

Oracle® Fusion Middleware
Developing Applications for Oracle WebLogic Server

11g Release 1 (10.3.4)

E13706-04

November 2010

This document describes building WebLogic Server
e-commerce applications using the Java Platform, Enterprise
Edition 5 from Sun Microsystems.

Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server, 11g Release 1 (10.3.4)

E13706-04

Copyright © 2007, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xi

Documentation Accessibility ... xi
Conventions ... xi

1 Overview of WebLogic Server Application Development

1.1 Document Scope and Audience.. 1-1
1.2 WebLogic Server and the Java EE Platform.. 1-1
1.3 Overview of Java EE Applications and Modules... 1-3
1.4 Web Application Modules... 1-3
1.4.1 Servlets .. 1-3
1.4.2 JavaServer Pages .. 1-3
1.4.3 More Information on Web Application Modules ... 1-4
1.5 Enterprise JavaBean Modules ... 1-4
1.5.1 EJB Overview ... 1-4
1.5.2 EJBs and WebLogic Server ... 1-4
1.6 Connector Modules .. 1-5
1.7 Enterprise Applications ... 1-5
1.7.1 Java EE Programming Model... 1-5
1.7.2 Packaging and Deployment Overview .. 1-6
1.8 WebLogic Web Services ... 1-6
1.9 JMS and JDBC Modules ... 1-7
1.10 WebLogic Diagnostic Framework Modules ... 1-7
1.10.1 Using an External Diagnostics Descriptor ... 1-8
1.10.1.1 Defining an External Diagnostics Descriptor ... 1-8
1.11 XML Deployment Descriptors .. 1-8
1.11.1 Automatically Generating Deployment Descriptors... 1-12
1.11.2 EJBGen.. 1-12
1.11.3 Java-based Command-line Utilities ... 1-12
1.11.4 Upgrading Deployment Descriptors From Previous Releases of J2EE and WebLogic

Server 1-13
1.12 Deployment Plans.. 1-14
1.13 Development Software.. 1-14
1.13.1 Apache Ant .. 1-14
1.13.1.1 Using A Third-Party Version of Ant... 1-15
1.13.1.2 Changing the Ant Heap Size.. 1-15
1.13.2 Source Code Editor or IDE .. 1-16

iv

1.13.3 Database System and JDBC Driver .. 1-16
1.13.4 Web Browser ... 1-16
1.13.5 Third-Party Software.. 1-16

2 Using Ant Tasks to Configure and Use a WebLogic Server Domain

2.1 Overview of Configuring and Starting Domains Using Ant Tasks 2-1
2.2 Starting Servers and Creating Domains Using the wlserver Ant Task............................... 2-1
2.2.1 Basic Steps for Using wlserver... 2-2
2.2.2 Sample build.xml Files for wlserver ... 2-2
2.2.3 wlserver Ant Task Reference ... 2-3
2.3 Configuring a WebLogic Server Domain Using the wlconfig Ant Task 2-6
2.3.1 What the wlconfig Ant Task Does... 2-6
2.3.2 Basic Steps for Using wlconfig... 2-7
2.3.3 wlconfig Ant Task Reference ... 2-8
2.3.4 Main Attributes .. 2-8
2.3.5 Nested Elements .. 2-8
2.3.5.1 create... 2-9
2.3.5.2 delete .. 2-9
2.3.5.3 set .. 2-9
2.3.5.4 get... 2-10
2.3.5.5 query.. 2-10
2.3.5.6 invoke .. 2-11
2.4 Using the libclasspath Ant Task .. 2-11
2.4.1 libclasspath Task Definition .. 2-11
2.4.2 libclasspath Ant Task Reference... 2-12
2.4.3 Main libclasspath Attributes ... 2-12
2.4.4 Nested libclasspath Elements ... 2-12
2.4.4.1 librarydir ... 2-12
2.4.4.2 library .. 2-12
2.4.5 Example libclasspath Ant Task.. 2-13

3 Creating a Split Development Directory Environment

3.1 Overview of the Split Development Directory Environment .. 3-1
3.1.1 Source and Build Directories.. 3-2
3.1.2 Deploying from a Split Development Directory ... 3-3
3.1.3 Split Development Directory Ant Tasks .. 3-4
3.2 Using the Split Development Directory Structure: Main Steps ... 3-4
3.3 Organizing Java EE Components in a Split Development Directory.................................. 3-5
3.3.1 Source Directory Overview.. 3-5
3.3.2 Enterprise Application Configuration.. 3-8
3.3.3 Web Applications .. 3-8
3.3.4 EJBs .. 3-9
3.3.5 Important Notes Regarding EJB Descriptors.. 3-10
3.4 Organizing Shared Classes in a Split Development Directory ... 3-11
3.4.1 Shared Utility Classes .. 3-11
3.4.2 Third-Party Libraries.. 3-11
3.4.3 Class Loading for Shared Classes... 3-12

v

3.5 Generating a Basic build.xml File Using weblogic.BuildXMLGen................................... 3-12
3.5.1 weblogic.BuildXMLGen Syntax ... 3-13
3.6 Developing Multiple-EAR Projects Using the Split Development Directory 3-14
3.6.1 Organizing Libraries and Classes Shared by Multiple EARs..................................... 3-14
3.6.2 Linking Multiple build.xml Files.. 3-15
3.7 Best Practices for Developing WebLogic Server Applications.. 3-15

4 Building Applications in a Split Development Directory

4.1 Compiling Applications Using wlcompile.. 4-1
4.1.1 Using includes and excludes Properties... 4-2
4.1.2 wlcompile Ant Task Attributes.. 4-2
4.1.3 Nested javac Options .. 4-2
4.1.4 Setting the Classpath for Compiling Code .. 4-2
4.1.5 Library Element for wlcompile and wlappc.. 4-3
4.2 Building Modules and Applications Using wlappc .. 4-3
4.2.1 wlappc Ant Task Attributes ... 4-3
4.2.2 wlappc Ant Task Syntax ... 4-5
4.2.3 Syntax Differences between appc and wlappc.. 4-5
4.2.4 weblogic.appc Reference .. 4-5
4.2.5 weblogic.appc Syntax.. 4-5
4.2.6 weblogic.appc Options ... 4-5

5 Deploying and Packaging from a Split Development Directory

5.1 Deploying Applications Using wldeploy.. 5-1
5.2 Packaging Applications Using wlpackage.. 5-1
5.2.1 Archive versus Exploded Archive Directory... 5-1
5.2.2 wlpackage Ant Task Example.. 5-2
5.2.3 wlpackage Ant Task Attribute Reference .. 5-2

6 Developing Applications for Production Redeployment

6.1 What is Production Redeployment? .. 6-1
6.2 Supported and Unsupported Application Types .. 6-1
6.2.1 Additional Application Support.. 6-2
6.3 Programming Requirements and Conventions.. 6-2
6.3.1 Applications Should Be Self-Contained ... 6-2
6.3.2 Versioned Applications Access the Current Version JNDI Tree by Default............... 6-3
6.3.3 Security Providers Must Be Compatible .. 6-3
6.3.4 Applications Must Specify a Version Identifier .. 6-3
6.3.5 Applications Can Access Name and Identifier ... 6-3
6.3.6 Client Applications Use Same Version when Possible .. 6-3
6.4 Assigning an Application Version ... 6-4
6.4.1 Application Version Conventions ... 6-4
6.5 Upgrading Applications to Use Production Redeployment .. 6-4
6.6 Accessing Version Information... 6-5

vi

7 Using Java EE Annotations and Dependency Injection

7.1 Annotation Processing ... 7-1
7.1.1 Annotation Parsing.. 7-1
7.1.2 Deployment View of Annotation Configuration .. 7-2
7.1.3 Compiling Annotated Classes ... 7-2
7.1.4 Dynamic Annotation Updates ... 7-2
7.2 Dependency Injection of Resources ... 7-2
7.2.1 Application Life Cycle Annotation Methods... 7-3
7.3 Standard JDK Annotations .. 7-3
7.3.1 javax.annotation.PostConstruct... 7-4
7.3.2 javax.annotation.PreDestroy .. 7-4
7.3.3 javax.annotation.Resource.. 7-5
7.3.4 javax.annotation.Resources .. 7-6
7.4 Standard Security-Related JDK Annotations.. 7-6
7.4.1 javax.annotation.security.DeclareRoles.. 7-7
7.4.2 javax.annotation.security.DenyAll.. 7-7
7.4.3 javax.annotation.security.PermitAll ... 7-7
7.4.4 javax.annotation.security.RolesAllowed.. 7-7
7.4.5 javax.annotation.security.RunAs... 7-8

8 Understanding WebLogic Server Application Classloading

8.1 Java Classloading .. 8-1
8.1.1 Java Classloader Hierarchy .. 8-1
8.1.2 Loading a Class .. 8-2
8.1.3 prefer-web-inf-classes Element.. 8-2
8.1.4 Changing Classes in a Running Program .. 8-3
8.1.5 Configuring Class Caching .. 8-3
8.2 WebLogic Server Application Classloading ... 8-4
8.2.1 Overview of WebLogic Server Application Classloading ... 8-5
8.2.2 Application Classloader Hierarchy... 8-5
8.2.3 Custom Module Classloader Hierarchies .. 8-6
8.2.4 Declaring the Classloader Hierarchy.. 8-7
8.2.5 User-Defined Classloader Restrictions ... 8-9
8.2.5.1 Servlet Reloading Disabled ... 8-9
8.2.5.2 Nesting Depth ... 8-9
8.2.5.3 Module Types ... 8-9
8.2.5.4 Duplicate Entries ... 8-10
8.2.5.5 Interfaces... 8-10
8.2.5.6 Call-by-Value Semantics... 8-10
8.2.5.7 In-Flight Work.. 8-10
8.2.5.8 Development Use Only .. 8-10
8.2.6 Individual EJB Classloader for Implementation Classes .. 8-10
8.2.7 Application Classloading and Pass-by-Value or Reference 8-11
8.2.8 Using a Filtering Classloader .. 8-12
8.2.9 What is a Filtering ClassLoader.. 8-12
8.2.10 Configuring a FilteringClassLoader .. 8-13
8.2.11 Resource Loading Order.. 8-13

vii

8.3 Resolving Class References Between Modules and Applications 8-14
8.3.1 About Resource Adapter Classes ... 8-14
8.3.2 Packaging Shared Utility Classes ... 8-14
8.3.3 Manifest Class-Path .. 8-15
8.4 Using the Classloader Analysis Tool (CAT) .. 8-15
8.5 Sharing Applications and Modules By Using Java EE Libraries 8-16
8.6 Adding JARs to the Domain /lib Directory .. 8-16

9 Creating Shared Java EE Libraries and Optional Packages

9.1 Overview of Shared Java EE Libraries and Optional Packages ... 9-1
9.1.1 Optional Packages ... 9-2
9.1.2 Library Directories... 9-3
9.1.3 Versioning Support for Libraries... 9-3
9.1.4 Shared Java EE Libraries and Optional Packages Compared 9-4
9.1.5 Additional Information... 9-4
9.2 Creating Shared Java EE Libraries.. 9-5
9.2.1 Assembling Shared Java EE Library Files .. 9-5
9.2.2 Assembling Optional Package Class Files ... 9-6
9.2.3 Editing Manifest Attributes for Shared Java EE Libraries ... 9-6
9.2.4 Packaging Shared Java EE Libraries for Distribution and Deployment...................... 9-8
9.3 Referencing Shared Java EE Libraries in an Enterprise Application................................... 9-8
9.3.1 Overriding context-roots Within a Referenced Enterprise Library........................... 9-10
9.3.2 URIs for Shared Java EE Libraries Deployed As a Standalone Module................... 9-11
9.4 Referencing Optional Packages from a Java EE Application or Module......................... 9-11
9.5 Using weblogic.appmerge to Merge Libraries .. 9-13
9.5.1 Using weblogic.appmerge from the CLI ... 9-13
9.5.2 Using weblogic.appmerge as an Ant Task.. 9-14
9.6 Integrating Shared Java EE Libraries with the Split Development Directory Environment ...

9-14
9.7 Deploying Shared Java EE Libraries and Dependent Applications 9-14
9.8 Web Application Shared Java EE Library Information .. 9-15
9.9 Using WebApp Libraries With Web Applications.. 9-15
9.10 Accessing Registered Shared Java EE Library Information with LibraryRuntimeMBean

9-16
9.11 Order of Precedence of Modules When Referencing Shared Java EE Libraries............. 9-16
9.12 Best Practices for Using Shared Java EE Libraries .. 9-17

10 Programming Application Life Cycle Events

10.1 Understanding Application Life Cycle Events.. 10-1
10.2 Registering Events in weblogic-application.xml... 10-2
10.3 Programming Basic Life Cycle Listener Functionality ... 10-2
10.3.1 Configuring a Role-Based Application Life Cycle Listener.. 10-4
10.4 Examples of Configuring Life Cycle Events with and without the URI Parameter 10-4
10.5 Understanding Application Life Cycle Event Behavior During Re-deployment........... 10-5
10.6 Programming Application Version Life Cycle Events ... 10-5
10.6.1 Understanding Application Version Life Cycle Event Behavior............................... 10-5

viii

10.6.2 Types of Application Version Life Cycle Events.. 10-6
10.6.3 Example of Production Deployment Sequence When Using Application Version Life

Cycle Events 10-6

11 Programming Context Propagation

11.1 Understanding Context Propagation.. 11-1
11.2 Programming Context Propagation: Main Steps .. 11-2
11.3 Programming Context Propagation in a Client... 11-2
11.4 Programming Context Propagation in an Application .. 11-4

12 Programming JavaMail with WebLogic Server

12.1 Overview of Using JavaMail with WebLogic Server Applications 12-1
12.2 Understanding JavaMail Configuration Files.. 12-2
12.3 Configuring JavaMail for WebLogic Server... 12-2
12.4 Sending Messages with JavaMail .. 12-2
12.5 Reading Messages with JavaMail .. 12-3

13 Threading and Clustering Topics

13.1 Using Threads in WebLogic Server... 13-1
13.2 Using the Work Manager API for Lower-Level Threading... 13-2
13.3 Programming Applications for WebLogic Server Clusters ... 13-2

A Enterprise Application Deployment Descriptor Elements

A.1 weblogic-application.xml Deployment Descriptor Elements ... A-1
A.1.1 weblogic-application .. A-1
A.1.2 ejb .. A-7
A.1.2.1 entity-cache... A-8
A.1.3 max-cache-size .. A-9
A.1.4 xml... A-10
A.1.4.1 parser-factory ... A-10
A.1.4.2 entity-mapping .. A-11
A.1.5 jdbc-connection-pool .. A-12
A.1.5.1 connection-factory ... A-12
A.1.5.2 pool-params.. A-13
A.1.5.3 driver-params... A-18
A.1.6 security ... A-20
A.1.7 application-param... A-21
A.1.8 classloader-structure .. A-21
A.1.9 listener .. A-21
A.1.10 singleton-service ... A-22
A.1.11 startup... A-22
A.1.12 shutdown ... A-23
A.1.13 work-manager ... A-23
A.1.14 session-descriptor ... A-25
A.1.15 library-ref ... A-27
A.1.16 library-context-root-override .. A-28

ix

A.1.17 fast-swap .. A-28
A.2 weblogic-application.xml Schema... A-29
A.3 application.xml Schema .. A-29

B wldeploy Ant Task Reference

B.1 Overview of the wldeploy Ant Task... B-1
B.2 Basic Steps for Using wldeploy.. B-1
B.3 Sample build.xml Files for wldeploy .. B-2
B.4 wldeploy Ant Task Attribute Reference... B-3
B.4.1 Main Attributes ... B-3
B.4.2 Nested <files> Child Element ... B-8

x

xi

Preface

This preface describes the document accessibility features and conventions used in this
guide—Developing Applications for Oracle WebLogic Server.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

xii

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

1

Overview of WebLogic Server Application Development 1-1

1Overview of WebLogic Server Application
Development

The following sections provide an overview of WebLogic Server applications and basic
concepts.

■ Section 1.1, "Document Scope and Audience"

■ Section 1.2, "WebLogic Server and the Java EE Platform"

■ Section 1.3, "Overview of Java EE Applications and Modules"

■ Section 1.4, "Web Application Modules"

■ Section 1.5, "Enterprise JavaBean Modules"

■ Section 1.6, "Connector Modules"

■ Section 1.7, "Enterprise Applications"

■ Section 1.8, "WebLogic Web Services"

■ Section 1.9, "JMS and JDBC Modules"

■ Section 1.10, "WebLogic Diagnostic Framework Modules"

■ Section 1.11, "XML Deployment Descriptors"

■ Section 1.12, "Deployment Plans"

■ Section 1.13, "Development Software"

1.1 Document Scope and Audience
This document is written for application developers who want to build WebLogic
Server e-commerce applications using the Java Platform, Enterprise Edition 5 from Sun
Microsystems. It is assumed that readers know Web technologies, object-oriented
programming techniques, and the Java programming language.

WebLogic Server applications are created by Java programmers, Web designers, and
application assemblers. Programmers and designers create modules that implement
the business and presentation logic for the application. Application assemblers
assemble the modules into applications that are ready to deploy on WebLogic Server.

1.2 WebLogic Server and the Java EE Platform
WebLogic Server implements Java Platform, Enterprise Edition (Java EE) Version 5.0
technologies (see http://java.sun.com/javaee/reference/). Java EE is the
standard platform for developing multi-tier Enterprise applications based on the Java

WebLogic Server and the Java EE Platform

1-2 Developing Applications for Oracle WebLogic Server

programming language. The technologies that make up Java EE were developed
collaboratively by Sun Microsystems and other software vendors.

An important aspect of the Java EE programming model is the introduction of
metadata annotations. Annotations simplify the application development process by
allowing a developer to specify within the Java class itself how the application
component behaves in the container, requests for dependency injection, and so on.
Annotations are an alternative to deployment descriptors that were required by older
versions of Enterprise applications (J2EE 1.4 and earlier).

According to Sun, "the focus in Java EE 5 is ease of development. With Java EE 5, there
is less code to write – much of the boilerplate code has been removed, defaults are
used whenever possible, and annotations are used extensively to reduce the need for
deployment descriptors."

■ EJB 3.0 makes it much easier to program an EJB, in particular by reducing the
number of required programming artifacts and introducing a set of EJB-specific
metadata annotations that make programming the bean file easier and more
intuitive. Another goal of EJB 3.0 is to standardize the persistence framework and
reduce the complexity of the entity bean programming model and object-relational
(O/R) mapping model. WebLogic Server continues to support Version 2.1 of the
EJB specification.

■ Java EE 5 includes simplified Web Services support and the latest web services
APIs, making it an ideal implementation platform for Service-Oriented
Architectures (SOA).

■ Constructing web applications is made easier with JavaServer Faces (JSF)
technology and the JSP Standard Tag Library (JSTL). Java EE 5 supports rich
thin-client technologies such as AJAX, for building applications for Web 2.0.

WebLogic Server Java EE applications are based on standardized, modular
components. WebLogic Server provides a complete set of services for those modules
and handles many details of application behavior automatically, without requiring
programming. Java EE defines module behaviors and packaging in a generic, portable
way, postponing run-time configuration until the module is actually deployed on an
application server.

Java EE includes deployment specifications for Web applications, EJB modules, Web
Services, Enterprise applications, client applications, and connectors. Java EE does not
specify how an application is deployed on the target server—only how a standard
module or application is packaged. For each module type, the specifications define the
files required and their location in the directory structure.

Java is platform independent, so you can edit and compile code on any platform, and
test your applications on development WebLogic Servers running on other platforms.
For example, it is common to develop WebLogic Server applications on a PC running
Windows or Linux, regardless of the platform where the application is ultimately
deployed.

For more information, refer to the Java EE specification at:
http://java.sun.com/javaee/5/docs/api/

Note: Because Java EE is backward compatible, you can still run Java EE
applications on WebLogic Server versions 8.1 and higher.

Web Application Modules

Overview of WebLogic Server Application Development 1-3

1.3 Overview of Java EE Applications and Modules
A WebLogic Server Java EE application consists of one of the following modules or
applications running on WebLogic Server:

■ Web application modules—HTML pages, servlets, JavaServer Pages, and related
files. See Section 1.4, "Web Application Modules".

■ Enterprise Java Beans (EJB) modules—entity beans, session beans, and
message-driven beans. See Section 1.5, "Enterprise JavaBean Modules".

■ Connector modules—resource adapters. See Section 1.6, "Connector Modules".

■ Enterprise applications—Web application modules, EJB modules, resource
adapters and Web Services packaged into an application. See Section 1.7,
"Enterprise Applications".

■ Web Services—See Section 1.8, "WebLogic Web Services".

A WebLogic application can also include the following WebLogic-specific modules:

■ JDBC and JMS modules—See Section 1.9, "JMS and JDBC Modules".

■ WebLogic Diagnostic FrameWork (WLDF) modules—See Section 1.10, "WebLogic
Diagnostic Framework Modules".

1.4 Web Application Modules
A Web application on WebLogic Server includes the following files:

■ At least one servlet or JSP, along with any helper classes.

■ Optionally, a web.xml deployment descriptor, a Java EE standard XML document
that describes the contents of a WAR file.

■ Optionally, a weblogic.xml deployment descriptor, an XML document
containing WebLogic Server-specific elements for Web applications.

■ A Web application can also include HTML and XML pages with supporting files
such as images and multimedia files.

1.4.1 Servlets
Servlets are Java classes that execute in WebLogic Server, accept a request from a
client, process it, and optionally return a response to the client. An HttpServlet is most
often used to generate dynamic Web pages in response to Web browser requests.

1.4.2 JavaServer Pages
JavaServer Pages (JSPs) are Web pages coded with an extended HTML that makes it
possible to embed Java code in a Web page. JSPs can call custom Java classes, known
as tag libraries, using HTML-like tags. The appc compiler compiles JSPs and
translates them into servlets. WebLogic Server automatically compiles JSPs if the
servlet class file is not present or is older than the JSP source file. See Section 4.2,
"Building Modules and Applications Using wlappc".

You can also precompile JSPs and package the servlet class in a Web application
(WAR) file to avoid compiling in the server. Servlets and JSPs may require additional
helper classes that must also be deployed with the Web application.

Enterprise JavaBean Modules

1-4 Developing Applications for Oracle WebLogic Server

1.4.3 More Information on Web Application Modules
See the following documentation:

■ Section 3.3, "Organizing Java EE Components in a Split Development Directory".

■ Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

■ Programming JSP Tag Extensions for Oracle WebLogic Server

1.5 Enterprise JavaBean Modules
Enterprise JavaBeans (EJBs) beans are server-side Java modules that implement a
business task or entity and are written according to the EJB specification. There are
three types of EJBs: session beans, entity beans, and message-driven beans.

Enterprise JavaBeans (EJB) 3.0 is a Java EE 5 technology for the development and
deployment of component-based business applications. Although EJB 2.X is a
powerful and useful technology, the programming model was complex and confusing,
requiring the creation of multiple Java files and deployment descriptors for even the
simplest EJB. This complexity hindered the wide adoption of EJBs.

Therefore, one of the central goals of version 3.0 of the EJB specification is to make it
easier to program an EJB, in particular by reducing the number of required
programming artifacts and introducing a set of EJB-specific metadata annotations that
make programming the bean file easier and more intuitive. Another goal of the EJB 3.0
specification was to standardize the persistence framework and reduce the complexity
of the entity bean programming model and object-relational (O/R) mapping model.

For more information on Enterprise JavaBeans 3.0, see "Programming WebLogic
Enterprise JavaBeans, Version 3.0 for Oracle WebLogic Server".

For more information on Enterprise JavaBeans 2.X, see "Understanding Enterprise
JavaBeans".

1.5.1 EJB Overview
Session beans execute a particular business task on behalf of a single client during a
single session. Session beans can be stateful or stateless, but are not persistent; when a
client finishes with a session bean, the bean goes away.

Entity beans represent business objects in a data store, usually a relational database
system. Persistence—loading and saving data—can be bean-managed or
container-managed. More than just an in-memory representation of a data object,
entity beans have methods that model the behaviors of the business objects they
represent. Entity beans can be accessed concurrently by multiple clients and they are
persistent by definition.

The container creates an instance of the message-driven bean or it assigns one from a
pool to process the message. When the message is received in the JMS destination, the
message-driven bean assigns an instance of itself from a pool to process the message.
Message-driven beans are not associated with any client. They simply handle
messages as they arrive.

1.5.2 EJBs and WebLogic Server
Java EE cleanly separates the development and deployment roles to ensure that
modules are portable between EJB servers that support the EJB specification.
Deploying an EJB in WebLogic Server requires running the WebLogic Server appc

Enterprise Applications

Overview of WebLogic Server Application Development 1-5

compiler to generate classes that enforce the EJB security, transaction, and life cycle
policies. See Section 4.2, "Building Modules and Applications Using wlappc".

The Java EE-specified deployment descriptor, ejb-jar.xml, describes the enterprise
beans packaged in an EJB application. It defines the beans' types, names, and the
names of their home and remote interfaces and implementation classes. The
ejb-jar.xml deployment descriptor defines security roles for the beans, and
transactional behaviors for the beans' methods.

Additional deployment descriptors provide WebLogic-specific deployment
information. A weblogic-cmp-rdbms-jar.xml deployment descriptor unique to
container-managed entity beans maps a bean to tables in a database. The
weblogic-ejb-jar.xml deployment descriptor supplies additional information
specific to the WebLogic Server environment, such as JNDI bind names, clustering,
and cache configuration.

1.6 Connector Modules
Connectors (also known as resource adapters) contain the Java, and if necessary, the
native modules required to interact with an Enterprise Information System (EIS). A
resource adapter deployed to the WebLogic Server environment enables Java EE
applications to access a remote EIS. WebLogic Server application developers can use
HTTP servlets, JavaServer Pages (JSPs), Enterprise Java Beans (EJBs), and other APIs to
develop integrated applications that use the EIS data and business logic.

To deploy a resource adapter to WebLogic Server, you must first create and configure
WebLogic Server-specific deployment descriptor, weblogic-ra.xml file, and add
this to the deployment directory. Resource adapters can be deployed to WebLogic
Server as standalone modules or as part of an Enterprise application. See Section 1.7,
"Enterprise Applications".

For more information on connectors, see Programming Resource Adapters for Oracle
WebLogic Server.

1.7 Enterprise Applications
An Enterprise application consists of one or more Web application modules, EJB
modules, and resource adapters. It might also include a client application. An
Enterprise application can be optionally defined by an application.xml file, which
was the standard J2EE deployment descriptor for Enterprise applications.

1.7.1 Java EE Programming Model
An important aspect of the Java EE programming model is the introduction of
metadata annotations. Annotations simplify the application development process by
allowing a developer to specify within the Java class itself how the application behaves
in the container, requests for dependency injection, and so on. Annotations are an
alternative to deployment descriptors that were required by older versions of
Enterprise applications (1.4 and earlier).

With Java EE annotations, the standard application.xml and web.xml
deployment descriptors are optional. The Java EE programming model uses the JDK
5.0 annotations feature (see http://java.sun.com/javaee/5/docs/api/) for
Web containers, such as EJBs, servlets, Web applications, and JSPs. See Chapter 7,
"Using Java EE Annotations and Dependency Injection."

If the application includes WebLogic Server-specific extensions, the application is
further defined by a weblogic-application.xml file. Enterprise applications that

WebLogic Web Services

1-6 Developing Applications for Oracle WebLogic Server

include a client module will also have a client-application.xml deployment
descriptor and a WebLogic run-time client application deployment descriptor. See
Appendix A, "Enterprise Application Deployment Descriptor Elements."

1.7.2 Packaging and Deployment Overview
For both production and development purposes, Oracle recommends that you
package and deploy even standalone Web applications, EJBs, and resource adapters as
part of an Enterprise application. Doing so allows you to take advantage of Oracle's
split development directory structure, which greatly facilities application
development. See Chapter 3, "Creating a Split Development Directory Environment."

An Enterprise application consists of Web application modules, EJB modules, and
resource adapters. It can be packaged as follows:

■ For development purposes, Oracle recommends the WebLogic split development
directory structure. Rather than having a single archived EAR file or an exploded
EAR directory structure, the split development directory has two parallel
directories that separate source files and output files. This directory structure is
optimized for development on a single WebLogic Server instance. See Chapter 3,
"Creating a Split Development Directory Environment." Oracle provides the
wlpackage Ant task, which allows you to create an EAR without having to use
the JAR utility; this is exclusively for the split development directory structure. See
Section 5.2, "Packaging Applications Using wlpackage".

■ For development purposes, Oracle further recommends that you package
standalone Web applications and Enterprise JavaBeans (EJBs) as part of an
Enterprise application, so that you can take advantage of the split development
directory structure. See Section 3.3, "Organizing Java EE Components in a Split
Development Directory".

■ For production purposes, Oracle recommends the exploded (unarchived) directory
format. This format enables you to update files without having to redeploy the
application. To update an archived file, you must unarchive the file, update it, then
rearchive and redeploy it.

■ You can choose to package your application as a JAR archived file using the jar
utility with an .ear extension. Archived files are easier to distribute and take up
less space. An EAR file contains all of the JAR, WAR, and RAR module archive
files for an application and an XML descriptor that describes the bundled
modules. See Section 5.2, "Packaging Applications Using wlpackage".

The optional META-INF/application.xml deployment descriptor contains an
element for each Web application, EJB, and connector module, as well as additional
elements to describe security roles and application resources such as databases. If this
descriptor is present the WebLogic deployer picks the list of modules from this
descriptor. However if this descriptor is not present, the container guesses the
modules from the annotations defined on the POJO (plain-old-Java-object) classes. See
Appendix A, "Enterprise Application Deployment Descriptor Elements."

1.8 WebLogic Web Services
Web Services can be shared by and used as modules of distributed Web-based
applications. They commonly interface with existing back-end applications, such as
customer relationship management systems, order-processing systems, and so on. Web
Services can reside on different computers and can be implemented by vastly different
technologies, but they are packaged and transported using standard Web protocols,
such as HTTP, thus making them easily accessible by any user on the Web.

WebLogic Diagnostic Framework Modules

Overview of WebLogic Server Application Development 1-7

A Web Service consists of the following modules, at a minimum:

■ A Web Service implementation hosted by a server on the Web. WebLogic Web
Services are hosted by WebLogic Server. A Web Service module may include either
Java classes or EJBs that implement the Web Service. Web Services are packaged
either as Web application archives (WARs) or EJB modules (JARs), depending on
the implementation.

■ A standard for transmitting data and Web Service invocation calls between the
Web Service and the user of the Web Service. WebLogic Web Services use Simple
Object Access Protocol (SOAP) 1.1 as the message format and HTTP as the
connection protocol.

■ A standard for describing the Web Service to clients so they can invoke it.
WebLogic Web Services use Web Services Description Language (WSDL) 1.1, an
XML-based specification, to describe themselves.

■ A standard for clients to invoke Web services—JAX-WS or JAX-RPC. See Getting
Started With JAX-WS Web Services for Oracle WebLogic Server or Getting Started With
JAX-RPC Web Services for Oracle WebLogic Server, respectively.

■ A standard for finding and registering the Web Service (UDDI).

For more information about WebLogic Web Services and the standards that are
supported, see Introducing WebLogic Web Services for Oracle WebLogic Server.

1.9 JMS and JDBC Modules
JMS and JDBC configurations are stored as modules, defined by an XML file that
conforms to the weblogic-jms.xsd and jdbc-data-source.xsd schema,
respectively. These modules are similar to standard Java EE modules. An
administrator can create and manage JMS and JDBC modules as global system
resources, as modules packaged with a Java EE application (as a packaged resource),
or as standalone modules that can be made globally available.

With modular deployment of JMS and JDBC resources, you can migrate your
application and the required JMS or JDBC configuration from environment to
environment, such as from a testing environment to a production environment,
without opening an enterprise application file (such as an EAR file) or a JMS or JDBC
standalone module, and without extensive manual JMS or JDBC reconfiguration.

Application developers create application modules in an enterprise-level IDE or
another development tool that supports editing of XML files, then package the JMS or
JDBC modules with an application and pass the application to a WebLogic
Administrator to deploy.

For more information, see:

■ "Configuring JMS Application Modules for Deployment"

■ "Configuring JDBC Application Modules for Deployment"

1.10 WebLogic Diagnostic Framework Modules
The WebLogic Diagnostic Framework (WLDF) provides features for generating,
gathering, analyzing, and persisting diagnostic data from WebLogic Server instances
and from applications deployed to server instances. For server-scoped diagnostics,
some WLDF features are configured as part of the configuration for the domain. Other
features are configured as system resource descriptors that can be targeted to servers

XML Deployment Descriptors

1-8 Developing Applications for Oracle WebLogic Server

(or clusters). For application-scoped diagnostics, diagnostic features are configured as
resource descriptors for the application.

Application-scoped instrumentation is configured and deployed as a diagnostic
module, which is similar to a diagnostic system module. However, an application
module is configured in an XML configuration file named
weblogic-diagnostics.xml which is packaged with the application archive.

For detailed instructions for configuring instrumentation for applications, see
"Configuring Application-Scoped Instrumentation".

1.10.1 Using an External Diagnostics Descriptor
WLS also supports the use of an external diagnostics descriptor so you can integrate
diagnostic functionality into an application that has not imported diagnostic
descriptors. This feature supports the deployment view and deployment of an
application or a module, detecting the presence of an external diagnostics descriptor if
the descriptor is defined in your deployment plan (plan.xml).

1.10.1.1 Defining an External Diagnostics Descriptor
First, define the diagnostic descriptor as external and configure its URI in the
plan.xml file. For example:

<module-override>
 <module-name>reviewService.ear</module-name>
 <module-type>ear</module-type>
 </module-descriptor>
 <module-descriptor external="true">
 <root-element>wldf-resource</root-element>
 <uri>META-INF/weblogic-diagnostics.xml</uri>
 ...
 ...
</module-override>
<config-root>D:\plan</config-root>

Then place the external diagnostic descriptor file under the URI. Using the example
above, you would place the descriptor file under d:\plan\ META-INF.

1.11 XML Deployment Descriptors
A deployment configuration refers to the process of defining the deployment descriptor
values required to deploy an Enterprise application to a particular WebLogic Server
domain. The deployment configuration for an application or module is stored in three
types of XML document: Java EE deployment descriptors, WebLogic Server
descriptors, and WebLogic Server deployment plans. This section describes the Java
EE and WebLogic-specific deployment descriptors. See Section 1.12, "Deployment
Plans" for information on deployment plans.

The Java EE programming model uses the JDK 5.0 annotations feature for Web
containers (see http://java.sun.com/javaee/5/docs/api/), such as EJBs,
servlets, Web applications, and JSPs. Annotations simplify the application
development process by allowing a developer to specify within the Java class itself
how the component behaves in the container, requests for dependency injection, and
so on. Annotations are an alternative to deployment descriptors that were required by
older versions of Web applications (2.4 and earlier), Enterprise applications (1.4 and
earlier), and Enterprise JavaBeans (2.x and earlier). See Chapter 7, "Using Java EE
Annotations and Dependency Injection."

XML Deployment Descriptors

Overview of WebLogic Server Application Development 1-9

However, Enterprise applications fully support the use of deployment descriptors,
even though the standard J2EE ones are not required. For example, you may prefer to
use the old EJB 2.x programming model, or might want to allow further customizing
of the EJB at a later development or deployment stage; in these cases you can create
the standard deployment descriptors in addition to, or instead of, the metadata
annotations.

Modules and applications have deployment descriptors—XML documents—that
describe the contents of the directory or JAR file. Deployment descriptors are text
documents formatted with XML tags. The Java EE specifications define standard,
portable deployment descriptors for Java EE modules and applications. Oracle defines
additional WebLogic-specific deployment descriptors for deploying a module or
application in the WebLogic Server environment.

Table 1–1 lists the types of modules and applications and their Java EE-standard and
WebLogic-specific deployment descriptors.

Note: The XML schemas for the WebLogic deployment descriptors listed in
the following table include elements from the
http://xmlns.oracle.com/weblogic/weblogic-javaee/1.2/weblo
gic-javaee.xsd schema, which describes common elements shared among
all WebLogic-specific deployment descriptors.

For the most current schema information, see the Oracle WebLogic Server
Schema Home page at
http://www.oracle.com/technology/weblogic/index.html.

Table 1–1 Java EE and WebLogic Deployment Descriptors

Module or Application Scope Deployment Descriptors

Web Application Java EE web.xml

See the Sun Microsystems Servlet 2.5 Schema at
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd.

WebLogic weblogic.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.2
/weblogic-web-app.xsd

See "weblogic.xml Deployment Descriptor Elements" in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

Enterprise Bean 3.0 Java EE ejb-jar.xml

See the Sun Microsystems EJB 3.0 Schema at
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd

XML Deployment Descriptors

1-10 Developing Applications for Oracle WebLogic Server

WebLogic weblogic-ejb-jar.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.2
/weblogic-ejb-jar.xsd

weblogic-rdbms-jar.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/1
.2/weblogic-rdbms-jar.xsd

persistence-configuration.xml

Schema:
http://xmlns.oracle.com/weblogic/persistence-configur
ation/1.0/persistence-configuration.xsd

See Programming WebLogic Enterprise JavaBeans, Version 3.0 for Oracle
WebLogic Server.

Enterprise Bean 2.1 J2EE ejb-jar.xml

See the Sun Microsystems EJB 2.1 Schema at
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd

WebLogic weblogic-ejb-jar.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.2
/weblogic-ejb-jar.xsd

See "The weblogic-ejb-jar.xml Deployment Descriptor" in Programming
WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

weblogic-cmp-rdbms-jar.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/1
.2/weblogic-rdbms-jar.xsd

See "The weblogic-cmp-rdbms-jar.xml Deployment Descriptor" in
Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

Web Services Java EE webservices.xml

See the Sun Microsystems Web Services 1.2 Schema at
http://java.sun.com/xml/ns/javaee/javaee_web_
services_1_2.xsd.

Table 1–1 (Cont.) Java EE and WebLogic Deployment Descriptors

Module or Application Scope Deployment Descriptors

XML Deployment Descriptors

Overview of WebLogic Server Application Development 1-11

WebLogic weblogic-webservices.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-webservices
/1.1/weblogic-webservices.xsd

weblogic-wsee-clientHandlerChain.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-wsee-client
HandlerChain/1.0/weblogic-wsee-clientHandlerChain.xsd

weblogic-webservices-policy.xml

Schema:
http://xmlns.oracle.com/weblogic/webservice-policy-re
f/1.1/webservice-policy-ref.xsd

weblogic-wsee-standaloneclient.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-wsee-standa
loneclient/1.0/weblogic-wsee-standaloneclient.xsd

See "WebLogic Web Service Deployment Descriptor Element Reference"
in WebLogic Web Services Reference for Oracle WebLogic Server.

Resource Adapter Java EE ra.xml

See the Sun Microsystems Connector 1.5 Schema at
http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd.

WebLogic weblogic-ra.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-connector/1
.0/weblogic-connector.xsd

See "weblogic-ra.xml Schema" in Programming Resource Adapters for
Oracle WebLogic Server.

Enterprise Application Java EE application.xml

See the Sun Microsystems Application 5 Schema at
http://java.sun.com/xml/ns/javaee/application_5.xsd.

WebLogic weblogic-application.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-application
/1.2/weblogic-application.xsd

See Section A.1, "weblogic-application.xml Deployment Descriptor
Elements".

Client Application Java EE application-client.xml

See the Sun Microsystems Application Client 5 Schema at
http://java.sun.com/xml/ns/javaee/application-client_
5.xsd.

WebLogic application-client.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-application
-client/1.2/weblogic-application-client.xsd

See "Developing a J2EE Application Client (Thin Client)" in Programming
Stand-alone Clients for Oracle WebLogic Server.

