Oracle® Fusion Middleware

Desktop Integration Developer's Guide for Oracle Application
Development Framework

11gRelease 1 (11.1.1.5.0)
E10139-04

April 2011

ORACLE

Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development
Framework 11¢g Release 1 (11.1.1.5.0)

E10139-04
Copyright © 2011, Oracle and/or its affiliates. All rights reserved.
Primary Author: Himanshu Marathe

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PUOIACE ... et s et s e e xiii
AN S Lo = VLT RSOPRRRRRRR Xiii
Documentation AcCesSIDIlityccociiiiiiiiiiiiiiiiii e xiii
ReElated DOCUITIEIESeovieieeiecieeeeeeeetee ettt ettt e et e e eteeeaaeeaeeesaseseesssseseeeneseseessesenseensessnseenseeans Xiv
CONMVEIIEIONS ..ooiitveeiieeieeiteeee ettt e e eeet e e e e et ae e e e e saaeeeesessaaaeeeeesaaeaeeeesessasseeseessaaesessesnsssaessessssesseessnssaeeeesons Xiv

1 Introduction to ADF Desktop Integration

1.1 Introduction to ADF Desktop Integration............cccoouoiiiiiiiiiiicccce 1-1
1.2 About ADF Desktop Integration with Microsoft Excel..........cccocoovvniininnnnnnnnnne. 1-2
1.2.1 Overview of Creating an Integrated Excel Workbookcccccccccoecciiciniiiinnnns 1-2
1.2.2 The Advantages of Integrating Excel with a Fusion Web Application 1-3

2 Introduction to the ADF Desktop Integration Sample Application

21 Introduction to the Master Price List Modulecccccoiiiiiiiiiniiiiiiiiis 2-1
2.2 Setting Up and Executing the Master Price List Module.............cccooooriniiiiiincnen 2-1
2.3 Overview of the Fusion Web Application in the Master Price List Module....................... 2-3
2.3.1 Log on to the Fusion Web Application in the Master Price List Module..................... 2-3
2.3.2 Introduction to the Fusion Web Application in the Master Price List Module........... 2-3
2.3.3 Using the Matching Products TOOIbar...........c.ccoiiiiiiii e, 2-4
2.3.3.1 How to Download Integrated Excel Workbooks..........c.ccccoviiiiiiiciii, 2-5
2.3.3.2 How to Sort, Hide and Reorder COIUMNSccoeceeviievieciieeeeieceeeie et 2-5
2.3.3.3 Other Toolbar Operationsccceeeeieininiiiiiiii s 2-6
2.3.4 Searching @ Product ..o 2-6
2.4 Overview of the Integrated Excel Workbooks in the Master Price List Module................ 2-7
2.41 Log on to the Fusion Web Application from an Integrated Excel Workbook 2-7
2.4.2 Download Rows of Data About Product Pricing...........cccoerieiiiiiniiicec 2-8
2.4.3 Simple Search for Products in the WOrkbooks............ccccciiiiiiiiiiiiiiiciiiccinas 2-9
2.4.4 Advanced Search for Products in the Edit Price List Workbookcccccceeunnniin. 2-9
2.45 Modify Product Pricing Information in the Edit Price List Workbook 2-10
2.4.6 Upload Modified Product Information to the Fusion Web Application.................. 2-10

3 Setting Up Your Development Environment

3.1 Introduction to Setting Up Your Development Environment..............ccccccccciieniiciicnnnns 3-1
3.2 Required Oracle ADF Modules and Third-Party Softwareccocoeuoiviririeiicciiinne 3-1
3.3 Enabling Microsoft .NET Programmability SUppOrt..........ccccceiiiiiiiiiiiiiiiiiiiiiis 3-3

3.4 Allowing ADF Desktop Integration to Access Microsoft Excel..........ccccoooviiiniiiininns 3-3

3.5 Installing ADF Desktop Integration...........ccccocviiiiiiiiiiiiicceeceens 3-3
3.5.1 How to Set Up ADF Desktop INtegrationc.cccccoceeeueuiuceieiceenieieecieeeeeneeeeennes 3-4
3.6 Removing ADF Desktop INntegration ... 3-5
3.7 Upgrading ADF Desktop Integration ... 3-5
3.7.1 How to Migrate an Integrated Excel Workbook to the Current Version of ADF Desktop

Integration 3-6
3.8 Using ADF Desktop Integration on a System with Multiple Instances of JDeveloper 3-6
3.9 Localizing the Setup of Visual Studio Tools for Officeccoeemeiiiiiiniii 3-7

Preparing Your Integrated Excel Workbook

4.1 Introduction to Preparing Your Integrated Excel Workbooks............cccccvvuiiiiiiiiiiiiinininns 4-1
4.2 Adding ADF Desktop Integration to a Fusion Web Applicationc.ccccccceucciccicnnnns 4-1
4.21 How to Add ADF Desktop Integration to Your JDeveloper Project...........cccccceueuenene. 4-2
422 What Happens When You Add ADF Desktop Integration to Your JDeveloper Project...
4-2
4.2.3 What Happens When You Deploy ADF Desktop Integration Enabled Fusion Web
Application from JDeveloper 4-3
4.2.3.1 Deploying your Fusion Web Application on Oracle WebLogic Server 4-3
4232 Deploying your Web Application on IBM WebSphere Application Server 4-4
4.3 Working with Page Definition Files for an Integrated Excel Workbook..............c.ccc.cc..... 4-5
4.3.1 How to Create a Page Definition File for an Integrated Excel Workbook 4-6
4.3.2 What Happens When You Create a Page Definition File ..o 4-7
4.3.3 Reloading a Page Definition File in an Excel Workbook ... 4-7
4.3.4 What You May Need to Know About Page Definition Files in an Integrated Excel
Workbook 4-7
4.4 Adding Integrated Excel Workbook to a Fusion Web Application...........cccccoceeeiriinnnnan 4-8
4.41 How to Add an Integrated Excel Workbook in JDeveloper...........cccccoccecccccccnnnes 4-8
4.4.2 How to Enable ADF Desktop Integration in a Workbook.............ccocceiiiiiinnnnan. 4-9
4.4.3 How to Configure a New Integrated Excel Workbook............ccccccevuiiiiiiiiiniiiinninnnns 4-9
4.4.4 How to Add Additional Worksheets to an Integrated Excel Workbook 4-12

5 Getting Started with the Development Tools

5.1 Introduction to Development TOOIScccccceiiiiiiiiiiiecceceecceeeee e 5-1
5.2 Oracle ADF Tab.......coiiiiiiiicii e 5-2
5.3 ADF Desktop Integration Designer Task Pane...........cccccccoeeiiiiiiiiiiniiiiccicns 5-4
5.4 Using the BINdings Palette.........ooooiiiiiii e 5-5
5.5 Using the Components Palette............cooouiiioiiiiiic e 5-6
5.6 Using the Property INSPeCctorcccccciiiiiiiiiiiiiiiiiciciiccc e 5-7
57 Using the BINding ID PiCKeT ..o 5-8
5.8 Using the Expression Builder............oooiiiii 5-9
5.9 Using the Web Page Picker..........cccccoooiiiiiiiiiiiiiicees 5-10
5.10 Using the File System Folder PicKer.........cccoiiiiiiiiiiiiiiiciccccccccceeeenenenes 5-11
5.11 Using the Page Definition PicKer.........cccocouiiiiiiiiiiiiiiii 5-12
5.12 Using the Collection EdItors..........cccccceiiiiiiiiiiiiiiiiiiiiccccs 5-13

6 Working with ADF Desktop Integration Form-Type Components

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.7.1
6.7.2

6.8
6.8.1
6.9

Introduction to ADF Desktop Integration Form-Type Componentsc.c.ccoceueiiunnnen. 6-1
Inserting an ADF Button Component...........cccociviviiiiiiininiiiiiniicccces 6-2
Inserting an ADF Label Componentcoocueioiiirieiiiiiicccc e 6-3
Inserting an ADF Input Text Componentcccooeieiiiiiiiiiii, 6-5
Inserting an ADF Output Text Componentcccccvvviiiiiiiiiiiiiicecens 6-6
Inserting an ADF List of Values Component..............cooeueiiiiinoiiiinicciccece e 6-7
Displaying Output from a Managed Bean in an ADF Component...........ccccccovvrnieininnee. 6-9

How to Display Output from a Managed Beanc.cccccccoeciiiiiiiiiiiiiccnene 6-9

What Happens at Runtime When an ADF Component Displays Output from a
Managed Bean 6-10

Displaying Concatenated or Calculated Data in Componentsc.cccooeeueiiiiinieininnes 6-10
How to Configure a Component to Display Calculated Datacccccccoeueuvuvirucennnnne. 6-10
Using Navigation BUttons ... 6-11

7 Working with ADF Desktop Integration Table-Type Components

71
7.2
7.3
7.3.1
7.4
7.4.1
7.4.2
7.5
7.5.1

7.5.2
7.6
7.6.1

7.6.2
7.7
7.7.1

7.7.2

7.8

7.8.1

7.8.2
7.8.3

7.8.4
7.8.5
7.8.6

Introduction to ADF Desktop Integration Table-Type Components...........c.ccccceevevevirinnnns 7-2
Page Definition Requirements for an ADF Table Component..........c.c.ccoooeeiiiirininiinnnen 7-2
Inserting an ADF Table Component into an Excel Worksheetcccoovvrvnnnnnnnce. 7-3
How to Add a Column in an ADF Table Componentcccccoveveiiiiniiiniiininnns 7-5
Configuring an ADF Table Component to Update Existing Data..........cccccoovevrieininnnnen 7-5
How to Configure an ADF Table Component to Update Datac.cccccccccueucucuinnnnnnne 7-6
What Happens at Runtime When an ADF Table Component Updates Data............. 7-6
Configuring an ADF Table Component to Insert Datacccceuovoiiiiiiniiciice 7-6

How to Configure an ADF Table Component to Insert Data Using a View Object’s
Operations 7-6

How to Insert a New Row in a Polymorphic View Object...........cccccovviiniiiiiiiinnnn, 7-8
Configuring Oracle ADF Component to Download Data to an ADF Table Component 7-8

How to Configure an Oracle ADF Component to Download Data to an ADF Table
Component 7-9

What Happens at Runtime When an ADF Table Component Downloads Data.... 7-10
Configuring a Worksheet to Download Pre-Insert Data to an ADF Table Component 7-10
How to Configure a Worksheet to Download Pre-Insert Data to an ADF Table
Component 7-11
What Happens at Runtime When an ADF Table Component Downloads Pre-Insert
Data 7-11
Configuring an Oracle ADF Component to Upload Changes from an ADF Table
Component 7-11
How to Configure an Oracle ADF Component to Upload Data from an ADF Table
Component 7-12
What Happens at Runtime When an ADF Table Component Uploads Data 7-13

What Happens at Runtime When a ReadOnly EL Expression is Evaluated During
Upload 7-14

What Happens at Runtime When an Upload Failscccccoooiiiiiiiiiininn. 7-14
How to Create a Custom Upload Dialog ..o 7-15
What Happens at Runtime When a Custom Upload Dialog Appears..................... 7-15

vi

7.9 Configuring an ADF Table Component to Delete Rows in the Fusion Web Application

7-16
7.91 How to Configure an ADF Table Component to Delete Rows in the Fusion Web
Application 7-16
7.9.2 What Happens at Runtime When an ADF Table Component Deletes Rows in a Fusion
Web Application 7-17
7.10 Batch Processing in an ADF Table Component...........ccccoiiieiiiniiniciciiceeeceeeies 7-18
7.10.1 Configuring Batch Options for an ADF Table Componentcccccceueviiieieinnnen. 7-18
7.10.2 Row Flagging in an ADF Table COmponent...........cccccccueuvuvurererirerernenrnnsrreseceenes 7-19
7.11 Special Columns in the ADF Table Componentc.ccccveieniiniiiiieiiieeceeeens 7-20
7.12 Configuring ADF Table Component Key Column............cooeiiiiiiiiniiinieiceee 7-22
7121 How to Configure Key COIUMINccccciiuiiiiiiiiiccceeececeeeeeeeeee s 7-22
7122 How to Manually Add Key Column At Design Timeccooeveivirieiiiiiiiciiiinne 7-22
7.13 Creating a List of Values in an ADF Table Component Columncccccovvireinrnnnnen. 7-23
7.131 How to Create a List of Values in an ADF Table Component Column.................... 7-24
7.13.2 What Happens at Runtime When a Column Renders a List of Values.................... 7-25

7.14 Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table
Component 7-25

7.15 Adding a Dynamic Column to Your ADF Table Component............ccccccceucucucnueueuennunnnes 7-26
7.15.1 How to Configure a Dynamic Colummcccoiiieiiiiiiiiccc e 7-27
7.15.2 What Happens at Runtime When Data Is Downloaded or Uploaded 7-27
7.15.3 How to Specify Header Labels for Dynamic Columns..........ccccccevuveevvrnnenrrcnccnes 7-28
7.15.4 How to Specify Styles for Dynamic Columns According to Attribute Data Type . 7-28
7.16 Creating an ADF Read-Only Table Componentccccouoieueiniinieiniicceecceeees 7-29
7.16.1 How to Insert an ADF Read-only Table Component...........c.cccocceucucccucrccucrccrenennn 7-30
7.16.2 How to Manually Add a Column to the ADF Read-only Table Component.......... 7-30
7.17 Limiting the Number of Rows Your Table-Type Component Downloads 7-31
7171 How to Limit the Number of Rows a Component Downloadsccccccceueuennneee 7-31
717.2 What Happens at Runtime When You Limit the Number of Rows a Component
Downloads 7-32
7.18 Clearing the Values of Cached Attributes in an ADF Table Component........................ 7-33
7.18.1 How to Clear the Values of Cached Attributes in an ADF Table Component........ 7-33
7.18.2 What Happens at Runtime When the ADF Table Component Clears Cached Values.....
7-33
7.19 Tracking Changes in an ADF Table Componentcccccccccueuririniciiiininniicnnccenes 7-34

Adding Interactivity to Your Integrated Excel Workbook

8.1 Introduction to Adding Interactivity to an Integrated Excel Workbook..................c......... 8-1
8.2 USING ACHON SEScuoiiiiiiiiiiicic s 8-2
8.2.1 How to Invoke an ADF Model Action in an Action Set..........cccoviiiiiiniiiiinns 8-3
8.2.2 How to Invoke Component Actions in an Action Set...........cccoveveveveeiiinccniiiccnennne. 8-4
8.2.3 What You May Need to Know About an Action Set Invoking a Component Action.......
8-5
8.2.4 How to Invoke an Action Set from a Worksheet Event..........c.cccocoooeiiiiiniiininn, 8-6
8.2.5 How to Display a Status Message While an Action Set Executes............cccccecevvuninennce. 8-7
8.2.6 What Happens at Runtime When an Action Set Displays a Status Message 8-8
8.2.7 How to Provide an Alert After the Invocation of an Action Set..........ccccooveiiininnns 8-9
8.2.8 What Happens at Runtime When an Action Set Provides an Alert 8-11

8.2.9 How to Configure Error Handling for an Action Set..........ccooooeeieiiiiiniicncne 8-11

8.2.10 How to Invoke a Confirmation Action in an Action Set..........cccccoeviiiiiiiiinnnn, 8-12
8.2.11 What Happens at Runtime When an Action Set Provides a Confirmation 8-13
8.3 Configuring the Runtime Ribbon Tab ... 8-14
8.3.1 How to Define a Workbook Command Button for the Runtime Ribbon Tab......... 8-15
8.3.2 How to Configure a Worksheet Command for the Runtime Ribbon Tab................ 8-16
8.4 Displaying Web Pages from a Fusion Web Application.........cccccooiieiiiiiiiiiiincnn, 8-17
8.4.1 How to Display a Web Page in a Popup Dialogcccoeeueiiiiiiiiiice 8-18
8.4.2 How to Display a Web Page in ADF Desktop Integration Runtime Task Pane...... 8-19
8.4.3 What You May Need to Know About Displaying Pages from a Fusion Web
Application 8-19
8.5 Inserting Values in ADF Table Columns from a Web Page Pick Dialog...........ccccc........ 8-21
8.6 Creating ADF Databound Search Forms in an Integrated Excel Workbook 8-23
8.6.1 How to Create a Simple Search Form in an Integrated Excel Workbook................. 8-23
8.6.2 How to Create an Advanced Search Form in an Integrated Excel Workbook 8-25
8.7 Adding a Form to an Integrated Excel Workbook..........cccccccciiiiiiiiiiiiiccicccnnes 8-27
8.8 Creating Dependent Lists of Values in an Integrated Excel Workbook 8-28
8.8.1 How to Create a Dependent List of Values in an Excel Worksheet 8-30
8.8.2 What Happens at Runtime When a Dependent List of Values Renders in an Excel
Worksheet 8-31
8.8.3 How to Create a Dependent List of Values in an ADF Table Component’s Columns......
8-32
8.8.4 What Happens at Runtime When a Dependent List of Values Renders in an ADF Table
Component’s Columns 8-33
8.8.5 Creating a Dependent List of Values in an Excel Worksheet and an ADF Table
Component Column 8-34
8.8.6 What Happens at Runtime When a Dependent List of Values Renders in an Excel
Worksheet and an ADF Table Component Column 8-35
8.9 Using EL Expression to Generate an Excel Formulacooooiiiiiiiie, 8-36
8.9.1 How to Configure a Cell to Display a Hyperlink Using EL Expression 8-37
8.9.2 What Happens at Runtime When a Cell Displays a Hyperlink using EL Expression
8-37
8.10 Using Calculated Cells in an Integrated Excel Workbook............cccoovoveiniiiciiincnnines 8-38
8.10.1 How to Create a Column That Displays Values Generated by an Excel Formula.. 8-39

