Oracle® Product Data Quality
Java Interface Guide
Version 5.5

June 2010

ORACLE

Oracle Product Data Quality Java Interface Guide, Version 5.5

Copyright © 2001, 2010, Oracle and/or its affiliates. All rights reserved.
Primary Author: Lorna Vallad

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PUrOIACE ...t s st vii
NS Lo = VT TSR RSO RRRTRTTN Vii
REIATEA DIOCUIMIEIES ..ottt ettt e ettt e e et e e s e e e e sateesaaeesaseesasseessaseessssseesnssessnssessasneesas Vii
(@) 4743 415 [0 1= TR viii

1 Overview

Overview of the Oracle Datalens Server APIScccccooeiiiiirinineninenecceeceeeee et 1-1
AAPTS ettt bbbt bbb bttt b bbb bbb b a et b ettt bene 1-1
PIAtfOITIS ...vivteeeieiee ettt ettt ettt et e s be st et e e s et esa e st e st est et e eseeseesensessensensenseneeseesensensens 1-2
Pre-Installation ReqUITEMENtS........c.ccceuiuiiiiiiiiiiiiiiiccceeee e 1-2

Oracle DataLlens Server Java LIDIaries.........ccccoccveiriiiniininiiiniinecncseneeneeeieeereee et 1-2

2 DSA API to the Oracle DataLens Server

WIEGCTIENE ... 2-1
Updating Individual records and Data Linescccooveviiniciiniiiicnieiiccceecena 2-1
Transforming Data.........cccccciiiiiiiiiicceceeeee e 2-1

IMIPOTt it 2-1
Initialize the CLENT......ccouiiiiicceec ettt 2-2
Create the List of Input Data.........ccccoooeiiiiiiiiiiiiiic 2-2
Transform a List of Datacccocoviiiiiiiiiiiii 2-3
Alternative Method of Transforming Datacccccceciuiiiiiiiiiiiiiiiiiiiccccs 2-3
Retrieve Results from the Server for Jobs with a Single Output Step ..o, 2-3
Synchronous Method ... 2-3
Asynchronous Method..........ccccvviiiiiii e 2-4
Retrieve Results from the Server for Jobs with Multiple Output Stepscccccevveviiiiiiiiennns 2-4
Pulling the Result Data from the List..........ccoooiiiiiiiii e, 2-4
LISt DALA ... 2-4
Tab-Separated Dataccccoeeviiiiiiiiiiiiiicc 2-5
Listing Multiple DSA JODSc.coooiiiiiiieie e 2-5
Listing a Single DSA JODc.cciiiiiiiiiccc s 2-6
Using File Input and OUtputccooiiiiiiiiiiic 2-6

Miscellaneous Settings for the WEgClient ..o 2-6
Retry COUNL...cviiiiiiiic s 2-6
FIIEET DIatacooveviviiiiciiciicc s 2-7
JOD PLIOTILY 1ot 2-7

RUN-TIME LOCALE ...
Separator CRATACLeTccuiiiiiiie e
Client-Side Debugging TOZEGLeccceuiuiiiiiiiiiiiiiiccceeeee et
Email OUEPUL ..o
FTP OULPUL ...ttt
Database Parameters...........cccoiviiiiiiiiiiiiiii s

3 Server Information API to the Oracle DataLens Server

Get a List of Deployed Data Lenses...........cccoceuiiiieieiiiicieincinei e
Lists of Schemas and Translations.............cccoiiiiiiiiiiiiie
Get a List of Deployed DSAS......c.cccoviiiccccceeeeeee e

4 Server Availability API to the Oracle DataLens Server

Simple Server ChecCk ...
RoUNA-RODIN SEIVET CRECKvviiieeiiiiiceeeeeeeeee ettt ettt et s snaseaessraeesaeaaeeens

5 Error Handling

Client-Side EXCEPLIONSc..ccooviiiiiiiieiiieiricereeec ettt e e
Client-Side Log MeSSagES........ccccooiiiiiiiiiiiiiiiiii i
Log4j to Standard OUtputl ...

LOoGA4J to @ Fle.....cuiiiiiiiii s
Server-Side Faults.............oooiiiiiiiii s
Server-Side EXCEPHONS...........cccooiiiiiiiii s
Server-Side Log IMeSSaZEScccouiuiiiiiiiiiiiiiicii
Debugging Client Requests and ReSPONSES.............ccccccouviiiiiiiiiiiiiiiiiiiiccecenas

6 Compiling and Running with the API

Compile the Application with the Oracle DataLens Libraries..........c.ccccccevcvrenninnncnnvcnncnieennen
Run the Application with the Oracle DataLens Libraries.............ccccccccooiiiiiinniiiiiicin,

7 Web Service Access to the Oracle DataLens Server Using Doc-Lit

Generating a WSDL Document on Demand ...
Client Web Service SOftWare.............c.ccouiiimiiiiiiiiccccccc e
Overview of the DSA Interfaceccccoooiiiiiiiii s
processListRequest and processOneLineRequest Operations.............cccoceiiiiiiiiiccincnnes
PTOCeSSDBREQUEST ..ot e
SOAP Document-Literal One Line Request Example...........ccocoiiiiiiiiiiiiiiiiccicieeennes
SOAP Document-Literal One Line Response Example............ccccccccciiiiiiiiiiiiiiiiiiecns
SOAP Doc-Lit Multi-Line ProcessList Request Example..........ccccccoeeviiiinnnicnicicicees

SOAP Doc-Lit Multi-Line ProcessList Response Examplecccococovviiininninnnnninen, 7-3
SOAP Document-Literal ProcessDb Request Exampleccccouoioimiiiiiiiiiiniicceceee 7-4
SOAP Document-Literal processDb Response Example..........cccccccociuiiiiiiiiiiicincieiennes 7-4

8 Customizing DSA Maps with Java Add-Ins and Algorithms

TMap AIGOTIthISc.coiiiiiii e 8-1
Initial CONfIGUIAtIONvveieieiie 8-1
Client Startup Changesc.ooorueiiiieiec e 8-1
Creating a New TMap AIZOTithim........ccccoiiiiiiiiiiir e 8-2
TMap Algorithm Debugging...........cooeueiiiiiiiiiiici 8-4
SEIVET it 8-4

CHENL ..ot e 8-4

TMap Add-In TraNSFOIMS ... 8-4
Writing a TMap Add-In Transform............ccoeiiiiic e 8-4
Defining the TMap Add-In Transformcccccoeiiiiiiiiiicicceeeceeeeeeeeeeeeeeeeeeeenes 8-5
SEIVET ..ottt 8-5
Defining the Input Parameters to the TMap Add-In Transformccccooiiiiiiiicnen, 8-6
Using the TMap Add-In Transform in the CHent..........c.cccccoeeiiiiiiiiiiicceeeeceeeeees 8-6
DSA Add-IN OULPULLETS.........cooiiiiiiiiiiiic e 8-7
Writing a DSA Add-In OUtpUtero.ouoviiiii 8-7
Defining the DSA Add-In OULPULLETc.couiiiiiiiiiiiiiiicccccce e 8-8
SEIVET ..ottt 8-8
Defining the Input Parameters to the TMap Add-In Transformccccoooiiiiciinnnn, 8-9
Using the DSA Add-In Outputter in the CHent...........ccccoiiiiiiiiiiiiceecccceeceeeeenes 8-9
Use in the Application StUAIOcoiiiiiiiiiiiiiii 8-9

A Oracle DataLens Server JAVA API Reference

B Working Through a Proxy Server

Run-Time Java Proxy Parameters..............cccccccviiiiiiiiiiiiiiiiiiiiiicici s B-1
RtClient Java Proxy Parameters...........cccocooiiiiiiiiiiiiiiiiiiicccceeeeeeeas B-1

C Installing the Client Software

D Deprecated: Web Service Access to the Oracle DataLens Server using RPC

Generating a WSDL Document on Demand ... D-1
Client Web Service SOFtWare.............cooiiiiiiiiiccetccccc e D-1
Overview of the DSA INterface ... D-2
processListRequest and processOneLineRequestccooeueviiicreieiiicniiiiicceeceece, D-2
ProcesSDBREQUESL.........ccuiiiiiiiiiic s D-2
SOAP RPC One-Line Request EXample.........cccoiiiiiiiiiiiiceeeeeee s D-3
SOAP RPC One-Line Response Example..........ccccccceuiiiiniiiininnininiiiiiniinnnnnnnsces D-3

vi

Preface

This guide is intended to explain the basic capabilities of the Oracle DataLens Server
Java Interface.

To understand all of the features presented, you must use this guide in conjunction
with the Oracle Product Data Quality documents listed in "Related Documents" on
page -vii.

You must have Oracle Product Data Quality client software installed on your
computer.

Audience

You should have a basic understanding of the DataLens Technology.

This document is intended for all users of the DataLens Technology, including;:

Subject Matter Experts (SMEs)

IT Administrators

Related Documents

For more information, see the following documents in the documentation set:

The Oracle Product Data Quality Oracle DataLens Server Installation Guide provides
detailed Oracle Product Data Quality Oracle DataLens Server installation
instructions.

The Oracle Product Data Quality Oracle DataLens Server Administration Guide
provides information about installing and managing an Oracle DataLens Server.