Table 1–1 (Cont.) Java EE and WebLogic Deployment Descriptors

Module or Application Scope Deployment Descriptors

XML Deployment Descriptors

1-12 Developing Applications for Oracle WebLogic Server

When you package a module or application, you create a directory to hold the
deployment descriptors—WEB-INF or META-INF—and then create the XML
deployment descriptors in that directory.

1.11.1 Automatically Generating Deployment Descriptors
WebLogic Server provides a variety of tools for automatically generating deployment
descriptors. These are discussed in the sections that follow.

1.11.2 EJBGen
EJBGen is an Enterprise JavaBeans 2.x code generator or command-line tool that uses
Javadoc markup to generate EJB deployment descriptor files. You annotate your Bean
class file with Javadoc tags and then use EJBGen to generate the Remote and Home
classes and the deployment descriptor files for an EJB application, reducing to a single
file you need to edit and maintain your EJB .java and descriptor files. See "EJBGen
Reference" in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

1.11.3 Java-based Command-line Utilities
WebLogic Server includes a set of Java-based command-line utilities that automatically
generate both standard Java EE and WebLogic-specific deployment descriptors for
Web applications and Enterprise applications.

JMS Module WebLogic FileName-jms.xml, where FileName can be anything you want.

Schema:
http://xmlns.oracle.com/weblogic/weblogic-jms/1.2/web
logic-jms.xsd

See "Configuring JMS Application Modules for Deployment" in
Configuring and Managing JMS for Oracle WebLogic Server.

JDBC Module WebLogic FileName-jdbc.xml, where FileName can be anything you want.

Schema:
http://xmlns.oracle.com/weblogic/jdbc-data-source/1.0
/jdbc-data-source.xsd

See "Configuring JDBC Application Modules for Deployment" in
Configuring and Managing JDBC for Oracle WebLogic Server.

Deployment Plan WebLogic plan.xml

Schema:
http://xmlns.oracle.com/weblogic/deployment-plan/1.0/
deployment-plan.xsd

See "Understanding WebLogic Server Deployment" in Deploying
Applications to Oracle WebLogic Server.

WLDF Module WebLogic weblogic-diagnostics.xml

Schema:
http://xmlns.oracle.com/weblogic/weblogic-diagnostics
/1.0/weblogic-diagnostics.xsd

See "Deploying WLDF Application Modules" in Configuring and Using
the Diagnostics Framework for Oracle WebLogic Server.

Table 1–1 (Cont.) Java EE and WebLogic Deployment Descriptors

Module or Application Scope Deployment Descriptors

XML Deployment Descriptors

Overview of WebLogic Server Application Development 1-13

These command-line utilities examine the classes you have assembled in a staging
directory and build the appropriate deployment descriptors based on the servlet
classes, and so on. These utilities include:

■ java weblogic.marathon.ddinit.EarInit — automatically generates the
deployment descriptors for Enterprise applications.

■ java weblogic.marathon.ddinit.WebInit — automatically generates the
deployment descriptors for Web applications.

For an example of DDInit, assume that you have created a directory called c:\stage
that contains the JSP files and other objects that make up a Web application but you
have not yet created the web.xml and weblogic.xml deployment descriptors. To
automatically generate them, execute the following command:

 prompt> java weblogic.marathon.ddinit.WebInit c:\stage

The utility generates the web.xml and weblogic.xml deployment descriptors and
places them in the WEB-INF directory, which DDInit will create if it does not already
exist.

1.11.4 Upgrading Deployment Descriptors From Previous Releases of J2EE and
WebLogic Server

So that your applications can take advantage of the features in the current Java EE
specification and release of WebLogic Server, Oracle recommends that you always
upgrade deployment descriptors when you migrate applications to a new release of
WebLogic Server.

To upgrade the deployment descriptors in your J2EE applications and modules, first
use the weblogic.DDConverter tool to generate the upgraded descriptors into a
temporary directory. Once you have inspected the upgraded deployment descriptors
to ensure that they are correct, repackage your J2EE module archive or exploded
directory with the new deployment descriptor files.

Invoke weblogic.DDConverter with the following command:

prompt> java weblogic.DDConverter [options] archive_file_or_directory

where archive_file_or_directory refers to the archive file (EAR, WAR, JAR, or
RAR) or exploded directory of your Enterprise application, Web application, EJB, or
resource adapter.

The following table describes the weblogic.DDConverter command options.

The following example shows how to use the weblogic.DDConverter command to
generate upgraded deployment descriptors for the my.ear Enterprise application into
the subdirectory tempdir in the current directory:

prompt> java weblogic.DDConverter -d tempdir my.ear

Option Description

-d <dir> Specifies the directory to which descriptors are written.

-help Prints the standard usage message.

-quiet Turns off output messages except error messages.

-verbose Turns on additional output used for debugging.

Deployment Plans

1-14 Developing Applications for Oracle WebLogic Server

1.12 Deployment Plans
A deployment plan is an XML document that defines an application's WebLogic Server
deployment configuration for a specific WebLogic Server environment. A deployment
plan resides outside of an application's archive file, and can apply changes to
deployment properties stored in the application's existing WebLogic Server
deployment descriptors. Administrators use deployment plans to easily change an
application's WebLogic Server configuration for a specific environment without
modifying existing Java EE or WebLogic-specific deployment descriptors. Multiple
deployment plans can be used to reconfigure a single application for deployment to
multiple, differing WebLogic Server environments.

After programmers have finished programming an application, they export its
deployment configuration to create a custom deployment plan that administrators
later use for deploying the application into new WebLogic Server environments.
Programmers distribute both the application deployment files and the custom
deployment plan to deployers (for example, testing, staging, or production
administrators) who use the deployment plan as a blueprint for configuring the
application for their environment.

WebLogic Server provides the following tools to help programmers export an
application's deployment configuration:

■ weblogic.PlanGenerator creates a template deployment plan with null
variables for selected categories of WebLogic Server deployment descriptors. This
tool is recommended if you are beginning the export process and you want to
create a template deployment plan with null variables for an entire class of
deployment descriptors.

■ The Administration Console updates or creates new deployment plans as
necessary when you change configuration properties for an installed application.
You can use the Administration Console to generate a new deployment plan or to
add or override variables in an existing plan. The Administration Console
provides greater flexibility than weblogic.PlanGenerator, because it allows
you to interactively add or edit individual deployment descriptor properties in the
plan, rather than export entire categories of descriptor properties.

For complete and detailed information about creating and using deployment plans,
see:

■ "Understanding WebLogic Server Deployment"

■ "Exporting an Application for Deployment to New Environments"

■ "Understanding WebLogic Server Deployment Plans"

1.13 Development Software
This section reviews required and optional tools for developing WebLogic Server
applications.

1.13.1 Apache Ant
The preferred Oracle method for building applications with WebLogic Server is
Apache Ant. Ant is a Java-based build tool. One of the benefits of Ant is that is it is
extended with Java classes, rather than shell-based commands. Oracle provides
numerous Ant extension classes to help you compile, build, deploy, and package
applications using the WebLogic Server split development directory environment.

Development Software

Overview of WebLogic Server Application Development 1-15

Another benefit is that Ant is a cross-platform tool. Developers write Ant build scripts
in eXtensible Markup Language (XML). XML tags define the targets to build,
dependencies among targets, and tasks to execute in order to build the targets. Ant
libraries are bundled with WebLogic Server to make it easier for our customers to
build Java applications out of the box.

To use Ant, you must first set your environment by executing either the
setExamplesEnv.cmd (Windows) or setExamplesEnv.sh (UNIX) commands
located in the WL_SERVER\samples\domains\wl_server directory, where WL_
SERVER is your WebLogic Server installation directory.

For a complete explanation of ant capabilities, see:
http://jakarta.apache.org/ant/manual/index.html

For more information on using Ant to compile your cross-platform scripts or using
cross-platform scripts to create XML scripts that can be processed by Ant, refer to any
of the WebLogic Server examples, such as WL_
HOME/samples/server/examples/src/examples/ejb20/basic/beanManage
d/build.xml.

Also refer to the following WebLogic Server documentation on building examples
using Ant: WL_
HOME/samples/server/examples/src/examples/examples.html.

1.13.1.1 Using A Third-Party Version of Ant
You can use your own version of Ant if the one bundled with WebLogic Server is not
adequate for your purposes. To determine the version of Ant that is bundled with
WebLogic Server, run the following command after setting your WebLogic
environment:

prompt> ant -version

If you plan to use a different version of Ant, you can replace the appropriate JAR file in
the WL_HOME\server\lib\ant directory with an updated version of the file (where
WL_HOME refers to the main WebLogic installation directory, such as
c:\Oracle\Middleware\wlserver_10.x) or add the new file to the front of your
CLASSPATH.

1.13.1.2 Changing the Ant Heap Size
By default the environment script allocates a heap size of 128 megabytes to Ant. You
can increase or decrease this value for your own projects by setting the -X option in
your local ANT_OPTS environment variable. For example:

Note: The Apache Jakarta Web site publishes online documentation for only
the most current version of Ant, which might be different from the version of
Ant that is bundled with WebLogic Server. Use the following command, after
setting your WebLogic environment, to determine the version of Ant bundled
with WebLogic Server:

prompt> ant -version

To view the documentation for a specific version of Ant, such as the version
included with WebLogic Server, download the Ant zip file from
http://archive.apache.org/dist/ant/binaries/ and extract the
documentation.

Development Software

1-16 Developing Applications for Oracle WebLogic Server

prompt> setenv ANT_OPTS=-Xmx128m

If you want to set the heap size permanently, add or update the MEM_ARGS variable in
the scripts that set your environment, start WebLogic Server, and so on, as shown in
the following snippet from a Windows command script that starts a WebLogic Server
instance:

set MEM_ARGS=-Xms32m -Xmx200m

See the scripts and commands in WL_HOME/server/bin for examples of using the
MEM_ARGS variable.

1.13.2 Source Code Editor or IDE
You need a text editor to edit Java source files, configuration files, HTML or XML
pages, and JavaServer Pages. An editor that gracefully handles Windows and UNIX
line-ending differences is preferred, but there are no other special requirements for
your editor. You can edit HTML or XML pages and JavaServer Pages with a plain text
editor, or use a Web page editor such as Dreamweaver. For XML pages, you can also
use an enterprise-level IDE with DTD validation or another development tool that
supports editing of XML files.

1.13.3 Database System and JDBC Driver
Nearly all WebLogic Server applications require a database system. You can use any
DBMS that you can access with a standard JDBC driver, but services such as WebLogic
Java Message Service (JMS) require a supported JDBC driver for Oracle, Sybase,
Informix, Microsoft SQL Server, or IBM DB2. Refer to Oracle Fusion Middleware
Supported System Configurations at
http://www.oracle.com/technology/software/products/ias/files/fus
ion_certification.html to find out about supported database systems and JDBC
drivers.

1.13.4 Web Browser
Most Java EE applications are designed to be executed by Web browser clients.
WebLogic Server supports the HTTP 1.1 specification and is tested with current
versions of the Firefox and Microsoft Internet Explorer browsers.

When you write requirements for your application, note which Web browser versions
you will support. In your test plans, include testing plans for each supported version.
Be explicit about version numbers and browser configurations. Will your application
support Secure Socket Layers (SSL) protocol? Test alternative security settings in the
browser so that you can tell your users what choices you support.

If your application uses applets, it is especially important to test browser
configurations you want to support because of differences in the JVMs embedded in
various browsers. One solution is to require users to install the Java plug-in from Sun
so that everyone has the same Java run-time version.

1.13.5 Third-Party Software
You can use third-party software products to enhance your WebLogic Server
development environment. See "WebLogic Developer Tools Resources" at
http://www.oracle.com/technology/products/developer-tools/index.
html, which provides developer tools information for products that support the
application servers.

Development Software

Overview of WebLogic Server Application Development 1-17

Note: Check with the software vendor to verify software compatibility with
your platform and WebLogic Server version.

Development Software

1-18 Developing Applications for Oracle WebLogic Server

2

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-1

2Using Ant Tasks to Configure and Use a
WebLogic Server Domain

The following sections describe how to start and stop WebLogic Server instances and
configure WebLogic Server domains using WebLogic Ant tasks that you can include in
your development build scripts:

■ Section 2.1, "Overview of Configuring and Starting Domains Using Ant Tasks"

■ Section 2.2, "Starting Servers and Creating Domains Using the wlserver Ant Task"

■ Section 2.3, "Configuring a WebLogic Server Domain Using the wlconfig Ant
Task"

■ Section 2.4, "Using the libclasspath Ant Task"

2.1 Overview of Configuring and Starting Domains Using Ant Tasks
WebLogic Server provides a pair of Ant tasks to help you perform common
configuration tasks in a development environment. The configuration tasks enable you
to start and stop WebLogic Server instances as well as create and configure WebLogic
Server domains.

When combined with other WebLogic Ant tasks, you can create powerful build scripts
for demonstrating or testing your application with custom domains. For example, a
single Ant build script can:

■ Compile your application using the wlcompile, wlappc, and Web Services Ant
tasks.

■ Create a new single-server domain and start the Administration Server using the
wlserver Ant task.

■ Configure the new domain with required application resources using the
wlconfig Ant task.

■ Deploy the application using the wldeploy Ant task.

■ Automatically start a compiled client application to demonstrate or test product
features.

The sections that follow describe how to use the configuration Ant tasks, wlserver
and wlconfig.

2.2 Starting Servers and Creating Domains Using the wlserver Ant Task
The wlserver Ant task enables you to start, reboot, shutdown, or connect to a
WebLogic Server instance. The server instance may already exist in a configured

Starting Servers and Creating Domains Using the wlserver Ant Task

2-2 Developing Applications for Oracle WebLogic Server

WebLogic Server domain, or you can create a new single-server domain for
development by using the generateconfig=true attribute.

When you use the wlserver task in an Ant script, the task does not return control
until the specified server is available and listening for connections. If you start up a
server instance using wlserver, the server process automatically terminates after the
Ant VM terminates. If you only connect to a currently-running server using the
wlserver task, the server process keeps running after Ant completes.

The wlserver WebLogic Server Ant task extends the standard java Ant task
(org.apache.tools.ant.taskdefs.Java). This means that all the attributes of
the java Ant task also apply to the wlserver Ant task. For example, you can use the
output and error attributes to specify the name of the files to which output and
standard errors of the wlserver Ant task is written, respectively. For full
documentation about the attributes of the standard java Ant task, see Java on the
Apache Ant site (http://ant.apache.org/manual/Tasks/java.html).

2.2.1 Basic Steps for Using wlserver
To use the wlserver Ant task:

1. Set your environment.

On Windows NT, execute the setWLSEnv.cmd command, located in the directory
WL_HOME\server\bin, where WL_HOME is the top-level directory of your
WebLogic Server installation.

On UNIX, execute the setWLSEnv.sh command, located in the directoryWL_
HOME\server\bin, where WL_HOME is the top-level directory of your WebLogic
Server installation.

2. Add a call to the wlserver task in the build script to start, shutdown, restart, or
connect to a server. See Section 2.2.3, "wlserver Ant Task Reference" for
information about wlserver attributes and default behavior.

3. Execute the Ant task or tasks specified in the build.xml file by typing ant in the
staging directory, optionally passing the command a target argument:

prompt> ant

Use ant -verbose to obtain more detailed messages from the wlserver task.

2.2.2 Sample build.xml Files for wlserver
The following shows a minimal wlserver target that starts a server in the current
directory using all default values:

<target name="wlserver-default">
 <wlserver/>
</target>

Note: The wlserver task is predefined in the version of Ant shipped with
WebLogic Server. If you want to use the task with your own Ant installation,
add the following task definition in your build file:

<taskdef name="wlserver"
classname="weblogic.ant.taskdefs.management.WLServer"/>

Starting Servers and Creating Domains Using the wlserver Ant Task

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-3

This target connects to an existing, running server using the indicated connection
parameters and username/password combination:

<target name="connect-server">
 <wlserver host="127.0.0.1" port="7001" username="weblogic" password="weblogic"
action="connect"/>
</target>

This target starts a WebLogic Server instance configured in the config subdirectory:

<target name="start-server">
 <wlserver dir="./config" host="127.0.0.1" port="7001" action="start"/>
</target>

This target creates a new single-server domain in an empty directory, and starts the
domain's server instance:

<target name="new-server">
 <delete dir="./tmp"/>
 <mkdir dir="./tmp"/>
 <wlserver dir="./tmp" host="127.0.0.1" port="7001"
 generateConfig="true" username="weblogic" password="weblogic" action="start"/>
</target>

2.2.3 wlserver Ant Task Reference
The following table describes the attributes of the wlserver Ant task.

Table 2–1 Attributes of the wlserver Ant Task

Attribute Description
Data
Type Required?

policy The path to the security policy file for the WebLogic Server
domain. This attribute is used only for starting server instances.

File No

dir The path that holds the domain configuration (for example,
c:\Oracle\Middleware\user_
projects\domains\mydomain). By default, wlserver uses
the current directory.

File No

beahome The path to the Middleware Home directory (for example,
c:\Oracle\Middleware).

File No

weblogichome The path to the WebLogic Server installation directory (for
example, c:\Oracle\Middleware\wlserver_10.3).

File No

servername The name of the server to start, shutdown, reboot, or connect to.

A WebLogic Server instance is uniquely identified by its protocol,
host, and port values, so if you use this set of attributes to specify
the server you want to start, shutdown or reboot, you do not
need to specify its actual name using the servername attribute.
The only exception is when you want to shutdown the
Administration server; in this case you must specify this attribute.

The default value for this attribute is myserver.

String Required
only when
shutting
down the
Administrati
on server.

domainname The name of the WebLogic Server domain in which the server is
configured.

String No

adminserverurl The URL to access the Administration Server in the domain. This
attribute is required if you are starting up a Managed Server in
the domain.

String Required for
starting
Managed
Servers.

Starting Servers and Creating Domains Using the wlserver Ant Task

2-4 Developing Applications for Oracle WebLogic Server

username The username of an administrator account. If you omit both the
username and password attributes, wlserver attempts to
obtain the encrypted username and password values from the
boot.properties file. See "Boot Identity Files" in the Managing
Server Startup and Shutdown for Oracle WebLogic Server for more
information on boot.properties.

String No

password The password of an administrator account. If you omit both the
username and password attributes, wlserver attempts to
obtain the encrypted username and password values from the
boot.properties file. See "Boot Identity Files" in the Managing
Server Startup and Shutdown for Oracle WebLogic Server for more
information on boot.properties.

String No

pkpassword The private key password for decrypting the SSL private key file. String No

timeout The maximum time, in milliseconds, that wlserver waits for a
server to boot. This also specifies the maximum amount of time
to wait when connecting to a running server.

The default value for this attribute is 0, which means the Ant task
never times out.

long No

timeoutSeconds The maximum time, in seconds, that wlserver waits for a server
to boot. This also specifies the maximum amount of time to wait
when connecting to a running server.

The default value for this attribute is 0, which means the Ant task
never times out.

long No

productionmodeenab
led

Specifies whether a server instance boots in development mode
or in production mode.

Development mode enables a WebLogic Server instance to
automatically deploy and update applications that are in the
domain_name/autodeploy directory (where domain_name is
the name of a WebLogic Server domain). In other words,
development mode lets you use auto-deploy. Production mode
disables the auto-deployment feature. See "Deploying
Applications and Modules" for more information.

Valid values for this attribute are True and False. The default
value is False (which means that by default a server instance
boots in development mode.)

Note: If you boot the server in production mode by setting this
attribute to True, you must reboot the server to set the mode
back to development mode. Or in other words, you cannot reset
the mode on a running server using other administrative tools,
such as the WebLogic Server Scripting Tool (WLST).

boolean No

host The DNS name or IP address on which the server instance is
listening.

The default value for this attribute is localhost.

String No

port The TCP port number on which the server instance is listening.

The default value for this attribute is 7001.

int No

generateconfig Specifies whether or not wlserver creates a new domain for the
specified server.

Valid values for this attribute are true and false. The default
value is false.

boolean No

Table 2–1 (Cont.) Attributes of the wlserver Ant Task

Attribute Description
Data
Type Required?

Starting Servers and Creating Domains Using the wlserver Ant Task

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-5

action Specifies the action wlserver performs: start, shutdown,
reboot, or connect.

The shutdown action can be used with the optional
forceshutdown attribute perform a forced shutdown.

The default value for this attribute is start.

String No

failonerror This is a global attribute used by WebLogic Server Ant tasks. It
specifies whether the task should fail if it encounters an error
during the build.

Valid values for this attribute are true and false. The default
value is false.

Boolean No

forceshutdown This optional attribute is used in conjunction with the
action="shutdown" attribute to perform a forced shutdown.
For example:

<wlserver
 host="${wls.host}"
 port="${port}"
 username="${wls.username}"
 password="${wls.password}"
 action="shutdown"
 forceshutdown="true"/>

Valid values for this attribute are true and
false. The default value is false.

Boolean No

noExit (Optional) Leave the server process running after ant exits. Valid
values are true or false. The default value is false, which
means the server process will shut down when ant exits.

Boolean No

protocol Specifies the protocol that the wlserver Ant task uses to
communicate with the WebLogic Server instance.

Valid values are t3, t3s, http, https, and iiop. The default
value is t3.

String No

forceImplicitUpgrade Specifies whether the wlserver Ant task, if run against an 8.1
(or previous) domain, should implicitly upgrade it.

Valid values are true or false. The default value is false,
which means that the Ant task does not implicitly upgrade the
domain, but rather, will fail with an error indicating that the
domain needs to be upgraded.

For more information about upgrading domains, see Upgrade
Guide for Oracle WebLogic Server.

Boolean No.

Table 2–1 (Cont.) Attributes of the wlserver Ant Task

Attribute Description
Data
Type Required?

Configuring a WebLogic Server Domain Using the wlconfig Ant Task

2-6 Developing Applications for Oracle WebLogic Server

2.3 Configuring a WebLogic Server Domain Using the wlconfig Ant Task
The following sections describe how to use the wlconfig Ant task to configure a
WebLogic Server domain.

2.3.1 What the wlconfig Ant Task Does
The wlconfig Ant task enables you to configure a WebLogic Server domain by
creating, querying, or modifying configuration MBeans on a running Administration
Server instance. Specifically, wlconfig enables you to:

configFile Specifies the configuration file for your domain.

The value of this attribute must be a valid XML file that conforms
to the XML schema as defined in the WebLogic Server Domain
Configuration Schema at
http://xmlns.oracle.com/weblogic/domain/1.0/doma
in.xsd.

The XML file must exist in the Administration Server's root
directory, which is either the current directory or the directory
that you specify with the dir attribute.

If you do not specify this attribute, the default value is
config.xml in the directory specified by the dir attribute. If
you do not specify the dir attribute, then the default domain
directory is the current directory.

String No.

useBootProperties Specifies whether to use the boot.properties file when
starting a WebLogic Server instance. If this attribute is set to
true, WebLogic Server uses the username and encrypted
password stored in the boot.properties file to start rather
than any values set with the username and password
attributes.

Note: The values of the username and password attributes are
still used when shutting down or rebooting the WebLogic Server
instance. The useBootProperties attribute applies only when
starting the server. Valid values for this attribute are true and
false. The default value is false.

Boolean No

verbose Specifies that the Ant task output additional information as it is
performing its action.

Valid values for this attribute are true and false. The default
value is false.

Boolean No

Note:: The wlconfig Ant task works only against MBeans that are
compatible with the MBean server, which was deprecated as of version 9.0 of
WebLogic Server. In particular, the wlconfig Ant task uses the deprecated
proprietary API weblogic.management.MBeanHome to access WebLogic
MBeans; therefore, wlconfig does not use the standard JMX interface
(javax.management.MBeanServerConnection) to discover MBeans. This
means that the only MBeans that you can access using wlconfig are those
listed under the Deprecated MBeans category in the Oracle WebLogic Server
MBean Reference

For equivalent functionality, you should use the WebLogic Scripting Tool
(WLST). See Oracle WebLogic Scripting Tool.

Table 2–1 (Cont.) Attributes of the wlserver Ant Task

Attribute Description
Data
Type Required?

Configuring a WebLogic Server Domain Using the wlconfig Ant Task

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-7

■ Create new MBeans, optionally storing the new MBean Object Names in Ant
properties.

■ Set attribute values on a named MBean available on the Administration Server.

■ Create MBeans and set their attributes in one step by nesting set attribute
commands within create MBean commands.

■ Query MBeans, optionally storing the query results in an Ant property reference.

■ Query MBeans and set attribute values on all matching results.

■ Establish a parent/child relationship among MBeans by nesting create commands
within other create commands.

2.3.2 Basic Steps for Using wlconfig
1. Set your environment in a command shell. See Section 2.2.1, "Basic Steps for Using

wlserver" for details.

2. wlconfig is commonly used in combination with wlserver to configure a new
WebLogic Server domain created in the context of an Ant task. If you will be using
wlconfig to configure such a domain, first use wlserver attributes to create a
new domain and start the WebLogic Server instance.

3. Add an initial call to the wlconfig task to connect to the Administration Server
for a domain. For example:

<target name="doconfig">
 <wlconfig url="t3://localhost:7001" username="weblogic"
 password="weblogic">
</target>

4. Add nested create, delete, get, set, and query elements to configure the
domain.

5. Execute the Ant task or tasks specified in the build.xml file by typing ant in the
staging directory, optionally passing the command a target argument:

prompt> ant doconfig

Use ant -verbose to obtain more detailed messages from the wlconfig task.

Note: The wlconfig task is predefined in the version of Ant shipped with
WebLogic Server. If you want to use the task with your own Ant installation,
add the following task definition in your build file:

<taskdef name="wlconfig"
classname="weblogic.ant.taskdefs.management.WLConfig"/>

Note: Since WLST is the recommended tool for domain creation scripts, you
should refer to the WLST offline sample scripts that are installed with the
software. The offline scripts demonstrate how to create domains using the
domain templates and are located in the following directory: WL_
HOME\common\templates\scripts\wlst, where WL_HOME refers to the
top-level installation directory for WebLogic Server. For example, the
basicWLSDomain.py script creates a simple WebLogic domain, while
sampleMedRecDomain.py creates a domain that defines resources similar to
those used in the Avitek MedRec sample. See Oracle WebLogic Scripting Tool.

Configuring a WebLogic Server Domain Using the wlconfig Ant Task

2-8 Developing Applications for Oracle WebLogic Server

2.3.3 wlconfig Ant Task Reference
The following sections describe the attributes and elements that can be used with
wlconfig.

2.3.4 Main Attributes
The following table describes the main attributes of the wlconfig Ant task.

2.3.5 Nested Elements
wlconfig also has several elements that can be nested to specify configuration
options:

■ create

■ delete

■ set

Table 2–2 Main Attributes of the wlconfig Ant Task

Attribute Description
Data
Type Required?

url The URL of the domain's Administration Server. String Yes

username The username of an administrator account. String No

password The password of an administrator account.

To avoid having the plain text password appear in the build file or in
process utilities such as ps, first store a valid username and encrypted
password in a configuration file using the WebLogic Scripting Tool
(WLST) storeUserConfig command. Then omit both the username
and password attributes in your Ant build file. When the attributes are
omitted, wlconfig attempts to login using values obtained from the
default configuration file.

If you want to obtain a username and password from a non-default
configuration file and key file, use the userconfigfile and
userkeyfile attributes with wlconfig.

See the command reference for storeUserConfig in the WebLogic
Scripting Tool Command Reference for more information on storing and
encrypting passwords.

String No

failonerror This is a global attribute used by WebLogic Server Ant tasks. It specifies
whether the task should fail if it encounters an error during the build.
This attribute is set to true by default.

Boolean No

userconfigfile Specifies the location of a user configuration file to use for obtaining the
administrative username and password. Use this option, instead of the
username and password attributes, in your build file when you do not
want to have the plain text password shown in-line or in process-level
utilities such as ps.

Before specifying the userconfigfile attribute, you must first generate
the file using the WebLogic Scripting Tool (WLST) storeUserConfig
command as described in the WebLogic Scripting Tool Command Reference.

File No

userkeyfile Specifies the location of a user key file to use for encrypting and
decrypting the username and password information stored in a user
configuration file (the userconfigfile attribute).

Before specifying the userkeyfile attribute, you must first generate the
key file using the WebLogic Scripting Tool (WLST) storeUserConfig
command as described in the WebLogic Scripting Tool Command Reference.

File No

Configuring a WebLogic Server Domain Using the wlconfig Ant Task

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-9

■ get

■ query

■ invoke

2.3.5.1 create
The create element creates a new MBean in the WebLogic Server domain. The
wlconfig task can have any number of create elements.

A create element can have any number of nested set elements, which set attributes
on the newly-created MBean. A create element may also have additional, nested
create elements that create child MBeans.

The create element has the following attributes.

2.3.5.2 delete
The delete element removes an existing MBean from the WebLogic Server domain.
delete takes a single attribute:

2.3.5.3 set
The set element sets MBean attributes on a named MBean, a newly-created MBean, or
on MBeans retrieved as part of a query. You can include the set element as a direct
child of the wlconfig task, or nested within a create or query element.

The set element has the following attributes:

Table 2–3 Attributes of the create Element

Attribute Description
Data
Type Required?

name The name of the new MBean object to create. String No (wlconfig supplies a
default name if none is
specified.)

type The MBean type. String Yes

property The name of an optional Ant property that holds the
object name of the newly-created MBean.

Note: If you nest a create element inside of another
create element, you cannot specify the property
attribute for the nested create element.

String No

Table 2–4 Attribute of the delete Element

Attribute Description
Data
Type Required?

mbean The object name of the MBean to delete. String Required when the delete element
is a direct child of the wlconfig task.
Not required when nested within a
query element.

Configuring a WebLogic Server Domain Using the wlconfig Ant Task

2-10 Developing Applications for Oracle WebLogic Server

2.3.5.4 get
The get element retrieves attribute values from an MBean in the WebLogic Server
domain. The wlconfig task can have any number of get elements.

The get element has the following attributes.

2.3.5.5 query
The query elements finds MBean that match a search pattern.

The query element supports the following nested child elements:

■ set—performs set operations on all MBeans in the result set.

■ get—performs get operations on all MBeans in the result set.

■ create—each MBean in the result set is used as a parent of a new MBean.

■ delete—performs delete operations on all MBeans in the result set.

■ invoke—invokes all matching MBeans in the result set.

wlconfig can have any number of nested query elements.

query has the following attributes:

Table 2–5 Attributes of the set Element

Attribute Description
Data
Type Required?

attribute The name of the MBean attribute to set. String Yes

value The value to set for the specified MBean attribute.

You can specify multiple object names (stored in Ant properties)
as a value by delimiting the entire value list with quotes and
separating the object names with a semicolon.

String Yes

mbean The object name of the MBean whose values are being set. This
attribute is required only when the set element is included as a
direct child of the main wlconfig task; it is not required when
the set element is nested within the context of a create or
query element.

String Required only
when the set
element is a direct
child of the
wlconfig task.

domain This attribute specifies the JMX domain name for Security
MBeans and third-party SPI MBeans. It is not required for
administration MBeans, as the domain corresponds to the
WebLogic Server domain.

Note: You cannot use this attribute if the set element is nested
inside of a create element.

String No

Table 2–6 Attributes of the get Element

Attribute Description
Data
Type Required?

attribute The name of the MBean attribute whose value you want to
retrieve.

String Yes

property The name of an Ant property that will hold the retrieved MBean
attribute value.

String Yes

mbean The object name of the MBean you want to retrieve attribute values
from.

String Yes

Using the libclasspath Ant Task

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-11

2.3.5.6 invoke
The invoke element invokes a management operation for one or more MBeans. For
WebLogic Server MBeans, you usually use this command to invoke operations other
than the getAttribute and setAttribute that most WebLogic Server MBeans
provide.

The invoke element has the following attributes.

2.4 Using the libclasspath Ant Task
Use the libclasspath Ant task to build applications that use libraries, such as
application libraries and web libraries.

■ Section 2.4.1, "libclasspath Task Definition"

■ Section 2.2.3, "wlserver Ant Task Reference"

■ Section 2.4.5, "Example libclasspath Ant Task"

2.4.1 libclasspath Task Definition
To use the task with your own Ant installation, add the following task definition in
your build file:

 <taskdef name="libclasspath"
classname="weblogic.ant.taskdefs.build.LibClasspathTask"/>

Table 2–7 Attributes of the query Element

Attribute Description
Data
Type Required?

domain The name of the WebLogic Server domain in which to search for
MBeans.

String No

type The type of MBean to query. String No

name The name of the MBean to query. String No

pattern A JMX query pattern. String No

property The name of an optional Ant property that will store the query
results.

String No

domain This attribute specifies the JMX domain name for Security MBeans
and third-party SPI MBeans. It is not required for administration
MBeans, as the domain corresponds to the WebLogic Server domain.

String No

Table 2–8 Attributes of the invoke Element

Attribute Description
Data
Type Required?

mbean The object name of the MBean you want to invoke. String You must specify either the
mbean or type attribute of
the invoke element.

type The type of MBean to invoke. String You must specify either the
mbean or type attribute of
the invoke element.

methodName The method of the MBean to invoke. String Yes

arguments The list of arguments (separated by spaces) to pass to
the method specified by the methodName attribute.

String No

Using the libclasspath Ant Task

2-12 Developing Applications for Oracle WebLogic Server

2.4.2 libclasspath Ant Task Reference
The following sections describe the attributes and elements that can be used with the
libclasspath Ant task.

■ Section 2.4.3, "Main libclasspath Attributes"

■ Section 2.4.4, "Nested libclasspath Elements"

2.4.3 Main libclasspath Attributes
The following table describes the main attributes of the libclasspath Ant task.

2.4.4 Nested libclasspath Elements
libclasspath also has two elements that can be nested to specify configuration
options. At least one of the elements is required when using the libclasspath Ant
task:

2.4.4.1 librarydir
The following attribute is required when using this element:

dir—Specifies that all files in this directory are registered as available libraries.

2.4.4.2 library
The following attribute is required when using this element:

Table 2–9 Attributes of the libclasspath Ant Task

Attribute Description Required

basedir The root of .ear or .war file to extract from. Either basedir or basewar is
required.

basewar The name of the .war file to extract from. If basewar is specified,
basedir is ignored and the
library referenced in basewar is
used as the .war file to extract
classpath or resourcepath
information from.

tmpdir The fully qualified name of the directory to be used for
extracting libraries.

Yes.

classpathproperty Contains the classpath for the referenced libraries.

For example, if basedir points to a .war file that
references web application libraries in the
weblogic.xml file, the classpathproperty
contains the WEB-INF/classes and WEB-INF/lib
directories of the web application libraries.

Additionally, if basedir points to a .war file that has
.war files under WEB-INF/bea-ext, the
classpathproperty contains the
WEB-INF/classes and WEB-INF/lib directories for
the Oracle extensions.

At least one of the two attributes
is required.

resourcepathproperty Contains library resources that are not classes.

For example, if basedir points to a .war file that has
.war files under WEB-INF/bea-ext,
resourcepathproperty contains the roots of the
exploded extensions.

Using the libclasspath Ant Task

Using Ant Tasks to Configure and Use a WebLogic Server Domain 2-13

file—Register this file as an available library.

2.4.5 Example libclasspath Ant Task
This section provides example code of a libclasspath Ant task:

Example 2–1 Example libclasspath Ant Task Code

.

.

.
 <taskdef name="libclasspath"
classname="weblogic.ant.taskdefs.build.LibClasspathTask"/>

 <!-- Builds classpath based on libraries defined in weblogic-application.xml.
-->
 <target name="init.app.libs">
 <libclasspath basedir="${src.dir}" tmpdir="${tmp.dir}"
classpathproperty="app.lib.classpath">
 <librarydir dir="${weblogic.home}/common/deployable-libraries/"/>
 </libclasspath>
 <echo message="app.lib.claspath is ${app.lib.classpath}" level="info"/>
 </target>
.
.
.

Using the libclasspath Ant Task

2-14 Developing Applications for Oracle WebLogic Server

3

Creating a Split Development Directory Environment 3-1

3Creating a Split Development Directory
Environment

The following sections describe the steps for creating a WebLogic Server split
development directory that you can use to develop a Java EE application or module:

■ Section 3.1, "Overview of the Split Development Directory Environment"

■ Section 3.2, "Using the Split Development Directory Structure: Main Steps"

■ Section 3.3, "Organizing Java EE Components in a Split Development Directory"

■ Section 3.4, "Organizing Shared Classes in a Split Development Directory"

■ Section 3.5, "Generating a Basic build.xml File Using weblogic.BuildXMLGen"

■ Section 3.6, "Developing Multiple-EAR Projects Using the Split Development
Directory"

■ Section 3.7, "Best Practices for Developing WebLogic Server Applications"

3.1 Overview of the Split Development Directory Environment
The WebLogic split development directory environment consists of a directory layout
and associated Ant tasks that help you repeatedly build, change, and deploy Java EE
applications. Compared to other development frameworks, the WebLogic split
development directory provides these benefits:

■ Fast development and deployment. By minimizing unnecessary file copying, the
split development directory Ant tasks help you recompile and redeploy
applications quickly without first generating a deployable archive file or exploded
archive directory.

■ Simplified build scripts. The Oracle-provided Ant tasks automatically determine
which Java EE modules and classes you are creating, and build components in the
correct order to support common classpath dependencies. In many cases, your
project build script can simply identify the source and build directories and allow
Ant tasks to perform their default behaviors.

■ Easy integration with source control systems. The split development directory
provides a clean separation between source files and generated files. This helps
you maintain only editable files in your source control system. You can also clean
the build by deleting the entire build directory; build files are easily replaced by
rebuilding the project.

Overview of the Split Development Directory Environment

3-2 Developing Applications for Oracle WebLogic Server

3.1.1 Source and Build Directories
The source and build directories form the basis of the split development directory
environment. The source directory contains all editable files for your project—Java
source files, editable descriptor files, JSPs, static content, and so forth. You create the
source directory for an application by following the directory structure guidelines
described in Section 3.3, "Organizing Java EE Components in a Split Development
Directory".

The top level of the source directory always represents an Enterprise application
(.ear file), even if you are developing only a single Java EE module. Subdirectories
beneath the top level source directory contain:

■ Enterprise Application Modules (EJBs and Web applications)

■ Descriptor files for the Enterprise application (application.xml and
weblogic-application.xml)

■ Utility classes shared by modules of the application (for example, exceptions,
constants)

■ Libraries (compiled.jar files, including third-party libraries) used by modules of
the application

The build directory contents are generated automatically when you run the
wlcompile ant task against a valid source directory. The wlcompile task recognizes
EJB, Web application, and shared library and class directories in the source directory,
and builds those components in an order that supports common class path
requirements. Additional Ant tasks can be used to build Web Services or generate
deployment descriptor files from annotated EJB code.

Figure 3–1 Source and Build Directories

The build directory contains only those files generated during the build process. The
combination of files in the source and build directories form a deployable Java EE
application.

Note: The split development directory structure does not provide
support for developing new Resource Adapter components.

Overview of the Split Development Directory Environment

Creating a Split Development Directory Environment 3-3

The build and source directory contents can be place in any directory of your choice.
However, for ease of use, the directories are commonly placed in directories named
source and build, within a single project directory (for example,
\myproject\build and \myproject\source).

3.1.2 Deploying from a Split Development Directory
All WebLogic Server deployment tools (weblogic.Deployer, wldeploy, and the
Administration Console) support direct deployment from a split development
directory. You specify only the build directory when deploying the application to
WebLogic Server.

WebLogic Server attempts to use all classes and resources available in the source
directory for deploying the application. If a required resource is not available in the
source directory, WebLogic Server then looks in the application's build directory for
that resource. For example, if a deployment descriptor is generated during the build
process, rather than stored with source code as an editable file, WebLogic Server
obtains the generated file from the build directory.

WebLogic Server discovers the location of the source directory by examining the
.beabuild.txt file that resides in the top level of the application's build directory. If
you ever move or modify the source directory location, edit the .beabuild.txt file
to identify the new source directory name.

Section 5.1, "Deploying Applications Using wldeploy" describes the wldeploy Ant
task that you can use to automate deployment from the split directory environment.