8.10.2 What Happens at Runtime When a Column Displays Values Generated by an Excel
Formula 8-39

8.10.3 How to Calculate the Sum of a Table-Type Component Column............ccccoeveueneen. 8-40

8.10.4 What Happens at Runtime When Excel Calculates the Sum of a Table-Type
Component Column 8-40

8.11 Using Macros in an Integrated Excel Workbook ..o 8-41

Configuring the Appearance of an Integrated Excel Workbook

9.1 Introduction to Configuring the Appearance of an Integrated Excel Workbook 9-1

9.2 Working With SEYLEs ..o 9-2

9.2.1 How to Apply a Style to an Oracle ADF Component..........ccccccceucueuececeuccrcenenenns 9-4

9.2.2 What Happens at Runtime When a Style Is Applied to an Oracle ADF Component.......
9-5

9.3 Applying Styles Dynamically Using EL EXpIessions.........c.cccocovvvnininnnininninnninccninenn. 9-5

vii

10

11

12

viii

9.3.1 What Happens at Runtime When an EL Expression Is Evaluated............cccccccceeviii. 9-6

9.3.2 How to Write an EL Expression That Applies a Style at Runtime...........ccccococceve. 9-6
9.3.3 What You May Need to Know About EL Expressions That Apply Styles 9-7
9.4 Using Labels in an Integrated Excel Workbook ..o 9-8
9.5 Using Styles to Improve the User EXperiencec.ccoooeuiiiiiinininicicecec 9-10
9.6 Branding Your Integrated Excel Workbook..........c.cccccociiiiiiiiiiiiiiicccececeee 9-11
9.6.1 How to Brand an Integrated Excel Workbookccoooiiiiiiiiiii 9-11
9.6.2 What Happens at Runtime to the Branding Items in an Integrated Excel Workbook
9-12
9.7 Using Worksheet Protection............cocociiiiiiiiiiiiciieeceeeceeeeee e 9-13
9.7.1 How to Enable Worksheet Protection............cccccocevvviiiiiiiiiiniii 9-13
9.7.2 What Happens at Runtime When Worksheet Protection is Enabled........................ 9-14
9.7.3 What You May Need to Know About Worksheet Protection...........ccccccceeueucucnnnnne. 9-15

Internationalizing Your Integrated Excel Workbook

10.1 Introduction to Internationalizing Your Integrated Excel Workbookcccccec.. 10-1
10.2 Using Resource Bundles in an Integrated Excel Workbook..............cccooeiiiiiiinnan. 10-2
10.2.1 How to Register a Resource Bundle in an Integrated Excel Workbook 10-2
10.2.2 How to Replace String Key Values from the Reserved Resource Bundle 10-3
10.2.3 How to Override Resources That Are Not Configurable ..o 10-4
10.24 What Happens at Runtime When You Override Resources That Are Not Configurable
10-5

10.2.5 What You May Need to Know About Resource Bundles..........cccccccceciiiininnnne. 10-5
10.3 Localization in ADF Desktop Integration ..o 10-6

Securing Your Integrated Excel Workbook

11.1 Introduction to Security In Your Integrated Excel Workbookccccueviiiiiiinninan. 11-1
11.2 Authenticating the Excel Workbook User............ccoocuiiiiiiiiiiiiiiccc 11-2
11.2.1 What Happens at Runtime When the Login Method Is Invoked.............ccccccc.c........ 11-2
11.2.2 What Happens at Runtime When the Logout Method Is Invoked 11-2
11.3 Checking the Integrity of an Integrated Excel Workbook’s Metadata.............cccceeuueeeen. 11-3
11.3.1 How to Reset the Workbook ID...........ccoviiiiiiiniiiiiiices 11-3
11.3.2 How to Disable the Metadata Tamper-Check in the Fusion Web Application....... 11-4
11.3.3 How to Allow Missing Entries in the ADF Desktop Integration Client Registry... 11-5
11.3.4 What Happens When the Metadata Tamper-Check is Performed.............c.c.c.c........ 11-7
11.4 What You May Need to Know About Securing an Integrated Excel Workbook........... 11-7

Adding Validation to an Integrated Excel Workbook

121 Introduction to Adding Validation to Integrated Excel Workbookc.cccccoeueinnnn. 12-1
12.2 Providing Server-Side Validation for an Integrated Excel Workbook.............cccccc.e.c... 12-1
12.3 Providing Client-Side Validation for an Integrated Excel Workbookccc.c...... 12-2
12.4 Error Reporting in an Integrated Excel Workbookcccoiiiiiiiiiniii 12-2
12.4.1 Error Reporting Using EL EXPressions...........cccccvvvieiiiiiiniiiciniiccccncccceecns 12-2
12.4.2 Error Reporting Using Component ACtions...........cccccovvvvviiiiniiiiinniccccnn 12-3
125 Providing a Row-by-Row Status on an ADF Table Componentc.ccccovreiiiininnnnne. 12-5
12.6 Adding Detail to Error Messages in an Integrated Excel Workbook...............cccccc.c.... 12-6

12.7 Handling Data Conflicts When Uploading Data from a Workbook...............cccccccoeee.. 12-7
12.7.1 How to Configure a Workbook to Handle Data Conflicts When Uploading Data 12-7

12.7.2 What Happens at Runtime When You Configure a Workbook to Handle Data
Conflicts 12-7

13 Testing Your Integrated Excel Workbook

13.1 Introduction to Testing Your Integrated Excel Workbookccceviiiiciiinccnne. 13-1
13.2 Testing Your Fusion Web Applicationcccoooviiiiiiiiiiiiiicccccccnes 13-1
13.3 Testing Your Integrated Excel WOrkbookcccoiiiiiiiiiiiiiiiniiiiiiiiccccce, 13-3

14 Deploying Your Integrated Excel Workbook

14.1 Introduction to Deploying Your Integrated Excel Workbook............ccccooeeriiiiiininni. 14-1
14.2 Making ADF Desktop Integration Available to End Userscccccccocvecccccciicccnnne. 14-1
14.3 Publishing Your Integrated Excel WOrkbookc.ccouoiiiiiiiiiiiii 14-2
14.3.1 How to Publish an Integrated Excel Workbook from Excel...........ccccoooeiiiiiinnnn. 14-2
14.3.2 How to Publish an Integrated Excel Workbook Using the Command Line Publish Tool
14-2
14.3.3 What Happens When You Publish an Integrated Excel Workbook 14-3
14.4 Deploying a Published Workbook with Your Fusion Web Application......................... 14-4
14.5 Passing Parameter Values from a Fusion Web Application Page to a Workbook......... 14-5
14.51 How to Configure the Fusion Web Application’s Page to Pass Parameters............ 14-6
14.5.2 How to Configure the Page Definition File for the Worksheet to Receive Parameters.....
14-7
14.5.3 How to Configure Parameters Properties in the Integrated Excel Workbook 14-8
14.54 What Happens at Runtime When a Fusion Web Application Page Passes Parameters to

an Integrated Excel Workbook 14-10

15 Using an Integrated Excel Workbook Across Multiple Web Sessions and in
Disconnected Mode

15.1 Introduction to Disconnected WOrkbooKsScccovemeiiiiiiiiiiniiiiccc 15-1
15.2 Restore Server Data Context Between Sessions...........coceeeueiiereeinicieieeeeeeeeeee 15-2
15.2.1 How to Configure an Integrated Excel Workbook to Restore Server Data Context 15-3

15.2.2 What Happens at Runtime When an Integrated Excel Workbook Restores Server Data
Context 15-4

15.3 Caching Lists of Values for Use in Disconnected Modeccccccceeuiieiiccccccccnnnne. 15-4

A ADF Desktop Integration Component Properties and Actions

A Frequently Used Properties in the ADF Desktop Integration............cccccoceueucucrceucicucncnenne. A-1
A2 ADF Input Text Component Properties ... A-4
A3 ADF Output Text Component Properties ... A-5
A4 ADF Label Component PrOPertiesccccciiiiiiiiieeiccceieeeneeeneeeeneseeeeeseeeeeeeens A-5
A5 ADF List of Values Component Properties ... A-6
A.6 TreeNodeList Subcomponent Properties ..., A-6
A7 ModelDrivenColumnComponent Subcomponent Propertiesccccccceueueuervrerernenenes A-7
A8 ADF Button Component Properties ... A-7
A9 ADF Table Component Properties and Actionscccccceeiiciiiiiiccciiceeceeeens A-7

A9.1 ADF Table Component Properties.........ccccueeeiiiiiiniiinieinceeeeeeeeesenens

A.9.2 ADF Table Component Column Propertiescccocoeeoreiniiiccieniccecccee
A9.3 ADF Table Component ACHONS.........cccceueueueieieieieiieieieieieeeeieereeeeeeeeeeeaeeeseneneeeeees
A.10 ADF Read-only Table Component Properties and Actions...........c.cccoeueeeiiicinieniennnnn
A1 Action Set PrOPerties ...t s
A1 Confirmation Action Properties ...
A11.2 Dialog Action Properties ...t
A.12 Workbook Actions and Properties ...
A13 Worksheet Actions and Properties...........cccoceeciiiiiiiiiiciiiciccccceeeeeeeeeeeeeeeeeees

B ADF Desktop Integration EL Expressions

B.1 Guidelines for Creating EL EXPressions........ccccccocceeiiccirinieiiinereceeeeeeeeeeseeeeeeeeseeeens
B.2 EL Syntax for ADF Desktop Integration Components..........cccoooerieiiiinieiniicieiciicee,
B.3 Attribute Control Hints in ADF Desktop Integrationc.ccoooeiiiiin,

C Troubleshooting an Integrated Excel Workbook

CA1 Verifying That Your Fusion Web Application Supports ADF Desktop Integration
c.2 Verifying End-User Authentication for Integrated Excel Workbooks..........c.ccccccceueeeenee.
C.3 Generating Log Files for an Integrated Excel Workbook............cccoociiiiiiiiiinicne,
C.31 About Server-Side LOZGINGc.covuiuriiiiiiiriciicic e
C.3.2 About Client-Side LOGZING.......cccciuiiimiiiiiiiccceececceceeeee s
C.3.21 How to Configure ADF Desktop Integration to Save Logs........cccccovvrueueiinnnnen.
C.3.22 About the ADF Desktop Integration Configuration File..........c.c.cccccoooeinii.
C.323 How to Configure Logging Using User Environment Variables
C.3.24 What You May Need to Know About the adfdi-common Object........................
C.4 Exporting Excel Workbook Metadata...........ccoveuriiiniiiniiinicccccc s
C.5 Common ADF Desktop Integration Problemsc.cccccoceeieiciieiiieecccieeeeennees

D Using Workbook Management Tools
D.1 Using the Workbook Administration TOOLccccoiiiiiiiniiiiiicccccceeeeeeenenens

E ADF Desktop Integration Settings in the Web Application Deployment
Descriptor

E.1 Configuring the ADF Desktop Integration Servlet...........c.coooooiiiiiinii,
E.2 Configuring the ADF Desktop Integration Excel Download Filtercccccccccevnninnne.
E.3 Examples in a Deployment Descriptor File...........cccccociiiiiiiiiiniiicccccreeeeeeenes

F String Keys in the Overridable Resources
G Java Data Types Supported By ADF Desktop Integration

H Using ADF Desktop Integration Model API

H.1 About the Temporary ROW ObJECtc.c.ccuiuiuiiiiiiiiiiiiiciiiieciceceeeeeeeeeeeeee s
H.2 About ADF Desktop Integration Model APL............cccoooiiiiiiiniiiiee,

H.2.1 How to Add ADF Desktop Integration Model API Library to Your JDeveloper Project .

H-2
H.3 ADF Desktop Integration Model API Classes and Methods...........ccccccoevviiiiiiniininnnnn H-3
H.3.1 The oracle.adf.desktopintegration.model. ModelHelper Class..........c.ccccccccuvueuruennnene H-3
H.3.1.1 The getAdfdiTempChildRow Method...........cccoevviiiiiiiniiiiiiiic, H-3
H.3.1.2 The getAdfdiTempRowForView Method...........cccccoiininiininiiiin, H-3
H.3.1.3 The getChildViewDef Methodccccccoviiiiiiniiiicccccreceeeeeeceeaes H-3

I End User Actions

.1 Installing the Runtime Edition of ADF Desktop Integrationcccccceeuvuviivvvenenenenne. -1

1.2 Importing Data from a Non-Integrated Excel Worksheetcccocooi, -2

1.3 Removing Personal INformation...........c.ccouoiiiiiiiecc e -3

1.4 Changing an Integrated Excel Workbook at Runtime...........ccccocovviinnnnnnnnnnnnncenes -3

1.5 Limitations of Integrated Excel Workbook at Runtime..........cccoovriiiiiiiiiiiiii, I-4

1.6 Using An Integrated Excel WOrkbooKcoviiiiiiiiii I-4
Index

xi

Xii

Audience

Preface

Welcome to the Desktop Integration Developer’s Guide for Oracle Application Development
Framework.

This manual is intended for enterprise developers who configure desktop applications
to integrate with the Oracle Fusion Middleware Application Development Framework
(Oracle ADF).

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http: //www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

xiii

Related Documents

For more information, see the following:

» Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application Development
Framework

» Oracle Fusion Middleware Web User Interface Developer’s Guide for Oracle Application
Development Framework

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements (for example,
menus and menu items, buttons, tabs, dialog controls), including
options that you select.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates language and syntax elements, directory and
file names, URLSs, text that appears on the screen, or text that you enter.

Xiv

1

Introduction to ADF Desktop Integration

This chapter provides an introduction to ADF Desktop Integration.
This chapter includes the following sections:

= Section 1.1, "Introduction to ADF Desktop Integration”

» Section 1.2, "About ADF Desktop Integration with Microsoft Excel"

1.1 Introduction to ADF Desktop Integration

Many end users of Fusion web applications use desktop applications, such as
Microsoft Excel, to manage information also used by their web application. ADF
Desktop Integration provides a framework for Oracle Application Development
Framework (Oracle ADF) developers to extend the functionality provided by a Fusion
web application to desktop applications. It allows end users to avail themselves of
Oracle ADF functionality when they are disconnected from their company network.
End users may also prefer ADF Desktop Integration because it provides Excel's
familiar user interface to undertake information management tasks, such as
performing complex calculations or uploading a large amount of data, easily and
seamlessly.

ADF Desktop Integration is a part of the Oracle ADF architecture. More information
about the Oracle ADF architecture can be found in the "Oracle ADF Architecture”
section of the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application
Development Framework.

Figure 1-1 illustrates the architecture of ADF Desktop Integration, which comprises of
the following components:

s ADF Desktop Integration add-in
s ADF Desktop Integration remote servlet

= ADF Model layer

Introduction to ADF Desktop Integration 1-1

About ADF Desktop Integration with Microsoft Excel

Figure 1-1 ADF Desktop Integration Architecture

Application Server

Oracle ADF

Remote ADF Model
Serviet — § Layer

Microsoft Office

ADF Desktop Integration
—————— HTTR/HTTPS

Microsoft
. Oracle ADF

ADF Desktop Integration

For more information about ADF Desktop Integration, see the ADF Desktop
Integration page on Oracle Technology Network (OTN) at:

http://www.oracle.com/technetwork/developer-tools/adf/overview/i
ndex-085534.html

1.2 About ADF Desktop Integration with Microsoft Excel

Currently, ADF Desktop Integration supports integration with Microsoft Excel 2007,
and other higher versions of Microsoft Excel.

Note: This guide uses the term integrated Excel workbook to refer to
Excel workbooks that you integrate with a Fusion web application
and to distinguish these workbooks from workbooks that have not
been integrated with a Fusion web application or configured with
Oracle ADF functionality.

1.2.1 Overview of Creating an Integrated Excel Workbook

Creating an integrated Excel workbook involves the steps described in Table 1-1.

Table 1-1 Steps to Create an Integrated Excel Workbook

Use To

JDeveloper Create a Fusion web application.

For information about creating a Fusion web application, see the
Oracle Fusion Middleware Fusion Developer’s Guide for Oracle
Application Development Framework.

Add data controls that expose the elements you require in
Microsoft Excel.

Create page definition files that expose the Oracle ADF bindings
to use in Excel.

For more information, see Section 4.3, "Working with Page
Definition Files for an Integrated Excel Workbook."

Excel Create the Excel workbooks that you intend to configure with
Oracle ADF functionality.

For more information, see Section 4.4, "Adding Integrated Excel
Workbook to a Fusion Web Application."

1-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

About ADF Desktop Integration with Microsoft Excel

Table 1-1 (Cont.) Steps to Create an Integrated Excel Workbook

Use

To

Configure the Excel workbook using the Oracle ADF bindings
that you exposed in the page definition files and the Oracle ADF
components that ADF Desktop Integration provides.

For more information, see the following sections and chapters:
s Chapter 5, "Getting Started with the Development Tools"

This chapter provides an overview of the tools that ADF
Desktop Integration provides so that you can configure an
Excel workbook with Oracle ADF functionality.

s Chapter 6, "Working with ADF Desktop Integration
Form-Type Components"

This chapter describes how you insert ADF Desktop
Integration form-type components into Excel worksheets
and configure their properties to determine behavior at
runtime.

s Chapter 7, "Working with ADF Desktop Integration
Table-Type Components"

This chapter describes how you can use the ADF Table and
Read-only Table components to provide end users with a
means of displaying and editing data hosted by a Fusion
web application.

s Chapter 12, "Adding Validation to an Integrated Excel
Workbook"

This chapter describes how you provide validation for your
integrated Excel workbook.

