

Oracle® Database Express Edition
2 Day Plus Locator Developer Guide

11g Release 2 (11.2)

E18750-04

May 2014

Oracle Database Express Edition 2 Day Plus Locator Developer Guide, 11g Release 2 (11.2)

E18750-04

Copyright © 2005, 2014, Oracle and/or its affiliates. All rights reserved.

Primary Author: Chuck Murray

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents .. vii
Conventions .. vii

1 Using Locator: Scenario and Examples

1.1 Overview of Spatial Data... 1-1
1.2 Scenario for Using Spatial Data .. 1-2
1.3 Using the SDO_GEOMETRY Object Type .. 1-5
1.4 Loading Customer and Store Information, Including Locations... 1-7
1.5 Updating the Spatial Metadata ... 1-8
1.6 Creating Spatial Indexes .. 1-9
1.7 Querying Spatial Data .. 1-9
1.8 Running the Scenario Script ... 1-12
1.9 Using Non-Point Geometry Types .. 1-13
1.9.1 Polygon... 1-14
1.9.2 Rectangle .. 1-15
1.9.3 Polygon with a Hole... 1-16
1.9.4 Line String.. 1-18
1.9.5 Compound Line String .. 1-19
1.9.6 Compound Polygon ... 1-20
1.9.7 Several Geometry Types.. 1-22

Index

iv

List of Examples

1–1 SQL Script for Customers and Stores Scenario... 1-3
1–2 Inserting Customer and Store Records .. 1-7
1–3 Updating the Spatial Metadata ... 1-8
1–4 Creating the Spatial Indexes.. 1-9
1–5 Finding Closest Customers to a Store .. 1-9
1–6 Finding Closest Customers, Ordered by Distance from Store ... 1-10
1–7 Finding Customers Within 100 Miles of a Store ... 1-11
1–8 SQL Statement to Insert a Polygon.. 1-15
1–9 SQL Statement to Insert a Rectangle ... 1-16
1–10 SQL Statement to Insert a Polygon with a Hole .. 1-17
1–11 SQL Statement to Insert a Line String... 1-19
1–12 SQL Statement to Insert a Compound Line String.. 1-20
1–13 SQL Statement to Insert a Compound Polygon .. 1-21
1–14 SQL Statements to Insert Various Geometries... 1-22

v

List of Figures

1–1 Location Query and Results: Three Closest Customers, with Distance........................... 1-13
1–2 Polygon.. 1-15
1–3 Rectangle ... 1-16
1–4 Polygon with a Hole .. 1-17
1–5 Line String... 1-18
1–6 Compound Line String.. 1-19
1–7 Compound Polygon .. 1-21

vi

vii

Preface

This guide provides a quick start to using spatial (location-based) data with the Oracle
Locator feature of Oracle Database Express Edition (Oracle Database XE).

Audience
This guide is intended for those who need to store and manage spatial data in the
database. It assumes that you are familiar with the main concepts and techniques
described in Oracle Database 2 Day Developer's Guide, and especially that you know
how to create, upload, and run SQL scripts.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For comprehensive information about developing applications using Oracle Database
XE, see Oracle Database 2 Day Developer's Guide.

For detailed conceptual, usage, and reference information about Oracle Spatial and
Graph and Oracle Locator, see Oracle Spatial and Graph Developer's Guide.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

viii

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

1

Using Locator: Scenario and Examples 1-1

1 Using Locator: Scenario and Examples

This chapter describes how to manage spatial (location-based) data, using the Oracle
Locator feature of Oracle Database Express Edition (Oracle Database XE). It develops
an extended example that shows the major steps required to store and use spatial data,
and it includes some common queries.

It assumes that you are familiar with the main concepts and techniques described in
Oracle Database 2 Day Developer's Guide, and especially that you know how to create
SQL scripts and how to use SQL*Plus (in a SQL Developer worksheet or in a
command-line window) to run SQL scripts.

This chapter includes the following major topics:

■ Overview of Spatial Data

■ Scenario for Using Spatial Data

■ Using the SDO_GEOMETRY Object Type

■ Loading Customer and Store Information, Including Locations

■ Updating the Spatial Metadata

■ Creating Spatial Indexes

■ Querying Spatial Data

■ Running the Scenario Script

■ Using Non-Point Geometry Types

See Also:

■ Oracle Spatial and Graph Developer's Guide for conceptual, usage,
and reference information about Oracle Locator.

1.1 Overview of Spatial Data
Spatial data represents the essential location characteristics (typically longitude and
latitude coordinates) of objects, which are also referred to as geometry objects and
which include geometry types such as points, lines, and polygons. The location
characteristics are stored using a special data type, SDO_GEOMETRY. Once spatial
data is stored in an Oracle database, it can be easily manipulated, retrieved, and
related to all other data stored in the database.

Oracle Locator, a feature of all editions of Oracle Database 10g, provides an integrated
set of functions and procedures to efficiently store, manage, query. and analyze spatial
data in an Oracle database, using standard SQL. Oracle Locator is a subset of Oracle
Spatial and Graph, which is included in Oracle Database Enterprise Edition, and

Scenario for Using Spatial Data

1-2 Oracle Database Express Edition 2 Day Plus Locator Developer Guide

which adds high-end spatial functionality, including functions such as buffer
generation, spatial aggregates, area calculations, and more; linear referencing;
coordinate systems transformations; geocoding; a routing engine; topology and
network data models; and support for georeferenced raster (GeoRaster) data.

See Also:

■ The Oracle Locator appendix in Oracle Spatial and Graph
Developer's Guide for detailed information about which Oracle
Spatial and Graph features are and are not supported for Oracle
Locator.

1.2 Scenario for Using Spatial Data
Consider the following business scenario. A company has several major retail stores. It
needs to locate its customers who are near a given store, to inform them of new
advertising promotions. To locate its customers and perform location-based analysis,
the company must store location data for both its customers and stores.

The CUSTOMERS table has the following definition. (An actual customers table would
have more information, but the definition is simplified for this scenario.)

CREATE TABLE customers (
 customer_id NUMBER,
 last_name VARCHAR2(30),
 first_name VARCHAR2(30),
 street_address VARCHAR2(40),
 city VARCHAR2(30),
 state_province_code VARCHAR2(2),
 postal_code VARCHAR2(9),
 cust_geo_location SDO_GEOMETRY);

The STORES table has the following definition:

CREATE TABLE stores (
 store_id NUMBER,
 description VARCHAR2(100),
 street_address VARCHAR2(40),
 city VARCHAR2(30),
 state_province_code VARCHAR2(2),
 postal_code VARCHAR2(9),
 store_geo_location SDO_GEOMETRY);

Each table contains a column (cust_geo_location and store_geo_location) of the Oracle
Spatial and Graph and Locator data type, SDO_GEOMETRY (described in Section 1.3,
"Using the SDO_GEOMETRY Object Type"). In these tables, the SDO_GEOMETRY
columns hold the geocoded location of each customer's residence and each store.
These geocoded locations are stored as two-dimensional points, whose coordinates are
the longitude and latitude values associated with the location. For example,
longitude-latitude value pair of (-63.136, 52.4854) indicates the point at 63.136 degrees
longitude west of the Greenwich prime meridian and 52.4854 degrees latitude north of
the Equator.

Note: Oracle Locator does not provide support for geocoding, that is,
creating point geometry objects from specified address data. Oracle
Spatial and Graph does support geocoding, using the SDO_GCDR
package. However, if you already have the longitude and latitude
points associated with your desired locations, you can use Oracle
Locator to store and use the spatial data.