Figure 3–2 shows a typical deployment process. The process is initiated by specifying
the build directory with a WebLogic Server tool. In the figure, all compiled classes and
generated deployment descriptors are discovered in the build directory, but other
application resources (such as static files and editable deployment descriptors) are
missing. WebLogic Server uses the hidden .beabuild.txt file to locate the
application's source directory, where it finds the required resources.

Using the Split Development Directory Structure: Main Steps

3-4 Developing Applications for Oracle WebLogic Server

Figure 3–2 Split Directory Deployment

3.1.3 Split Development Directory Ant Tasks
Oracle provides a collection of Ant tasks designed to help you develop applications
using the split development directory environment. Each Ant task uses the source,
build, or both directories to perform common development tasks:

■ wlcompile—This Ant task compiles the contents of the source directory into
subdirectories of the build directory. wlcompile compiles Java classes and also
processes annotated .ejb files into deployment descriptors, as described in
Section 4.1, "Compiling Applications Using wlcompile".

■ wlappc—This Ant task invokes the appc compiler, which generates JSPs and
container-specific EJB classes for deployment. See Section 4.2, "Building Modules
and Applications Using wlappc".

■ wldeploy—This Ant task deploys any format of Java EE applications (exploded or
archived) to WebLogic Server. To deploy directly from the split development
directory environment, you specify the build directory of your application. See
Section B, "wldeploy Ant Task Reference".

■ wlpackage—This Ant task uses the contents of both the source and build
directories to generate an EAR file or exploded EAR directory that you can give to
others for deployment.

3.2 Using the Split Development Directory Structure: Main Steps
The following steps illustrate how you use the split development directory structure to
build and deploy a WebLogic Server application.

1. Create the main EAR source directory for your project. When using the split
development directory environment, you must develop Web applications and EJBs
as part of an Enterprise application, even if you do not intend to develop multiple

Organizing Java EE Components in a Split Development Directory

Creating a Split Development Directory Environment 3-5

Java EE modules. See Section 3.3, "Organizing Java EE Components in a Split
Development Directory".

2. Add one or more subdirectories to the EAR directory for storing the source for
Web applications, EJB components, or shared utility classes. See Section 3.3,
"Organizing Java EE Components in a Split Development Directory" and
Section 3.4, "Organizing Shared Classes in a Split Development Directory".

3. Store all of your editable files (source code, static content, editable deployment
descriptors) for modules in subdirectories of the EAR directory. Add the entire
contents of the source directory to your source control system, if applicable.

4. Set your WebLogic Server environment by executing either the setWLSEnv.cmd
(Windows) or setWLSEnv.sh (UNIX) script. The scripts are located in the WL_
HOME\server\bin\ directory, where WL_HOME is the top-level directory in which
WebLogic Server is installed.

5. Use the weblogic.BuildXMLGen utility to generate a default build.xml file
for use with your project. Edit the default property values as needed for your
environment. See Section 3.5, "Generating a Basic build.xml File Using
weblogic.BuildXMLGen".

6. Use the default targets in the build.xml file to build, deploy, and package your
application. See Section 3.5, "Generating a Basic build.xml File Using
weblogic.BuildXMLGen" for a list of default targets.

3.3 Organizing Java EE Components in a Split Development Directory
The split development directory structure requires each project to be staged as a Java
EE Enterprise application. Oracle therefore recommends that you stage even
standalone Web applications and EJBs as modules of an Enterprise application, to
benefit from the split directory Ant tasks. This practice also allows you to easily add or
remove modules at a later date, because the application is already organized as an
EAR.

The following sections describe the basic conventions for staging the following
module types in the split development directory structure:

■ Section 3.3.2, "Enterprise Application Configuration"

■ Section 3.3.3, "Web Applications"

■ Section 3.3.4, "EJBs"

■ Section 3.4.1, "Shared Utility Classes"

■ Section 3.4.2, "Third-Party Libraries"

The directory examples are taken from the splitdir sample application installed in
WL_HOME\samples\server\examples\src\examples\splitdir, where WL_
HOME is your WebLogic Server installation directory.

3.3.1 Source Directory Overview
The following figure summarizes the source directory contents of an Enterprise
application having a Web application, EJB, shared utility classes, and third-party

Note: If your project requires multiple EARs, see also Section 3.6,
"Developing Multiple-EAR Projects Using the Split Development Directory".

Organizing Java EE Components in a Split Development Directory

3-6 Developing Applications for Oracle WebLogic Server

libraries. The sections that follow provide more details about how individual parts of
the enterprise source directory are organized.

Organizing Java EE Components in a Split Development Directory

Creating a Split Development Directory Environment 3-7

Figure 3–3 Overview of Enterprise Application Source Directory

Organizing Java EE Components in a Split Development Directory

3-8 Developing Applications for Oracle WebLogic Server

3.3.2 Enterprise Application Configuration
The top level source directory for a split development directory project represents an
Enterprise application. The following figure shows the minimal files and directories
required in this directory.

Figure 3–4 Enterprise Application Source Directory

The Enterprise application directory will also have one or more subdirectories to hold
a Web application, EJB, utility class, and/or third-party Jar file, as described in the
following sections.

3.3.3 Web Applications
Web applications use the basic source directory layout shown in the figure below.

Organizing Java EE Components in a Split Development Directory

Creating a Split Development Directory Environment 3-9

Figure 3–5 Web Application Source and Build Directories

The key directories and files for the Web application are:

■ helloWebApp\ —The top level of the Web application module can contain JSP
files and static content such as HTML files and graphics used in the application.
You can also store static files in any named subdirectory of the Web application
(for example, helloWebApp\graphics or helloWebApp\static.)

■ helloWebApp\WEB-INF\ —Store the Web application's editable deployment
descriptor files (web.xml and weblogic.xml) in the WEB-INF subdirectory.

■ helloWebApp\WEB-INF\src —Store Java source files for Servlets in package
subdirectories under WEB-INF\src.

When you build a Web application, the appc Ant task and jspc compiler compile
JSPs into package subdirectories under helloWebApp\WEB-INF\classes\jsp_
servlet in the build directory. Editable deployment descriptors are not copied
during the build process.

3.3.4 EJBs
EJBs use the source directory layout shown in the figure below.

Organizing Java EE Components in a Split Development Directory

3-10 Developing Applications for Oracle WebLogic Server

Figure 3–6 EJB Source and Build Directories

The key directories and files for an EJB are:

■ helloEJB\ —Store all EJB source files under package directories of the EJB
module directory. The source files can be either .java source files, or annotated
.ejb files.

■ helloEJB\META-INF\ —Store editable EJB deployment descriptors (ejb-jar.xml
and weblogic-ejb-jar.xml) in the META-INF subdirectory of the EJB module
directory. The helloWorldEar sample does not include a helloEJB\META-INF
subdirectory, because its deployment descriptors files are generated from
annotations in the .ejb source files. See Section 3.3.5, "Important Notes Regarding
EJB Descriptors".

During the build process, EJB classes are compiled into package subdirectories of the
helloEJB module in the build directory. If you use annotated .ejb source files, the
build process also generates the EJB deployment descriptors and stores them in the
helloEJB\META-INF subdirectory of the build directory.

3.3.5 Important Notes Regarding EJB Descriptors
EJB deployment descriptors should be included in the source META-INF directory and
treated as source code only if those descriptor files are created from scratch or are
edited manually. Descriptor files that are generated from annotated .ejb files should
appear only in the build directory, and they can be deleted and regenerated by
building the application.

For a given EJB component, the EJB source directory should contain either:

■ EJB source code in .java source files and editable deployment descriptors in
META-INF

or:

Organizing Shared Classes in a Split Development Directory

Creating a Split Development Directory Environment 3-11

■ EJB source code with descriptor annotations in .ejb source files, and no editable
descriptors in META-INF.

In other words, do not provide both annotated .ejb source files and editable
descriptor files for the same EJB component.

3.4 Organizing Shared Classes in a Split Development Directory
The WebLogic split development directory also helps you store shared utility classes
and libraries that are required by modules in your Enterprise application. The
following sections describe the directory layout and classloading behavior for shared
utility classes and third-party JAR files.

3.4.1 Shared Utility Classes
Enterprise applications frequently use Java utility classes that are shared among
application modules. Java utility classes differ from third-party JARs in that the source
files are part of the application and must be compiled. Java utility classes are typically
libraries used by application modules such as EJBs or Web applications.

Figure 3–7 Java Utility Class Directory

Place the source for Java utility classes in a named subdirectory of the top-level
Enterprise application directory. Beneath the named subdirectory, use standard
package subdirectory conventions.

During the build process, the wlcompile Ant task invokes the javac compiler and
compiles Java classes into the APP-INF/classes/ directory under the build
directory. This ensures that the classes are available to other modules in the deployed
application.

3.4.2 Third-Party Libraries
You can extend an Enterprise application to use third-party .jar files by placing the
files in the APP-INF\lib\ directory, as shown below:

Generating a Basic build.xml File Using weblogic.BuildXMLGen

3-12 Developing Applications for Oracle WebLogic Server

Figure 3–8 Third-party Library Directory

Third-party JARs are generally not compiled, but may be versioned using the source
control system for your application code. For example, XML parsers, logging
implementations, and Web application framework JAR files are commonly used in
applications and maintained along with editable source code.

During the build process, third-party JAR files are not copied to the build directory,
but remain in the source directory for deployment.

3.4.3 Class Loading for Shared Classes
The classes and libraries stored under APP-INF/classes and APP-INF/lib are
available to all modules in the Enterprise application. The application classloader
always attempts to resolve class requests by first looking in APP-INF/classes, then
APP-INF/lib.

3.5 Generating a Basic build.xml File Using weblogic.BuildXMLGen
After you set up your source directory structure, use the weblogic.BuildXMLGen
utility to create a basic build.xml file. weblogic.BuildXMLGen is a convenient utility
that generates an Ant build.xml file for Enterprise applications that are organized in
the split development directory structure. The utility analyzes the source directory and
creates build and deploy targets for the Enterprise application as well as individual
modules. It also creates targets to clean the build and generate new deployment
descriptors.

Additionally, optional packages are supported as Java EE shared libraries in
weblogic.BuildXMLGen, whereby all manifests of an application and its modules are
scanned to look for optional package references. If optional package references are
found they are added to the compile and appc tasks in the generated build.xml file.

For example, if a library located at lib\echolib.jar is referenced as an optional
package, the tasks generated by weblogic.BuildXMLGen will contains an appc task
that would appear as follows:

<target name="appc" description="Runs weblogic.appc on your application">
 <wlappc source="${dest.dir}" verbose="${verbose}">
 <library file="lib\echolib\echolib.jar" />
 </wlappc>
</target>

Generating a Basic build.xml File Using weblogic.BuildXMLGen

Creating a Split Development Directory Environment 3-13

The compile and appc tasks for modules also use the lib\echolib\echolib.jar
library.

3.5.1 weblogic.BuildXMLGen Syntax
The syntax for weblogic.BuildXMLGen is as follows:

java weblogic.BuildXMLGen [options] <source directory>

where options include:

■ -help—print standard usage message

■ -version—print version information

■ -projectName <project name>—name of the Ant project

■ -d <directory>—directory where build.xml is created. The default is the
current directory.

■ -file <build.xml>—name of the generated build file

■ -librarydir <directories>—create build targets for shared Java EE
libraries in the comma-separated list of directories. See Chapter 9, "Creating
Shared Java EE Libraries and Optional Packages.".

■ -username <username>—user name for deploy commands

■ -password <password>—user password

After running weblogic.BuildXMLGen, edit the generated build.xml file to specify
properties for your development environment. The list of properties you need to edit
are shown in the listing below.

Example 3–1 build.xml Editable Properties

<!-- BUILD PROPERTIES ADJUST THESE FOR YOUR ENVIRONMENT -->
 <property name="tmp.dir" value="/tmp" />
 <property name="dist.dir" value="${tmp.dir}/dist"/>
 <property name="app.name" value="helloWorldEar" />
 <property name="ear" value="${dist.dir}/${app.name}.ear"/>
 <property name="ear.exploded" value="${dist.dir}/${app.name}_exploded"/>
 <property name="verbose" value="true" />
 <property name="user" value="USERNAME" />
 <property name="password" value="PASSWORD" />
 <property name="servername" value="myserver" />
 <property name="adminurl" value="iiop://localhost:7001" />

In particular, make sure you edit the tmp.dir property to point to the build directory
you want to use. By default, the build.xml file builds projects into a subdirectory
tmp.dir named after the application (/tmp/helloWorldEar in the above listing).

The following listing shows the default main targets created in the build.xml file.
You can view these targets at the command prompt by entering the ant
-projecthelp command in the EAR source directory.

Example 3–2 Default build.xml Targets

appc Runs weblogic.appc on your application
build Compiles helloWorldEar application and runs appc
clean Deletes the build and distribution directories
compile Only compiles helloWorldEar application, no appc
compile.appStartup Compiles just the appStartup module of the application

Developing Multiple-EAR Projects Using the Split Development Directory

3-14 Developing Applications for Oracle WebLogic Server

compile.appUtils Compiles just the appUtils module of the application
compile.build.orig Compiles just the build.orig module of the application
compile.helloEJB Compiles just the helloEJB module of the application
compile.helloWebApp Compiles just the helloWebApp module of the application
compile.javadoc Compiles just the javadoc module of the application
deploy Deploys (and redeploys) the entire helloWorldEar
application
descriptors Generates application and module descriptors
ear Package a standard J2EE EAR for distribution
ear.exploded Package a standard exploded J2EE EAR
redeploy.appStartup Redeploys just the appStartup module of the application
redeploy.appUtils Redeploys just the appUtils module of the application
redeploy.build.orig Redeploys just the build.orig module of the application
redeploy.helloEJB Redeploys just the helloEJB module of the application
redeploy.helloWebApp Redeploys just the helloWebApp module of application
redeploy.javadoc Redeploys just the javadoc module of the application
undeploy Undeploys the entire helloWorldEar application

3.6 Developing Multiple-EAR Projects Using the Split Development
Directory

The split development directory examples and procedures described previously have
dealt with projects consisting of a single Enterprise application. Projects that require
building multiple Enterprise applications simultaneously require slightly different
conventions and procedures, as described in the following sections.

3.6.1 Organizing Libraries and Classes Shared by Multiple EARs
For single EAR projects, the split development directory conventions suggest keeping
third-party JAR files in the APP-INF/lib directory of the EAR source directory.
However, a multiple-EAR project would require you to maintain a copy of the same
third-party JAR files in the APP-INF/lib directory of each EAR source directory. This
introduces multiple copies of the source JAR files, increases the possibility of some
JAR files being at different versions, and requires additional space in your source
control system.

To address these problems, consider editing your build script to copy third-party JAR
files into the APP-INF/lib directory of the build directory for each EAR that requires
the libraries. This allows you to maintain a single copy and version of the JAR files in
your source control system, yet it enables each EAR in your project to use the JAR files.

The MedRec sample application installed with WebLogic Server uses this strategy, as
shown in the following figure.

Note: The following sections refer to the MedRec sample application, which
consists of three separate Enterprise applications as well as shared utility
classes, third-party JAR files, and dedicated client applications. The MedRec
source and build directories are installed under WL_
HOME/samples/server/medrec, where WL_HOME is the WebLogic Server
installation directory.

Best Practices for Developing WebLogic Server Applications

Creating a Split Development Directory Environment 3-15

Figure 3–9 Shared JAR Files in MedRec

MedRec takes a similar approach to utility classes that are shared by multiple EARs in
the project. Instead of including the source for utility classes within the scope of each
ear that needs them, MedRec keeps the utility class source independent of all EARs.
After compiling the utility classes, the build script archives them and copies the JARs
into the build directory under the APP-INF/LIB subdirectory of each EAR that uses
the classes, as shown in figure Figure 3–9.

3.6.2 Linking Multiple build.xml Files
When developing multiple EARs using the split development directory, each EAR
project generally uses its own build.xml file (perhaps generated by multiple runs of
weblogic.BuildXMLGen.). Applications like MedRec also use a master build.xml
file that calls the subordinate build.xml files for each EAR in the application suite.

Ant provides a core task (named ant) that allows you to execute other project build
files within a master build.xml file. The following line from the MedRec master
build file shows its usage:

<ant inheritAll="false" dir="${root}/startupEar" antfile="build.xml"/>

The above task instructs Ant to execute the file named build.xml in the
/startupEar subdirectory. The inheritAll parameter instructs Ant to pass only
user properties from the master build file tot the build.xml file in /startupEar.

MedRec uses multiple tasks similar to the above to build the startupEar,
medrecEar, and physicianEar applications, as well as building common utility
classes and client applications.

3.7 Best Practices for Developing WebLogic Server Applications
Oracle recommends the following "best practices" for application development.

■ Package applications as part of an Enterprise application. See Section 5.2,
"Packaging Applications Using wlpackage".

Best Practices for Developing WebLogic Server Applications

3-16 Developing Applications for Oracle WebLogic Server

■ Use the split development directory structure. See Section 3.3, "Organizing Java EE
Components in a Split Development Directory".

■ For distribution purposes, package and deploy in archived format. See Section 5.2,
"Packaging Applications Using wlpackage".

■ In most other cases, it is more convenient to deploy in exploded format. See
Section 5.2.1, "Archive versus Exploded Archive Directory".

■ Never deploy untested code on a WebLogic Server instance that is serving
production applications. Instead, set up a development WebLogic Server instance
on the same computer on which you edit and compile, or designate a WebLogic
Server development location elsewhere on the network.

■ Even if you do not run a development WebLogic Server instance on your
development computer, you must have access to a WebLogic Server distribution to
compile your programs. To compile any code using WebLogic or Java EE APIs, the
Java compiler needs access to the weblogic.jar file and other JAR files in the
distribution directory. Install WebLogic Server on your development computer to
make WebLogic distribution files available locally.

4

Building Applications in a Split Development Directory 4-1

4Building Applications in a Split Development
Directory

The following sections describe the steps for building WebLogic Server Java EE
applications using the WebLogic split development directory environment:

■ Section 4.1, "Compiling Applications Using wlcompile"

■ Section 4.2, "Building Modules and Applications Using wlappc"

4.1 Compiling Applications Using wlcompile
You use the wlcompile Ant task to invoke the javac compiler to compile your
application's Java components in a split development directory structure. The basic
syntax of wlcompile identifies the source and build directories, as in this command
from the helloWorldEar sample:

<wlcompile srcdir="${src.dir}" destdir="${dest.dir}"/>

The following is the order in which events occur using this task:

1. wlcompile compiles the Java components into an output directory:

WL_HOME\samples\server\examples\build\helloWorldEar\APP-INF\classes\

where WL_HOME is the WebLogic Server installation directory.

2. wlcompile builds the EJBs and automatically includes the previously built Java
modules in the compiler's classpath. This allows the EJBs to call the Java modules
without requiring you to manually edit their classpath.

3. Finally, wlcompile compiles the Java components in the Web application with the
EJB and Java modules in the compiler's classpath. This allows the Web
applications to refer to the EJB and application Java classes without requiring you
to manually edit the classpath.

Note: Deployment descriptors are no longer mandatory in JEE 5; therefore,
exploded module directories must indicate the module type by using the .war
or .jar suffix when there is no deployment descriptor in these directories.
The suffix is required so that wlcompile can recognize the modules. The
.war suffix indicates the module is a Web application module and the .jar
suffix indicates the module is an EJB module.

Compiling Applications Using wlcompile

4-2 Developing Applications for Oracle WebLogic Server

4.1.1 Using includes and excludes Properties
More complex Enterprise applications may have compilation dependencies that are
not automatically handled by the wlcompile task. However, you can use the include
and exclude options to wlcompile to enforce your own dependencies. The includes
and excludes properties accept the names of Enterprise application modules—the
names of subdirectories in the Enterprise application source directory—to include or
exclude them from the compile stage.

The following line from the helloWorldEar sample shows the appStartup module
being excluded from compilation:

<wlcompile srcdir="${src.dir}" destdir="${dest.dir}"
 excludes="appStartup"/>

4.1.2 wlcompile Ant Task Attributes
Table 4–1 contains Ant task attributes specific to wlcompile.

4.1.3 Nested javac Options
The wlcompile Ant task can accept nested javac options to change the compile-time
behavior. For example, the following wlcompile command ignores deprecation
warnings and enables debugging:

<wlcompile srcdir="${mysrcdir}" destdir="${mybuilddir}">
 <javac deprecation="false" debug="true"
 debuglevel="lines,vars,source"/>
</wlcompile>

4.1.4 Setting the Classpath for Compiling Code
Most WebLogic services are based on Java EE standards and are accessed through
standard Java EE packages. The Sun, WebLogic, and other Java classes required to
compile programs that use WebLogic services are packaged in the weblogic.jar file
in the lib directory of your WebLogic Server installation. In addition to
weblogic.jar, include the following in your compiler's CLASSPATH:

■ The lib\tools.jar file in the JDK directory, or other standard Java classes
required by the Java Development Kit you use.

■ The examples.property file for Apache Ant (for examples environment). This
file is discussed in the WebLogic Server documentation on building examples
using Ant located at: samples\server\examples\src\examples\examples.html

■ Classes for third-party Java tools or services your programs import.

Table 4–1 wlcompile Ant Task Attributes

Attribute Description

srcdir The source directory.

destdir The build/output directory.

classpath Allows you to change the classpath used by wlcompile.

includes Allows you to include specific directories from the build.

excludes Allows you to exclude specific directories from the build.

librarydir Specifies a directory of shared Java EE libraries to add to the
classpath. See Chapter 9, "Creating Shared Java EE Libraries and
Optional Packages."

Building Modules and Applications Using wlappc

Building Applications in a Split Development Directory 4-3

■ Other application classes referenced by the programs you are compiling.

4.1.5 Library Element for wlcompile and wlappc
The library element is an optional element used to define the name and optional
version information for a module that represents a shared Java EE library required for
building an application, as described in Chapter 9, "Creating Shared Java EE Libraries
and Optional Packages." The library element can be used with both wlcompile
and wlappc, described in Section 4.2, "Building Modules and Applications Using
wlappc".

The name and version information are specified as attributes to the library element,
described in Table 4–2.

The format choices for both specificationversion and
implementationversion are described in Section 9.3, "Referencing Shared Java EE
Libraries in an Enterprise Application". The following output shows a sample
library reference:

<library file="c:\mylibs\lib.jar" name="ReqLib" specificationversion="920"
implementationversion="1.1" />

4.2 Building Modules and Applications Using wlappc
The weblogic.appc compiler generates JSPs and container-specific EJB classes for
deployment, and validates deployment descriptors for compliance with the current
Java EE specifications. appc performs validation checks between the application-level
deployment descriptors and the individual modules in the application as well as
validation checks across the modules.

Additionally, optional packages are supported as Java EE shared libraries in appc,
whereby all manifests of an application and its modules are scanned to look for
optional package references.

wlappc is the Ant task interface to the weblogic.appc compiler. The following
section describe the wlappc options and usage. Both weblogic.appc and the
wlappc Ant task compile modules in the order in which they appear in the
application.xml deployment descriptor file that describes your Enterprise
application.

4.2.1 wlappc Ant Task Attributes
Table 4–3 describes Ant task options specific to wlappc. These options are similar to
the weblogic.appc command-line options, but with a few differences.

Table 4–2 Library attributes

Attribute Description

file Required filename of a Java EE library

name The optional name of a required Java EE library.

specificationversion An optional specification version required for the library.

implementationversion An optional implementation version required for the library.

Building Modules and Applications Using wlappc

4-4 Developing Applications for Oracle WebLogic Server

Notes: See Section 4.2.4, "weblogic.appc Reference" for a list of
weblogic.appc options.

See also Section 4.1.5, "Library Element for wlcompile and wlappc".

Table 4–3 wlappc Ant Task Attributes

Option Description

print Prints the standard usage message.

version Prints appc version information.

output <file> Specifies an alternate output archive or directory. If not set, the output is placed
in the source archive or directory.

forceGeneration Forces generation of EJB and JSP classes. Without this flag, the classes may not
be regenerated (if determined to be unnecessary).

lineNumbers Adds line numbers to generated class files to aid in debugging.

writeInferredDescriptors Specifies that the application or module contains deployment descriptors with
annotation information.

basicClientJar Does not include deployment descriptors in client JARs generated for EJBs.

idl Generates IDL for EJB remote interfaces.

idlOverwrite Always overwrites existing IDL files.

idlVerbose Displays verbose information for IDL generation.

idlNoValueTypes Does not generate valuetypes and the methods/attributes that contain them.

idlNoAbstractInterfaces Does not generate abstract interfaces and methods/attributes that contain them.

idlFactories Generates factory methods for valuetypes.

idlVisibroker Generates IDL somewhat compatible with Visibroker 4.5 C++.

idlOrbix Generates IDL somewhat compatible with Orbix 2000 2.0 C++.

idlDirectory <dir> Specifies the directory where IDL files will be created (default: target directory or
JAR)

idlMethodSignatures <> Specifies the method signatures used to trigger IDL code generation.

iiop Generates CORBA stubs for EJBs.

iiopDirectory <dir> Specifies the directory where IIOP stub files will be written (default: target
directory or JAR)

keepgenerated Keeps the generated .java files.

librarydir Specifies a directory of shared Java EE libraries to add to the classpath. See
Chapter 9, "Creating Shared Java EE Libraries and Optional Packages."

compiler <java.jdt> Selects the Java compiler to use. Defaults to JDT.

debug Compiles debugging information into a class file.

optimize Compiles with optimization on.

nowarn Compiles without warnings.

verbose Compiles with verbose output.

deprecation Warns about deprecated calls.

normi Passes flags through to Symantec's sj.

runtimeflags Passes flags through to Java runtime

Building Modules and Applications Using wlappc

Building Applications in a Split Development Directory 4-5

4.2.2 wlappc Ant Task Syntax
The basic syntax for using the wlappc Ant task determines the destination source
directory location. This directory contains the files to be compiled by wlappc.

<wlappc source="${dest.dir}" />

The following is an example of a wlappc Ant task command that invokes two options
(idl and idlOrverWrite) from Table 4–3.

<wlappc source="${dest.dir}"idl="true" idlOrverWrite="true" />

4.2.3 Syntax Differences between appc and wlappc
There are some syntax differences between appc and wlappc. For appc, the presence
of a flag in the command is a boolean. For wlappc, the presence of a flag in the
command means that the argument is required.

To illustrate, the following are examples of the same command, the first being an appc
command and the second being a wlappc command:

java weblogic.appc -idl foo.ear
<wlappc source="${dest.dir} idl="true"/>

4.2.4 weblogic.appc Reference
The following sections describe how to use the command-line version of the appc
compiler. The weblogic.appc command-line compiler reports any warnings or
errors encountered in the descriptors and compiles all of the relevant modules into an
EAR file, which can be deployed to WebLogic Server.

4.2.5 weblogic.appc Syntax
Use the following syntax to run appc:

prompt>java weblogic.appc [options] <ear, jar, or war file or directory>

4.2.6 weblogic.appc Options
The following are the available appc options:

classpath <path> Selects the classpath to use during compilation.

clientJarOutputDir <dir> Specifies a directory to place generated client jar files. If not set, generated jar
files are placed into the same directory location where the JVM is running.

advanced Prints advanced usage options.

Option Description

-print Prints the standard usage message.

-version Prints appc version information.

-output <file> Specifies an alternate output archive or directory. If not set, the output is
placed in the source archive or directory.

-forceGeneration Forces generation of EJB and JSP classes. Without this flag, the classes
may not be regenerated (if determined to be unnecessary).

Table 4–3 (Cont.) wlappc Ant Task Attributes

Option Description

Building Modules and Applications Using wlappc

4-6 Developing Applications for Oracle WebLogic Server

-library
<file[[@name=<strin
g>][@libspecver=<ve
rsion>][@libimplver
=<version|string>]]
>

A comma-separated list of shared Java EE libraries. Optional name and
version string information must be specified in the format described in
Section 9.3, "Referencing Shared Java EE Libraries in an Enterprise
Application".

-writeInferredDescr
iptors

Specifies that the application or module contains deployment
descriptors with annotation information.

-lineNumbers Adds line numbers to generated class files to aid in debugging.

-basicClientJar Does not include deployment descriptors in client JARs generated for
EJBs.

-idl Generates IDL for EJB remote interfaces.

-idlOverwrite Always overwrites existing IDL files.

-idlVerbose Displays verbose information for IDL generation.

-idlNoValueTypes Does not generate valuetypes and the methods/attributes that contain
them.

-idlNoAbstractInter
faces

Does not generate abstract interfaces and methods/attributes that
contain them.

-idlFactories Generates factory methods for valuetypes.

-idlVisibroker Generates IDL somewhat compatible with Visibroker 4.5 C++.

-idlOrbix Generates IDL somewhat compatible with Orbix 2000 2.0 C++.

-idlDirectory <dir> Specifies the directory where IDL files will be created (default: target
directory or JAR)

-idlMethodSignature
s <>

Specifies the method signatures used to trigger IDL code generation.

-iiop Generates CORBA stubs for EJBs.

-iiopDirectory
<dir>

Specifies the directory where IIOP stub files will be written (default:
target directory or JAR)

-keepgenerated Keeps the generated .java files.

-compiler <javac> Selects the Java compiler to use.

-g Compiles debugging information into a class file.

-O Compiles with optimization on.

-nowarn Compiles without warnings.

-verbose Compiles with verbose output.

-deprecation Warns about deprecated calls.

-normi Passes flags through to Symantec's sj.

-J<option> Passes flags through to Java runtime.

-classpath <path> Selects the classpath to use during compilation.

-clientJarOutputDir
<dir>

Specifies a directory to place generated client jar files. If not set,
generated jar files are placed into the same directory location where the
JVM is running.

-advanced Prints advanced usage options.

Option Description

5

Deploying and Packaging from a Split Development Directory 5-1

5Deploying and Packaging from a Split
Development Directory

The following sections describe the steps for deploying WebLogic Server Java EE
applications using the WebLogic split development directory environment:

■ Section 5.1, "Deploying Applications Using wldeploy"

■ Section 5.2, "Packaging Applications Using wlpackage"

5.1 Deploying Applications Using wldeploy
The wldeploy task provides an easy way to deploy directly from the split
development directory. wlcompile provides most of the same arguments as the
weblogic.Deployer directory. To deploy from a split development directory, you
simply identify the build directory location as the deployable files, as in:

<wldeploy user="${user}" password="${password}"
 action="deploy" source="${dest.dir}"
 name="helloWorldEar" />

The above task is automatically created when you use weblogic.BuildXMLGen to
create the build.xml file.

See Appendix B, "wldeploy Ant Task Reference," for a complete command reference.

5.2 Packaging Applications Using wlpackage
The wlpackage Ant task uses the contents of both the source and build directories to
create either a deployable archive file (.EAR file), or an exploded archive directory
representing the Enterprise application (exploded .EAR directory). Use wlpackage
when you want to deliver your application to another group or individual for
evaluation, testing, performance profiling, or production deployment.

5.2.1 Archive versus Exploded Archive Directory
For production purposes, it is convenient to deploy Enterprise applications in
exploded (unarchived) directory format. This applies also to standalone Web
applications, EJBs, and connectors packaged as part of an Enterprise application.
Using this format allows you to update files directly in the exploded directory rather
than having to unarchive, edit, and rearchive the whole application. Using exploded
archive directories also has other benefits, as described in Deployment Archive Files
Versus Exploded Archive Directories in Deploying Applications to Oracle WebLogic
Server.

Packaging Applications Using wlpackage

5-2 Developing Applications for Oracle WebLogic Server

You can also package applications in a single archived file, which is convenient for
packaging modules and applications for distribution. Archive files are easier to copy,
they use up fewer file handles than an exploded directory, and they can save disk
space with file compression.

The Java classloader can search for Java class files (and other file types) in a JAR file
the same way that it searches a directory in its classpath. Because the classloader can
search a directory or a JAR file, you can deploy Java EE modules on WebLogic Server
in either a JAR (archived) file or an exploded (unarchived) directory.

5.2.2 wlpackage Ant Task Example
In a production environment, use the wlpackage Ant task to package your split
development directory application as a traditional EAR file that can be deployed to
WebLogic Server. Continuing with the MedRec example, you would package your
application as follows:

<wlpackage tofile="\physicianEAR\physicianEAR.ear"
 srcdir="\physicianEAR"
 destdir="\build\physicianEAR"/>
<wlpackage todir="\physicianEAR\explodedphysicianEar"
 srcdir="\src\physicianEAR"
 destdir="\build\physicianEAR" />

5.2.3 wlpackage Ant Task Attribute Reference
The following table describes the attributes of the wlpackage Ant task.

Table 5–1 Attributes of the wlpackage Ant Task

Attribute Description
Data
Type Required?

tofile Name of the EAR archive file into which the wlpackage Ant
task packages the split development directory application.

String You must specify one of
the following two
attributes: tofile or
todir.

todir Name of an exploded directory into which the wlpackage Ant
task packages the split development directory application.

String You must specify one of
the following two
attributes: tofile or
todir.

srcdir Specifies the source directory of your split development
directory application.

The source directory contains all editable files for your
project—Java source files, editable descriptor files, JSPs, static
content, and so forth.

String Yes.

destdir Specifies the build directory of your split development directory
application.

It is assumed that you have already executed the wlcompile
Ant task against the source directory to generate the needed
components into the build directory; these components include
compiled Java classes and generated deployment descriptors.

String Yes.

6

Developing Applications for Production Redeployment 6-1

6Developing Applications for Production
Redeployment

The following sections describes how to program and maintain applications use the
production redeployment strategy:

■ Section 6.1, "What is Production Redeployment?"

■ Section 6.2, "Supported and Unsupported Application Types"

■ Section 6.3, "Programming Requirements and Conventions"

■ Section 6.4, "Assigning an Application Version"

■ Section 6.5, "Upgrading Applications to Use Production Redeployment"

■ Section 6.6, "Accessing Version Information"

6.1 What is Production Redeployment?
Production redeployment enables an Administrator to redeploy a new version of an
application in a production environment without stopping the deployed application or
otherwise interrupting the application's availability to clients. Production
redeployment works by deploying a new version of an updated application alongside
an older version of the same application. WebLogic Server automatically manages
client connections so that only new client requests are directed to the new version.
Clients already connected to the application during the redeployment continue to use
the older, retiring version of the application until they complete their work.

See "Using Production Redeployment to Upgrade Applications" for more information.

6.2 Supported and Unsupported Application Types
Production redeployment only supports HTTP clients and RMI clients. Your
development and design team must ensure that applications using production
redeployment are not accessed by an unsupported client. WebLogic Server does not
detect when unsupported clients access the application, and does not preserve
unsupported client connections during production redeployment.

Enterprise applications can contain any of the supported Java EE module types.
Enterprise applications can also include application-scoped JMS and JDBC modules.

If an Enterprise application includes a JCA resource adapter module, the module:

■ Must be JCA 1.5 compliant

■ Must implement the weblogic.connector.extensions.Suspendable
interface

Programming Requirements and Conventions

6-2 Developing Applications for Oracle WebLogic Server

■ Must be used in an application-scoped manner, having
enable-access-outside-app set to false (the default value).

Before resource adapters in a newer version of the EAR are deployed, resource
adapters in the older application version receive a callback. WebLogic Server then
deploys the newer application version and retires the entire older version of the EAR.

For a complete list of production redeployment requirements for resource adapters,
see "Production Redeployment" in Programming Resource Adapters for Oracle WebLogic
Server.

6.2.1 Additional Application Support
Additional production redeployment support is provided for Enterprise applications
that are accessed by inbound JMS messages from a global JMS destination, and that
use one or more message-driven beans as consumers. For this type of application,
WebLogic Server suspends message-driven beans in the older, retiring application
version before deploying message-driven beans in the newer version. Production
redeployment is not supported with JMS consumers that use the JMS API for global
JMS destinations. If the message-driven beans need to receive all messages published
from topics, including messages published while bean are suspended, use durable
subscribers.

6.3 Programming Requirements and Conventions
WebLogic Server performs production redeployment by deploying two instances of an
application simultaneously. You must observe certain programming conventions to
ensure that multiple instances of the application can co-exist in a WebLogic Server
domain. The following sections describe each programming convention required for
using production redeployment.

6.3.1 Applications Should Be Self-Contained
As a best practice, applications that use the in-place redeployment strategy should be
self-contained in their use of resources. This means you should generally use
application-scoped JMS and JDBC resources, rather than global resources, whenever
possible for versioned applications.

If an application must use a global resource, you must ensure that the application
supports safe, concurrent access by multiple instances of the application. This same
restriction also applies if the application uses external (separately-deployed)
applications, or uses an external property file. WebLogic Server does not prevent the
use of global resources with versioned applications, but you must ensure that
resources are accessed in a safe manner.

Looking up a global JNDI resource from within a versioned application results in a
warning message. To disable this check, set the JNDI environment property
weblogic.jndi.WLContext.ALLOW_GLOBAL_RESOURCE_LOOKUP to true when
performing the JNDI lookup.

Similarly, looking up an external application results in a warning unless you set the
JNDI environment property, weblogic.jndi.WLContext.ALLOW_EXTERNAL_
APP_LOOKUP, to true.

Programming Requirements and Conventions

Developing Applications for Production Redeployment 6-3

6.3.2 Versioned Applications Access the Current Version JNDI Tree by Default
WebLogic Server binds application-scoped resources, such as JMS and JDBC
application modules, into a local JNDI tree available to the application. As with
non-versioned applications, versioned applications can look up application-scoped
resources directly from this local tree. Application-scoped JMS modules can be
accessed via any supported JMS interfaces, such as the JMS API or a message-driven
bean.

Application modules that are bound to the global JNDI tree should be accessed only
from within the same application version. WebLogic Server performs version-aware
JNDI lookups and bindings for global resources deployed in a versioned application.
By default, an internal JNDI lookup of a global resource returns bindings for the same
version of the application.

If the current version of the application cannot be found, you can use the JNDI
environment property weblogic.jndi.WLContext.RELAX_VERSION_LOOKUP to
return bindings from the currently active version of the application, rather than the
same version.

6.3.3 Security Providers Must Be Compatible
Any security provider used in the application must support the WebLogic Server
application versioning SSPI. The default WebLogic Server security providers for
authorization, role mapping, and credential mapping support the application
versioning SSPI.

6.3.4 Applications Must Specify a Version Identifier
In order to use production redeployment, both the current, deployed version of the
application and the updated version of the application must specify unique version
identifiers. See Section 6.4, "Assigning an Application Version".

6.3.5 Applications Can Access Name and Identifier
Versioned applications can programmatically obtain both an application name, which
remains constant across different versions, and an application identifier, which
changes to provide a unique label for different versions of the application. Use the
application name for basic display or error messages that refer to the application's
name irrespective of the deployed version. Use the application ID when the
application must provide unique identifier for the deployed version of the application.
See Section 6.6, "Accessing Version Information" for more information about the
MBean attributes that provide the name and identifier.

6.3.6 Client Applications Use Same Version when Possible
As described in Section 6.1, "What is Production Redeployment?", WebLogic Server
attempts to route a client application's requests to the same version of the application
until all of the client's in-progress work has completed. However, if an application
version is retired using a timeout period, or is undeployed, the client's request will be
routed to the active version of the application. In other words, a client's association
with a given version of an application is maintained only on a "best-effort basis."

Note:: Set weblogic.jndi.WLContext.RELAX_VERSION_LOOKUP to
true only if you are certain that the newer and older version of the resource
that you are looking up are compatible with one another.

Assigning an Application Version

6-4 Developing Applications for Oracle WebLogic Server

This behavior can be problematic for client applications that recursively access other
applications when processing requests. WebLogic Server attempts to dispatch requests
to the same versions of the recursively-accessed applications, but cannot guarantee
that an intermediate application version is not undeployed manually or after a timeout
period. If you have a group of related applications with strict version requirements,
Oracle recommends packaging all of the applications together to ensure version
consistency during production redeployment.