Test your integrated Excel workbook. For more information, see
Chapter 13, "Testing Your Integrated Excel Workbook."

Once you complete the integration of your Excel workbook with
your Fusion web application, you deploy it to make it available
to your end users. For information about this task, see

Chapter 14, "Deploying Your Integrated Excel Workbook."

1.2.2 The Advantages of Integrating Excel with a Fusion Web Application

Advantages that accrue from integrating Microsoft Excel workbooks with your Fusion

web application include:

Providing end users with access to data and functionality hosted by a Fusion web
application through a desktop interface (Microsoft Excel) that may be more
familiar to them.

Users can access data hosted by a Fusion web application while not connected to
the application. They must log on to the Fusion web application to download data.
Once data is downloaded to an Excel workbook, they can modify it while
disconnected from the Fusion web application.

Bulk entry and update of data may be easier to accomplish through a
spreadsheet-style interface.

End users can use native Excel features such as macros and calculation.

Introduction to ADF Desktop Integration 1-3

About ADF Desktop Integration with Microsoft Excel

1-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

2

Introduction to the ADF Desktop Integration
Sample Application

This chapter provides an overview of the Master Price List module, which is the ADF
Desktop Integration module’s sample application. The Master Price List module is a
module in the Fusion Order Demo application. It contains several Microsoft Excel
workbooks that are integrated with a Fusion web application.

This chapter includes the following sections:
s Section 2.1, "Introduction to the Master Price List Module"
= Section 2.2, "Setting Up and Executing the Master Price List Module"

= Section 2.3, "Overview of the Fusion Web Application in the Master Price List
Module"

= Section 2.4, "Overview of the Integrated Excel Workbooks in the Master Price List
Module"

2.1 Introduction to the Master Price List Module

The Master Price List module allows end users to download information (product
names, prices, and so on) about electronic devices that are sold through a
storefront-type web application. End users can search the downloaded information,
modify pricing information, and upload the modified information to the Fusion web
application.

You must set up your development environment before you can set up and run the
Master Price List module. After you set up your development environment, you can
download the Fusion Order Demo application, which includes the Master Price List
module.

2.2 Setting Up and Executing the Master Price List Module

Set up your development environment as described in Chapter 3, "Setting Up Your
Development Environment", so that you can run the Master Price List module.

Once you have set up your development environment, download the Fusion Order
Demo application, which includes the Master Price List module. For information about
how to download the Fusion Order Demo application, see the "How to Download the
Application Resources" section in the Oracle Fusion Middleware Fusion Developer’s Guide
for Oracle Application Development Framework.

The Fusion Order Demo application that you download includes a directory named
Infrastructure. This directory includes scripts that create the users and data that

Introduction to the ADF Desktop Integration Sample Application 2-1

Setting Up and Executing the Master Price List Module

the Fusion Order Demo application and Master Price List module require. For
information about how to run these scripts, see the "How to Install the Fusion Order
Demo Schema" section in the Oracle Fusion Middleware Fusion Developer’s Guide for
Oracle Application Development Framework.

Note: If you have an old version of ADF Desktop Integration
installed on your system, you must do the following:

1. Upgrade ADF Desktop Integration as described in Section 3.7,
"Upgrading ADF Desktop Integration.”

2. Refresh your Fusion Order Demo schema as described in "How to Install
the Fusion Order Demo Schema" section in the Oracle Fusion Middleware
Fusion Developer’s Guide for Oracle Application Development Framework.

To run the Master Price List module:
1. Openthe MasterPriceList. jws file in JDeveloper.

This file is located in the MasterPriceList subdirectory of the directory into
which you extracted the Fusion Order Demo application.

2. Inthe Application Navigator, click the Application Resources accordion title to
expand the panel.

3. Right-click FOD connection and choose Properties.
4. In the Edit Database Connection dialog, modify the connection information shown

in Table 2-1 for your environment.

Table 2-1 Database Connection Properties for the Master Price List Module

Property Description

Host Name The host name for your database. For example:
localhost

JDBC Port The port for your database. For example:
1521

SID The SID of your database. For example:
ORCL or XE

Do not modify the user name and password fod/fusion. These must remain
unchanged. Click OK.

5. In the Application Navigator, right-click Model and choose Rebuild Model.jpr.

6. Inthe Application Navigator, right-click ViewController and choose Rebuild
ViewController.jpr.

7. Inthe Application Navigator, expand the ViewController project, right-click
login.jspx and choose Run.

The login. jspx page runs and displays a login form.

8. Tolog on as an administrator, enter sking in the User Name field and welcomel
in the Password field. To log on as a manager, enter ahunold in the User Name
field and welcomel in the Password field. For more information about users, see
Section 2.4.1, "Log on to the Fusion Web Application from an Integrated Excel
Workbook."

2-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Overview of the Fusion Web Application in the Master Price List Module

You can now open and connect the integrated Excel workbooks described in
Section 2.4, "Overview of the Integrated Excel Workbooks in the Master Price List
Module" to the Fusion web application that the Master Price List module deploys.

2.3 Overview of the Fusion Web Application in the Master Price List
Module

The Fusion web application in the Master Price List module enables end users to edit
and navigate through a list of products, search for a product, download integrated
Excel workbooks, sort and reorder columns, and so on.

2.3.1 Log on to the Fusion Web Application in the Master Price List Module

When the end user runs the Master Price List Fusion web application in JDeveloper,
the default browser opens the login page after the Master Price List module is
deployed on Oracle WebLogic Server.

Figure 2-1 Login Dialog of Master Price List Fusion Web Application

~| &= Login Information
* User Mame
* Password

Remember Me? [

Login

The Master Price List module provides two user profiles to log on to the Fusion web
application. Table 2-2 summarizes both user profiles.

Table 2-2 User Profiles for the Master Price List Module

Login Name Password Role Description

sking welcomel Administrator Enables you to access and modify
information.

ahunold welcomel Manager Enables you to access information, but

you cannot modify it.

After the login credentials are verified, the end user is redirected to the home page of
the Master Price List Fusion web application.

2.3.2 Introduction to the Fusion Web Application in the Master Price List Module

The Master Price List Fusion web application is divided into four panes: Product
Search, Matching Products, Product Detail, and Active Discounts.

Introduction to the ADF Desktop Integration Sample Application 2-3

Overview of the Fusion Web Application in the Master Price List Module

Figure 2-2 Web Interface of Master Price List Fusion Web Application

ORACLE Id:sking Glogowt O
-
v|Product Search Matching Products
Basic Search Advanced Search Excel = Wiew » Format Save Freeze 5 Detach Wrap
i Prod, No |Product Name Supplier [priong ifarmation |
| Cost Price| Man, Rec. Price Steprice| |
Search 14 Bluetooth Phane Headset [=] Electronics and More 20 2489 4999 ~
15 Ipod Speakers [E] Transistor ity k- 55,00 8000
16 Creative Zen Wision W 60 GB [E] Transistor City 250 32899 368999
17 lpod Video 80GH & zip ity 200 299,05 339,09
- 18 Ipod Shuffle 16t 5] Geeky Gadgets 45 £3.95 93,99
x| Active Discounts 15 Ipod Video 30Gh [B) Great Gadgets 135 227,95 [249.99
_[Easy Code 2‘5“'”“ 20 Ipod Video 60Gh [E] Electronics and Mare 175 27599 [399.99
L CORP1DISC 12.00%
Tpod Mano 16k
L J— £0.00 @ 21 [D oo 15 g Geeky Gadgets 90 11999 149,95
od Hano
ACTeTeT s 10,00 @ 22 In ’ Zip City 100 12899 199,95
ATy $5.00 @ 10 Zune 306! (5] eeky Gadgets 100 16999 225,99
> PARTLDISC §15.00% 11 RAZR Celular Phane [=] Electronics and Mare 140 209.99 [259.99
L+ TENCFF $10,00 12 Muvo Fersonal MRS Flayer [E] Gesky Gadgets 64 78.99 99,99
L TENOFFPLUS $10.00 @ 13 Bluetooth Adaptar & nexus 5 699 [19.99
ﬂ 1 Plasma HN Televisinn T2 Elncbranice and hacn tann an sean ne | nen on ™
Changed...
-~
~
Product Detail
14
12
Prod. Mo 14 Man, Rec, 24,99
Product Blustanth Phone Headset Brice) -
(s WMargin | 49,93
streamlined and sophisticated, the Bluetooth Headset A
HS00 provides wireless connectivity and convenience, WMargin 1.5 8
. Combining an ergenemic design and wersatile ear hock, i
DestHHen s sioek headset can be worn on either ear. Created to Frot
be ultra comfortable, the Matorala HS0D is s easy to wear cate & Availzble product 5
that you'l Forget you even have it anl But dan't be fooled Discontinued product
Supplier | Electronics and More s O Mew product, not et expased on site 4
Cost Price 20
Save 2
o
Seplember 2009 October

The Product Search pane has tabs for searching a product in the application repository.
The Product Search pane is an accordion pane and the end user can hide it, if desired.
For more information about search functionality, see Section 2.3.4, "Searching a
Product."

The Matching Products pane displays products in a tabular format, according to the
search criteria set in the Product Search pane. By default, all products are displayed.
The end user can use the Matching Products pane’s toolbar to do various activities
such as download integrated Excel workbooks, sort columns in ascending or
descending order, hide a column, and so on. For more information about the toolbar,
see Section 2.3.3, "Using the Matching Products Toolbar."

The Product Detail pane displays detailed information about the product selected in
the Matching Products pane. The information includes the attributes available in the
table, and additional information about the product’s supplier, product’s current
availability status, a graphical representation of the product’s sale in each month, and
SO on.

The Active Discounts pane is an independent pane. It displays the available discounts
on products with their discount codes and discount percentages.

2.3.3 Using the Matching Products Toolbar

End users can use the toolbar in the Matching Products pane to do the following:
= Save changes

= Download integrated Excel workbooks

= Show or hide columns

= Sort columns

2-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Overview of the Fusion Web Application in the Master Price List Module

s Detach Products table from Matching Products pane
m Freeze or unfreeze a column
s Reorder columns

= Wrap or unwrap a column’s values

2.3.3.1 How to Download Integrated Excel Workbooks

The Master Price List module provides various integrated Excel workbooks to meet
different requirements. End users can download the integrated Excel workbooks from
the Excel menu of the toolbar.

Figure 2-3 Excel Menu of Matching Products Toolbar

F Wiew + Format = Save

Export as Read-only Spreadsheet

Edit Using Live Spreadshest
Edit Using Advanced Live Spreadsheet

Wiew and Guery Using Live Spreadsheet

Table 2-3 provides the description for each menu option.

Table 2-3 Download Excel Menu Options

Menu Option Description
Export as Read-only Exports all Product table data into a spreadsheet. The
Spreadsheet spreadsheet is not an integrated Excel workbook.

The exported file is saved as read_only_pricelist.xls.

Edit Using Live Downloads the integrated Excel workbook that enables you to
Spreadsheet edit and update common data.

The downloaded file is saved as EditPriceList.xlsx.

Edit Using Advanced Live Downloads the integrated workbook that enables you to edit

Spreadsheet and update all data.

The downloaded file is saved as AdvEditPriceList.xlsx.
View and Query Using Downloads the integrated workbook that enables you to view
Live Spreadsheet all products and, if desired, search for a product. This

integrated Excel workbook does not allow you to edit and
update data.

The downloaded file is saved as ReadOnlyPriceList.xlsx.

2.3.3.2 How to Sort, Hide and Reorder Columns

The Master Price List module provides various operations on the Products table
columns of the Matching Products pane. Using options available in the View menu,
the end user can sort a column, show or hide a column, and reorder columns based on
their requirements.

To show or hide columns:
1. In the Matching Products pane, from the toolbar, choose View > Columns.

2. In the Columns submenu, choose a column name to show or hide it in the
Matching Products table. To show all columns, click Show All.

Introduction to the ADF Desktop Integration Sample Application 2-5

Overview of the Fusion Web Application in the Master Price List Module

To sort a column:
1. In the Matching Products pane, select the table column to be sorted.

2. From the toolbar, choose View > Sort.

3. In the Sort submenu, choose Ascending to sort the values of the selected column
in ascending order. Choose Descending to sort the values of the selected column
in descending order.

Tip: To sort a column in ascending or descending order, you can also
click the Up or Down triangle in the column name header.

4. To sort multiple columsn by the same values at once, choose Advanced. In the
Advanced Sort dialog, select the desired columns.

To reorder columns:
1. From the View menu, click Reorder to open the Reorder Columns dialog.

2. In the dialog, click the respective column name to select it, and then use the
navigation buttons to reorder it.

Tip: To order multiple columns, select their corresponding
checkboxes, and then use navigation buttons. All selected columns
move as a group.

2.3.3.3 Other Toolbar Operations

The Matching Products toolbar has buttons to save your changes, to detach the
Matching Products table from the Matching Products pane, to freeze or unfreeze
columns, and to wrap or unwrap a column’s values.

= To save changes, click Save.

= To detach the Matching Products table from Matching Products pane, click
Detach.

s To freeze a column, click the column header to select the column, and then click
Freeze. Click Freeze again to unfreeze the column.

= To wrap a column’s values, click the column header to select the column, and then
click Wrap. Click Wrap again to unwrap the column values.

Note: The Master Price List Fusion web application allows edits in
the following:

= Site Price column (Matching Products pane)
= Supplier dropdown list (Product Detail pane)

s Current Product Status option button (Product Detail pane)

2.3.4 Searching a Product

The Master Price List module provides a basic search and an advanced search facility
to search for a product item. You can use the Product Search accordion panel to find
an item.

By default, the Product Search accordion panel shows the Basic Search tab where you
can enter a search term to invoke a query on the Fusion web application and view the
results.

2-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Overview of the Integrated Excel Workbooks in the Master Price List Module

Figure 2—4 Basic Search Tab in the Master Price List Fusion Web Application

~| Product Search

Basic Search Advanced Search

Find

Search

The Advanced Search tab enables you to find products by category, and if required,
search among discontinued products by selecting the Include Discontinued Products
checkbox.

Figure 2-5 Advanced Search Tab in the Master Price List Fusion Web Application

~| Product Search

Find
Product Categaory
v

[tnelude Discantinued Products

Search

2.4 Overview of the Integrated Excel Workbooks in the Master Price List

Module

The Master Price List module provides the EditPriceList.x1lsx,
AdvEditPriceList.xlsx, and ReadOnlyPriceList.x1lsx integrated Excel
workbooks. All workbooks enable end users to:

= Log on to the Fusion web application from the workbook
= Download rows of data about product pricing
s Search the workbook for information about product pricing

In addition, the EditPriceList.xlsx and AdvEditPriceList .x1lsx workbooks
permit end users to:

= Search the Master Price List module Fusion web application for information about
products and product pricing

= Modify product pricing information in the workbook
= Use Excel formulas to perform calculations on values in an ADF Table component

s Upload modified product pricing information to the Master Price List module
Fusion web application from the workbook

Subsequent sections in this chapter provide more information about the functionality
in the workbooks along with cross-references to implementation details.

2.4.1 Log on to the Fusion Web Application from an Integrated Excel Workbook

At runtime, the integrated Excel workbooks in the Master Price List module render an
Excel ribbon tab that allows end users to log on to the Fusion web application.

Figure 2—-6 shows the runtime Fusion Order Demo tab in the Ribbon of the
EditPriceList.xlsx workbook.

Introduction to the ADF Desktop Integration Sample Application 2-7

Overview of the Integrated Excel Workbooks in the Master Price List Module

Figure 2-6 Runtime Fusion Order Demo Tab
D,., = . EditPriceList.xlsx - Microsoft Excel

1Y)
—/) Home Insert Page Layout Formulas Data Review View Developer Fusion Order Demo

(= Cp A
RE$ B R & @
Login Logout Edit Advanced Upload Clear About

Options Search to Server || All Data
Connection Worksheet Clear About

The EditPriceList.xlsx workbook prompts the end user to log on to the Fusion
web application when the end user clicks Login or invokes an action that requires a
connection with the Fusion web application. Because the worksheet Startup event in
the EditPriceList.x1lsx workbook invokes the ADF Table component Download
action, end users are prompted to log on immediately after starting up the
EditPriceList.xlsx workbook.

The Login button invokes the workbook Login action. For information about
configuring the Login button (and other buttons in Figure 2-6), see Section 8.3,
"Configuring the Runtime Ribbon Tab."

The workbook Login action invokes the Fusion web application’s authentication
process. For more information about implementing this functionality, see Chapter 11,
"Securing Your Integrated Excel Workbook."

The Master Price List module provides two user profiles to log in to the application, as
summarized in Table 2-2.

2.4.2 Download Rows of Data About Product Pricing

The EditPriceList.x1lsx workbook uses an ADF Table component to host
information downloaded from the Fusion web application about product pricing. This
component allows end users to edit rows and upload modified rows to the Fusion web
application.