The Oracle Product Data Quality COM Interface Guide provides information about
installing and using the Oracle DataLens Server COM APIs.

The Oracle Product Data Quality Application Studio Reference Guide provides
information about creating and maintaining Data Service Applications (DSAs).

The Oracle Product Data Quality AutoBuild Reference Guide provides information
about creating initial data lens based on existing product information and data
lens knowledge.

The Oracle Product Data Quality Knowledge Studio Reference Guide provides
information about creating and maintaining data lenses.

The Oracle Product Data Quality Glossary provides definitions to commonly used
Oracle Product Data Quality technology terms.

vii

» The Oracle Product Data Quality Services for Excel Reference Guide provides
information about creating a DSA based on data contained in a Microsoft Excel
spreadsheet.

» The Oracle Product Data Quality Task Manager Reference Guide provides information
about managing tasks created with the Task Manager or Governance Studio
applications.

See the latest version of this and all documents listed at the Oracle Product Data
Quality Documentation Web site at:

http://download.oracle.com/docs/cd/E17135_01/index.htm

Conventions

viii

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, text that you enter, or a
file, directory, or path name.

monospace Boldface, monospace type indicates commands or text that you enter.

Overview

Oracle DataLens Server is built on industry-leading DataLens™ Technology to
standardize, match, enrich, and correct product data from different sources and
systems. The core DataLens Technology uses patented semantic technology designed
from the ground up to tackle the extreme variability typical of product data.

Oracle Product Data Quality uses three core DataLens Technology modules:
Governance Studio, Knowledge Studio, and Application Studio. The following figure
illustrates the process flow of these modules.

DataLens™ Governance Studio
+ Dashboard - process visibility and reporting

+ Console — Review and approval for
Auto'Suggest, exceptions, matches, etc.

+ Workflow management & in-box
+ Used by Data Stewards & Product Specialists

Oversight & Exception
Management
How can | handle

exceptions and improve
the process?

DataLens™ Application Studio

+ Business rules for managing exceptions
+ Cascadng workflow

+ Quality metrics and control

+ Systern calls and integration

+ Usedby IT

Business Rules

What should | do
with it?

DataLens™ Knowledge Studio

+ Configure semantic recognition & extraction
+ Configure semantic match & de-duplication
+ Configure standardization, translation

+ Used by "Power Lser” Product Specialists

Semantic Rules
What is it?

Overview of the Oracle DataLens Server APIs

APIs

There are three main Application Programming Interfaces to the Oracle DataLens
Server platform.

= DSA Client - The Oracle DataLens Server DSA Client interface. This is used for
direct access to the DSA loaded on the Oracle DataLens Servers for processing
application/enterprise data. The DSA Client can process the following:

» Tab-separated input data

» Input data with any user-defined separator character

Overview 1-1

Oracle Datalens Server Java Libraries

s Input data from a database query

= Information Client - The Oracle DataLens Server Information Client interface.
This is used for access to information about the data lenses, Transform Maps and
DSAs that are loaded on the Oracle DataLens Servers. This is useful to check what
data lenses and maps are available from a client application.

= Ping Client - The Server Availability Client interface. This is used to check for a
response from any Oracle DataLens Server in an Oracle DataLens Server Group.

There is also a low-level Application Programming Interface to the Oracle DatalLens
Server platform. This interface is not recommended for application developers. If this
interface is needed, then Oracle Product Data Quality Professional Services should be
contacted to get assistance on the best practices and use of this interface to the Oracle
DataLens Servers.

s Oracle DataLens Client - The Real-Time Client interface. This is used for direct
access to the data lenses loaded on the Oracle DataLens Servers for processing
application data. The RT Client can process the following;:

= Single line of data
= Array of data
= List of data

Platforms
- The Java API can be used for integrating to the following.

o Java applications or Web pages

o Available on MS Windows or UNIX operating systems

Pre-Installation Requirements
Java JDK 1.4.2_02 - The API was compiled and built using this release.

Java JDK 1.5.0_01, 1.6.0_04, 1.6.0_11- The API is also compatible with these releases.

Oracle DataLens Server Java Libraries
This guide assumes that the reader is an experienced Java software developer.

All libraries and software needed for use by this API are loaded as part of the Oracle
DataLens Knowledge Studio and Oracle DataLens Server installations.

The Libraries that are needed are included on the installation media. Two libraries are
needed for creating new applications and integrating to existing applications.

ScsApi.jar
This library contains the Application interface classes.

ScsApilmports.jar
This is the library that contains the 3rd party components, needed by the AP

There is one 3rd party package used in this library.

Jdom 1.0
This is used for encoding/decoding the SOAP messages sent to the Oracle DataLens
Server from the client application.

1-2 Oracle Product Data Quality Java Interface Guide

Oracle Datalens Server Java Libraries

Note: If there are issues with using these versions of this software,
please contact Oracle Product Data Quality Professional Services.

Overview 1-3

Oracle Datalens Server Java Libraries

1-4 Oracle Product Data Quality Java Interface Guide

2

WigClient

DSA API to the Oracle DatalLens Server

Use of this interface is the preferred method to access any data transformations that
need to be done on the Oracle DataLens Server. This interface will directly execute the
DSAs that are deployed to the Oracle DataLens Server. Use of this interface should
supplant use of the Oracle DataLens APL

The WEgClient class is used as an interface to the Oracle DataLens Server. This class
provides methods to perform DSA transformations.

Updating Individual records and Data Lines

DSAs are not a one-to-one match of the input records and the output records. In some
cases this may be true, depending on the map. More likely, there will be multiple
output steps, and each step will only have a subset of the input data results. In some
output steps, there may be no data returned, and in other cases there may be multiple
output records returned for a single input record.

This means that the DSAs should pass the original Id into the processing, usually as
the first data field. This provides a means for matching the output result data with the
original input data.

In cases where data is just being processed, and there is no need to link the results back
to each individual input record, then passing the ID through the DSA is not needed.

Transforming Data

Import
Import the WEgClient with the following lines:

import com.onerealm.solx.api.client.WfgClient;
import com.onerealm.solx.api.client.WfgResultLine;
import com.onerealm.solx.api.client.WfgRequestLine;
import com.onerealm.solx.api.bean.Fault;

import com.onerealm.solx.api.iface.ErrorIF;

import com.onerealm.solx.api.util.Priorities;

DSA API to the Oracle DatalLens Server 2-1

WifgClient

Initialize the Client

An instance of the WfgClient class needs to be created with the Oracle DataLens
Server name and port.

Actual parameters:

= Server Name - This can be either a machine name (such as, "Production") or an IP
address (such as "127.0.0.1").

= Server Port - This is the port number of the server. By default, the Oracle DataLens
Server is installed on port 2229.

= Encryption flag - False uses normal HTTP communication; true uses the secure
HTTPS. Use false unless instructed otherwise by Oracle Product Data Quality
Professional Services.

» Client Code - This is the "secret code" that the Oracle DataLens Server provides
with your server license to prevent unauthorized access to the Oracle DataLens
Server via this API. This code is built into the Oracle DataLens Server license and
is only active if requested as part of the license. This value can be left blank if the
server license has no code.

= Application - This application name initiated the client request to the server. This
name is used to accumulate server statistics on the Oracle Datalens Server
Administration Web Pages.

// Create WfgClient object
WfgClient wfgClient;
wfgClient = new WfgClient (serverName, SERVER_PORT, ENCRYPTION,
clientCode, APPLICATION) ;

Create the List of Input Data

This is a brief example of creating the input data list. First we will create the list from
an array of static data as shown below.

private static final String m_inputDatal][] = {
{uou, "Res, 20 Ohm"},
{"1", "Res, Net 4 W"};

This data above is just an example. Your data will come from your application, from an
input file or a database query.

In any case, the data needs to be put into an input list for the Java API to process the
data. Below is an example of creating and populating the list using the example data.
In this case, the input data needs to be separated using the character separator, in this
case the Tab character. This interface is best used when there is only one field of input
data to be processed.

// Setup this list of String Fields for the request
List list = new ArrayList();
for (int i1=0; i<m_inputData.length; i++) {

List fields = new ArrayList(); // Create a List of Strings
fields.add(new String(m_inputData[i][0])); // Add the ID Data Field
fields.add (new String(m_inputData[i][1])); // Add the Description Field

list.add(fields);

2-2 Oracle Product Data Quality Java Interface Guide

WifgClient

Transform a List of Data

A list is passed to the runRtJob method and a single job ID is returned. The runRtJob
Method is called just a single time with a single list of data.

Actual parameters:

s Job ID - The DSA Job ID obtained from the runjJob call.

= DSA Name - The name of the DSA to run on the Oracle DataLens Server.
= Description - A description of this particular job.

» List - The list with a list of String input fields.

// Start the DSA job with our data

// NOTE: Input data with a List containing a list of string attributes.
// This is useful for already separated data
m_wfgClient.setLinesFromFields (list);
int m_jobID = m_wfgClient.runJob (PMapName, "My Job");

The preceding call is using the following default values:
= Job Priority of medium

= Job run-time locale of USA English

Alternative Method of Transforming Data

In any case, the data needs to be put into an input list for the Java API to process the
data. Following is an example of creating and populating the list using the example
data. In this case, the input data needs to be separated using the character separator.
The following example uses the Tab character. This interface is best used when there is
only one field of input data to be processed.