6.4 Assigning an Application Version
Oracle recommends that you specify the version identifier in the MANIFEST.MF of the
application, and automatically increment the version each time a new application is
released for deployment. This ensures that production redeployment is always
performed when the administrator or deployer redeploys the application.

For testing purposes, a deployer can also assign a version identifier to an application
during deployment and redeployment. See "Assigning a Version Identifier During
Deployment and Redeployment" in Deploying Applications to Oracle WebLogic Server.

6.4.1 Application Version Conventions
WebLogic Server obtains the application version from the value of the
Weblogic-Application-Version property in the MANIFEST.MF file. The version
string can be a maximum of 215 characters long, and must consist of valid characters
as identified in Table 6–1.

For example, the following manifest file content describes an application with version
"v920.beta":

Manifest-Version: 1.0
 Created-By: 1.4.1_05-b01 (Sun Microsystems Inc.)
 Weblogic-Application-Version: v920.beta

6.5 Upgrading Applications to Use Production Redeployment
If you are upgrading applications for deployment to WebLogic Server 9.2, note that the
Name attribute retrieved from AppDeploymentMBean now returns a unique
application identifier consisting of both the deployed application name and the
application version string. Applications that require only the deployed application
name must use the new ApplicationName attribute instead of the Name attribute.
Applications that require a unique identifier can use either the Name or
ApplicationIdentifier attribute, as described in Section 6.6, "Accessing Version
Information".

Table 6–1 Valid and Invalid Characters

Valid ASCII Characters Invalid Version Constructs

a-z ..

A-Z .

0-9

period ("."), underscore ("_"), or hyphen ("-") in
combination with other characters

Accessing Version Information

Developing Applications for Production Redeployment 6-5

6.6 Accessing Version Information
Your application code can use new MBean attributes to retrieve version information
for display, logging, or other uses. The following table describes the read-only
attributes provided by ApplicationMBean.

ApplicationRuntimeMBean also provides version information in the new
read-only attributes described in the following table.

Table 6–2 Read-Only Version Attributes in ApplicationMBean

Attribute Name Description

ApplicationName A String that represents the deployment name of the application

VersionIdentifier A String that uniquely identifies the current application version across all versions of
the same application

ApplicationIdentifier A String that uniquely identifies the current application version across all deployed
applications and versions

Table 6–3 Read-Only Version Attributes in ApplicationRuntimeMBean

Attribute Name Description

ApplicationName A String that represents the deployment name of the application

ApplicationVersion A string that represents the version of the application.

ActiveVersionState An integer that indicates the current state of the active application version. Valid
states for an active version are:

■ ACTIVATED—indicates that one or more modules of the application are active
and available for processing new client requests.

■ PREPARED—indicates that WebLogic Server has prepared one or more modules
of the application, but that it is not yet active.

■ UNPREPARED—indicates that no modules of the application are prepared or
active.

See the Oracle WebLogic Server API Reference for more information.

Note that the currently active version does not always correspond to the
last-deployed version, because the Administrator can reverse the production
redeployment process. See "Rolling Back the Production Redeployment Process" in
Deploying Applications to Oracle WebLogic Server.

Accessing Version Information

6-6 Developing Applications for Oracle WebLogic Server

7

Using Java EE Annotations and Dependency Injection 7-1

7Using Java EE Annotations and Dependency
Injection

The following sections describe the concepts of MetaData annotation and dependency
injection:

■ Section 7.1, "Annotation Processing"

■ Section 7.2, "Dependency Injection of Resources"

■ Section 7.3, "Standard JDK Annotations"

■ Section 7.4, "Standard Security-Related JDK Annotations"

7.1 Annotation Processing
With Java EE annotations, the standard application.xml and web.xml
deployment descriptors are optional. The Java EE programming model uses the JDK
5.0 annotations feature for Web containers, such as EJBs, servlets, Web applications,
and JSPs (see http://java.sun.com/javaee/5/docs/api/).

Annotations simplify the application development process by allowing developers to
specify within the Java class itself how the application component behaves in the
container, requests for dependency injection, and so on. Annotations are an alternative
to deployment descriptors that were required by older versions of Enterprise
applications (J2EE 1.4 and earlier).

7.1.1 Annotation Parsing
The application components can use annotations to define their needs. Annotations
reduce or eliminate the need to deal with deployment descriptors. Annotations
simplify the development of application components. The deployment descriptor can
still override values defined in the annotation. One usage of annotations is to define
fields or methods that need Dependency Injection (DI). Annotations are defined on the
POJO (plain old Java object) component classes like the EJB or the servlet.

An annotation on a field or a method can declare that fields/methods need injection,
as described in Section 7.2, "Dependency Injection of Resources". Annotations may
also be applied to the class itself. The class-level annotations declare an entry in the
application component's environment but do not cause the resource to be injected.
Instead, the application component is expected to use JNDI or component context
lookup method to lookup the entry. When the annotation is applied to the class, the
JNDI name and the environment entry type must be specified explicitly.

Dependency Injection of Resources

7-2 Developing Applications for Oracle WebLogic Server

7.1.2 Deployment View of Annotation Configuration
The Java EE Deployment API [JSR88] provides a way for developers to examine
deployment descriptors. For example, consider an EJB Module that has no deployment
descriptors. Assuming that it has some classes that have been declared as EJBs using
annotations, a user of Session Helper will still be able to deal with the module as if it
had the deployment descriptor. So the developer can modify the configuration
information and it will be written out in a deployment plan. During deployment, such
a plan will be honored and will override information from annotations.

7.1.3 Compiling Annotated Classes
The WebLogic Server utility appc (and its Ant equivalent wlappc) and Appmerge
support metadata annotations. The appmerge and appc utilities take an application
or module as inputs and process them to produce an output application or module
respectively. When used with -writeInferredDescriptors flag, the output
application/module will contain deployment descriptors with annotation information.
The descriptors will also have the metadata-complete attribute set to true, as no
annotation processing needs to be done if the output application or module is
deployed directly. However, setting of metadata-complete attribute to true will
also restrict appmerge and appc from processing annotations in case these tools are
invoked on a previously processed application or module.

The original descriptors must be preserved in such cases to with an .orig suffix. If a
developer wants to reapply annotation processing on the output application, they
must restore the descriptors and use the -writeInferredDescriptors flag again.
If appmerge or appc is used with -writeInferredDescriptors on an Enterprise
application for which no standard deployment descriptor exists, the descriptor will be
generated and written out based on the inference rules in the Java EE specification.

For more information on using appc, see Section 4.2.4, "weblogic.appc Reference". For
more information on using appmerge, see Section 9.5, "Using weblogic.appmerge to
Merge Libraries".

7.1.4 Dynamic Annotation Updates
Deployed modules can be updated using update deployment operation. If such an
update has changes to deployment descriptor or updated classes, the container must
consider annotation information again while processing the new deployment
descriptor.

Containers use the descriptor framework's two-phase update mechanism to check the
differences between the current and proposed descriptors. This mechanism also
informs the containers about any changes in the non-dynamic properties. The
containers then deal with such non-dynamic changes in their own specific ways. The
container must perform annotation processing on the proposed descriptor to make
sure that it is finding the differences against the right reference.

Similarly, some of the classes from a module could be updated during an update
operation. If the container knows that these classes could affect configuration
information through annotations, it makes sure that nothing has changed.

7.2 Dependency Injection of Resources
Dependency injection (DI) allows application components to declare dependencies on
external resources and configuration parameters via annotations. The container reads
these annotations and injects resources or environment entries into the application

Standard JDK Annotations

Using Java EE Annotations and Dependency Injection 7-3

components. Dependency injection is simply an easier-to-program alternative to using
the javax interfaces or JNDI APIs to look up resources.

A field or a method of an application component can be annotated with the
@Resource annotation. Note that the container will unbox the environment entry as
required to match it to a primitive type used for the injection field or method.
Example 7–1 illustrates how an application component uses the @Resource
annotation to declare environment entries.

Example 7–1 Dependency Injection of Environment Entries

 // fields

 // The maximum number of tax exemptions, configured by the Deployer.
 @Resource int maxExemptions;
 // The minimum number of tax exemptions, configured by the Deployer.
 @Resource int minExemptions;

 …..
 }

In the above code the @Resource annotation has not specified a name; therefore, the
container would look for an env-entry name called
<class-name>/maxExemptions and inject the value of that entry into the
maxExemptions variable. The field or method may have any access qualifier (public,
private, etc.). For all classes except application client main classes, the fields or
methods must not be static. Because application clients use the same life cycle as J2EE
applications, no instance of the application client main class is created by the
application client container. Instead, the static main method is invoked. To support
injection for the application client main class, the fields or methods annotated for
injection must be static.

7.2.1 Application Life Cycle Annotation Methods
An application component may need to perform initialization of its own after all
resources have been injected. To support this case, one method of the class can be
annotated with the @PostConstruct annotation. This method will be called after all
injections have occurred and before the class is put into service. This method will be
called even if the class doesn't request any resources to be injected. Similarly, for
classes whose life cycle is managed by the container, the @PreDestroy annotation can
be applied to one method that will be called when the class is taken out of service and
will no longer be used by the container. Each class in a class hierarchy may have
@PostConstruct and @PreDestroy methods.

The order in which the methods are called matches the order of the class hierarchy,
with methods on a superclass being called before methods on a subclass. From the
Java EE side only the application client container is involved in invoking these life
cycle methods for Java EE clients. The life cycle methods for Java EE clients must be
static. The Java EE client just supports the @PostConstruct callback.

7.3 Standard JDK Annotations
This section provides reference information about the following annotations:

■ Section 7.3.1, "javax.annotation.PostConstruct"

■ Section 7.3.2, "javax.annotation.PreDestroy"

■ Section 7.3.3, "javax.annotation.Resource"

Standard JDK Annotations

7-4 Developing Applications for Oracle WebLogic Server

■ Section 7.3.4, "javax.annotation.Resources"

For detailed information about EJB-specific annotations for WebLogic Server
Enterprise JavaBeans, see Programming WebLogic Enterprise JavaBeans, Version 3.0 for
Oracle WebLogic Server.

For detailed information about web component-specific annotations WebLogic Server
applications, see "WebLogic Annotation for Web Components" in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

7.3.1 javax.annotation.PostConstruct
Target: Method

Specifies the life cycle callback method that the application component should execute
before the first business method invocation and after dependency injection is done to
perform any initialization. This method will be called after all injections have occurred
and before the class is put into service. This method will be called even if the class
doesn't request any resources to be injected.

You must specify a @PostConstruct method in any component that includes
dependency injection.

Only one method in the component can be annotated with this annotation.

The method annotated with @PostConstruct must follow these requirements:

■ The method must not have any parameters, except in the case
of EJB interceptors, in which case it takes an
javax.interceptor.InvocationContext object as defined by the EJB
specification.

■ The return type of the method must be void.

■ The method must not throw a checked exception.

■ The method may be public, protected, package private or private.

■ The method must not be static except for the application client.

■ The method may be final or non-final, except in the case of EJBs
where it must be non-final.

■ If the method throws an unchecked exception the class must
not be put into service. In the case of EJBs, the method
annotated with PostConstruct can handle exceptions and cleanup before
the bean instance is discarded.

This annotation does not have any attributes.

7.3.2 javax.annotation.PreDestroy
Target: Method

Specifies the life cycle callback method that signals that the application component is
about to be destroyed by the container. You typically apply this annotation to methods
that release resources that the class has been holding.

Only one method in the bean class can be annotated with this annotation.

The method annotated with @PreDestroy must follow these requirements:

■ The method must not have any parameters, except in the case
of EJB interceptors, in which case it takes an

Standard JDK Annotations

Using Java EE Annotations and Dependency Injection 7-5

javax.interceptor.InvocationContext object as defined by the EJB
specification.

■ The return type of the method must be void.

■ The method must not throw a checked exception.

■ The method may be public, protected, package private or private.

■ The method must not be static except for the application client.

■ The method may be final or non-final, except in the case of EJBs
where it must be non-final.

■ If the method throws an unchecked exception the class must
not be put into service. In the case of EJBs, the method
annotated with PreDestroy can handle exceptions and cleanup before the
bean instance is discarded.

This annotation does not have any attributes.

7.3.3 javax.annotation.Resource
Target: Class, Method, Field

Specifies a dependence on an external resource, such as a JDBC data source or a JMS
destination or connection factory.

If you specify the annotation on a field or method, the application component injects
an instance of the requested resource into the bean when the bean is initialized. If you
apply the annotation to a class, the annotation declares a resource that the component
will look up at runtime.

Attributes

Table 7–1 Attributes of the javax.annotation.Resource Annotation

Name Description Data Type Required?

name Specifies the JNDI name of the resource.

If you apply the @Resource annotation to a field, the default value
of the name attribute is the field name, qualified by the class name. If
you apply it to a method, the default value is the component
property name corresponding to the method, qualified by the class
name. If you apply the annotation to class, there is no default value
and thus you are required to specify the attribute.

String No

type Specifies the Java data type of the resource.

If you apply the @Resource annotation to a field, the default value
of the type attribute is the type of the field. If you apply it to a
method, the default is the type of the component property. If you
apply it to a class, there is no default value and thus you are required
to specify this attribute.

Class No

authentication
Type

Specifies the authentication type to use for the resource.

Valid values for this attribute are:

■ AuthenticationType.CONTAINER

■ AuthenticationType.APPLICATION

Default value is AuthenticationType.CONTAINER

Authentication
Type

No

Standard Security-Related JDK Annotations

7-6 Developing Applications for Oracle WebLogic Server

7.3.4 javax.annotation.Resources
Target: Class

Specifies an array of @Resource annotations. Since repeated annotations are not
allowed, the Resources annotation acts as a container for multiple resource
declarations.

Attributes

7.4 Standard Security-Related JDK Annotations
This section provides reference information about the following annotations:

■ Section 7.4.1, "javax.annotation.security.DeclareRoles"

■ Section 7.4.2, "javax.annotation.security.DenyAll"

■ Section 7.4.3, "javax.annotation.security.PermitAll"

■ Section 7.4.4, "javax.annotation.security.RolesAllowed"

■ Section 7.4.5, "javax.annotation.security.RunAs"

shareable Indicates whether a resource can be shared between this component
and other components.

Valid values for this attribute are true and false. Default value is
true.

Boolean No

mappedName Specifies a WebLogic Server-specific name to which the component
reference should be mapped.

However, if you do not specify a JNDI name in the WebLogic
deployment descriptor file, then the value of mappedName will
always be used as the JNDI name to look up. For example:

@Resource(mappedName = "http://www.bea.com";)

URL url;

@Resource(mappedName="customerDB")

DataSource db;

@Resource(mappedName = "jms/ConnectionFactory")

ConnectionFactory connectionFactory;

@Resource(mappedName = "jms/Queue")

Queue queue;

In other words, MappedName is honored as JNDI name only when
there is no JNDI name specified elsewhere, typically in the WebLogic
deployment descriptor file.

String No

description Specifies a description of the resource. String No

Table 7–2 Attributes of the javax.annotation.Resources Annotation

Name Description Data Type Required?

value Specifies the array of @Resource annotations. Resource[] Yes

Table 7–1 (Cont.) Attributes of the javax.annotation.Resource Annotation

Name Description Data Type Required?

Standard Security-Related JDK Annotations

Using Java EE Annotations and Dependency Injection 7-7

7.4.1 javax.annotation.security.DeclareRoles
Target: Class

Defines the security roles that will be used in the Java EE container.

You typically use this annotation to define roles that can be tested from within the
methods of the annotated class, such as using the isUserInRole method. You can
also use the annotation to explicitly declare roles that are implicitly declared if you use
the @RolesAllowed annotation on the class or a method of the class.

You create security roles in WebLogic Server using the Administration Console. For
details, see "Manage Security Roles".

Attributes

7.4.2 javax.annotation.security.DenyAll
Target: Method

Specifies that no security role is allowed to access the annotated method, or in other
words, the method is excluded from execution in the Java EE container.

This annotation does not have any attributes.

7.4.3 javax.annotation.security.PermitAll
Target: Method

Specifies that all security roles currently defined for WebLogic Server are allowed to
access the annotated method.

This annotation does not have any attributes.

7.4.4 javax.annotation.security.RolesAllowed
Target: Class, Method

Specifies the list of security roles that are allowed to access methods in the Java EE
container.

If you specify it at the class-level, then it applies to all methods in the application
component. If you specify it at the method-level, then it only applies to that method. If
you specify the annotation at both the class- and method-level, the method value
overrides the class value.

You create security roles in WebLogic Server using the Administration Console. For
details, see "Manage Security Roles".

Attributes

Table 7–3 Attributes of the javax.annotation.security.DeclareRoles Annotation

Name Description Data Type Required?

value Specifies an array of security roles that will be used in the
Java EE container.

String[] Yes

Table 7–4 Attributes of the javax.annotation.security.RolesAllowed Annotation

Name Description Data Type Required?

value List of security roles that are allowed to access methods
of the Java EE container.

String[] Yes

Standard Security-Related JDK Annotations

7-8 Developing Applications for Oracle WebLogic Server

7.4.5 javax.annotation.security.RunAs
Target: Class

Specifies the security role which actually executes the Java EE container.

The security role must exist in the WebLogic Server security realm and map to a user
or group. For details, see "Manage Security Roles".

Attributes

Table 7–5 Attributes of the javax.annotation.security.RunAs Annotation

Name Description Data Type Required?

value Specifies the security role that the Java EE container
should run as.

String Yes

8

Understanding WebLogic Server Application Classloading 8-1

8Understanding WebLogic Server Application
Classloading

The following sections provide an overview of Java classloaders, followed by details
about WebLogic Server Java EE application classloading.

■ Section 8.1, "Java Classloading"

■ Section 8.2, "WebLogic Server Application Classloading"

■ Section 8.3, "Resolving Class References Between Modules and Applications"

■ Section 8.4, "Using the Classloader Analysis Tool (CAT)"

■ Section 8.5, "Sharing Applications and Modules By Using Java EE Libraries"

■ Section 8.6, "Adding JARs to the Domain /lib Directory"

8.1 Java Classloading
Classloaders are a fundamental module of the Java language. A classloader is a part of
the Java virtual machine (JVM) that loads classes into memory; a classloader is
responsible for finding and loading class files at run time. Every successful Java
programmer needs to understand classloaders and their behavior. This section
provides an overview of Java classloaders.

8.1.1 Java Classloader Hierarchy
Classloaders contain a hierarchy with parent classloaders and child classloaders. The
relationship between parent and child classloaders is analogous to the object
relationship of super classes and subclasses. The bootstrap classloader is the root of the
Java classloader hierarchy. The Java virtual machine (JVM) creates the bootstrap
classloader, which loads the Java development kit (JDK) internal classes and java.*
packages included in the JVM. (For example, the bootstrap classloader loads
java.lang.String.)

The extensions classloader is a child of the bootstrap classloader. The extensions
classloader loads any JAR files placed in the extensions directory of the JDK. This is a
convenient means to extending the JDK without adding entries to the classpath.
However, anything in the extensions directory must be self-contained and can only
refer to classes in the extensions directory or JDK classes.

The system classpath classloader extends the JDK extensions classloader. The system
classpath classloader loads the classes from the classpath of the JVM.
Application-specific classloaders (including WebLogic Server classloaders) are
children of the system classpath classloader.

Java Classloading

8-2 Developing Applications for Oracle WebLogic Server

8.1.2 Loading a Class
Classloaders use a delegation model when loading a class. The classloader
implementation first checks its cache to see if the requested class has already been
loaded. This class verification improves performance in that its cached memory copy
is used instead of repeated loading of a class from disk. If the class is not found in its
cache, the current classloader asks its parent for the class. Only if the parent cannot
load the class does the classloader attempt to load the class. If a class exists in both the
parent and child classloaders, the parent version is loaded. This delegation model is
followed to avoid multiple copies of the same form being loaded. Multiple copies of
the same class can lead to a ClassCastException.

Classloaders ask their parent classloader to load a class before attempting to load the
class themselves. Classloaders in WebLogic Server that are associated with Web
applications can be configured to check locally first before asking their parent for the
class. This allows Web applications to use their own versions of third-party classes,
which might also be used as part of the WebLogic Server product. The Section 8.1.3,
"prefer-web-inf-classes Element" section discusses this in more detail.

8.1.3 prefer-web-inf-classes Element
The weblogic.xml Web application deployment descriptor contains a
<prefer-web-inf-classes> element (a sub-element of the
<container-descriptor> element). By default, this element is set to False.
Setting this element to True subverts the classloader delegation model so that class
definitions from the Web application are loaded in preference to class definitions in
higher-level classloaders. This allows a Web application to use its own version of a
third-party class, which might also be part of WebLogic Server. See "weblogic.xml
Deployment Descriptor Elements".

When using this feature, you must be careful not to mix instances created from the
Web application's class definition with issuances created from the server's definition. If
such instances are mixed, a ClassCastException results.

Example 8–1 illustrates the prefer-web-inf-classes element, its description and
default value.

Example 8–1 prefer-web-inf-classes Element

/**
* If true, classes located in the WEB-INF directory of a web-app will be
* loaded in preference to classes loaded in the application or system
* classloader.
* @default false
*/
boolean isPreferWebInfClasses();
void setPreferWebInfClasses(boolean b);

Note: What Oracle refers to as a "system classpath classloader" is often
referred to as the "application classloader" in contexts outside of WebLogic
Server. When discussing classloaders in WebLogic Server, Oracle uses the term
"system" to differentiate from classloaders related to Java EE applications or
libraries (which Oracle refers to as "application classloaders").

Java Classloading

Understanding WebLogic Server Application Classloading 8-3

8.1.4 Changing Classes in a Running Program
WebLogic Server allows you to deploy newer versions of application modules such as
EJBs while the server is running. This process is known as hot-deploy or hot-redeploy
and is closely related to classloading.

Java classloaders do not have any standard mechanism to undeploy or unload a set of
classes, nor can they load new versions of classes. In order to make updates to classes
in a running virtual machine, the classloader that loaded the changed classes must be
replaced with a new classloader. When a classloader is replaced, all classes that were
loaded from that classloader (or any classloaders that are offspring of that classloader)
must be reloaded. Any instances of these classes must be re-instantiated.

In WebLogic Server, each application has a hierarchy of classloaders that are offspring
of the system classloader. These hierarchies allow applications or parts of applications
to be individually reloaded without affecting the rest of the system. Section 8.2,
"WebLogic Server Application Classloading" discusses this topic.

8.1.5 Configuring Class Caching
WebLogic Server now allows you to enable class caching for faster start ups. Once you
enable caching, the server records all the classes loaded until a specific criterion is
reached and persists the class definitions in an invisible file. When the server restarts,
the cache is checked for validity with the existing code sources and the server uses the
cache file to bulk load the same sequence of classes recorded in the previous run. If
any change is made to the system classpath or its contents, the cache will be
invalidated and re-built on server restart.

The advantages of using class caching are:

■ Reduces server startup time.

■ The package level index reduces search time for all classes and resources.

The cache uses optimization techniques to minimize the initial cache recording time.
Cache recording continues until a specific class has been recorded.

1. To enable class caching, set an environment variable (CLASS_CACHE=true for
UNIX, set CLASS_CACHE=true for Windows) in the startWebLogic script.

2. Configure class caching using the following properties:

■ Logging: To debug class caching issues, turn on logging by placing the
following system properties in the JAVA_OPTIONS for the section of the
startup script that enables caching.

-Dclass.load.log.level=finest
-Dclass.load.log.file=/tmp/class-load-log.txt

There are three levels of logging: fine, finer, finest. Do not enable logging
during regular cache operation. Logging will slow the start up of the server.
Use logging for debugging only.

■ Recording limit: Though the recording limit for class caching is set to a specific
class, you can configure this class in your environment to a different class.

Note: Class caching is supported in development mode when
starting the server using a startWebLogic script. Class caching is
disabled by default and is not supported in production mode. The
decrease in startup time varies among different JRE vendors.

WebLogic Server Application Classloading

8-4 Developing Applications for Oracle WebLogic Server

-Dlaunch.complete=<fully qualified class name> for example
com.oracle.component.Foo

The class used in this property must be in the system classpath for WebLogic
Server.

Example 8–2 illustrates modified UNIX and Windows startWebLogic scripts with class
caching enabled and logging turned on.

Example 8–2 startWebLogic scripts

On UNIX

CLASS CACHING
CLASS_CACHE=true
if ["${CLASS_CACHE}" = "true"] ; then
 echo "Class caching enabled..."
 JAVA_OPTIONS="${JAVA_OPTIONS} -Dlaunch.main.class=${SERVER_CLASS}
 -Dlaunch.class.path="${CLASSPATH}"
 -Dlaunch.complete=weblogic.store.internal.LockManagerImpl
 -Dclass.load.log.level=finest
 -Dclass.load.log.file=/tmp/class-load-log.txt
 -cp ${WL_HOME}/server/lib/pcl2.jar"
 export JAVA_OPTIONS
 SERVER_CLASS="com.oracle.classloader.launch.Launcher"
fi

On Windows

@REM CLASS CACHING
set CLASS_CACHE=true
if "%CLASS_CACHE%"=="true" (
 echo Class caching enabled...
 set JAVA_OPTIONS=%JAVA_OPTIONS% -Dlaunch.main.class=%SERVER_CLASS%
 -Dlaunch.class.path="%CLASSPATH%" -Dclass.load.log.level=finest
 -Dclass.load.log.file=C:\class-load-log.txt
 -Dlaunch.complete=weblogic.store.internal.LockManagerImpl
 -cp %WL_HOME%\server\lib\pcl2.jar
 set SERVER_CLASS=com.oracle.classloader.launch.Launcher
)

8.2 WebLogic Server Application Classloading
The following sections provide an overview of the WebLogic Server application
classloaders:

■ Section 8.2.1, "Overview of WebLogic Server Application Classloading"

■ Section 8.2.2, "Application Classloader Hierarchy"

■ Section 8.2.3, "Custom Module Classloader Hierarchies"

■ Section 8.2.6, "Individual EJB Classloader for Implementation Classes"

■ Section 8.2.7, "Application Classloading and Pass-by-Value or Reference"

■ Section 8.2.8, "Using a Filtering Classloader"

WebLogic Server Application Classloading

Understanding WebLogic Server Application Classloading 8-5

8.2.1 Overview of WebLogic Server Application Classloading
WebLogic Server classloading is centered on the concept of an application. An
application is normally packaged in an Enterprise Archive (EAR) file containing
application classes. Everything within an EAR file is considered part of the same
application. The following may be part of an EAR or can be loaded as standalone
applications:

■ An Enterprise JavaBean (EJB) JAR file

■ A Web application WAR file

■ A resource adapter RAR file

If you deploy an EJB and a Web application separately, they are considered two
applications. If they are deployed together within an EAR file, they are one
application. You deploy modules together in an EAR file for them to be considered
part of the same application.

Every application receives its own classloader hierarchy; the parent of this hierarchy is
the system classpath classloader. This isolates applications so that application A
cannot see the classloaders or classes of application B. In hierarchy classloaders, no
sibling or friend concepts exist. Application code only has visibility to classes loaded
by the classloader associated with the application (or module) and classes that are
loaded by classloaders that are ancestors of the application (or module) classloader.
This allows WebLogic Server to host multiple isolated applications within the same
JVM.

8.2.2 Application Classloader Hierarchy
WebLogic Server automatically creates a hierarchy of classloaders when an application
is deployed. The root classloader in this hierarchy loads any EJB JAR files in the
application. A child classloader is created for each Web application WAR file.

Because it is common for Web applications to call EJBs, the WebLogic Server
application classloader architecture allows JavaServer Page (JSP) files and servlets to
see the EJB interfaces in their parent classloader. This architecture also allows Web
applications to be redeployed without redeploying the EJB tier. In practice, it is more
common to change JSP files and servlets than to change the EJB tier.

The following graphic illustrates this WebLogic Server application classloading
concept.

Note: See the following sections for more information:

■ For information on Resource Adapters and classloading, see Section 8.3.1,
"About Resource Adapter Classes".

■ For information on overriding generic application files while classloading,
see "Generic File Loading Overrides" in Deploying Applications to Oracle
WebLogic Server.

WebLogic Server Application Classloading

8-6 Developing Applications for Oracle WebLogic Server

Figure 8–1 WebLogic Server Classloading

If your application includes servlets and JSPs that use EJBs:

■ Package the servlets and JSPs in a WAR file

■ Package the Enterprise JavaBeans in an EJB JAR file

■ Package the WAR and JAR files in an EAR file

■ Deploy the EAR file

Although you could deploy the WAR and JAR files separately, deploying them
together in an EAR file produces a classloader arrangement that allows the servlets
and JSPs to find the EJB classes. If you deploy the WAR and JAR files separately,
WebLogic Server creates sibling classloaders for them. This means that you must
include the EJB home and remote interfaces in the WAR file, and WebLogic Server
must use the RMI stub and skeleton classes for EJB calls, just as it does when EJB
clients and implementation classes are in different JVMs. This concept is discussed in
more detail in the next section Section 8.2.7, "Application Classloading and
Pass-by-Value or Reference".

8.2.3 Custom Module Classloader Hierarchies
You can create custom classloader hierarchies for an application allowing for better
control over class visibility and reloadability. You achieve this by defining a
classloader-structure element in the weblogic-application.xml
deployment descriptor file.

The following diagram illustrates how classloaders are organized by default for
WebLogic applications. An application level classloader exists where all EJB classes are

Note: The Web application classloader contains all classes for the Web
application except for the JSP class. The JSP class obtains its own classloader,
which is a child of the Web application classloader. This allows JSPs to be
individually reloaded.

WebLogic Server Application Classloading

Understanding WebLogic Server Application Classloading 8-7

loaded. For each Web module, there is a separate child classloader for the classes of
that module.

For simplicity, JSP classloaders are not described in the following diagram.

Figure 8–2 Standard Classloader Hierarchy

This hierarchy is optimal for most applications, because it allows call-by-reference
semantics when you invoke EJBs. It also allows Web modules to be independently
reloaded without affecting other modules. Further, it allows code running in one of the
Web modules to load classes from any of the EJB modules. This is convenient, as it can
prevent a Web module from including the interfaces for EJBs that it uses. Note that
some of those benefits are not strictly Java EE-compliant.

The ability to create custom module classloaders provides a mechanism to declare
alternate classloader organizations that allow the following:

■ Reloading individual EJB modules independently

■ Reloading groups of modules to be reloaded together

■ Reversing the parent child relationship between specific Web modules and EJB
modules

■ Namespace separation between EJB modules

8.2.4 Declaring the Classloader Hierarchy
You can declare the classloader hierarchy in the WebLogic-specific application
deployment descriptor weblogic-application.xml.

The DTD for this declaration is as follows:

Example 8–3 Declaring the Classloader Hierarchy

<!ELEMENT classloader-structure (module-ref*, classloader-structure*)>
<!ELEMENT module-ref (module-uri)>
<!ELEMENT module-uri (#PCDATA)>

The top-level element in weblogic-application.xml includes an optional
classloader-structure element. If you do not specify this element, then the
standard classloader is used. Also, if you do not include a particular module in the
definition, it is assigned a classloader, as in the standard hierarchy. That is, EJB
modules are associated with the application root classloader, and Web application
modules have their own classloaders.

WebLogic Server Application Classloading

8-8 Developing Applications for Oracle WebLogic Server

The classloader-structure element allows for the nesting of
classloader-structure stanzas, so that you can describe an arbitrary hierarchy of
classloaders. There is currently a limitation of three levels. The outermost entry
indicates the application classloader. For any modules not listed, the standard
hierarchy is assumed.

For more information on the DTD elements, refer to Appendix A, "Enterprise
Application Deployment Descriptor Elements."

The following is an example of a classloader declaration (defined in the
classloader-structure element in weblogic-application.xml):

Example 8–4 Example Classloader Declaration

<classloader-structure>
 <module-ref>
 <module-uri>ejb1.jar</module-uri>
 </module-ref>
 <module-ref>
 <module-uri>web3.war</module-uri>
 </module-ref>

 <classloader-structure>
 <module-ref>
 <module-uri>web1.war</module-uri>
 </module-ref>
 </classloader-structure>

 <classloader-structure>
 <module-ref>
 <module-uri>ejb3.jar</module-uri>
 </module-ref>
 <module-ref>
 <module-uri>web2.war</module-uri>
 </module-ref>

 <classloader-structure>
 <module-ref>
 <module-uri>web4.war</module-uri>
 </module-ref>
 </classloader-structure>
 <classloader-structure>
 <module-ref>
 <module-uri>ejb2.jar</module-uri>
 </module-ref>
 </classloader-structure>
 </classloader-structure>
</classloader-structure>

The organization of the nesting indicates the classloader hierarchy. The above stanza
leads to a hierarchy shown in the following diagram.

Note: JSP classloaders are not included in this definition scheme. JSPs are
always loaded into a classloader that is a child of the classloader associated
with the Web module to which it belongs.

WebLogic Server Application Classloading

Understanding WebLogic Server Application Classloading 8-9

Figure 8–3 Example Classloader Hierarchy

8.2.5 User-Defined Classloader Restrictions
User-defined classloader restrictions give you better control over what is reloadable
and provide inter-module class visibility. This feature is primarily for developers. It is
useful for iterative development, but the reloading aspect of this feature is not
recommended for production use, because it is possible to corrupt a running
application if an update includes invalid elements. Custom classloader arrangements
for namespace separation and class visibility are acceptable for production use.
However, programmers should be aware that the Java EE specifications say that
applications should not depend on any given classloader organization.

Some classloader hierarchies can cause modules within an application to behave more
like modules in two separate applications. For example, if you place an EJB in its own
classloader so that it can be reloaded individually, you receive call-by-value semantics
rather than the call-by-reference optimization Oracle provides in our standard
classloader hierarchy. Also note that if you use a custom hierarchy, you might end up
with stale references. Therefore, if you reload an EJB module, you should also reload
the calling modules.

There are some restrictions to creating user-defined module classloader hierarchies;
these are discussed in the following sections.

8.2.5.1 Servlet Reloading Disabled
If you use a custom classloader hierarchy, servlet reloading is disabled for Web
applications in that particular application.

8.2.5.2 Nesting Depth
Nesting is limited to three levels (including the application classloader). Deeper
nestings lead to a deployment exception.

8.2.5.3 Module Types
Custom classloader hierarchies are currently restricted to Web and EJB modules.

WebLogic Server Application Classloading

8-10 Developing Applications for Oracle WebLogic Server

8.2.5.4 Duplicate Entries
Duplicate entries lead to a deployment exception.

8.2.5.5 Interfaces
The standard WebLogic Server classloader hierarchy makes EJB interfaces available to
all modules in the application. Thus other modules can invoke an EJB, even though
they do not include the interface classes in their own module. This is possible because
EJBs are always loaded into the root classloader and all other modules either share that
classloader or have a classloader that is a child of that classloader.

With the custom classloader feature, you can configure a classloader hierarchy so that
a callee's classes are not visible to the caller. In this case, the calling module must
include the interface classes. This is the same requirement that exists when invoking
on modules in a separate application.

8.2.5.6 Call-by-Value Semantics
The standard classloader hierarchy provided with WebLogic Server allows for calls
between modules within an application to use call-by-reference semantics. This is
because the caller is always using the same classloader or a child classloader of the
callee. With this feature, it is possible to configure the classloader hierarchy so that two
modules are in separate branches of the classloader tree. In this case, call-by-value
semantics are used.

8.2.5.7 In-Flight Work
Be aware that the classloader switch required for reloading is not atomic across
modules. In fact, updates to applications in general are not atomic. For this reason, it is
possible that different in-flight operations (operations that are occurring while a
change is being made) might end up accessing different versions of classes depending
on timing.

8.2.5.8 Development Use Only
The development-use-only feature is intended for development use. Because updates
are not atomic, this feature is not suitable for production use.

8.2.6 Individual EJB Classloader for Implementation Classes
WebLogic Server allows you to reload individual EJB modules without requiring you
to reload other modules at the same time and having to redeploy the entire EJB
module. This feature is similar to how JSPs are currently reloaded in the WebLogic
Server servlet container.

Because EJB classes are invoked through an interface, it is possible to load individual
EJB implementation classes in their own classloader. This way, these classes can be
reloaded individually without having to redeploy the entire EJB module. Below is a
diagram of what the classloader hierarchy for a single EJB module would look like.
The module contains two EJBs (Foo and Bar). This would be a sub-tree of the general
application hierarchy described in the previous section.

WebLogic Server Application Classloading

Understanding WebLogic Server Application Classloading 8-11

Figure 8–4 Example Classloader Hierarchy for a Single EJB Module

To perform a partial update of files relative to the root of the exploded application, use
the following command line:

Example 8–5 Performing a Partial File Update

java weblogic.Deployer -adminurl url -user user -password password
-name myapp -redeploy myejb/foo.class

After the -redeploy command, you provide a list of files relative to the root of the
exploded application that you want to update. This might be the path to a specific
element (as above) or a module (or any set of elements and modules). For example:

Example 8–6 Providing a List of Relative Files for Update

java weblogic.Deployer -adminurl url -user user -password password
-name myapp -redeploy mywar myejb/foo.class anotherejb

Given a set of files to be updated, the system tries to figure out the minimum set of
things it needs to redeploy. Redeploying only an EJB impl class causes only that class
to be redeployed. If you specify the whole EJB (in the above example, anotherejb) or
if you change and update the EJB home interface, the entire EJB module must be
redeployed.

Depending on the classloader hierarchy, this redeployment may lead to other modules
being redeployed. Specifically, if other modules share the EJB classloader or are loaded
into a classloader that is a child to the EJB's classloader (as in the WebLogic Server
standard classloader module) then those modules are also reloaded.

8.2.7 Application Classloading and Pass-by-Value or Reference
Modern programming languages use two common parameter passing models:
pass-by-value and pass-by-reference. With pass-by-value, parameters and return
values are copied for each method call. With pass-by-reference, a pointer (or reference)
to the actual object is passed to the method. Pass by reference improves performance
because it avoids copying objects, but it also allows a method to modify the state of a
passed parameter.

WebLogic Server Application Classloading

8-12 Developing Applications for Oracle WebLogic Server

WebLogic Server includes an optimization to improve the performance of Remote
Method Interface (RMI) calls within the server. Rather than using pass by value and
the RMI subsystem's marshalling and unmarshalling facilities, the server makes a
direct Java method call using pass by reference. This mechanism greatly improves
performance and is also used for EJB 2.0 local interfaces.

RMI call optimization and call by reference can only be used when the caller and callee
are within the same application. As usual, this is related to classloaders. Because
applications have their own classloader hierarchy, any application class has a
definition in both classloaders and receives a ClassCastException error if you try to
assign between applications. To work around this, WebLogic Server uses call-by-value
between applications, even if they are within the same JVM.

8.2.8 Using a Filtering Classloader
In WebLogic Server, any JAR file present in the system classpath is loaded by the
WebLogic Server system classloader. All applications running within a server instance
are loaded in application classloaders which are children of the system classloader. In
this implementation of the system classloader, applications cannot use different
versions of third-party JARs which are already present in the system classloader. Every
child classloader asks the parent (the system classloader) for a particular class and
cannot load classes which are seen by the parent.

For example, if a class called com.foo.Baz exists in both $CLASSPATH as well as the
application EAR, then the class from the $CLASSPATH is loaded and not the one from
the EAR. Since weblogic.jar is in the $CLASSPATH, applications can not override
any WebLogic Server classes.

The following sections define and describe how to use a filtering classloader:

■ Section 8.2.9, "What is a Filtering ClassLoader"

■ Section 8.2.10, "Configuring a FilteringClassLoader"

■ Section 8.2.11, "Resource Loading Order"

8.2.9 What is a Filtering ClassLoader
The FilteringClassLoader provides a mechanism for you to configure
deployment descriptors to explicitly specify that certain packages should always be
loaded from the application, rather than being loaded by the system classloader. This
allows you to use alternate versions of applications such as Xerces and Ant. Though
the FilteringClassLoader lets you bundle and use 3rd party JARs in your
application, it is not recommended that you filter out API classes, like classes in javax
packages or weblogic packages.