The following sections provide information about how to implement the download
functionality:

= Fach worksheet that you integrate with a Fusion web application requires an
associated page definition file. The Price List worksheet in the
EditPriceList.xlsx workbook is associated with the
ExcelPriceListPageDef .xml page definition file. In JDeveloper, expand the
following nodes in the Application Navigator to view this file:

ViewController > Application Sources > oracle.foddemo.masterpricelist > view
> pageDefs

For information about how to configure a page definition file, see Section 4.3,
"Working with Page Definition Files for an Integrated Excel Workbook."

s The ADF Table component Download action downloads data from the Fusion
web application to the worksheet. For information about how you invoke this
action, see Section 7.6, "Configuring Oracle ADF Component to Download Data to
an ADF Table Component."

s Inthe EditPriceList.xlsx workbook, the worksheet Startup event invokes
an action set that includes the ADF Table component Download action. For
information about configuring worksheet events, see Section 8.2.4, "How to Invoke
an Action Set from a Worksheet Event."

The ReadOnlyPriceList .xlsx workbook uses an ADF Read-only Table
component to download data from the Fusion web application about product pricing.

2-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

Overview of the Integrated Excel Workbooks in the Master Price List Module

End users can view this data, but they cannot modify data or save changes to the
Fusion web application.

The following sections provide information about how to implement the download
functionality of the ReadOnlyPriceList .x1sx workbook:

= For information about creating an ADF Read-only Table component, see
Section 7.16, "Creating an ADF Read-Only Table Component.”

= An ADF Button component is configured to invoke an action set that includes the
ADF Read-only Table component Download action. For information about
creating an ADF Button component, see Section 6.2, "Inserting an ADF Button
Component."

2.4.3 Simple Search for Products in the Workbooks

The integrated Excel workbooks have ADF components configured to provide end
users with a search form. End users can enter a search term in the form to invoke a
query on the Fusion web application and download the results to the workbook.
Figure 2-7 shows a runtime view of these components in the EditPriceList.xlsx
workbook.

Figure 2-7 Runtime View of a Simple Search Form in the EditPriceList.xIsx Workbook

Search Area

Advanced Search...

8 records found

The following sections provide information about how to implement a simple search
form that you can use in the EditPriceList .x1sx workbook:

» For information about creating a search form, see Section 8.6, "Creating ADF
Databound Search Forms in an Integrated Excel Workbook."

s For information about creating a form, Section 8.7, "Adding a Form to an
Integrated Excel Workbook."

2.4.4 Advanced Search for Products in the Edit Price List Workbook

The EditPriceList.xlsx and AdvEditPriceList.xlsx workbooks have search
functionality configured that allow end users to invoke a page from the Fusion web
application, specify search criteria, and download the results to the ADF Table
component in the workbooks. Figure 2-8 shows the page from the Fusion web
application that end users invoke by clicking the Advanced Search button.

Introduction to the ADF Desktop Integration Sample Application 2-9

Overview of the Integrated Excel Workbooks in the Master Price List Module

Figure 2-8 Advanced Search Dialog in the EditPriceList.xIsx Workbook

Master Price List - Search §|
Advanced Search

Product Category H
Audic and Video

Books

Camera and Photo ™

Indude Discontinued Products []

Search Cancel

For more information about how to implement the advanced search functionality in
the EditPriceList.x1lsx workbook, see Section 8.6, "Creating ADF Databound
Search Forms in an Integrated Excel Workbook."

2.4.5 Modify Product Pricing Information in the Edit Price List Workbook

End users of the EditPriceList.xlsx and AdvEditPriceList.x1lsx workbooks
can edit product pricing information that the ADF Table component downloads from
the Fusion web application. Columns in the runtime ADF Table component that have
an UpdateComponent property configured permit end users to modify values and
upload the changes to the Fusion web application. For example, end users can modify
the values that appear in the Productld, ProductName, and CostPrice columns.

End users can enter or modify the values that appear in the cells of other columns.
However, the ADF Table component does not upload these changes to the Fusion web
application, because some of these columns display the results of evaluating Excel
formulas using values downloaded from the Fusion web application. Such columns
should use a read-only style to distinguish themselves from other columns. For
example, the Difference column displays the result of an Excel formula that subtracts
the cost price from the list price and uses a read-only style, which makes it easily
distinguishable from other input columns.

Other columns, such as Status and Changed, appear in the ADF Table component to
provide status information about upload operations and changed columns.

The following sections provide information about how to implement this
functionality:

s For information about inserting an ADF Table component, see Section 7.3,
"Inserting an ADF Table Component into an Excel Worksheet."

= For information about using Excel formulas, see Section 8.10, "Using Calculated
Cells in an Integrated Excel Workbook."

» For information about special columns, such as Status and Changed, see
Section 7.11, "Special Columns in the ADF Table Component."

2.4.6 Upload Modified Product Information to the Fusion Web Application

The EditPriceList.xlsx and AdvEditPriceList.x1lsx workbooks allow end
users to upload modified data in the ADF Table component to the Fusion web
application. An action set is configured for the runtime Save Changes button that
invokes the ADF Table component’s Upload action. For information about
implementing this functionality, see Section 7.8, "Configuring an Oracle ADF
Component to Upload Changes from an ADF Table Component."

2-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

Overview of the Integrated Excel Workbooks in the Master Price List Module

Tip: You can also use the Upload to Server button in the Fusion
Order Demo tab to upload modified data.

Introduction to the ADF Desktop Integration Sample Application 2-11

Overview of the Integrated Excel Workbooks in the Master Price List Module

2-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

3

Setting Up Your Development Environment

This chapter describes how to set up your development environment to integrate an
Excel workbook with a Fusion web application. The chapter concludes by describing
how to upgrade and remove ADF Desktop Integration. The chapter also describes
how to use ADF Desktop Integration on a system where you have multiple instances
of JDeveloper. This chapter includes the following sections:

= Section 3.1, "Introduction to Setting Up Your Development Environment"

» Section 3.2, "Required Oracle ADF Modules and Third-Party Software"

» Section 3.3, "Enabling Microsoft .NET Programmability Support"

= Section 3.4, "Allowing ADF Desktop Integration to Access Microsoft Excel"
= Section 3.5, "Installing ADF Desktop Integration”

= Section 3.6, "Removing ADF Desktop Integration"

» Section 3.7, "Upgrading ADF Desktop Integration”

= Section 3.8, "Using ADF Desktop Integration on a System with Multiple Instances
of JDeveloper"

» Section 3.9, "Localizing the Setup of Visual Studio Tools for Office"

3.1 Introduction to Setting Up Your Development Environment

Setting up your development environment involves making sure that you have the
correct versions of JDeveloper, Microsoft Office, and Microsoft Internet Explorer
installed. You must also enable support for Microsoft NET programmability, if it is
not enabled. After you verify that you have the required software and enabled
Microsoft .NET programmability, complete the setup of your development
environment by:

= Allowing ADF Desktop Integration to access Microsoft Excel
s Installing ADF Desktop Integration

3.2 Required Oracle ADF Modules and Third-Party Software

Before you begin to integrate your Excel workbook with a Fusion web application,
ensure that you have the required Oracle ADF modules and third-party software
installed and configured:

» JDeveloper

Setting Up Your Development Environment 3-1

Required Oracle ADF Modules and Third-Party Software

Install the current release of JDeveloper. ADF Desktop Integration is available as a
JDeveloper add-in.

m Microsoft Windows

Microsoft Windows operating systems support the development and deployment
of Excel workbooks that integrate with Fusion web applications. For more
information about supported versions of Windows, see the "Oracle JDeveloper
and Application Development Framework Certification Information" page on
OTN at:

http://www.oracle.com/technetwork/developer-tools/jdev/index-
091111 .html

s Microsoft Excel

ADF Desktop Integration supports the integration of Fusion web applications with
the following types of Excel workbook:

— Excel Workbook

The default file format for Excel workbooks is the Excel XML-based file format
(.x1lsx).

— Excel Macro-Enabled Workbook

Workbooks in this format (. x1sm) use the Excel XML-based file format and
can store VBA macro code.

ADF Desktop Integration does not support the use of other Excel file formats. For
more information about supported versions of Excel, see the "Oracle JDeveloper
and Application Development Framework Certification Information" page on
OTN at:

http://www.oracle.com/technetwork/developer-tools/jdev/index-
091111 .html

Note: Microsoft Excel 2003 or older versions of Microsoft Excel are
not supported.

= Internet Explorer

Some features in ADF Desktop Integration use a web browser control from the
Microsoft NET Framework. This browser control relies on the local Internet
Explorer installation to function properly.

Note that Internet Explorer is the only web browser that supports this feature. For
more information about supported versions of Internet Explorer, see the "Oracle
JDeveloper and Application Development Framework Certification Information”
page on OTN at:

http://www.oracle.com/technetwork/developer-tools/jdev/index-
091111 .html

= Application server

For information about the application servers that you can use to deploy an
application developed using ADF Desktop Integration, see the "Oracle JDeveloper
and Application Development Framework Certification Information" page on
OTN at:

3-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Installing ADF Desktop Integration

http://www.oracle.com/technetwork/developer-tools/jdev/index-
091111 .html

3.3 Enabling Microsoft .NET Programmability Support

Microsoft Excel must have Microsoft .NET programmability support enabled before
you can set up ADF Desktop Integration and start development of an Excel workbook
that integrates with a Fusion web application. If you enabled Microsoft .NET
programmability support during installation of Microsoft Excel, no further action is
required.

To enable Microsoft .NET programmability support:
1. Click the Windows Start button, and choose Settings > Control Panel.

2. In the Control Panel, select and open Add or Remove Programs.

3. Select the entry in the Add or Remove Programs dialog for Microsoft Office and
click Change.

4. Follow the instructions in the wizard that appears to enable Microsoft NET
programmability support for Microsoft Excel.

3.4 Allowing ADF Desktop Integration to Access Microsoft Excel

You must configure Microsoft Excel settings to make it accessible from ADF Desktop
Integration. You only need to perform this procedure once.

To allow Excel to run an integrated Excel workbook:
1. Open Excel.

2. Click the Microsoft Office button, and choose Excel Options.

3. In the Excel Options dialog, choose the Trust Center tab, and then click Trust
Center Settings.

4. In the Trust Center dialog, choose the Macro Settings tab, and then click the Trust
access to the VBA project object model checkbox.

5. Click OK.

For more information about securing an Excel workbook that is integrated with a
Fusion web application, see Chapter 11, "Securing Your Integrated Excel Workbook."

3.5 Installing ADF Desktop Integration

When you run the ADF Desktop Integration setup tool, it verifies whether software in
the following list is installed on the system where you want to install the framework. If
one or more of these pieces of software is not installed, the setup tool installs it in the
order specified.

1. Windows Installer 3.1
2. Microsoft NET Framework

The Microsoft NET Framework 3.5 Service Pack 1 provides the runtime and

associated files required to run applications developed to target the Microsoft
.NET Framework.

Setting Up Your Development Environment 3-3

Installing ADF Desktop Integration

Note: Installation of Microsoft NET Framework may require you to
restart the system where you install it. After you restart, the setup tool
automatically recommences to finalize installation.

3. Microsoft Visual Studio Tools for Microsoft Office

The Microsoft Visual Studio Tools for the Microsoft Office system (version 3.0
Runtime) Service Pack 1 (x86) is required to run VSTO solutions for the Microsoft
Office system.

4. ADF Desktop Integration add-in

You can install the ADF Desktop Integration add-in from JDeveloper, or from the
setup tool provided in Mw_HOME\ jdeveloper\adfdi. For more information
about how to set up ADF Desktop Integration, see Section 3.5.1, "How to Set Up
ADF Desktop Integration.”

Note that the ADF Desktop Integration installation is specific to the current
Windows user profile. If you have multiple Windows user profiles on your
system, and you want to use ADF Desktop Integration integrated Excel
workbooks from some specific user profiles, you must log in to each user profile
and install the ADF Desktop Integration add-in. For more information, see
Section 3.5.1, "How to Set Up ADF Desktop Integration."

3.5.1 How to Set Up ADF Desktop Integration

The ADF Desktop Integration add-in is available in two editions, the Designer edition
and the Runtime edition. You must use the Designer edition to create and test
integrated Excel workbooks, and the Runtime edition to enable end users to use ADF
Desktop Integration and integrated Excel workbooks.

Note: Do not install both editions of ADF Desktop Integration on the
same system.

Although you do not require administrator privileges to install the ADF Desktop
Integration add-in, administrator privileges may be required to run the installers for
additional software that the installer attempts to download and install. You should
also ensure that the proxy settings for Internet Explorer are configured to allow access
to * .microsoft.com because the installer attempts to automatically download
missing prerequisite software from Microsoft’s web site.

By default, the installer runs in English. You can change the language that appears by
following the instructions in Section 3.9, "Localizing the Setup of Visual Studio Tools
for Office."

To install the Designer edition of ADF Desktop Integration:
1. Open JDeveloper.

2. From the Tools menu, choose Install ADF Desktop Integration.

3. Follow the instructions that appear in the dialog boxes to successfully install the
required components.

If you encounter an error during the installation process, ensure that you have
removed the previous version of ADF Desktop Integration. For more information,
see Section 3.6, "Removing ADF Desktop Integration."

3-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Upgrading ADF Desktop Integration

4, If prompted, click Yes to restart the system and complete the setup of ADF
Desktop Integration.

Tip: You can also install the Designer edition of ADF Desktop
Integration by running the setup. exe tool available in the 1mw_
HOME\ jdeveloper\adfdi\bin\excel\addin\designer
directory.

Note: The Install ADF Desktop Integration menu option is
available only on the Windows installation of JDeveloper.

If you use multiple instances of JDeveloper or if you have an existing instance of the
ADF Desktop Integration add-in on the system where you plan to invoke the

setup. exe tool, review the information in Section 3.8, "Using ADF Desktop
Integration on a System with Multiple Instances of JDeveloper" before you perform the
installation procedure.

If you want to install the Runtime edition of ADF Desktop Integration, see Section 1.1,
"Installing the Runtime Edition of ADF Desktop Integration."

3.6 Removing ADF Desktop Integration

You use the Microsoft Windows Control Panel to remove the ADF Desktop
Integration add-in from the system where you set it up. After you remove the ADF
Desktop Integration add-in, you can no longer use integrated Excel workbooks on this
system unless you reinstall the add-in.

To remove the ADF Desktop Integration add-in:
1. Click the Windows Start button and then choose Settings > Control Panel.

2. In the Control Panel, select and open Add or Remove Programs.

3. Inthe Add or Remove Programs dialog, select the installed ADF Desktop
Integration add-in edition, and then click Remove.

Note: If you have installed ADF Desktop Integration on multiple
user profiles, you must remove it from each user profile.

3.7 Upgrading ADF Desktop Integration

If you are using an old version of the ADF Desktop Integration add-in, you must
upgrade to the current version.

To upgrade the ADF Desktop Integration add-in:

1. Uninstall the old version of the ADF Desktop Integration add-in. For more
information, see Section 3.6, "Removing ADF Desktop Integration."

2. Download and install the latest version of Oracle JDeveloper.

3. Install the new version of the ADF Desktop Integration add-in. For more
information, see Section 3.5, "Installing ADF Desktop Integration."

Setting Up Your Development Environment 3-5

Using ADF Desktop Integration on a System with Multiple Instances of JDeveloper

Note: If you do not uninstall the old version of ADF Desktop
Integration add-in, an error occurs unless the new installer is in the
exact same location as the old installer.

3.7.1 How to Migrate an Integrated Excel Workbook to the Current Version of ADF
Desktop Integration
When you open the integrated Excel workbook after upgrading the ADF Desktop
Integration add-in, the add-in detects and compares the ADF Desktop Integration
version information of the workbook with the version installed on the client system. If

required, you are asked to upgrade the metadata of the integrated workbook to the
version installed on the client.

To migrate an integrated Excel workbook after upgrading:
1. Open the integrated Excel workbook.

The Migrate Workbook dialog prompts you to migrate the workbook to the
current version of ADF Desktop Integration, as shown in Figure 3-1.

Figure 3—1 Migrate Workbook Dialog

Migrate Workbook

2 Do you wish bo migrate this workbook to the current version of Oracle ADF 11g Deskbop Inkegration? Any pending changes will be saved. Click Yes to
\-:/ migrate now,

If you get one or more Microsoft Office Customization Installer error messages
when you open the integrated Excel workbook, ignore the messages and continue.
The error messages appear because ADF Desktop Integration cannot remove the
old version information from the workbook before Excel detects it and reports the
error.

2. Click Yes to migrate the workbook. The ADF Desktop Integration migration
process closes the workbook and then reopens it, ready to be used with the current
version of ADF Desktop Integration.

3.8 Using ADF Desktop Integration on a System with Multiple Instances
of JDeveloper

You can have only one active installation of ADF Desktop Integration on a given
system. By default, when you install JDeveloper, ADF Desktop Integration is extracted
to Mw_HOME\ jdeveloper\adfdi . If you decide to move to another version of
JDeveloper in a different directory, you must remove the old version of ADF Desktop
Integration, as described in Section 3.6, "Removing ADF Desktop Integration." You
must then set up ADF Desktop Integration with the new version of JDeveloper that
you are moving to, as described in Section 3.5, "Installing ADF Desktop Integration."

Alternatively, you can set up ADF Desktop Integration in a directory that is
independent of your JDeveloper installation. This approach means that you do not
have to remove ADF Desktop Integration before moving to a newer version.

3-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Localizing the Setup of Visual Studio Tools for Office

To set up ADF Desktop Integration in an independent directory:

1. Create a directory independent of the JDeveloper installation directory. For
example, you may create the following directory:

D:\adfdi-excel-setup

2. When you move to a newer version of]Developer, copy the contents of the
following directory:

MwW_HOME\ jdeveloper\adfdi\bin\excel\addin\designer
to:
D:\adfdi-excel-setup
where Mw_HOME is the the Middleware Home directory.
3. Run the setup.exe tool located in D: \adfdi-excel-setup.

