

Oracle® Communications Converged Application
Server
Diameter Application Development Guide

Release 5.0

E17648-03

July 2011

Oracle Communications Converged Application Server Diameter Application Development Guide, Release
5.0

E17648-03

Copyright © 2005, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... v

Audience... v
Related Documents ... v
Documentation Accessibility ... v

1 Using the Diameter Base Protocol API

Overview of Diameter Protocol Support ... 1-1
Overview of the Diameter API .. 1-2

File Required for Compiling Application Using the Diameter API ... 1-3
Working with Diameter Nodes.. 1-3
Implementing a Diameter Application .. 1-4
Working with Diameter Sessions.. 1-5
Working with Diameter Messages .. 1-5

Sending Request Messages ... 1-6
Sending Answer Messages ... 1-6
Creating New Command Codes.. 1-6

Working with AVPs.. 1-7
Creating New Attributes... 1-7

Creating Converged Diameter and SIP Applications ... 1-8

2 Using the Diameter Sh Interface Application

Overview of Profile Service API and Sh Interface Support .. 2-1
Enabling the Sh Interface Provider... 2-2
Overview of the Profile Service API .. 2-2
Creating a Document Selector Key for Application-Managed Profile Data 2-2
Using a Constructed Document Key to Manage Profile Data ... 2-4
Monitoring Profile Data with ProfileListener .. 2-5

Prerequisites for Listener Implementations ... 2-5
Implementing ProfileListener .. 2-5

3 Using the Diameter Rf Interface Application for Offline Charging

Overview of Rf Interface Support... 3-1
Understanding Offline Charging Events... 3-1

Event-Based Charging... 3-2
Session-Based Charging .. 3-2

iv

Configuring the Rf Application .. 3-3
Using the Offline Charging API.. 3-3

Accessing the Rf Application ... 3-4
Implementing Session-Based Charging.. 3-4

Specifying the Session Expiration... 3-5
Sending Asynchronous Events ... 3-5

Implementing Event-Based Charging... 3-6
Using the Accounting Session State .. 3-7

4 Using the Diameter Ro Interface API for Online Charging

Overview of Ro Interface Support .. 4-1
Understanding Credit Authorization Models .. 4-2

Credit Authorization with Unit Determination... 4-2
Credit Authorization with Direct Debiting .. 4-2
Determining Units and Rating ... 4-2

Configuring the Ro Application.. 4-2
Overview of the Online Charging API .. 4-3
Accessing the Ro Application .. 4-4
Implementing Session-Based Charging .. 4-4

Handling Re-Auth-Request Messages .. 4-5
Sending Credit-Control-Request Messages .. 4-6
Handling Failures... 4-6

v

Preface

This document provides an overview of the Oracle Communications Converged
Application Server base Diameter protocol packages, classes, and programming model
used for developing client and server-side Diameter applications. It also provides an
overview of the Converged Application Server Diameter Sh, Rf, and Ro Interface
Applications that you can use when developing Diameter protocol applications in
your SIP Servlets.

Audience
This document is intended for developers who build and implement Diameter
applications in Converged Application Server.

Related Documents
For more information, see the following documents in the Oracle Communications
Converged Application Server Release 5.0 documentation set:

■ Converged Application Server Release Notes

■ Converged Application Server Installation Guide

■ Converged Application Server Technical Product Description

■ Converged Application Server Administration Guide

■ Converged Application Server SIP Application Development Guide

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

vi

1

Using the Diameter Base Protocol API 1-1

1Using the Diameter Base Protocol API

The chapter describes using the Diameter Base protocol implementation to create your
own Diameter applications in Oracle Communications Converged Applications
Server:

■ Overview of Diameter Protocol Support

■ Overview of the Diameter API

■ Working with Diameter Nodes

■ Implementing a Diameter Application

■ Working with Diameter Sessions

■ Working with Diameter Messages

■ Working with AVPs

■ Creating Converged Diameter and SIP Applications

Overview of Diameter Protocol Support
Diameter is a peer-to-peer protocol that involves delivering attribute-value pairs
(AVPs). A Diameter message includes a header and one or more AVPs. The collection
of AVPs in each message is determined by the type of Diameter application, and the
Diameter protocol also allows for extension by adding new commands and AVPs.
Diameter enables multiple peers to negotiate their capabilities with one another, and
defines rules for session handling and accounting functions.

Converged Application Server includes an implementation of the base Diameter
protocol that supports the core functionality and accounting features described in RFC
3588 (http://www.ietf.org/rfc/rfc3588.txt). Converged Application Server uses
the base Diameter functionality to implement multiple Diameter applications,
including the Sh, Rf, and Ro applications described later in this document.

You can also use the base Diameter protocol to implement additional client and
server-side Diameter applications. The base Diameter API provides a simple,
Servlet-like programming model that enables you to combine Diameter functionality
with SIP or HTTP functionality in a converged application.

The sections that follow provide an overview of the base Diameter protocol packages,
classes, and programming model used for developing client and server-side Diameter
applications. See also the following sections for information about using the provided
Diameter protocol applications in your SIP Servlets:

■ Chapter 2, "Using the Diameter Sh Interface Application," describes how to access
and manage subscriber profile data using the Diameter Sh application.

Overview of the Diameter API

1-2 Converged Application Server Diameter Application Development Guide

■ Chapter 3, "Using the Diameter Rf Interface Application for Offline Charging,"
describes how to issue offline charging requests using the Diameter Rf application.

■ Chapter 4, "Using the Diameter Ro Interface API for Online Charging," describes
how to perform online charging using the Diameter Ro application.

Overview of the Diameter API
All classes in the Diameter base protocol API reside in the root com.bea.wcp.diameter
package. Table 1–1 describes the key classes, interfaces, and exceptions in this package.

Table 1–1 Key Elements of the Diameter Base Protocol API

Category Element Description

Diameter Node Node A class that represents a Diameter node implementation. A diameter
node can represent a client- or server-based Diameter application, as
well as a Diameter relay agent.

Diameter
Applications

Application,
ClientApplication

A class that represents a basic Diameter application. ClientApplication
extends Application for client-specific features such as specifying
destination hosts and realms. All Diameter applications must extend
one of these classes to return an application identifier. The classes can
also be used directly to create new Diameter sessions.

Diameter
Applications

ApplicationId A class that represents the Diameter application ID. This ID is used by
the Diameter protocol for routing messages to the appropriate
application. The ApplicationId corresponds to one of the
Auth-Application-Id, Acct-Application-Id, or
Vendor-Specific-Application-Id AVPs contained in a Diameter message.

Diameter
Applications

Session A class that represents a Diameter session. Applications that perform
session-based handling must extend this class to provide
application-specific behavior for managing requests and answering
messages.

Message
Processing

Message, Request,
Answer

The Message class is a base class used to represent request and answer
message types. Request and Answer extend the base class.

Message
Processing

Command A class that represents a Diameter command code.

Message
Processing

RAR, RAA These classes extend the Request and Answer classes to represent
re-authorization messages.

Message
Processing

ResultCode A class that represents a Diameter result code, and provides constant
values for the base Diameter protocol result codes.

AVP Handling Attribute A class that provides Diameter attribute information.

AVP Handling Avp, AvpList Classes that represent one or more attribute-value pairs in a message.
AvpList is also used to represent AVPs contained in a grouped AVP.

AVP Handling Type A class that defines the supported AVP datatypes.

Error Handling DiameterException The base exception class for Diameter exceptions.

Error Handling MessageException An exception that is raised when an invalid Diameter message is
discovered.