The FilteringClassLoader sits between the application classloader and the
system classloader. It is a child of the system classloader and the parent of the
application classloader. The FilteringClassLoader intercepts the
loadClass(String className) method and compares the className with a list
of packages specified in weblogic-application.xml file. If the package matches
the className, the FilteringClassLoader throws a
ClassNotFoundException. This exception notifies the application classloader to
load this class from the application.

Note: Calls between applications are slower than calls within the same
application. Deploy modules together as an EAR file to enable fast RMI calls
and use of the EJB 2.0 local interfaces.

WebLogic Server Application Classloading

Understanding WebLogic Server Application Classloading 8-13

8.2.10 Configuring a FilteringClassLoader
To configure the FilteringClassLoader to specify that a certain package is loaded
from an application, add a prefer-application-packages descriptor element to
weblogic-application.xml which details the list of packages to be loaded from
the application. The following example specifies that org.apache.log4j.* and
antlr.* packages are loaded from the application, not the system classloader:

<prefer-application-packages>
 <package-name>org.apache.log4j.*</package-name>
 <package-name>antlr.*</package-name>
</prefer-application-packages>

For aid in configuring filtering classloaders, see Section 8.4, "Using the Classloader
Analysis Tool (CAT)."

8.2.11 Resource Loading Order
The resource loading order is the order in which java.lang.ClassLoader methods
getResource()and getResources() return resources. When filtering is enabled,
this order is slightly different from the case when filtering is disabled. Filtering is
enabled implies that there are one or more package patterns in the
FilteringClassLoader. Without any filtering (default), the resources are collected
in the top-down order of the classloader tree. For instance, if Web (1) requests
resources, the resources are grouped in the following order: Sys (3), App (2) and
Web(1). See Example 8–7.

Example 8–7 Using the System Classloader

System (3)
 |
 App (2)
 |
 Web (1)

To be more explicit, given a resource /META-INF/foo.xml which exists in all the
classloaders, would return the following list of URLs:

META-INF/foo.xml - from the System ClassLoader (3)
META-INF/foo.xml - from the App ClassLoader (2)
META-INF/foo.xml - from the Web ClassLoader (1)

When filtering is enabled, the resources from the child of the
FilteringClassLoader (an application classloader) down to the calling classloader
are returned before the ones from the system classloader. In Example 8–8, if the same
resource existed in all the classloaders (D), (B) and (A) one would get them in the
following order if requested by the Web classloader:

META-INF/foo.xml - from the App ClassLoader (B)
META-INF/foo.xml - from the Web ClassLoader (A)
META-INF/foo.xml - from the System ClassLoader (D)

Note: The resources are returned in the default Java EE delegation model
beneath the FilteringClassLoader. Only the resources from the parent of
the FilteringClassLoader are appended to the end of the enumeration
being returned.

Resolving Class References Between Modules and Applications

8-14 Developing Applications for Oracle WebLogic Server

Example 8–8 Using a Filtering Classloading Implementation

System (D)
 |
 FilteringClassLoader (filterList := x.y.*) (C)
 |
 App (B)
 |
 Web (A)

If the application classloader requested the same resource, the following order would
be obtained.

META-INF/foo.xml - from the App ClassLoader (B)
META-INF/foo.xml - from the System ClassLoader (D)

For getResource(), only the first descriptor is returned and
getResourceAsStream() returns the inputStream of the first resource.

8.3 Resolving Class References Between Modules and Applications
Your applications may use many different Java classes, including Enterprise Beans,
servlets and JavaServer Pages, utility classes, and third-party packages. WebLogic
Server deploys applications in separate classloaders to maintain independence and to
facilitate dynamic redeployment and undeployment. Because of this, you need to
package your application classes in such a way that each module has access to the
classes it depends on. In some cases, you may have to include a set of classes in more
than one application or module. This section describes how WebLogic Server uses
multiple classloaders so that you can stage your applications successfully.

For more information about analyzing and resolving classloading issues, see
Section 8.4, "Using the Classloader Analysis Tool (CAT)."

8.3.1 About Resource Adapter Classes
Each resource adapter now uses its own classloader to load classes (similar to Web
applications). As a result, modules like Web applications and EJBs that are packaged
along with a resource adapter in an application archive (EAR file) do not have
visibility into the resource adapter's classes. If such visibility is required, you must
place the resource adapter classes in APP-INF/classes. You can also archive these
classes (using the JAR utility) and place them in the APP-INF/lib of the application
archive.

Make sure that no resource-adapter specific classes exist in your WebLogic Server
system classpath. If you need to use resource adapter-specific classes with Web
modules (for example, an EJB or Web application), you must bundle these classes in
the corresponding module's archive file (for example, the JAR file for EJBs or the WAR
file for Web applications).

8.3.2 Packaging Shared Utility Classes
WebLogic Server provides a location within an EAR file where you can store shared
utility classes. Place utility JAR files in the APP-INF/lib directory and individual
classes in the APP-INF/classes directory. (Do not place JAR files in the /classes
directory or classes in the /lib directory.) These classes are loaded into the root
classloader for the application.

This feature obviates the need to place utility classes in the system classpath or place
classes in an EJB JAR file (which depends on the standard WebLogic Server classloader

Using the Classloader Analysis Tool (CAT)

Understanding WebLogic Server Application Classloading 8-15

hierarchy). Be aware that using this feature is subtly different from using the manifest
Class-Path described in the following section. With this feature, class definitions are
shared across the application. With manifest Class-Path, the classpath of the
referencing module is simply extended, which means that separate copies of the
classes exist for each module.

8.3.3 Manifest Class-Path
The Java EE specification provides the manifest Class-Path entry as a means for a
module to specify that it requires an auxiliary JAR of classes. You only need to use this
manifest Class-Path entry if you have additional supporting JAR files as part of
your EJB JAR or WAR file. In such cases, when you create the JAR or WAR file, you
must include a manifest file with a Class-Path element that references the required
JAR files.

The following is a simple manifest file that references a utility.jar file:

Manifest-Version: 1.0 [CRLF]
Class-Path: utility.jar [CRLF]

In the first line of the manifest file, you must always include the Manifest-Version
attribute, followed by a new line (CR | LF |CRLF) and then the Class-Path
attribute. More information about the manifest format can be found at:
http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html#JAR

The manifest Class-Path entries refer to other archives relative to the current archive
in which these entries are defined. This structure allows multiple WAR files and EJB
JAR files to share a common library JAR. For example, if a WAR file contains a
manifest entry of y.jars, this entry should be next to the WAR file (not within it) as
follows:

/<directory>/x.war
/<directory>/y.jars

The manifest file itself should be located in the archive at META-INF/MANIFEST.MF.

For more information, see
http://download-llnw.oracle.com/javase/tutorial/deployment/jar/m
anifestindex.html.

8.4 Using the Classloader Analysis Tool (CAT)
CAT is a Web-based class analysis tool which simplifies filtering classloader
configuration and aids you in analyzing classloading issues, such as detecting
conflicts, debugging application classpaths and class conflicts, and proposes solutions
to help you resolve them.

CAT is a stand-alone Web application, distributed as a single WAR file, wls-cat.war,
exposing its features through a Web-based front end. CAT is deployed as an internal
on-demand application only in development mode. Deployment happens upon first
access. If the server is running in production mode, it is not deployed automatically.
You can deploy it in production mode; there are no limitations on its use, but you must
deploy it manually, just like any other Web application. The CAT Web application is
located at WL_HOME/server/lib/wls-cat.war. You can deploy it to any WebLogic
Server version 10.3.x and later.

To begin using CAT:

Sharing Applications and Modules By Using Java EE Libraries

8-16 Developing Applications for Oracle WebLogic Server

■ In the WebLogic Server Administration Console, select Deployments > app_name
> Testing and then select the Classloader Analysis Tool link. Enter your Console
login credentials.

■ Or, open your browser to http://wls-host:port/wls-cat/ and then enter
your Console login credentials.

CAT has a simple Web GUI which displays all your currently running applications and
modules. In the left-side navigation pane, you select the application or module that
you want to analyze; a brief description of it is shown in the right-side pane. You use
the right-side pane to perform actions and analyses on the selected application or
module. CAT lets you:

■ Analyze classloading conflicts

■ View the system and application classloaders

■ Generate reports

CAT analyzes classes loaded by the system classpath classloader and the WebLogic
Server main application classloaders, defined here as the filtering, application, and
module classloaders. You can perform analysis at the class, package, or JAR level. The
results for each action you select can be shown in either a basic view or a detailed
view.

Here are some of the tasks which you can perform using CAT:

■ Display basic information about applications and modules

■ Analyze classloading conflicts

■ Review proposed solutions

■ Get suggestions for configuring filtering classloaders

■ Display the classloader hierarchy and the entire classpath for each classloader

■ Search for a class (or a resource) on a classloader

8.5 Sharing Applications and Modules By Using Java EE Libraries
Java EE libraries provide an easy way to share one or more different types of Java EE
modules among multiple Enterprise applications. A Java EE library is a single module
or collection of modules that is registered with the Java EE application container upon
deployment. For more information, see Chapter 9, "Creating Shared Java EE Libraries
and Optional Packages."

8.6 Adding JARs to the Domain /lib Directory
WebLogic Server includes a lib subdirectory, located in the domain directory, that
you can use to add one or more JAR files, so that the JAR file classes are available
(within a separate system level classloader) to all J2EE applications running on
WebLogic Server instances in the domain. The JARS in the domain /lib directory will
not be appended to the system classpath. The classloader that gets created is a child of
the system classloader. Any classes that are in JARs in the domain /lib directory will
only be visible to J2EE applications, such as EAR files. Classes in the system classpath
cannot access classes in the domain /lib directory.

The lib subdirectory is intended for JAR files that change infrequently and are
required by all or most applications deployed in the server. For example, you might
use the lib directory to store third-party utility classes that are required by all J2EE

Adding JARs to the Domain /lib Directory

Understanding WebLogic Server Application Classloading 8-17

deployments in a domain. Third-party utility classes will be made available because
the domain /lib classloader will be the parent of any J2EE application.

The lib directory is not recommended as a general-purpose method for sharing a
JARs between one or two applications deployed in a domain, or for sharing JARs that
need to be updated periodically. If you update a JAR in the lib directory, you must
reboot all servers in the domain in order for applications to realize the change. If you
need to share a JAR file or Java EE modules among several applications, use the Java
EE libraries feature described in Chapter 9, "Creating Shared Java EE Libraries and
Optional Packages."

To share JARs using the lib directory:

1. Shutdown all servers in the domain.

2. Copy the JAR file(s) to share into a lib subdirectory of the domain directory. For
example:

mkdir c:\bea\wlserver_10.3\samples\domains\wl_server\lib
cp c:\3rdpartyjars\utility.jar
 c:\bea\wlserver_10.3\samples\domains\wl_server\lib

3. Start the Administration Server and all Managed Servers in the domain.

Note: WebLogic Server must have read access to the lib directory
during startup.

The Administration Server does not automatically copy files in the
lib directory to Managed Servers on remote machines. If you have
Managed Servers that do not share the same physical domain
directory as the Administration Server, you must manually copy JAR
file(s) to the domain_name/lib directory on the Managed Server
machines.

Adding JARs to the Domain /lib Directory

8-18 Developing Applications for Oracle WebLogic Server

9

Creating Shared Java EE Libraries and Optional Packages 9-1

9Creating Shared Java EE Libraries and
Optional Packages

The following sections describe how to share components and classes among
applications using shared Java EE libraries and optional packages:

■ Section 9.1, "Overview of Shared Java EE Libraries and Optional Packages"

■ Section 9.2, "Creating Shared Java EE Libraries"

■ Section 9.3, "Referencing Shared Java EE Libraries in an Enterprise Application"

■ Section 9.4, "Referencing Optional Packages from a Java EE Application or
Module"

■ Section 9.5, "Using weblogic.appmerge to Merge Libraries"

■ Section 9.6, "Integrating Shared Java EE Libraries with the Split Development
Directory Environment"

■ Section 9.7, "Deploying Shared Java EE Libraries and Dependent Applications"

■ Section 9.8, "Web Application Shared Java EE Library Information"

■ Section 9.9, "Using WebApp Libraries With Web Applications"

■ Section 9.10, "Accessing Registered Shared Java EE Library Information with
LibraryRuntimeMBean"

■ Section 9.11, "Order of Precedence of Modules When Referencing Shared Java EE
Libraries"

■ Section 9.12, "Best Practices for Using Shared Java EE Libraries"

9.1 Overview of Shared Java EE Libraries and Optional Packages
The shared Java EE library feature in WebLogic Server provides an easy way to share
one or more different types of Java EE modules among multiple Enterprise
applications. A shared Java EE library is a single module or collection of modules that
is registered with the Java EE application container upon deployment. A shared Java
EE library can be any of the following:

■ standalone EJB module

■ standalone Web application module

■ multiple EJB modules packaged in an Enterprise application

■ multiple Web application modules package in an Enterprise application

■ single plain JAR file

Overview of Shared Java EE Libraries and Optional Packages

9-2 Developing Applications for Oracle WebLogic Server

Oracle recommends that you package a shared Java EE library into its appropriate
archive file (EAR, JAR, or WAR). However, for development purposes, you may
choose to deploy shared Java EE libraries as exploded archive directories to facilitate
repeated updates and redeployments.

After the shared Java EE library has been registered, you can deploy Enterprise
applications that reference the library. Each referencing application receives a reference
to the required library on deployment, and can use the modules that make up the
library as if they were packaged as part of the referencing application itself. The library
classes are added to the classpath of the referencing application, and the referencing
application's deployment descriptors are merged (in memory) with those of the
modules that make up the shared Java EE library.

In general, this topic discusses shared Java EE libraries that can be referenced only by
Enterprise applications. You can also create libraries that can be referenced only by
another Web application. The functionality is very similar to application libraries,
although the method of referencing them is slightly different. See Section 9.8, "Web
Application Shared Java EE Library Information" for details.

9.1.1 Optional Packages
WebLogic Server supports optional packages as described in the Java EE 5.0
Specification, Section 8.2 Optional Package Support, with versioning described in
Optional Package Versioning (see
http://java.sun.com/javase/6/docs/technotes/guides/extensions/ve
rsioning.html). Optional packages provide similar functionality to Java EE
libraries, allowing you to easily share a single JAR file among multiple applications.
As with Java EE libraries, optional packages must first be registered with WebLogic
Server by deploying the associated JAR file as an optional package. After registering
the package, you can deploy Java EE modules that reference the package in their
manifest files.

Optional packages are also supported as Java EE shared libraries in
weblogic.BuildXMLGen, whereby all manifests of an application and its modules
are scanned to look for optional package references. If optional package references are
found they are added to the wlcompile and appc tasks in the generated build.xml
file.

Optional packages differ from Java EE libraries because optional packages can be
referenced from any Java EE module (EAR, JAR, WAR, or RAR archive) or exploded
archive directory. Java EE libraries can be referenced only from a valid Enterprise
application.

For example, third-party Web application Framework classes needed by multiple Web
applications can be packaged and deployed in a single JAR file, and referenced by
multiple Web application modules in the domain. Optional packages, rather than Java
EE libraries, are used in this case, because the individual Web application modules
must reference the shared JAR file. (With Java EE libraries, only a complete Enterprise
application can reference the library).

Note: WebLogic Server also provides a simple way to add one or more JAR
files to the WebLogic Server System classpath, using the lib subdirectory of
the domain directory. See Section 8.6, "Adding JARs to the Domain /lib
Directory".

Overview of Shared Java EE Libraries and Optional Packages

Creating Shared Java EE Libraries and Optional Packages 9-3

9.1.2 Library Directories
The Java EE platform provides several mechanisms for applications to use optional
packages and shared libraries. Libraries can be bundled with an application or may be
installed separately for use by any application. An EAR file may contain a directory
that contains libraries packaged in JAR files. The library-directory element of
the EAR file's deployment descriptor contains the name of this directory. If a
library-directory element isn't specified, or if the EAR file does not contain a
deployment descriptor, the directory named lib is used. An empty
library-directory element may be used to specify that there is no library
directory. All files in this directory (but not in subdirectories) with a .jar extension
must be made available to all components packaged in the EAR file, including
application clients. These libraries may reference other libraries, either bundled with
the application or installed separately.

This feature is similar to the APP-INF/lib feature supported in WebLogic Server. If
both APP-INF/lib and library-directory exist, then the jars in the
library-directory would take precedence; that is, they would be placed before
the APP-INF/lib jar files in the classpath. For more information on APP-INF/lib,
see Section 8.3, "Resolving Class References Between Modules and Applications" and
Section 3.4, "Organizing Shared Classes in a Split Development Directory".

9.1.3 Versioning Support for Libraries
WebLogic Server supports versioning of shared Java EE libraries, so that referencing
applications can specify a required minimum version of the library to use, or an exact,
required version. WebLogic Server supports two levels of versioning for shared Java
EE libraries, as described in the Optional Package Versioning document at
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/versioning.html:

■ Specification Version—Identifies the version number of the specification (for
example, the Java EE specification version) to which a shared Java EE library or
optional package conforms.

■ Implementation Version—Identifies the version number of the actual code
implementation for the library or package. For example, this would correspond to
the actual revision number or release number of your code. Note that you must
also provide a specification version in order to specify an implementation version.

As a best practice, Oracle recommends that you always include version information (a
specification version, or both an implementation and specification version) when
creating shared Java EE libraries. Creating and updating version information as you
develop shared components allows you to deploy multiple versions of those
components simultaneously for testing. If you include no version information, or fail
to increment the version string, then you must undeploy existing libraries before you
can deploy the newer one. See Section 9.7, "Deploying Shared Java EE Libraries and
Dependent Applications".

Versioning information in the referencing application determines the library and
package version requirements for that application. Different applications can require
different versions of a given library or package. For example, a production application
may require a specific version of a library, because only that library has been fully
approved for production use. An internal application may be configured to always use

Note: Oracle documentation and WebLogic Server utilities use the term
library to refer to both Java EE libraries and optional packages. Optional
packages are called out only when necessary.

Overview of Shared Java EE Libraries and Optional Packages

9-4 Developing Applications for Oracle WebLogic Server

a minimum version of the same library. Applications that require no specific version
can be configured to use the latest version of the library. Section 9.3, "Referencing
Shared Java EE Libraries in an Enterprise Application".

9.1.4 Shared Java EE Libraries and Optional Packages Compared
Optional packages and shared Java EE libraries have the following features in
common:

■ Both are registered with WebLogic Server instances at deployment time.

■ Both support an optional implementation version and specification version string.

■ Applications that reference shared Java EE libraries and optional packages can
specify required versions for the shared files.

■ Optional packages can reference other optional packages, and shared Java EE
libraries can reference other shared Java EE libraries.

Optional packages differ from shared Java EE Libraries in the following basic ways:

■ Optional packages are plain JAR files, whereas shared Java EE libraries can be
plain JAR files, Java EE Enterprise applications, or standalone Java EE modules
(EJB and Web applications). This means that libraries can have valid Java EE and
WebLogic Server deployment descriptors. Any deployment descriptors in an
optional package JAR file are ignored.

■ Any Java EE application or module can reference an optional package (using
META-INF/MANIFEST.MF), whereas only Enterprise applications and Web
applications can reference a shared Java EE library (using
weblogic-application.xml or weblogic.xml)

In general, use shared Java EE libraries when you need to share one or more EJB, Web
application or Enterprise application modules among different Enterprise applications.
Use optional packages when you need to share one or more classes (packaged in a JAR
file) among different Java EE modules.

Plain JAR files can be shared either as libraries or optional packages. Use optional
packages if you want to:

■ Share a plain JAR file among multiple Java EE modules

■ Reference shared JAR files from other shared JARs

■ Share plain JARs as described by the Java EE 5.0 specification

Use shared Java EE libraries to share a plain JAR file if you only need to reference the
JAR file from one or more Enterprise applications, and you do not need to maintain
strict compliance with the Java EE specification.

9.1.5 Additional Information
For information about deploying and managing shared Java EE libraries, optional
packages, and referencing applications from the Administrator's perspective, see
"Deploying Shared Java EE Libraries and Dependent Applications" in Deploying
Applications to Oracle WebLogic Server.

Note: Oracle documentation and WebLogic Server utilities use the term
shared Java EE library to refer to both libraries and optional packages. Optional
packages are called out only when necessary.

Creating Shared Java EE Libraries

Creating Shared Java EE Libraries and Optional Packages 9-5

9.2 Creating Shared Java EE Libraries
To create a new shared Java EE library that you can share with multiple applications:

1. Assemble the shared Java EE library into a valid, deployable Java EE module or
Enterprise application. The library must have the required Java EE deployment
descriptors for the Java EE module or for an Enterprise application.

See Section 9.2.1, "Assembling Shared Java EE Library Files".

2. Assemble optional package classes into a working directory.

See Section 9.2.2, "Assembling Optional Package Class Files".

3. Create and edit the MANIFEST.MF file for the shared Java EE library to specify the
name and version string information.

See Section 9.2.3, "Editing Manifest Attributes for Shared Java EE Libraries".

4. Package the shared Java EE library for distribution and deployment.

See Section 9.2.4, "Packaging Shared Java EE Libraries for Distribution and
Deployment".

9.2.1 Assembling Shared Java EE Library Files
The following types of Java EE modules can be deployed as a shared Java EE library:

■ An EJB module, either an exploded directory or packaged in a JAR file.

■ A Web application module, either an exploded directory or packaged in a WAR
file.

■ An Enterprise application, either an exploded directory or packaged in an EAR
file.

■ A plain Java class or classes packaged in a JAR file.

■ A shared Java EE library referenced from another library. (See Section 9.8, "Web
Application Shared Java EE Library Information".)

Shared Java EE libraries have the following restrictions:

■ You must ensure that context roots in Web application modules of the shared Java
EE library do not conflict with context roots in the referencing Enterprise
application. If necessary, you can configure referencing applications to override a
library's context root. See Section 9.3, "Referencing Shared Java EE Libraries in an
Enterprise Application".

■ Shared Java EE libraries cannot be nested. For example, if you are deploying an
EAR as a shared Java EE library, the entire EAR must be designated as the library.
You cannot designate individual Java EE modules within the EAR as separate,
named libraries.

■ As with any other Java EE module or Enterprise application, a shared Java EE
library must be configured for deployment to the target servers or clusters in your
domain. This means that a library requires valid Java EE deployment descriptors
as well as WebLogic Server-specific deployment descriptors and an optional
deployment plan. See Deploying Applications to Oracle WebLogic Server.

Oracle recommends packaging shared Java EE libraries as Enterprise applications,
rather than as standalone Java EE modules. This is because the URI of a standalone
module is derived from the deployment name, which can change depending on how
the module is deployed. By default, WebLogic Server uses the deployment archive

Creating Shared Java EE Libraries

9-6 Developing Applications for Oracle WebLogic Server

filename or exploded archive directory name as the deployment name. If you redeploy
a standalone shared Java EE library from a different file or location, the deployment
name and URI also change, and referencing applications that use the wrong URI
cannot access the deployed library.

If you choose to deploy a shared Java EE library as a standalone Java EE module,
always specify a known deployment name during deployment and use that name as
the URI in referencing applications.

9.2.2 Assembling Optional Package Class Files
Any set of classes can be organized into an optional package file. The collection of
shared classes will eventually be packaged into a standard JAR archive. However,
because you will need to edit the manifest file for the JAR, begin by assembling all
class files into a working directory:

1. Create a working directory for the new optional package. For example:

mkdir /apps/myOptPkg

2. Copy the compiled class files into the working directory, creating the appropriate
package sudirectories as necessary. For example:

mkdir -p /apps/myOptPkg/org/myorg/myProduct
cp /build/classes/myOptPkg/org/myOrg/myProduct/*.class
/apps/myOptPkg/org/myOrg/myProduct

3. If you already have a JAR file that you want to use as an optional package, extract
its contents into the working directory so that you can edit the manifest file:

cd /apps/myOptPkg
jar xvf /build/libraries/myLib.jar

9.2.3 Editing Manifest Attributes for Shared Java EE Libraries
The name and version information for a shared Java EE library are specified in the
META-INF/MANIFEST.MF file. Table 9–1 describes the valid shared Java EE library
manifest attributes.

Creating Shared Java EE Libraries

Creating Shared Java EE Libraries and Optional Packages 9-7

To specify attributes in a manifest file:

1. Open (or create) the manifest file using a text editor. For the example shared Java
EE library, you would use the commands:

cd /apps/myLibrary
mkdir META-INF
emacs META-INF/MANIFEST.MF

For the optional package example, use:

cd /apps/myOptPkg
mkdir META-INF
emacs META-INF/MANIFEST.MF

2. In the text editor, add a string value to specify the name of the shared Java EE
library. For example:

Extension-Name: myExtension

Table 9–1 Manifest Attributes for Java EE Libraries

Attribute Description

Extension-Name An optional string value that identifies the name of the shared Java EE library.
Referencing applications must use the exact Extension-Name value to use the
library.

As a best practice, always specify an Extension-Name value for each library. If
you do not specify an extension name, one is derived from the deployment name of
the library. Default deployment names are different for archive and exploded
archive deployments, and they can be set to arbitrary values in the deployment
command.

Specification-Version An optional String value that defines the specification version of the shared Java EE
library. Referencing applications can optionally specify a required
Specification-Version for a library; if the exact specification version is not
available, deployment of the referencing application fails.

The Specification-Version uses the following format:

Major/minor version format, with version and revision numbers separated by
periods (such as "9.0.1.1")

Referencing applications can be configured to require either an exact version of the
shared Java EE library, a minimum version, or the latest available version.

The specification version for a shared Java EE library can also be set at the
command-line when deploying the library, with some restrictions. See Section 9.7,
"Deploying Shared Java EE Libraries and Dependent Applications".

Implementation-Version An optional String value that defines the code implementation version of the shared
Java EE library. You can provide an Implementation-Version only if you have
also defined a Specification-Version.

Implementation-Version uses the following formats:

■ Major/minor version format, with version and revision numbers separated by
periods (such as "9.0.1.1")

■ Text format, with named versions (such as "9011Beta" or "9.0.1.1.B")

If you use the major/minor version format, referencing applications can be
configured to require either an exact version of the shared Java EE library, a
minimum version, or the latest available version. If you use the text format,
referencing applications must specify the exact version of the library.

The implementation version for a shared Java EE library can also be set at the
command-line when deploying the library, with some restrictions. See Section 9.7,
"Deploying Shared Java EE Libraries and Dependent Applications".

Referencing Shared Java EE Libraries in an Enterprise Application

9-8 Developing Applications for Oracle WebLogic Server

Applications that reference the library must specify the exact Extension-Name in
order to use the shared files.

3. As a best practice, enter the optional version information for the shared Java EE
library. For example:

Extension-Name: myExtension
Specification-Version: 2.0
Implementation-Version: 9.0.0

Using the major/minor format for the version identifiers provides the most
flexibility when referencing the library from another application (see Table 9–2)

9.2.4 Packaging Shared Java EE Libraries for Distribution and Deployment
If you are delivering the shared Java EE Library or optional package for deployment
by an Administrator, package the deployment files into an archive file (an .EAR file or
standalone module archive file for shared Java EE libraries, or a simple .JAR file for
optional packages) for distribution. See Section 5.1, "Deploying Applications Using
wldeploy".

Because a shared Java EE library is packaged as a standard Java EE application or
standalone module, you may also choose to export a library's deployment
configuration to a deployment plan, as described in Deploying Applications to Oracle
WebLogic Server. Optional package .JAR files contain no deployment descriptors and
cannot be exported.

For development purposes, you may choose to deploy libraries as exploded archive
directories to facilitate repeated updates and redeployments.

9.3 Referencing Shared Java EE Libraries in an Enterprise Application
A Java EE application can reference a registered shared Java EE library using entries in
the application's weblogic-application.xml deployment descriptor. Table 9–2
describes the XML elements that define a library reference.

Note: Although you can optionally specify the Specification-Version
and Implementation-Version at the command line during deployment,
Oracle recommends that you include these strings in the
MANIFEST.MF file. Including version strings in the manifest ensures
that you can deploy new versions of the library alongside older
versions. See Section 9.7, "Deploying Shared Java EE Libraries and
Dependent Applications".

Referencing Shared Java EE Libraries in an Enterprise Application

Creating Shared Java EE Libraries and Optional Packages 9-9

For example, this simple entry in the weblogic-application.xml descriptor
references a shared Java EE library, myLibrary:

<library-ref>
 <library-name>myLibrary</library-name>
</library-ref>

In the above example, WebLogic Server attempts to find a library name myLibrary
when deploying the dependent application. If more than one copy of myLibrary is
registered, WebLogic Server selects the library with the highest specification version. If
multiple copies of the library use the selected specification version, WebLogic Server
selects the copy having the highest implementation version.

Table 9–2 weblogic-application.xml Elements for Referencing a Shared Java EE Library

Element Description

library-ref library-ref is the parent element in which you define a reference to a shared
Java EE library. Enclose all other elements within library-ref.

library-name A required string value that specifies the name of the shared Java EE library to use.
library-name must exactly match the value of the Extension-Name attribute in
the library's manifest file. (See Table 9–2.)

specification-version An optional String value that defines the required specification version of the shared
Java EE library. If this element is not set, the application uses a matching library
with the highest specification version. If you specify a string value using
major/minor version format, the application uses a matching library with the
highest specification version that is not below the configured value. If all available
libraries are below the configured specification-version, the application
cannot be deployed. The required version can be further constrained by using the
exact-match element, described below.

If you specify a String value that does not use major/minor versioning conventions
(for example, 9.2BETA) the application requires a shared Java EE library having the
exact same string value in the Specification-Version attribute in the library's
manifest file. (See Table 9–2.)

implementation-version An optional String value that specifies the required implementation version of the
shared Java EE library. If this element is not set, the application uses a matching
library with the highest implementation version. If you specify a string value using
major/minor version format, the application uses a matching library with the
highest implementation version that is not below the configured value. If all
available libraries are below the configured implementation-version, the
application cannot be deployed. The required implementation version can be
further constrained by using the exact-match element, described below.

If you specify a String value that does not use major/minor versioning conventions
(for example, 9.2BETA) the application requires a shared Java EE library having the
exact same string value in the Implementation-Version attribute in the library's
manifest file. (See Table 9–2.)

exact-match An optional boolean value that determines whether the application should use a
shared Java EE library with a higher specification or implementation version than
the configured value, if one is available. By default this element is false, which
means that WebLogic Server uses higher-versioned libraries if they are available. Set
this element to true to require the exact matching version as specified in the
specification-version and implementation-version elements.

context-root An optional String value that provides an alternate context root to use for a Web
application shared Java EE library. Use this element if the context root of a library
conflicts with the context root of a Web application in the referencing Java EE
application.

Web application shared Java EE library refers to special kind of library: a Web
application that is referenced by another Web application. See Section 9.8, "Web
Application Shared Java EE Library Information".

Referencing Shared Java EE Libraries in an Enterprise Application

9-10 Developing Applications for Oracle WebLogic Server

This example references a shared Java EE library with a requirement for the
specification version:

<library-ref>
 <library-name>myLibrary</library-name>
 <specification-version>2.0</specification-version>
</library-ref>

In the above example, WebLogic Server looks for matching libraries having a
specification version of 2.0 or higher. If multiple libraries are at or above version 2.0,
WebLogic Server examines the selected libraries that use Float values for their
implementation version and selects the one with the highest version. Note that
WebLogic Server ignores any selected libraries that have a non-Float value for the
implementation version.

This example references a shared Java EE library with both a specification version and
a non-Float value implementation version:

<library-ref>
 <library-name>myLibrary</library-name>
 <specification-version>2.0</specification-version>
 <implementation-version>81Beta</implementation-version>
</library-ref>

In the above example, WebLogic Server searches for a library having a specification
version of 2.0 or higher, and having an exact match of 81Beta for the implementation
version.

The following example requires an exact match for both the specification and
implementation versions:

<library-ref>
 <library-name>myLibrary</library-name>
 <specification-version>2.0</specification-version>
 <implementation-version>8.1</implementation-version>
 <exact-match>true</exact-match>
</library-ref>

The following example specifies a context-root with the library reference. When a
WAR library reference is made from weblogic-application.xml, the
context-root may be specified with the reference:

<library-ref>
 <library-name>myLibrary</library-name>
 <context-root>mywebapp</context-root>
</library-ref>

9.3.1 Overriding context-roots Within a Referenced Enterprise Library
A Java EE application can override context-roots within a referenced EAR library
using entries in the application's weblogic-application.xml deployment
descriptor. Table 9–3 describes the XML elements that override context-root in a
library reference.

Referencing Optional Packages from a Java EE Application or Module

Creating Shared Java EE Libraries and Optional Packages 9-11

The following example specifies a context-root-override, which in turn, refers
to the old context-root specified in one of its libraries and the new context-root
that should be used instead. (override):

<library-ref>
 <library-name>myLibrary</library-name>
 <specification-version>2.0</specification-version>
 <implementation-version>8.1</implementation-version>
 <exact-match>true</exact-match>
</library-ref>
<library-context-root-override>
 <context-root>webapp</context-root>
 <override-value>mywebapp</override-value>
</library-context-root-override>

In the above example, the current application refers to myLibrary, which contains a
Web application with a context-root of webapp. The only way to override this
reference is to declare a library-context-root-override that maps webapp to
mywebapp.

9.3.2 URIs for Shared Java EE Libraries Deployed As a Standalone Module
When referencing the URI of a shared Java EE library that was deployed as a
standalone module (EJB or Web application), note that the module URI corresponds to
the deployment name of the shared Java EE library. This can be a name that was
manually assigned during deployment, the name of the archive file that was deployed,
or the name of the exploded archive directory that was deployed. If you redeploy the
same module using a different file name or from a different location, the default
deployment name also changes and referencing applications must be updated to use
the correct URI.

To avoid this problem, deploy all shared Java EE libraries as Enterprise applications,
rather than as standalone modules. If you choose to deploy a library as a standalone
Java EE module, always specify a known deployment name and use that name as the
URI in referencing applications.

9.4 Referencing Optional Packages from a Java EE Application or Module
Any Java EE archive (JAR, WAR, RAR, EAR) can reference one or more registered
optional packages using attributes in the archive's manifest file.

Table 9–3 weblogic-application.xml Elements for Overriding a Shared Java EE Library

Element Description

context-root An optional String value that overrides the context-root elements declared in
libraries. In the absence of this element, the library's context-root is used.

Only a referencing application (for example, a user application) can override the
context-root elements declared in its libraries.

override-value An optional String value that specifies the value of the
library-context-root-override element when overriding the context-root
elements declared in libraries. In the absence of these elements, the library's
context-root is used.

Referencing Optional Packages from a Java EE Application or Module

9-12 Developing Applications for Oracle WebLogic Server

For example, this simple entry in the manifest file for a dependent archive references
two optional packages, myAppPkg and my3rdPartyPkg:

Extension-List: internal 3rdparty
internal-Extension-Name: myAppPkg
3rdparty-Extension-Name: my3rdPartyPkg

This example requires a specification version of 2.0 or higher for myAppPkg:

Extension-List: internal 3rdparty
internal-Extension-Name: myAppPkg
3rdparty-Extension-Name: my3rdPartyPkg
internal-Specification-Version: 2.0

Table 9–4 Manifest Attributes for Referencing Optional Packages

Attribute Description

Extension-List logical_name
[...]

A required String value that defines a logical name for an optional package
dependency. You can use multiple values in the Extension-List attribute to
designate multiple optional package dependencies. For example:

Extension-List: dependency1 dependency2

[logical_name-]Extension-Name A required string value that identifies the name of an optional package
dependency. This value must match the Extension-Name attribute defined in
the optional package's manifest file.

If you are referencing multiple optional packages from a single archive,
prepend the appropriate logical name to the Extension-Name attribute. For
example:

dependency1-Extension-Name: myOptPkg

[logical_
name-]Specification-Version

An optional String value that defines the required specification version of an
optional package. If this element is not set, the archive uses a matching
package with the highest specification version. If you include a
specification-version value using the major/minor version format, the
archive uses a matching package with the highest specification version that is
not below the configured value. If all available package are below the
configured specification-version, the archive cannot be deployed.

If you specify a String value that does not use major/minor versioning
conventions (for example, 9.2BETA) the archive requires a matching optional
package having the exact same string value in the Specification-Version
attribute in the package's manifest file. (See Table 9–2.)

If you are referencing multiple optional packages from a single archive,
prepend the appropriate logical name to the Specification-Version
attribute.

[logical_
name-]Implementation-Version

An optional String value that specifies the required implementation version of
an optional package. If this element is not set, the archive uses a matching
package with the highest implementation version. If you specify a string value
using the major/minor version format, the archive uses a matching package
with the highest implementation version that is not below the configured
value. If all available libraries are below the configured
implementation-version, the application cannot be deployed.

If you specify a String value that does not use major/minor versioning
conventions (for example, 9.2BETA) the archive requires a matching optional
package having the exact same string value in the
Implementation-Version attribute in the package's manifest file. (See
Table 9–2.)

If you are referencing multiple optional packages from a single archive,
prepend the appropriate logical name to the Implementation-Version
attribute.

Using weblogic.appmerge to Merge Libraries

Creating Shared Java EE Libraries and Optional Packages 9-13

This example requires a specification version of 2.0 or higher for myAppPkg, and an
exact match for the implementation version of my3rdPartyPkg:

Extension-List: internal 3rdparty
internal-Extension-Name: myAppPkg
3rdparty-Extension-Name: my3rdPartyPkg
internal-Specification-Version: 2.0
3rdparty-Implementation-Version: 8.1GA

By default, when WebLogic Server deploys an application or module and it cannot
resolve a reference in the application's manifest file to an optional package, WebLogic
Server prints a warning, but continues with the deployment anyway. You can change
this behavior by setting the system property
weblogic.application.RequireOptionalPackages to true when you start
WebLogic Server, either at the command line or in the command script file from which
you start the server. Setting this system property to true means that WebLogic Server
does not attempt to deploy an application or module if it cannot resolve an optional
package reference in its manifest file.

9.5 Using weblogic.appmerge to Merge Libraries
weblogic.appmerge is a tool that is used to merge libraries into an application, with
merged contents and merged descriptors. It also has the ability to write a merged
application to disk. You can then use weblogic.appmerge to understand a library
merge by examining the merged application you have written to disk.

■ Section 9.5.1, "Using weblogic.appmerge from the CLI"

■ Section 9.5.2, "Using weblogic.appmerge as an Ant Task"

9.5.1 Using weblogic.appmerge from the CLI
Invoke weblogic.appmerge using the following syntax:

 java weblogic.appmerge [options] <ear, jar, war file, or directory>

where valid options are shown in Table 9–5:

Example:

Table 9–5 weblogic.appmerge Options

Option Comment

 -help Print the standard usage message.

-version Print version information.

-output <file> Specifies an alternate output archive or directory. If not set, output is placed in the
source archive or directory.

-plan <file> Specifies an optional deployment plan.

-verbose Provide more verbose output.

-library <file> Comma-separated list of libraries. Each library may optionally set its name and
versions, if not already set in its manifest, using the following syntax:

<file> [@name=<string>@libspecver=<version> @libimplver=<version|string>].

-librarydir <dir> Registers all files in specified directory as libraries.

-writeInferredDescri
ptors

Specifies that the application or module contains deployment descriptors with
annotation information.