Scenario for Using Spatial Data

Using Locator: Scenario and Examples 1-3

If you want, you can use the following statements in Example 1–1 to perform the
operations in all examples associated with this customers and stores scenario. Many
examples in the remaining sections use excerpts from these statements.

Example 1–1 SQL Script for Customers and Stores Scenario

-- Clean up from any previous running of this procedure.

DROP TABLE customers;
DROP TABLE stores;
DROP INDEX customers_sidx;
DROP INDEX stores_sidx;
DELETE FROM USER_SDO_GEOM_METADATA
 WHERE TABLE_NAME = 'CUSTOMERS' AND COLUMN_NAME = 'CUST_GEO_LOCATION';
DELETE FROM USER_SDO_GEOM_METADATA
 WHERE TABLE_NAME = 'STORES' AND COLUMN_NAME = 'STORE_GEO_LOCATION';

-- Create table for customer information.

CREATE TABLE customers (
 customer_id NUMBER,
 last_name VARCHAR2(30),
 first_name VARCHAR2(30),
 street_address VARCHAR2(40),
 city VARCHAR2(30),
 state_province_code VARCHAR2(2),
 postal_code VARCHAR2(9),
 cust_geo_location SDO_GEOMETRY);

-- Create table for store information.

CREATE TABLE stores (
 store_id NUMBER,
 description VARCHAR2(100),
 street_address VARCHAR2(40),
 city VARCHAR2(30),
 state_province_code VARCHAR2(2),
 postal_code VARCHAR2(9),
 store_geo_location SDO_GEOMETRY);

-- Insert customer data.

INSERT INTO customers VALUES
 (1001,'Nichols', 'Alexandra',
 '17 Maple Drive', 'Nashua', 'NH','03062',
 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE (-71.48923,42.72347,NULL), NULL, NULL));

INSERT INTO customers VALUES
 (1002,'Harris', 'Melvin',
 '5543 Harrison Blvd', 'Reston', 'VA', '20190',

Scenario for Using Spatial Data

1-4 Oracle Database Express Edition 2 Day Plus Locator Developer Guide

 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE(-70.120133,44.795766,NULL), NULL, NULL));

INSERT INTO customers VALUES
 (1003,'Chang', 'Marian',
 '294 Main St', 'Concord', 'MA','01742',
 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE (-71.351,42.4598,NULL), NULL, NULL));

INSERT INTO customers VALUES
 (1004,'Williams', 'Thomas',
 '84 Hayward Rd', 'Acton', 'MA','01720',
 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE (-71.4559,42.4748,NULL), NULL, NULL));

INSERT INTO customers VALUES
 (1005,'Rodriguez', 'Carla',
 '9876 Pine Lane', 'Sudbury', 'MA','01776',
 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE (-71.4242,42.3826,NULL), NULL, NULL));

INSERT INTO customers VALUES
 (1006,'Adnani', 'Ramesh',
 '1357 Appletree Ct', 'Falls Church', 'VA','22042 ',
 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE (-77.1745,38.88505,NULL),NULL,NULL));

-- Insert stores data.

INSERT INTO stores VALUES
 (101,'Nashua megastore',
 '123 Commercial Way', 'Nashua', 'NH','03062',
 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE (-71.49074,42.7229,NULL),NULL,NULL));

INSERT INTO stores VALUES
 (102,'Reston store',
 '99 Main Blvd', 'Reston', 'VA','22070',
 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE (-77.34511,38.9521,NULL),NULL,NULL));

-- Add metadata to spatial view USER_SDO_GEOM_METADATA.

INSERT INTO USER_SDO_GEOM_METADATA (TABLE_NAME, COLUMN_NAME, DIMINFO, SRID)
 VALUES ('CUSTOMERS', 'CUST_GEO_LOCATION',
 SDO_DIM_ARRAY
 (SDO_DIM_ELEMENT('LONG', -180.0, 180.0, 0.5),
 SDO_DIM_ELEMENT('LAT', -90.0, 90.0, 0.5)),
 8307);

INSERT INTO USER_SDO_GEOM_METADATA (TABLE_NAME, COLUMN_NAME, DIMINFO, SRID)
 VALUES ('STORES', 'STORE_GEO_LOCATION',
 SDO_DIM_ARRAY
 (SDO_DIM_ELEMENT('LONG', -180.0, 180.0, 0.5),
 SDO_DIM_ELEMENT('LAT', -90.0, 90.0, 0.5)),
 8307);

-- Create spatial indexes.

CREATE INDEX customers_sidx ON customers(cust_geo_location)

Using the SDO_GEOMETRY Object Type

Using Locator: Scenario and Examples 1-5

 INDEXTYPE IS mdsys.spatial_index;

CREATE INDEX stores_sidx ON stores(store_geo_location)
 INDEXTYPE IS mdsys.spatial_index;

-- Perform location-based queries.

-- Find the 3 closest customers to store_id = 101.

SELECT /*+ordered*/
 c.customer_id,
 c.first_name,
 c.last_name
FROM stores s,
 customers c
WHERE s.store_id = 101
AND sdo_nn (c.cust_geo_location, s.store_geo_location, 'sdo_num_res=3')
 = 'TRUE';

-- Find the 3 closest customers to store_id = 101, and
-- order the results by distance.

SELECT /*+ordered index(c customers_sidx) */
 c.customer_id,
 c.first_name,
 c.last_name,
 sdo_nn_distance (1) distance
FROM stores s,
 customers c
WHERE s.store_id = 101
AND sdo_nn
 (c.cust_geo_location, s.store_geo_location, 'sdo_num_res=3', 1)
 = 'TRUE'
ORDER BY distance;

-- Find all the customers within 100 miles of store_id = 101

SELECT /*+ordered*/
 c.customer_id,
 c.first_name,
 c.last_name
FROM stores s,
 customers c
WHERE s.store_id = 101
AND sdo_within_distance (c.cust_geo_location,
 s.store_geo_location,
 'distance = 100 unit=MILE') = 'TRUE';

1.3 Using the SDO_GEOMETRY Object Type
This section introduces the SDO_GEOMETRY type, which you must use to store
spatial data as geometry objects. It does not contain a detailed explanation, which is
provided in Oracle Spatial and Graph Developer's Guide.

The geometric description of a spatial object is stored in a single row, in a single
column of object type SDO_GEOMETRY in a user-defined table. Any table that has a
column of type SDO_GEOMETRY must have another column, or set of columns, that
defines a unique primary key for that table. The SDO_GEOMETRY type is defined as:

CREATE TYPE sdo_geometry AS OBJECT (

Using the SDO_GEOMETRY Object Type

1-6 Oracle Database Express Edition 2 Day Plus Locator Developer Guide

 SDO_GTYPE NUMBER,
 SDO_SRID NUMBER,
 SDO_POINT SDO_POINT_TYPE,
 SDO_ELEM_INFO SDO_ELEM_INFO_ARRAY,
 SDO_ORDINATES SDO_ORDINATE_ARRAY);

The SDO_GTYPE attribute indicates the type of the geometry. The SDO_GTYPE value
is 4 digits in the format dltt, where d identifies the number of dimensions (2, 3, or 4), l
identifies the linear referencing measure dimension for a three-dimensional linear
referencing system (LRS) geometry, and tt identifies the geometry type (00 through
07). (LRS geometries are not supported with Oracle Locator, so the l value must be 0.)
Examples of SDO_GTYPE values include 2001 for a two-dimensional point, 2002 for a
two-dimensional line string, and 2003 for a two-dimensional polygon.