Error Handling AvpException An exception that is raised when an invalid AVP is discovered.

Working with Diameter Nodes

Using the Diameter Base Protocol API 1-3

In addition to these base Diameter classes, accounting-related classes are stored in the
com.bea.wcp.diameter.accounting package, and credit-control-related classes are
stored in com.bea.wcp.diameter.cc. See Chapter 4, "Using the Diameter Ro Interface
API for Online Charging" and Chapter 3, "Using the Diameter Rf Interface Application
for Offline Charging" for more information about classes in these packages.

File Required for Compiling Application Using the Diameter API
The wlssdiameter.jar file is part of the exposed Diameter API. To compile against this
API, you must access the wlssdiameter.jar, which is located in the directory:

MW_home/wlserver_10.3/sip/server/lib/

Where MW_home is the directory in which the Converged Application Server software is
installed (the installation program used to install Converged Application Server refers
to this as Middleware Home). For example:

/Oracle/Middleware/wlserver_10.3/sip/server/lib/

Working with Diameter Nodes
A diameter node is represented by the com.bea.wcp.diameter.Node class. A Diameter
node may host one or more Diameter applications, as specified in the diameter.xml
configuration file, located in the directory: MW_home/user_projects/domains/domain_
name/config/custom/

Where MW_home is the directory in which the Converged Application Server software
is installed, and domain_name is the name of the Diameter domain. For example:

/Oracle/Middleware/user_projects/domains/Diameter_domain/config/custom

In order to access a Diameter application, a deployed application (such as a SIP
Servlet) must obtain the Diameter Node instance and request the application.
Example 1–1 shows the sample code used to access the Rf application.

Example 1–1 Accessing a Diameter Node and Application

ServletContext sc = getServletConfig().getServletContext();
Node node = sc.getAttribute("com.bea.wcp.diameter.Node");

Supporting
Interfaces

Enumerated An enum value that implements this interface can be used as the value
of an AVP of type INTEGER32, INTEGER64, or ENUMERATED.

Supporting
Interfaces

SessionListener An interface that applications can implement to subscribe to messages
delivered to a Diameter session.

Supporting
Interfaces

MessageFactory An interface that allows applications to override the default message
decoder for received messages, and create new types of Request and
Answer objects.

The default decoding process begins by decoding the message header
from the message bytes using an instance of MessageFactory. This is
done so that an early error message can be generated if the message
header is invalid. The actual message AVPs are decoded in a separate
step by calling decodeAvps. AVP values are fully decoded and validated
by calling validate, which in turn calls validateAvp for each
partially-decoded AVP in the message.

Table 1–1 (Cont.) Key Elements of the Diameter Base Protocol API

Category Element Description

Implementing a Diameter Application

1-4 Converged Application Server Diameter Application Development Guide

RfApplication rfApp = (RfApplication) node.getApplication(Charging.RF_APPLICATION_
ID);

Diameter Nodes are generally configured and started as part of a Converged
Application Server instance. However, for development and testing purposes, you can
also run a Diameter node as a standalone process. To do so:

1. Set the environment for the Diameter domain using the setDomainEnv.sh (UNIX)
or setDomainEnv.cmd (Windows) command located in the directory: MW_
home/user_projects/domains/domain_name/diameter/bin/

Where MW_home is the directory where you installed the Converged Application
Server software and my_domain is the name of the domain’s directory. For
example:

cd /Oracle/Middleware/user_projects/domains/Diameter_domain/diameter/bin
./setDomainEnv.sh

2. Make the directory containing the diameter.xml configuration file for the
Diameter Node you want to start your working directory. For example:

cd /Oracle/Middleware/user_projects/domains/Diameter_domain/config/custom

3. Set the Java class path for the Diameter domain to the file: com.bea.core.process_
5.4.0.0.jar

java -classpath $CLASSPATH:/Oracle/Middleware/wlserver_
10.3/server/lib/consoleapp/APP-INF/lib/com.bea.core.process_5.4.0.0.jar

4. Start the Diameter Node, specifying the diameter.xml configuration file to use
with the domain:

java com.bea.wcp.diameter.Node ./diameter.xml

Implementing a Diameter Application
All Diameter applications must extend either the base Application class or, for client
applications, the ClientApplication class. The model for creating a Diameter
application is similar to that for implementing Servlets in the following ways:

■ Diameter applications override the init() method for initialization tasks.

■ Initialization parameters configured for the application in diameter.xml are made
available to the application.

■ A session factory is used to generate new application sessions.

Diameter applications must also implement the getId() method to return the proper
application ID. This ID is used to deliver Diameter messages to the correct application.

Applications can optionally implement rcvRequest() or rcvAnswer() as needed. By
default, rcvRequest() answers with UNABLE_TO_COMPLY, and rcvRequest()
drops the Diameter message.

Example 1–2 shows a simple Diameter client application that does not use sessions.

Example 1–2 Simple Diameter Application

public class TestApplication extends ClientApplication {
 protected void init() {
 log("Test application initialized.");
 }

Working with Diameter Messages

Using the Diameter Base Protocol API 1-5

 public ApplicationId getId() {
 return ApplicationId.BASE_ACCOUNTING;
 }
 public void rcvRequest(Request req) throws IOException {
 log("Got request: " + req.getHopByHopId());
 req.createAnswer(ResultCode.SUCCESS).send();
 }
}

Working with Diameter Sessions
Applications that perform session-based handling must extend the base Session class
to provide application-specific behavior for managing requests and answering
messages. If you extend the base Session class, you must implement either
rcvRequest() or rcvAnswer(), and may implement both methods.

The base Application class is used to generate new Session objects. After a session is
created, all session-related messages are delivered directly to the session object. The
Converged Application Server container automatically generates the session ID and
encodes the ID in each message. Session attributes are supported much in the same
fashion as attributes in SipApplicationSession.

Example 1–3 shows a simple Diameter session implementation.

Example 1–3 Simple Diameter Session

public class TestSession extends Session {
 public TestSession(TestApplication app) {
 super(app);
 }
 public void rcvRequest(Request req) throws IOException {
 getApplication().log("rcvReuest: " + req.getHopByHopId());
 req.createAnswer(ResultCode.SUCCESS).send();
 }
}

To use the sample session class, the TestApplication in Example 1–2 would need to
add a factory method:

public class TestApplication extends Application {
 ...
 public TestSession createSession() {
 return new TestSession(this);
 }
}

TestSession could then be used to create new requests as follows:

TestSession session = testApp.createSession();
Request req = session.creatRequest();
req.sent();

The answer is delivered directly to the Session object.

Working with Diameter Messages
The base Message class is used for both Request and Answer message types. A
Message always includes an application ID, and optionally includes a session ID. By
default, messages are handled in the following manner:

Working with Diameter Messages

1-6 Converged Application Server Diameter Application Development Guide

1. The message bytes are parsed.

2. The application and session ID values are determined.

3. The message is delivered to a matching session or application using the following
rules:

a. If the Session-Id AVP is present, the associated Session is located and the
session's rcvMessage() method is called.

b. If there is no Session-Id AVP present, or if the session cannot be located, the
Diameter application's rcvMessage() method is called.

c. If the application cannot be located, an UNABLE_TO_DELIVER response is
generated.

The message type is determined from the Diameter command code. Certain special
message types, such as RAR, RAA, ACR, ACA, CCR, and CCA, have getter and setter
methods in the Message object for convenience.

Sending Request Messages
Either a Session or Application can originate and receive request messages. Requests
are generated using the createRequest() method. You must supply a command code
for the new request message. For routing purposes, the destination host or destination
realm AVPs are also generally set by the originating session or application.