Integrating Shared Java EE Libraries with the Split Development Directory Environment

9-14 Developing Applications for Oracle WebLogic Server

$ java weblogic.appmerge -output CompleteSportsApp.ear -library
Weather.war,Calendar.ear SportsApp.ear

9.5.2 Using weblogic.appmerge as an Ant Task
The ant task provides similar functionality as the command line utility. It supports
source, output, libraryDir, plan and verbose attributes as well as multiple
<library> sub-elements. Here is an example:

<taskdef name="appmerge" classname="weblogic.ant.taskdefs.j2ee.AppMergeTask"/>
<appmerge source="SportsApp.ear" output="CompleteSportsApp.ear">
 <library file="Weather.war"/>
 <library file="Calendar.ear"/>
</appmerge>

9.6 Integrating Shared Java EE Libraries with the Split Development
Directory Environment

The BuildXMLGen includes a -librarydir option to generate build targets that
include one or more shared Java EE library directories. See Section 3.5, "Generating a
Basic build.xml File Using weblogic.BuildXMLGen".

The wlcompile and wlappc Ant tasks include a librarydir attribute and
library element to specify one or more shared Java EE library directories to include
in the classpath for application builds. See Section 4, "Building Applications in a Split
Development Directory".

9.7 Deploying Shared Java EE Libraries and Dependent Applications
Shared Java EE libraries are registered with one or more WebLogic Server instances by
deploying them to the target servers and indicating that the deployments are to be
shared. Shared Java EE libraries must be targeted to the same WebLogic Server
instances you want to deploy applications that reference the libraries. If you try to
deploy a referencing application to a server instance that has not registered a required
library, deployment of the referencing application fails. See "Registering Libraries with
WebLogic Server" in Deploying Applications to Oracle WebLogic Server for more
information.

See "Install a Java EE Library" for detailed instructions on installing (deploying) a
shared Java EE library using the Administration Console. See "Target a Shared Java EE
Library to a Server or Cluster" for instructions on using the Administration Console to
target the library to the server or cluster to which the application that is referencing the
library is also targeted.

If you use the wldeploy Ant task as part of your iterative development process, use
the library, libImplVer, and libSpecVer attributes to deploy a shared Java EE
library. See Appendix B, "wldeploy Ant Task Reference," for details and examples.

After registering a shared Java EE library, you can deploy applications and archives
that depend on the library. Dependent applications can be deployed only if the target
servers have registered all required libraries, and the registered deployments meet the
version requirements of the application or archive. See "Deploying Applications that
Reference Libraries" in Deploying Applications to Oracle WebLogic Server for more
information.

Using WebApp Libraries With Web Applications

Creating Shared Java EE Libraries and Optional Packages 9-15

9.8 Web Application Shared Java EE Library Information
In general, this topic discusses shared Java EE libraries that can be referenced only by
Enterprise applications. You can also create libraries that can be referenced only by
another Web application. The functionality is very similar to application libraries,
although the method of referencing them is slightly different.

In particular:

■ Web application libraries can only be referenced by other Web applications.

■ Rather than update the weblogic-application.xml file, Web applications
reference Web application libraries by updating the weblogic.xml deployment
descriptor file. The elements are almost same as those described in Section 9.3,
"Referencing Shared Java EE Libraries in an Enterprise Application"; the only
difference is that the <context-root> child element of <library-ref> is
ignored in this case.

■ You cannot reference any other type of shared Java EE library (EJB, Enterprise
application, or plain JAR file) from the weblogic.xml deployment descriptor file
of a Web application.

Other than these differences in how they are referenced, the way to create, package,
and deploy a Web application library is the same as that of a standard shared Java EE
library.

9.9 Using WebApp Libraries With Web Applications
Just as standard shared Java EE applications can be deployed to WebLogic Server as
application-libraries, a standard Web application can be deployed to
WebLogic Server as a webapp-library so that other Web applications can refer to
these libraries.

Web application libraries facilitate the reuse of code and resources. Such libraries also
help you separate out third-party Web applications or frameworks that your Web
application might be using. Furthermore, common resources can be packaged
separately as libraries and referenced in different Web applications, so that you don't
have to bundle them with each Web application. When you include a
webapp-library in your Web application, at deployment time the container merges
all the static resources, classes, and JAR files into your Web application.

The first step in using a WebApp library is to register a Web application as a
webapp-library. This can be accomplished by deploying a Web application using
either the Administration Console or the weblogic.Deployer tool as a library. To
make other Web applications refer to this library, their weblogic.xml file must have
a library-ref element pointing to the webapp-library, as follows:

 <library-ref>
 <library-name>BaseWebApp</library-name>
 <specification-version>2.0</specification-version>
 <implementation-version>8.1beta</implementation-version>
 <exact-match>false</exact-match>
 </library-ref>

Note: For simplicity, this section uses the term Web application library when
referring to a shared Java EE library that is referenced only by another Web
application.

Accessing Registered Shared Java EE Library Information with LibraryRuntimeMBean

9-16 Developing Applications for Oracle WebLogic Server

When multiple libraries are present, the CLASSPATH/resource path precedence
order follows the order in which the library-refs elements appear in the
weblogic.xml file.

9.10 Accessing Registered Shared Java EE Library Information with
LibraryRuntimeMBean

Each deployed shared Java EE library is represented by a LibraryRuntimeMBean.
You can use this MBean to obtain information about the library itself, such as its name
or version. You can also obtain the ApplicationRuntimeMBeans associated with
deployed applications. ApplicationRuntimeMBean provides two methods to access
the libraries that the application is using:

■ getLibraryRuntimes() returns the shared Java EE libraries referenced in the
weblogic-application.xml file.

■ getOptionalPackageRuntimes() returns the optional packages referenced in
the manifest file.

For more information, see the Oracle WebLogic Server API Reference.

9.11 Order of Precedence of Modules When Referencing Shared Java EE
Libraries

When an Enterprise application references one or more shared Java EE libraries, and
the application is deployed to WebLogic Server, the server internally merges the
information in the weblogic-application.xml file of the referencing Enterprise
application with the information in the deployment descriptors of the referenced
libraries. The order in which this happens is as follows:

1. When the Enterprise application is deployed, WebLogic Server reads its
weblogic-application.xml deployment descriptor.

2. WebLogic Server reads the deployment descriptors of any referenced shared Java
EE libraries. Depending on the type of library (Enterprise application, EJB, or Web
application), the read file might be weblogic-application.xml,
weblogic.xml, weblogic-ejb-jar.xml, and so on.

3. WebLogic Server first merges the referenced shared Java EE library deployment
descriptors (in the order in which they are referenced, one at a time) and then
merges the weblogic-application.xml file of the referencing Enterprise
application on top of the library descriptor files.

As a result of the way the descriptor files are merged, the elements in the descriptors
of the shared Java EE libraries referenced first in the weblogic-application.xml
file have precedence over the ones listed last. The elements of the Enterprise
application's descriptor itself have precedence over all elements in the library
descriptors.

For example, assume that an Enterprise application called myApp references two
shared Java EE libraries (themselves packaged as Enterprise applications): myLibA
and myLibB, in that order. Both the myApp and myLibA applications include an EJB
module called myEJB, and both the myLibA and myLibB applications include an EJB
module called myOtherEJB.

Further assume that once the myApp application is deployed, a client invokes, via the
myApp application, the myEJB module. In this case, WebLogic Server actually invokes
the EJB in the myApp application (rather than the one in myLibA) because modules in

Best Practices for Using Shared Java EE Libraries

Creating Shared Java EE Libraries and Optional Packages 9-17

the referencing application have higher precedence over modules in the referenced
applications. If a client invokes the myOtherEJB EJB, then WebLogic Server invokes
the one in myLibA, because the library is referenced first in the
weblogic-application.xml file of myApp, and thus has precedence over the EJB
with the same name in the myLibB application.

9.12 Best Practices for Using Shared Java EE Libraries
Keep in mind these best practices when developing shared Java EE libraries and
optional packages:

■ Use shared Java EE Libraries when you want to share one or more Java EE
modules (EJBs, Web applications, Enterprise applications, or plain Java classes)
with multiple Enterprise applications.

■ If you need to deploy a standalone Java EE module, such as an EJB JAR file, as a
shared Java EE library, package the module within an Enterprise application.
Doing so avoids potential URI conflicts, because the library URI of a standalone
module is derived from the deployment name.

■ If you choose to deploy a shared Java EE library as a standalone Java EE module,
always specify a known deployment name during deployment and use that name
as the URI in referencing applications.

■ Use optional packages when multiple Java EE archive files need to share a set of
Java classes.

■ If you have a set of classes that must be available to applications in an entire
domain, and you do not frequently update those classes (for example, if you need
to share 3rd party classes in a domain), use the domain /lib subdirectory rather
than using shared Java EE libraries or optional packages. Classes in the /lib
subdirectory are made available (within a separate system level classloader) to all
J2EE applications running on WebLogic Server instances in the domain.

■ Always specify a specification version and implementation version, even if you do
not intend to enforce version requirements with dependent applications.
Specifying versions for shared Java EE libraries enables you to deploy multiple
versions of the shared files for testing.

■ Always specify an Extension-Name value for each shared Java EE library. If you
do not specify an extension name, one is derived from the deployment name of the
library. Default deployment names are different for archive and exploded archive
deployments, and they can be set to arbitrary values in the deployment command

■ When developing a Web application for deployment as a shared Java EE library,
use a unique context root. If the context root conflicts with the context root in a
dependent Java EE application, use the context-root element in the EAR's
weblogic-application.xml deployment descriptor to override the library's
context root.

■ Package shared Java EE libraries as archive files for delivery to Administrators or
deployers in your organization. Deploy libraries from exploded archive directories
during development to allow for easy updates and repeated redeployments.

■ Deploy shared Java EE libraries to all WebLogic Server instances on which you
want to deploy dependent applications and archives. If a library is not registered
with a server instance on which you want to deploy a referencing application,
deployment of the referencing application fails.

Best Practices for Using Shared Java EE Libraries

9-18 Developing Applications for Oracle WebLogic Server

10

Programming Application Life Cycle Events 10-1

10Programming Application Life Cycle Events

The following sections describe how to create applications that respond to WebLogic
Server application life cycle events:

■ Section 10.1, "Understanding Application Life Cycle Events"

■ Section 10.2, "Registering Events in weblogic-application.xml"

■ Section 10.3, "Programming Basic Life Cycle Listener Functionality"

■ Section 10.4, "Examples of Configuring Life Cycle Events with and without the
URI Parameter"

■ Section 10.5, "Understanding Application Life Cycle Event Behavior During
Re-deployment"

■ Section 10.6, "Programming Application Version Life Cycle Events"

10.1 Understanding Application Life Cycle Events
Application life cycle listener events provide handles on which developers can control
behavior during deployment, undeployment, and redeployment. This section
discusses how you can use the application life cycle listener events.

Four application life cycle events are provided with WebLogic Server, which can be
used to extend listener, shutdown, and startup classes. These include:

■ Listeners—attachable to any event. Possible methods for Listeners are:

– public void preStart(ApplicationLifecycleEvent evt) {}

The preStart event is the beginning of the prepare phase, or the start of the
application deployment process.

– public void postStart(ApplicationLifecycleEvent evt) {}

The postStart event is the end of the activate phase, or the end of the
application deployment process. The application is deployed.

– public void preStop(ApplicationLifecycleEvent evt) {}

The preStop event is the beginning of the deactivate phase, or the start of the
application removal or undeployment process.

Note: Application-scoped startup and shutdown classes have been depre-
cated as of release 9.0 of WebLogic Server. The information in this chapter
about startup and shutdown classes is provided only for backwards compati-
bility. Instead, you should use life cycle listener events in your applications. :

Registering Events in weblogic-application.xml

10-2 Developing Applications for Oracle WebLogic Server

– public void postStop(ApplicationLifecycleEvent evt) {}

The postStop event is the end of the remove phase, or the end of the
application removal or undeployment process.

■ Shutdown classes only get postStop events.

■ Startup classes only get preStart events.

10.2 Registering Events in weblogic-application.xml
In order to use these events, you must register them in the
weblogic-application.xml deployment descriptor. See Appendix A, "Enterprise
Application Deployment Descriptor Elements". Define the following elements:

■ listener—Used to register user defined application life cycle listeners. These are
classes that extend the abstract base class
weblogic.application.ApplicationLifecycleListener.

■ shutdown—Used to register user-defined shutdown classes.

■ startup—Used to register user-defined startup classes.

10.3 Programming Basic Life Cycle Listener Functionality
You create a listener by extending the abstract class (provided with WebLogic Server)
weblogic.application.ApplicationLifecycleListener. The container then
searches for your listener.

You override the following methods provided in the WebLogic Server
ApplicationLifecycleListener abstract class to extend your application and
add any required functionality:

■ preStart{}

■ postStart{}

■ preStop{}

■ postStop{}

Example 10–1 illustrates how you override the ApplicationLifecycleListener. In this
example, the public class MyListener extends ApplicationLifecycleListener.

Note: Application-scoped shutdown classes have been deprecated as of
release 9.0 of WebLogic Server. Use life cycle listeners instead.

Notes: Application-scoped shutdown classes have been deprecated as of
release 9.0 of WebLogic Server. Use life cycle listeners instead.

For Startup and Shutdown classes, you only implement a main{} method. If
you implement any of the methods provided for Listeners, they are ignored.

No remove{} method is provided in the
ApplicationLifecycleListener, because the events are only fired at
startup time during deployment (prestart and poststart) and shutdown during
undeployment (prestop and poststop).

Programming Basic Life Cycle Listener Functionality

Programming Application Life Cycle Events 10-3

Example 10–1 MyListener

import weblogic.application.ApplicationLifecycleListener;
import weblogic.application.ApplicationLifecycleEvent;
public class MyListener extends ApplicationLifecycleListener {
 public void preStart(ApplicationLifecycleEvent evt) {
 System.out.println
 ("MyListener(preStart) -- we should always see you..");
 } // preStart
 public void postStart(ApplicationLifecycleEvent evt) {
 System.out.println
 ("MyListener(postStart) -- we should always see you..");
 } // postStart
 public void preStop(ApplicationLifecycleEvent evt) {
 System.out.println
 ("MyListener(preStop) -- we should always see you..");
 } // preStop
 public void postStop(ApplicationLifecycleEvent evt) {
 System.out.println
 ("MyListener(postStop) -- we should always see you..");
 } // postStop
 public static void main(String[] args) {
 System.out.println
 ("MyListener(main): in main .. we should never see you..");
 } // main
}

Example 10–2 illustrates how you implement the shutdown class. The shutdown class
is attachable to preStop and postStop events. In this example, the public class
MyShutdown does not extend ApplicationLifecycleListener because a
shutdown class declared in the weblogic-application.xml deployment
descriptor does not need to depend on any WebLogic Server-specific interfaces.

Example 10–2 MyShutdown

import weblogic.application.ApplicationLifecycleListener;
import weblogic.application.ApplicationLifecycleEvent;
public class MyShutdown {
 public static void main(String[] args) {
 System.out.println
 ("MyShutdown(main): in main .. should be for post-stop");
 } // main
}

Example 10–3 illustrates how you implement the startup class. The startup class is
attachable to preStart and postStart events. In this example, the public class
MyStartup does not extend ApplicationLifecycleListener because a startup
class declared in the weblogic-application.xml deployment descriptor does not
need to depend on any WebLogic Server-specific interfaces.

Example 10–3 MyStartup

import weblogic.application.ApplicationLifecycleListener;
import weblogic.application.ApplicationLifecycleEvent;
public class MyStartup {
 public static void main(String[] args) {
 System.out.println
 ("MyStartup(main): in main .. should be for pre-start");
 } // main
}

Examples of Configuring Life Cycle Events with and without the URI Parameter

10-4 Developing Applications for Oracle WebLogic Server

10.3.1 Configuring a Role-Based Application Life Cycle Listener
You can configure an application life cycle event with role-based capability where a
user identity can be specified to startup and shutdown events using the
run-as-principal-name element. However, if the run-as-principal-name
identity defined for the application life cycle listener is an administrator, the
application deployer must have administrator privileges; otherwise, deployment will
fail.

1. Follow the basic programming steps outlined in Section 10.3, "Programming Basic
Life Cycle Listener Functionality".

2. Within the listener element add the run-as-principal-name element to
specify the user who has privileges to startup and/or shutdown the event. For
example:

<listener>
 <listener-class>myApp.MySessionAttributeListenerClass</listener-class>
 <run-as-principal-name>javajoe</run-as-principal-name>
</listener>

The identity specified here should be a valid user name in the system. If
run-as-principal-name is not specified, the deployment initiator user identity
will be used as the run-as identity for the execution of the application life cycle
listener.

10.4 Examples of Configuring Life Cycle Events with and without the URI
Parameter

The following examples illustrate how you configure application life cycle events in
the weblogic-application.xml deployment descriptor file. The URI parameter is
not required. You can place classes anywhere in the application $CLASSPATH.
However, you must ensure that the class locations are defined in the $CLASSPATH.
You can place listeners in APP-INF/classes or APP-INF/lib, if these directories
are present in the EAR. In this case, they are automatically included in the
$CLASSPATH.

The following example illustrates how you configure application life cycle events
using the URI parameter. In this case, the archive foo.jar contains the classes and
exists at the top level of the EAR file. For example: myEar/foo.jar.

Example 10–4 Configuring Application Life Cycle Events Using the URI Parameter

<listener>
 <listener-class>MyListener</listener-class>
 <listener-uri>foo.jar</listener-uri>
</listener>
<startup>
 <startup-class>MyStartup</startup-class>
 <startup-uri>foo.jar</startup-uri>
</startup>
<shutdown>
 <shutdown-class>MyShutdown</shutdown-class>
 <shutdown-uri>foo.jar</shutdown-uri>
</shutdown>

Programming Application Version Life Cycle Events

Programming Application Life Cycle Events 10-5

The following example illustrates how you configure application life cycle events
without using the URI parameter.

Example 10–5 Configuring Application Life Cycle Events without Using the URI
Parameter

<listener>
 <listener-class>MyListener</listener-class>
 </listener>
 <startup>
 <startup-class>MyStartup</startup-class>
 </startup>
 <shutdown>
 <shutdown-class>MyShutdown</shutdown-class>
 </shutdown>

10.5 Understanding Application Life Cycle Event Behavior During
Re-deployment

Application life cycle events are only triggered if a full re-deployment of the
application occurs. During a full re-deployment of the application—provided the
application life cycle events have been registered—the application life cycle first
commences the shutdown sequence, next re-initializes its classes, and then performs
the startup sequence.

For example, if your listener is registered for the full application life cycle set of events
(preStart, postStart, preStop, postStop), during a full re-deployment, you see the
following sequence of events:

1. preStop{}

2. postStop{}

3. Initialization takes place. (Unless you have set debug flags, you do not see the
initialization.)

4. preStart{}

5. postStart{}

10.6 Programming Application Version Life Cycle Events
The following sections describe how to create applications that respond to WebLogic
Server application version life cycle events:

■ Section 10.6.1, "Understanding Application Version Life Cycle Event Behavior"

■ Section 10.6.2, "Types of Application Version Life Cycle Events"

■ Section 10.6.3, "Example of Production Deployment Sequence When Using
Application Version Life Cycle Events"

10.6.1 Understanding Application Version Life Cycle Event Behavior
WebLogic Server provides application version life cycle event notifications by allowing
you to extend the ApplicationVersionLifecycleListener class and specify a
life cycle listener in weblogic-application.xml. See Appendix A, "Enterprise
Application Deployment Descriptor Elements" and Section 10.4, "Examples of
Configuring Life Cycle Events with and without the URI Parameter".

Programming Application Version Life Cycle Events

10-6 Developing Applications for Oracle WebLogic Server

Application version life cycle events are invoked:

■ For both static and dynamic deployments.

■ Using either anonymous ID or using user identity.

■ Only if the current application is versioned; otherwise, version life cycle events are
ignored.

■ for all application versions, including the version that registers the listener. Use the
ApplicationVersionLifecycleEvent.isOwnVersion method to determine
if an event belongs to a particular version. See the
ApplicationVersionLifecycleEvent class for more information on types of
version life cycle events.

10.6.2 Types of Application Version Life Cycle Events
Four application version life cycle events are provided with WebLogic Server:

■ public void preDeploy(ApplicationVersionLifecycleEvent evt)

– The preDeloy event is invoked when an application version deploy or
redeploy operation is initiated.

■ public void postDeploy(ApplicationVersionLifecycleEvent evt)

– The postDeloy event is invoked when an application version is deployed or
redeployed successfully.

■ public void preUndeploy(ApplicationVersionLifecycleEvent evt)

– The preUndeloy event is invoked when an application version undeploy
operation is initiated.

■ public void postDelete(ApplicationVersionLifecycleEvent evt)

– The postDelete event is invoked when an application version is deleted.

10.6.3 Example of Production Deployment Sequence When Using Application Version
Life Cycle Events

The following table provides an example of a deployment (V1), production
redeployment (V2), and an undeploy (V2).

Note: A postDelete event is only fired after the entire application
version is completely removed. It does not include a partial undeploy,
such as undeploying a module or from a subset of targets.

Table 10–1 Sequence of Deployment Actions and Application Version Life Cycle Events

Deployment action Time Version V1 Version V2

Deployment of Version V1 T0 preDeploy(V1) invoked.

T1 Deployment starts.

T2 Application life cycle listeners for V1
are registered.

T3 V1 is active version, Deployment is
complete.

T4 postDeploy(V1) invoked.

Programming Application Version Life Cycle Events

Programming Application Life Cycle Events 10-7

T5 Application Listeners gets
postDeploy(V1).

Production Redeployment
of Version V2

T6 preDeploy(V2) invoked.

T7 Application version listener receives
preDeploy(V1).

T8 Deployment starts.

T9 Application life cycle listeners for V2
are registered.

T10 If deploy(V2) succeeds, V1 ceases to
be active version.

If deploy(V2) succeeds, V2 replaces
V1 as active version.

Deployment is complete.

T11 postDeploy(V2) invoked.

Note: This event occurs even if the
deployment fails.

T12 Application version listener gets
postDeploy(V2). If deploy(V2)
fails, V1 remains active.

T13 Application listeners gets
postDeploy(V2).

T14 If deploy(V2) succeeds, V1 begins
retirement.

T15 Application listeners for V1 are
unregistered.

T16 V1 is retired.

Undeployment of V2 T17 preUndeploy(v2) invoked.

T18 Application listeners gets
preUndeploy(v2) invoked.

T19 Undeployment begins.

T20 V2 is no longer active version.

T21 Application version listeners for V2
are unregistered.

T22 Undeployment is complete.

T23 If the entire application is
undeployed, postDelete(V2) is
invoked.

Note: This event occurs even if the
undeployment fails.

Table 10–1 (Cont.) Sequence of Deployment Actions and Application Version Life Cycle Events

Deployment action Time Version V1 Version V2

Programming Application Version Life Cycle Events

10-8 Developing Applications for Oracle WebLogic Server

11

Programming Context Propagation 11-1

11Programming Context Propagation

The following sections describe how to use the context propagation APIs in your
applications:

■ Section 11.1, "Understanding Context Propagation"

■ Section 11.2, "Programming Context Propagation: Main Steps"

■ Section 11.3, "Programming Context Propagation in a Client"

■ Section 11.4, "Programming Context Propagation in an Application"

11.1 Understanding Context Propagation
Context propagation allows programmers to associate information with an application
which is then carried along with every request. Furthermore, downstream components
can add or modify this information so that it can be carried back to the originator.
Context propagation is also known as work areas, work contexts, or application
transactions.

Common use-cases for context propagation are any type of application in which
information needs to be carried outside the application, rather than the information
being an integral part of the application. Examples of these use cases include
diagnostics monitoring, application transactions, and application load-balancing.
Keeping this sort of information outside of the application keeps the application itself
clean with no extraneous API usage and also allows the addition of information to
read-only components, such as 3rd party components.

Programming context propagation has two parts: first you code the client application
to create a WorkContextMap and WorkContext, and then add user data to the
context, and then you code the invoked application itself to get and possibly use this
data. The invoked application can be of any type: EJB, Web Service, servlet, JMS topic
or queue, and so on. See Section 11.2, "Programming Context Propagation: Main Steps"
for details.

The WebLogic context propagation APIs are in the weblogic.workarea package.
The following table describes the main interfaces and classes.

Programming Context Propagation: Main Steps

11-2 Developing Applications for Oracle WebLogic Server

For the complete API documentation about context propagation, see the
weblogic.workarea Javadocs.

11.2 Programming Context Propagation: Main Steps
The following procedure describes the high-level steps to use context propagation in
your application. It is assumed in the procedure that you have already set up your
iterative development environment and have an existing client and application that
you want to update to use context propagation by using the weblogic.workarea
API.

1. Update your client application to create the WorkContextMap and WorkContext
objects and then add user data to the context.

See Section 11.3, "Programming Context Propagation in a Client".

2. If your client application is standalone (rather than running in a Java EE
component deployed to WebLogic Server), ensure that its CLASSPATH includes
the Java EE application client, also called the thin client.

See Programming Stand-alone Clients for Oracle WebLogic Server.

3. Update your application (EJB, Web Service, servlet, and so on) to also create a
WorkContextMap and then get the context and user data that you added from the
client application.

See Section 11.4, "Programming Context Propagation in an Application".

11.3 Programming Context Propagation in a Client
The following sample Java code shows a standalone Java client that invokes a Web
Service; the example also shows how to use the weblogic.workarea.* context
propagation APIs to associate user information with the invoke. The code relevant to
context propagation is shown in bold and explained after the example.

Table 11–1 Interfaces and classes of the WebLogic Context Propagation API

Interface or Class Description

WorkContextMap Interface Main context propagation interface used to tag applications with data and
propagate that information via application requests. WorkContextMaps is part of
the client or application's JNDI environment and can be accessed through JNDI by
looking up the name java:comp/WorkContextMap.

WorkContext Interface Interface used for marshaling and unmarshaling the user data that is passed along
with an application. This interface has four implementing classes for marshaling
and unmarshaling the following types of data: simple 8-bit ASCII contexts
(AsciiWorkContext), long contexts (LongWorkContext), Serializable context
(SerializableWorkContext), and String contexts (StringWorkContext).

WorkContext has one subinterface, PrimitiveWorkContext, used to
specifically marshal and unmarshal a single primitive data item.

WorkContextOutput/Inpu
t Interfaces

Interfaces representing primitive streams used for marshaling and unmarshaling,
respectively, WorkContext implementations.

PropagationMode Interface Defines the propagation properties of WorkContexts. Specifies whether the
WorkContext is propagated locally, across threads, across RMI invocations, across
JMS queues and topics, or across SOAP messages. If not specified, default is to
propagate data across remote and local calls in the same thread.

PrimitiveContextFactor
y Class

Convenience class for creating WorkContexts that contain only primitive data.

Programming Context Propagation in a Client

Programming Context Propagation 11-3

For the complete API documentation about context propagation, see the
weblogic.workarea Javadocs.

package examples.workarea.client;
import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;
import javax.xml.rpc.Stub;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import weblogic.workarea.WorkContextMap;
import weblogic.workarea.WorkContext;
import weblogic.workarea.PrimitiveContextFactory;
import weblogic.workarea.PropagationMode;
import weblogic.workarea.PropertyReadOnlyException;
/**
 * This is a simple standalone client application that invokes the
 * the <code>sayHello</code> operation of the WorkArea Web service.
 *
 */
public class Main {
 public final static String SESSION_ID= "session_id_key";
 public static void main(String[] args)
 throws ServiceException, RemoteException, NamingException,
PropertyReadOnlyException{
 WorkAreaService service = new WorkAreaService_Impl(args[0] + "?WSDL");
 WorkAreaPortType port = service.getWorkAreaPort();
 WorkContextMap map = (WorkContextMap)new
InitialContext().lookup("java:comp/WorkContextMap");
 WorkContext stringContext = PrimitiveContextFactory.create("A String
Context");
 // Put a string context
 map.put(SESSION_ID, stringContext, PropagationMode.SOAP);
 try {
 String result = null;
 result = port.sayHello("Hi there!");
 System.out.println("Got result: " + result);
 } catch (RemoteException e) {
 throw e;
 }
 }
}

In the preceding example:

■ The following code shows how to import the needed weblogic.workarea.*
classes, interfaces, and exceptions:

import weblogic.workarea.WorkContextMap;
import weblogic.workarea.WorkContext;
import weblogic.workarea.PrimitiveContextFactory;
import weblogic.workarea.PropagationMode;
import weblogic.workarea.PropertyReadOnlyException;

Note: See Getting Started With JAX-WS Web Services for Oracle WebLogic Server
for information on creating Web Services and client applications that invoke
them.

Programming Context Propagation in an Application

11-4 Developing Applications for Oracle WebLogic Server

■ The following code shows how to create a WorkContextMap by doing a JNDI
lookup of the context propagation-specific JNDI name
java:comp/WorkContextMap:

WorkContextMap map = (WorkContextMap)
 new InitialContext().lookup("java:comp/WorkContextMap");

■ The following code shows how to create a WorkContext by using the
PrimitiveContextFactory. In this example, the WorkContext consists of the
simple String value A String Context. This String value is the user data that is
passed to the invoked Web Service.

WorkContext stringContext =
 PrimitiveContextFactory.create("A String Context");

■ Finally, the following code shows how to add the context data, along with the key
SESSION_ID, to the WorkContextMap and associate it with the current thread.
The PropagationMode.SOAP constant specifies that the propagation happens
over SOAP messages; this is because the client is invoking a Web Service.

map.put(SESSION_ID, stringContext, PropagationMode.SOAP);

11.4 Programming Context Propagation in an Application
The following sample Java code shows a simple Java Web Service (JWS) file that
implements a Web Service. The JWS file also includes context propagation code to get
the user data that is associated with the invoke of the Web Service. The code relevant
to context propagation is shown in bold and explained after the example.

For the complete API documentation about context propagation, see the
weblogic.workarea Javadocs.

package examples.workarea;
import javax.naming.InitialContext;
// Import the Context Propagation classes
import weblogic.workarea.WorkContextMap;
import weblogic.workarea.WorkContext;
import javax.jws.WebMethod;
import javax.jws.WebService;
import weblogic.jws.WLHttpTransport;
@WebService(name="WorkAreaPortType",
 serviceName="WorkAreaService",
 targetNamespace="http://example.org")
@WLHttpTransport(contextPath="workarea",
 serviceUri="WorkAreaService",
 portName="WorkAreaPort")
/**
 * This JWS file forms the basis of simple WebLogic
 * Web Service with a single operation: sayHello
 *
 */
public class WorkAreaImpl {
 public final static String SESSION_ID = "session_id_key";
 @WebMethod()

Note: See Getting Started With JAX-WS Web Services for Oracle WebLogic Server
for information on creating Web Services and client applications that invoke
them.

Programming Context Propagation in an Application

Programming Context Propagation 11-5

 public String sayHello(String message) {
 try {
 WorkContextMap map = (WorkContextMap) new
InitialContext().lookup("java:comp/WorkContextMap");
 WorkContext localwc = map.get(SESSION_ID);
 System.out.println("local context: " + localwc);
 System.out.println("sayHello: " + message);
 return "Here is the message: '" + message + "'";
 } catch (Throwable t) {
 return "error";
 }
 }
}

In the preceding example:

■ The following code shows how to import the needed context propagation APIs; in
this case, only the WorkContextMap and WorkContext interfaces are needed:

import weblogic.workarea.WorkContextMap;
import weblogic.workarea.WorkContext;

■ The following code shows how to create a WorkContextMap by doing a JNDI
lookup of the context propagation-specific JNDI name
java:comp/WorkContextMap:

WorkContextMap map = (WorkContextMap)
 new InitialContext().lookup("java:comp/WorkContextMap");

■ The following code shows how to get context's user data from the current
WorkContextMap using a key; in this case, the key is the same one that the client
application set when it invoked the Web Service: SESSION_ID:

WorkContext localwc = map.get(SESSION_ID);

Programming Context Propagation in an Application

11-6 Developing Applications for Oracle WebLogic Server

12

Programming JavaMail with WebLogic Server 12-1

12Programming JavaMail with WebLogic
Server

The following sections contains information on additional WebLogic Server
programming topics:

■ Section 12.1, "Overview of Using JavaMail with WebLogic Server Applications"

■ Section 12.2, "Understanding JavaMail Configuration Files"

■ Section 12.3, "Configuring JavaMail for WebLogic Server"

■ Section 12.4, "Sending Messages with JavaMail"

■ Section 12.5, "Reading Messages with JavaMail"

12.1 Overview of Using JavaMail with WebLogic Server Applications
WebLogic Server includes the JavaMail API version 1.4 reference implementation from
Sun Microsystems. Using the JavaMail API, you can add email capabilities to your
WebLogic Server applications. JavaMail provides access from Java applications to
Internet Message Access Protocol (IMAP)- and Simple Mail Transfer Protocol
(SMTP)-capable mail servers on your network or the Internet. It does not provide mail
server functionality; you must have access to a mail server to use JavaMail.

Complete documentation for using the JavaMail API is available on the JavaMail page
on the Sun Web site
(http://java.sun.com/products/javamail/index.html). This section
describes how you can use JavaMail in the WebLogic Server environment.

The weblogic.jar file contains the following JavaMail API packages from Sun:

■ javax.mail

■ javax.mail.event

■ javax.mail.internet

■ javax.mail.search

The weblogic.jar also contains the Java Activation Framework (JAF) package,
which JavaMail requires.

The javax.mail package includes providers for Internet Message Access protocol
(IMAP) and Simple Mail Transfer Protocol (SMTP) mail servers. Sun has a separate
POP3 provider for JavaMail, which is not included in weblogic.jar. You can
download the POP3 provider from Sun and add it to the WebLogic Server classpath if
you want to use it.

Understanding JavaMail Configuration Files

12-2 Developing Applications for Oracle WebLogic Server

12.2 Understanding JavaMail Configuration Files
JavaMail depends on configuration files that define the mail transport capabilities of
the system. The weblogic.jar file contains the standard configuration files from
Sun, which enable IMAP and SMTP mail servers for JavaMail and define the default
message types JavaMail can process.

Unless you want to extend JavaMail to support additional transports, protocols, and
message types, you do not have to modify any JavaMail configuration files. If you do
want to extend JavaMail, download JavaMail from Sun and follow Sun's instructions
for adding your extensions. Then add your extended JavaMail package in the
WebLogic Server classpath in front of weblogic.jar.

12.3 Configuring JavaMail for WebLogic Server
To configure JavaMail for use in WebLogic Server, you create a mail session in the
WebLogic Server Administration Console. This allows server-side modules and
applications to access JavaMail services with JNDI, using Session properties you
preconfigure for them. For example, by creating a mail session, you can designate the
mail hosts, transport and store protocols, and the default mail user in the
Administration Console so that modules that use JavaMail do not have to set these
properties. Applications that are heavy email users benefit because the mail session
creates a single javax.mail.Session object and makes it available via JNDI to any
module that needs it.

For information on using the Administration Console to create a mail session, see
"Configure access to JavaMail" in the Oracle WebLogic Server Administration Console
Help.

You can override any properties set in the mail session in your code by creating a
java.util.Properties object containing the properties you want to override. See
Section 12.4, "Sending Messages with JavaMail". Then, after you look up the mail
session object in JNDI, call the Session.getInstance() method with your
Properties object to get a customized Session.

12.4 Sending Messages with JavaMail
Here are the steps to send a message with JavaMail from within a WebLogic Server
module:

1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will
also need to import java.util.Properties:

import java.util.*;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;

2. Look up the Mail Session in JNDI:

InitialContext ic = new InitialContext();
Session session = (Session) ic.lookup("myMailSession");

3. If you need to override the properties you set for the Session in the Administration
Console, create a java.util.Properties object and add the properties you
want to override. Then call getInstance() to get a new Session object with the
new properties.

Reading Messages with JavaMail

Programming JavaMail with WebLogic Server 12-3

Properties props = new Properties();
props.put("mail.transport.protocol", "smtp");
props.put("mail.smtp.host", "mailhost");
// use mail address from HTML form for from address
props.put("mail.from", emailAddress);
Session session2 = session.getInstance(props);

4. Construct a MimeMessage. In the following example, to, subject, and messageTxt
are String variables containing input from the user.

Message msg = new MimeMessage(session2);
msg.setFrom();
msg.setRecipients(Message.RecipientType.TO,
 InternetAddress.parse(to, false));
msg.setSubject(subject);
msg.setSentDate(new Date());
// Content is stored in a MIME multi-part message
// with one body part
MimeBodyPart mbp = new MimeBodyPart();
mbp.setText(messageTxt);
Multipart mp = new MimeMultipart();
mp.addBodyPart(mbp);
msg.setContent(mp);

5. Send the message.

Transport.send(msg);

The JNDI lookup can throw a NamingException on failure. JavaMail can throw a
MessagingException if there are problems locating transport classes or if
communications with the mail host fails. Be sure to put your code in a try block and
catch these exceptions.

12.5 Reading Messages with JavaMail
The JavaMail API allows you to connect to a message store, which could be an IMAP
server or POP3 server. Messages are stored in folders. With IMAP, message folders are
stored on the mail server, including folders that contain incoming messages and
folders that contain archived messages. With POP3, the server provides a folder that
stores messages as they arrive. When a client connects to a POP3 server, it retrieves the
messages and transfers them to a message store on the client.

Folders are hierarchical structures, similar to disk directories. A folder can contain
messages or other folders. The default folder is at the top of the structure. The special
folder name INBOX refers to the primary folder for the user, and is within the default
folder. To read incoming mail, you get the default folder from the store, and then get
the INBOX folder from the default folder.

The API provides several options for reading messages, such as reading a specified
message number or range of message numbers, or pre-fetching specific parts of
messages into the folder's cache. See the JavaMail API for more information.

Here are steps to read incoming messages on a POP3 server from within a WebLogic
Server module:

1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will
also need to import java.util.Properties:

import java.util.*;
import javax.activation.*;
import javax.mail.*;

Reading Messages with JavaMail

12-4 Developing Applications for Oracle WebLogic Server

import javax.mail.internet.*;
import javax.naming.*;

2. Look up the Mail Session in JNDI:

InitialContext ic = new InitialContext();
Session session = (Session) ic.lookup("myMailSession");

3. If you need to override the properties you set for the Session in the Administration
Console, create a Properties object and add the properties you want to
override. Then call getInstance() to get a new Session object with the new
properties:

Properties props = new Properties();
props.put("mail.store.protocol", "pop3");
props.put("mail.pop3.host", "mailhost");
Session session2 = session.getInstance(props);

4. Get a Store object from the Session and call its connect() method to connect to
the mail server. To authenticate the connection, you need to supply the mailhost,
username, and password in the connect method:

Store store = session.getStore();
store.connect(mailhost, username, password);

5. Get the default folder, then use it to get the INBOX folder:

Folder folder = store.getDefaultFolder();
folder = folder.getFolder("INBOX");

6. Read the messages in the folder into an array of Messages:

Message[] messages = folder.getMessages();

7. Operate on messages in the Message array. The Message class has methods that
allow you to access the different parts of a message, including headers, flags, and
message contents.

Reading messages from an IMAP server is similar to reading messages from a POP3
server. With IMAP, however, the JavaMail API provides methods to create and
manipulate folders and transfer messages between them. If you use an IMAP server,
you can implement a full-featured, Web-based mail client with much less code than if
you use a POP3 server. With POP3, you must provide code to manage a message store
via WebLogic Server, possibly using a database or file system to represent folders.

13

Threading and Clustering Topics 13-1

13Threading and Clustering Topics

The following sections contain information on additional WebLogic Server
programming topics:

■ Section 13.1, "Using Threads in WebLogic Server"

■ Section 13.2, "Using the Work Manager API for Lower-Level Threading"

■ Section 13.3, "Programming Applications for WebLogic Server Clusters"

13.1 Using Threads in WebLogic Server
WebLogic Server is a sophisticated, multi-threaded application server and it carefully
manages resource allocation, concurrency, and thread synchronization for the modules
it hosts. To obtain the greatest advantage from WebLogic Server's architecture,
construct your application modules created according to the standard Java EE APIs.

In most cases, avoid application designs that require creating new threads in
server-side modules:

■ Applications that create their own threads do not scale well. Threads in the JVM
are a limited resource that must be allocated thoughtfully. Your applications may
break or cause WebLogic Server to thrash when the server load increases.
Problems such as deadlocks and thread starvation may not appear until the
application is under a heavy load.