List list = new ArrayList();
for (int i=0; i<m_inputData.length; i++) {

list.add(new WfgRequestLine(m_inputData[i] [0] + "\t" + m_inputDatali][1]));
}

Now process the data using the list you created:

List
The list of WEgRequestLine objects that have been initialized with the tab-separated
input data.

// Start the DSA job with our data
wfgClient.setLines(list);
int m_jobID = wfgClient.runJob (PMapName, "Comment: API Test Job 1");

Retrieve Results from the Server for Jobs with a Single Output Step

When the job has finished, the transformed data can be retrieved from the Server back
to the client application. The getResultData method is called just a single time and
returns a list of WEgResultLine objects containing the result data.

Synchronous Method

The call will wait until the job has finished processing the data before control is
returned to the program with the result data.

// Get the DSA Results!

DSA API to the Oracle DatalLens Server 2-3

WifgClient

boolean waitForResults = true;
resultData = wfgClient.getResultData (jobID, waitForResults);

Asynchronous Method

You can check the job status and do other processing while waiting for the job to
complete. The getResultData method will throw a fault indicating that the job is still
processing the input data.

try {
// Get the DSA Results!
boolean waitForResults = true;
resultData = wfgClient.getResultData (jobID, waitForResults);
} catch (Fault f) {
// Check if the job has not completed yet
if (f.getErrorCode() == ErrorIF.ERROR_NOT_COMPLETED)

}

Server Faults that can be thrown from a call to getResultData include the following
ErrorIF errors:

ERROR_JOB_CANCELED
ERROR_CANCEL_FAILED
ERROR_COPY_FAILED
ERROR_JOB_FAILED

ERROR_NOT_COMPLETED

Retrieve Results from the Server for Jobs with Multiple Output Steps

When the job has finished, the transformed data can be retrieved from the Server back
to the client application. The getResultData method is called just a single time for
each output step. Each call returns a list of WEgResultLine objects containing the
result data, just as with the jobs with a single output step.

The call will wait until the job has finished processing the data before control is
returned to the program with the result data.

// Get the DSA Results!
resultData = wfgClient.getResultData(jobID, stepName, waitForResults);

The call to getResultData can be made synchronously or asynchronously as
demonstrated above.

Pulling the Result Data from the List

The result data is returned as a list of WEgResultLine objects.

List Data

This is how the result data fields should be pulled from the output lines. This list
interface will always maintain all the columns of output data, even if there is no data
for a particular output data field. In this case, the data field result will be a null value.

The following code excerpt demonstrates pulling out the individual data lines, with
the individual data fields.

2-4 Oracle Product Data Quality Java Interface Guide

WifgClient

// Iterate through the result data lines
Iterator iter = resultData.iterator();
while (iter.hasNext()) {
WfgResultLine resultLine = (WfgResultLine)iter.next();
List outFields = resultLine.getDataFields();

// Iterate through the result data fields
Iterator 12 = outFields.iterator();
while (i2.hasNext()) {
String outField = (String)i2.next();
System.out.print (outField) ;
If (i2.hasNext())System.out.print(", ");
}

System.out.println(" ");

Tab-Separated Data

This is a simple way to get to the result data for testing. The following code excerpt
demonstrates pulling out each line of tab-separated output data.

Note: This example works if you have specified an alternate
separator character.

Iterator iter = resultData.iterator();

while(iter.hasNext()) {
WfgResultLine resultLine = (WfgResultLine)iter.next();
System.out.println(resultLine.getData());

Listing Multiple DSA Jobs

The DSA Client can list Jobs can be listed from the Oracle Datalens Server
Administration Web Pages. The following types of lists can be retrieved from the
server.

= AllJobs (also since a particular date)

= Alljobs that have not completed

= Alljobs for a particular submitter (also since a particular date)

= All not-completed jobs for a particular submitter

= Alljobs for a particular approver

The following code shows the calls in the order listed in the preceding;:

List list = wfgClient.listAllJobs (sinceTS);

List list = wfgClient.listNCJobs();

List list = wfgClient.listSubmitterJobs (submitter, sinceTS);
List list = wfgClient.listNCSubmitterJobs (submitter);

List list = wfgClient.listApproverJobs (approver) ;

These calls all return lists of WEgJobInfo objects.

DSA API to the Oracle DatalLens Server 2-5

Miscellaneous Settings for the WfgClient

Listing a Single DSA Job

Information can also be obtained from a single job given the Job ID. The following Java
code example shows this:

WfgJobInfo jobInfo = wfgClient.listJob(jobID);

This call returns a single WEgJobInfo object with the job details.

Additionally, all the details on the steps are returned as well. To get the steps, use the
getSteps method call as shown in the following example:

List steps = jobInfo.getSteps();

These steps are a list of WEgJobStepInfo objects with all the details on the individual
job steps.

Using File Input and Output

The DSA API can use a text file as input and a text file as output. The complete path to
the input file and the complete path to the output directory are needed. Use the setters
to toggle on the input/output directory locations as in the following example:

// Setting the input file and output directory toggles on file processing
wfgClient.setOutputDirectory (outputLocation) ;
wfgClient.setInputFilePath(filePath);

jobID = wfgClient.runJob(transformProcess, desc);

These file input paths and the file output paths are sent directly to the Oracle DataLens
Server. This means that the paths must be paths that are relative to the server. For
example, if you give the path to an input file as:

C:/temp/raw_data.txt

This file is from the C drive on the server machine, not the C drive on the client
machine. The output directory is also a relative path from the server machine as well.

The source path can be a UNC path to a file on a remote machine.
Here is an example:

//node_name/shared/test.txt

Miscellaneous Settings for the WfgClient

Retry Count

These are options that can be used by the WfgClient. In fact, these settings can be
used by any of the Oracle DataLens Server Client API classes. For a complete list of
methods in the WEgClient class and additional information, see the Javadoc
documentation.

This is useful to control the amount of time that the client attempts to connect to the
Oracle DataLens Server. The default is to retry 20 times. This could be a problem in an
interactive user environment, where you does not have a couple of minutes while
WEgClient is attempting to connect to the server. In these cases you could set the
retry count to 1 or even 0. Look also at PingClient, which can be used to check if a
particular server is responding.

// Just set the retry to one for starting the job, then use the default

2-6 Oracle Product Data Quality Java Interface Guide

Miscellaneous Settings for the WfgClient

Filter Data

Job Priority

wfgClient.setRetryCount (1);jobID = wfgClient.runRtJob (transformProcess,
jobPriority, desc, rtLocale, input);
wfgClient.setRetryCountToDefault () ;

By default, data filtering is turned on for all input data. This will filter out all
inadvertent control characters that may be interspersed in your input data. This data
can cause problems with processing and sometimes it can cause problems with
sending the data from the client to the server via HTTP as XML Soap documents. Tab
characters are never filtered out.

// By default filtering is turned on and nothing needs to be done
wfgClient.setFilterData(false);
jobID = wfgClient.runRtJob(transformProcess, jobPriority, desc, rtLocale, input);

In the preceding example, the parameter input (with the List of input data) will be
filtered.

Where the filtering encounters control characters in the input data, they will be
substituted with the "?" character. This facilitates you in tracking down the source and
exact location of the control characters. The data lens can ignore the "?" character when
processing the input lines.

By default, a job priority of medium is used for all jobs.

This is the priority the job will be given on the server for processing. Large batch
overnight jobs should be given a priority of low. Small jobs with few input records, or
requests that need a quick response, such as users waiting for a response should get a
priority of High. All other jobs should use a priority of medium. The number of
concurrent jobs that can be run on the server is also controlled by the priority of the job
(For more information, use the Configuration link on the Oracle DataLens Server
Administration Web Pages). These priority values can be used from the Priorities
class in the ScsaApi.jar.

m Priorities. PRIORITY_LOW
m Priorities. PRIORITY_MEDIUM
m Priorities. PRIORITY_HIGH

// Set the job priority
wfgClient.setPriority(Priorities.PRIORITY_HIGH) ;

Run-Time Locale

By default, a run-time locale of USA English ("en_US") is used.
Set the locale to use for output of this job.

// Set the run-time locale
wfgClient.setRuntimeLocale (RT_LOCALE) ;

Separator Character

By default, a field separator character of tab is used.

DSA API to the Oracle DatalLens Server 2-7

Miscellaneous Settings for the WfgClient

// Set the run-time locale
wfgClient.setFieldSeparator('|');

Note: If you are using a different separator character than the
default, then the separator character must be specified when pulling
the data fields from the WEgResultLine data object.

List fields = wfgResultLine.getDataFields (FIELD_SEPARATOR_CHAR) ;

Client-Side Debugging Toggle
By default, this is toggled off when a new WEgClient object is created

This will dump the client information out to standard output prior to sending the
request to the server. This is only used for debugging and should never be toggled to
on in a production environment.

// Toggle on client data to standard output
wfgClient.setTrace (true);

Email Output

If set, then an API request that would return a list or update a file, will email the
results to the user specified instead.

// Send the results to the following user
wfgClient.setEmailAddress ("ybodrak@systems.com") ;
A DSA that updates a database will continue to update the database.

A DSA can be defined to return the results to an email address. This will work
regardless of this API Email setting. In fact, the email address in the DSA will take
precedence over this email set in the API

FTP Output

If set, then an API request that would return a list or update a file, will send the results
instead to the FTP location specified.