Received answers can be obtained using Request.getAnswer(). After receiving an
answer, you can use getSession() to obtain the relevant session ID and
getResultCode() to determine the result. You can also use Answer.getRequest() to
obtain the original request message.

Requests can be sent asynchronously using the send() method, or synchronously
using the blocking sendAndWait() method. Answers for requests that were sent
asynchronously are delivered to the originating session or application. You can specify
a request timeout value when sending the message, or can use the global
request-timeout configuration element in diameter.xml. An UNABLE_TO_DELIVER
result code is generated if the timeout value is reached before an answer is delivered.
getResultCode() on the resulting Answer returns the result code.

Sending Answer Messages
New answer messages are generated from the Request object, using createAnswer().
All generated answers should specify a ResultCode and an optional Error-Message
AVP value. The ResultCode class contains pre-defined result codes that can be used.

Answers are delivered using the send() method, which is always asynchronous
(non-blocking).

Creating New Command Codes
A Diameter command code determines the message type. For instance, when sending
a request message, you must supply a command code.

The Command class represents pre-defined commands codes for the Diameter base
protocol, and can be used to create new command codes. Command codes share a
common name space based on the code itself.

The define() method enables you to define codes, as in:

static final Command TCA = Command.define(1234, "Test-Request", true, true);

Working with AVPs

Using the Diameter Base Protocol API 1-7

The define() method registers a new Command, or returns a previous command
definition if one was already defined. Commands can be compared using the reference
equality operator (==).

Working with AVPs
Attribute Value Pair (AVP) is a method of encapsulating information relevant to the
Diameter message. AVPs are used by the Diameter base protocol, the Diameter
application, or a higher-level application that employs Diameter.

The Avp class represents a Diameter attribute-value pair. You can create new AVPs
with an attribute value in the following way:

Avp avp = new Avp(Attribute.ERROR_MESSAGE, "Bad request");
You can also specify the attribute name directly, as in:

Avp avp = new Avp("Error-Message", "Bad request");
The value that you specify must be valid for the specified attribute type.

To create a grouped AVP, use the AvpList class, as in:

AvpList avps = new AvpList();
avps.add(new Avp("Event-Timestamp", 1234));
avps.add(new Avp("Vendor-Id", 1111));

Creating New Attributes
You can create new attributes to extend your Diameter application. The Attribute
class represents an AVP attribute, and includes the AVP code, name, flags, optional
vendor ID, and type of attribute. The class also maintains a registry of defined
attributes. All attributes share a common namespace based on the attribute code and
vendor ID.

The define() method enables you to define new attributes, as in:

static final Attribute TEST = Attribute.define(1234, "Test-Attribute", 0,
Attribute.FLAG_MANDATORY, Type.INTEGER32);

Table 1–2 lists the available attribute types and describes how they are mapped to Java
types.

The define() method registers a new attribute, or returns a previous definition if one
was already defined. Attributes can be compared using the reference equality operator
(==).

Table 1–2 Attribute Types

Diameter
Type Type Constant Java Type

Integer32 Type.INTEGER32 Integer

Integer64 Type.INTEGER64 Long

Float32 Type.FLOAT32 Float

OctetString Type.BYTES ByteBuffer
(read-only)

UTF8String Type.STRING String

Address Type.ADDRESS InetAddress

Grouped Type.GROUPED AvpList

Creating Converged Diameter and SIP Applications

1-8 Converged Application Server Diameter Application Development Guide

Creating Converged Diameter and SIP Applications
The Diameter API enables you to create converged applications that utilize both SIP
and Diameter functionality. A SIP Servlet can access an available Diameter application
through the Diameter Node, as shown in Example 1–4.

Example 1–4 Accessing the Rf Application from a SIP Servlet

ServletContext sc = getServletConfig().getServletContext();
Node node = (Node) sc.getAttribute("com.bea.wcp.diameter.Node");
RfApplication rfApp = (RfApplication) node.getApplication(Charging.RF_APPLICATION_
ID);

SIP uses Call-id (the SIP-Call-ID header) to identify a particular call session between
two users. Converged Application Server automatically links a Diameter session to the
currently-active call state by encoding the SIP Call-id into the Diameter session ID.
When a Diameter message is received, the container automatically retrieves the
associated call state and locates the Diameter session. A Diameter session is
serializable, so you can store the session as an attribute in a the
SipApplicationSession object, or vice versa.

Converged applications can use the Diameter SessionListener interface to receive
notification when a Diameter message is received by the session. The
SessionListener interface defines a single method, rcvMessage(). Example 1–5
shows an example of how to implement the method.

Example 1–5 Implementing SessionListener

Session session = app.createSession();
session.setListener(new SessionListener() {
 public void rcvMessage(Message msg) {
 if (msg.isRequest()) System.out.println("Got request!");
 }
});

Note: The SessionListener implementation must be serializable for
distributed applications.

2

Using the Diameter Sh Interface Application 2-1

2Using the Diameter Sh Interface Application

This chapter describes how to use the Diameter Sh interface application, based on the
Oracle Communications Converged Application Server Diameter protocol
implementation, in your own applications.

■ Overview of Profile Service API and Sh Interface Support

■ Enabling the Sh Interface Provider

■ Overview of the Profile Service API

■ Creating a Document Selector Key for Application-Managed Profile Data

■ Using a Constructed Document Key to Manage Profile Data

■ Monitoring Profile Data with ProfileListener

Overview of Profile Service API and Sh Interface Support
The IMS specification defines the Sh interface as the method of communication
between the Application Server (AS) function and the Home Subscriber Server (HSS),
or between multiple IMS Application Servers. The AS uses the Sh interface in two
basic ways:

■ To query or update a user's data stored on the HSS

■ To subscribe to and receive notifications when a user's data changes on the HSS

The user data available to an AS may be defined by a service running on the AS
(repository data), or it may be a subset of the user's IMS profile data hosted on the HSS.
The Sh interface specification, 3GPP TS 29.328, defines the IMS profile data that can be
queried and updated through Sh. All user data accessible through the Sh interface is
presented as an XML document with the schema defined in 3GPP TS 29.328.

The IMS Sh interface is implemented as a provider to the base Diameter protocol
support in ProductNameShort. The provider transparently generates and responds to
the Diameter command codes defined in the Sh application specification. A
higher-level Profile Service API enables SIP Servlets to manage user profile data as an
XML document using XML Document Object Model (DOM). Subscriptions and
notifications for changed profile data are managed by implementing a profile listener
interface in a SIP Servlet.

Enabling the Sh Interface Provider

2-2 Converged Application Server Diameter Application Development Guide

Figure 2–1 Profile Service API and Sh Provider Implementation

Converged Application Server includes a provider for the Diameter Sh interface.
Providers to support additional interfaces defined in the IMS specification may be
provided in future releases. Applications using the profile service API are able to use
additional providers as they are made available.

Enabling the Sh Interface Provider
See the chapter "Configuring Diameter Client Nodes and Relay Agents" in the
Converged Application Server Administration Guide for information on enabling Diameter
support.

Overview of the Profile Service API
Converged Application Server provides a simple profile service API that SIP Servlets
can use to query or modify subscriber profile data, or to manage subscriptions for
receiving notifications about changed profile data. Using the API, a SIP Servlet
explicitly requests user profile documents through the Sh provider application. The
provider returns an XML document, and the Servlet can then use standard DOM
techniques to read or modify profile data in the local document. Updates to the local
document are applied to the HSS after a "put" operation.