4. Follow the instructions that appear in the dialog boxes launched by setup . exe to
set up the new version of ADF Desktop Integration.

5. If prompted, click Yes to restart the system and complete the setup of ADF
Desktop Integration.

WARNING: After you install ADF Desktop Integration, do not
delete the directory where you copied the setup files. You can delete
the files after removing ADF Desktop Integration from the system.

3.9 Localizing the Setup of Visual Studio Tools for Office

Follow the instructions in this section to localize the setup of Visual Studio Tools for
Office. By default, the installer described in Section 3.5, "Installing ADF Desktop
Integration", runs in English. You can download and install a different language pack
from the Microsoft Download Center for the language that you want to appear when
the installer runs.

This section assumes that no instance of ADF Desktop Integration is present on your
system and that your system uses a non-English version of the operating system. If
ADF Desktop Integration is present, remove it as described in Section 3.6, "Removing
ADF Desktop Integration.”

For information about supported operating systems, see Section 3.2, "Required Oracle
ADF Modules and Third-Party Software."

To localize the setup of Visual Studio Tools for Office:

1. Download the appropriate language pack (for example, French) for Microsoft
Visual Studio Tools for Microsoft Office from the Microsoft Download Center at:

http://www.microsoft.com/downloads/
2. Install the language pack that you downloaded in Step 1.

3. Set up ADF Desktop Integration, as described in Section 3.5, "Installing ADF
Desktop Integration."

Setting Up Your Development Environment 3-7

Localizing the Setup of Visual Studio Tools for Office

3-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

4

Preparing Your Integrated Excel Workbook

This chapter describes preparatory tasks that you must perform in developing your
Fusion web application so that you can integrate an Excel workbook with the finalized
application. This chapter also describes how you configure an Excel workbook before
you add Oracle ADF functionality, using the tools provided in the ADF Desktop
Integration module.

This chapter includes the following sections:
= Section 4.1, "Introduction to Preparing Your Integrated Excel Workbooks"
» Section 4.2, "Adding ADF Desktop Integration to a Fusion Web Application"

= Section 4.3, "Working with Page Definition Files for an Integrated Excel
Workbook"

» Section 4.4, "Adding Integrated Excel Workbook to a Fusion Web Application"

4.1 Introduction to Preparing Your Integrated Excel Workbooks

This chapter, and this guide as a whole, assumes that you have developed a
functioning Fusion web application, as described in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

Having developed your Fusion web application, you perform the tasks described in
this chapter and elsewhere in this guide to configure an integrated Excel workbook
with your Fusion web application. These tasks include adding the bindings that you
require at runtime in the Excel workbook, preparing the Excel workbook for
configuration with Oracle ADF functionality, and configuring the workbook by
adding the Oracle ADF components that provide the functionality you require at
runtime.

Note: Before you start, ensure that you have installed the Designer
edition of ADF Desktop Integration. For more information about the
ADF Desktop Integration editions, see Section 3.5, "Installing ADF
Desktop Integration.”

4.2 Adding ADF Desktop Integration to a Fusion Web Application

You enable Excel desktop integration for your Fusion web application by adding ADF
Desktop Integration to the technology scope of the JDeveloper project where you
develop the Fusion web application.

Preparing Your Integrated Excel Workbook 4-1

Adding ADF Desktop Integration to a Fusion Web Application

4.2.1 How to Add ADF Desktop Integration to Your JDeveloper Project

Use the Project Properties dialog in JDeveloper to add ADF Desktop Integration to the
technology scope of your project.

To add ADF Desktop Integration to your project:

1.
2

5.

Open your project in JDeveloper.

In the Application Navigator, right-click the project to which you want to add
ADF Desktop Integration and choose Project Properties.

If your application uses the Fusion Web Application (ADF) application template,
you select the ViewController project. If your application uses another application
template, select the project that corresponds to the web application.

In the Project Properties dialog, select Technology Scope to view the list of
available technologies.

Select the ADF Desktop Integration and ADF Library Web Application Support
(optional) project technologies and add them to the Selected Technologies list.

Click OK.

Note: You must add ADF Library Web Application Support to the
technology scope if you plan to distribute integrated Excel workbooks
by adding them to ADF library files through EAR and JAR files.

4.2.2 What Happens When You Add ADF Desktop Integration to Your JDeveloper

Project

When you add the ADF Desktop Integration module to the technology scope of your
project, the following events occur:

The project adds the ADF Desktop Integration runtime library. This library
references the following . jar files in its class path:

— adf-desktop-integration.jar
— adf-desktop-integration-model-api.jar
— resourcebundle.jar

The project’s deployment descriptor (web . xml) is modified to include the
following entries:

- An ADF bindings filter (adfBindings)

— Aservletnamed adfdiRemote

Note: The value for the url-pattern attribute of the
servlet-mapping element for adfdiRemote must match the value
of the RemoteServletPath workbook property described in

Table A-18.

— A filter named adfdiExcelDownload

- A MIME mapping for Excel files (. x1sx and .x1sm)

4-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Adding ADF Desktop Integration to a Fusion Web Application

The previous list is not exhaustive. Adding ADF Desktop Integration to a project
makes other changes to web.xm1. Note that some entries in web . xml are added
only if they do not appear in the file.

While updating filter and filter mapping information in the web . xm1 file, ensure that
the filter for ADF Library Web Application Support
(<filter-name>ADFLibraryFilter</filter-name>) appears below the
adfdiExcelDownload filter entries, so that integrated Excel workbooks can be
downloaded from the Fusion web application.

Figure 4-1 shows the Filters tab of the web . xm1 editor in JDeveloper.

Figure 4-1 Filters tab of web.xml

[Eyweb.sml | ®
@

Application Filters GF x

Servlets

Filters

Security plarne, Class 5

Pages trinidad org.apache.myfaces. trinidad.webapp, Trinidad. .. {}

References adfBindings aracle.adf. model. servlet. ADFBindingFilter 0
adfdiExcelDownload oracle.adf, desktopintegration. filker, DIExcelDa, ..
ADFLibraryFilker aracle.adf.library webapp. LibrarvFilter /J Q

rGeneraI Filter rFiIter Mappings rInitiaIization Parameters |

Display Mame: | |

Drescription:

Cwverview | Source | Histary ['_

For more information about web . xm1, see Appendix E, "ADF Desktop Integration
Settings in the Web Application Deployment Descriptor.”

4.2.3 What Happens When You Deploy ADF Desktop Integration Enabled Fusion Web
Application from JDeveloper

When you deploy your ADF Desktop Integration enabled Fusion web application
from JDeveloper, references to the ADF Desktop Integration shared libraries are added
to the appropriate descriptor files. For any Fusion web application that contains one or
more projects referencing the ADF Desktop Integration Model API library, or the ADF
Desktop Integration Runtime library, a platform-dependent reference to the ADF
Desktop Integration Model API shared library is added during deployment.

For any web application module (WAR) project that contains a reference to the ADF
Desktop Integration Runtime library, a platform-dependent reference to the ADF
Desktop Integration Runtime shared library is added during deployment.

4.2.3.1 Deploying your Fusion Web Application on Oracle WebLogic Server
When you deploy your Fusion Web application on Oracle WebLogic Server, the
following happens:

s The META-INF/weblogic-application.xmnl file of the deployed application
EAR contains a library reference to
oracle.adf.desktopintegration.model.

Preparing Your Integrated Excel Workbook 4-3

Adding ADF Desktop Integration to a Fusion Web Application

For example:

<library-ref>
<library-name>oracle.adf.desktopintegration.model</library-name>
</library-ref>

The shared library is delivered in Mw_HOME/oracle_
common/modules/oracle.adf.desktopintegration.model_11.1.1,in
the oracle.adf.desktopintegration.model.ear.

s The WEB-INF/weblogic.xml file of the deployed web application WAR
contains a library reference to oracle.adf.desktopintegration.

For example:

<library-ref>
<library-name>oracle.adf.desktopintegration</library-name>
</library-ref>

The shared library is delivered in Mw_HOME/oracle_
common/modules/oracle.adf.desktopintegration_11.1.1,in the
oracle.adf.desktopintegration.war.

4.2.3.2 Deploying your Web Application on IBM WebSphere Application Server

When you deploy your web application on IBM WebSphere Application Server, the
following happens:

= For applications requiring the ADF Desktop Integration Model API library, or the
ADF Desktop Integration Runtime library, the deployment procedure inserts a
reference to the com/oracle/adfdimodel extension into the
META-INF/MANIFEST.MF file of the application EAR file.

For example:

Manifest-Version: 1.0

Extension-List: adfm adfdimodel
adfm-Extension-Name: com/oracle/adfm
adfm-Specification-Version: 1.0
adfdimodel-Extension-Name: com/oracle/adfdimodel
adfdimodel-Specification-Version: 1.0
UseWSFEP61ScanPolicy: false

s The deployment.xml file for web applications with projects that refer to the
ADF Desktop Integration Runtime library contains a library reference inserted
during deployment.

For example:

<libraries xmi:id="LibraryRef_ 1274886542330_oracle.adf.desktopintegration_1.0_
11.1.1.2.0" libraryName="oracle.adf.desktopintegration_1.0_11.1.1.2.0"
sharedClassloader="true" />

Note: For more information about system administration tasks and
the specifics about shared libraries for these platforms, refer to the
Oracle WebLogic Server and IBM WebSphere Application Server
documentation.

4-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Working with Page Definition Files for an Integrated Excel Workbook

4.3 Working with Page Definition Files for an Integrated Excel Workbook

Page definition files define the bindings that populate the data in the Oracle ADF
components at runtime. Page definition files also reference the action bindings and
method action bindings that define the operations or actions to use on this data. You
must define a separate page definition file for each Excel worksheet that you are going
to integrate with a Fusion web application. The integrated Excel workbook can include
worksheets that do not reference page definition files.

The ADF Desktop Integration task pane displays only those bindings that ADF
Desktop Integration supports in the bindings palette. If a page definition file
references a binding that ADF Desktop Integration does not support (for example, a
graph binding), it is not displayed.

Table 4-1 lists and describes the binding types that the ADF Desktop Integration
module supports.

Table 4-1 Binding Requirements for ADF Desktop Integration Components

ADF Desktop
Integration
component Supported Binding Additional comments

ADF Input Text Attribute binding
ADF Output Text ~ Attribute binding

ADF Label Attribute and list bindings This ADF Desktop Integration component
uses the label property of a control binding.
ADF List of List binding
Values
Tree Node List Tree binding attributes and Tree binding attributes must be associated
list binding with a model-driven list.
ADF Button Various The ADF Button component in ADF Desktop

Integration can invoke action sets. Action sets
can reference action bindings, method action
bindings, or actions exposed by components
in ADF Desktop Integration. For more
information about action sets, see Section 8.2,

"Using Action Sets."
ADF Read-only Tree binding
Table
ADF Table Tree binding

For information about the bindings that components in ADF Desktop Integration use,
see Appendix A, "ADF Desktop Integration Component Properties and Actions."

For information about the elements and attributes in page definition files, see
"pageNamePageDef.xml" section of the Oracle Fusion Middleware Fusion Developer’s
Guide for Oracle Application Development Framework.

For information about ADF data binding and page definition files in a Fusion web
application, see the "Using Oracle ADF Model in a Fusion Web Application" chapter in
the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application Development
Framework.

Preparing Your Integrated Excel Workbook 4-5

Working with Page Definition Files for an Integrated Excel Workbook

4.3.1 How to Create a Page Definition File for an Integrated Excel Workbook

You create and configure a page definition file that determines the Oracle ADF
bindings to expose in your JDeveloper project.

To create a page definition file for an integrated Excel workbook:
1. In]JDeveloper, add a new JSF page in your ADF Desktop Integration application’s
project.

Tip: Add an ADF Faces Table component to the JSF page.
JDeveloper generates the tree bindings in the JSF page that the ADF
Table-type components use in the page definition file.

Note: JDeveloper creates a page definition file’s name based on the
name of the JSF page you choose. If you want a page definition file’s
name to indicate an association with a particular workbook or
worksheet, choose this name when creating the JSF page.

2. In the Application Navigator, select the page, right-click and select Go to Page
Definition.

3. Inthe Confirm Create New Page Definition dialog, click Yes.

4. Add the bindings that you require for your integrated Excel workbook to the page
definition file.

5. Save the page definition file.

Figure 4-2 shows the ExcelPriceListPageDef .xml page definition file that
the Price List worksheet in the EditPricelList-DT.x1sx workbook references.

Figure 4-2 Page Definition File with Bindings for an Integrated Excel Workbook

[“]ErcelPriceListPageDef.xml | =
Page Data Binding Definition
This shiows the Oracle ADF data bindings defined for your page. Select a binding ko see its relationship ko the underlying Data Control,
Data Binding Registry: oracle/foddemo/masterpricelist/view DataBindings. cpx
r Bindings and Executables r Contextual Events r Parameters |
= Model
Bindings e Z X Executables 3 7 ¥ Data Control
. PraductTable — [ProductListIterator [MasterPriceListServiceDataContral
E8) Execute (=] wariables B ActiveDiscounts
[searchTerm 8% invokeConnectelser B AvailableLanguagesLOv
@ includeliscontinued E ProductCateqaries
executesimpleProductQuery .
executeadvancedProduct Query| E ProductStatusLoy
(&b cCommit E ProductSuppliers
lgetCannEctedUser E TopLevelCategories
oggecintiser : getConnectedUser)
Owerview | Source | Histary [’_

For information about working with page definition files, see the "Working with
Page Definition Files" section in the Oracle Fusion Middleware Fusion Developer’s
Guide for Oracle Application Development Framework.

6. Make and run your Fusion web application if you plan to run the integrated Excel
workbook in test mode or publish it.

4-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Working with Page Definition Files for an Integrated Excel Workbook

4.3.2 What Happens When You Create a Page Definition File

JDeveloper creates the DataBindings . cpx file the first time that you add a page
definition file in your JDeveloper project using the procedure described in
Section 4.3.1, "How to Create a Page Definition File for an Integrated Excel Workbook."

The DataBindings . cpx file defines the binding context for the Fusion web
application and provides the metadata from which the Oracle ADF bindings are
created at runtime. Information about working with this file can be found in the
"Working with the DataBindings.cpx File" section of the Oracle Fusion Middleware
Fusion Developer’s Guide for Oracle Application Development Framework. Information
about the elements and attributes in the file can be found the "DataBindings.cpx"
section of the same guide.

4.3.3 Reloading a Page Definition File in an Excel Workbook

If you make changes in your JDeveloper desktop integration project to a page
definition file that is associated with an Excel worksheet, rebuild the JDeveloper
desktop integration project and reload the page definition file in the Excel worksheet
to ensure that the changes appear in the ADF Desktop Integration task pane. You
associate a page definition file with an Excel worksheet when you choose the page
definition file, as described in Section 4.4.3, "How to Configure a New Integrated Excel
Workbook."

The Oracle ADF tab provides a button that reloads all page definition files in an Excel
workbook.

Errors may occur when you switch an integrated Excel workbook from design mode
to runtime if you do not rebuild the JDeveloper desktop integration project and restart
the application after making changes to a page definition file. For example, if you:

= Remove an element in a page definition file
= Do not rebuild and restart the Fusion web application
= Or do not reload the page definition file in the integrated Excel workbook

an error message such as the following may appear when you attempt to switch a
workbook to test mode:

[ADFDI-05530] unable to initialize worksheet: MyWorksheet
[ADFDI-05517] unable to find control MyBindingThatWasRemoved

To reload page definition files in an Excel workbook:
1. Ensure that you have saved the updated page definition file in JDeveloper.

2. In the Excel workbook, click the Refresh Bindings button in the Components
group of the Oracle ADF tab.

For information about the Refresh Bindings button, see Section 5.1, "Introduction
to Development Tools."

4.3.4 What You May Need to Know About Page Definition Files in an Integrated Excel
Workbook

Note the following points about page definition files in an ADF Desktop Integration
project.

» Integrating Multiple Excel Worksheets — You can integrate multiple worksheets in
an Excel workbook with a Fusion web application. You associate a page definition

Preparing Your Integrated Excel Workbook 4-7

Adding Integrated Excel Workbook to a Fusion Web Application

file with each worksheet as described in Section 4.4.4, "How to Add Additional
Worksheets to an Integrated Excel Workbook."

EL Expressions in a Page Definition File — Use the following syntax to write EL
expressions in a page definition file:

Dynamic (${})
Do not use the syntax Deferred (#{}) to write EL expressions. EL expressions

using this syntax generate errors as they attempt to access the ADF Faces context
which is not available

Note: EL expressions that you write for ADF Desktop Integration
components in the integrated Excel workbook, such as ADF Input
Text, must use the Deferred (#{}) syntax.

4.4 Adding Integrated Excel Workbook to a Fusion Web Application

Before you start using an Excel workbook with Oracle ADF functionality, you must
integrate and configure the workbook with your Fusion web application in the
following way:

1.

3.

Create a new integrated Excel workbook, or enable an existing workbook to
integrate it with Fusion web application. You can choose either of the two
methods.

Configure your integrated Excel workbook by setting several properties after the
workbook is enabled for ADF Desktop Integration.

Add additional worksheets, if required.

After you complete these steps, you can add Oracle ADF functionality using the tools
provided by the ADF Desktop Integration module.