The SDO_SRID attribute can be used to identify a coordinate system (spatial reference
system) to be associated with the geometry. If SDO_SRID is null, no coordinate system
is associated with the geometry. If SDO_SRID is not null, it must contain a value from
the SRID column of the SDO_COORD_REF_SYS table, and this value must be inserted
into the SRID column of the USER_SDO_GEOM_METADATA view. The SRID value
8307 is associated with the widely used WGS84 longitude/latitude coordinate system.

The SDO_POINT attribute is used only for point data, and it is defined using the
SDO_POINT_TYPE object type, which has the attributes X, Y, and Z, all of type
NUMBER. If the SDO_ELEM_INFO and SDO_ORDINATES arrays are both null, and
the SDO_POINT attribute is non-null, then the X and Y values are considered to be the
coordinates for a point geometry. Otherwise, the SDO_POINT attribute is ignored. You
should store point geometries in the SDO_POINT attribute for optimal storage.

The SDO_ELEM_INFO attribute is defined using a varying length array of numbers.
This attribute lets you know how to interpret the ordinates stored in the SDO_
ORDINATES attribute. Each triplet set of numbers is interpreted as follows:

■ SDO_STARTING_OFFSET -- Indicates the offset within the SDO_ORDINATES
array where the first ordinate for this element is stored. Offset values start at 1 and
not at 0. Thus, the first ordinate for the first element will be at SDO_
GEOMETRY.SDO_ORDINATES(1). If there is a second element, its first ordinate
will be at SDO_GEOMETRY.SDO_ORDINATES(n), where n reflects the position
within the SDO_ORDINATE_ARRAY definition (for example, 19 for the 19th
number).

■ SDO_ETYPE -- Indicates the type of the element.

■ SDO_INTERPRETATION -- Means one of two things, depending on whether or
not SDO_ETYPE is a compound element. If the SDO_ETYPE is not a compound
element (1, 2, 1003, or 2003), the interpretation attribute determines how the
sequence of ordinates for this element is interpreted. For example, a line string or
polygon boundary may be made up of a sequence of connected straight line
segments or circular arcs. If SDO_ETYPE is a compound element (4, 1005, or 2005),
this field specifies how many subsequent triplet values are part of the element.

The valid SDO_ETYPE and SDO_INTERPRETATION value pairs are described in
detail in Oracle Spatial and Graph Developer's Guide.

The SDO_ORDINATES attribute is defined using a varying length array (1048576) of
NUMBER type that stores the coordinate values that make up the boundary of a
spatial object. This array must always be used in conjunction with the SDO_ELEM_
INFO varying length array. The values in the array are ordered by dimension. For
example, a polygon whose boundary has four two-dimensional points is stored as {X1,
Y1, X2, Y2, X3, Y3, X4, Y4, X1, Y1}. The number of dimensions associated with each
point is stored as metadata in the USER_SDO_GEOM_METADATA view.

Loading Customer and Store Information, Including Locations

Using Locator: Scenario and Examples 1-7

The SDO_GEOMETRY constructor is used to create a geometry object. The examples
in Section 1.9, "Using Non-Point Geometry Types" show the use of the SDO_
GEOMETRY constructor to create many different kinds of geometry objects.

1.4 Loading Customer and Store Information, Including Locations
You will use transactional insert operations to add new customers and their locations
to the CUSTOMERS table, and new stores and their locations into the STORES table. A
location can be stored as a point in an SDO_GEOMETRY column in a table. The
customer or store location is associated with longitude and latitude values on the
Earth's surface (for example, -63.136, 52.4854). Oracle Locator requires that you place
the longitude value before the latitude value.

Example 1–2 inserts some rows into the CUSTOMERS and STORES tables. In the
INSERT statements, the SDO_GEOMETRY constructor is used to insert the point
location.

Example 1–2 Inserting Customer and Store Records

-- Insert customer data.

INSERT INTO customers VALUES
 (1001,'Nichols', 'Alexandra',
 '17 Maple Drive', 'Nashua', 'NH','03062',
 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE (-71.48923,42.72347,NULL), NULL, NULL));

INSERT INTO customers VALUES
 (1002,'Harris', 'Melvin',
 '5543 Harrison Blvd', 'Reston', 'VA', '20190',
 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE(-70.120133,44.795766,NULL), NULL, NULL));

INSERT INTO customers VALUES
 (1003,'Chang', 'Marian',
 '294 Main St', 'Concord', 'MA','01742',
 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE (-71.351,42.4598,NULL), NULL, NULL));

INSERT INTO customers VALUES
 (1004,'Williams', 'Thomas',
 '84 Hayward Rd', 'Acton', 'MA','01720',
 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE (-71.4559,42.4748,NULL), NULL, NULL));

INSERT INTO customers VALUES
 (1005,'Rodriguez', 'Carla',
 '9876 Pine Lane', 'Sudbury', 'MA','01776',
 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE (-71.4242,42.3826,NULL), NULL, NULL));

INSERT INTO customers VALUES
 (1006,'Adnani', 'Ramesh',
 '1357 Appletree Ct', 'Falls Church', 'VA','22042 ',
 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE (-77.1745,38.88505,NULL),NULL,NULL));

-- Insert stores data.

Updating the Spatial Metadata

1-8 Oracle Database Express Edition 2 Day Plus Locator Developer Guide

INSERT INTO stores VALUES
 (101,'Nashua megastore',
 '123 Commercial Way', 'Nashua', 'NH','03062',
 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE (-71.49074, 42.7229,NULL),NULL,NULL));

INSERT INTO stores VALUES
 (102,'Reston store',
 '99 Main Blvd', 'Reston', 'VA','22070',
 SDO_GEOMETRY(2001, 8307,
 SDO_POINT_TYPE (-77.34511, 38.9521,NULL),NULL,NULL));

1.5 Updating the Spatial Metadata
For each spatial column (type SDO_GEOMETRY), you must insert an appropriate row
into the USER_SDO_GEOM_METADATA view to reflect the dimensional information
for the area in which the data is located. You must do this before creating spatial
indexes (see Section 1.6, "Creating Spatial Indexes") on the spatial columns.

The USER_SDO_GEOM_METADATA view has the following definition:

(
 TABLE_NAME VARCHAR2(32),
 COLUMN_NAME VARCHAR2(32),
 DIMINFO SDO_DIM_ARRAY,
 SRID NUMBER
);

The DIMINFO column is a varying length array of an object type, ordered by
dimension, and has one entry for each dimension. The SDO_DIM_ARRAY type is
defined as follows:

Create Type SDO_DIM_ARRAY as VARRAY(4) of SDO_DIM_ELEMENT;

The SDO_DIM_ELEMENT type is defined as:

Create Type SDO_DIM_ELEMENT as OBJECT (
 SDO_DIMNAME VARCHAR2(64),
 SDO_LB NUMBER,
 SDO_UB NUMBER,
 SDO_TOLERANCE NUMBER);

The SDO_DIM_ARRAY instance is of size n if there are n dimensions. That is,
DIMINFO contains 2 SDO_DIM_ELEMENT instances for two-dimensional
geometries, 3 instances for three-dimensional geometries, and 4 instances for
four-dimensional geometries. Each SDO_DIM_ELEMENT instance in the array must
have valid (not null) values for the SDO_LB (lower bound), SDO_UB (upper bound),
and SDO_TOLERANCE (tolerance) attributes.

Tolerance reflects the distance that two points can be apart and still be considered the
same (for example, to accommodate rounding errors), and thus reflects the precision of
the spatial data. The tolerance value must be a positive number greater than zero.

Example 1–3 inserts rows into the USER_SDO_GEOM_METADATA view, with
dimensional information for each spatial column. In both cases, the dimensional range
is the entire Earth, and the coordinate system is the widely used WGS84
(longitude/latitude) system (spatial reference ID = 8307).