Creating a Document Selector Key for Application-Managed Profile Data
The document selector key identifies the XML document to be retrieved by a Diameter
interface, and uses the format protocol://uri/reference_type[/access_key].
Servlets that manage profile data can explicitly obtain an Sh XML document from a
factory using a key, and then work with the document using DOM.

The protocol portion of the selector identifies the Diameter interface provider to use
for retrieving the document. Sh XML documents require the sh:// protocol
designation.

With Sh document selectors, the next element, uri, generally corresponds to the
User-Identity or Public-Identity of the user whose profile data is being retrieved. If

Creating a Document Selector Key for Application-Managed Profile Data

Using the Diameter Sh Interface Application 2-3

you are requesting an Sh data reference of type LocationInformation or UserState, the
URI value can be the User-Identity or MSISDN for the user.

Table 2–1 summarizes the possible URI values that can be supplied depending on the
Sh data reference you are requesting. 3GPP TS 29.328 describes the possible data
references and associated reference types in more detail.

The final element of the document selector key, reference_type, specifies the data
reference type being requested. For some data reference requests, only the uri and
reference_type are required. Other Sh requests use an access key, which requires a
third element in the document selector key corresponding to the value of the
Attribute-Value Pair (AVP) defined in the document selector key.

Table 2–2 summarizes the required document selector key elements for each type of Sh
data reference request.

Table 2–1 Possible URI Values for Sh Data References

Sh Data
Reference
Number

Data Reference
Type

Possible URI Value in Document
Selector

0 RepositoryData User-Identity or Public-Identity

10 IMSPublicIdentity

11 IMSUserState

12 S-CSCFName

13 InitialFilterCriteria

14 LocationInformatio
n

User-Identity or MSISDN

15 UserState

17 Charging
information

User-Identity or Public-Identity

17 MSISDN

Table 2–2 Summary of Document Selector Elements for Sh Data Reference Requests

Data Reference
Type

Required Document
Selector Elements Example Document Selector

RepositoryData sh://uri/reference_
type/Service-Indication

sh://sip:user@oracle.com/RepositoryData/Call
Screening/

IMSPublicIdentity sh://uri/reference_
type/[Identity-Set]

where Identity-Set is one of:

■ All-Identities

■ Registered-Identities

■ Implicit-Identities

sh://sip:user@oracle.com/IMSPublicIdentity/Re
gistered-Identities

IMSUserState sh://uri/reference_type sh://sip:user@oracle.com/IMSUserState/

S-CSCFName sh://uri/reference_type sh://sip:user@oracle.com/S-CSCFName/

InitialFilterCriteri
a

sh://uri/reference_
type/Server-Name

sh://sip:user@oracle.com/InitialFilterCriteria/w
ww.oracle.com/

Using a Constructed Document Key to Manage Profile Data

2-4 Converged Application Server Diameter Application Development Guide

Using a Constructed Document Key to Manage Profile Data
Converged Application Server provides a helper class,
com.bea.wcp.profile.ProfileService, to help you easily retrieve a profile data
document. The getDocument() method takes a constructed document key, and returns
a read-only org.w3c.dom.Document object. To modify the document, you make and
edit a copy, then send the modified document and key as arguments to the
putDocument() method.

Converged Application Server caches the documents returned from the profile service
for the duration of the service method invocation (for example, when a doRequest()
method is invoked). If the service method requests the same profile document
multiple times, the subsequent requests are served from the cache rather than by
re-querying the HSS.

Example 2–1 shows a sample SIP Servlet that obtains and modifies profile data.

Example 2–1 Sample Servlet Using ProfileService to Retrieve and Write User Profile
Data

package demo;
import com.bea.wcp.profile.*;
import javax.servlet.sip.SipServletRequest;
import javax.servlet.sip.SipServlet;
import org.w3c.dom.Document;
import java.io.IOException;
public class MyServlet extends SipServlet {
 private ProfileService psvc;
 public void init() {
 psvc = (ProfileService)
getServletContext().getAttribute(ProfileService.PROFILE_SERVICE);
 }
 protected void doInvite(SipServletRequest req) throws IOException {
 String docSel = "sh://" + req.getTo() + "/IMSUserState/";
 // Obtain and change a profile document.
 Document doc = psvc.getDocument(docSel); // Document is read only.
 Document docCopy = (Document) doc.cloneNode(true);

LocationInformati
on

sh://uri/reference_
type/(CS-Domain |
PS-Domain)

sh://sip:user@oracle.com/LocationInformation/
CS-Domain/

UserState sh://uri/reference_
type/(CS-Domain |
PS-Domain)

sh://sip:user@oracle.com/UserState/PS-Domain
/

Charging
information

sh://uri/reference_type sh://sip:user@oracle.com/Charging information/

MSISDN sh://uri/reference_type sh://sip:user@oracle.com/MSISDN/

Note: If Diameter Sh client node services are not available on the
Converged Application Server instance when getDocument() method
is invoked, the profile service throws a "No registered provider for
protocol" exception.

Table 2–2 (Cont.) Summary of Document Selector Elements for Sh Data Reference Requests

Data Reference
Type

Required Document
Selector Elements Example Document Selector

Monitoring Profile Data with ProfileListener

Using the Diameter Sh Interface Application 2-5

 // Modify the copy using DOM.
 psvc.putDocument(docSel, docCopy); // Apply the changes.
 }
}

Monitoring Profile Data with ProfileListener
The IMS Sh interface enables applications to receive automatic notifications when a
subscriber's profile data changes. Converged Application Server provides an
easy-to-use API for managing profile data subscriptions. A SIP Servlet registers to
receive notifications by implementing the com.bea.wcp.profile.ProfileListener
interface, which consists of a single update method that is automatically invoked when
a change occurs to the profile to which the Servlet is subscribed. Notifications are not
sent if that same Servlet modifies the profile information (for example, if a user
modifies their own profile data).

Prerequisites for Listener Implementations
In order to receive a call back for subscribed profile data, a SIP Servlet must do the
following:

■ Implement com.bea.wcp.profile.ProfileListener.

■ Create one or more subscriptions using the subscribe method in the
com.bea.wcp.profile.ProfileService helper class.

■ Register itself as a listener using the listener element in sip.xml.

"Implementing ProfileListener" describes how to implement ProfileListener and use
the susbscribe method. In addition to having a valid listener implementation, the
Servlet must declare itself as a listener in the sip.xml deployment descriptor file. For
example, it must add a listener element declaration similar to:

<listener>
 <lisener-class>com.mycompany.MyLisenerServlet</listener-class>
</listener>

Implementing ProfileListener
Actual subscriptions are managed using the subscribe method of the
com.bea.wcp.profile.ProfileService helper class. The subscribe method requires
that you supply the current SipApplicationSession and the key for the profile data
document you want to monitor. See "Creating a Document Selector Key for
Application-Managed Profile Data" for more information.

Applications can cancel subscriptions by calling ProfileSubscription.cancel().
Also, pending subscriptions for an application are automatically cancelled if the
application session is terminated.

Note: In a replicated environment, Diameter relay nodes always
attempt to push notifications directly to the engine tier server that
subscribed for profile updates. If that engine tier server is unavailable,
another server in the engine tier cluster is chosen to receive the
notification. This model succeeds because session information is
stored in the SIP data tier, rather than the engine tier.

Monitoring Profile Data with ProfileListener

2-6 Converged Application Server Diameter Application Development Guide

Example 2–2 shows sample code for a Servlet that implements the ProfileListener
interface.