You can add an integrated Excel workbook to your Fusion web application in
JDeveloper, or create an Excel workbook and enable it for ADF Desktop Integration.

4.4.1 How to Add an Integrated Excel Workbook in JDeveloper

You can add an integrated Excel workbook to a Fusion web application in JDeveloper
from the New Gallery.

To add an integrated Excel workbook in JDeveloper:

1.

Open your Fusion web application in JDeveloper.

Ensure that the application is configured for ADF Desktop Integration. For more
information about how to configure your application with ADF Desktop
Integration, see Section 4.2, "Adding ADF Desktop Integration to a Fusion Web
Application."

In the Application Navigator, select the project, such as ViewController, to which
you want to add your new workbook.

From the File menu, choose New.

In the New Gallery dialog, expand Client Tier, select ADF Desktop Integration,
and then select Microsoft Excel Workbook, and click OK.

4-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

Adding Integrated Excel Workbook to a Fusion Web Application

5. In the Create ADF Desktop Integration-Enabled Excel Workbook dialog, if
required, edit the file name of the workbook and its location. By default, the
integrated Excel workbook is saved as adfdi-workbook.x1lsx in the
\src\excel directory of the selected project.

6. Click OK.

JDeveloper adds an integrated Excel workbook into your Fusion web application. In
Application Navigator, double-click the workbook to open and configure it as desired.
For more information about how to configure the integrated Excel workbook, see
Section 4.4.3, "How to Configure a New Integrated Excel Workbook."

Tip: If you create and add an integrated Excel workbook in
JDeveloper, you may not be required to configure various workbook
properties, as described in Section 4.4.3, "How to Configure a New
Integrated Excel Workbook."

4.4.2 How to Enable ADF Desktop Integration in a Workbook

If you want to integrate an existing workbook with your Fusion web application, you
must enable ADF Desktop Integration for the workbook. For information about the file
formats of Excel workbooks that you can convert for integration with a Fusion web
application, see Section 3.2, "Required Oracle ADF Modules and Third-Party
Software."

To enable ADF Desktop Integration in an Excel workbook:
1. In Excel, open your workbook, or create a new blank workbook.

2. In the Oracle ADF tab, click Workbook Properties.
3. In the Enable Workbook dialog, click Yes.

The ADF Desktop Integration framework prepares your workbook and initializes
the ADF Desktop Integration Designer task pane.

4. Save the workbook.

Although you can store the Excel workbooks that you integrate with Fusion web
applications anywhere you choose, there are several advantages to storing them with
the other files of your Fusion web application. Some of these advantages are:

= Source control of the workbooks
= Facilitating the download of workbooks from web pages

s The file system folder picker that appears the first time a workbook is opened
defaults to the location where you store the workbook

For example, the Master Price List module of the Fusion Order Demo stores the Excel
workbooks it integrates in the following subdirectory:

FOD_
HOME\MasterPriceList\ViewController\src\oracle\foddemo\masterpri
celist\excel

where FOD_HOME is the root directory that stores the source files for the Fusion Order
Demo application.

4.4.3 How to Configure a New Integrated Excel Workbook

After the workbook is integrated with ADF Desktop Integration, you must configure
it.

Preparing Your Integrated Excel Workbook 4-9

Adding Integrated Excel Workbook to a Fusion Web Application

To configure a new integrated Excel workbook:

1. When you enable ADF Desktop Integration in a workbook, the Browse for Folder
dialog automatically appears, as illustrated in Figure 4-3.

Figure 4-3 Browse For Folder Dialog

Select IDeveloper Application Home Folder

+ .,J My Documents

= j My Computer
+ e Local Disk (T
+ % Local Disk {D:)
F & DVD-RW Drive (F:)
+ [} Control Panel

% My Network Places
2 Recycle Bin

hS b4

[OK][Cancel]

Use the Browse for Folder dialog to select the JDeveloper application home
directory. In a typical JDeveloper project, the JDeveloper application home
directory stores the application_name.jws file. The value you select is assigned to the
ApplicationHomeFolder workbook property.

Note: The Browse for Folder dialog does not appear if the workbook
is located within the JDeveloper application workspace. In such a
case, the value of ApplicationHomeFolder workbook property is
assigned automatically.

2. In the Workbook group of the Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, set or verify the values for the following
properties so that you can switch between design mode and test mode as you
configure your workbook:

s ApplicationHomeFolder

The value for this property corresponds to the absolute path for the root
directory of the JDeveloper application workspace (. jws). You specified this
value in Step 1.

Note: If you are opening the Excel file after moving your application
directory, ensure that the ApplicationHomeFolder property’s
value reflects the correct path.

m Project

The value for this property corresponds to the name of JDeveloper project

(. Jpr) in the JDeveloper application workspace. To change the project, click
the ellipsis (...) button and choose the project from the Project dialog that lists
the projects defined in the JDeveloper application workspace.

By default, Project is set to the name of the project that contains the Excel
document. ADF Desktop Integration loads the names of the available projects

4-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

Adding Integrated Excel Workbook to a Fusion Web Application

from the application_name. jws specified as a value for
ApplicationHomeFolder.

s WebAppRoot

Set the value for this property to the fully qualified URL for the web context
root that you want to integrate your desktop application with. The fully
qualified URL has the following format:

http://<hostname>:<portnumber>/context-root

In JDeveloper, you specify the web context root (context-root) in the Java
EE Application page of the Project Properties dialog. Figure 4-4 shows the
web context root for the Master Price List module.

Figure 4-4 Setting Web Context Root in JDeveloper

Project Properties - D:\JDeveloper\mywork\FOD_demo\MasterPricelList\WiewController\WiewController... E|

':\'“ || Java EE Application
[#- Project Source Paths -::::- Use Custom Settings
[ADF Model (3) Use Project Settings
----- ADF Yiew
- Ak The Following properties are used when running this project as a Java EE module or application in
i the integrated 'WLS server,
[#-- Business Components
) il
e Dompl Zr . Jawva EE Web Application Name:
----- ependencies
F [FoprasterpriceList |
----- Deployment
----- EJB Module Java EE Web Context Root:
'''' Extension [FopmasterpriceList |
[Javadoc

Inkeqrated WLS Command Line:
----- J5P Tag Libraries $4jvm} $4java.options}

----- 5P Wisual Editor

----- Libraries and Classpath
[Maven

----- Resource Bundle

----- Run/DebugfPrafile

----- Technology Scope

Restore Default

[] Enable Access Log

Help | | [0]4 J | Cancel |

Note that the fully qualified URL is similar to the following if you set up a test
environment on your system using the Master Price List module:

http://127.0.0.1:7101/FODMasterPriceList

For information about how to verify that the Fusion web application is online
and that it supports ADF Desktop Integration, see Section C.1, "Verifying That
Your Fusion Web Application Supports ADF Desktop Integration."

If you are integrating an Excel file with a secure Fusion web application, it is
recommended that you use the ht tps protocol while entering WebAppRoot’s
value. For more information about securing your Fusion web application, see
Oracle Fusion Middleware Programming Security for Oracle WebLogic Server.

s WebPagesFolder

Set the value for this property to the directory that contains web pages for the
Fusion web application. The directory path should be relative to the value of
ApplicationHomeFolder. For example, in the EditPriceList-DT.xlsx
workbook, WebPagesFolder is set to ViewController\public_html.

Preparing Your Integrated Excel Workbook 4-11

Adding Integrated Excel Workbook to a Fusion Web Application

Figure 4-5 shows an implementation of workbook properties in the Edit
Workbook Properties dialog of Master Price List module’s
EditPriceList-DT.x1sx workbook.

Figure 4-5 Edit Workbook Properties Dialog

Edit Workbook Properties ﬁ

Edit the properties and prezs OK. to save your changes.
| A

Rurtime Ribbon Tab

B Data
EBrandingltems MameY¥ aluePair[] Array
Paramneters
FemateServletPath fadfdiRemoteServlet
Resources ResourceBundle[] Array
‘wiehAppR oot http: /flocalhost: 7101 /FODM asterPriceList
E Design
Anrotation
ApplicationHomeFolder D:\JDeveloper\mywork\FOD_demo\M asterPriceList
Praject ViewController
‘wiebPagesFolder YiewController\public_html
E Security
Login

Reset WorkbooklD

Behavior

I oK. l [Cancel

4. Click OK.
5. In the Workbook group of the Oracle ADF tab, click Worksheet Properties.

6. In the Edit Worksheet Properties dialog, click the ellipsis button (...) beside the
Page Definition input field and select a page definition file from the dialog that
appears.

7. Click OK.

The Excel worksheet appears with ADF Desktop Integration in Excel's task pane.
The bindings of the page definition file, you selected in Step 6, appear in the
Bindings tab.

8. Save the Excel workbook.

4.4.4 How to Add Additional Worksheets to an Integrated Excel Workbook

To use Oracle ADF functionality, you must associate each worksheet with a page
definition file. You associate a page definition file with a worksheet when you add a
worksheet to the integrated Excel workbook. You can integrate multiple worksheets in
an integrated Excel workbook with a Fusion web application. Use a different page
definition file for each worksheet in the integrated Excel workbook.

To associate a page definition file with an Excel worksheet:

1. While the Excel workbook is in design mode, click the Home tab in Excel ribbon,
and then choose Insert > Insert Sheet in the Cells group.

2. In the Choose Page Definition dialog, select the page definition file.

4-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

Adding Integrated Excel Workbook to a Fusion Web Application

This populates the bindings palette in the ADF Desktop Integration task pane with
the bindings contained in the page definition file. You can now configure the
worksheet with Oracle ADF functionality.

Preparing Your Integrated Excel Workbook 4-13

Adding Integrated Excel Workbook to a Fusion Web Application

4-14 Desktop Integration Developer's Guide for Oracle Application Development Framework

O

Getting Started with the Development Tools

This chapter describes how to use the development tools provided by ADF Desktop
Integration. It provides an overview of the development environment that Oracle ADF
exposes within Excel and goes on to describe how you display and use the different
elements of this environment.

This chapter includes the following sections:

= Section 5.1, "Introduction to Development Tools"

s Section 5.2, "Oracle ADF Tab"

» Section 5.3, "ADF Desktop Integration Designer Task Pane"
= Section 5.4, "Using the Bindings Palette"

= Section 5.5, "Using the Components Palette"

= Section 5.6, "Using the Property Inspector”

= Section 5.7, "Using the Binding ID Picker"

= Section 5.8, "Using the Expression Builder"

= Section 5.9, "Using the Web Page Picker"

= Section 5.10, "Using the File System Folder Picker"
= Section 5.11, "Using the Page Definition Picker"

= Section 5.12, "Using the Collection Editors"

5.1 Introduction to Development Tools

ADF Desktop Integration provides several tools that you use to configure Excel
workbooks so that they can access Oracle ADF functionality. The tools are available in
the Oracle ADF tab and in the ADF Desktop Integration Designer task pane.

Before you start using the development tools, you must know that there are two
modes in which you can work while you configure the Excel workbook that you
integrate with a Fusion web application. The first mode is the design mode, and the
second mode is the test mode.

In design mode, you use the tools provided by Oracle ADF in Excel to design and
configure your integrated Excel workbook. In test mode, you can view and test the
changes you make in design mode in the same way that the end user views the
published integrated Excel workbook.

Getting Started with the Development Tools 5-1

Oracle ADF Tab

5.2 Oracle ADF Tab

The Oracle ADF tab, also shown in Figure 5-1, provides various buttons in design
mode.

Figure 5-1 Oracle ADF Tab in Design Mode

g = “ - EditPricelist-DT.xlsx - Microsoft Exce
%)

—/ Home Insert Page Layout Formulas Data Review View Developer Oracle ADF
@ Workbook Properties E; Insert Component = a’) Refresh Bindings D D @ Set Qutput Level @
@ Warksheet Properties @ Edit Properties iﬁﬁ. Add Log Qutput File
= Run Stop Console X Publish
(@) About x Delete E{’) Refresh Config

Workbook F] ADF Components (F] Test Logging Publish

You can use Oracle ADF tab buttons to invoke the actions described in Table 5-1.

Table 5-1 Oracle ADF Tab Options

Mode when the

In this button is
group... Click this button... To... available...
Workbook Display the Edit Workbook Design

WA mrl O r i
Q] workbook Properties Properties dialog to view and

edit integrated Excel workbook
properties.

The button is also used to enable
ADF Desktop Integration in a
non-integrated Excel workbook.

Workbook Display the Edit Worksheet Design
Properties dialog to view and
edit the current worksheet

properties.

@ Warksheet Properties

Workbook = Open the About Oracle ADF Design, Test,
(© About 11g Desktop Integration dialog ~ Runtime
that provides version and
property information of
integrated Excel workbook.

The button is also available in
non-integrated Excel workbooks
after ADF Desktop Integration is
installed.

ADF
Components

Display a dropdown list of Design
Oracle ADF components that

you can insert in the selected

cell.

E';] Insert Component -

ADF
Components

Display the property inspector ~ Design
window to view and edit

component properties of the

selected component.

B Edit Properties

ADF 3¢ Delete the selected component ~ Design
Components pele from the Excel worksheet.

5-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Oracle ADF Tab

Table 5-1 (Cont.) Oracle ADF Tab Options

Mode when the
In this button is
group... Click this button... To... available...

ADF
Components

= Reload the application Design
workspace file (. jws) and
project file (. jpr)
referenced by the workbook
properties of the integrated
Excel workbook.

Eﬂ Refresh Bindings

= Refresh all information from
the page definition files
used in the active integrated
Excel workbook.

Any modifications that you
made to the page definition files
in the JDeveloper project now
become available in the Excel
workbook. For more
information, see Section 4.3.3,
"Reloading a Page Definition File
in an Excel Workbook."

Test Switch the Excel workbook from Design
design mode to test mode. This

button is active only when you

are in design mode.

Switch the Excel workbook from Test
test mode to design mode. This

button is active only when you

are in test mode.

Test

ﬂ. g
=] = i;
= =

For more information about
switching between design mode
and test mode, see Section 13.3,
"Testing Your Integrated Excel
Workbook."

Logging Display a dialog to review the Design, Test
client-side log entries. For more

information, see Section C.3.2,

Consale "About Client-Side Logging."

Logging - Reload the ADF Desktop Design, Test
W Refresh Config Integration configuration file.
For more information, see
Section C.3.2, "About Client-Side

Logging."

Loggin Display the Set Output Level Design, Test
BETe A set Output Level diach))g}t]o choose cli?nt—side log &
output level. For more
information, see Section C.3.2,
"About Client-Side Logging."

Create a new temporary logging Design, Test
listener to act as a client-side log

output file. For more

information, see Section C.3.2,

"About Client-Side Logging."

Logging i Add Log Output File

Getting Started with the Development Tools 5-3

ADF Desktop Integration Designer Task Pane

Table 5-1 (Cont.) Oracle ADF Tab Options

Mode when the

In this button is
group... Click this button... To... available...
Publish Publish the Excel workbook after Design
@ you complete the integration
between the Excel workbook and

Publish the Fusion web application.

For more information about
publishing an integrated Excel
workbook, see Chapter 14,
"Deploying Your Integrated
Excel Workbook."

Tip: For quick and easy access, you can add Oracle ADF tab buttons
to the Excel Quick Access toolbar.

5.3 ADF Desktop Integration Designer Task Pane

Figure 5-2 displays the ADF Desktop Integration Designer task pane.

Figure 5-2 ADF Desktop Integration Designer Task Pane

Oracle ADF 11g Desktop Integration * X

Select a cell in the worksheet ta ingert a binding or component
inta it.

Bindings Components

Available Components:
2 ADF Input Text

B ADF Output Text
&7 BDF Label

ADF List of Yalues
(3 ADF Button

[ADF Table

[ADF Read-only Table

Insert Component

‘Warksheet Properties...
‘wiorkbook Properties. ..

About Oracle ADF 119 Deskkop Inkegration. .,

You can invoke the ADF Desktop Integration Designer task pane through launcher
buttons available in the bottom-right corner of the Workbook and ADF Components
group on the Oracle ADF tab, as illustrated in Figure 5-3.

Figure 5-3 ADF Desktop Integration Designer Task Pane Launcher Buttons

@ Workbook Praperties Ef Insert Compaonent ~ Eﬂ Refresh Bindings
@ Worksheet Properties @ Edit Properties
(@) About K Delete

Waorkbook ADF Components

5-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using the Bindings Palette

Table 5-2 lists the view tabs and links that appear in the task pane, provides a brief
description of each item.

Table 5-2 Overview of ADF Desktop Integration Designer Task Pane

Task Pane Ul Element Description

Workbook Properties Click to display the Edit Workbook Properties dialog. This
dialog enables you to view and edit properties that affect the
whole workbook. Examples include properties that reference the
directory paths to page definition files, the URL for your

Fusion web application, and so on.

Worksheet Properties Click to display the Edit Worksheet Properties dialog. This
dialog enables you to view and edit properties specific to the
active worksheet. An example is the file name of the page
definition file that you associate with the worksheet.

About Click to display the About dialog. This dialog provides the
version and property information that can be useful when
troubleshooting an integrated Excel workbook. For example, it
provides information about the underlying Microsoft NET and
Oracle ADF frameworks that support an integrated Excel
workbook.

5.4 Using the Bindings Palette

The bindings palette presents the available Oracle ADF bindings that you can insert
into the Excel worksheet. The page definition file for the current Excel worksheet
determines what Oracle ADF bindings appear in the bindings palette. Figure 5-4
shows a bindings palette populated with Oracle ADF bindings in the ADF Desktop
Integration Designer task pane. Note that the bindings palette does not display
bindings that an integrated Excel workbook cannot use, so the bindings that appear
may differ from those that appear in the page definition file viewed in JDeveloper.