Example 1–3 Updating the Spatial Metadata

INSERT INTO USER_SDO_GEOM_METADATA (TABLE_NAME, COLUMN_NAME, DIMINFO, SRID)

Querying Spatial Data

Using Locator: Scenario and Examples 1-9

 VALUES ('CUSTOMERS', 'CUST_GEO_LOCATION',
 SDO_DIM_ARRAY
 (SDO_DIM_ELEMENT('LONG', -180.0, 180.0, 0.5),
 SDO_DIM_ELEMENT('LAT', -90.0, 90.0, 0.5)),
 8307);

INSERT INTO USER_SDO_GEOM_METADATA (TABLE_NAME, COLUMN_NAME, DIMINFO, SRID)
 VALUES ('STORES', 'STORE_GEO_LOCATION',
 SDO_DIM_ARRAY
 (SDO_DIM_ELEMENT('LONG', -180.0, 180.0, 0.5),
 SDO_DIM_ELEMENT('LAT', -90.0, 90.0, 0.5)),
 8307);

In Example 1–3, the longitude dimension of -180.0,180.0 and latitude dimension of
-90.90 are required for geodetic data using the WGS84 coordinate system. The
tolerance value of 0.5 means that any points less than one-half meter apart are
considered to be the same point by any location-based operators or functions.

1.6 Creating Spatial Indexes
Spatial indexes are required for many queries that use Locator operators, and are
important for performance for most spatial queries. Before you use spatial data for
analysis or queries, create a spatial index on each spatial column. To create a spatial
index, use the CREATE INDEX statement, and specify the INDEXTYPE IS
MDSYS.SPATIAL_INDEX clause.

To create a spatial index, the database user must have the CREATE TABLE privilege.

Example 1–4 creates spatial indexes on the CUSTOMERS.CUST_GEO_LOCATION
and STORES.STORE_GEO_LOCATION columns.

Example 1–4 Creating the Spatial Indexes

CREATE INDEX customers_sidx ON customers(cust_geo_location)
 INDEXTYPE IS mdsys.spatial_index;

CREATE INDEX stores_sidx ON stores(store_geo_location)
 INDEXTYPE IS mdsys.spatial_index;

1.7 Querying Spatial Data
After you have created and populated spatial tables, updated the spatial metadata,
and created spatial indexes, you can use Oracle Locator operator and functions to
perform location-based queries. This section shows some queries to find the closest
customers to a store and all customers within a specified distance of a store.

Example 1–5 shows the SQL statement and the output for finding the three closest
customers to the store with the STORE_ID value of 101. This example uses the SDO_
NN ("nearest neighbors") operator.

Example 1–5 Finding Closest Customers to a Store

SELECT /*+ordered*/
 c.customer_id,
 c.first_name,
 c.last_name
FROM stores s,
 customers c
WHERE s.store_id = 101

Querying Spatial Data

1-10 Oracle Database Express Edition 2 Day Plus Locator Developer Guide

AND sdo_nn (c.cust_geo_location, s.store_geo_location, ’sdo_num_res=3’) = ’TRUE’;

CUSTOMER_ID FIRST_NAME LAST_NAME
----------- ------------------------------ ------------------------------
 1001 Alexandra Nichols
 1003 Marian Chang
 1004 Thomas Williams

In Example 1–5:

■ The /*+ordered*/ hint is a hint to the optimizer, which ensures that the STORES
table is searched first.

■ The SDO_NN operator returns the SDO_NUM_RES value of the customers from
the CUSTOMERS table who are closest to store 101. The first argument to SDO_
NN (c.cust_geo_location in the example) is the column to search. The second
argument to SDO_NN (s.storeh_geo_location in the example) is the location you
want to find the neighbors nearest to. No assumptions should be made about the
order of the returned results. For example, the first row returned is not guaranteed
to be the customer closest to store 101. If two or more customers are an equal
distance from the store, either of the customers may be returned on subsequent
calls to SDO_NN.

■ When you use the SDO_NUM_RES parameter, no other constraints are used in the
WHERE clause. SDO_NUM_RES takes only proximity into account. For example,
if you added a criterion to the WHERE clause because you wanted the five closest
customers that resided in NY, and four of the five closest customers resided in NJ,
the preceding query would return one row. This behavior is specific to the SDO_
NUM_RES parameter, and its results may not be what you are looking for.

Example 1–6 extends Example 1–5 by showing the SQL statement and the output
(reformatted for readability) for finding the three closest customers to the store with
the STORE_ID value of 101, and ordering the results by distance (in meters) from the
store. This example uses the SDO_NN_DISTANCE ancillary operator.

Example 1–6 Finding Closest Customers, Ordered by Distance from Store

SELECT /*+ordered index(c customers_sidx) */
 c.customer_id,
 c.first_name,
 c.last_name,
 sdo_nn_distance (1) distance
FROM stores s,
 customers c
WHERE s.store_id = 101
AND sdo_nn
 (c.cust_geo_location, s.store_geo_location, ’sdo_num_res=3’, 1) = ’TRUE’
ORDER BY distance;

CUSTOMER_ID FIRST_NAME LAST_NAME DISTANCE
----------- ----------- ---------- ------------------
 1001 Alexandra Nichols 138.94486

 1004 Thomas Williams 27708.0946

 1003 Marian Chang 31396.4521

In Example 1–6:

Querying Spatial Data

Using Locator: Scenario and Examples 1-11

■ The index(c customers_sidx) hint is required here to force the spatial index on
the CUSTOMERS table to be used, because of a problem in this release with spatial
queries that use an ORDER BY clause.

■ The SDO_NN_DISTANCE operator is an ancillary operator to the SDO_NN
operator; it can only be used within the SDO_NN operator. The argument for this
operator is a number that matches the number specified as the last argument of
SDO_NN; in this example it is 1. There is no hidden meaning to this argument; it is
simply a tag. With SDO_NN_DISTANCE, you can order the results by distance
and guarantee that the first row returned is the closest. If the data you are
querying is stored as longitude and latitude, the default unit for SDO_NN_
DISTANCE is meters.

■ The SDO_NN operator also has a unit parameter that determines the unit of
measurement returned by SDO_NN_DISTANCE; however, it is not used in this
example.

■ The ORDER BY distance clause ensures that the distances are returned in order,
with the shortest distance first.

Example 1–7 shows the SQL statement and the output for finding all customers within
100 miles of the store with the STORE_ID value of 101. This example uses the SDO_
WITHIN_DISTANCE operator.

Example 1–7 Finding Customers Within 100 Miles of a Store

SELECT /*+ordered*/
 c.customer_id,
 c.first_name,
 c.last_name
 FROM stores s,
 customers c
WHERE s.store_id = 101
AND sdo_within_distance (c.cust_geo_location,
 s.store_geo_location,
 ’distance = 100 unit=MILE’) = 'TRUE';

CUSTOMER_ID FIRST_NAME LAST_NAME
----------- ------------------------------ ------------------------------
 1005 Carla Rodriguez
 1004 Thomas Williams
 1003 Marian Chang
 1001 Alexandra Nichols

In Example 1–7:

■ The SDO_WITHIN_DISTANCE operator returns the customers from the
customers table that are within 100 miles of store 101. The first parameter to SDO_
WITHIN_DISTANCE (c.cust_geo_location in the example) is the column to
search. The second parameter (s.store_geo_location in the example) is the
location from which you want to determine the distances. No assumptions should
be made about the order of the returned results. For example, the first row
returned is not guaranteed to be the customer closest to store 101.