Example 2–2 Sample Servlet Implementing ProfileListener Interface

package demo;
 import com.bea.wcp.profile.*;
 import javax.servlet.sip.SipServletRequest;
 import javax.servlet.sip.SipServlet;
 import org.w3c.dom.Document;
 import java.io.IOException;
 public class MyServlet extends SipServlet implements ProfileListener {
 private ProfileService psvc;
 public void init() {
 psvc = (ProfileService)
getServletContext().getAttribute(ProfileService.PROFILE_SERVICE);
 }
 protected void doInvite(SipServletRequest req) throws IOException {
 String docSel = "sh://" + req.getTo() + "/IMSUserState/";
 // Subscribe to profile data.
 psvc.subscribe(req.getApplicationSession(), docSel, null);
}
 public void update(ProfileSubscription ps, Document document) {
 System.out.println("IMSUserState updated: " + ps.getDocumentSelector());
 }
 }

3

Using the Diameter Rf Interface Application for Offline Charging 3-1

3Using the Diameter Rf Interface Application
for Offline Charging

This chapter describes how to use the Diameter Rf interface application, based on the
Oracle Communications Converged Application Server Diameter protocol
implementation, in your own applications:

■ Overview of Rf Interface Support

■ Understanding Offline Charging Events

■ Configuring the Rf Application

■ Using the Offline Charging API

Overview of Rf Interface Support
Offline charging is used for network services that are paid for periodically. For
example, a user may have a subscription for voice calls that is paid monthly. The Rf
protocol allows an IMS Charging Trigger Function (CTF) to issue offline charging
events to a Charging Data Function (CDF). The charging events can either be one-time
events or may be session-based.

Converged Application Server provides a Diameter Offline Charging Application that
can be used by deployed applications to generate charging events based on the Rf
protocol. The offline charging application uses the base Diameter protocol
implementation, and allows any application deployed on Converged Application
Server to act as CTF to a configured CDF.

For basic information about offline charging, see RFC 3588: Diameter Base Protocol
(http://www.ietf.org/rfc/rfc3588.txt). For more information about the Rf
protocol, see 3GPP TS 32.299
(http://www.3gpp.org/ftp/Specs/html-info/32299.htm).

Understanding Offline Charging Events
For both event and session based charging, the CTF implements the accounting state
machine described in RFC 3588. The server (CDF) implements the accounting state
machine "SERVER, STATELESS ACCOUNTING" as specified in RFC 3588.

The reporting of offline charging events to the CDF is managed through the Diameter
Accounting Request (ACR) message. Rf supports the ACR event types described in
Table 3–1.

Understanding Offline Charging Events

3-2 Converged Application Server Diameter Application Development Guide

The START, INTERIM, and STOP event types are used for session-based accounting.
The EVENT type is used for event based accounting, or to indicate a failed attempt to
establish a session.

Event-Based Charging
Event-based charging events are reported through the ACR EVENT message.
Example 3–1 shows the basic message flow.

Example 3–1 Message Flow for Event-Based Charging

 CTF (WLSS) CDF (Server)
 | |
 | --- ACR (EVENT) --> |
 | |
 | (Process accounting request)
 | |
 | <-- ACA (EVENT) --- |
 | |

Session-Based Charging
Session-based charging uses the ACR START, INTERIM, and STOP requests to report
usage to the CDF. During a session, the CTF may report multiple ACR INTERIM
requests depending on the session lifecycle. Example 3–2 shows the basic message
flow

Example 3–2 Message Flow for Session-Based Charging

 CTF (WLSS) CDF (Server)
 | |
 | --- ACR (START) ----> |
 | |
 | (Open CDR)
 | |
 | <-- ACA (START) ----- |
 | |

 | --- ACR (INTERIM) --> |
 | |
 | (Update CDR)
 | |
 | <-- ACA (INTERIM) --- |

 | --- ACR (STOP) -----> |
 | |
 | (Close CDR)
 | |

Table 3–1 Rf ACR Event Types

Request Description

START Starts an accounting session.

INTERIM Updates an accounting session.

STOP Stops an accounting session

EVENT Indicates a one-time accounting event.

Using the Offline Charging API

Using the Diameter Rf Interface Application for Offline Charging 3-3

 | <-- ACA (STOP) ------ |
 | |

Here, ACA START is sent a receipt of a service request by Converged Application
Server. ACA INTERIM is typically sent upon expiration of the AII timer. ACA STOP is
issued upon request for service termination by Converged Application Server.

Configuring the Rf Application
The Rf API is packaged as a Diameter application similar to the Sh application used
for managing profile data. The Rf Diameter API can be configured and enabled by
editing the Diameter configuration file located in DOMAIN_
HOME/config/custom/diameter.xml, or by using the Diameter console extension.
Additionally, configuration of both the CDF realm and host can be specified using the
cdf.realm and cdf.host initialization parameters to the Diameter Rf application.

Example 3–3 shows a sample excerpt from diameter.xml that enables Rf with a CDF
realm of "oracle.com" and host "cdf.oracle.com:"

Example 3–3 Sample Rf Application Configuration (diameter.xml)

 <application>
 <application-id>3</application-id>
 <accounting>true</accounting>
 <class-name>com.bea.wcp.diameter.charging.RfApplication</class-name>
 <param>
 <name>cdf.realm</name>
 <value>oracle.com</value>
 </param>
 <param>
 <name>cdf.host</name>
 <value>cdf.oracle.com</value>
 </param>
 </application>

Because the RfApplication uses the Diameter base accounting messages, its Diameter
application id is 3 and there is no vendor ID.

Using the Offline Charging API
Converged Application Server provides an offline charging API to enable any
deployed application to act as a CTF and issue offline charging events. This API
supports both event-based and session-based charging events.

The classes in package com.bea.wcp.diameter.accounting provide general support
for Diameter accounting messages and sessions. Table 3–2 summarizes the classes.

Table 3–2 Diameter Accounting Classes

Class Description

ACR An Accounting-Request message.

ACA An Accounting-Answer message.

ClientSession A Client-based accounting
session.

RecordType Accounting record type constants.

Using the Offline Charging API

3-4 Converged Application Server Diameter Application Development Guide

In addition, classes in package com.bea.wcp.diameter.charging support the Rf
application specifically. Table 3–3 summarizes the classes.

The RfApplication class can be used to directly send ACR requests for event-based
charging. The application also has the option of directly modifying the ACR request
before it is sent out. This is necessary in order for an application to add any custom
AVPs to the request.

In particular, an application must set the Service-Information AVP it carries the
service-specific parameters for the CDF. The Service-Information AVP of the ACR
request is used to send the application-specific charging service information from the
CTF (WLSS) to the CDF (Charging Server). This is a grouped AVP whose value
depends on the application and its charging function. The Offline Charging API allows
the application to set this information on the request before it is sent out.

For session-based accounting, the RfApplication class can also be used to create new
accounting sessions for generating session-based charging events. Each accounting
session is represented by an instance of RfSession, which encapsulates the accounting
state machine for the session.

Accessing the Rf Application
If the Rf application is deployed, then applications deployed on Converged
Application Server can obtain an instance of the application from the Diameter node
(com.bea.wcp.diameter.Node class). Example 3–4 shows the sample Servlet code used
to obtain the Diameter Node and access the Rf application.

Example 3–4 Accessing the Rf Application

ServletContext sc = getServletConfig().getServletContext();
Node node = sc.getAttribute("com.bea.wcp.diameter.Node");
RfApplication rfApp = (RfApplication) node.getApplication(Charging.RF_APPLICATION_
ID);

Applications can safely use a single instance of RfApplication to issue offline
charging requests concurrently, in multiple threads. Each instance of RfSession
actually holds the per-session state unique to each call.