// Send the results to the following FTP site
wfgClient.setFtpName ("internal") ;

Note: This should not be set if the setEmailAddress is being used.
In addition, the FTP name being used "internal" is one that is setup on
the Oracle DataLens Server as in the following figure.

Ftp Connections Currently Defined

[Name| | Description [Directory| Host |Port|User]|

0O I ¥ internal FTP Test test 10.2.2.20 21 msjvm F

2-8 Oracle Product Data Quality Java Interface Guide

Miscellaneous Settings for the WfgClient

Database Parameters

By default, database parameters are not used.

This is used where the input map is expecting input from a database query and the
query requires parameters that must be passed in.

Create a list of Parameters and then set the Db parameters as shown in the following
code excerpt:

// Set the database parameters

List dbParams = new ArrayList();
dbParams.add("first_parameter");
dbParams.add("second_parameter") ;
wfgClient.setDbParameters (dbParams) ;

DSA API to the Oracle DatalLens Server 2-9

Miscellaneous Settings for the WfgClient

2-10 Oracle Product Data Quality Java Interface Guide

3

Server Information API to the Oracle
DatalLens Server

InfoClient

Getting Transform Map and Data Lens Information

Getting the data lens or Transform Map information uses a Java List interface. This is
used to find out what data lenses or Transform Maps are available (deployed) on a
particular server for processing. Details about the data lenses are also returned.

Import
Import the InfoClient with the following lines:

import com.onerealm.solx.api.client.InfoClient;
import com.onerealm.solx.api.client.ProjectData;
import com.onerealm.solx.api.client.MapData;

Initialize the Client

For all the examples shown below, an instance of the InfoClient class needs to be
created with the Oracle DatalLens Server name and port.

The SERVER_NAME can be either a machine name such as "localhost" or an IP address
"12.1.20.117".

The SERVER_PORT is the port number of the server. By default, the Oracle DataLens
Server is installed on port 2229.

// Create the Server Api object and point to the server
InfoClient projectApi = new InfoClient (SERVER_NAME, SERVER_PORT) ;

Get a List of Deployed Data Lenses

With the getDeployedProjectList method, you get a List of ProjectData objects
that contains all the Data Lenses that are deployed and loaded on the Oracle DataLens
Server.

Each ProjectData object contains a:

Server Information API to the Oracle DatalLens Server 3-1

InfoClient

= datalens name

= description of the data lens

= list of the Standardizations used by the data lens

» list of the Classification schemas used by the data lens

= list of the Unit Conversions used by the data lens

= single Source Locale used by the data lens

= list of the target Translation locales used by the data lens

This is a simple example of pulling the data from the returned List:

List prjList = infoApi.getDeployedProjectList();
Iterator itr = prjList.iterator();

while (itr.hasNext()) {
// Get the data lens information
ProjectData prjData = (ProjectData)itr.next();
String projectName = prjData.getProject();
String projectDesc = prjData.getDescription();
List standardizations = prjData.getStandardizations();
List schemas = prjData.getClassifications();
List unitConversions = prjData.getUnitConversions/();
String sourceLocale = prjData.getSourceLocale();
List targetLocales = prjData.getTargetLocales () ;

Lists of Schemas and Translations

The ProjectData object contains lists of classification and translation data for each
data lens as shown above. These are just lists of String data. These lists include:

» Classification Schemas used (UNSPSC, eCl@ss, or user-defined)
» Target Translation locales supported.

In addition, the ProjectData object contains lists of input and output data for each
data lens, as in the preceding. These are just lists of string data. These lists include:

s Input data list
s Output data list

Get a List of Deployed DSAs

With the getDeployedworkflowList method, you get a List of WorkflowData
objects that contains all the DSAs that are deployed and loaded on the Oracle
DataLens Server.

Each WorkflowData object contains:

= DSA name

s Description of the DSA

= List of input fields

= List of output fields

= Alist of Transform Maps used by this DSA

= Alist of the Database Connections used by this DSA

3-2 Oracle Product Data Quality Java Interface Guide

InfoClient

Follwoing is a simple example of pulling the data from the returned list:

List workflowList = infoClientApi.getDeployedWorkflowList () ;
Iterator itr = workflowList.iterator();

while (itr.hasNext())
// List the DSAs

WorkflowData workflowData = (WorkflowData)itr.next (
workflowData.
workflowData.

String name

String desc

List inputFields
List outputFields
List transformMaps
List dbConnections

workflowData

.getInputFields
workflowData.
workflowData.
workflowData.

getWorkflowNam

)

e();
getDescription (

(

s

1

(
)
)
getOutputFields (
getTransformMaps
getDbConnections () ;

'

)
();
()

Server Information API to the Oracle DatalLens Server 3-3

InfoClient

3-4 Oracle Product Data Quality Java Interface Guide

4

PingClient

Server Availability API to the Oracle
DatalLens Server

This interface is the provided to access the availability of the Oracle DataLens Servers.

The PingClient class is used as an interface to the Oracle DatalLens Server. This class
provides a simple method that returns true if an Oracle DataLens Server is available
for processing data and false if it is not.

Import
Import the PingClient with the following line:
import com.onerealm.solx.api.client.PingClient;
Simple Server Check

This is a simple test to check the server availability. This can be used prior to sending
data to the server for processing.

// Create the Server Api object and point to the server
PingClient pingApi = new PingClient (serverName, serverPort);
boolean available = pingApi.pingServer ("JavaAPI");

Round-Robin Server Check

This is essentially the same code as in the previous section, just that we are going
through a list of Oracle DataLens Servers in a Production Oracle DataLens Server
Group and returning the first server that responds.

Iterator iter = serverList.iterator();
while (iter.hasNext()) {
String serverNameStr = (String)iter.next();
if (new PingClient (serverName, serverPort).pingServer (userName)) {
return serverNameStr;

}

Server Availability API to the Oracle DataLens Server 4-1

PingClient

4-2 Oracle Product Data Quality Java Interface Guide

O

Error Handling

Client-Side Exceptions

Client-side exceptions are caught via the standard java Exception catching mechanism.
These faults are typically Connection exceptions, such as request/response timeouts or
failure to connect to the server.

Client-Side Log Messages
The client side messages are output using standard output.

The client side messages can be output using a logging package called log4j. The API
library uses Java reflection to determine if log4j is available. If it is already in your
client application, log4j is used to output messages.

For more information about log4j, see the Apache log4j Web site:

http://logging.apache.org/logdj/

Logdj to Standard Output

By default, client-side error messages will go to standard output.
These same log messages are sent to a log-file if log4j is used in your client application.

If you want to add log4j for use in your client application, then the logger needs to be
initialized. Otherwise, you will get the following error message in the standard output
window or log file if there is a client-side problem.

log4j:WARN No appenders could be found for logger
(com.onerealm.solx.api.client.ClientBase) .
log4j:WARN Please initialize the log4j system properly.

Add the following line of code to initialize the client-side logger, enabling logging
output to standard output.

import org.apache.logd4j.BasicConfigurator;

// Initialize Log4J to get client-side logging to standard output
BasicConfigurator.configure();

The output in this log is usually a connection re-try attempt or some other client-side
processing. Instead of the warning messages, you will now see the following types of
messages:

Error Handling 5-1

Server-Side Faults

- Attempt 2 to connect to http://lrivas-xp-a31:2229/datalens/Workflow
- Attempt 3 to connect to http://lrivas-xp-a3l:2229/datalens/Workflow
- Attempt 4 to connect to http://lrivas-xp-a31:2229/datalens/Workflow

Log4J to a File
If log4;j is being use in the client application, then the following will apply.

The client-side logging messages can be sent to a file as well. The following example is
a very simple logging configuration that will log all the messages to a log file in the
/tmp directory.

import org.apache.logdj.*;
// Initialize Log4J to get client-side logging to the /tmp directory
Logger logger =
Logger.getLogger (com.onerealm.solx.api.client.ClientBase.class);
SimpleLayout layout = new SimpleLayout();
FileAppender appender = null;
try {
appender = new FileAppender (layout,"/tmp/SCS_Log.txt",false);
} catch(Exception e) {}
logger.addAppender (appender) ;
logger.setLevel ((Level) Level.WARN);

Note: The level for messages can be changed from WARN to DEBUG to
get additional information if needed.

Server-Side Faults

There are also server-side exceptions that are propagated back to the client via the
SOAP interface.

Here is how those exceptions are caught:

try {
m_client.getResultData (...
} catch (Fault f) {
System.out.println(f.getErrorCode());
} catch (Exception e) {
System.out.println("Error in Test: " + e.getMessage());

}

Server-Side Exceptions

The Fault Exception object will provide a listing of error codes of the problem and
status of your request to the Oracle DataLens Server.

Use the macros in the com.onerealm.solx.api.iface.ErrorIf class to check
for specific errors.

For example:

try {
resultData = wfgRtApi.getResultData(m_jobID, waitForResults);
} catch (Fault f) {

5-2 Oracle Product Data Quality Java Interface Guide

Debugging Client Requests and Responses

if (f.getErrorCode() == ErrorIF.ERROR_NOT_COMPLETED) ...

Server-Side Log Messages

Go to the Oracle DataLens Server Administration Web Pages and examine the log file
from the home page. This will have a listing of any errors that were encountered in the

server-side processing of your request.

