

Oracle® Fusion Middleware
Portal Development Guide for Oracle WebLogic Portal

10g Release 3 (10.3.2)

E14243-02

February 2010

Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal, 10g Release 3 (10.3.2)

E14243-02

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Primary Author: William Witman

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xix

Audience... xix
Documentation Accessibility ... xix
Related Documents ... xx
Conventions ... xx

Part I Architecture

1 Introduction to Portals

1.1 What is a Portal?.. 1-1
1.2 What is the Portal Framework? .. 1-2
1.3 Portal Development and the Portal Life Cycle ... 1-2
1.3.1 Architecture .. 1-3
1.3.2 Development .. 1-3
1.3.3 Staging... 1-3
1.3.4 Production .. 1-4
1.4 Getting Started... 1-4
1.4.1 Prerequisites ... 1-4
1.4.2 Related Guides ... 1-4

2 Planning Your Portal

2.1 Production Operations (Propagation and Deployment)... 2-1
2.2 Portal Development in a Distributed Portal Team .. 2-2
2.3 Federated Portals .. 2-2
2.4 Security .. 2-3
2.5 Content Management .. 2-3
2.6 Interaction Management.. 2-3
2.7 Performance... 2-4
2.8 Portals and Mobile Devices .. 2-4

Part II Development

3 Understanding Portal Development

3.1 Portal Components ... 3-1

iv

3.2 Portal Component Hierarchy.. 3-2
3.3 Portal Development Environment in Oracle Enterprise Pack for Eclipse 3-3
3.4 Web Application Frameworks .. 3-6
3.5 WebLogic Portal and Shared J2EE Libraries... 3-6
3.6 File-Based Portals and Streaming Portals ... 3-7
3.7 Java Controls in Portals.. 3-8
3.8 JSP Tags in Portals .. 3-9
3.9 Asynchronous Rendering .. 3-9
3.10 Backing Files .. 3-9
3.10.1 How Backing Files are Executed .. 3-10
3.10.2 Thread Safety and Backing Files... 3-11
3.10.3 Scoping and Backing Files ... 3-11
3.10.4 Using the Session to Pass Data Between Life Cycle Methods.................................... 3-12
3.10.5 Backing File Guidelines ... 3-12
3.10.5.1 Adding a Backing File Using Oracle Enterprise Pack for Eclipse 3-12
3.10.5.2 Adding the Backing File by Editing the XML File ... 3-13
3.11 HTTP Session Sharing ... 3-13

4 Setting up Your Portal Development Environment

4.1 Roadmap for Environment Setup Tasks.. 4-2
4.2 Portal Perspective ... 4-2
4.3 WebLogic Domain Configuration Wizard .. 4-2
4.4 Portal EAR Project Wizard .. 4-5
4.4.1 Select Project Facets Dialog .. 4-6
4.5 Add and Remove Projects Dialog... 4-6
4.6 Portal Web Project Wizard .. 4-7
4.6.1 New Portal Web Project – Portal Web Project .. 4-7
4.6.2 New Portal Web Project – Select Project Facets dialog ... 4-9
4.6.3 New Portal Web Project - Web Module Dialog.. 4-10
4.6.4 New Portal Web Project - JSF Capabilities Dialog... 4-11
4.6.5 New Portal Web Project - WebLogic Integrated Commons Logging Dialog 4-12
4.7 Portal Datasync Project Wizard ... 4-13
4.7.1 Create New Datasync Project – EAR Projects... 4-14
4.8 Associating Web and Datasync Projects with EAR Projects ... 4-16
4.8.1 Associating an Web Project with an EAR Project .. 4-16
4.8.2 Associating an Datasync Project with an EAR Project .. 4-17
4.9 Using the Merged Projects View ... 4-17
4.9.1 Opening the Merged Projects View ... 4-17
4.9.2 Working with the Merged Projects View.. 4-17
4.10 Running a Project on the Server .. 4-18
4.11 Stopping the Server ... 4-18
4.12 Customizing a Perspective ... 4-19
4.13 Setting WebLogic Portal Preferences in Oracle Enterprise Pack for Eclipse................... 4-19
4.13.1 Preferences in the WebLogic Portal Section.. 4-19
4.13.2 WebLogic Portal Preferences in the General Section... 4-20
4.14 Adding Apache Beehive Support .. 4-20
4.15 Adding Apache Struts Support ... 4-21

v

5 Integrating Existing Web Applications into WebLogic Portal

5.1 Apache Beehive and Apache Struts Supported Configurations.. 5-1
5.1.1 About Apache Beehive and Apache Struts.. 5-1
5.1.2 Supported Configurations for Apache Beehive .. 5-2
5.1.3 Supported Configurations for Apache Struts.. 5-2
5.1.4 Mixing Apache Struts 1.3 and Apache Beehive NetUI Applications........................... 5-3
5.2 Importing Existing Struts Applications into WebLogic Portal .. 5-4
5.2.1 Struts-Enabling the Portal Application .. 5-4
5.2.2 Preparing Your Struts Application for Integration... 5-4
5.2.2.1 Refactor .. 5-4
5.2.2.2 Add Tags if Needed ... 5-5
5.2.2.3 Override Certain Behaviors of a RequestProcessor... 5-5
5.2.2.4 Refactor any Existing Custom Action Servlet ... 5-5
5.2.2.5 Remove the <html:link> Tag ... 5-5
5.2.3 Integration Steps .. 5-5
5.2.4 Best Practices and Development Issues.. 5-7
5.3 Integrating Existing Java Page Flow Applications into WebLogic Portal into

WebLogic Portal .. 5-7
5.4 Integrating Existing Java Server Faces Applications into WebLogic Portal....................... 5-8
5.4.1 JSF and the namingContainer JSP Tag.. 5-8
5.5 Adding Facets to an Existing Project.. 5-9
5.6 Other Methods of Integrating an External Web Application into a Portal 5-11

6 Integrating WebLogic Portal into Existing Web Applications

6.1 Introduction ... 6-1
6.2 Integrating WebLogic Portal into an Existing Web Application ... 6-1

7 User Interface Development with Look And Feel Features

7.1 Look And Feel Framework Overview ... 7-1
7.2 Working with Look And Feel Files .. 7-2
7.2.1 Introduction.. 7-3
7.2.2 Defining a Look And Feel for a Desktop.. 7-4
7.2.3 Adding Deprecated Look and Feel Components to a Web Project.............................. 7-4
7.2.3.1 Which Components are Deprecated? .. 7-5
7.2.3.2 What Changes Will I Notice?.. 7-5
7.2.3.3 Upgrading a WLP Application to Use Deprecated Components 7-6
7.3 Customizing Look and Feels ... 7-7
7.3.1 Combining Skins and Skeletons in a New Look And Feel .. 7-8
7.3.2 Defining Titlebar Buttons and Window Icons... 7-9
7.3.3 Modifying CSS Files .. 7-9
7.3.4 Working with Genes and Chromosomes .. 7-10
7.3.4.1 Gene Example .. 7-11
7.3.4.2 Creating a Chromosome and Genes ... 7-11
7.3.4.3 Using the Look And Feel Editor with Genes... 7-12
7.4 Creating a New Look and Feel .. 7-12
7.4.1 Working with Skins .. 7-14

vi

7.4.1.1 Best Practices .. 7-16
7.4.1.2 Considerations for Microsoft Internet Explorer.. 7-17
7.4.1.3 About Portlet Title Bar Icons.. 7-17
7.4.2 Working with Skeletons... 7-18
7.4.2.1 What is a Skeleton?.. 7-18
7.4.2.2 Guidelines for Creating Custom Skeletons.. 7-19
7.4.2.3 Enabling XHTML in a Portal ... 7-20
7.5 Working with Themes... 7-20
7.5.1 Using Themes with Microsoft Internet Explorer ... 7-21
7.5.2 Developing a Theme .. 7-22
7.6 Using Look And Feels From Previous Portal Releases .. 7-22
7.7 Troubleshooting Look And Feels .. 7-23
7.8 The Look And Feel Editor... 7-23
7.8.1 Overview ... 7-23
7.8.2 The Look and Feel Editor Window ... 7-24
7.8.3 Opening the Look And Feel Editor .. 7-24
7.8.4 Style Hierarchy Tab .. 7-26
7.8.5 Style Description Panel .. 7-26
7.8.5.1 CSS Inheritance .. 7-27
7.8.5.1.1 Using the Inherited Styles List ... 7-28
7.8.6 View Area ... 7-29
7.8.7 Outline View.. 7-29
7.8.8 Properties View... 7-30
7.8.9 Tips for Using the Look and Feel Editor .. 7-30
7.8.9.1 Using the Link Style Hierarchy Selection with HTML Preview Selection

Button .. 7-30
7.8.9.2 Enabling the Mouse Motion Button.. 7-31
7.9 Look And Feel API .. 7-31
7.10 Working with Shells .. 7-31
7.10.1 Creating a New Shell.. 7-32
7.10.2 Modifying a Shell.. 7-32
7.10.3 Applying a Shell to a Portal Desktop... 7-32
7.10.4 Placing Portlets in a Header or Footer... 7-33
7.11 Working with Layouts .. 7-33
7.11.1 Creating a Standard Layout .. 7-33
7.11.2 Creating a Custom Layout .. 7-36
7.11.2.1 The Layout File .. 7-36
7.11.2.2 Example of a Custom Layout .. 7-36
7.11.2.2.1 The Skeleton JSP ... 7-37
7.11.2.2.2 The html.txt File.. 7-38
7.12 Working with Navigation Menus.. 7-39
7.12.1 Using Images for Page Tabs .. 7-39
7.13 Building User Interfaces to Address Accessibility Guidelines.. 7-39
7.13.1 Accessibility Checkpoints.. 7-40
7.13.2 W3C Web Content Accessibility Guidelines .. 7-41
7.13.3 Government Regulations and Standards .. 7-41
7.13.4 Accessibility Evaluation and Testing Tools .. 7-41

vii

7.13.4.1 W3C Web Accessibility Initiative.. 7-41
7.13.4.2 Lynx Viewer ... 7-41

8 Developing Portals Using Oracle Enterprise Pack for Eclipse

8.1 Creating a Portal ... 8-1
8.1.1 Add a Page or Book to Your Portal ... 8-3
8.1.2 Creating a Standalone Book or Page... 8-4
8.1.3 Extracting an Existing Page or Book to Re-Use .. 8-6
8.1.4 Adding a Book or Page Reference (Content) ... 8-6
8.1.4.1 Adding a Book or Page Reference from the Portal Editor 8-7
8.1.4.2 Adding a Book or Page Reference Using the Outline View 8-7
8.1.5 Rearranging Books and Pages ... 8-7
8.1.6 Adding Render Dependencies to Books and Pages.. 8-8
8.2 Setting Portal Component Properties .. 8-8
8.2.1 Editing Portal Properties .. 8-9
8.2.2 Tips for Using the Properties View.. 8-10
8.2.2.1 Presentation Properties... 8-10
8.2.2.2 Desktop Properties .. 8-12
8.2.2.3 Book Properties.. 8-13
8.2.2.4 Page Properties .. 8-16
8.2.2.5 Placeholder Properties .. 8-18
8.3 Copying J2EE Library Files into a Project .. 8-18
8.3.1 Viewing Files that Override Shared J2EE Library Files .. 8-19
8.4 Custom Controls in Page Flows... 8-19
8.4.1 Adding a Portal Control to a Page Flow ... 8-20
8.4.2 Adding an Action to the Page Flow... 8-21
8.4.3 Portal Control Security... 8-21
8.5 Deploy and View a Portal .. 8-21
8.6 Working with URLs... 8-23
8.6.1 Creating URLs to Portal Resources .. 8-23
8.6.2 URL Compression... 8-24
8.6.2.1 Implementing URL Compression ... 8-24
8.6.2.2 URL Compression Special Considerations .. 8-25
8.6.2.2.1 URL Compression and AJAX ... 8-25
8.6.2.2.2 URL Compression and Off-Site URLs... 8-25
8.6.2.2.3 URL Compression and Frequently-Accessed Data 8-26
8.6.3 URL Troubleshooting .. 8-26
8.6.3.1 URL Templates and Web Services for Remote Portlets (WSRP) 8-27
8.6.4 Ampersand Entities in Portal URLs... 8-27
8.6.5 Optional Look And Feel URL Templates.. 8-27
8.7 Working with Encoding in HTTP Responses ... 8-28
8.8 Cache Management in Oracle Enterprise Pack for Eclipse.. 8-28
8.8.1 Changing Cache Settings in Oracle Enterprise Pack for Eclipse 8-29
8.9 Cache Management With Oracle Coherence ... 8-30
8.9.1 Introduction... 8-30
8.9.2 Installing and Configuring Coherence .. 8-30
8.9.3 Removing Deprecated and Obsolete Caches.. 8-31

viii

8.10 Improving WebLogic Server Administration Console Performance on a
Managed Server ... 8-31

8.11 Behavior of the "Return to Default Page" Attribute.. 8-32
8.12 Customizing Problem Validation Settings ... 8-33
8.12.1 Enabling/Disabling WebLogic Portal Validation.. 8-33
8.12.1.1 Enabling/Disabling Validation Globally ... 8-33
8.12.1.2 Enabling/Disabling Validation Per Project ... 8-34
8.12.2 Customizing WebLogic Portal Validation Mappings ... 8-34
8.12.2.1 Overview .. 8-35
8.12.2.2 Customizing Validation Globally ... 8-35
8.12.2.3 Customizing Validation Per Project.. 8-35
8.13 Enabling Placeable Movement .. 8-36
8.13.1 Configuring the Portal in Oracle Enterprise Pack for Eclipse.................................... 8-36
8.13.2 Setting Up a Desktop in the Administration Console ... 8-37
8.13.3 Testing Placeable Movement ... 8-38
8.13.4 Enabling Placeable Movement for an Existing Desktop ... 8-38
8.13.5 Limitations .. 8-38
8.14 Using Placeable Movement with Custom Layouts... 8-39
8.14.1 Introduction... 8-39
8.14.2 Rules for Using Placeable Movement with Custom Layouts..................................... 8-39
8.14.3 Sample Code.. 8-40
8.15 Localizing Titles for File-Based Books, Pages, and Portlets... 8-43

9 Using the Dynamic Visitor Tools

9.1 What Is the DVT? .. 9-1
9.2 Configuring the DVT.. 9-2
9.2.1 Adding the Portal Dynamic Visitor Tools Facet to the Portal Web Project 9-2
9.2.2 Enabling the DVT .. 9-2
9.2.2.1 Enabling the DVT in a File-based Portal .. 9-3
9.2.2.2 Enabling the DVT for a Streaming Portal ... 9-4
9.2.3 Testing the DVT Configuration ... 9-5
9.3 Working with the DVT... 9-5
9.3.1 Accessing Customization Options .. 9-6
9.3.2 Adding a Page Tab or Book of Tabs.. 9-6
9.3.3 Changing the Appearance of the Portal, Pages, Books, and Portlets........................... 9-6
9.3.3.1 Changing the Appearance of the Portal .. 9-6
9.3.3.2 Changing the Appearance of Pages, Books, and Portlets....................................... 9-7
9.3.4 Changing the Menu of the Desktop or a Book .. 9-7
9.3.5 Restoring the Default View .. 9-7
9.3.6 Customizing the Desktop for All Desktop Users.. 9-8
9.3.7 Changing the Layout of a Page.. 9-8
9.3.8 Adding and Removing Content .. 9-8
9.3.9 Making Remote Portlets Available to Your Users .. 9-8
9.3.10 Implementing Custom Look and Feels for the DVT .. 9-9
9.3.10.1 Creating a Look and Feel Injector .. 9-9
9.3.10.2 Instantiating a Look and Feel Injector .. 9-10
9.4 Installing the Sample Login Shell .. 9-11

ix

9.4.1 Summary of Steps ... 9-11
9.4.2 Installing the Portal Examples Component .. 9-11
9.4.3 Add the Sample Framework Components Facet ... 9-12
9.4.4 Adding the Sample Login Shell to a Portal Desktop... 9-13

10 Advanced DVT Development

10.1 Localizing the DVT .. 10-1
10.1.1 Overview.. 10-1
10.1.2 Localizing the Out-Of-The-Box DVT ... 10-2
10.1.3 Localizing Custom Widgets .. 10-3
10.1.4 Extending _Localizable to Customize L10N Features... 10-3
10.1.4.1 Customizing How L10N Modules Are Loaded.. 10-3
10.1.4.2 Customizing Message Aliases ... 10-4
10.1.4.3 Handling Parameterized Messages ... 10-4
10.2 Extending the DVT with Mixins .. 10-5
10.2.1 What are Extensions? ... 10-6
10.2.2 How Mixins are Implemented.. 10-7
10.2.3 Enabling Mixins ... 10-8
10.2.4 Mixin Examples... 10-8
10.3 Using the Server Data Store.. 10-9
10.3.1 Server Data Store Features .. 10-9
10.3.2 Using Server Data Store: A Basic Example ... 10-10
10.3.3 The Server Data Store Constructor... 10-10
10.3.4 Request Object Parameters.. 10-11
10.3.5 Server Data Store Examples .. 10-12

11 Enabling Visitor Tools

11.1 What Are Visitor Tools?.. 11-1
11.2 Enabling Visitor Tools ... 11-2
11.2.1 Verifying the Portal Visitor Tools Facet .. 11-2
11.2.2 Enabling Visitor Tools for a Desktop .. 11-3

12 Creating Portals for Multiple Device Types

12.1 Enabling Multichannel Features in a Portal Web Application.. 12-1
12.2 Roadmap for Multichannel Processing .. 12-2
12.3 Developing Portals for Use in a Multichannel Environment .. 12-3
12.3.1 Manage Portlet Client Classifications .. 12-4
12.3.2 Use the Client Attribute in JSP Tags ... 12-5
12.3.3 Develop Appropriate Look And Feels .. 12-5
12.3.4 Interaction Management Development .. 12-6

13 Designing Portals for Optimal Performance

13.1 Asynchronous Desktop Rendering .. 13-1
13.1.1 Choosing the Method of Asynchronous Rendering.. 13-2
13.1.2 Configuring Asynchronous Desktop Rendering .. 13-2

x

13.1.3 Programmatically Disabling Asynchronous Desktop Rendering 13-2
13.2 Control Tree Design... 13-3
13.2.1 How the Control Tree Works.. 13-3
13.2.2 How the Control Tree Affects Performance ... 13-3
13.3 Using Multiple Desktops .. 13-4
13.3.1 Why This is a Good Idea.. 13-5
13.3.2 Design Decisions for Using Multiple Desktops ... 13-6
13.4 Optimizing the Control Tree .. 13-7
13.4.1 Enabling Control Tree Optimization ... 13-7
13.4.1.1 Setting the Current Page... 13-8
13.4.2 How Tree Optimization Works .. 13-9
13.4.3 Multi Level Menus and Control Tree Optimization.. 13-10
13.4.4 Limitations to Using Tree Optimization ... 13-10
13.4.5 Disabling Tree Optimization... 13-12
13.5 Other Ways to Improve Performance ... 13-13
13.5.1 Use Entitlements Judiciously ... 13-13
13.5.1.1 How Entitlements Affect Performance .. 13-13
13.5.1.2 Recommendations for Using Entitlements .. 13-13
13.5.2 Limit User Customizations ... 13-14
13.5.3 Optimize Page Flow Session Footprint ... 13-14
13.5.4 Use File-Based Portals for Simple Applications... 13-15
13.5.4.1 Why Use a File-based Portal? .. 13-16
13.5.4.2 Limitations to Using File-based Portals ... 13-16
13.5.5 Create a Production Domain in Development ... 13-16
13.5.6 Optimize Portlet Performance .. 13-16
13.5.7 Use Oracle WebCenter Analytics to Track Usage.. 13-17

14 Obtaining Debug Information

14.1 Introduction .. 14-1
14.2 Configuring and Enabling Debug .. 14-1
14.2.1 Using Debug in Your WLP Code ... 14-1
14.2.2 Turning Debug Output On and Off ... 14-2
14.2.3 Package-Level Debugging... 14-3
14.2.4 Directing Output to a File.. 14-3
14.2.5 Reloading Debug Properties ... 14-4
14.2.6 Example debug.properties File ... 14-4
14.3 Public WLP Class Debug Reference.. 14-5
14.3.1 WLP Framework Classes with Debug Support .. 14-6
14.3.2 WLP Core Services Classes with Debug Support .. 14-8
14.3.3 WLP Virtual Content Repository Classes with Debug Support 14-10
14.3.4 WLP UCM Classes with Debug Support .. 14-11
14.3.5 WLP Administration Console Classes with Debug Support 14-12

Part III Staging

xi

15 Managing Portal Desktops

15.1 Administration Console Overview ... 15-2
15.2 Administration Console Library of Resources .. 15-2
15.3 Starting and Logging In to the Administration Console.. 15-3
15.3.1 Opening the Administration Console.. 15-3
15.3.2 Logging In to the Administration Console ... 15-4
15.4 Overview of Library Administration.. 15-5
15.5 Overview of Portal Administration .. 15-6
15.6 Portal Management .. 15-6
15.7 Overview of the Library.. 15-6
15.8 Desktop Templates .. 15-7
15.8.1 Creating a Desktop Template ... 15-7
15.8.2 Modifying Desktop Template Properties.. 15-8
15.9 Communities .. 15-8
15.10 Portal Resources ... 15-9
15.10.1 Updating Portal Resources ... 15-9
15.10.2 Viewing Resources for a Portal Web Application (Update WebApp) 15-10
15.10.3 Deleting a Portal Resource .. 15-10
15.10.4 Localizing a Portal Resource ... 15-10
15.11 Portals .. 15-11
15.11.1 Creating a Portal ... 15-11
15.11.2 Modifying Portal Properties.. 15-13
15.12 Desktops ... 15-13
15.12.1 Creating a Desktop ... 15-14
15.12.1.1 Disassembling to the Library... 15-17
15.12.1.2 Decoupling of Property Settings ... 15-17
15.12.2 Modifying Desktop Properties .. 15-17
15.13 Books.. 15-18
15.13.1 Creating a Book... 15-19
15.13.2 Managing Book Content .. 15-19
15.13.2.1 Adding Portal Elements to a Book ... 15-19
15.13.2.2 Positioning or Removing Portal Elements on a Book 15-20
15.13.3 Modifying Library Book Properties and Contents .. 15-20
15.13.4 Modifying Desktop Book Properties ... 15-21
15.14 Pages .. 15-21
15.14.1 Creating a New Page.. 15-21
15.14.2 Managing Page Content .. 15-23
15.14.2.1 Adding Contents to a Page ... 15-23
15.14.2.2 Positioning Elements on a Page... 15-24
15.14.3 Modifying Library Page Properties .. 15-24
15.14.4 Modifying Desktop Page Properties.. 15-25
15.14.5 Moving a Page or Book to Another Location on the Desktop 15-26
15.15 Portlets ... 15-26
15.15.1 Copying a Portlet in the Library... 15-26
15.15.2 Deleting a Portlet .. 15-27
15.15.3 Modifying Library Portlet Properties .. 15-27
15.15.4 Modifying Desktop Portlet Properties... 15-28

xii

15.16 Portlet Preferences ... 15-28
15.16.1 Creating a Portlet Preference ... 15-29
15.16.2 Editing a Portlet Preference .. 15-30
15.17 Portlet Categories... 15-30
15.17.1 Creating a Portlet Category... 15-30
15.17.2 Adding Portlets to a Portlet Category ... 15-31
15.17.3 Modifying Portlet Category Properties ... 15-31
15.18 Look And Feels... 15-31
15.18.1 Modifying Look And Feel Properties .. 15-32
15.19 Shells .. 15-32
15.19.1 Modifying Shell Properties.. 15-32
15.20 Themes... 15-33
15.20.1 Modifying Theme Properties .. 15-33
15.21 Menus (Navigation)... 15-34
15.21.1 Modifying Menu Properties.. 15-34
15.22 Layouts .. 15-34
15.22.1 Modifying Layout Properties.. 15-35

16 Deploying Portals to Production

16.1 Shared J2EE Libraries ... 16-1
16.1.1 Shared J2EE Library References in config.xml ... 16-1
16.1.1.1 Anatomy of a Shared J2EE Library ... 16-3
16.1.2 Overriding Shared J2EE Library Settings in the web.xml File 16-4
16.1.2.1 Servlet Mapping Overrides ... 16-4

Part IV Production

17 Managing Portals in Production

17.1 Pushing Changes from the Library into Production .. 17-1
17.2 Transferring Changes from Production Back to Development... 17-1

A Facet-to-Library Reference Tables

A.1 WebLogic Portal EAR Project Facets... A-1
A.2 WebLogic Portal Web Project Facets... A-3

xiii

xiv

List of Examples

3–1 Backing File Example .. 3-12
3–2 Adding a Backing File to a .portlet File ... 3-13
5–1 Enabling and Disabling Page Flow Support Using the <pageflow> Tag 5-6
5–2 Syntax of the <pageflow> Tag to Enable Page Flow Support .. 5-8
7–1 Default Titlebar Button Order in the bighorn.laf File.. 7-9
7–2 Example of a Custom CSS Property.. 7-10
7–3 Book.jsp Skeleton from the Bighorn Look and Feel.. 7-18
7–4 Sample Code for the example.layout File .. 7-37
7–5 exampleLayout.jsp... 7-37
7–6 Sample example.html.txt Code .. 7-38
8–1 Poor Example of Using URL Compression in a JSP ... 8-26
8–2 URL Template in beehive-url-template-config.xml That Does Not Use Compression. 8-26
8–3 Using a No Compression URL Template within a JSP... 8-26
8–4 Skeleton JSP Pattern for Custom Layouts That Use Placeable Movement...................... 8-39
8–5 Sample custom_layout.layout File .. 8-41
8–6 Sample custom_layout.jsp File... 8-42
8–7 Sample custom_layout.html File ... 8-43
9–1 Sample Look and Feel Injector Class.. 9-9
10–1 DVT Extension Example ... 10-6
10–2 The Mixin Extension.. 10-7
10–3 Example Mixin Class ... 10-9
10–4 Example Mixin Class ... 10-9
10–5 Server Data Store Example in JavaScript.. 10-10
10–6 Server Data Store Example with itemType Specified... 10-13
10–7 MyPortletItem Class .. 10-13
10–8 Using a Mixin with a Data Format Handler .. 10-14
10–9 .. 10-14
12–1 Example of a Client Classification Mapping in the client-classifications.xml File 12-2
12–2 Example JSP File Showing Possible Uses of the Client Tag... 12-5
13–1 Enabling Tree Optimization in .portal .. 13-7
13–2 beehive-url-template-config.xml URL Templates Component... 13-8
14–1 Using Debug in a Class ... 14-2
16–1 J2EE Library Referenced in config.xml File.. 16-1
16–2 Example of a Manifest.mf File for a J2EE Library ... 16-3

xv

List of Figures

2–1 Typical WebLogic Portal Environments.. 2-2
3–1 Portal Component Hierarchy.. 3-3
3–2 Components that Comprise a Portal Development Environment 3-4
3–3 WebLogic Portal Displayed in Oracle Enterprise Pack for Eclipse Portal Perspective 3-5
3–4 Backing File Life Cycle .. 3-10
3–5 Adding a Backing File Using Oracle Enterprise Pack for Eclipse 3-13
4–1 Oracle WebLogic Server Configuration Wizard .. 4-3
4–2 New Portal EAR Project Dialog .. 4-5
4–3 Project Facets Dialog... 4-6
4–4 Add and Remove Projects Dialog... 4-7
4–5 New Portal Web Project Dialog .. 4-8
4–6 New Portal Web Project – Project Facets Dialog ... 4-9
4–7 New Portal Web Project – Web Module Dialog .. 4-10
4–8 New Web Project - JSF Capabilities Dialog.. 4-11
4–9 New Portal Web Project – WebLogic Integrated Commons Logging Dialog................. 4-12
4–10 Create New Datasync Project Dialog .. 4-13
4–11 Create New Datasync Project – EAR Projects Dialog... 4-15
4–12 Datasync Project Added to the Package Explorer... 4-16
4–13 WebLogic Portal Product Preferences .. 4-19
4–14 Oracle Enterprise Pack for Eclipse Appearance – Colors and Fonts Preferences........... 4-20
5–1 Example Properties Dialog Displaying Installed Project Facets 5-10
5–2 Example Add/Remove Project Facets Dialog with Collaboration Portlets Selected..... 5-11
6–1 Project Facets Associated with Non-Portal EAR Project... 6-2
7–1 Look And Feel Files .. 7-3
7–2 Picking a Look And Feel .. 7-4
7–3 Default Contents of the lookandfeel Folder .. 7-5
7–4 Look and Feel Property Selections ... 7-6
7–5 Layout Property Selections.. 7-6
7–6 Creating a Look And Feel .. 7-8
7–7 Creating a Look And Feel ... 7-13
7–8 Location of MSIE Specialization Directory .. 7-17
7–9 Theme Resources ... 7-21
7–10 Look And Feel Editor Components .. 7-24
7–11 Selected Look And Feel File ... 7-25
7–12 Selected CSS Style .. 7-26
7–13 Window Shows Inherited Styles.. 7-27
7–14 CSS Inheritance .. 7-27
7–15 Double-Click a Style to Modify Its Properties ... 7-29
7–16 Look and Feel file in the Outline View ... 7-30
7–17 The Link Style Hierarchy Selection with HTML Preview Selection Button.................... 7-31
7–18 Mouse Motion Button.. 7-31
7–19 Standard Layouts: Border, Flow, and Grid.. 7-33
7–20 Custom Layout ... 7-36
8–1 New Portal Dialog .. 8-2
8–2 Portal Displayed in 44 .. 8-3
8–3 Adding a Page to a Portal in Oracle Enterprise Pack for Eclipse... 8-4
8–4 New Page Dialog... 8-5
8–5 A New Page File ... 8-6
8–6 Page File Displayed in the Editor ... 8-6
8–7 Portal Properties Example - Header Properties ... 8-9
8–8 Insert> Control Menu Selection ... 8-20
8–9 Select Control Dialog .. 8-20
8–10 Adding an Action to a Page Flow Using the Flow View ... 8-21
8–11 Selecting to Run the Portal on the Server ... 8-22

xvi

8–12 Portal Display in the Workbench Editor View .. 8-23
8–13 Simple Portal Hierarchy.. 8-32
8–14 Sample Portal Hierarchy... 8-33
8–15 Validation Dialog ... 8-34
8–16 Selecting the Desktop Border ... 8-36
8–17 Selecting DVT Enabled.. 8-37
8–18 Portal Page Initial Configuration... 8-37
8–19 Moving a Portlet... 8-38
8–20 Sample GIF Image File Used by the Custom Layout.. 8-40
9–1 Clicking the Desktop Border ... 9-4
9–2 Customize Menu Options.. 9-5
9–3 Customize Icon.. 9-6
9–4 Sample Login Shell Enabled... 9-11
9–5 Installing the Portal Examples Component ... 9-12
9–6 Project Facets Dialog.. 9-13
9–7 Adding the Sample Login Shell in the IDE .. 9-13
9–8 Default Shell Set to Login Shell.. 9-14
10–1 DVT Resource Bundles .. 10-2
11–1 Project Facet List, Including Visitor Tools ... 11-2
11–2 Select Desktop and Edit Shell Property .. 11-3
11–3 Visitor Tools Menu Enabled... 11-4
12–1 Multichannel Framework Processing Sequence.. 12-3
12–2 Portlet Properties View Showing the Client Classifications Property 12-4
12–3 Example of the Manage Portlet Classifications Dialog .. 12-4
13–1 Simple Portal Schematic Example ... 13-3
13–2 Control Tree with Life Cycle Methods ... 13-4
13–3 Simple Portal Split into Multiple Desktops.. 13-5
13–4 How Multiple Desktops Reduce Control Tree Size .. 13-6
13–5 Enabling Tree Optimization in Oracle Enterprise Pack for Eclipse.................................. 13-8
13–6 Enabling Tree Optimization from the Administration Portal ... 13-8
13–7 How Tree Optimization Reduces Control Tree Size .. 13-10
13–8 Selecting Request Attribute Persistence Attribute .. 13-15
15–1 Menu Selection for Run > Open Portal Administration Console 15-4
15–2 WebLogic Portal Administration Console Login Dialog ... 15-4
15–3 Administration Console Main Page, Maximized.. 15-5
15–4 Conflict Resolution Dialog.. 15-9
15–5 Portal Resources Tree in the Administration Console ... 15-12
15–6 Create a New Portal Dialog in Administration Console.. 15-12
15–7 Desktop Hierarchy Summary .. 15-14
15–8 Portal Resources Tree in the Administration Console ... 15-14
15–9 Create Desktop Wizard in Administration Console... 15-15
15–10 New Desktop in Portal Resources Tree .. 15-16
15–11 Expanded Portal Resources Tree Showing Library Pages ... 15-22
15–12 Browse Pages Tab .. 15-22
15–13 Create New Page Dialog in Administration Console... 15-23
15–14 New Page Added to the Portal Resources Tree... 15-23
16–1 Application Referencing a Shared J2EE Library.. 16-2
16–2 Example of an Exploded Shared J2EE Library .. 16-3
A–1 EAR Project Properties Dialog ... A-1
A–2 Web Project Properties Dialog ... A-4

xvii

xviii

List of Tables

3–1 Performance/Feature Comparison of File-Based Portals and Streaming Portals............ 3-7
4–1 Configuration Wizard Values for a Portal Domain .. 4-4
4–2 Project Facets Dialog Data Fields... 4-6
4–3 New Portal Web Project Dialog Data Fields .. 4-8
4–4 New Portal Web Project Dialog Data Fields - WebLogic Portal Information 4-10
4–5 New Portal Web Project – Web Module Data Fields ... 4-11
4–6 New Portal Web Project - JSF Capabilities Dialog Fields.. 4-12
4–7 New Datasync Project Data Fields ... 4-13
7–1 Elements of a Look And Feel.. 7-2
7–2 Deprecated Look and Feel Components .. 7-5
7–3 J2EE Shared Libraries Containing Deprecated Components .. 7-6
7–4 Predefined Look And Feels .. 7-7
7–5 Portlet Framework Support for XHTML... 7-20
7–6 Look and Feel Menu Functions... 7-25
7–7 Layout Attributes.. 7-34
7–8 Resources for Government Standards ... 7-41
8–1 Presentation Properties .. 8-11
8–2 Desktop Properties ... 8-12
8–3 Book Properties ... 8-14
8–4 Page Properties.. 8-17
8–5 Placeholder Properties ... 8-18
8–6 Examples of JSP Tags Using the Templates to Create URL.. 8-24
8–7 Configurable Cache Settings in Oracle Enterprise Pack for Eclipse................................ 8-29
14–1 WLP Framework Classes That Support Debug.. 14-6
14–2 WLP Framework Command Line Environmental Switches That Support Debug....... 14-8
14–3 WLP Core Services Classes That Support Debug .. 14-9
14–4 WLP Virtual Content Repository Classes That Support Debug 14-11
14–5 WLP UCM Related Classes That Support Debug .. 14-12
14–6 WLP Administration Console Classes That Support Debug.. 14-12
15–1 Updating Portal Resources - Conflict Resolution Options ... 15-10
15–2 Modifying Portal Properties in the Administration Console ... 15-13
15–3 Create Desktop Wizard Field Descriptions... 15-16
15–4 Creating a Portlet Preference - Data Entry Fields .. 15-29
15–5 Editing a Portlet Preference - Data Entry Fields... 15-30
A–1 WebLogic Portal Facets .. A-2
A–2 WebLogic Portal (Optional) Facets... A-3
A–3 WebLogic Portal Collaboration Facets... A-3
A–4 WebLogic Portal Facets .. A-4
A–5 WebLogic Portal (Optional) Facets... A-5
A–6 WebLogic Portal Collaboration Facets... A-6
A–7 WebLogic Portal Samples Facets .. A-6

xix

Preface

This guide explains how to develop and manage portals through all phases of the
portal life cycle. These phases include architecture, development, staging, and
production.

Audience
This document is intended for both developers and portal administrators. Developers
typically use Oracle Enterprise Pack for Eclipse (OEPE) to develop portals and portal
components. Administrators use the Portal Administration Console to create,
assemble, and manage portal desktops.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at

xx

http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documents
For more information, see the following documents in the WebLogic Portal
documentation set:

■ Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

■ Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal

■ Oracle Fusion Middleware Tutorials for Oracle WebLogic Portal

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
Part I Architecture

During the architecture phase, you design and plan the configuration of your portal.
For example, you can create a detailed specification outlining the requirements for
your portal, the specific portlets you require, where those portlets will be hosted, and
how they will communicate and interact with one another. You might also consider the
deployment strategy for your portal. Security is another consideration for the portal
architect.

Part I contains the following chapter:

■ Chapter 1, "Introduction to Portals"

■ Chapter 2, "Planning Your Portal"

1

Introduction to Portals 1-1

1Introduction to Portals

This chapter introduces Oracle WebLogic Portal concepts and describes how the
content of this guide relates to the portal life cycle.

This chapter contains the following sections:

■ Section 1.1, "What is a Portal?"

■ Section 1.2, "What is the Portal Framework?"

■ Section 1.3, "Portal Development and the Portal Life Cycle"

■ Section 1.4, "Getting Started"

1.1 What is a Portal?
A portal represents a web site that provides a single point of access to applications and
information.

From an end user perspective, a portal is a web site with pages that are organized by
tabs or some other form of navigation. Each page contains a nesting of sub-pages, or
one or more portlets—individual windows that display anything from static HTML
content to complex web services. A page can contain multiple portlets, giving users
access to different information and tools in a single place. Users can also customize
their view of a portal by adding their own pages, adding portlets of their choosing,
and changing the Look And Feel of the interface.

Technically speaking, a portal is a container of resources and functionality that can be
made available to end users. These portal views, which are called desktops in
WebLogic Portal, provide the uniform resource location (URL) that users access. A
portal presents diverse content and applications to users through a consistent, unified
web-based interface. Portal administrators and users can customize portals, and
content can be presented based on user preferences or rule-based personalization.
Each portal is associated with a web application that contains all of the resources
required to run portals on the web.

Portals provide the following benefits to the user:

■ Aggregation – The user can go to a single place for all content and applications.

■ Customization – The preferences for a user determine how the portal looks and
feels.

■ Personalization – The user can obtain content that is specific to their interests and
needs.

■ Organization – The user can arrange the content and applications to make better
sense of the information.

What is the Portal Framework?

1-2 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

■ Integration – The user can work with multiple applications and content sources in
a unified fashion.

Portals typically include the following features and benefits:

■ Search – Enterprise and web-based search facilities

■ Content Management – Creation, management, and delivery of content

■ Content Repurposing – Including content from multiple disparate data sources

■ Portals optionally include the following features and benefits:

■ Workflow – Business process management

■ Single Sign-On – Allows users to log on once for all applications within the portal

WebLogic Portal supports development of portals through Oracle Enterprise Pack for
Eclipse, which is a client-based tool. You can also develop portals without Oracle
Enterprise Pack for Eclipse through coding in any tool of choice such as JBuilder, vi or
Emacs. Portals can be written in Java or JSP, and can include JavaScript for client-side
operations. Although you can create portals outside of Oracle Enterprise Pack for
Eclipse, to realize the full development-time productivity gains afforded to the
WebLogic Portal customer, use Oracle Enterprise Pack for Eclipse as the portal and
portlet development platform.

After you create the parts of a portal using Oracle Enterprise Pack for Eclipse, you
assemble it into a desktop using the WebLogic Portal Administration Console. From
an administrative standpoint, a portal is a container that defines a portal application.
When you create a new portal using the Administration Console, you are really
creating an empty portal to hold different versions of the portal (desktops) that can be
targeted to specific users. A portal can contain one or more desktops, or views, of a
portal. It is the desktops to which you add the portal resources and navigation such as
books, pages, and portlets that make a dynamic portal.

Each portal is associated with a web application that contains all of the resources
required to run portals on the web.

1.2 What is the Portal Framework?
The portal framework is the portion of WebLogic Portal that is responsible for the
rendering and customization of the portal.

The portal framework turns a portal that you develop in Oracle Enterprise Pack for
Eclipse into the HTML page that desktop visitors see in a browser. When you are
familiar with the portal framework tools provided in WebLogic Portal, you can look at
a rendered portal in a browser and understand which pieces of the underlying
framework you need to modify to obtain the results you want.

1.3 Portal Development and the Portal Life Cycle
The creation and management of a portal flows through a portal life cycle. The portal
life cycle contains four phases:

■ Architecture

■ Development

■ Staging

■ Production

Portal Development and the Portal Life Cycle

Introduction to Portals 1-3

The tasks described in this guide are organized according to the portal life cycle, which
includes best practices and sequences for creating and updating portals. For more
information about the portal life cycle, refer to the Oracle Fusion Middleware Overview
for Oracle WebLogic Portal.

1.3.1 Architecture
During the architecture phase, you design and plan the configuration of your portal.
For example, you can create a detailed specification outlining the requirements for
your portal, the specific portlets you require, where those portlets will be hosted, and
how they will communicate and interact with one another. You might also consider the
deployment strategy for your portal. Security is another consideration for the portal
architect.

This chapter describes tasks within the Architecture phase:

■ Chapter 2, "Planning Your Portal"

1.3.2 Development
Developers use Oracle Enterprise Pack for Eclipse to create portals, portlets, pages,
and books. During development, you can implement data transfer and interportlet
communication strategies and consider the security of the components.

In the development stage, careful attention to best practices is crucial. Wherever
possible, this guide includes descriptions and instructions for adhering to these best
practices.

The chapters describing tasks within the Development phase include:

■ Chapter 3, "Understanding Portal Development"

■ Chapter 4, "Setting up Your Portal Development Environment"

■ Chapter 5, "Integrating Existing Web Applications into WebLogic Portal"

■ Chapter 7, "User Interface Development with Look And Feel Features"

■ Chapter 8, "Developing Portals Using Oracle Enterprise Pack for Eclipse"

■ Chapter 11, "Enabling Visitor Tools"

■ Chapter 12, "Creating Portals for Multiple Device Types"

■ Chapter 13, "Designing Portals for Optimal Performance"

1.3.3 Staging
Oracle recommends that you deploy your portal to a staging environment where it can
be assembled and tested before going live. In the staging environment, you use the
WebLogic Portal Administration Console to assemble and configure desktops. You
also test your portal in a staging environment before propagating it to a live
production system. In the testing aspect of the staging phase, there is tight iteration
between staging and development until the application is ready to be released.

The chapters describing tasks within the Staging phase include:

■ Chapter 15, "Managing Portal Desktops"

■ Chapter 16, "Deploying Portals to Production"

Getting Started

1-4 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

1.3.4 Production
A production portal is live and available to end users. A portal in production can be
modified by administrators using the WebLogic Portal Administration Console and by
users using Visitor Tools. For instance, an administrator might add additional portlets
to a portal or reconfigure the contents of a portal.

The chapter describing tasks within the Production phase is:

■ Chapter 17, "Managing Portals in Production"

1.4 Getting Started
This section describes the basic prerequisites to using this guide and lists guides
containing related information and topics.

1.4.1 Prerequisites
In general, this guide assumes that you have performed the following prerequisite
tasks before you attempt to use this guide to develop portlets:

■ Review the Section 1.4.2, "Related Guides" and become familiar with the basic
operation of the tools used to create portals, portlets, and desktops,

■ Review the Oracle Enterprise Pack for Eclipse tutorials and documentation to
become familiar with the Eclipse-based development environment and the
recommended project hierarchy.

■ Complete Oracle Fusion Middleware Tutorials for Oracle WebLogic Portal.

1.4.2 Related Guides
Oracle recommends that you review the following guides:

■ Oracle Fusion Middleware Overview for Oracle WebLogic Portal

■ Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal

Whenever possible, this guide includes cross references to material in related guides.

2

Planning Your Portal 2-1

2Planning Your Portal

Proper planning is essential to portal development. While bypassing planning and
moving straight to development might reap short-term benefits in development speed,
your projects may suffer from confusion and inconsistency, have poor scalability and
performance, and require more time to manage.

The planning and design tasks that mark the architecture phase occur at multiple
levels: the domain and enterprise application, the web application, and the individual
WebLogic Portal feature areas.

Global inter-portal planning information is provided in the Oracle Fusion Middleware
Overview for Oracle WebLogic Portal, which summarizes the types of issues to consider
in the architecture phase at all levels. The various WebLogic Portal feature guides
describe planning issues in detail for each feature area.

This chapter includes the following sections:

■ Section 2.1, "Production Operations (Propagation and Deployment)"

■ Section 2.2, "Portal Development in a Distributed Portal Team"

■ Section 2.3, "Federated Portals"

■ Section 2.4, "Security"

■ Section 2.5, "Content Management"

■ Section 2.6, "Interaction Management"

■ Section 2.7, "Performance"

2.1 Production Operations (Propagation and Deployment)
Production operations encompasses the tools, procedures, methodologies, and best
practices that provide the backbone for managing the portal life cycle, from portal
development to staging and testing to live production environments. As Figure 2–1
shows, portals are typically developed in a team development environment by developers
using Oracle Enterprise Pack for Eclipse. Portal components are then moved to a
staging environment, where portal administrators use the WebLogic Portal
Administration Console to create desktops, add entitlements, set up content
repositories, and perform testing. The production environment is the live environment,
where users access and interact with portal applications. The arrows between
environments indicate that you can move portals and portal resources back and forth
between each of these environments using utilities provided by Oracle. WebLogic
Portal Utilities such as the WebLogic Portal propagation tools allow you to easily and
reliably move and merge changes between environments.

Portal Development in a Distributed Portal Team

2-2 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Figure 2–1 Typical WebLogic Portal Environments

Just as you consider the architecture of a network or a software system, also consider
and carefully plan how you will address production operations for your portal system.
It is important to consider your particular portal system configuration, how your
development team is organized, how you will test and configure portals, how your
server is configured, and how you plan to manage the life cycle of your portal
applications.

The Oracle Fusion Middleware Production Operations Guide for Oracle WebLogic Portal
describes the specific methodologies, tools, and best practices to help you achieve the
goal of creating solid, manageable environments for portal development, staging, and
production.

2.2 Portal Development in a Distributed Portal Team
If you will be creating portals within an environment that includes a remote
(distributed) development team, you must carefully plan your implementation.
Considerations for team development include:

■ Use of shared resources – You share common portlets, such as the login portlet.

■ Sharing a common domain – Several techniques exist for sharing a common
domain among team members with different Oracle home directories.

■ Integrating remotely developed portlets into the portal – Settings that are
common to the portal application must match across the entire development
project.

Team development of a WebLogic Portal web site revolves around well-designed
source control and a correctly configured shared domain for development. For
detailed instructions on setting up your development environment, refer to the Team
Development chapter of the Oracle Fusion Middleware Production Operations Guide for
Oracle WebLogic Portal.

2.3 Federated Portals
A federated portal is a portal that includes remotely distributed resources, such as
remote portlets. These remote resources are collected and brought together at runtime
to a portal application called a consumer, which presents the federated portal to end
users.

To implement a federated portal environment, you need to make decisions about how
to organize your applications. For example, rather than bundling all of a portal's
portlets into a single application, you can deploy portlets in separate web applications
running on remote systems while the federated portal consumes them using WSRP.
Because the federated portal is decoupled from its portlets, you do not need to
redeploy the portal every time a portlet changes. For most WebLogic Portal projects,
this decoupling represents an immediate and significant savings in time and money.
You also might find it useful in some situations to federate a portal within the same
server.

Interaction Management

Planning Your Portal 2-3

The Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal provides
detailed instructions on how to set up a federated portal environment.

2.4 Security
You can control access to portlet resources for two categories of users:

■ Portal visitors – You control access to portal resources using visitor entitlements.
Visitor access is determined based on visitor entitlement roles.

■ Portal administrators – You control portal resource management capabilities using
delegated administration. Administrative access is determined based on delegated
administration roles.

During the Architecture phase, you plan how to organize security policies and roles,
and how that fits into your overall security strategy. For an overall look at managing
security for your portal environment, refer to the Oracle Fusion Middleware Security
Guide for Oracle WebLogic Portal. Recommendations for security in WSRP-enabled
environments are contained in the Oracle Fusion Middleware Federated Portals Guide for
Oracle WebLogic Portal.

2.5 Content Management
WebLogic Portal's content management system allows you to store content, track its
progress, and incorporate content in your portal applications. It provides an easy
integration between creating content and delivering that content to your users.
Content creators can use WebLogic Portal's repositories to create content and portal
developers use the content API and JSP tools to deliver content to portal visitors.

You can use either a WLP repository or a third-party repository with your portal. Some
third-party content management vendors have built integrations (Content Service
Provider Implementations or SPIs) that allow you to connect third-party repositories
to the Virtual Content Repository. If you are using a third-party repository from a
vender that has not written an implementation for the WLP Virtual Content
Repository, you can write your own using Oracle's Service Provider Interface (SPI).

For detailed information on managing the content for your portal, refer to the Oracle
Fusion Middleware Content Management Guide for Oracle WebLogic Portal.

2.6 Interaction Management
You use WebLogic Portal's Interaction Management features to control and enhance
portal visitor interactions with your portal application. You can set up personalized
content that is targeted to specific users or audiences. You can guide users through a
process (such as signing up for employee benefits or shopping online) that takes them
to different locations based on their personal preferences or characteristics. You can
even record the path users take through your portal to gauge the effectiveness of the
portal, its design, or your process flows.

Developing Interaction Management features involves several interdependent tasks.
For example, if you want to target users with personalized content in an ad campaign,
you have to add content to the WLP Virtual Content Repository, create placeholders
that display the content, set up properties (such as user profile or session properties)
that are used to define the conditions under which users will be targeted with
campaign content, and finally, create the campaign.

For detailed instructions, refer to the Oracle Fusion Middleware Interaction Management
Guide for Oracle WebLogic Portal.

Performance

2-4 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

2.7 Performance
Try to plan for good performance within your portal architecture to minimize the
fine-tuning that is required in a production environment. Many performance issues
can be resolved and significant performance improvement can be realized by making
just a few critical design decisions.

Here are some examples of performance optimizations that you can plan into your
overall portal strategy:

■ Enable control tree optimization.

■ Use entitlements judiciously; too many can impact performance. Avoid the
temptation of granting a different role to every user. Instead, use WebLogic
Portal's personalization capabilities to focus the user experience.

■ If your portal is small or relies only on static resources, you might experience some
performance boost by using a file-based portal rather than a streaming portal.

■ If you are using page flows in your portal, ensure their session footprint is
optimized to deliver the best performance. Page Flows are a feature of Apache
Beehive, which is an optional framework that you can integrate with WLP. See
Section 5.1, "Apache Beehive and Apache Struts Supported Configurations."

Plan performance optimizations before you begin developing your portal so that you
can implement any prerequisites that are required. For detailed instructions on
developing a high-performance portal, refer to Chapter 13, "Designing Portals for
Optimal Performance." For overall WebLogic Portal performance recommendations
that you can implement in a production environment, refer to the Performance Tuning
Guide, which will be available in a future documentation release.

2.8 Portals and Mobile Devices
WebLogic Portal can provide specific portal views based on device and browser
detection, allowing a single portal application to serve content to diverse browsers and
devices. The portal's campaign and personalization features can also detect device
types, directing users to device- or channel-specific business processes and content (or
restrict access). Device specific content operates in tandem with the portal user
interface to provide device-specific views of applications.

For instructions on how to implement your portal for use on mobile devices, refer to
Chapter 12, "Creating Portals for Multiple Device Types."

Part II
Part II Development

Developers use Oracle Enterprise Pack for Eclipse to create portals, portlets, pages,
and books. During development, you can implement data transfer and interportlet
communication strategies and consider the security of the components. In the
development stage, careful attention to best practices is crucial. Wherever possible,
this guide includes descriptions and instructions for adhering to these best practices.

Part II contains the following chapters:

■ Chapter 3, "Understanding Portal Development"

■ Chapter 4, "Setting up Your Portal Development Environment"

■ Chapter 5, "Integrating Existing Web Applications into WebLogic Portal"

■ Chapter 6, "Integrating WebLogic Portal into Existing Web Applications"

■ Chapter 7, "User Interface Development with Look And Feel Features"

■ Chapter 8, "Developing Portals Using Oracle Enterprise Pack for Eclipse"

■ Chapter 9, "Using the Dynamic Visitor Tools"

■ Chapter 10, "Advanced DVT Development"

■ Chapter 11, "Enabling Visitor Tools"

■ Chapter 12, "Creating Portals for Multiple Device Types"

■ Chapter 13, "Designing Portals for Optimal Performance"

■ Chapter 14, "Obtaining Debug Information"

3

Understanding Portal Development 3-1

3Understanding Portal Development

This chapter provides conceptual and reference information that you might find useful
as you begin to develop portals.

This chapter contains the following sections:

■ Section 3.1, "Portal Components"

■ Section 3.2, "Portal Component Hierarchy"

■ Section 3.3, "Portal Development Environment in Oracle Enterprise Pack for
Eclipse"

■ Section 3.4, "Web Application Frameworks"

■ Section 3.5, "WebLogic Portal and Shared J2EE Libraries"

■ Section 3.6, "File-Based Portals and Streaming Portals"

■ Section 3.7, "Java Controls in Portals"

■ Section 3.8, "JSP Tags in Portals"

■ Section 3.9, "Asynchronous Rendering"

■ Section 3.10, "Backing Files"

■ Section 3.11, "HTTP Session Sharing"

3.1 Portal Components
When you use Oracle Enterprise Pack for Eclipse to develop a portal, the portal
definition exists as a single XML file. Oracle Enterprise Pack for Eclipse creates the
XML file automatically as you build a portal using the editor.

The portal file contains all the components that make up that particular instance of the
portal, such as books, pages, portlets, and look and feel components.

Many components have a hierarchical relationship to each other. For example, a book
contains pages and pages contain portlets. Figure 3–1 shows the relationships among
the components in a portal.

■ Desktop - A desktop provides an audience-specific view of portal components. It
contains the portal header, footer, and body. The body contains the bulk of the
portal content: books, pages, portlets, and look and feel elements. A portal can
support one or more desktops. After a portal administrator sets entitlements on
the desktop and makes it ready for public consumption, the desktop is the view of
the portal accessed by end users. From there, users can configure their own views
through customization of the desktop, if you enabled this feature.

Portal Component Hierarchy

3-2 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

■ Shell - The desktop's header and footer, controlled by a portal shell (.shell file), are
the areas that are typically above and below the main body. These areas usually
display elements such as personalized content, banner graphics, legal notices, and
related links.

■ Book - A book is a component that provides high-level content organization and
navigation. Books contains pages or other books, providing a mechanism for
hierarchical nesting of pages and content.

■ Page - Pages contain the portlets that display the actual portal content. Pages can
also contain books.

■ Menu - Menus are optional components that are loosely coupled to books and
pages. A menu is responsible for displaying some type of navigation component,
whether it is a set of tabs, a set of links, or a tree structure. WebLogic Portal
provides two types of menus: single-level and multi-level. A single-level menu
provides navigation (for example, a row of tabs) for the book's immediate pages
and child books; a multi-level menu provides a hierarchical menu for all the books
and pages contained within a book.

■ Layout and Placeholder - Layouts and placeholders (not to be confused with
personalization placeholders) work together to structure the way portlets and
books are displayed on a page. A layout is a combination of HTML tags (DIVs,
SPANs, and so on) and CSS styling used by a page to determine the physical
locations of portlets on the page. Administrators and users can choose different
available layouts for pages. Placeholders are the individual cells in a layout in
which portlets are placed. WebLogic Portal ships with some predefined layouts,
and you can also create your own custom layouts.

■ Portlet - Portlets are the windows that surface your applications, information, and
business processes. The applications surfaced in portlets can be HTML pages, JSP
files, Java Server Faces (JSF) applications, Java (JSR 168) applications, others.
Optionally, you can create portlets from Apache Struts and Java Page Flow
applications. For detailed information about developing portlets for WebLogic
Portal, refer to the Oracle Fusion Middleware Portlet Development Guide for Oracle
WebLogic Portal.

3.2 Portal Component Hierarchy
Whether you are building portal resources and templates in Oracle Enterprise Pack for
Eclipse or creating and administering portals with the WebLogic Portal Administration
Console, you work with individual components that are then unified by the portal
framework.

Figure 3–1 illustrates the flexibility and extensibility of the WebLogic Portal
architecture. In the figure, the indicator (0...1) means 0 or 1, (1...n) means one or more,
and (0...n) means zero or more. For example, a portal can contain one or more
desktops. For resources that occur only once, like look and feel and Shell, you can still
develop multiple versions even though only one at a time is allowed.

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. Apache Struts is
also an optional framework that you can integrate with WLP. See
"Apache Beehive and Apache Struts Supported Configurations" in the
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic
Portal.

Portal Development Environment in Oracle Enterprise Pack for Eclipse

Understanding Portal Development 3-3

Figure 3–1 Portal Component Hierarchy

3.3 Portal Development Environment in Oracle Enterprise Pack for
Eclipse

Oracle Enterprise Pack for Eclipse is implemented as a plug-in to the Eclipse Platform,
specifically including the Eclipse Workbench, Java Development Tools (JDT), a
customized version of the Web Tools Platform Project (WTP), and a Oracle Enterprise
Pack for Eclipse-specific plug-in. Specific instructions on using the Oracle Enterprise
Pack for Eclipse are available in the Oracle Workshop for WebLogic documentation.
WebLogic Portal provides additional features that facilitate portal and portlet
development.

Before continuing, familiarize yourself with the features of Oracle Enterprise Pack for
Eclipse by reviewing online help.

Portal Development Environment in Oracle Enterprise Pack for Eclipse

3-4 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

When you set up your portal development environment as described in Chapter 4,
"Setting up Your Portal Development Environment," your application generally
consists of the components shown in figure Figure 3–2:

Figure 3–2 Components that Comprise a Portal Development Environment

These are the basic parts that are required to develop and test a portal application.

WebLogic Portal uses a combination of standard Eclipse and Oracle Enterprise Pack
for Eclipse views, plus its own customized views, to simplify portal construction.
Figure 3–3 shows an example of how your Oracle Enterprise Pack for Eclipse
workbench might look during development of a portal.

Tip: If you edit or add files to your project outside of Oracle
Enterprise Pack for Eclipse, you must refresh your project to avoid
possible compile errors. For example, if a Jar file is added to your
project after you synchronize to a source control repository, you must
perform a refresh. To refresh, right-click the new or updated file and
select Refresh. Oracle Enterprise Pack for Eclipse then performs the
necessary build or update operations to process the changes. Oracle
Enterprise Pack for Eclipse has an auto-refresh feature. Because this
feature can be time consuming, it is disabled by default. Refer to the
Oracle Enterprise Pack for Eclipse Help for information on
auto-refresh.

Portal Development Environment in Oracle Enterprise Pack for Eclipse

Understanding Portal Development 3-5

Figure 3–3 WebLogic Portal Displayed in Oracle Enterprise Pack for Eclipse Portal Perspective

1. Package Explorer view – Shows the hierarchy of directories for the open project,
and the WebLogic Portal shared J2EE libraries being referenced by the project.

2. Merged Projects view – Shows a combined list of the actual files and referenced
files in your project; shared J2EE library files are shown in italic text. This view
provides important reference information for your portal development project.

3. Editor – Shows the primary visual working area for designing a portal.

4. Properties view – Shows properties for the portal component that is currently
selected and allows you to set or change them.

5. Design Palette view – Provides a list of usable elements and components,
including portlets, controls, book and pages.

6. Outline view – Shows the components of the portlet interface in a hierarchical
structure. To see an example using the Outline view with style sheet development,
refer to Chapter 7, "User Interface Development with Look And Feel Features."

You also use the Propagation perspective and Page Flow perspective during
development. For more information about the Propagation perspective, refer to the
Oracle Fusion Middleware Production Operations Guide for Oracle WebLogic Portal. For
more information about the Page Flow perspective, refer to the Oracle Enterprise Pack
for Eclipse help. Page Flows are a feature of Apache Beehive, which is an optional

Note: The Design Palette changed with the latest version of
WebLogic Portal. If you prefer to use the previous palette, you can set
your Oracle Enterprise Pack for Eclipse preferences. Select Window >
Preferences > WebLogic Portal > Appearance > Palette View > Show
classic palette view.

Web Application Frameworks

3-6 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

framework that you can integrate with WLP. See Section 5.1, "Apache Beehive and
Apache Struts Supported Configurations."

3.4 Web Application Frameworks
WebLogic Portal supports these web application frameworks:

■ Java Server Faces – Supported in the default WLP portal web application
configuration. You can create WLP portlets based on JSF applications.

■ Apache Struts – Optionally supported. You have to add the appropriate facets to
your portal web project to enable Struts. WLP Struts support lets you create Struts
portlets based on Struts web applications. See "Apache Beehive and Apache Struts
Supported Configurations" in the Oracle Fusion Middleware Portal Development
Guide for Oracle WebLogic Portal.

■ Apache Beehive – Optionally supported. Apache Beehive lets you create Java
Page Flow applications, and you can use the WebLogic Portal Portlet Wizard to
create Page Flow portlets. You have to add the appropriate facets to your portal
web project to enable Apache Beehive. See "Apache Beehive and Apache Struts
Supported Configurations" in the Oracle Fusion Middleware Portal Development
Guide for Oracle WebLogic Portal.

3.5 WebLogic Portal and Shared J2EE Libraries
Shared J2EE libraries (also referred to as library modules) let you deploy and use a
single set of resources rather than having to duplicate those resources in every EAR
project and portal web project. Oracle recommends that you use shared J2EE libraries
because of their significant advantages in source control, file sharing, and patch
application. WebLogic Portal supports only configurations that implement shared J2EE
libraries. For detailed information about shared J2EE libraries, refer to "Creating
Shared J2EE Libraries and Optional Packages" in the Oracle Fusion Middleware
Developing Applications for Oracle WebLogic Server.

As illustrated in Figure 3–2, your EAR projects and web projects contain references to
shared J2EE libraries that are actually stored at a domain level, and you can use those
modules as if they were packaged as part of the referencing application itself.

You can override a resource in a J2EE library by copying it from the library into your
portal web project and then customizing it. For example, if you want the default look
and feel to look different in a particular portal web project, you can copy the default
look and feel from the library into the portal web project and make your modifications.

When you copy a resource, WebLogic Portal puts that resource into the "matching"
location within your portal web project. When you deploy the project, WebLogic
Server sees the copied resource and uses that instance instead of the resource in the
library.

Caution: If you copy J2EE library resources into your project, keep in
mind that with future updates to the WebLogic Portal product, you
might have to perform manual steps in order to incorporate product
changes that affect those resources. With any future patch installations,
WebLogic Portal supports only configurations that do not have copied J2EE
library resources in the project.

File-Based Portals and Streaming Portals

Understanding Portal Development 3-7

For information on how to copy J2EE library resources into a project, refer to
Section 8.3, "Copying J2EE Library Files into a Project." For more information about
how shared J2EE libraries affect portal deployment, refer to Chapter 16, "Deploying
Portals to Production."

3.6 File-Based Portals and Streaming Portals
The .portal file you create in Oracle Enterprise Pack for Eclipse is a template. In this
template you create books, pages and portlets and define defaults for them. When you
view the .portal file with your browser the portal is rendered in "single file mode,"
meaning that you are viewing the portal from your file system as opposed to a
database. The .portal file's XML is parsed and the rendered portal is returned to the
browser. The creation and use of a .portal is intended for development purposes,
but you can access a .portal file in production. Because there is no database
involved you cannot take advantage of features such as user customization or
entitlements.

