ORACLE
INSURANCE

Oracle@ Documaker

Documaker
Administration Guide

version 11.b

Part number: E16256-01
September 2010

ORACLE’

Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle
USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall
be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible
for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If
you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is
not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

THIRD PARTY SOFTWARE NOTICES
This product includes software developed by Apache Software Foundation (http://www.apache.org/).

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2000-2009 The Apache Software Foundation. All rights reserved.

This product includes software distributed via the Berkeley Software Distribution (BSD) and licensed for binary distribution
under the Generic BSD license.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ""AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2009, Berkeley Software Distribution (BSD)

This product includes software developed by the JDOM Project (http://www.jdom.org/).

THIS SOFTWARE IS PROVIDED ""AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (C) 2000-2004 Jason Hunter & Brett McLaughlin. All rights reserved.

This product includes software developed by the Massachusetts Institute of Technology (MIT).

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright © 2009 MIT

This product includes software developed by Jean-loup Gailly and Mark Adler. This software is provided 'as-is', without any
express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.

Copyright (c) 1995-2005 Jean-loup Gailly and Mark Adler

This software is based in part on the work of the Independent JPEG Group (http://www.ijg.org/).

This product includes software developed by the Dojo Foundation (http://dojotoolkit.org).

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 2005-2009, The Dojo Foundation. All rights reserved.

This product includes software developed by W3C.

Copyright © 2009 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en
Informatique et en Automatique, Keio University). All Rights Reserved. (http://www.w3.org/Consortium/Legal/)

This product includes software developed by Mathew R. Miller (http://www.bluecreststudios.com).
Copyright (c) 1999-2002 ComputerSmarts. All rights reserved.

This product includes software developed by Shaun Wilde and distributed via Code Project Open License (http://
www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Chris Maunder and distributed via Code Project Open License (http://
www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by PJ Arends and distributed via Code Project Open License (http://
www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Erwin Tratar. This source code and all accompanying material is copyright (c) 1998-
1999 Erwin Tratar. All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY. USE IT AT YOUR OWN
RISK! THE AUTHOR ACCEPTS NO LIABILITY FOR ANY DAMAGE/LOSS OF BUSINESS THAT THIS PRODUCT MAY
CAUSE.

This product includes software developed by Sam Leffler of Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY
THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE

Copyright (c) 1988-1997 Sam Leftler

Copyright (c) 1991-1997 Silicon Graphics, Inc.

This product includes software developed by Guy Eric Schalnat, Andreas Dilger, Glenn Randers-Pehrson (current maintainer),
and others. (http://www.libpng.org)

The PNG Reference Library is supplied "AS IS". The Contributing Authors and Group 42, Inc. disclaim all warranties, expressed
or implied, including, without limitation, the warranties of merchantability and of fitness for any purpose. The Contributing
Authors and Group 42, Inc. assume no liability for direct, indirect, incidental, special, exemplary, or consequential damages,
which may result from the use of the PNG Reference Library, even if advised of the possibility of such damage.

This product includes software components distributed by the Cryptix Foundation.

THIS SOFTWARE IS PROVIDED BY THE CRYPTIX FOUNDATION LIMITED AND CONTRIBUTORS "*AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
CRYPTIX FOUNDATION LIMITED OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

Copyright © 1995-2005 The Cryptix Foundation Limited. All rights reserved.

This product includes software components distributed by Sun Microsystems.

This software is provided "AS IS," without a warranty of any kind. ALLEXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANYIMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS
LICENSORS SHALL NOT BELIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE
THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.

This product includes software components distributed by Dennis M. Sosnoski.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2003-2007 Dennis M. Sosnoski. All Rights Reserved
It also includes materials licensed under Apache 1.1 and the following XPP3 license

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002 Extreme! Lab, Indiana University. All Rights Reserved

This product includes software components distributed by CodeProject. This software contains material that is © 1994-2005 The
Ultimate Toolbox, all rights reserved.

This product includes software components distributed by Geir Landro.

Copyright © 2001-2003 Geir Landro (drop@destroydrop.com) JavaScript Tree - www.destroydrop.com/hjavascripts/tree/version
0.96

This product includes software components distributed by the Hypersonic SQL Group.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

Copyright © 1995-2000 by the Hypersonic SQL Group. All Rights Reserved

This product includes software components distributed by the International Business Machines Corporation and others.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright (c) 1995-2009 International Business Machines Corporation and others. All rights reserved.

This product includes software components distributed by the University of Coimbra.

University of Coimbra distributes this software in the hope that it will be useful but DISCLAIMS ALL WARRANTIES WITH
REGARD TO IT, including all implied warranties of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. In
no event shall University of Coimbra be liable for any special, indirect or consequential damages (or any damages whatsoever)
resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in
connection with the use or performance of this software.

Copyright (c) 2000 University of Coimbra, Portugal. All Rights Reserved.

This product includes software components distributed by Steve Souza.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002, Steve Souza (admin@jamonapi.com). All Rights Reserved.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/.)"
Copyright © 2001-2004 The OpenSymphony Group. All Rights Reserved.

Contents

Chapter 1, Introduction

2 System Overview
3 Rules Publishing Solution Overview

4 Document Automation Evolution

7 Document Automation Goals

8 System Benefits

Chapter 2, Understanding the System

11 Processing Overview
14 Processing Options
15 Using Banner Processing
22 Using Multi-step Processing
22 Creating Transaction Records

23 File Summary

24 Processing Transactions
25 Output Files for GenPrint
25 Output Files for GenWIP
25 Output Files for GenArc

26 File Summary

28 Creating Print Spool Files
29 File Summary

30 Sending Incomplete Transactions to WIP

31 File Summary

32 Archiving Transactions

33 File Summary

33 Rules Used in Multi-Step Processing
34 Restarting the GenData Program
36 Generating Batch Status Emails

38 Tracking Batch Page Statistics

38 Recipient Page Statistics

39 Batch Totals Summary File
40 Sample Log File

41 Default DFD Files

44 Controlling GenTrn Processing

46 Using Single-step Processing
46 Creating and Processing Transaction Records
47 System Settings and Resources

48 Creating Print Files
49 File Summary

50 Using the MultiFilePrint Callback Function
51 Mapping Fields with XPath

52 Running Archive in Single-Step Processing
52 Running WIP in Single-step Processing

53 Rules Used in Single-step Processing

56 Single-step Processing Example

58 Using IDS to Run Documaker

59 Writing Unique Data into Recipient Batch Records
66 Using Class Recipients

68 Running Documaker Using XML Job Tickets

69 Handling 2-up Printing

70 Changing the INI File
72 Changing the Recipient Batch DFD File

73 Rules Used for 2-up Printing
75 Placing the 2-up Rules in the JDT File

76 2-up Processing Example
77 Running the GenData Program

80 Printing in Booklet Format

81 Booklet Printing Examples

84 Splitting Recipient Batch Print Streams
86 DeviceName
86 SetDeviceName
86 BreakBatch
87 UniqueString
87 Using DAL to Manipulate File Names

88 FileDrive

88 FilePath

88 FileName

89 FileExt

89 FullFileName

90 Assigning Printer Types Per Logical Batch Printer
92 Controlling WIP Field Assignments
95 Generating Email Notifications from GenWIP

98 Using Multi-mail Processing
98 Changing the RCPDFDFL.DAT and TRNDFDFL.DAT Files
99 Setting Up the FSISYS.INI File for Multi-mail Processing
101 Using Addressee Records
101 Using Addressee Records in Batch Files
102 Using Address Records for Printing
103 Adding and Removing Pages
103 Using Custom Code
103 Using DAL Scripts
105 Using IDS

106 Adding Indexes and Tables of Contents

107 Using Run-Time Options
107 GenData Command Line Options
107 GenPrint Command Line Options
108 GenTrn Command Line Options
108 Debugging Options
110 Grouping Print Batches
111 Controlling Console Logging
111 Logging INI File Names and Options
112 Listing the Rules Executed

113 Analyzing DAL Performance
116 Handling Large Files on Windows, UNIX, and Linux
117 Handling Large Extract and NAFILE Files on z/OS

118 Controlling What is in the MultiFilePrint Log

120 Using INI Built-In Functions
124 Accessing WIP Fields

127 Defining Built-in Functions via Studio

xi

Xii

129 Outputting WIP Field Data Onto the XML Tree

130 Using XML Files
130 Handling Overflow

131 Triggering Forms and Sections

132 Using XPath

132 XPath Syntax

132 Axes

133 Symbols

133 Functions

134 Expressions
135 Using the XPath Testing Utility
139 Example XML File

Chapter 3, Implementing Your System

142 Using a Methodology

144 Gathering Information
144 Understanding Your Niche

144 Understanding Your Organization

145 Roles and Responsibilities

Chapter 4, Setting Recipients and Copy Counts

148 Concepts
149 Key Files

149 Transaction Trigger Table
149 Trigger Levels

149 Form Set Definition Table
150 Trigger Table Record Format
152 Specifying the Transaction Trigger Table

153 How Transaction Triggering Works

154 Section Level Triggers

157 Form Level Triggers

159 Master and Subotdinate Sections
159 Marking Subordinate Sections
160 Marking Master Forms

161 Examples
162 Specifying Copy Counts and Sections
164 Using Transaction Codes
165 Setting Up Search Mask and Sections
167 Using the RECIPIF Rule
169 Using Automatic Overflow
171 Using Forced Overflow
172 Setting Search Masks and Recipients
173 Using the Set Recipient Table and Extract Files
174 Formatting Search Masks
176 Sorting Forms by Recipient

178 Summary

Chapter 5, Working with Fonts

182 General Font Concepts
182 Font Terminology

185 How Characters are Represented
185 Bitmap Fonts
185 Scalable Fonts

186 How Computers and Printers Use Fonts

187 Using Code Pages

188 ASCII Code Pages
190 EBCDIC Code Pages
192 International Font Pack Code Pages

197 Character Sets

197 Determining Characters Used in a Printer Font
198 Code Page Names
200 Types of Fonts

200 Using Screen Fonts
200 Font Substitution in Windows

201 Installing Screen Fonts in Windows

xiii

201 Using Printer Fonts
201 AFP
201 Metacode
202 PCL
202 PostScript Fonts
202 TrueType Fonts
202 Adding Printer Fonts to a Font Cross-reference File
203 Using System Fonts
204 Font Cross-reference Files for Monotype Fonts

207 Using Custom Fonts
209 Using Font Cross-Reference Files

210 How FXR Settings Affect Display and Print Quality
211 Maintaining FXR Files

211 Choosing a Font Cross-reference File

213 International Language Support
213 Using the ANSI Code Page for PC Platforms
214 Using Code Page 37 for EBCDIC Platforms

215 Using International Characters

216 Converting Text Files from one Code Page to Another

217 Setting Up PostScript Fonts

220 Fonts for PDF Files
221 Importing PostScript Symbol Fonts

222 Font Naming Conventions

223 Mapping Fonts for File Conversions

Chapter 6, Setting Up Printers

226 AFP Printers

226 AFP INI Options

237 AFP Printer Resources

238 AFP Troubleshooting

241 Including Documerge Form-level Comment Records
242 Metacode Printers

242 Required JSL INI Options
245 Additional Required INI Options

Xiv

260
261
262
262

247
248

Specifying Installable Functions
Optional INI Options

Using Mobius Metacode Print Streams

Metacode Printer Resources

Metacode Limitations

Metacode Troubleshooting

267
267
268

269 PCL Printets

Using Xerox Forms (FRMs)
BARRWRAP

Transferring Files from Xerox Format Floppies

269 PCL INI Options

272
273
273
276
277
279
280
280
281

Using PCL 6

Printing Under Windows

Using High-Capacity Trays 3 and 4 on HP 5SI Printers
Overriding Paper Size Commands and Tray Selections
Using Simple Color Mode

Creating Compressed PCL Files

Adding Printer Job Level Comments

Adding Data for Imaging Systems

Limiting the Number of Embedded PCL Fonts

282 PCL Printer Resources

283 PostScript Printers

283 PostScript INI Options

286
287
287
288
289

Printing under Windows

Generating PostScript Files on z/OS
Creating Smaller PostScript Output
Adding DSC Comments

Stapling Forms

292 PostScript Printer Resources

293 Using the GDI Print Driver

295 GDI Printer Driver INI Options
298 Avoiding Problems with FAX Drivers
298 Batch Printing to Files

300 Using Pass-through Printing

302 Creating PDF Files

303 Creating RTT Files

306 Using the VIPP Print Driver

XV

Xvi

307 VIPP Resource Files

312 Managing VIPP Resources
314 VIPP INI Options

323 VIPP Limitations

325 Emailing a Print File
329 Using the MPM Print Driver
334 Sending Emails in Multi-Part MIME Format
337 Printing with Missing Graphics
338 Choosing the Paper Size
339 US Standard Sizes
340 ISO Sizes
343 Japanese Standard Sizes
344 Printer Support for Paper Sizes
348 Paper Sizes for AFP Printers
350 Creating Print Streams for Docusave
350 Archiving AFP Print Streams
351 Archiving Metacode Print Streams

352 Archiving PCL Print Streams
352 Using DAL Functions

354 Adding TLE Records

355 Handling Multiple Paper Trays

357 Including Tray Selections in a Print Stream Batch

Chapter 7, Setting Up Error Messages and Log Files

360 Overview
360 Types of Error Codes

361 Configuring the Message System
361 Enabling and Disabling Messages
362 Logging INI Files and Options Used
362 Clearing Messages
362 Defining the Output Message Files
363 Initializing the Output Message Files
364 Turning Off Date Stamps

364 Controlling the Translation Process
365 DBLIib Trace Messages
366 Overriding Error Behavior

367 Creating Messages
367 Using the RPErrorProc and RPLogProc Functions
368 Using Message Tokens
370 Setting Up Message Text

373 Using the Message Token File

376 Converting the XILTUS.MSG file into an Oracle Binary Message File

Chapter 8, Archiving and Retrieving Information

378 Terminology
380 System Scenarios
382 Archive and Retrieval Features

383 Processing Overview
383 Tiles GenArc Uses
383 How the GenArc Program Works

386 Running GenArc

387 Command Line Options
389 Using the Restart Option

391 Using GenArc with Documanage
398 Using the Oracle ODBC Driver
400 Creating the Database and Tables
403 Resolving Errors

404 Viewing Archives in Documanage

405 Using Multiple Simultaneous ODBC Connections
407 Using WIP and the Archive Index File
408 Formatting Archive Fields

410 Retrieving Archived Forms
410 Files the Archive Module Uses

410 Using the Archive Module
411 Retrieval Options

413 Working with Documanage

Xvii

Xviii

414 Using Documanage Data Type Support

415 Setting Up Automatic Category Overrides

416 Mapping Documaker Archive Fields to Documanage Properties
418 Using Next/Retrieve Cursor

419 Enhanced Documanage Document Extended Properties Support

Chapter 9, Setting Up Archive/Retrieval Configurations

428 DB2 Server on OS/390 —Windows Client

428 Configuring the Server
429 Setting Up the Windows 2000 Server (Middle Tier)
431 Installing and Configuring Microsoft’s SNA Server
432 Configuring SNA Server 4.0 SP3
434 Setting Up DB2 on a Windows 2000 Server
435 Installing and Configuring DB2 on a Windows 2000 Server
435 Setting Up Universal Database on Windows 2000
437 Updating TCP/IP-related Values on a Windows 2000 Setvert

437 Common DB2 Errors
437 Setting Up Clients
438 Setting Up the INI Options for the DB2 Driver
440 DB2 Server on Windows — Windows Client

440 Setting up a DB2 Database on the Server
441 Setting Up a Client for DB2 VERSION 6.1

443 Archiving to a Remote DB2 Database Using the Native DB2
Driver

445 DB2 Server and Client on Windows

445 Setting Up a DB2 Database

446 Archiving to a Local DB2 Database Using the Native DB2
Driver

449 SQL Server on Windows — ODBC Client on Windows
449 Setting Up a Client

451 1DS on Windows —DB2 Archive on z/OS
451 Setting Up the DB2 Atrchive on z/OS

452 Creating a z/OS Database
452 Updating TCP/IP Values on a Windows 2000 Server

Chapter 10, Optimizing Your System

456 Optimizing Performance on z/OS

457
457
458

460

401
462
462
463
465
467
469
471
473

Compile Options
Language Environment (LE) or ¢/370 Runtime Options
File Types and Characteristics
458 Extract Files
458 DEFLIB
459 SETRCPTB
459 FAPLIB
459 TRNFILE
459 NEWTRN
459 NAFILE
459 POLFILE
459 Recipient Batch Files
460 Pre-compiled Xerox Metacode Files (PMETLIB)
460 Print Files
Setting Your FSISYS INI Options
460 Caching Options
Logging Options
Debug Options
Other Options
Defining the Extract File as a VSAM KSDS
Moving DDT Files into a VSAM KSDS
Moving JDTs into a VSAM KSDS
Moving PMETs into a VSAM KSDS
Moving SETRCPTB to a VSAM KSDS
Creating NAFILEs and POLFILEs as VSAM KSDSs

474 Optimizing Performance on UNIX/Linux

474
475
476
476
477

Setting FSISYS INI Options
Logging Options

Debug Options

Run Options

Other Options

478 Optimizing Performance On Windows

478

Setting FSISYS INI Options
478 Caching Options

Xix

XX

481

479
479
480
480

Logging Options
Debug Options
Run Options
Other Options

Uploading and Downloading Resoutces on z/OS

482
483
484
484

Transferring Files
Handling International Characters
Xerox Image, Font, and Form Files

Xerox Pre-compiled Metacode (PMET) Files

485 Moving Resource Files Between UNIX/Linux and Windows

485 Uploading a Library from PC to UNIX
485 Downloading Print Streams from UNIX to PC

Chapter 11, Uploading and Downloading Resource Files

488 Uploading and Downloading Resources on z/OS

489
490
491
491

Transferring Files
Handling International Characters
Xerox Image, Font, and Form Files

Xerox Pre-compiled Metacode (PMET) Files

492 Moving Resource Files Between UNIX/Linux and Windows

492 Uploading a Library from PC to UNIX
492 Downloading Print Streams from UNIX to PC

Appendix A, System Files

494

496

499

512

513

515

Overview

Types of Files

Resource Files

509 DEFD File Format

Files Created by the GenTrn Program

Files Created by the GenData Program

Files Created by the GenPrint Program

516 Files Created by the GenWIP Program

517 Files Used by the GenArc Program

Glossary

519
519
520
520
520
520
520
520
520
520
521
521
521
521
521
521
521
522
522
522
522
522
522
522
523
523
523
523
523
524
524

00000001.DAT File
00000001.POL File
AFP
ARCHIVE.CAR File
ARCHIVE.DBF File
ARCHIVE.DFD File
.BCH Files

Batch Files

.CAR Files

DAL

.DAT Files

.DBF Files

DDT Files
DESKJET.FXR File
.DFD Files
Distributed Resource Library
Duplex
ERRFILE.DAT
Error Batch

Error Files

Extract Files

.FAP Files
FDB.DBF File
fetype

Fixed Data

Font Manager

Form

Form Set
FSISYS.INI File
FSIUSER.INT File
.FXR Files

XXi

xxii

524
524
524
524
525
525
525
525
525
525
525
526
526
526
526
526
526
526
527
527
527
527
527
527
527
528
528
528
528
528
528
528
528
529
529
529
529

GenArc Program
GenData Program
GenPrint Program
GenTrn Program
GenWIP Program
Graphics Manager
NI Files
INTL.FXR
INTLSM.FXR

JDT Files

Library Manager

Log Files

.LOG Files
MANUAL.BCH File
Master Resource Library
Metacode

.MDX Files
NAFILE.DAT File
NEWTRN.DAT File
Objects

Overflow

Page

PCL
POLFILE.DAT File
PostScript

Section
SETRCPTB.DAT File
Simplex

System Releases
System Patches
Transaction List
TRN Files
TRNDFDFL.DFD File
UFSTSM.FXR File
UNIQUE.DBF File
Variable Data
WIP.DBF File

529 WIP.MDX
529 xBase

531 Index

xxiii

XXiv

Chapter 1
Introduction

Welcome to the Documaker rules-based publishing
solution. This product consists of a complete set of tools
which provide solutions for all your form and document
processing needs. The system includes these major
components:

* Docucmaker Studio (and legacy Docucreate)
e Documaker Server
* Docupresentment

This manual serves as a reference to Documaker Server.
This chapter discusses the following topics:

* System Overview on page 2
* Rules Publishing Solution Overview on page 3
* Document Automation Evolution on page 4

* System Benefits on page 8

Chapter 1

Introduction

SYSTEM
OVERVIEW

Documaker Server is part of the Oracle Documaker rules publishing solution, which also
includes Documaker Studio, Docupresentment, and reusable resource libraries.

Documaker Server uses resources you create using Documaker Studio to process
information and forms. This processing includes merging external data onto forms,
processing data according to rules you set up, creating print-ready files, archiving data and
forms, and, if applicable, sending incomplete forms to Documaker for completion by a
user.

Forms can be completed using Documaker when user input is required or, if all of your
information can be extracted from external data sources, you can set up Documaker
Server to process forms without requiring user input.

Documaker Server can create print-ready files for a variety of printer languages including,
AFP, PostScript, PCL, and Xerox Metacode printers. In addition, using
Docupresentment, the system can produce output in Adobe Acrobat PDF format.

The following topic discusses the entire rules publishing solution, its purpose, its
underlying concepts and how it all works together to provide you with an enterprise-level
solution to meet your document creation, processing, and storage needs.

RULES
PUBLISHING
SOLUTION
OVERVIEW

Rules Publishing Solution Overview

Document automation is the basic concept underlying the system. An understanding of
document automation helps you understand the purpose of the rules publishing solution.

Document automation replaces paper documents with electronic media. Generally,
document automation is an integrated process within enterprise information systems.

The greatest challenge that document intensive industries face is the efficient processing
of forms and documents. Moving toward the era of electronic information means finding
workable solutions for the paper-to-electronic media replacement process. New business
directions include developing ways to automate document handling processes, which
extend beyond simply creating electronic output or print.

Document automation is rapidly becoming an integral part of today's business
environment. The rules publishing solution creates a total business solution which lets
you automate both paper document processing and electronic document management.

Let's examine document automation outside the tules publishing solution to build a
knowledge base applicable to unique platforms. Then we can apply the basic concepts to
the rules publishing solution.