Implementing Session-Based Charging
For session-based charging requests, an application first uses the RfApplication to
create an instance of RfSession. The application can then use the session object to
create one or more charging requests.

The first charging request must be an ACR START request, followed by zero or more
ACR INTERIM requests. The session ends with an ACR STOP request. Upon receipt of
the corresponding ACA STOP message, the RfApplication automatically terminates
the RfSession.

Example 3–5 shows the sample code used to start a new session-based accounting
session.

Table 3–3 Diameter Rf Application Support Classes

Charging Common definitions for 3GPP charging functions

RfApplication Offline charging application

RfSession Offline charging session

Using the Offline Charging API

Using the Diameter Rf Interface Application for Offline Charging 3-5

Example 3–5 Starting a Session-Based Account Session

 RfSession session = rfApp.createSession();
 sipRequest.getApplicationSession().setAttribute("RfSession", session);
 ACR acr = session.createACR(RecordType.START);
 acr.addAvp(Charging.SERVICE_INFORMATION, ...);
 ACA aca = acr.sendAndWait(1000);
 if (!aca.getResultCode().isSuccess()) {
 ... error ...
 }

In Example 3–5, the RfSession is stored as a SIP application session attribute so that it
can be used to send additional accounting requests as the call progresses. Example 3–6
shows how to send an INTERIM request.

Example 3–6 Sending an INTERIM request

 RfSession session = (RfSession)
req.getApplicationSession().getAttribute("RfSession");
 ACR acr = session.createACR(RecordType.INTERIM);
 ACA aca = acr.sendAndWait(1000);
 if (!aca.getResultCode().isSuccess()) {
 ... error ...
 }

An application may want to send one or more ACR INTERIM requests while a call is
in progress. The frequency of ACR INTERIM requests is usually based on the
Acct-Interim-Interval AVP value in the ACA START message sent by the CDF. For this
reason, an application timer must be used to send ACR INTERIM requests at the
requested interval. See 3GPP TS 32.299 for more details about interim requests.

Specifying the Session Expiration
The Acct-Interim-Interval (AII) timer value is used to indicate the expiration time of an
Rf accounting session. It is specified when ACR START is sent to the CDF to initiate
the accounting session. The CDF responds with its own AII value, which must be used
by the CTF to start a timer upon whose expiration an ACR INTERIM message must be
sent. This INTERIM message informs the CDF that the session is still in use.
Otherwise, the CDF terminates the session automatically.

It is the application's responsibility to send ACR INTERIM messages, because these
are used to send updated Service-Information data to the CDF. Oracle recommends
creating a ServletTimer that is set to expire according to the AII value. When the timer
expires, the application must send an ACR INTERIM message with the updated
service information data.

Sending Asynchronous Events
Applications generally use the synchronous sendAndWait() method. However, if
latency is critical, an asynchronous API is provided wherein the application Servlet is
asynchronously notified when an answer message is received from the CDF. To use
the asynchronous API, an application first registers an instance of SessionListener in
order to asynchronously receive messages delivered to the session, as shown in
Example 3–7.

Example 3–7 Registering a SessionListener

 RfSession session = rfApp.createSession();
 session.setAttribute("SAS", sipReq.getApplicationSession());
 session.setListener(this);

Using the Offline Charging API

3-6 Converged Application Server Diameter Application Development Guide

Attributes can be stored in an RfSession instance similar to the way SIP application
session attributes are stored. In the above example, the associated SIP application was
stored as an RfSession so that it is available to the listener callback.

When a Diameter request or answer message is received from the CDF, the application
Servlet is notified by calling the rcvMessage(Message msg) method. The associated SIP
application session can then be retrieved from the RfSession if it was stored as a
session attribute, as shown in Example 3–8.

Example 3–8 Retrieving the RfSession after a Notification

 public void rcvMessage(Message msg) {
 if (msg.getCommand() != Command.ACA) {
 if (msg.isRequest()) {
 ((Request) msg).createAnswer(ResultCode.UNABLE_TO_COMPLY, "Unexpected
request").send();
 }
 return;
 }
 ACA aca = (ACA) msg;
 RfSession session = (RfSession) aca.getSession();
 SipApplicationSession appSession = (SipApplicationSession)
session.getAttribute("SAS");
 ...
 }

Implementing Event-Based Charging
For an event-based charging request, the charging request is a one-time event and the
session is automatically terminated upon receipt of the corresponding EVENT ACA
message. The sendAndWait(long timeout) method can be used to synchronously send
the EVENT request and block the thread until a response has been received from the
CDF. Example 3–9 shows an example that uses an RfSession for sending an
event-based charging request.

Example 3–9 Event-Based Charging Using RfSession

 RfSession session = rfApp.createSession();
 ACR acr = session.createACR(RecordType.EVENT);
 acr.addAvp(Charging.SERVICE_INFORMATION, ...);
 ACA aca = acr.sendAndWait(1000);
 if (!aca.getResultCode().isSuccess()) {
 ... send error response ...
 }

For convenience, it is also possible send event-based charging requests using the
RfApplication directly, as shown in Example 3–10.

Example 3–10 Event-Based Charging Using RfApplication

 ACR acr = rfApp.createEventACR();
 acr.addAvp(Charging.SERVICE_INFORMATION, ...);
 ACA aca = acr.sendAndWait(1000);

Internally, the RfApplication creates an instance of RfSession associated with the
ACR request, so this method is equivalent to creating the session explicitly.

Using the Offline Charging API

Using the Diameter Rf Interface Application for Offline Charging 3-7

For both session and event based accounting, the RfSession class automatically
handles creating session IDs, as well as updating the Accounting-Record-Number
AVP used to sequence messages within the same accounting session.

In the above cases the applications waits for up to 1000 ms to receive an answer from
the CDF. If no answer is received within that time, the Diameter core delivers an
UNABLE_TO_COMPLY error response to the application, and cancels the request. If
no timeout is specified with sendAndWait(), then the default request timeout of 30
seconds is used. This default value can be configured using the Diameter console
extension.

Using the Accounting Session State
The accounting session state for offline charging is serializable, so it can be stored as a
SIP application session attribute. Because the client APIs are synchronous, it is not
necessary to maintain any state for the accounting session once the Servlet has finished
handling the call.

For event-based charging events it is not necessary for the application to maintain any
accounting session state because it is only used internally, and is disposed once the
ACA response has been received.

Using the Offline Charging API

3-8 Converged Application Server Diameter Application Development Guide

4

Using the Diameter Ro Interface API for Online Charging 4-1

4Using the Diameter Ro Interface API for
Online Charging

This chapter describes how to use the Diameter Ro interface API, based on Oracle
Communications Converged Application Server’s Diameter protocol implementation,
in your own applications:

■ Overview of Ro Interface Support

■ Understanding Credit Authorization Models

■ Configuring the Ro Application

■ Overview of the Online Charging API

■ Accessing the Ro Application

■ Implementing Session-Based Charging

■ Sending Credit-Control-Request Messages

■ Handling Failures

Overview of Ro Interface Support
Online charging, also known as credit-based charging, is used to charge prepaid
services. A typical example of a prepaid service is a calling card purchased for voice or
video. The Ro protocol allows a Charging Trigger Function (CTF) to issue charging
events to an Online Charging Function (OCF). The charging events can be immediate,
event-based, or session-based.

Converged Application Server provides a Diameter Online Charging Application that
deployed applications can use to generate charging events based on the Ro protocol.
This enables deployed applications to act as CTF to a configured OCF. The Diameter
Online Charging Application uses the base Diameter protocol that underpins both the
Rf and Sh applications.