Once you have created a .portal file you can use it to create desktops for a production
environment, using the WebLogic Portal Administration Console.

A desktop is a particular view of a portal that visitors access. A portal can be made up
of multiple desktops, making the portal a container for desktops. A desktop contains
all the portlets, content, shells, layouts, and look and feel elements necessary to create
individual user views of a portal.

When you create a desktop based on the .portal file in the WebLogic Portal
Administration Console, the .portal and its resources are placed into the database.
The settings in the .portal file, such as the look and feel, serve as defaults to the
desktop. Once a new desktop is created from a .portal template, the desktop is
decoupled from the template, and modifications to the .portal file do not affect the
desktop, and vice versa. For example, when you change a desktop's look and feel in
the WebLogic Portal Administration Console, the change is made only to the desktop,
not to the original .portal file. When you view a desktop with a browser it is
rendered in "streaming mode" (from the database). Now that a database is involved,
desktop customizations can be saved and delegated administration and entitlements
can be set on portal resources.

System performance is not significantly different between streamed portals and
file-based portals. The advantages of each portal type depend more on how many
portlets you plan to produce, the functionality you want to provide portal end users,
and how you want to manage your portal.

Table 3–1 compares streamed and file-based portals in more detail:

Table 3–1 Performance/Feature Comparison of File-Based Portals and Streaming Portals

Portal Feature File-Based Portals Streamed Portals

Adding Entitlements Run-time check only Yes—More easily set and configured

Setting Preferences

Number of Instances

In portal definition

Limited

For individual portal instances

More than file-based portals

Customization No Yes (through Visitor Tools and the
Administration Console)

Internationalization Difficult—requires changes to skeleton
files.

Easier

Java Controls in Portals

3-8 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

For performance-related recommendations, refer to Section 13.5.4, "Use File-Based
Portals for Simple Applications."

3.7 Java Controls in Portals
Java controls are visual components with events, methods, and properties that handle
the implementation details for connecting to existing data, systems, applications, and
business logic.

The controls provided with WebLogic Portal and Oracle Enterprise Pack for Eclipse
fall into the following three categories:

■ System controls, which are provided by Oracle Enterprise Pack for Eclipse to give
easy access to application resources, like databases and EJBs.

■ Custom Java controls, which could mean controls that the customer writes
himself, or it can mean custom Java controls that WebLogic Portal or Oracle
Enterprise Pack for Eclipse provides.

■ Portal framework controls, otherwise known as the "netuix user interface
controls;" examples of these include portlets, desktops, books, pages, and so on.

A large set of Java controls is included with WebLogic Portal. In addition, you can
create your own custom Java controls to encapsulate your business logic.

The custom Java controls provided within WebLogic Portal are development objects
with a defined runtime interface and configurable properties that are used to render
portal HTML at runtime. WebLogic Portal's custom controls empower you to
manipulate portal runtime behavior dynamically based on any available information
the developer wishes to exploit. Upon each request, the control tree is created, and you
have an opportunity to manipulate the behavior of each control in the tree, at the
desktop, menu, page, or portlet level. WebLogic Portal's custom controls are abstracted
by "contexts" in the WebLogic Portal architecture. These contexts give you a
well-defined set of APIs that can be used to achieve virtually any runtime behavior
that you desire.

WebLogic Portal's custom controls for portlets are governed by a well-defined life
cycle. This life cycle provides plug-in points for desired control manipulation. For

Performance Slight advantage Slightly less than file-based portals

Propagation (from test
to production
environments)

Easy to accomplish by moving the
.portal file

Requires proper planning but easy to
implement with propagation tools

Development Process Easiest More complex but more robust

Note: You cannot set entitlements on a file-based portal, but once
you create a desktop that is based on that portal, and you set
entitlements on those artifacts in the desktop, then the .portal file will
also pick them up at runtime. A .portal file does not go to the
database, but an entitlement check is still made at runtime; these
entitlements are stored in LDAP. If you don't want a file-based portal
to run entitlement checks at runtime, you can turn this off in the
WEB-INF/netuix-config.xml file.

Table 3–1 (Cont.) Performance/Feature Comparison of File-Based Portals and Streaming Portals

Portal Feature File-Based Portals Streamed Portals

Backing Files

Understanding Portal Development 3-9

example, you might wish to dynamically set the "hidden" property to "true" for a
portlet during the init() life cycle stage, to prevent the portlet from rendering.

WebLogic Portal's custom controls for portals interoperate with page flow controls.
The control architecture interoperates with the page flow control architecture,
empowering you to define sophisticated interactions between page flow applications
surfaced in portlets, and more general portal windowing management. The integration
between WebLogic Portal's custom controls and page flows is surfaced in Oracle
Enterprise Pack for Eclipse workbench tools such as property sheets so that you do not
need to write code to "hook up" page flows and portlets.

For information about how to access controls when developing a portal, refer to
Section 8.4, "Custom Controls in Page Flows." For technical information about the
controls and actions provided with WebLogic Portal, refer to the Oracle Fusion
Middleware Java API Reference for Oracle WebLogic Portal.

3.8 JSP Tags in Portals
WebLogic Portal provides JSP tags that you can use within JSPs. Portlets can use JSPs
as their content nodes, enabling reuse and facilitating personalization and other
programmatic functionality. You can create JSPs with Oracle Enterprise Pack for
Eclipse to provide a structure for other elements to be added to a portlet.

To view the JSP tags available as you develop a portal, select Window > Show View >
JSP Design Palette.

For information about the classes associated with WebLogic Portal's JSP tags, see the
Oracle Fusion Middleware JSP Tag Java API Reference for Oracle WebLogic Portal.

3.9 Asynchronous Rendering
You can choose to have your portal rendered asynchronously. When you set this
property, each component of your portal renders when its life cycle is complete,
instead of waiting for the entire page or book to be ready for display. You can set this
property on a portal (see Section 8.2, "Setting Portal Component Properties") or on a
per portlet basis (see the Oracle Fusion Middleware Portlet Development Guide for Oracle
WebLogic Portal).

3.10 Backing Files
A common means of influencing portal behavior within the portal framework control
life cycle is to use a backing file. A backing file is a Java class that can contain methods
corresponding to life cycle stages, such as init() and preRender(). A portal's backing
context, an abstraction of the portal framework control itself, can be used to query and
alter the portlet's characteristics. For example, in the init() life cycle method, a request
parameter might be evaluated, and depending on the parameter's value, the portlet
backing context can be used to specify whether the portlet is visible or hidden. For
more information about backing contexts, see Chapter 13, "Designing Portals for
Optimal Performance."

Backing files can be attached to portals either by using Oracle Enterprise Pack for
Eclipse or coding them directly into the XML file for the particular framework control.

Backing files are simple Java classes that implement the
com.bea.netuix.servlets.controls.content.backing.JspBacking
interface or extend the
com.bea.netuix.servlets.controls.content.backing.AbstractJspBack

Backing Files

3-10 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

ing interface abstract class. The methods on the interface mimic the controls life
cycle methods (refer to Section 3.10.1, "How Backing Files are Executed") and are
invoked at the same time the controls life cycle methods are invoked.

The following portal controls support backing files:

■ Desktops

■ Books

■ Pages

■ Portlets

■ JspContent controls

The interportlet communication example in the Oracle Fusion Middleware Portlet
Development Guide for Oracle WebLogic Portal uses backing files.

This section contains the following topics:

■ Section 3.10.1, "How Backing Files are Executed"

■ Section 3.10.2, "Thread Safety and Backing Files"

■ Section 3.10.5, "Backing File Guidelines"

■ Section 3.10.5.1, "Adding a Backing File Using Oracle Enterprise Pack for Eclipse"

3.10.1 How Backing Files are Executed
All backing files are executed before and after the JSP is called. In its life cycle, each
backing file calls these methods:

■ init()

■ handlePostBackData()

■ preRender()

■ dispose()

Figure 3–4 illustrates the life cycle of a backing file.

Figure 3–4 Backing File Life Cycle

On every request, the following sequence occurs:

Backing Files

Understanding Portal Development 3-11

1. All init() methods are called on all backing files in depth-first order (that is, in
the order they appear in the tree). This method is called whether or not the control
(the portal, page, book, or desktop) is on an active page.

2. If the _nfpb parameter is set to true, all handlePostbackData() methods are
called.

■ If the _nfpb parameter is set to true in the request parameter of any called
handlePostbackData() methods, raiseChangeEvents() is called. This
method causes events to fire, which is necessary if the backing file tries to
make any state or mode changes.

■ If the backing file's handlePostbackData() method returns true, the
raiseChangeEvents() method is called.

3. All preRender() methods are called for all portal framework controls on an
active (visible) page.

4. The JSPs are called and rendered on the active page.

5. The dispose() method is called on each backing file.

3.10.2 Thread Safety and Backing Files
A new instance of a backing file is created per request, so you do not have to worry
about thread safety issues. New Java VMs are specially tuned for short-lived objects,
so this is not the performance issue it was in the past. Also, JspContent controls
support a special type of backing file that allows you to specify whether or not the
backing file is thread safe. If this value is set to true, only one instance of the backing
file is created and shared across all requests.

3.10.3 Scoping and Backing Files
You can cause different behaviors with backing files by varying their scope. For
example, a backing file used at a framework control scope has a different behavior
than one used at a JSP content scope.

If you have the backing file on the portlet itself using <netuix: portlet
backingfile = some_value> you can actually stop the portlet from rendering. If
you have the backing file as part of <netuix: jspContent backingfile=some_
value>, the portlet portion of the control tree has already run; you would use this
scope if you want to run processes that are specifically for the JSP in the portlet.

Note: In the following steps, the methods are called unless items on
inactive pages have been "optimized away" if tree optimization is
enabled. For example, if tree optimization is enabled and items on an
inactive page are not included on the resulting partial control tree,
then the method is not called.

Note: You can use the method
AbstractJspBacking.isRequestTargeted(request) to determine if a
request is for a particular portlet.

Backing Files

3-12 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

3.10.4 Using the Session to Pass Data Between Life Cycle Methods
The HTTPRequest object is volatile. Oracle recommends that you pass data between
life cycle methods using the session rather than the request object.

3.10.5 Backing File Guidelines
Follow these guidelines when creating a backing file:

■ Ensure netuix_servlet.jar is included in the project class path; otherwise,
compilation errors occur.

■ When implementing the init() method, avoid any heavy processing.

Example 3–1shows an example backing file. In this example, the
AbstractJspBacking class is extended to provide the backing functionality
required by the portlet. The example uses a session attribute because of the volativity
of the HTTPRequest object; Oracle recommends that you pass data between life cycle
methods using the session rather than the request object.

Example 3–1 Backing File Example

package backing;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;
import com.bea.netuix.events.Event;
import com.bea.netuix.events.CustomEvent;
import com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking;
public class ListenCustomerName extends AbstractJspBacking
{
 public void listenCustomerName(HttpServletRequest request,
 HttpServletResponse response, Event event)
 {
 CustomEvent customEvent = (CustomEvent) event;
 String message = (String) customEvent.getPayload();
 HttpSession mySession = request.getSession();
 mySession.setAttribute("customerName", message);
 }
}

3.10.5.1 Adding a Backing File Using Oracle Enterprise Pack for Eclipse
You can add a backing file either from within Oracle Enterprise Pack for Eclipse by
specifying the backing file in the Backing File field of the Properties view, as shown in
Figure 3–5 or by coding it directly into the file with which you are associating it. You
need to specify the backing directory and, following a dot-separator, only the backing
file name. Do not include the backing file extension; for example enter this:

backing.ListenCustomerName

not this:

backing.ListenCustomerName.java

For the preceding example, if you include the file extension, the application interprets
it as the file name—because the file path is specified by a dot-separator—and looks for
a non-existent file called java in a non-existent directory called
ListenCustomerName.

HTTP Session Sharing

Understanding Portal Development 3-13

Figure 3–5 Adding a Backing File Using Oracle Enterprise Pack for Eclipse

3.10.5.2 Adding the Backing File by Editing the XML File
To add the backing file by coding it into an XML file for the portal framework control,
you can use the backingFile parameter within the <netuix:jspContent>
element, as shown in example Example 3–2.

Example 3–2 Adding a Backing File to a .portlet File

<netuix:content>
 <netuix:jspContent
 backingFile="portletToPortlet.pageFlowSelectionDisplayOnly.menu.
 backing.MenuBacking"
 contentUri="/portletToPortlet/pageFlowSelectionDisplayOnly/menu/
 menu.jsp"/>
</netuix:content>

3.11 HTTP Session Sharing
Shared HTTP sessions is an Oracle WebLogic Server feature that is not supported by
WebLogic Portal. For example, using
<wls:sharing-enabled>true</wls:sharing-enabled> in weblogic.xml is
not supported for WebLogic Portal. Because of the way in which WLP session
attributes are scoped, using this shared session feature with WebLogic Portal results in
errors and unexpected behavior.

HTTP Session Sharing

3-14 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

4

Setting up Your Portal Development Environment 4-1

4Setting up Your Portal Development
Environment

Use this chapter as you prepare your Oracle Enterprise Pack for Eclipse environment
for portal development. This chapter describes the Portal EAR Project Wizard, Portal
Web Project Wizard, Datasync Project Wizard, the Add/Remove a Project dialog, and a
subset of the WebLogic Domain Configuration Wizard. This chapter also describes
some features in the Oracle Enterprise Pack for Eclipse interface that you might find
useful as you use it to develop portals.

For a step by step example of how to perform the tasks related to each wizard, see
Oracle Fusion Middleware Tutorials for Oracle WebLogic Portal.

This chapter contains the following sections:

■ Section 4.1, "Roadmap for Environment Setup Tasks"

■ Section 4.2, "Portal Perspective"

■ Section 4.3, "WebLogic Domain Configuration Wizard"

■ Section 4.4, "Portal EAR Project Wizard"

■ Section 4.5, "Add and Remove Projects Dialog"

■ Section 4.6, "Portal Web Project Wizard"

■ Section 4.7, "Portal Datasync Project Wizard"

■ Section 4.8, "Associating Web and Datasync Projects with EAR Projects"

■ Section 4.9, "Using the Merged Projects View"

■ Section 4.10, "Running a Project on the Server"

■ Section 4.11, "Stopping the Server"

■ Section 4.12, "Customizing a Perspective"

■ Section 4.13, "Setting WebLogic Portal Preferences in Oracle Enterprise Pack for
Eclipse"

Tip: You can find detailed information about how these setup tasks
are related to the deployment of your project in the Oracle Fusion
Middleware Production Operations Guide for Oracle WebLogic Portal.

Roadmap for Environment Setup Tasks

4-2 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

4.1 Roadmap for Environment Setup Tasks
The required environment setup options vary depending on whether you want to
develop a "conventional portal" or a collaboration portal. This section describes the
basic tasks that you should perform in each case:

■ If you want to develop a "conventional" portal application that does not involve
collaboration:

■ If you want to develop a collaboration portal application that uses the
Collaboration Portlets:

4.2 Portal Perspective
The instructions and figures in this guide are based on the views that are available in
the Portal perspective.

1. If the Portal perspective is not already open, select it by choosing Window > Open
Perspective > Portal.

4.3 WebLogic Domain Configuration Wizard
This section describes the sections of the Configuration Wizard that are interesting
from a WebLogic Portal perspective.

Then in this task... Select these options...

WebLogic Configuration Wizard In Select Domain Source, select the Weblogic Portal
check box.

Portal EAR Project Wizard WebLogic Portal Ear Project Facets

Portal Web Project Wizard WebLogic Portal Web Project Facets

Copying J2EE library files into your
project (for instructions, refer to
Section 8.3, "Copying J2EE Library Files
into a Project")

As needed; no specific J2EE libraries required.

Then in this task... Select these options...

WebLogic Configuration Wizard In Select Domain Source, select the Weblogic Portal
Collaboration Repository check box.

The wizard automatically selects the WebLogic
Portal check box; keep it selected.

Portal EAR Project Wizard In addition to the default facets, select the WebLogic
Portal Collaboration facet and these sub-features:

Collaboration API

Collaboration Portlets Application Libraries

Portal Web Project Wizard In addition to the default facets, select the WebLogic
Portal Collaboration facet and this sub-feature:

Collaboration Portlets

Copying J2EE library files into your
project (for instructions refer to
Section 8.3, "Copying J2EE Library Files
into a Project").

As needed; no specific J2EE libraries required.

WebLogic Domain Configuration Wizard

Setting up Your Portal Development Environment 4-3

A domain is a group of WebLogic Server resources that contain the application server.
You must have a server domain that is WebLogic Portal enabled in order to test the
portal that you create. This customized domain is generally called a portal domain.

You can start the Domain Configuration Wizard in several ways. Here are summaries
of two methods:

■ From Oracle Enterprise Pack for Eclipse interface,

1. From the Servers view, right-click and select New > Server.

2. From the New Server - Define a New Server dialog, click Next and then click
the hyperlink to start the wizard.

■ From the Start menu in Windows XP, select Start > All Programs > Oracle
Products > WebLogic Server 11gR1 > Tools > Configuration Wizard.

The first dialog in the wizard looks like the example in Figure 4–1.

Figure 4–1 Oracle WebLogic Server Configuration Wizard

Table 4–1 shows the values that you would typically enter in the wizard, along with
some useful notes that you might find useful as you set up your portal domain.

Note: A sample portal domain comes with WebLogic Portal and is
located at <WLPORTAL_HOME>/samples/domains/portal. To use
this domain, you must install the Portal Examples feature. See
"Installing the Portal Examples" in Oracle Fusion Middleware Release
Notes for Oracle WebLogic Portal for details.

WebLogic Domain Configuration Wizard

4-4 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Note: For more information on the Domain Configuration Wizard,
see Oracle Fusion Middleware Creating Domains Using the Configuration
Wizard.

Table 4–1 Configuration Wizard Values for a Portal Domain

In this Wizard Page... Select or Enter...

Welcome Create a new WebLogic domain (the default)

Select Domain Source In the Generate a domain configured automatically to
support the following products list, select WebLogic
Portal.

Notice that a WebLogic Portal Collaboration Repository
checkbox is available on this wizard dialog; portal
projects that use Collaboration Portlets features must
have a domain that includes this repository. For
information about Collaboration Portlets, see the Oracle
Fusion Middleware Portlet Development Guide for Oracle
WebLogic Portal.

For more information on the options available here, refer
to Section 4.1, "Roadmap for Environment Setup Tasks."

Configure Administrator
Username and Password

(Default) user name: weblogic

User password:

Confirm user password:

Note: The password must contain at least one
non-alphabetical character.

You might want to use this WebLogic Server
administrator login when using the WebLogic Portal
Administration Console, so keep track of what you enter
here.

Configure Server Start Mode and
JDK

Development Mode (the default) or Production Mode

For information on the implications of using either of
these options, refer to the Oracle Fusion Middleware
Production Operations Guide for Oracle WebLogic Portal.

JRockit SDK (recommended)

Configure JDBC Data Sources Use the defaults.

Note: When you click Next, the Configuration Wizard
attempts to run a series of connection tests against the
database. If the database is not running at this point, these
tests will always fail. After the tests run, just click Next
again. A warning dialog appears asking if you want to
bypass testing. You can safely ignore this warning. Click
OK to continue.

Run Database Scripts Click Run Scripts, then click Next.

Note: This step is new as of WebLogic Portal 10.3.2. For
past releases, these scripts were run automatically for the
default PointBase database. You must click the Run
Scripts button before continuing.

Select Optional Configuration Select an option to configure. The wizard will take you
through the appropriate steps.

Portal EAR Project Wizard

Setting up Your Portal Development Environment 4-5

4.4 Portal EAR Project Wizard
This section describes the dialogs of the WebLogic Portal Enterprise Application
Archive (EAR) Project Wizard.

An EAR project collects the component projects of the application for deployment; you
create one EAR project per enterprise application. The EAR project contains JAR files,
deployment descriptors, build files, and auto-generated files. For more information
about EAR projects and their relationship to the other projects in Oracle Enterprise
Pack for Eclipse, refer to the "Web Applications" topic in the Oracle Workshop for
WebLogic User's Guide.

The Portal EAR Project is an EAR project that is customized for WebLogic Portal. EAR
projects appear as siblings to the other projects in a workspace but functionally, they
link together projects and do not contain any of the content of your web application.

To start the Portal EAR Project Wizard, perform these steps:

1. From the File menu, select New > Portal EAR Project. The New Portal EAR
Project dialog displays, as shown in Figure 4–2.

Figure 4–2 New Portal EAR Project Dialog

2. (Optional) In the Configuration section, click Modify to add or remove EAR
Project Facets. The Project Facets dialog is described in Section 4.4.1, "Select Project
Facets Dialog."

Configuration Summary Click Create to create the domain.

Note: For more information on the Domain Configuration
Wizard, see Oracle Fusion Middleware Creating Domains
Using the Configuration Wizard.

Table 4–1 (Cont.) Configuration Wizard Values for a Portal Domain

In this Wizard Page... Select or Enter...

Add and Remove Projects Dialog

4-6 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

4.4.1 Select Project Facets Dialog
Figure 4–3 shows an example of the New Portal Ear Project – Project Facets dialog.

Figure 4–3 Project Facets Dialog

Table 4–2 describes each WebLogic Portal–related field of the Project Facets dialog. The
selections that you make here cause WebLogic Portal to create files that you can use as
you create your project, and associate the project with the correct set of shared J2EE
libraries. For more information about shared J2EE libraries, see Section 3.5, "WebLogic
Portal and Shared J2EE Libraries."

4.5 Add and Remove Projects Dialog
This section describes the Add and Remove Projects dialog, which you use to associate
an EAR project with a portal domain. If your EAR Project already exists when you
create you domain, you can make this association when you create the server domain.
If not, you can do it later using the steps outlined in this section.

Table 4–2 Project Facets Dialog Data Fields

Field Description

Configurations
dropdown menu

The value automatically displayed in this dropdown menu corresponds to the selections
made in the tree view of project facets. You can select a preset group of facets from the
dropdown menu, or select and unselect specific check boxes in the tree display. If you
select a customized set of facets, <custom> displays in the field.

Project Facet Display
Tree: WebLogic Portal
primary

Select the WebLogic Portal facets that you want to install. If certain facets depend on
others, messages appear to describe these dependencies and your selections must
conform to these requirements.

Project Facet Display
Tree: WebLogic Portal
(Optional)

Check this box to add additional services to your project. For details on WebCenter
Analytics Integration, see the Oracle Fusion Middleware Oracle WebCenter Analytics
Administrator's Guide for Oracle WebLogic Portal.

Project Facet Display
Tree: WebLogic Portal
Collaboration

Check this box (and one or more of its sub-features) to enable this project as a
collaboration-enabled EAR.

Portal Web Project Wizard

Setting up Your Portal Development Environment 4-7

To associate the Portal EAR Project with the server, perform these steps:

1. In the Servers view, right-click Oracle WebLogic Server v10.3, then select Add and
Remove Projects.

The Add and Remove Projects dialog displays, as shown in Figure 4–4.

Figure 4–4 Add and Remove Projects Dialog

2. Click to select the desired EAR project in the Available projects column and then
click Add.

The project is added to the Configured projects column on the right.

3. Click Finish.

The Portal EAR Project is now associated with the server. To verify this, in the
Servers view you can expand the server node to view the server's associated
projects. The myPortalEAR project should be shown as a subordinate node.

4.6 Portal Web Project Wizard
You use the Portal Web Project Wizard to create the web project that contains portal
files. When you create a Portal Web Project, WebLogic Portal creates a set of shared
J2EE libraries and files that you can use as you create your portal.

To start the wizard, perform these steps:

1. Select File > New > Portal Web Project.

The New Portal Web Project dialog displays.

4.6.1 New Portal Web Project – Portal Web Project
Figure 4–5 shows an example of the New Portal Web Project dialog.

Portal Web Project Wizard

4-8 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Figure 4–5 New Portal Web Project Dialog

Table 4–3 describes each field of the New Portal Web Project – Portal Web Project
dialog.

Table 4–3 New Portal Web Project Dialog Data Fields

Field Description

Project name The name of the portal web project.

Contents area –

Use default check box and file
browser

You can use the content area that WebLogic Portal creates by default, or point
to another directory where your project contents are stored.

Target Runtime The runtime (server) to which you will deploy.

Portal Web Project Wizard

Setting up Your Portal Development Environment 4-9

4.6.2 New Portal Web Project – Select Project Facets dialog
The New Portal Web Project – Project Facets dialog is shown in Figure 4–6.

Figure 4–6 New Portal Web Project – Project Facets Dialog

Table 4–4 describes each WebLogic Portal–specific field of the dialog.

Dynamic Web Module version Select the Eclipse Dynamic Web Module version. Adds support for the Java
Servlet API, for generation of dynamic Web page content. The default is
recommended.

Configurations Included facets. Click Modify to bring up the Project Facets dialog. See
Section 4.6.2, "New Portal Web Project – Select Project Facets dialog."

Add project to an EAR check box
and file browser

If you have not yet created a Portal EAR Project, leave this check box
unselected; you can associate the project with an EAR later by right-clicking
the web project in the Package Explorer tree and selecting Properties; then use
the J2EE Module Dependencies setting to associate the project with the EAR.
See also Section 4.8, "Associating Web and Datasync Projects with EAR
Projects."

If you have an existing EAR to associate with the project, select the check box;
the dropdown menu displays an auto-filled EAR name corresponding to the
EAR project(s) that you created in the Portal EAR Project Wizard. Click to
select the appropriate EAR file, or click Browse to navigate to an existing EAR
file.

A portal web project must be associated with an EAR for the build to work
successfully.

Table 4–3 (Cont.) New Portal Web Project Dialog Data Fields

Field Description

Portal Web Project Wizard

4-10 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

4.6.3 New Portal Web Project - Web Module Dialog
The New Portal Web Project – Web Module dialog is shown in Figure 4–7.

Figure 4–7 New Portal Web Project – Web Module Dialog

Table 4–5 describes each field of the dialog.

Table 4–4 New Portal Web Project Dialog Data Fields - WebLogic Portal Information

Field Description

Configurations
dropdown menu

The value automatically displayed in this dropdown menu corresponds to the selections
made in the tree view of project facets. You can select a preset group of facets from the
dropdown menu, or select and unselect specific check boxes in the tree display. If you
select a customized set of facets, <custom> displays in the field.

Project Facet Display
Tree: WebLogic Portal
primary

Select the WebLogic Portal facets that you want to install. If certain facets depend on
others, messages appear to describe these dependencies and your selections must
conform to these requirements. For the list of selections, expand the WebLogic Portal
node in the tree.

Project Facet Display
Tree: WebLogic Portal
(Optional)

Check this box to choose from optional facets. Optional facets include analytics
integration and content presenter framework. For the list of selections, expand the
WebLogic Portal (Optional) node in the tree.

Project Facet Display
Tree: WebLogic Portal
Collaboration

Check this box to add the collaboration portlets to the project. For detailed information on
the Collaboration Portlets, see the Oracle Fusion Middleware Portlet Development Guide for
Oracle WebLogic Portal.

Collaboration Portlets - causes the J2EE library wlp-collab-portlets-app-lib to be
associated with your project.

Details The tab displays information about the web project, such as details about the Dynamic
Web Module version.

Runtimes The tab displays the runtimes (web servers) associated with this web project.

Portal Web Project Wizard

Setting up Your Portal Development Environment 4-11

4.6.4 New Portal Web Project - JSF Capabilities Dialog
The JSF facet is selected by default when you create a web project. This dialog lets you
configure the JSF features in your project. If you deselected the JSF facet for any
reason, this dialog will not appear. The dialog is shown in

Figure 4–8 New Web Project - JSF Capabilities Dialog

Table 4–6 describes the fields of the JSF Capabilities dialog.

Table 4–5 New Portal Web Project – Web Module Data Fields

Field Description

Context Root The context root of the web application.

Content Directory The default web content directory name WebContent is automatically displayed; you
can change it if you wish.

As a best practice, you should locate your portal file(s) and other portal resources in a
web content directory that is subordinate to the web project directory.

Java Source Directory The default Java source directory name src is automatically displayed; you can change
it if you wish.

Portal Web Project Wizard

4-12 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

4.6.5 New Portal Web Project - WebLogic Integrated Commons Logging Dialog
The New Portal Web Project – WebLogic Integrated Commons Logging dialog is
shown in Figure 4–9. This dialog lets you add a library to the project that sends entries
made through Apache Commons Logging to the WebLogic Server Log. For more
information on Apache Commons Logging, refer to the Eclipse documentation. Click
the Manage WebLogic Shared Libraries to replace or modify the logging default
logging library if you want.

Figure 4–9 New Portal Web Project – WebLogic Integrated Commons Logging Dialog

Table 4–6 New Portal Web Project - JSF Capabilities Dialog Fields

Field Description

JSF Implementation
Libraries

This section lets you select the JSF implementation that you want to use. You can
choose the default (the version supplied by the server) or click New to define a new
JSF library consisting of the JSF jar files that you choose.

JSF Component Library This section lets you specify the contents of the JSF component library. For
information on component and implementation libraries, refer to the Eclipse
documentation.

JSF Configuration File, JSF
Servlet Name, JSF Servlet
Classname, and URL
Mapping Patterns

These fields let you modify standard JSF configurations. For information on these
fields, refer to the JSF documentation of your choice.

Portal Datasync Project Wizard

Setting up Your Portal Development Environment 4-13

4.7 Portal Datasync Project Wizard
A datasync project is an optional project that stores general purpose portal services
data that is used in the development of personalized applications and portals. These
portal services include User Profiles, Session Properties, Campaigns and others. You
can share a single datasync project among several EAR projects if you wish.

To create the datasync project, perform these steps:

1. Select File > New > Datasync Project. The Create New Datasync Project dialog
displays as shown in Figure 4–10.

Figure 4–10 Create New Datasync Project Dialog

Table 4–7 describes each field of the dialog. When you click Next, the EAR Projects
dialog displays.

Table 4–7 New Datasync Project Data Fields

Field Description

Project name The name that you want to assign to this datasync web project.

Location The default web content directory name WebContent is automatically displayed;
you can change it if you wish.

You must locate your portal file(s) and other portal resources in a web content
directory that is subordinate to the web project directory.

Datasync source folder The local default Java source directory name src is automatically displayed; you
can change it if you wish.

Portal Datasync Project Wizard

4-14 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

4.7.1 Create New Datasync Project – EAR Projects
The Create New Datasync Project – EAR Projects dialog is shown in Figure 4–11.

Create default project
directories

If checked, a default datasync folder structure is created automatically (for an
example, see Figure 4–12). If unchecked, no directory structure is created.

Note: Some datasync components must be placed in a specific folder structure,
although most do not. For instance, User Segment and Content Selector
components must be placed in specific subfolders of the datasync folder
(/segments/GlobalClassifications and /contentselectors/GlobalContentSelectors
respectively). You can ask the IDE to warn you if you try to put a datasync file in
an improper directory. To enable this warning, select Window > Preferences >
WebLogic Portal > Dataysnc. In the Properties dialog, select Show warning on
opening files in wrong folder. The warning message also tells you the required
folder name.

Default: checked.

Create default project files If checked, the wizard creates default project files for events, requests, and user
profiles.

Default: checked.

Add Project to an EAR Check this box and pick an EAR from the drop-down menu. The drop-down lists
all EARs in the current works space. The datasync project will be associated with
the selected EAR. When the selected EAR is deployed, the datasync project is
deployed with it.

If you create a datasync project without associating it with an EAR, you can do
this step later by right-clicking the datasync project in the Package Explorer tree
and selecting Properties; then expand the Datasync node in the tree and select
EAR Projects to associate the project with the EAR. See also Section 4.8,
"Associating Web and Datasync Projects with EAR Projects."

Table 4–7 (Cont.) New Datasync Project Data Fields

Field Description

Portal Datasync Project Wizard

Setting up Your Portal Development Environment 4-15

Figure 4–11 Create New Datasync Project – EAR Projects Dialog

This dialog allows you to select the check box for the appropriate Portal EAR project.

If you add a Datasync Project with the default settings, it will look similar to the
Package Explorer tree shown in Figure 4–12.

Tip: If you create a datasync project without associating it with an
EAR, you can do this step later by right-clicking the datasync project
in the Package Explorer tree and selecting Properties; then expand the
Datasync node in the tree and select EAR Projects to associate the
project with the EAR. See also Section 4.8, "Associating Web and
Datasync Projects with EAR Projects."

Associating Web and Datasync Projects with EAR Projects

4-16 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Figure 4–12 Datasync Project Added to the Package Explorer

4.8 Associating Web and Datasync Projects with EAR Projects
Both web projects (WAR files) and datasync projects must be associated with an EAR
project. When you create a web project or a datasync project using the wizard, you are
given the chance to associate the project with an EAR. If you have a web or datasync
project that is not associated with an EAR or if you want to change the association, you
can perform the association at any time by following the steps in this section.

4.8.1 Associating an Web Project with an EAR Project
You can associate a web project (WAR file) with an EAR by right-clicking the web
project in the Package Explorer tree and selecting Properties; then use the J2EE
Module Dependencies setting to associate the project with the EAR.

Note: The correct procedure is to use the J2EE Module Dependencies
setting to perform this association. You may notice that the Project
References dialog appears to let you associate web projects with EAR
and datasync projects; however, this dialog is an Eclipse feature that is
not used by WLP.

Using the Merged Projects View

Setting up Your Portal Development Environment 4-17

4.8.2 Associating an Datasync Project with an EAR Project
You can associate a datasync project with an EAR project by right-clicking the
datasync project in the Package Explorer tree and selecting Properties; then expand
the Datasync node in the tree and select EAR Projects to associate the project with the
EAR.

4.9 Using the Merged Projects View
The WebLogic Portal Merged Projects View is included by default in the Portal
Perspective. This view shows a combined list of the files in your project, including the
associated shared J2EE libraries. This view provides important reference information
for your portal development project.

This section includes these topics:

■ Section 4.9.1, "Opening the Merged Projects View"

■ Section 4.9.2, "Working with the Merged Projects View"

4.9.1 Opening the Merged Projects View
If you are not using the Portal Perspective, you should open the Merged Projects view
in the workbench. To do so, select Window > Show View > Merged Projects.

4.9.2 Working with the Merged Projects View
This section explains some of the benefits of the Merged Projects view.

You will see in the Merged Projects view that some items are italicized. The italicized
items represent entities that are stored in J2EE shared libraries. All entities that are
stored on your file system, such as the portal file you created, are shown in regular
type.

You can copy certain files from the J2EE shared library in which they are stored to your
file system. To do this, right-click the file in the Merged Projects view and select Copy
to Project. This feature copies the file from the shared library to the appropriate place
in your project folder. Another function, Copy to Workspace lets you choose where to
copy the file.

Not all files can be copied using this feature. For instance, .jar and .class files
cannot be copied. Typically, property files, XML files, and similar editable files can be
copied. In addition, it is possible to create a J2EE Shared Library that specifically
excludes some files from being copied. For more information on J2EE Shared Libraries,
see the Oracle Fusion Middleware Production Operations Guide for Oracle WebLogic Portal.

Note: The correct procedure is to use the Datasync > EAR Projects
setting to perform this association. You may notice that the Project
References dialog appears to let you associate datasync projects with
EAR and web projects; however, this dialog is an Eclipse feature that
is not used by WLP.

Caution: If you use the Merged Projects view to copy a J2EE library
resource into your project, keep in mind that with future updates to
the WebLogic Portal product, you might have to perform manual
steps in order to incorporate product changes that affect those
projects.

Running a Project on the Server

4-18 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

You can view the J2EE library information for a file displayed in the Merged Projects
view, including the shared J2EE library name and version. To do this, right-click the
file and select Properties.

4.10 Running a Project on the Server
You can use either of two options for running and viewing the results of your project
development; the selection you make depends on the changes you have made in your
project and whether or not your server is already started.

The following list describes each option available from the context menu in the Project
Explorer view:

■ Run as > Run on Server - starts the server if not already started and, only if
needed, performs a full publish/republish of the application; then it opens a web
browser. You must use this selection if you have changed a backing class, EJB,
descriptor, Java file, control, or web service.

■ Refresh button in a currently displayed browser view- refreshes the current
display based on changes made in the currently selected portal, but does not start
the server; this option takes no action if you stopped the server at some point after
displaying the initial browser. This selection requires that you previously
performed an initial Run on Server process. You can use this option if your
changes were limited to JSPs, HTML, .portal files, or .portlet files.

4.11 Stopping the Server
To stop a running WLP server, do one of the following:

■ In Oracle Enterprise Pack for Eclipse, right-click the server in the Servers view and
select Stop.

■ Use the shutdown script that is provided with the server domain. For detailed
information, see "Shutting Down Instances of WebLogic Server" in the Oracle
Fusion Middleware Managing Server Startup and Shutdown for Oracle WebLogic Server.

Occasionally during development, you might need to stop the WLP server manually
(for example, by pressing Control-C in the server's command window). If this
happens, a number of WLP server processes may continue to run and need to be
stopped manually. This list of processes includes:

■ java (for the WebLogic Server process)

■ java (for the PointBase database, if you are using it)

■ agentstore

■ (Autonomy integration only) AutonomyDiSH

■ (Autonomy integration only) AutonomyIDOLServer

■ (Autonomy integration only) BEACMRepoFetch

■ category

■ community

Tip: You can customize the browser setting so that an external
browser displays the application; to do this, select Window >
Preferences > General > Web Browser and select the appropriate
external browser application.

Setting WebLogic Portal Preferences in Oracle Enterprise Pack for Eclipse

Setting up Your Portal Development Environment 4-19

■ console

■ content

■ (Autonomy integration only) FileSystemFetch

■ (Autonomy integration only) HTTPFetch

4.12 Customizing a Perspective
Optionally, you can create a personally customized combination of views, so that you
can easily return to it any time.

To save the current workbench layout as a perspective, select Window > Save
Perspective As, enter a name for your customized perspective in the Name field, and
click OK. Your new perspective is added to the list, in the Other category.

You can also set this perspective as the default perspective for Oracle Enterprise Pack
for Eclipse, using the Window > Preferences options. For more information, refer to
your Eclipse documentation.

4.13 Setting WebLogic Portal Preferences in Oracle Enterprise Pack for
Eclipse

You can set preferences for the behavior of the various editors and features of
WebLogic Portal. The following sections describe how to access WebLogic
Portal-specific settings within Oracle Enterprise Pack for Eclipse.

4.13.1 Preferences in the WebLogic Portal Section
1. Select Window > Preferences and then select WebLogic Portal in the tree display.

2. Click the WebLogic Portal node to see settings that are specific to WebLogic Portal.

A dialog similar to the example in Figure 4–13 displays:

Figure 4–13 WebLogic Portal Product Preferences

3. Expand the desired section in the dialog to set options for that editor.

Adding Apache Beehive Support

4-20 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

4.13.2 WebLogic Portal Preferences in the General Section
1. Select Window > Preferences.

2. Expand the General node in the tree display.

3. WebLogic Portal settings are available in both the Appearance > Colors and Fonts
and the Appearance > Label Decorations sections.

For example, if you select Appearance > Colors and Fonts, and then select
WebLogic Portal > Propagation Tool, a dialog similar to the example in
Figure 4–14 displays:

Figure 4–14 Oracle Enterprise Pack for Eclipse Appearance – Colors and Fonts
Preferences

In the Propagation Tool node, you can change the assigned colors for status indicators.

In the Rules Editor Font node, you can change the font, style, and size for the Rules
Editor that is used for campaigns, user segments, placeholders, and content selectors.

4.14 Adding Apache Beehive Support
Apache Beehive is an open source Java Application Framework for building Java EE
based applications. WLP web projects do not include Apache Beehive support by
default. You have to explicitly add the appropriate facets to your project to use Apache
Beehive features in WLP, such page flow portlets.

To add Apache Beehive support to a WLP web project:

1. Add the appropriate facets to the web project. For detailed information on the
supported configurations of facets for Apache Beehive in WLP, see Section 5.1,
"Apache Beehive and Apache Struts Supported Configurations."

You can either add the facets when you create the project (see Section 4.6, "Portal
Web Project Wizard") or you can add them to an existing project (see Section 5.5,
"Adding Facets to an Existing Project").

4.15 Adding Apache Struts Support
Apache Struts is an open source Java Application Framework for building Java EE
based applications. WLP web projects do not include Struts support by default. You

Adding Apache Struts Support

Setting up Your Portal Development Environment 4-21

have to explicitly add the appropriate facets to your project to use Struts features in
WLP, such as Struts portlets.

To add Apache Struts support to a WLP web project:

1. Add the appropriate facets to the web project. For detailed information on the
supported configurations of facets for Apache Struts in WLP, see Section 5.1,
"Apache Beehive and Apache Struts Supported Configurations."

You can either add the facets when you create the project (see Section 4.6, "Portal
Web Project Wizard") or you can add them to an existing project (see Section 5.5,
"Adding Facets to an Existing Project").

Adding Apache Struts Support

4-22 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

5

Integrating Existing Web Applications into WebLogic Portal 5-1

5Integrating Existing Web Applications into
WebLogic Portal

This chapter explains how to add or import existing web applications to an existing
WebLogic Portal application. This chapter includes these topics:

■ Section 5.1, "Apache Beehive and Apache Struts Supported Configurations"

■ Section 5.2, "Importing Existing Struts Applications into WebLogic Portal"

■ Section 5.3, "Integrating Existing Java Page Flow Applications into WebLogic
Portal into WebLogic Portal"

■ Section 5.4, "Integrating Existing Java Server Faces Applications into WebLogic
Portal"

■ Section 5.5, "Adding Facets to an Existing Project"

■ Section 5.6, "Other Methods of Integrating an External Web Application into a
Portal"

5.1 Apache Beehive and Apache Struts Supported Configurations
This section discusses supported configurations for Apache Beehive and Apache
Struts in WebLogic Portal. The following topics are discussed:

■ Section 5.1.1, "About Apache Beehive and Apache Struts"

■ Section 5.1.2, "Supported Configurations for Apache Beehive"

■ Section 5.1.3, "Supported Configurations for Apache Struts"

■ Section 5.1.4, "Mixing Apache Struts 1.3 and Apache Beehive NetUI Applications"

5.1.1 About Apache Beehive and Apache Struts
Apache Beehive is an open source Java Application Framework for building Java EE
based applications. WebLogic Portal offers optional support for Apache Beehive. If the
Apache Beehive facets are added to your web application, you can use the Oracle
Enterprise Pack for Eclipse to create Java Page Flows and you can use the WebLogic
Portal Portlet Wizard to create Page Flow portlets.

Note: If you have an existing web application to which you want to
add WebLogic Portal features, see Chapter 6, "Integrating WebLogic
Portal into Existing Web Applications."

Apache Beehive and Apache Struts Supported Configurations

5-2 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Like Apache Beehive, Apache Struts is an open source Java Application Framework
for building Java EE based applications. WebLogic Portal offers optional support for
Struts. See also Section 5.2, "Importing Existing Struts Applications into WebLogic
Portal."

5.1.2 Supported Configurations for Apache Beehive
WebLogic Portal does not support Apache Beehive by default. To use Apache Beehive
dependent features, like Java Page Flow portlets, you must install the appropriate
Apache Beehive and Struts facets into your portal web application. Once these facets
are added, you can use Oracle Enterprise Pack for Eclipse to create new Java Page
Flows and Java Page Flow portlets.

For information on installing facets into an existing portal web project, see Section 5.5,
"Adding Facets to an Existing Project." For information on creating a new portal web
project, see Section 4.6, "Portal Web Project Wizard."

The supported configurations for Apache Beehive in a WebLogic Portal web
application are:

5.1.3 Supported Configurations for Apache Struts
WebLogic Portal does not support Apache Struts by default. To use Struts applications
and Struts-dependent WLP features, like Struts portlets, you must add the appropriate
Struts facets into your portal web application, as explained in this section.

Note: Content Presenter portlets require the Apache Beehive facets.
For information on Content Presenter, see "Adding the Content
Presenter Portlet" in the Oracle Fusion Middleware Portlet Development
Guide for Oracle WebLogic Portal.

Supported Not Supported

Neither Struts nor Apache Beehive installed
(This is the default configuration for WLP.)

Apache Beehive with Struts 1.3. See also
Section 5.1.4, "Mixing Apache Struts 1.3 and
Apache Beehive NetUI Applications."

Apache Beehive with Struts 1.1 – For full
WLP support, these facets are required:

■ Beehive NetUI

■ Beehive Controls

■ Portal Framework Beehive Adapters

■ Struts 1.1

Note: The Project Facets dialog enforces
these listed requirements.

Beehive NetUI without Struts 1.1 or 1.2 installed.

Beehive NetUI with Struts 1.2 – For full
WLP support, these facets are required:

■ Beehive NetUI

■ Beehive Controls

■ Portal Framework Beehive Adapters

■ Struts 1.2

Note: The Project Facets dialog enforces
these listed requirements.

Apache Beehive and Apache Struts Supported Configurations

Integrating Existing Web Applications into WebLogic Portal 5-3

For information on installing facets into an existing portal web project, see Section 5.5,
"Adding Facets to an Existing Project." For information on creating a new portal web
project, see Section 4.6, "Portal Web Project Wizard."

The supported configurations for Apache Struts in a WebLogic Portal web application
are listed in the following table:

5.1.4 Mixing Apache Struts 1.3 and Apache Beehive NetUI Applications
Apache Struts 1.3 and Apache Beehive NetUI 1.0.2 cannot co-exist in the same web
application. This configuration is not supported by WebLogic Portal. A possible
workaround to this limitation is to use federated portal (WSRP) techniques. For
example, you could have two web applications, one that has Struts 1.3 enabled (but
not Apache Beehive) and the other with Apache Beehive enabled (but not Struts 1.3).
Using federation, you could consume portlets from the Struts 1.3-enabled producer in
the portal application that uses Apache Beehive NetUI 1.0.2 (or the other way around).
For information on federation, see Oracle Fusion Middleware Federated Portals Guide for
Oracle WebLogic Portal.

Supported Not Supported

Struts not installed (This is the default configuration for
WLP.)

Apache Beehive with Struts 1.3. See
also Section 5.1.4, "Mixing Apache
Struts 1.3 and Apache Beehive
NetUI Applications."

Struts 1.1 – For full WLP support, the following facets are
required:

■ Struts 1.1

■ Beehive NetUI

■ Beehive Controls

■ Portal Framework Struts 10.3.2_1.1

■ Portal Framework Beehive Adapters

Note: This configuration requires the above listed facets.
Apache Beehive is required even if you do not intend to
use it. The Project Facets dialog enforces this requirement.

Struts 1.1 or 1.2 without Apache
Beehive.

Struts 1.2 – For full WLP support, the following facets are
required:

■ Struts 1.2

■ Beehive NetUI

■ Beehive Controls

■ Portal Framework Struts 10.3.2_1.2

■ Portal Framework Beehive Adapters

Note: This configuration requires the above listed facets.
Apache Beehive is required even if you do not intend to
use it. The Project Facets dialog enforces this requirement.

Struts 1.3 – For full WLP support, the following facets are
required:

■ Struts 1.3

■ Portal Framework Struts 10.3.2_1.3

Note: Apache Beehive is not required with Struts 1.3.

Importing Existing Struts Applications into WebLogic Portal

5-4 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Another, similar, option is to use Portlet Publishing instead of WSRP. For details, see
"Portlet Publishing" in the Oracle Fusion Middleware Client-Side Developer's Guide for
Oracle WebLogic Portal.

Note that is possible to have a Struts 1.3 enabled web application and a Apache
Beehive NetUI 1.0.2 (Java Page Flow) application that co-exist in the same EAR project.

5.2 Importing Existing Struts Applications into WebLogic Portal
You can integrate, or import, a Struts application into an enterprise application in
Oracle Enterprise Pack for Eclipse. Once in Oracle Enterprise Pack for Eclipse, you can
give the Struts application a portal user interface by creating portlets, add
personalization and campaign functionality, and take advantage of WebLogic Portal's
content and user management services.

This topic contains the following sections:

■ Section 5.2.1, "Struts-Enabling the Portal Application"

■ Section 5.2.2, "Preparing Your Struts Application for Integration"

■ Section 5.2.3, "Integration Steps"

■ Section 5.2.4, "Best Practices and Development Issues"

5.2.1 Struts-Enabling the Portal Application
By default, Struts support is optional in WebLogic Portal. This means that to use Struts
framework technology with WebLogic Portal, you must enable it by installing the
appropriate Struts facet. By offering Struts as an optional framework, WebLogic Portal
is able to support multiple, arbitrary versions of Struts. See also Section 5.1.3,
"Supported Configurations for Apache Struts."

5.2.2 Preparing Your Struts Application for Integration
Follow the guidelines presented in this section as you prepare your existing Struts
application for integration with WebLogic Portal:

5.2.2.1 Refactor
If you have a top-level Struts application, you must refactor it before you can integrate
it. Any Struts applications that are intended for use in a portal must be developed as
Struts modules, including the usage of the html:link tag for any URLs used in JSPs.
Without this, it is impossible for WebLogic Portal to perform the necessary URL
rewriting that is required to transparently modify links when the Struts application is
used within a portlet.

As part of this process, modify your application to use WebLogic Portal tags using
either of these methods:

■ Rely on the taglib mapping in web.xml to map the WebLogic Portal struts adapter
tags to the URI that you already have in your JSPs; this allows you to use your
existing JSPs.

■ To use Struts 1.2, which is the default version of Struts used for new portal web
projects, Oracle recommends that you change your JSPs to use WebLogic Portal
taglib URIs; this prevents you from having to change your web.xml file, and
provides the benefit that these taglibs are automatically deployed.

Importing Existing Struts Applications into WebLogic Portal

Integrating Existing Web Applications into WebLogic Portal 5-5

5.2.2.2 Add Tags if Needed
If a Struts application used within a portal also needs to support stand-alone
operation, JSPs referenced by Action forwards must be authored to use several
optional tags in the HTML tag library found in struts.jar and
struts-adapter.jar (a file that is created by Oracle). The first of these,
<html:html>, is found in both Struts and the Struts-adapter. The Struts-adapter
version overrides the Struts version of the tag and adds support for detecting whether
or not to inhibit rendering of the tag output text if it is used from within a portal,
where outputting the HTML text would result in non-well-formed HTML. Two
additional tags are provided in the Struts-adapter version of the HTML tag library; use
them in JSPs that also need to be used standalone: <html:head> and <html:body>.
These two tags have the same portal-aware rendering behavior as the <html:html>
tag.

5.2.2.3 Override Certain Behaviors of a RequestProcessor
Some Struts applications use a custom RequestProcessor. WebLogic Portal Struts
integration requires that you override certain behaviors of a RequestProcessor. The
class com.bea.struts.adapter.action.AdapterRequestProcessor, located
in struts-adapter.jar, provides this standard behavior and must be used in all
Struts applications used within a portal. Any custom RequestProcessors must either
extend this class or use a utility class to perform the same required operation that this
RequestProcessor performs. When extending this class, overrides of doForward() must
call the superclass doForward() and also must not attempt to write to the response.
Custom RequestProcessors that do not extend AdapterRequestProcessor must call
com.bea.struts.adapter.action.AdapterRequestProcessorUtil.forwar
dUsingRequest() to perform any forwarding operations. (This method replaces an
actual RequestDispatcher forward request with an operation that captures the forward
URI for later use in including the URI into the portal output.)

5.2.2.4 Refactor any Existing Custom Action Servlet
If a Struts application depends on the use of a custom Action servlet, it must be
refactored to use a custom RequestProcessor instead, as outlined above, and as
recommended by the Struts implementation. Since the page flow functionality in
WebLogic Portal uses a custom Action servlet, and since there can be only one Action
servlet in a portal web project, portal Struts integration requires that the Action servlet
not be customized. For more information on refactoring an Action servlet
customization into a RequestProcessor customization, see the Struts documentation at
http://jakarta.apache.org/struts/.

5.2.2.5 Remove the <html:link> Tag
The StrutsContent control supports module switching using Action forwards. If the
Action forward returned by an invoked Action results in a content URI that resides in
another module, the current module is switched to the corresponding new module,
and all further requests to the Struts portlet containing the control are performed using
the new module. Perform module switching using only Action forwards, not by using
the <html:link> tag to directly link to a JSP in another module; doing so might prevent
the portal and Struts frameworks from correctly setting up and selecting the module.

5.2.3 Integration Steps
Perform these steps to integrate your refactored Struts application:

Importing Existing Struts Applications into WebLogic Portal

5-6 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

1. Create a portal application and portal web project to which you will add the Struts
application. For instructions, refer to Chapter 4, "Setting up Your Portal
Development Environment."

2. You may or may not need to perform this step. In order for URLs in the Struts
pages to resolve correctly, page flow support must be enabled. By default, page
flow support is enabled, but if the page flow setting has been disabled at some
point, you must edit the portal web project's WEB-INF/netuix-config.xml file
to enable it. Example 5–1 shows the syntax of the tag that you might need to add
to the netuix-config.xml file. Notice that the <enable> element is set to true.

Example 5–1 Enabling and Disabling Page Flow Support Using the <pageflow> Tag

<!-- Enable or disable Pageflow support -->
<pageflow>
 <enable>true</enable>
</pageflow>

If this block is not present in netuix-config.xml, do not add it. Without the block,
the setting defaults to true.

3. Deploy the Struts application to the portal web project.

a. Copy any JSP, HTML, or image files into the portal web project following the
standard Struts module directory structure (the module path is the directory
path relative to the web application root).

b. Copy any supporting Java source used by the Struts application into the
project's source folder, typically Web_Project_Name/src.

c. Copy any necessary custom JARs for the Struts application into
WEB-INF/lib folder.

d. Copy the Struts application module's struts-config.xml or module
configuration file into WEB-INF, but rename it
struts-auto-config-<module-path>.xml, where <module-path> is
the module path to the Struts application relative to the web application root,
with all instances of '/' or '\' changed to '-'.

e. For example, if the module path is /struts/my/module, then rename
struts-config.xml to
struts-auto-config-struts-my-module.xml. Naming the module
configuration file in this manner enables the PageFlowActionServlet used
as the Action Servlet to automatically register the module without explicitly
registering it with an init-param in web.xml. If you don't want to take

Note: Struts is not by default part of a new WebLogic Portal
application. You must add the appropriate Struts facet to the project
when you create the WLP web project or add it to an existing project.
See Section 5.5, "Adding Facets to an Existing Project." For information
on the versions of Struts that are supported by WLP, see Section 5.1,
"Apache Beehive and Apache Struts Supported Configurations."

Note: The following steps assume a deployment structure that is not
based on split-source; your specific steps might differ from these
example steps.

Integrating Existing Java Page Flow Applications into WebLogic Portal into WebLogic Portal

Integrating Existing Web Applications into WebLogic Portal 5-7

advantage of this functionality, you can rename struts-config.xml
arbitrarily, but you must manually register the module in web.xml as usual
for a Struts 1.1 or 1.2 (Apache Beehive) module.

f. In the module configuration file, add the following line to configure the
RequestProcessor that is required for portal integration:

<controller processorClass="com.bea.struts.adapter.action
.AdapterRequestProcessor"/>

(unless the Struts application requires a custom RequestProcessor).

4. Create a portlet that contains a StrutsContent control that specifies the module and
the default action for the Struts application. For instructions, refer to the Oracle
Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal.

5. Add the new portlet to the portal. For instructions, refer to the Oracle Fusion
Middleware Portlet Development Guide for Oracle WebLogic Portal.

5.2.4 Best Practices and Development Issues
Use the following guidelines for integrating Struts applications in portals:

■ It is highly recommended that you fully develop and test a Struts application
before attempting to host it within a portal. This helps to separate the complexities
of developing a working Struts application from the additional issues involved in
putting the Struts application into a portlet.

■ If you encounter stack traces or messages in the Struts application portlet showing
that an action cannot be found, ensure that the module is correctly configured,
named correctly, and registered in web.xml. This can be tested by running the
Struts application stand-alone.

■ If you encounter resource not found exceptions or class not found exceptions for
dependent classes:

■ Make sure that all dependent Java source exists in WEB-INF/src, and that it has
successfully been built into the corresponding class files in WEB-INF/classes.

■ If more than one message-resource element is specified in the Struts configuration
file for the module, any module files that reference a non-default message bundle
must append the module path to the bundle key. For example, if the bundle key is
alternate, and the module is /my/module, any users of the bundle must fully
qualify it as alternate/my/module.

■ If following action links in a Struts portlet results in full-screen, stand-alone Struts
pages, make sure that struts-adapter JSP tag libraries are in the project's
WEB-INF/lib directory and that they are registered in web.xml.

■ If the "No ActionResult returned for action" error is returned when the action
attribute of an html:form element contains a query parameter, use a hidden
html:text input field.

5.3 Integrating Existing Java Page Flow Applications into WebLogic
Portal into WebLogic Portal

If you have an existing Java Page Flows application, you can integrate the page flows
into a portal by installing the WebLogic Portal-related facets using the steps described
in Chapter 6, "Integrating WebLogic Portal into Existing Web Applications"; then you

Integrating Existing Java Server Faces Applications into WebLogic Portal

5-8 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

surface those page flows using portlets. You can also build new page flows within the
portal web project before creating page flow portlets.

For instructions on creating a page flow, refer to the Oracle Enterprise Pack for Eclipse
online help. For instructions on creating page flow portlets, refer to "Building Portlets"
in Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal.

In order for URLs in the page flows to resolve correctly, page flow support must be
enabled. By default, page flow support is enabled, but if the page flow setting has been
disabled at some point, you must edit the portal web project's
WEB-INF/netuix-config.xml file to enable it. Example 5–2 shows the syntax of
the tag that you might need to add to the netuix-config.xml file. Notice that the
<enable> element is set to true.

Example 5–2 Syntax of the <pageflow> Tag to Enable Page Flow Support

<!-- Enable or disable Page Flow support -->
<pageflow>
 <enable>true</enable>
</pageflow>

If this block is not present in netuix-config.xml, do not add it. Without the block,
the setting defaults to true.

5.4 Integrating Existing Java Server Faces Applications into WebLogic
Portal

Generally the integration process for JSF is simple, requiring only that you follow the
instructions accompanying the distribution of JSF that you are using. The
portal-specific tasks for incorporating a JSF application into WebLogic Portal are:

■ Create a .portlet file with a facesContent control.

■ Insert the namingContainer JSP tag as an immediate child of the JSF view tag.

The following section contains more information about the namingContainer JSP tag.

5.4.1 JSF and the namingContainer JSP Tag
The purpose of the namingContainer JSP tag is to ensure generation of unique IDs on a
page. The NamingContainer component provides a WLP-integrated naming container
and exposes a naming container instance that can be accessed through an EL
expression for use in custom id rewriting in backing beans or input to other
components.

Note: This step is optional but Oracle highly recommends it. For
more information about this tag, refer to Section 5.4.1, "JSF and the
namingContainer JSP Tag." The namingContainer tag is only used
with the WLP native JSF portlet bridge. For more information on the
namingContainer component see "Client ID Namespacing with the
WLP NamingContainer" in the Oracle Fusion Middleware Portlet
Development Guide for Oracle WebLogic Portal.

Adding Facets to an Existing Project

Integrating Existing Web Applications into WebLogic Portal 5-9

Currently the JSF architecture does not provide an explicit hooking mechanism to
override default component ID generation. JSF uses a hierarchical namespace for
components on a page, and JSF automatically generates unique IDs for the
components on a page; however, because JSF is not "aware" of the portal, it might
generate non-unique component IDs on a page. For simple forms you would not likely
experience this problem, but if you use JavaScript on a page and non-unique IDs are
generated, the JavaScript might target the wrong component.

For more detail on the implementation of JSF in WebLogic Portal, refer to the Oracle
Fusion Middleware Java API Reference for Oracle WebLogic Portal for the package
com.bea.portlet.adapter.faces.

5.5 Adding Facets to an Existing Project
You can add a project facet to your EAR project or portal web project at any time. For
example, in your portal web project you might originally have selected not to install
the facet that enables visitor tools, but you might decide later that you want to use this
feature.

To add a facet to an existing EAR project or portal web project, follow these steps:

1. Right-click the EAR project or portal web project to which you want to add a facet,
and select Properties.

The Properties dialog displays; an example is shown in Figure 5–1.

Note: The namingContainer tag is only used with the WLP native
JSF portlet bridge. For more information on the namingContainer
component see "Client ID Namespacing with the WLP
NamingContainer" in the Oracle Fusion Middleware Portlet Development
Guide for Oracle WebLogic Portal.

Note: For the default JSR 329 JSF portlet bridge and the JSR 301
portlet bridge, their respective specifications define mechanisms for
accessing the naming container. Refer to those specifications for more
information.

Adding Facets to an Existing Project

5-10 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Figure 5–1 Example Properties Dialog Displaying Installed Project Facets

2. Expand the Project Facet nodes in the tree as needed and select the check boxes for
any facets that you want to add, or deselect the ones you want to remove.

Figure 5–2 shows an example for a typical portal web project with Collaboration
Portlets selected for addition.

Other Methods of Integrating an External Web Application into a Portal

Integrating Existing Web Applications into WebLogic Portal 5-11

Figure 5–2 Example Add/Remove Project Facets Dialog with Collaboration Portlets Selected

3. Click Finish.

The facets are added and then displayed in the list of facets in the Properties
dialog.

4. Click OK to close the dialog. The new facets are now available to your project.

5.6 Other Methods of Integrating an External Web Application into a
Portal

A recommended method of integrating a web application's functionality into a portal
is to incorporate the application into Java page flow portlets, but this implementation
could be difficult if the application is not based on the MVC architecture, Java, or
Struts. In these cases you can continue to host the application externally from the
portal project but surface its content within WebLogic Portal.

The alternative implementations generally rely on a JSP portlet acting as a sort of
proxy, which allows the existing web application to remain intact. Some possible
implementations for JSP "proxy" portlets include:

■ Creating a JSP portlet that is identical to the home page of the web application, but
altering each link to use JavaScript that pops up a new browser window. This

Other Methods of Integrating an External Web Application into a Portal

5-12 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

allows you to leverage the existing application while providing a way to interact
with the portal.

■ Using an IFRAME in the portlet to contain the web application. The internal frame
acts as an embedded browser window that the user interacts with independently
of the parent browser.

■ Using the WLP portlet clipping feature.

Web Services for Remote Portlets (WSRP) provides another alternative
implementation, but this implementation requires the legacy server to support SOAP
and WSDL, and works best with existing applications designed using MVC.

WebLogic Portal supplies a utility JSP tag called uriContent that you can use to
retrieve an HTTP response document from a given URI. The browser portlet uses the
uriContent tag (Content URL) to surface an external web application in a portal,
using a portlet. For more information about the browser portlet, refer to the Oracle
Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal.

6

Integrating WebLogic Portal into Existing Web Applications 6-1

6Integrating WebLogic Portal into Existing
Web Applications

This chapter explains how to add WebLogic Portal functionality into an existing Oracle
Enterprise Pack for Eclipse web application.

This chapter contains the following sections:

■ Section 6.1, "Introduction"

■ Section 6.2, "Integrating WebLogic Portal into an Existing Web Application"

6.1 Introduction
You can transform an existing web application implemented with Oracle Enterprise
Pack for Eclipse into a Portal web project by installing the necessary WebLogic
Portal–specific facets into it. Then you can give the web application a portal user
interface, add personalization and campaign functionality, and take advantage of
WebLogic Portal's content and user management services.