Chapter 1

Introduction

DOCUMENT
AUTOMATION
EVOLUTION

Stage 1 - paper
automation

Through the years, document automation has moved in concert with technological
evolution. The technological evolution has progressed from initial ideas and applications
about forms processing, to the integrated management of electronic documents. The
distinction between merely automating paper production and permanently integrating
electronic processing and management is critical to understanding the technological
evolution. This table shows the progression of document automation in the current
environment,

Stage

Type of Automation Components

1 Paper Automation Business correspondence
Forms processing

Document assembly

2 Wotkflow Automation Electronic mail
Electronic data interchange
Electronic funds transfer

Integrated facsimile

3 Paperless Information
Automation

Cooperative processing
Enterprise indexing
Integrated section processing
Multimedia

Paper automation, enabled by the advent of computers and laser printers, is the first stage
of the document automation evolution. Most people think of the processing and assembly
of business correspondence and forms by computers as document automation. While the
computer does perform some information processing, this stage of document automation
evolution is still very paper intensive. It does not extend to associated automated
document workflow and procedures.

Stage 2 - workflow
automation

Document Automation Evolution

i E%

[—

Workflow automation, enabled by the proliferation of personal computers,
communication standards, Local Area Networks (LANs), Wide Area Networks (WANSs),
and integrated FAX machines, is the second stage in the document automation evolution.
Workflow automation goes beyond information processing to the transfer of digitized
information across telecommunication lines. It eliminates many manual procedures, often
clerical in nature, from the workflow process.

Chapter 1

Introduction

Stage 3 - paperless
information automation

A
£

2 I,
e r PP)
NaaAS A) Y
!tg.—".-.‘"ﬂ'

Papetless information automation combines multiple technologies across multiple
organizations, enterprises, and government entities. Information elements from various
sources are shared and are readily available in flexible electronic formats. Papetless
information automation enables you to reuse the information contained in the
documents. Electronic documents are much easier to track, maintain, update, route, file,
and retrieve.

Cooperative
Processing

Enterprise
Indexing

Image
Processing

Multimedia

Paperless Information
Automation

Document Automation Evolution

DOCUMENT AUTOMATION GOALS

Document automation combines many elements of the evolutionary stages previously
discussed to accomplish these primaty objectives:

* Eliminate paper

Paper consumes enormous resources. Document automation decreases the costs
associated with paper documents, and decreases the requirements for both long term
and short term storage, retrieval, and document distribution.

* Automate manual procedures

Automating manual procedures associated with document automation increases
efficiency, increases accuracy, and reduces costs. Repetitive and unnecessary
procedures are identified and eliminated.

* Automate system interfaces

Interfaces which allow exchange of data between automated systems eliminate the
need to manually enter data. Automated system interfaces also eliminate the need to
supplement automated processes with manual functions. Automated system
interfaces reduce errors, increase efficiency, and simplify the workflow.

As you can see, document automation encompasses many different technologies which
merge in a variety of ways. In the current business environment, there are many single
technologies and partial solutions which mimic document automation at first glance.
Keep in mind, a single solution using one technology is not document automation.
Document automation involves multiple technologies which help you manage forms and
documents, workflow, procedures, and other electronic media, based on the needs and
requirements of each individual organization or enterprise.

Chapter 1

Introduction

SYSTEM
BENEFITS

The system's cohesive design results in many benefits to the user. The system provides a
seamless interface to your existing systems by integrating document automation
technology with your current systems, and by offering you a customized computer system
with reusable resources. You can select modules to meet your specifications.

The system also provides you with the following advantages in your document
automation processing:

* Functional - The system's configuration meets a wide vatiety of document processing
needs. The system's expandable architecture utilizes technological innovations to
meet changing processing needs.

* Portable - The system's architecture allows core processing modules to operate on
multiple hardware platforms and in multiple operating environments. This design
gives the user control of the system configuration in order to meet individual needs.

* Modular - The system's configuration lets you select modules to customize your
system. The modular design eases maintenance by segregating functions in
independent modules. A change in one module does not necessitate multiple changes
throughout the system. This modular design also improves performance by
eliminating unnecessary processing.

* Reusable - The biggest advantage in using the system is the reusability of resources.
Libraries are composed of customizable resource units such as sections (sections)
and rules, which can be reused. Reusing resources increases efficiency and promotes
consistency throughout your system and product.

* FEasy to use - System components have a graphical user interface common to all
components. The system's seamless system interface provides transparent print and
data merge capabilities.

Chapter 2

Understanding the
System

In Chapter 1, you were introduced to the system as a
whole. This chapter provides an overview of
Documaker Setver.

As you review this chapter you will learn about the
programs that make up Documaker Server. Following
the overview, you will learn about the files used and
created by the system programs in both the multi- and
single-step processes.

This chapter contains the following topics:

* Processing Overview on page 11

* Processing Options on page 14

¢ Using Banner Processing on page 15

* Using Multi-step Processing on page 22

* Restarting the GenData Program on page 34

* Tracking Batch Page Statistics on page 38

* Generating Batch Status Emails on page 36
* Controlling GenTrn Processing on page 44
* Using Single-step Processing on page 46

e Using IDS to Run Documaker on page 58

e Writing Unique Data into Recipient Batch Records
on page 59

e Using Class Recipients on page 66

* Running Documaker Using XML Job Tickets on
page 68

. Handling 2-up Printing on page 69

Chapter 2

Understanding the System

10

Printing in Booklet Format on page 80

Splitting Recipient Batch Print Streams on page 84

Assigning Printer Types Per Logical Batch Printer on page 90
Controlling WIP Field Assignments on page 92

Generating Email Notifications from GenWIP on page 95
Using Multi-mail Processing on page 98

Adding and Removing Pages on page 103

Adding Indexes and Tables of Contents on page 106

Using Run-Time Options on page 107

Controlling What is in the MultiFilePrint Log on page 118
Using INI Built-In Functions on page 120

Outputting WIP Field Data Onto the XML Tree on page 129
Using XML Files on page 130

Using XPath on page 132

Processing Overview

PROCESSING Documaker Server is designed to gather source data, process that data by applying rules you
define, merge the data onto pre-designed forms, and print the result. In addition,
OVERVIEW Documaker Server can automatically check for incomplete data and send that data to
Documaker for completion. Documaker Server can also automatically archive completed
transactions which you can later view as needed.

The following illustration shows a high level view of Documaker Server:

NOTE: This illustration and the other illustrations in this chapter show a typical,
workstation-based system flow. Your system may be set up differently.
Furthermore, the system can be customized in many ways and can run on a
variety of platforms. For instance, if your source data is properly formatted, you
can bypass the GenTrn program. Or, you may choose to run the GenTrn,
GenData, and GenPrint programs on a host machine and then download the
information and use a system utility (FIXOFES) to prepare it for use by the
GenWIP and GenArc programs running on a workstation. You could also run
the GenArc program on the host and only run the GenWIP program on a
workstation.

Source Systern Systern
data settings resnurces
f 1 I lwr
> i %
GenTm GenData GenPrint|__,.
Print farm sets

— »|GenWip |—» mag

Cornplete work
in progress

3
»|GenArc —* m

Store form sets

This illustration shows the main programs which make up Documaker Server and an
overall view of the processing cycle.

* GenTrn. The GenTrn program reads source data and uses system settings to create
transaction records. The source data is stored in extract files. Depending on the

operating system you use, this program has various names such as
GENTNW32.EXE for 32-bit Windows environments.

* GenData. The GenData program takes the transaction records created by the
GenT'rn program and uses system settings and resources to apply processing rules to
those transactions.

11

Chapter 2

Understanding the System

12

The GenData program creates output files the GenPrint program can use. It also
creates files with incomplete transactions which the GenWIP program can use. The
GenWIP program creates from these files, output you can display and complete
using the WIP module of Documaker Workstation.

The output from the GenData program is also used by the GenArc program to
archive data. Depending on the operating system you use, this program has various
names such as GENDAW32.EXE for 32-bit Windows environments.

NOTE: The illustration on the preceding page and this overview discuss the standard or
multi-step processing flow of the system. By using specific rules you can have the
GenData program execute both the functions of GenTtn and GenPrint. This is
called single-step processing and can improve performance. To learn more, see Using
Single-step Processing on page 46.

* GenPrint. The GenPrint program takes information produced by the GenData
program and creates printer spool files for use with PCL, AFP, Metacode, and
PostScript compatible printers. In addition, the GenPrint program can also
produce a Portable Document File or PDF (Acrobat) output. Depending on the
operating system, this program has various names such as GENPTW32.EXE for
32-bit Windows environments.

NOTE: You can also use the GenPrint rule to add all of the functionality of running
the GenPrint program. Anything you can do with the GenPrint program can be
done using this rule. See the Rules Reference for more information.

* GenWIP. The GenWIP program receives information about incomplete
transactions from the GenData program and processes that information so you can
use the WIP module of Documaker to display the form and fill in the missing
information. Once completed, you can print, archive, print and archive, delete, or
change the status of form sets using Documaker. Depending on the operating
system, this program has various names such as GENWPW32.EXE for 32-bit
Windows environments.

NOTE: When using Documaker Server, a transaction may be placed in WIP for
completion by a data entry operator. In these cases, you would first complete the
transaction before it is archived.

* GenArc. The GenArc program archives data so you can store the information
efficiently and retrieve it quickly. This program receives information from the
GenData program. Depending on the operating system, this program has various
names such as GENACW32. EXE for 32-bit Windows environments.

The previous illustration showed a high level view of Documaker Server which shows you
the main programs in the system and its processing cycle. These programs create and use
several types of files as they process information. The following illustration shows this
processing flow in greater detail, though not every possible system file is included.

Processing Overview

Understanding how the information flows from one program to another and which files
are used and created is key to understanding Documaker Server. Here you can see all of
the files the system uses and creates during its processing cycle.

System
settings

System resources

RCBDFDFL

‘J GenPrnt @
AFP, Metacode,
-~

TRHFILE

FCL, PostSeript

.- WP DEF
[JE—
TVIP B D

GenTrm GenData

Log File

Emor Fle

GenWip

Message
File

ATHIH

e e o GenAre

ARCHIVEL AR

You can find information about all these files and programs in the Glossary. You can
also find examples of certain files in Appendix B, System Files on page 493. Let’s first look
at the GenTrn program and the files it uses and creates.

NOTE: You can run the GenData and GenPrint programs on z/OS using resources
retrieved from Documanage (on a Windows server) via Library manager. For
information on setting up the library in Documanage and setting the INI
options on z/OS to access this library, refer to the Documaker Studio User
Guide. See Using Documanage in Chapter 9, Managing Resources.

13

Chapter 2

Understanding the System

PRO CESSING You can run D%curzzl?e.r Selrver .as a mul:— o;sli:r;glze—step Prgcess. Zaria;igns (?lf the.se
processes provide additional options such as -up printing and multi-mail sorting,
OPTIONS

Chapter 2 begins with a general overview of the system. From this point forward, we will
review specific processing options. The following topic discusses running the system
using the multi-step process. This topic is followed by a discussion of running the system
using the single-step processes. The remainder of the chapter provides brief explanations
of 2-up and multi-mail printing.

NOTE: To gain a complete understanding of the different features of the multi- and
single-step processes, it is important to read through both sections. Certain
information that is common to both processes is only described in the multi-
step section.

To help determine which option is best suited for a particular need, a brief description
of the run-time options and related processes are provided in the table below:

Process Description

2-Up Printing ~ Two-up printing is a two-step process which passes input through GenData
three (3) times with a different JDT file each pass. This process is similar to the
single-step process in that GenData performs the work, but the three passes
through GenData actually represent two steps of the multi-step process:
processing the transactions and printing the transactions. Two-up printing is
AFP printer-specific. For more information, see Handling 2-up Printing on
page 69.

Banner The system lets you process banners at several points in the processing cycle.
Doing this involves using a simplified AFGJOB.JDT file. For more
information, see Using Banner Processing on page 15.

Multi-mail GenData groups transactions with the same multi-mail code into selected print
batches to be sorted and delivered to the same location. For more information,
see Using Multi-mail Processing on page 98.

Multi-step The system programs, GenTrn, GenData and GenPrint, each perform a set of
steps to read data, create output files and print. GenWIP and GenArc are
optional programs to complete incomplete transactions and archive data for
retrieval. For mote information, see Using Multi-step Processing on page 22.

Restarting the ~ You can set up the GenData program to restart itself at a particular transaction
system if it encounters a failure. For more information, see Restarting the GenData
Program on page 34.

Single-step To enhance system performance, the steps of the GenTrn, GenData and
GenPrint programs are performed in one step by GenData. The GenWIP and
GenArc programs function the same as in the multi-step process. For more
information, see Using Single-step Processing on page 46.

14

USING BANNER
PROCESSING

Enabling banner
processing

Specifying banner
forms and scripts

Using Banner Processing

The system includes support for banner processing. Banner processing is supported at
these points in the processing cycle:

* Beginning of a batch
Before a transaction is processed
After a transaction is processed
* End of a batch

Banner processing is optional at each point. Banner processing can optionally include
FAP forms processing and DAL script processing.

You specify the FAP forms for banner processing in this manner:
;keyl;key2; form name;
The forms must appear in the FORM.DAT file in DefLib. The associated sections

(images) for those forms and must reside in FormLib.

You can set up banner forms and scripts at a global level so they can be used by all print
batches. Individual recipient print batches can specify local forms or scripts to override
the global forms and scripts.

Keep in mind these limitations:

* Only the standard printer drivers, such as AFP, Metacode, PCL, and Postscript,
support batch banner processing. Avoid batch banner processing if you are using
another print driver.

* Banner pages are printed at the group level. As a result, this bypasses the custom
callback function named in the CallbackFunc option of the Print control group
since it is a form set-level callback.

NOTE: Version 10.1 added batch-level banner processing to multi-step mode. Version
10.2 added batch-level banner processing to single-step processing — printing via
GenData using the PrintFormset rule.

The method of banner processing discussed here only affects the GenPrint
program. Documaker Workstation has a separate banner handling method, and
does not support this method of banner processing.

For performance reasons banner processing is, by default, disabled. You must enable it
using one or both of these INI options:

< Printer >
EnableTransBanner = True
EnableBatchBanner = True

Onmitting either option disables the associated level of batch banner processing. Once
enabled, banner processing is in effect for the entire GenPrint run. You can, however,
disable banner processing for individual batches by specifying forms and scripts with
blank names.

You can globally specify forms and scripts for all batches, ot locally for specific batches.
Use these INI options to specify global batch forms and scripts:

15

Chapter 2

Understanding the System

16

< Printer >

BatchBannerBeginForm = form name
BatchBannerBeginScript = script name
BatchBannerEndForm = form name
BatchBannerEndScript = script name
TransBannerBeginForm = form name

TransBannerBeginScript = script name
TransBannerEndForm = form name
TransBannerEndScript = script name

Specify form names as follows:
;KEY1;KEY2; Form name;

You must have an associated form line in the FORM.DAT file to match the specified
form. The sections (FAP files) for the forms are specified in the form lines in the
FORM.DAT file. You must include these FAP files in FormLib.

Store the banner forms in a separate and unique banner form group, defined by a
combination of Key7 and Key2. You can use the AddForm DAL function in a DAL script
to insert additional forms for banner processing. Place these additional forms and
sections in the same group as the initial banner form. Each form is printed separately
and after all banner forms are printed, the entire banner group is removed from the
document set. For these reasons, it is critical that you isolate the banner forms from the
rest of the transaction document set by specifying a Key? /Key2 combination that does
not otherwise occur within the document.

The FAP files assigned to the form (on the form line in the FORM.DAT file) must have
the recipient BANNER with a copy count of at least one. When banner forms are
printed, only sections assigned to the recipient BANNER with a non-zero copy count
are printed.

Specify the DAL script names without a path or extension. For best results, store the
DAL scripts in your DAL libraries because they are easier to maintain. The system
automatically loads DAL libraties if you include these INI options:

< DALLibraries >
LIB = libraryl
LIB = library?2

The DAL script libraries or files must reside in DefLib.

You can specify forms and scripts at the recipient batch level to override the global
specification. Here is an example of how you do this:

< Print_Batches >
BATCH1 = BATCH1.BCH
BATCH2 = BATCH2.BCH
< Batchl >
BatchBannerBeginForm = form name
BatchBannerBeginScript = script name

BatchBannerEndForm = form name
BatchBannerEndScript = script name
TransBannerBeginForm = form name

TransBannerBeginScript = script name
TransBannerEndForm = form name
TransBannerEndScript = script name

Banner form
processing and multi-
file print

Using Banner Processing

You can specify some, none, or all of the forms and scripts for local override of the
default global forms and scripts.

An individual batch can completely or partially disable banner processing if the forms,
script names, or both are blank, as shown here:

< Batchl >
BatchBannerBeginForm =
BatchBannerBeginScript =
BatchBannerEndForm =
BatchBannerEndScript =
TransBannerBeginForm =
TransBannerBeginScript =
TransBannerEndForm =
TransBannerEndScript =

Use the RetainTransBeginForm option to make pre-transaction transaction banner
form processing compatible with multi-file printing. Banner forms print separately
from the rest of the document. When using multi-file printing with print drivers such
as PDF or RTF, banner forms do not appear in the output file. This options lets the
banner form appear in the same print file.

Banner pages are, by design, not considered part of the form set. A pre-transaction
banner page is designed to print separately, using data from the form set, but as if it were
not physically part of the form set. For that reason, when printing to a single-file-per-
transaction format such as PDF, RTF, XML, or HTML, and using the MultiFile print
callback method to produce separate files, the banner output is not included in the
output file.

It is possible to use pre-transaction banner forms as a way of producing a mailer sheet
for a form set. This works for true printed output, but if you are producing a PDF file,
for example, the banner (mailer page) does not appear within the PDF.

If, however, you use the RetainTransBeginForm option to retain the pre-transaction
banner form, the banner process proceeds as before, but the printing of the banner is
initially suppressed. The banner page is retained and remains inside the form set, as the
first form in the form set. When the form set is processed by the PDF driver to produce
the PDF file, the pre-transaction banner form (or mailer sheet) is then included in the
resulting PDF file.

Keep in mind however that the document is only temporarily modified during the print
step. The banner form is not included with the actual, intelligent form set when it is
archived. For instance, if the intelligent document format is used for archiving, the
mailer sheet does not appear as part of the form set, and will not print if retrieved from
archive. If, however, you archive the PDF output, then the mailer sheet will appear in
the PDF file.

You can place the RetainTransBeginForm option in the Printer control group as a global
setting or you can place it at the recipient batch level. A setting at the recipient batch
level overrides a setting in the Printer control group.

Here is an example of how you could set a global or default setting in the Printer control
group and override that setting for a particular recipient batch:

< Printer >

RetainTransBeginForm = Yes

17

Chapter 2

Understanding the System

Processing logic

18

(other applicable options omitted - see the following note)

< Print_Batches >
Batchl = BATCH1.BCH
Batch2 = BATCH2.BCH
< Batchl >
RetainTransBeginForm = No
(other applicable options omitted - see the following note)

Option Description

RetainTransBeginForm Enter Yes if you want the system to include the transaction banner
form in the form set. The default it No.
If you are using the PDF, RTF, XML, or HTML print driver, this

means the banner pages will be included in each transaction’s print
file.

NOTE: There are additional INT settings required for single- and multi-step processing.
For more information about single-step processing, see the discussion of the
PrintFormset rule in the Rules Reference.

For more information about multi-step processing, see the discussion of the
MultiFilePrint callback function in the Using the PDF Print Driver.

Banner processing functions are part of the base system and are primarily located in
GenlLib. The GenPrint program, however, first routes the processing to CusLib. This lets
you use the exit points in CusLib to create additional customized processing before,
after, or in place of, the calls to GenLib routines.

The processing sequence for banner processing (at any level) is as follows:

1 Ifabanner form is specified, it is created in the form set and the FAP files are
loaded.

If a banner DAL script is specified, it is executed.

3 For any banner form specified in step 1 or created during step 2, the following steps
take place:

any variable fields in the banner form that are still empty are updated, first
from matching GVM variables, such as fields in the recipient batch record,
then from matching DAL variables.

the form is printed.

4 If there were banner forms to process, after updating the fields and printing the
forms, the entire banner form group is removed from the form set.

DAL functions

Banner processing
example

Using Banner Processing

NOTE: You can suppress the printing of the banner page by using the SuppressBanner

DAL function. This is useful when you need to combine several transactions

within the same transaction banner pages.

If there are registered comment record functions, each banner form in the form

group receives its own set of comment records. If the additional forms should

not receive their own comment records, add the sections for those forms to the

original form—do not add them as separate forms.

You can also use these DAL functions with banner processing. See the DAL Reference

for more information.

* RecipName. Returns the name, such as INSURED, AGENT, COMPANY, and so
on, of the recipient batch record of the transaction currently being printed.

* RecipBatch. Returns the name, such as BATCH1, BATCH2, ERROR, MANUAL,
and so on, of the recipient batch file being processed.

* SuppressBanner. Suppresses the current banner from printing. You can use this

function when you want to combine several transactions inside one set of banner
pages, based on a flag that the DAL script checks.