Debugging Client Requests and Responses

The Oracle DataLens Server API communicates with the Oracle DataLens Servers by
sending HTTP SOAP requests to the server and receiving HTTP SOAP responses back
from the server. The content of these XML messages can be sent to standard output for
debugging by the application programmer. This is useful if you want to verify that the
data being send and received by the application program is exactly what is being

communicated to the server.

This is turned on from the Oracle Datalens Server Administration Web Pages as

shown in the following:

Packet Tracing Administration

Toggle packet tracing on or off

Trace Datalenses™ (Real-Time) C on
Trace Transform Maps C on
Trace Process Maps & aon
Trace Genersl Packets C on

Tongle Facket Tracing l

T

C
(%
C

off
off
off
off

Error Handling 5-3

Debugging Client Requests and Responses

5-4 Oracle Product Data Quality Java Interface Guide

6

Compiling and Running with the API

Compile the Application with the Oracle DataLens Libraries

To compile your class with the Oracle DataLens Server client calls, the Oracle
DataLens Server client libraries (ScsApi . jar and ScsApiImports. jar) will need
to be part of your CLASSPATH.

These jar files are located in the /Interfaces directory on your installation CD.

Put this into either the CLASSPATH environment variable or use in the command-line
Java compile as shown follows:

javac -classpath " ScsApi.jar; ScsApilImports.jar" WfgClientTest.java

This creates the WEgClientTest . class file that is part of your application.

Run the Application with the Oracle DataLens Libraries

The Oracle DataLens Server libraries need to be referenced when running an
application that accesses the Oracle DataLens Server.

The ScsApi.jar and ScsApiImports.jar file is located in the /Interfaces
directory on your installation CD.

The following is an example of running the program compiled in the previous
example.

java -cp " ScsApi.jar; ScsApiImports.jar;.;" WfgClientTest

In this case, we are using the API and the ScsApiImports libraries, running the Java
class file that we just compiled.

Compiling and Running with the APl 6-1

Run the Application with the Oracle Datalens Libraries

6-2 Oracle Product Data Quality Java Interface Guide

7

Web Service Access to the Oracle DatalLens
Server Using Doc-Lit

Access is provided to the Oracle DataLens Server as a Document-Literal Web Service.

Generating a WSDL Document on Demand

To integrate with an Oracle Product Data Quality DSA as a Web Service, you need
software that will talk to the specific Oracle DataLens Web Services. Many vendors
provide tools to generate this software from a Web Services Description Language
(WSDL) document, which is an XML format for describing network services. You can
view the WSDL for the Oracle DataLens Web Services by using a browser.

Enter the following into a browser:

Note: The host name and port number may differ.

http://localhost:2229/datalens/ws/Processor?wsdl (Document-Literal)

This displays the WSDL document, which can be saved by right-clicking in the
document in the browser, selecting View Source, and then saving the file from within
your browser. For instance, the file can be saved as Processor.wsdl.

Note: Internet Explorer displays the WSDL document; Netscape
Navigator displays a blank web page for the returned document.

Client Web Service Software

For your Web Service clients, client-side software can be generated from this WSDL
document to access the Oracle DataLens Server.

Overview of the DSA Interface
There is a single Service called "ProcessorService". This uses a Port called "Processor".

Three Oracle DataLens Web Services Operations can be used to process data as
follows:

ProcessorList
This takes an input array of strings and returns an output array of strings.

Web Service Access to the Oracle DatalLens Server Using Doc-Lit 7-1

Overview of the DSA Interface

ProcessorOneLine
This takes a single string of input and returns a single string of output.

ProcessorDB

This takes a database query (defined in the Transform Map) and returns a job Id of the
DSA Job that handled the request. The output is assumed to be a database update,
email, or FIP.

processListRequest and processOneLineRequest Operations

The difference between these two operations is that processListRequest takes an
array of lines and processLineRequest takes a single line of data as a string. The
transformed data is returned. This call is synchronous.

Parameters are as follows:

dsaName

lines/line
dbParameters
priority
runtimeLocale
fieldSeparatorChar
application
description

processDBRequest

This call takes the database parameters as input and returns the DSA Job ID. This call
is asynchronous.

Parameters are as follows:

dsaName
dbParameters
priority
runtimeLocale
fieldSeparatorChar
application
description

For additional information about these parameters, see Chapter 2, "DSA API to the
Oracle DataLens Server."

SOAP Document-Literal One Line Request Example

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://www.silvercreeksystems.com/ws">
<soapenv:Header/>
<soapenv:Body>
<ws:processOneLine>
<dsaName>sampleDSA</dsaName>
<!--Optional:-->
<line>1"res, 17o0hm, 19watt, 20%</line>
<!--Zero or more repetitions:-->
<dbParameters>?</dbParameters>
<!--Optional:-->
<priority>l</priority>
<!--Optional:-->

7-2 Oracle Product Data Quality Java Interface Guide

Overview of the DSA Interface

<runtimeLocale>en_US</runtimeLocale>
<!--Optional:-->
<fieldSeparator>"</fieldSeparator>
<!--Optional:-->
<application>ClientCall</application>
<!--Optional:-->
<description>Example Doc-Lit client call</description>
</ws:processOneLine>
</soapenv:Body>
</soapenv:Envelope>

SOAP Document-Literal One Line Response Example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>

<ns2:processOnel.ineResponse
xmlns:ns2="http://www.silvercreeksystems.com/ws">

<return>1"Resistor, 17 Ohm, 20%, 19 Watt”32121609"Fixed

resistors”Resistor”Item_Name"RESISTOR"Item Type”"Resistance”17
OHM"Power”19”Tolerance”20%"Package_Size”"Construction”"Mounting”*Pin_Count
~"For_sale_packaging”</return>

</ns2:processOneLineResponse>

</S:Body>

</S:Envelope>

SOAP Doc-Lit Multi-Line ProcessList Request Example

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://www.silvercreeksystems.com/ws">
<soapenv:Header/>
<soapenv:Body>
<ws:processList>
<dsaName>sampleDSA</dsaName>
<!--Zero or more repetitions:-->
<linesOfData>1"res, 17ohm, 19watt, 10%</linesOfData>
<linesOfData>2"res, 27ohm, 29watt, 20%</linesOfData>
<linesOfData>3"res, 37ohm, 39watt, 30%</linesOfData>
<!--Zero or more repetitions:-->
<dbParameters>?</dbParameters>
<!--Optional:-->
<priority>l</priority>
<!--Optional:-->
<runtimeLocale>en_US</runtimeLocale>
<!--Optional:-->
<fieldSeparator>"</fieldSeparator>
<!--Optional:-->
<application>ClientCall</application>
<!--Optional:-->
<description>Example list Doc-Lit client call</description>
</ws:processList>
</soapenv:Body>
</soapenv:Envelope>

SOAP Doc-Lit Multi-Line ProcessList Response Example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

Web Service Access to the Oracle DatalLens Server Using Doc-Lit 7-3

Overview of the DSA Interface

<S:Body>
<ns2:processlListResponse xmlns:ns2="http://www.silvercreeksystems.com/ws">
<return>1”Resistor, 17 Ohm, 10%, 19 Watt”32121609"Fixed
resistors”Resistor”Item_Name"RESISTOR"Item Type”"Resistance”17
OHM"Power”19”Tolerance”10%"Package_Size”"Construction”"Mounting”"Pin_Count
~"For_sale_packaging”</return>
<return>2”Resistor, 27 Ohm, 20%, 29 Watt”32121609"Fixed
resistors®Resistor”Item_Name”RESISTOR"Item_Type”"Resistance”27
OHM"Power”29”Tolerance”20%"Package_Size”"Construction””"Mounting”*Pin_Count
~"For_sale_packaging”</return>
<return>3"Resistor, 37 Ohm, 30%, 39 Watt”32121609"Fixed
resistors”Resistor”Item_Name"RESISTOR"Item Type”"Resistance”37
OHM"Power”39”Tolerance”30%"Package_Size”"Construction”"Mounting”*Pin_Count
~"For_sale_packaging”</return>
</ns2:processListResponse>
</S:Body>
</S:Envelope>

SOAP Document-Literal ProcessDb Request Example

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ws="http://www.silvercreeksystems.com/ws">

<soapenv:Header/>

<soapenv:Body>
<ws:processDB>
<dsaName>SampleDSADbInput</dsaName>
<!--Zero or more repetitions:-->
<dbParameters>1</dbParameters>
<dbParameters>2</dbParameters>
<!--Optional:-->
<priority>2</priority>
<!--Optional:-->
<runtimeLocale>en_US</runtimeLocale>
<!--Optional:-->
<fie1dSeparator>|</fieldSeparator>
<!--Optional:-->
<application>ClientCall</application>
<!--Optional:-->
<description>Example Db Input Doc-Lit client call</description>
</ws:processDB>
</soapenv:Body>
</soapenv:Envelope>

Note: The field separator will be used when the output from the
database job is a text file.