6.2 Integrating WebLogic Portal into an Existing Web Application
Integrating a web application into a WebLogic Portal environment involves the
following steps:

■ Adding WebLogic Portal project facets into the EAR project.

■ Adding WebLogic Portal project facets into the web application project.

■ Adding a Datasync project (if you want to use the general service portal services
data such as user profiles, user segments, request properties, session properties,
and so on).

■ Associating your EAR project with a WebLogic Portal-enabled server.

Note: If you want to add an existing web application to WebLogic
Portal, see Chapter 5, "Integrating Existing Web Applications into
WebLogic Portal."

Note: These instructions assume that you have an existing web
application that conforms to the requirements of the Oracle Enterprise
Pack for Eclipse environment, and includes an EAR Project and a
Oracle Enterprise Pack for Eclipse Web Project.

Integrating WebLogic Portal into an Existing Web Application

6-2 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

To integrate an existing web application into Oracle Enterprise Pack for Eclipse and
add WebLogic Portal functionality, follow these steps:

1. In the Package Explorer view, right-click the EAR Project and choose Properties.

2. Select Project Facets in the tree that is displayed in the left pane of the dialog.

The project facets associated with this EAR project display in the table, as shown
in Figure 6–1.

Figure 6–1 Project Facets Associated with Non-Portal EAR Project

3. Select the WebLogic Portal check box.

All the features for the WebLogic Portal facet are selected by default.

4. Click Finish.

The Project Facets table in the properties dialog displays the facets that you just
added.

5. Click OK.

The Package Explorer view includes the new portal-related content.

6. Repeat steps 1 through 5 to add WebLogic Portal facets to the Web Project.

When you are finished, the display in the Properties view includes the WebLogic
Portal facets, and the tree in the Package Explorer view shows the added
portal-specific shared J2EE libraries.

7. Associate your portal-enabled project with a WebLogic server that is customized
for use with WebLogic Portal. If you need to create a new server that is enabled for
use with WebLogic Portal, refer to Section 4.2, "Portal Perspective."

You can now use WebLogic Portal features to create portlets and to assemble and
manage the portal environment.

7

User Interface Development with Look And Feel Features 7-1

7User Interface Development with Look And
Feel Features

This chapter describes how to use the portal framework to develop the overall
appearance and behavior of the portal you develop in Oracle Enterprise Pack for
Eclipse. You will be able to look at a rendered portal in a browser and understand
which pieces of the underlying framework that you need to modify to obtain the
results you want. In addition, the look and feel editor is discussed. The look and feel
editor lets you interactively modify the text styles used by a portal.

This chapter includes the following sections:

■ Section 7.1, "Look And Feel Framework Overview"

■ Section 7.2, "Working with Look And Feel Files"

■ Section 7.3, "Customizing Look and Feels"

■ Section 7.4, "Creating a New Look and Feel"

■ Section 7.5, "Working with Themes"

■ Section 7.6, "Using Look And Feels From Previous Portal Releases"

■ Section 7.7, "Troubleshooting Look And Feels"

■ Section 7.8, "The Look And Feel Editor"

■ Section 7.9, "Look And Feel API"

■ Section 7.10, "Working with Shells"

■ Section 7.11, "Working with Layouts"

■ Section 7.12, "Working with Navigation Menus"

■ Section 7.13, "Building User Interfaces to Address Accessibility Guidelines"

7.1 Look And Feel Framework Overview
A look and feel file determines the appearance of your portal application, from the
placement and behavior of elements on a portal page to the colors used in the portlet
title bars.

By using the portal rendering framework, developers can modify and create new look
and feel files that portal administrators can apply to individual portal desktops. If
visitor tools are enabled, end users can then access different look and feels to change
the appearance of their own portal instance.

Working with Look And Feel Files

7-2 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

WebLogic Portal includes robust examples and templates to use when creating the
user interface for your portal in Oracle Enterprise Pack for Eclipse.

As with other portal resources (J2EE libraries and so on), you must copy framework
resources to your web project before you can modify them. However, in many cases,
customizing the user interface for your portal involves modifying a single file or
creating a new file to reference rather than modifying an entire set of framework
resources.

As a best practice, you should only keep the resources in your project that you need to
modify. This allows you to more easily upgrade to newer versions of WebLogic Portal.
When you upgrade, all predefined portal resources from J2EE library modules to look
and feel files are overwritten.

Table 7–1 lists the key elements involved in the look and feel framework:

7.2 Working with Look And Feel Files
This section includes these topics:

■ Section 7.2.1, "Introduction"

■ Section 7.2.2, "Defining a Look And Feel for a Desktop"

■ Section 7.2.3, "Adding Deprecated Look and Feel Components to a Web Project"

Table 7–1 Elements of a Look And Feel

Framework File What it does:

*.laf (look and feel File) This file is an XML file that includes references to a specific skin and skeleton
XML file. The *.laf file is what is used to change the appearance of your portal.

skin.xml The skin.xml file is the file where most customizations take place. It contains
references to the CSS files, images and JavaScript code that you use in your look
and feel.

skeleton.xml The skeleton.xml file provides references to the specific JSPs files that render
your portal. The JSPs referenced in the skeleton.xml file dictate the rendering
of desktops, menus, and so on.

Chromosomes and Genes and
chromosomes

A gene defines a particular characteristic of a look and feel, such as a CSS
property that can be referenced as a variable in look and feel resources (a
skin.xml file, for example).

A *.chromosome file is a file that contains one or more genes. Genes must be
stored in a *.chromosome file.

*.theme A *.theme file provides a way to override a look and feel for a particular portal
component. For example, you can apply a *.theme file to a portlet if you want
its look and feel to be different than others within your portal.

*.layout The layout file is used to provide the structure for portal pages as well as headers
and footers. The layout file you choose (one column, two column and so on)
determines where you can place portlets and books within a page, header, or
footer.

For example, if you want to place portlets within your header, you must apply a
layout to that header.

*.shell A shell file defines the header and footer regions of your portal.

If you have applied a *.layout to your shell, you can place portlets within a
header or footer.

*.menu A menu file defines the navigation style you want to use in your portal. WebLogic
Portal provides two types of menus: single-level tab style and multi-level nested.

Working with Look And Feel Files

User Interface Development with Look And Feel Features 7-3

7.2.1 Introduction
A look and feel file (.laf) is an XML block that is inserted into the overall .portal
XML file that determines the style and behavior of a portal. A look and feel file
references a specific skin and skeleton. A skin provides a set of images, JavaScript
functions, and CSS files. Skeleton files contain the JSPs that convert the portal XML
components to the final HTML output. Figure 7–1 shows the Look And Feel and
related files in the lookandfeel folder. These files are provided with WLP. You can also
create your own look and feel files (see Section 7.4, "Creating a New Look and Feel").
To view this folder, open the Merged Projects view and select
<webproject>/framework/markup/lookandfeel.

Figure 7–1 Look And Feel Files

Skins and skeletons can leverage skin or skeleton chromosome files which allow you
to set variables for CSS values and JavaScript actions, see Section 7.3.4, "Working with
Genes and Chromosomes."

When you select a different look and feel for a portal desktop, you potentially change
the skin and skeleton (and other supporting files) that are used to render the portal.

You assign a look and feel to a portal desktop by specifying a value for a Look and
Feel desktop property. You can also allow portal visitors to choose a look and feel by
enabling Dynamic Visitor Tools and providing different look and feels from which
they can choose. See also Chapter 9, "Using the Dynamic Visitor Tools."

Working with Look And Feel Files

7-4 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

7.2.2 Defining a Look And Feel for a Desktop
You assign an existing look and feel (*.laf) to your desktop in Oracle Enterprise Pack
for Eclipse. As you develop or customize your portal's look and feel, this is a helpful
way to view your changes.

To assign a look and feel to a desktop using Oracle Enterprise Pack for Eclipse:

1. Navigate to the location of the portal whose properties you want to edit, and
double-click the .portal file to open it in the editor.

2. Click the border of the desktop to display its properties in the Properties view.

3. Navigate to the Properties view and choose a look and feel from the look and feel
property down-down list for that desktop's properties, as shown in Figure 7–2.

Figure 7–2 Picking a Look And Feel

4. Optionally, to view recent, saved changes to your look and feel, click Reload.

5. To see how the look and feel you have selected affects your portal, navigate to
your *.portal file, right-click and select Run As > Run on Server.

7.2.3 Adding Deprecated Look and Feel Components to a Web Project
A number of legacy WLP look and feel components have been deprecated. This
section lists the look and feel components that have been deprecated and explains how
to upgrade a WLP application to use them with WLP 10.3.2 and later versions.

■ Section 7.2.3.1, "Which Components are Deprecated?"

■ Section 7.2.3.2, "What Changes Will I Notice?"

■ Section 7.2.3.3, "Upgrading a WLP Application to Use Deprecated Components"

Working with Look And Feel Files

User Interface Development with Look And Feel Features 7-5

7.2.3.1 Which Components are Deprecated?
WLP has deprecated several legacy look and feels and layouts. Table 7–2 lists the
deprecated components and their replacements. Note that the deprecated components
are no longer included in a WLP web project by default. When you upgrade an older
application, however, these components are added automatically. See Section 7.2.3.3,
"Upgrading a WLP Application to Use Deprecated Components."

7.2.3.2 What Changes Will I Notice?
The deprecated legacy look and feels and layouts no longer appear by default in the
IDE or Administration Console. Under the Merged Projects view, the contents of the
framework/markup/layout, framework/markup/lookandfeel,
framework/markup/skeletons, and framework/markup/skins folders contain only
the components that are supported by default. For example, the look and feel file
classic.laf no longer appears under framework/markup/lookandfeel, as shown
in Figure 7–3.

Figure 7–3 Default Contents of the lookandfeel Folder

In addition, only the new Look and Feels appear in the Look and Feel menu of the
portal desktop Properties view, as shown in Figure 7–4.

Table 7–2 Deprecated Look and Feel Components

Component Category Deprecated Components Replacement Components

Look and Feel ■ classic

■ default

■ legacy

■ text

bighorn look and feels

Layout ■ singlecolumn

■ twocolumn

■ threecolumn

■ fourcolumn

■ singlecolumnflow

■ twocolumnflow

■ threecolumnflow

■ fourcolumnflow

Working with Look And Feel Files

7-6 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Figure 7–4 Look and Feel Property Selections

Similarly, the Layout Type Page Property menu only contains the new layouts by
default, as shown in

Figure 7–5 Layout Property Selections

7.2.3.3 Upgrading a WLP Application to Use Deprecated Components
When you follow the domain and application upgrade procedures outlined in the
Oracle Fusion Middleware Upgrade Guide for Oracle WebLogic Portal, the deprecated
components are automatically added. No further action is required by you.

To manually add these components to or remove them from a portal web application,
right-click the web application in the Project Explorer in Oracle Enterprise Pack for
Eclipse, and select Properties. Then, select Project Facets and add or remove the
WebLogic Portal (Optional) > Portal Deprecated Markup Files facet.

The deprecated components are physically located in the J2EE Shared Libraries listed
in Table 7–3. These library files are located here in your WLP installation:

FM_HOME/wlportal_10.3/light-portal/deprecated/lib/j2ee-modules

Table 7–3 J2EE Shared Libraries Containing Deprecated Components

Component Category J2EE Shared Library

Deprecated Layouts wlp-light-deprecated-web-lib.war

Customizing Look and Feels

User Interface Development with Look And Feel Features 7-7

You can find references to these library files in:

1. <wls:library-ref> element(s) in WEB-INF/weblogic.xml. A separate
element exists for each library file.

2. <library> element(s) in your domain’s config.xml file. This file is located in
DOMAIN_HOME/wlp/config. A separate element exists for each library file.

7.3 Customizing Look and Feels
WebLogic Portal provides several predefined look and feel files that you can use in
your applications. The predefined look and feels are listed in Table 7–4. Often it is
easier to customize one of these existing look and feels to suit your needs, rather than
develop your own. For example, you can customize a look and feel by editing
associated CSS files or by using genes and chromosomes to create color or JavaScript
variables. For more information about genes, Section 7.3.4, "Working with Genes and
Chromosomes."

Using an existing, predefined look and feel ensures that you always have the
necessary look and feel files necessary for properly rendering your portals. Table 7–4
lists the look and feels that are included to use as starting points.

This section describes ways to customize an existing look and feel. You can use one of
these suggested methods independently or use them together.

Deprecated Look and Feels wlp-lookandfeel-deprecated-web-lib.war

Tip: When choosing a WLP look and feel to customize, use ONLY
skins or skeletons prefaced with the name "bighorn". Other
deprecated templates are available for use in WebLogic Portal;
however, these deprecated templates do not support new look and
feel features such as genes and chromosomes. For information on
deprecated Look and Feels, see Section 7.2.3, "Adding Deprecated
Look and Feel Components to a Web Project."

Table 7–4 Predefined Look And Feels

Look and Feel Name Skeleton Skin
Skeleton
Chromosomes Skin Chromosomes

bighorn bighorn bighorn No No

bighorn-xhtml bighorn-xhtml bighorn No No

bighorn-genes bighorn bighorn-genes No default.chromosome

bighorn-water bighorn bighorn-genes No water.chromosome

bighorn-fire bighorn bighorn-genes No fire.chromosome

bighorn-template bighorn bighorn No No

Note: The bighorn-xhtml skeleton does not enforce XHTML
compliance for portal content. Non-compliant portlets in portals using
this skeleton will cause rendering errors.

Table 7–3 (Cont.) J2EE Shared Libraries Containing Deprecated Components

Component Category J2EE Shared Library

Customizing Look and Feels

7-8 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

If you want to create a new look and feel, see Section 7.4, "Creating a New Look and
Feel."

The following topics are covered in this section:

■ Section 7.3.1, "Combining Skins and Skeletons in a New Look And Feel"

■ Section 7.3.2, "Defining Titlebar Buttons and Window Icons"

■ Section 7.3.3, "Modifying CSS Files"

■ Section 7.3.4, "Working with Genes and Chromosomes"

7.3.1 Combining Skins and Skeletons in a New Look And Feel
You can create a custom look and feel file that is based on different combinations of
predefined skin and skeleton files. For example, if you require an XHTML skeleton
and would also like to use genes in your skin file, you can combine those respective
files into a new look and feel file.

To create a new look and feel file based on predefined skin and skeleton files, do the
following:

1. In Navigator view, right-click your portal web project and choose New > Look
And Feel. A wizard guides you through the rest of the process.

2. After you name your new look and feel, you see the window shown in Figure 7–7.

Figure 7–6 Creating a Look And Feel

3. In the Skin field, use the ellipsis icon to navigate to the skin you would like to use
and select the skin.xml file.

4. In the Skeleton field, use the ellipsis icon to navigate to the skeleton you would
like to use and select the skeleton directory.

5. Click Finish.

Note: To select a skin, you must select a skin.xml file. To select a
skeleton, you must only select the skeleton directory.

Customizing Look and Feels

User Interface Development with Look And Feel Features 7-9

6. The new look and feel is opened in the look and feel editor.

7. Create a 100x75 px .gif that represents the look and feel in the same directory as
the .laf file. This gif file must have the same name as your *.laf file.

For example, create a gif file called telecom.gif to represent a look and feel file
called telecom.laf. This image appears in the visitor tools when end users
select look and feels for their own customized view of a portal desktop.

If you want to make overrides to the selected skin and/or skeleton, you must
manually create your skin and skeleton directories and files in the /skins/<your_
skin> and /skeletons/<your_skeleton> directories. In this case, you do not
have to create a full set of skin or skeleton files. You need to create only the skin or
skeleton files that will override the files in the base skin or skeleton you selected.

For example, if you use the "bighorn" skin in your new look and feel, and you create
only a bighorn/images/titlebar-button-edit.gif file, that graphic overrides
the graphic in the "bighorn" skin. All other bighorn skin resources are used for your
look and feel.

7.3.2 Defining Titlebar Buttons and Window Icons
You use the look and feel file to re-order your titlebar buttons or change window icons.
The bighorn look and feel files included with WebLogic Portal include a default
titlebar order, as shown in Example 7–1. You can re-order titlebar buttons by editing
the XML in your look and feel file.

Example 7–1 Default Titlebar Button Order in the bighorn.laf File

<netuix:titlebarButtonOrder>
<netuix:otherButtons/>
<netuix:namedButton name="float"/>
<netuix:namedButton name="edit"/>
<netuix:namedButton name="help"/>
<netuix:namedButton name="minimized"/>
<netuix:namedButton name="maximized"/>
<netuix:namedButton name="delete"/>
</netuix:titlebarButtonOrder>

7.3.3 Modifying CSS Files
CSS files are used by skin.xml files to define your HTML rendering, and to define
colors, border styles, images, and so on.

By modifying CSS files, you can change many aspects of your look and feel file. Each
skin.xml file uses multiple CSS files to define various aspects of the skin. In
addition, you can create custom CSS files to override existing CSS files or add new
attributes.

Each skin.xml file included with WebLogic Portal includes a reference to a
custom.css file that is reserved for your customizations. This CSS file is a
placeholder for any CSS changes you want to make to the skin.xml file you wish to
use.

More commonly, you will want to add custom CSS styles. The easiest way to do this is
to add your customizations to the custom.css file included in your skin.xml file.

The following example shows you how to use the custom.css file that is included in
the bighorn look and feel file's respective skin directory. This custom.css is already
referenced in the bighorn skin.xml file.

Customizing Look and Feels

7-10 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

To customize the bighorn skin.xml using the custom.css file:

1. Using the Merged Projects view, navigate to
/yourWebProject/framework/skins/bighorn/css/custom.css.

2. Right-click on the custom.css file and select Copy to Project.

3. In the Project Explorer, navigate to
/yourWebProject/framework/skins/bighorn/css/custom.css.

4. Right-click the custom.css file and choose open it with the editor of your choice.

5. You can now add any custom styles you want to use in your skin. These can
include any number of CSS properties such as one that changes the border of all
portlets, as shown by the example in Example 7–2

Example 7–2 Example of a Custom CSS Property

.wlp-bighorn-window
{
border-color: red;
}

7.3.4 Working with Genes and Chromosomes
Genes give you an extra level of flexibility, control, and ease of maintenance in
working with a look and feel file. A gene defines a particular characteristic of a look
and feel, such as a CSS color property, that can be referenced as a variable in look and
feel resources.

For example, if a look and feel is defined to have a gene named
wlp.portlet.border.color, you can use that gene name in your CSS files rather than a
literal color definition. If that gene is defined to be the color value #ff0000, any CSS
that uses that gene variable gets that color value. You only have to modify the color
value in the gene definition to automatically update all CSS files that use that gene.

Chromosomes are files that contain one or more genes. You can create multiple
chromosome files that contain the same gene names, though with different gene
values. By referencing a different chromosome in your look and feel file, you can
simulate a completely different look and feel without changing any of your core look
and feel resource files.

You can also use genes in your JavaScript functions.

Using genes is optional and provides the following advantages in your look and feel:

■ Simplified look and feel customization for minor modifications such as color
scheme changes.

■ Convenient facility to support the generation of dynamic values in associated CSS
files or JavaScript files.

■ Easier implementation of branding, allowing one look and feel to be used for
multiple brands. For example, by creating a new chromosome that provides
different values for genes that are used in the look and feel, you can reference that

Tip: You can use steps similar to these to modify any specific look
and feel resource. For example, if you want to modify images that are
referenced by a skin.xml file, you can copy the image to your
project, modify it and save it with the same name. This method allows
you to perform minor customizations without modifying entire look
and feel files and their resources.

Customizing Look and Feels

User Interface Development with Look And Feel Features 7-11

new chromosome in the look and feel file and provide different appearance and
behavior for the existing look and feel.

■ Global parameterization capabilities. For example, genes can be used to share a set
of global properties to toggle the rendering of certain portal-wide features.

Important: In order to use genes, you must configure the CSS and JavaScript entries in
your skin.xml to be inlined in the HTML rather than referenced, as described in
Section 7.4.1, "Working with Skins."

Following is an example that highlights one of the primary benefits of genes.

7.3.4.1 Gene Example
In a .chromosome file, you could define a gene called "bodyColor" and assign it a
value of "red," like this:

<gene name="bodyColor">
 <value>#FF0000</value>
</gene>

In your CSS file, you could use bodyColor as a variable:

body
{
 border:1px solid ${bodyColor};
};

When the page is rendered in a browser, the inlined style definition becomes:

body
{
 border:1px solid #FF0000;
};

When you use this gene in your CSS files, you only need to modify the gene value
itself to cascade the change throughout all configured CSS files rather than changing
the value manually in each CSS file.

7.3.4.2 Creating a Chromosome and Genes
Each skin and theme that uses genes must have its own unique chromosome files,
even if they are duplicates of each other. Chromosome files are stored in the same
directory as the respective skin.xml and skeleton.xml.

The default.chromosome file is intended to contain the complete set of genes for a
particular skin.xml file. By using the default.chromosome file, you can keep all
your genes in one place. When you need to override a particular gene, you can
provide an additional .chromosome file. If the look and feel framework does not find
a gene in the chromosome you specify in the .laf file, it looks for it in the
default.chromosome file.

To create and use genes:

1. Create a new *.chromosome file.

a. Select File > New > Other.

Note: As a best practice, you should use a one-to-one representation
of genes to CSS property values.

Creating a New Look and Feel

7-12 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

b. In the New dialog, open the XML folder and select XML. The New XML File
wizard opens.

c. Choose Create XML From XML Schema File and click Next.

d. Enter a name for the XML file in the XML File Name dialog and click Next.

e. In the Select XML Schema File dialog, choose Select XML Catalog Entry and in
the Key column select laf-genes-1_0_0.xsd as the schema. Click Next.

f. In the Select Root Element dialog, click Finish.

g. Rename the generated file's extension from .xml to .chromosome.

2. Add genes to the chromosome, using the structure shown in Section 7.3.4.1, "Gene
Example."

3. In your skin or theme CSS files, replace the appropriate hard-coded style values
with the related gene names, using the ${geneName} syntax.

4. In your skin.xml or *.theme files, make sure you reference your CSS or
JavaScript files so that they appear inline in the final HTML output, as described
in Section 7.4.1, "Working with Skins."

5. If you want to create multiple versions of chromosomes that provide identically
named genes with different values, copy the default.chromosome, give it a
new filename (such as holiday.chromosome). Delete all but the genes in that
file you want to override, and provide different values for those genes. Copy the
new .chromosome file to any skin or skeleton directories for which it will be
used.

6. Open your look and feel file in the XML editor, and add specific the
.chromosome file you want to use for the look and feel by adding one or both of
the following attributes to the <netuix:lookAndFeel> element:

<netuix:lookAndFeel
 skinChromosome="holiday"
 skeletonChromosome="holiday"

The look and feel framework does not check to see if a gene you reference is defined in
a chromosome. If the framework cannot find a gene, it prints the gene variable in the
HTML output.

7.3.4.3 Using the Look And Feel Editor with Genes
The look and feel editor HTML preview does not display CSS values that are
represented by gene variables. Any CSS rules that use genes are dropped from your
HTML preview. If you want to preview a portal's look and feel that use genes, you can
do so by right-clicking .portal file and selecting Run On Server.

7.4 Creating a New Look and Feel
If you want to do extensive redesign of either the skeleton aspects of your portal
(placeholders, layout, and so on) or skin elements (color, borders, buttons and so on),
you can create a new look and feel file based on a skin and skeleton templates
included with WebLogic Portal.

Note: Gene values can contain references to other genes.

Creating a New Look and Feel

User Interface Development with Look And Feel Features 7-13

You can copy all of the resources associated with a specific skin and skeleton and
modify most or all of them to suit your needs. This option should be used only if you
need to do extensive modifications that cannot be accomplished with CSS files or
genes.

To create a new look and feel based on a provided template:

1. In Navigator view, right-click your portal web project and choose New > Look
And Feel. A wizard guides you through the rest of the process.

2. Name your look and feel file and chose next, the Look And Feel Details page
displays as shown in Figure 7–7.

Figure 7–7 Creating a Look And Feel

3. In the Skin field, use the ellipsis icon to navigate to the skin you would like to use
and select the skin.xml file.

4. To copy the skin as a template, mark the Copy skin as template check box, and
navigate to the project location where you would like to save the skin files.

5. In the Skeleton field, use the ellipsis icon to navigate to the skeleton you would
like to use and select the skeleton directory.

Tip: WebLogic Portal recommends using the bighorn-template look
and feel to create any new look and feel files. It supports genes and
provides a complete set of look and feel files that take advantage of
the features of the latest version of WebLogic Portal.

Caution: When creating new a new look and feel file, use skins or
skeletons prefaced with the name "bighorn". Other deprecated
templates are available for use in WebLogic Portal; however, these
deprecated templates do not support new look and feel features such
as genes and chromosomes. For information on deprecated Look and
Feels, see Section 7.2.3, "Adding Deprecated Look and Feel
Components to a Web Project."

Creating a New Look and Feel

7-14 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

6. To copy the skeleton as a template, mark the Copy skeleton as template check
box, and navigate to the project location where you would like to save the skeleton
files.

7. Click Finish. The new look and feel is opened in the look and feel editor.

8. Create a 100x75 px .gif that represents the look and feel in the same directory as
the *.laf file.This image appears in the visitor tools when end users select look
and feels for their own customized view of a portal desktop and must have the
same name as your *.laf file, but with a *.gif extension.

For example, create a gif file called telecom.gif to represent a look and feel file
called telecom.laf. This image appears in the visitor tools when end users
select look and feels for their own customized view of a portal desktop.

The following sections provide guidance on working with your new look and feel.

■ Section 7.4.1, "Working with Skins"

■ Section 7.4.2, "Working with Skeletons"

7.4.1 Working with Skins
Skins are collections of images, cascading style sheets (CSS), and JavaScript files that
allow changes to be made to the look and feel of a portal without modifying the portal
components directly. References to images and styles are made in the skin rather than
being hard coded into the portal definition.

Skins, combined with skeletons, make up a portal desktop's look and feel.

Each skin has its own /images, /css, and /js (JavaScript) subdirectories that contain its
skin resources. Create and store your look and feel images, CSS files, and JavaScript
files in these directories. You can also store global look and feel resources in a common
location outside of a skin's root directory. A skin knows which resources to use based
on its skin.xml file, stored in the skin's root directory. The skin.xml tells the skin
which paths to look in to find image, CSS, and JavaScript files that the look and feel
uses.

Use the following guidelines when configuring a skin.xml file:

■ The <target-skeleton> section specifies the skeleton to use if no skeleton is
specified in the look and feel file.

■ The <images> section lets you set the paths the skin should use to find images. For
example:

<skin>
<images>
 <search-path>
 <path-element>images</path-element>
 <path-element>../default/images</path-element>
 </search-path>
</images>
</skin>

This block tells the skin to look in the skin's images subdirectory, and for any files
it cannot find in that directory to look for in the default skin's images directory.

Search paths are relative to the skin directory.

Note: See Section 7.8, "The Look And Feel Editor" for information
about using the look and feel editor.

Creating a New Look and Feel

User Interface Development with Look And Feel Features 7-15

■ The <render-dependencies> section lets you determine how CSS styles and
JavaScript functions are inserted into the <head> region of the HTML.

■ The <search-path> child element of <links>, <scripts>, and <styles> serves the
same purpose and behaves the same as it does for images.

■ Use the <links> section if you want to insert references to CSS files in the
HTML <head> area.

■ To reference JavaScript files:

<html>
<scripts>
 <script src="my.js" type="text/javascript" />
 <search-path>
 <path-element>js</path-element>
 <path-element>../default/js</path-element>
 </search-path>
</scripts>
</html>

If you want to inline JavaScript functions in the HTML output (for example, if you
are using genes), use the following types of entries:

<html>
<scripts>
 <script content-uri="my.js" type="text/javascript" />
</scripts>
</html>

or

<html>
<scripts>
 <script type="text/javascript">
 alert("Hello World!");
 </script>
</scripts>
</html>

■ Typically, you should reference your CSS files in your skin.xml unless you are
using genes. To reference CSS files, use the following types of entries:

<html>
<links>
 <search-path>
 <path-element>../bighorn/css</path-element>
 </search-path>
 <link href="general.css" rel="stylesheet" type="text/css"/>
 <link href="menu.css" rel="stylesheet" type="text/css"/>
</links>
</html>

■ When you are using genes, you need to inline CSS style definitions in the HTML
output To inline CSS style definitions, use the following types of entries:

<html>
<styles>
 <style content-uri="my.css" type="text/css" />
 <search-path>
 <path-element>css</path-element>
 <path-element>../bighorn/css</path-element>
 </search-path>

Creating a New Look and Feel

7-16 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

</styles>
</html>

or

<html>
<styles>
 <style type="text/css">
 .bea-portal-body
 {
 margin: 0px;
 padding: 0px;
 background-color: #ffffff;
 font-family: Verdana, Arial, Helvetica, sans-serif;
 color: #000000;
 }
 </style>
 <search-path>
 <path-element>css</path-element>
 <path-element>../bighorn/css</path-element>
 </search-path>
</styles>
</html>

■ Create a structure.xml file in the skin's root directory, which lets you specify:

– The paths to any themes that correspond to the skin. You can also set paths to
look and feel files that you want to use as themes, assuming you have created
a .theme file that corresponds to that look and feel.

– The paths to any resources that correspond to different device classification.

– Any localization subdirectories.

Following is a sample structure.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<structure xmlns="http://www.bea.com/servers/portal/framework/laf/1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/servers/portal/framework/laf/1.0.0
laf-structure-1_0_0.xsd">
 <specializations>
 <localizations>
 <localization locale="ja"/>
 </localizations>
 <classifications path="classifications">
 <classification name="nokia"/>
 <classification name="mozilla"/>
 </classifications>
 </specializations>
 <themes>
 <theme name="red_theme" path="../../redtheme"/>
 <theme name="holiday" path="holiday"/>
 </themes>
</structure>

7.4.1.1 Best Practices
■ Create a structure.xml file in each skin directory. Using this file gives you

flexibility in the location of the themes and classification look and feel files, and
supports look and feel localization.

Creating a New Look and Feel

User Interface Development with Look And Feel Features 7-17

■ For best performance, reference your CSS and JavaScript files rather than inlining
them in the HTML.

■ If you are using genes (see Section 7.5, "Working with Themes"), you must inline
the CSS styles and JavaScript functions that use genes.

7.4.1.2 Considerations for Microsoft Internet Explorer
Each predefined look and feel includes a specialization directory that includes
resources (including a separate skin.xml) that are used for Microsoft Internet
Explorer. Considerations for Internet Explorer includes specific Javascript for menus,
for example.

If you create your own look and feel or make extensive skin modifications, you may
require additional browser-specific additions for Internet Explorer. As a best practice,
use the existing MSIE classification skin.xml to include these additions.

In addition, if you add new skin resources, you will need to add them to both your
look and feel skin.xml and the skin.xml within the MSIE directory. For example,
if you add a new CSS file you need to add a link to the new CSS file in both the
skin.xml file in the /markup/skins/ directory and the skin.xml file in the
/markup/skins/msie/ directory, as illustrated in Figure 7–8.

Figure 7–8 Location of MSIE Specialization Directory

7.4.1.3 About Portlet Title Bar Icons
The icon graphics used in portlet title bars are stored in a skin /images directory.
The names of these graphics are declared in the portal web project's

Note: Skeletons hard code the names of look and feel resources, such
as CSS style names, JavaScript functions, and image names. If you
rename resources from their default names, you must also modify
those names throughout your skeleton JSPs.

Note: The MSIE specialization directory takes advantage of
client-classifications to track different resources. For more information
about client-classifications, see Chapter 12, "Creating Portals for
Multiple Device Types."

Creating a New Look and Feel

7-18 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

WEB-INF/netuix-config.xml file to determine which of these graphics to use for
the portlet's different states and modes (minimize, maximize, help, edit). If you want
to change the name of the graphics used for the portlet title bar icons, change the
filenames and the corresponding entries for those graphics in netuix-config.xml.

7.4.2 Working with Skeletons
WebLogic Portal provides a set of skeletons in the look and feel files it provides. This
section discusses skeletons and provides guidance on developing your own skeletons
for your own custom look and feel files.

7.4.2.1 What is a Skeleton?
A skeleton.xml file controls the document type and markup that are emitted by a
portal. Skeletons provide the physical boundaries for portal components (such as
books, pages, and portlets). A portal web project can have multiple skeletons. When
you select a Look & Feel for a desktop, a specific skeleton (and skin) is used.

Each type of portal component, from a desktop to a portlet's title bar, has an associated
skeleton JSP file that renders it. Some skeleton files are simple, others are more
complex. For example, each desktop uses a skeleton file called desktop.jsp that
determines and renders the appropriate DOCTYPE information for your portal. A
portlet title bar, on the other hand, has a skeleton file called titlebar.jsp that is
more complex and provides references to button graphics.

Each portal component has one or more corresponding skeleton JSP files, located in
the <web_project>/framework/skeletons directories. For example, a portlet
title bar has a corresponding skeleton JSP file that renders it. When a portal desktop is
rendered, the skeleton JSPs for each portal component (in conjunction with any related
classes) perform their logic and insert the resulting HTML into the correct hierarchical
locations of the HTML file.

Skeletons also use the WebLogic Portal API to get specific types of information, such
as presentation context and style overrides that developers may enter in the Properties
view for a selected component.

In summary, skeleton JSPs combine API calls, JSP tags, and HTML snippets to
ultimately render a portal desktop in HTML. Example 7–3 provides an example of a
well-formed skeleton JSP.

Example 7–3 Book.jsp Skeleton from the Bighorn Look and Feel

<!-- The book skeleton file renders a HTML <DIV> element for the book. This <DIV> element contains
a menu and book content. The book content is contained within an additional HTML <DIV> element.
-->
<jsp:root version="2.0"
 xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:skeleton="http://www.bea.com/servers/portal/tags/netuix/skeleton">
 <jsp:directive.page session="false" />
 <jsp:directive.page isELIgnored="false" />
 <skeleton:context type="bookpc">
 <skeleton:control name="div" presentationContext="${bookpc}"
 presentationClass="wlp-bighorn-book" presentationId="${bookpc.label}">
 <skeleton:child presentationContext="${bookpc.menuPresentationContext}"/>
 <skeleton:control name="div" content="true" presentationContext="${bookpc}"
presentationClass="wlp-bighorn-book-content">

Tip: For more information on the skeleton tag library, see the "Portal
Skeleton Rendering" in Oracle Fusion Middleware JSP Tag Java API
Reference for Oracle WebLogic Portal.

Creating a New Look and Feel

User Interface Development with Look And Feel Features 7-19

 <skeleton:children/>
 </skeleton:control>
 </skeleton:control>
 </skeleton:context>
</jsp:root>

7.4.2.2 Guidelines for Creating Custom Skeletons
Each skeleton you create must have its own skeleton.xml file in the your skeleton's
root directory. One example of when you might want to create your own skeleton is if
you want to provide appropriate rendering on a particular mobile device.

Use the following guidelines when developing your own skeletons:

■ If you want to use CSS styles and JavaScript functions in your skeletons to help
control behavior, reference those CSS files/styles and JavaScript files/functions in
the skeleton.xml file the same way you reference them in a skin.xml file.

■ In the skeleton.xml, you can also control content types or doctypes to help
ensure proper rendering. For example:

<skeleton>
<render-format>
 <preset>HTML_4_01_TRANSITIONAL</preset>
</render-format>
</skeleton>

The <preset> elements allows values for XHTML_1_0_STRICT, XHTML_1_0_
TRANSITIONAL, HTML_4_01_STRICT, HTML_4_01_TRANSITIONAL, HTML_
4_01_STRICT_NO_SYSTEM_ID, HTML_4_01_TRANSITIONAL_NO_SYSTEM_
ID, HTML_3_2, and NONE.

– You can define your own <custom-htmlType> or <custom-xhtmlType>, using
<doctype-public-id> and <doctype-system-id> child elements. In addition, the
<custom-xhtmlType> element provides <namespace-uri> and
<schema-system-id> child elements.

– You can provide content type overrides for individual types of devices, such
as mobile devices, using:

<content-type-overrides>
 <override classification="nokia" content-type="application/xhtml+xml"
/>
</content-type-overrides>

where classification is the name of a device type defined in
WEB-INF/client-classifications.xml; and content-type can also use
the value "text/html".

■ Keep in mind that JSPs are rendered literally. That is, if there are blank lines in the
JSP, there will be blank lines in the HTML. At times you may need to sacrifice JSP
readability for quality HTML output.

■ Create a structure.xml file in the skeleton directory, as described in
Section 7.4.1, "Working with Skins." This file lets you reference skeleton themes,
skeleton resources for different types of devices (classifications), and localized
skeleton subdirectories.

Working with Themes

7-20 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

7.4.2.3 Enabling XHTML in a Portal
To render a portal that is XHTML compliant, you must set the portal to emit XHTML
and you must develop your portlets using a framework that supports XHTML. Note
that by default, portals support HTML 4.01 Transitional.

To enable a portal for XHTML compliance, you need to do one of the following.

■ Set the skeleton render format to XHTML_1_0_STRICT, XHTML_1_0_
TRANSITIONAL or HTML_4_01_STRICT. See Section 7.4.2.2, "Guidelines for
Creating Custom Skeletons."

■ Select an XHTML-compliant look and feel. Currently, WLP supplies the
bighorn-xhtml skeleton. This skeleton is used by the Bighorn (XHTML) look and
feel. This skeleton is designed to be valid in accordance with the XHTML 1.0
Transitional DTD.

The use of the bighorn-xhtml skeleton does not imply XHTML compliance of content.
You must also assure that your portlets are XHTML compliant. Non-compliant portlets
in portals using this skeleton will cause rendering errors. XHTML compliance in
portlets depends on the framework used to develop the portlet, as described in
Table 7–5.

The current AJAX implementation does not support XHTML. The implementation
performs DOM operations that are known not to work in some browsers when using
an XHTML content type. See "Considerations for AJAX-based Asynchronous
Rendering" in Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic
Portal.

7.5 Working with Themes
Themes provide a way to override the look and feel of books, pages, or portlets,
allowing those components to look or behave differently than the rest of the portal
desktop. For example, you can set a theme on a portlet that displays a jagged portlet
border, turns the portlet title bar red, and displays different portlet title bar button
images.

You can use themes in skins and/or skeleton files. In the previous example, the
skeleton theme would control the jagged portlet border, and the skin theme would
contain the modified CSS and title bar images.

You also use themes to develop look and feels for specific devices, such as mobile
devices, to be used in conjunction with WebLogic Portal's multichannel framework.

Themes are made up of the same types of resources as regular skins and skeletons. The
themes typically provide only the files necessary to override the overall look and feel,
though full look and feels can also be used as themes. Themes can also be used as look
and feels.

Table 7–5 Portlet Framework Support for XHTML

Framework XHTML Support

NetUI Supports HTML or XHTML rendering. You can set the render format with a flag
in beehive-netui-config.xml. For information on setting this flag, see:

http://beehive.apache.org/docs/1.0.2/netui/tags/xhtml.html

Struts 1.x The Struts JSP tags emit HTML and are not XHTML compliant.

JSF 1.x Supports XHTML transitional. Does not support XHTML strict.

Working with Themes

User Interface Development with Look And Feel Features 7-21

Themes are made up of the following resources:

■ The .theme file is a simple XML file that provides the name of a theme, and
ensures that theme name appears in drop-down menus for selection by
developers, portal administrators, or end users.

■ Theme resources include supporting files such as *.gif files or *.css files. The
example in Figure 7–9 depicts the "alert" theme which is a subdirectory of the
"default" skin, which in turn contains its own look and feel resources. If the alert
theme is selected for a book, page, or portlet, the portal framework looks in the
structure.xml file in the look and feel's /skin or /skeleton directories for
theme locations. If no structure.xml file is present, the framework looks for
/alert skin and skeleton subdirectories under whichever look and feel is being
used. If found, the files in the /alert subdirectory take precedence over or are used
in addition to the files used in the parent look and feel.

For example, if the alert theme provides a titlebar.jsp skeleton file, the portal
framework uses that skeleton file instead of the parent skeleton's titlebar.jsp file.

Figure 7–9 shows the types of resources included in a theme:

Figure 7–9 Theme Resources

This section includes the following topics:

■ Section 7.5.1, "Using Themes with Microsoft Internet Explorer"

■ Section 7.5.2, "Developing a Theme"

7.5.1 Using Themes with Microsoft Internet Explorer
If you are using Internet Explorer, there are additional tasks associated with using
themes to modify skins. See Section 7.4.1.2, "Considerations for Microsoft Internet
Explorer" for more information.

Using Look And Feels From Previous Portal Releases

7-22 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

7.5.2 Developing a Theme
To develop a theme:

1. In Merged Projects view, navigate to your portal web project's
framework/markup/theme directory, and copy an existing theme to your file
system.

2. Open the copied theme, and modify the name, title, description, and
markupName. Each theme must have a unique markupName.

3. Save the file with a new filename.

4. Create a 100x75 px .gif that represents the theme in the same directory as the
.theme file and have the same name.This gif file must have the same name as
your *.theme file.

For example, create a gif file called telecom.gif to represent a *.theme file
called telecom.theme. This image appears in the visitor tools when end users
select themes for their own customized view of a portal desktop.

5. Create the theme directory (using the same, case-sensitive name as the theme
markupName) and subdirectories. You can create the theme resources anywhere
in the portal web project, where it can be used by any look and feel. Create any
unique resources that the theme will use, or duplicate and modify any resources
you want to override in the parent skin or skeleton.

6. For any skin or skeleton, be sure to create a structure.xml file that specifies the
path to the current theme, as described in Section 7.4.1, "Working with Skins."

You can also create a structure.xml in the theme directory if you also plan to
use the theme as a full look and feel.

If you do not use the structure.xml file in your look and feel /skin and
/skeleton directories, store your themes as subdirectories of those skins and
skeletons.

After you create a theme, you can select it in the Properties view for any selected book,
page, or portlet.

7.6 Using Look And Feels From Previous Portal Releases
You can use look and feels created in previous WebLogic Portal releases by importing
them into your portal web project (into the proper directories).

If you have look and feel files from WebLogic Portal 8.1 and want to use genes, you
will need to upgrade your look and feel files. To upgrade a previous look and feel,
open the .laf file in Oracle Enterprise Pack for Eclipse from your portal web project.
You are prompted to create the skin.xml and skeleton.xml files. After creating these
new files, you are ready to use the new WebLogic Portal look and feel features.

Note: If you create any unique resources, be sure to reference them
either in the parent skin or skeleton, or in the theme skin or skeleton.

The Look And Feel Editor

User Interface Development with Look And Feel Features 7-23

7.7 Troubleshooting Look And Feels
To troubleshoot or fine tune a look and feel, use the following guidance:

■ Use the Look And Feel editor to determine which CSS properties you need to
modify. See Section 7.8, "The Look And Feel Editor" for details.

■ When viewing a portal desktop in a browser, view the HTML source to help
determine where a problem is occurring and where it needs to be fixed, in a skin
or skeleton.

– If the problem is a CSS-related issue, use the HTML source to locate the CSS
style that needs to be modified.

– If the problem is a structural issue, use the HTML source to help pinpoint
which shell resource or skeleton JSP needs to be modified.

7.8 The Look And Feel Editor
This section describes the Look and Feel Editor and includes these topics:

■ Section 7.8.1, "Overview"

■ Section 7.8.2, "The Look and Feel Editor Window"

■ Section 7.8.3, "Opening the Look And Feel Editor"

■ Section 7.8.4, "Style Hierarchy Tab"

■ Section 7.8.5, "Style Description Panel"

■ Section 7.8.6, "View Area"

■ Section 7.8.7, "Outline View"

■ Section 7.8.8, "Properties View"

■ Section 7.8.9, "Tips for Using the Look and Feel Editor"

7.8.1 Overview
The look and feel editor lets you interactively edit the text styles used by portal text
elements. Technically, the editor modifies Cascading Style Sheet (CSS) files that are
referenced by a portal's skin.xml file. For example, using the look and feel editor,
you can change the size of a heading, the color of a list element, or the padding around
a table cell for a portal.

The look and feel editor also lets you change the properties of a portal's look and feel
file (.laf file), such as the skin and skeleton files that it references.

In addition, the editor shows you, at a glance:

■ The CSS cascade for a portal

■ The properties assigned to a selected CSS style

Note: In WebLogic Portal 8.1, skin.properties files could also
contain settings for themes. In WebLogic Portal 9.2 and higher, themes
are stand-alone look and feels that use their own skin.xml files. If
your WebLogic 8.1 skin.properties files contain theme details
that you want to reuse, you must manually add those theme settings
to your theme's skin.xml files.

The Look And Feel Editor

7-24 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

■ The inherited properties of a selected CSS style

■ The elements of the portal's skin.xml file

7.8.2 The Look and Feel Editor Window
With the look and feel editor, you can experiment with a portal's look and feel and see
the results immediately. The look and feel editor lets you interactively edit the text
styles used by a portal. Using the look and feel editor, you can select text in a portal
and modify the text's characteristics, such as font size, color, padding, and so on. The
changes you make are immediately reflected in the editor's view area.

Remember that a portal's skin helps to define the overall look and feel of a portal. The
portal's skin.xml file specifies one or more CSS files used by the skin. A portal's
HTML text can reference these CSS files and use their style definitions. If you modify
the font size for a particular text style, the look and feel editor changes the style's
definition inside a CSS file. The change is then immediately reflected in the HTML
displayed in the editor's view area.

The following figure shows the parts of the look and feel editor. This section discusses
each of these parts in detail.

Figure 7–10 Look And Feel Editor Components

7.8.3 Opening the Look And Feel Editor
The Navigator view displays the file structure of a portal project. Use this panel to
locate and select the look and feel file for the portal that you wish to edit. The look and

Tip: See Section 7.8.9, "Tips for Using the Look and Feel Editor."

The Look And Feel Editor

User Interface Development with Look And Feel Features 7-25

feel (.laf) file contains references to the skins and skeletons that define a portal's
look and feel.

To open the look and feel editor, use the Navigator view to locate the .laf file for the
portal you wish to edit. Then, double-click the filename to open the look and feel
editor. The .laf files for a portal are located in the portal web project's
framework/markup/lookandfeel folder. For example, the mycustom.laf file is
shown selected in the Navigator view in Figure 7–11.

Figure 7–11 Selected Look And Feel File

Tip: Use the menu function Edit > Look and Feel to quickly change
the format of the preview HTML rendered by the Look and Feel
Editor. None of these settings are saved when the Look and Feel editor
is closed. Table 7–6 describes the Look and Feel menu options.

Note: Oracle Enterprise Pack for Eclipse tries to detect if the look
and feel being edited is based on Bighorn or the others and use the
appropriate preview HTML. Some legacy Look and Feels are
deprecated and require extra configuration to make them available.
For information on deprecated Look and Feels, see Section 7.2.3,
"Adding Deprecated Look and Feel Components to a Web Project."

Table 7–6 Look and Feel Menu Functions

Menu Function Description

Render Alternative Text Changes the preview HTML being rendered with the open look and feel to an
alternate view. (See the previous note.)

Render Bighorn Text Changes the preview HTML being rendered with the open look and feel to
the Bighorn view. (See the previous note.)

Render Default Text Changes the preview HTML being rendered with the open look and feel to
the default view. (See the previous note.)

Render Custom Text... Changes the preview HTML being rendered with the open look and feel to
custom HTML text that you can enter directly in a dialog.

Render Custom URL... Lets you enter a URL or file for the preview HTML. Use this option to
preview the look and feel with your own portal that is running on a server.

The Look And Feel Editor

7-26 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

7.8.4 Style Hierarchy Tab
The Style Hierarchy tab shows the CSS cascade for the selected style. The cascade is a
hierarchy of CSS styles, defined by the HTML document structure. It is useful to see
the cascade, because it can help you to locate and appropriately handle inherited style
properties. In Figure 7–12, note that the style wlp-bighorn-window-content is below
wlp-bighorn-window in the hierarchy. This means that wlp-window-content can
inherit properties from wlp-bighorn-window, and, potentially, from all other style
classes higher up the hierarchy. For more information on inheritance, see
Section 7.8.5.1, "CSS Inheritance." When you select a style in the Style Hierarchy view,
its style definitions and inherited style properties appear in the Style Description
window, described in Section 7.8.5, "Style Description Panel."

Figure 7–12 Selected CSS Style

The Link Style Hierarchy Selection with HTML Preview Selection button, shown in
Figure 7–12, lets you control whether or not the Style Hierarchy view changes to reflect
what is selected in the Look & Feel Editor view. When this button is toggled on, the
Style Hierarchy view updates its display to show the style hierarchy corresponding to
the styles of the selected HTML element in the editor. If this button is toggled off, the
Style Hierarchy view does not update when you click in the Look & Feel Editor. This
button is toggled on by default. In a typical use case, you can select an element in the
editor and then toggle this button off to "lock" the Style Hierarchy view. Then, you can
click around in the editor to compare the "locked" Style Hierarchy to other selected
elements in the editor.

7.8.5 Style Description Panel
The Style Description panel lets you see at a glance the selected style's properties and
its inherited style properties. The Style Info section, shown in Figure 7–13, comes
directly from the CSS file in which the style is defined. The Inherited Styles list, also
shown, is constructed directly from the document structure of the HTML text that is
currently opened in the look and feel editor. The Inherited Styles list shows the style
properties and their values that are inherited from styles higher up in the document
hierarchy. For instance, you can see that wlp-bighorn-window-content inherits the
background color property from the wlp-bighorn-book-content style.

The Look And Feel Editor

User Interface Development with Look And Feel Features 7-27

Figure 7–13 Window Shows Inherited Styles

To understand the value of the Inherited Styles list, it helps to have a basic
understanding of HTML and CSS.

7.8.5.1 CSS Inheritance

HTML documents are hierarchically organized. In other words, each element of an
HTML document can have one or more child elements, one parent element and
possibly many ancestor elements. A central feature of CSS is that styles are inherited
down the HTML document hierarchy. For example, Figure 7–14 depicts a simple
HTML document hierarchy:

Figure 7–14 CSS Inheritance

If you would like all the text in this document to be blue, you could define the body
tag to be blue. Because of CSS inheritance, all of the elements below body (specifically,
li and h1) will also be blue. If, on the other hand, you would like everything to be
blue except list elements, you could define the ul tag to be another color, such as red.
Then, all of the li elements inherit the color red from their parent, ul. At the same
time, the h1 tags will be blue (h1 tags still inherit their color from body).

The look and feel editor shows you all styles that a selected style inherits. Therefore, if
you want to change the font size of a style, but font size is not defined in that style,

Tip: This section is a very brief overview of CSS inheritance. Many
books and web sites are devoted to CSS and cover this important
subject in greater depth.

The Look And Feel Editor

7-28 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

you can see at a glance from which style font size is inherited. Then, you can easily
edit the property, as explained in the next section.

7.8.5.1.1 Using the Inherited Styles List As mentioned in the previous section, in some
cases, the property you wish to modify is not defined in the specific CSS style class
associated with the text you have selected. It is possible, for instance, to select a
heading in the look and feel editor, but find that font size is not a property of that
heading's style. In this case, the property you wish to change might be an inherited
property.

The look and feel editor displays and lets you edit any inherited property for a given
style. For example, suppose you wish to change the font size of some text. After
selecting the style you wish to edit (for example, by clicking the text in the View Area),
you then notice that font-size is not a property of that text's CSS style. Next you
look at the Inherited Styles list, and you discover a style higher up in the cascade in
which font-size is defined.

At this point, you must decide whether you want to edit the font-size property where
it is currently defined (higher up in the cascade) or add the property directly to the
style of the text you wish to modify. Of course, if you modify a property up the
cascade, you might inadvertently change the properties of other text that inherits the
same property. It is up to you to make this decision. If you change it directly in the
selected style, then the inherited property is overridden, and only that style (and any
styles down the hierarchy) receive the new property value (unless it is once again
overridden).

HTML documents are hierarchically organized. In other words, each element of an
HTML document can have one or more child elements, one parent element and
possibly many ancestor elements. A central feature of CSS is that styles are inherited
down the HTML document hierarchy. For example, the following tree diagram depicts
a simple HTML document hierarchy:

If you would like all the text in this document to be blue, you could define the body
tag to be blue. Because of CSS inheritance, all of the elements below body (specifically,
li and h1) will also be blue. If, on the other hand, you would like everything to be blue
except list elements, you could define the ul tag to be another color, such as red. Then,
all of the li elements will inherit the color red from their parent, ul. At the same time,
the h1 tags will be blue (h1 tags still inherit their color from body).

The look and feel editor shows you all styles that a selected style inherits. Therefore, if
you want to change the font size of a style, but font size is not defined in that style,
you can see at a glance from which style font size is inherited. Then, you can easily
edit the property, as explained in the next section.

Tip: Without this convenient feature, it would be difficult to decide
which styles a given style inherited. Typically, you would have to
open and examine the CSS files in the hierarchy to find where a
specific style property is defined or possibly overridden.

Tip: To add or modify a property in an inherited style, double-click
the style name in the Inherited Styles list. Then, use the CSS Style
Wizard to make your changes.

The Look And Feel Editor

User Interface Development with Look And Feel Features 7-29

7.8.6 View Area
The View area displays the HTML that uses the CSS styles you wish to edit. When you
start the look and feel editor, a default HTML page is displayed, showing a
representative sample of text elements.

7.8.7 Outline View
The Outline view shows a representation of the files that are referenced by the portal's
skin.xml file. In this panel you can edit properties of:

■ The look and feel (.laf) file for the portal

■ The style properties located in each of the CSS (.css) files referenced by the
portal's skin

Figure 7–15 shows a portion of the Document Structure panel. In this figure, the
css/portlet.css file is expanded to reveal the styles defined in it. You can
double-click a style to add or modify its properties. You can also single-click a .css
file, style name, or style property to display and edit values in the Properties view.

Figure 7–15 Double-Click a Style to Modify Its Properties

In addition to using this panel to access CSS styles, you can also access and edit the
properties of the look and feel file associated with a portal, as shown in Figure 7–16.
You can change any of these properties, including picking new skin and skeleton files.
Note that the look and feel file node occurs at the top of the document structure.

Note: Remember that you start the look and feel editor by opening a
look and feel (.laf) file. The HTML file that is shown in the View
Area must reference the same CSS files that the .laf file references in
its skin. If you load the default HTML page into the editor, this
connection is automatically established. However, if you load HTML
from a portal into the editor, you must be sure the portal references
the same .laf file as the editor.

The Look And Feel Editor

7-30 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Figure 7–16 Look and Feel file in the Outline View

7.8.8 Properties View
The Properties view lets you interactively modify values of the selected CSS style or
look and feel file. To display properties in the Properties view, you can do one of the
following:

■ Click on a text element in the HTML file in the View Area.

■ Click a CSS style or the look and feel filename in the Outline view.

■ Click on a CSS filename in the Outline view, then expand the CSS file in the
Properties view to edit the properties.

7.8.9 Tips for Using the Look and Feel Editor
This section discusses these useful features of the Look and Feel Editor:

■ The Link Style Hierarchy Selection with HTML Preview Selection button

■ The Mouse-Over Button

7.8.9.1 Using the Link Style Hierarchy Selection with HTML Preview Selection
Button
The Link Style Hierarchy Selection with HTML Preview Selection button, shown in
Figure 7–17, lets you control whether or not the Style Hierarchy view changes to reflect
what is selected in the Look & Feel Editor view. When this button is toggled on, the
Style Hierarchy view updates its display to show the style hierarchy corresponding to
the styles of the selected HTML element in the editor. If this button is toggled off, the
Style Hierarchy view does not update when you click in the Look & Feel Editor. This
button is toggled on by default. In a typical use case, you can select an element in the
editor and then toggle this button off to "lock" the Style Hierarchy view. Then, you can
click around in the editor to compare the "locked" Style Hierarchy to other selected
elements in the editor.

Working with Shells

User Interface Development with Look And Feel Features 7-31

Figure 7–17 The Link Style Hierarchy Selection with HTML Preview Selection Button

7.8.9.2 Enabling the Mouse Motion Button
The Mouse Motion button provides a convenient way for you to scan the CSS style
information as you move the mouse pointer around the Look and Feel editor window.
When the Mouse Motion button, shown in Figure 7–18, is toggled on, the Outline and
Properties views update immediately as you move the mouse over the Look and Feel
editor window. If you select the Link Style Hierarchy Selection with HTML Preview
Selection button (described previously), the mouse will also track the Style Hierarchy
and Style Description views. When you click in the Look and Feel Editor window, the
Mouse Motion button automatically toggles off.

Figure 7–18 Mouse Motion Button

7.9 Look And Feel API
The following packages, documented in Oracle Fusion Middleware Java API Reference for
Oracle WebLogic Portal, let you perform many programmatic operations on look and
feels:

■ com.bea.netuix.laf

■ com.bea.netuix.laf.genes

■ com.bea.netuix.laf.genes.mutators

7.10 Working with Shells
Shells define the header and footer regions of a portal. You can include portlets, JSPs,
and HTML files in a shell to define the content displayed in the header or footer. You
can create a new shell or modify existing shells.

Working with Shells

7-32 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

This section includes the following topics:

■ Section 7.10.1, "Creating a New Shell"

■ Section 7.10.2, "Modifying a Shell"

■ Section 7.10.3, "Applying a Shell to a Portal Desktop"

■ Section 7.10.4, "Placing Portlets in a Header or Footer"

7.10.1 Creating a New Shell
To create a new shell:

1. In Merged Projects view, copy an existing shell from your portal web project's
framework/markup/shells directory to your file system.

2. In the Project Explorer, right-click the shell and select Open With > Shell Editor.

3. Within the Outline view, click the shell to view its properties in the Properties
view.

4. In the Shell Properties view, modify the title and the description properties.

5. Save the new shell.

7.10.2 Modifying a Shell
You can modify the properties of shell, as well as header and footer properties. One of
the most common shell modifications is to add a layout to a header or footer. When
you add a layout to a header or footer, you can place portlets within the header or
footer, respectively.

To modify a shell:

1. In the Merged Projects view, right-click the shell and select Open With > Shell
Editor.

2. In the Shell Editor, click the element you want to modify such as the header or
footer.

3. In the Properties view, modify the properties that you want to change. For
example, choose a Layout Type to use.

4. Save your changes

7.10.3 Applying a Shell to a Portal Desktop
If you want to change the shell that is used by your portal desktop, you must update
the Shell property for your portal. For more information about updating portal
properties, see Section 8.2.1, "Editing Portal Properties."

If you have modified or assigned a new shell to your portal desktop, you must reload
the shell to ensure your changes are saved.

To reload a shell:

1. Update the shell property using the Properties view.

Note: Shells created with previous versions cannot be modified
using the shell editor. You must continue to use an XML editor to
modify previously created shells.

Working with Layouts

User Interface Development with Look And Feel Features 7-33

2. Click the Reload button next to the Shell property drop-down list.

7.10.4 Placing Portlets in a Header or Footer
To place portlets in a header or footer, you must first associate a layout with the
respective header or footer.

You may notice that portlets in a header or footer do not display a delete button, even
if the portlet specifies that it should have one. When you put a layout inside of a
header or footer, the placeholders inside the layout are considered to be "locked." This
means that users can't move or delete the contents of the placeholders. Therefore, even
if a portlet in a header or footer specifies that it is supposed to have a delete button,
the delete button will not render.

7.11 Working with Layouts
Layouts, used by portal pages as well as headers and footers, provide structure that
determines where you can place portlets and books within a page. Layouts can be
implemented using HTML tables or CSS-based approaches.

WebLogic Portal provides a set of predefined layouts you can use in your portals,
available for selection in the Properties view when you select a page in the portal
editor. For more information about page properties, see Section 8.2.2.4, "Page
Properties."

In addition to using the predefined layouts that WebLogic Portal provides, you can
create custom layouts A layout includes the following files:

■ An XML file with a .layout extension - This file maps to a skeleton JSP that
renders the final layout in HTML.

■ An HTML file with a .html.txt extension - Used to simulate the layout in the
portal editor and WebLogic Portal Administration Console.

This section describes the following layout tasks:

■ Section 7.11.1, "Creating a Standard Layout"

■ Section 7.11.2, "Creating a Custom Layout"

7.11.1 Creating a Standard Layout
WebLogic Portal provides the following three standard layouts for creating your own
layouts: border layout, flow layout, and grid layout, as shown in Figure 7–19.

Figure 7–19 Standard Layouts: Border, Flow, and Grid

Working with Layouts

7-34 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

You create each type of layout by configuring the .layout file to suit your needs. For
example, you could create a border layout that uses only North (N), West (W), and
East (E) areas.

Each type of standard layout has a corresponding skeleton JSP to render it as HTML:
borderlayout.jsp, flowlayout.jsp, and gridlayout.jsp.

If you want to create a layout beyond what the standard layouts provide, you must
create a custom layout. See Section 7.11.2, "Creating a Custom Layout."

To create a standard layout:

1. In Merged Projects view, copy an existing .layout file and its corresponding
.html.txt file from your portal web project's framework/markup/layouts in
the shared J2EE libraries.

2. Open the layout, and rename it. Be sure to retain the .layout extension. Rename
the .html.txt file using the same name as the new layout, but retain the
.html.txt extension.

3. In the .html.txt file, create an HTML table structure that provides the layout
configuration you want.

4. In the .layout file, inside the <netuix:markup> tag, insert opening
and closing <netuix:gridLayout>, <netuix:flowLayout>, or
<netuix:borderLayout> tags, depending on the type of layout
you want to create. (Replace the existing opening and closing
<netuix:*Layout> tag.)

5. Inside the opening <netuix:*Layout> tag, add (or modify) the following
attributes, as shown in Table 7–7.

For example, if you are modifying a copy of the fourcolumnflow.layout to
create a border layout, replace the columns attribute with the layoutStrategy
attribute and change its value.

Table 7–7 Layout Attributes

Attribute Description

Title Provides the name for selecting the layout in a drop-down menu.

Description Provides a description for the selected layout.

Border layout attributes layoutStrategy – Enter order or title.

If you enter order, the placeholders are ordered according to the value you put
in the <netuix:placeholder> tag (covered in the following steps). For example:

<netuix:placeholder>North</netuix:placeholder> makes the placeholder the
north placeholder.

If you enter title, the placeholders are ordered according to the
<netuix:placeholder> title attribute value. For example:

<netuix:placeholder title="south" ...></netuix:placeholder> makes the
placeholder the south placeholder.

Flow layout attributes orientation – Enter vertical or horizontal to determine the direction in
which the placeholders are positioned.

Working with Layouts

User Interface Development with Look And Feel Features 7-35

6. Inside the <netuix:*Layout> tag, add opening <netuix:placeholder> and
closing </netuix:placeholder> tags for each placeholder you want in the
layout.

If you are creating a border layout, use no more than five placeholders.