Assume you have these FAP files in your forms library (FormLib).

e btchbannr
e btctrail
e trnbannr

* trntrail

Here is an excerpt from the FSISYS.INT file:

< Printer >
PrtType = PCL
EnableTransBanner = TRUE
EnableBatchBanner = TRUE
BatchBannerBeginScript =
TransBannerBeginScript =
BatchBannerEndScript =
TransBannerEndScript =
BatchBannerBeginForm =
BatchBannerEndForm =
TransBannerBeginForm =
TransBannerEndForm =
< DALLibraries >
LIB = Banner

PreBatch

PreTrans

PstBatch

PstTrans

; BANNER ; BATCH; BATCH BANNER;

; BANNER ; BATCH; BATCH TRAILER;

; BANNER ; TRANSACTION; TRANS HEADER;

; BANNER ; TRANSACTION; TRANS TRAILER;

Here is an excerpt from the FORM.DAT file:

; BANNER; BATCH; Batch Banner;Batch Banner (Job\
Ticker) ;N; ;btcbannr | D<BANNER (1) >;

; BANNER ; BATCH; Batch Trailer;

Batch Trailer (End\

Ticket);N;;btctrail |<BANNER(1)>;

19

Chapter 2

Understanding the System

; BANNER ; TRANSACTION; Trans Trailer;Transaction Trailer (End\
Ticket) ;N;;trntrail | D<BANNER(1)>;

; BANNER; TRANSACTION; Trans Header; Transaction Banner\
Page;N; ; trnbannr | D<BANNER (1) >;

20

Here is an example of the BANNER.DAL file in DefLib:

BeginSub PreBatch
#batch += 1
#trans = 0
rb = RecipBatch()
rn = RecipName ()

EndSub

BeginSub PreTrans
#trans += 1
rb = RecipBatch()
rn = RecipName ()
EndSub

Using Banner Processing

These additions to the FORM.DAT and FSISYS.INI files plus file additions to the
FormLib and DefLib sub-directory would cause the following pages to be added to each

batch:

Batch Banner Page

Transaction BannerPage

Company: Sampco
LOB: LB1
Policy: 1234567

Recip name: Insured
Recip batch: Batchl

Batch no.: 1 . .
Pages associated with the
Trans no.: 1 transaction
——
Transaction Trailer
EEEEEE—

Repeat of the previons pages—
from Transaction Banner page
through the Transaction Trailer

page

Batch Trailer
(ending job ticket)

21

Chapter 2

Understanding the System

22

USING MULTI-
STEP
PROCESSING

This topic describes the standard, multi-step approach to processing. In a multi-step
processing scenario, the system takes these steps:

¢ Create the transaction records

* Process the transactions

* Create print spool files

* Send incomplete transactions to work-in-progress (WIP)

e Archive transactions

NOTE: Be sure to carefully read this topic even if you are using single-step processing.

CREATING TRANSACTION RECORDS

This illustration shows the files used and created by the GenTrn program as it creates
transaction records:

Source gystem System
clata settings resources

-
|
File=

TRHDFOFL.OFD

—M TRHFILE

t

GenTm GenData

h 4

Log File

B Error File

Mess=ge
~™ File

e

The GenTrn program takes the source data, which is stored in extract files, and creates
a list of the transactions, which is stored in the TRNFILE, or transaction file. This
transaction list is then used by the GenData program as it processes the transactions.

The GenTrn program uses settings in the FSISYS.INI and TRNDFDFL.DFED files to
determine how to process the transactions. These files provide the GenTrn program with
information about the format and structure of the extract file, such as how to determine
where each new record starts.

Using Multi-step Processing

The GenTrn program also produces a log file of its activities, a message file, and an error

file which you can use to resolve any errors that occur.

File Summary

This table summarizes the files used to supply information (input) and the files created
by (output) the GenT'rn program:

NOTE: You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input and all of the output files.

File Name Default File
or Type Extension Format Description
Input Extract files .DAT text Contains the data you want to process.
FSISYS NI text Initialization file which includes system
settings.
TRNDFDFL .DFD text Defines the attributes of the variable fields in
the TRNFILE.DAT file.
TRNFILE .DAT text Serves as an index to the individual
transactions. Used by the GenData program as
Output it processes the source data in the extract file.
Log file .DAT text Setves as a processing log for the GenTrn
program. The system records the information
by transaction.
Error file .DAT text Notes any errors and warnings encountered by
the GenTrn program as it created the
TRNFILE.DAT file. The system records the
information by transaction.
Message file .DAT text Contains etrors and warnings.

23

Chapter 2

Understanding the System

PROCESSING TRANSACTIONS

The following illustration shows the files used and created by the GenData program as
it processes transactions:

Source System

data settings System resources
CONY L o D A Tl
SN =
v v
GenPrint
=
GenTrn GenData | | —
GenWip
1
=
N
GenAre
Nex,
—
Mescage

RAls

i

The GenData program uses the transaction list (TRNFILE) created by the GenTtn
program as it processes the source data stored in the extract files. The FSISYS.INI file
provides system setting information, such as whether or not it should stop processing if
it encounters errors, how to identify key fields in extract files, whether or not it should
check the output data size against the defined field length, and so on.

The files listed under Systen resources provide additional information such as:
* How to read the transaction file (TRNDFDFL.DFD)

* The forms, graphics, and other resources to use when creating the form sets
(RESLIB)

* What forms to use (FORM.DAT)

* Who to send the forms to (SETRCPTB.DAT)

* What processing rules to apply to the data

* What processing rules to apply to this job (JDT's)

* How the batch files are defined (RCBDFDFL.DFD)

24

Using Multi-step Processing

NOTE: You can learn more about these files in Appendix B, System Files on page 493.

Output Files for GenPrint

The output files created by the GenData program include three types of files used by the
GenPrint program: Batch files, NAFILEs, and POLFILEs. Batch files list the transactions
which should be included in each batch print job. NAFILEs store section and variable
field information. POLFILEs define the form set the GenPrint program should use for
each transaction it processes.

Output Files for GenWIP

The GenWIP program also uses the NAFILE and POLFILE to store section and variable
field information and to define the form sets. In addition, the GenData program creates
manual batch files specifically for the GenWIP program.

The GenData program creates manual batch files if it is unable to complete the
processing of a form set. Typically, this occurs if the form set is missing information.
The GenWIP program uses this file to create separate transactions which can then be
completed manually using the Entry module of Documaker Workstation. The data for
the separate transactions are stored in files with the extension DAT, such as

00000001.DAT, 00000002.DAT, and so on.

Output Files for GenArc

The GenArc program also uses the NAFILE and POLFILE to store section and variable
field information and to define the form sets. In addition, the GenArc program uses the
NEWTRN files to tell it where to find data in the NAFILEs and which forms to use in
the POLFILEs.

25

Chapter 2

Understanding the System

File Summary

This table summarizes the files used to supply information (input) and the files created
by (output) the GenData program:

NOTE: You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input and all of the output files.

File name or Default File
Type Extension Format Description
Input Extract files text Contains the data you want to process.

FSISYS INI text Initialization file which includes system
settings.

TRNFILE DAT text Used as an index to the individual
transactions stotred in the extract file.

TRNDFDFL DFD text Tells GenData how to read the TRNFILE.

FORM DAT text Defines the forms in a form set.

SETRCPTB DAT text Defines the recipients of a form set.

DDT files DDT text Contains the rules GenData applies to the
data.

JDT files JDT text Contains the rules GenData follows when
processing the job.

RCBDFDFL DFD text Defines the attributes of the vatiable fields in
a batch file.

Resources (various) (various) Includes graphics (LOG), font cross
reference files (FXR), sections (FAP), and
SO on.

Output Batch files BCH text Indicates which transactions should be

included in a given batch job. Used by the
GenPrint program.

NAFILE DAT text Contains section and variable field
information. Used by the GenPrint,
GenWIP, and GenArc programs.

POLFILE DAT text Defines the forms to use for each batch.
Used by the GenPrint, GenWIP, and
GenArc programs.

26

File name or

Type

NEWTRN

Manual batch
files

Error batch
files

ARCHIVE

Log file

Error file

Message file

Default
Extension

DAT

BCH

.BCH

DFD

DAT

DAT

.DAT

File
Format

text

text

text

text

text

text

text

Using Multi-step Processing

Description

Tells the GenArc program where to find
data in the NAFILE and which forms to use
in the POLFILE.

Created if the form is incomplete. Used by
GenWIP to allow an operator to complete
the form in the Entry module of
Documaker.

Created if the system spots an error, such as
if the system spots an error and the form is
marked as host required. In contrast to
manual batch files, you cannot correct these
errors using the GenWIP program. Instead,
you must correct the error in the extract file,
change the flag to operator required, or
change the FAP file and then process the
transaction again.

Tells the GenArc program how to store
archived data.

Serves as a processing log. Created by the
GenTrn program, the GenData program
adds information to this file.

Notes any errors encountered by the
GenData program. Created by the GenTrn
program, the GenData program adds
information to this file (as do the GenPrint,
GenWIP, and GenArc programs).

Contains errors and warnings.

27

Chapter 2

Understanding the System

CREATING PRINT SpooL FILES

The following illustration shows the files used and created by the GenPrint program as
it creates print-ready files:

Print-ready fles /f"' i
- GenPrint i g —

HAFILE

GenData

The GenPrint program receives batch files from the GenData program which tell it what
transactions to print, NAFILEs which tell it what data to print, and POLFILEs which
tell it which forms to print.

With this information, the GenPrint program creates print-ready files for AFP, Xerox
Metacode, PCL, or PostScript compatible printers. The GenPrint program serves as the
print engine for the system.

NOTE: In addition, the GenPrint program can also create PDF (Acrobat) if you have
purchased the PDF Print Driver. For more information about this product,
contact your sales representative.

28

File Summary

Using Multi-step Processing

This table summarizes the files used to supply information (input) and the files created
by (output) the GenPrint program:

NOTE: You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input and all of the output files.

File name Default File
or Type Extension Format Description
Input Batch files BCH text Indicates which transactions should be
printed in a given batch. Used as trigger
files by the GenPrint program.
NAFILE DAT text Contains section and vatiable field
information.
POLFILE DAT text Defines the forms to use for each batch.
RCBDFDFL DFD text Defines the attributes of the variable
fields in a batch file.
Output Print-ready AFP, PCL, AFP, PCL, Printer spool files which can be printed
files XER, PST, MetaCode, on the printer of your choice.
PDF PostScript,
or PDF

29

Chapter 2

Understanding the System

30

SENDING INCOMPLETE TRANSACTIONS TO WIP

The following illustration shows the files used and created by the GenWIP program as
it processes incomplete transactions:

WIPF DEF

GenData

GenWip —

POL
Fles

A

The GenWIP program receives information from the GenData program about
incomplete transactions the GenData program found during its processing cycle. With
this information, the GenWIP program creates files the WIP module of Documaker can
read. Through the WIP module, data entry operators can complete the transactions by
entering the missing information.

The manual batch file tells the GenWIP program which transactions are incomplete and
should be included in work-in-progress (WIP).

Using the information in the manual batch files, the GenWIP program extracts the
information it needs from the NAFILE and POLFILE. With this information, it then
creates individual NA and POL files for each incomplete transaction. The GenWIP also
creates a WIP.DBF (database) file which contains information about the incomplete
transactions. The WIP.MDX file serves as an index to this file. Both the WIP.DBF and
WIP.MDX files are used by the WIP module of Documaker Workstation.

Using Multi-step Processing

File Summary

This table summarizes the files used to supply information (input) and the files created
by (output) the GenWIP program:

NOTE: You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input and all of the output files.

Default
File Name Extensio File
or Type n Format Description
Input NAFILE DAT text Contains section and variable field

information.

POLFILE DAT text Defines the forms to use for each batch.

RCBDFDFL DFD text Defines the attributes of the variable fields in
the batch files.

Manual batch BCH text Indicates which transactions should be
included.

Output WIP DBF Contains information about the incomplete

transactions extracted from the NAFILE and
POLFILE.

WIP MDX Serves as an index to the WIP.DBF file.

NA Files DAT text Contains the data (section and vatiable field
information) for a specific transaction. These
files are named numerically and each file has a
corresponding POL file.

POL Files POL text Defines the forms to use for a specific
transaction. These files are named numerically
and each file has a corresponding NA file.

31

Chapter 2

Understanding the System

ARCHIVING TRANSACTIONS

The following illustration shows the files used and created by the GenArc program as it
archives completed transactions:

GenData

ARZHIVE

i

HEATRH

¥

GenArc “
Y
ARCHIVE.DFD W

The GenArc program receives information from the GenData program, using many of
the same files used by the GenWIP and GenPrint programs, such as the NAFILE and
POLFILE. These two files identify the data to archive. The NEWTRN file tells the
GenArc program where to find data in the NAFILE, which is created by the GenArc
progtam.

¥

In addition, the GenArc program also uses the ARCHIVE.DFD file which tells it how
to store the data.

With this information, the GenArc program creates DBF and CAR files. The DBF files
serve as an index to the CAR files, where the archived information is actually stored.
You can have multiple CAR files.

32

File Summary

Using Multi-step Processing

This table summarizes the files used to supply information (input) and the files created
by (output) the GenArc program:

NOTE: You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input and all of the output files.

Default
File Name Extensio File
or Type n Format Description
Input NAFILE DAT text Contains section and variable field information.
POLFILE DAT text Defines the forms to use for each batch.
NEWTRN DAT text Tells the GenArc program where to find data in
the NAFILE and which forms to use in the
POLFILE.
APPIDX DFD text Tells the GenArc program how to store the
data.
Output DBF files DBF text Serves as an index to the archived data in the
CAR files.
ARCHIVE CAR CAR Contains the atchived forms.

RULES USED IN MULTI-STEP PROCESSING

Several rules are used to execute the programs of the multi-step process. For a complete

listing and description of these and other rules, see the Rules Reference.

33

Chapter 2

Understanding the System

RESTARTING
THE GENDATA
PROGRAM

RULCheckTransaction
rule

34

You can set up the GenData program to restart itself at a particular transaction if it
encounters a failure. To accomplish this, the system uses a restart file. You use INI
options to set up the restart file.

NOTE: This feature does not apply if you are using single-step processing.

The restart file stores checkpoint information at specified intervals. If an error is
encountered, the program resets itself and then checks each transaction until it isolates
the transaction causing the error.

The restart file is removed at the end of a successful run. If the file exists at the start of
a GenData run, the system assumes a restatt is necessary and will open and read the file.
The checkpoint information lets the system set internal pointers and output files in such
a way that it can begin at that transaction.

These rules are used to handle restarting the GenData program:
* RULCheckTransaction

* RestartJob

The RULCheckTransaction rule is always the first base form set rule. It saves the
EXTRFILE offset, TRNFILE offset, NEWTRN offset, NAFILE offset, POLFILE offset,
and batch file offsets into a restart (RSTFILE) file.

These offsets are updated in the post process after a specific number of transactions. You
specify the number of transactions using the CheckCount option. You define the
Restart file and the and check count in the Restart control group:

< Restart >
RstFile =
CheckCount =

Option Description

RstFile Enter the name of the restart file. If you omit this option, the system uses
RSTFILE.RST (DD:RSTFILE for MVYS) as the file name.

The system uses the DataPath option in the Data control group to determine
where to create the restart file. The default location is the current working
directory.

CheckCount Enter a number to specify the number of transactions to process before
updating the offsets. For instance, if you specify two hundred (200), the system
processes two hundred transactions, updates the offsets, processes two hundred
more transactions, and so on. The default is 100.

You can also use the /e# command line option with the GenData program to
override the CheckCount option. Here is an example:

gendaw32 /cnt=10

Here is an example:

;RULCheckTransaction;2;Always the first form set rule;

RestartJob rule

INI options

Restarting the GenData Program

The RestartJob is always the first base rule. This rule opens the restart file RSTFILE) and
resets the EXTRFILE, TRNFILE, NEWTRN, NAFILE, POLFILE, and batch files at the
broken transaction if the restart file exists. If the restart file does not exist, the RestartJob
rule is skipped.

NOTE: For more information on these rules, see the Rules Reference. You can also set
up the GenArc program to restart itself. For more information, see Using the
Restart Option on page 389.

Here is an example:

;RestartJob;1;Always the first base rule;

To use the restart feature, you should also set the following INI options:

< GenDataStopOn >

BaseErrors = Yes
TransactionErrors = Yes
ImageErrors = Yes
FieldErrors = Yes

35

Chapter 2

Understanding the System

GENERATING

BATCH STATUS

36

EMAILS

You can set up the GenData program to check recipient batches and notify the print
operator via email as to when to expect output print files.

You use INI options to have the Joblnitl rule notify batch recipients about batch file
information. On Windows, Microsoft mail and the SMTP mail type is supported. On
UNIX, only the SMTP mail type is supported.

With the INT settings shown below, the GenData program can...

Notify a user that a batch is not empty. For example, the GenData program can
send email notification if there are transactions in the error or manual batches or
both.

Notify a user that a batch is empty. For example, it can send an email to the print
operator telling the operator not to expect a print file for processing.

The notifications above can be skipped on per batch basis. For example, you can
have the GenData program skip batches that do not produce print files or produce
files that do not need to be printed.

For each notification email you can specify a send to address, reply to address,
message body, optional attachment, and message subject.

To each email you can optionally attach a recipient batch file.

The notification email message can include variable data which comes from GVM
variables.

To use this feature, make sure you have your INI files set up as shown here. The new

control groups and options appear in bold and are documented in the following table.

< Print_Batches >
Batchl = batchl.bch
Batch2 = batch2.bch
Batch2 = batch3.bch
Manual = manual.bch
Error = error.bch

< Batchl >
Printer = Printerl
Notify = BchRecipl

< BatchNotify:BchRecipl >
Empty = Yes
MailType = MSM
AttachBatchFile = Yes
SendTo = John Formaker
Subject = Batch 1 is empty
BodyTemplate = email.txt

< Mail >
MailType = MSM
; MailType = SMTP
< MailType:MSM >
Module = MSMW32
MailFunc = MSMMail
ReplyTo = replyto@docucorp.com
UserID = test
SuppressDlg = Yes

Generating Batch Status Emails

HiddenMsgSupport = Yes

Name

MS Exchange Settings

Recipient = test@oracle.com

Option

Description

Batch1 control group

Notify

Enter the name of INI control group where the notification options are
specified. In the example above, the control group name would be
BatchNotify:BehRecipl.

BatchNotify:BchRecipl control group

Empty

MailType

AttachBatchFile

SendTo

Subject

BodyTemplate

Enter Yes if you want the system to notify you if this batch is empty or
missing.

Enter No if you want the system to notify you if the batch is not empty.

Enter MSM to specify the mail type as Microsoft mail.

Enter SMTP to specify the mail type as SMTP. SMTP is the only option for
UNIX.

Enter Yes to attach the batch file if it exists and is not empty.

Enter No if you do not want the system to attach it.
Enter the name of the recipient or his or her email address.

Enter the text you want the system to place in the email subject line. For
instance, you could enter Bazch 1 is empty.

Here you can specify a template file, such as email.txt, to use when creating
an email message. It has format:

data for item one <% //testl,%s %> and trailing data

37

Chapter 2

Understanding the System

TRACKING The system lets you track job statistics that show you...

BATCH PAGE e Total pages
STATISTICS

Pages not including copy counts
* Printed sheets
* Sheets by tray (1 through 9)

You can compile these statistics by batch, recipient within each batch, and job totals.
You can also have the system write the totals to a recipient detail file, a batch summary
file, and the log file. Totals are written to the log file by default.

You can add recipient totals to the recipient batch records by adding the appropriate
global variables (GVMs) to the recipient batch file's Data Format Definition (DFD) file.
If you create the optional batch summary file, the batch page statistics will be available
to the GenPrint program via the batch total GVMs.

RECIPIENT PAGE STATISTICS

These statistics are captured for each recipient batch record written to the batch file:

Statistic GVM Description
Recipient RCB_NAME The cutrent recipient name
Total Pages RCB_TOTAL The total recipient pages including non-print (display

only) pages

Total Pages - RCB_TOTAL_ The total recipient pages not including copy counts.
No Copy NC Non-print (display-only) pages are included.
Total Sheets RCB_SHEETS The total printed sheets for the transaction (omits

display-only pages)

Total Tray 1 RCB_TRAY1 The total printed sheets for Tray 1
Total Tray 2 RCB_TRAY2 The total printed sheets for Tray 2
Total Tray 3 RCB_TRAY3 The total printed sheets for Tray 3
Total Tray 4 RCB_TRAY4 The total printed sheets for Tray 4
Total Tray 5 RCB_TRAY5 The total printed sheets for Tray 5
Total Tray 6 RCB_TRAY6 The total printed sheets for Tray 6
Total Tray 7 RCB_TRAY7 The total printed sheets for Tray 7
Total Tray 8 RCB_TRAYS The total printed sheets for Tray 8
Total Tray 9 RCB_TRAY9 The total printed sheets for Tray 9

38

Accessing totals in
GenPrint

INI Options

Tracking Batch Page Statistics

BATCH TOTALS SUMMARY FILE

The system can write a summary record for each recipient within each batch and a total
summary record to the optional Batch Totals Summary file. To have the system create
this file, include the RCBStatsTot option in the Data control group and specify a file
name.

You can modify the summary total file layout using a custom DFD. Specify the name
of the custom DFD in the RCBStatsTotDFD option in the Data control group. If you
omit the RCBStatsTotDFD option, the default DFD file is used (see Default DFD Files
on page 41).

If there are more that one recipient for a given batch file, a Total record is written. The

BATCH_RCB_NAME value is set to *** Tota/ *** for the total file record. If a total
record exists, the total record is loaded by the GenPrint program.

If you set the RCBStats option in the RunMode control group to Yes and RCBStatsTot
option in the Data control group has a value, the GenPrint program loads the total
values for each batch. These values will then be available as GVM variables.

You use the following INI options to record statistics:

< RunMode >
RCBStats
RCBTotals

Option Description

RCBStats Enter No if you do not want to execute statistics processing.

The default is Yes, unless the system is running under IDS. If IDS is running
Documaker Server, the default is No.

RCBTotals Enter No if you do not want the system to write recipient totals to the log file.
The default is Yes.

< Data >
RCBStatDt1DFD
RCBStatsTotDFD
RCBStatsDtl =
RCBStatsTot

Option Description

RCBStatDtDFD Enter a name for the RCB Statistics Detail File DFD. The system
defaults to an internal DFD entry.

RCBStatsTotDFD Enter a name for the RCB Statistics Total File DFD. The system
defaults to an internal DFD entry.

RCBStatsDtl Enter the name and path you want assigned to the detail log file. The
system will create this file if you include a value for this option.

RCBStatsTot Enter the name and path you want assigned to the total log file. The
system will create this file if you include a value for this option.