■ The distance keyword specifies the distance value (100 in this example).

■ The unit keyword specifies the unit of measure for the distance keyword. The
default unit is the unit of measure associated with the data. For longitude and
latitude data, the default is meters; however, in this example it is miles.

Running the Scenario Script

1-12 Oracle Database Express Edition 2 Day Plus Locator Developer Guide

1.8 Running the Scenario Script
You can create a SQL script that includes the operations described in preceding
sections about the scenario for using spatial data: creating the tables, loading data into
the tables, updating the spatial metadata, creating the spatial indexes, and querying
the spatial data. For example, you could create a script containing the statements in
Example 1–1 on page 1-3 to perform these operations for the sample scenario.

After you create the SQL script, you can test it by running it.

Note: You cannot use the Express Edition SQL Commands or SQL
Scripts features to run a SQL script or enter a SQL statement that
creates or requires a spatial index. You must instead use SQL*Plus,
such as by selecting Run SQL Command Line from the Express
Edition menus, and connect as a database user that has the Create
Table privilege.

Follow these steps to run the SQL script:

1. On the Express Edition menus, select Run SQL Command Line. Specifically:

■ On Windows, from the Start menu, select Programs (or All Programs), then
Oracle Database 10g Express Edition, then Run SQL Command Line.

■ On Linux, click the Application menu (on Gnome) or the K menu (on KDE),
then point to Oracle Database 10g Express Edition, then Run SQL Command
Line.

2. In the Run SQL Command Line window, connect to the Express Edition database
as the user in whose schema you want to execute the SQL script. The following
example connects as user smith with the password jane:

SQL> connect smith/jane

3. Use the SQL*Plus @ ("at" sign) or @@ (double "at" sign) command to specify the
path and file name of the SQL script file. The following example (showing
Windows syntax) runs a SQL script file named locator_scenario.sql:

SQL> @c:\my_scripts\locator_scenario

If you do not specify a file extension, .sql is assumed.

Figure 1–1 shows the results of one of the queries in the scenario script shown in
Example 1–1. This query returns the three customers nearest to the store that has store
ID 101, with the distance in meters of each customer’s home from the store, and with
the results ordered by distance from the store.

Using Non-Point Geometry Types

Using Locator: Scenario and Examples 1-13

Figure 1–1 Location Query and Results: Three Closest Customers, with Distance

As shown in Figure 1–1, the results indicate that Alexandra Nichols lives about 139
meters from the store, Thomas Williams lives about 27.7 kilometers from the store, and
Marian Chang lives about 31.4 kilometers from the store.

1.9 Using Non-Point Geometry Types
The examples so far in this chapter have shown point geometries, because the scenario
involved the use of addresses that are represented as points. However, with Locator
you can store and use many other types of geometries, such as lines (representing
rivers, roads, pipelines, and so on) and polygons (representing any areas, such as
counties, states, provinces, countries, and so on).

This section contains examples of creating non-point geometries. The examples
include some explanation, but for detailed explanations of these geometry types, see
Oracle Spatial and Graph Developer's Guide.

The examples do not use the WGS84 longitude/latitude coordinate system. Instead,
they use a null coordinate system, which is not Earth-based and which reflects an
arbitrary grid on a plane. All examples except those in Section 1.9.7, "Several
Geometry Types" use a table named COLA_MARKETS. The following statements
were used to create the COLA_MARKETS table, add its metadata to the USER_SDO_
GEOMETRY view, and create a spatial index for its SDO_GEOMETRY column.

-- Create a table for cola (soft drink) markets in a
-- given geography (such as city or state).
-- Each row will be an area of interest for a specific
-- cola (for example, where the cola is most preferred

Using Non-Point Geometry Types

1-14 Oracle Database Express Edition 2 Day Plus Locator Developer Guide

-- by residents, where the manufacturer believes the
-- cola has growth potential, and so on).

CREATE TABLE cola_markets (
 mkt_id NUMBER PRIMARY KEY,
 name VARCHAR2(32),
 shape SDO_GEOMETRY);

-- UPDATE METADATA VIEW --

-- Update the USER_SDO_GEOM_METADATA view. This is required
-- before the Spatial index can be created. Do this only once for each
-- layer (that is, table-column combination; here: COLA_MARKETS and SHAPE).

INSERT INTO user_sdo_geom_metadata
 (TABLE_NAME,
 COLUMN_NAME,
 DIMINFO,
 SRID)
 VALUES (
 'cola_markets',
 'shape',
 SDO_DIM_ARRAY(-- 20X20 grid
 SDO_DIM_ELEMENT('X', 0, 20, 0.005),
 SDO_DIM_ELEMENT('Y', 0, 20, 0.005)
),
 NULL -- SRID
);

-- CREATE THE SPATIAL INDEX --

CREATE INDEX cola_spatial_idx
 ON cola_markets(shape)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX;

This section covers the following geometry types:

■ Polygon

■ Rectangle

■ Polygon with a Hole

■ Line String

■ Compound Line String

■ Compound Polygon

■ Several Geometry Types

1.9.1 Polygon
Figure 1–2 illustrates a polygon.

Using Non-Point Geometry Types

Using Locator: Scenario and Examples 1-15

Figure 1–2 Polygon

(8, 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(5, 1)

(8, 6)

(5, 7)

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 1–2:

■ SDO_GTYPE = 2003. The 2 indicates two-dimensional, and the 3 indicates a
polygon.

■ SDO_SRID = NULL.

■ SDO_POINT = NULL.

■ SDO_ELEM_INFO = (1,1003,1). The 1 in 1003 indicates an exterior polygon ring.
The final 1 in 1,1003,1 indicates that this is a simple polygon whose vertices are
connected by straight line segments, and you must specify coordinates for each
vertex point, with the last set of coordinates being the same as the first set.

■ SDO_ORDINATES = (5,1, 8,1, 8,6, 5,7, 5,1). These identify the vertices of the
polygon, with the first and last coordinates the same. Because this is an exterior
polygon ring (this simple pylon has no interior ring), the coordinates are in
counterclockwise order.

Example 1–8 shows a SQL statement that inserts the geometry illustrated in Figure 1–2
into the database.

Example 1–8 SQL Statement to Insert a Polygon

INSERT INTO cola_markets VALUES(
 301,
 'polygon',
 SDO_GEOMETRY(
 2003, -- two-dimensional polygon
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,1), -- one polygon (exterior polygon ring)
 SDO_ORDINATE_ARRAY(5,1, 8,1, 8,6, 5,7, 5,1)
)
);

1.9.2 Rectangle
Figure 1–3 illustrates a rectangle.

Using Non-Point Geometry Types

1-16 Oracle Database Express Edition 2 Day Plus Locator Developer Guide

Figure 1–3 Rectangle

(1, 7) (5, 7)

(1, 1) (5, 1)

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 1–3:

■ SDO_GTYPE = 2003. The 2 indicates two-dimensional, and the 3 indicates a
polygon.

■ SDO_SRID = NULL.

■ SDO_POINT = NULL.

■ SDO_ELEM_INFO = (1, 1003, 3). The final 3 in 1,1003,3 indicates that this is a
rectangle. Because it is a rectangle, only two ordinates are specified in SDO_
ORDINATES (lower-left and upper-right).

■ SDO_ORDINATES = (1,1, 5,7). These identify the lower-left and upper-right
ordinates of the rectangle.

Example 1–9 shows a SQL statement that inserts the geometry illustrated in Figure 1–3
into the database.