SOAP Document-Literal processDb Response Example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns2:processDBResponse xmlns:ns2="http://www.silvercreeksystems.com/ws">
<return>784</return>
</ns2:processDBResponse>
</S:Body>
</S:Envelope>

7-4 Oracle Product Data Quality Java Interface Guide

Overview of the DSA Interface

The return value of the preceding processDb call is the DSA Job ID, in this case 784.
This job reads data from the database and updates other fields in the database as in the
following example:

DSA Job Details for Job 784

Property | Value
Defmation eamplaFien | Cef0RIinput
D raptioen Exarmpds Db Teget Do Lit client call
Htart Tawme Mamggry IT, I0I0 1eldi06 PM MET
Faswih Tivie Jamgpry I, T000 1014056 PM MET
e abigs Haly M0 §eD
Crested by CligmCal
Enput Line Count 2
Dutput Line Count [Good) a
Dutput Line Count [Mot Processed) a
Dutput Path/Fils Mok Unad
Humtima: Lecals LIS

DSA Step Details

Input | [
. o, o . . » : n] =
Step Name| Type |Status Description| Start Time| End Time |Duration) Line !I il;;:':-.":':::"t-l.UIIImEI

Count | |

OB Ingat Comgletsd Ingut from 2010=01+27 000 13T M0 M0 510 O o
“m Databazs 11456177 131424103
» Roastsbory T Complated null 2010-01+27 00 12T HE0 M0 S0 2 -]
170 14:%6.200 11454 410
Proces g Complebed null 2010=01+2T IO 12T HIO M0 S0 2 3
SpdateViales 121456423 T I40EATE
00 Cutput Complebed ucdate 2010-03+27 20300327 HeD Ma0 i 2 o
- clasalams in Db 31303456401 13014056491

Web Service Access to the Oracle DatalLens Server Using Doc-Lit 7-5

Overview of the DSA Interface

7-6 Oracle Product Data Quality Java Interface Guide

8

Customizing DSA Maps with Java Add-Ins
and Algorithms

There are three types of customizations that can be done in a DSA and Tranform Map
(TMap).

s TMap Algorithms (The easiest to use)

s TMap Add-in Transforms (Usually used by Oracle Product Data Quality
Professional Services)

s DSA Add-in Outputters (Usually used by Oracle Product Data Quality
Professional Services)

The TMap Algorithms are the easiest to use and require no special work outside of the
Application Studio. The Java code is written directly in the Tranform Map Builder in
Application Studio and can be tested and run from here. The limitation is that all the
Java code needs to be part of the single transform method.

The TMap Add-in Transforms and DSA Add-in Outputters are really for use by Oracle
Product Data Quality Professional Services to create powerful custom widgets for use
in the DSAs. This Java code can contain entire packages of classes and needs to be
written in an external Java API and imported into the Oracle DataLens Server.

TMap Algorithms

Initial Configuration

Java TMap Algorithms, allow Java code to be embedded into Tranform Maps and have
the code be executed when the parent DSA is run. The Oracle DataLens Client and
Server software is configured "out of the box" to support this with no configuration
changes needed.

Client Startup Changes

The Algorithm widget is available in the Process Control Transformation menu in the
Tranform Map Builder as follows:

Customizing DSA Maps with Java Add-Ins and Algorithms ~ 8-1

TMap Algorithms

i, Transform Map Builder: Transformation Map - “extract_attributes™
Be Ek Vew Tronsform Tooks Heb

B AR V& « Q0pdu &
4

=IF axtract_athribotes
= _§ Trarformstions 1
) Lenws Travshoness: ﬂl
& | Rem Definition Transforms

) 08 Transforms

el Sarvices

:: Arbrikates b Felds ml-“*‘___\‘_“-‘_
= Prodess Conkral
W Maich
7 Perihimestic Match
o Selact Frst Good
[Attribwte Histching
B Corventt Exosphion

gM-}Emm
frigce thin|

| Hrirgs

+

[

Creating a New TMap Algorithm

Drag the Algorithm object into your Tranform Map as follows:

y, Transform Map Buflder: Transformation Map - "test_alparith™
Ble Ede View Tramflom Tpoh pel
‘B AR YE OIS S

|3 et _sigerithes
B —*_’r*"m"“""’ - @i | 1.1

) Iere Defrdbion Tracefomes
Z J 08 Trnafor
| e Servces

) thrates B Fedds
=y Frocess Control # 2 Humenakr
F Makch
=7 Arvhistic Mabch
i Seback Farst Good
Ty dbrbeute Hatdhing
‘et Exceplion & 3. Denommalor 2.Res
Bl - Escumpliars
) Stings
B M

The following dialog will appear. Name and create a new algorithm object as shown
on the left. In this example, we modified the template Java code to divide two
numbers as follows:

8-2 Oracle Product Data Quality Java Interface Guide

TMap Algorithms

fuane L
[]
gt Ay v
publis Stcing toassform{dtring pl, Jtcing @1 0 Fulblic JIELRY LeARSToSwiDECied @i, SEFLeg pIF |
LE Pl oquals{=1000%k) | igat B = Flost.pasesF Loat (Pl i
CELurn “0me Thoupasd®) tioas 4 = Filost, paxsel Lost (211
boelew Af (pd.equale{TE000"H) | Modd =)
return "Twe Thoussod™y float ¢ = m'dy
wlae i eotucn Float. LoSeeing (] §
EetuEn “imnaiid=:) wlae |

FEluEn “Cahdsd divide BF O°F
I i

sl Far st s {Comevn sgar abed bl) Pt B e o, S s bk

(=] Lot) ool)

Notes on the Algorithm Java method:

s - The name of the Algorithm can be any valid Java Class name, but the method
needs to be declared as public String transform.

s - The method may contain one or more string parameters. In the previous
example, the method is taking two string parameters.

Test the new code as in the following figure:

Tesk Parameters (Comma separated lst)
34

[Test]

Results
0.75

o] [concel

Select OK to save the new custom Algorithm. The Tranform Map looks like the
following:

1.1 | ﬁi

& z.mmemur}-h

e
-___-__'_‘——_
El 3.Dermm|natc-r|r4‘ 2 Result

Customizing DSA Maps with Java Add-Ins and Algorithms 8-3

TMap Add-In Transforms

The new Custom Algorithm is ready to check-in and deploy to the Oracle DataLens
Server and start using in your client applications.

TMap Algorithm Debugging

All these Customizations require that the classes directory be part of the Java
classpath. This has already been done for you as part of the standard Oracle
DataLens Client and Server installations.

Server

If you encounter any problems running the TMap Algorithm on the server, check that
the environment variable CATALINA_HOME is set on the Oracle DataLens Server with
value C:\Program Files\Apache Software Foundation\Tomcat 5.5.

The classes directory is located in the
../Tomcat /webapps/datalens/WEB-INF/classes directory already and nothing
needs to be done.

Client

The script file that starts the Application Studio needs to have the $SOLX_
HOME/classes directory added to the classpath as follows:

set CP6=%SOLX_HOME%/classes
set clspath=%CP1%;%CP2%;%CP3%;%$CP4%;%CP5%; %CP6%

Note: This is already done for you in during the Oracle DataLens
client software installation.

TMap Add-In Transforms

Java TMap Add-in Transforms are only created by Oracle Product Data Quality
Professional Services.

Java TMap Add-in Transforms allow user-defined widgets to be available for use in
DSAs.

For additional information on these classes, see the file, Add2Int.java.

Writing a TMap Add-In Transform
The class may be in any Java package of your choosing.
The class name may be any valid Java Class name.

In the following example, we are using a TMap add-in transform class that is shipped
with the Oracle DataLens Server installation called GetField.

The class must implement a constructor with a single string argument (the name).

public GetField(String name) {
super (name) ;

}

The class must implement a method called getResults as follows:
/* *

* This is the main method called by the Add-In Transform server code.

8-4 Oracle Product Data Quality Java Interface Guide

TMap Add-In Transforms

*
* @param linesOfInputData is an Array of data for each line being

* processed,

* where the data is an array of the inputs to a single computation.
*

* @param parameters are the input parameters for this TMap Add-in function.
*

* @return XfmInfo[] of the results of the transformation, one element
* for each line of input data.
*/
public XfmInfo[] getResults(String[][] linesOfInputData,
Map<String, String>
fixedParameters) {
int inputLength = linesOfInputData.length;
XfmInfo[] results = new XfmInfo[inputLength];
// Get the parameters here..
// Processing happens here..
return results;

}

1. linesOfInputData parameter - An array of arrays of Strings. The 1-D level
array has one element for each line of input that must be processed. Each element
of the 1-D array has a 2-D String[] containing the column data needed for the
transformation. Thus the array looks like:

String [numberOfLines] [numberOfColumnsOfInputDatal

2. fixedParameters - These are the parameters to this add-in transform, passed in
from the DSA.

3. Returnan XfmInfo[] of the results of the transformation, one element for each
line of input data.

Defining the TMap Add-In Transform

In the Application Studio, the add-in classes will be toggled on if the system finds the
AddInClasses.xmnl file in the shared config directory on the Oracle DataLens Server.

Server

The class needs to be added to the AddInClasses.xml file, in the
C:\Datalens\server\data\shared\common\config, directory, as follows:

<AddInClasses>
<Transforms>
<class>
<name>Get Field</name>

<className>com.onerealm.solx.maps.xfm.code. transform.GetField</className>
<description>Gets the specified field from a string. The field index,
field separator, and default value are specified in the fixed
parameters.</description>
</class>
</Transforms>
</AddInClasses>

Customizing DSA Maps with Java Add-Ins and Algorithms 8-5

TMap Add-In Transforms

Defining the Input Parameters to the TMap Add-In Transform

This step can be skipped if the TMap Add-in transform does not use any initialization
parameters.

