	4.3 Commands for Retrieving WebLogic Server Managed Objects
	4.3.1 snmpwalk
	4.3.1.1 Syntax
	4.3.1.2 Example

	4.3.2 snmpgetnext
	4.3.2.1 Syntax
	4.3.2.2 Example

	4.3.3 snmpget
	4.3.3.1 Syntax
	4.3.3.2 Example

	4.4 Commands for Testing Traps
	4.4.1 snmptrapd
	4.4.1.1 Syntax
	4.4.1.2 Example

	4.4.2 snmpv1trap
	4.4.2.1 Syntax
	4.4.2.2 Example

	4.4.3 Example: Using snmpv1trap to Send Traps to the Trap Daemon
	4.4.4 Example: Using the WebLogic SNMP Agent to Send Traps to the Trap Daemon