Example 1–9 SQL Statement to Insert a Rectangle

INSERT INTO cola_markets VALUES(
 302,
 'rectangle',
 SDO_GEOMETRY(
 2003, -- two-dimensional polygon
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3), -- one rectangle (1003 = exterior)
 SDO_ORDINATE_ARRAY(1,1, 5,7) -- only 2 points needed to
 -- define rectangle (lower left and upper right) with
 -- Cartesian-coordinate data
)
);

1.9.3 Polygon with a Hole
Figure 1–4 illustrates a polygon consisting of two elements: an exterior polygon ring
and an interior polygon ring. The inner element in this example is treated as a void (a
hole).

Using Non-Point Geometry Types

Using Locator: Scenario and Examples 1-17

Figure 1–4 Polygon with a Hole

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(10,3)(4,3)

(13,5)

(13,9)

(11,13)(5,13)

(2,11)

(2,4)

(10,10)

(10,5)(7,5)

(7,10)

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 1–4:

■ SDO_GTYPE = 2003. The 2 indicates two-dimensional, and the 3 indicates a
polygon.

■ SDO_SRID = NULL.

■ SDO_POINT = NULL.

■ SDO_ELEM_INFO = (1,1003,1, 19,2003,1). There are two triplet elements: 1,1003,1
and 19,2003,1.

1003 indicates that the element is an exterior polygon ring; 2003 indicates that the
element is an interior polygon ring.

19 indicates that the second element (the interior polygon ring) ordinate
specification starts at the 19th number in the SDO_ORDINATES array (that is, 7,
meaning that the first point is 7,5).

■ SDO_ORDINATES = (2,4, 4,3, 10,3, 13,5, 13,9, 11,13, 5,13, 2,11, 2,4,
7,5, 7,10, 10,10, 10,5, 7,5).

■ The area (SDO_GEOM.AREA function) of the polygon is the area of the exterior
polygon minus the area of the interior polygon. In this example, the area is 84 (99 -
15).

■ The perimeter (SDO_GEOM.LENGTH function) of the polygon is the perimeter of
the exterior polygon plus the perimeter of the interior polygon. In this example,
the perimeter is 52.9193065 (36.9193065 + 16).

Example 1–10 shows a SQL statement that inserts the geometry illustrated in
Figure 1–4 into the database.

Example 1–10 SQL Statement to Insert a Polygon with a Hole

INSERT INTO cola_markets VALUES(
 303,
 'polygon_with_hole',
 SDO_GEOMETRY(
 2003, -- two-dimensional polygon

Using Non-Point Geometry Types

1-18 Oracle Database Express Edition 2 Day Plus Locator Developer Guide

 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,1, 19,2003,1), -- polygon with hole
 SDO_ORDINATE_ARRAY(2,4, 4,3, 10,3, 13,5, 13,9, 11,13, 5,13, 2,11, 2,4,
 7,5, 7,10, 10,10, 10,5, 7,5)
)
);

An example of such a "polygon with a hole" might be a land mass (such as a country
or an island) with a lake inside it. Of course, an actual land mass might have many
such interior polygons: each one would require a triplet element in SDO_ELEM_INFO,
plus the necessary ordinate specification.

Exterior and interior rings cannot be nested. For example, if a country has a lake and
there is an island in the lake (and perhaps a lake on the island), a separate polygon
must be defined for the island; the island cannot be defined as an interior polygon ring
within the interior polygon ring of the lake.

In a multipolygon (polygon collection), rings must be grouped by polygon, and the
first ring of each polygon must be the exterior ring. For example, consider a polygon
collection that contains two polygons (A and B):

■ Polygon A (one interior "hole"): exterior ring A0, interior ring A1

■ Polygon B (two interior "holes"): exterior ring B0, interior ring B1, interior ring B2

The elements in SDO_ELEM_INFO and SDO_ORDINATES must be in one of the
following orders (depending on whether you specify Polygon A or Polygon B first):

■ A0, A1; B0, B1, B2

■ B0, B1, B2; A0, A1

1.9.4 Line String
Figure 1–5 illustrates a line string made up of three straight line segments, starting at
(3,2). Four points are required to represent this shape: (3,2), (4,6), (6,4), and (14,7).

Figure 1–5 Line String

(3, 2)

(6, 4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(4, 6)

(14, 7)

Using Non-Point Geometry Types

Using Locator: Scenario and Examples 1-19

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 1–5:

■ SDO_GTYPE = 2002. The first 2 indicates two-dimensional, and the second 2
indicates one or more line segments.

■ SDO_SRID = NULL.

■ SDO_POINT = NULL.

■ SDO_ELEM_INFO = (1,2,1). The 2,1 in 1,2,1 indicates a line string whose vertices
are connected by straight line segments.

■ SDO_ORDINATES = (3,2, 4,6, 6,4, 14,7).

Example 1–11 shows a SQL statement that inserts the geometry illustrated in
Figure 1–5 into the database.

Example 1–11 SQL Statement to Insert a Line String

INSERT INTO cola_markets VALUES(
 304,
 'line_string',
 SDO_GEOMETRY(
 2002,
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,2,1), -- line string
 SDO_ORDINATE_ARRAY(3,2, 4,6, 6,4, 14,7)
)
);

1.9.5 Compound Line String
Figure 1–6 illustrates a crescent-shaped object represented as a compound line string
made up of one straight line segment and one circular arc. Four points are required to
represent this shape: points (10,10) and (10,14) describe the straight line segment, and
points (10,14), (6,10), and (14,10) describe the circular arc.

Figure 1–6 Compound Line String

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(10,10)
(6,10)

(10,14)

(14,10)

Using Non-Point Geometry Types

1-20 Oracle Database Express Edition 2 Day Plus Locator Developer Guide

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 1–6:

■ SDO_GTYPE = 2002. The first 2 indicates two-dimensional, and the second 2
indicates one or more line segments.

■ SDO_SRID = NULL.

■ SDO_POINT = NULL.

■ SDO_ELEM_INFO = (1,4,2, 1,2,1, 3,2,2). There are three triplet elements: 1,4,2,
1,2,1, and 3,2,2.

The first triplet indicates that this element is a compound line string made up of
two subelement line strings, which are described with the next two triplets.

The second triplet indicates that the line string is made up of straight line
segments and that the ordinates for this line string start at offset 1. The end point
of this line string is determined by the starting offset of the second line string, 3 in
this instance.

The third triplet indicates that the second line string is made up of circular arcs
with ordinates starting at offset 3. The end point of this line string is determined
by the starting offset of the next element or the current length of the SDO_
ORDINATES array, if this is the last element.

■ SDO_ORDINATES = (10,10, 10,14, 6,10, 14,10).

Example 1–12 shows a SQL statement that inserts the geometry illustrated in
Figure 1–6 into the database.

Example 1–12 SQL Statement to Insert a Compound Line String

INSERT INTO cola_markets VALUES(
 305,
 'compound_line_string',
 SDO_GEOMETRY(
 2002,
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,4,2, 1,2,1, 3,2,2), -- compound line string
 SDO_ORDINATE_ARRAY(10,10, 10,14, 6,10, 14,10)
)
);

1.9.6 Compound Polygon
Figure 1–7 illustrates an ice cream cone-shaped object represented as a compound
polygon made up of one straight line segment and one circular arc. Five points are
required to represent this shape: points (6,10), (10,1), and (14,10) describe one acute
angle-shaped line string, and points (14,10), (10,14), and (6,10) describe the circular arc.
The starting point of the line string and the ending point of the circular arc are the
same point (6,10). The SDO_ELEM_INFO array contains three triplets for this
compound line string. These triplets are {(1,1005,2), (1,2,1), (5,2,2)}.