The Diameter Online Charging Application is based on IETF RFC 4006: Diameter
Credit Control Application (http://www.ietf.org/rfc/rfc4006.txt). However, the
application supports only a subset of the RFC 4006 required for compliance with 3GPP
TS 32.299: Telecommunication management; Charging management; Diameter
charging applications (http://www.3gpp.org/ftp/Specs/html-info/32299.htm).
Specifically, the Converged Application Server Diameter Online Charging Application
provides no direct support for service-specific Attribute-Value Pairs (AVPs), but the
API that is provided is flexible enough to allow applications to include custom
service-specific AVPs in any credit control request.

Understanding Credit Authorization Models

4-2 Converged Application Server Diameter Application Development Guide

Understanding Credit Authorization Models
RFC 4006 defines two basic types of credit authorization models:

■ Credit authorization with unit reservation, and

■ Credit authorization with direct debiting.

Credit authorization with unit reservation can be performed with either event-based
or session-based charging events. Credit authorization with direct debiting uses
immediate charging events. In both models, the CTF requests credit authorization
from the OCF prior to delivering services to the end user. In both models

The sections that follow describe each model in more detail.

Credit Authorization with Unit Determination
RFC 4006 defines both Event Charging with Unit Reservation (ECUR) and Session
Charging with Unit Reservation (SCUR). Both charging events are session-based, and
require multiple transactions between the CTF and OCF. ECUR begins with an
interrogation to reserve units before delivering services, followed by an additional
interrogation to report the actual used units to the OCF upon service termination.
With SCUR, it is also possible to include one or more intermediate interrogations for
the CTF in order to report currently-used units, and to reserve additional units if
required. In both cases, the session state is maintained in both the CTF and OCF.

For both ECUR and SCUR, the online charging client implements the "CLIENT,
SESSION BASED" state machine described in RFC 4006.

Credit Authorization with Direct Debiting
For direct debiting, Immediate Event Charging (IEC) is used. With IEC, a single
transaction is created where the OCF deducts a specific amount from the user's
account immediately after completing the credit authorization. After receiving the
authorization, the CTF delivers services. This form of credit authorization is a one-time
event in which no session state is maintained.

With IEC, the online charging client implements the "CLIENT, EVENT BASED" state
machine described in IETF RFC 4006.

Determining Units and Rating
Unit determination refers to calculating the number of non-monetary units (service
units, time, events) that can be assigned prior to delivering services. Unit rating refers
to determining a price based on the non-monetary units calculated by the unit
determination function.

It is possible for either the OCF or the CTF to handle unit determination and unit
rating. The decision lies with the client application, which controls the selection of
AVPs in the credit control request sent to the OCF.

Configuring the Ro Application
The RoApplication is packaged as a Diameter application similar to the Sh application
used for managing profile data. The Ro Diameter application can be configured and
enabled by editing the Diameter configuration file located in DOMAIN_
ROOT/config/custom/diameter.xml, or by using the Diameter console extension.

Overview of the Online Charging API

Using the Diameter Ro Interface API for Online Charging 4-3

The application init parameter ocs.host specifies the host identity of the OCF. The
OCF host must also be configured in the peer table as part of the global Diameter
configuration. Alternately, the init parameter ocs.realm can be used to specify more
than one OCF host using realm-based routing. The corresponding realm definition
must also exist in the global Diameter configuration.

Example 4–1 shows a sample excerpt from diameter.xml that enables Ro with an OCF
host name of "myocs.oracle.com."

Example 4–1 Sample Ro Application Configuration (diameter.xml)

 <application>
 <application-id>4</application-id>
 <class-name>com.bea.wcp.diameter.charging.RoApplication</class-name>
 <param>
 <name>ocs.host</name>
 <value>myocs.oracle.com</value>
 </param>
 </application>

Because the RoApplication is based on the Diameter Credit Control Application, its
Diameter application id is 4.

Overview of the Online Charging API
Converged Application Server provides an online charging API to enable any
deployed application to act as a CTF and issue online charging events to an OCS
through the Ro protocol. All online charging requests use the Diameter
Credit-Control-Request (CCR) message. The CC-Request-Type AVP is used to indicate
the type of charging used. In the charging API, the CC-Request-Type is represented by
the RequestType class in package com.bea.wcp.diameter.cc. Table 4–1 shows the
request types associated with different credit authorization models.

For ECUR and SCUR, units are reserved prior to service delivery and committed upon
service completion. Units are reserved with INITIAL_REQUEST and committed with a
TERMINATION_REQUEST. For SCUR, units can also be updated with UPDATE_REQUEST.

The base diameter package, com.bea.wcp.diameter, contains classes to support the
re-authorization requests used in Ro. The com.bea.wcp.diameter.cc package contains
classes to support credit-control applications, including Ro applications.
com.bea.wcp.diameter.charging directly supports the Ro credit-control application.
Table 4–2 summarizes the classes of interest to Ro credit-control.

Table 4–1 Credit Control Request Types

Type Description
RequestType Field in
com.bea.wcp.diameter.cc.RequestType

IEC Immediate Event Charging EVENT_REQUEST

ECUR Event Charging with Unit
Reservation

INITIAL or TERMINATION_REQUEST

SCUR Session Charging with Unit
Reservation

INITIAL, UPDATE, or TERMINATION_REQUEST

Accessing the Ro Application

4-4 Converged Application Server Diameter Application Development Guide

Accessing the Ro Application
If the Ro application is deployed, then applications deployed on Converged
Application Server can obtain an instance of the application from the Diameter node
(com.bea.wcp.diameter.Node class). Example 4–2 shows the sample Servlet code used
to obtain the Diameter Node and access the Ro application.

Example 4–2 Accessing the Ro Application

private RoApplication roApp;
void init(ServletConfig conf) {
 ServletContext ctx = conf.getServletContext();
 Node node = (Node) ctx.getParameter("com.bea.wcp.diameter.Node");
 roApp = node.getApplication(Charging.RO_APPLICATION_ID);
 }

This code example would make RoApplication available to the Servlet as an instance
variable. The instance of RoApplication is safe for use by multiple concurrent threads.

Implementing Session-Based Charging
The RoApplication can be used to create new sessions for session-based credit
authorization. The RoSession class implements the appropriate state machine
depending on the credit control type, either ECUR (Event-Based Charging with Unit
Reservation) or SCUR (Session-based Charging with Unit Reservation). The RoSession
class is also serializable, so it can be stored as a SIP session attribute. This allows the
session to be restored when necessary to terminate the session or update credit
authorization.

The example in Example 4–3 creates a new RoSession for event-based charging, and
sends a CCR request to start the first interrogation. The RoSession instance is saved so
that it can be terminated later, after the service has finished.

Note that the RoSession class automatically handles creating session IDs; the
application is not required to set the session ID.

Table 4–2 Summary of Ro Classes

Class Description Package

Charging Constant definitions com.bea.wcp.diameter.charging

RoApplication Online charging
application

com.bea.wcp.diameter.charging

RoSession Online charging session com.bea.wcp.diameter.charging

CCR Credit Control Request com.bea.wcp.diameter.cc

CCA Credit Control Answer com.bea.wcp.diameter.cc

ClientSession Credit control client
session

com.bea.wcp.diameter.cc

RequestType Credit-control request
type

com.bea.wcp.diameter.cc

RAR Re-Auth-Request message com.bea.wcp.diameter

RAA Re-Auth-Answer message com.bea.wcp.diameter

Implementing Session-Based Charging

Using the Diameter Ro Interface API for Online Charging 4-5

Example 4–3 Creating and Using a RoSession

RoSession session = roApp.createSession();
CCR ccr = session.createCCR(RequestType.INITIAL);
CCA cca = ccr.sendAndWait();
sipAppSession.setAttribute("RoSession", session);
...