7. In the opening <netuix:placeholder> tag of each placeholder, add the
following attributes:

title – Enter a title for the placeholder. If you are using a border layout with the
layoutStrategy attribute set to title, enter north, south, east, west, or
center for the title to determine which position of the placeholder in the border
layout.

description – Enter a description for the placeholder.

flow – Optional. If you want to control whether the books and portlets are
automatically positioned vertically or horizontally when they are added to a
layout, enter true.

usingFlow – Optional. If you set the flow attribute to true, enter vertical or
horizontal for this attribute value. This value determines whether books and
portlets are positioned on top of each other in the placeholder (vertical) or side by
side (horizontal).

width – Optional. Set a width for the placeholder.

markupType – Required. Enter Placeholder.

markupName – Required. Used as an ID for the placeholder. Each placeholder
must have a unique markupName across all layouts.

8. If you are creating a border layout and the layoutStrategy attribute is set to order,
enter North, South, East, West, or Center as the content between the opening
and closing <netuix:placeholder> tag to determine each placeholder's
position in the layout. For example,
<netuix:placeholder>North</netuix:placeholder> makes a
placeholder the north placeholder.

9. Save the layout file.

10. Create a 100x75 px .gif that represents the layout in the same directory as the
.layout file and have the same name, but with a *.gif extension. This image
appears in the visitor tools when end users select layouts for their own customized
view of a portal desktop.

You can now use the layout in your portals, by selecting a page in the portal editor and
selecting the layout in the Properties view.

Grid layout attributes columns – Determines the number of columns in the layout. The number of rows
are determined automatically. Do not use the rows attribute if you use the
columns attribute.

rows – Determines the number of rows in the layout. The number of columns is
determined automatically. Do not use the columns attribute if you use the rows
attribute.

htmlLayoutUri Provides the path (relative to the project) to the .html.txt file you created. For
example, /framework/markup/layout/yourNewLayout.html.txt.

markupName The markupName must be unique among the other layouts.

Table 7–7 (Cont.) Layout Attributes

Attribute Description

Working with Layouts

7-36 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

7.11.2 Creating a Custom Layout
If none of WebLogic Portal's standard layouts suit your needs, you can create a custom
layout. When creating a custom layout you need to create three things:

■ Section 7.11.2.1, "The Layout File"

■ Section 7.11.2.2.2, "The html.txt File"

■ Section 7.11.2.2.1, "The Skeleton JSP"

7.11.2.1 The Layout File
The layout file for a custom layout is the same type of file that is used in creating
standard layouts. A layout file is an XML file that must have a .layout extension and
can live anywhere in the web application directory except /WEB-INF.

You must create the .layout files by hand (using a text or XML editor). The best way
to get started is by copying an existing layout, located in the shared J2EE library in
your portal web project's /framework/markup/layout directory.

7.11.2.2 Example of a Custom Layout
The following example uses a custom layout with one vertical column on the left, with
a spanning row at the right with two vertical columns underneath.

The layout looks something like this, as shown in Figure 7–20.

Figure 7–20 Custom Layout

As a best practice, store your custom layout and its supporting files in a separate
directory. This example assumes that your custom layout is stored in the
/webContent/custom/layout/.

In this example, the layout file is called example.layout as shown Example 7–4.

This example layout uses the generic netuix:layout tag since gridLayout,
borderLayout, or flowLayout cannot construct the desired layout. It has four
placeholders, named "left", "upper", "lower_left" and "lower_right".

Note: The the easiest way to create a new *.layout file is to copy
one from another layout.

Note: The skeletonUri attribute is important for custom layouts,
because you will often develop a custom skeleton JSP to render your
custom layout. This attribute tells the portal rendering framework
which JSP to use.

Working with Layouts

User Interface Development with Look And Feel Features 7-37

Example 7–4 Sample Code for the example.layout File

<?xml version="1.0" encoding="UTF-8"?>
<netuix:markupDefinition
xmlns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0"xmlns:xsi="http://www.w3.
org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0 markup-netuix-1_0_
0.xsd">
<netuix:locale language="en"/>
 <netuix:markup>
 <netuix:layout markupType="Layout"
 markupName="exampleLayout"
 title="Example Custom Layout"
 description="Example with Left, Upper, Lower Left and Lower Right placeholders"
 skeletonUri="/custom/layout/examplelayout.jsp"
 htmlLayoutUri="/custom/layout/example.html.txt"
 iconUri="/framework/markup/layout/example.gif"
 thumbnailUri="/framework/markup/layout/example.gif" type="example">
 <netuix:placeholder markupType="Placeholder"
 markupName="exampleLayout_left" title="left" usingFlow="false" description="Left Side
placeholder" width="30%">
 </netuix:placeholder>
 <netuix:placeholder markupType="Placeholder"
 markupName="exampleLayout_upper" title="upper" usingFlow="true" flow="horizontal"
description="Upper placeholder with horizontal flow" width="70%">
 </netuix:placeholder>
 <netuix:placeholder markupType="Placeholder"
 markupName="exampleLayout_lowerLeft" title="lower_left" usingFlow="false" description="Lower
Left placeholder (below Upper)" width="35%">
 </netuix:placeholder>
 <netuix:placeholder markupType="Placeholder"
 markupName="exampleLayout_lowerRight" title="lower_right" usingFlow="false" description="Lower
Right placeholder (below Upper)" width="35%">
 </netuix:placeholder>
 </netuix:layout>
 </netuix:markup>
</netuix:markupDefinition>

7.11.2.2.1 The Skeleton JSP This example requires a custom skeleton to do the
rendering (as specified by the skeletonUri attribute). You must create this JSP, copying
it to any look and feels in which the layout is to be used. As with the layout file, the
easiest way to create a custom layout JSP is to copy an existing one.

Example 7–5 displays what the custom skeleton JSP
(/framework/markup/layout/examplelayout.jsp) looks like:

Example 7–5 exampleLayout.jsp

<jsp:root
version="2.0"
xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:skeleton="http://www.bea.com/servers/portal/tags/netuix/skeleton" >
<jsp:directive.page session="false" />
<jsp:directive.page isELIgnored="false" />
<skeleton:context type="layoutpc">
<skeleton:control name="table" presentationContext="${layoutpc}" class="wlp-bighorn-layout"
 cellspacing="0" cellpadding="0" width="100%" >
<c:set var="ph" value="${layoutpc.placeholders}"/>
<c:set var="left" value="${ph[0]}"/>

Working with Layouts

7-38 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

<c:set var="upper" value="${ph[1]}"/>
<c:set var="lowerLeft" value="${ph[2]}"/>
<c:set var="lowerRight" value="${ph[3]}"/>
<tr>
<td rowspan="2" valign="top" width="${left.width}">
 <skeleton:child presentationContext="${left}"/>
 </td>
 <td colspan="2" width="${upper.width}">
 <skeleton:child presentationContext="${upper}"/>
 </td>
 </tr>
<tr>
 <td valign="top" width="${lowerLeft.width}">
 <skeleton:child presentationContext="${lowerLeft}"/>
 </td>
 <td valign="top" width="${lowerRight.width}">
 <skeleton:child
 presentationContext="${lowerRight}"/>
 </td>
 </tr>
</skeleton:control>
</skeleton:context>
</jsp:root>

The custom layout is now functionally complete. The html.txt file has not yet been
created, but you can test the layout. To do this, create a portal file, select a page, and in
the Properties view select the custom layout in the Layout field.

7.11.2.2.2 The html.txt File The .html.txt is an HTML snippet used by Oracle
Enterprise Pack for Eclipse to give a visual representation of what the layout looks
like, so the developer or administrator can place the portlets in the correct
placeholders.

In this example, the custom.html.txt file is
/framework/markup/layout/example.html.txt and should look something
like the example shown in Example 7–6:

Example 7–6 Sample example.html.txt Code

<table class="portalLayout" id="thePortalLayout" width="100%" height="100%">
<tr>
<td class="placeholderTD" valign="top" rowspan="2" width="30%">
<placeholder number="0"/>
</td>
<td class="placeholderTD" valign="top" colspan="2" width="70%">
<placeholder number="1"/>
</td>
</tr>
<tr>
<td class="placeholderTD" valign="top" width="35%">
<placeholder number="2"/>
</td>
<td class="placeholderTD" valign="top" width="35%">

Note: If you change your .layout file after you have used it in the
.portal file, you need to reload the changed layout. To reload a layout,
update the layout property using the Properties view. Then click
Reload. then click Reload (next to the layout property drop-down list).

Building User Interfaces to Address Accessibility Guidelines

User Interface Development with Look And Feel Features 7-39

<placeholder number="3"/>
</td>
</tr>
</table>

7.12 Working with Navigation Menus
Menus determine the navigation style used for your portal pages. WebLogic Portal
provides two types of menus: single-level for single rows of tabs and multi-level for
nested, drop-down style page navigation.

■ Single Level Menu - Provides visible layering of book and page links. Any
sub-books and pages appear in rows below the main book navigation.

■ Multi Level Menu - Provides a single row of tab-like links for the books and pages
at the level you apply the Multi Level Menu. Any sub-books and pages appear in a
drop-down list for selection. The Multi Level Menu implements JavaScript
functionality contained in the skins.

If you want navigation menu behavior other than what is provided with the default
menus, modify the singlelevelmenu.jsp or multilevelmenu.jsp skeletons in
your look and feel /skeletons directory by copying those files from the shared J2EE
library to your file system and making the desired modifications. If you are modifying
the multi-level menu behavior, you may also need to modify the skin's menu.js file
located in your skin's /js subdirectory.

7.12.1 Using Images for Page Tabs
To use images on page tabs (Rollover Image, Selected Image, Unselected Image in the
Properties view for a selected book), enter a path to the images that is relative to the
look and feel's image search paths specific in the skin.xml file.

For example, if you skin.xml image search path is
<path-element>images</path-element>, and your menu images are stored in
your skin's /images directory, enter the name of the image file in the Properties view.
If your menu images are stored in an /images subdirectory of your portal web project,
enter a path to the graphic like this: ../../../../images/my_rollover.gif.

7.13 Building User Interfaces to Address Accessibility Guidelines
Many organizations are required to provide web sites that meet industry or
government standards for supporting people with special needs. And even if you do
not have specific requirements, it is just good business to design your site to serve the
needs of a diverse audience.

WebLogic Portal provides a flexible architecture that supports the design,
development, and management of accessible portals and applications, for example, the
ability to target specific user interfaces based on user preferences or browser and
request attributes.

To learn more about building user interfaces with WebLogic Portal, see Section 7.2,
"Working with Look And Feel Files."

This section contains information on the following subjects:

■ Section 7.13.1, "Accessibility Checkpoints"

■ Section 7.13.2, "W3C Web Content Accessibility Guidelines"

Building User Interfaces to Address Accessibility Guidelines

7-40 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

■ Section 7.13.3, "Government Regulations and Standards"

■ Section 7.13.4, "Accessibility Evaluation and Testing Tools"

7.13.1 Accessibility Checkpoints
When you develop web sites, you can use the following general guidelines to facilitate
accessibility. For a complete list, refer to the industry or government regulation
relevant for your implementation.

■ Text Tags – Provide a text equivalent for every non-text element (for example,
using "alt", "longdesc", or in element content).

■ Multimedia Presentations – Synchronize equivalent alternatives for any
multimedia presentation.

■ Color – Design web pages so that all information conveyed with color is also
available without color. (for example, from context or markup.)

■ Readability (style sheets) – Organize documents so they are readable without
requiring an associated style sheet.

■ Server-Side Image Maps – Provide redundant text links for each active region of a
server-side image map.

■ Client-Side Image Maps – Provide client-side image maps instead of server-side
image maps except where the regions cannot be defined with an available
geometric shape.

■ Data Table (simple row and column headers) – Identify row and column headers
for data tables

■ Data Tables (multiple levels of row and column headers) – Use markup associate
data cells and header cells for data tables that have two or more logical levels of
row or column headers.

■ Frames – Entitle frames with text that facilitates frame identification and
navigation.

■ Flicker Rate – Design pages to avoid causing the screen to flicker with a frequency
greater than 2 Hz and lower than 55 Hz.

■ Text-Only Alternative – Provide a text-only page, with equivalent information or
functionality, to make a web site comply with the provisions of this section when
compliance cannot be accomplished in any other way. You must remember to
update the content of the text-only page whenever the primary page changes.

■ Scripts – When pages use scripting languages to display content, or to create
interface elements, you must identify the information provided by the script with
functional text that can be read by assistive technology.

■ Applets and Plug-ins – When a web page requires that an applet, plug-in or other
application be present on the client system to interpret page content, you must
provide a link in the page to a plug-in or applet that complies with Section 508
§1194.21(a) through (l).

■ Electronic Forms – When electronic forms are designed to be completed online,
you must create the form to allow people using assistive technology to access the
information, field elements, and functionality required for completion and
submission of the form, including all directions and cues.

■ Navigation Links – Provide a method that permits users to skip repetitive
navigation links.

Building User Interfaces to Address Accessibility Guidelines

User Interface Development with Look And Feel Features 7-41

■ Time Delays – When a timed response is required, you must alert users and give
them sufficient time to indicate more time is required.

7.13.2 W3C Web Content Accessibility Guidelines
■ http://www.w3.org/WAI/w3c.htm - Checklist of Checkpoints for Web

Content Accessibility Guidelines 1.0

■ http://www.w3.org/TR/WCAG10/full-checklist.html

7.13.3 Government Regulations and Standards
Table 7–8 lists some government regulation resources.

7.13.4 Accessibility Evaluation and Testing Tools
These tools allow you to validate web page code. They do not repair your code, but
they do provide reports on what does and does not need to be fixed, as relating to
HTML 4.0, W3C, Section 508 and general accessibility issues.

7.13.4.1 W3C Web Accessibility Initiative
■ W3C Web Accessibility Initiative's Web Tools Page - Evaluation, Repair, and

Transformation Tools for Web Content Accessibility:
http://www.w3.org/WAI/ER/existingtools.html

■ W3C HTML Validator - The W3C HTML Validation Service checks HTML
documents for conformance to W3C HTML and XHTML recommendations and
other HTML standards: http://validator.w3.org/

■ CSS Validator - If you are using Cascading Style Sheets (CSS), then use the CSS
Validator: http://jigsaw.w3.org/css-validator/

For more information, visit the W3C's Evaluation & Repairs Tools page:
http://www.w3.org/TR/2000/WD-AERT-20000426

7.13.4.2 Lynx Viewer
The Lynx Viewer generates an HTML page that indicates how much of the content of
your page would be available to Lynx, which is a text-only browser. In addition to
showing how useful a site would be for a visually-impaired person, it is also a good
indicator for anyone with older technology, see
http://www.delorie.com/web/lynxview.html.

Table 7–8 Resources for Government Standards

Country Resource

United States http://www.section508.gov

Canada http://www.tbs-sct.gc.ca/clf-nsi/inter/inter-01-tb_e.asp

United Kingdom http://www.w3.org/WAI/Policy/#UK

Building User Interfaces to Address Accessibility Guidelines

7-42 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

8

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-1

8Developing Portals Using Oracle Enterprise
Pack for Eclipse

Before you perform the tasks described in this chapter, make sure you have already
performed the setup steps described in Chapter 4, "Setting up Your Portal
Development Environment." Also keep in mind that you must have the framework for
your portal in place, including look and feel elements, any required CSS files, and so
on, before you start building your portal.

This chapter includes the following sections:

■ Section 8.1, "Creating a Portal"

■ Section 8.2, "Setting Portal Component Properties"

■ Section 8.3, "Copying J2EE Library Files into a Project"

■ Section 8.4, "Custom Controls in Page Flows"

■ Section 8.5, "Deploy and View a Portal"

■ Section 8.6, "Working with URLs"

■ Section 8.7, "Working with Encoding in HTTP Responses"

■ Section 8.8, "Cache Management in Oracle Enterprise Pack for Eclipse"

■ Section 8.9, "Cache Management With Oracle Coherence"

■ Section 8.10, "Improving WebLogic Server Administration Console Performance
on a Managed Server"

■ Section 8.11, "Behavior of the "Return to Default Page" Attribute"

■ Section 8.12, "Customizing Problem Validation Settings"

■ Section 8.13, "Enabling Placeable Movement"

8.1 Creating a Portal
When you create a portal, WebLogic Portal creates a portal file—an XML file with a
.portal file extension. The .portal file is the central defining file of a portal, with
references to all the major components of the portal: the desktops, books, pages,
portlets, and so on.

This section includes the following topics:

■ Section 8.1.1, "Add a Page or Book to Your Portal"

■ Section 8.1.2, "Creating a Standalone Book or Page"

Creating a Portal

8-2 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

■ Section 8.1.3, "Extracting an Existing Page or Book to Re-Use"

■ Section 8.1.4, "Adding a Book or Page Reference (Content)"

■ Section 8.1.5, "Rearranging Books and Pages"

■ Section 8.1.6, "Adding Render Dependencies to Books and Pages"

To create a portal and its accompanying .portal file, perform these steps:

1. If the Portal perspective is not already open, select it by choosing Window > Open
Perspective > Portal.

2. Navigate to the web content directory of your Portal Web Project (by default it is
named WebContent); right-click and then select New > Portal.

The New Portal dialog displays, as shown in Figure 8–1.

Because you started this wizard by right-clicking the web content directory, the
parent folder field automatically displays that directory name.

Figure 8–1 New Portal Dialog

You must locate your portal file in a web content directory that is subordinate to the
web project directory. The default web content directory name is WebContent, and
is assigned when you use the Portal Web Project Wizard. You can change the name
of your web content directory if you wish; for more information, refer to
Section 4.6.3, "New Portal Web Project - Web Module Dialog."

3. In the File name field, enter the name that you want to assign to the portal.

A file type of .portal is required for portals; you can type the .portal
extension to the portal's name if you wish, but WebLogic Portal automatically
adds the extension if you don't enter it.

4. Click Finish.

The wizard adds the portal to the specified folder in the Portal Web Project and a
view of the portal displays in the editor, as shown in Figure 8–2.

Creating a Portal

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-3

Figure 8–2 Portal Displayed in 44

The created portal includes a desktop, header, footer, book, and page. A desktop is a
user-specific view of the portal content. A portal can support many desktops. A single
portal might support an employee-specific desktop, a customer-specific desktop, and
others, where each desktop exposes different kinds of content to different sets of users.
Any part of a portal can be included or excluded from a desktop, including a book, a
page, a specific application, or an individual link.

Desktops can also define the look and feel attributes of a portal. Desktops can be
associated with a particular skin that defines the color scheme, fonts, and images used.
Desktops also contain a header and footer—you can place images, text, or any web
content in these areas to give consistency to the look and feel of a desktop.

Typically, you use Oracle Enterprise Pack for Eclipse to develop a portal and its key
components; then you use the WebLogic Portal Administration Console to create
specific desktops using the portal as a template. For information about creating
desktops in the next phase of development, refer to Chapter 15, "Managing Portal
Desktops."

You use books to organize your content and navigation in a hierarchical manner. Books
can contain other books or pages. In a browser, a book is rendered as a set of tabs or
links. Each portal contains a main book called, by default, "Main Page Book." A page
consists of a set of columns and/or windows that organize the actual content of your
portal. You navigate to a page by clicking on an individual tab or a link. You can create
books and pages using either Oracle Enterprise Pack for Eclipse or the WebLogic
Portal Administration Console.

8.1.1 Add a Page or Book to Your Portal
This section describes how to add a second page to the portal's main book. When the
portal is rendered in a browser, the two pages will appear as two clickable tabs. You
can add a new page using a few different methods; this description describes a drag
and drop method.

Creating a Portal

8-4 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

To add a page to a portal, perform these steps:

1. From the Design Palette, drag and drop the Page icon to the location where you
want to add it. Figure 8–3 shows the result when you add a new page to the right
of the default portal page.

Figure 8–3 Adding a Page to a Portal in Oracle Enterprise Pack for Eclipse

8.1.2 Creating a Standalone Book or Page
You can create a standalone book or page; when you do this, the book or page
information is kept in a separate .book or .page file and is not embedded within the
.portal file. Standalone books and pages are very useful elements in your portal
development environment. For example, in a team development environment,
developers can create individual books or pages that can be managed separately and
then added to the portal at a later time. Also, if you want to create books and pages
that are accessible to remote consumer applications, you must create the book or page
as a standalone .book or .page file using Oracle Enterprise Pack for Eclipse.

Note: The procedure for adding a book to a portal is almost identical
to the procedure for adding a page. Rather than include both
procedures here, we explain how to add a page and, where
appropriate, highlight any differences between the two tasks.

Tip: If you do not see the Palette view, select Window > Show View
> Design Palette.

Creating a Portal

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-5

To create a standalone page in a portal, perform these steps:

1. In your portal web project, navigate to the web content folder (typically named
WebContent) or to a folder within the web content folder.

You must locate books and pages in a web content directory or sub-directory that is
subordinate to the web project directory. The default web content directory name is
WebContent, and is assigned when you use the Portal Web Project Wizard. You
can change the name of your web content directory if you wish; for more
information, refer to Section 4.6.3, "New Portal Web Project - Web Module Dialog."

2. Select File > New > Other.

3. In the New – Select a Wizard dialog, open the WebLogic Portal folder, select Page,
and click Next.

In the New Page dialog, note that the parent folder auto-fills the path from which
you started the wizard.

4. Enter a name for the new page; an example is shown in Figure 8–4.

A file type of .page is required for standalone pages (or .book for standalone
books); you can type the .page extension if you wish, but WebLogic Portal
automatically adds the extension if you don't enter it.

Figure 8–4 New Page Dialog

5. Click Finish.

Note: The procedure for creating a standalone book is almost
identical to the procedure for creating a standalone page. Rather than
explain both procedures here, we explain how to create a standalone
page and, where appropriate, highlight any differences between the
two procedures.

Creating a Portal

8-6 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

The new page is added to the portal web project in the folder you specified, as
shown in Figure 8–5.

Figure 8–5 A New Page File

In addition, the page opens in the editor, as shown in Figure 8–6.

Figure 8–6 Page File Displayed in the Editor

8.1.3 Extracting an Existing Page or Book to Re-Use
You can extract an existing page and then re-use it in other portal applications within
your web project. When you extract an existing page, all of its contents are extracted as
well (portlets and so on).

To extract an existing page or book:

1. Highlight the book or page you want to extract.

2. Right-click and select Extract Page/Book to New File.

3. In the Save As dialog, navigate to the folder where you want to save the book or
page. Be sure the location is in the same web project as the portal from which you
are extracting.

8.1.4 Adding a Book or Page Reference (Content)
Use this selection to add a reference to an existing book or page, into a book or page in
your portal.

Creating a Portal

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-7

8.1.4.1 Adding a Book or Page Reference from the Portal Editor
To add a book or page reference from the Portal Editor:

1. Highlight the portal element to which you want to add a book or page reference.

An orange border appears around a selected element.

2. Right-click and select Insert > New Book Content or Insert > New Page Content.

The Choose a Book dialog or Choose a Page dialog displays, as appropriate; all
.book/.page files for the web project are listed.

3. Select the desired .book or .page file, then click OK.

The Oracle Enterprise Pack for Eclipse window updates, adding a Book (or Page)
Content node in the Outline view and displaying the content properties in the
Properties view.

8.1.4.2 Adding a Book or Page Reference Using the Outline View
To add a book or page reference from the Outline View:

1. Right-click the element to which you want to add book or page content and select
Insert > New Book Content or Insert > New Page Content.

The Choose a Book dialog or Choose a Page dialog displays, as appropriate; all
.book/.page files for the web project are listed.

2. Select the desired .book or .page file, then click OK.

The Oracle Enterprise Pack for Eclipse window updates, adding a Book (or Page)
Content node in the Outline view and displaying the content properties in the
Properties view.

8.1.5 Rearranging Books and Pages
You can change the order of books and pages. For example, if the main page book
contains a page and a book in the following order:

Home Page | My Book

you can change the order to:

My Book | Home Page

To change the order of books and pages, right-click the book or page that you want to
move in the Outline view, and choose Move Up or Move Down. The book or page
moves up or down in the Outline view, and the horizontal reordering occurs in the
portal editor.

Rearranging books and pages does not rearrange them in any portal desktops that you
already created with the WebLogic Portal Administration Console. For instructions on
rearranging those books and pages, refer to Chapter 15, "Managing Portal Desktops."

Note: The Insert menu option appears only when this selection is
valid, depending on the selected portal element.

Note: The Insert menu option appears only when this selection is
valid, depending on the selected portal element.

Setting Portal Component Properties

8-8 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

8.1.6 Adding Render Dependencies to Books and Pages
In a rendered HTML page, the proper place to include most types of resources, such as
script files or style sheet references, is in the header of the document. Books and pages
sometimes need to specify resources that are required for rendering the book or page.
The WLP render dependencies feature is used for this purpose.

When attaching render dependencies to books and pages, note the following:

■ You can only use this feature with local books and pages. You cannot use render
dependencies with remote books and pages (with WSRP).

■ Render dependencies are resolved by using the most general scope. The
dependencies from more specific scopes are ignored. For example, if dependencies
are applied to a book, page, and portlet, the dependencies from the book will be
used. If the book has no dependencies, then the page dependencies will be used. If
neither the book nor the page have dependencies, then the portlet dependencies
will be used.

■ Remote portlets will not inherit dependencies from local books and pages. Remote
portlet render dependencies resolve only to the remote portlet itself.

You can attach multiple dependencies files to a portlet, book, or page. You can set the
Render Dependencies Path for a portlet, book, or page to be a comma-delimited list of
paths. All of the dependencies files in those multiple paths will be used to resolve
dependencies. This feature includes filtering logic that attempts to avoid duplicates so
that the same artifacts are not injected multiple times in the markup.

Use any of the following methods to create and attach a render dependencies file to a
book or page:

■ Right-click in the main body of a book or page in the portal editor and select
Create Render Dependency File. This brings up the New Render Dependencies
Dialog, which lets you create the file.

■ Select File > New > Other > Markup Files > Render Dependencies. This brings
up the New Render Dependencies Dialog, which lets you create the file. You can
then associate the file with a book or page using the Render Dependencies Path
property.

■ In the book or page Properties view, edit the Render Dependencies Path property.
The Properties view provides a button that brings up the New Render
Dependencies dialog.

8.2 Setting Portal Component Properties
Portal properties are named attributes of the portal that uniquely identify it and define
its characteristics. Some properties—such as title and definition label—are required;
many optional properties allow you to enable specific functions for the portal such as
presentation properties, rollover images, and control tree optimization. The specific
properties that you use for a portal vary depending on your expected use for that
portal.

Note: Portlets can also specify render dependencies. For more
detailed information and background on render dependencies (also
called portlet dependencies), see "Portlet Dependencies" in the Oracle
Fusion Middleware Portlet Development Guide for Oracle WebLogic Portal.

Setting Portal Component Properties

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-9

Each portal component includes a set of properties that are used to configure its
behavior. For example, you can configure desktop properties that determine which
look and feel the desktop uses, as well as the type of encoding used at runtime.

Portal properties include subsets of properties for the main components (books, pages,
desktops and so on). The *.portal file provides a complete view of these properties.

During the development phase of the portal life cycle, you generally edit portal
properties using Oracle Enterprise Pack for Eclipse; this section describes properties
that you can edit using Oracle Enterprise Pack for Eclipse.

During staging and production phases, you typically use the WebLogic Portal
Administration Console to edit portal properties; only a subset of properties are
editable at that point. For instructions on editing portal properties from the WebLogic
Portal Administration Console, refer to Chapter 15, "Managing Portal Desktops."

This section contains the following topics:

■ Section 8.2.1, "Editing Portal Properties"

■ Section 8.2.2, "Tips for Using the Properties View"

■ Section 8.2.2.1, "Presentation Properties"

■ Section 8.2.2.2, "Desktop Properties"

■ Section 8.2.2.3, "Book Properties"

■ Section 8.2.2.4, "Page Properties"

■ Section 8.2.2.5, "Placeholder Properties"

8.2.1 Editing Portal Properties
When you click a border in the portal editor view, an orange outline appears around
that section of the portal, and a related set of properties appears in the Properties view.
The displayed properties vary according to the selected border in the view. Figure 8–7
shows the highlighted Header area and its related properties.

To edit portal properties, follow these steps:

1. Navigate to the location of the portal whose properties you want to edit, and
double-click the .portal file to open it in the editor.

2. Click the border of the desired component to display its properties in the
Properties view.

The displayed properties vary according to the active area that you select. If you
click the outer (desktop) border, properties for the entire desktop appear; if you
click inside a placeholder, properties for that placeholder appear, and so on.

3. Navigate to the Properties view to view the current values for that component's
properties. Figure 8–7 shows a segment of a portal header's Properties view:

Figure 8–7 Portal Properties Example - Header Properties

Setting Portal Component Properties

8-10 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

4. Double-click the field that you want to change.

If you hover the mouse over a property field, a description of that field displays in
a popup window.

Values for some properties are not editable after you create the portal.

In some cases, from the property field you can view associated information
pertaining to that property; for example, the Skeleton URI property provides an
Open button to view the associated file. For more information about options
available in the Properties view, refer to Section 8.2.2, "Tips for Using the
Properties View."

8.2.2 Tips for Using the Properties View
The behavior of the Properties view varies depending on the type of field you are
editing. The following tips might help you as you manipulate the content of the data
fields in the Properties view.

■ If a file is associated with a property, the Properties view includes an Open button
in addition to a Browse button; you can click Open to display the appropriate
editor/view for the file type.

■ If you have edited a markup file that is associated with a property, you can cause
the property to "reload" the content of that markup file so that it is available for
selection in the Properties view. To reload a markup file for a property, navigate to
the property for which you want to reload the markup file contents and click
Reload. The Reload button is available only for properties that have an associated
markup file; for example, layout, shell, theme, menu, and so on.

■ If you want to edit the XML source for a portal file, you can right-click the
.portal file in the Package Explorer view and choose Edit with > XML Editor to
open the file using the basic XML editor that Eclipse provides.

8.2.2.1 Presentation Properties
Each component of your portal can have unique presentation properties. Table 8–1
describes presentation properties and their values.

Setting Portal Component Properties

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-11

Table 8–1 Presentation Properties

Property Description

Presentation Class Optional.

A CSS class that overrides any default CSS class used by the component's
skeleton.

For proper rendering, the class must exist in a cascading style sheet (CSS) file in
the look and feel's selected skin, and the skin's skin.xml file must reference the
CSS file.

Sample: If you enter "my-custom-class", the rendered HTML from the default
skeletons looks like this:

<div class="my-custom-class">

The properties you enter are added to the component's parent <div> tag. On
books, pages, and portlets, use the Content Presentation Class property to set
properties on the component's content/child <div> tag, especially for setting a
style class that enables content scrolling and height-setting.

Note: Presentation properties on placeholders are only applicable when using
file-based portals.

Presentation ID Optional. A unique ID inserted in the rendered HTML tag for the component. The
value you enter (which must be unique among all presentation IDs in the portal)
overrides the ID that might otherwise be inserted by the component's skeleton.
An example use would be inserting a unique ID that JavaScript could operate on.

Sample - If you enter A12345, the rendered HTML from the default skeletons will
look like this:

<div id="A12345">

Presentation Style HTML style attribute to insert for the portal component. This attribute is
equivalent to a style sheet class attribute and overrides any attributes in the style
sheet class. Separate multiple entries with a semicolon.

Sample: If you enter {background-color: #fff} for a portlet title bar, the
rendered HTML from the default skeletons looks like this:

<div class="bea-portal-window-titlebar" style="{background-color:
#fff}">**

and the portlet title bar will have a white background. The background-color
attribute you entered overrides the background-color attribute in the
bea-portal-window-titlebar class.

The properties you enter are added to the component's parent <div> tag. On
books, pages, and portlets, use the Content Presentation Style property to set
properties on the component's content/child <div> tag, especially for setting
content scrolling and height.

Note: Presentation properties on placeholders are only applicable when using
file-based portals.

Properties A semicolon-separated list of name-value pairs to associate with the object. This
data can be utilized by the skeletons to affect rendering.

Note: Presentation properties on placeholders are only applicable when using
file-based portals.

Skeleton URI The path (relative to the project) to a skeleton JSP that is used to render the portal
component. This JSP overrides the skeleton JSP that would otherwise be used by
the selected look and feel for the desktop. For example, enter
/framework/myskeletons/mytitlebar.jsp.

Note: Presentation properties on placeholders are only applicable when using
file-based portals.

Setting Portal Component Properties

8-12 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

8.2.2.2 Desktop Properties
Desktop properties allow you to determine how your portal desktop will behave. You
can assign a backing file to your desktop as well as look and feel properties such as
shell, title, and the look and feel you want the desktop to use. Table 8–2 describes
desktop properties and their values

Two of the desktop properties are also important for performance: Tree Optimization
and Asynchronous Mode. For more information about designing your portal for
performance, see Chapter 13, "Designing Portals for Optimal Performance."

Table 8–2 Desktop Properties

Property
Type Property Description

Backable
Properties

Backing File If you want to use a class for preprocessing (for example, authentication)
prior to rendering the portlet, enter the fully qualified name of that class.
That class must implement the interface:

com.bea.netuix.servlets.controls.content.backing.JspBacking

or extend:

com.bea.netuix.servlets.controls.content.backing.AbstractJspBackin
g.

Desktop
Properties

Asynchronous Mode Asynchronous mode allows you to set the contents of a desktop to render
asynchronously. When asynchronous mode is enabled, portal content
(including individual portlets) displays when its individual rendering life
cycle is complete.

The drop-down menu displays these options:

Enabled — Enables asynchronous rendering for the entire desktop whereas
each desktop component (books, pages, portlets) renders on its own life cycle.

Disabled — This option ensures the entire desktop renders synchronously.

Compat_9_2 — This option maintains compatibility with any
synchronization setting you used in WebLogic Portal 9.2.

Desktop
Properties

Disc Enabled Set Disc Enabled to true to enable the Disc framework. Disc provides a
client-side, JavaScript, object-oriented programming framework for handling
events, making asynchronous portlet updates, and for accessing portal
context objects. See the Oracle Fusion Middleware Client-Side Developer's Guide
for Oracle WebLogic Portal for detailed information on Disc.

Desktop
Properties

DVT Enabled Set DVT Enabled to true to enable placeable movement (drag and drop) for
the desktop. For more information, see Section 8.13, "Enabling Placeable
Movement."

Desktop
Properties

Definition Label Each component must have a unique identifier. A default value is entered
automatically, but you can change the value. Definition labels can be used to
navigate to books, pages, or portlets. Also, components must have definition
labels for entitlements and delegated administration.

As a best practice, you should edit this value in Oracle Enterprise Pack for
Eclipse to create a meaningful value. This is especially true when offering
books, pages, or portlets remotely, as it makes it easier to identify them from
the producer list.

Note: This is also especially important when monitoring books, pages, or
portlets with Oracle WebCenter Analytics, as it makes it easier to identify
them in the Analytics reports.

When you create a portal resource instance on a desktop in the WebLogic
Portal Administration Console, the generated definition label is not editable.

Setting Portal Component Properties

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-13

8.2.2.3 Book Properties
You can assign a backing file to a book using book properties, as well as set up a page
to use a theme file instead of the portal look and feel file. Book properties also include
different presentation properties differ for books, see Table 8–3.

Desktop
Properties

Encoding Select the encoding used to display the portal. The default is UTF-8. You can
select a value using the drop-down menu, which provides five common
IANA encoding selections, or you can type a value into the field. The values
presented in the combobox are descriptive display names that are converted
to actual IANA names when saved to the .portal file.

You can enter a name from the extended encoding set as an IANA name,
alias, or canonical name for the encoding. If you type in a value that does not
appear in the drop-down menu, a validator checks the entry when you press
Enter or click outside the field. If the encoding fails validation, a warning
message displays; you can either change the value or accept it anyway. The
value is stored as shown in the field, in the .portal file.

The character set is based on these resources, generally in the following order:

Encoding of the portal (the "encoding" attribute of the desktop)

Default encoding set in netuix-config.xml.

Encoding set in <jsp-descriptor> element of weblogic.xml.

Desktop
Properties

Look and Feel Select the look and feel to determine the default desktop appearance
(combination of skins and skeletons)

Desktop
Properties

Scroll to Window When portal users interact with scrollable pages, maintains browser focus on
active portlet. This property is set to true by default.

Note: This property is not compatible with asynchronous desktop rendering
or asynchronous portlet rendering.

Desktop
Properties

Shell Select the default shell for the area outside of the books, pages, and portlets.
Shells determine the content for the desktop header and footer.

Desktop
Properties

Title Enter a title for the desktop.

Desktop
Properties

Tree Optimization Using this function improves performance, especially for portals that have
large control trees (books, pages, portlets). If this flag is set to true, the portal
framework generates a partial control tree rather than the full tree. Tree
optimization causes slight changes in the behavior of the portal; do not use it
without first performing a complete regression test on the portal. For more
information, refer to Chapter 13, "Designing Portals for Optimal
Performance."

Table 8–2 (Cont.) Desktop Properties

Property
Type Property Description

Setting Portal Component Properties

8-14 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Table 8–3 Book Properties

Property Type Property Definition

Backable Properties Backing File If you want to use a class for preprocessing (for example,
authentication) prior to rendering the portlet, enter the fully
qualified name of that class. That class must implement the interface
com.bea.netuix.servlets.controls.content.backing.JspBacking or
extend
com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking.

Backable Properties Definition Label Each component must have a unique identifier. A default value is
entered automatically, but you can change the value. Definition
labels can be used to navigate to books, pages, or portlets. Also,
components must have definition labels for entitlements and
delegated administration.

As a best practice, you should edit this value in Oracle Enterprise
Pack for Eclipse to create a meaningful value. This is especially true
when offering books, pages, or portlets remotely, as it makes it easier
to identify them from the producer list.

Note: This is also especially important when monitoring books,
pages, or portlets with Oracle WebCenter Analytics, as it makes it
easier to identify them in the Analytics reports.

When you create a portal resource instance on a desktop in the
WebLogic Portal Administration Console, the generated definition
label is not editable.

About .book and .page definition labels: Avoid including
multiple occurrences of the same .book or .page file (with the same
definition label) within a portal. For example, if you use nested
embeds of the same .book or .page file within a portal, then
rendering problems will occur due to the existence of duplicated
definition labels.

Backable Properties Hidden Optional.

Hides the navigation tab for the portal component to prevent direct
access. For pages or books, you can provide access with a link (to the
definition label) or by using a backing file.

Backable Properties Packed Rendering hint that can be used by the skeleton to render the book or
page in either expanded or packed mode. You must build your own
skeleton to support the property.

When packed="false" (the default), the book or page takes up as
much horizontal space as it can.

When packed="true," the book or page takes up as little horizontal
space as possible.

From an HTML perspective, this property is most useful when the
window is rendered using a table. When packed="false," the table's
relative width would likely be set to "100%." When packed="true,"
the table width would likely remain unset.

Backable Properties Rollover Image Path to a rollover image for the icon that appears next to the book or
page title.

Because the specified path might not be relative to the project, the
image file cannot be located by Oracle Enterprise Pack for Eclipse
and is not rendered on book or page tabs in the portal editor. Image
paths must be relative to the image search paths specified in the
skin.xml file associated with the selected look and feel.

Setting Portal Component Properties

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-15

Backable Properties Selected Image Select an image to override the icon that appears next to the book or
page title. This image appears on the tab of selected pages.

Because the specified path might not be relative to the project, the
image file cannot be located by Oracle Enterprise Pack for Eclipse
and is not rendered on book or page tabs in the portal editor. Image
paths must be relative to the image search paths specified in the
skin.xml file associated with the selected look and feel.

Backable Properties Theme Optional.

Applicable for books and pages. Select a theme to give the book or
page a different look and feel from the rest of the desktop.

Backable Properties Title Enter a title for the portal component. Page titles appear on page tabs
and portlet titles appear on portlet title bars.

For a placeholder, the name of the placeholder. This value is
read-only, and is obtained from the .layout file for the page's
selected Layout Type.

Backable Properties Unselected Image Select an image to override the icon that appears next to the book or
page title. This image appears on the tab of unselected pages.

Because the specified path might not be relative to the project, the
image file cannot be located by Oracle Enterprise Pack for Eclipse
and is not rendered on book or page tabs in the portal editor. Image
paths must be relative to the image search paths specified in the
skin.xml file associated with the selected look and feel.

Book Properties Content Presentation
Class

A CSS class that overrides any default CSS class used by the
component's skeleton.

For proper rendering, the class must exist in a cascading style sheet
(CSS) file in the look and feel's selected skin, and the skin's
skin.xml file must reference the CSS file.

Sample: If you enter "my-custom-class", the rendered HTML from
the default skeletons looks like this:

<div class="my-custom-class">

The properties you enter are added to the component's parent <div>
tag. On books, pages, and portlets, use the Content Presentation
Class property to set properties on the component's content/child
<div> tag, especially for setting a style class that enables content
scrolling and height-setting.

Book Properties Content Presentation
Style

Optional. The primary uses are to allow content scrolling and content
height-setting.

For scrolling, enter one of the following attributes:

overflow-y:auto - Enables vertical (y-axis) scrolling

overflow-x:auto - Enables horizontal (x-axis) scrolling

overflow:auto - Enables vertical and horizontal scrolling

For setting height, enter the following attribute:

height:200px

where 200px is any valid HTML height setting.

You can also set other style properties for the content as you would
using the Presentation Style property. The properties are applied to
the component's content/child <div> tag.

Table 8–3 (Cont.) Book Properties

Property Type Property Definition

Setting Portal Component Properties

8-16 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

8.2.2.4 Page Properties
Page properties allow you to configure properties for individual pages in your portal.
The layout property determines how many placeholders the page has and their
locations. Table 8–4 lists each page property.

Book Properties Default Page Required.

Select the page that appears by default when the desktop is accessed.
The list is populated with Definition Labels of all pages in the portal.

Book Properties Editable A dropdown menu displays these selections:

Not Editable

Edit in Menu

Edit in Titlebar

If you have visitor tools enabled so that users can modify book
properties, setting Editable to "Edit in Title Bar" or "Edit in Menu"
puts a visitor tool link in that location.

"Edit in Menu" is available only if you select a menu type for the
Navigation property. When you select "Edit in Title Bar" or "Edit in
Menu," a group of Mode Properties appears in the Property Editor.

Book Properties Navigation Select the default type of menu to use for navigation among books
and pages. The dropdown menu displays these selections:

Single Level Menu – Provides a single row of tabs for the book's
immediate pages and child books.

Multi Level Menu – Recursively provides a hierarchical menu for all
the books and pages contained within a book. This menu does not
stop at the first set of children. It continues down the tree. If the
parent book uses a multi-level menu, then the child books should not
use a menu as the multi-level menu will cover them. For
performance considerations associated with multi-level menus, refer
to Chapter 13, "Designing Portals for Optimal Performance."

No Navigation

Book Properties Orientation Hint to the skeleton to position the navigation menu on the top,
bottom, left, or right side of the book. You must build your own
skeleton to support this property. Following are the numbers used in
the .portal file for each orientation value: top=0, left=1, right=2,
bottom=3.

Book Properties Return to Default
Page

Determines the page displayed when a book is selected.

When Return to Default Page="false" (the default), the last page that
was active in a book is displayed when the book is selected.

When Return to Default Page="true," the page selected in the Default
Page property is always displayed when a book is selected.

Table 8–3 (Cont.) Book Properties

Property Type Property Definition

Setting Portal Component Properties

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-17

Table 8–4 Page Properties

Property Type Property Definition

Backable Properties Backing File If you want to use a class for preprocessing (for example,
authentication) prior to rendering the portlet, enter the fully qualified
name of that class. That class must implement the interface:

com.bea.netuix.servlets.controls.content.backing.JspBacking

or extend:

com.bea.netuix.servlets.controls.content.backing.AbstractJs
pBacking.

Backable Properties Definition Label Each component must have a unique identifier. A default value is
entered automatically, but you can change the value. Definition labels
can be used to navigate to books, pages, or portlets. Also,
components must have definition labels for entitlements and
delegated administration.

As a best practice, you should edit this value in Oracle Enterprise
Pack for Eclipse to create a meaningful value. This is especially true
when offering books, pages, or portlets remotely, as it makes it easier
to identify them from the producer list.

Note: This is also especially important when monitoring books,
pages, or portlets with Oracle WebCenter Analytics, as it makes it
easier to identify them in the Analytics reports.

When you create a portal resource instance on a desktop in the
WebLogic Portal Administration Console, the generated definition
label is not editable.

About .book and .page definition labels: Avoid including multiple
occurrences of the same .book or .page file (with the same definition
label) within a portal. For example, if you use nested embeds of the
same .book or .page file within a portal, then rendering problems
will occur due to the existence of duplicated definition labels.

Backable Properties Hidden Hides the navigation tab for the portal component to prevent direct
access. For pages or books, you can provide access with a link (to the
definition label) or by using a backing file.

Backable Properties Packed Rendering hint that can be used by the skeleton to render the book or
page in either expanded or packed mode. You must build your own
skeleton to support the property.

When packed="false" (the default), the book or page takes up as
much horizontal space as it can.

When packed="true," the book or page takes up as little horizontal
space as possible.

From an HTML perspective, this property is most useful when the
window is rendered using a table. When packed="false," the table's
relative width would likely be set to "100%." When packed="true,"
the table width would likely remain unset.

Page Properties Layout Type Select the page layout style for positioning books and portlets in
placeholders on a page. A dropdown menu provides the following
selections:

Two Column Flow Layout

Three Column Flow Layout

Single Column Flow Layout

Four Column Flow Layout

For more information about layouts, see Section 7.11, "Working with
Layouts."

Copying J2EE Library Files into a Project

8-18 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

8.2.2.5 Placeholder Properties
Placeholders are named sections within a page layout. By editing placeholder
properties, you can modify a placeholder text flow, width, and so on. For more
information about layouts, see Section 7.11, "Working with Layouts."

Table 8–5 lists placeholder properties.

8.3 Copying J2EE Library Files into a Project
You can override a resource in a shared J2EE library by copying the resource into your
portal web project and then customizing it.

To copy a J2EE library resource into your project, follow these steps:

1. Add the Merged Projects view if it is not currently visible. To do so:

Select Window > Show View > Merged Projects View.

The Merged Projects View is part of the default Portal Perspective, displaying in
the same area as the Package Explorer view.

2. Select the Merged Projects view if it is not already selected.

Italicized items in the Merged Projects View represent entities that are stored in
shared J2EE libraries. All entities that are stored on your file system, such as any
portal files that you create, are shown in regular type.

3. Expand the display tree to view the resource that you want to copy to the project.

You can copy a single file, set of files, or an entire folder, to your project.

4. Right-click the resource(s) that you want to copy, and select Copy To Project.

The resources are copied to the web content folder of your project, and reflect the
hierarchy of their location in the J2EE library.

Table 8–5 Placeholder Properties

Property Description

Flow If true, books and portlets put in the placeholder are positioned according to
the value of the Flow property. If this value is set to false, the default flow is
used (vertical). This value is read from the .layout file for the page's selected
Layout Type.

Placeholder Width Displays the width set for the placeholder. This value is read from the
.layout file for the page's selected Layout Type.

Title For a placeholder, the name of the placeholder. This value is read-only, and is
obtained from the .layout file for the page's selected Layout Type.

Using Flow If the Using Flow property is set to true, this value can be vertical or
horizontal. Flow determines whether books or portlets put in the
placeholder are positioned on top of each other (vertical) or beside each other
(horizontal). This value is read from the .layout file for the page's selected
Layout Type.

Caution: If you copy J2EE library resources into your project, keep in
mind that with future updates to the WebLogic Portal product, you
might have to perform manual steps in order to incorporate product
changes that affect those resources. With any future patch installations,
WebLogic Portal supports only configurations that do not have copied J2EE
library resources in the project.

Custom Controls in Page Flows

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-19

8.3.1 Viewing Files that Override Shared J2EE Library Files
You can view local file overrides of J2EE library files in either of these ways:

■ In the Merged Projects view in Oracle Enterprise Pack for Eclipse, files that you
copied to the project are shown in plain (non-italic) text.

■ Optionally, you can choose to superimpose a small marker icon on file icons in the
display tree to indicate that a local file in your portal web project is overriding a
file of the same name and path that exists in one of your shared J2EE libraries.

The icon indicating J2EE library overrides is turned off by default, due to the
processing time involved in updating the information, and the fact that using it
causes the WebLogic Portal plugins to always load at startup.

To activate the library override marker icons, follow these steps:

1. Navigate to Window > Preferences > General > Appearance > Label
Decorations.

2. Check the box labeled WebLogic Library Module File Override.

3. Click Apply and then click OK.

A small arrow displays in the icon for files that were copied from the J2EE
library to the project.

8.4 Custom Controls in Page Flows

WebLogic Portal provides custom Java controls—collections of actions (Java methods)
that you can drag and drop into your page flows—to make development easier and
more automated. You can add actions in a graphical interface and configure the actions
with the Oracle Enterprise Pack for Eclipse editor, insulating you from working
directly with Java code (although you can still work directly with the code in Source
View). Even if you want to work directly with code, working initially with the
graphical interface automates code entry and makes it more syntax error free.

For example, the custom controls provided with WebLogic Portal provide built-in
forms on some methods. If you want an action that creates a user, you can use the
createUser method in the User Provider control. If you add the createUser method into
the control's action area, the control provides a CreateUserForm bean that can be
added to a JSP and linked to the action automatically.

For information about creating page flows using Oracle Enterprise Pack for Eclipse,
refer to the Oracle Workshop for WebLogic User's Guide. For more information about the
specific controls provided with WebLogic Portal, refer to the Oracle Fusion Middleware
Java API Reference for Oracle WebLogic Portal.

Note: You can view a Properties dialog for a file in the Merged
Projects View by right-clicking the file and selecting Properties. The
dialog shows the J2EE library information for the file, including the
J2EE library name and version.

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See Section 5.1,
"Apache Beehive and Apache Struts Supported Configurations."

Custom Controls in Page Flows

8-20 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

The following sections provide more information about using controls provided by
WebLogic Portal in page flows:

■ Section 8.4.1, "Adding a Portal Control to a Page Flow"

■ Section 8.4.2, "Adding an Action to the Page Flow"

■ Section 8.4.3, "Portal Control Security"

8.4.1 Adding a Portal Control to a Page Flow
To add a control to a page flow:

1. Open an existing page flow or create a new page flow.

For information about creating page flows using Oracle Enterprise Pack for
Eclipse, refer to the Oracle Workshop for WebLogic User's Guide.

2. If you are not already using the Page Flow Perspective, Oracle Enterprise Pack for
Eclipse asks if you want to switch to it. Do so.

3. Right-click in the source view for the page flow and select Insert > Control, as
shown in Figure 8–8.

Figure 8–8 Insert> Control Menu Selection

The Select Control dialog box displays, as shown in Figure 8–9.

Figure 8–9 Select Control Dialog

4. Expand the desired folder and select the control that you want to add.

5. Click OK to add the control to the page flow.

Deploy and View a Portal

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-21

All the methods in the control are now available to your page flow. For more
information about portal controls, see the Oracle Fusion Middleware Java API Reference
for Oracle WebLogic Portal.

8.4.2 Adding an Action to the Page Flow
You can add a method (action) to your page flow by dragging a method from the Page
Flow Explorer view into the Flow View in the page flow editor, as shown in
Figure 8–10.

Figure 8–10 Adding an Action to a Page Flow Using the Flow View

8.4.3 Portal Control Security
Many portal framework controls have secured methods, meaning that any control
attempting to execute such a method would need to be in an authorized security role.
You can specify security roles in a page flow on each action. A user must be a member
of the designated role(s) for the action to be fired. For example, the User Provider
Control has a removeUser() action that requires the caller to be in the role of
"Framework SystemAdministrator" or "Admin."

For user and group management actions, the roles you specify in the WebLogic Portal
Administration Console Authentication Security Provider Service determine whether
or not the user can perform the action.

You can add security roles to a domain using the WebLogic Server Administration
Console.

8.5 Deploy and View a Portal
You can deploy (publish) a portal to the server and view it in a browser window.

Note: Opening the same portal desktop in multiple browser
windows that share the same process (and, therefore, the same
session) is not supported. For example, using the render:pageURL
tag or the JavaScript window.open function to open a portal desktop
in a new window is not supported and can result in unwanted side
effects. For instance, if a portlet is deleted in the new window, and
then the user tries to interact with that portlet in the main window, the
interaction will fail.

Deploy and View a Portal

8-22 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

To deploy (publish) and view your portal project, follow these steps:

1. Right-click the.portal file for the portal in the Package Explorer view and select
Run As > Run on Server, as shown in Figure 8–11.

Figure 8–11 Selecting to Run the Portal on the Server

The Run On Server - Define a New Server dialog displays. Make sure the server
that you want to use is highlighted.

2. Click Finish to begin the deployment process.

Wait while Oracle Enterprise Pack for Eclipse starts the server, deploys files to the
server, and runs the application. While deployment is in process, you can view
status messages in the status bar at the bottom of the window.

The results appear in a new tab in the editor view, as shown in Figure 8–12.

Caution: Due to a problem in Eclipse, some JSP tags are marked as
containing an error when they are actually correct; although no error
actually exists, Eclipse will not publish (deploy) the application. If this
situation occurs, you must turn off JSP validation before publishing.
Leave JSP validation on until you have fixed any problems except
those caused by these tags; before deploying, select Window >
Preferences, select Validation in the tree, and uncheck the JSP
Syntax Validator check box.

Note: In many cases you are not required to redeploy a portal to see
changes that you have made. For more information, refer to
Section 4.10, "Running a Project on the Server."

Tip: If you previously deployed a project of the same name and that
project is in a different location, you need to undeploy that project
from the server. To do this, double-click the server in the Servers view,
and delete the appropriate portal web project (not the shared J2EE
libraries) from the Published Modules list. For more information
about this task, refer to the "Managing Servers" section of the Oracle
Workshop for WebLogic Platform Programmer's Guide.

Working with URLs

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-23

Figure 8–12 Portal Display in the Workbench Editor View

8.6 Working with URLs
The following sections describe how to work with URLs in WebLogic Portal:

■ Section 8.6.1, "Creating URLs to Portal Resources"

■ Section 8.6.2, "URL Compression"

■ Section 8.6.3, "URL Troubleshooting"

■ Section 8.6.4, "Ampersand Entities in Portal URLs"

■ Section 8.6.5, "Optional Look And Feel URL Templates"

8.6.1 Creating URLs to Portal Resources
WebLogic Portal provides a convenient, extensible mechanism for creating URLs to
your portal resources in a portal web project that can transfer from domain to domain
without breaking, especially when server names and port numbers change. This
URL-creation mechanism also lets you switch between secure and non-secure URLs
(http and https).

The two pieces involved in creating portable URLs are:

■ The <render:*Url> JSP tags in the Portal Rendering JSP tag library.

■ A portal web project's WEB-INF/beehive-url-template-config.xml file.

The beehive-url-template-config.xml file contains multiple URL "templates,"
each with a unique name. Those template URLs contain variables such as
url:domain and url:port that are read in from the active server. The
<render:*Url> JSP tags have a "template" attribute in which you can specify the
name of a URL template in beehive-url-template-config.xml.

Table 8–6 shows how the JSP tags use the templates to create URLs.

Tip: You can choose to always use an external web browser to view
your portal if you wish. To do so, select Window > Preferences and
select General > Web Browser in the property tree; then select the Use
external Web browser radio button.

Note: By default, WLP appends a security token to WLP-generated
URLs to prevent certain kinds of security attacks. For detailed
information, see "Using Security Tokens" in the Oracle Fusion
Middleware Security Guide for Oracle WebLogic Portal.

Working with URLs

8-24 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

You can use any of the URL templates in beehive-url-template-config.xml
provided by WebLogic Portal, and you can add as many templates as you want into
the file.

The following variables are available for use in URL template building:

■ {url:domain} - Reads the name of the server from the current request.

■ {url:port} - Reads the listen port number of the server from the current
request. (See Troubleshooting below.)

■ {url:securePort} - Reads the SSL port number of the server from the current
request. (See Troubleshooting below.)

■ {url:path} - Reads the name of the web application. The URLs to all resources
in a web application are relative to the web application directory.

■ {url:queryString} - Reads a queryString variable for the URL.

■ {url:compression} - Allows you to use the pluggable compression mechanism
to create shorter, more readable, URLs. For details, refer to Section 8.6.2, "URL
Compression."

8.6.2 URL Compression
URL strings can take up a large percentage of the response HTML. WebLogic Portal's
URL compression mechanism provides a pluggable means of creating shorter URLs.
For example:

Before implementing URL compression, a URL would look like this:

http://abc.com/webapp/portletEvents/activatePage/activatePage.portal?_nfpb=true&_
windowLabel=pfTPC_source_1&pfTPC_source_1_
actionOverride=%2FportletEvents%2FactivatePage%2FtoPage1

After implementing URL compression, a URL would look like this:

http://abc.com/wlp.c?__c=7f6

WebLogic Portal implements URL compression by mapping strings to the database.
You set up URL compression using a web application-level setting; processing is
invoked through the GenericURL class.

The default algorithm uses two of the p13n caches for the mapping -
wlp.urlCompression.compressed and wlp.urlCompression.expanded - which are
located in p13n-cache-config.xml in the framework-full-app library module.

8.6.2.1 Implementing URL Compression
To configure a webapp to use url compression, follow these steps:

Table 8–6 Examples of JSP Tags Using the Templates to Create URL

beehive-url-template-config.xml <render:resourceUrl>

The following is a sample URL template in
beehive-url-template-config.xml.

<url-template name="secure-url">
https://{url:domain}:{url:securePort}/{url:pa
th}?{url:queryString}
</url-template>

The following is how the <render:resourceUrl> JSP tag
would create a URL using the template.

<% String reportpath = "reports/report1.html"; %>
<a href="<render:resourceUrl template="secure-url"
path="<%=reportpath%>"/>">
View the Report

Working with URLs

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-25

1. Define the compression servlet in web.xml; for example

<servlet>
 <servlet-name>UrlCompressionServlet</servlet-name>
 <servlet-class>com.bea.portlet.compression.UrlCompressionServlet
 </servlet-class>
 <init-param>
 <param-name>defaultPage</param-name>
 <param-value>/index.jsp</param-value>
 </init-param>
 <init-param>
 <param-name>errorPage</param-name>
 <param-value>/errors/error.jsp</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>

2. Map the compression pattern; for example:

<servlet-mapping>
 <servlet-name>UrlCompressionServlet</servlet-name>
 <url-pattern>wlp.c</url-pattern>
</servlet-mapping>

3. Add the token {url:compression} to the templates for which you want to
apply compression.

8.6.2.2 URL Compression Special Considerations
The following sections describe some special considerations to keep in mind as you
implement URL compression.

8.6.2.2.1 URL Compression and AJAX URL compression interferes with some of the
AJAX-specific mechanisms for page refreshes that are associated with asynchronous
portlet rendering. Because of this, URL compression must be disabled whenever
asynchronous content rendering is disabled to force page refreshes. WebLogic Portal
disables URL compression automatically except when file upload forms are used; in
this situation, you must explicitly disable it. For instructions, refer to the Oracle Fusion
Middleware Portlet Development Guide for Oracle WebLogic Portal.

A successful implementation of URL compression depends on portal developers
following best practices and using supported URL tags and classes to generate URLs.

8.6.2.2.2 URL Compression and Off-Site URLs An off-site URL is a URL to a resource that
is not hosted in the web application of the code generating the URL. In a web
application that has compression enabled, you must specify a URL template with
compression disabled when using GenericURL, its subtypes, or the corresponding JSP
tags to generate off-site URLs.

Use the following code fragment as a guide:

GenericURL redirectURL = GenericURL.createGenericURL(request, response);
redirectURL.setDomain("www.yahoo.com"); redirectURL.setPort(80);
redirectURL.setPath("/compressedUrl/index.html"); redirectURL.setTemplate("no_
compression_template");

where "no_compression_template" is the name of a URL template that excludes
the {url:compression} pseudo-token.

Working with URLs

8-26 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

8.6.2.2.3 URL Compression and Frequently-Accessed Data When referencing
frequently-accessed URLs in your code, it is a best practice to turn off URL
compression. When URL compression is enabled, a new database entry is created each
time the URL is accessed. For frequently accessed URLs, this could create performance
issues.

To disable URL compression on a per URL basis in your page flows or JSPs, you need
to add a no compression template to your WEB-INF/beehive-url-template-config.xml
file. You can then reference this template in your code.

For example, the following JSP results in increased entries in the database. Every time
this JSP is rendered a new entry is created in the database regardless of whether or not
the link is ever pushed.

Example 8–1 Poor Example of Using URL Compression in a JSP

<%
String value = String.valueOf(System.currentTimeMillis());
%>
<render:postbackUrl var="url">
<render:param name="name" value="hello" />
<render:param name="value" value="<%=value%>" />
</render:postbackUrl>
Post current time url:${url}<p/>

To remedy the situation, you should add a new template to the
WEB-INf/beehive-url-template-config.xml that does not use URL
compression, as shown in Example 8–2.

Example 8–2 URL Template in beehive-url-template-config.xml That Does Not Use
Compression

<url-template>
<name>defaultNoCompression</name>
<value>{url:scheme}://{url:domain}:{url:port}/{url:path}?{url:queryString}{url:cur
rentPage}</value>
</url-template>

After adding the no compression template, you then add the template to the
postbackURL within the JSP, as shown in Example 8–3. Using this example, the URL
will not be compressed.

Example 8–3 Using a No Compression URL Template within a JSP

<render:postbackUrl var="noCompressionUrl" template="defaultNoCompression">
<render:param name="name" value="hello" />
<render:param name="value" value="<%=value%>" />
</render:postbackUrl>
Post current
time url:${noCompressionUrl}

8.6.3 URL Troubleshooting
If you are using a proxy server or switching back and forth between non-secure and
secure ports, you might find that URLs do not resolve if you use the {url:port} or
{url:securePort} variables. This is because the variables for those values are read from
the request. For example, if a user in a non-secure port (port number 80) clicks a secure
https link that was created with a URL template that uses the {url:securePort} variable,
the port number of the request (80) is used for the {url:securePort} variable, which

Working with URLs

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-27

would create a secure request (https) on an non-secure port. The same could happen if
a user on a proxy server (port 80) clicks a link to a resource outside the proxy server
(port 443).

In both of those cases, you need to hard code port numbers in the URL templates to
get URLs to resolve correctly.

8.6.3.1 URL Templates and Web Services for Remote Portlets (WSRP)
The beehive-url-template-config.xml file is automatically included (through a J2EE
Shared Library) in all portal web projects. This file contains URL templates that are
required to support URL rewriting in consumers. If you intend to use a web
application as a WSRP producer, do not remove these URL templates and variables
from the beehive-url-template-config.xml file.

8.6.4 Ampersand Entities in Portal URLs
WebLogic Portal uses the Apache Beehive configuration file
beehive-url-template-config.xml for configuring the form of WebLogic
Portal-generated URLs. The Apache Beehive configuration element for using
ampersand entities (&) or ampersand characters (&) is located in the NetUI
configuration file beehive-netui-config.xml. In an HTML configuration, the
default is to generate URLs with ampersand entities, in the absence of a configuration
element specifying the use of ampersand characters.

XHTML configurations force ampersand entities in URLs regardless of the
configuration setting.

You can manually override the configuration setting using the useAmpEntity
method and the setForcedAmpForm method in the GenericURL class. For more
information about these methods, refer to the Oracle Fusion Middleware Java API
Reference for Oracle WebLogic Portal.

For a discussion of how previous releases of WebLogic Portal handled ampersands in
URLs, refer to "Ampersand Entities in Portal URLs" in the WebLogic Portal Upgrade
Guide.