Using Non-Point Geometry Types

Using Locator: Scenario and Examples 1-21

Figure 1–7 Compound Polygon

(10,1)

(10,14)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(6,10) (14,10)

In the SDO_GEOMETRY definition of the geometry illustrated in Figure 1–7:

■ SDO_GTYPE = 2003. The 2 indicates two-dimensional, and the 3 indicates a
polygon.

■ SDO_SRID = NULL.

■ SDO_POINT = NULL.

■ SDO_ELEM_INFO = (1,1005,2, 1,2,1, 5,2,2). There are three triplet elements:
1,1005,2, 1,2,1, and 5,2,2.

The first triplet indicates that this element is a compound polygon made up of two
subelement line strings, which are described using the next two triplets.

The second triplet indicates that the first subelement line string is made up of
straight line segments and that the ordinates for this line string start at offset 1.
The end point of this line string is determined by the starting offset of the second
line string, 5 in this instance. Because the vertices are two-dimensional, the
coordinates for the end point of the first line string are at ordinates 5 and 6.

The third triplet indicates that the second subelement line string is made up of a
circular arc with ordinates starting at offset 5. The end point of this line string is
determined by the starting offset of the next element or the current length of the
SDO_ORDINATES array, if this is the last element.

■ SDO_ORDINATES = (6,10, 10,1, 14,10, 10,14, 6,10).

Example 1–13 shows a SQL statement that inserts the geometry illustrated in
Figure 1–7 into the database.

Example 1–13 SQL Statement to Insert a Compound Polygon

INSERT INTO cola_markets VALUES(
 306,
 'compound_polygon',
 SDO_GEOMETRY(
 2003, -- two-dimensional polygon
 NULL,

Using Non-Point Geometry Types

1-22 Oracle Database Express Edition 2 Day Plus Locator Developer Guide

 NULL,
 SDO_ELEM_INFO_ARRAY(1,1005,2, 1,2,1, 5,2,2), -- compound polygon
 SDO_ORDINATE_ARRAY(6,10, 10,1, 14,10, 10,14, 6,10)
)
);

1.9.7 Several Geometry Types
Example 1–14 creates a table and inserts various geometries, including multipoints
(point clusters), multipolygons, and collections. At the end, it calls the SDO_
GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT function to validate the inserted
geometries. Note that some geometries are deliberately invalid, and their descriptions
include the string INVALID.

Example 1–14 SQL Statements to Insert Various Geometries

CREATE TABLE t1 (
 i NUMBER,
 d VARCHAR2(50),
 g SDO_GEOMETRY
);
INSERT INTO t1 (i, d, g)
VALUES (
 1,
 'Line segment',
 sdo_geometry (2002, null, null, sdo_elem_info_array (1,2,1),
 sdo_ordinate_array (10,10, 20,10))
);
INSERT INTO t1 (i, d, g)
VALUES (
 2,
 'Arc segment',
 sdo_geometry (2002, null, null, sdo_elem_info_array (1,2,2),
 sdo_ordinate_array (10,15, 15,20, 20,15))
);
INSERT INTO t1 (i, d, g)
VALUES (
 3,
 'Line string',
 sdo_geometry (2002, null, null, sdo_elem_info_array (1,2,1),
 sdo_ordinate_array (10,25, 20,30, 25,25, 30,30))
);
INSERT INTO t1 (i, d, g)
VALUES (
 4,
 'Arc string',
 sdo_geometry (2002, null, null, sdo_elem_info_array (1,2,2),
 sdo_ordinate_array (10,35, 15,40, 20,35, 25,30, 30,35))
);
INSERT INTO t1 (i, d, g)
VALUES (
 5,
 'Compound line string',
 sdo_geometry (2002, null, null,
 sdo_elem_info_array (1,4,3, 1,2,1, 3,2,2, 7,2,1),
 sdo_ordinate_array (10,45, 20,45, 23,48, 20,51, 10,51))
);
INSERT INTO t1 (i, d, g)
VALUES (
 6,

Using Non-Point Geometry Types

Using Locator: Scenario and Examples 1-23

 'Closed line string',
 sdo_geometry (2002, null, null, sdo_elem_info_array (1,2,1),
 sdo_ordinate_array (10,55, 15,55, 20,60, 10,60, 10,55))
);
INSERT INTO t1 (i, d, g)
VALUES (
 7,
 'Closed arc string',
 sdo_geometry (2002, null, null, sdo_elem_info_array (1,2,2),
 sdo_ordinate_array (15,65, 10,68, 15,70, 20,68, 15,65))
);
INSERT INTO t1 (i, d, g)
VALUES (
 8,
 'Closed mixed line',
 sdo_geometry (2002, null, null, sdo_elem_info_array (1,4,2, 1,2,1, 7,2,2),
 sdo_ordinate_array (10,78, 10,75, 20,75, 20,78, 15,80, 10,78))
);
INSERT INTO t1 (i, d, g)
VALUES (
 9,
 'Self-crossing line',
 sdo_geometry (2002, null, null, sdo_elem_info_array (1,2,1),
 sdo_ordinate_array (10,85, 20,90, 20,85, 10,90, 10,85))
);
INSERT INTO t1 (i, d, g)
VALUES (
 10,
 'Polygon',
 sdo_geometry (2003, null, null, sdo_elem_info_array (1,1003,1),
 sdo_ordinate_array (10,105, 15,105, 20,110, 10,110, 10,105))
);
INSERT INTO t1 (i, d, g)
VALUES (
 11,
 'Arc polygon',
 sdo_geometry (2003, null, null, sdo_elem_info_array (1,1003,2),
 sdo_ordinate_array (15,115, 20,118, 15,120, 10,118, 15,115))
);
INSERT INTO t1 (i, d, g)
VALUES (
 12,
 'Compound polygon',
 sdo_geometry (2003, null, null, sdo_elem_info_array (1,1005,2, 1,2,1, 7,2,2),
 sdo_ordinate_array (10,128, 10,125, 20,125, 20,128, 15,130, 10,128))
);
INSERT INTO t1 (i, d, g)
VALUES (
 13,
 'Rectangle',
 sdo_geometry (2003, null, null, sdo_elem_info_array (1,1003,3),
 sdo_ordinate_array (10,135, 20,140))
);
INSERT INTO t1 (i, d, g)
VALUES (
 14,
 'Circle',
 sdo_geometry (2003, null, null, sdo_elem_info_array (1,1003,4),
 sdo_ordinate_array (15,145, 10,150, 20,150))
);