■ Multithreaded modules are complex and difficult to debug. Interactions between
application-generated threads and WebLogic Server threads are especially difficult
to anticipate and analyze.

In some situations, creating threads may be appropriate, in spite of these warnings.
For example, an application that searches several repositories and returns a combined
result set can return results sooner if the searches are done asynchronously using a
new thread for each repository instead of synchronously using the main client thread.

If you must use threads in your application code, create a pool of threads so that you
can control the number of threads your application creates. Like a JDBC connection
pool, you allocate a given number of threads to a pool, and then obtain an available
thread from the pool for your runnable class. If all threads in the pool are in use, wait
until one is returned. A thread pool helps avoid performance issues and allows you to
optimize the allocation of threads between WebLogic Server execution threads and
your application.

Be sure you understand where your threads can deadlock and handle the deadlocks
when they occur. Review your design carefully to ensure that your threads do not
compromise the security system.

Using the Work Manager API for Lower-Level Threading

13-2 Developing Applications for Oracle WebLogic Server

To avoid undesirable interactions with WebLogic Server threads, do not let your
threads call into WebLogic Server modules. For example, do not use enterprise beans
or servlets from threads that you create. Application threads are best used for
independent, isolated tasks, such as conversing with an external service with a
TCP/IP connection or, with proper locking, reading or writing to files. A short-lived
thread that accomplishes a single purpose and ends (or returns to the thread pool) is
less likely to interfere with other threads.

Avoid creating daemon threads in modules that are packaged in applications deployed
on WebLogic Server. When you create a daemon thread in an application module such
as a Servlet, you will not be able to redeploy the application because the daemon
thread created in the original deployment will remain running.

Be sure to test multithreaded code under increasingly heavy loads, adding clients even
to the point of failure. Observe the application performance and WebLogic Server
behavior and then add checks to prevent failures from occurring in production.

13.2 Using the Work Manager API for Lower-Level Threading
The Work Manager provides a simple API for concurrent execution of work items.
This enables Java EE-based applications (including Servlets and EJBs) to schedule
work items for concurrent execution, which will provide greater throughput and
increased response time. After an application submits work items to a Work Manager
for concurrent execution, the application can gather the results. The Work Manager
provides common "join" operations, such as waiting for any or all work items to
complete. The Work Manager for Application Servers specification provides an
application-server-supported alternative to using lower-level threading APIs, which
are inappropriate for use in managed environments such as Servlets and EJBs, as well
as being too difficult to use for most applications.

For more information, see "Using Work Managers to Optimize Scheduled Work".

13.3 Programming Applications for WebLogic Server Clusters
JSPs and Servlets that will be deployed to a WebLogic Server cluster must observe
certain requirements for preserving session data. See "Requirements for HTTP Session
State Replication" in Using Clusters for Oracle WebLogic Server for more information.

EJBs deployed in a WebLogic Server cluster have certain restrictions based on EJB
type. See "Understanding WebLogic Enterprise JavaBeans" in Programming WebLogic
Enterprise JavaBeans for Oracle WebLogic Serverfor information about the capabilities of
different EJB types in a cluster. EJBs can be deployed to a cluster by setting clustering
properties in the EJB deployment descriptor.

If you are developing either EJBs or custom RMI objects for deployment in a cluster,
also refer to "Using WebLogic JNDI in a Clustered Environment" in Programming JNDI
for Oracle WebLogic Server to understand the implications of binding clustered objects
in the JNDI tree.

A

Enterprise Application Deployment Descriptor Elements A-1

AEnterprise Application Deployment
Descriptor Elements

The following sections describe Enterprise application deployment descriptors:
application.xml (a Java EE standard deployment descriptor) and
weblogic-application.xml (a WebLogic-specific application deployment
descriptor).

With Java EE annotations, the standard application.xml deployment descriptor is
optional. Annotations simplify the application development process by allowing
developers to specify within the Java class itself how the application component
behaves in the container, requests for dependency injection, and so on. Annotations
are an alternative to deployment descriptors that were required by older versions of
Enterprise applications (J2EE 1.4 and earlier). See Chapter 7, "Using Java EE
Annotations and Dependency Injection"

The weblogic-application.xml file is also optional if you are not using any
WebLogic Server extensions.

■ Section A.1, "weblogic-application.xml Deployment Descriptor Elements"

■ Section A.2, "weblogic-application.xml Schema"

■ Section A.3, "application.xml Schema"

A.1 weblogic-application.xml Deployment Descriptor Elements
The following sections describe the many of the individual elements that are defined
in the weblogic-application.xml Schema. The weblogic-application.xml file is
the WebLogic Server-specific deployment descriptor extension for the
application.xml deployment descriptor from Sun Microsystems. This is where you
configure features such as shared Java EE libraries referenced in the application and
EJB caching.

The file is located in the META-INF subdirectory of the application archive. The
following sections describe elements that can appear in the file.

A.1.1 weblogic-application
The weblogic-application element is the root element of the application
deployment descriptor.

The following table describes the elements you can define within a
weblogic-application element.

weblogic-application.xml Deployment Descriptor Elements

A-2 Developing Applications for Oracle WebLogic Server

Table A–1 weblogic-application Elements

Element Required?

Maximum
Number In
File Description

<ejb> Optional 1 Contains information that is specific to the EJB modules that
are part of a WebLogic application. Currently, one can use the
ejb element to specify one or more application level caches
that can be used by the application's entity beans.

For more information on the elements you can define within
the ejb element, see Section A.1.2, "ejb".

<xml> Optional 1 Contains information about parsers and entity mappings for
XML processing that is specific to this application.

For more information on the elements you can define within
the xml element, see Section A.1.4, "xml".

<jdbc-connection
-pool>

Optional Unbounded Zero or more. Specifies an application-scoped JDBC connection
pool.

For more information on the elements you can define within
the jdbc-connection-pool element, see Section A.1.5,
"jdbc-connection-pool".

<security> Optional 1 Specifies security information for the application.

For more information on the elements you can define within
the security element, see Section A.1.6, "security".

<application-par
am>

Optional Unbounded Zero or more. Used to specify un-typed parameters that affect
the behavior of container instances related to the application.
The parameters listed here are currently supported. Also, these
parameters in weblogic-application.xml can determine
the default encoding to be used for requests and for responses.

■ webapp.encoding.default—Can be set to a string
representing an encoding supported by the JDK. If set, this
defines the default encoding used to process servlet
requests and servlet responses. This setting is ignored if
webapp.encoding.usevmdefault is set to true. This
value is also overridden for request streams by the
input-charset element of weblogic.xml.

■ webapp.encoding.usevmdefault—Can be set to true
or false. If true, the system property file.encoding
is used to define the default encoding.

The following parameter is used to affect the behavior of Web
applications that are contained in this application.

■ webapp.getrealpath.accept_context_path—This
is a compatibility switch that may be set to true or
false. If set to true, the context path of Web applications
is allowed in calls to the servlet API getRealPath.

Example:

<application-param>
<param-name>webapp.encoding.default
</param-name>
<param-value>UTF8</param-value>
</application-param>

For more information on the elements you can define within
the application-param element, see Section A.1.7,
"application-param".

weblogic-application.xml Deployment Descriptor Elements

Enterprise Application Deployment Descriptor Elements A-3

<classloader-str
ucture>

Optional Unbounded A classloader-structure element allows you to define the
organization of classloaders for this application. The
declaration represents a tree structure that represents the
classloader hierarchy and associates specific modules with
particular nodes. A module's classes are loaded by the
classloader that its associated with this element.

Example:

<classloader-structure>

<module-ref>

<module-uri>ejb1.jar</module-uri>

</module-ref>

</classloader-structure>

<classloader-structure>

<module-ref>

<module-uri>ejb2.jar</module-uri>

</module-ref>

</classloader-structure>

For more information on the elements you can define within
the classloader-structure element, see Section A.1.8,
"classloader-structure".

<listener> Optional Unbounded Zero or more. Used to register user-defined application
lifecycle listeners. These are classes that extend the abstract
base class
weblogic.application.ApplicationLifecycleListe
ner.

For more information on the elements you can define within
the listener element, see Section A.1.9, "listener".

<singleton-servi
ce>

Optional Unbounded Zero or more. Used to register user-defined singleton services.
These are classes that implement the interface
weblogic.cluster.singleton.SingletonService.

For more information on the elements you can define within
the singleton-service element, see Section A.1.10,
"singleton-service".

<startup> Optional Unbounded Zero or more. Used to register user-defined startup classes.

For more information on the elements you can define within
the startup element, see Section A.1.11, "startup".

Note: Application-scoped startup and shutdown classes have
been deprecated as of release 9.0 of WebLogic Server. Instead,
you should use lifecycle listener events in your applications.
For details, see Chapter 10, "Programming Application Life
Cycle Events"

<shutdown> Optional Unbounded Zero or more. Used to register user defined shutdown classes.

For more information on the elements you can define within
the shutdown element, see Section A.1.12, "shutdown".

Note: Application-scoped startup and shutdown classes have
been deprecated as of release 9.0 of WebLogic Server. Instead,
you should use lifecycle listener events in your applications.
For details, see Chapter 10, "Programming Application Life
Cycle Events."

Table A–1 (Cont.) weblogic-application Elements

Element Required?

Maximum
Number In
File Description

weblogic-application.xml Deployment Descriptor Elements

A-4 Developing Applications for Oracle WebLogic Server

<module> Optional Unbounded Represents a single WebLogic application module, such as a
JMS or JDBC module.

This element has the following child elements:

■ name—The name of the module.

■ type—The type of module. Valid values are JMS, JDBC, or
Interception.

■ path—The path of the XML file that fully describes the
module, relative to the root of the Enterprise application.

The following example shows how to specify a JMS module
called Workflows, fully described by the XML file
jms/Workflows-jms.xml:

<module>
 <name>Workflows</name>
 <type>JMS</type>
 <path>jms/Workflows-jms.xml</path>
</module>

<library-ref> Optional Unbounded A reference to a shared Java EE library.

For more information on the elements you can define within
the library element, see Section A.1.15, "library-ref".

<fair-share-requ
est>

Optional Unbounded Specifies a fair share request class, which is a type of Work
Manager request class. In particular, a fair share request class
specifies the average percentage of thread-use time required to
process requests.

The <fair-share-request> element can take the following
child elements:

■ name—The name of the fair share request class.

■ fair-share—An integer representing the average
percentage of thread-use time.

See "Using Work Managers to Optimize Scheduled Work".

<response-time-r
equest>

Optional Unbounded Specifies a response time request class, which is a type of Work
manager class. In particular, a response time request class
specifies a response time goal in milliseconds.

The <response-time-request> element can take the
following child elements:

■ name—The name of the response time request class.

■ goal-ms—The integer response time goal.

See "Using Work Managers to Optimize Scheduled Work".

Table A–1 (Cont.) weblogic-application Elements

Element Required?

Maximum
Number In
File Description

weblogic-application.xml Deployment Descriptor Elements

Enterprise Application Deployment Descriptor Elements A-5

<context-request
>

Optional Unbounded Specifies a context request class, which is a type of Work
manager class. In particular, a context request class assigns
request classes to requests based on context information, such
as the current user or the current user's group.

The <context-request> element can take the following
child elements:

■ name—The name of the context request class.

■ context-case—An element that describes the context.

The <context-case> element can itself take the following
child elements:

■ user-name or group-name—The user or group to which
the context applies.

■ request-class-name—The name of the request class.

See "Using Work Managers to Optimize Scheduled Work".

<max-threads-con
straint>

Optional Unbounded Specifies a max-threads-constraint Work Manager
constraint. A Work Manager constraint defines minimum and
maximum numbers of threads allocated to execute requests
and the total number of requests that can be queued or
executing before WebLogic Server begins rejecting requests.

The max-threads constraint limits the number of concurrent
threads executing requests from the constrained work set.

The <max-threads-constraint> element can take the
following child elements:

■ name—The name of the max-thread-constraint.

■ Either count or pool-name—The integer maximum
number of concurrent threads, or the name of a connection
pool which determines the maximum.

See "Using Work Managers to Optimize Scheduled Work".

<min-threads-con
straint>

Optional Unbounded Specifies a min-threads-constraint Work Manager
constraint. A Work Manager constraint defines minimum and
maximum numbers of threads allocated to execute requests
and the total number of requests that can be queued or
executing before WebLogic Server begins rejecting requests.

The min-threads constraint guarantees a number of threads the
server will allocate to affected requests to avoid deadlocks.

The <min-threads-constraint> element can take the
following child elements:

■ name—The name of the min-thread-constraint.

■ count—The integer minimum number of threads.

See "Using Work Managers to Optimize Scheduled Work".

Table A–1 (Cont.) weblogic-application Elements

Element Required?

Maximum
Number In
File Description

weblogic-application.xml Deployment Descriptor Elements

A-6 Developing Applications for Oracle WebLogic Server

<capacity> Optional Unbounded Specifies a capacity Work Manager constraint. A Work
Manager constraint defines minimum and maximum numbers
of threads allocated to execute requests and the total number of
requests that can be queued or executing before WebLogic
Server begins rejecting requests.

The capacity constraint causes the server to reject requests only
when it has reached its capacity.

The <capacity> element can take the following child
elements:

■ name—The name of the capacity constraint.

■ count—The integer thread capacity.

See "Using Work Managers to Optimize Scheduled Work".

<work-manager> Optional Unbounded Specifies the Work Manager that is associated with the
application.

For more information on the elements you can define within
the work-manager element, see Section A.1.13,
"work-manager".

See "Using Work Managers to Optimize Scheduled Work" for
detailed information on Work Managers.

<application-adm
in-mode-trigger>

Optional Unbounded Specifies the number of stuck threads needed to bring the
application into administration mode.

You can specify the following child elements:

■ max-stuck-thread-time—The maximum amount of
time, in seconds, that a thread should remain stuck.

■ stuck-thread-count—Number of stuck threads that
triggers the stuck thread work manager.

<session-descrip
tor>

Optional Unbounded Specifies a list of configuration parameters for servlet sessions.

For more information on the elements you can define within
the <session-descriptor> element, see Section A.1.14,
"session-descriptor".

<library-context
-root-override>

Optional Unbounded Zero or more. Used to override the context-root of a Web
module specified in the deployment descriptor of a library
referenced by this application.

For more information on the elements you can define within
the <library-context-root-override> element, see
Section A.1.16, "library-context-root-override".

<component-facto
ry-class-name>

Optional 1 Used to enable the Spring extension by setting this element to
org.springframework.jee.interfaces.SpringCompo
nentFactory. This element exists in EJB, Web, and
application descriptors. A module-level descriptor overwrites
an application-level descriptor. If set to null (default), the
Spring extension is disabled.

Table A–1 (Cont.) weblogic-application Elements

Element Required?

Maximum
Number In
File Description

weblogic-application.xml Deployment Descriptor Elements

Enterprise Application Deployment Descriptor Elements A-7

A.1.2 ejb
The following table describes the elements you can define within an ejb element.

<prefer-applicat
ion-packages>

Optional 1 Used for filtering ClassLoader configuration. Specifies a list of
packages for classes that must always be loaded from the
application.

<prefer-applicat
ion-resources>

Optional 1 Used for filtering ClassLoader configuration. Specifies a list of
resources that must always be loaded from the application,
even if the resources are found in the system classloader.

Note that the resource loading behavior is different from the
resource loading behavior when
<prefer-application-packages> is used.

In that case, application resources get a preference over system
resources. The resources captured in this element are never
looked up in the system classloader.

<fast-swap> Optional 1 Specifies whether FastSwap deployment is used to minimize
redeployment since Java classes are redefined in-place without
reloading the ClassLoader.

For more information, see "Using FastSwap Deployment to
Minimize Redeployment" in Deploying Applications to WebLogic
Server.

For information on the elements you can define within the
<fast-swap> element, see Section A.1.17, "fast-swap".

Table A–1 (Cont.) weblogic-application Elements

Element Required?

Maximum
Number In
File Description

weblogic-application.xml Deployment Descriptor Elements

A-8 Developing Applications for Oracle WebLogic Server

A.1.2.1 entity-cache
The following table describes the elements you can define within a entity-cache
element.

Table A–2 ejb Elements

Element Required?

Maximum
Number in
File Description

<entity-cache> Optional Unbounded Zero or more. The entity-cache element is used to define a
named application level cache that is used to cache entity EJB
instances at runtime. Individual entity beans refer to the
application-level cache that they must use, referring to the
cache name. There is no restriction on the number of different
entity beans that may reference an individual cache.

To use application-level caching, you must specify the cache
using the <entity-cache-ref> element of the
weblogic-ejb-jar.xml descriptor. Two default caches
named ExclusiveCache and MultiVersionCache are
used for this purpose. An application may explicitly define
these default caches to specify non-default values for their
settings. Note that the caching-strategy cannot be changed for
the default caches. By default, a cache uses
max-beans-in-cache with a value of 1000 to specify its
maximum size.

Example:

<entity-cache>

<entity-cache-name>ExclusiveCache</entity-cache-name>

<max-cache-size>

<megabytes>50</megabytes>

</max-cache-size>

</entity-cache>

For more information on the elements you can define within
the entity-cache element, see Section A.1.2.1,
"entity-cache".

<start-mbds-with-
application

Optional 1 Allows you to configure the EJB container to start Message
Driven BeanS (MDBS) with the application. If set to true, the
container starts MDBS as part of the application. If set to false,
the container keeps MDBS in a queue and the server starts
them as soon as it has started listening on the ports.

weblogic-application.xml Deployment Descriptor Elements

Enterprise Application Deployment Descriptor Elements A-9

A.1.3 max-cache-size
The following table describes the elements you can define within a max-cache-size
element.

Table A–3 entity-cache Elements

Element Required?

Maximum
Number in
File Description

<entity-cache-name> Required 1 Specifies a unique name for an entity bean cache. The
name must be unique within an ear file and may not be
the empty string.

Example:

<entity-cache-name>ExclusiveCache</entity-cache-n
ame>

<max-beans-in-cache
>

Optional

If you specify
this element,
you cannot also
specify
<max-cache-s
ize>.

1 Specifies the maximum number of entity beans that are
allowed in the cache. If the limit is reached, beans may
be passivated. This mechanism does not take into
account the actual amount of memory that different
entity beans require. This element can be set to a value of
1 or greater.

Default Value: 1000

<max-cache-size> Optional

If you specify
this element,
you cannot also
specify
<max-beans-i
n-cache>.

1 Used to specify a limit on the size of an entity cache in
terms of memory size—expressed either in terms of
bytes or megabytes. A bean provider should provide an
estimate of the average size of a bean in the
weblogic-ejb-jar.xml descriptor if the bean uses a
cache that specifies its maximum size using the
max-cache-size element. By default, a bean is
assumed to have an average size of 100 bytes.

For more information on the elements you can define
within the ejb element, see Section A.1.3,
"max-cache-size".

<max-queries-in-cac
he>

Optional 1 Specifies the maximum SQL queries that can be present
in the entity cache at a given moment.

<caching-strategy> Optional 1 Specifies the general strategy that the EJB container uses
to manage entity bean instances in a particular
application level cache. A cache buffers entity bean
instances in memory and associates them with their
primary key value.

The caching-strategy element can only have one of
the following values:

■ Exclusive—Caches a single bean instance in
memory for each primary key value. This unique
instance is typically locked using the EJB container's
exclusive locking when it is in use, so that only one
transaction can use the instance at a time.

■ MultiVersion—Caches multiple bean instances in
memory for a given primary key value. Each
instance can be used by a different transaction
concurrently.

Default Value: MultiVersion

Example:

<caching-strategy>Exclusive</caching-strategy>

weblogic-application.xml Deployment Descriptor Elements

A-10 Developing Applications for Oracle WebLogic Server

A.1.4 xml
The following table describes the elements you can define within an xml element.

A.1.4.1 parser-factory
The following table describes the elements you can define within a parser-factory
element.

Table A–4 max-cache-size Elements

Element Required?

Maximum
Number in
File Description

<bytes> You must
specify either
<bytes> or
<megabytes>

1 The size of an entity cache in terms of memory size,
expressed in bytes.

<megabytes> You must
specify either
<bytes> or
<megabytes>

1 The size of an entity cache in terms of memory size,
expressed in megabytes.

Table A–5 xml Elements

Element Required?

Maximum
Number in
File Description

<parser-factory> Optional 1 The parent element used to specify a particular XML parser
or transformer for an enterprise application.

For more information on the elements you can define within
the parser-factory element, see Section A.1.4.1,
"parser-factory".

<entity-mapping> Optional Unbounded Zero or More. Specifies the entity mapping. This mapping
determines the alternative entity URI for a given public or
system ID. The default place to look for this entity URI is the
lib/xml/registry directory.

For more information on the elements you can define within
the entity-mapping element, see Section A.1.4.2,
"entity-mapping".

weblogic-application.xml Deployment Descriptor Elements

Enterprise Application Deployment Descriptor Elements A-11

A.1.4.2 entity-mapping
The following table describes the elements you can define within an
entity-mapping element.

Table A–6 parser-factory Elements

Element Required?
Maximum
Number in File Description

<saxparser-factory> Optional 1 Allows you to set the SAXParser Factory for the
XML parsing required in this application only.
This element determines the factory to be used for
SAX style parsing. If you do not specify the
saxparser-factory element setting, the
configured SAXParser Factory style in the Server
XML Registry is used.

Default Value: Server XML Registry setting

<document-builder-fact
ory>

Optional 1 Allows you to set the Document Builder Factory
for the XML parsing required in this application
only. This element determines the factory to be
used for DOM style parsing. If you do not specify
the document-builder-factory element
setting, the configured DOM style in the Server
XML Registry is used.

Default Value: Server XML Registry setting

<transformer-factory> Optional 1 Allows you to set the Transformer Engine for the
style sheet processing required in this application
only. If you do not specify a value for this
element, the value configured in the Server XML
Registry is used.

Default value: Server XML Registry setting.

Table A–7 entity-mapping Elements

Element Required?

Maximum
Number in
File Description

<entity-mapping-nam
e>

Required 1 Specifies the name for this entity mapping.

<public-id> Optional 1 Specifies the public ID of the mapped entity.

<system-id> Optional 1 Specifies the system ID of the mapped entity.

<entity-uri> Optional 1 Specifies the entity URI for the mapped entity.

<when-to-cache> Optional 1 Legal values are:

■ cache-on-reference

■ cache-at-initialization

■ cache-never

The default value is cache-on-reference.

<cache-timeout-inte
rval>

Optional 1 Specifies the integer value in seconds.

weblogic-application.xml Deployment Descriptor Elements

A-12 Developing Applications for Oracle WebLogic Server

A.1.5 jdbc-connection-pool

The following table describes the elements you can define within a
jdbc-connection-pool element.

A.1.5.1 connection-factory
The following table describes the elements you can define within a
connection-factory element.

Note: The jdbc-connection-pool element is deprecated. To define a
data source in your Enterprise application, you can package a JDBC module
with the application. For more information, see "Configuring JDBC
Application Modules for Deployment" in Configuring and Managing JDBC for
Oracle WebLogic Server.

Table A–8 jdbc-connection-pool Elements

Element Required?

Maximum
Number
in File Description

<data-source-jndi-na
me>

Required 1 Specifies the JNDI name in the application-specific JNDI tree.

<connection-factory> Required 1 Specifies the connection parameters that define overrides for
default connection factory settings.

■ user-name—Optional. The user-name element is used
to override UserName in the
JDBCDataSourceFactoryMBean.

■ url—Optional. The url element is used to override URL
in the JDBCDataSourceFactoryMBean.

■ driver-class-name—Optional. The
driver-class-name element is used to override
DriverName in the JDBCDataSourceFactoryMBean.

■ connection-params—Zero or more.

■ parameter+ (param-value, param-name)—One or
more

For more information on the elements you can define within
the connection-factory element, see Section A.1.5.1,
"connection-factory".

<pool-params> Optional 1 Defines parameters that affect the behavior of the pool.

For more information on the elements you can define within
the pool-params element, see Section A.1.5.2, "pool-params".

<driver-params> Optional 1 Sets behavior on WebLogic Server drivers.

For more information on the elements you can define within
the driver-params element, see Section A.1.5.3,
"driver-params".

<acl-name> Optional 1 DEPRECATED.

weblogic-application.xml Deployment Descriptor Elements

Enterprise Application Deployment Descriptor Elements A-13

A.1.5.2 pool-params
The following table describes the elements you can define within a pool-params
element.

Table A–9 connection-factory Elements

Element Required?

Maximum
Number in
File Description

<factory-name> Optional 1 Specifies the name of a JDBCDataSourceFactoryMBean
in the config.xml file.

<connection-properties> Optional 1 Specifies the connection properties for the connection
factory. Elements that can be defined for the
connection-properties element are:

■ user-name—Optional. Used to override UserName in
the JDBCDataSourceFactoryMBean.

■ password—Optional. Used to override Password in
the JDBCDataSourceFactoryMBean.

■ url—Optional. Used to override URL in the
JDBCDataSourceFactoryMBean.

■ driver-class-name—Optional. Used to override
DriverName in the JDBCDataSourceFactoryMBean

■ connection-params—Zero or more. Used to set
parameters which will be passed to the driver when
making a connection. Example:

<connection-params>
 <parameter>
 <description>Desc of param
 </description>
 <param-name>foo</param-name>
 <param-value>xyz</param-value>
 </parameter>
</connection-params>

weblogic-application.xml Deployment Descriptor Elements

A-14 Developing Applications for Oracle WebLogic Server

weblogic-application.xml Deployment Descriptor Elements

Enterprise Application Deployment Descriptor Elements A-15

Table A–10 pool-params Elements

Element Required?

Maximum
Number in
File Description

<size-params> Optional 1 Defines parameters that affect the number of connections in
the pool.

■ initial-capacity—Optional. The
initial-capacity element defines the number of
physical database connections to create when the pool
is initialized. The default value is 1.

■ max-capacity—Optional. The max-capacity
element defines the maximum number of physical
database connections that this pool can contain. Note
that the JDBC Driver may impose further limits on this
value. The default value is 1.

■ capacity-increment—Optional. The
capacity-increment element defines the increment
by which the pool capacity is expanded. When there
are no more available physical connections to service
requests, the pool creates this number of additional
physical database connections and adds them to the
pool. The pool ensures that it does not exceed the
maximum number of physical connections as set by
max-capacity. The default value is 1.

■ shrinking-enabled—Optional. The
shrinking-enabled element indicates whether or
not the pool can shrink back to its
initial-capacity when connections are detected to
not be in use.

■ shrink-period-minutes—Optional. The
shrink-period-minutes element defines the
number of minutes to wait before shrinking a
connection pool that has incrementally increased to
meet demand. The shrinking-enabled element
must be set to true for shrinking to take place.

■ shrink-frequency-seconds—Optional.

■ highest-num-waiters—Optional.

■ highest-num-unavailable—Optional.

weblogic-application.xml Deployment Descriptor Elements

A-16 Developing Applications for Oracle WebLogic Server

<xa-params> Optional 1 Defines the parameters for the XA DataSources.

■ debug-level—Optional. Integer. The debug-level
element defines the debugging level for XA operations.
The default value is 0.

■ keep-conn-until-tx-complete-enabled—Optional.
 Boolean. If you set the
keep-conn-until-tx-complete-enabled
element to true, the XA connection pool associates the
same XA connection with the distributed transaction
until the transaction completes.

■ end-only-once-enabled—Optional. Boolean. If you
set the end-only-once-enabled element to true,
the XAResource.end() method is only called once
for each pending XAResource.start() method.

■ recover-only-once-enabled—Optional. Boolean.
If you set the recover-only-once-enabled element to
true, recover is only called one time on a resource.

■ tx-context-on-close-needed—Optional. Set the
tx-context-on-close-needed element to true if
the XA driver requires a distributed transaction context
when closing various JDBC objects (for example, result
sets, statements, connections, and so on). If set to true,
the SQL exceptions that are thrown while closing the
JDBC objects in no transaction context are swallowed.

■ new-conn-for-commit-enabled—Optional.
Boolean. If you set the
new-conn-for-commit-enabled element to true,
a dedicated XA connection is used for commit/rollback
processing of a particular distributed transaction.

<xa-params>
Continued...

Optional 1 ■ prepared-statement-cache-size—Deprecated.
Optional. Use the prepared-statement-cache-size
element to set the size of the prepared statement cache.
The size of the cache is a number of prepared
statements created from a particular connection and
stored in the cache for further use. Setting the size of
the prepared statement cache to 0 turns it off.

Note: Prepared-statement-cache-size is deprecated.
Use cache-size in
driver-params/prepared-statement. See
Section A.1.5.3, "driver-params" for more information.

■ keep-logical-conn-open-on-release—Optional. B
oolean. Set the
keep-logical-conn-open-on-release element to
true, to keep the logical JDBC connection open when
the physical XA connection is returned to the XA
connection pool. The default value is false.

■ local-transaction-supported—Optional.
Boolean. Set the local-transaction-supported to
true if the XA driver supports SQL with no global
transaction; otherwise, set it to false. The default
value is false.

■ resource-health-monitoring-enabled—Optional.
Set the resource-health-monitoring-enabled
element to true to enable JTA resource health
monitoring for this connection pool.

Table A–10 (Cont.) pool-params Elements

Element Required?

Maximum
Number in
File Description

weblogic-application.xml Deployment Descriptor Elements

Enterprise Application Deployment Descriptor Elements A-17

<xa-params>
Continued...

Optional 1 ■ xa-set-transaction-timeout—Optional.

Used in: xa-params

Example:

<xa-set-transaction-timeout>

true

</xa-set-transaction-timeout>

■ xa-transaction-timeout—Optional.

When the xa-set-transaction-timeout value is
set to true, the transaction manager invokes
setTransactionTimeout on the resource before calling
XAResource.start. The Transaction Manager passes the
global transaction timeout value. If this attribute is set
to a value greater than 0, then this value is used in
place of the global transaction timeout.

Default value: 0

Used in: xa-params

Example:

 <xa-transaction-timeout>

 30

 </xa-transaction-timeout>

■ rollback-localtx-upon-connclose—Optional.

When the rollback-localtx-upon-connclose
element is true, the connection pool calls rollback()
on the connection before putting it back in the pool.

Default value: false

Used in: xa-params

Example:

<rollback-localtx-upon-connclose>

true </rollback-localtx-upon-connclose>

<login-delay-second
s>

Optional 1 Sets the number of seconds to delay before creating each
physical database connection. Some database servers cannot
handle multiple requests for connections in rapid
succession. This property allows you to build in a small
delay to let the database server catch up. This delay occurs
both during initial pool creation and during the lifetime of
the pool whenever a physical database connection is
created.

<leak-profiling-ena
bled>

Optional 1 Enables JDBC connection leak profiling. A connection leak
occurs when a connection from the pool is not closed
explicitly by calling the close() method on that
connection. When connection leak profiling is active, the
pool stores the stack trace at the time the connection object
is allocated from the pool and given to the client. When a
connection leak is detected (when the connection object is
garbage collected), this stack trace is reported.

This element uses extra resources and will likely slowdown
connection pool operations, so it is not recommended for
production use.

Table A–10 (Cont.) pool-params Elements

Element Required?

Maximum
Number in
File Description

weblogic-application.xml Deployment Descriptor Elements

A-18 Developing Applications for Oracle WebLogic Server

A.1.5.3 driver-params
The following table describes the elements you can define within a driver-params
element.

<connection-check-p
arams>

Optional 1 ■ Defines whether, when, and how connections in a pool
is checked to make sure they are still alive.

■ table-name—Optional. The table-name element
defines a table in the schema that can be queried.

■ check-on-reserve-enabled—Optional. If the
check-on-reserve-enabled element is set to true, then
the connection will be tested each time before it is
handed out to a user.

■ check-on-release-enabled—Optional. If the
check-on-release-enabled element is set to true,
then the connection will be tested each time a user
returns a connection to the pool.

■ refresh-minutes—Optional. If the
refresh-minutes element is defined, a trigger is
fired periodically (based on the number of minutes
specified). This trigger checks each connection in the
pool to make sure it is still valid.

■ check-on-create-enabled—Optional. If set to
true, then the connection will be tested when it is
created.

■ connection-reserve-timeout-seconds—Optional.
Number of seconds after which the call to reserve a
connection from the pool will timeout.

■ connection-creation-retry-frequency-seconds
—Optional. The frequency of retry attempts by the pool
to establish connections to the database.

■ inactive-connection-timeout-seconds—Optional.
 The number of seconds of inactivity after which
reserved connections will forcibly be released back into
the pool.

<connection-check-p
arams>
Continued...

Optional 1 ■ test-frequency-seconds—Optional. The number
of seconds between database connection tests. After
every test-frequency-seconds interval, unused database
connections are tested using table-name.
Connections that do not pass the test will be closed and
reopened to re-establish a valid physical database
connection. If table-name is not set, the test will not
be performed.

■ init-sql—Optional. Specifies a SQL query that
automatically runs when a connection is created.

<jdbcxa-debug-level
>

Optional 1 This is an internal setting.

<remove-infected-co
nnections-enabled>

Optional 1 Controls whether a connection is removed from the pool
when the application asks for the underlying vendor
connection object. Enabling this attribute has an impact on
performance; it essentially disables the pooling of
connections (as connections are removed from the pool and
replaced with new connections).

Table A–10 (Cont.) pool-params Elements

Element Required?

Maximum
Number in
File Description

weblogic-application.xml Deployment Descriptor Elements

Enterprise Application Deployment Descriptor Elements A-19

Table A–11 driver-params Elements

Element Required?

Maximum
Number in
File Description

<statement> Optional 1 Defines the driver-params statement. Contains the
following optional element: profiling-enabled.

Example:

 <statement>

 <profiling-enabled>true

 </profiling-enabled>

 </statement>

<prepared-statemen
t

Optional 1 Enables the running of JDBC prepared statement cache
profiling. When enabled, prepared statement cache profiles
are stored in external storage for further analysis. This is a
resource-consuming feature, so it is recommended that you
turn it off on a production server. The default value is false.

■ profiling-enabled—Optional.

■ cache-profiling-threshold—Optional. The
cache-profiling-threshold element defines a
number of statement requests after which the state of the
prepared statement cache is logged. This element
minimizes the output volume. This is a
resource-consuming feature, so it is recommended that
you turn it off on a production server.

■ cache-size—Optional. The cache-size element
returns the size of the prepared statement cache. The size
of the cache is a number of prepared statements created
from a particular connection and stored in the cache for
further use.

■ parameter-logging-enabled—Optional. During
SQL roundtrip profiling it is possible to store values of
prepared statement parameters. The
parameter-logging-enabled element enables the
storing of statement parameters. This is a
resource-consuming feature, so it is recommended that
you turn it off on a production server.

■ max-parameter-length—Optional. During SQL
roundtrip profiling it is possible to store values of
prepared statement parameters. The
max-parameter-length element defines maximum
length of the string passed as a parameter for JDBC SQL
roundtrip profiling. This is a resource-consuming
feature, so you should limit the length of data for a
parameter to reduce the output volume.

■ cache-type—Optional.

weblogic-application.xml Deployment Descriptor Elements

A-20 Developing Applications for Oracle WebLogic Server

A.1.6 security
The following table describes the elements you can define within a security
element.

<row-prefetch-enab
led>

Optional 1 Specifies whether to enable row prefetching between a client
and WebLogic Server for each ResultSet.

When an external client accesses a database using JDBC
through Weblogic Server, row prefetching improves
performance by fetching multiple rows from the server to the
client in one server access. WebLogic Server ignores this
setting and does not use row prefetching when the client and
WebLogic Server are in the same JVM

<row-prefetch-size
>

Optional 1 Specifies the number of result set rows to prefetch for a client.

The optimal value depends on the particulars of the query. In
general, increasing this number increases performance, until
a particular value is reached. At that point further increases
do not result in any significant increase in performance.

Note: Typically you will not see any increase in performance
after 100 rows. The default value should be adequate for most
situations.

Valid values for this element are between 2 and 65536. The
default value is 48.

<stream-chunk-size
>

Optional 1 Specifies the data chunk size for streaming data types, which
are pulled from WebLogic Server to the client as needed.

Table A–12 security Elements

Element Required?

Maximum
Number in
File Description

<realm-name> Optional 1 Names a security realm to be used by the application. If
none is specified, the system default realm is used

<security-role-assig
nment>

Optional Unbounded Declares a mapping between an application-wide security
role and one or more WebLogic Server principals.

Example:

 <security-role-assignment>
 <role-name>
 PayrollAdmin
 </role-name>
 <principal-name>
 Tanya
 </principal-name>
 <principal-name>
 Fred
 </principal-name>
 <principal-name>
 system
 </principal-name>
 </security-role-assignment>

Table A–11 (Cont.) driver-params Elements

Element Required?

Maximum
Number in
File Description

weblogic-application.xml Deployment Descriptor Elements

Enterprise Application Deployment Descriptor Elements A-21

A.1.7 application-param
The following table describes the elements you can define within a
application-param element.

A.1.8 classloader-structure
The following table describes the elements you can define within a
classloader-structure element.

A.1.9 listener
The following table describes the elements you can define within a listener
element.

Table A–13 application-param Elements

Element Required?
Maximum
Number in File Description

<description> Optional 1 Provides a description of the application
parameter.

<param-name> Required 1 Defines the name of the application parameter.

<param-value> Required 1 Defines the value of the application parameter.

Table A–14 classloader-structure Elements

Element Required?
Maximum Number
in File Description

<module-ref> Optional Unbounded The following list describes the elements
you can define within a module-ref
element:

■ module-uri—Zero or more. Defined
within the module-ref element.

<classloader-structure> Optional Unbounded Allows for arbitrary nesting of classloader
structures for an application. However, for
this version of WebLogic Server, the depth
is restricted to three levels.

weblogic-application.xml Deployment Descriptor Elements

A-22 Developing Applications for Oracle WebLogic Server

A.1.10 singleton-service
The following table describes the elements you can define within a
singleton-service element.

A.1.11 startup
The following table describes the elements you can define within a startup element.

Table A–15 listener Elements

Element Required?
Maximum
Number in File Description

<listener-class> Required 1 Name of the user's implementation of
ApplicationLifecycleListener.

<listener-uri> Optional 1 A JAR file within the EAR that contains the
implementation. If you do not specify the
listener-uri, it is assumed that the class is
visible to the application.

<run-as-principal-name> Optional 1 Specific a user identity to startup and shutdown
application lifecycle events. The identity specified
here should be a valid user name in the system. If
run-as-principal-name is not specified, the
deployment initiator user identity will be used as
the run-as identity for the execution of the
application lifecycle listener.

Note: If the run-as-principal-name identity
defined for the application lifecycle listener is an
administrator, the application deployer must have
administrator privileges; otherwise, deployment
will fail.

Table A–16 singleton-service Elements

Element Required?

Maximum
Number in
File Description

<class-name> Required 1 Defines the name of the class to be run when the application
is being deployed.

<singleton-uri> Optional 1 Defines a JAR file within the EAR that contains the
singleton-service. If singleton-uri is not defined,
then its assumed that the class is visible to the application.

Note:: Application-scoped startup and shutdown classes have been
deprecated as of release 9.0 of WebLogic Server. Instead, you should use
lifecycle listener events in your applications. For details, see Chapter 10,
"Programming Application Life Cycle Events."

weblogic-application.xml Deployment Descriptor Elements

Enterprise Application Deployment Descriptor Elements A-23

A.1.12 shutdown
The following table describes the elements you can define within a shutdown
element.

A.1.13 work-manager
The following table describes the elements you can define within a work-manager
element.

See "Using Work Managers to Optimize Scheduled Work" for examples and
information on Work Managers.

Table A–17 startup Elements

Element Required?

Maximum
Number in
File Description

<startup-class> Required 1 Defines the name of the class to be run when the application
is being deployed.

<startup-uri> Optional 1 Defines a JAR file within the EAR that contains the
startup-class. If startup-uri is not defined, then its
assumed that the class is visible to the application.