Figure 5-4 ADF Bindings Palette in the ADF Desktop Integration Designer Task Pane
Oracle ADF 11g Desktop Integration * X

Select a cell in the worksheet ta insert a binding or compaonent
into it.

Bindings Components

Page Definition: ExcelPriceListPageDef

Available Bindings:

E ProductTable {tree)

Execute (action)

EI searchTerm {attributevalues)

EI includeDiscontinued {attributeyalues)
executeSimpleProductQuery {methodaction)
executeddvancedProduckQuery (methodaction)
Commit {action)

getConnectedUser (methodAction)

EI loggedInUser {attributevalues)

Insett Binding

‘wrksheet Properties...
wiorkbook Properties...

About Cracle ADF 119 Deskkop Inteqration. ..

You use the bindings palette in design mode to insert a binding. When you attempt to
insert a binding, ADF Desktop Integration inserts an Oracle ADF component that
references the binding you selected. ADF Desktop Integration also prepopulates the

Getting Started with the Development Tools 5-5

Using the Components Palette

properties of the Oracle ADF component with appropriate values. For example, if you
insert a binding, such as the Commit (action) binding illustrated in Figure 54, the
property inspector for an Oracle ADF Button component appears. This Oracle ADF
Button component has values specified for its ClickActionSet that include
invoking the Commit action binding.

To insert an Oracle ADF binding, select the cell to anchor the Oracle ADF component
that is going to reference the binding in the Excel worksheet, and then insert the
binding in one of the following ways:

= Double-click the Oracle ADF control binding you want to insert.

= Select the control binding and click Insert Binding in the ADF Desktop
Integration Designer task pane.

A property inspector for the Oracle ADF component that is associated with the
binding you attempt to insert appears. In some instances, you may be prompted to
select one Oracle ADF component from a list of Oracle ADF components where
multiple Oracle ADF components can be associated with the binding. After you
select an Oracle ADF component from the list, a property inspector appears.

5.5 Using the Components Palette

The components palette displays the available ADF Desktop Integration components
that you can insert into an Excel worksheet. Figure 5-5 shows the components palette
as it appears in the ADF Desktop Integration Designer task pane.

Figure 5-5 Oracle ADF Components Palette in the ADF Desktop Integration Designer
Task Pane

Bindings Components

Available Components:
J2 ADF Inpuk Text

A\ ADF Output Text
1% ADF Label

ADF List of Yalues
[ADF Button

[E] ADF Table

[EH ADF Read-only Table

Insert Component

You use the components palette in design mode to insert an Oracle ADF component.
First, select the cell to anchor the Oracle ADF component in the Excel worksheet, and
then insert the Oracle ADF component in one of the following ways:

= Double-click the Oracle ADF component you want to insert.

= Select the component and click Insert Component in the ADF Desktop Integration
Designer task pane.

In both cases, the Oracle ADF component’s property inspector appears. Use the
property inspector to specify values for the component before you complete its
insertion into the Excel worksheet.

Note: The ADF Desktop Integration components are also available in
the Insert Component dropdown list of Oracle ADF tab.

5-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using the Property Inspector

5.6 Using the Property Inspector

The property inspector is a dialog that enables you to view and edit the properties of
Oracle ADF bindings, Oracle ADF components, Excel worksheets, or the Excel
workbook. You can open the property inspector in one of the following ways:

= Select the component or binding, and click the Edit Properties icon in the Oracle
ADF tab.

= Select the component or binding, right-click and choose Edit ADF Component
Properties from the context menu.

Note that the ADF Button does not support the right-click action, click the button
to open the property inspector dialog.

The property inspector also appears automatically after you insert an Oracle ADF
binding or component into an Excel worksheet. Figure 5-6 shows a property inspector
where you can view and edit the properties of an Oracle ADF Button component.

At design time, you can edit key properties of certain Oracle ADF components by
editing the Excel cell where the component appears. For example, you can edit the
Value property of ADF Label and ADF Input Text components by editing the value
displayed in the cell.

Note: The property inspector does not validate that values you enter
for a property or combinations of properties are valid. Invalid values
may cause runtime errors. To avoid runtime errors, make sure you
specify valid values for properties in the property inspector.

You can display the properties in an alphabetical list or in a list where the properties
are grouped by categories such as Behavior, Data, and so on. Table 5-3 describes the
buttons that you can use to change how properties display in the property inspector.

Table 5-3 Buttons to Configure Properties Display in Property Inspector

Button Description

Use this button to display the properties according to category.

Use this button to display the properties in an alphabetical list.

In Figure 5-6, the property inspector displays the properties grouped by category.

Getting Started with the Development Tools 5-7

Using the Binding ID Picker

Figure 5-6 Property Inspector Window for an Oracle ADF Component

Edit Component: ADF Button g|
Edit the properties and press OK to save your changes.
3
El Behavior
B ClickActionSet
ActionOptions
Action[] Array [
= [0] Upload data
Action Upload
Annotation Upload data
Component| D TAB416222534
Alert
Annotation
Statuz
B Data
Label t#{res['excel saveButton.label'l}
E Design
Antotation
E Layout
LowerRightComer F10
Pasitian F10
Actions

The collection of actions invoked.

Ok] [Cancel

5.7 Using the Binding ID Picker

The binding ID picker is a dialog that enables you to select Oracle ADF bindings at
design time to configure the behavior of Oracle ADF components at runtime. You
invoke the binding ID picker from the property inspector. The binding ID picker filters
the Oracle ADF bindings that appear, based on the type of binding that the Oracle
ADF component property accepts. For example, the SuccessActionID property for
an ADF Button component supports only action bindings. Therefore, the binding ID
picker filters the bindings from the page definition file so that only action bindings
appear, as illustrated in Figure 5-7.

5-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using the Expression Builder

Figure 5-7 Binding ID Picker

E dit the properties and press OK to save your changes.

| A

=l

E Behavior ~
B ClickfctionSet

B ActionOptions
Abort0nF ailure True

Failuredctionl D
SucceszdctionlD
B Actions Select Binding r$_<|
= [0 -
Ation . Page Definiion: ExcelPriceListPageDef
Annotation

Component| D
Alert
Annotation

{i} Execute [action)
executeSimpleProductQuery [method&ction)

Status executetdvancedProductluery [methoddction]
B Data 8% Commit [action)

Label getConnectedU ser [methodAction)
E Design

Annotation

SuccessActionlD
The action binding invoked wi

Cancel

For more information about ADF Desktop Integration component properties and the
bindings they support, see Appendix A, "ADF Desktop Integration Component
Properties and Actions."

5.8 Using the Expression Builder

You use the expression builder to write Expression Language, or EL, expressions that
configure the behavior of components at runtime in the Excel workbook. You invoke
the expression builder from the property inspector of component properties that
support EL expressions. For example, the Label property in Figure 5-8 supports EL
expressions and, as a result, you can invoke the expression builder to set a value for
this property.

You can reference bindings in the EL expressions that you write. Note that the
expression builder does not filter bindings. It displays all bindings that the page
definition file exposes. See Table 4-1 to identify the types of bindings that each ADF
Desktop Integration component supports.

To add an expression in the Expression box, select the item and click Insert Into
Expression. You can also double-click the item to add it in the Expression box.
Table 5-4 describes the folders available in the expression builder.

Getting Started with the Development Tools 5-9

Using the Web Page Picker

Figure 5-8 Expression Builder

Edit Expression

E wprezsion:

H @ ¢

X

&

m Bindings

{21 Companents
{21 Resources

23 Styles

{21 warkbocok

[0 Warkshest

{23 Excel Functions

l[Cancel]

Table 5-4 Expression Builder Folders

Folder Name

Description

Bindings

Components

Resources
Styles

Workbook
Worksheet

Excel Functions

Lists the bindings supported in ADF Desktop Integration from
the current worksheet's page definition.

Lists the ADF components available in the current worksheet.

Lists the resource bundles registered in Workbook . Resources
along with the built-in resource bundle _ADFDIres.

Lists all Excel styles defined in the current workbook. For more
information, see Section 9.2, "Working with Styles.".

Lists parameters defined in Workbook . Parameters.
Lists the errors expression.

Lists sample Excel functions that you can use with ADF Desktop
Integration. For more information, see Excel's documentation.

For more information about using the expression builder, see Section 9.3, "Applying
Styles Dynamically Using EL Expressions.” For information about the syntax of EL
expressions in ADF Desktop Integration, and guidelines on how you write these
expressions, see Appendix B, "ADF Desktop Integration EL Expressions.”

5.9 Using the Web Page Picker

Use the web page picker to select a web page from your Fusion web application. At
runtime, an Oracle ADF component, for example an Oracle ADF Button component,
can invoke the web page that you associate with the Oracle ADF component.

You can invoke the web page picker when you add a Dialog action to an action set in
the Action Collector Editor. You use the web page picker to specify a web page for the
Page property of the Dialog action, as illustrated in Figure 5-9.

5-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using the File System Folder Picker

Figure 5-9 Web Page Picker Dialog

ActionOptions
Actions

Members: Dialog properties:

T + i o

Select Page for Dialog DZ|

‘wieb Pages Folder:

| D Developermywirk F 0D dermio’M asterPricelist\iewContrales public: htm |

w

]2

Page Prefix:

|a’faces |

Choose Page:

Aogin.jzpx

M asterPriceLiztT emplate. jzpx

secured/excelddySearch jsps :

= B Asecured/Information. jzps f—
Jeecured/LandingPad jzpx

[Jeecured/FricelistSummary. jzpx

| B

|

(2] | Cancel |

For more information about displaying web pages in your integrated Excel workbook,
see Section 8.4, "Displaying Web Pages from a Fusion Web Application."

5.10 Using the File System Folder Picker

Use the file system folder picker to navigate over the Windows file system and select
folders. You use this picker to specify values for the following workbook properties:

s ApplicationHomeFolder
s WebPagesFolder

The first time you open an Excel workbook the picker appears so that you can set
values for the previously listed properties. For more information about opening an
Excel workbook for the first time and the properties you set, see Section 4.4.3, "How to
Configure a New Integrated Excel Workbook."

Figure 5-10 shows the file system folder picker selecting a value for the
ApplicationHomeFolder workbook property.

Getting Started with the Development Tools 5-11

Using the Page Definition Picker

Figure 5-10 File System Folder Picker

[Runtime Ribbon T ab
E Data
Brandingltemns
Parameters
RemoteServietPath
Resources

Browse For Folder

Choose JDeveloper Application Home folder

wiebdpph oot a:
a g;s;i::on = (3 For_demo -
ApplicationHomeF older I3 CompositeServices |
Praject I5) FOD_demo
‘WebPagesFaolder I25) Infrastruckur
kID = @ il isk
Bl Security E 3 .adf
Lagin # 3 .data i
&) Model
T E I3 sre =
: BeselworkboodlD () YiewCankroller |

ApplicationHomeFolder <] | e

The absolute file path to the |

L Ok |][Cancel] :

5.11 Using the Page Definition Picker

Use the page definition picker to select the page definition ID of a page definition file
and associate the file with a worksheet. The picker appears the first time that you
activate a worksheet in an integrated Excel workbook. It can also be invoked when
you attempt to set a value for the worksheet property, PageDefinition, as
illustrated in Figure 5-11.

Figure 5-11 Page Definition Picker

Edit Worksheet Properties |X|

Edit the properties and press OK to save your changes.

El Behavior
Events ‘WorksheetE vent[] Array
Pratection
Ribbon Commands ‘WorksheetMenultem[] Array
El Data e —
Page Defirition Page Definition |£|
Parameters
BowData Choose a Page Definition
ServerContext :
Title [P I
Design ExcelédvPricelistPageD ef
g enceltdvSearchPageDef
ExcelReadOnlyPageDef

oracle_foddemo_masterpricelist_view PricelistSummaryPageD ef
oracle_foddemo_masterpricelist_view_loginPageD ef
oracle_foddemo_masterpricelist_view_LandingPadPageDef

oracle_foddemo_masterpricelist_view_|nformationPageDef

Page Definition
The page definition file azsociated

Ok] [Cancel

5-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using the Collection Editors

For more information about page definition files, see Section 4.3, "Working with Page
Definition Files for an Integrated Excel Workbook."

5.12 Using the Collection Editors

ADF Desktop Integration uses collection editors to manage the properties of elements
in a collection. The title that appears in a collection editor’s title bar describes what the
collection editor enables you to configure. Examples of titles for collection editors
include CacheDataContext Collection Editor, TableColumn Collection Editor, and
the Action Collection Editor. These collection editors allow you to configure
collections of cached data, table columns in the ADF Table component, and actions in
an action set. Figure 5-12 shows the collection editor that configures an action set for
the Search button that appears at runtime in the Master Price List module’s
EditPriceList-DT.x1sx workbook.

Figure 5-12 Collection Editor

Edit the properties and press OK to save your changes.
| A

ozl | B
E Behavior

= Cl'CkA_Ct'DnS'_Bt Members: Upload data properties:
ActionO ptiohs —

B Actions ELHN =)
01 * = Action

Alert m Upload [
Annatation Companent! D TAB416222534
Status E Design
El Data Annotation Upload data
Label
E Design
Antotation

Action Collection Editor

-

E Layout
LawerRightComer
Position

Actions QK H Cancel]

The collection of acti

[0K][Cancel]

Tip: Write a description in the Annotation field for each element that
you add to the Action Collection Editor. The description you write
appears in the Members list view and, depending on the description
you write, may be more meaningful than the default entry that ADF
Desktop Integration generates.

Getting Started with the Development Tools 5-13

Using the Collection Editors

5-14 Desktop Integration Developer's Guide for Oracle Application Development Framework

6

Working with ADF Desktop Integration

Form-Type Components

This chapter describes how you can insert and configure components that ADF
Desktop Integration provides to allow end users to manage data retrieved from a
Fusion web application.

This chapter includes the following sections:

Section 6.1, "Introduction to ADF Desktop Integration Form-Type Components"
Section 6.2, "Inserting an ADF Button Component"

Section 6.3, "Inserting an ADF Label Component"

Section 6.4, "Inserting an ADF Input Text Component"

Section 6.5, "Inserting an ADF Output Text Component"

Section 6.6, "Inserting an ADF List of Values Component"

Section 6.7, "Displaying Output from a Managed Bean in an ADF Component"

Section 6.8, "Displaying Concatenated or Calculated Data in Components”

6.1 Introduction to ADF Desktop Integration Form-Type Components

Rather than expose an ADF Form component in the components palette described in
Section 5.5, "Using the Components Palette," ADF Desktop Integration uses the
following components to create form-type functionality in an integrated Excel
workbook:

ADF Input Text
ADF Output Text
ADF Label

ADF List of Values
ADF Button

Note: ADF Desktop Integration does not support components
inserted in a merged cell.

Working with ADF Desktop Integration Form-Type Components 6-1

Inserting an ADF Button Component

6.2 Inserting an ADF Button Component

The ADF Button component renders a button in the Excel worksheet at runtime. End
users click this button to invoke one or more actions specified by the
ClickActionSet group of properties.

The LowerRightCorner and Position properties determine the area that the
button occupies on the Excel worksheet at runtime.

Figure 6-1 shows a button in an Excel worksheet in design mode. The property
inspector for the button is in the foreground. When an end user clicks the button at
runtime, it invokes the array of actions specified by ClickActionSet.

Figure 6—1 ADF Button Component

Hires('excel search |,

| Edit Component: ADF Button E|
Edit the properties and press DK to zave your changes.
Ss:fill
E Behavior »
B Click&ctionSet
ActionOptionz
B Actions Action[] Arrap
[0 puzh the query spec up to the server
B 1] invoke my query actions
ActionlD executeSimpleProductQuery [
Annotation invoke my query actions
[£] refresh the query spec in case the action altered it
[3] Download Results
Alert
Annotation
Status
E Data
Label t{res['excel_searchB utton.label'l} v
ActionlD

The action binding invaoked.

‘ [ok][cence |

1

For more information about the properties of the ADF Button component, see
Section A.8, "ADF Button Component Properties."

To insert an ADF Button component:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet where you want to anchor the component.

3. In the components palette, select ADF Button and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF Button from the Insert
Component dropdown list.

4. Configure properties in the property inspector to determine the actions the
component invokes at runtime in addition to the appearance, design, and layout
of the component. Table 6-1 outlines some properties you must specify values for,
and provides links to additional information.

6-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Inserting an ADF Label Component

Table 6-1 ADF Button component properties

For this property... Specify...

Label A string or an EL expression that resolves to a label at runtime to
indicate the purpose of the ADF Button component. For
example, the Label property for the Advanced Search button in
the runtime EditPriceList-DT.x1sx workbook of the
Master Price List module has the following value in design
mode:

#{res['excel.advSearchButton.label']}

This EL expression references a string key in the res resource
bundle. For more information about resource bundles, see
Section 10.2, "Using Resource Bundles in an Integrated Excel
Workbook." For more information about using labels in
integrated Excel workbooks, see Section 9.4, "Using Labels in an
Integrated Excel Workbook."

If you want to include the ampersand (&) character in the label,
you must use &&. A single & character acts as a special character
and is not displayed in the label.

ClickActionSet Specify one or more actions in the Actions array of the
ClickActionSet that the end user invokes when he or she
clicks the ADF Button component. For more information about
action sets, see Section 8.2, "Using Action Sets."