Using Non-Point Geometry Types

1-24 Oracle Database Express Edition 2 Day Plus Locator Developer Guide

INSERT INTO t1 (i, d, g)
VALUES (
 15,
 'Point cluster',
 sdo_geometry (2005, null, null, sdo_elem_info_array (1,1,3),
 sdo_ordinate_array (50,5, 55,7, 60,5))
);
INSERT INTO t1 (i, d, g)
VALUES (
 16,
 'Multipoint',
 sdo_geometry (2005, null, null, sdo_elem_info_array (1,1,1, 3,1,1, 5,1,1),
 sdo_ordinate_array (65,5, 70,7, 75,5))
);
INSERT INTO t1 (i, d, g)
VALUES (
 17,
 'Multiline',
 sdo_geometry (2006, null, null, sdo_elem_info_array (1,2,1, 5,2,1),
 sdo_ordinate_array (50,15, 55,15, 60,15, 65,15))
);
INSERT INTO t1 (i, d, g)
VALUES (
 18,
 'Multiline - crossing',
 sdo_geometry (2006, null, null, sdo_elem_info_array (1,2,1, 5,2,1),
 sdo_ordinate_array (50,22, 60,22, 55,20, 55,25))
);
INSERT INTO t1 (i, d, g)
VALUES (
 19,
 'Multiarc',
 sdo_geometry (2006, null, null, sdo_elem_info_array (1,2,2, 7,2,2),
 sdo_ordinate_array (50,35, 55,40, 60,35, 65,35, 70,30, 75,35))
);
INSERT INTO t1 (i, d, g)
VALUES (
 20,
 'Multiline - closed',
 sdo_geometry (2006, null, null, sdo_elem_info_array (1,2,1, 9,2,1),
 sdo_ordinate_array (50,55, 50,60, 55,58, 50,55, 56,58, 60,55, 60,60, 56,58))
);
INSERT INTO t1 (i, d, g)
VALUES (
 21,
 'Multiarc - touching',
 sdo_geometry (2006, null, null, sdo_elem_info_array (1,2,2, 7,2,2),
 sdo_ordinate_array (50,65, 50,70, 55,68, 55,68, 60,65, 60,70))
);
INSERT INTO t1 (i, d, g)
VALUES (
 22,
 'Multipolygon - disjoint',
 sdo_geometry (2007, null, null, sdo_elem_info_array (1,1003,1, 11,1003,3),
 sdo_ordinate_array (50,105, 55,105, 60,110, 50,110, 50,105, 62,108, 65,112))
);
INSERT INTO t1 (i, d, g)
VALUES (
 23,
 'Multipolygon - touching',

Using Non-Point Geometry Types

Using Locator: Scenario and Examples 1-25

 sdo_geometry (2007, null, null, sdo_elem_info_array (1,1003,3, 5,1003,3),
 sdo_ordinate_array (50,115, 55,120, 55,120, 58,122))
);
INSERT INTO t1 (i, d, g)
VALUES (
 24,
 'Multipolygon - tangent * INVALID 13351',
 sdo_geometry (2007, null, null, sdo_elem_info_array (1,1003,3, 5,1003,3),
 sdo_ordinate_array (50,125, 55,130, 55,128, 60,132))
);
INSERT INTO t1 (i, d, g)
VALUES (
 25,
 'Multipolygon - multi-touch',
 sdo_geometry (2007, null, null, sdo_elem_info_array (1,1003,1, 17,1003,1),
 sdo_ordinate_array (50,95, 55,95, 53,96, 55,97, 53,98, 55,99, 50,99, 50,95,
 55,100, 55,95, 60,95, 60,100, 55,100))
);
INSERT INTO t1 (i, d, g)
VALUES (
 26,
 'Polygon with void',
 sdo_geometry (2003, null, null, sdo_elem_info_array (1,1003,3, 5,2003,3),
 sdo_ordinate_array (50,135, 60,140, 51,136, 59,139))
);
INSERT INTO t1 (i, d, g)
VALUES (
 27,
 'Polygon with void - reverse',
 sdo_geometry (2003, null, null, sdo_elem_info_array (1,2003,3, 5,1003,3),
 sdo_ordinate_array (51,146, 59,149, 50,145, 60,150))
);
INSERT INTO t1 (i, d, g)
VALUES (
 28,
 'Crescent (straight lines) * INVALID 13349',
 sdo_geometry (2003, null, null, sdo_elem_info_array (1,1003,1),
 sdo_ordinate_array (10,175, 10,165, 20,165, 15,170, 25,170, 20,165,
 30,165, 30,175, 10,175))
);
INSERT INTO t1 (i, d, g)
VALUES (
 29,
 'Crescent (arcs) * INVALID 13349',
 sdo_geometry (2003, null, null, sdo_elem_info_array (1,1003,2),
 sdo_ordinate_array (14,180, 10,184, 14,188, 18,184, 14,180, 16,182,
 14,184, 12,182, 14,180))
);
INSERT INTO t1 (i, d, g)
VALUES (
 30,
 'Heterogeneous collection',
 sdo_geometry (2004, null, null, sdo_elem_info_array (1,1,1, 3,2,1, 7,1003,1),
 sdo_ordinate_array (10,5, 10,10, 20,10, 10,105, 15,105, 20,110, 10,110,
 10,105))
);
INSERT INTO t1 (i, d, g)
VALUES (
 31,
 'Polygon+void+island touch',

Using Non-Point Geometry Types

1-26 Oracle Database Express Edition 2 Day Plus Locator Developer Guide

 sdo_geometry (2007, null, null,
 sdo_elem_info_array (1,1003,1, 11,2003,1, 31,1003,1),
 sdo_ordinate_array (50,168, 50,160, 55,160, 55,168, 50,168, 51,167,
 54,167, 54,161, 51,161, 51,162, 52,163, 51,164, 51,165, 51,166, 51,167,
 52,166, 52,162, 53,162, 53,166, 52,166))
);
COMMIT;
SELECT i, d, SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT (g, 0.5) FROM t1;

Index-1

Index

C
compound line string

explanation and example, 1-19
compound polygon

explanation and example, 1-20

D
dimension (in SDO_GTYPE), 1-6

E
ELEM_INFO (SDO_ELEM_INFO attribute), 1-6
ETYPE (SDO_ETYPE value), 1-6
exterior polygon ring, 1-16
exterior polygon rings, 1-16, 1-18

G
geometry types

SDO_GTYPE, 1-6
GTYPE (SDO_GTYPE attribute), 1-6

I
indexing spatial data, 1-9
INTEPRETATION (SDO_INTERPRETATION

value), 1-6
interior polygon ring, 1-16
interior polygon rings, 1-16, 1-18

L
line string

compound
explanation and example, 1-19

explanation and example, 1-18
loading spatial data, 1-7
Locator

description, 1-1
using Oracle Locator with spatial data, 1-1

M
multipolygon, 1-18

O
Oracle Locator

description, 1-1
using with spatial data, 1-1

P
polygon

compound
explanation and example, 1-20

explanation and example, 1-14
exterior and interior rings, 1-16, 1-18

polygon collection, 1-18
polygon with hole

explanation and example, 1-16

Q
querying spatial data, 1-9

R
rectangle

explanation and example, 1-15

S
SDO_ELEM_INFO attribute, 1-6
SDO_ETYPE value, 1-6
SDO_GTYPE attribute, 1-6
SDO_INTERPRETATION value, 1-6
SDO_ORDINATES attribute, 1-6
SDO_POINT attribute, 1-6
SDO_SRID attribute, 1-6
SDO_STARTING_OFFSET value, 1-6
spatial data

indexing, 1-9
loading, 1-7
overview, 1-1
querying, 1-9

spatial indexes
creating, 1-9

spatial metadata
updating, 1-8

SQL*Plus
running Locator scripts, 1-12

Index-2

SRID
SDO_SRID attribute in SDO_GEOMETRY, 1-6

U
USER_SDO_GEOMETRY view

updating, 1-8

	Contents
	List of Examples
	List of Figures
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Using Locator: Scenario and Examples
	1.1 Overview of Spatial Data
	1.2 Scenario for Using Spatial Data
	1.3 Using the SDO_GEOMETRY Object Type
	1.4 Loading Customer and Store Information, Including Locations
	1.5 Updating the Spatial Metadata
	1.6 Creating Spatial Indexes
	1.7 Querying Spatial Data
	1.8 Running the Scenario Script
	1.9 Using Non-Point Geometry Types
	1.9.1 Polygon
	1.9.2 Rectangle
	1.9.3 Polygon with a Hole
	1.9.4 Line String
	1.9.5 Compound Line String
	1.9.6 Compound Polygon
	1.9.7 Several Geometry Types

	Index
	C
	D
	E
	G
	I
	L
	M
	O
	P
	Q
	R
	S
	U