Note: : Application-scoped startup and shutdown classes have been
deprecated as of release 9.0 of WebLogic Server. Instead, you should use
lifecycle listener events in your applications. For details, see Chapter 10,
"Programming Application Life Cycle Events."

Table A–18 shutdown Elements

Element Required Optional
Maximum
Number in File Description

<shutdown-class> Required 1 Defines the name of the class to be run when
the application is undeployed.

<shutdown-uri> Optional 1 Defines a JAR file within the EAR that
contains the shutdown-class. If you do
not define the shutdown-uri element, it is
assumed that the class is visible to the
application.

weblogic-application.xml Deployment Descriptor Elements

A-24 Developing Applications for Oracle WebLogic Server

Table A–19 work-manager Elements

Element Required?

Maximum
Number in
File Description

<name> Required 1 The name of the Work Manager.

<response-time-request-c
lass>

Optional 1 See the description of the
<response-time-request> element in
Section A.1.1, "weblogic-application" for information
on this child element of <work-manager>.

If you specify this element, you cannot also specify
<fair-share-request-class>,
<context-request-class>, or
<request-class-name>.

<fair-share-request-clas
s>

Optional 1 See the description of the <fair-share-request>
element in Section A.1.1, "weblogic-application" for
information on this child element of
<work-manager>.

If you specify this element, you cannot also specify
<response-time-request-class>,
<context-request-class>, or
<request-class-name>.

<context-request-class> Optional 1 See the description of the <context-request>
element in Section A.1.1, "weblogic-application" for
information on this child element of
<work-manager>.

If you specify this element, you cannot also specify
<fair-share-request-class>,
<response-time-request-class>, or
<request-class-name>.

<request-class-name> Optional 1 The name of the request class.

If you specify this element, you cannot also specify
<fair-share-request-class>,
<context-request-class>, or
<response-time-request-class>.

<min-threads-constraint> Optional 1 See the description of the
<min-threads-constraint> element in
Section A.1.1, "weblogic-application" for information
on this child element of <work-manager>.

If you specify this element, you cannot also specify
<min-threads-constraint-name>.

<min-threads-constraint-
name>

Optional 1 The name of the min-threads constraint.

If you specify this element, you cannot also specify
<min-threads-constraint>.

<max-threads-constraint> Optional 1 See the description of the
<max-threads-constraint> element in
Section A.1.1, "weblogic-application" for information
on this child element of <work-manager>.

If you specify this element, you cannot also specify
<max-threads-constraint-name>.

<max-threads-constraint-
name>

Optional 1 The name of the max-threads constraint.

If you specify this element, you cannot also specify
<max-threads-constraint>.

weblogic-application.xml Deployment Descriptor Elements

Enterprise Application Deployment Descriptor Elements A-25

A.1.14 session-descriptor
The following table describes the elements you can define within a session-descriptor
element.

<capacity> Optional 1 See the description of the <capacity> element in
Section A.1.1, "weblogic-application" for information
on this child element of <work-manager>.

If you specify this element, you cannot also specify
<capacity-name>.

<capacity-name> Optional 1 The name of the thread capacity constraint.

If you specify this element, you cannot also specify
<capacity>.

<work-manager-shutdown-t
rigger>

Optional 1 Used to specify a Stuck Thread Work Manager
component that can shut down the Work Manager in
response to stuck threads.

You can specify the following child elements:

■ max-stuck-thread-time—The maximum
amount of time, in seconds, that a thread should
remain stuck.

■ stuck-thread-count—Number of stuck
threads that triggers the stuck thread work
manager.

If you specify this element, you cannot also specify
<ignore-stuck-threads>.

<ignore-stuck-threads> Optional 1 Specifies whether the Work Manager should ignore
stuck threads and never shut down even if threads
become stuck.

If you specify this element, you cannot also specify
<work-manager-shutdown-trigger>.

Table A–20 session-descriptor Elements

Element Required?

Maximum
Number in
File Description

<timeout-secs> Optional 1 Specifies the number of seconds after which the
session times out.

Default value is 3600 seconds.

<invalidation-interval-s
ecs>

Optional 1 Specifies the number of seconds of the invalidation
trigger interval.

Default value is 60 seconds.

<debug-enabled> Optional 1 Specifies whether debugging is enabled for HTTP
sessions.

Default value is false.

<id-length> Optional 1 Specifies the length of the session ID.

Default value is 52.

Table A–19 (Cont.) work-manager Elements

Element Required?

Maximum
Number in
File Description

weblogic-application.xml Deployment Descriptor Elements

A-26 Developing Applications for Oracle WebLogic Server

<tracking-enabled> Optional 1 Specifies whether session tracking is enabled between
HTTP requests.

Default value is true.

<cache-size> Optional 1 Specifies the cache size for JDBC and file persistent
sessions.

Default value is 1028.

<max-in-memory-sessions> Optional 1 Specifies the maximum sessions limit for
memory/replicated sessions.

Default value is -1, or unlimited.

<cookies-enabled> Optional 1 Specifies the Web application container should set
cookies in the response.

Default value is true.

<cookie-name> Optional 1 Specifies the name of the cookie that tracks sessions.

Default name is JSESSIONID.

<cookie-path> Optional 1 Specifies the session tracking cookie path.

Default value is /.

<cookie-domain> Optional 1 Specifies the session tracking cookie domain.

Default value is null.

<cookie-comment> Optional 1 Specifies the session tracking cookie comment.

Default value is null.

<cookie-secure> Optional 1 Specifies whether the session tracking cookie is
marked secure.

Default value is false.

<cookie-max-age-secs> Optional 1 Specifies that maximum age of the session tracking
cookie.

Default value is -1, or unlimited.

<persistent-store-type> Optional 1 Specifies the type of storage for session persistence.

You can specify the following values:

■ memory—Default value.

■ replicated—Requires clustering.

■ replicated_if_clustered—Defaults to
memory in non-clustered case.

■ file

■ jdbc

■ cookie

<persistent-store-cookie
-name>

Optional 1 Specifies the name of the cookie that holds the
attribute name and values when using cookie-based
session persistence.

Default value is WLCOOKIE.

Table A–20 (Cont.) session-descriptor Elements

Element Required?

Maximum
Number in
File Description

weblogic-application.xml Deployment Descriptor Elements

Enterprise Application Deployment Descriptor Elements A-27

A.1.15 library-ref
The following table describes the elements you can define within a library-ref
element.

See Chapter 9, "Creating Shared Java EE Libraries and Optional Packages," for
additional information and examples.

<persistent-store-dir> Optional 1 Specifies the name of the directory when using
file-based session persistence. The directory is
relative to the temporary directory defined for the
Web application.

Default value is session_db.

<persistent-store-pool> Optional 1 Specifies the name of the JDBC connection pool when
using jdbc-based session persistence.

<persistent-store-table> Optional 1 Specifies the name of the database table when using
jdbc-based session persistence.

Default value is wl_servlet_sessions.

<jdbc-column-name-max-in
active-interval>

Optional 1 Alternative name for the wl_max_inactive_
interval column name when using jdbc-based
session persistence. Required for certain databases
that do not support long column names

<jdbc-connection-timeout
-secs>

Optional 1 DEPRECATED

<url-rewriting-enabled> Optional 1 Specifies whether URL rewriting is enabled.

Default value is true.

<http-proxy-caching-of-c
ookies>

Optional 1 Specifies whether WebLogic Server adds the
following HTTP header to the response:

Cache-control: no-cache=set-cookie

This header specifies that proxy caches should not
cache the cookies.

Default value is true, which means that the header is
NOT added. Set this element to false if you want
the header added to the response.

<encode-session-id-in-qu
ery-params>

Optional 1 Specifies whether WebLogic Server should encode the
session ID in the path parameters.

Default value is false.

<monitoring-attribute-na
me>

Optional 1 Used to tag runtime information for different
sessions. For example, set this element to username if
you have a username attribute that is guaranteed to
be unique.

<sharing-enabled> Optional 1 Specifies whether HTTP sessions are shared across
multiple Web applications.

Default value is false.

Table A–20 (Cont.) session-descriptor Elements

Element Required?

Maximum
Number in
File Description

weblogic-application.xml Deployment Descriptor Elements

A-28 Developing Applications for Oracle WebLogic Server

A.1.16 library-context-root-override
The following table describes the elements you can define within a
library-context-root-override element to override context-root elements
within a referenced EAR library. See Section A.1.15, "library-ref".

See Chapter 9, "Creating Shared Java EE Libraries and Optional Packages," for
additional information and examples.

A.1.17 fast-swap
The following table describes the elements you can define within a fast-swap
element.

For more information about FastSwap Deployment, see "Using FastSwap Deployment
to Minimize Redeployment" in Deploying Applications to WebLogic Server.

Table A–21 library Elements

Element Required?

Maximum
Number in
File Description

<library-name> Required 1 Specifies the name of the referenced shared Java EE
library.

<specification-version> Optional 1 Specifies the minimum specification-version
required.

<implementation-version> Optional 1 Specifies the minimum implementation-version
required.

<exact-match> Optional 1 Specifies whether there must be an exact match
between the specification and implementation
version that is specified and that of the referenced
library.

Default value is false.

<context-root> Optional 1 Specifies the context-root of the referenced Web
application’s shared Java EE library.

Table A–22 library-context-root-override Elements

Element Required?

Maximum
Number in
File Description

<context-root> Optional 1 Overrides the context-root elements declared in
libraries. In the absence of this element, the library's
context-root is used.

Only a referencing application (for example, a user
application) can override the context-root elements
declared in its libraries.

<override-value> Optional 1 Specifies the value of the
library-context-root-override element when
overriding the context-root elements declared in
libraries. In the absence of these elements, the library's
context-root is used.

application.xml Schema

Enterprise Application Deployment Descriptor Elements A-29

A.2 weblogic-application.xml Schema
See
http://xmlns.oracle.com/weblogic/weblogic-application/1.2/weblog
ic-application.xsd for the XML Schema of the weblogic-application.xml
deployment descriptor file.

A.3 application.xml Schema
For more information about application.xml deployment descriptor elements, see
the JEE 5 schema available at
http://java.sun.com/xml/ns/javaee/application_5.xsd.

Table A–23 fast-swap Elements

Element Required?

Maximum
Number in
File Description

<enabled> Optional 1 Set to true to enable FastSwap deployment in your
application.

<refresh-interval> Optional 1 FastSwap checks for changes in application classes when
an incoming HTTP request is received. Subsequent HTTP
requests arriving within the refresh-interval
seconds will not trigger a check for changes. The first
HTTP request arriving after the refresh-interval
seconds have passed, will cause FastSwap to perform a
class-change check again.

<redefinition-task-lim
it>

Optional 1 FastSwap class redefinitions are performed
asynchronously by redefinition tasks. They can be
controlled and inspected using JMX interfaces.

Specifies the number of redefinition tasks that will be
retained by the FastSwap system. If the number of tasks
exceeds this limit, older tasks are automatically removed.

application.xml Schema

A-30 Developing Applications for Oracle WebLogic Server

B

wldeploy Ant Task Reference B-1

Bwldeploy Ant Task Reference

The following sections describe tools for deploying applications and standalone
modules to WebLogic Server:

■ Section B.1, "Overview of the wldeploy Ant Task"

■ Section B.2, "Basic Steps for Using wldeploy"

■ Section B.3, "Sample build.xml Files for wldeploy"

■ Section B.4, "wldeploy Ant Task Attribute Reference"

B.1 Overview of the wldeploy Ant Task
The wldeploy Ant task enables you to perform weblogic.Deployer functions
using attributes specified in an Ant XML file. You can use wldeploy along with other
WebLogic Server Ant tasks to create a single Ant build script that:

■ Builds your application from source, using wlcompile, appc, and the Web
Services Ant tasks.

■ Creates, starts, and configures a new WebLogic Server domain, using the
wlserver and wlconfig Ant tasks.

■ Deploys a compiled application to the newly-created domain, using the
wldeploy Ant task.

See Chapter 2, "Using Ant Tasks to Configure and Use a WebLogic Server Domain," for
more information about wlserver and wlconfig. See Chapter 4, "Building
Applications in a Split Development Directory," for information about wlcompile.

B.2 Basic Steps for Using wldeploy
To use the wldeploy Ant task:

1. Set your environment.

On Windows NT, execute the setWLSEnv.cmd command, located in the directory
WL_HOME\server\bin, where WL_HOME is the top-level directory of your
WebLogic Server installation.

On UNIX, execute the setWLSEnv.sh command, located in the directory WL_
HOME/server/bin, where WL_HOME is the top-level directory of your WebLogic
Server installation.

2. In the staging directory, create the Ant build file (build.xml by default). If you
want to use an Ant installation that is different from the one installed with
WebLogic Server, start by defining the wldeploy Ant task definition:

Sample build.xml Files for wldeploy

B-2 Developing Applications for Oracle WebLogic Server

<taskdef name="wldeploy"
classname="weblogic.ant.taskdefs.management.WLDeploy"/>

3. If necessary, add task definitions and calls to the wlserver and wlconfig tasks
in the build script to create and start a new WebLogic Server domain. See
Chapter 2, "Using Ant Tasks to Configure and Use a WebLogic Server Domain,"
for information about wlserver and wlconfig.

4. Add a call to wldeploy to deploy your application to one or more WebLogic
Server instances or clusters. See Section B.3, "Sample build.xml Files for wldeploy"
and Section B.4, "wldeploy Ant Task Attribute Reference".

5. Execute the Ant task or tasks specified in the build.xml file by typing ant in the
staging directory, optionally passing the command a target argument:

prompt> ant

B.3 Sample build.xml Files for wldeploy
The following example shows a wldeploy target that deploys an application to a
single WebLogic Server instance:

 <target name="deploy">
 <wldeploy
 action="deploy" verbose="true" debug="true"
 name="DeployExample" source="output/redeployEAR"
 user="weblogic" password="weblogic"
 adminurl="t3://localhost:7001" targets="myserver" />
 </target>

The following example shows a corresponding task to undeploy the application; the
example shows that when you undeploy or redeploy an application, you do not
specify the source archive file or exploded directory, but rather, just its deployed
name.:

 <target name="undeploy">
 <wldeploy
 action="undeploy" verbose="true" debug="true"
 name="DeployExample"
 user="weblogic" password="weblogic"
 adminurl="t3://localhost:7001" targets="myserver"
 failonerror="false" />
 </target>

The following example shows how to perform a partial redeploy of the application; in
this case, just a single WAR file in the application is redeployed:

 <target name="redeploy_partial">
 <wldeploy
 action="redeploy" verbose="true"
 name="DeployExample"
 user="weblogic" password="weblogic"
 adminurl="t3://localhost:7001" targets="myserver"
 deltaFiles="examples/general/redeploy/SimpleImpl.war" />
 </target>

The following example uses the nested <files> child element of wldeploy to
specify a particular file in the application that should be undeployed:

 <target name="undeploy_partial">
 <wldeploy

wldeploy Ant Task Attribute Reference

wldeploy Ant Task Reference B-3

 action="undeploy" verbose="true" debug="true"
 name="DeployExample"
 user="weblogic" password="weblogic"
 adminurl="t3://localhost:7001" targets="myserver"
 failonerror="false">
 <files
 dir="${current-dir}/output/redeployEAR/examples/general/redeploy"
 includes="SimpleImpl.jsp" />
 </wldeploy>
 </target>

The following example shows how to deploy a Java EE library called myLibrary
whose source files are located in the output/myLibrary directory:

 <target name="deploy">
 <wldeploy action="deploy" name="myLibrary"
 source="output/myLibrary" library="true"
 user="weblogic" password="weblogic"
 verbose="true" adminurl="t3://localhost:7001"
 targets="myserver" />
 </target>

B.4 wldeploy Ant Task Attribute Reference
The following sections describe the attributes and child element <files> of the
wldeploy Ant task.

B.4.1 Main Attributes
The following table describes the main attributes of the wldeploy Ant task.

These attributes mirror some of the arguments of the weblogic.Deployer
command. Oracle provides an Ant task version of the weblogic.Deployer
command so that developers can easily deploy and test their applications as part of the
iterative development process. Typically, however, administrators use the
weblogic.Deployer command, and not the wldeploy Ant task, to deploy
applications in a production environment. For that reason, see the "weblogic.Deployer
Command-Line Reference" in Deploying Applications to Oracle WebLogic Server for the
full and complete definition of the attributes of the wldeploy Ant task. The table
below is provided just as a quick summary.

wldeploy Ant Task Attribute Reference

B-4 Developing Applications for Oracle WebLogic Server

Table B–1 Attributes of the wldeploy Ant Task

Attribute Description Data Type

action The deployment action to perform.

Valid values are deploy, cancel, undeploy, redeploy, distribute, start, and
stop.

String

adminmode Specifies that the deployment action puts the application into Administration mode.

Administration mode restricts access to an application to a configured
Administration channel.

Valid values for this attribute are true and false. Default value is false, which
means that by default the application is deployed in production mode so that all
clients can access it immediately.

Boolean

adminurl The URL of the Administration Server.

The format of the value of this attribute is protocol://host:port, where
protocol is either http or t3, host is the host on which the Administration Server
is running, and port is the port which the Administration Server is listening.

Note: In order to use the HTTP protocol, you must enable the http tunnelling option
in the Administration Console.

String

allversions Specifies that the action (redeploy, stop, and so on) applies to all versions of the
application.

Valid values for this attribute are true and false. The default value is false.

Boolean

altappdd Specifies the name of an alternate Java EE deployment descriptor
(application.xml) to use for deployment.

If you do not specify this attribute, and you are deploying an Enterprise application,
the default deployment descriptor is called application.xml and is located in the
META-INF subdirectory of the main application directory or archive (specified by the
source attribute.)

String

altwlsappdd Specifies the name of an alternate WebLogic Server deployment descriptor
(weblogic-application.xml) to use for deployment.

If you do not specify this attribute, and you are deploying an Enterprise application,
the default deployment descriptor is called weblogic-application.xml and is
located in the META-INF subdirectory of the main application directory or archive
(specified by the source attribute.)

String

appversion The version identifier of the deployed application. String

debug Enable wldeploy debugging messages. Boolean

deleteFiles Specifies whether to remove static files from a server's staging directory.

This attribute is valid only for unarchived deployments, and only for applications
deployed using stage mode. You must specify target servers when using this
attribute.

Specifying the deleteFiles attributes indicates that WebLogic Server should
remove only those files that it copied to the staging area during deployment.

This attribute can be used only in combination with action="redeploy".

Because the deleteFiles attribute deletes all specified files, Oracle recommends
that you use caution when using the deleteFiles attribute and that you do not use
it in production environments.

Valid values for this attribute are true and false. Default value is false.

Boolean

deltaFiles Specifies a comma- or space-separated list of files, relative to the root directory of the
application, which are to be redeployed.

Use this attribute only in conjunction with action="redeploy" to perform a
partial redeploy of an application.

String

wldeploy Ant Task Attribute Reference

wldeploy Ant Task Reference B-5

enableSecurit
yValidation

Specifies whether or not to enable validation of security data.

Valid values for this attribute are true and false. Default value is false.

Boolean

externalStage Specifies whether the deployment uses external_stage deployment mode.

In this mode, the Ant task does not copy the deployment files to target servers;
instead, you must ensure that deployment files have been copied to the correct
subdirectory in the target servers' staging directories.

You can specify only one of the following attributes: stage, nostage, or
external_stage. If none is specified, the default deployment mode to Managed
Servers is stage; the default mode to the Administration Server and in single-server
cases is nostage.

See "Controlling Deployment File Copying with Staging Modes".

Boolean

failonerror This is a global attribute used by WebLogic Server Ant tasks. It specifies whether the
task should fail if it encounters an error during the build.

Valid values for this attribute are true and false. Default value is true.

Boolean

graceful Stops the application after existing HTTP clients have completed their work.

You can use this attribute only when stopping or undeploying an application, or in
other words, you must also specify either the action="stop" or
action="undeploy" attributes.

Valid values for this attribute are true and false. Default value is false.

Boolean

id Identification used for obtaining status or cancelling the deployment.

You assign a unique ID to an application when you deploy it, and then subsequently
use the ID when redeploying, undeploying, stopping, and so on.

If you do not specify this attribute, the Ant task assigns a unique ID to the
application.

String

ignoresessions This option immediately places the application into Administration mode without
waiting for current HTTP sessions to complete.

You can use this attribute only when stopping or undeploying an application, or in
other words, you must also specify either the action="stop" or
action="undeploy" attributes.

Valid values for this attribute are true and false. Default value is false.

Boolean

libImplVer Specifies the implementation version of a Java EE library or optional package.

This attribute can be used only if the library or package does not include a
implementation version in its manifest file. You can specify this attribute only in
combination with the library attribute.

See Chapter 9, "Creating Shared Java EE Libraries and Optional Packages."

String

library Identifies the deployment as a shared Java EE library or optional package. You must
specify the library attribute when deploying or distributing any Java EE library or
optional package.

Valid values for this attribute are true and false. Default value is false.

See Chapter 9, "Creating Shared Java EE Libraries and Optional Packages."

Boolean

libSpecVer Provides the specification version of a Java EE library or optional package.

This attribute can be used only if the library or package does not include a
specification version in its manifest file. You can specify this attribute only in
combination with the library attribute.

See Chapter 9, "Creating Shared Java EE Libraries and Optional Packages."

String

Table B–1 (Cont.) Attributes of the wldeploy Ant Task

Attribute Description Data Type

wldeploy Ant Task Attribute Reference

B-6 Developing Applications for Oracle WebLogic Server

name The deployment name for the deployed application.

If you do not specify this attribute, WebLogic Server assigns a deployment name to
the application, based on its archive file or exploded directory.

String

nostage Specifies whether the deployment uses nostage deployment mode.

In this mode, the Ant task does not copy the deployment files to target servers, but
leaves them in a fixed location, specified by the source attribute. Target servers
access the same copy of the deployment files.

You can specify only one of the following attributes: stage, nostage, or
external_stage. If none is specified, the default deployment mode to Managed
Servers is stage; the default mode to the Administration Server and in single-server
cases is nostage.

See "Controlling Deployment File Copying with Staging Modes".

Boolean

noversion Indicates that the wldeploy Ant task should ignore all version related code paths on
the Administration Server. This behavior is useful when deployment source files are
located on Managed Servers (not the Administration Server) and you want to use the
external_stage staging mode.

If you use this option, you cannot use versioned applications.

Valid values for this attribute are true and false. Default value is false.

Boolean

nowait Specifies whether wldeploy returns immediately after making a deployment call
(by deploying as a background task).

Boolean

password The administrative password.

To avoid having the plain text password appear in the build file or in process utilities
such as ps, first store a valid username and encrypted password in a configuration
file using the WebLogic Scripting Tool (WLST) storeUserConfig command. Then
omit both the username and password attributes in your Ant build file. When the
attributes are omitted, wldeploy attempts to login using values obtained from the
default configuration file.

If you want to obtain a username and password from a non-default configuration file
and key file, use the userconfigfile and userkeyfile attributes with
wldeploy.

See the command reference for storeUserConfig in the WebLogic Scripting Tool
Command Reference for more information on storing and encrypting passwords.

String

plan Specifies a deployment plan to use when deploying the application or module.

By default, wldeploy does not use an available deployment plan, even if you are
deploying from an application root directory that contains a plan.

String

planversion The version identifier of the deployment plan. String

remote Specifies whether the server is located on a different machine. This affects how
filenames are transmitted.

Valid values for this attribute are true and false. Default value is false, which
means that the Ant task assumes that all source paths are valid paths on the local
machine.

Boolean

retiretimeout Specifies the number of seconds before WebLogic Server undeploys the
currently-running version of this application or module so that clients can start using
the new version.

It is assumed, when you specify this attribute, that you are starting, deploying, or
redeploying a new version of an already-running application.

See "Updating Applications in a Production Environment".

int

Table B–1 (Cont.) Attributes of the wldeploy Ant Task

Attribute Description Data Type

wldeploy Ant Task Attribute Reference

wldeploy Ant Task Reference B-7

securityModel Specifies the security model to use for this deployment. Possible security models are:

■ Deployment descriptors only

■ Customize roles

■ Customize roles and policies

■ Security realm configuration (advanced model)

Valid actual values for this attribute are DDOnly, CustomRoles,
CustomRolesAndPolicy, or Advanced.

See "Options for Securing Web application and EJB Resources" for more information
on these security models.

String

source The archive file or exploded directory to deploy. File

stage Specifies whether the deployment uses stage deployment mode.

In this mode, the Ant task copies deployment files to target servers' staging
directories.

You can specify only one of the following attributes: stage, nostage, or
external_stage. If none is specified, the default deployment mode to Managed
Servers is stage; the default mode to the Administration Server and in single-server
cases is nostage.

See "Controlling Deployment File Copying with Staging Modes".

Boolean

submoduletar
gets

Specifies JMS server targets for resources defined within a JMS application module.

The value of this attribute is a comma-separated list of JMS server names.

See "Using Sub-Module Targeting with JMS Application Modules".

String

targets The list of target servers to which the application is deployed.

The value of this attribute is a comma-separated list of the target servers, clusters, or
virtual hosts.

If you do not specify a target list when deploying an application, the target defaults
to the Administration Server instance.

String

timeout The maximum number of seconds to wait for a deployment to succeed. int

upload Specifies whether the source file(s) are copied to the Administration Server's upload
directory prior to deployment.

Use this attribute when you are on a remote machine and you cannot copy the
deployment files to the Administration Server by other means.

Valid values for this attribute are true and false. Default value is false.

Boolean

usenonexclusi
velock

Specifies that the deployment action (deploy, redeploy, stop, and so on) uses the
existing lock on the domain that has already been acquired by the same user
performing the action.

This attribute is particularly useful when the user is using multiple deployment tools
(Ant task, command line, Administration Console, and so on) simultaneously and
one of the tools has already acquired a lock on the domain.

Valid values for this attribute are true and false. Default value is false.

Boolean

user The administrative username. String

Table B–1 (Cont.) Attributes of the wldeploy Ant Task

Attribute Description Data Type

wldeploy Ant Task Attribute Reference

B-8 Developing Applications for Oracle WebLogic Server

B.4.2 Nested <files> Child Element
The wldeploy Ant task also includes the <files> child element that can be nested to
specify a list of files on which to perform a deployment action (for example, a list of
JSPs to undeploy.)

The <files> element works the same as the standard <fileset> Ant task (except
for the difference in actual task name). Therefore, see the Apache Ant Web site at
http://ant.apache.org/manual/Types/fileset.html for detailed reference
information about the attributes you can specify for the <files> element.

userconfigfile Specifies the location of a user configuration file to use for obtaining the
administrative username and password. Use this option, instead of the user and
password attributes, in your build file when you do not want to have the plain text
password shown in-line or in process-level utilities such as ps.

Before specifying the userconfigfile attribute, you must first generate the file
using the WebLogic Scripting Tool (WLST) storeUserConfig command as
described in the WebLogic Scripting Tool Command Reference.

String

userkeyfile Specifies the location of a user key file to use for encrypting and decrypting the
username and password information stored in a user configuration file (the
userconfigfile attribute).

Before specifying the userkeyfile attribute, you must first generate the key file
using the WebLogic Scripting Tool (WLST) storeUserConfig command as
described in the WebLogic Scripting Tool Command Reference.

String

verbose Specifies whether wldeploy displays verbose output messages. Boolean

Note: : Use of <files> to redeploy a list of files in an application has been
deprecated as of release 9.0 of WebLogic Server. Instead, use the
deltaFiles attribute of wldeploy.

Table B–1 (Cont.) Attributes of the wldeploy Ant Task

Attribute Description Data Type

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Overview of WebLogic Server Application Development
	1.1 Document Scope and Audience
	1.2 WebLogic Server and the Java EE Platform
	1.3 Overview of Java EE Applications and Modules
	1.4 Web Application Modules
	1.4.1 Servlets
	1.4.2 JavaServer Pages
	1.4.3 More Information on Web Application Modules

	1.5 Enterprise JavaBean Modules
	1.5.1 EJB Overview
	1.5.2 EJBs and WebLogic Server

	1.6 Connector Modules
	1.7 Enterprise Applications
	1.7.1 Java EE Programming Model
	1.7.2 Packaging and Deployment Overview

	1.8 WebLogic Web Services
	1.9 JMS and JDBC Modules
	1.10 WebLogic Diagnostic Framework Modules
	1.10.1 Using an External Diagnostics Descriptor
	1.10.1.1 Defining an External Diagnostics Descriptor

	1.11 XML Deployment Descriptors
	1.11.1 Automatically Generating Deployment Descriptors
	1.11.2 EJBGen
	1.11.3 Java-based Command-line Utilities
	1.11.4 Upgrading Deployment Descriptors From Previous Releases of J2EE and WebLogic Server

	1.12 Deployment Plans
	1.13 Development Software
	1.13.1 Apache Ant
	1.13.1.1 Using A Third-Party Version of Ant
	1.13.1.2 Changing the Ant Heap Size

	1.13.2 Source Code Editor or IDE
	1.13.3 Database System and JDBC Driver
	1.13.4 Web Browser
	1.13.5 Third-Party Software

	2 Using Ant Tasks to Configure and Use a WebLogic Server Domain
	2.1 Overview of Configuring and Starting Domains Using Ant Tasks
	2.2 Starting Servers and Creating Domains Using the wlserver Ant Task
	2.2.1 Basic Steps for Using wlserver
	2.2.2 Sample build.xml Files for wlserver
	2.2.3 wlserver Ant Task Reference

	2.3 Configuring a WebLogic Server Domain Using the wlconfig Ant Task
	2.3.1 What the wlconfig Ant Task Does
	2.3.2 Basic Steps for Using wlconfig
	2.3.3 wlconfig Ant Task Reference
	2.3.4 Main Attributes
	2.3.5 Nested Elements
	2.3.5.1 create
	2.3.5.2 delete
	2.3.5.3 set
	2.3.5.4 get
	2.3.5.5 query
	2.3.5.6 invoke

	2.4 Using the libclasspath Ant Task
	2.4.1 libclasspath Task Definition
	2.4.2 libclasspath Ant Task Reference
	2.4.3 Main libclasspath Attributes
	2.4.4 Nested libclasspath Elements
	2.4.4.1 librarydir
	2.4.4.2 library

	2.4.5 Example libclasspath Ant Task

	3 Creating a Split Development Directory Environment
	3.1 Overview of the Split Development Directory Environment
	3.1.1 Source and Build Directories
	3.1.2 Deploying from a Split Development Directory
	3.1.3 Split Development Directory Ant Tasks

	3.2 Using the Split Development Directory Structure: Main Steps
	3.3 Organizing Java EE Components in a Split Development Directory
	3.3.1 Source Directory Overview
	3.3.2 Enterprise Application Configuration
	3.3.3 Web Applications
	3.3.4 EJBs
	3.3.5 Important Notes Regarding EJB Descriptors

	3.4 Organizing Shared Classes in a Split Development Directory
	3.4.1 Shared Utility Classes
	3.4.2 Third-Party Libraries
	3.4.3 Class Loading for Shared Classes

	3.5 Generating a Basic build.xml File Using weblogic.BuildXMLGen
	3.5.1 weblogic.BuildXMLGen Syntax

	3.6 Developing Multiple-EAR Projects Using the Split Development Directory
	3.6.1 Organizing Libraries and Classes Shared by Multiple EARs
	3.6.2 Linking Multiple build.xml Files

	3.7 Best Practices for Developing WebLogic Server Applications

	4 Building Applications in a Split Development Directory
	4.1 Compiling Applications Using wlcompile
	4.1.1 Using includes and excludes Properties
	4.1.2 wlcompile Ant Task Attributes
	4.1.3 Nested javac Options
	4.1.4 Setting the Classpath for Compiling Code
	4.1.5 Library Element for wlcompile and wlappc

	4.2 Building Modules and Applications Using wlappc
	4.2.1 wlappc Ant Task Attributes
	4.2.2 wlappc Ant Task Syntax
	4.2.3 Syntax Differences between appc and wlappc
	4.2.4 weblogic.appc Reference
	4.2.5 weblogic.appc Syntax
	4.2.6 weblogic.appc Options

	5 Deploying and Packaging from a Split Development Directory
	5.1 Deploying Applications Using wldeploy
	5.2 Packaging Applications Using wlpackage
	5.2.1 Archive versus Exploded Archive Directory
	5.2.2 wlpackage Ant Task Example
	5.2.3 wlpackage Ant Task Attribute Reference

	6 Developing Applications for Production Redeployment
	6.1 What is Production Redeployment?
	6.2 Supported and Unsupported Application Types
	6.2.1 Additional Application Support

	6.3 Programming Requirements and Conventions
	6.3.1 Applications Should Be Self-Contained
	6.3.2 Versioned Applications Access the Current Version JNDI Tree by Default
	6.3.3 Security Providers Must Be Compatible
	6.3.4 Applications Must Specify a Version Identifier
	6.3.5 Applications Can Access Name and Identifier
	6.3.6 Client Applications Use Same Version when Possible

	6.4 Assigning an Application Version
	6.4.1 Application Version Conventions

	6.5 Upgrading Applications to Use Production Redeployment
	6.6 Accessing Version Information

	7 Using Java EE Annotations and Dependency Injection
	7.1 Annotation Processing
	7.1.1 Annotation Parsing
	7.1.2 Deployment View of Annotation Configuration
	7.1.3 Compiling Annotated Classes
	7.1.4 Dynamic Annotation Updates

	7.2 Dependency Injection of Resources
	7.2.1 Application Life Cycle Annotation Methods

	7.3 Standard JDK Annotations
	7.3.1 javax.annotation.PostConstruct
	7.3.2 javax.annotation.PreDestroy
	7.3.3 javax.annotation.Resource
	7.3.4 javax.annotation.Resources

	7.4 Standard Security-Related JDK Annotations
	7.4.1 javax.annotation.security.DeclareRoles
	7.4.2 javax.annotation.security.DenyAll
	7.4.3 javax.annotation.security.PermitAll
	7.4.4 javax.annotation.security.RolesAllowed
	7.4.5 javax.annotation.security.RunAs

	8 Understanding WebLogic Server Application Classloading
	8.1 Java Classloading
	8.1.1 Java Classloader Hierarchy
	8.1.2 Loading a Class
	8.1.3 prefer-web-inf-classes Element
	8.1.4 Changing Classes in a Running Program
	8.1.5 Configuring Class Caching

	8.2 WebLogic Server Application Classloading
	8.2.1 Overview of WebLogic Server Application Classloading
	8.2.2 Application Classloader Hierarchy
	8.2.3 Custom Module Classloader Hierarchies
	8.2.4 Declaring the Classloader Hierarchy
	8.2.5 User-Defined Classloader Restrictions
	8.2.5.1 Servlet Reloading Disabled
	8.2.5.2 Nesting Depth
	8.2.5.3 Module Types
	8.2.5.4 Duplicate Entries
	8.2.5.5 Interfaces
	8.2.5.6 Call-by-Value Semantics
	8.2.5.7 In-Flight Work
	8.2.5.8 Development Use Only

	8.2.6 Individual EJB Classloader for Implementation Classes
	8.2.7 Application Classloading and Pass-by-Value or Reference
	8.2.8 Using a Filtering Classloader
	8.2.9 What is a Filtering ClassLoader
	8.2.10 Configuring a FilteringClassLoader
	8.2.11 Resource Loading Order

	8.3 Resolving Class References Between Modules and Applications
	8.3.1 About Resource Adapter Classes
	8.3.2 Packaging Shared Utility Classes
	8.3.3 Manifest Class-Path

	8.4 Using the Classloader Analysis Tool (CAT)
	8.5 Sharing Applications and Modules By Using Java EE Libraries
	8.6 Adding JARs to the Domain /lib Directory

	9 Creating Shared Java EE Libraries and Optional Packages
	9.1 Overview of Shared Java EE Libraries and Optional Packages
	9.1.1 Optional Packages
	9.1.2 Library Directories
	9.1.3 Versioning Support for Libraries
	9.1.4 Shared Java EE Libraries and Optional Packages Compared
	9.1.5 Additional Information

	9.2 Creating Shared Java EE Libraries
	9.2.1 Assembling Shared Java EE Library Files
	9.2.2 Assembling Optional Package Class Files
	9.2.3 Editing Manifest Attributes for Shared Java EE Libraries
	9.2.4 Packaging Shared Java EE Libraries for Distribution and Deployment

	9.3 Referencing Shared Java EE Libraries in an Enterprise Application
	9.3.1 Overriding context-roots Within a Referenced Enterprise Library
	9.3.2 URIs for Shared Java EE Libraries Deployed As a Standalone Module

	9.4 Referencing Optional Packages from a Java EE Application or Module
	9.5 Using weblogic.appmerge to Merge Libraries
	9.5.1 Using weblogic.appmerge from the CLI
	9.5.2 Using weblogic.appmerge as an Ant Task

	9.6 Integrating Shared Java EE Libraries with the Split Development Directory Environment
	9.7 Deploying Shared Java EE Libraries and Dependent Applications
	9.8 Web Application Shared Java EE Library Information
	9.9 Using WebApp Libraries With Web Applications
	9.10 Accessing Registered Shared Java EE Library Information with LibraryRuntimeMBean
	9.11 Order of Precedence of Modules When Referencing Shared Java EE Libraries
	9.12 Best Practices for Using Shared Java EE Libraries

	10 Programming Application Life Cycle Events
	10.1 Understanding Application Life Cycle Events
	10.2 Registering Events in weblogic-application.xml
	10.3 Programming Basic Life Cycle Listener Functionality
	10.3.1 Configuring a Role-Based Application Life Cycle Listener

	10.4 Examples of Configuring Life Cycle Events with and without the URI Parameter
	10.5 Understanding Application Life Cycle Event Behavior During Re-deployment
	10.6 Programming Application Version Life Cycle Events
	10.6.1 Understanding Application Version Life Cycle Event Behavior
	10.6.2 Types of Application Version Life Cycle Events
	10.6.3 Example of Production Deployment Sequence When Using Application Version Life Cycle Events

	11 Programming Context Propagation
	11.1 Understanding Context Propagation
	11.2 Programming Context Propagation: Main Steps
	11.3 Programming Context Propagation in a Client
	11.4 Programming Context Propagation in an Application

	12 Programming JavaMail with WebLogic Server
	12.1 Overview of Using JavaMail with WebLogic Server Applications
	12.2 Understanding JavaMail Configuration Files
	12.3 Configuring JavaMail for WebLogic Server
	12.4 Sending Messages with JavaMail
	12.5 Reading Messages with JavaMail

	13 Threading and Clustering Topics
	13.1 Using Threads in WebLogic Server
	13.2 Using the Work Manager API for Lower-Level Threading
	13.3 Programming Applications for WebLogic Server Clusters

	A Enterprise Application Deployment Descriptor Elements
	A.1 weblogic-application.xml Deployment Descriptor Elements
	A.1.1 weblogic-application
	A.1.2 ejb
	A.1.2.1 entity-cache

	A.1.3 max-cache-size
	A.1.4 xml
	A.1.4.1 parser-factory
	A.1.4.2 entity-mapping

	A.1.5 jdbc-connection-pool
	A.1.5.1 connection-factory
	A.1.5.2 pool-params
	A.1.5.3 driver-params

	A.1.6 security
	A.1.7 application-param
	A.1.8 classloader-structure
	A.1.9 listener
	A.1.10 singleton-service
	A.1.11 startup
	A.1.12 shutdown
	A.1.13 work-manager
	A.1.14 session-descriptor
	A.1.15 library-ref
	A.1.16 library-context-root-override
	A.1.17 fast-swap

	A.2 weblogic-application.xml Schema
	A.3 application.xml Schema

	B wldeploy Ant Task Reference
	B.1 Overview of the wldeploy Ant Task
	B.2 Basic Steps for Using wldeploy
	B.3 Sample build.xml Files for wldeploy
	B.4 wldeploy Ant Task Attribute Reference
	B.4.1 Main Attributes
	B.4.2 Nested <files> Child Element