39

Chapter 2

Understanding the System

40

SAMPLE LOG FILE

Here is an example of a log file:

Batch (BATCHL)

- Total for Recipient (AGENT)

Pages 9
Pages (nc) : 9
Sheets 6
Trayl 2
Tray?2 2
Tray3 0
Tray4 2
Tray5 0
Tray6 0
Tray7 0
Tray8 0
Tray9 : 0
- Total for Recipient (COMPANY)
Pages 21
Pages (nc) : 21
Sheets 16
Trayl 3
Tray?2 2
Tray3 9
Tray4 2
Tray5 0
Tray6 0
Tray7 0
Tray8 0
Tray?9 : 0
- Total for Recipient (INSURED)
Pages 44
Pages (nc) : 44
Sheets 28
Trayl 6
Tray?2 11
Tray3 9
Tray4 2
Tray5 0
Tray6 0
Tray7 0
Tray8 0
Tray?9 : 0
- Total for Batch(BATCH1) :
Pages 74
Pages (nc) : 74
Sheets 50
Trayl 11
Tray?2 15
Tray3 18
Tray4 6
Tray5 0

in Batch(BATCH1) :

in Batch (BATCH1) :

in Batch(BATCH1) :

Tracking Batch Page Statistics

Tray6 0
Tray7 0
Tray8 0
Tray9 : 0
Job Page Statistics:
Pages : 74
Pages (nc) : 74
Sheets : 50
Trayl : 11
Tray?2 : 15
Tray3 : 18
Tray4 : 6
Tray5 0
Trayb6 0
Tray7 0
Tray8 0
Tray?9 0

DEFAULT DFD FILES
Here are examples of the DFD files:

RCBStatsDtIDFD < FIELDS >

FIELDNAME = RCB_BATCH
FIELDNAME = RCB_NAME
FIELDNAME = RCB_TRANS
FIELDNAME = RCB_TOTAL
FIELDNAME = RCB_TOTAL_NC
FIELDNAME = RCB_SHEETS
FIELDNAME = RCB_TRAY1
FIELDNAME = RCB_TRAY2
FIELDNAME = RCB_TRAY3
FIELDNAME = RCB_TRAY4
FIELDNAME = RCB_TRAY5S
FIELDNAME = RCB_TRAY6
FIELDNAME = RCB_TRAY7
FIELDNAME = RCB_TRAYS
FIELDNAME = RCB_TRAY9

< FIELD:RCB_BATCH >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 21
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 20
KEY = Y
REQUIRED = Y

< FIELD: RCB_NAME>
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 21
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 20
KEY = Y
REQUIRED = Y

< FIELD:RCB_TRANS >
INT_TYPE = CHAR_ARRAY

41

Chapter 2

Understanding the System

INT_LENGTH 31
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 30
KEY = N
REQUIRED = N
< FIELD:RCB_TOTAL >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:RCB_TOTAL_NC >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:RCB_TRAY1l >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:RCB_TRAY2 >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:RCB_TRAY3 >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:RCB_TRAY4 >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:RCB_TRAY5 >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH 10
KEY = N
REQUIRED = N
< FIELD:RCB_TRAY6 >

42

RCBStatsTotDFD

Tracking Batch Page Statistics

INT_TYPE = CHAR_ARRAY
INT_LENGTH = 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:RCB_TRAY7 >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:RCB_TRAYS8 >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:RCB_TRAYY9 >
INT_TYPE = CHAR_ARRAY
INT_LENGTH = 11
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N

< FIELDS >
FIELDNAME
FIELDNAME
FIELDNAME
FIELDNAME
FIELDNAME
FIELDNAME
FIELDNAME
FIELDNAME
FIELDNAME
FIELDNAME
FIELDNAME
FIELDNAME
FIELDNAME
FIELDNAME

BATCH_NAME
BATCH_RCB_NAME
BATCH_TOTAL
BATCH_TOTAL_NC
BATCH_SHEETS
BATCH_TRAY1
BATCH_TRAY2
BATCH_TRAY3
BATCH_TRAY4
BATCH_TRAYS5
BATCH_TRAY6
BATCH_TRAY7
BATCH_TRAYS8
BATCH_TRAY9

43

Chapter 2

Understanding the System

44

CONTROLLING
GENTRN
PROCESSING

Include the following control group and option in the FSISYS.INI file when you want
the GenT'rn program to continue processing transactions when errors occur. By default,
the GenTrn program halts when it encounters an error.

NOTE: This control group and option is typically used if you are using XML extract
files and you do not want the GenTrn program to stop every time it encounters
an error. For any type of extract file, using this option detects missing Keyl and
Key2 information.

Here is an example of the control group and option:

< GenTranStopOn >

TransactionErrors = Parameterl;Parameter2;Parameter3;

Parameter Description

Parameterl Enter No to turn the GenTranStopOn option off. The default is Yes.

Parameter2 Enter the name of the transaction file. To write out the error transaction, enter
the name of the file where you want the extract file records written.

If you omit the path, the system uses the DataPath option in the Data control
group in the FSISYS.INI file to determine where to locate this file.

Parameter3 The system only looks at this parameter if you entered a file name for
Parameter?2.

Enter Yes to tell the system to append the error transactions accumulated during
this processing run to the file created in a prior run.

Enter No to tell the system to overwrite any existing file. If Parameter2 exists and
you omit this parameter, the system defaults to No.

If you enter Yes, you must remove the file when necessary. Keep in mind that
over a seties of processing runs, this file will expand in size.

Separate the parameters with semicolons (5).

The system records all errors and warnings it encounters during a processing run in the
ERRORFILE.DAT file. In addition, it writes the extract file records of the transaction
in error to the file you specify in Parameter2. This lets you inspect those transactions
and determine the best way to proceed.

Here are some examples. This option:

TransactionErrors = No;..\Extracts\ErrorTransaction.dat;No;
Is the same as:

TransactionErrors = No;..\Extracts\ErrorTransaction.dat;;

Both let the GenT'rn program continue processing subsequent transactions when errors
occur. These options tell the GenTrn program to write the error transaction to a file
named ERRORTRANSACTION.DAT, stoted in the \Extracts directoty.

TransactionErrors = No; ErrorTransaction.dat;Yes;

Controlling GenTrn Processing

This option lets the GenTrn program continue processing subsequent transactions when
errors occur. Since the path of the error transaction file was omitted, the system uses the
DataPath option in the Data control group in the FSISYS.INI file to find the file so it
can append any error transactions to the existing error transaction file.

TransactionErrors = No;;;

This option lets the GenTrn program continue processing subsequent transactions when
errors occur. It does not, however, write out error transactions.

When using this option, you may encounter these errors:

e Problem in loading the XML file. Syntax error.

GenTrn

Transaction Error Report - System timestamp: Mon Dec 16 13:42:27 2002

DM12041: Error: FAP library error: Transaction:<1111111111>,
area:<DXMLoadXMLRecs>

codel:<48>, code2:<0>

msg:<XML Parse Error: The 15 chars before error=< <Keyl>Compl<>,
the 8 chars starting at error=</Keylc>
>>,

DM12041: Error : FAP library error: Transaction:<1111111111>,
area:<DXMLoadXMLRecs>

codel:<48>, code2:<0>
msg:<mismatched tag at line 3 column 16>.

DM10293: Error: Error in <BuildTranRecs>: Unable to
<DXMLoadXMLRecs () >.

Skip Transaction# <2>.

Warning: the specific info you see may not be the info for the error
transaction. It may be the info on the last complete transaction.

==> Warning count: 0
==> Error count: 3

* No problem in loading the file, however, Key1 is omitted in the transaction.

GenTrn

Transaction Error Report - System timestamp: Fri Dec 13 13:52:13 2002
DM1002: Error: Required INI definition omitted.

Cannot locate INI group <KeylTable> with value = defined.

DM15062: Error in BuildTrnRecs () : Unable to GENGetDocSetNames (pRPS) .
Skip Transaction# <3>.

==> Warning count: 0

==> Error count: 2

45

Chapter 2

Understanding the System

USING SINGLE-

46

STEP
PROCESSING

The single-step process improves the performance of your system by combining the
functions of GenTrn, GenData and GenPrint into one step performed by GenData. This
process is used when no intermediate steps are necessary.

The GenWIP and GenArc options are performed the same as in the multi-step process.
See Sending Incomplete Transactions to WIP on page 30 and Archiving Transactions on
page 32 for more information on the functions of the GenWIP and GenArc programs.

NOTE: When running in single-step mode, you can only produce a single print stream.
For instance, the most common method of print batching is to batch by
recipient, in single-step processing, however, you cannot produce separate print
streams for each recipient batch.

CREATING AND PROCESSING TRANSACTION RECORDS

In the multi-step process, the GenTrn program creates transaction records that are sent
to the GenData program for processing. In the single-step process, the GenData program
performs both of these actions in one step.

Pl Pty ks

AFP, Metacoils ,
PCL, PO RoIpt

GenData ‘_!

(et |
Genip

(o

(o
e GendAre

F:: Fle i

(7 (

Arczhive
DFD

Using Single-step Processing

As shown in the illustration above, the GenData program processes transaction records,
originated from the source data, and creates various output files for print, WIP or
GenArc. By combining the functions of GenTrn and GenPrint into GenData, you
reduce the number of times the system needs to open and close files, thus enhancing the
overall performance of your system.

System Settings and Resources

The FSISYS.INT and the FSIUSER.INI file provide system setting information, such as
whether or not it should stop processing if it encounters errors, how to identify key
fields in extract files, whether or not it should check the output data size against the
defined field length, and so on.

The files listed under system resources provide additional information such as:
* How to read the transaction file (TRNDFDFL.DFD)

* The forms, graphics, and other resources to use when creating the form sets
(RESLIB)

* What forms to use (FORM.DAT)

e Who to send the forms to (SETRCPTB.DAT)

* What processing rules to apply to the data

* What processing rules to apply to this job (JDT's)

* How the batch files are defined (RCBDFDFL.DFD)

NOTE: You can learn more about these files in Appendix B, System Files on page 493.

The advantage of single-step processing is the improvement to performance The
disadvantage is that it is much more difficult to correct errors because the system does
not create batch files at the end of each step. These batch files tell you what occurred
and help you spot and correct errors.

47

Chapter 2

Understanding the System

CREATING PRINT FILES

With the placement of specific rules, you can make the GenData program perform the
functions of the GenTrn and GenPrint programs. In other words, when GenData is
processing transactions files, it is also producing the print-ready files necessaty to print
on AFP, Metacode, PCL, or Postscript printers.

AFP | Metacode,
PCL, Postscript
(=T

Genlata

As in the multi-step process, the GenData program creates these types of files:
* Batch files - list the transactions which should be included in each batch print job
* NAFILE:s - store section and variable field information

* POLFILEs - define the form set the GenPrint program should use for each
transaction it processes

NOTE: When using single-step processing, you should clear all messages before each
processing run. For information on how to do this, see Clearing Messages on
page 362.

48

File Summary

Using Single-step Processing

This table summarizes the files used to supply information (input) and the files created
by (output) the GenData program:

NOTE: You can use the Data control group in the FSISYS.INI file to specify the names
and extensions for all other input files and all of the output files.

File name or Default File
Type Extension Format Description
Input Extract files text Contains the data you want to process.

FSISYS INI text Initialization file which includes system
settings.

TRNDFDFL DFD text Tells GenData how to read and write the
TRNFILE.

FORM DAT text Defines the forms in a form set.

SETRCPTB DAT text Defines the recipients of a form set.

DDT files DDT text Contains the rules GenData applies to the
data.

JDT files JDT text Contains the rules GenData follows when
processing the job.

RCBDFDFL DFD text Defines the attributes of the variable fields in
a batch file.

Resources (various) (vatious) Includes graphics (LOG), font cross
reference files (FXR), sections (FAP), and so
on.

Output Batch files BCH text Indicates which transactions should be
included in a given batch job.

NAFILE DAT text Contains section and variable field
information. Used by the, GenWIP, and
GenArc programs.

POLFILE DAT text Defines the forms to use for each batch.
Used by the GenWIP and GenArc
programs.

NEWTRN DAT text Tells the GenArc program where to find data

in the NAFILE and which forms to use in
the POLFILE.

49

Chapter 2

Understanding the System

File name or Default File

Type Extension Format Description

Manual batch BCH text Created if the form is incomplete. Used by

files GenWIP to allow an operator to complete
the form in the Entry module.

Error batch .BCH text Created if the system spots an error, such as

files if the system spots an error and the form is
marked as host required. In contrast to
manual batch files, you cannot correct these
errors using the GenWIP program. Instead,
you must correct the error in the extract file,
change the flag to operator required, or
change the FAP file and then process the
transaction again.

ARCHIVE DFD text Tells the GenArc program how to store
archived data.

Log file DAT text Serves as a processing log. Created by the
GenData program in the single-step process.

Error file DAT text Notes any errors encountered by the
GenData program. Created by the GenData
program in the single-step process.

Message file .DAT text Intermediate file which contains log and

error messages. These messages are then
translated and written to either the
LOGFILE.DAT or ERRFILE.DAT files.

50

USING THE MULTIFILEPRINT CALLBACK FUNCTION

The system includes a MultiFilePrint callback function designed for running the
GenData program in single-step mode. The log file is either a semicolon delimited text
file—the same as the file created by MultiFilePrint—or an XML file.

The layout of the XML file is as follows:

.\data\BATCH1.BCH
SAMPCO

LB1

1234567

T1

INSUREDS COPY
DATA\ 0rDcP7WxytE82ECP5jexhWXVgkjVv840Vw_F-GykT_ VMfd.PDF
.\data\BATCH2 .BCH
SAMPCO

LB1

1234567

T1

Using Single-step Processing

COMPANY COPY
DATA\0v317pBdVgHceoRL5hf2xgjJ7WAMxiRVO9U70iFiXIcne . PDF

You can use the INI options in the DocSetNames control group to determine which
XML elements are created. The values are the same as those written to a recipient batch
or transaction file.

The MultiFilePrint callback function should only be used with the PDF, RTF, HTML,
and XML print drivers. See also Controlling What is in the MultiFilePrint Log on page
118.

MAPPING FIELDS WITH XPATH

The GenTrn program and the NoGenTrnTransactionProc rule let you use the
TRN_Fields control group to map all of your fields with XPath. To let the system know
you are using the XML file, set the XMLTrnFields option in the TRN_File control group
to Yes and also set the XMLExtract option in the RunMode control group to Yes.

Here is an example:

< RunMode >
XMLExtract = Yes
< TRN_File >
XMLTrnFields= Yes
< TRN_Fields >

Company = ! /Forms/Keyl

LOB = ! /Forms/Key2

PolicyNum = !/Forms/PolicyNum
RunDate = ! /Forms/RunDate;DM-4 ;D4

NOTE: Use this format for the Trn_Fields control group options:

(Field in the Transaction DFD File) = XPath;Field Format

Be sure to include the leading exclamation mark (!). This tells the system to use an XML
path search but is not part of the actual search routine. Do not specify whether a field
is a key. The system does not support multiple (search) keys with the XML
implementation.

If you are selectively excluding transactions in your exclude file, instead of an offset and
search mask, replace it with the XPath. Here is an example:

! /Forms [PolicyType="0LD"]

51

Chapter 2

Understanding the System

52

RUNNING ARCHIVE IN SINGLE-STEP PROCESSING

Using rules developed for archiving via Docupresentment, you can run the GenArc
program as part of single-step processing.

Use the InitArchive rule to check the INI options in the Trigger2Archive control group,
initialize the database, open the APPIDX.DFD and CAR files, and perform other steps
to initialize archive.

The Archive rule then unloads the current form set and converts field data for archive
using the INI options in the Trigger2Archive control group.

Here is an example:

< Base Rules >
;InitArchive;1;;

< Base Form Set Rules >
;jArchive;2;;

NOTE: For more information on these rules, see the Rules Reference.

RUNNING WIP IN SINGLE-STEP PROCESSING

You can use the InitConvertWIP and ConvertWIP rules to run the GenWIP program in
single-step mode.

Use the InitConvertWIP rule to perform the initialization necessary for the ConvertWIP
rule.

Use the ConvertWIP rule to see if the current transaction is assigned to the
MANUAL.BCH file. If it is, the rule adds the record to WIP and unloads the contents
of the POLFILE.DAT and NAFILE.DAT files to new files with unique names.

You can then view these WIP records using Documaker Workstation or the WIP Edit
plug-in, which is part of the Docupresentment suite of products.

Here is an example:

< Base Rules >
;InitConvertWIP;1; ;

< Base Form Set Rules >
;ConvertWIP;2; ;

NOTE: For mote information on these rules, see the Rules Reference.

Archive

BatchingByRecipINI

BatchByPageCount

BuildMasterFormList

Using Single-step Processing

RULES USED IN SINGLE-STEP PROCESSING

Specific rules are used to combine the execution and functionality of the GenT'n,
GenData, and GenPrint programs into a single step. To begin familiarizing yourself with
these rules, an alphabetical listing and brief description follows. You can find more
information in the Rules Reference.

Use this form set level (level 2) rule after the InitArchive rule to unload the curtent form
set and convert field data for archive using the INI options in the Trigger2Archive
control group.

Use this form set level (level 2) rule to send transactions to a batch you specify based on
data in the extract file. To use this rule, you must include the BatchingByRecip control
group in your FSISYS.INI file with options similar to those shown below:

< BatchingByRecip >
Batch_Recip_Def = default; "ERROR"
Batch_Recip_Def = 4,1234567; "BATCH1"; INSURED
Batch_Recip_Def = true; "BATCH2"; INSURED
Batch_Recip_Def = True; "BATCH3"; COMPANY | true; "BATCH2” ; AGENT

You must also add the TWOUP control group and CounterTbl option to the
FSISYS.INI file.

Use this form set level rule to send a transaction to a specific batch based on the number
of pages produced by processing the transaction. The batch used is determined by the
PageRange option in the Batch control group.

In the example below; transactions that produce 1 to 7 pages are send to Batchl.
Transactions that produce 8 to 25 pages are send to Batch2. In addition, you must add
the TWOUP control group and CounterTbhl option to the FSISYS.INI file.

< Batches >

Batchl = .\data\Batchl
Batch2 = .\data\Batch2
Batch3 = .\data\Batch3
Error = .\data\Error
Manual = .\data\Manual
< Batchl >

Printer = Batchl_PTR
PageRange = 1,7

< Batch2 >

Printer = Batch2_PTR
PageRange = 8,25

< TWOUP >
CounterTbl = .\datal\counter.tbl

Use this job level rule (level 1) to load the FORM.DAT file into an internal linked list
within the GenData program. You must include this rule in the AFGJOB.JDT file
because the RunSetRepTbl rule is dependent on the list this rule creates.

53

Chapter 2

Understanding the System

ConvertWIP Use this form set level (level 2) rule to see if the current transaction is assigned to the
MANUAL.BCH file. If it is, the rule adds the record to WIP and unloads the contents
of the POLFILE.DAT and NAFILE.DAT files to new files with unique names. You can
then view these WIP records using Documaker Workstation or the WIP Edit plug-in.

InitArchive Use this job level (level 1) to check the INI options in the Trigger2Archive control
group, initialize the database, open the APPIDX.DFD and CAR files, and perform other
steps to initialize archive.

InitConvertWIP Use this job level (level 1) rule to perform the initialization necessary for the
ConvertWIP rule.

InitPrint Use this job level (level 1) rule to load printer and recipient batch information. This rule
sets up PRTLIB data, initializes print options, and loads a table which contains page
totals for recipient batch files.

InitSetRecipCache Use this job level rule (level 1) to set the amount of cache the system uses to store
recipient information in memory. With this rule you can tell the system the amount of
memory to set aside and use for storing information in the Key1 and Key?2 fields, often
used to store the company, line of business, and transaction codes. You can use this rule
to improve processing performance for complex forms. This rule has no affect on the
processing speed for static forms.

NOTE: If you omit this rule, the system does not set aside memory for the Key1 and
Key2 fields.

NoGenTrnTransaction Use this form set level rule when you use the GenData program by itself to execute the
Proc GenTrn and GenData steps. In the single-step processing environment, this rule
processes the extract file and creates the information normally created in both the
GenTrn and GenData steps. When combined with the InitPrint and PrintFormset rules,
it creates the output files normally created during the GenPrint step.

NOTE: Do not use this rule if you are running the GenTrn, GenData, and GenPrint
programs as separate processes (multi-step processing).

PageBatchStage1Init Use this job level rule (level 1) to create and populate a list of records which contain
Term page ranges and total page counts for each recipient batch file.

This rule is typically used for handling 2-up printing for AFP and compatible printers.

This rule creates a list (populated in another rule) to contain the recipient batch records
for a multi-mail transaction set. The rule then writes out the recipient records for the
final multi-mail transaction set and writes out the total page counts for each recipient
batch. You must add the TWOUP control group and CounterThl option to the
FSISYS.INI file, as shown here:

< TwoUp >
CounterTbl = .\data\counter.tbl

54

PaginateAndPropogate

PrintFormset

ProcessQueue

StandardFieldProc

StandardlmageProc

WriteNAFile

WriteOutput

WriteRCBWithPage
Count

Using Single-step Processing

Use this form set level (level 2) rule to paginate the form set and merge in or propagate
field data.

Use this form set level (level 2) rule when you run the GenData program by itself to
execute GenTrn and GenPrint processes. In the single-step processing environment, this
rule, when combined with the InitPrint rule, prints form sets.

NOTE: Do not use this rule if you are running the GenTrn, GenData, and GenPrint
programs as separate processes (multi-step processing).

Use this form set level (level 2) rule to process the queue you specify. This rule loops
through the list of functions for the queue you specify and then frees the queue when
finished.

This rule is a field level rule (level 4), which you must include in the AFGJOB.]DT file.
This rule is used when you are using the performance mode JDT and should be the first
field level rule. This rule tells the system to process each field on all of the sections
triggered by the SETRCPTB.DAT file. If you use the StandardFieldProc rule in your
JDT, you must also include the WriteNAFile rule.

This rule is a section level rule (level 3) which you must include in the AFGJOB.JDT file.
This rule is used when you are using the performance mode JDT and should be the first

section level rule. This rule tells the system to process each section triggered by the
SETRCPTB.DAT file.

Use this form set level rule (level 2) to append the NAFILE.DAT file data records for
the current form set into an existing NAFILE.DAT file. When you use the
NoGenTrnTransactionProc rule, which replaces the RULStandardProc rule, you must
include the WriteNAFile rule to cause data (records) to be written to the NAFILE during
the GenData processing step. In addition, you must also include the WriteOutput rule
to cause data (records) to be written to the POLFILE.DAT and NEWTRN.DAT files
during the GenData processing step.

Use this form set level (level 2) rule to append the POLFILE.DAT file data records for
the current form set into an existing POLFILE.DAT file.

You also use this rule when you are using the GenData program by itself to execute the
GenTrn, GenData, and GenPrint processing steps.

If you use this rule, do not use the UpdatePOLFile rule.