8.6.5 Optional Look And Feel URL Templates
The WebLogic Portal look and feel uses ResourceURLs (and thus, URL rewriters) for
resource (CSS, Javascript, images, and so on) paths under two conditions:

■ When optional URL templates are present

■ When resource paths are generated by remote portlets

URL templates that are specific to look and feel resources may be specified in a
reference group named "lookandfeel-url-templates." This group is expected to contain
one or both of the following keys: "laf-resource" and "window-resource". The
"laf-resource" key is used for resources related to a skin or skeleton; the
"window-resource" key is used for resources related to window dependencies. The
resolved (relative) resource path will be used to replace the "{url:path}" parameter
in the corresponding URL template. The following portion of the
beehive-url-template-config.xml file shows the syntax of an example URL
template:

<url-template>
 <name>laf-resource-template</name>
 <value>http://my.domain.com/resources/laf/{url:path}</value>
</url-template>

Working with Encoding in HTTP Responses

8-28 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

<url-template-ref-group>
 <name>lookandfeel-url-templates</name>
 <url-template-ref>
 <key>laf-resource</key>
 <template-name>laf-resource-template</template-name>
 </url-template-ref>
</url-template-ref-group>

In the absence of the look and feel URL templates, look and feel resource paths will
remain relative, with one exception: when generated within the context of a remote
portlet, such paths will use the standard "resource" URL template.

The optional LookAndFeel URL templates can be used to "offload" resources to a
different server. However, such resources MUST be copied (not moved) and be
resolvable using URLs with the same relative resource path as the Portal Web
Application (for example, .../framework/skins/bighorn/css/book.css).
Look and feel path resolution continues to rely on local file system access to resources.

The GetSkinPath tag in the render taglib will not be influenced by the optional look
and feel URL templates. Paths produced by this tag will be relative in all cases.

8.7 Working with Encoding in HTTP Responses
This section describes how the encoding is set on the HTTP response.

WebLogic Portal uses the following method of setting encoding based on the
information in the .portal file:

1. Examine the netuix:desktop element for an encoding attribute and use that
value if present.

2. If the first check is not applicable, examine the .portal file for the
directive.page element. Note that this mechanism is deprecated. If that element is
present, pick up the encoding from an attribute there.

3. Examine netuix-config.xml for a <defaultEncoding> element, and use the
encoding attribute there.

4. If the previous check is not applicable, fall back to the <encoding> element in the
<jsp-descriptor> section of the weblogic.xml file. For more information on
<jsp-descriptor> element, see "weblogic.xml Deployment Descriptor
Elements" in Oracle Fusion Middleware Developing Web Applications, Servlets, and
JSPs for Oracle WebLogic Server.

This implementation differs from that of previous versions of WebLogic Portal. For
more information, refer to the "Functional Changes" in the Oracle Fusion Middleware
Upgrade Guide for Oracle WebLogic Portal.

The following examples show how to use the encoding settings.

<netuix:desktop ... encoding="UTF-8" /> in your .portal file

or

<defaultEncoding encoding="UTF-8" /> in your netuix-config.xml file

8.8 Cache Management in Oracle Enterprise Pack for Eclipse
If configured properly, caches can vastly reduce the time needed to retrieve frequently
used data. You can use Oracle Enterprise Pack for Eclipse to change settings for the
current running instance of existing caches, or to flush caches. When you configure a

Cache Management in Oracle Enterprise Pack for Eclipse

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-29

cache, you modify its parameters to change its behavior or capacity. For example, you
can set up a cache to hold only the most recent 200 entries and set the amount of time
(in milliseconds) to remain in the cache. You can also flush a cache so that all new
requests for information come from the database.

You cannot add a new cache using the Oracle Enterprise Pack for Eclipse user
interface. However, you can add a cache by manually editing the
META-INF/p13n-content-config.xml cache configuration file in the in the
content directory (named EarContent by default) of the EAR project. You can also
copy a cache file from the Merged Project view into your project if desired.

The cache changes that you make using Oracle Enterprise Pack for Eclipse are not
persisted and will be lost the next time you publish the application or restart the
server. To make persistent changes, use the WebLogic Portal Administration Console.

Caches are read-only and cluster-aware.

8.8.1 Changing Cache Settings in Oracle Enterprise Pack for Eclipse

To change cache settings in Oracle Enterprise Pack for Eclipse:

1. Select Run > Portal Cache Manager.

The Portal Cache Manager dialog displays, including a list of the current "live"
caches. The caches displayed in this dialog comprise a superset of the caches that
you can display in the Administration Console; the list in the Portal Cache
Manager dialog includes the configured caches as well as caches that are triggered
dynamically based on the processes that you are using in your portal.

2. Select a cache to change its settings.

Use the table below as a guide to the settings that you can change:

Note: Before you can perform the steps in this section, your server
must be running.

Table 8–7 Configurable Cache Settings in Oracle Enterprise Pack for Eclipse

Field/Button Description

Is Enabled check box Select this check box to enable or disable the cache. If you disable a cache, it still
exists, but any requests to that cache would return a null value.

You might want to disable a cache if, for example, you are testing placeholders or
content selectors and you want to make sure that a value returned to you is the
value from the database and not a cached value.

Is Configured This read-only field indicates whether or not the cache has been configured using
the Administration Console or using shared library or application descriptors.

Max Entries The maximum number of entries (keys) that the cache should hold; after this limit is
reached, the cache eliminates the least recently used keys.

Time-To-Live The amount of time that an entry should remain in the cache, in milliseconds; for
example, a value of 3600000 equals one hour, in milliseconds.

Description This read-only field displays the description as it was entered in the Administration
Console or using shared library or application descriptors.

Hit Rate This read-only field displays statistics about cache activity, if this information is
returned by the server.

Reset Click this button to reset the dialog to the values that were previously displayed.

Cache Management With Oracle Coherence

8-30 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

3. Click Close when finished.

For detailed descriptions of each cache, refer to the documentation for the specific
feature that is related to that cache. For example, personalization-related caches are
described in the Oracle Fusion Middleware Interaction Management Guide for Oracle
WebLogic Portal.

8.9 Cache Management With Oracle Coherence
This section explains how to install and configure the Oracle Coherence P13N Cache
Provider as the default cache provider for WebLogic Portal.

8.9.1 Introduction
WebLogic Portal includes a native, distributed cache implementation, as described in
Section 8.8, "Cache Management in Oracle Enterprise Pack for Eclipse" and in the
Oracle Fusion Middleware Cache Management Guide for Oracle WebLogic Portal.

You can also substitute the Oracle Coherence P13N Cache Provider as the default
cache provider for WLP. For information on Oracle Coherence, refer to the product
page on the Oracle Technology Network. See also the product wiki page, "Coherence
3.5 Home."

The Oracle Coherence P13N Cache feature includes a WLP-specific implementation.
This implementation provides an identically named Oracle Coherence cache to replace
each of the WLP native caches. All you have to do to use Oracle Coherence with WLP
is install and configure the Oracle Coherence components as described in this section.

8.9.2 Installing and Configuring Coherence
To use the Oracle Coherence P13N Cache Provider with WLP:

1. Download the appropriate Oracle Coherence ZIP file from the Oracle download
site. You can find a link to the download site on the main Oracle Coherence
product web page.

2. From the downloaded ZIP file, open coherence/lib/coherence-wlp.jar.

3. In the JAR file, open the file portal-cache-config.xml. This file lists all of the
supported caches and their configuration parameters.

4. Optionally, configure the caches by editing the portal-cache-config.xml file.
For more information about each XML element in the configuration file, see
"Cache Configuration Elements" in the Coherence Knowledge Base. Information
about each cache is provided in the portal-cache-config.xml file itself.

Set Values If you change a value in the dialog, click Set Values to save your changes. Changing
a value here changes it only for the running instance, not for the configured cache.

Flush Click this button to clear the contents of the cache.

Flush allows you to clear the contents of any displayed cache. From the
Administration Console, you can flush only configured caches.

Refresh Click this button to reset the dialog to show any new caches or cache updates that
might have occurred.

Table 8–7 (Cont.) Configurable Cache Settings in Oracle Enterprise Pack for Eclipse

Field/Button Description

Improving WebLogic Server Administration Console Performance on a Managed Server

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-31

8.9.3 Removing Deprecated and Obsolete Caches
Several caches that are included in the portal-cache-config.xml file are
deprecated or obsolete. Oracle recommends that you remove these caches from the
configuration file before deploying the Oracle Coherence cache provider.

Caches you can safely remove from the portal-cache-config.xml file are:

■ CategoryCache

■ documentContentCache:

■ documentIdCache

■ documentMetadataCache

■ discountAssocCache

■ discountCache

■ globalDiscountAssocCache

■ globalDiscountCache

■ ProductItemCache

To remove a cache from the configuration file, simply delete the entire
<cache-mapping> element in which the cache is defined.

8.10 Improving WebLogic Server Administration Console Performance on
a Managed Server

If you are running your portal application on a Managed Server, you can improve the
performance of the WebLogic Server Administration Console by using the
<context-param> parameter in the web.xml file, as shown in this example:

<context-param>
 <param-name>portalFileDirectory</param-name>
 <param-value>/</param-value>
</context-param>

This parameter takes advantage of an optimized call that returns EAR content
information. Without this parameter, the call recursively searches for .portal files. If
you use this parameter, you must place all of the .portal files in the same directory
under the portal web application. Use the <param-value> to specify the directory. In
the example above, all .portal files reside in the web application's root directory (/).

Note: The portal-cache-config.xml file contains a number of
caches that are deprecated or obsolete. Oracle recommends that you
remove these caches from the configuration file and then repackage
the JAR file before deploying it. For more information, see
Section 8.9.3, "Removing Deprecated and Obsolete Caches."

Note: Removing the obsolete caches is optional. If you leave them in
the configuration file, they will be created anyway and consume
memory resources unnecessarily. Also, they will tend to clutter the
cache monitoring tools.

Behavior of the "Return to Default Page" Attribute

8-32 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

8.11 Behavior of the "Return to Default Page" Attribute
When a Book's 'Return To Default Page' attribute is set to true, the portal should
display the Book's default page when the book is the target of a navigation URL. The
behavior might not be what you expect. The purpose of this section is to clarify the
behavior.

This section addresses the nesting of books where the immediate children of the Main
Book are books and the return to default only applies when moving between books,
not within books. Figure 8–13 represents a simple portal hierarchy where each page
has a portlet that contains a URL to Book2.

Figure 8–13 Simple Portal Hierarchy

When the above portal is rendered, Book 2 and Page 2 are displayed.

1. The user clicks on Page 3, moving off of the default page

2. The user clicks on Book 3 (which results in Page 4 being displayed and moving
into a different book).

3. The user clicks on the URL for Book 2 and Page 2 is displayed

This works as expected as Page 2 is the default for Book 2 and the last active page
in Book2 was Page 3.

When the above portal is rendered, Book 2 and Page 2 are displayed.

4. The user clicks on Page 3, moving off of the default page

5. The user clicks on the URL for Book2 and Page 3 is displayed

The reason for this is because Page 3 is within the same book and therefore, the return
to default is not applied.

Figure 8–14 shows a hierarchy where pages are the children of the main book, the
Return to Default feature does not apply.

Customizing Problem Validation Settings

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-33

Figure 8–14 Sample Portal Hierarchy

Using the above hierarchy, the user is returned to the last active page in Book 2.

8.12 Customizing Problem Validation Settings
Oracle Enterprise Pack for Eclipse displays error, warning, and informational
messages in the Problems view. The WebLogic Portal validation framework is built
upon the Web Standard Tools framework of the Eclipse platform.

8.12.1 Enabling/Disabling WebLogic Portal Validation
You can enable or disable validation globally in Oracle Enterprise Pack for Eclipse or
on a per-project basis.

8.12.1.1 Enabling/Disabling Validation Globally
To enable or disable validation for all projects in a workspace, do the following:

1. Select Window > Preferences.

2. In the Preferences dialog, select Validation.

3. In the Validation dialog, the validation WebLogic Portal Validator and WebLogic
Portal XML Validator are selected by default. You can disable either of these
settings by deselecting the corresponding check box. Select the Manual check box
to perform validation during manual builds, and select the Build check box to
perform validation during automatic builds.

■ WebLogic Portal Validator – Enables all WebLogic Portal validation except
XML schema checking.

■ WebLogic Portal XML Validator – Enables only schema checking for
WebLogic Portal files.

The Validation dialog is shown in Figure 8–15.

Customizing Problem Validation Settings

8-34 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Figure 8–15 Validation Dialog

8.12.1.2 Enabling/Disabling Validation Per Project
To enable or disable validation for a project, do the following:

1. Right-click the project in the Package Explorer and select Properties.

2. In the Preferences dialog, select Validation.

3. In the Validation dialog, uncheck Override Validation Preferences.

4. In the Validation dialog, the validation WebLogic Portal Validator and WebLogic
Portal XML Validator are selected by default. You can disable either of these
settings by deselecting the corresponding check box. Select the Manual check box
to perform validation during manual builds, and select the Build check box to
perform validation during automatic builds. These settings are described in the
previous section, Section 8.12.1.1, "Enabling/Disabling Validation Globally."

8.12.2 Customizing WebLogic Portal Validation Mappings
You can the way the severity of errors, warnings, and informational messages are
mapped and reported in Oracle Enterprise Pack for Eclipse. This section explains how
to customize validation mappings globally and per project.

The main areas of portal code that are checked by the WebLogic Portal validation
framework include the following:

■ Portlet, book, and page definition labels

■ Book, page, and portlet references in portlets

■ Portlet event validity

■ Markup file references and duplicate labels

Customizing Problem Validation Settings

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-35

■ Project relationships (a portal web application must be deployed in portal EAR, for
example)

8.12.2.1 Overview
Ordinarily, when errors occur in a project, Oracle Enterprise Pack for Eclipse prevents
you from deploying your application. In some cases, you might want to ignore such
problems and deploy the application anyway. Or, you might have a policy whereby
warnings are not allowed in a deployed application. In these cases, you can choose to
flag the warnings as errors to prevent deployment. Although you cannot enable or
disable specific problem-related messages, you can modify way the severity of types of
problems are mapped and reported.

8.12.2.2 Customizing Validation Globally
To customize validation for all projects in your workspace, do the following:

1. Select Window > Preferences.

2. In the Preferences dialog, select Validation > WebLogic Portal Verification
Settings.

3. In the WebLogic Portal Verification Settings dialog, you can modify how the
following kinds of problems are reported:

■ Serious problems should be flagged as – Lets you change the severity
assigned to problems that would normally be reported as an error.

■ Potential problems should be flagged as – Lets you change the severity
assigned to problems that would normally be reported as an warning.

■ Simple alerts should be flagged as – Lets you change the severity assigned to
problems that would normally be reported as an information message.

8.12.2.3 Customizing Validation Per Project
To customize validation for all projects for specific projects, do the following:

1. Right-click the project in the Package Explorer and select Properties.

2. In the Preferences dialog, select Validation > WebLogic Portal Verification
Settings.

3. In the WebLogic Portal Verification Settings dialog, uncheck Override Validation
Preferences.

4. In the WebLogic Portal Verification Settings dialog, you can modify how the
following kinds of problems are reported. See the previous section,
Section 8.12.2.2, "Customizing Validation Globally."

Tip: Select the Verify related files on incremental builds check box
to allow related files to be validated when an incremental build is
performed. This feature is useful if you happen to copy a portal
resource, such as a book within a portal web application. You will see
validation errors related to duplicate definition labels reported on
both the original and duplicate file. If you change the duplicate
definition labels, only the changed file is validated on incremental
builds: the validation errors remain for the original file. If you select
Verify related files on incremental builds, both the newly changed
and original file are validated and the validation errors on the original
file are cleared.

Enabling Placeable Movement

8-36 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

8.13 Enabling Placeable Movement
You can enable a portal so that users can drag and drop individual portlets or books
(placeables) on a page. This feature, called placeable movement, provides a convenient
way for users to customize the location of content on their portal desktop.

Enabling placeable movement is a two-step process:

1. In Oracle Enterprise Pack for Eclipse, enable the placeable movement feature for a
portal. See Section 8.13.1, "Configuring the Portal in Oracle Enterprise Pack for
Eclipse."

2. In the Portal Administration Console, create a desktop based on the portal that
you enabled for placeable movement in Step 1. See Section 8.13.2, "Setting Up a
Desktop in the Administration Console."

8.13.1 Configuring the Portal in Oracle Enterprise Pack for Eclipse
1. In Oracle Enterprise Pack for Eclipse, open a portal in the Portal editor.

2. Be sure the Properties editor is open for the portal. Select Window > Show View >
Properties to open it.

3. Click the desktop border, as shown in Figure 8–16.

Figure 8–16 Selecting the Desktop Border

4. In the Properties editor, set DVT Enabled to true, as shown in Figure 8–17. Note
that the Disc Enabled field is automatically set to true after this selection.

5. Save the portal.

Note: Project-level settings take precedence over global settings.

Note: Placeable movement relies on the WLP REST API, which
enables clients to dynamically retrieve, modify, and update portal
data. See the Oracle Fusion Middleware Client-Side Developer's Guide for
Oracle WebLogic Portal for more information about the REST API.

Note: Only authenticated users can use placeable movement.
Typically, you provide a login portlet to satisfy this requirement. See
the Oracle Fusion Middleware Security Guide for Oracle WebLogic Portal
for more information.

Enabling Placeable Movement

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-37

Figure 8–17 Selecting DVT Enabled

8.13.2 Setting Up a Desktop in the Administration Console
After you have created a portal with placeable movement enabled you need to use the
Portal Administration Console to create a desktop using the .portal file as a
template. After you complete this task, you can then open the desktop and test
placeable movement.

1. Open the Portal Administration Console in a browser and log in. See Section 15.3,
"Starting and Logging In to the Administration Console" for more information.

2. Create a desktop based on the .portal file you configured in Oracle Enterprise
Pack for Eclipse, as explained in Section 8.13.1, "Configuring the Portal in Oracle
Enterprise Pack for Eclipse." See Section 15.12.1, "Creating a Desktop" for more
information.

3. If your portal does not already contain a login mechanism, add the login portlet to
a page of the desktop. Only authenticated users can use placeable movement. For
more information on authentication, see the Oracle Fusion Middleware Security
Guide for Oracle WebLogic Portal.

4. (Optional) Add additional portlets to the desktop pages. Figure 8–18 shows a
sample portal with a login portlet and two test portlets.

Figure 8–18 Portal Page Initial Configuration

Enabling Placeable Movement

8-38 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

8.13.3 Testing Placeable Movement
To test placeable movement:

1. In the Administration Console, select View Desktop to view the portal in a
browser.

2. Log in to the portal using the login mechanism provided.

3. To move a portlet, place the mouse pointer over the title bar. When the pointer
changes shape, hold down the left mouse button and drag the portlet to its new
location. Figure 8–19 shows that Portlet 1 has been dragged to the second column
of the portal page.

Figure 8–19 Moving a Portlet

4. Release the mouse button.

The new portlet placement is automatically communicated to the server and stored.
Whenever the user revisits the page, the new portlet arrangement is retained.

8.13.4 Enabling Placeable Movement for an Existing Desktop
You can also enable placeable movement for an existing desktop using the
Administration Console. See Section 15.12, "Desktops."

8.13.5 Limitations
■ Placeable movement is disabled on portal layouts that flow horizontally. For more

information on layouts, see Section 7.11, "Working with Layouts."

■ If a placeholder is locked, users of the site cannot drag portlets out of or drop into
that placeholder. For information on placeholders, see the chapter "Assembling
Portlets into Desktops" in the Oracle Fusion Middleware Portlet Development Guide for
Oracle WebLogic Portal.

■ If a user is not entitled to edit a page, placeable movement is disabled for that user
for that page. For information on visitor entitlement, see "Setting Visitor
Entitlements on Portal Resources in the Library" in the Oracle Fusion Middleware
Security Guide for Oracle WebLogic Portal.

Using Placeable Movement with Custom Layouts

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-39

8.14 Using Placeable Movement with Custom Layouts
This section includes these topics:

■ Section 8.14.1, "Introduction"

■ Section 8.14.2, "Rules for Using Placeable Movement with Custom Layouts"

■ Section 8.14.3, "Sample Code"

8.14.1 Introduction
Custom layouts offer you flexibility when designing portal pages. Oracle provides
limited support for using placeable movement with custom layouts. Because the
placeable movement feature is closely coupled to page layout, you must follow certain
rules and patterns when writing custom layouts that use placeable movement. These
rules and patterns are described in this section. For basic information on custom
layouts, see Section 7.11.2, "Creating a Custom Layout."

8.14.2 Rules for Using Placeable Movement with Custom Layouts
To use placeable movement with custom layouts, follow these rules:

■ You must use layouts of type flowLayout: <netuix:flowLayout>.

■ You must use a Bighorn-based look and feel as the starting point for any custom
look and feel.

■ The skeleton JSP file for the custom layout must follow the pattern shown in
Example 8–4. According to this pattern, placeholders must be rendered using
<div> tags that use WebLogic Portal <skeleton:control> tags to enclose
<skeleton:child> tags.

Example 8–4 Skeleton JSP Pattern for Custom Layouts That Use Placeable Movement

<skeleton:context type="flowlayoutpc"> //presentation context
 <skeleton:control name="div" presentationContext="${flowlayoutpc}" class="wlp-bighorn-layout"
>
 <c:set var="ph" value="${flowlayoutpc.placeholders}" />

Note: Oracle recommends that you use the standard flow layouts
with placeable movement whenever possible. Follow the rules in this
section only if you want to write a custom layout that uses placeable
movement.

Note: This section assumes you are familiar with WebLogic Portal
Look and Feels. To review this topic, see Chapter 7, "User Interface
Development with Look And Feel Features."

Note: The default skeleton JSP flowlayout.jsp (the standard
skeleton JSP for a flow layout when no other skeleton JSP is specified)
follows a consistent HTML rendering pattern that is required for DND
to work properly. You can find the complete flowlayout.jsp file in
the Merged Project view in the portal web application at
/framework/skeletons/bighorn/flowlayout.jsp. Do not
change this file; use it as an example only.

Using Placeable Movement with Custom Layouts

8-40 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

 <c:set var="placeholder1" value="${ph[0]}" /> //example placeholder declaration
 <skeleton:control name="div" presentationContext="${placeholder1}"
presentationClass="wlp-bighorn-layout-cell wlp-bighorn-layout-flow-horizontal"
presentationStyle="width: 70%;">
 <skeleton:child presentationContext="${placeholder1}"/>
 </skeleton:control> //correct wrapping of the placeholder control and child
 </skeleton:control>
</skeleton:context>

■ Use style attributes from the Bighorn Look and Feel. The code excerpt shown in
Example 8–4 uses these style attributes. Most of these attributes are located in the
portal web application in
/framework/skeletons/bighorn/css/layout.css. These classes are not
required but, Oracle recommends that you use them as a guide to create custom
CSS attributes. For example, to make <div> elements appear side-by-side, the
wlp-bighorn-layout-flow-horizontal style can be applied. This style adds
the “float: left;" attribute, which may be necessary for certain custom layouts.
Other styles include min-height, overflow, and so on.

■ Placeholders that reside above other placeholders must be locked to avoid
inconsistent behavior. Typically, this case occurs in a layout with multiple rows. If
the top placeholders are not locked, the placeholder DOM structure can
dynamically change when portlets are moved, which can adversely affect the
portlets in the bottom rows.

■ Do not use placeholders with the flow attribute set to horizontal in the .layout
file. These placeholders cannot be registered as drop targets. Portlets cannot be
dragged from or dropped into a placeholder with this setting.

■ Set the value of the portal desktop property ScrollToWindow to false.

■ Do not use the following tags in portlet JSP files: <netui:html>, <head>,
<netui:base/>, and <netui:body>. For more information, see “Portlets and
Page Flow: Tags To Avoid When Combining These Technologies” at
http://blogs.oracle.com/gmurnock/2008/09/portlets_and_page_
flow_tags_to_1.html.

8.14.3 Sample Code
This section lists sample files that illustrate the correct way to implement placeable
movement with a custom layout following the rules and patterns described previously.
Example 8–5 is a sample .layout file. Example 8–6 is a sample layout JSP file.
Example 8–7 is a sample layout HTML file. See also Section 7.11.2, "Creating a Custom
Layout." The code also references custom_layout.gif, the image file shown in
Figure 8–20.

Figure 8–20 Sample GIF Image File Used by the Custom Layout

Using Placeable Movement with Custom Layouts

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-41

Example 8–5 Sample custom_layout.layout File

<?xml version="1.0" encoding="UTF-8"?>
<netuix:markupDefinition
 xmlns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0
markup-netuix-1_0_0.xsd">
 <netuix:locale language="en" />
 <netuix:markup>

 <netuix:flowLayout markupType="Layout"
 markupName="DNDcustom_layout"
 title="DND custom layout"
 orientation="horizontal"
 description="Example custom layout DND compatible"
 skeletonUri="/framework/markup/layout/custom_layout.jsp"
 htmlLayoutUri="/framework/markup/layout/custom_layout.html.txt"
 iconUri="/framework/markup/layout/custom_layout.gif"
 thumbnailUri="/framework/markup/layout/custom_layout.gif" >

 <netuix:placeholder markupType="Placeholder"
 markupName="top_left_span"
 title="topleftspan"
 usingFlow="false"
 description="top left placeholder spanning 2 columns">
 </netuix:placeholder>

 <netuix:placeholder markupType="Placeholder"
 markupName="top_right"
 title="topright"
 usingFlow="false"
 description="top right placeholder" >
 </netuix:placeholder>

 <netuix:placeholder markupType="Placeholder"
 markupName="lower_left"
 title="lowerleft"
 usingFlow="false"
 description="lower left placeholder in second row">
 </netuix:placeholder>

 <netuix:placeholder markupType="Placeholder"
 markupName="lower_middle"
 title="lowermid"
 usingFlow="false"
 description="mid placeholder in second row">
 </netuix:placeholder>

 <netuix:placeholder markupType="Placeholder"
 markupName="lower_right"
 title="lowerright"
 usingFlow="false"
 description="lower right placeholder in second row" >
 </netuix:placeholder>

 </netuix:flowLayout>

 </netuix:markup>

Using Placeable Movement with Custom Layouts

8-42 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

</netuix:markupDefinition>

Example 8–6 Sample custom_layout.jsp File

<jsp:root version="2.0"
 xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 xmlns:skeleton="http://www.bea.com/servers/portal/tags/netuix/skeleton"
>
 <jsp:directive.page session="false" />
 <jsp:directive.page isELIgnored="false" />

 <skeleton:context type="flowlayoutpc">

 <skeleton:control name="div" presentationContext="${flowlayoutpc}"
class="wlp-bighorn-layout wlp-bighorn-layout-flow" cellspacing="0"
 cellpadding="0" width="100%">
 <c:set var="ph" value="${flowlayoutpc.placeholders}" />
 <c:set var="topleft" value="${ph[0]}" />
 <c:set var="topright" value="${ph[1]}" />
 <c:set var="lowerleft" value="${ph[2]}" />
 <c:set var="lowermid" value="${ph[3]}" />
 <c:set var="lowerright" value="${ph[4]}" />

 <div style="width: 70%; float: left" >
 <skeleton:control name="div" presentationContext="${topleft}"
presentationClass="wlp-bighorn-layout-cell">
 <skeleton:child presentationContext="${topleft}" />
 </skeleton:control>
 <skeleton:control name="div" presentationContext="${lowerleft}"
presentationStyle="width: 40%;"
 presentationClass="wlp-bighorn-layout-cell
wlp-bighorn-layout-flow-horizontal">
 <skeleton:child presentationContext="${lowerleft}" />
 </skeleton:control>
 <skeleton:control name="div" presentationContext="${lowermid}"
presentationStyle="width: 60%;"
 presentationClass="wlp-bighorn-layout-cell
wlp-bighorn-layout-flow-horizontal">
 <skeleton:child presentationContext="${lowermid}" />
 </skeleton:control>
 </div>

 <div style="width: 30%; float:left">
 <skeleton:control name="div" presentationContext="${topright}"
presentationClass="wlp-bighorn-layout-cell"
 presentationStyle="width: 100%;">
 <skeleton:child presentationContext="${topright}" />
 </skeleton:control>
 <skeleton:control name="div" presentationContext="${lowerright}"
presentationClass="wlp-bighorn-layout-cell"
 presentationStyle="width: 100%;">
 <skeleton:child presentationContext="${lowerright}" />
 </skeleton:control>
 </div>

Localizing Titles for File-Based Books, Pages, and Portlets

Developing Portals Using Oracle Enterprise Pack for Eclipse 8-43

 </skeleton:control>
 </skeleton:context>

 </jsp:root>

Example 8–7 Sample custom_layout.html File

<table class="portalLayout" id="customPortalLayout" width="100%" height="100%">
 <tr>
 <td class="placeholderTD" valign="top" colspan="2" width="70%">
 <placeholder number="0" />
 </td>
 <td class="placeholderTD" valign="top "width="30%">
 <placeholder number="1" />
 </td>
 </tr>
 <tr>
 <td class="placeholderTD" valign="top" width="30%">
 <placeholder number="2" />
 </td>
 <td class="placeholderTD" valign="top" width="40%">
 <placeholder number="3" />
 </td>
 <td class="placeholderTD" valign="top "width="30%">
 <placeholder number="4" />
 </td>
 </tr>
</table>

8.15 Localizing Titles for File-Based Books, Pages, and Portlets
You can localize the title of a file-based book, page, or portlet by specifying a localized
resource bundle in the .portlet, .page, or .book file. For instance, to localize the title of a
page, modify the .page file as follows:

1. Specify values for the titleKey and localizationBundle attributes. Note that the
titleKey attribute value will be substituted for the title attribute for the specified
locale. The localizationBundle value identifies the resource bundle.

For example, assume that you have the a resource bundle
myresources/PageBundle, where the directory that contains myresources is in the
Java CLASSPATH for the web application:

<netuix:page
 definitionLabel="page2"
 ...
 title="Default Title: Will Not Display When Local Text Is Substituted"
 titleKey="page2.title.key"
 localizationBundle="myresources.PageBundle"
...

2. Create a resource bundle properties file with the locale-specific extension. For
example:

myresources/PageBundle_<locale>.properties

where <locale> is the language code, for example, PageBundle_fr.properties for a
French translation.

3. Add the correct key/value pairs to the properties file, such as page2.title.key=This
is my Localized Title.

Localizing Titles for File-Based Books, Pages, and Portlets

8-44 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Follow the same procedure to localize portlets and books.

Note: This procedure is only used for localizing the title attribute of
file-based (non-streaming) portal resources. To localize a portlet in a
portal desktop that is managed by the Administration Console
(sometimes called a “streaming portal”), see Section 15.10.4,
"Localizing a Portal Resource".

9

Using the Dynamic Visitor Tools 9-1

9Using the Dynamic Visitor Tools

This chapter discusses how to configure, use, and extend the Dynamic Visitor Tools
(DVT). This chapter includes the following sections:

■ Section 9.1, "What Is the DVT?"

■ Section 9.2, "Configuring the DVT"

■ Section 9.3, "Working with the DVT"

■ Section 9.4, "Installing the Sample Login Shell"

9.1 What Is the DVT?
The Dynamic Visitor Tools ("DVT") feature includes tools that allow end users to
customize the appearance, behavior, and content of Oracle WebLogic Portal
applications. The DVT enables end users to:

■ Add pages and portlets to your desktop.

■ Drag and drop pages and portlets.

■ Change the appearance of desktops, books, pages, and portlets.

■ Change the menu structure of desktops and books.

■ Change the layout of pages.

■ Customize the desktop for all desktop users.

An administrative user in Admin Mode can make any of the above listed changes
apply to all desktop users.

Note: Oracle WebLogic Portal includes two features that, when
enabled, let users customize portals.

The DVT—described in this chapter—uses Oracle WebLogic Portal’s
Web 2.0 functionality, such as a Dynamic Interface SCripting (Disc)
framework and a REpresentational State Transfer (REST) Framework.
We recommend that you use the DVT for all new Oracle WebLogic
Portal applications.

The other feature, Visitor Tools, does not utilize Oracle WebLogic
Portal’s Web 2.0 functionality. For details, see Chapter 11, "Enabling
Visitor Tools."

Configuring the DVT

9-2 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

9.2 Configuring the DVT
These instructions assume that a portal web project exists for which you want to
configure the DVT. For information on creating a portal web project using the Portal
Web Project Wizard, see Section 4.6, "Portal Web Project Wizard."

To configure the DVT:

1. Add the Portal Dynamic Visitor Tools facet to the portal web project. For details,
see Section 9.2.1, "Adding the Portal Dynamic Visitor Tools Facet to the Portal Web
Project."

2. Add a Login portlet to the desktop; the DVT requires that users be authenticated.

3. Enable the DVT. For details, see Section 9.2.2, "Enabling the DVT."

4. Test the DVT configuration. For details, see Section 9.2.3, "Testing the DVT
Configuration."

9.2.1 Adding the Portal Dynamic Visitor Tools Facet to the Portal Web Project
You must add the Portal Dynamic Visitor Tools facet to the portal web project for
which you want to enable the DVT:

You do not need to perform this procedure if:

■ You created the portal web project using the Portal Web Project Wizard and kept
the wizard’s default selections, which includes adding the Portal Dynamic Visitor
Tools facet to the web project.

■ You already added the Portal Dynamic Visitor Tools facet to the portal web project.

To add the Portal Dynamic Visitor Tools facet:

1. In Oracle Enterprise Pack for Eclipse, right-click the desired portal web project,
then select Properties.

2. In the portal web project’s Properties dialog box, select Project Facets.

3. In the Project Facets tree, expand WebLogic Portal.

4. Select Portal Dynamic Visitor Tools.

5. Click OK.

9.2.2 Enabling the DVT
This section discusses how to enable the DVT.

Tip: As a convenience, WLP provides an optionally installed login
shell to provide the required login capability for DVT. For more
information, see Section 9.4, "Installing the Sample Login Shell."

Note: Only authenticated users can use the DVT. Typically, you
provide a login portlet to satisfy this requirement. As a convenience,
WLP provides an optionally installed login shell to provide the
required login capability for DVT. For more information, see
Section 9.4, "Installing the Sample Login Shell."

Configuring the DVT

Using the Dynamic Visitor Tools 9-3

If you are a portal application developer, you enable the DVT for a file-based portal
(using Oracle Enterprise Pack for Eclipse). If you are a portal application
administrator, you enable the DVT for a streaming portal (using the Oracle WebLogic
Portal Administration Console). This section discusses:

■ Section 9.2.2.1, "Enabling the DVT in a File-based Portal"

■ Section 9.2.2.2, "Enabling the DVT for a Streaming Portal"

9.2.2.1 Enabling the DVT in a File-based Portal
You enable the DVT in a file-based portal using Oracle Enterprise Pack for Eclipse.
Note that the DVT only works with a streaming desktop.

To enable the DVT for a file-based portal:

1. In Oracle Enterprise Pack for Eclipse, open the desired portal (.portal file) for
which you want to enable the DVT in the Portal editor.

2. Ensure that the Properties editor is open for the portal.

If you need to open it, select Window > Show View > Properties.

3. Click the desktop border, as shown in Figure 9–1, "Clicking the Desktop Border".

Note: These instructions assume that a desktop already exists for
which you want to enable the DVT. For instructions on setting up a
desktop in the Oracle WebLogic Portal Administration Console, see
"Setting Up a Desktop in the Administration Console" in Oracle Fusion
Middleware Portal Development Guide for Oracle WebLogic Portal.

Note: You do not need to perform this procedure if you already
enabled the DVT for the desktop when you created the desktop in
Oracle WebLogic Portal Administration Console.

Note: The DVT only works with a streaming desktop (one that has
been configured in the Administration Console). By enabling the DVT
in the IDE, as explained in this section, the DVT is enabled by default
when you convert the .portal to a streaming desktop.

Configuring the DVT

9-4 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Figure 9–1 Clicking the Desktop Border

4. In the Properties editor, set the following properties:

■ Asynchronous Mode to enabled.

■ DVT Enabled to true (Note that when you set this property to true, the
Disc Enabled property is automatically set to true.)

5. Save the portal.

6. If you have not yet created a desktop, create a desktop using the Oracle WebLogic
Portal Administration Console.

For details on creating a desktop, see "Creating a Desktop" in Oracle Fusion
Middleware Portal Development Guide for Oracle WebLogic Portal.

9.2.2.2 Enabling the DVT for a Streaming Portal
You enable the DVT for a streaming portal using the Oracle WebLogic Portal
Administration Console.

To enable the DVT for a streaming portal:

1. Launch the Oracle WebLogic Portal Administration Console.

To do so, in Oracle Enterprise Pack for Eclipse, select Run > Open Portal
Administration Console, then log in.

2. On the administration console’s home page, click Portal Management.

3. In the navigation tree, navigate to and click the name of the desktop for which you
want to enable the DVT.

4. On the Details tab, click the Advanced Properties link to launch the Update Tree
Optimization dialog box.

5. In the Enable DVT drop-down list box, choose true.

6. Click Update.

You are returned to the desktop’s properties.

Note: You do not need to perform this procedure if you enabled the
DVT when you created a desktop using the Desktop Creation Wizard.

Working with the DVT

Using the Dynamic Visitor Tools 9-5

9.2.3 Testing the DVT Configuration
This procedure describes how to test the DVT configuration.

To test the DVT configuration:

1. In the Oracle WebLogic Portal Administration Console’s navigation tree, navigate
to and click the name of the desktop for which you want to enable the DVT.

2. Click View Desktop to view the desktop in a browser.

3. Log in to the desktop using a login portlet; DVT users must be authenticated.

4. The Customize button should appear in the upper right-hand corner of the
desktop.

If you click the Customize button, its menu should include the options shown in
Figure 9–2, "Customize Menu Options". Note that the Admin Mode function is
only visible for users with administrator privileges.

Figure 9–2 Customize Menu Options

9.3 Working with the DVT
As an end user, the DVT enables you to customize your own view of a desktop, as well
as its pages, books, and portlets.

If you belong to the Portal Administrators group, you can customize the desktop for
all users. For details, see Section 9.3.6, "Customizing the Desktop for All Desktop
Users."

This section includes the following topics:

■ Section 9.3.1, "Accessing Customization Options"

■ Section 9.3.2, "Adding a Page Tab or Book of Tabs,"

Note: You can only use the DVT Customizations feature in a
streaming portal (one that has been created through the WLP
Administration Console).

Tip: As a convenience, WLP provides an optionally installed login
shell to provide the required login capability for DVT. For more
information, see Section 9.4, "Installing the Sample Login Shell."

Working with the DVT

9-6 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

■ Section 9.3.3, "Changing the Appearance of the Portal, Pages, Books, and Portlets"

■ Section 9.3.5, "Restoring the Default View"

■ Section 9.3.6, "Customizing the Desktop for All Desktop Users"

■ Section 9.3.7, "Changing the Layout of a Page"

■ Section 9.3.8, "Adding and Removing Content"

9.3.1 Accessing Customization Options
The DVT customization options that are available to you depend on the user
entitlements that have been granted to you.

To access the DVT’s customization options for the desktop, click the Customize button
in the upper right-hand corner of the desktop.

To customize pages, books, or portlets, click the Customize icon (as shown in
Figure 9–2, "Customize Menu Options") within the desired page, book, or portlet.

Figure 9–3 Customize Icon

9.3.2 Adding a Page Tab or Book of Tabs
A page tab—also known as a page—is the primary container for individual portal
elements such as portlets. You add pages to books, which are also known as books of
tabs. The pages contained within a book can themselves contain portlets and books,
with the latter allowing for an infinite level of nesting. Nesting books provides a
hierarchical organization that is very flexible, although there is a practical limit to the
nesting based on the available screen real estate.

To add a page tab or book, click the Customize button, then choose Add Page Tab or
Add Book of Tabs.

After the pages or books are added, you can do the following:

■ Name the page or book. To do so, click the tab name (initially called New Page or
New Book), type the new name, and press the Enter key.

■ Make one page or book the default page or book, so that whenever you navigate
to the desktop, that page or book always appears initially selected. To do so, click
the Customize icon for the desired page or book, then choose Set as Default Tab.

■ Drag and drop tabs to change the order in which they appear on the desktop.

9.3.3 Changing the Appearance of the Portal, Pages, Books, and Portlets
This section discusses:

■ Section 9.3.3.1, "Changing the Appearance of the Portal"

■ Section 9.3.3.2, "Changing the Appearance of Pages, Books, and Portlets"

9.3.3.1 Changing the Appearance of the Portal
You can change the appearance of the portal to suit your individual aesthetic tastes by
choosing from various Look and Feels. A Look and Feel is a collection of a skin and
skeleton that is used to determine the way that a portal is rendered and the way that it

Working with the DVT

Using the Dynamic Visitor Tools 9-7

behaves. The Look and Feel of a portal is independent of the organizational and
navigational structure of a portal. For more details on Look and Feels, see Chapter 7,
"User Interface Development with Look And Feel Features."

To change the Look and Feel of the portal, click the Customize button, then choose
Change Appearance. The Change Appearance tab on the Edit sheet lists the Look and
Feels that you can use. After you have selected a Look and Feel, click Done to close the
Edit sheet.

9.3.3.2 Changing the Appearance of Pages, Books, and Portlets
You can also change the appearance of pages, books, and portlets by choosing from
various themes. A theme is similar to a Look and Feel; however, the scope of a theme is
limited to only a component of a desktop, such as a page, book, or portlet. A theme
can be used to change the appearance of a desktop’s components without affecting the
desktop itself.

To change the appearance of pages, books, or portlets, click the Customize icon in the
page, book, or portlet that you want to edit, then choose Change Appearance. The
Change Theme tab on the Edit sheet lists the themes that you can use. After you have
selected a theme, click Done to close the Edit sheet.

9.3.4 Changing the Menu of the Desktop or a Book
A menu provides the user interface for navigating the various pages and books in a
desktop. Menus frequently are designed to appear as tabs, trees, or drop-down menus
to end users. Oracle WebLogic Portal is delivered with the following menu types:

■ Single Level Menu: Recommended for navigating across multiple pages

■ Multi Level Menu: Recommended for navigating across multiple nested books

To change the menu of the desktop or a book, click the Customize button (for a
desktop) or Customize icon (for a book), then choose Change Menu. The Change Book
menu on the Edit sheet lists the menus that you can use. If desired, you can search for
menus by using the Search field. After you have selected a menu, click Done to close
the Edit sheet.

9.3.5 Restoring the Default View
Your administrator determines the default desktop customizations for all users of your
desktop. At any time, you can revert all of your own customizations and restore your
desktop to your administrator’s customization settings by clicking the Customize
button, then choosing Restore Default View. For information on customizing the
desktop for all desktop users, see Section 9.3.6, "Customizing the Desktop for All
Desktop Users".

Note: Out of the box, DVT only supports Bighorn-based Look and
Feels. Although it is possible to write a Look and Feel injector to use a
non-Bighorn L&F, extra work is required to make the Placeable
Movement feature of the DVT work with this use case. For
non-Bighorn L&Fs, the injector/L&F developers must make sure that
the Disc calls work with their L&F. For more information, see
Section 9.3.10.1, "Creating a Look and Feel Injector." See also "The
WLP Disc Framework" in the Oracle Fusion Middleware Client-Side
Developer's Guide for Oracle WebLogic Portal.

Working with the DVT

9-8 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

9.3.6 Customizing the Desktop for All Desktop Users
By default, when you use the DVT, you are customizing how the desktop appears to
you only. If you are an administrator and belong to the Portal Administrators group,
you can customize how the desktop appears to all users of the desktop.

To do so, click the Customize button, then choose Admin Mode. Any changes that
you make are applied to all users of the desktop. To exit out of Admin Mode, choose
Admin Mode again. Desktop users can restore their desktop views to the
administrator’s customization settings. For details, see Section 9.3.5, "Restoring the
Default View"

9.3.7 Changing the Layout of a Page
A layout determines the arrangement of portlets and books within a matrix; one layout
is applied to each page. Each cell of this matrix contains a placeholder, which can
contain one or more portlets or books that are arranged vertically or horizontally.

To change the layout of a page, click the Customize icon on the desired page tab, then
choose Change Layout. The Changing Layout tab on the Edit sheet lists the layouts
that you can use. If desired, you can search for layouts by using the Search field. After
you have selected a layout, click Done to close the Edit sheet.

9.3.8 Adding and Removing Content
You can add content (in the form of portlets) to a page to suit your individual content
needs.

To add a portlet to a page, click the Customize icon on the desired page tab, then
choose Add Content. The Add Content tab on the Edit sheet lists the portlets that you
can add. You can also search for portlets by using the Search field. If your
administrator has grouped available portlets into portlet categories, you can narrow
your search by choosing a portlet category from the category drop-down menu. After
you have selected a portlet, click Done to close the Edit sheet.

To remove a portlet, select Remove Portlet from the Customize menu.

9.3.9 Making Remote Portlets Available to Your Users
A portal administrator can make WSRP (remote) portlets available to users’ desktops.
To make remote portlets available to users:

1. Using the Oracle WebLogic Portal Administration Console, add the desired
producer to the library. You will make this producer’s portlets available to your
users.

For details on adding remote resources to the library, see "Adding Remote
Resources to the Library" in Oracle Fusion Middleware Federated Portals Guide for
Oracle WebLogic Portal.

2. Log in to the DVT.

3. Click the Customize button.

4. Choose Admin Mode.

5. Click the Customize button.

6. Choose Add Content to launch the Edit sheet.

Tip: If a page uses a layout that contains two or more columns, you
can drag and drop portlets between the page’s columns.

Working with the DVT

Using the Dynamic Visitor Tools 9-9

7. Click the Get More Portlets button to launch the Get More Portlets dialog box.

8. Select the WSRP portlets that you want to make available to your users.

9. Click Done to close the Get More Portlets dialog box.

10. Click Done to close the Edit sheet.

9.3.10 Implementing Custom Look and Feels for the DVT
You must create and implement a Look and Feel injector for each custom Look and
Feel that you want to use with the DVT. To implement a Look and Feel for the DVT,
you must:

1. Create a Look and Feel injector for your custom Look and Feel. For details, see
Chapter 9.3.10.1, "Creating a Look and Feel Injector."

2. Instantiate the Look and Feel injector that you created. For details, see
Chapter 9.3.10.2, "Instantiating a Look and Feel Injector."

9.3.10.1 Creating a Look and Feel Injector
To create a Look and Feel injector, you can perform either of the following:

■ If your custom Look and Feel has major differences from the delivered Bighorn
Look and Feels, you can extend the
com.bea.wlp.dvt.injector.<LookAndFeelInjector> class, replacing the
<LookAndFeelInjector> class name with the class name of your custom Look
and Feel.

■ If your custom Look and Feel has only minor differences from the delivered
Bighorn Look and Feels, you can extend and override any of the methods in the
code below, replacing the <BighornInjector> class name with the class name
of your custom Look and Feel.

Example 9–1 lists the code that you edit to create a Look and Feel injector. You can
save this file in the Merged Project Content folder under <webapp_name>/Merged
Project Content/dvt following standard class-naming conventions. For example,
the class com.bea.wlp.dvt.injector.MyLAFInjector would be stored under
<webappname>/dvt/com/bea/wlp/dvt/injector/MyLAFInjector.js.

Example 9–1 Sample Look and Feel Injector Class

wlp_dvt_dojo.declare(
 "com.bea.wlp.dvt.injector.<BighornInjector>",
 [com.bea.wlp.dvt.injector.<LookAndFeelInjector>],
 {
 /**
 * Adds a customize link to the primary book
 * @param discBook The primary book from the DISC api
 */
 injectCustomizeLinkForPrimaryBook: function(discBook)
 {
 },

 /**

Note: It might take some time for all of the WSRP portlets to load for
the first time.

Working with the DVT

9-10 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

 * Adds a Customize link to a book in a book.
 * @param diskBook The book from DISC
 */
 injectCustomizeLinkForBookNavigable: function(discBook)
 {
 },

 /**
 * Adds a Customize link to a page in a book.
 * @param diskPage The page from DISC
 */
 injectCustomizeLinkForPageNavigable: function(discPage)
 {
 },

 /**
 * Add a Customize link to a book on a page.
 * @param discBook The book from DISC.
 */
 injectCustomizeLinkForBookPlaceable: function(discBook)
 {
 },

 /**
 * Add a Customize link to a portlet on a page.
 * @param discPortlet The portlet from DISC.
 */
 injectCustomizeLinkForPortletPlaceable: function(discPortlet)
 {
 },

 /**
 * Method used to inject a new tab/navigable into a book menu.
 * @param bookItem The book that will contain the tab/navigable.
 * @param newTitle The title of the new tab navigable.
 * @param append True indicating the new tab will appear as the last
 * element in the book menu.
 */
 injectNewNavigableTab: function(bookItem, newTitle, append)
 {
 }
 }
);

9.3.10.2 Instantiating a Look and Feel Injector
After you have created a Look and Feel injector for your custom Look and Feel, you
must instantiate it. To instantiate a Look and Feel injector:

1. In Oracle Enterprise Pack for Eclipse, click the Merged Projects tab.

2. Navigate to the config.js file, located in the dvt folder of your web project.

3. Right-click the config.js file, then choose Copy to Project.

4. Right-click the config.js file, then choose Open.

5. In the code for the config.js file, scroll down to the lafInjector function.

6. Add the class that you edited in Chapter 9.3.10.1, "Creating a Look and Feel
Injector" to the lafInjector, using the following code as a guide:

afInjector: function()

Installing the Sample Login Shell

Using the Dynamic Visitor Tools 9-11

{
 if(typeof lafInjectorInstance == 'undefined')
 {
 wlp_dvt_dojo.require("com.YourInjectorClass");
 lafInjectorInstance = new com.YourInjectorClass();
 }
 return lafInjectorInstance;
}

9.4 Installing the Sample Login Shell
WLP provides an optionally installed sample login shell that is designed to provide
the DVT’s required login capability. This section explains how to install the sample
login shell into an existing web application.

9.4.1 Summary of Steps
To add the sample login shell to a portal web application, you must perform these
basic steps:

1. Run the Oracle Installer and choose to install the Portal Examples component.

2. Add the Sample Framework Components facet to your portal web project.

3. Be sure the portals’s Enable Disc property is set to true.

4. For the portal desktop, change the Shell property to Login Shell.

These steps are explained in the following sections. Figure 9–4 shows part of a portal
with the sample login shell enabled. Fields for entering username and password
appear in the upper-right corner of the portal.

Figure 9–4 Sample Login Shell Enabled

9.4.2 Installing the Portal Examples Component
To use the sample login shell, the Portal Examples component must be included in
your portal installation. To add this component:

1. Start the Oracle Installer.

2. In the Choose Products and Components part of the installer wizard, select the
Portal Examples component as shown in Figure 9–5.

Note: The login shell is a sample only. It is provided to developers as
a convenience only. It is not supported by Oracle. Oracle recommends
that you provide your own login mechanism for production
applications.

Note: If the Portal Examples checkbox is already selected, exit the
wizard; no further action is required.

Installing the Sample Login Shell

9-12 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Figure 9–5 Installing the Portal Examples Component

3. Complete the rest of the wizard steps to add the component to your portal
installation.

9.4.3 Add the Sample Framework Components Facet
Follow the instructions in Section 5.5, "Adding Facets to an Existing Project" to add the
Sample Framework Components facet to your portal web project. In the Project Facets
dialog, open the Portal Samples node and be sure that the Sample Framework
Components facet is selected. See Figure 9–6.

After the facet is installed, redeploy your web application.

Installing the Sample Login Shell

Using the Dynamic Visitor Tools 9-13

Figure 9–6 Project Facets Dialog

9.4.4 Adding the Sample Login Shell to a Portal Desktop
This section explains how to add the sample login shell to a desktop in Oracle
Enterprise Pack for Eclipse and in the WebLogic Portal Administration Console.

To add the sample login shell to a portal desktop in Oracle Enterprise Pack for Eclipse:

1. Open the .portal file in the Portal Editor.

2. Click on the border of the portal in the editor to display the desktop’s Properties
View.

3. Under Desktop Properties, change the Shell property to Login Shell, as shown in
Figure 9–7.

Figure 9–7 Adding the Sample Login Shell in the IDE

Installing the Sample Login Shell

9-14 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

4. Be sure the Disc Enabled property is set to true.

To add the sample login shell to a portal desktop in the Administration Console:

1. Open the Desktop to which you want to add the sample login shell.

2. In the Appearance and Contents part of the Details tab, click Edit Appearance.

3. Select Login Shell from the Default Shell dropdown menu.

4. Click Update. The default shell is now set to Login Shell, as shown in Figure 9–8.

Figure 9–8 Default Shell Set to Login Shell

5. In the Advanced Properties section, be sure the Disc Enabled property is set to
true.

10

Advanced DVT Development 10-1

10Advanced DVT Development

This chapter discusses how to localize, extend, and modify the Dynamic Visitor Tools
(DVT).

This chapter includes the following sections:

■ Section 10.1, "Localizing the DVT"

■ Section 10.2, "Extending the DVT with Mixins"

■ Section 10.3, "Using the Server Data Store"

10.1 Localizing the DVT
This section explains how to localize the out-of-the-box DVT components and how to
localize any custom components that you develop (widgets, visual surfaces, alerts, and
so on).

■ Section 10.1.1, "Overview"

■ Section 10.1.2, "Localizing the Out-Of-The-Box DVT"

■ Section 10.1.3, "Localizing Custom Widgets"

■ Section 10.1.4, "Extending _Localizable to Customize L10N Features"

10.1.1 Overview
The DVT uses resource bundles for localization. A resource bundle is a JavaScript
object in JSON format that specifies properties and values, where the values are the
strings to be localized. For example, the DVT bundle Alert.js looks like this:

{
 okBtnLabel: 'Ok',
 cancelBtnLabel: 'Cancel'
}

In this case, OK and Cancel are localizable strings. The property names (also called
message keys) are used to reference these localizable values in JavaScript code. For
more information, see Section 10.1.3, "Localizing Custom Widgets."

Note: The information and examples in this section assume that you
are familiar with both JavaScript and the Dojo toolkit. Dojo is used
extensively in the DVT implementation.

Localizing the DVT

10-2 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Resource bundles can also contain string templates that allow variable substitution.
For example, the pageSizeLabel property shown below includes a variable "${0}":

{
 selectTitle:"Change the number of items to view",
 pageSizeLabel:"Show ${0} Items"
}

All resource bundles for the DVT are located here:

<web_project>/dvt/l10n/com/bea/wlp/dvt/uikit/nls

You create locale-specific folders under the nls folder. The locale-specific folder
names follow a standard naming convention. They are lower case, and a hyphen
separates the language code from the optional country code. For example, en-us is
the code for United States English and en-au is the code for Australian English.
Figure 10–1 shows some of the DVT resource bundles under the nls folder in a web
project. The nls/ja folder contains resource bundles localized for the Japanese
language.

Figure 10–1 DVT Resource Bundles

10.1.2 Localizing the Out-Of-The-Box DVT
If you wish to localize the DVT for a language that is not supported out-of-the-box, do
the following:

1. Copy the <web_project>/dvt/l10n/com/bea/wlp/dvt/uikit/nls folder
to your project. To do this, right-click the folder and select Copy to Project.

2. Create the appropriately named locale-specific folder under the nls folder.

Tip: For more background information on the way locale-specific
files are structured, see the Dojo Toolkit Documentation topic
"Internationalization (i18n)."

Localizing the DVT

Advanced DVT Development 10-3

3. Copy the resource bundles from one of the existing locale folders to the new
folder.

4. Translate the resource bundles.

10.1.3 Localizing Custom Widgets
This section explains how to localize custom widgets that you write for the DVT. All
classes that require localized strings must include the _Localizable base class. This
class provides a set of localization methods that:

■ Register localization modules

■ Load message bundles

■ Perform string substitutions

To add _Localizable to a class, use the dojo.declare statement in the class that
you wish to localize. For example:

wlp_dvt_dojo.declare(
 "com.bea.wlp.dvt.uikit.Alert",
 [com.bea.wlp.dvt.uikit.UIKitWidget, com.bea.wlp.dvt.util._Localizable],
{
....

This statement includes _Localizable as a "mixin," making its methods available to
the Alert class. For more information on mixins, see Section 10.2, "Extending the DVT
with Mixins."

When using the _Localizable class, note the following conventions:

■ The message bundle for a widget must be located under the <web_
project>/dvt/l10n folder, in a directory structure patterned after the package
of the class. For example, the message bundle for the class com.foo.Bar.js
must be placed in: <web_project>/dvt/l10n/com/foo/nls/Bar.js.

■ Within a widget class (or its template), reference message bundles with an alias
called messages. For example, for the following message bundle, the expression
${messages.selectTitle} returns the string "Change the number of results
per page."

{
 selectTitle:"Change the number of results per page.",
 search:"Enter a '${0}' search query."
}

For information on customizing the message alias, see Section 10.1.4.2,
"Customizing Message Aliases."

10.1.4 Extending _Localizable to Customize L10N Features
Extend _Localizable if you want to customize how L10N modules are loaded and
customize the message alias described previously in Section 10.1.3, "Localizing
Custom Widgets."

10.1.4.1 Customizing How L10N Modules Are Loaded
DVT localization resource bundles are located by default in <web_
project>/dvt/l10n. You can specify a different location by specifying a value for
the l10nModules property. You can do this either in the _Localizable constructor

Localizing the DVT

10-4 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

or by setting the l10nModules property at the class level, before the constructor. The
_Localizable constructor takes this form:

constructor: function(args, node) {
}

The args parameter is an array, and it can take two optional elements, l10nModules
and/or messagePropertyAliases (described in the next section). The
l10nModules property takes the form of an array of objects. For example:

args[l10nModules] = [{module: "module1", prefix: "path/to/module1"},
{module: "module2", prefix: "path/to/module2"},
...]

This form specifies the path where the resource bundles for each specified module are
located. Note that the value of prefix is a path relative to the web application root.
You can also specify this property as a property of the widget (before the constructor)
like this:

l10nModules: [{module: "module1", prefix: "path/to/module1"},
{module: "module2", prefix: "path/to/module2"},
...]

Using the l10nModules property also helps optimize the loading of modules. If a
module with a given prefix is already loaded and a request to load it against a
different module name is encountered, the DVT localization framework avoids
resending a request for the JavaScript bundle file.

10.1.4.2 Customizing Message Aliases
You can change the default value of the messages alias. The messages alias lets you
reference resource bundle properties conveniently from within a widget, as explained
in Section 10.1.3, "Localizing Custom Widgets." You have two options for customizing
the message alias. First, you can simply replace the alias with a new name. This option
is useful if your widget already contains a variable called messages. In this case, the
alias refers to the existing default location of the message bundles. For example:

messagePropertyAliases = "myMessageAlias"

You can also specify an object array of this form:

messagePropertyAliases: [{alias: "msg1", path: "path.to.bundle1", file:"bundle1"},
 {alias: "msg2", path: "path.to.bundle2"}, file:"bundle2",
...]

For a more complete example, see Section 10.1.4.3, "Handling Parameterized
Messages."

The object array form lets you specify multiple aliases referring to multiple different
resource bundle files. This option lets you avoid duplicating message bundle files and
use existing message bundle files without creating new ones.

10.1.4.3 Handling Parameterized Messages
To use parameterized messages in a widget template, you must override the
postMixinProperties() method of _Localizable and substitute placeholders
with values.

For example, suppose the com.bea.wlp.dvt.uikit.SearchField widget only
needs one localized message and you do not want to define a new message bundle file
for that purpose. Instead, the widget can reuse the message bundle file defined for

Extending the DVT with Mixins

Advanced DVT Development 10-5

com.bea.wlp.dvt.uikit.ResultsPerPageView. Furthermore, suppose that the
message needs to be parameterized. The following code fragments illustrate how to
accomplish this customization:

Here are contents of the SearchField template file
(/dvt/com/bea/wlp/dvt/uikit/SearchField.html). Notice that the message
alias is "msg" and not the default "messages." The technique for changing the default is
demonstrated in the SearchField.js file, shown below.

<div class="com_bea_wlp_dvt_uikit_searchBox">
 <input type="text" name="search" title="${msg.search}"/>
</div>

The ResourcePerPageView resource bundle at
/dvt/l10n/com/bea/wlp/dvt/uikit/nls/ResultsPerPageView.js.

{
 selectTitle:"Change the number of results per page.",
 search:"Enter a '${0}' search query."
}

The SearchField widget JavaScript file at
/dvt/com/bea/wlp/dvt/uikit/SearchField.js. Note that this is where the
default message property alias is changed from messages to msg.

wlp_dvt_dojo.declare
(
 "com.bea.wlp.dvt.uikit.SearchField",
 [com.bea.wlp.dvt.util._Localizable, dijit._Templated],
{...
constructor: function(args, node)
{
 // reset messagePropertyAliases
 args[messagePropertyAliases] =
 [{alias: "msg", path:"dvt.l10n.com.bea.wlp.dvt.uikit",
 file:"ResultsPerPageView"}];
}...

And the SearchField.postMixinProperties() method:

postMixInProperties: function() {
 this.inherited(arguments); // Required: the parent function does a lot of the set up work
 this.msg.search = com.bea.wlp.dvt.util.L10nHelper.substitute(this.msg.search, ["contains"]);
}

The result of this customization is that the SearchField "reuses" a message bundle from
another module. In this example, the resulting message is: "Enter a contains search
query."

The L10nHelper.substitute() method substitutes placeholders specified in
resource bundle messages with values specified in an array. This helper class is located
in <web_project>/dvt/com/bea/wlp/dvt/util.

10.2 Extending the DVT with Mixins
You can add functionality to any DVT class by implementing and configuring mixin
classes. Mixins provide a way to extend the basic functionality of the DVT without
opening and modifying the JavaScript source code provided by WLP. This section
includes these topics:

■ Section 10.2.1, "What are Extensions?"

Extending the DVT with Mixins

10-6 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

■ Section 10.2.2, "How Mixins are Implemented"

■ Section 10.2.3, "Enabling Mixins"

■ Section 10.2.4, "Mixin Examples"

10.2.1 What are Extensions?
The mixin mechanism is implemented as a DVT extension. Extensions execute
arbitrary JavaScript code either before or after specified DVT classes are declared. You
enable and specify extensions in the <web_project>/dvt/config.js file. The
basic form of an extension, as specified in config.js, is:

extension: {
 dvtContentIncludes: [
 {
 pkg:" " /* A package or class name*/ ,
 pre: {
 ext:" " /* Execute some JavaScript code before pkg classes are
 delcared */ },
 post: {
 ext:" " /* Execute some JavaScript code after pkg classes are
 declared. */}
 }
 }
],
 dvtContentExcludes: [" /* Exclude these classes from pkg. */ "]
},

The extension object specifies which packages or classes to apply the extension to
(dvtContentIncludes) and which to exclude (dvtContentExcludes). For
example, you can choose to apply an extension to all the classes in a given module, but
exclude one or more of them. Therefore, the extension code only applies to the
included classes.

The ext property is a string consisting of JavaScript code. This code only has access to
global objects and objects defined within the scope of the code. For example, code
specified in the pre block can only access global variables. Code running in the post
block can access to the same variables that the pre block code can access, plus the
newly initialized object specified with the pkg property.