The parameters to the new TMap add-in transform need to be added to the
AddInTramsformParameters.xml configuration file. This file is located in the
same configuration directory as the AddInClasses.xml. In this case, our GetField
add-in takes three parameters and the AddInTransformParameters.xmnl file will
look like similar to the following:

<TransformParameters>
<AddIn>
<name>Get Field</name>
<parameters>
<parameter>
<name>separator</name>
<default>|</default>
<desc>Separator for splitting string into fields</desc>
<editable>true</editable>
</parameter>
<parameter>
<name>index</name>
<default>0</default>
<desc>Index of field to extract (l-based)</desc>
<editable>true</editable>
</parameter>
<parameter>
<name>default</name>
<default></default>
<desc>Default value to return if field not found</desc>
<editable>true</editable>
</parameter>
</parameters>
</AddIn>
</TransformParameters>

Using the TMap Add-In Transform in the Client

No changes are need for the client configuration to pick up your new Tmap Add-In
Transformation. The Oracle DataLens Server just needs to be restarted whenever the
CustomClasses.xml file is updated (because the server reads this file on startup).

Note: You will be able to add the new Tmap Add-in to your DSA
map, but this cannot be tested on the client, it can only be tested by
running a job on the server.

Now start the Application Studio and the new add-in class will be available in the
TMap interface as follows:

8-6 Oracle Product Data Quality Java Interface Guide

DSA Add-In Outputters

divide

=3 Transformations

&[] Lens Transforms

&[] Ttem Definition Transforms

&[] Web Services

&[] DB Transforms
+-_] Attributes 8 Fields
}-_] Process Control
] Strings
i] Math
}-|_] Exception Information
+-__] From Decision Map

=H-_4 Add-In Functions
Pycet Field

B4 New Input/Output

i-med Inputs from Map

@ Input Column (Ctrl-1)
@ Output Column (Ctrl-0)

--[[3) mem Definition Output

-{_] Database Updates

"-I_-: ==

]

+

Drag the Get Field Add-in Function into the TMap and the parameters will be
displayed for editing in a table as follows:

E Add-In Function

separator || Gaparakor for splitting string into Fields
ndex 10 Tndex of Field to extract (1-based)

Ak mue Do gl walpe bo returm F Feekd nect Fowund

DSA Add-In Outputters

Java DSA Add-in Outputters can write data out in any user-defined format. Since this
is an output step, there is no routing of data past this step in the DSA Map, so this
should be used only by Java code that will not be throwing any exceptions that need to
be caught and processed by the DSA Map.

Writing a DSA Add-In Outputter

The class may be in any Java package of your choosing.
The class name may be any valid Java Class name.

In the following example, we are using a TMap add-in transform class that is shipped
with the Oracle DataLens Server installation called SCS XML.

The main method that is called is writeOutput. This returns a
WEgCustomOutputReturn object, which contains information needed to forward the

Customizing DSA Maps with Java Add-Ins and Algorithms 8-7

DSA Add-In Outputters

result data to an email address or an FIP site. If this returns null, then there will be no
email or FTP.

Note: Even if this object is returned, the email and/or FIP is only
sent if it is defined in the DSA or the DSA job has defined email or FTP
output.

Following is an example of the structure of the Output Adapter Class:

package com.onerealm.solx.maps.wfg.code.output;
/**
* @param job PMap job information
* @param data Wfg Job data
* @param outputDir The directory to write the xml file
* @param parameters The input parameters to the Add-in Outputter.
* @return Custom output
* @throws SaException Superclass for all SCS exceptions
* @throws IOException Signals that an I/0 exception of some sort has occurred
*/
public WfgCustomOutputReturn writeOutput (WfgJob job, WfgInputData data, String
outputDir,
Map<String, String> parameters) {
List<WfgDatalLine> lines;
while ((lines =
data.getNextGoodLines (WfgConstants .MAX_MEMORY_LINES)) != null) ({
for (WfgDataLine line : lines) {
System.out.println(line.getData());

}

return null;

Defining the DSA Add-In Outputter

In the Application Studio, the add-in classes will be toggled on if the system finds the
AddInClasses.xml file in the shared config directory on the Oracle DataLens Server.

Server
The class needs to be added to the AddInClasses.xml file as follows:

<AddInClasses>
<Outputs>
<class>
<name>SCS XML</name>

<className>com.onerealm.solx.maps.wfg.code.output.scspim.ScsStepPimProducts</class
Name>
<description>This will output a STEP PIM Product XML document
with SCS processed data; The default file is
/tmp/ScsStepPimProductData_jobId.xml</description>
</class>
</Outputs>
</AddInClasses>

8-8 Oracle Product Data Quality Java Interface Guide

DSA Add-In Outputters

Note: There is 1o client file needs to be updated for use with the
Application Studio.

The server file needs to be updated for use running DSAs on the Oracle DatalLens
Server and to make this available to the Application Studio Clients.

Follow the instructions in the TMap Add-in Transforms section for changing the
startup scripts and adding the new classes to the classpath.

Defining the Input Parameters to the TMap Add-In Transform

This step can be skipped if the TMap Add-in transform does not use any initialization
parameters. In this example, we are not using any input parameters.

Using the DSA Add-In Outputter in the Client

No changes are need for the client configuration to pick up your new DSA Add-In
Outputter. The Oracle DataLens Server just needs to be restarted whenever the
CustomClasses.xmnl file is updated (because the server reads this file on startup).

Note: You will be able to add the new DSA Add-in Outputter to
your DSA map, but this cannot be tested on the client, it can only be
tested by running a job on the server.

Now start the Application Studio and the new add-in class will be available in the
TMap interface s shown below.

Use in the Application Studio

Once the above steps are finished, the new DSA Output Adapter is now available for
use in the Application Studio as follows:

L testaigorithe
=) Process Steps
dy Core Skep
5 Aksristhie Sap
=) Dats Inpakt
=" Texk [rput
{1l OB bnpt
B ML gt
=i Dats Cubput
Text Output
b 0B Outpet
B8 ML Update
=) Oukput Adaghers
i, 4505 44
Y 505 20 Structurs
= (L Pre-Posk Propessng
o Frorsgushes
% Pre-Frocessing
.p-': Pt P i g
% Emal hotfcation
=) Defed Pradeiang Shegd
& By divide
® Umused Transfoem Mags

Customizing DSA Maps with Java Add-Ins and Algorithms 8-9

DSA Add-In Outputters

8-10 Oracle Product Data Quality Java Interface Guide

A

Oracle DatalLens Server JAVA API Reference

Please contact technical support for the complete JavaDoc HTML reference pages to all
the Java APIs described in this document.

» Tree representation (both sparse and full trees supported)

Oracle DatalLens Server JAVA API Reference A-1

A-2 Oracle Product Data Quality Java Interface Guide

B

Working Through a Proxy Server

Sometimes a Java program needs to call the Oracle DataLens Java API to an Oracle
DataLens Server outside of your firewall. Normally this is not a problem, but
sometimes there is a proxy server that must be negotiated to get to the outside world.

There are two solutions to this problem.

= Use the Oracle DatalLens Web Services interface and you your WSDL connection
software to negotiate through the proxy server.

= Use the Java Proxy arguments to the java command.

Run-Time Java Proxy Parameters
Three parameters are used with the java command to set the proxy information:
m DproxySet=true
m DproxyHost=hostname or IP Address
m DproxyPort=8080
This is shown in the following example java call to a program called WEgProgram:

java -cp "./ScsApi.jar;./ScsApilmports.jar;." -DproxySet=true
-DproxyHost=10.1.60.116 -DproxyPort=8080 WfgProgram

RtClient Java Proxy Parameters

There are four additional parameters to the RtClient overloaded constructor for use
going through a proxy. For additional information, see the JavaDoc.

s @param proxyHost - the name of the proxy server

» @param proxyPort - the port of the proxy server

» @param proxyUser - the user name to login to the proxy server

» @param proxyPassword - the password to login to the proxy server

These are shown in the following between the ServerPort and the ENCRYPTION
parameters:

m_wfgClient = new WfgClient (serverName, serverPort,
"10.1.60.106",2229, "cbidwell", "secretl",
ENCRYPTION, clientCode, APPLICATION) ;

Working Through a Proxy Server B-1

Run-Time Java Proxy Parameters

B-2 Oracle Product Data Quality Java Interface Guide

C

Installing the Client Software

Oracle Product Data Quality uses a concept called Java Web Start to initially install
and maintain the current version of the software on your client desktop. The process
requires you to access the Oracle DataLens Server to initiate the connection and
download the software.

You download and install the Oracle Product Data Quality client applications using
Java Web Start by browsing to the installation page for your Oracle DataLens Server as
follows:

1. Using Microsoft Internet Explorer, browse to one of the following URLs as
appropriate for your server:

Note: If you setup a different port number for your application
server other than 2229, you must use that port number in the
following URL when browsing to the Oracle DataLens Server to
download the client applications.