Use this form set level rule (level 2) to write page counts for each recipient. This rule is
typically used for handling 2-up printing on AFP and compatible printers. To use this
rule, you must update the RCBDFDFL.DFD file with the following items:

< FIELDS >
FIELDNAME = CurPage
FIELDNAME = TotPage
FIELDNAME = AccumPage
FIELDNAME = MMFIELD

< FIELD:CurPage >
INT_TYPE = LONG

55

Chapter 2
Understanding the System

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:TotPage >
INT_TYPE = LONG
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED = N
< FIELD:AccumPage >
INT_TYPE = LONG
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 10
KEY = N
REQUIRED =N
< FIELD:MMFIELD >
INT_TYPE = CHAR_ARRAY
INT_LENGTH 7
EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 6
KEY =N
REQUIRED = N

SINGLE-STEP PROCESSING EXAMPLE

As stated eatlier, the single-step process is performed by combining the execution and
functionality of the GenTrn, GenData, and GenPrint programs. This is done by placing
certain rules into a specialized JDT. The eatlier illustration shows the input and output
files used by GenData to process transactions and print output files in one step. The
following file describes the JDT used to process the job and an example of the rules used
to combine the GenTtn, GenData, and GenPrint functions.

To make this happen, the NoGenTrnTransactionProc rule, along with other rules, are
placed in the JDT file as seen in the following sample file. You can find a sample file in
the DMS1 sample library.

Base rules The following base rules are designed for the performance mode.

;RULStandardJobProc;1;Always the first job level rule;
jSetErrHAr; 1 %% tm e m e e ;
;SetErrHdr;1;***: BillPrint Data Generation (Base);

;SetErrHdr;1; ***:;

;SetErrHdr;1;***: Transaction: ** * ACCOUNTNUM* * * ;
;SetErrHdr;1l; ***: Company Name: *F*Company* **;
;SetErrHdr;1;***: Line of Business: ***LOB***;

;SetErrHdr;1;***: Run Date: ***RunDate***;
jSetErrHAr; 1; * %% tm e e e e
;JobInitl;;;

;CreateGlbVar;1l; TXTLst, PVOID;
;CreateGlbVar;1;TblLstH, PVOID;
;InitOvFlw;1; ;

; SetOvF1lwSym; 1; SUBGROUPOVF, SUBGROUP, 5;
;BuildMasterFormList; ;4;

; PageBatchStagelInitTerm; ; ;

56

Using Single-step Processing

;InitSetrecipCache;;;
The following rule is required to execute GenData and GenPrint as a single step.
;InitPrint;;;
Base form set rules The following base form set rules causes GenTrn and GenData to be combined into a
single step.

;NoGenTrnTransactionProc; ; ;
;ResetOvFlw;2; ;
;BuildFormList; ;;
;LoadRcpTbl; ; ;
;RunSetRcpTbl; ; ;

The following rules are required to execute GenData and GenPrint as a single step.

;PrintFormset; ; ;

;WriteOutput;;;

;WriteNaFile;;;
;WriteRCBWithPageCount; ; ;

; ProcessQueue; ; PostPaginationQueue;
; PaginateAndPropogate; ; ;
;BatchingByRecipINI; ; ;

Base image rules The following base image rules apply to every section in this base.

; StandardImageProc; 3;Always the 1lst image level rule;

Base field rules The following base field rules apply to every field in this base.

;StandardFieldProc; 4;Always the 1st field level rule;

57

Chapter 2

Understanding the System

USING |IDS TO Youcansetup the Internet Document Server (IDS) to run Documaker as a subordinate
process. Web clients communicate with IDS using queues. IDS communicates with
RUN Documaker via XML files called job #ickets and job logs.
DOCUMAKER

This diagram illustrates the process:

XML Job

Ticket D m k r
> ocumake

IDS Server

(GenData)

IDS can start or stop Documaker Server as needed, without user interaction. One IDS
session controls one Documaker process. You can, however, implement multiple IDS
sessions and have multiple Documaker Server processes as well.

Keep in mind these limitations:
* You can only run Documaker in single step mode.
* You must run Documaker on Windows 2000 or higher.

* Different resource setups for Documaker are supported, but Documaker processing
restarts if resources are changed, eliminating the performance benefits. This should
not be a problem because it is unlikely multiple Documaker Server setups will be
used with a single IDS implementation. You can, however, experience problems
testing a system with multiple setups.

* During processing, some INI options can be changed by the client. Since some
Documaker rules use static variables and store INI values in memory, it is possible
that a client will be unable to change an INI option if those Documaker rules are
used. To handle these situations, you must restart Documaker.

For more information, see the Internet Document Server Guide and the SDK Reference.

58

Writing Unique Data into Recipient Batch Records

WRITING The GenData program lets you add unique data to each recipient batch record before it
is written to the recipient batch files. The recipient batch record data and format is
UNIQUE DATA defined by the GVM variable definitions in the RCBDFDFL.DAT file.

INTO RECIPIENT

BATCH , , , _ L
¢ Address information or other field level information to the batch record, which is
R ECORDS typically unique for each recipient.

You can use this capability if you need to add...

* Recipient information that is not handled by normal field mapping from the
transaction DFD to the recipient batch DFD.

* Cumulative or calculated information not available until the document is neatly
completed.

NOTE: Before this feature was implemented in version 10.2, the recipient batch records
were identical except for the recipient code field which contains a unique
identifier assigned to a given recipient. If additional recipient data was required,
you had to write a custom rule.

Use the options in the RecipMap2GVM control group to set up this capability. Data
that can be added to the recipient batch record can be:

* Contents of a vatiable field on the specified section or form/section
* Constant value

e Data from an existing INI built-in functions, such as ~DALRun

e Data from a custom written INI function

Here is an example of the RecipMap2GVM control group:

< RecipMap2GVM >
Form =

Image
Reqg =
Opt =

Option Description

Form (optional) Enter the name of the form.

Image Enter the name of the section (image). You can also enter a section name root.

A section name root is the first part of a name. For instance, MAILER is the root
name for sections with names such as MAILLER A, MAII.LER_B, or MAILERS.

59

Chapter 2

Understanding the System

60

Option Description

Req * A semicolon delimited string that contains one of the following:
- GVM variable name; variable field name; optional formatting information
- GVM variable name; blank character (space); constant value

- GVM variable name; INI built-in function

Opt * A semicolon delimited string that contains one of the following:
- GVM variable name; variable field name; optional formatting information
- GVM variable name; blank character (space); constant value

- GVM variable name; INI built-in function

* = Repeat for each GVM variable you are setting up.

Optional formatting You can add optional formatting information as a parameter of the Opt INI option.

information This formatting information is comprised of four items separated by commas.
Item Description
Input fetypes D or d = date

N ot n = number

Input format Date - see the FmtDate rule in the Rules Reference.

mask Number — see the FmtNum rule in the Rules Reference.

Output fetypes D or d = date

N or n = number

Output format Date - see the FmtDate rule in the Rules Reference.

mask Number — see the FmtNum rule in the Rules Reference.

Here are some formatting examples:

a,”1/4", 4, “4/4”

This converts an input date, mmddyyyy, into month name dd, yyyy, such as February 17,
2012.

n, nCAD, nUSD, “$zzz,zz9.99"

This converts an input numeric value in Canadian French format into a value in United
States format.

Keep in mind...

For the Req option, if the data is missing an error occurs and the transaction is send
to the error batch.

For the Opt option, if the data is missing the system stores an empty string in the
GVM variable.

A RCB GVM variable cannot be restored to its original or default value after it has
been changed using this method.

Any RCB GVM variable not assigned using this method retains the value originally
set during the transaction processing.

Example

Writing Unique Data into Recipient Batch Records

* Some RCB GVM variables should never be changed using this mapping technique.
These include:

TRN_ Offset
NA_ Offset
POL_Offset

* If the section defined in the Image option in the RecipMap2GVM control group
does not name a section, the feature is disabled for all transactions.

» If the section defined in the Image option is missing from the form set being
processed, the GVM data is not changed. Depending on where the GVM data is
mapped, this could mean data from the prior transaction will still be in the GVM
variables.

* If there are multiple sections with the same name in the form set, the form specified
in the Form option is used to identify the section to use. If the Form option is
omitted, the first section found in the current form set is used.

* The system assumes the specified section contains all of the unique data except for
a constant value or data gathered from an INI built-in function.

* If more than one recipient is assigned to the section, all recipient batch records
receive the same added data.

This example creates a mailer cover page for each insured, agent, and/or company
recipient per transaction. The cover page is created using banner page processing which
occurs during GenPrint processing. Examples of the three different mailer cover pages
are as follows.

61

Chapter 2

Understanding the System

Insureds

Agents

Company

62

[

Jill Smith
11111 Oak Citcle
Suite 999
Smryna, FI. 12345

I

Suzy Smith

Mortis Fanelli

99934 Oak Circle
Suite 999

Smartburg, WI 99999

[1ill Smith

Martin Short Agent
963 Atlantic
Boulevard

Suite 1250

Miami, FL 30202

[Suzv Smith

David Miller Agent
999 Green Dolphin
Street

Suite 1200

Miami, FL. 30202

| Suzy Smith

[1ill Smith

Sampco, Inc.

316 N.E. 3rd Avenue
Pompano Beach, FL
33333

Writing Unique Data into Recipient Batch Records

This example assumes that the:

* Agent and company recipient batch files are sorted (agent number and company
name, respectively) before the GenPrint program runs. This sorting allows for the
creation of only one mailer cover page per unique agent and company.

* Unique information is contained on the form/section, Dec Page/Q1MDCI.
e The FSIUSER.INI file includes these control groups and options:

< RecipMap2GVM >

Form = Dec Page

Image = Q1MDC1

Opt = Namel; Insured Name;

Opt = Name2; Insured Name2;

Opt = Addressl;Address Linel;

Opt = Address2;Address Line2;

Opt = CityCounty;prtvalue;

Opt = AgentName; Agent Name;

Opt = AgentID; Agent ID;

Opt = OfficeAddress;Office Address;

Opt = TownandState; Town And State;
< Printer >

PrtType = PCL

EnableTransBanner = True

EnableBatchBanner = False

TransBannerBeginScript= PreTrans

TransBannerEndScript = PstTrans
TransBannerBeginForm = ;BANNER; TRANSACTION; TRANS HEADER;
TransBannerEndForm = ;BANNER; TRANSACTION; TRANS TRAILER;

< DALLibraries >

LIB = Banner

BANNER.DAL The DefLib directory contains this DAL script:

* This script obtains the required unique data from the recipient
* batch record and stores it on the mailer form.

BeginSub PreTrans

blank_gvm = Pad(" ",41," ")

SetGVM ("NameA" ,blank_gvm,,"C",41)

SetGVM ("NameB" ,blank_gvm, ,"C",41)

SetGVM ("AddressA" ,blank_gvm, ,"C",41)

SetGVM ("AddressB" ,blank_gvm, ,"C",41)

SetGVM("CityCountyl" ,blank_gvm,,"C",641)

If Trim(RecipName()) = "INSURED" Then
SetGVM ("NameA" ,GVM ("Namel") ,,"C",41)
SetGVM ("NameB" ,GVM ("Name2") ,,"C",41)
SetGVM ("AddressA" ,GVM ("Addressl") ,,"C",41)
SetGVM ("AddressB" ,GVM ("Address2") ,,"C",41)
SetGVM("CityCountyl" ,GVM("CityCounty"),,"C",41)
GoTo exit:

End

last_agent_id = last_agent_id
If Trim(RecipName()) = "AGENT" Then

63

Chapter 2

Understanding the System

If last_agent_id != Trim(GVM("AgentID")) Then
last_agent_id = Trim(GVM("AgentID"))
SetGVM ("NameA" ,GVM ("AgentName") ,,"C",41)
SetGVM ("NameB" ,GVM ("OfficeAddress") ,,"C",41)
SetGVM ("AddressA" ,GVM ("TownandState") ,,"C",41)
GoTo exit:
Else
SuppressBanner ()

GoTo exit

End
End
last_company name = last_company name
If Trim(RecipName()) = "COMPANY" Then
If Trim(GVM("Company")) != last_company name Then
last_company name = Trim(GVM("Company"))
If Trim(GVM("Company")) = "SAMPCO" Then;
SetGVM ("NameA" , "Sampco, Inc." ,,"C",41)
SetGVM ("NameB" ,"316 N.E. 3rd Avenue" ,,"C",41)
SetGVM ("AddressA" , "Pompano Beach, FL 33333" ,,"C",41)
GoTo exit:
ElseIf Trim(GVM("Company")) = "FSI"
SetGVM ("NameA" ,"FSI Inc." , . "C",41)
SetGVM ("NameB" ,"222 Newbury St." ,,"Cm,41)
SetGVM ("AddressA" , "Northwest City, FL 99999" ,,"C",41)
GoTo exit:
End
Else
SuppressBanner ()
GoTo exit:
End
End
exit:
EndSub

BeginSub PstTrans
EndSub

The RCBDFDFL.DAT file contains the following GVM variable definitions which are
defined in the RecipMap2GVM control group:

* Namel
* Name2
* Addressl
e Address2

* CityCounty

* AgentName

* AgentlD

* OfficeAddress
* TownAndState

64

Writing Unique Data into Recipient Batch Records

Here are two recipient batch records from this example:

SAMPCOLB12234567SCOMIFLT1 B2199802232234567890 0 22560
FrxxHFAO0L 3724 4523111 Smith Morris

11111 Oak Circle Suite 999 Smyrna,
FL 12345 Martin Short Agent 963 Main Street,

Suite 1250 Miami, FL 30202

FSI CPP4234567FSIMIWIT1 B3199802234234567890 0 30360

Frx KK HAQQL 4667 565Suzy Smith Morris

99934 Oak Circle Suite 999 SmartBurg,
WI 99999 David Miller Agent 999 Main Street,

Suite 1200 Miami, FL 30202

65

Chapter 2

Understanding the System

66

USING CLASS
RECIPIENTS

A class recipient identifies a recipient that represents one or more persons or entities. For
instance, in an insurance implementation, you might have a policy that has a several
recipients declared as an Additional Interest. Instead of declaring each as a separate
recipient with separate triggering logic, it is more convenient to declare a single recipient
name that represents all those of the same type or class. All members of this class receive
virtually identical copies of the document.

In this scenario, you do not have to do anything special to declare a class recipient in
your form definitions. Merely determine the appropriate title for this class of recipients
and define that name as you would a normal recipient that represents a single entity.

If you want all members of the class to receive identical copies of the document, use the
trigger for the recipient to assign a copy count to each form or section — where the count
equals the number of members in the class.

There are some limitations to using form copy counts to provide recipient copies. For
instance, this does not let you print unique information about each member of the class
recipient, as would be necessary on a mailer page, for instance.

NOTE: It is possible to handle this using trigger overflow processing to physically
trigger multiple copies of each form — one for each member, but a disadvantage
of this approach is that each item (form or section) triggered is physically
duplicated in the form set and therefore each requires data processing. This
means that if there are a large number of these duplicate recipients, the
throughput performance of transactions could be affected.

To handle this situation, the RecipMap2GVM feature can write additional batch records
for each member of a class recipient. The RecipMap2GVM feature lets you write unique
recipient information to each batch record.

With this method, only a minimal amount of additional processing occurs in the form
set mapping. Yet, because a separate batch record is written for each member, the system
prints a separate copy of the document for each member and you can use the unique
information saved in each batch record to provide a unique banner page, such as a
mailer, for each member in the print output.

To use the RecipMap2GVM feature, follow these steps:

1 Add a section to your form set definition and assign this section the name of your
class recipient. Normally, you would also flag this section as hidden, since you would
not want it to display or print. This purpose of this section is to hold the unique
information for each member of the class recipient.

2 Define a trigger for the section that uses overflow to generate as many copies of the
section as there are members in the data. The idea is to trigger an instance of the
section for each member recipient. Be sure to also declare and create the appropriate
overflow variable in the AFGJOB.JDT file you will use during data mapping.

3 Create the section and add fields that map the data to be written to the batch record
for each member. Be sure to use the appropriate overflow variable for this section
in your rule mapping definitions. Also remember to assign the appropriate section
level rule to increment the overflow symbol after processing each section.

Using Class Recipients

4 Set up your RecipMap2GVM INI control group and modify your
RCBDFDFL.DFD (Recipient Table DFD) file to include your unique data fields for
the recipient batch records. Specify the new section as the section required in the
RecipMap2GVM control group and set up each of the fields to map into your
RCBDFDFL.DFD file layout.

NOTE: See Writing Unique Data into Recipient Batch Records on page 59 for more
information on the RecipMap2GVM control group.

When you run the GenData program, your new section will trigger once for each
member recipient. During normal processing, the fields on each section will map (using
overflow variables) the unique data for each member. Because you have multiple copies
of the section triggered, the RecipMap2G VM feature creates a separate batch record for
each instance of the section. Therefore, you receive a separate record representing each
individual member of your class recipient.

When the GenPrint program runs, having a separate record for each class recipient in
the batch causes that transaction to print once for each member. And by using banner
page processing, you can take the unique information written into each batch record
and map that information to a mailer page, making the final output unique to each
member of the class.

67

Chapter 2

Understanding the System

RUNNING
DOCUMAKER
UsSING XML
JOB TICKETS

68

You can run Documaker from another application using an XML job ticket. You receive
results in an XML job log file.

The layout of these files is the same as those used by IDS for running Documaker. See
Using IDS to Run Documaker on page 58 for more information.

The name of the job ticket is passed to the GenData program on the command line as
/Jjticket= parameter

The default name is JOBTICKET. XMI..

To set this up replace the StandardJobProc rule with the TicketJobProc rule. Keep in
mind you must run Documaker in single step mode, since only the GenData program
is executed. See Using Single-step Processing on page 46 for mote information.

You can specify the name of the resulting job log file using this command line
parameter:

/3log=
The default is JOBLOG.XML.

HANDLING 2-UP

PRINTING

2-up printing with
single-page forms

Handling 2-up Printing

Two-up printing lets you print two transactions on the same page of single- and multi-
page forms. 2-up printing is a two-step process which passes input through GenData
three (3) times, using a different JDT file each time.

This process is similar to the single-step process in that GenData performs the work, but
the three passes through GenData actually represent two steps of the multi-step process:
processing the transactions and printing the transactions.

For more information and to see example JDT files, see Single-step Processing Example
on page 56.

NOTE: 2-up printing is only available for AFP printers.

There are several scenarios in which 2-up printing applies:
* 2-up printing with single-page forms
e 2-up printing with multi-page forms

The following illustrations describe these scenarios.

This illustration shows how 2-up printing works when you use single-page forms, such
as some types of bills and statements.

Transaction 1 —/' Services rendered

100.00 Services rendered 100.00

Services rendered 100.0(Services rendered 100.00

Services rendered 00 Services rendered 100.00

. Services 100.00 Services rendered 100.00
Transaction 2 T Services rendered 100.00 || Services rendered 100.00

Transaction 3 “
_—/v Services rendered 100.00

Services rendered 100.00

Setvices rendered Services rendered 100.00

Services rendered Setvices rendered 100.00

Transaction 4 Setvice . Services rendered 100.00
| — T Services rendered 100.00 Services rendered 100.00

Transaction b
_—J Setvices rendered

100.00 Services rendered 100.00

Services rendered 100.0 Services rendered 100.00

Services rendered .00 Services rendered 100.00

Transaction 6 Servi ered 100.00 | | Services rendered 100.00

Services rendered 100.00

Services rendered 100.00

Services rendered 100.00 Services rendered 100.00
Setvices rendered 100.00 Services rendered 100.00
Setvices rendered 100.00 Services rendered 100.00
Services rendered 100.00 Services rendered 100.00
Setvices rendered 100.00 Services rendered 100.00

In this scenatio, the system merges the data for the first transaction onto the form and
then prints the form.

69

Chapter 2

Understanding the System

2-up printing with
multi-page forms

70

Batch file

Transaction 1}

page 1

Transaction 1|

page 2

Setvices rendered 100.00
Services rendered
Services rendered
Setvices rendered
Services rendered” 100.00

This illustration shows how 2-up printing works when you use multi-page forms.

Setvices rendered 100.00
Services rendered 100.00
Services rendered 100.00
Setvices rendered 100.00
Services rendered 100.00

Transaction 1
page3

Transaction 2
page 1

ervices rendered
Services tender
Setvices rendéred 100.00

page 2

Setvices rendered 100.00
Services rendered 100.00
Setvices rendered 100.00
Setvices rendered 100.00
Services rendered 100.00

Transaction 2
page 2

Transaction 2
page 3

page 3
ervices rendered

Services rendered
Services render,
Services te 100.00
Servicg 100.00

page 3

Setvices rendered 100.00
Setvices rendered 100.00
Services rendered 100.00
Setvices rendered 100.00
Setvices rendered 100.00

Transaction 3
page 1

Transaction 3
page 2

Services rendered
Setvices rendered

Pl Services rendered 100.00

Setvices rendered 100.00
Services rendered 100.00
Services rendered 100.00
Setvices rendered 100.00

Transaction 3
page3

Transaction 4
page 1

I Services rendered 100.00

Services rendered 100.00

page 2

Setvices rendered 100.00
Services rendered 100.00
Setvices rendered 100.00
Setvices rendered 100.00
Services rendered 100.00

Transaction 4
page 2

Transaction 4
page 3

Servic efed 100.00

ervices rendered 100.00
Services rendered 100.00
Services rendered 100.00
Services rendered 100.00

page 3

Setvices rendered 100.00
Services rendered 100.00
Setvices rendered 100.00
Setvices rendered 100.00
Services rendered 100.00

Changing the INI File
You must make the following changes in your FSISYS.INI file.

NOTE: Changes to the error and manual recipient batch control groups are not
necessary.

* You must include a Printer option in the recipient batch control groups for each
print file created. These printers must also be defined in the FSISYS.INT file.

* The recipient batch groups must have a FinalPrinter option. This option specifies
the printer to use for the final, merged file. This printer must also be defined in the
FSISYS.INI file.

Creating the TWOUP
control group

Handling 2-up Printing

* The recipient batch groups must have a PageRange option for page count batching.
You specify this option as shown below:

PageRange = [min], [max]

If you do not specify min, the system uses zero (0). If you omit wax, the system uses
(unsigned)-1 (all bits on). The min and max values are inclusive.

* You can also include in the recipient batch control groups a TwoUpStart option,
which can have any of these values (case is irrelevant):

L
Left
R
Right

This option specifies whether the merge process should associate the first Printer
option with the left or the right side of the page. The system only checks this option
when there are multiple Printer options present in the control group. If you omit
this option, the file specified in the first Printer option is used for the left side of
the page.