Both the pre and post code blocks also can access a global object
com.bea.wlp.dvt.util._ext. This object is populated with a copy of all of the
properties in the pre and post block objects and the following properties:

■ module – In the case of the pre block, the name of the module that is about to be
initialized. In the case of the post block, the name of the module just initialized.

■ moduleObj – The initialized module object. This property only applies to the
post block.

Example 10–1 displays an alert with the name of the module that was just loaded. The
alert appears after each DVT class is declared, except the
com.bea.wlp.dvt.util.Util class.

Example 10–1 DVT Extension Example

extension: {
 enabled: true,
 dvtContentIncludes: [
 {

Extending the DVT with Mixins

Advanced DVT Development 10-7

 pkg:"com.bea.wlp.dvt",
 post: {
 ext:"alert(com.bea.wlp.dvt.util._ext.post.module);"
 }
 }],
 dvtContentExcludes: ["com.bea.wlp.dvt.util.Util"]
}

As mentioned previously, this extension mechanism is used by the DVT to implement
the mixin feature. The next section discusses this implementation in more detail.

10.2.2 How Mixins are Implemented
Mixins are implemented as an extension. The mixin extension is defined by default in
the <web_project>/dvt/config.js file. Example 10–2 shows the mixin extension
implementation. This implementation makes a request for a <modulename>Mixin
module and extends the current module with code in <modulename>Mixin. Note
that the mixin extension applies to all DVT modules after they are declared, except
com.bea.wlp.dvt.Util, which is excluded.

Example 10–2 The Mixin Extension

extension: {
 // true or false to enable or disable the extension mechanism
 enabled: true,

 dvtContentIncludes: [
 {
 pkg:"com.bea.wlp.dvt",
 post: {
 ext:"try{"+
 "wlp_dvt_dojo.require(com.bea.wlp.dvt.util._ext.module+\"Mixin\", true);"+
 "var mixinObj =
 wlp_dvt_dojo.getObject(com.bea.wlp.dvt.util._ext.module+\"Mixin\");"+
 "if(mixinObj) {"+
 "if(com.bea.wlp.dvt.util._ext.post &&
 com.bea.wlp.dvt.util._ext.post.keepOldProps) {"+
 "var thisModule =
 wlp_dvt_dojo.getObject(com.bea.wlp.dvt.util._ext.module);" +
 "for(prop in mixinObj) { " +
 "if(thisModule.prototype[prop]) { " +
 "if(!thisModule.prototype.getExtendee) { "+
 "thisModule.prototype.getExtendee = function() { "+
 "if(!this._wlpInherited) { this._wlpInherited = {};};
 return this._wlpInherited; " +
 "};" +
 "} "+
 " if(!thisModule.prototype._wlpInherited) {"+
 " thisModule.prototype._wlpInherited = {};}" +
 "thisModule.prototype._wlpInherited[prop] =
 thisModule.prototype[prop];" +
 "}}};"+
 "thisModule = wlp_dvt_dojo.extend(thisModule, mixinObj);}"+
 "}catch(e){console.error(e);}",
 keepOldProps: true

Tip: The dojo.extend() method is used to perform the extension.
For more information, refer to Dojo toolkit documentation on this
method.

Extending the DVT with Mixins

10-8 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

 }
 }
],

 dvtContentExcludes: ["com.bea.wlp.dvt.util.Util"]
 },

Place your mixin modules (for example, <modulename>Mixin) in the web
application in the same directory as the module you wish to extend. See Section 10.2.4,
"Mixin Examples" for more information.

The Mixin extension also defines a property keepOldProps on the post object. If this
property is set to true (the default), properties in the module being extended that
might be overwritten as a result of the extension process are preserved. You can access
these preserved properties using this.getExtendee().<propertyName>.

In summary, if Mixins are enabled, the DVT will request a <modulename>Mixin class
when loading the <modulename> class, and extend <modulename> class with the
code in the Mixin class. For example, if a class
com.bea.wlp.dvt.uikit.UIKitWidgetMixin exists, it will be requested when
com.bea.wlp.dvt.uikit.UIKitWidget is loaded.

10.2.3 Enabling Mixins
To enable the mixin feature, you must first enable the extension feature. By default, the
extension mechanism is disabled.

1. In Oracle Enterprise Pack for Eclipse, open the Merged Projects view.

2. Navigate to <web_project>/dvt.

3. Right-click the file config.js and select Copy to Project.

4. Open config.js in the editor.

5. Locate the extension object and set the enabled property to true.

10.2.4 Mixin Examples
Example 10–3 illustrates a mixin class, PortletItemMixin, that adds "_MP" to every
portlet item’s title by overriding the PortletItem._getItemArray() method.

You can test this mixin example by creating this file with the code in Example 10–3:

<web_app>/WebContent/dvt/com/bea/wlp/dvt/data/item/PortletItemMixin.js

Note: Before you can use mixins, you must enable the extension
feature. See Section 10.2.3, "Enabling Mixins."

Note: In practice, WLP only supports reading data from the server,
not writing. For instance, WLP supports dojo.data.api.Read, but not
dojo.data.api.Write. Example 10–3 illustrates how data that from the
server’s perspective is read-only can be changed on the client before
display.

Using the Server Data Store

Advanced DVT Development 10-9

Example 10–3 Example Mixin Class

wlp_dvt_dojo.setObject("com.bea.wlp.dvt.data.item.PortletItemMixin", {
 _getItemArray: function(rawItemArray) {
 if(wlp_dvt_dojo.isArray(rawItemArray)) {
 var i;
 var itemArray = [];
 for(i=0;i<rawItemArray.length;i++) {
 itemArray[i] = new com.bea.wlp.dvt.data.item.PortletItem(rawItemArray[i]);
 itemArray[i].title[0] = itemArray[i].title[0] + "_MP";
 }
 return itemArray;
 } else {
 throw new Error("_getItemArray expects an array of raw items.");
 }
 }
});

Example 10–4 illustrates a mixin class that prints a console warning and calls the
hitchDvtToLaf() method in com.bea.wlp.dvt.injector.BighornInjector.
Note the use of this.getExtendee() to access overwritten properties of the
extended module. You can access the extended module in the extension ext property
using com.bea.wlp.dvt.util._ext.post.moduleObj, as explained in
Section 10.2.2, "How Mixins are Implemented."

Example 10–4 Example Mixin Class

wlp_dvt_dojo.setObject("com.bea.wlp.dvt.injector.BighornInjectorMixin", {
 hitchDvtToLaf: function() {
 console.warn("In BighornInjectorMixin")
 this.getExtendee().hitchDvtToLaf.call(this);
 }
});

10.3 Using the Server Data Store
The DVT includes an API for locating and reading data from a data source. This API
conforms to the dojo.data.api.Read and dojo.data.api.Identity APIs. A
data source can be any source of raw data. For example, a data source could be a file,
such as a CSV file, a database, or a web service. This section includes these topics:

■ Section 10.3.1, "Server Data Store Features"

■ Section 10.3.2, "Using Server Data Store: A Basic Example"

■ Section 10.3.3, "The Server Data Store Constructor"

■ Section 10.3.4, "Request Object Parameters"

■ Section 10.3.5, "Server Data Store Examples"

10.3.1 Server Data Store Features
This section lists the basic features of the DVT Server Data Store:

■ Fetches data from any server that supports HTTP.

■ Operates in any web container in which Dojo is installed.

■ Fetches data in any data format. You can add support for JSON or other data
formats using pluggable data format handlers.

Using the Server Data Store

10-10 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

■ Fetches data with any structure through pluggable data type handlers. You can
add data type support either at creation or runtime through a registration API.
New data types must conform to the com.bea.wlp.dvt.data.item.Item
API. Default support is provided for common WLP types, like portlets, remote
portlets, books, pages, desktops, layouts, look and feels, menus, shells, and
themes.

■ Supports pagination and sorting whether on the server or on the client.

■ Supports search and filtering.

■ Supports customization either through creation in JavaScript code or through
HTML using the Dojo parser.

■ Can be used with other Dojo UI widgets to display data.

10.3.2 Using Server Data Store: A Basic Example
This section presents a basic example that demonstrates how to instantiate and use a
ServerDataStore object. The code in Example 10–5 creates an instance of
ServerDataStore with a URL parameter specifying the location from which to retrieve
the data. For more information on the constructor, see Section 10.3.3, "The Server Data
Store Constructor."

The fetch() method takes a "request" object that encapsulates the function’s
parameters. (See Section 10.3.4, "Request Object Parameters" for more information.)
First, the query parameter specifies the webapp that contains the data. The
queryOptions parameter specifies parameters that filter the query. In this case,
queryOptions specifies filtering for the title and description attributes of the data.
The filtering occurs on the server, because client side filtering is turned off by default.
Filtering can only be performed on one parameter per request. In this example,
filtering will only be performed on the title attribute. The count parameter sets the
page size of the returned data to 2. The onComplete parameter is a function that is
called when all data items on the page are loaded. In this case, onComplete displays
the portlet title and its identity on the page.

Example 10–5 Server Data Store Example in JavaScript

var serverDataStore = new com.bea.wlp.dvt.data.stores.ServerDataStore({
 url: "http:/localhost:7001/portal_1/bea/wlp/api/portlet/list"
});
serverDataStore.fetch({
 query: {webapp: "portal_1"},
 queryOptions: {title: "*C*", description: "*c*", ignoreCase: true},
 count: 2,
 onComplete: function(/*Item array*/items, /*Object*/request) {
 var dataDiv = "<div id=\"dataDivPortlet\">";
 //console.log("In test.jsp onComplete items.length " + items.length);
 dataDiv += "<p>Portlets</p>";
 for(var i=0;i<items.length;i++) {
 dataDiv += serverDataStore.getValue(items[i], "title") +
 "
 (Identity: " + serverDataStore.getIdentity(items[i]) +")";
 }
 dataDiv += "</div>";
 wlp_dvt_dojo.byId('storePortletData').innerHTML = dataDiv;
 }
});

Using the Server Data Store

Advanced DVT Development 10-11

10.3.3 The Server Data Store Constructor
This section describes properties of an object that you can pass to the ServerDataStore
constructor to customize the server data store’s behavior.

■ url – (string) Specifies the server URL from which to retrieve the data.

■ clientSidePaging – (boolean) Denotes whether to page data on the server or on
the client. If false, every call to the next and previous functions causes a request
to be sent to the server URL, configured with the appropriate page number and
page size values. If true, the data is fetched only once from the server, and calls to
the next and previous functions page over the data set that resides in memory on
the client.

■ itemType – (object) Optional object that specifies the data type. This specified type
overrides any built-in types. ServerDataStore tries to create items of this specified
type. The type must support methods defined in com.bea.wlp.dvt.data.item.Item.
Declare the type using dojo.declare with a constructor function.

■ dataFormatHandler – (function) Optional function that handles a given data
format with the specified item type of that format. Defaults to a JSON data
handler. This function must always return a JSON representation of the data,
whatever the input format is.

■ comparatorMap – For details on this optional parameter, see documentation for
dojo.data.util.sorter. This parameter only works on the client side. If
clientSidePaging is set to false, sorting occurs only on the current page of data.

10.3.4 Request Object Parameters
The ServerDataStore.fetch() method takes a "request" object that includes the following
required and optional parameters:

■ query – Specifies attributes that qualify a fetch request. This parameter can contain
the following attributes:

– webapp – (string) The web application from which to retrieve the data.

– locale – (string) Any string that is supported by a registered
dataFormatHandler. Defaults to JSON format.

■ queryOptions – Optional parameter that specifies options that modify the query.
Currently, this parameter only supports filtering parameters. If you use the WLP
REST API to construct the URL end point for the data store, and server-side
filtering is enabled, this parameter takes the following options:

– title – (string)

– description (string)

– ignoreCase (boolean)

If both the title and description are specified, title takes precedence. This is because
filtering is currently supported for one attribute per request.

If client-side filtering is enabled (setting clientSideFiltering to true in the
ServerDataStore constructor), queryOptions can be used to filter any property that
the data items contain.

■ onBegin – Specifies a callback function(size, request). If an onBegin function is
provided, the callback is only called once, before the first onItem callback is
called. The functions parameters are the total number of items identified and the
Request object. If the total number is unknown, the size is -1. The size is not

Using the Server Data Store

10-12 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

necessarily the size of the collection of items returned from the query, because the
request might only return a subset of the total set of items with the use of the start
and count parameters.

■ onItem – Specifies a callback function(item, request). If specified, the onItem
callback function is called as each item in the result is received. The parameters
include the item itself and the Request object.

■ onComplete – Specifies a callback function(items, request). If provided, the
onComplete callback function is called once, after the last onItem callback is
called. Note that if the onItem callback is not present, then onComplete is passed
an array containing all items that matched the query and the Request object. If the
onItem callback is present, then onComplete is called as: function(null, request).

■ onError – Specifies a callback function(errorData, request). This function is called
if an error occurs during the query execution. The onError callback function takes
two arguments, an error object and a Request object.

■ scope – If a scope object is provided, all callback functions (onItem, onComplete,
onError, and so on) are invoked in the context of the scope object. In the body of
the callback function, the value of the "this" keyword is the scope object. If no
scope object is provided, the callback functions are called in the context of the
dojo.global(). For example:

onItem.call(scope, item, request)

or

onItem.call(dojo.global(), item, request)

■ start – (integer) Specifies a number of items in the data store to skip over. If the
count parameter is also specified, the data store pages across queries by only
returning subsets of the hits for each query.

■ count – (integer) Specifies the number of items to be returned from the data store.
This parameter overrides the value of the pageSize parameter.

■ sort – Specifies how to sort the items before they are returned. This parameter
specifies an array of JavaScript objects that must conform to the following format:

{
 attribute: attribute || attribute-name-string,
 descending: true|false; // Optional. Default is false.
}

10.3.5 Server Data Store Examples
Example 10–6 illustrates how to customize the data type that the data store handles. In
this example, the itemType attribute is specified in the ServerDataStore constructor.
The code for the tests.MyPortletItem class is shown in Example 10–7.

Note: When comparing attributes, if an item contains no value for
the attribute (undefined), then the default ascending sort logic pushes
it to the bottom of the list. In the descending order case, such items
must appear at the top of the list. The sort parameter can also be a sort
function. In this case, the sort function is called. The sort function
accepts requestArgs and a list of items, and it returns a sorted list
based on some criteria. The function is executed in the context of the
data store object.

Using the Server Data Store

Advanced DVT Development 10-13

Example 10–6 Server Data Store Example with itemType Specified

var serverDataStorePortletExt = new com.bea.wlp.dvt.data.stores.ServerDataStore({
 url: "http://localhost:7001/portal_1/bea/wlp/api/portlet/list",
 itemType: "tests.MyPortletItem"
});

serverDataStorePortletExt.fetch({query: {webapp: "portal_1"}, count: 5,
 onComplete: function(/*Item array*/items, /*Object*/request) {
 var dataDiv = "<div id=\"dataDivPortletExt\">";
 dataDiv += "<p>PortletsExt</p>";
 for(var i=0;i<items.length;i++) {
 dataDiv += serverDataStorePortletExt.getValue(items[i], "title") + "</br>";
 }
 dataDiv += "</div>";
 wlp_dvt_dojo.byId('storePortletDataExt').innerHTML = dataDiv;
 }
});

Example 10–7 MyPortletItem Class

wlp_dvt_dojo.provide("tests.MyPortletItem");
wlp_dvt_dojo.require("com.bea.wlp.dvt.data.item.PortletItem");

wlp_dvt_dojo.declare("tests.MyPortletItem", com.bea.wlp.dvt.data.item.PortletItem, {
 _getItemArray: function(/*array of raw items*/rawItemArray) {
 // summary:
 // Given an array of raw items, creates typed objects
 // This method is item type specific
 if(wlp_dvt_dojo.isArray(rawItemArray)) {
 // create typed PortletItem objects
 var i;
 var itemArray = [];
 for(i=0;i<rawItemArray.length;i++) {
 itemArray[i] = new tests.MyPortletItem(rawItemArray[i]);
 itemArray[i].title[0] = itemArray[i].title + "_MP";
 }
 return itemArray;
 } else {
 throw new Error("_getItemArray expects an array of raw items.");
 }
 }
});

The code in Example 10–7 extends the PortletItem class. By doing so, the class
conforms to the com.bea.wlp.dvt.data.item.Item API. This class simply adds the string
"_MP" to the end of the title of each portlet.

Instead of changing the data type that the data store expects, you can add a data type
to the built-in list of data types that the data store can access by using the function:

registerTypes: function(/*array* types)

The types argument is an array of fully qualified type names that must conform to the
com.bea.wlp.dvt.data.item.Item API.

Example 10–8 illustrates how to use a mixin with the pluggable data format handler
feature of the data store. This example sets up a data store that consumes data in XML
format. This data store consumes look and feel data items that are retrieved in XML.
This code sets up a data store with a dataFormat handler that handles XML data.

Using the Server Data Store

10-14 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Example 10–8 Using a Mixin with a Data Format Handler

var serverDataStore = new com.bea.wlp.dvt.data.stores.ServerDataStore({
 url: "http://localhost:7001/portal_1/bea/wlp/api/lookandfeel/list",
 dataFormatHandler: function(data, format) {
 if(!data) {
 return null;
 }

 if(/xml/i.test(format)) {
 var json = com.bea.wlp.dvt.util.xmlobjectifier().xmlToJSON(data);
 return json;
 }

 console.error(this.substitute(this.messages.unsupportedDataFormat, ["xml", format]));
 return null;
 }
});

The mixin used in Example 10–8 sets up a look and feel data item that can handle XML
data. Example 10–9 lists the code for the LAFItemMixin class. The ability to handle
XML is provided by overriding the isSupported() and getRawItemArray() functions.

Example 10–9

wlp_dvt_dojo.setObject("com.bea.wlp.dvt.data.item.LAFItemMixin", {
 isSupported : function(/*Object*/data, format) {
 if(format == "xml") {
 if(data && data.lookandfeels) {
 if(data.lookandfeels.length > 0 &&
 data.lookandfeels[0].lookandfeel_details &&
 data.lookandfeels[0].lookandfeel_details.length > 0) {
 return {isSupported: true, isEmptyData: false};
 } else {
 return {isSupported: true, isEmptyData: true};
 }
 } else {
 return {isSupported: false, isEmptyData: true};
 }
 } else {
 return {isSupported: false, isEmptyData: true};
 }
},
 _getRawItemArray : function(/*Object*/data, format) {

 // This method is item type specific
 // Each item type knows the structure of data it handles
 // and after parsing out any top level objects, returns the
 // raw array of items
 if(!data) {
 throw Error(messages.invalidDataItem);
 }
 if(!/xml/i.test(format)) {
 return null;
 }
 var arr = data.lookandfeels[0].lookandfeel_details;
 // massage data to remove unwanted attributes
 var returnArray = [];
 for(var i=0;i<arr.length;i++) {
 returnArray[i] = { label: arr[i].markup_name[0].Text,
 title: arr[i].title[0].Text, description: arr[i].description[0].Text,

Using the Server Data Store

Advanced DVT Development 10-15

 created_date: arr[i].created_date[0].Text, modified_date: arr[i].modified_date[0].Text
 };
 }
 return returnArray;
}});

Using the Server Data Store

10-16 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

11

Enabling Visitor Tools 11-1

11Enabling Visitor Tools

Visitor Tools allow individual portal users to customize the makeup and appearance of
their portal desktop to create a more personalized portal experience. This chapter
explains how to enable Visitor Tools.

This chapter includes these topics:

■ Section 11.1, "What Are Visitor Tools?"

■ Section 11.2, "Enabling Visitor Tools"

11.1 What Are Visitor Tools?
When enabled, Visitor Tools add features to portal desktops that allow portal visitors
to modify the content and appearance of their desktops, books, and pages.

Changes made by a user through Visitor Tools are saved in the database and persist
each time the user logs in to the portal. Visitor Tools provide a small subset of features
that are available in the Portal Administration Console, such as changing the portal
look & feel, adding and removing portlets, books, and pages, and others features.

Visitor Tools provide a Customize menu that portal visitors can use to access the
customize their portal desktop.

Note: Oracle WebLogic Portal includes two features that, when
enabled, let your users customize portals.

The Visitor Tools feature -- described in this chapter -- does not utilize
Oracle WebLogic Portal’s Web 2.0 functionality, such as Dynamic
Interface SCripting (Disc) framework and a REpresentational State
Transfer (REST) Framework.

The Dynamic Visitor Tools ("DVT") feature utilizes of Oracle WebLogic
Portal’s Web 2.0 functionality. We recommend that you use the DVT
for all new Oracle WebLogic Portal applications. For details, see
Chapter 9, "Using the Dynamic Visitor Tools."

Note: Visitor Tools require that the Apache Beehive facets are
installed in the web application. For information on installing Apache
Beehive facets, see "Apache Beehive and Apache Struts Supported
Configurations" in the Oracle Fusion Middleware Portal Development
Guide for Oracle WebLogic Portal.

Enabling Visitor Tools

11-2 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

11.2 Enabling Visitor Tools
Enabling Visitor Tools is a two-step process. First, you need to verify in Oracle
Enterprise Pack for Eclipse that the proper facet is installed in the portal web project
that contains the portal you wish to enable. Second, you need to create a properly
configured desktop in the WebLogic Portal Administration Console based on the
enabled .portal file.

This section includes these topics:

■ Section 11.2.1, "Verifying the Portal Visitor Tools Facet"

■ Section 11.2.2, "Enabling Visitor Tools for a Desktop"

11.2.1 Verifying the Portal Visitor Tools Facet
The deployed portal web project that contains the portal you wish to enable for Visitor
Tools must include the Portal Visitor Tools facet. Although this facet is installed by
default, this section explains how to verify that the facet is installed and how to add it
if necessary.

1. Verify that the Visitor Tools project facet is installed in your portal web project.

To do this, right-click the portal web project, and select Properties. The Properties
dialog appears (see Figure 11–1).

2. Choose Project Facets from the tree on the left side of the dialog and look for the
library called Portal Visitor Tools.

Figure 11–1 Project Facet List, Including Visitor Tools

If the facet is not in the list, add it by following the instructions in Section 5.5,
"Adding Facets to an Existing Project."

Enabling Visitor Tools

Enabling Visitor Tools 11-3

3. Optionally, you can enable the Visitor Tools Desktop Shell in Oracle Enterprise
Pack for Eclipse. To do this, select the desktop and in the properties editor, select
Visitor Tools Desktop Shell, as shown in Figure 11–2. This step is optional, because
you can also enable this shell in the Administration Console.

Figure 11–2 Select Desktop and Edit Shell Property

11.2.2 Enabling Visitor Tools for a Desktop
To take advantage of Visitor Tools, you must create a streaming portal desktop. This
means that you must use the WebLogic Portal Administration Console to create a
desktop and explicitly enable Visitor Tools for that desktop. For more information
about streaming portals, refer to Section 3.6, "File-Based Portals and Streaming
Portals."

This section explains how to configure a streaming portal desktop that includes Visitor
Tools. After the desktop is configured, users of the desktop can view and interact with
the Visitor Tools.

1. Open the Administration Console. Typically, you do this in Oracle Enterprise Pack
for Eclipse by selecting Run > Open Portal Administration Console.

2. Log in to the Administration Console.

3. Create a new desktop using the .portal file created previously as the basis for
the new desktop, and select Visitor Tools Desktop Shell as the Default Shell for the
desktop.

To confirm that visitor tools are enabled:

Note: To use Visitor Tools, the portal desktop must be created from a
template .portal file in a Portal Web Project that includes the Portal
Visitor Tools facet. See Section 11.2.1, "Verifying the Portal Visitor
Tools Facet."

Note: Visitor Tools do not appear on a user's desktop unless the user
is authenticated; therefore, to use Visitor Tools, a portal must include
some form of user authentication (for example, a login portlet). For
more information about authentication, see the Oracle Fusion
Middleware Security Guide for Oracle WebLogic Portal.

Note: For detailed instructions on creating a desktop, refer to
Section 15.12.1, "Creating a Desktop."

Enabling Visitor Tools

11-4 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

1. From the Administration Console Portal Resources tree, select the new desktop, go
to the Details tab, and click View Desktop.

2. When the desktop displays, log in and access the Visitor Tools using the Visitor
Tools Customize menu, as shown in Figure 11–3.

Figure 11–3 Visitor Tools Menu Enabled

12

Creating Portals for Multiple Device Types 12-1

12Creating Portals for Multiple Device Types

Many types of web-enabled mobile devices can access your portals. Each type has
unique requirements for the content that it can display.

With the multichannel framework provided in WebLogic Portal, you can extend your
portals to include support for different mobile devices. This flexible framework lets
you create a single portal that serves content to multiple web-capable devices
seamlessly and simultaneously. You can also serve different content to different
browsers, such as Mozilla Firefox, Netscape, and Internet Explorer.

When a device accesses a portal, the portal detects the device type and automatically
serves the content you created for it within the assigned Look And Feel.

This chapter contains the following sections:

■ Section 12.1, "Enabling Multichannel Features in a Portal Web Application"

■ Section 12.2, "Roadmap for Multichannel Processing"

■ Section 12.3, "Developing Portals for Use in a Multichannel Environment"

12.1 Enabling Multichannel Features in a Portal Web Application
When a device (whether a PC or a handheld) accesses a portal, it sends information
about itself to the portal in the HTTP header, including the type of browser being used
and the type of device. This combination of information defines a client, which is
equivalent to the model of a device.

You define a client in the WebLogic Portal classifications configuration file using a user
agent element. You can group several clients into a classification. For example, there are
many models (client types) of Palm handheld devices, but they all fall under the
classification of "Palm."

To enable the multichannel framework in your portal web project, you create an XML
configuration file that maps clients to classifications. You must name the file
client-classifications.xml and place it in the WEB-INF directory. You can
create the XML file from within Oracle Enterprise Pack for Eclipse by selecting File >
New > Other > XML and following the steps in the wizard.

For each client entry that maps to a classification, you can include either an explicit
user agent string that maps exactly to what a device sends, or you can enter a regular
expression that encompasses multiple user agent strings.

Example 12–1 shows an example of a client classification mapping in
client-classifications.xml using explicit mappings (with the <useragent>
tag) and a regular expression mapping (with the <useragent-regex> tag).

Roadmap for Multichannel Processing

12-2 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Example 12–1 Example of a Client Classification Mapping in the client-classifications.xml File

<classification name="pocketpc" description="For the PocketPC">
 <useragent value="Mozilla/2.0 (compatible; MSIE 3.02; Windows CE; 240x320)"/>
 <useragent value="Mozilla/2.0 (compatible; MSIE 3.02; Windows CE; PPC;
 240x320)"/>
 <useragent-regex value=".*PDA; Windows CE.*NetFront/3.*" priority="1"/>
</classification>

You can use an explicit <useragent> value for only one classification. If you use
more than one <useragent-regex> tag to map with regular expressions, it is
possible that a device accessing a portal could map to more than one classification. To
determine which classification the device is mapped to, use the priority attribute, as
shown in Example 12–1. The value 1 is the highest priority. Enter any whole number
for the priority value.

Based on the mappings you define in the client-classifications.xml file, the
user agent value in the <useragent> property is mapped to the classification name
you provide. The classification name in Example 12–1 is pocketpc.

12.2 Roadmap for Multichannel Processing
Figure 12–1 shows the sequence of multichannel framework processing that occurs
when a device accesses a portal.

Note: For portlets that are assigned client classifications, the value
you enter for the description element is displayed in the WebLogic
Portal Administration Console to show the classifications to which the
portlet is assigned. Make sure you create descriptions that are easily
understood by portal administrators.

Developing Portals for Use in a Multichannel Environment

Creating Portals for Multiple Device Types 12-3

Figure 12–1 Multichannel Framework Processing Sequence

When a device accesses a portal-enabled server with a URL, the device sends a user
agent string in the HTTP header to identify the client type. Because of the mappings
you defined in the client-classification.xml file, the user agent string stored
in the <useragent> property is mapped to the classification name you provided. As
shown in Figure 12–1, the name is pocketpc.

The user agent request property is automatically included with any portal application
that you create in Oracle Enterprise Pack for Eclipse. You can view this property by
opening the following file in your Oracle Enterprise Pack for Eclipse workspace:

Portal_Web_Project\Data_Dir\src\request\DefaultRequestPropertySet.req

The portal uses that client classification name stored in the
DefaultRequestPropertySet.req file throughout the portal framework to
identify the content and presentation tailored to the device.

Based on the mapping you set up to match user agent strings in the HTTP request to
classification names, the portal sends device-specific content and presentation to the
different devices that access the portal.

12.3 Developing Portals for Use in a Multichannel Environment
The following sections describe how to use the portal framework to create
device-specific content and presentation.

Developing Portals for Use in a Multichannel Environment

12-4 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

12.3.1 Manage Portlet Client Classifications
When you create a portlet, you can assign the portlet to be used by different devices
(client classifications). With the portlet open in the editor, go to the Properties view
and perform the following steps:

1. Click the ellipsis button in the Client Classifications field, as shown in
Figure 12–2.

Figure 12–2 Portlet Properties View Showing the Client Classifications Property

The Manage Portlet Classifications dialog displays. Figure 12–3 shows an example:

Figure 12–3 Example of the Manage Portlet Classifications Dialog

2. In the Manage Portlet Classifications dialog, you select either to enable or to
disable a subset of your client classifications; any classifications that you do not
identify will automatically fall into the opposite category. Decide whether you
want to enable a subset of your classifications and leave the remainder disabled, or
disable a subset of classifications and leave the rest enabled.

The instructions for this step assume that you want to disable a subset of
classifications and leave the rest enabled.

a. Select the Disabled Classifications radio button to disable the portlet for any
classifications.

b. Use the Add button to move desired classifications into the Selected
Classifications column.

Note: The client-classifications.xml file must already exist in the
project's WEB-INF directory in order for this dialog to display.

Developing Portals for Use in a Multichannel Environment

Creating Portals for Multiple Device Types 12-5

By default, a classification is enabled unless you disable it.

c. When you are finished, click OK to save your settings.

12.3.2 Use the Client Attribute in JSP Tags
WebLogic Portal includes JSP tags for creating device-specific inline content in JSPs.
Only the content that meets the device criteria defined by the JSP tag is delivered to
the device.

The relevant JSP tags have a required client attribute for mapping the JSP content to
classifications. For the client value in the JSP tag, you must use the exact value that
you used for the name in the client-classifications.xml file.

Example 12–2 shows some possible uses of the client tag.

Example 12–2 Example JSP File Showing Possible Uses of the Client Tag

<%@ taglib uri="http://www.bea.com/servers/portal/tags/client/cscm" prefix="client" %>
<%@ taglib uri="http://www.bea.com/servers/portal/tags/netuix/render" prefix="render" %>
This is a sample of manipulating content using the client-classification tag library.
<p/>
<client:default>
 <img style="padding: 10;" align="Bottom" src="<render:jspUri/>images /sunset-big.gif"/>
</client:default>
Different versions of the same image will be selected based on the client classification. For the
"default" client, a large image will appear. For the "palm" and
"pocketpc", a smaller version of the image will be used. For the "nokia"
classification, a greyscale image will be used (purely as an example).
<p/>
<client:when client="palm,pocketpc"><img src="<render:jspUri/>images
/sunset-small.gif"/><p/></client:when>
<client:when client="nokia"><img src="<render:jspUri/>images
/sunset-small-greyscale.gif"/><p/></client:when>
Image placement is also altered slightly for the different classifications.
<client:when-not client="palm,nokia">
<p/>
This additional content is also included if the client is not a "nokia" or
"palm" classification.
<p/></client:when-not>

12.3.3 Develop Appropriate Look And Feels
The Look And Feels (skins and skeletons) provided with WebLogic Portal include
support for a few mobile devices (Nokia, Palm, and Pocket PC).

You can develop your own skins and skeletons to support different devices. When a
Look And Feel is selected for a desktop, the portal framework reads the client
classification property in the DefaultRequestPropertySet.req file and uses the
Look And Feel logic to find skin and skeleton directories matching the name of the
client classification.

Any portal web project that you create includes a default set of multichannel Look
And Feels located in skin and skeleton subdirectories
(\framework\skins\default and \framework\skeletons\default).

For instructions on creating skins and skeletons for Look And Feels, refer to Chapter 7,
"User Interface Development with Look And Feel Features."

Developing Portals for Use in a Multichannel Environment

12-6 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

12.3.4 Interaction Management Development
Using the client classification name stored in the
DefaultRequestPropertySet.req file, you can build and trigger personalization
and campaigns for devices based on that property value.

For information on developing personalization and campaigns, refer to the Oracle
Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal.

13

Designing Portals for Optimal Performance 13-1

13Designing Portals for Optimal Performance

The process of optimizing your portal for the best possible performance spans all
phases of development. You should continually monitor performance and make
appropriate adjustments.

This chapter describes performance optimizations that you can incorporate as you
develop your portal.

For information about fine-tuning your portal application after it has been deployed,
please refer to the Oracle Fusion Middleware Performance Tuning Guide for Oracle
WebLogic Portal. For information about capacity planning, see the Oracle Fusion
Middleware Capacity Planning Guide for Oracle WebLogic Portal.

This chapter contains the following sections:

■ Section 13.1, "Asynchronous Desktop Rendering"

■ Section 13.2, "Control Tree Design"

■ Section 13.3, "Using Multiple Desktops"

■ Section 13.4, "Optimizing the Control Tree"

■ Section 13.5, "Other Ways to Improve Performance"

13.1 Asynchronous Desktop Rendering
Asynchronous rendering improves overall portal performance by allowing the
contents of portlets to render independently of one another.

WebLogic Portal supports two methods of asynchronous rendering: portlet-specific
and desktop. With portlet-specific asynchronous rendering, you can choose which
portlets will render asynchronously. With asynchronous desktop rendering, all portlets
within a portal desktop render asynchronously.

This section discusses asynchronous desktop rendering primarily. For detailed
information on portlet-specific asynchronous rendering, see the chapter "Optimizing
Portlet Performance" in the Oracle Fusion Middleware Portlet Development Guide for
Oracle WebLogic Portal.

Note: The Oracle Fusion Middleware Performance Tuning Guide for
Oracle WebLogic Portal and the Oracle Fusion Middleware Capacity
Planning Guide for Oracle WebLogic Portal are typically available online
three months after the release of a particular version of WebLogic
Portal.

Asynchronous Desktop Rendering

13-2 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

This section includes these topics:

■ Section 13.1.1, "Choosing the Method of Asynchronous Rendering"

■ Section 13.1.2, "Configuring Asynchronous Desktop Rendering"

■ Section 13.1.3, "Programmatically Disabling Asynchronous Desktop Rendering"

13.1.1 Choosing the Method of Asynchronous Rendering
Both portlet-specific and desktop asynchronous rendering improve overall portal
performance. Because only the portlets that have changed are updated (refreshed),
users experience quicker overall response times. In addition to improving portal
response times, asynchronous rendering decreases server load.

Consider choosing asynchronous desktop rendering if:

■ You want to use interportlet communication in your asynchronously rendered
desktop. Interportlet communication is not supported for portlet-specific
asynchronous rendering.

■ You need to have programmatic access to the full portal control tree. For example,
with asynchronous desktop rendering enabled, portlets can take advantage of
backing context objects such as PageBackingContext. These objects cannot be used
by portlets configured for portlet-specific asynchronous rendering.

Consider choosing portlet-specific asynchronous rendering if:

■ You only need to enable asynchronous rendering on a single portlet. For example,
if a specific portlet requires a long processing time, you might not want to hold up
the entire portal.

13.1.2 Configuring Asynchronous Desktop Rendering
You can configure asynchronous desktop rendering in Oracle Enterprise Pack for
Eclipse and in the WebLogic Portal Administration Console. In both cases, you can
choose one of three options:

■ Enable – Enables asynchronous desktop rendering for the entire portal desktop.
This mode disables any portlet-specific asynchronous rendering settings that may
exist in the desktop.

■ Disable – Disables asynchronous rendering for the entire portal desktop. This
mode disables asynchronous rendering for all portlets, including ones that have
portlet-specific asynchronous rendering enabled.

■ Compatibility Mode – Enables portlet-specific asynchronous rendering to
function, but disables asynchronous desktop rendering.

Asynchronous desktop rendering in Oracle Enterprise Pack for Eclipse is set with the
portal property called Asynchronous Mode. See Section 8.2.1, "Editing Portal
Properties" for details.

In the Administration Console, you can set asynchronous desktop rendering for
specific desktops in the Advanced Properties section of the Desktop Details window.
See Section 15.12.2, "Modifying Desktop Properties" for details.

13.1.3 Programmatically Disabling Asynchronous Desktop Rendering
In some cases, you might want to give portal users the ability to turn off asynchronous
desktop rendering for their personal view. The primary use case is for creating such a
feature is for accessibility compliance (Section 508 and WAI) – some screen readers do

Control Tree Design

Designing Portals for Optimal Performance 13-3

not work properly with Ajax, the web development technique upon which
asynchronous rendering relies.

To control asynchronous desktop rendering on a per-request basis, attach a backing file
to the desktop in the .portal file and call the
DesktopBackingContext.setAsyncMode(DesktopBackingContext.AsyncModeType
asyncMode). This method must be called in the Init() method of the backing file. For
information on working with the DesktopBackingContext class and this method, refer
to the Javadoc (Oracle Fusion Middleware Java API Reference for Oracle WebLogic
Portal). For information on backing files, see the Section 3.10, "Backing Files."

13.2 Control Tree Design
One of the most important variables that affects portal performance is portal
framework controls. The more portal framework controls (pages, portlets, buttons, and
so on) you have, the larger your control tree.

13.2.1 How the Control Tree Works
When a portal is instantiated, it generates a taxonomy, or hierarchy of portal resources,
such as desktops, books, pages, and portlets. Each resource is represented as a node on
the control tree, as shown in Figure 13–1.

Figure 13–1 Simple Portal Schematic Example

This example depicts a single portal with a main book containing six sub-books, which
in turn contain two pages each, and each page contains two portlets each, for a
minimum of 42 controls in the portal; the inclusion of buttons, windows, menus, and
layouts increases the number of controls on the portal significantly.

13.2.2 How the Control Tree Affects Performance
Once the control tree is built and all the instance variables are set on the controls, the
tree must run through the life cycle for each control before the portal can be
fully-rendered. The life cycle methods are called in depth-first order. That is, all the

Note: This example is significantly oversimplified; enterprise portals
might include thousands of controls.

Using Multiple Desktops

13-4 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

init() methods for each control are called, followed by the loadState() method
for each control, and so on in an order determined by the position of each control in
the portal's taxonomy. For example, the control tree illustrated in Figure 13–2 depicts
the taxonomy a simple portal comprised of a book (B1) containing two pages (P1 and
P2), which each contain two portlets (p1-p4; note that p2 also contains its own
subordinate book, page, and portlet hierarchy).

Figure 13–2 Control Tree with Life Cycle Methods

When this portal is rendered, the init() method (and handlePostBackData() if _
nfpb=true) is called first, for each control, in this order: B1, P1, p1, p2, B2, P3, p5, p6,
P2, p3, and finally p4. Next, the loadState() method would be called in the same
order, and so on for all life cycle methods through saveState().

Running each control through its life cycle requires some overhead processing time,
which, when you consider that a portal might have thousands of controls, can affect
performance. Thus, you can see that larger the portal's control tree the greater the
performance hit.

13.3 Using Multiple Desktops
The simplest way to limit the size of the control tree without limiting the flexibility of
the portal is to split the portal into multiple desktops. In portal taxonomy, a desktop is
nothing more than a portal embedded into another portal. It maintains the ability to
leverage all of the features inherent in any portal and, within itself, can contain
additional desktops.

Note: Control life cycle methods preRender(), render(), and dispose()
are called only on visible controls.

Using Multiple Desktops

Designing Portals for Optimal Performance 13-5

13.3.1 Why This is a Good Idea
When you split a complex portal into multiple desktops, you spread the controls
among those desktops. Since the control tree is scoped to the individual portal and
since a desktop behaves much like a portal, each desktop has its own tree and the
controls on that tree are built only when that desktop is opened. Thus, by splitting a
complex portal with a large control tree into multiple desktops, you reduce the
number of controls on the tree to just that number necessary for the active desktop. As
you might guess, this reduces the amount of time required to render the portal as a
single desktop and increase portal performance.

When a portal is rendered, about 15% of the processing time is dedicated to
constructing the control tree, 70% to running the life cycle methods, and 15% in
garbage collection (clearing dead objects from the heap, thus releasing that space for
new objects). While construction and garbage collection are always performed,
running the life cycle methods is necessary only for visible controls (that is, those on
the exposed desktop). This results in considerable overhead savings and improved
system performance.

For example, the sample control tree depicted in Figure 13–1 shows a single portal
with 42 controls. Were we to split this portal up into multiple desktops, as in
Figure 13–3, while we would increase the number of control trees in the entire portal,
each tree would be nearly two thirds smaller, and thus be processed in roughly
two-thirds the time, significantly reducing the time required to render the portal.

Figure 13–3 Simple Portal Split into Multiple Desktops

Figure 13–4 shows how the example in Figure 13–3 might be rendered once opened.

Using Multiple Desktops

13-6 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Figure 13–4 How Multiple Desktops Reduce Control Tree Size

13.3.2 Design Decisions for Using Multiple Desktops
As these examples demonstrate, splitting a complex portal into multiple desktops can
be very rewarding in terms of improved performance; however, not all portals benefit
from the extra effort required to split them into multiple desktops. Before
implementing a portal using multiple desktops, you need to consider some important
design decisions. For example:

■ How many controls does your portal use? If the portal is small (about ten pages
or less) or uses a limited number of controls, the extra effort necessary to create
multiple desktops might not be necessary.

■ Can your portal be logically divided into multiple desktops? While splitting a
complex portal into multiple desktops might save rendering time, arbitrarily
assigning portlets to those desktops, with no thought to their interrelationships,
can be dangerous. Visitors might have a negative experience with the application
if related information is not easily located, particularly if it is on a desktop
separate from where it might logically go.

■ What sort of administrative overhead is required once the multiple desktops are
deployed into production? For example, if you have 20 different potential
desktops, a big consideration is how common they will be. If they are more alike
than different, then using fewer desktops is better because there will be fewer
administrative tasks to perform.

■ Are there customization concerns? Each desktop must be customized separately,
which can add significant additional effort for portal developers and
administrators. However, note that portal administrators can make changes in the
library that will affect all desktops in the portal.

■ Can you afford to lose some functionality in your portal? For example, if your
application relies on interportlet communication, either through page flows or
backing files, you might be better off not splitting up the portal, as listeners and
handlers on one desktop cannot communicate with their counterparts on other

Optimizing the Control Tree

Designing Portals for Optimal Performance 13-7

desktops. For portlets to communicate with each other, they must be on the same
desktop; your portal design must take this requirement into consideration.

For more information on creating desktops, please refer to Section 15.12, "Desktops."

13.4 Optimizing the Control Tree
Tree optimization, as the name implies, means that control tree rendering is done in a
way that creates the least amount of system overhead while providing the user with as
complete a set of portal controls as that user needs to successfully use the portal
instance.

13.4.1 Enabling Control Tree Optimization
You enable control tree optimization by setting the treeOptimizationEnabled flag
in the .portal file to true, as shown in Example 13–1.

Example 13–1 Enabling Tree Optimization in .portal

<desktop> element:
<netuix:desktop definitionLabel="defaultDesktopLabel"
 markupName="desktop" treeOptimizationEnabled="true"
 markupType="Desktop" title="SimplePortal"><netuix:lookAndFeel
 definitionLabel="defaultLookAndFeel">
<netuix:desktop/>

For portals, you can enable this flag by setting Tree Optimization to true in the Oracle
Enterprise Pack for Eclipse Properties view, as shown in Figure 13–5.

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See Section 5.1,
"Apache Beehive and Apache Struts Supported Configurations."

Note: Asynchronous rendering can be used with control tree
optimization. For more information about asynchronous portlet
rendering, refer to the Oracle Fusion Middleware Portlet Development
Guide for Oracle WebLogic Portal.

Note: If treeOptimizationEnabled= is not included in the .portal file,
the portal defaults to treeOptimizationEnabled=false.

When this flag set to true, the portal framework generates a partial
control tree instead of the full control tree, basing this tree on just the
controls that are visible and active. Thus, with fewer controls needing
to be rendered, processing time and expense can be significantly
reduced.

Optimizing the Control Tree

13-8 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Figure 13–5 Enabling Tree Optimization in Oracle Enterprise Pack for Eclipse

■ For desktops, you can set the flag from the Administration Console, as shown in
Figure 13–6.

Figure 13–6 Enabling Tree Optimization from the Administration Portal

13.4.1.1 Setting the Current Page
Before the flag can actually work, the file beehive-url-template-config.xml (in
Portal_Web_Project/webAppName/WEB-INF) must have {url:currentPage}
set in the <url-template> element, as shown in Example 13–2.

Example 13–2 beehive-url-template-config.xml URL Templates Component

<!-- URL templates -->
 <url-template>
 <name>default</name>
<value>{url:scheme}://{url:domain}:{url:port}/{url:path}?{url:queryString}{url:cur
rentPage}</value>
 </url-template>
 <url-template>
 <name>default-complete</name>
<value>{url:scheme}://{url:domain}:{url:port}/{url:prefix}/{url:path}?{url:querySt

Note: For new desktops, treeOptimizationEnabled="true" is the
default value.

Note: When you create a new project in Oracle Enterprise Pack for
Eclipse, currentPage is added automatically; however, if you are
migrating from an earlier version of WebLogic Portal, you must
manually update beehive-url-template-config.xml.

Optimizing the Control Tree

Designing Portals for Optimal Performance 13-9

ring}{url:currentPage}</value>
 </url-template>
 <url-template>
 <name>jpf-default</name>
<value>http://{url:domain}:{url:port}/{url:path}?{url:queryString}{url:currentPage
}</value>
 </url-template>
 <url-template>
 <name>jpf-action</name>
<value>http://{url:domain}:{url:port}/{url:path}?{url:queryString}{url:currentPage
}</value>
 </url-template>
 <url-template>
 <name>jpf-secure-action</name>
<value>https://{url:domain}:{url:securePort}/{url:path}?{url:queryString}{url:curr
entPage}</value>
 </url-template>
 <url-template>
 <name>jpf-resource</name>
<value>http://{url:domain}:{url:port}/{url:path}?{url:queryString}{url:currentPage
}</value>
 </url-template>
 <url-template>
 <name>jpf-secure-resource</name>
<value>https://{url:domain}:{url:securePort}/{url:path}?{url:queryString}{url:curr
entPage}</value>
 </url-template>

 <url-template-ref-group>
<name>default-url-templates</name>
<url-template-ref>
<key>action</key>
<template-name>jpf-action</template-name>
</url-template-ref>
<url-template-ref>
<key>secure-action</key>
<template-name>jpf-secure-action</template-name>
</url-template-ref>
<url-template-ref>
<key>resource</key>
<template-name>jpf-resource</template-name>
</url-template-ref>
<url-template-ref>
<key>secure-resource</key>
<template-name>jpf-secure-resource</template-name>
</url-template-ref>
</url-template-ref-group>

13.4.2 How Tree Optimization Works
When the portal servlet receives a request (that is, a mouse-click) it reads the cache to
determine if a control tree factory exists. If one doesn't, it calls
controlTreeFactoryBuilder, passing it the XML from the .portal file. This
class returns a control tree factory to the servlet, which passes the request to the
CreateUIControlTree class.

Assuming _pageLabel and treeOptimizationEnabled="true",
CreateUIControlTreeFactory calls the PartialUIControlTreeCreator()

Optimizing the Control Tree

13-10 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

method, which returns a control tree comprised of just the control identified by the
page label and the set of active page and book labels; this is a partial control tree.

For example, if tree optimizations were enabled for the portal depicted in Figure 13–4,
when you submit a request (that is, a mouse click), only the active controls would be
rendered, as illustrated in Figure 13–7.

Figure 13–7 How Tree Optimization Reduces Control Tree Size

The set of active page and book labels for that session stored during the saveState()
life cycle method execution tell PartialUIControlTreeCreator() which controls
to build. Only these controls will be built; all others in the portal are ignored. As you
can see, a significant amount of processing overhead is eliminated when the control
tree is optimized—since far fewer controls need to be built—resulting in greatly
improved performance.

13.4.3 Multi Level Menus and Control Tree Optimization
Single Level Menus provide significantly better performance in very large portals than
Multi Level Menus. Although every environment is different, an example of a very
large portal might include one that contains 40 books, with each book having 10 pages,
and each page having 10 portlets, for a total of 4000 portlets; a typical user load might
be 2000 concurrent users.

With Single Level Menus enabled in an example environment, the response time of the
system is at least twice as fast when compared with portals having Multi Level Menus.
The reason for this is that the Multi Level Menu must traverse the control tree to be
able to build the menu, regardless of whether control tree optimization is turned on.
There is still an advantage to using control tree optimization with a multi level menu,
but system performance is not a primary reason to do so.

13.4.4 Limitations to Using Tree Optimization
If you are creating complex portals that require a large number of controls, tree
optimization is the easiest way to ensure optimal portal performance. Controls that
aren't active in the current portal instance aren't built, saving considerable time and
overhead. Nonetheless, you need to be aware that tree optimization slightly changes a

Optimizing the Control Tree

Designing Portals for Optimal Performance 13-11

portal's behavior and some portal implementations will not have substantial benefit;
for example:

■ When optimization is disabled, the backing file lifecycle methods init() and
handlePostBackData() are called for both visible and non-visible controls;
when tree optimization is enabled these lifecycle methods are called only for
visible controls.

■ If your portal uses backing files on any of their controls, some backing context
APIs are limited in their functionality.

On DesktopBackingContext, BookBackingContext, and PageBackingContext, the
following methods return null if they are trying to access a page, book, or portlet
that is not in the partial tree

– public BookBackingContext
getBookBackingContextRecursive(String definitionLabel)

– public PageBackingContext
getPageBackingContextRecursive(String definitionLabel)

– public PortletBackingContext
getPortletBackingContextRecursive(String instanceLabel)

– public PortletBackingContext[]
getPortletsBackingContextRecursive(String definitionLabel)

You might experience the same behavior—or lack thereof—on
DesktopPresentationContext, BookPresentationContext, and
PagePresentationContext with the presentation versions of these methods:

– public BookPresentationContext
getBookPresentationContextRecursive(String
definitionLabel)

– public PagePresentationContext
getPagePresentationContextRecursive(String
definitionLabel)

– public PortletPresentationContext
getPortletPresentationContextRecursive(String
instanceLabel)

– public PortletPresentationContext[]
getPortletsPresentationContextRecursive(String
definitionLabel)

■ If your portal uses multi-level menus you need to decide if the benefit of
multi-level menus outweigh any performance hit.

If the menu is on an active book, every control accessible from that menu must be
created before the portal is completely rendered, thus more overhead and a greater
performance hit. On the other hand, because a multi-level menu results in the
creation of a skeletal control tree, it can reduce the number of request cycles
required to navigate to your desired destination, reducing the total overhead
required to accomplish a navigation.

Overall, single-level menus provide significantly better performance in very large
portals than multi-level menus. Although every environment is different, an
example of a very large portal might include one that contains 40 books, with each
book having 10 pages, and each page having 10 portlets, for a total of 4000
portlets; with a typical user load of 2000 concurrent users. With single-level menus

Optimizing the Control Tree

13-12 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

enabled in an example environment, the response time of the system is at least
twice as fast when compared with the same portal using multi-level menus.

■ If your portal uses Programmatic Page Change Events called from a backing file
and the page to which the change is being directed is not within the partial control
tree, it does not exist in the instance and the page change will not occur.

You can work around this problem by doing one of the following (this is the
preferred order):

1. Use a link to perform the page change.

2. Use the new declarative interportlet communications model.

3. Implement a redirect from within the backing file.

4. Set _nfto="false" in the invoking link. This causes the full control tree to
be created for that single request.

5. Turn off tree optimization altogether on the portal.

■ If your portal uses "cookie" or "url" state locations, the partial control tree will not
work.

■ If your portal uses non-visible portlets, the onDeactivation portlet events for
non-visible portlets might not work with portal tree optimization turned on.

When the "tree optimization" flag in a .portal file is turned on, not all non-visible
portlets for a given request are processed. (A non-visible portlet is one that lives on
a page that is not displayed for the given request.) This can be a problem if you are
trying to catch an onDeactivation event for a portlet—once the portlet has been
deactivated, it is no longer visible, and so the system doesn't process it to fire its
deactivation event. The recommended workaround is to set tree optimization to
false for the portal in question. However, there is a trick you can play if you need
the tree optimization. For each portlet that you want to catch deactivation events
for, define a dummy event handler (for example, create a custom event handler
with event = "[some nonsense string]" and set the property "Only If Displayed" to
false. This forces the system to process the portlet whether visible or not.

Mindful of these conditions, never set treeOptimizationEnabled to true without
first doing a complete regression test on the portal. If any of the above-listed problems
occur, you might want to rethink your portal design or disable tree optimization
completely.

13.4.5 Disabling Tree Optimization
As discussed above, although control tree optimization can benefit almost any portal,
behavioral limitations might require that you disable it. When you disable
optimization, the portal creates a full control tree upon every request. Be aware that
this could significantly impede the performance of very large portal. You need to
decide whether the anticipated performance hit is offset by the improvement in
functionality.

To disable tree optimization, do one of the following:

■ Set treeOptimizationEnabled="false" in the .portal file or on the desktop.

Include nfto="false" in the request parameter of just that instance for which you
want to disable tree optimization. The parameter needs to be added to URL
programmatically as the URLs are generated using framework classes GenericURL
and PostbackURL; for more information on these classes, see the WebLogic Portal
Oracle Fusion Middleware Java API Reference for Oracle WebLogic Portal.

Other Ways to Improve Performance

Designing Portals for Optimal Performance 13-13

The following code shows one way to adding this parameter:

PostbackURL url = PostbackURL.createPostbackURL(request, response);
 url.addParameter(GenericURL.TRE_OPTIMIZATION_PARAM, "false");

■ Use one of the tags in the render tag libraries.

■ Delete the _pageLabel parameter from the request.

13.5 Other Ways to Improve Performance
In addition to managing the taxonomy of your portal through effective use of the
control tree, WebLogic Portal offers other ways to improve performance. These
solutions can all be used in concert with multiple desktops and control tree
optimization, ensuring superior portal performance. This section describes the most
effective performance-enhancing solutions available with WebLogic Portal.

13.5.1 Use Entitlements Judiciously
Entitlements determine who can access the resources in a portal application and what
they can do with those resources. This access is based on the role assigned to an
application visitor, allowing for flexible management of the resources. For example, if
you have an Employee Review portlet, you can assign the "Managers" visitor
entitlement role you created to that portlet, letting only logged in users who belong in
that role view the portlet.

Users visiting an application are assigned roles based on an expression that can
include their name, the group that they are in, the time of day, or characteristics from
their profile. For example, the "gold member" role could be assigned to a user because
they are part of the frequent flyer program and have flown more than 50,000 miles in
the previous year. This role is dynamically assigned to the user when they log into the
site.

13.5.1.1 How Entitlements Affect Performance
To ensure optimal portal performance, use entitlements judiciously. Too many
entitlements can significantly impact performance. This happens because the
entitlement engine is called during the render phase of an operation and is required to
check system overhead and rules. Because this checking represents additional system
overhead, if it is required too often on a portal, performance degrades. In addition, the
entitlements engine is also responsible for managing administrative tasks, which
increases that overhead, again causing degrading performance.

By default, entitlements are stored in the database as opposed to LDAP. Nonetheless,
always be aware that too many entitlements can impede performance.

13.5.1.2 Recommendations for Using Entitlements
Here are some simple recommendation for using entitlements judiciously:

■ Avoid the temptation to create a role for every node on an organizational chart.
In large organizations, granting entitlements would then become a serious burden
on the system. If you want to focus the user experience to a more granular level
than that provided by the role assigned a user, consider employing the
personalization capabilities available with WebLogic Portal.

■ Disable entitlements if a portal is not using any security policies. If a portal is
using security policies enable it and set the value for the
<control-resource-cache-size=nn> attribute to equal the number of

Other Ways to Improve Performance

13-14 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

desktops + number of books + number of pages + number of portlets + number of
buttons (max, min, help, edit) used in a portal. Use the default value if you are
concerned about available memory.

■ Limit your entitlement request to only one resource at a time. Bundling a larger
number of resources (portlets, pages, books) with one entitlement request can
cause an unwanted performance hit.

■ If your portal uses more than 5000 entitlements, customize the cache settings for
WebLogic Entitlements Engine. For details, see the Performance Tuning Guide,
which will be available in a future documentation release.

13.5.2 Limit User Customizations
Oracle recommends that you allow portal visitors to modify only one page or a small
set of pages, and require that administrators control the remainder of pages.

When users customize a page, they obtain their own instance of that page. All other
pages that have not been customized point back to the original library instance. When
an administrator makes a change to a page, that change must iterate for each user who
customized the page. If many users customized that page, propagating the change
might take a long time because of the required database processing.

13.5.3 Optimize Page Flow Session Footprint

If your portal uses page flows portlets in a replicated clustering environment, you
might experience a performance issue because the request attributes you add to these
portlets might be persisted to the session as a component of a page flow portlet's state.
As more request attributes are added, the session grows, often to sizes that can
severely restrict performance.

Page Flow portlets are hosted within the Portal framework by the Scoped Servlet
environment. This environment effectively acts as a servlet container, but its behavior
causes the request attributes to be scoped to the session within a container class used
to persist page flow state. This can be particularly unwelcome in clustered
environments, when large amounts of data—including these page flow portlet request
attributes—might be replicated across the cluster.

WebLogic Portal provides the Request Attribute Persistence
(requestAttrPersistence) property for page flow portlets. This property is
included in the .portlet file and can be set using the Properties view in Oracle
Enterprise Pack for Eclipse.

The Request Attribute Persistence property has these values:

■ session: this is the existing behavior (this is the default). All existing page flow
portlets should not require changes by default.

■ transient-session: places a non-serializable wrapper class around a persisted
page flow state object into the session. These portlets work just as the
existing portlets, except in failover cases, where the
persisted request attributes disappear on the failed-over-to
server. In these cases you must write the forward JSPs to

Note: Page Flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See Section 5.1,
"Apache Beehive and Apache Struts Supported Configurations."

Other Ways to Improve Performance

Designing Portals for Optimal Performance 13-15

gracefully handle this contingency by, at minimum, not
expecting any particular request attribute to be populated
and, ideally, by having a mechanism to either repopulate the
request attributes automatically or present the user with a
link to re-run the last action to repopulate the request
attributes. For non-failover cases, request attributes are
persisted, providing a performance advantage for non-postback
portlets identical to default session persistence portlets. While
session memory is still consumed in this case, there will be no additional cluster
replication costs for the persisted request attributes.

■ none: performs no persistence operation. Since these portlets never have request
attributes available on refresh requests, you must write the forward JSPs to assume
the request attributes will not be available. This option is helpful when you want
to remove completely the framework-induced session memory loading for
persisted request attributes.

To set the request attribute persistence attribute for a page flow portlet, open the
Request Attribute Persistence drop-down under the Page Flow Content group in the
Properties view and select the desired value, as shown in Figure 13–8.

Figure 13–8 Selecting Request Attribute Persistence Attribute

13.5.4 Use File-Based Portals for Simple Applications
Portals come in two flavors: file-based and streaming. As the name implies, a
file-based portal—also called a "light portal"—obtains all of its resources from the
user's file system. Streaming portals, on the other hand, derive their resources from
one or more databases.

A key difference between the two implementations is in the method you use to create
and manage multiple portlet instances. Using a streamed portal, managed using the
WebLogic Portal Administration Console, you can manage a single instance of a
portlet while reusing it in many places; you can also easily create a large number of
portlet instances and configure each one differently. Using a file-based portal you need
to create individual source portlets within .portal files.

Streaming portals also provide you with the management capabilities of the
Administration Console. For example, if you want to disable a portlet, you can do this
task easily from the Administration Console; otherwise, you must directly access the
production servers to change .portal files. The Administration Console also
provides management functionality for book and page contents, and the ability to user
visitor entitlements and delegated administration on different instances of resources.

Other Ways to Improve Performance

13-16 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

13.5.4.1 Why Use a File-based Portal?
For simple, static portals, deriving resources from the file system can result in
improved performance and bring these benefits:

■ Source code control is easily manageable.

■ Propagation to other environments is easy.

■ They are easy to create in Oracle Enterprise Pack for Eclipse.

13.5.4.2 Limitations to Using File-based Portals
While file-based portals might show some performance improvement over streaming
portals, their functionality is limited; for example, because no database is involved,
you cannot take advantage of things such as user customization or entitlements. Other
features that are missing from a file-based portal include:

■ Delegated Administration

■ Visitor Tools

■ Preferences at the portal instance level and at the definition level.

Moreover, in the majority of cases, the performance improvement gained by using a
file-based portal is not so significant as to outweigh these limitations.

13.5.5 Create a Production Domain in Development
While this tip doesn't directly improve performance at runtime, it nonetheless allows
you to see how your application will perform before you propagate it to production.
By creating a production domain in development, you can simulate and then evaluate
how the portal will perform in production. You can then make the necessary
adjustments before actually deploying the portal. If problems occur or performance is
not optimal, you can rectify these situations before the end user ever sees them.

To create a production domain, you must update the startup script settings by setting
the WLS_PRODUCTION_MODE= flag to true and setting to false these flags:

■ iterativeDevFlag

■ debugFlag

■ testConsoleFlag

■ logErrorsToConsoleFlag

■ pontbaseFlag

■ verboseLoggingFlag

Additionally, you must set default values for the threadcount and the
JDBCConnectionPool sizes. If you are threading portlets (that is, using
forkable=true) ensure that you configure a portalRenderQueue and
portalPreRenderQueue in your config.xml file so that the forked portlets use
their own thread pools and not the WebLogic thread pool. The following code sample
describes how to set the thread count appropriately:

<ExecuteQueue Name="default" ThreadCount="15"/>
<ExecuteQueue Name="portalRenderQueue" ThreadCount="5"/>

13.5.6 Optimize Portlet Performance
You can optimize the performance of the portlets in your portal in several ways,
including the following:

Other Ways to Improve Performance

Designing Portals for Optimal Performance 13-17

■ Editing performance-related portlet properties to optimize performance

■ Caching portlets

■ Using remote portlets

■ Pre-rendering and rendering portlets in parallel

■ Rendering portlet content asynchronously

■ Using backing files

You can find more detail on each of these alternatives in the Oracle Fusion Middleware
Portlet Development Guide for Oracle WebLogic Portal.

13.5.7 Use Oracle WebCenter Analytics to Track Usage
Oracle WebCenter Analytics provides a selection of reports with useful statistics on
usage patterns in WebLogic Portal. For details on using these reports and creating
custom reports, see Oracle Fusion Middleware Oracle WebCenter Analytics Administrator's
Guide for Oracle WebLogic Portal.

Other Ways to Improve Performance

13-18 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

14

Obtaining Debug Information 14-1

14Obtaining Debug Information

This chapter explains how to obtain debug information from public WLP classes and
add debugging calls to your own code. This chapter includes the following sections:

■ Section 14.1, "Introduction"

■ Section 14.2, "Configuring and Enabling Debug"

■ Section 14.3, "Public WLP Class Debug Reference"

For details on how to use Oracle Enterprise Pack for Eclipse to debug your web
application project, see "Deploying or Debugging the Application" in Oracle Fusion
Middleware Quick Start Guide for Oracle WebLogic Portal.