Handling Re-Auth-Request Messages
The OCS may initiate credit re-authorization by issuing a Re-Auth-Request (RAR) to
the CTF. The application can register a session listener for handling this type of
request. Upon receiving a RAR, the Diameter subsystem invoke the session listener on
the applications corresponding RoSession object. The application must then respond
to the OCS with an appropriate RAA message and initiate credit re-authorization to
the CTF by sending a CCR with the CC-Request-Type AVP set to the value UPDATE_
REQUEST, as described in section 5.5 of RFC 4006
(http://www.ietf.org/rfc/rfc4006.txt).

A session listener must implement the SessionListener interface and be serializable,
or it must be an instance of SipServlet. A Servlet can register a listener as follows:

 RoSession session = roApp.createSession();
 session.addListener(new SessionListener() {
 public void rcvMessage(Message msg) {
 System.out.println("Got message: id = " msg.getSession().getId());
 }
 });

Example 4–4 shows sample rcvMessage() code for processing a Re-Auth-Request.

Example 4–4 Managing a Re-Auth-Request

 RoSession session = roApp.createSession();
 session.addListener(new SessionListener() {
 public void rcvMessage(Message msg) {
 Request req = (Request)msg;
 if (req.getCommand() != Command.RE_AUTH_REQUEST) return;
 RoSession session = (RoSession) req.getSession();
 Answer ans = req.createAnswer();
 ans.setResultCode(ResultCode.LIMITED_SUCCESS); // Per RFC 4006 5.5
 ans.send();
 CCR ccr = session.createCCR(Ro.UPDATE_REQUEST);
 ... // Set CCR AVPs according to requested credit re-authorization
 ccr.send();
 CCA cca = (CCA) ccr.waitForAnswer();
 }

In Example 4–4, upon receiving the Re-Auth-Request the application sends an RAA
with the result code DIAMETER_LIMITED_SUCCESS to indicate to the OCS that an
additional CCR request is required in order to complete the procedure. The CCR is
then sent to initiate credit re-authorization.

Note: Because the Diameter subsystem locks the call state before
delivering the request to the corresponding RoSession, the call state
remains locked while the handler processes the request.

Sending Credit-Control-Request Messages

4-6 Converged Application Server Diameter Application Development Guide

Sending Credit-Control-Request Messages
The CCR class represents a Diameter Credit-Control-Request message, and can be
used to send credit control requests to the OCF. For both ECUR (Event-Based
Charging with Unit Reservation) and SCUR (Session-Based Charging with Unit
Reservation), an instance of RoSession is used to create new CCR requests. You can
also use RoApplication directly to create CCR messages for IEC (Immediate Event
Charging). Example 4–5 shows an example of how to create and send a CCR.

Example 4–5 Creating and Sending a CCR

 CCR ccr = session.createCCR(RequestType.INITIAL);
 ccr.setServiceContextId("sample_id");
 CCA cca = ccr.sendAndWait();

Once a CCR request is created, you can set whatever application- or service-specific
AVPs that are required before sending the request using the addAvp() method.
Because some of the same AVPs need to be included in each new request for the
session, it is also possible to set these AVPs on the session itself. Example 4–6 shows a
sample that sets:

■ Subscription-Id to identify the user for the session

■ Service-Identifier to indicate the service requested, and

■ Requested-Service-Unit to specify the units requested.

A custom AVP is also added directly to the CCR request.

Example 4–6 Setting AVPs in the CCR

 session.setSubscriptionId(...);
 session.setServiceIdentifier(...);
 CCR ccr = session.createCCR(RequestType.INITIAL);
 ccr.setRequestedServiceUnit(...);
 ccr.addAvp(CUSTOM_MESSAGE, "This is a test");
 ccr.send();

In this case, the same Subscription-Id and Service-Identifier are added to every new
request for the session. The custom AVP "Custom-Message" is added to the message
before it is sent out.

Handling Failures
Applications can examine the Result-Code AVP in CCA error responses from the OCF
to detect the cause of a failure and take an appropriate action. Locally-generated
errors, such as an unavailable peer or invalid route specification, cause the request
send method to throw an IOException to with a detailed message indicating the
nature of the failure.

Applications can also use the Diameter Timer Tx value for determining when the OCF
fails to respond to a credit authorization request. Timer Tx has a default value of 10
seconds, but can be overridden using the tx.timer init parameter in the
RoApplication configuration. Timer Tx starts when a CCR is sent to the OCF. The
timer resets after the corresponding CCA is received.

If Tx expires before a corresponding CCA arrives, any call to waitForAnswer
immediately returns null to indicate that the request has timed out. An application can
then take action according to the value of the Credit-Control-Failure-Handling (CCFH)

Handling Failures

Using the Diameter Ro Interface API for Online Charging 4-7

AVP in the request. See section 5.7, "Failure Procedures" in RFC 4006
(http://www.ietf.org/rfc/rfc4006.txt) for more details.

Example 4–7 terminates the credit control session if timer Tx expires before receiving
the CCA. If the CCA is received later by the Diameter subsystem, the message is
ignored because the session no longer exists.

Example 4–7 Checking for Timer Tx Expiry

 CCR ccr = session.createCCR(RequestType.INITIAL);
 ccr.setCreditControlFailureHandling(RequestType.TERMINATION);
 ccr.send();
 CCA cca = ccr.waitForAnswer();
 if (cca == null) {
 session.terminate();
 }

Handling Failures

4-8 Converged Application Server Diameter Application Development Guide

	Contents
	Preface
	Audience
	Related Documents
	Documentation Accessibility

	1 Using the Diameter Base Protocol API
	Overview of Diameter Protocol Support
	Overview of the Diameter API
	File Required for Compiling Application Using the Diameter API

	Working with Diameter Nodes
	Implementing a Diameter Application
	Working with Diameter Sessions
	Working with Diameter Messages
	Sending Request Messages
	Sending Answer Messages
	Creating New Command Codes

	Working with AVPs
	Creating New Attributes

	Creating Converged Diameter and SIP Applications

	2 Using the Diameter Sh Interface Application
	Overview of Profile Service API and Sh Interface Support
	Enabling the Sh Interface Provider
	Overview of the Profile Service API
	Creating a Document Selector Key for Application-Managed Profile Data
	Using a Constructed Document Key to Manage Profile Data
	Monitoring Profile Data with ProfileListener
	Prerequisites for Listener Implementations
	Implementing ProfileListener

	3 Using the Diameter Rf Interface Application for Offline Charging
	Overview of Rf Interface Support
	Understanding Offline Charging Events
	Event-Based Charging
	Session-Based Charging

	Configuring the Rf Application
	Using the Offline Charging API
	Accessing the Rf Application
	Implementing Session-Based Charging
	Specifying the Session Expiration
	Sending Asynchronous Events

	Implementing Event-Based Charging
	Using the Accounting Session State

	4 Using the Diameter Ro Interface API for Online Charging
	Overview of Ro Interface Support
	Understanding Credit Authorization Models
	Credit Authorization with Unit Determination
	Credit Authorization with Direct Debiting
	Determining Units and Rating

	Configuring the Ro Application
	Overview of the Online Charging API
	Accessing the Ro Application
	Implementing Session-Based Charging
	Handling Re-Auth-Request Messages

	Sending Credit-Control-Request Messages
	Handling Failures