Here is an example of a recipient batch control group:

< Batchl >
Printer = Printerl
Printer = Printer2
FinalPrinter = Printer3
PageRange = ,1
TwoUpStart = R

This splits single page transactions evenly between the files specified in the Printer] and
Printer2 control groups. The files specified in the Printerl and Printer2 control groups
will then be merged into the file specified in the Printer3 control group. The file
specified in the Printer] control group is used for the right page.

You must create the TwoUp control group. This control group must contain the
CounterThl option, which specifies the file name for the table that contains recipient
batch page counts.

The TwoUp control group can optionally contain the CounterDFD option, which
specifies the name of a DFD file. See the Rules Reference for information about this
DFD.

The TwoUp control group can optionally contain the LMargin, LShift, and RShift
options. Records on the left page will be shifted to the right by LShift - LMargin, and
records on the right page will be shifted to the right by RShift - RMargin. Amounts ate
in FAP units (2400 per inch). If you omit these options, the system uses these defaults:

LMargin = 600
LShift = 1200
RShift = 16800

< TwoUp >
CounterTbl = datal\counter.tbl
CounterDFD deflib\counter.dfd

71

Chapter 2
Understanding the System

LMargin = 300
LShift 600
Rshift = 15000

The first two options define the location of the files shown above.

The LMargin=300 option sets the left margin to 1/4 inch. The LShift=600 option shifts
the left page 1/2 inch from the left edge of the paper (1/4 inch beyond the left margin).
The RShift=15000 option shifts the right page 6 1/2 inches the left edge of the papet (6
inches from the left margin).

Creating the You can optionally create the Added_Fonts control group. The options in this group
Added_Fonts control specify additional fonts to add to the AFP output file for text label records which may
group be added during the merge process. Each option takes the form:

FontName =
Here is an example:

< Added_Fonts >
FontName = XOFATINO
FontName = X0FAUNNS
This tells the system to include the fonts XOFATINO and XOFAUNNS in the final
output file, regardless of whether they are present in the input files.

Changing the Recipient Batch DFD File

The recipient batch DFD file RCBDFDFL.DAT) must have the following fields with
the given types. You can modify the field lengths—just make sure you set the
EXT_LENGTH option large enough to represent all of the pages in a multi-mail
transaction set. Also make sure you set the INT_LENGTH option larger by one than
the EXT_LENGTH option.

Note that the field name is case sensitive. Also, for each of these fields, be sure to add a
FIELDNAME-= line to the <FIELDS> line in the DFD file.

< FIELD:CurPage >

INT_Type = CHAR_ARRAY
INT_Length = 5
EXT_Type = CHAR_ARRAY_NO_NULL_TERM
EXT_Length = 4
Key =N
Required =N
< FIELD:TotPage >
INT_Type = CHAR_ARRAY
INT_Length = 5
EXT_Type = CHAR_ARRAY_NO_NULL_TERM
EXT_Length = 4
Key =N
Required =N
< FIELD:AccumPage >
INT_Type = LONG
EXT_Type = CHAR_ARRAY_NO_NULL_TERM
EXT_Length = 10
Key =N
Required =N

72

AddLine

AddTextLabel

ForceNolmages

GetRCBRec

InitMerge

InitPageBatchedJob

Handling 2-up Printing

RULES USED FOR 2-UP PRINTING

The following descriptions will help familiarize you with the rules that are required to
perform the 2-up printing process. All of the rules listed in the topic, Rules Used in Single-
step Processing on page 53 are required for 2-up printing, plus these additional rules:

NOTE: You can find more information in the Rules Reference.

Use this form set level (level 2) rule to add a line record, such as for OMR marks, to the
AFP record list built by the MergeAFP rule.

Use this form set level (level 2) rule to add a text label record to the AFP record list built
by the Merge AFP rule.

Use this section (image) level rule (level 3) to return the msgNO_MORE_IMAGES
message. This prevents errors if you have no section level rules.

Use this form set (level 2) level rule to set the current recipient batch file. This rule
initializes the current recipient batch file, if necessary.

This rule also sets the first printer for current batch to be the current printer and
retrieves the next record from the current recipient batch file.

Use this job level (level 1) rule to create a list of printers, batches, and buffers for the
comment (RCB) records. This rule also creates a list to hold AFP records and AFP fonts.
After the system finishes running the rule, it deletes everything the rule created.

NOTE: The recipient batch files are not used at this stage. The batch list must be created
beforehand so the system will know which print files belong together. The
skipping bateh message is an artifact of the batch file loading process.

Use this job level (level 1) rule to open NA and POL files. This rule installs the section
level callback function for inserting recipient batch records into the AFP print stream
as AFP comment records.

When finished, this rule restores the original callback function and closes the NA and
POL files.

73

Chapter 2

Understanding the System

MergeAFP

ParseComment
Example

PrintData

ProcessRecord

74

Use this form set level (level 2) rule to initialize input files. This rule populates the AFP
record list, retrieves comment (RCB) records, and terminates the input files.

This rule also initializes output files, and writes out the AFP record list, adding end page
and end document records as necessary. The rule then terminates these output files.

Use this form set level (level 2) rule to parse comment records into the GVM variable.

Use this form set (level 2) rule to print the form set. This rule is used for handling 2-up
printing on AFP and compatible printers.

NOTE: The section handler installed by the InitPageBatched]ob rule is called during the
printing stage. If you want to make any modifications to the recipient batch
record, you must do so before this point.

Use this form set (level 2) rule to switch between print files as necessary when printing
2-up forms on an AFP printer. This rule updates the page count for current print file
and loads and merges the form set.

Handling 2-up Printing

Placing the 2-up Rules in the JDT File

When you use the rules listed at the beginning of this topic to handle 2-up printing, you
must place them in the correct places and order in the AFGJOB.JDT file. Use the
following table as a guide to where to place these rules. You can insert other rules before,

between, or after the 2-up rules—just keep the 2-up rules in the order indicated below

with respect to one another.

Stage 1
Job level Insert the PageBatchStagellnitTerm rule after the
RULStandard]JobProc and Joblnit1 rules
Form set List the form set level rules in this order:
level WriteOutput
CreateRecordList
BatchByPageCount
PaginateAndPropogate
Place these rules after the RULStandard TransactionProc rule and make
sure any rule which changes page count appears before these rules.
Stage 2
Job level Include these rules in this order:
InitPrint
InitPageBatched]ob
SetErrHdr
Do not include the RULStandardJobProc or Joblnit1 rules in this stage.
Form set Include these rules in this order:
level GetRCBRec
ProcessRecord
PrintData
Do not include the RULStandard TransactionProc rule in this stage.
Section There are no regulations on the order in which you can place rules in
(image) this stage. Remember, however, that if there are no section level rules,
level you must include the ForceNolmages rule to avoid errors.
Stage 3
Job level Place the InitMerge rule anywhere after the RULStandardJobProc rule.
Form set Make sure the Merge AFP rule is the first rule called. Place rules which
level add records or determine whether a page pair should be printed after
the Merge AFP rule.
Section There are no stipulations on the order in which you must place rules in
level this stage. Remember, howevert, that if there ate no section level rules,

you must include the ForceNolmages rule to avoid errors.

75

Chapter 2

Understanding the System

2upbycnt.bat

2upstep1.ini

2upstep2.ini

2upstep3.ini

76

2-UP PROCESSING EXAMPLE

As stated eatrlier, 2-up printing is a two-step process which calls GenData three times with
different JDT files. These file excerpts show how to set up your batch and INI files:

You can set up this batch file as follows:

@Echo Off

SetLocal

Echo Y|Del Data*.* >NUL

GenDaW32.Exe -INI=2upstepl.ini

If Not ErrorLevel 5 GoTo SteplNoError
Echo "2Up Printing Failed in Step 1."
GoTo Exit

:SteplNoError

GenDaW32.Exe -INI=2upstep2.ini

If Not ErrorLevel 5 GoTo Step2NoError
Echo "2Up Printing Failed in Step 2."
GoTo Exit

:Step2NoError

GenDaW32.Exe -INI=2upstep3.ini

If Not ErrorLevel 5 GoTo Step3NoError
Echo "2Up Printing Failed in Step 3."

:Step3NoError

EndLocal

(Exit

You can set up this INI file as follows:

< Data >

AfgJobFile = .\Def\AfgJobl.jdt
< Environment >

FSISYSINI = .\fsisys.ini

You can set up this INI file as follows:

< Data >
AfgJobFile = .\Def\AfgJob2.jdt
< Environment >
FSISYSINI = .\fsisys.ini
You can set up this INI file as follows:
< Data >
AfgJobFile = .\Def\AfgJob3.jdt
< Environment >
FSISYSINI = .\fsisys.ini

Handling 2-up Printing

RUNNING THE GENDATA PROGRAM

The following pages provide illustrations and an example files for each time the
GenData program is run.

Step 1 - Using the
AFGJOB1.JDT file

a)

WGF JIBET ot

i
I

v
|
(T
T
S (
3

Amche
DFD

The first execution of GenData uses the AFGJOB1.JDT file with the base and form set
rules shown in this example to create output files shown in the illustration.

<Base Rules>

;RULStandardJobProc;1; ;

;SetErrHdr;1;***: BillPrint Data Generation (Base);
;SetErrHdr;1; ***:;

;SetErrHdr;1;***: Transaction: ** * ACCOUNTNUM™ * * ;
;SetErrHdr;1l; ***: Company Name: ***Company* **;
;SetErrHdr;1;***: Line of Business: ***LOB***;
;SetErrHdr;1l;***: Run Date: ***RunDate***;

;SetErrHAr; 1;***:i-----mmm oo
;JobInitl;;;

;CreateGlbVar;1l; TXTLst, PVOID;

;CreateGlbVar;1;TblLstH, PVOID;

;InitOvFlw;1;;

; SetOvF1lwSym; 1; SUBGROUPOVF, SUBGROUP, 5;

;BuildMasterFormList; ;4;

;PageBatchStagelInitTerm; ; ;

;InitSetrecipCache;;;

<Base Form Set Rules>
;NoGenTrnTransactionProc; ; ;

77

Chapter 2
Understanding the System

;ResetOvFlw;2; ;
;BuildFormList;;;
;LoadRcpTbl; ; ;
;RunSetRcpTbl; ; ;
;WriteNaFile;;;
;WriteRCBWithPageCount; ; ;
;ProcessQueue; ; PostPaginationQueue;
;WriteOutput; ;;
;CreateRecordList; ;
;BatchByPageCount; ;
;PaginateAndPropogate; ; ;

<Base Image Rules>
;StandardImageProc;3;Always the lst image level rule;

<Base Field Rules>
;StandardFieldProc;4;Always the 1lst field level rule;

Step 2 - Using the
AFGJOB2.JDT file

= B

ABFJIOEZMT

Manual

Eakn GenData nkrmedlale
2

NAFILE

i

— (" (

The second execution of GenData uses the AFGJOB2.JDT file. This JDT file uses the
base and form set rules shown in this example to process the intermediate print files.

<Base Rules>
;InitPrint;;;
; InitPageBatchedJob; ; ;

JSetErrHAr; 1 * % e mm e e e
;SetErrHdr;1;***: BillPrint Data Generation (Base) ;

;SetErrHdr;1;***: Company Name: ***Company***;

;SetErrHdr;1; ***: SubCompany:***SubCompany***;

;SetErrHdr;1;***: Account #: ***AC-KY-BA***;

;8etErrHAr; 1 ; ** ¥ cm e e e e e

78

Handling 2-up Printing

<Base Form Set Rules>
;GetRCBRec; ; ;
;ProcessRecord; ; ;
;PrintData; ; ;

<Base Image Rules>
;ForceNoImages; ;;

Step 3 - Using the
AFGJOBS3.JDT file

u RCEDFDFL

AGFIOE [t

s

vy

Frivteacdy ks

Intzme bk
PrlvtEady ks

GenData AFF

#3

The third execution of GenData uses the AFGJOB3.JDT file. This JDT file uses base and
form set rules shown in this example to merge data intermediate print-ready files into a
print-ready file for an AFP printer.

<Base Rules>

;RULStandardJobProc; ; ;

;SetErrHAr; 1 % % t e e e e e e - ;
;SetErrHdr;1;***: BillPrint Data Generation (Base);

;SetErrHdr;1l;***: Company Name: ***Company***;

;SetErrHdr;1;***: SubCompany: ***SubCompany* ** ;
;SetErrHdr;1l;***: Account #: **XAC-KY-BA***;

;SetErrHAr; 1; %% tmmm e e e e e ;
; InitMerge; ; ;

<Base Form Set Rules>
;MergeAFP; ;;

<Base Image Rules>
; ForceNoImages; ;;

79

Chapter 2

Understanding the System

80

PRINTING IN
BOOKLET
FORMAT

You can use Documaker Server to print booklets. A booklet is a 2-up duplex print format
that can be stapled in the middle and folded to form a small book. Although the system
does not impose a size limit, there is a practical limit on the number of pages that can
be affixed in this manner. The system lets you customize the paper size, cover sheets, a
custom blank page, and different size and tray selections for the cover sheet and booklet

pages.

NOTE: In Documaker Server version 11.5, the ability to output in booklet format is
provided in the GenPrint program and the GenData PrintFormset rule.

Include these INI options to set up your system for booklet printing:

< Print >
Booklet =

< Booklets >
Booklet =

< Booklet:NameOfBooklet >
BookletPapersize =
BookletTray
RightGutter =
BlankPage =

CoverSheet =
CoverFrontOut =
CoverFrontIn =
CoverBackOut =
CoverBackIn =
CoverTray =

Option Description

Print control group
Booklet Enter the name of the booklet.
Booklets control group

Booklet Enter the name of the booklet. Your entry must match the name in the
Booklet field in the Print control group and must remain consistent
throughout the INI file.

Booklet:NameOfBooklet control group

BookletPapersize Enter the paper size. The defaultis 11 x 17.

BookletTray Enter the tray code. The default is one (1).

RightGutter Specify the right shift past mid-point, in FAP units (2400 per inch). This
right shift accommodates booklet thickness as pages are added to the
booklet.

As pages are added, then stapled, the margins of inner pages may be
covered by the fold in the booklet. this option tells the system to shift
the sections on the pages in small increments so all sections appear to
have the same margins.

You can leave this option blank for short booklets.

Option

BlankPage

CoverSheet
CoverFrontOut
CoverFrontln
CoverBackOut
CoverBackIn

CoverTray

Printing in Booklet Format

Description

Enter the name of the FAP file you want to use as a blank page.

The system inserts blank pages as needed. This option just lets you
specify a FAP file you want to be used in place of a blank page. For
instance, you could specify a FAP file that simply said:

This page deliberately left blank.
Enter Yes if you want to include a cover sheet. The default is No.
Enter the name of the FAP file you want to use as the outside front cover.
Enter the name of the FAP file you want to use as the inside front cover.
Enter the name of the FAP file you want to use as the outside back cover.
Enter the name of the FAP file you want to use as the inset back cover.

Enter the tray ID for the cover sheet. The default is one (1).

NOTE: The system reformats the page, but it does not reformat or re-flow any of the

sections on the page. You must create sections in the appropriate dimensions to

fit on the booklet pages.

Keep in mind...

* You can only have one front and back cover page per print batch. This means you
can have multiple booklets in a single batch but they will all share the same front

and back cover.

* The FAP files you specify for the front cover, front inside cover, back cover, and
back inside cover can have no data mapping. These files simply display and print.

* To include a mailing address, insert a transaction banner/mailer page.

Booklet Printing Examples

Here is an example of the INT options for printing a booklet named Renewal_Package.

< Booklet:Renewal_ Package >

BlankPage = BlankPage
BookletPaperSize = US Letter
BookletTray =1
CoverBackIn = gb_in
CoverBackOut = gb_cvr
CoverFrontIn = gf_in
CoverFrontOut = gf_cvr
CoverSheet = No
CoverTray =1
RightGutter =
< Booklets >
Booklet = Renewal_Package
< Print >
Booklet = Renewal_Package

Here is an example of a 16-page Renewal_Package booklet, with cover:

81

Chapter 2

Understanding the System

82

Back Front
Cover Cover
Here is the front/back
layout for the booklet =
cover.
Front
Back
Here is the front/back
layout for the interior
booklet pages. —
\ Inside Inside
‘ Back Front
Page Page
16 1
(blank)
Front
Back Page Page
14 3
(blank)
Page Page Feon
Page Page
13 4
Page Page
12 5
Front
Back Page Page
10 7
Page Page
1 6 Front
Page Page
9 8

Back

Back

Printing in Booklet Format

Here is an example of how to set up multiple booklet templates. This example shows
two booklet templates. All booklets going to Printer] use the Renewal_Package template
(rfcov, rfcovin, and so on). All booklets going to Printer2 use the NewPolicy template
(nfcov, nfcovin, and so on).

< Booklets >

Booklet = Renewal_Package
Booklet = NewPolicy
< Printerl >
Booklet = Renewal_Package
Port = data\renew(1l.pdf
< Printer2 >
Booklet = NewPolicy
< Booklet:Renewal_Package >
BookletPaperSize = US Letter
BookletTray = 2
RightGutter =
BlankPage =
CoverSheet = Yes
CoverFrontOut = rfcov
CoverFrontIn = rfcovin
CoverBackOut = rbcov
CoverBackIn = rbcovin
CoverTray = 2

< Booklet:NewPolicy >

BookletPaperSize = US Letter
BookletTray =1
RightGutter =

BlankPage =
CoverSheet = Yes
CoverFrontOut = nfcov
CoverFrontIn = nfcovin
CoverBackOut = nbcov
CoverBackIn = nbcovin
CoverTray =1

83

Chapter 2

Understanding the System

84

SPLITTING
RECIPIENT
BATCH PRINT
STREAMS

Splitting batches by
sheet count

The GenPrint program and the PrintFormset rule (when running in single-step mode)
are designed to produce one print stream output file for each recipient batch. This print
stream output file includes all of the transactions in the recipient batch.

Sometimes, however, you may want to split the print stream output into multiple print
stream output files. For instance, you can use this feature to split your batches into files
that reflect the amount of paper you can load into your printer at one time.

You can use DAL scripts to set up criteria for splitting the output file to reflect almost
any scenario. For example, it can be based on a certain number of transactions, a
maximum number of sheets of paper, or on changes in variables in the recipient batch.

NOTE: Some types of print streams require one file per transaction, such as RTF, PDF,
and HTML. The typical way of handling this is via the multi-file print callback
method, but this feature provides an alternate method which gives you greater
control over the naming of the output file.

To do this you use the PrintFormset rule and these DAL functions:
¢ DeviceName

e SetDeviceName

* BreakBatch

* UniqueString

This rule and these DAL functions let you:

* Split recipient batches into multiple print stream files

* Assign names to those print stream files

For example, here are some things you can do:

You can use these functions to split a batch based on the sheet count during the
GenPrint process. Once a batch reaches a certain number of sheets, you can tell the
system to:

* Finish processing the current transaction

* End the current print file. (If you are using a post-transaction or post batch banner
page, it will print before the file is closed.)

* Repeat this process when the next print file reaches the specified number of sheets

You can use virtually any logic to decide when to break the batch. For instance, to break
based on sheet count, use the TotalSheets function to get the number of sheets to
maintain a counter across the transactions.

NOTE: Be sure to reset the sheet count variable in the pre-batch banner DAL script.

Creating PDF output

DAL functions

Splitting Recipient Batch Print Streams

Here is an example of DAL script logic that might appear in a post-transaction banner
DAL script:

IF TotalSheets() > 16000

#COUNTER += 1

CurFile = DeviceName ()

Drive = FileDrive (CurFile)

Path = FilePath(CurFile)

Ext = FileExt (CurFile)

RecipBatch = RecipBatch()

NewFile = FullFileName (Drive, Path,RecipBatch & #COUNTER, Ext)
SetDeviceName (NewFile)

BreakBatch()

END

NOTE: See Using DAL to Manipulate File Names on page 87 for information on using

DAL functions to manipulate file names.

You can also modify the above script to unconditionally break the batch after each

transaction. Assuming you used the SetDeviceName function to assign a proper file

name, each recipient printed would receive a separate output file.

This is particularly useful for output types such as PDF, which require a separate file for
each transaction.

NOTE: You can also use the multi-file print callback method in GenPrint to get separate

files. Similarly, the single-step processing mode currently uses this INI option:

< PrintFormset >
MultiFilePrint = Yes

to tell the system to generate separate files for each transaction. Single-step mode
automatically generates a unique file name and offers no way to override that
name. By using the BreakBatch and SetDeviceName functions, however, you
can control the names assigned to the files in single-step mode. To emulate the
action of the current code, use the UniqueString function.

Here is a summary of the DAL functions you would use. Keep in mind...

These print drivers are supported: PCL5, PCL6, PST, MET, AFP, PDF, HTML, and
RTF.

These print drivers are not supported: EPT, MDR, and GDI.

All platforms are supported, but note that while UniqueString is supported on z/
08, z/OS does not support long file names.

Both multi-step and single-step processing are supported.

85

Chapter 2

Understanding the System

86

Syntax

Syntax

Syntax

The only DAL function actually involved in splitting the print stream is BreakBatch.
The others make it easier to implement this functionality. For example, since you need
to name the new print stream, you use the SetDeviceName procedure. To find the name
of the current device, you use the DeviceName function. If you need to create unique
file names, you can use the UniqueString function.

NOTE: While you can call all of these DAL functions in the Rules Processor or Entty,
the BreakBatch and SetDeviceName functions are not applicable in Entry since
it does not use the batch printing engine. The other functions, DeviceName and
UniqueString, are applicable to both Entry and the Rules Processor.

DeviceName
Use this function to return the current output device file name, such as the name of the

current print stream output file.

DeviceName ()

SetDeviceName

Use this procedure to set a new output device file name which will be used the next time
the output device is opened, assuming nothing overrides the name prior to that.

SetDeviceName (Device)

BreakBatch

Use this procedure to tell the Rules Processor to break the output print stream file for
the current recipient batch after processing the current recipient, including post
transaction banner processing.

BreakBatch ()

The procedure is typically called in the transaction banner DAL script. You must use the
SetDeviceName function to specify a new device name. Otherwise, the new file has the
same name as the old file and overwrites its contents.

After the GenPrint program finishes processing the current transaction, it closes the
current output device file. This includes executing any post-batch banner processes. It
then continues processing the recipient batch.