14.1 Introduction
The class com.bea.p13n.util.debug.Debug is used throughout WLP classes to
print information that can be useful in debugging. You can use the Debug class in your
own code. By default, debugging is turned off. For information on turning debug
output on and off, see Section 14.2.2, "Turning Debug Output On and Off."

14.2 Configuring and Enabling Debug
The com.bea.p13n.util.debug.Debug class provides methods for printing and
information messages from WLP code. This section explains how to use Debug in your
own code and to turn Debug output on and off. This section includes these topics:

■ Section 14.2.1, "Using Debug in Your WLP Code"

■ Section 14.2.2, "Turning Debug Output On and Off"

■ Section 14.2.3, "Package-Level Debugging"

■ Section 14.2.4, "Directing Output to a File"

■ Section 14.2.5, "Reloading Debug Properties"

■ Section 14.2.6, "Example debug.properties File"

14.2.1 Using Debug in Your WLP Code
Use the com.bea.p13n.util.debug.Debug class to add debugging information
calls to your WLP code. The Debug class lets you:

■ Turn debugging on and off without recompiling code.

■ Enable debugging output for a single class or entire package.

Configuring and Enabling Debug

14-2 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

■ Discover where debugging messages are coming from.

Example 14–1 illustrates the basic pattern for using Debug in your classes. For detailed
information on Debug methods, refer to the Javadoc (Oracle Fusion Middleware Java
API Reference for Oracle WebLogic Portal).

Example 14–1 Using Debug in a Class

 package com.bea.example;
 import com.bea.p13n.util.debug.Debug;
 class MyClass
 {
 // Instance of debug object for debugging (if turned on)
 // Using this pattern makes it easy to know the debug "switch"
 // for any class
 private static final Debug debug = Debug.getInstance(MyClass.class);

 MyClass()
 {
 // debug class creation event
 debug.here()
 }
 void myMethod()
 {
 // output a debugging message along with class, method & line number
 debug.out("This is some message");

 // output a debugging message followed by object value
 // use this rather than ("message" + val) to avoid
 // expression evaluation (string concatenation) when debug is off
 debug.out("The value is:", val);

 // Avoid expression evaluations by using debug.ON or debug.isOn()
 if (debug.ON)
 {
 Object thing = doSomeCalculations();
 debug.out("The thing " + thing + " is the calculation result.");
 }
 }
 }

The output includes class, method, line number, and variable information. When
debugging is turned on, the debug output for the above example looks something like
this.

*** com.bea.example.MyClass.(MyClass.java:<13>) ***
[com.bea.example.MyClass.myMmethod():18] This is some message
[com.bea.example.MyClass.myMmethod():23] The value is 42
[com.bea.example.MyClass.myMmethod():29] The thing kryten is the calculation
result.

By default, output is sent to System.err. For information on directing the output to a
file, see Section 14.2.4, "Directing Output to a File."

14.2.2 Turning Debug Output On and Off
Debug messages are turned off by default. To switch debugging on, create a file named
debug.properties in the directory where your domain’s startup scripts reside. For
an example debug.properties file, see Section 14.2.6, "Example debug.properties
File."

Configuring and Enabling Debug

Obtaining Debug Information 14-3

Alternately, you can set the Java system property debug.properties to the name of
your debug properties file. For example:

java -Ddebug.properties=/home/me/mydebug.properties ...
com.bea.example.MyClass: on

14.2.3 Package-Level Debugging
To turn on debugging for all of the classes in a package, set the debug property
usePackageNames to on. Then, you can turn on debugging for an entire package
(and its child packages). For example, to turn on debugging for all classes in the
com.bea.example.* package, add the following to debug.properties:

turn on debugging by package names
usePackageNames: on

turn on debugging for everything under com.bea.example package
Note that you do not use wildcards, just mention the package
com.bea.example: on

Using package names enables you to have finer control because more specific names
take precedence over less specific names. For example, if you want to turn on
debugging for the entire com.bea.example.* package except for MyClass and the
com.bea.example.internal package (with the exception of one class), add the following
to debug.properties:

turn on package names for debugging
usePackageNames: on

turn on debugging for everyting under com.bea.example package
com.bea.example: on

turn off debugging for MyClass
com.bea.example.MyClass: off

turn off debugging in the entire internal package
com.bea.example.internal: off

Except turn debugging back on for internal.DebugThisClass
com.bea.example.internal.DebugThisClass: on

For an example debug.properties file, see Section 14.2.6, "Example
debug.properties File."

14.2.4 Directing Output to a File
By default, Debug output is sent to System.err. To redirect debug output to a file,
set the debug property out.file to the name of an output file. The debug output will
be appended to the end of that file unless you also set out.file.append=off, in
which case the file is deleted first. For example:

append output to mydebug.log file rather than System.err
out.file = mydebug.log

Tip: Technically, you can set the debug property to any value except
false, off, no or 0 (these are values that can be used to turn logging
off). For clarity and consistency, Oracle suggests that you use the
values on and off in the debug.properties file.

Configuring and Enabling Debug

14-4 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

send this debugging to mydebug.log
com.bea.example.DebugMeToFile: on

If you want to direct output by using system properties instead of the
debug.properties file, you can do so by adding a debug prefix to the property
name. For example:

 java -Ddebug.out.file=mydebug.log -Ddebug.com.bea.example.MyClass=on ...

14.2.5 Reloading Debug Properties
For performance reasons, Debug is by default not reloadable. The debug properties
settings are in effect for the life of the JVM. To change the debugging configuration (for
example, to change which classes or packages are turned on or off), you normally have
to restart the JVM with different debug properties.

You can change the default reloading behavior with the debug property reloadable
set to on in debug.properties or with -Ddebug.reloadable=on on the Java
command line. If reloadable is set when the JVM is initially started, then debugging
properties that are loaded from debug.properties (or system properties) can be
changed at runtime without restarting the JVM. The reloadable property itself can
not be changed at runtime; it must be set at JVM startup to take effect.

To change debug properties at runtime, edit the debug.properties file and call
Debug.reload() from a JSP page or other runtime component.

Note that reloadable debug can be convenient for development, but even when it is
not outputting any messages it does come at some cost, and thus should not be used in
production or other performance-sensitive systems, such as load or performance tests.

14.2.6 Example debug.properties File
You enable output of WLP class debug information by either creating a
debug.properties file or by using a system variable, as described in Section 14.2,
"Configuring and Enabling Debug."

Following is an example of a debug.properties file, including enabled Level 1 and
Level 2 debugging for WLP Virtual Content Repository classes.

Example properties file for WebLogicPortal debug output

Place this file in the directory where you start the server
(the domain directory) or set -Ddebug.properties=debugFileName.
The presence of this file turns debug on overall, and the
properties in here control what debug is output.

Most properties are booleans, and convention is to use "on" or "off" for the
values

Debug can be reloadable - use debug.jsp to change things at runtime
The default is off.
reloadable: off

append output to mydebug.log file rather than System.err
#out.file = D:/debugOutput
#out.file.append= off

Turn on debug for entire packages (recursively) rather than only naming
desired classes. This is normally desired as it allows for debugging

Public WLP Class Debug Reference

Obtaining Debug Information 14-5

whole sets of things, without having to name individual classes
The default is off.
usePackageNames: off

Example debug configurations

Debugging for an individual class
#com.bea.netuix.servlets.manager.PortalServlet: on

com.bea.content.federated.internal.CapabilityManagerImpl: on
com.bea.content.federated.internal.NodeManagerImpl: on
com.bea.content.federated.internal.SearchManagerImpl: on
com.bea.content.federated.internal.TypeManagerImpl: on
com.bea.content.federated.internal.VersionManagerImpl: on
com.bea.content.federated.internal.VirtualRepositoryManagerImpl: on
com.bea.content.federated.internal.WorkflowManagerImpl: on
com.bea.content.federated.internal.delegate.NodeLogic: on
com.bea.content.federated.internal.delegate.ObjectClassLogic: on
com.bea.content.federated.internal.delegate.RepositoryLogic: on
com.bea.content.federated.internal.delegate.SearchLogic: on
com.bea.content.federated.internal.delegate.VersionLogic: on
com.bea.content.federated.internal.delegate.WorkflowLogic: on

spi.com.bea.content.federated.internal.filter.logging.NOPSLoggingFilter: on
spi.com.bea.content.federated.internal.filter.logging.OCOPSLoggingFilter: on
spi.com.bea.content.federated.internal.filter.logging.RCOPSLoggingFilter: on
spi.com.bea.content.federated.internal.filter.logging.SOPSLoggingFilter: on
spi.com.bea.content.federated.internal.filter.logging.WOPSLoggingFilter: on

Debug an entire package
#com.bea.qa.apps.controls: on

This setup turns on debug for the entire com.bea.netuix.servlets package,
but excludes com.bea.netuix.servlets.l10n (and its subpackages).
#com.bea.netuix.servlets: on
#com.bea.netuix.servlets.l10n: off

14.3 Public WLP Class Debug Reference
Many of the public WLP classes use Debug methods to produce information that
might be helpful when debugging an application. You enable WLP class debug
information by editing a debug.properties file (or by using a System variable), as
described in Section 14.2, "Configuring and Enabling Debug."

This section lists the public WLP classes that use Debug methods to output
informational messages. The classes are grouped by feature/functional area.

This section contains the following sections:

■ Section 14.3.1, "WLP Framework Classes with Debug Support"

■ Section 14.3.2, "WLP Core Services Classes with Debug Support"

■ Section 14.3.3, "WLP Virtual Content Repository Classes with Debug Support"

■ Section 14.3.5, "WLP Administration Console Classes with Debug Support"

Public WLP Class Debug Reference

14-6 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

14.3.1 WLP Framework Classes with Debug Support
The following table lists the WLP Framework classes that support debugging and their
associated features.

Note: The WLP classes listed in the table below include only debug
Level 1 output.

Table 14–1 WLP Framework Classes That Support Debug

Feature Class

WSRP - Transport com.bea.wsrp.bind.markup

WSRP - URL Rewriting ■ com.bea.wsrp.producer.adapter

■ com.bea.wsrp.producer.adapter.context

Portlet Containers -
Beehive

■ com.bea.portlet.adapter.scopedcontent

■ com.bea.netuix.servlets.controls.content.PageFlowContent

Portlet Containers - Struts ■ com.bea.struts.adapter

■ com.bea.netuix.servlets.controls.content.StrutsContent

Portlet Containers - JSF ■ com.bea.portlet.adapter.faces

■ com.bea.netuix.servlets.controls.content.FacesContent

Portlet Containers - JSP com.bea.netuix.servlets.controls.content.JspContent

Portlet Containers -
Clipper

■ com.bea.netuix.servlets.controls.content.JspContent

■ com.bea.netuix.clipper.ClipperBacking

■ com.bea.netuix.clipper.Clipper

Portlet Containers -
Browser

Note: There is no debug for the Portlet Containers - Browser feature. However, the
control is rendered using a DirectFeature with the name ASYNC_CONTENT_
FEATURE = "portleturicontent". You can add debug statements to
framework/features/portleturicontent.jspx to troubleshoot this feature.

Portlet Containers - Java
(168/286)

com.bea.portlet.container

Framework - Caching ■ com.bea.netuix.nf.ControlTreeWalker

■ com.bea.netuix.nf.container.jsp.BufferedJspContext

Framework - Threading ■ com.bea.netuix.nf.ControlTreeWalker

■ com.bea.netuix.nf.container.jsp.BufferedJspContext

■ com.bea.netuix.nf.concurrency

Framework - LAF ■ com.bea.netuix.servlets.controls.application.laf

■ com.bea.netuix.servlets.controls.application.laf.ConfigurationTools

■ com.bea.netuix.servlets.controls.application.laf.StructureTools

■ com.bea.netuix.servlets.controls.application.laf.DependenciesConfiguration

■ com.bea.netuix.servlets.controls.application.laf.SkeletonConfiguration

Framework -
Customization

com.bea.netuix.application

Note: Supporting database query properties files are under netuix/copysrc
com.bea.netuix.application.manager.persistence.jdbc.sql.

Public WLP Class Debug Reference

Obtaining Debug Information 14-7

Framework - Async ■ ajax

Enable the ajax debug using the following code: ajax: on

The ajax debug is used by:

– com.bea.netuix.nf.UIContext

– com.bea.netuix.nf.container.jsp.BufferedJspContext

– com.bea.netuix.nf.container.jsp.ServletOutputStreamImpl

– com.bea.netuix.servlets.controls.window.Window

■ com.bea.netuix.servlets.controls.ajax.AjaxHelper

■ ajaxRequest

Enable the ajaxRequest debug using the following code: ajaxRequest: on

The ajaxRequest debug is used by com.bea.netuix.servlets.manager.UIServlet

Note: Because debug output is highly verbose, you should use the ajax and
ajaxRequest debug switches judiciously, enabling these switches only when told to do
so by the users who will be interpreting the debug output. To gain a better
understanding of the debug output, we recommend that you view the debug output
along with the source code for the debug statements.

Framework - Control Tree,
Lifecycle

■ com.bea.netuix.servlets.manager.UIServlet.dumpControlTree

■ com.bea.netuix.servlets.manager.UIServletInternal

Note: The com.bea.netuix.servlets.manager.UIServlet.dumpControlTree switch is
used in com.bea.netuix.servlets.manager.UIServletInternal, which does not have
its own debug. Because debug output is highly verbose, you should use this
switch judiciously, enabling this switch only when told to do so by the users who
will be interpreting the debug output. To gain a better understanding of the
debug output, we recommend that you view the debug output along with the
source code of the debug statements.

■ com.bea.netuix.servlets.manager.PortalServlet

■ com.bea.netuix.servlets.manager.SingleFileServlet

■ com.bea.netuix.servlets.manager.UIServlet

■ com.bea.netuix.nf.Lifecycle

■ com.bea.netuix.nf.ControlTreeWalker

■ com.bea.netuix.nf.ControlLifecycle

■ com.bea.netuix.state (and the classes in this package)

■ com.bea.netuix.nf.state.StateManagementFactory

■ com.bea.netuix.nf.ControlLifecycle

The class com.bea.netuix.nf.ControlLifecycle uses the following debug switches
to dump the control tree during a given render phase:

– ControlLifecycle.init

– ControlLifecycle.loadState

– ControlLifecycle.saveState

– ControlLifecycle.preRender

– ControlLifecycle.render

– CControlLifecycle.resource

– ControlLifecycle.dispose

Table 14–1 (Cont.) WLP Framework Classes That Support Debug

Feature Class

Public WLP Class Debug Reference

14-8 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

The following table lists WLP Framework features and the command line
environmental JVM switches that you can use to debug them. Note that the WSRP
security debugging feature uses a Oracle WebLogic Server pattern of accessing debug
information with system properties.

14.3.2 WLP Core Services Classes with Debug Support
The following table lists the WLP Core Services classes that support debugging, along
with their associated features and debug levels.

Framework - File Poller ■ com.bea.netuix.servlets.util.IFilesystemChangeDetector

■ com.bea.netuix.servlets.services.P13nFilesystemChangeDetector

■ com.bea.netuix.servlets.services.SimpleFilesystemChangeDetector

Framework - Timing netuix.timing

Framework - Events ■ com.bea.netuix.events.internal

■ com.bea.netuix.events.manager.EventManager

■ com.bea.netuix.events.manager.PortletBasedSubscription

Framework - Preferences ■ com.bea.portlet.prefs

■ com.bea.portlet.prefs.spi

Table 14–2 WLP Framework Command Line Environmental Switches That Support
Debug

Feature Command Line Switch

WSRP - Security ■ -Dweblogic.debug.DebugSecuritySAMLCredMap=true

■ -Dweblogic.debug.DebugSecuritySAMLAtn=true

■ -Dweblogic.debug.DebugSecuritySAMLLib=true

■ -Dweblogic.log.StdoutSeverity=Debug

■ -Dweblogic.xml.crypto.dsig.verbose=true

■ -Dweblogic.wsee.verbose=*

■ -Dweblogic.debug.DebugSecurityCredMap=true

■ -Dweblogic.xml.crypto.wss.verbose=true

Note: For WLP Core Services classes, Level 2 output includes
additional information that is not included in Level 1 output. To view
all debugging information, you must enable both Level 1 and Level 2
debugging.

Table 14–1 (Cont.) WLP Framework Classes That Support Debug

Feature Class

Public WLP Class Debug Reference

Obtaining Debug Information 14-9

Table 14–3 WLP Core Services Classes That Support Debug

Feature Level 1 Level 2

Cache ■ com.bea.p13n.cache.CacheFactory

■ com.bea.p13n.cache.CacheManager

■ com.bea.p13n.cache.CacheImpl

■ com.bea.p13n.cache.CacheImpl.AsynchronousReloadR
equest

Entitlements ■ com.bea.p13n.entitlements.manageme
nt.RolePolicyManager

For the
com.bea.p13n.entitlements.manage
ment.RolePolicyManager class, you
can use the
PolicyPredLocation to enable
more detailed debug output. For
example:
PolicyPredLocation.com.bea
.p13n.entitlements.managem
ent.RolePolicyManager.com.
bea.p13n.entitlements.mana
gement.RolePolicyManager

■ com.bea.p13n.delegation.management.
DelegationPolicyManager

■ com.bea.p13n.entitlements.manageme
nt.SecurityPolicyManager

■ com.bea.p13n.delegation.management.
DelegationRoleManager

■ com.bea.p13n.entitlements.Authorization

For the com.bea.p13n.entitlements.Authorization
class, you can use the following prefixes to choose
the type of debug output:

– Unprotected

– Protected

– PolicyTaxonomy

– AnonDebug

For example:
Unprotected.com.bea.p13n.entitlements.
Authorization

■ com.bea.p13n.delegation.DelegationService

■ com.bea.p13n.entitlements.management.internal.RDBM
SRolePolicyManager

You can use the following prefixes to choose the
type of debug output:

– PolicyPredLocation

– PolicyCreateLocation

■ com.bea.p13n.entitlements.management.internal.RDBM
SSecurityPolicyManager

You can use the following prefixes to choose the
type of debug output:

– PolicyPredLocation

– PolicyCreateLocation

Rules
Expression

N/A ■ com.bea.p13n.expression.internal.EvaluatorImpl

■ com.bea.p13n.expression.internal.ExecutorImpl

Job Manager ■ com.bea.p13n.jobmanager.internal.Job
ManagerImpl

■ com.bea.p13n.jobmanager.internal.Job
ContextImpl

N/A

Quiescence com.bea.p13n.management.quiescence.
QuiescenceManagementServiceImpl

■ com.bea.p13n.management.quiescence.QuiescenceRunt
 imeServiceImpl

■ com.bea.p13n.management.quiescence.QuiescenceState
 Impl

Rules N/A ■ com.bea.p13n.rules.internal.ActionImpl

■ com.bea.p13n.rules.internal.RuleImpl

Credential
Vault

N/A N/A

SSO com.bea.p13n.security.sso.services.Auth
ServletFilter

com.bea.p13n.security.sso.services.UsernameTokenServi
ce

Util JDBC com.bea.p13n.util.jdbc.SequencerFactor
y

com.bea.p13n.util.jdbc.internal.JdbcSequencer

Public WLP Class Debug Reference

14-10 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

14.3.3 WLP Virtual Content Repository Classes with Debug Support
The following table lists the WLP Virtual Content Repository classes that support
debugging and their associated features.

Tracked
Anonymous

com.bea.p13n.usermgmt.profile.internal
.TrackedAnonymousLocator

■ com.bea.p13n.usermgmt.profile.internal.AnonymousPr
ofileWrapperImpl

■ com.bea.p13n.usermgmt.profile.internal.TrackedAnony
mousBean

PropertySetM
anager

■ com.bea.p13n.property.internal.Propert
ySetManagerImpl

■ com.bea.p13n.property.internal.Propert
ySetPersistenceManager

■ com.bea.p13n.property.internal.PropertySetRepositoryR
egistry

■ com.bea.p13n.property.internal.PropertySetRepositoryI
mpl

Entity
Property
Manager

com.bea.p13n.property.internal.EntityPr
opertyManagerImpl

com.bea.p13n.property.internal.EntityPropertyCacheImp
l

Property Set
Web Service

com.bea.p13n.property.webservice.inter
nal.PropertySetWebServiceImpl

N/A

Rules
Manager

com.bea.p13n.rules.manager.internal.Ru
lesManagerImpl

com.bea.p13n.rules.manager.internal.RuleSetPersistence
Manager

Realm
Configuration

com.bea.p13n.usermgmt.config.internal.
RealmConfigurationImpl

N/A

User Profile
Manager

com.bea.p13n.usermgmt.profile.internal
.ProfileManagerImpl

N/A

Group Profile
Manager

com.bea.p13n.usermgmt.profile.internal
.GroupProfileManagerImpl

N/A

Mixed Profile
Manager

com.bea.p13n.usermgmt.profile.internal
.MixedProfileManagerImpl

N/A

Custom
Profile
Manager

com.bea.p13n.usermgmt.profile.internal
.CustomProfileManagerImpl

N/A

Event Service ■ com.bea.p13n.events.internal.EventSer
viceBean

■ com.bea.p13n.events.internal.EventHa
ndler

■ com.bea.p13n.events.Event

■ com.bea.p13n.events.internal.EventServiceListenerConf
ig

Internal Data
Refresh Proxy

■ com.bea.p13n.management.data.reposi
tory.internal.ejbproxy.RefreshProxy
Impl

■ com.bea.p13n.management.data.reposi
tory.internal.ejbproxy.EjbProxyData
Repository

■ com.bea.p13n.management.data.repository.internal.Refr
eshFromClientSynchronizer

■ com.bea.p13n.management.data.repository.internal.Refr
eshFromServerSynchronizer

Analytics ■ com.bea.analytics.AnalyticsFilter

■ com.bea.analytics.AnalyticsListener

com.bea.analytics.AnalyticsP13nEventListener

Note: For WLP Virtual Content Repository classes, Level 2 output
includes all of the information included in Level 1, but at a more
verbose level. Additionally, Level 2 includes information that is not
included in Level 1 output.

Table 14–3 (Cont.) WLP Core Services Classes That Support Debug

Feature Level 1 Level 2

Public WLP Class Debug Reference

Obtaining Debug Information 14-11

14.3.4 WLP UCM Classes with Debug Support
The following table lists the UCM related classes that support debugging and their
associated features.

Table 14–4 WLP Virtual Content Repository Classes That Support Debug

Feature or
Component Level 1 Level 2

Repository
Capabilities

com.bea.content.federated.internal.Cap
abilityManagerImpl

N/A

Node
Activities

com.bea.content.federated.internal.Nod
eManagerImpl

N/A

Search
Activities

com.bea.content.federated.internal.Sear
chManagerImpl

N/A

Type
Management
Activities

com.bea.content.federated.internal.Type
ManagerImpl

N/A

Versioning
Activities

com.bea.content.federated.internal.Versi
onManagerImpl

N/A

Repository
Management
Activities

com.bea.content.federated.internal.Virt
ualRepositoryManagerImpl

N/A

Workflow
Activities

com.bea.content.federated.internal.Wor
kflowManagerImpl

N/A

Node
activities

com.bea.content.federated.internal.dele
gate.NodeLogic

N/A

Type
Management
Activities

com.bea.content.federated.internal.dele
gate.ObjectClassLogic

N/A

Repository
Management
Activities

com.bea.content.federated.internal.dele
gate.RepositoryLogic

N/A

Search
activities

com.bea.content.federated.internal.dele
gate.SearchLogic

N/A

Versioning
Activities

com.bea.content.federated.internal.dele
gate.VersionLogic

N/A

Workflow
Activities

com.bea.content.federated.internal.dele
gate.WorkflowLogic

N/A

SPI Node
Operations

N/A spi.com.bea.content.federated.internal.filter.logging.NO
PSLoggingFilter

SPI Type
Operations

N/A spi.com.bea.content.federated.internal.filter.logging.OC
OPSLoggingFilter

SPI
Repository
Management
Operations

N/A spi.com.bea.content.federated.internal.filter.logging.RC
OPSLoggingFilter

SPI Search
Operations

N/A spi.com.bea.content.federated.internal.filter.logging.SOP
SLoggingFilter

SPI Workflow
Operations

N/A spi.com.bea.content.federated.internal.filter.logging.WO
PSLoggingFilter

Public WLP Class Debug Reference

14-12 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

14.3.5 WLP Administration Console Classes with Debug Support
The following table lists the WLP Administration Console classes that support
debugging, along with their associated features and debug levels.

Table 14–5 WLP UCM Related Classes That Support Debug

Feature or Component Level 3

Shows UCM calls, including timing
information

request.com.oracle.content.spi.ucm.UCMBridge

Shows stack traces when calls are made to
UCM (would typically be used in conjunction
with the other one)

requesttrace.com.oracle.content.spi.ucm.UCMBridge

Debug timing timing.com.bea.content.federated.internal.filter.logging.*

Table 14–6 WLP Administration Console Classes That Support Debug

Feature Level 1 Level 2

General
Navigation,
Menus, and
Componentization

■ com.bea.jsptools.common.EditorBookB
acking

■ com.bea.jsptools.common.ToolsFrame
workUtilities

■ com.bea.jsptools.common.ToolsMenuT
ag

■ com.bea.jsptools.patterns.list.PagedRes
ultServiceTag

■ com.bea.jsptools.patterns.tree.TreeBuil
der

■ com.bea.jsptools.patterns.xmlhttp.Page
dResultSearchHandler

■ com.bea.jsptools.patterns.xmlhttp.Sessi
onAttributeHandler

■ com.bea.jsptools.util.GenerateResource
LinkTag

■ com.bea.jsptools.util.ToolsResourceLin
k

■ com.bea.jsptools.common.PatDesktopBacking

■ com.bea.jsptools.content.helpers.SharedActions

■ com.bea.jsptools.laf.SkinImageService

■ com.bea.jsptools.patterns.item.ItemService

■ com.bea.jsptools.patterns.xmlhttp.TextBoxValidatio
nHandler

■ com.bea.jsptools.util.PagedResultUtility

■ com.bea.portal.tools.patterns.ajax.servlet.XMLHttp
RequestServlet

■ com.bea.portal.tools.resource.ResourceIDBuilderC
ache

■ global.internal.PageFlowHelper

■ util.tree.TreeController

Help N/A ■ com.bea.jsptools.patterns.help.HelpLinkTag

■ com.bea.jsptools.patterns.help.HelpService

■ com.bea.jsptools.patterns.help.HelpTag

Portal
Management

com.bea.jsptools.portal.helpers.PortletH
elper

■ com.bea.jsptools.common.PagePositionHelper

■ com.bea.jsptools.portal.helpers.DotPortal

■ com.bea.visitortools.MenuContext

■ portalTools.definitions.portletProducers.wizard.Ad
dProducerWizardController

■ portalTools.instances.communities.wizzy.AddCom
munityWizardController

■ portalTools.instances.desktops.wizzy.AddDesktop
WizardController

■ portalTools.instances.portlets.preferences.Preferenc
esController

■ portalTools.instances.templates.desktops.browse.Br
owseTemplatesDesktopController

Public WLP Class Debug Reference

Obtaining Debug Information 14-13

Content
Management

N/A com.bea.jsptools.content.ContentTreeBuilder

Role Editor N/A roleTools.expressions.RoleExpressionsController

Delegated
Administration

■ com.bea.jsptools.deladmin.IsAccessAll
owedTag

■ com.bea.jsptools.deladmin.SharedDaA
ctions

■ com.bea.portal.tools.portal.util.SecurityPolicyClean
upHelper

■ daTools.common.DAController

■ daTools.details.DaRoleDetailsController

■ daTools.popupsAndButtons.DaPopupButtonContr
oller

Entitlements ■ com.bea.jsptools.vent.EnttitlementServ
ice

■ com.bea.jsptools.vent.helpers.VentShar
edActions

■ com.bea.portal.tools.entitlements.contr
ols.DelegatedRolePolicyManagerC
ontrolFacadeImpl

ventTools.policies.VentBrowsePoliciesController

Table 14–6 (Cont.) WLP Administration Console Classes That Support Debug

Feature Level 1 Level 2

Public WLP Class Debug Reference

14-14 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

User/Group
Management

■ com.bea.jsptools.usermgmt.AtnProvid
erListTag

■ com.bea.jsptools.usermgmt.GroupDesc
riptionTag

■ com.bea.jsptools.usermgmt.UserDescri
ptionTag

■ com.bea.jsptools.usermgmt.helpers.Gr
oupHelper

■ com.bea.jsptools.usermgmt.helpers.Sha
redActions

■ com.bea.jsptools.usermgmt.UGMTreeBacking

■ com.bea.jsptools.usermgmt.validation.NRNWGrou
pNameValidator

■ com.bea.jsptools.usermgmt.validation.NRNWUser
NameValidator

■ ugmTools.nrnwTree.NrnwTreeController

Service
Administration

com.bea.jsptools.serviceadmin.wsrp.im
portTool.ImportProcessor

■ serverTools.serviceAdmin.ads.AdServiceBaseFlow
Controller

■ serverTools.serviceAdmin.maintenanceMode.Main
tenanceModeDetailsFlow.MaintenanceModeDe
tailsFlowController

Visitor Tools ■ com.bea.visitortools.helpers.CreateCo
mmunityHelper

■ com.bea.visitortools.invitation.Abstract
InviterInvoker

■ com.bea.visitortools.VisitorStateBean

■ com.bea.visitortools.backing.VisitorDesktopBackin
g

■ com.bea.visitortools.forms.CreateVisitorCommunit
yForm

■ com.bea.visitortools.helpers.BaseHelper

■ com.bea.visitortools.helpers.ColorsHelper

■ om.bea.visitortools.helpers.ManageCommunityHel
per

■ com.bea.visitortools.tags.GeneratePlaceableViewD
ataTag

■ com.bea.visitortools.tags.IsAccessAllowedTag

■ visitorTools.communities.manage.ManageControll
er

■ visitorTools.communities.manage.members.Memb
ersController

■ visitorTools.communities.manage.properties.Prope
rtiesController

■ visitorTools.contents.ContentsController

■ visitorTools.pages.PagesController

Table 14–6 (Cont.) WLP Administration Console Classes That Support Debug

Feature Level 1 Level 2

Part III
Part III Staging

Oracle recommends that you deploy your portal to a staging environment where it can
be assembled and tested before going live. In the staging environment, you use the
WebLogic Portal Administration Console to assemble and configure desktops. You
also test your portal in a staging environment before propagating it to a live
production system. In the testing aspect of the staging phase, there is tight iteration
between staging and development until the application is ready to be released.

Part III contains the following chapters:

■ Chapter 15, "Managing Portal Desktops"

■ Chapter 16, "Deploying Portals to Production"

15

Managing Portal Desktops 15-1

15Managing Portal Desktops

You perform the tasks described in this chapter to prepare your portal application for
public consumption.

From an administrative standpoint, a portal is a container that defines a portal
application. When you create a new portal in the administration portal, you are really
creating an empty portal to hold different versions of the portal (desktops) that can be
targeted to specific users. A portal can contain one or more desktops, or views, of a
portal. It is the desktops to which you add the portal resources and navigation such as
books, pages, and portlets that make a dynamic portal.

After you assemble the desktops, you can test the application as a whole, and then
deploy it to the production environment when it is ready for public access. For
detailed instructions on how to progress through the stages of portal development and
deployment, refer to the Oracle Fusion Middleware Production Operations Guide for Oracle
WebLogic Portal.

The primary tool used in this chapter is the WebLogic Portal Administration Console.

This chapter contains the following sections:

■ Section 15.1, "Administration Console Overview"

■ Section 15.2, "Administration Console Library of Resources"

■ Section 15.3, "Starting and Logging In to the Administration Console"

■ Section 15.4, "Overview of Library Administration"

■ Section 15.5, "Overview of Portal Administration"

■ Section 15.6, "Portal Management"

■ Section 15.7, "Overview of the Library"

■ Section 15.8, "Desktop Templates"

■ Section 15.9, "Communities"

■ Section 15.10, "Portal Resources"

■ Section 15.11, "Portals"

■ Section 15.12, "Desktops"

■ Section 15.13, "Books"

■ Section 15.14, "Pages"

■ Section 15.15, "Portlets"

■ Section 15.16, "Portlet Preferences"

Administration Console Overview

15-2 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

■ Section 15.17, "Portlet Categories"

■ Section 15.18, "Look And Feels"

■ Section 15.19, "Shells"

■ Section 15.20, "Themes"

■ Section 15.21, "Menus (Navigation)"

■ Section 15.22, "Layouts"

15.1 Administration Console Overview
The WebLogic Portal Administration Console is the tool that portal administrators use
to not only control the behavior, content, and appearance of portals, but to perform
many traditional system administration activities such as user management and
security management.

The WebLogic Portal Administration Console is organized according to the following
categories of tasks:

■ Portal Management – Portals, desktops, books, pages, portlets, and other portal
resources.

This guide and the Oracle Fusion Middleware Portlet Development Guide for Oracle
WebLogic Portal provide details about Portal Management tasks.

■ User, Groups, & Roles – User and group management, security provider
configuration, Delegated Administration, and Visitor Entitlements.

The Oracle Fusion Middleware User Management Guide for Oracle WebLogic Portal and
Oracle Fusion Middleware Security Guide for Oracle WebLogic Portal provides detailed
information about the tasks in this category.

■ Configuration Settings – Server settings for Cache Management, Server
Maintenance Mode, Personalization, Security, Unified User Profiles, and WSRP.

This guide, Oracle Fusion Middleware Security Guide for Oracle WebLogic Portal,
Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic Portal, Oracle
Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal, and
Oracle Fusion Middleware User Management Guide for Oracle WebLogic Portal provide
detailed information about the tasks in this category.

■ Interaction Management – Campaigns, placeholders, user segments, and content
selectors.

The Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic
Portal provides detailed information about the tasks in this category.

■ Content Management – Content and repositories.

■ The Oracle Fusion Middleware Content Management Guide for Oracle WebLogic Portal
provides detailed information about the tasks in this category.

15.2 Administration Console Library of Resources
When you create a new desktop using the Administration Console, you can use an
existing portal template. Using a template means that you take the portal resources for
your desktop directly from a .portal file that was created in Oracle Enterprise Pack
for Eclipse. (The .portal file is also called the primary instance.) When you create a
desktop, the portal assets are removed from the .portal file, placed in a database,
and surfaced in both the Library and desktop trees of the Administration Console.

Starting and Logging In to the Administration Console

Managing Portal Desktops 15-3

Taking the assets from a new desktop instance and placing them in the Library is
called disassembling.

At this point, the assets (books, pages, and so on) in the Library (Library instances) are
hierarchically related to their corresponding desktop instances. A change to a Library
resource, such as a name change, is automatically inherited by the corresponding
desktop asset. On the other hand, a change to the desktop asset is not reflected back up
the hierarchy.

New books and pages that you create in a desktop are not disassembled—they are
considered to be private to that desktop.

Plan your implementation to make the best use of this WebLogic Portal functionality.
Refer to the Oracle Fusion Middleware Production Operations Guide for Oracle WebLogic
Portal for more details about disassembling and decoupling of resources in the
Administration Console.

15.3 Starting and Logging In to the Administration Console
This section explains how to open and log in to the administration console.

15.3.1 Opening the Administration Console
Before you can begin using the WebLogic Portal Administration Console, the server
must be running. Depending on the state of your Oracle Enterprise Pack for Eclipse
workbench, you might need to start the server before opening the Administration
Console.

Follow these steps:

1. Start Oracle Enterprise Pack for Eclipse and open a workspace:

2. In the Servers view, click the server to select it.

3. Click Start in the Servers view toolbar.

Wait while Oracle Enterprise Pack for Eclipse starts the server. This process might
take some time, depending on the speed of your system. When the process
completes, the Status column in the Servers view displays Started and the square
Stop the Server button becomes active.

4. In the Package Explorer view, select the .portal file for the portal you want to
manage with the Administration Console.

5. From the main menu, select Run > Open Portal Administration Console, as
shown in the example in Figure 15–1.

Note: Changes made to assets are never "reverse inherited" up the
hierarchy. A change to a desktop asset is never inherited by its
corresponding Library instance. Likewise, a change to a Visitor
instance is never inherited by a desktop or Library instance.

Starting and Logging In to the Administration Console

15-4 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Figure 15–1 Menu Selection for Run > Open Portal Administration Console

The Administration Console window opens in a new tab in the workbench editor
view, with the login dialog displayed, as Figure 15–2 shows.

Figure 15–2 WebLogic Portal Administration Console Login Dialog

15.3.2 Logging In to the Administration Console
The Administration Console login dialog requires a WebLogic Server system
administrator or a WebLogic Portal administrator user name and password. WebLogic
Server system administrators have full security privileges for the entire domain and
can log in to and use the WebLogic Server Administration Console tools. WebLogic
Portal administrators have full security privileges for a Portal Web Project, which can
include multiple portals.

To log in to the WebLogic Portal Administration Console:

1. Type the appropriate user name and password into the dialog and click Sign In.

Note: If you set up your Oracle Enterprise Pack for Eclipse
preferences to open external browsers instead of the internal browser,
a separate window opens to display the Administration Console login
dialog.

Note: Any valid Administration Console user must be a member of
the PortalSystemAdministrators group, which is created by default
with the domain. A WebLogic Server System Administrator creates
these users with either the WebLogic Server Administration Console
or the WLP Administration Console.

Overview of Library Administration

Managing Portal Desktops 15-5

The main menu of the Administration Console displays.

2. To get a better view of the console and its functions, click Maximize in the editor
view toolbar. Your display should look like the example in Figure 15–3.

Figure 15–3 Administration Console Main Page, Maximized

15.4 Overview of Library Administration
In some cases, changes to a definition in the library can be propagated to deployed
portal resources. The portal library is the repository for portal components, including
the following:

■ Shells

■ Themes

■ Menus

■ Books

■ Pages

■ Layouts

■ Look And Feels

■ Portlets

■ Portlet Categories

■ Portlet Producers

As the Library Administrator, you can modify the definitions in the Resource library.
These modifications are global in scope and carry with them a higher degree of

Note: If you set up your Oracle Enterprise Pack for Eclipse
preferences to open external browsers instead of the internal browser,
you do not need to perform this step.

Overview of Portal Administration

15-6 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

administration responsibility. When you create new portal instances of portal
resources and put them in the Portal Library, they have the following characteristics:

■ Your resource show up in the Portal Library so that portal administrators can
create instances of them to use as templates.

■ Your resource can be localized.

■ Your resource can be entitled at the enterprise application level. This means that
when these resources are entitled, they are entitled for every instance.

■ Visitors can add these resources to their personal views of a portal using the
Visitor Tools because they can choose them from the Library.

■ If an administrator or visitor deletes this resource from a portal, the resource can
easily be retrieved from the Library.

15.5 Overview of Portal Administration
Portal administrators work with portal resources to assemble portals and entitle parts
of the portal to end users and other administrators. A portal represents a Web site that
can be one of many within an Enterprise Application. Each portal can support
multiple desktops using shared components. The administration of the portals,
desktops, and components can be delegated to the distinct administrators who have
the correct Delegated Administration privileges.

You can assemble your portal using portal resources that exist in the Portal Library, or
in some cases you can create your own resources. If you create portal resources outside
of the Portal library, you are creating "one-off" versions that have the following
restrictions:

■ Your resource do not show up in the Portal Library

■ Your resource cannot have entitlements that are scoped to the enterprise
applications. You can entitle your resource to your Desktop level.

■ Visitors are not able to add these resources to their personal views of a portal
using the Visitor Tools because they are not available in the Library.

■ If you delete this resource, it is permanently deleted since no version of it exists in
the Library.

15.6 Portal Management
Portal administrators work with portal resources to assemble portals and entitle parts
of the portal to end users and other administrators. A portal represents a web site that
can be one of many within an enterprise application. Each portal can support multiple
desktops using shared components. You can delegate the administration of the portals,
desktops, and components to administrators who have the appropriate Delegated
Administration privileges.

15.7 Overview of the Library
The portal library is the repository for portal components. The definitions in the
library are used as templates for portal administrators to create and assemble portals
and desktops for end users. In order to have access to the library, you must have
delegated administration rights to its resources.

Desktop Templates

Managing Portal Desktops 15-7

15.8 Desktop Templates
A desktop template is a pre-defined set of portal resources that you can use to quickly
build a desktop.

15.8.1 Creating a Desktop Template
You can create a desktop template in either of these ways: select available resources in
the Library and provide additional desktop properties, or select an existing .portal
file on which to base the template.

To create a desktop template:

1. In the Portal Resources tree, select Portals and navigate to the portal for which you
want to create the desktop.

2. Navigate to Templates > Desktop Templates.

3. In the Browse tab, click Create Desktop Template. The Create Desktop Template
wizard displays.

4. Complete the first page of the wizard by selecting how you want to create a
desktop template:

■ Select resources in the Library: You can choose the primary book, shell, and
Look And Feel for your desktop from available resources and provide
additional desktop properties.

■ Select a .portal file: You can select from a list of .portal files in the current web
application, and provide additional desktop properties.

5. Click Next. The information you need to enter on the remaining pages of the
wizard vary according to the selection you made in the first page. Use the
following table as a guide.

Action Description

Select resources in the Library You can either search for an existing book or create a new one. To use an
existing book, you can search for a primary book by entering a search string
and clicking Search, or display all books by clicking Show All. If you
choose to create a new book, enter a Book Name (required), and a
Description and Menu option if desired.

Enter additional template properties, including Title, Description, and
Desktop Template Resources. If you want to add this template to the
Library, select the check box.

Click Create Template, or review the summary of properties by clicking
Review Properties and then click Create Template.

Click Finish.

Select a .portal file Either search for a .portal file by entering a search string and clicking
Search, or display all .portal files by clicking Show All.

Select a .portal file in the list.

Click Next.

Enter the desired desktop properties, including Title, Description, and
Desktop Template Resources. If you want to add this template to the
Library, select the check box.

Click Create Template, or review the summary of properties by clicking
Review Properties and then click Create Template.

Click Finish.

Communities

15-8 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

15.8.2 Modifying Desktop Template Properties
You can modify some desktop template properties from the Details tab. You can also
edit the title, description, and locale information from the Title & Description tab, as
described below.

To modify desktop template properties, perform these steps:

1. In the Portal Resources tree, expand the Library node or the Portals node and
select a desktop template.

2. If you are starting this task from the Library node, click Edit this Template.

3. From the Details tab, select the type of property that you want to change. Use the
table below as a guide.

15.9 Communities
Communities are WebLogic Portal desktops that let users with common goals and
interests work together in—and manage—their own web-based portal environment.
Whether for specific events, work groups, partners, or for any other groups that need

Property Procedure

Title and Description: Change
title and description of the
template in the current locale

Click Title & Description.

Click the locale (for example, en) in the Locale cell; the Add a Localized Title &
Description dialog displays.

Enter a new Title and/or Description.

Click Update.

Title and Description: Add a
localized title for the portlet

Click Title & Description.

Click Add Localized Title; the Add a Localized Title & Description dialog
appears.

Enter a Language and Country identifier, Variant if applicable, Title, and a
Description for the localized title.

Click Create.

Edit Appearance Click Edit Appearance; the Update Desktop dialog displays.

In the Default Shell drop-down menu, select a shell.

In the Look and Feel drop-down menu, select a Look And Feel.

In the Primary Book drop-down menu, select a book as the primary book for the
template.

Click Update.

Edit Primary Book Contents Click Edit Primary Book Contents; the Browse Contents tab displays.

Click Add Contents.

Follow the instructions in Managing Book Content.

Advanced Properties Click Advanced Properties.

In the Enable Tree Optimization drop-down menu, select True or False.

To disable ScrollToWindow, select False. (This feature is enabled by default.)
When this feature is enabled, on each request to the desktop, the browser window
will scroll down to the portlet that caused the request to the server. For example,
if your portlet is low on the browser page (where you have to use the browser
scroll bar to see the portlet), and you submit a form in the portlet, when the
resulting page renders, the browser automatically scrolls to that portlet.

To indicate which Asynchronous Mode to use, select Enabled, Disabled, or
compatibility mode.

Portal Resources

Managing Portal Desktops 15-9

to share information, communities provide a dedicated, secure, self-managed place to
collaborate.

For more information, refer to the Oracle Fusion Middleware Communities Guide for
Oracle WebLogic Portal.

15.10 Portal Resources
A portal is a web application that provides a unified user interface to aggregated
content and integrated applications. When you "create a portal" using the tools in the
WebLogic Portal Administration Console, you are essentially creating a "container" for
desktops, which represent customized views of the portal. To the desktops you add
other portal resources such as books, pages, and portlets. You can then entitle these
desktops and resources for specific users.

15.10.1 Updating Portal Resources
When you create a desktop using a template (.portal file) in WebLogic Portal
Administration Console, each resource of that desktop (such as books, pages, and
portlets) has a Definition Label that serves as a unique ID for that component in the
database.

If you create a new desktop using a template that contains portal resources with
Definition Labels that are identical to resources already stored in the database, a dialog
similar to the following displays:

Figure 15–4 Conflict Resolution Dialog

Use the following information for guidance in updating portal resources when you
receive this warning:

Portal Resources

15-10 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

If you want to replace specific portal resources, use Oracle Enterprise Pack for Eclipse
to create a "dummy" .portal file containing the portal resources that you want to
update (portal components with the Definition Labels you want to update in the
database), use the Administration Console to create a new desktop using that
template, and select the appropriate "Replace" option in the dialog that appears.

15.10.2 Viewing Resources for a Portal Web Application (Update WebApp)
To change the "active" portal web application so that you can work with a different
web application's resources, perform these steps:

1. Above the Portal Resources tree, click Update WebApp. The Update Current
WebApp dialog displays.

2. Use a search string to find web applications, or click Show All to display all web
applications.

3. Select a web application and click Save.

15.10.3 Deleting a Portal Resource
As a portal resource librarian, you can delete certain portal resources from the library,
or remove them from a desktop (which does not delete them from the library).

Resources that can be deleted include: pages, books, portlets (only those created using
the Administration Console), and portlet categories.

To delete a portal resource:

1. In the Portal Resources tree, select the type of resource that you want to delete. A
list of elements in that category is displayed.

2. To delete an element from the library, select the check box for any elements that
you want to delete, and click Delete. The items are deleted and removed from the
list.

If you try to delete an element from the library that is being used within a desktop,
a warning dialog displays. You can choose either to delete the element and any
referencing instances, or cancel the deletion task.

3. To delete an element from a desktop, select the check box for any elements that
you want to delete, and click Remove. The items are removed from the list.

15.10.4 Localizing a Portal Resource
You use the WebLogic Portal Administration Console to localize individual portal
resources so that they render in different languages. When you assign a language to a
portal resource, you assign the preferred language to the name of that resource.

Table 15–1 Updating Portal Resources - Conflict Resolution Options

Option Description

Don't replace Ignores the resources in the template and leaves the database version of the
resources intact, including any user customizations that have been made.

Don't replace, but update
properties

Uses the template to replace the database version of all conflicting resources and
adds new, non-conflicting resources to the database.

Replace Keeps user customizations but allows replacement of resource XML markup; for
example, a change in a portlet's modes or a change in a portlet's Content URI.

Portals

Managing Portal Desktops 15-11

Resources localized in the portal library will be propagated through the portals in
which they are used.

If the end user's browser supports the selected language, the portal resource is
rendered in that language. If the end user's browser does not support that language,
the system works through a list of available languages until it finds one that is
supported in both your portal and the end user's browser.

Perform these steps:

1. In the Portal Resources tree, expand the Library node to find the resource that you
want to localize; for example:

■ Theme

■ Book

■ Page

■ Layout

■ Look And Feel

■ Portlet

2. Select the Title & Description tab for the resource.

3. Click Add Localized Title.

4. Complete the data entry fields for the Language, Title, and other fields as
applicable.

5. Click Create.

15.11 Portals
From an end user perspective, a portal is a web site with pages that are organized by
tabs or some other form of navigation. Each page contains a nesting of sub-pages, and
one or more portlets—individual windows that display anything from static HTML
content to complex web services. A page can contain multiple portlets, giving users
access to different information and tools in a single place. Users can also customize
their view of a portal by adding their own pages, adding portlets of their choosing,
and changing the Look And Feel of the interface.

Technically, a portal is a container of resources and functionality that can be made
available to end users. These portal views, which are called desktops in WebLogic
Portal, provide the uniform resource location (URL) that users access. A portal
presents diverse content and applications to users through a consistent, unified
web-based interface. Portal administrators and users can customize portals, and
content can be presented based on user preferences or rule-based personalization.
Each portal is associated with a web application that contains all of the resources
required to run portals on the web.

15.11.1 Creating a Portal
When you create a new portal, you are creating an empty portal "container" into which
you can add as many desktops (versions of the portal) as you need. You can then

Note: For information about localization standards, see
http://java.sun.com/j2se/1.3/l10n-notes.html.

Portals

15-12 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

entitle specific users with access to the desktops. Each portal is associated with a web
application that contains all of the resources required to run the portal on the web.

To create a portal, follow these steps:

1. Click the Portal Management menu shortcut on the Administration Console home
page.

The Portal Management page displays; the Portal Resources tree displays in the
left pane of the page, as shown in Figure 15–5.

Figure 15–5 Portal Resources Tree in the Administration Console

Notice that the display is based on the portal that you selected before you opened
the Administration Console. If you expand the Library > Portlets portion of the
tree, you can see any portlets that exist for that portal.

2. Click Portals in the tree.

The Portals page displays, with the Browse Portals tab active. If no portals exist
yet, the table containing portals is empty.

3. Click Create New Portal.

The Create a New Portal dialog displays, Figure 15–6 shows an example.

Figure 15–6 Create a New Portal Dialog in Administration Console

4. Enter values for the portal properties.

5. Click Create New Portal.

When the Portals page displays again, the Browse Portals table includes the portal
you created, and the Portal Resources tree includes the new portal.

Desktops

Managing Portal Desktops 15-13

6. You can click the portal name in the Browse Portals table to view the details for
this portal.

The Portals page displays, with the Browse Desktops tab active. Because no
desktops exist yet, the table containing desktops is empty.

You can now add desktops to your portal.

15.11.2 Modifying Portal Properties
You can modify some portal properties from the Details tab. You can also edit the title,
description, and locale information from the Title & Description tab, as described
below.

To modify portal properties:

1. In the Portal Resources tree, expand the Portals node and select a portal.

2. From the Details tab, select the type of property that you want to change. Use the
table below as a guide.

15.12 Desktops
A desktop is a view of the portal that a visitor accesses. A portal is effectively a
container for its desktops. A desktop contains all the portlets, content, and Look And
Feel elements necessary to create individual user views of a portal.

A hierarchy summary is shown in the following figure:

Table 15–2 Modifying Portal Properties in the Administration Console

Option Description

Change title and description of
the portal in the current locale

Click Title & Description.

Click the locale (for example, en) in the Locale cell; the Add a Localized Title &
Description dialog displays.

Enter a new Title and/or Description.

Click Update.

Add a localized title for the
portal

Click Title & Description.

Click Add Localized Title; the Add a Localized Title & Description dialog
appears.

Enter a Language and Country identifier, Variant if applicable, Title, and a
Description for the localized title.

Click Create.

Portal Location Click Portal Location; the Update URI dialog displays.

Enter the URI for the portal.

Click Update.

You can view the portal if desired by clicking View Portal.

Desktops

15-14 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Figure 15–7 Desktop Hierarchy Summary

You can create one or more desktops for a portal, and tailor each desktop for a target
audience.

15.12.1 Creating a Desktop
You can create desktops in one of these ways: use a desktop template, select existing
resources from the Library, or base the desktop on an existing .portal file.

Before you create a desktop, you must already have created a portal to contain it.

To create a desktop:

1. Click the Portal Management menu shortcut on the Administration Console home
page.

The Portal Management page displays; the Portal Resources tree displays in the
left pane of the page, as shown in Figure 15–8.

Figure 15–8 Portal Resources Tree in the Administration Console

Notice that the display is based on the portal that you selected before you opened
the Administration Console. If you expand the Library > Portlets portion of the
tree, you can see any portlets that exist for that portal.

2. Navigate to the portal for which you want to create a desktop.

Note: Book and page resources are often created by developers in
Oracle Enterprise Pack for Eclipse. In order to make these resources
visible in the library, you must create a desktop in the WebLogic Portal
Administration Console using the portal created in Oracle Enterprise
Pack for Eclipse as the template. For example, if a developer creates
book and page resources in a portal called TestPortal in Oracle
Enterprise Pack for Eclipse, you must create a new desktop and select
TestPortal as your template for the desktop.

Desktops

Managing Portal Desktops 15-15

The Portals page displays, with the Browse Portals tab active. If no portals exist
yet, the table containing portals is empty.

3. In the Browse Desktops tab, click Create New Desktop.

The Create Desktop wizard displays, as shown in Figure 15–9.

Figure 15–9 Create Desktop Wizard in Administration Console

4. Complete the first page of the wizard by choosing the method of creating the
desktop:

■ Use a Desktop Template: You can choose from a list of templates that define
the desktops's shell, Look And Feel, and contents to quickly get your desktop
up and running.

■ Select resources in the Library: You can choose the primary book, shell, and
Look And Feel for your desktop from available resources and provide

■ Select a .portal file: You can select from a list of .portal files in the current web
application, and provide additional desktop properties.

5. Enter values for the desktop in the appropriate wizard pages, using Table 15–3 as
your guide:

Desktops

15-16 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

The Browse Desktops table includes the desktop you created, and the Portal Resources
tree includes the new desktop, similar to the example shown in Figure 15–10.

Figure 15–10 New Desktop in Portal Resources Tree

Table 15–3 Create Desktop Wizard Field Descriptions

Field or Selection Value/Description

Use a Desktop Template Either search for a template by entering a search string and clicking Search, or
display all templates by clicking Show All.

Select a template in the list.

Click Next.

Enter additional desktop properties, including Title, Description, Partial URL,
and Desktop Resources.

Click Create Desktop, or click Review Properties to review the summary of
properties and click Create Desktop. The desktop is created.

Click Finish.

Select Resources in the Library You can either search for an existing book or create a new one. To use an existing
book, you can search for a primary book by entering a search string and clicking
Search, or display all books by clicking Show All. If you choose to create a new
book, enter a Book Name (required), and a Description and Menu option if
desired.

Enter additional template properties, including Title, Description, Partial URL,
and Desktop Resources.

Click Create Desktop, or click Review Properties to review the summary of
properties and click Create Desktop. The desktop is created.

Click Finish.

Select a portal file Either search for a .portal file by entering a search string and clicking Search, or
display all .portal files by clicking Show All.

Select a file in the list.

Click Next.

Enter the desired desktop properties, including Title, Description, Partial URL,
and Desktop Resources.

Click Create Desktop, or click Review Properties to review the summary of
properties and click Create Desktop.

If some of the selected resources already exist in the library, a Conflict Resolution
page displays. Select an option to indicate the file replacement method that you
want to use; for more information, refer to Updating Portal Resources.

Click Finish.

Desktops

Managing Portal Desktops 15-17

15.12.1.1 Disassembling to the Library
When you create a new desktop using the WebLogic Portal Administration Console,
you can use an existing portal template. Using a template means that you will be
taking the portal resources for your desktop directly from a .portal file that was
created in Oracle Enterprise Pack for Eclipse. (The .portal file is also called the
primary instance.) When you create a desktop, the portal assets are removed from the
.portal file, placed in a database, and surfaced in both the Library and desktop trees
of the Administration Console. Taking the assets from a new desktop instance and
placing them in the Library is called disassembling.

At this point, the assets (books, pages, and so on) in the Library (Library instances) are
hierarchically related to their corresponding desktop instances. A change to a Library
resource, such as a name change, is automatically inherited by the corresponding
desktop asset. On the other hand, a change to the desktop asset is not reflected back up
the hierarchy.

15.12.1.2 Decoupling of Property Settings
If an administrator or a visitor (using Visitor Tools) changes the book properties of a
book or the page properties of a page in a desktop, those property settings become
decoupled from the settings in the parent book or page in the Library. Page properties
include layout and theme, while book properties include menus and layout. These
properties can be modified in the Administration Console. When a portal is
propagated, any assets that are decoupled in the source application will remain
decoupled in the destination.

15.12.2 Modifying Desktop Properties
To modify the properties of a desktop, perform these steps:

1. In the Portal Resources tree, select Portals and navigate to a desktop.

2. In the Details tab, you can choose to edit properties in each section. Use the
following table as a guide.

Note: Changes made to assets are never "reverse inherited" up the
hierarchy. A change to a desktop asset is never inherited by its
corresponding Library instance. Likewise, a change to a Visitor
instance is never inherited by a desktop or Library instance.

New books and pages that you create in a desktop are not
disassembled—they are considered to be private to that desktop.

Property Procedure

Title and Description: Change title
and description of the portlet in the
current locale

Click Title & Description.

Click the locale (for example, en) in the Locale cell; the Add a Localized Title
& Description dialog displays.

Enter a new Title and/or Description.

Click Update.

Books

15-18 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

3. To verify your changes in a browser, click View Desktop.

15.13 Books
A book is a portal component that provides high-level content organization and
navigation. Books contain pages or other books, providing a mechanism for
hierarchical nesting of pages and content.

Title and Description: Add a
localized title for the portlet

Click Title & Description.

Click Add Localized Title; the Add a Localized Title & Description dialog
appears.

Enter a Language and Country identifier, Variant if applicable, Title, and a
Description for the localized title.

Click Create.

Shell, Look And Feel, Primary
Book

Click Appearance And Contents; the Update Desktop dialog displays.

From the Default Shell drop-down menu, select a shell.

From the Look And Feel drop-down menu, select a Look And Feel.

From the Default Primary Book drop-down menu, select a book. The primary
book is the main visual and navigational infrastructure for a particular
desktop view of a portal.

Click Update.

Advanced Properties Click Advanced Properties to set the following properties:

In the Enable Tree Optimization drop-down menu, select True or False.
Changing this value might change the behavior of the portal and should not
be performed without first doing a complete test.

To disable ScrollToWindow, select False. (This feature is enabled by default.)
When this feature is enabled, on each request to the desktop, the browser
window will scroll down to the portlet that caused the request to the server.
For example, if your portlet is low on the browser page (where you have to
use the browser scroll bar to see the portlet), and you submit a form in the
portlet, when the resulting page renders, the browser automatically scrolls to
that portlet.

To indicate which Asynchronous Mode to use, select Portlet, Desktop, or
None.

Portlet – Enables asynchronous desktop rendering for the entire portal
desktop. This mode disables any portlet-specific asynchronous rendering
settings that may exist in the desktop.

Desktop – Disables asynchronous rendering for the entire portal desktop.
This mode disables asynchronous rendering for all portlets, including ones
that have portlet-specific asynchronous rendering enabled.

None – Enables portlet-specific asynchronous rendering to function, but
disables asynchronous desktop rendering.

For more information, see Section 13.1, "Asynchronous Desktop Rendering."

Set Enable DISC to true to enable the Disc framework. Disc provides a
client-side, JavaScript, object-oriented programming framework for handling
events, making asynchronous portlet updates, and for accessing portal
context objects. See the Oracle Fusion Middleware Client-Side Developer's Guide
for Oracle WebLogic Portal for information on Disc.

Set Enable DVT to true to enable placeable movement (drag and drop) for the
desktop. For more information, see Section 8.13, "Enabling Placeable
Movement."

Property Procedure

Books

Managing Portal Desktops 15-19

15.13.1 Creating a Book
If you have Library Administration privileges, you can create a new book in the portal
Library that can be used as a component in multiple portals. If you have Portal
Administrator privileges, you can create books to use in customized portals, but these
books are not reusable (and are not listed in the portal Library).

To create a book in the portal Library, perform these steps:

1. In the Portal Resources tree, expand the Library folder and select Books. The
Browse Books tab displays.

2. Click Create New Book. The Create New Book dialog displays.

3. Enter a title, description, menu, and theme for the book.

4. Click Create Book.

To create a book on an individual desktop, perform these steps:

1. In the Portal Resources tree, expand the Portals node and select the book or page
where you want to create a book.

2. Click the appropriate tab depending on whether you are working on a page or a
book, as follows:

■ For pages, click the Edit Contents tab.

■ For books, click the Browse Contents tab.

3. Click Add New Book. The Create New Book dialog displays.

4. Enter a title, description, menu, and theme for the book.

5. Click Create.

The book is added for the desktop but will not be added to the Library.

15.13.2 Managing Book Content
The contents of a book include pages and books. You can view the books and pages
that are already on your book, and add and remove pages and books to construct your
book.

15.13.2.1 Adding Portal Elements to a Book
Library: To add a content to a book, perform these steps:

1. In the Portal Resource tree, expand the Library node and navigate to a book. The
Details tab displays.

2. Click Add & Sort Contents. The Add Books and Pages dialog displays.

3. Display the books or pages that you want to choose from, using the Search area if
needed.

4. Choose the elements that you want to add by selecting the desired check boxes,
and click Add.

5. When finished, click Save.

Note: The Multi Level Menu is a pull-down menu, and the Single
Level Menu is a tabbed menu.

Books

15-20 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Desktop: To add a content to a book, perform these steps:

1. In the Portal Resource tree, expand the Portals node and navigate to a book. The
Details tab displays.

2. Click Browse Contents. In the Browse Book Contents section, you can choose to
add existing elements using the Add & Sort Content button, or create a new
page/book using the Add New Page button or Add New Book button.

3. If you want to create a new book and add it to this book, click Add New Book; the
Create New Book dialog displays. Fill in the fields of this dialog as described in
Section 15.13.1, "Creating a Book."

4. If you want to create a new page and add it to this book, click Add New Page; the
Create New Page dialog displays. Fill in the fields of this dialog as described in
Section 15.14.1, "Creating a New Page."

5. If you want to add an existing book or page to the book, click Add Contents;
search for existing books or pages if needed, then select the elements that you
want, and click Add. When finished, click Save.

15.13.2.2 Positioning or Removing Portal Elements on a Book
To position or remove content on a book:

1. In the Portal Resource tree, expand either the Library node or the Portals node as
desired, and select a book. The Details tab displays.

2. Click Add & Sort Contents. The Add Books and Pages to Book dialog displays.

3. If you want to remove a page or book, select the check box for that element in the
Contents of Book column and click Remove Selected.

4. To change the order of an element on the page, select the check box for that
element in the Contents of Book column; then click the up arrow or down arrow as
needed.

5. When finished, click Save.

15.13.3 Modifying Library Book Properties and Contents
To modify the properties of a book that resides in the library:

1. In the Portal Resources tree, expand the Library node and select the desired book.

2. From the Details tab, select the type of property that you want to change. Use the
table below as a guide.

Property Procedure

Title and Description: Change title
and description of the book in the
current locale

Click Title & Description.

Click the locale (for example, en) in the Locale cell; the Add a Localized Title &
Description dialog displays.

Enter a new Title and/or Description.

Click Update.

Pages

Managing Portal Desktops 15-21

15.13.4 Modifying Desktop Book Properties
To modify the properties of a book that resides on a desktop, perform these steps:

1. In the Portal Resources tree, expand the Portals node and select the desired book.

2. From the Details tab, select the type of property that you want to change. Use the
table below as a guide.

15.14 Pages
Pages contain the portlets that display the actual portal content. Pages can also contain
books and other pages.