32-bit
http://<server>:2229/datalens/datalens.html
64-bit
http://<server>:2229/datalens/datalens64.html
Where <server> is the hostname of the Oracle Datalens Server

The application download and installation begins. If you do not have a supported
Java environment on the target installation machine the Java Web Start program
automatically redirects you to a Java download site and begins a Java Runtime
installation.

T
Doemiaading application,

2. If the preceding Java Web Start message is not displayed, you must initiate a
connection and download the software by browsing to:

Installing the Client Software C-1

http://<server>:2229/datalens/datalens.jnlp

Oracle Product Data Quality files are digitally signed by a trusted source so the
following security warning is displayed.

The application’s dighal sguabture has bees veriled.
D s wrik B s e agpdicaiion

e Gracin Frpdoct Jarin iy
ek Orpce Lk v
gy o bt LIF
e
[] oo |

u R e e e e T

3. To avoid the security dialogue in the future you can select the Always trust
content from this publisher check box.

4. Click Run to continue and complete the installation.

The Oracle Product Data Quality log on dialog is displayed.

.71-_4|II Powered by
- ratslens™ Technology

C-2 Oracle Product Data Quality Java Interface Guide

D

Deprecated: Web Service Access to the
Oracle DatalLens Server using RPC

Important: This web service has been deprecated and is no longer
supported.

Access is provided to the Oracle DataLens Server as a Web Service.

Generating a WSDL Document on Demand

Note: The wsdl4j library is needed to enable the RPC Web Services
interface.Contact Professional Services to get the library that needs to
be put in yourOracle DataLens Server lib directory. You will get a
ClassNotFoundException if the wsdl4j jar is not there.

To integrate with an Oracle Product Data Quality DSA as a Web Service, you need
softwarethat will talk to the specific Oracle DataLens Web Services. Many vendors
provide tools togenerate this software from a WSDL document. You can view the
WSDL for the OracleDataLens Web Services by using a browser. Enter the following in
a browser (the host and port may differ).

http://localhost:2229/datalens/services/Processor?wsdl (RPC)

This displays the WSDL document, which can be saved by doing View Source and
saving the file from within your browser. For instance, the file can be saved as
Processor.wsdl.

Note: Internet Explorer displays the WSDL document; Netscape
Navigator displays a blank web page for the returned document.

Client Web Service Software

For your Web Service clients, client-side software can be generated from this WSDL
document to access the Oracle DataLens Server. It the client uses Apache Axis the
WSDL2Java program can be run to generate client-side Java files. For other types of
Web Service clients, use the Web Service generator supplied by the vendor.

Deprecated: Web Service Access to the Oracle DataLens Server using RPC D-1

Overview of the DSA Interface

Overview of the DSA Interface

There is a single Service called ProcessorService, which uses a port called
Processor.

There are three Oracle Datalens Web Services Operations that can be used to process
data.

ProcessorList
This takes an input array of strings and returns an output array of strings.

ProcessorOneLine
This takes a single string of input and returns a single string of output.

ProcessorDB

This takes a database query (defined in the Transform Map) and returns a job Id of the
DSA Job that handled the request. The output is assumed to be a database update,
email, or FTP.

processListRequest and processOneLineRequest

The difference between these two is that processListRequest takes an array of
lines and processLineRequest takes a single line of data as a string. The
transformed data is returned. This call is synchronous.

Parameters are as follows:

dsaName

lines/line
dbParameters
priority
runtimeLocale
fieldSeparatorChar
application
description

processDBRequest

This call takes the database parameters as input and returns the DSA Job ID. This call
is asynchronous.

Parameters are as follows:

dsaName
dbParameters
priority
runtimeLocale
fieldSeparatorChar
application
description

For additional information about these parameters, see Chapter 2, "DSA API to the
Oracle Datalens Server."

D-2 Oracle Product Data Quality Java Interface Guide

Overview of the DSA Interface

SOAP RPC One-Line Request Example

<soapenv:Envelope xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsr="http://wsrpc.svr.solx.onerealm.com">
<soapenv:Header/>
<soapenv:Body>
<wsr:processOneLine

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<dsaName xsi:type="soapenc:string"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">sampleDSA</dsaName>

<line xsi:type="soapenc:string"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">17"res, lohm, 2w,

%</line>

<dbParameters xsi:type="xsdl:ArrayOfstring"
soapenc:arrayType="soapenc:string[]" xmlns:xsdl="http://soapinterop.org/xsd"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" />

<priority xsi:type="soapenc:string"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">1</priority>

<runtimelLocale xsi:type="soapenc:string"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">en_US</runtimeLocale>

<fieldSeparatorChar xsi:type="soapenc:string"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">"</fieldSeparatorChar>

<application xsi:type="soapenc:string"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">ClientRPCCall</applicati
on>

<description xsi:type="soapenc:string"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">Web Services RPC One
Line Client Call</description>

<clientCode xsi:type="soapenc:string"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">NotUsed</clientCode>

</wsr:processOneLine>
</soapenv:Body>

</soapenv:Envelope>

SOAP RPC One-Line Response Example

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soapenv:Body>

<nsl:processOnelLineResponse
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:nsl="http://wsrpc.svr.solx.onerealm.com">

<processOneLineReturn xsi:type="soapenc:string"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">17"Resistor, 1 Ohm, 3%,
2 Watt”32121609"Fixed
resistors”Resistor”Item_Name"RESISTOR"Item Type”"Resistance”l
OHM"Power”2”Tolerance”3%"Package_Size""Construction”"Mounting”*Pin_Count”""
For_sale_packaging”</processOneLineReturn>

</nsl:processOneLineResponse>

</soapenv:Body>

</soapenv:Envelope>

Deprecated: Web Service Access to the Oracle DataLens Server using RPC D-3

	Contents
	Preface
	Audience
	Related Documents
	Conventions

	1 Overview
	Overview of the Oracle DataLens Server APIs
	APIs
	Platforms
	Pre-Installation Requirements

	Oracle DataLens Server Java Libraries

	2 DSA API to the Oracle DataLens Server
	WfgClient
	Updating Individual records and Data Lines
	Transforming Data
	Import
	Initialize the Client
	Create the List of Input Data
	Transform a List of Data
	Alternative Method of Transforming Data

	Retrieve Results from the Server for Jobs with a Single Output Step
	Synchronous Method
	Asynchronous Method

	Retrieve Results from the Server for Jobs with Multiple Output Steps
	Pulling the Result Data from the List
	List Data
	Tab-Separated Data

	Listing Multiple DSA Jobs
	Listing a Single DSA Job
	Using File Input and Output

	Miscellaneous Settings for the WfgClient
	Retry Count
	Filter Data
	Job Priority
	Run-Time Locale
	Separator Character
	Client-Side Debugging Toggle
	Email Output
	FTP Output
	Database Parameters

	3 Server Information API to the Oracle DataLens Server
	InfoClient
	Getting Transform Map and Data Lens Information
	Import
	Initialize the Client
	Get a List of Deployed Data Lenses
	Lists of Schemas and Translations

	Get a List of Deployed DSAs

	4 Server Availability API to the Oracle DataLens Server
	PingClient
	Import
	Simple Server Check
	Round-Robin Server Check

	5 Error Handling
	Client-Side Exceptions
	Client-Side Log Messages
	Log4j to Standard Output
	Log4J to a File

	Server-Side Faults
	Server-Side Exceptions
	Server-Side Log Messages
	Debugging Client Requests and Responses

	6 Compiling and Running with the API
	Compile the Application with the Oracle DataLens Libraries
	Run the Application with the Oracle DataLens Libraries

	7 Web Service Access to the Oracle DataLens Server Using Doc-Lit
	Generating a WSDL Document on Demand
	Client Web Service Software
	Overview of the DSA Interface
	processListRequest and processOneLineRequest Operations
	processDBRequest
	SOAP Document-Literal One Line Request Example
	SOAP Document-Literal One Line Response Example
	SOAP Doc-Lit Multi-Line ProcessList Request Example
	SOAP Doc-Lit Multi-Line ProcessList Response Example
	SOAP Document-Literal ProcessDb Request Example
	SOAP Document-Literal processDb Response Example

	8 Customizing DSA Maps with Java Add-Ins and Algorithms
	TMap Algorithms
	Initial Configuration
	Client Startup Changes

	Creating a New TMap Algorithm
	TMap Algorithm Debugging
	Server
	Client

	TMap Add-In Transforms
	Writing a TMap Add-In Transform
	Defining the TMap Add-In Transform
	Server

	Defining the Input Parameters to the TMap Add-In Transform
	Using the TMap Add-In Transform in the Client

	DSA Add-In Outputters
	Writing a DSA Add-In Outputter
	Defining the DSA Add-In Outputter
	Server

	Defining the Input Parameters to the TMap Add-In Transform
	Using the DSA Add-In Outputter in the Client
	Use in the Application Studio

	A Oracle DataLens Server JAVA API Reference
	B Working Through a Proxy Server
	Run-Time Java Proxy Parameters
	RtClient Java Proxy Parameters

	C Installing the Client Software
	D Deprecated: Web Service Access to the Oracle DataLens Server using RPC
	Generating a WSDL Document on Demand
	Client Web Service Software
	Overview of the DSA Interface
	processListRequest and processOneLineRequest
	processDBRequest
	SOAP RPC One-Line Request Example
	SOAP RPC One-Line Response Example

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create PDF suitable for publishing as Oracle documentation.)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