If you have assigned a new output device file name using the SetDeviceName function,
the system will create and start writing to a new print stream file with that name. The
best place to call the BreakBatch function is in the post-transaction banner DAL script.

Splitting Recipient Batch Print Streams

UniqueString

Use this function to return a 45-character globally unique string.

UniqueString ()
Here is an example:

DataPath = GetINIString(, "Data", "DataPath")

Drive = FileDrive (DataPath)

Path = FilePath(DataPath)

UniqueID = UniqueString()

Outputname = FullFileName (Drive, Path,UniqueID,".PDF")
SetDeviceName (Outputname)

UsING DAL 10 MANIPULATE FILE NAMES

Since you can use DAL functions to read tables and to set device names for output print

stream files, this feature further extends DAL functionality by letting you manipulate
file names.

For instance, you can get the components of a file name (drive, path, name, and

extension) and combine those into a full file name. For example, for computers running

Windows file names look like this:

d: \mypath\ myfile .ext

Drive / / \ s Extension

Path Name

For computers running z/OS, file names look like this:

DD:DEFLIB(member)

Drive/ / \ x Extension

Path Name

In this z/OS example, the dtive and extension are omitted, because they ate not
applicable on z/OS and the parentheses enclosing member ate patt of the path.

To do this you use these DAL functions:

¢ FileDrive

¢ FilePath
¢ FileName
¢ TFileExt

e FullFileName

All platforms are supported and both the Rules Processor and the Entry system are
supported.

Chapter 2

Understanding the System

Each platform will use platform specific logic to extract or assemble the components.
For example, UNIX uses forward slashes and z/OS uses DD names ot pattitioned dataset
names for the path and member names for name.

Here are descriptions of these functions:

FileDrive

Use this function to get the drive component of a file name.

Syntax FileDrive (“FullFileName”)

This function accepts a string containing a fully qualified file name, returns a string that
contains the drive component of that file name.

Here is an example:
MYDRIVE = FileDrive("d:\mypath\myfile.ext")

In this example, MYDRIVE would contain:
“« d.’”

FilePath

Use this function to get the path component of a file name.

Syntax FilePath(“FullFileName”)

This function accepts a string containing a fully qualified file name, returns a string that
contains the path component of that file name.

Here is an example:
MYPATH = FilePath("d:\mypath\myfile.ext")

In this example, MYPATH would contain:

Nmypath\”’

FileName

Use this function to get the name component of a file name.

Syntax FileName (*FullFileName”)

This function accepts a string containing a fully qualified file name, returns a string that
contains the name component of that file name.

Here is an example:
MYNAME = FileName ("d:\mypath\myfile.ext")

In this example, MYNAME would contain:

‘W]ﬁ/(?”

88

Syntax

Syntax

Splitting Recipient Batch Print Streams

FileExt

Use this function to get the extension component of a file name.

FileExt (“FullFileName”)

This function accepts a string containing a fully qualified file name, returns a string that

contains the extension component of that file name.
Here is an example:
MYEXT = FileExt ("d:\mypath\myfile.ext")

In this example MYEXT would contain:

“ext

»

FullFileName

Use this function to make the full file name.

FullFileName (“Drive”, "Path”, "Name” , "Ext")

This function accepts a string containing the drive, path, name, and extension
components of a fully qualified file name, assembles them, and returns a string that
contains the full file name.

Here is an example:
MYFILENAME = FullFileName ("d:", "\mypath\", "myfile", ".ext")

In this example, MYFILENAME would contain:

“A\mypath\myfile.exct”

NOTE: If, in this example, \mypath had no trailing slash, the FullFileName function
would have added it for you.

Here is a z/OS example:
FullFileName (, “DD:DEFLIB() ", "MEMBER")

In this example, the result would be:

DD:DEFILIB(MEMBER)

89

Chapter 2

Understanding the System

ASSIGNING
PRINTER TYPES
PER LOGICAL
BATCH PRINTER

90

Recipient batches often need to be sent to different types of printers. For example, you
could have a situation where you want to generate PDF files with one batch, email
another batch, and send the rest of the batches to a Metacode printer.

In addition, logical printers may also need different callback functions. For example,
one batch might print Metacode and need OMR marks created in a callback function
while another batch may need to be split by transaction using the MultiFilePrint
callback function.

NOTE: Before version 11.1, the print system only supported one type of printer and
only one type of callback per run. You made this assignment using the PrtType
option in the Printer control group.

You can optionally define for each logical printer a printer type and a callback function.
For instance, now the PrtType option in the Printer control group defines the default
type of printer while the CallbackFunc option defines the default callback function you
want to use.

Here is an example:

< Printer >
PrtType = XER ; Default
< Printers >
Printer = Printerl
Printer = Printer2
< Insured >

Printer = Printerl
< Agent >
Printer = Printer2

< Printerl >

Port = Outputl.XER

< Printer2 >
Port = Output2.PDF
CallbackFunc = RULMultiFilePrint
PrtType = PDF

When you define a callback function, such as shown below, you are defining the default
callback function for 4/ defined logical printers:

< Print >
CallbackFunc = Mycallback

If, however, you do not want a specific logical printer to have a callback function, you
can disable the callback for that logical printer by leaving blank the CallbackFunc
option for that logical printer, as shown here:

< MyPrinter >
CallbackFunc =

To disable the default callback, define an empty callback name. Otherwise, the system
uses the default callback function.

Assigning Printer Types Per Logical Batch Printer

You can also set these INI options using Documaker Studio’s Manage, System, Settings
option. Here is an example:

#™ amergen (DEY - Development) - Documaker Studio - Settings

%] 1 Configuration Settings 4] 4P printer N1 Options =] | Local | shared |
@. Database Handlers = Common to all Batch P Printer
& Libraries BatchingByRecip ’ .
5 Library Tiers DefaultFields ox
&4 Print Batrhes & Printers ERRCR > Erinor
#* Resource Path Setup MANUAL BistchB Besint
o= Options by opic Erint atchBannerBeginForm
B Archive FRINT BATCHES BatchBannerBeginScript
= rcsplit Printar BatchBannerEndForm
= Common Printerinfo BatchBannerEndScript
= Database RunMade EnahleBatchBanner
= Development Taok Common to all GUI Prit EnableTransBanner
= Entry Common ta all Printer GenerateFilaName
™= Irmport and Export EPT Printer INI Optiane PageNumberFarmat
= Librariss GDI Printer INI Options Fort
@ Library Tiers GenPrint printer option
= Print GUI Print Options N[PriType HER
= Resource Path Setup HTML Frinter TN Optio RecipientPrintOrder
= Rules Processing MOR Printer TMI Option RightJustifyPageNumber
= WP Metacode Printer INI C SuppressDialog
= Uncategorized - PCL Printer INI Options TransBannerBeginForm
= Optians by group PDF Printer INI Options TransBannerBeginScript
¥ Studio Settings Printing o RTF TransBannerEndForm
™= Corfiguration Options PST Printer INI Options TransBannerEndScript
= Workspace Infarmation PXL Printer TN Options |
: Comran / Document Yiew j

OK | Cancel Help

B

Keep in mind this applies to...

* A batch of transactions. Fach transaction within that batch will print to a single
type of printer.

* Both single- and multi-step processing of transaction batches.

Single-step processing has limitations as compared to multi-step processing and this
feature does not remove those limitations. Single-step processing optimizes the
processing of transactions that do not require recipient batching. Single-step processing
is, therefore, intended for use with a single input batch of transactions for a single
recipient or a single transaction with one or more recipients, such as in real-time
processing.

While you can specify multiple printers and associate a different printer per recipient
batch, single-step processing can still only process a single recipient batch at a time.
Therefore, it is not possible to do the same type of multi-batch processing in single-step
as is done in multi-step processing. A given set of transactions can specify a single
recipient and you can map that recipient to a different type of printer.

Real-time transaction processing of single transactions may also benefit from this by
using the multi-file callback method to split output files, along with necessary logic to
create unique file names for each output file. When used in this manner, single-step
processing of a single, real-time transaction can call a different driver for each recipient
in the transaction.

91

Chapter 2

Understanding the System

CONTROLLING
WIP FIELD
ASSIGNMENTS

92

You can use options in the Trigger2WIP control group to set almost all of the WIP
record fields for each transaction.

NOTE: Do not try to set the ModifyTime, InUse, or the FormSetID fields of the WIP
record. The ModifyTime field is assigned by the system when a WIP record is
added or updated. If you need to save a date and time for the transaction, store
that information in the CreateTime field, using the hextime X format for the
destination as shown in one of the examples.

The InUse field is used internally to prevent multiple people from editing the
same transaction. Let the system manage this column.

The FormSetID is assigned by the system when a new WIP transaction is created.
Let the system handle this.

The Trigger2WIP control group defines which recipient batch (RCB) transaction fields
from the manual batch (those kicked to WIP) are mapped to the corresponding WIP
transaction record fields.

The options under the Trigger2WIP control group define the mappings as shown here:

The contents of ...is copied into

this field... < Trigger2Wip > . «— this field
RCBField 1 = WIPField 1

RCBField 2 = WIPField 2

RCBField represents one of the fields defined by the batch transaction record definition
(RCBDFDFL.DFD). WIPField represents a field defined in the WIP database.

NOTE: There may be an external WIP.DFD file that identifies the fields in a WIP
record. An external DFD file is not required if you are using the default WIP
database layout.

Note, although the normal mapping technique is to name a RCB field on the left side,
the left side can name any defined GVM (global vatiable member). Typically, the only
GVMs that exist during GenWIP processing are those defined in the RCB DFD file, but
custom applications or single-step WIP systems may have additional GVMs.

The changes in this release support this INI definition and also let you convert data or
define a constant value you want to map to a WIP field. For a data conversion, define
your INT options as shown here:

< Trigger2WIP >

RCBField = WIPField; input format ; output format;

The conversion information must appear on the right side of the INI option, after the
WIPField name definition. Separate it from the named variable with a semicolon. Here
is an example:

RunDate = CREATETIME;DD4;X

Controlling WIP Field Assignments

The first semicolon denotes the input format of the data. The second separates the desired
output format. In this example, the input format of DD4 means the source data is a date
field in the format D4, which is YYYYMMDD.

The output format X indicates you want to convert the date value to the internal
HEXTIME format used in the WIP CreateTime field.

NOTE: For more information selecting from the pre-defined date formats or defining
your own, see the Rules Reference.

Although conversions are often used to change date formats, you can also use them to do
additional formatting. The system supports a simple C style sprintf (%os) and constant text
formatting, like %os, %10.10s, %0-38.38s, and so on. The system does not support any of
the other C style formats flags that assume non-text data or asterisk (variable width)
designations.

Here is an example:
EFFVALUE = APPData; ; ($s%%)

Suppose in this example, that EFFVALUE contains the text 70, the resulting value
mapped into the APPData field will read (70%).

NOTE: You must use two percent signs (%Y%) to represent a single percent sign in the
output. The system only supports a string %s type format. It does not support
numeric data formats of any type.

Normally, the left side of the INI option names a field from the RCB file definition. You
can also enter NULL as a keyword to mean there is no corresponding RCB data field to
associate with the WIP field. This lets you assign the constant data to the WIP field, as
shown here:

NULL = DESC; ;ABC123 HERE WE GO

This example shows how to assign the constant text ABC723 HERE WE GO into the
DESC field of the WIP record. NULL indicates there is no source variable to associate
with this destination field.

You can also use INI built-in functions to provide a constant value to map to the field.
For example:

NULL = CURRUSER; ;~GETENV USERNAME

INT built-in functions are preceded with a tilde (~). This example executes the GETENV
built-in INT function, which gets the environment variable USERNAME. If you assume
the variable contained the text TOM, the WIP variable CURRUSER would be assigned
TOM after execution of the built-in function.

These options show the defaults used if the Trigger2WIP control group does not override
the variables:

< AFG2WIP >
StatusCode = WIP
RecordType NEW
UserID = DOCUCORP

93

Chapter 2

Understanding the System

94

The StatusCode option defines which INI option in the Status_CD control group to use
as the default WIP StatusCD field. Suppose you have the following Status_CD control
group defined.

< Status_CD

WIP =W
Assign =A
Quote =Q
BatchPrint =W
Archive =AR
Printed =P

This means a I would be assigned to the WIP StatusCD field (usually meaning a normal
WIP transaction).

The RecordType option defines which INI option to locate in the Record_Type control
group as the default setting for WIP RecType. Suppose you have these options defined:

< Record_Type >
New =00
Assign =01
Partial =02

New is the normal default for the AFG2WIP control group and would therefore map 00
into the WIP RecType field.

The UserID option defines which user should be assigned the WIP transactions in the
CURRUSER field. Unless this option is changed or the CURRUSER field assigned
from the Trigger2WIP control group, the system defaults this value to DOCUCORP.
DOCUCORP is one of the default users created in a default user database.

You would normally want to add an option to the AFG2WIP control group to name a
valid user in your company, otherwise, users will have to log in as DOCUCORP and
reassign the WIP to valid users later.

GENERATING
EMAIL
NOTIFICATIONS
FROM GENWIP

Generating Email Notifications from GenWIP

You can enable the GenWIP program to send email. The GenWIP program will generate
an email message by processing a message body template against variable data in the
manual batch. It then sends the message when the document is added to WIP.

NOTE: See also Emailing a Print File on page 325.

Email-specific data can be in the recipient batch read by the GenWIP program or in the
INI file. The system checks the recipient batch first. If the field is not present or blank,
the system then checks the INI option.

Below is a list of the fields the GenWIP program looks at to get email information. If
you want to include other fields, you can use the INI built-in function to accomplish
this.

Email is enabled in the GenWIP program when there is both a send-to email address and
a subject or message body. The message body is expected to be in a separate file. Email
attachment files are also supported and are processed as template files the same as the
message body. You use these INI options to enable email processing:

< GenWIPEmail >
EnableEmailNotification=
MailMessageBody =
MailID =
MailSubject =
MailAttachment =

Option Description

EnableEmailNotification Enter Yes.
MailMessageBody Enter the path and file name for the email template.

MaillD The email address to send. This is optional if the MAILID is
omitted, you can send using this address.

MailSubject If the MAILSUBJECT is missing or blank, the system will use the
text you enter here as the Subject.

Mail Attachment The name of the file to attach.

These field names to go into the RCBDFDFILE:

FIELDNAME = MAILID

FIELDNAME = MAILATTACHMENT_IN
FIELDNAME = MAILATTACHMENT_OUT
FIELDNAME = MAILSUBJECT
FIELDNAME = MAILIDFROMADDRESS
FIELDNAME = MAILMESSAGEBODY

Group: < FIELD:MAILID >entries:

INT_TYPE = CHAR_ARRAY

INT_LENGTH = 51

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
EXT_LENGTH = 50

95

Chapter 2

Understanding the System

96

KEY

= N

REQUIRED = Y

Group: < FIELD:MAILATTACHMENT_IN >entries:

INT_
INT_
EXT_
EXT_.

KEY

TYPE = CHAR_ARRAY

LENGTH = 129

TYPE = CHAR_ARRAY_NO_NULL_TERM
LENGTH = 128

=N

REQUIRED = Y

Group: < FIELD:MAILATTACHMENT_OUT >entries:

INT_
INT_
EXT_
EXT_.

KEY

TYPE = CHAR_ARRAY
LENGTH = 129

TYPE = CHAR_ARRAY NO_NULL_TERM
LENGTH = 128

= N

REQUIRED = Y

Group: < FIELD:MAILMESSAGEBODY > enttries:

INT_
INT_
EXT_'
EXT_.

KEY

TYPE = CHAR_ARRAY

LENGTH = 129

TYPE = CHAR_ARRAY_NO_NULL_TERM
LENGTH = 128

=N

REQUIRED = Y

Group: < FIELD:MAILSUBJECT > entries:

INT_TYPE = CHAR_ARRAY

INT_
EXT_
EXT_.

KEY

LENGTH = 129

TYPE = CHAR_ARRAY_NO_NULL_TERM
LENGTH = 128

=N

REQUIRED = Yes

Errors Here are the error messages that can appear:
Error Description
11226 Error in GENCreateEmail(): Unable to get <&Name&> does it exist in rcb dfd

11227

11228

11229

11230

file?\n

Error in GENCreateEmail(): Unable to process template check file
<&filename&> for valid markup syntax\n

Error in GENCreateEmail(): Unable to open file <&Name&>\n

Error in GENCreateEmail(): Unable to QueryAPI <&apiname&> check for
valid path to DLL <&dllname&>\n

Etrot in GENCteateEmail(): Unable to Logon to email server\n

Error

11231

11232

11233

Generating Email Notifications from GenWIP

Description

Error in GENCreateEmail(): Unable to set <&data&> check INI file for valid
<&inigroup&> <&inioption&>\n

Error in GENCreateEmail(): Unable to get <&data&> check INI file for
<&inigroup&> <&inioption&>\n

Error in GENCreateEmail(): failed to send e-mail <&userid&>
<&emailaddress&>\n

97

Chapter 2
Understanding the System

U SING M ULTI- Multi-mail processing groups the transactions with the same multi-mail code into
selected print batches based on the number of pages defined in the PageRange INT
MAIL option. Multi-mail can only be handled as a 2-up process. In the INI example below, all
PROCESSING transactions with the same mult mail will be stored in a batch categoty:
batchl-less than five pages

batch2-five to nine pages
batch3-10 or more pages

The MM_FIELD option in the TRN_Field control group identifies position, length,
type of data and where the multi-mail code is located in the transaction record.

NOTE: The parameter has been named MM_FIELD in the above explanation, however

it can be given any name.

The BatchByPageCount rule in the AFGJOB.JDT file identifies the name in the
TRN_Field control group, as shown here:

BatchByPageCount; ; MMFIELD=MM_FIELD;

Changing the RCPDFDFL.DAT and TRNDFDFL.DAT Files

You must make the following changes to the RCPDFDFL.DAT and TRNDFDFL.DAT
files for multi-mail processing:

< Fields >

FIELD:MMField

< FIELD:MMFIeld >

INT_Type = CHAR_ARRAY

INT_ Length =7

EXT_Type = CHAR_ARRAY_NO_NULL_TERM
EXT_Length =6

Key =N

Required =N

98

Using Multi-mail Processing

Setting Up the FSISYS.INI File for Multi-mail Processing

Here is an example of how the relevant control groups and options in your FSISYS.INI
file should look:

< Print_Batches >

A

P_Batchl
P_Batch2
P_Batch3
Error
Manual

P_Batchl >

Printer
Printer
FinalPrinter
PageRange
TwoUpStart

P_Batch2 >

Printer
Printer
FinalPrinter
PageRange
TwoUpStart

P_Batch3 >

Printer
Printer
FinalPrinter
PageRange
TwoUpStart

TRN_FIELDS >

MM_Field

= .\data\Batchl
= .\data\Batch2
= .\data\Batch3
= .\data\Error
= .\data\Manual

= Batchl_PTR_1

= Batchl_PTR_2

= Batchl_PTR_F

= ,4 (controls which batch is used)
=L

= Batch2_PTR_1

= Batch2_PTR_2

= Batch2_PTR_F

=5,9 (controls which batch is used)
=L

= Batch3_PTR_1
= Batch3_PTR_2
= Batch3_PTR_F

= 10,99 (controls which batch is used)
=L
= 326,6,N (defines where the multi-mail code

is found in each transaction)

The order of the page output on the final print file will produce 2-up printing
depending on how many intermediate printer files are specified. The output will look
as follows:

< P_Batch2 >

transaction #1 mmcode 111 page ltransaction
transaction #1 mmcode 111 page 2transaction
transaction #1 mmcode 111 page ntransaction
transaction #2 mmcode 126 page ltransaction
transaction #2 mmcode 126 page 2transaction
transaction #2 mmcode 126 page ntransaction
transaction #3 mmcode 222 page ltransaction
transaction #3 mmcode 222 page ltransaction
transaction #3 mmcode 222 page ntransaction

Printer
Printer
FinalPrinter
PageRange
TwoUpStart

Batch2_PTR_1 intermediate printer file

Batch2_PTR_2 intermediate printer file
= Batch2_PTR_F intermediate printer file
=5,9

L

mmcode 555 page
mmcode 555 page
mmcode 555 page
mmcode 555 page
mmcode 555 page
mmcode 555 page
mmcode 865 page
mmcode 865 page

X X X BB BB BB
5 NP B O WNPR

mmcode 865 page

99

Chapter 2

Understanding the System

100

< P_Batch2 >
Printer

FinalPrinter

PageRange
TwoUpStart

transaction
transaction
transaction
transaction
transaction
transaction
transaction

transaction

#1
#1
#1
#2
#2
#3
#3
#4

mmcode
mmcode
mmcode
mmcode
mmcode
mmcode
mmcode

mmcode

111
111
111
555
555
126
126
222

Batch2_PTR_1
Batch2_PTR_F

5,9
L

page
page
page
page
page
page
page
page

ltransaction
3transaction
ntransaction
2transaction
4dtransaction
ltransaction
2transaction
ltransaction

H H H FH H H H H

B W WD NN R R

mmcode
mmcode
mmcode
mmcode
mmcode
mmcode
mmcode

mmcode

111
111
555
555
555
126
126
222

page
page
page
page
page
page
page
page

If you define only one printer and a final printer for a batch, the 2-up printing would
look as follows:

N B NS W R SN

USING
ADDRESSEE
RECORDS

Using Addressee Records

Addressee records support class recipients and individual addressee-based processing.
Each addressee is written to batch files as a separate record for subsequent printing or
processing. This lets you uniquely distribute documents for a given recipient type to a
specific address, such as a mailing address, email address, or fax number.

USING ADDRESSEE RECORDS IN BATCH FILES

Correspondence applications often need to send copies of a recipient document set to
multiple addressees. You may want to have each addressee produce a separate batch
record when multiple addressees are included for a given recipient. Such records can be
further processed or ultimately printed.

NOTE: To activate the use of Addressee records in the extract dictionary, see the
Documaker Studio User Guide.

Once enabled, Documaker Server (GenPrint and single-step processing) can then assign
the addressee index and a new batch record for each addressee recipient (CC recipient).
The system uses your entries in the ADR_Index control group in the recipient DFD file
(RCBDFDFL.DFED). Set up these INI options as shown here:

< Fields >

FieldName = ADR_Index
< Field:ADR_Index >
INT_ Type = Long
EXT_Type = CHAR_ARRAY_NO_NULL_TERM
EXT_Length = 10
Option Description

Fields List control group
FieldName Enter ADR_Index.