15.14.1 Creating a New Page
A page is a portal resource that acts as container for portlets. If you have appropriate
Delegated Administration privileges, you can create a new page in the portal library
that can be used as a component in multiple portals. If you have Portal Administrator
privileges, you can create pages to use in customized portals, but these pages are not
reusable (and are not listed in the portal Library).

Title and Description: Add a
localized title for the book

Click Title & Description.

Click Add Localized Title; the Add a Localized Title & Description dialog
appears.

Enter a Language and Country identifier, Variant if applicable, Title, and a
Description for the localized title.

Click Create.

Book Contents Click Book Contents; the Browse Contents tab displays.

Select books and pages to add, following the instructions in Section 15.13.2,
"Managing Book Content."

Appearance Click Appearance; the Edit Appearance dialog displays.

From the Menu drop-down menu, select a Menu.

From the Theme drop-down menu, select a Theme.

Select Hidden to hide the navigation tab for the book to prevent direct access.

Click Update.

Property Procedure

Title and Description You must edit these values within the Library resource tree. Expand the Library
node, select the book that you want to edit, and follow the instructions in
Section 15.13.3, "Modifying Library Book Properties and Contents."

Book Contents Click Book Contents; the Browse Contents tab displays.

Click Add Contents.

Select books and pages to add, following the instructions in Section 15.13.2,
"Managing Book Content."

Menu and Theme Click Appearance; the Edit Appearance dialog displays.

From the Menu drop-down menu, select a Menu.

From the Theme drop-down menu, select a Theme.

Click Update.

Property Procedure

Pages

15-22 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

In this task, you will create a new page in the library of resources for your project.

Follow these steps:

1. Expand the Library folder for your portal web project and select the Pages folder;
Figure 15–11 shows an example of the tree.

Figure 15–11 Expanded Portal Resources Tree Showing Library Pages

The Browse Pages tab displays in the right pane, as shown in Figure 15–12.

Figure 15–12 Browse Pages Tab

2. Click Create New Page.

The Create New Page dialog displays, as shown in Figure 15–13.

Pages

Managing Portal Desktops 15-23

Figure 15–13 Create New Page Dialog in Administration Console

3. Enter a title, description, layout, and theme for the page.

4. Click Create.

The new page is added, and is included in the Details page for the library; the
Portal Resources tree updates to include the new page, as shown in Figure 15–14.

Figure 15–14 New Page Added to the Portal Resources Tree

To create a page on an individual desktop, perform these steps:

1. In the Portal Resources tree, expand the Portals node and select the book or page
where you want to create a page.

2. With the Browse Contents tab active, click Add New Page. The Create New Page
dialog displays.

3. Enter a title, description, layout, and theme for the page.

4. Click Create.

The page is added for the desktop but will not be added to the Library.

15.14.2 Managing Page Content
The contents of a page include portlets and books. You can view the books and portlets
that are already on your page, and add and remove portlets and books to construct
your page.

15.14.2.1 Adding Contents to a Page
Library: To add a content to a page, perform these steps:

Pages

15-24 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

1. In the Portal Resource tree, expand the Library node and navigate to a page. The
Details tab displays.

2. Click Page Contents. The Edit Contents tab displays.

3. Click Add Contents in the respective placeholder. The Add Books and Portlets to
Placeholder dialog displays.

4. Display the portlets or books that you want to choose from, using the Search area
if needed.

5. Choose the content that you want to add by selecting the desired check boxes, and
click Add.

6. When finished, click Save.

Desktop: To add content to a page:

1. In the Portal Resource tree, expand the Portals node and navigate to a page. The
Details tab displays.

2. Click Page Contents. The Edit Contents tab displays. In the Edit Contents tab, you
can choose to add existing content using the Add Contents button, or create a new
book using the Add New Book button.

a. If you want to create a new book and add it to this page, click Add New Book
for the respective placeholder; the Create New Book dialog displays. Fill in the
fields of this dialog as described in Section 15.13.1, "Creating a Book."

b. If you want to add an existing book or portlet to the book, click Add Contents
for the respective placeholder; search for existing books or portlets if needed,
then select the elements that you want, and click Add.

3. When finished, click Save.

15.14.2.2 Positioning Elements on a Page
The page layout is the grid structure of a page that holds placeholders for portlets on
the page. You can select a layout for your portlets/books, and drag and drop portlets
or books between the placeholders to customize the layout of each page.

Perform these steps:

1. In the Portal Resource tree, expand either the Library node or the Portals node as
applicable, and select a page. The Details tab displays.

2. Click Page Contents. The Edit Contents tab displays.

3. If you want to change to a different layout, select a layout in the Layout
drop-down menu.

4. Select the method that you want to use to position the elements on the page by
selecting an option in the Position Elements area. The default is Drag & Drop.

5. Move portlets or books between placeholder columns.

6. If you want to prevent users from moving or deleting elements from a placeholder,
select the Lock Placeholder check box.

7. When finished, click Save Changes.

15.14.3 Modifying Library Page Properties
To modify the properties of a page that resides in the library, perform these steps:

1. Expand the Library node in the Portal Resources tree and navigate to a page.

Pages

Managing Portal Desktops 15-25

2. From the Details tab, select the type of property that you want to change. Use the
table below as a guide.

15.14.4 Modifying Desktop Page Properties
To modify the properties of a page that resides on a desktop, perform these steps:

1. Expand the Portals node in the Portal Resources tree and navigate to a page.

2. From the Details tab, select the type of property that you want to change. Use the
table below as a guide.

Property Procedure

Title and Description: Change title
and description of the page in the
current locale

Click Title & Description.

Click the locale (for example, en) in the Locale cell; the Add a Localized Title
& Description dialog displays.

Enter a new Title and/or Description.

Click Update.

Title and Description: Add a
localized title for the page

Click Title & Description.

Click Add Localized Title; the Add a Localized Title & Description dialog
appears.

Enter a Language and Country identifier, Variant if applicable, Title, and a
Description for the localized title.

Click Create.

Page Contents Click Page Contents; the Edit Contents tab displays.

To add books or portlets, click Add Contents. To move content, select a
positioning option by clicking one of the Position Elements radio buttons,
then move elements as desired. Follow the instructions in Section 15.14.2,
"Managing Page Content."

Appearance Click Appearance; the Edit Appearance dialog displays.

From the Layout drop-down menu, select a Layout.

From the Theme drop-down menu, select a Theme.

Select Hidden to hide the navigation tab for the page to prevent direct access.

Click Update.

Property Procedure

Title and Description You must edit these values within the Library resource tree. Expand the Library
node, select the page that you want to edit, and follow the instructions in
Section 15.14.3, "Modifying Library Page Properties."

Page Contents Click Page Contents; the Edit Contents tab displays.

To add books or portlets, click Add Contents. To move content, select a
positioning option by clicking one of the Position Elements radio buttons, then
move elements as desired. Follow the instructions in Section 15.14.2, "Managing
Page Content."

Layout and Theme Click Appearance; the Edit Appearance dialog displays.

From the Layout drop-down menu, select a Layout.

From the Theme drop-down menu, select a Theme.

Click Update.

Portlets

15-26 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

15.14.5 Moving a Page or Book to Another Location on the Desktop
Within a desktop, you can move a book or page to a different location within the
desktop; for example, you can move page1 from book1 to book2 within a single
desktop. You must have "can manage" privileges on both the source and destination
location for the resource. You can perform this task for any book or page, except the
main book.

Perform these steps:

1. In the Portal Resource tree, expand the Portals node as desired, and select the book
or page that you want to move.

2. Click Move. The Move dialog displays, instructing you to select the node in the
Portal resources tree where you want to place the element.

3. Click OK.

4. In the Portal Resources tree, click the book or page under which you want to paste
the element that you selected in step 2.

5. Click Paste. The Paste confirmation dialog displays.

6. Click OK.

15.15 Portlets
Portlets are the visible components that act as the interface to applications and content.
They are the actual components with which a user interacts in a portal. Portlets can be
arranged in pages to provide users access to multiple applications within a single
page.

Portlets also support application-to-application communication and can be used to
provide users access to composite applications - a single portlet interface that
combines data and tasks from multiple sources.

15.15.1 Copying a Portlet in the Library
You can use this feature of the WebLogic Portal Administration Console to duplicate
an existing portlet and use it as a template for a "new" portlet.

Perform these steps:

1. Expand the Library node in the Portal Resources tree and navigate to the portlet
that you want to copy.

2. Click Copy Portlet. The Copy Portlet dialog displays.

3. Enter a title and description for the copied portlet.

4. Click OK. The portlet is added at the bottom of the portlet list.

5. You can now customize the copied portlet by modifying its properties and
preferences.

Note: You cannot change the inheritance structure of a resource
when you move it; for example, if a book's parent is another book, you
may move it only underneath another book - not to a page. If the
parent is a page, you can only move the resource under another page.

Portlets

Managing Portal Desktops 15-27

15.15.2 Deleting a Portlet
You can delete portlets from the Administration Console only if they were created
there; for example, if you used the Copy Portlet feature to duplicate the portlet.
Portlets created in Oracle Enterprise Pack for Eclipse cannot be deleted using the
Administration Console.

Perform these steps:

1. Expand the Library node in the Portal Resources tree and navigate to the portlet
that you want to delete.

2. Click Delete Portlet.

15.15.3 Modifying Library Portlet Properties
Portlet properties include all of the features and elements that make up the portlet. As
a portal administrator, you can modify some of these properties from the Details tab.
You can also edit the title, description, and locale information from the Title &
Description tab, as described below.

To modify the properties of a portlet that resides in the library, perform these steps:

1. Expand the Library node in the Portal Resources tree and navigate to the portlet
that you want to modify.

2. From the Details tab, select the type of property that you want to change. Use the
table below for guidance.

Property Procedure

Title and Description: Change
title and description of the
portlet in the current locale

Click Title & Description.

Click the locale (for example, en) in the Locale cell; the Add a Localized Title &
Description dialog displays.

Enter a new Title and/or Description.

Click Update.

Title and Description: Add a
localized title for the portlet

Click Title & Description.

Click Add Localized Title; the Add a Localized Title & Description dialog
appears.

Enter a Language and Country identifier, Variant if applicable, Title, and a
Description for the localized title.

Click Create.

Portlet Preferences Refer to Section 15.16.1, "Creating a Portlet Preference" and Section 15.16.2,
"Editing a Portlet Preference."

Portlet Theme Click Appearance; the Edit Appearance dialog displays.

From the drop-down menu, select a Theme.

Click Update.

Render caching and timeout Click Advanced Properties.

In the Render Caching Enabled drop-down menu, select True or False.

If you selected True, enter a cache expiration value in the Cache Expiration field.

Click Update.

Portlet Preferences

15-28 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

15.15.4 Modifying Desktop Portlet Properties
Portlet properties include all of the features and elements that make up the portlet. As
a portal administrator, you can modify some of these properties from the Details tab.
You can also edit the title, description, and locale information from the Title &
Description tab, as described below.

To modify the properties of a portlet that resides on a desktop, perform these steps:

1. Expand the Portals node in the Portal Resources tree and navigate to the portlet
that you want to modify.

2. From the Details tab, select the type of property that you want to change. Use the
table below as a guide.

15.16 Portlet Preferences
A portlet preference is a property in a portlet that can be customized by either an
administrator or a user. Your portlet might already have preferences, but if you have

Run Portlet in a Separate
Thread

This option is only available if the portlet was marked as Forkable during the
development stage. If you select True, the portlet will be processed in a separate
thread (forked). If False, the portlet will not be forked.

See the Oracle Fusion Middleware Portlet Development Guide for Oracle WebLogic
Portal for detailed information on portlet forking.

Property Procedure

Title and Description You must edit these values within the Library resource tree. Expand the Library
node, select the portlet that you want to edit, and follow the instructions in
Section 15.15.3, "Modifying Library Portlet Properties."

Portlet Preferences Refer to Section 15.16.1, "Creating a Portlet Preference" and Section 15.16.2,
"Editing a Portlet Preference."

Portlet Theme Click Appearance; the Edit Appearance dialog displays.

From the drop-down menu, select a Theme.

Click Update.

Enabled Client Classifications For portlets that are assigned client classifications, the value you enter for the
description element is displayed in this field to show the classifications to which
the portlet is assigned. Client classifications declare which devices the portlet can
be used on. For more information on client classifications, see Chapter 12,
"Creating Portals for Multiple Device Types."

Portlet Publishing Link The URL to retrieve a desktop instance portlet from the WLP publishing service.
You can use this URL to include a portlet in a web page using an <iframe> tag.

Options include:

Light – (default) Only the content of the portlet is rendered. Light decoration
does not include a border or titlebar if they were part of the original desktop
portlet instance. This style portlet tends to blend in more with the surrounding
web page elements.

Full – This option renders the portlet almost exactly it appears in its original
desktop context. If defined in the original portlet, the border and title bar (with
mode and state buttons) will be rendered. Essentially, the portlet is rendered with
the same look and feel as the original portlet appeared in its host desktop.

For detailed information on Portlet Publishing, see the Oracle Fusion Middleware
Client-Side Developer's Guide for Oracle WebLogic Portal.

Property Procedure

Portlet Preferences

Managing Portal Desktops 15-29

the appropriate Delegated Administration privileges you can create additional portlet
preferences.

15.16.1 Creating a Portlet Preference
To create a portlet preference, perform these steps:

1. Expand the Portals node or the Library node in the Portal Resources tree, as
appropriate, and navigate to the portlet for which you want to create a preference.
The Details tab displays.

2. Click Add Portlet Preference.

3. Fill in the information in the fields. Use the table below as a guide.

4. Click Save.

5. For library instances of portlets, when you add a preference it automatically
proliferates to library page instances and desktop page instances if the instances
have not been decoupled.

6. If you want to force proliferation of this preference to every instance of this portlet,
click Propagate to Instances; WebLogic Portal overwrites all desktop instance's
preferences with the library preferences are. When complete, a message appears at
the top of the Administration Console.

Here are some tips related to portlet preferences that you might find useful:

■ When desktop instances of a portlet have no preferences, they automatically
inherit the preferences from the library instance of the portlet.

■ When desktop instances of a portlet have their own preferences set, they will not
automatically inherit preferences from the library instance.

■ If a desktop instance of a portlet has its own preferences set and these preferences
are removed, it will automatically inherit all preferences from the library instance.

■ If a desktop instance of a portlet has inherited preferences from the library
instance and the desktop instance of this preference has been modified, it will no
longer automatically inherit new preferences from the library or updates made to
the library portlet's instance of this preference.

■ If a desktop instance of a portlet has inherited the preferences from the library
instance and no desktop instance specific preferences have been set, and the
inherited preferences have not been modified in the desktop instance, the desktop
instance will inherit all updates to the library preferences.

Table 15–4 Creating a Portlet Preference - Data Entry Fields

For this field... Enter this information...

Name The name you want to give this preference.

Description A description of this preference.

Value(s) A value for a preference. For example: True or False.

Is Modifiable? (check
box)

Select this check box if you want to allow end users to modify this preference.

Is Multi-Valued? (check
box)

Select this check box if you want to enter multiple values for the preference. If you
select this box, an additional data entry field displays for you to enter additional
values. Click Add Another Value after entering each value, until you are finished.

Portlet Categories

15-30 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

15.16.2 Editing a Portlet Preference
If you have the appropriate Delegated Administration rights, you can edit a portlet's
preferences to change the way a portlet behaves.

To edit a portlet preference:

1. Expand the Portals node or the Library node in the Portal Resources tree, as
appropriate, and navigate to the portlet for which you want to edit a preference.
The Details tab displays.

2. Click Portlet Preferences.

3. Select the portlet preference by clicking its name in the Name column.

4. Edit the information in the fields. Use the table below as a guide.

5. Click Save.

6. For library instances of portlets, when you edit a preference it automatically
proliferates to library page instances and desktop page instances if the instances
have not been decoupled. If you want to force proliferation of this change to every
instance of this portlet, click Propagate to Instances. When complete, a message
appears at the top of the Administration Console.

15.17 Portlet Categories
This section explains how to create and edit portlet categories. Portlet categories
provide for the classification of portlets, which is useful when organizing a large
collection of portlets into meaningful groupings. The portlet categories are similar to
other hierarchical structures in that parent "folders" can contain child folders and/or
portlets. You must first create a portlet category, and then you can manage portlets by
adding them to a category or moving them between categories.

15.17.1 Creating a Portlet Category
To create a portlet category:

1. In the Portal Resources tree, expand the Library folder and select Portlet
Categories. The Browse Category tab displays.

2. Click Create New Category.

3. Type a title and description for the new category in the pop-up window.

4. Click Create.

Table 15–5 Editing a Portlet Preference - Data Entry Fields

For this field... Enter this information...

Name The name you want to give this preference.

Description A description of this preference.

Value(s) A value for a preference.

Is Modifiable? (check box) Select this check box if you want to allow end users to modify
this preference.

Is Multi-Valued? (check box) Select this check box if you want to enter multiple values for the
preference. If you select this box, an additional data entry field
displays for you to enter additional values. Click Add Another
Value after entering each value, until you are finished.

Look And Feels

Managing Portal Desktops 15-31

15.17.2 Adding Portlets to a Portlet Category
To add portlets into a category:

1. Expand the Library node in the Portal Resources tree and navigate to a portlet
category. The Summary tab displays.

2. Click Portlets In Category.

3. Click Add Portlets.

4. In the Available Portlets area, select the portlets that you want to add, and click
Add to list them in the Selected Portlets area.

5. Click Save.

15.17.3 Modifying Portlet Category Properties
Portlet category properties include all of the features and elements that make up the
category. As a portal administrator, you can modify some of these properties from the
Summary tab. You can also edit the title, description, and locale information from the
Titles & Descriptions tab, as described below.

Perform these steps:

1. In the Portal Resources tree, expand the Library node and navigate to a portlet
category.

2. From the Summary tab, select the type of property that you want to change. Use
the table below as a guide.

15.18 Look And Feels
The physical appearance of a portal is determined by the look and feel selected for the
portal desktop. Look and feels are a combination of skins, themes, and skeletons that
control the structure, portlet title bar graphics, JavaScript behavior, and HTML styles
in your portal desktops.

Property Procedure

Title and Description: Change title
and description of the category in
the current locale

Click Title & Description.

Click the locale (for example, en) in the Locale cell; the Add a Localized Title
& Description dialog displays.

Enter a new Title and/or Description.

Click Update.

Title and Description: Add a
localized title for the category

Click Title & Description.

Click Add Localized Title; the Add a Localized Title & Description dialog
appears.

Enter a Language and Country identifier, Variant if applicable, Title, and a
Description for the localized title.

Click Create.

Portlets in Category Refer to Section 15.17.2, "Adding Portlets to a Portlet Category."

Categories in Category Click Categories In Category; the Browse Category tab displays.

Click Create New Category; the Create New Category dialog displays.

Enter a Title and Description for the new category.

Click Create. The category is created and added to the currently selected
category

Shells

15-32 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Developers use Oracle Enterprise Pack for Eclipse to assemble skeletons, skins, and
other elements to create Look And Feels. A look and feel is a portal resource that you
"apply" to a portal desktop using the WebLogic Portal Administration Console.

You can change the look and feel of an entire desktop or of individual components in
the desktop by editing that element's properties:

15.18.1 Modifying Look And Feel Properties
Look and feels are created using Oracle Enterprise Pack for Eclipse. You can modify
some look and feel properties using the WebLogic Portal Administration Console.

To modify a look and feel property:

1. In the Portal Resources tree, select Library and navigate to a look and feel. The
Details tab displays, showing the current information for the look and feel.

2. Click Title & Description.

3. You can either update the title and description for the current locale, or add a new
localized title for the Look And Feel. Use the table below as a guide:

15.19 Shells
A desktop's header and footer, controlled by a portal shell, are the areas that are
typically above and below the main body. These areas usually display such things as
personalized content, banner graphics, legal notices, and related links. When a portal
is accessed by a user, each of the components in the shell are rendered to form the
frame that contains the books, pages, and portlets.

Shells are created using Oracle Enterprise Pack for Eclipse. You can modify some shell
properties using the WebLogic Portal Administration Console.

15.19.1 Modifying Shell Properties
You can modify the title, description, and locale information for shells.

To modify shell properties:

1. In the Portal Resources tree, expand the Library node and navigate to the desired
shell.

2. Click Title & Description.

3. You can either update the title and description for the current locale, or add a new
localized title for the shell. Use the table below as a guide:

Property Procedure

Change title and description of the Look
And Feel in the current locale

Click the locale (for example, en) in the Locale cell; the Add a
Localized Title & Description dialog displays.

Enter a new Title and/or Description.

Click Update.

Add a localized title for the Look And Feel Click Add Localized Title; the Add a Localized Title & Description
dialog appears.

Enter a Language and Country identifier, Variant if applicable, Title,
and a Description for the localized title.

Click Create.

Themes

Managing Portal Desktops 15-33

15.20 Themes
Themes allow you to customize specific portal resources such as books, pages, or
portlets. Developers create themes using Oracle Enterprise Pack for Eclipse; for
example, a skin theme is a subset of graphics, CSS styles, and/or JavaScript behaviors
that you can use on books, pages, and portlets to give them a different look from the
rest of the portal desktop.

For more information, refer to Chapter 7, "User Interface Development with Look And
Feel Features."

You can select from predefined themes as you design portal desktops.

15.20.1 Modifying Theme Properties
Themes are created using Oracle Enterprise Pack for Eclipse. You can modify a subset
of theme properties using the WebLogic Portal Administration Console.

Perform these steps:

1. In the Portal Resources tree, expand the Library node and navigate to the desired
theme.

2. Click Title & Description.

3. You can either update the title and description for the current locale, or add a new
localized title for the theme. Use the table below as a guide:

Property Procedure

Change title and description of the shell
in the current locale

Click the locale (for example, en) in the Locale cell; the Add a Localized
Title & Description dialog displays.

Enter a new Title and/or Description.

Click Update.

Add a localized title for the shell Click Add Localized Title; the Add a Localized Title & Description
dialog appears.

Enter a Language and Country identifier, Variant if applicable, Title,
and a Description for the localized title.

Click Create.

Property Procedure

Change title and description of
the theme in the current locale

Click the locale (for example, en) in the Locale cell; the Add a Localized Title &
Description dialog displays.

Enter a new Title and/or Description.

Click Update.

Add a localized title for the
theme

Click Add Localized Title; the Add a Localized Title & Description dialog
appears.

Enter a Language and Country identifier, Variant if applicable, Title, and a
Description for the localized title.

Click Create.

Menus (Navigation)

15-34 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

15.21 Menus (Navigation)
Menus are optional components that are loosely coupled to books and pages. A menu
provides a navigation component, whether it is a set of tabs, a set of links, or a tree
structure. WebLogic Portal provides the following types of menus:

■ Single Level Menu - Provides a single row of tabs for navigation among books
and pages.

■ Multi Level Menu - Provides multiple levels of nested tabs for navigating among
books and pages. Sub-books and pages are accessed through a cascading
drop-down menu. Drop-down functionality occurs when books are added directly
to books rather than to placeholders on pages.

■ No Navigation - Suppresses the sub-book and pages tabs in the book. This option
is useful, for example, if you use the Targeted Menu Portlet or the Left Navigation
Shell for book navigation.

If you created your own navigation menus by copying and modifying the default
menus, they are also available for selection when you are editing @@@.

15.21.1 Modifying Menu Properties
A menu's properties are all of the features and elements that make up the menu. As a
portal administrator, you can modify some of these properties.

Perform these steps:

1. In the Portal Resources tree, select Library and navigate to a menu. The Details tab
displays, showing the current information for the menu.

2. Click Title & Description.

3. You can either update the title and description for the current locale, or add a new
localized title for the menu. Use the table below as a guide:

15.22 Layouts
Layouts are used to control the positions of the components in your portal, providing
placeholders (in a table structure) for a page in which books, pages, and portlets can be
placed. Different layouts display books and portlets on a page in different areas. For
example, a layout that uses three table cells provides three placeholders in which
portlets can be placed.

You cannot add a layout using the WebLogic Portal Administration Console. Layouts
are created using Oracle Enterprise Pack for Eclipse. However, you can modify some

Property Procedure

Change title and description of the menu
in the current locale

Click the locale (for example, en) in the Locale cell; the Add a Localized
Title & Description dialog displays.

Enter a new Title and/or Description.

Click Update.

Add a localized title for the menu Click Add Localized Title; the Add a Localized Title & Description
dialog appears.

Enter a Language and Country identifier, Variant if applicable, Title,
and a Description for the localized title.

Click Create.

Layouts

Managing Portal Desktops 15-35

layout properties and add localized titles and descriptions for your layouts using the
Administration Console.

15.22.1 Modifying Layout Properties
Layouts are created using Oracle Enterprise Pack for Eclipse. You can modify some
layout properties using the WebLogic Portal Administration Console.

Perform these steps:

1. In the Portal Resources tree, select Library and navigate to a layout. The Details
tab displays, showing the current information for the layout.

2. Click Title & Description.

3. You can either update the title and description for the current locale, or add a new
localized title for the layout. Use the table below as a guide:

Property Procedure

Change title and description of the
layout in the current locale

Click the locale (for example, en) in the Locale cell; the Add a Localized
Title & Description dialog displays.

Enter a new Title and/or Description.

Click Update.

Add a localized title for the layout Click Add Localized Title; the Add a Localized Title & Description
dialog appears.

Enter a Language and Country identifier, Variant if applicable, Title,
and a Description for the localized title.

Click Create.

Layouts

15-36 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

16

Deploying Portals to Production 16-1

16Deploying Portals to Production

Propagation refers to the process of moving the database and LDAP contents of one
portal domain environment to another. Oracle provides tools to help with portal
propagation. These tools not only move database assets and LDAP information, but
they also report differences and potential conflicts between the source and the target
environments. You can define policies to automatically resolve conflicts, or an
administrator can view a list of differences and decide the appropriate actions to take
on a case-by-case basis.

Propagation tools are described in detail in the Oracle Fusion Middleware Production
Operations Guide for Oracle WebLogic Portal. The Production Operations Guide also
helps you through the process of planning a strategy for propagation and provides
detailed information on best practices.

This chapter contains information you might find useful as you are propagating
(deploying) your portal from the staging environment to the production environment,
when it is ready for public access.

The primary tools used in this chapter are the WebLogic Portal propagation tools (to
move database and LDAP data between staging, development, and production),
WebLogic Server application deployment tools, and any external content or security
providers you are using.

16.1 Shared J2EE Libraries
The following sections provide more information about J2EE libraries and their
behavior during portal deployment. For detailed instructions on how to work with
J2EE libraries during deployment, refer to the Oracle Fusion Middleware Production
Operations Guide for Oracle WebLogic Portal.

16.1.1 Shared J2EE Library References in config.xml
Figure 16–1 highlights the separation between your application code and shared J2EE
libraries. The config.xml file resides in the domain, and it specifies the
relationships between the web application and the J2EE libraries. Example 16–1 shows
an example <library> element from the config.xml file in a WebLogic Portal
domain. As you can see, the library file is an EAR file located in the WebLogic
installation area. This library is available to applications deployed on the target server.

Example 16–1 J2EE Library Referenced in config.xml File

<library>
 <name>p13n-app-lib#9.2.0@9.2.0</name>
 <target>AdminServer</target>
 <source-path>D:/bea/weblogic92/common/deployable-libraries/

Shared J2EE Libraries

16-2 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

 p13n-app-lib.ear
 </source-path>
 <deployment-order>1</deployment-order>
 <security-dd-model>DDOnly</security-dd-model>
</library>

When the application is deployed, these relationships provide a plan by which the
application and J2EE library code are merged into a single enterprise application.

Figure 16–1 Application Referencing a Shared J2EE Library

J2EE libraries can be:

■ Included by reference

Perhaps the most important thing to know about shared J2EE libraries is that they
are included in your application by reference. Within your WebLogic Portal
application is a configuration file that references all of the J2EE libraries that your
application requires. When you deploy your application, the library files are
automatically located and included with your application.

■ Independently versioned

Another important thing to know about J2EE libraries is that they are
independently versioned. This means that each J2EE library includes within it a
descriptor file that lists the module's version number. At deploy time, these
descriptors are located, read, and merged automatically, ensuring that your
application retrieves the correct version of each J2EE library that it requires.

■ Shared across multiple applications

A set of shared J2EE libraries is installed when you create a WebLogic Portal
domain. This set of J2EE libraries is used by all applications running in that
domain.

■ Separately deployed

Because J2EE libraries are separately deployed, applications can be upgraded
easily by replacing a single J2EE library.

Tip: You can create a deployment plan to configure what gets
mapped at runtime when the files merge. Deployment plans are
described in the Oracle Fusion Middleware Production Operations Guide
for Oracle WebLogic Portal.

Shared J2EE Libraries

Deploying Portals to Production 16-3

An application can include multiple J2EE libraries, assigning each a deployment order,
which determines which version of a given file takes precedence if the same file is
contained in multiple libraries. (Files contained in the referencing application always
take precedence over library files.) Conceptually, J2EE libraries can be viewed as
effectively overlaying (or more precisely, under-laying) the application in which they
are included.

J2EE libraries can be employed at either the enterprise or web application level. They
use the same file and directory structure as the applications in which they are
included—the files contained in a J2EE library are effectively merged into the
referencing application at deploy-time.

After deployment, the merged application functions as a standard J2EE application. As
a consequence, the deployment information for assets in a library must be merged into
the descriptors for the referencing application either prior to (or as part of) the
deployment process.

16.1.1.1 Anatomy of a Shared J2EE Library
A J2EE library is a collection of libraries, resources, and configuration files packaged in
an EAR or WAR file. EAR-based J2EE libraries are enterprise application scoped, while
WAR-based modules are web application scoped.

Figure 16–2 shows an exploded J2EE library. The J2EE library's name is
p13n-app-lib.

Figure 16–2 Example of an Exploded Shared J2EE Library

In the META-INF directory is a Manifest.mf file; an example is shown in
Example 16–2. This file includes three elements that define the archive as a J2EE
library:

■ Extension-name – Specifies the name of the J2EE library.

■ Specification-Version – Specifies the initial version of the J2EE library.

■ Implementation-Version – (optional) Specifies the current version of the J2EE
library. You increment this version number each time the J2EE library is updated.
When an application is deployed, deployment descriptors specify which J2EE
libraries to deploy. This version number can be referenced in deployment
descriptors so that the intended version of the module is included.

Example 16–2 Example of a Manifest.mf File for a J2EE Library

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.6.2
Created-By: 1.5.0_04-b05 (Sun Microsystems Inc.)

Shared J2EE Libraries

16-4 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Extension-Name: p13n-app-lib
Specification-Version: 9.2.0
Implementation-Version: 9.2.0

16.1.2 Overriding Shared J2EE Library Settings in the web.xml File
At runtime, the web.xml files in all the shared J2EE libraries are merged, along with
the web.xml file in your portal web project. The content of your WEB-INF/web.xml
file overrides anything in the shared J2EE libraries, so if you want to change particular
settings, you can do it there.

There are many other files for which file contents are merged; these can be overridden
in the same way. These files include not only WEB-INF/web.xml but also
WEB-INF/weblogic.xml and any files mentioned in weblogic-extension.xml
from either the users' application or the shared libraries.

Servlet filters and servlets deployed in the shared libraries' web.xml files can be
disabled if desired by deploying the null servlet filter
(com.bea.p13n.servlets.NullFilter) or 404 servlet
(com.bea.p13n.servlets.SendErrorServlet) in their place. For more
information, refer to the Oracle Fusion Middleware Java API Reference for Oracle WebLogic
Portal.

16.1.2.1 Servlet Mapping Overrides
The web.xml servlet mappings provided by WebLogic Portal reside in J2EE libraries.
For example, the showPropertyServlet is defined in

<WLPORTAL_HOME>/content-mgmt/lib/j2ee-modules/content-management-web-lib.war

If you want to add to or modify these servlet mappings, you can add your mappings
or provide mapping overrides in your portal web project's file-based web.xml file
located in the following path:

PortalWebProject/WebContent/WEB-INF/web.xml

For example, if you want to call the ShowPropertyServlet when
/ShowPropertyServlet/* is used in a URL, add the following entry to your file system
web.xml file:

<servlet-mapping>
 <servlet-name>ShowPropertyServlet</servlet-name>
 <url-pattern>/ShowBinaryServlet/*</url-pattern>
</servlet-mapping>

Part IV
Part IV Production

In the production phase of the portal life cycle, your portal is live. In this phase, you
can use the WebLogic Portal Administration Console to perform some management
functions, such as adding portlets.

Part IV contains the following chapter:

■ Chapter 17, "Managing Portals in Production"

17

Managing Portals in Production 17-1

17Managing Portals in Production

A production portal is live and available to end users. A portal in production can be
modified by administrators using the WebLogic Portal Administration Console and by
users using Visitor Tools. For instance, an administrator might add additional portlets
to a portal or reconfigure the contents of a portal.

During the life cycle of a WebLogic Portal application, it moves back and forth
between development, staging, and production environments. This chapter contains
information about managing portals that are on a production system.

This chapter contains the following sections:

■ Section 17.1, "Pushing Changes from the Library into Production"

■ Section 17.2, "Transferring Changes from Production Back to Development"

17.1 Pushing Changes from the Library into Production
Proliferation refers to the process by which changes made to the Library instance of a
portal asset on the WebLogic Portal Administration Console are pushed into
user-customized instances of that asset. For example, if a portal administrator deletes a
portlet from a desktop, that change must be reflected into user-customized instances of
that desktop. Before you propagate a portal, consider the way in which proliferation is
configured for your portal.

If your desktops include a large number of user customizations, we recommend that
you change the Portal Resources Proliferation of Updates Configuration setting to
either Asynchronous or Off. This change reduces the amount of time required to
complete the propagation.

You can do this in the WebLogic Portal Administration Console under Configuration
Settings and Analytics > Service Administration > Portal Resources > Portal
Resources Proliferation of Updates Configuration. The proliferation settings include
Asynchronous, Synchronous, or Off.

For more information on proliferation and propagation, refer to the Oracle Fusion
Middleware Production Operations Guide for Oracle WebLogic Portal. For database setup
requirements related to using the Asynchronous proliferation setting, refer to the
Oracle Fusion Middleware Database Administration Guide for Oracle WebLogic Portal.

17.2 Transferring Changes from Production Back to Development
WebLogic Portal utilities such as the propagation tools and the Export/Import Utility
allow you to reliably move and merge changes between environments. The
Export/Import Utility allows a full round-trip development life cycle, where you can

Transferring Changes from Production Back to Development

17-2 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

easily move portals from a production environment back to your Oracle Enterprise
Pack for Eclipse development environment.

For instructions on using the propagation tools and Export/Import Utility, refer to the
Oracle Fusion Middleware Production Operations Guide for Oracle WebLogic Portal.

A

Facet-to-Library Reference Tables A-1

AFacet-to-Library Reference Tables

This appendix contains reference tables that show the relationships between WebLogic
Portal facets and Shared J2EE libraries.

■ Section A.1, "WebLogic Portal EAR Project Facets"

■ Section A.2, "WebLogic Portal Web Project Facets"

A.1 WebLogic Portal EAR Project Facets
This section lists the WebLogic Portal EAR project facets and their associated J2EE
Shared Libraries.

■ Table A–1, " WebLogic Portal Facets"

■ Table A–2, " WebLogic Portal (Optional) Facets"

■ Table A–3, " WebLogic Portal Collaboration Facets"

The Project Facets part of the EAR Project Properties dialog allows you to add or
remove facets. The WLP facets listed in this section are all referenced in this dialog,
shown in Figure A–1.

Figure A–1 EAR Project Properties Dialog

WebLogic Portal EAR Project Facets

A-2 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Table A–1 WebLogic Portal Facets

Facet Requires (Facets) Libraries (Features)

Admin Console Admin Framework wlp-tools-admin-app-lib

■ Deploys the Admin Console instance.

Admin Framework Portal Application Services

Portal Customizations Framework

wlp-tools-app-lib

■ Application support for administration console

wlp-tools-framework-app-lib

■ Application support for administration console

wlp-tools-common-app-lib

■ Application support for administration console

wlp-tools-content-app-lib

■ Content Management Admin controls and services

wlp-tools-im-app-lib

■ Interaction Management Admin controls and services

wlp-tools-portal-app-lib

■ Portal Admin controls and services

wlp-tools-ugm-app-lib

■ User and Group Admin controls and services

wlp-tools-serviceadmin-app-lib

■ Service Admin controls and services

wlp-tools-analytics-app-lib

■ Analytics Admin controls and services

wlp-tools-full-console-app-lib

■ Application support for administration console

Portal Application Services None. wlp-tools-support-app-lib

■ Deploys IDE Support for Portal Application Services:
Cache Management, Placeholder Preview, Content
Preview, Campaign Cleanup

p13n-app-lib-base, p13n-app-lib

■ Property Sets, Events, Behavior Tracking, Rules, Users
and Groups, User and Group Profiles, UUP Support,
User Tracking

content-management-app-lib, vcr-app-lib

■ Content Management

wlp-services-app-lib

■ User Segments, Content Selectors, Campaigns,
Placeholders, Content Management, CM Search and
Autonomy APIs

content-management-cmis-rest-app-lib

■ CMIS REST Web Application

webdav-app-lib

■ WebDav Web Application

Portal Customizations
Framework

None. p13n-app-lib-base, p13n-app-lib

■ See above.

wlp-full-framework-app-lib

■ Application support for the full portal, Stream
portals/portlets, User Preferences

Propagation Service Portal Application Services, Portal
Customizations Framework

wlp-propagation-app-lib

■ Deploys the propagation web application

WebLogic Portal Web Project Facets

Facet-to-Library Reference Tables A-3

A.2 WebLogic Portal Web Project Facets
This section lists the WebLogic Portal Web project facets and their associated J2EE
Shared Libraries.

■ Table A–4, " WebLogic Portal Facets"

■ Table A–5, " WebLogic Portal (Optional) Facets"

■ Table A–6, " WebLogic Portal Collaboration Facets"

■ Table A–7, " WebLogic Portal Samples Facets"

The Project Facets part of the Web Project Properties dialog allows you to add or
remove facets. The WLP facets listed in this section are all referenced in this dialog,
shown in Figure A–2.

Table A–2 WebLogic Portal (Optional) Facets

Facet Requires (Facets) Libraries (Features)

Portal Application Controls Portal Application Services wlp-controls-app-lib

■ P13N Controls

WebCenter Analytics
Integration

Portal Application Services wlp-analytics-app-lib

■ Application support to integrate with WebCenter
Analytics

Table A–3 WebLogic Portal Collaboration Facets

Facet Requires (Facets) Libraries (Features)

Collaboration API Collaboration APIPortal
Application Services

wlp-collab-api-app-lib

■ WebLogic Portal Collaboration API

Collaboration Portlets
Application Libraries

Collaboration API, Portal
Customizations Framework

wlp-collab-portlets-app-lib

■ Application support for the Collaboration Portlets

WebLogic Portal Web Project Facets

A-4 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Figure A–2 Web Project Properties Dialog

Table A–4 WebLogic Portal Facets

Facet Requires (Facets) Libraries (Features)

JAX-RS Framework None. jersey-web-lib

■ JSR 311 JAX-RS implementation

jaxrs-framework-web-lib

■ JSR 311 extensions

Portal Customizations
Framework

JAX-RS Framework; Portal
Framework, WSRP Producer

p13n-core-web-lib, p13n-web-lib

■ Tag libraries for Property Sets, User Management, and
Behavior Tracking

p13n-rest-web-lib

■ Base REST frameworks

wlp-framework-full-web-lib

■ Application support for the full portal, Stream
portals/portlets, User preferences

wlp-framework-rest-web-lib

■ REST commands for customizations framework

Portal Dynamic Visitor
Tools

Portal Customizations Framework wlp-tools-dvt-web-lib

■ The Dynamic Visitor Tools

WebLogic Portal Web Project Facets

Facet-to-Library Reference Tables A-5

Portal Framework None. jstl-1.2

■ JavaServer Pages Standard Tag Library

wlp-framework-common-web-lib,
wlp-light-web-lib

■ Light, file-mode portal

wlp-rest-web-lib, wlp-framework-rest-web-lib

■ Framework REST commands

wlp-lookandfeel-web-lib

■ Look & Feel resources. Required unless you provide
your own Look & Feel files.

wlp-clipper-web-lib

■ Clipper portlet functionality

Portal Framework JSF Portal Framework; JSF 1.2 wlp-jsf-portlet-bridge-2.0-web-lib

■ JSR 329 JSF Java Portlet bridge

Portal Framework Struts 1.3: Struts 1.3; Portal Framework or
WSRP Producer

1.2, 1.1: Struts; Beehive NetUI;
Portal Framework Beehive
Adapters

wlp-framework-struts-[1.1|1.2|1.3]-web-lib

■ Framework Struts adapter

Portal Web Application
Services

JAX-RS Framework p13n-core-web-lib, p13n-web-lib

■ Tag libraries for Property Sets, User Management, and
Behavior Tracking

p13n-rest-web-lib, wlp-rest-web-lib

■ Base REST framework

content-management-web-lib

■ Content Management tag libraries and servlets

wlp-services-web-lib

■ Tag libraries for Ads, Placeholders, Content Selectors,
and Content Management

WSRP Producer None. jstl-1.2

■ JavaServer Pages Standard Tag Library

wlp-framework-common-web-lib

■ Simple WSRP producer functionality

wlp-wsrp-producer-web-lib

■ WSRP producer functionality

Table A–5 WebLogic Portal (Optional) Facets

Facet Requires (Facets) Libraries (Features)

Content Presenter
Framework

Portal Framework Beehive
Adapters; Portal Visitor Tools

wlp-content-ui-framework-web-lib

■ Content Presenter portlet

Portal Application Controls Portal Application Controls wlp-controls-app-lib

■ P13N controls

Portal Deprecated Markup
Files

Portal Framework wlp-lookandfeel-deprecated-web-lib

■ Deprecated look and feel markup files

wlp-light-deprecated-web-lib

■ Deprecated layout markup files

Table A–4 (Cont.) WebLogic Portal Facets

Facet Requires (Facets) Libraries (Features)

WebLogic Portal Web Project Facets

A-6 Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

Portal Framework Beehive
Adapters

Beehive NetUI; Portal Framework
or WSRP Producer

wlp-beehive-web-lib

■ Framework Beehive NetUI Pageflow adapter

Portal Visitor Tools Portal Customizations Framework;
Portal Framework Beehive
Adapters; Portal Web Application
Services

wlp-commonui-web-lib,
wlp-tools-framework-web-lib,
wlp-tools-visitor-web-lib

■ Visitor Tools

Portal Web Application JSF
Services

JSF 1.2; Portal Web Application
Services

content-management-faces-web-lib

■ Content Management JSF components

WebCenter Analytics
Integration

Portal Customizations Framework;
Portal Web Application Services

wlp-analytics-web-lib

■ Web application support to integrate with WebCenter
Analytics

Table A–6 WebLogic Portal Collaboration Facets

Facet Requires (Facets) Libraries (Features)

Collaboration Portlets Portal Customizations Framework;
Portal Framework Beehive
Adapters; Portal Web Application
Services

wlp-common-ui-web-lib,
wlp-collab-portlets-web-lib

■ Collaboration portlets

Table A–7 WebLogic Portal Samples Facets

Facet Requires (Facets) Libraries (Features)

Sample Framework
Components

Portal Framework wlp-sample-widgets-web-lib

■ Sample login portlet and shell

Sample Look and Feels Portal Framework wlp-sample-lookandfeel-web-lib

■ Sample look and feel files

Table A–5 (Cont.) WebLogic Portal (Optional) Facets

Facet Requires (Facets) Libraries (Features)

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Architecture
	1 Introduction to Portals
	1.1 What is a Portal?
	1.2 What is the Portal Framework?
	1.3 Portal Development and the Portal Life Cycle
	1.3.1 Architecture
	1.3.2 Development
	1.3.3 Staging
	1.3.4 Production

	1.4 Getting Started
	1.4.1 Prerequisites
	1.4.2 Related Guides

	2 Planning Your Portal
	2.1 Production Operations (Propagation and Deployment)
	2.2 Portal Development in a Distributed Portal Team
	2.3 Federated Portals
	2.4 Security
	2.5 Content Management
	2.6 Interaction Management
	2.7 Performance
	2.8 Portals and Mobile Devices

	Part II Development
	3 Understanding Portal Development
	3.1 Portal Components
	3.2 Portal Component Hierarchy
	3.3 Portal Development Environment in Oracle Enterprise Pack for Eclipse
	3.4 Web Application Frameworks
	3.5 WebLogic Portal and Shared J2EE Libraries
	3.6 File-Based Portals and Streaming Portals
	3.7 Java Controls in Portals
	3.8 JSP Tags in Portals
	3.9 Asynchronous Rendering
	3.10 Backing Files
	3.10.1 How Backing Files are Executed
	3.10.2 Thread Safety and Backing Files
	3.10.3 Scoping and Backing Files
	3.10.4 Using the Session to Pass Data Between Life Cycle Methods
	3.10.5 Backing File Guidelines
	3.10.5.1 Adding a Backing File Using Oracle Enterprise Pack for Eclipse
	3.10.5.2 Adding the Backing File by Editing the XML File

	3.11 HTTP Session Sharing

	4 Setting up Your Portal Development Environment
	4.1 Roadmap for Environment Setup Tasks
	4.2 Portal Perspective
	4.3 WebLogic Domain Configuration Wizard
	4.4 Portal EAR Project Wizard
	4.4.1 Select Project Facets Dialog

	4.5 Add and Remove Projects Dialog
	4.6 Portal Web Project Wizard
	4.6.1 New Portal Web Project - Portal Web Project
	4.6.2 New Portal Web Project - Select Project Facets dialog
	4.6.3 New Portal Web Project - Web Module Dialog
	4.6.4 New Portal Web Project - JSF Capabilities Dialog
	4.6.5 New Portal Web Project - WebLogic Integrated Commons Logging Dialog

	4.7 Portal Datasync Project Wizard
	4.7.1 Create New Datasync Project - EAR Projects

	4.8 Associating Web and Datasync Projects with EAR Projects
	4.8.1 Associating an Web Project with an EAR Project
	4.8.2 Associating an Datasync Project with an EAR Project

	4.9 Using the Merged Projects View
	4.9.1 Opening the Merged Projects View
	4.9.2 Working with the Merged Projects View

	4.10 Running a Project on the Server
	4.11 Stopping the Server
	4.12 Customizing a Perspective
	4.13 Setting WebLogic Portal Preferences in Oracle Enterprise Pack for Eclipse
	4.13.1 Preferences in the WebLogic Portal Section
	4.13.2 WebLogic Portal Preferences in the General Section

	4.14 Adding Apache Beehive Support
	4.15 Adding Apache Struts Support

	5 Integrating Existing Web Applications into WebLogic Portal
	5.1 Apache Beehive and Apache Struts Supported Configurations
	5.1.1 About Apache Beehive and Apache Struts
	5.1.2 Supported Configurations for Apache Beehive
	5.1.3 Supported Configurations for Apache Struts
	5.1.4 Mixing Apache Struts 1.3 and Apache Beehive NetUI Applications

	5.2 Importing Existing Struts Applications into WebLogic Portal
	5.2.1 Struts-Enabling the Portal Application
	5.2.2 Preparing Your Struts Application for Integration
	5.2.2.1 Refactor
	5.2.2.2 Add Tags if Needed
	5.2.2.3 Override Certain Behaviors of a RequestProcessor
	5.2.2.4 Refactor any Existing Custom Action Servlet
	5.2.2.5 Remove the <html:link> Tag

	5.2.3 Integration Steps
	5.2.4 Best Practices and Development Issues

	5.3 Integrating Existing Java Page Flow Applications into WebLogic Portal into WebLogic Portal
	5.4 Integrating Existing Java Server Faces Applications into WebLogic Portal
	5.4.1 JSF and the namingContainer JSP Tag

	5.5 Adding Facets to an Existing Project
	5.6 Other Methods of Integrating an External Web Application into a Portal

	6 Integrating WebLogic Portal into Existing Web Applications
	6.1 Introduction
	6.2 Integrating WebLogic Portal into an Existing Web Application

	7 User Interface Development with Look And Feel Features
	7.1 Look And Feel Framework Overview
	7.2 Working with Look And Feel Files
	7.2.1 Introduction
	7.2.2 Defining a Look And Feel for a Desktop
	7.2.3 Adding Deprecated Look and Feel Components to a Web Project
	7.2.3.1 Which Components are Deprecated?
	7.2.3.2 What Changes Will I Notice?
	7.2.3.3 Upgrading a WLP Application to Use Deprecated Components

	7.3 Customizing Look and Feels
	7.3.1 Combining Skins and Skeletons in a New Look And Feel
	7.3.2 Defining Titlebar Buttons and Window Icons
	7.3.3 Modifying CSS Files
	7.3.4 Working with Genes and Chromosomes
	7.3.4.1 Gene Example
	7.3.4.2 Creating a Chromosome and Genes
	7.3.4.3 Using the Look And Feel Editor with Genes

	7.4 Creating a New Look and Feel
	7.4.1 Working with Skins
	7.4.1.1 Best Practices
	7.4.1.2 Considerations for Microsoft Internet Explorer
	7.4.1.3 About Portlet Title Bar Icons

	7.4.2 Working with Skeletons
	7.4.2.1 What is a Skeleton?
	7.4.2.2 Guidelines for Creating Custom Skeletons
	7.4.2.3 Enabling XHTML in a Portal

	7.5 Working with Themes
	7.5.1 Using Themes with Microsoft Internet Explorer
	7.5.2 Developing a Theme

	7.6 Using Look And Feels From Previous Portal Releases
	7.7 Troubleshooting Look And Feels
	7.8 The Look And Feel Editor
	7.8.1 Overview
	7.8.2 The Look and Feel Editor Window
	7.8.3 Opening the Look And Feel Editor
	7.8.4 Style Hierarchy Tab
	7.8.5 Style Description Panel
	7.8.5.1 CSS Inheritance
	7.8.5.1.1 Using the Inherited Styles List

	7.8.6 View Area
	7.8.7 Outline View
	7.8.8 Properties View
	7.8.9 Tips for Using the Look and Feel Editor
	7.8.9.1 Using the Link Style Hierarchy Selection with HTML Preview Selection Button
	7.8.9.2 Enabling the Mouse Motion Button

	7.9 Look And Feel API
	7.10 Working with Shells
	7.10.1 Creating a New Shell
	7.10.2 Modifying a Shell
	7.10.3 Applying a Shell to a Portal Desktop
	7.10.4 Placing Portlets in a Header or Footer

	7.11 Working with Layouts
	7.11.1 Creating a Standard Layout
	7.11.2 Creating a Custom Layout
	7.11.2.1 The Layout File
	7.11.2.2 Example of a Custom Layout
	7.11.2.2.1 The Skeleton JSP
	7.11.2.2.2 The html.txt File

	7.12 Working with Navigation Menus
	7.12.1 Using Images for Page Tabs

	7.13 Building User Interfaces to Address Accessibility Guidelines
	7.13.1 Accessibility Checkpoints
	7.13.2 W3C Web Content Accessibility Guidelines
	7.13.3 Government Regulations and Standards
	7.13.4 Accessibility Evaluation and Testing Tools
	7.13.4.1 W3C Web Accessibility Initiative
	7.13.4.2 Lynx Viewer

	8 Developing Portals Using Oracle Enterprise Pack for Eclipse
	8.1 Creating a Portal
	8.1.1 Add a Page or Book to Your Portal
	8.1.2 Creating a Standalone Book or Page
	8.1.3 Extracting an Existing Page or Book to Re-Use
	8.1.4 Adding a Book or Page Reference (Content)
	8.1.4.1 Adding a Book or Page Reference from the Portal Editor
	8.1.4.2 Adding a Book or Page Reference Using the Outline View

	8.1.5 Rearranging Books and Pages
	8.1.6 Adding Render Dependencies to Books and Pages

	8.2 Setting Portal Component Properties
	8.2.1 Editing Portal Properties
	8.2.2 Tips for Using the Properties View
	8.2.2.1 Presentation Properties
	8.2.2.2 Desktop Properties
	8.2.2.3 Book Properties
	8.2.2.4 Page Properties
	8.2.2.5 Placeholder Properties

	8.3 Copying J2EE Library Files into a Project
	8.3.1 Viewing Files that Override Shared J2EE Library Files

	8.4 Custom Controls in Page Flows
	8.4.1 Adding a Portal Control to a Page Flow
	8.4.2 Adding an Action to the Page Flow
	8.4.3 Portal Control Security

	8.5 Deploy and View a Portal
	8.6 Working with URLs
	8.6.1 Creating URLs to Portal Resources
	8.6.2 URL Compression
	8.6.2.1 Implementing URL Compression
	8.6.2.2 URL Compression Special Considerations
	8.6.2.2.1 URL Compression and AJAX
	8.6.2.2.2 URL Compression and Off-Site URLs
	8.6.2.2.3 URL Compression and Frequently-Accessed Data

	8.6.3 URL Troubleshooting
	8.6.3.1 URL Templates and Web Services for Remote Portlets (WSRP)

	8.6.4 Ampersand Entities in Portal URLs
	8.6.5 Optional Look And Feel URL Templates

	8.7 Working with Encoding in HTTP Responses
	8.8 Cache Management in Oracle Enterprise Pack for Eclipse
	8.8.1 Changing Cache Settings in Oracle Enterprise Pack for Eclipse

	8.9 Cache Management With Oracle Coherence
	8.9.1 Introduction
	8.9.2 Installing and Configuring Coherence
	8.9.3 Removing Deprecated and Obsolete Caches

	8.10 Improving WebLogic Server Administration Console Performance on a Managed Server
	8.11 Behavior of the "Return to Default Page" Attribute
	8.12 Customizing Problem Validation Settings
	8.12.1 Enabling/Disabling WebLogic Portal Validation
	8.12.1.1 Enabling/Disabling Validation Globally
	8.12.1.2 Enabling/Disabling Validation Per Project

	8.12.2 Customizing WebLogic Portal Validation Mappings
	8.12.2.1 Overview
	8.12.2.2 Customizing Validation Globally
	8.12.2.3 Customizing Validation Per Project

	8.13 Enabling Placeable Movement
	8.13.1 Configuring the Portal in Oracle Enterprise Pack for Eclipse
	8.13.2 Setting Up a Desktop in the Administration Console
	8.13.3 Testing Placeable Movement
	8.13.4 Enabling Placeable Movement for an Existing Desktop
	8.13.5 Limitations

	8.14 Using Placeable Movement with Custom Layouts
	8.14.1 Introduction
	8.14.2 Rules for Using Placeable Movement with Custom Layouts
	8.14.3 Sample Code

	8.15 Localizing Titles for File-Based Books, Pages, and Portlets

	9 Using the Dynamic Visitor Tools
	9.1 What Is the DVT?
	9.2 Configuring the DVT
	9.2.1 Adding the Portal Dynamic Visitor Tools Facet to the Portal Web Project
	9.2.2 Enabling the DVT
	9.2.2.1 Enabling the DVT in a File-based Portal
	9.2.2.2 Enabling the DVT for a Streaming Portal

	9.2.3 Testing the DVT Configuration

	9.3 Working with the DVT
	9.3.1 Accessing Customization Options
	9.3.2 Adding a Page Tab or Book of Tabs
	9.3.3 Changing the Appearance of the Portal, Pages, Books, and Portlets
	9.3.3.1 Changing the Appearance of the Portal
	9.3.3.2 Changing the Appearance of Pages, Books, and Portlets

	9.3.4 Changing the Menu of the Desktop or a Book
	9.3.5 Restoring the Default View
	9.3.6 Customizing the Desktop for All Desktop Users
	9.3.7 Changing the Layout of a Page
	9.3.8 Adding and Removing Content
	9.3.9 Making Remote Portlets Available to Your Users
	9.3.10 Implementing Custom Look and Feels for the DVT
	9.3.10.1 Creating a Look and Feel Injector
	9.3.10.2 Instantiating a Look and Feel Injector

	9.4 Installing the Sample Login Shell
	9.4.1 Summary of Steps
	9.4.2 Installing the Portal Examples Component
	9.4.3 Add the Sample Framework Components Facet
	9.4.4 Adding the Sample Login Shell to a Portal Desktop

	10 Advanced DVT Development
	10.1 Localizing the DVT
	10.1.1 Overview
	10.1.2 Localizing the Out-Of-The-Box DVT
	10.1.3 Localizing Custom Widgets
	10.1.4 Extending _Localizable to Customize L10N Features
	10.1.4.1 Customizing How L10N Modules Are Loaded
	10.1.4.2 Customizing Message Aliases
	10.1.4.3 Handling Parameterized Messages

	10.2 Extending the DVT with Mixins
	10.2.1 What are Extensions?
	10.2.2 How Mixins are Implemented
	10.2.3 Enabling Mixins
	10.2.4 Mixin Examples

	10.3 Using the Server Data Store
	10.3.1 Server Data Store Features
	10.3.2 Using Server Data Store: A Basic Example
	10.3.3 The Server Data Store Constructor
	10.3.4 Request Object Parameters
	10.3.5 Server Data Store Examples

	11 Enabling Visitor Tools
	11.1 What Are Visitor Tools?
	11.2 Enabling Visitor Tools
	11.2.1 Verifying the Portal Visitor Tools Facet
	11.2.2 Enabling Visitor Tools for a Desktop

	12 Creating Portals for Multiple Device Types
	12.1 Enabling Multichannel Features in a Portal Web Application
	12.2 Roadmap for Multichannel Processing
	12.3 Developing Portals for Use in a Multichannel Environment
	12.3.1 Manage Portlet Client Classifications
	12.3.2 Use the Client Attribute in JSP Tags
	12.3.3 Develop Appropriate Look And Feels
	12.3.4 Interaction Management Development

	13 Designing Portals for Optimal Performance
	13.1 Asynchronous Desktop Rendering
	13.1.1 Choosing the Method of Asynchronous Rendering
	13.1.2 Configuring Asynchronous Desktop Rendering
	13.1.3 Programmatically Disabling Asynchronous Desktop Rendering

	13.2 Control Tree Design
	13.2.1 How the Control Tree Works
	13.2.2 How the Control Tree Affects Performance

	13.3 Using Multiple Desktops
	13.3.1 Why This is a Good Idea
	13.3.2 Design Decisions for Using Multiple Desktops

	13.4 Optimizing the Control Tree
	13.4.1 Enabling Control Tree Optimization
	13.4.1.1 Setting the Current Page

	13.4.2 How Tree Optimization Works
	13.4.3 Multi Level Menus and Control Tree Optimization
	13.4.4 Limitations to Using Tree Optimization
	13.4.5 Disabling Tree Optimization

	13.5 Other Ways to Improve Performance
	13.5.1 Use Entitlements Judiciously
	13.5.1.1 How Entitlements Affect Performance
	13.5.1.2 Recommendations for Using Entitlements

	13.5.2 Limit User Customizations
	13.5.3 Optimize Page Flow Session Footprint
	13.5.4 Use File-Based Portals for Simple Applications
	13.5.4.1 Why Use a File-based Portal?
	13.5.4.2 Limitations to Using File-based Portals

	13.5.5 Create a Production Domain in Development
	13.5.6 Optimize Portlet Performance
	13.5.7 Use Oracle WebCenter Analytics to Track Usage

	14 Obtaining Debug Information
	14.1 Introduction
	14.2 Configuring and Enabling Debug
	14.2.1 Using Debug in Your WLP Code
	14.2.2 Turning Debug Output On and Off
	14.2.3 Package-Level Debugging
	14.2.4 Directing Output to a File
	14.2.5 Reloading Debug Properties
	14.2.6 Example debug.properties File

	14.3 Public WLP Class Debug Reference
	14.3.1 WLP Framework Classes with Debug Support
	14.3.2 WLP Core Services Classes with Debug Support
	14.3.3 WLP Virtual Content Repository Classes with Debug Support
	14.3.4 WLP UCM Classes with Debug Support
	14.3.5 WLP Administration Console Classes with Debug Support

	Part III Staging
	15 Managing Portal Desktops
	15.1 Administration Console Overview
	15.2 Administration Console Library of Resources
	15.3 Starting and Logging In to the Administration Console
	15.3.1 Opening the Administration Console
	15.3.2 Logging In to the Administration Console

	15.4 Overview of Library Administration
	15.5 Overview of Portal Administration
	15.6 Portal Management
	15.7 Overview of the Library
	15.8 Desktop Templates
	15.8.1 Creating a Desktop Template
	15.8.2 Modifying Desktop Template Properties

	15.9 Communities
	15.10 Portal Resources
	15.10.1 Updating Portal Resources
	15.10.2 Viewing Resources for a Portal Web Application (Update WebApp)
	15.10.3 Deleting a Portal Resource
	15.10.4 Localizing a Portal Resource

	15.11 Portals
	15.11.1 Creating a Portal
	15.11.2 Modifying Portal Properties

	15.12 Desktops
	15.12.1 Creating a Desktop
	15.12.1.1 Disassembling to the Library
	15.12.1.2 Decoupling of Property Settings

	15.12.2 Modifying Desktop Properties

	15.13 Books
	15.13.1 Creating a Book
	15.13.2 Managing Book Content
	15.13.2.1 Adding Portal Elements to a Book
	15.13.2.2 Positioning or Removing Portal Elements on a Book

	15.13.3 Modifying Library Book Properties and Contents
	15.13.4 Modifying Desktop Book Properties

	15.14 Pages
	15.14.1 Creating a New Page
	15.14.2 Managing Page Content
	15.14.2.1 Adding Contents to a Page
	15.14.2.2 Positioning Elements on a Page

	15.14.3 Modifying Library Page Properties
	15.14.4 Modifying Desktop Page Properties
	15.14.5 Moving a Page or Book to Another Location on the Desktop

	15.15 Portlets
	15.15.1 Copying a Portlet in the Library
	15.15.2 Deleting a Portlet
	15.15.3 Modifying Library Portlet Properties
	15.15.4 Modifying Desktop Portlet Properties

	15.16 Portlet Preferences
	15.16.1 Creating a Portlet Preference
	15.16.2 Editing a Portlet Preference

	15.17 Portlet Categories
	15.17.1 Creating a Portlet Category
	15.17.2 Adding Portlets to a Portlet Category
	15.17.3 Modifying Portlet Category Properties

	15.18 Look And Feels
	15.18.1 Modifying Look And Feel Properties

	15.19 Shells
	15.19.1 Modifying Shell Properties

	15.20 Themes
	15.20.1 Modifying Theme Properties

	15.21 Menus (Navigation)
	15.21.1 Modifying Menu Properties

	15.22 Layouts
	15.22.1 Modifying Layout Properties

	16 Deploying Portals to Production
	16.1 Shared J2EE Libraries
	16.1.1 Shared J2EE Library References in config.xml
	16.1.1.1 Anatomy of a Shared J2EE Library

	16.1.2 Overriding Shared J2EE Library Settings in the web.xml File
	16.1.2.1 Servlet Mapping Overrides

	Part IV Production
	17 Managing Portals in Production
	17.1 Pushing Changes from the Library into Production
	17.2 Transferring Changes from Production Back to Development

	A Facet-to-Library Reference Tables
	A.1 WebLogic Portal EAR Project Facets
	A.2 WebLogic Portal Web Project Facets