Field: ADR_Index control group

INT_Type Specify the internal type as Long.
EXT_Type Specify the external type as CHAR_ARRAY _NO_NULL,_TERM
EXT_Length Specify the length as 10.

The ADR_Index contains the sequence index of the CC addressee specified for that batch
record. In addition, you can include other information from the addressee mapped data
in the recipient batch record. To do this, prefix the name of the addressee variable names
with ADR_, such as ADR_NAME.

This takes the Name member from the addressee mapped information and includes it in
the associated batch record member. This ADR_Index record is then present in the batch
record definition file.

101

Chapter 2

Understanding the System

102

Using Address Records for Printing

Correspondence applications often need to send copies of a recipient document set to
multiple addressees. When writing addressee information into batch records, the system
makes sure only specified addressees print for a given recipient.

Once you enable addressee records, Documaker Server (GenPrint and single-step
processing) can then assign the addressee index and a batch record for each addressee
recipient (CC recipient). The system uses your entties in the ADR_Index control group
in the recipient DFD file (RCBDFDFL.DFD). Set up these INI options as shown here:

< Fields >

FieldName = ADR_Index
< Field:ADR_Index >
INT_Type = Long
EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 10

Option Description

Fields List control group
FieldName Enter ADR_Index.

Field:ADR_Index control group

INT_Type Specify the internal type as Long.
EXT_Type Specify the external type as CHAR_ARRAY. NO_NULIL,_TERM
EXT_Length Specify the length as 10.

These entries make sure the ADR_Index record is present in the batch record definition
file. When the batch record for a recipient is read by the GenPrint program, and the
ADR_Index member has a value other than zero (0), only that recipient addressee/CC
prints. If the value is zero (0), all found addressee records print.

ADDING AND
REMOVING
PAGES

Adding pages

Removing pages

Adding pages

Adding and Removing Pages

You can add and remove blank pages or a FAP file to a form set. Typically, you would
add these pages so each printed page has a front and back.

This lets you change a simplex or mixed plex form set into a fully duplexed form set. For
instance, you can use this feature to create PDF files for mixed plex form sets that print
in a similar fashion to printers that support mixed plex.

You can access this functionality several ways:
* Using custom code
* Using DAL scripts

* Using Docupresentment rules (version 1.6 and higher)

NOTE: Typically, you use this feature to add blank pages just before the print step. These
additional pages are not actually part of the saved document.

If, however, if you added the blank pages before the batch steps that save
document information to the NA/POL files, the blank pages would become a
permanent part of the document layout.

UsiING CusTomMm CODE

Use this API to call custom code to add blank pages:

DWORD _VMMAPI FAPAddBlankPages (
VMMHANDLE objectH, /* form set or form handle */
char FAR * sectionname) /* if NULL, "Blank Page" */

If the section name is NULL, a blank page is created when a dummy page is needed. If
the section name is not NULL, the section name is loaded when a dummy page is needed.
Omit the path and file extension when you enter sectionnane.

Use this API to call custom code to remove blank pages:

DWORD _VMMAPI FAPDelBlankPages (VMMHANDLE objectH)
/* formset or form handle */

UsING DAL ScCRIPTS

Use this DAL function to add blank pages:
AddBlankPages ()

or
AddBlankPages ('FAPFile')

For example, you can use this function with the banner processing feature. First, specify
a DAL script that runs at the start of each transaction. The DAL script calls the
AddBlankPages function. This tells the system to convert each transaction to a fully
duplexed form set with blank pages added as needed.

Here is an example of the INT settings you would need:

103

Chapter 2

Understanding the System

< Printer >

EnableTransBanner True
TransBannerBeginScript = PreBatch
< DALLibraries >

Lib = BANNER
Here is an example of the BANNER.DAL script:

BeginSub PreBatch
AddBlankPages ()
EndSub

Removing pages Use this DAL function to remove a page from a form set:

DelBlankPages ()

For example, you can use this function with the banner processing feature. First, specify
a DAL script that runs at the start of each transaction. The DAL script calls the
DelBlankPages function. This tells the system to remove blank pages from each
transaction.

< Printer >

EnableTransBanner True
TransBannerBeginScript = PreBatch
< DALLibraries >

Lib = BANNER
Here is an example of the BANNER.DAL script:

BeginSub PreBatch
DelBlankPages ()
EndSub

104

Adding pages

Removing pages

Adding and Removing Pages

UsING IDS

For more information on the rules listed below see Using the Documaker Bridge.

Use this IDS rule to add blank pages:
function = dpros2->DPRAddBlankPages

This IDS rule assumes the form set being used has been loaded by the Documaker Bridge
into the DSI variable, DPRFORMSET. If you are using this rule with a different bridge,
you may need to specify a different DSI variable that contains the form set.

To specify a FAP file to use for the dummy pages, add the name of that FAP file after the
form set variable name when you specify the IDS rule. Here is an example:

function = dpros2->DPRAddBlankPages, DPRFORMSET, FAPFile

Use this IDS rule to remove blank pages:
function = dpros2->DPRDelBlankPages

This IDS rule assumes that the form set has been loaded by the Documaker Bridge into
the DSI variable, DPRFORMSET. If you are using this rule with a different bridge, you
may need to specify a different DSI variable.

To specify the FAP file being used for dummy pages, add the FAP file name after the
form set variable name when you specify the IDS rule. Omit the path and extension. Here
is an example:

function = dpros2->DPRAddBlankPages, MTCFORMSET

105

openfile DocumakerBridge.pdf

Chapter 2

Understanding the System

ADDING
INDEXES AND
TABLES OF
CONTENTS

106

Using Documaker Studio or Image Editor, you can insert tables of contents, lists of
figures or indexes to your form sets. This makes it easier for users to navigate through the
various forms.

To use this feature, all sections must be loaded before the print operation executes.
Otherwise, the system will not have all the content available and will not be able to create
a complete table of contents, list of figures, or index. Since some print drivers do not force
the loading of all sections until necessary, this means you may have to include an
additional INT option.

For Documaker Server (GenPrint), you would include this option:

< RunMode >
DownloadFAP = Yes

USING RUN-
TiIME OPTIONS

Using Run-Time Options

The system offers several ways you can customize the way it runs. The following topics
discuss these options.

GENDATA COMMAND LINE OPTIONS

The GenData program accepts several command line options. Command line options are
prefixed with either a backslash (/) or a dash (-). Here is an example:

c:fap\mstrres\dmsl\gendaw32 /ini=my.ini

The command line options are explained below:

Option Description

CNT Ovetrides the number of transactions specified in the CheckCount option in the
Restart control group. This count specifies the frequency of updating offsets for
GenData restart processing.

INI Tells the program to use the specified FSTUSER.INI file instead of the one in the
cutrent directory.

JDT Tells the program to use the specified AFGJOB.JDT file instead of the one defined
in the FSTUSER.INI or FSISYS.INI files.

1L, Writes the names of the INI files and options the program uses in the log file.

? Displays the command line options for the program.

GENPRINT COMMAND LINE OPTIONS

The GenPrint program accepts several command line options. Command line options
begin with either a backslash (/) or a dash (-). Here is an example:

c:fap\mstrres\dmsl\genptw32 /ini=my.ini

The command line options are explained below:

Option Description

INI Tells the program to use the specified FSIUSER.INI file instead of the one in the
cutrent directory.

IL, Writes the names of the INT files and options the program uses in the log file.

? Displays the command line options for the program.

107

Chapter 2

Understanding the System

108

GENTRN COMMAND LINE OPTIONS

The GenTrn program accepts several command line options. Command line options are
prefixed with either a backslash (/) or a dash (-). Here is an example:

c:fap\mstrres\dmsl\genTnw32 /ini=my.ini

The command line options are explained below:

Option Description

B Tells the program to build only the transaction file.

F Tells the program to build only the filter extract file.

FB Tells the program to build only the filter extract and transaction files.

INI Tells the program to use the specified FSTUSER.INI file instead of the one in the
cutrent directoty.

L Writes the names of the INI files and options the program uses in the log file.

? Displays the command line options for the program.

DEBUGGING OPTIONS

You can use the following options in the Debug_Switches control group to turn on or off

debugging options.

< Debug_Switches >

Debug_If_Rule = Yes
Enable_Debug_Options = Yes
Show_Debug_Options = Yes
LoadListFromTable = Yes
Option Description

Debug_If_Rule

Enable_Debug_Options

Show_Debug_Options

LoadListFromTable

Set to Yes if you want to turn on the debug options for the IF and
DAL rules. The system places the debug data in the
LOGFILE.DAT file. Setting this option to Yes slows performance.

Set this option to Yes to turn on all debug options.

Set this option to Yes to make the
GEN_DEBUG_DebugSwitchSet function log the state (on or off)
of all debug options.

Set this option to Yes to make the
Gen_TabUtil_LoadListFromTable function log the contents of
any ASCII table it loads.

Noting font IDs of zero

Suppressing elapsed
runtime messages

Using Run-Time Options

You can use the CheckZeroFontID option to tell the system to display a warning or error
message if the field being processed contains a font ID equal to zero (0).

Typically, this means no font was assigned during the mapping. Since the merging of FAP
and DDT files in version 11.0, the field definition should be complete at the time of
processing. So if you encounter a field with no font ID assigned, it probably means some
unusual situation has occurred — like the field was defined via an import method but not
actually defined on the FAP file where it resides.

Here is an example of the CheckZeroFontID option:

< RunMode>
CheckZeroFontID =

Option Description

CheckZeroFontID Enter Yes (or Error) to have the system to issue an error message if it
encounters a font ID set to zero (0). If you enter Yes (or Etror) and the
system encounters a font ID of zero, you get a message similar to this:

DM30046: Error: Field < FLDNAME > on Image <
IMGNAME > has Font ID = 0. The field may have been
included incorrectly or the FAP has not been
updated to include the field's definition.
Enter Warn if you want the system to issue a warning message if it
encounters a font ID set to zero. If you enter Warn and the system
encounters a font ID of zero, you will get a message similar to this:

DM30046: Warning: Field < FLDNAME > on Image <
IMGNAME > has Font ID = 0. The field may have been
included incorrectly or the FAP has not been
updated to include the field's definition.
In either message, FLDNAME and IMGNAME are reflect the
appropriate field name and section (image) name.

The default is No, which means nothing is checked and no message is
issued.

You can suppress the elapsed runtime message by setting the ElapsedTimeStamp option
to No. This turns off the elapsed runtime message for the error, log, and trace files. Here
is an example:

< Control >
ElapsedTimeStamp = No

Option Description

ElapsedTimeStamp Enter No to suppress the elapsed runtime message for the error, log, and
trace files. The default is Yes.

NOTE: You can use the existing ErrorFileDateStamp and LogFileDateStamp options to
turn off the time stamp in the error and log files. The new ElapsedTimeStamp
option controls the elapsed runtime message.

109

Chapter 2

Understanding the System

110

GROUPING PRINT BATCHES

If you want to group all of your print batches (BCH files) in one file, follow these steps:

1

Add two options to the FSISYS.INI file. In the RunMode control group, set the
AliasPrintBatches option to Yes. In the Data control group, add the BatchTable
option. Set this option as shown below:

BatchTable = <tablename>

If you omit the path, the system uses your entry in the DataPath option of the Data
control group.

Add a key to the RCBDFDFL.DFD file. In the Fields control group, add the
following option:

FieldName = BatchName

Add the option exactly as shown here. Do not substitute the desired batch name,
here or in any of the following steps.

Add a corresponding FIELD:BatchName control group. Note that the lengths you
specify in this group must be sufficient to hold the batch name (the option side of

the equations in the Print_Batches control group). In the Keys control group, add

the following option:

Key = BatchName
and add a corresponding KEY:BatchName control group, with these options:

FieldList = BatchName
Expression = BatchName

If you are using ASCII for the print batch, after you run the GenData program you must
sort the batch file using the BatchName field as the key. If you are using xBase or DB2,
you should be able to run the GenPrint program without this step.

NOTE: If you are using ASCII for the print batches, be sure to place the BatchName field

directly before the NA_Offset field in the RCBDFDFL.DFD file. And when
sorting, use the BatchName and NA_Offset fields together as the key.

This will help make sure the print output is identical to that produced with
multiple batches. If you are using xBase or DB2, you do not need these additional
instructions.

Using Run-Time Options

CONTROLLING CONSOLE LOGGING

When processing a large number of transactions, you can see how far along you are
without affecting performance by using the LogToConsole option. This option lets you
control how often the console is updated with progress information.

Using the LogToConsole option, you specify the number of transactions that should be
processed before that information is logged on the console. For instance, if your
processing run consisted of 10,000 transactions, you could set the option to log progress
on the console after every 1000 transactions are processed. Here is an example:

< Control >
LogToConsole = 1000

Option Description

LogToConsole Enter the number of transactions you want the system to process before it
logs its progress on the console. For instance, enter 1000 to have the system
tell you each time it processes 1000 transactions.

If you leave this option blank or enter Yes, the system logs the processing of
each transaction on the console. If you enter a numbet, such as 1000, the
system will send a log message to the console each time it processes that
number of transactions.

Keep in mind that logging information to the console affects performance.
The more often the system logs information to the console, the greater the
affect.

Consider how many transactions you will process in the run and use that
number to determine appropriate progress benchmarks.

If you enter No, the system will not notify you of its progress.

LOGGING INI FILE NAMES AND OPTIONS

You can log INI file names and options in the TRACE file during GenTtn, GenData,
GenPrint, GenArc, and Documaker Studio processing.

To turn on the logging of INI file names and options, include these INI options:

< Debug_Switches >
Enable_Debug_Options = Yes
INILib = Yes

For the GenTtn, GenData, GenPrint, and GenArc programs, you can include the /L
command line parameter to log these file names and options in the TRACE file.

NOTE: Logging the INT file names and options in the TRACE file replaces the writing
of the INI file names and options to the LOGFILE as was done prior to version
11.1, patch 02.

Chapter 2

Understanding the System

LISTING THE RULES EXECUTED

Use the following INT options to tell the system to create a list of the Documaker Server
rules executed and the amount of time (in milliseconds) spent for each execution:.

< Debug_Switches >

Enable_Debug_Options = Yes
BaseRuleTime = Yes
FormSetRuleTime = Yes
ImageRuleTime = Yes
ImageFuncTime = Yes
FieldFuncTime = Yes
Option Description

Enable_Debug_Options Enter Yes to turn on the logging setvice.

BaseRuleTime Enter Yes to report base or job-level (level 1) rules.
FormSetRuleTime Enter Yes to report form set-level (level 2) rules.
ImageRuleTime Enter Yes to report image-level (level 3) rules.
ImageFuncTime Enter Yes to report image functions.
FieldFuncTime Enter Yes to report field functions.

The rule timings are written to a standard debug trace file. Individual records are tab-
delimited with the following fields:

Field Description

Standard Log Trace This field tells you the log entries data, time, and process ID. You can
info omit this information using the PrintTimeStamp option (see below).

Rule Type This field provides information like: Base Rule Forward, Base Rule
Reverse, and so on.
Time Spent Label The comment label for the Time Spent field:

Time Spent (sec)
Time Spent The time, in milliseconds, spent executing the rule.

Rule Name The name of the rule. Image functions use this format:

"Image Name"."Rule Name"

Field functions use this format:

"Image Name"."Field Name"."Rulename"

Turn off the time stamp associated with the rule timing options listed above, set the
PrintTimeStamp option to No.

< Debug_Switches >
PrintTimeStamp = No

Using Run-Time Options

ANALYZING DAL PERFORMANCE

In addition to DAL profile information which includes the time spent per function
(DAL subroutine), the system places information into the TRACE file about the total
time spent in each function and number of times each function is called.

An example of this information is shown below. This example is from a GenData run
which processed 600 transactions. The total processing time was 23 seconds. Only the
beginning of the log is shown because of space considerations.

The log is sorted by the cumulative time spent in each script with longest running scripts
at the top. The log information appears in the trace file and is written out when the
program terminates.

You will find this information appears in the log:

Item Description

Executed XXX The number of times script was executed.

Cumulative The time in seconds dot milliseconds spent in this sctipt and all sctipts/code
run time that was executed from this script.

X XXX

Compiled or Whether or not the script was compiled.

Non-compiled

Name The name of the script or the actual script if it was not in an external file.

Some scripts look like they are listed twice, but are not. For instance, in the example
below PostTrans_Prod() and PostTrans_Prod actually are the script that had a call to
PostTrans_Prod (all it had was “PostTrans_Prod()”’) and the actual PostTrans_Prod DAL
subroutine.

When you analyze the log, keep these things in mind:
* The scripts you need to review are usually the scripts at the top of the log.

* Review any scripts that are executed more times than number of transactions in the
run. You can probably modify your implementation so the script is run no more
than once per transaction or once per job.

* Review the scripts that run the longest and see if they can be optimized. For
example, move assignment of variables outside the loop. Consider parts that can be
executed only when needed.

* Typically, scripts that take longer to run or receive a higher number of calls are
good candidates for review of either the script itself or the implementation.

* Clock resolution is set at one millisecond. If a script executes in less than one
millisecond, the time spent equals zero (0). Scripts that show a high number of calls,
even if the time is shown as zero (0), or a relatively small number are good
candidates for optimization.

Chapter 2

Understanding the System

114

NOTE: The extra logging does affect total time spent executing the program being

analyzed and should not be turned on in a production environment or left on
when not needed.

Executed 600 times Cumulative run time 2.840 Non-compiled Script
PostTrans_Prod()

Executed 600 times Cumulative run time 2.824 Compiled Script
PostTrans_Prod

Executed 600 times Cumulative run time 2.451 Non-compiled Script
PREFILL_VARS ()

Executed 600 times Cumulative run time 2.420 Compiled Script
PREFILL_VARS

Executed 600 times Cumulative run time 1.954 Compiled Script
DEFLIB\BarCode.DAL

Executed 534 times Cumulative run time 0.792 Compiled Script
DEFLIB\Delete_TImages.DAL

Executed 1150 times Cumulative run time 0.784 Non-compiled Script
CALL ("SERVPHONENUM")

Executed 1150 times Cumulative run time 0.737 Compiled Script
DEFLIB\SERVPHONENUM. DAL

Executed 600 times Cumulative run time 0.372 Non-compiled Script
COPYCOUNT ()

Executed 1813 times Cumulative run time 0.359 Non-compiled Script
call ("INSUREDNAMEL")

Executed 1813 times Cumulative run time 0.312 Compiled Script
DEFLIB\INSUREDNAMEL . DAL

Executed 600 times Cumulative run time 0.295 Compiled Script
COPYCOUNT

Executed 1180 times Cumulative run time 0.234 Non-compiled Script
call ("INSUREDNAME2")

Executed 1200 times Cumulative run time 0.205 Non-compiled Script
call ("BROKERNAMELIT")

Executed 1180 times Cumulative run time 0.203 Compiled Script
DEFLIB\INSUREDNAME?Z . DAL

Executed 567 times Cumulative run time 0.186 Non-compiled Script
Return ((?("POL.NUM.LIT")) & " " & (?("INS.POL.NUM")) &

(? ("INS.POL.YREFF")))

Executed 1200 times Cumulative run time 0.186 Non-compiled Script
Call ("DMGMERGESETID")

Executed 1137 times Cumulative run time 0.173 Non-compiled Script
call ("POLEFFDATE")

Executed 534 times Cumulative run time 0.159 Non-compiled Script
MSGBO3A ()

Executed 534 times Cumulative run time 0.158 Non-compiled Script
MSGD12A1 ()

Executed 600 times Cumulative run time 0.158 Non-compiled Script
CALL ("SERVADDR1DAL")

Executed 534 times Cumulative run time 0.142 Non-compiled Script
MSGSO04A ()

Executed 534 times Cumulative run time 0.141 Non-compiled Script
MSGBO7B ()

Executed 1137 times Cumulative run time 0.139 Non-compiled Script
call ("POLEXPDATE")

Executed 534 times Cumulative run time 0.126 Non-compiled Script
MSGSO09B ()

Executed 1149 times Cumulative run time 0.126 Non-compiled Script
call ("DUEDATE")

Executed 534 times Cumulative
MSGB11A()

Executed 550 times Cumulative
DEFLIB\UPDATESCANABLE.DAL
Executed 600 times Cumulative
CALL ("SERVADDR3DAL")

Executed 534 times Cumulative
DEFLIB\WITHDRBILLDAY2 .DAL
Executed 534 times Cumulative
CALL ("WITHDRBILLDAY2")
Executed 534 times Cumulative
MSGM11A ()

Executed 534 times Cumulative
MSGD12A3 ()

run

run

run

run

run

run

run

time

time

time

time

time

time

time

Using Run-Time Options

0.126 Non-compiled Script

0.126 Compiled Script
0.125 Non-compiled Script
0.125 Compiled Script
0.125 Non-compiled Script
0.125 Non-compiled Script

0.124 Non-compiled Script

Executed 1200 times Cumulative run time 0.124 Compiled Script

DEFLIB\DMGMERGESETID.DAL

Executed 534 times Cumulative run time 0.124 Non-compiled Script

MSGSO08A ()

Executed 1137 times Cumulative run time 0.123 Compiled Script

DEFLIB\POLEXPDATE.DAL

Executed 534 times Cumulative
MSGCO1A()

Executed 534 times Cumulative
Executed 534 times Cumulative
MSGMO7A ()

Executed 570 times Cumulative
call ("COMPANYNAMELIT")
Executed 534 times Cumulative
MSGD10C ()

Executed 534 times Cumulative
MSGMO2A ()

Executed 600 times Cumulative
CALL ("SERVADDR2DAL")

run time 0.111 Non-compiled Script

run

run

run

run

run

run

time

time

time

time

time

time

0.111 Compiled Script MSGBO03A

0.110 Non-compiled Script

0.110 Non-compiled Script

0.110 Non-compiled Script

0.110 Non-compiled Script

0.110 Non-compiled Script

Executed 534 times Cumulative run time 0.110 Compiled Script MSGD12A1l
Executed 534 times Cumulative run time 0.110 Non-compiled Script

MSGD10G ()

Executed 600 times Cumulative run time 0.109 Non-compiled Script

CALL ("DMGTOTALSHEETS")

Chapter 2

Understanding the System

116

Handling Large Extract and NAFILE Files

Prior to version 11.5, during processing the system stored records which contained
offsets back into the originating transact