5. Click OK.

Notes:

= If you change the view mode of the Excel worksheet to the Page
Layout or Page Break mode, the ADF Button components may be
rendered in an unexpected position. You must return back to
Normal mode without saving the workbook, and then Run and
stop the integrated Excel workbook to render the buttons to their
original positions.

= You can modify the properties of the component at a later time by
selecting the cell in the worksheet that anchors the component
and then displaying the property inspector.

= The ADF Button components are active at 100% zoom only, and
are disabled when the end user zooms in or out on an integrated
Excel worksheet.

Tip: In design mode, you can click the button, or press the spacebar
when the button is in focus, to open the property inspector. The
right-click context menu is disabled for a button.

If you want to add navigation buttons in your integrated Excel workbook to navigate
to previous or next record, see Section 6.9, "Using Navigation Buttons."

6.3 Inserting an ADF Label Component

The ADF Label component is a component that you can insert into the active
worksheet to display a static string value. You specify a value in the input field for
Label in the property inspector or alternatively you invoke the expression builder to
write an EL expression that resolves to a string at runtime. The retrieved string can be

Working with ADF Desktop Integration Form-Type Components 6-3

Inserting an ADF Label Component

defined in a resource bundle or in an attribute control hint for an entity or view object.
For example, the following EL expression resolves to the value of a string key defined
in a resource bundle at runtime:

#{bindings.ProductList.label}
The value that you specify for the Label property in an ADF Label component or

other Oracle ADF components is evaluated after the worksheet that hosts the Oracle
ADF component is initialized (opened for the first time).

You can configure a number of properties for the component, such as style and
position, in the worksheet using the property inspector.

Figure 6-2 shows an ADF Label component with its property inspector in the
foreground. The ADF Label component references an EL expression that resolves to
the value of a string key defined in the res resource bundle at runtime.

Figure 6—-2 ADF Label Component

Edit Component: ADF Label

Edit the properties and press OK. to save your changes.
®z: (A
[CES A
E Appearance

StyleM ame _ADFDI_LabelStyle
B Data

Label tt{res['excel search.hits']}
E Design

Annotation

E Layout
2| Position
Calumn F
Fiow 7

Position

The cell reference where this component iz located in the current
wiorksheet,

Ok][Cancel]

To insert an ADF Label component:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet where you want to anchor the component.

3. In the components palette, select ADF Label and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF Label from the Insert
Component dropdown list

4. Configure properties in the property inspector to determine the appearance,
design, and layout of the component.

5. Click OK.

Note: You can modify the properties of the component at a later time
by selecting the cell in the worksheet that anchors the component and
then displaying the property inspector. You can also right-click in the
cell and choose Edit Component from the context menu to open the
property inspector.

6-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Inserting an ADF Input Text Component

For more information about using labels in an integrated Excel workbook, see
Section 9.4, "Using Labels in an Integrated Excel Workbook."

6.4 Inserting an ADF Input Text Component

The ADF Input Text component is a component that you can insert into the active
worksheet using the components palette. The active cell in the worksheet when you
insert the component displays the current value from the component’s binding after
the worksheet DownSync action is invoked. End users can edit this value at runtime.
You configure the worksheet UpSync action to transfer changes end users make to the
value back to the Fusion web application and a Commit action binding to commit the
changes in the Fusion web application.

You can configure a number of properties for the component, such as its position, style
and behavior when a user double-clicks the cell (DoubleClickActionSet
properties), in the worksheet using the property inspector. For more information
about DoubleClickActionSet, see Section 8.2, "Using Action Sets."

The ADF Table component can invoke this component as a subcomponent when you
set values for the ADF Table component column’s InsertComponent or
UpdateComponent properties. In this context, the ADF Input Text component
enables the end user to input data into the ADF Table component. For more
information, see Section 7.5, "Configuring an ADF Table Component to Insert Data."

Figure 6-3 shows an ADF Input Text component with its property inspector in the
foreground. The ADF Input Text component binds to the searchTerm attribute
binding in the Master Price List module of the Fusion Order Demo application. The
end user enters a search term in this component and then uses an ADF Button
component to invoke a search.

Figure 6-3 ADF Input Text Component

#/bindings.searchTerm} I| Edit Component: ADF Input Text E|

E dit the properties and press DK, to save vour changes.

=: | A
[CES ¥ A
B App
StyleMame _ADFDI_InputT extStyle
E Data
B InputText #{bindings_searchT erm}
DoubleClickactionS et
ReadOnly Falze

Walue #{bindings_searchT erm}

E Layout
Pasition 3E3S

Design

Ok] [Cancel

To insert an ADF Input Text component:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet where you want to anchor the component.

3. In the components palette, select ADF Input Text and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF InputText from the Insert
Component dropdown list

Working with ADF Desktop Integration Form-Type Components 6-5

Inserting an ADF Output Text Component

4. Configure properties in the property inspector to determine the appearance,
layout, and behavior of the component. Table 6-2 outlines some properties that
you must specify values for. For information about the component’s other
properties, see Section A.2, "ADF Input Text Component Properties."

Table 6-2 ADF Input Text component properties

For this property... Specify...

InputText.Value An EL expression for the Value property to determine what
binding the component references.

InputText.ReadOnly An EL expression that resolves to False so that changes the end
user makes are uploaded. Write an EL expression that resolves
to True if you want the component to ignore changes. False is
the default value.

5. Click OK.

Note: You can modify the properties of the component at a later time
by selecting the cell in the worksheet that anchors the component and
then displaying the property inspector. You can also right-click in the
cell and choose Edit Component from the context menu to open the
property inspector.

6.5 Inserting an ADF Output Text Component

The ADF Output Text component is a component that you can insert into the active
worksheet using the components palette. The active cell in the worksheet when you
insert the component displays the current value from the component’s binding after
you invoke the worksheet DownSync action. The value the component displays is
read-only. Changes that the end user makes to the value in the cell that anchors the
component are ignored when changes are sent to the Fusion web application.

This component can also serve as a subcomponent for the ADF Table and ADF
Read-only Table components. Columns in the ADF Table and ADF Read-only Table
components can be configured to use the ADF Output Text component.

You can configure a number of properties for the component such as style, behavior
when a user double-clicks the cell (DoubleClickActionSet properties), and
position, in the worksheet using the property inspector.

Figure 6-4 shows an ADF Output Text component with its property inspector in the
foreground. The ADF Output Text component references an ADF Table component in
the Master Price List module of the Fusion Order Demo application. At runtime, the
cell that anchors the ADF Output Text component displays any errors returned by the
ADF Table component.

6-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Inserting an ADF List of Values Component

Figure 6—4 ADF Output Text Component

Edit Component: ADE Qutput Text

Edit the properties and prezs OK to save your changes.
o2
El Appearance
StyleMame _ADFDI_DutputTextStyle
El Data
2] OutputT ext #{worksheet_emors} D
DoubleClickactionSet
Walue t#{work sheet errors}
E Design
Anrotation
E Layout
Bl Position 335
Calunih J
Fiow 1
DutputText
The properties that govern the Output Text.
Ok] [Cancel]

To insert an ADF Output Text component:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet where you want to anchor the component.

3. In the components palette, select ADF Output Text, and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF OutputText from the Insert
Component dropdown list

4. Configure properties in the property inspector to determine the appearance,
layout, and behavior of the component.

For example, you must write or specify an EL expression for the Value property
to determine what binding the ADF Output Text component references. For more
information about the values that you specify for the properties of the ADF
Output Text component, see Section A.3, "ADF Output Text Component
Properties."

5. Click OK.

Note: You can modify the properties of the component at a later time
by selecting the cell in the worksheet that anchors the component and
then displaying the property inspector. You can also right-click in the
cell and choose Edit Component from the context menu to open the
property inspector.

6.6 Inserting an ADF List of Values Component

The ADF List of Values component is a component that displays a dropdown menu in
the Excel worksheet cell at runtime. It displays a maximum of 250 values at runtime.
You can insert the List of Values component into a cell in the Excel worksheet.

You must specify a value for the ListID property. The ListID property references
the list binding which populates the dropdown menu with a list of values at runtime
after you invoke the worksheet DownSync action.

Working with ADF Desktop Integration Form-Type Components 6-7

Inserting an ADF List of Values Component

Figure 6-5 shows an ADF List of Values component with its property inspector in the
foreground. The ADF List of Values component references a list binding
(ProductList) that populates a dropdown menu in the Excel worksheet at runtime.

Note: You can display a dropdown menu in an ADF Table
component’s column by selecting TreeNodeList or
ModelDrivenColumnComponent as the subcomponent to create
when you specify a value for the TableColumn array’s
InsertComponent property. For more information, see Section 7.13,
"Creating a List of Values in an ADF Table Component Column."

Figure 6-5 ADF List of Values Component

Insert Component: ADF List of Values

3

Add values for the properties and press DK to save your changes.
Bz |A
=)l

StyleM ame _ADFDI_InputTextStyle ~

ProductList [

DependsOnListiD
LigtDr ProductList
ReadOnly False
E Design
Anrotation

E Layout
Puosition F26 v

ListOf¥alues
The properties that govern the List of Values.

[Ok][Cancel]

To insert an ADF List of Values component:

1.
2.
3.

Open the integrated Excel workbook.
Select the cell in the Excel worksheet where you want to anchor the component.

In the components palette, select ADF List of Values and click Insert Component.
Alternatively, in the Oracle ADF tab, select ADF List of Values from the Insert
Component dropdown list

Invoke the binding ID picker by clicking the ellipsis button (...) beside the input
field for the ListID property and select a list binding that the page definition file
exposes.

Configure other properties in the property inspector to determine the appearance,
design, and layout of the component. For information about ADF List of Values
component properties, see Section A.5, "ADF List of Values Component
Properties."

Click OK.

Note: You can modify the properties of the component at a later time
by selecting the cell in the worksheet that anchors the component and
then displaying the property inspector. You can also right-click in the
cell and choose Edit Component from the context menu to open the
property inspector.

6-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

Displaying Output from a Managed Bean in an ADF Component

6.7 Displaying Output from a Managed Bean in an ADF Component

You can configure an ADF component to display output from a managed bean in your
Fusion web application. Information about how to use managed beans in a Fusion web
application can be found in the "Using a Managed Bean in a Fusion Web Application"
section of the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application
Development Framework. You reference a managed bean in an integrated Excel
workbook through an EL expression. Add a method action binding to the page
definition file you associate with the Excel worksheet to retrieve the value of the
managed bean and assign it to an attribute binding. Use an EL expression to retrieve
the value of the attribute binding at runtime.

6.7.1 How to Display Output from a Managed Bean

You write an EL expression for a property that supports EL expressions (for example,
the Label property).

To display output from a managed bean:
1. Open the integrated Excel workbook.

2. Select the ADF component to display the output from the managed bean, and
open its property inspector.

Figure 6-6 shows an example from the EditPriceList-DT.x1lsx workbook in
the Master Price List module where an ADF Label component is configured to
display the output from an attribute binding that has its value populated by an
action binding.

Figure 6-6 ADF Label Component That Displays Output from a Managed Bean at
Runtime

Edit Component: ADF Label

A Edit the properties and press OK to save your changes.
. Bz | A

6 |== 2l

El Appearance

— StyleM arne CustomFootNoteStyle
E Data

tHres['excel.connectionPrefix']} #{bindings.loggedinU ser}..]
E Design
Anniotation

E Layout
Poszition $K32

Label
The text dizplayed by thiz component.

[Ok][Cancel]

3. Write an EL expression that gets the output from a managed bean at runtime.

The example in Figure 6-6 shows an EL expression that retrieves the value of a
string key (excel . connectionPrefix) from the res resource bundle and the
value of the loggedInUser attribute binding. This attribute binding references
the output from the managed bean.

4. Click OK.

Working with ADF Desktop Integration Form-Type Components 6-9

Displaying Concatenated or Calculated Data in Components

6.7.2 What Happens at Runtime When an ADF Component Displays Output from a
Managed Bean

The method action binding retrieves values from the managed bean and populates the
attribute binding. The EL expression that you write retrieves the value from the
attribute binding and displays it to the end user through the ADF component that you
configured to display output. For example, the ADF Label component shown in
design mode in Figure 6-7 displays a string similar to the following at runtime:

Connected as sking

Figure 6—7 Output from a Managed Bean at Runtime

Master Price List in Excel (Editable) Connected as sking

In Figure 67, sking is the user name of the user that is logged on to the Fusion web
application through the integrated Excel workbook.

6.8 Displaying Concatenated or Calculated Data in Components

The ADF Desktop Integration module supports EL expressions within components
that allow a single component to display data that is based on a calculation or
concatenation of multiple binding expressions.

6.8.1 How to Configure a Component to Display Calculated Data

You write an EL expression for the Value property of an Input Text or Output Text
component.

Figure 6-8 shows an EL expression example from the EditPriceList-DT.xlsx
workbook in the Master Price List module where an ADF Output Text component of a
column is configured to display the margin between the List Price and Cost Price
columns.

Figure 6—8 ADF Output Text Component That Displays Calculated Data

Edit Component: ADF Table E|
Edit the properties and press OK to save your changes.
o=/l
= [5] 4 argin ~
Annotation Margin
CellS tyleM ame TableCellROPercentage
DynamicColumn Falze
HeaderLabel tt{res['excel.margin.label'T}
HeaderStyleM arme HeaderRightStyle
[} Margin
InsertComponent
Inzertlsezlpdate Truz
B UpdateComponent =[("#{row.bindings. ListPrice.input¥alue}"-"#{row.bindings. CostPrice.input¥alue}") /" #{row.|
DoubleClickActions
=(["#{row_bindings. ListPrice input¥alue}”-"#{row bindings. CostPrice_inputValua}"1/"#{rd_..|
“igible True w
Value
The value of this component.
0K] [Cancel

6-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Navigation Buttons

To create an EL expression to display calculated data
1. Open the integrated Excel workbook.

2. Select the ADF Input Text or ADF Output Text component to display calculated
data.

3. Open the property inspector and click the ellipses button (...) of the Value
property.
4. Write an EL expression that gets the output from two, or more, expressions.

Example 6-1 shows an EL expression that calculates the difference between the
values of List Price and Cost Price columns of an item, and then divides it with
value of Cost Price column to generate a margin.

Example 6-1 An EL Expression for Calculated Data

=(("#{row.bindings.ListPrice.inputValue}"-"#{row.bindings.CostPrice.inputValue}")/
"#{row.bindings.CostPrice.inputvValue}")

5. Click OK.

For more information about EL expressions, see Appendix B, "ADF Desktop
Integration EL Expressions."

Note: If the Value property of an ADF Input Text component
contains a formula, the ADF Input Text component becomes read-only
at runtime regardless of the value of the ReadOnly property.

6.9 Using Navigation Buttons

You can create navigation buttons (Next, Previous, First, and Last) to navigate from
one record to another as shown in Figure 6-9. If the end user changes a record’s data
before navigating to another record, you can choose to save those changes or ignore
them.

Figure 6—9 Navigation Buttons in an Integrated Excel Workbook

& B & o E E G H
1
a
3
4 Empria 1111
5 Ename ROWLES
3 Job CLERK
i Deptno 10
g Sal 1111
&) Hiredate 8,/1,/2008 0:00
10
11 [first " prev " hest ” last] execute [zave H reset l

To save changes before navigating to another record, define the action sets of
the button in the following order:

1. Worksheet .UpSync
2. Commit

3. Navigation action (for example, Next)

Working with ADF Desktop Integration Form-Type Components 6-11

Using Navigation Buttons

4. Worksheet.DownSync

Note: If you omit the Commit action from the action set, any
pending changes to multiple records are lost when the end user's web
application session ends.

To ignore changes before navigating to another record, define the action sets of
the button in the following order:

1. Navigation action (for example, Next)

2. Worksheet.DownSync

Note: If you define button actions to ignore changes, then it is the
end user’s responsibility to save changes before navigating to another
record.

6-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

7

Working with ADF Desktop Integration
Table-Type Components

This chapter describes how you work with the table-type components that ADF
Desktop Integration provides.

This chapter includes the following sections:

= Section 7.1, "Introduction to ADF Desktop Integration Table-Type Components”
= Section 7.2, "Page Definition Requirements for an ADF Table Component"

= Section 7.3, "Inserting an ADF Table Component into an Excel Worksheet"

= Section 7.4, "Configuring an ADF Table Component to Update Existing Data"

= Section 7.5, "Configuring an ADF Table Component to Insert Data"

= Section 7.6, "Configuring Oracle ADF Component to Download Data to an ADF
Table Component”

= Section 7.7, "Configuring a Worksheet to Download Pre-Insert Data to an ADF
Table Component”

= Section 7.8, "Configuring an Oracle ADF Component to Upload Changes from an
ADF Table Component"

s Section 7.9, "Configuring an ADF Table Component to Delete Rows in the Fusion
Web Application”

= Section 7.10, "Batch Processing in an ADF Table Component"

= Section 7.11, "Special Columns in the ADF Table Component"

= Section 7.12, "Configuring ADF Table Component Key Column"

» Section 7.13, "Creating a List of Values in an ADF Table Component Column"

= Section 7.14, "Adding a ModelDrivenColumnComponent Subcomponent to Your
ADF Table Component"

= Section 7.15, "Adding a Dynamic Column to Your ADF Table Component"
= Section 7.16, "Creating an ADF Read-Only Table Component"

= Section 7.17, "Limiting the Number of Rows Your Table-Type Component
Downloads"

» Section 7.18, "Clearing the Values of Cached Attributes in an ADF Table
Component"

= Section 7.19, "Tracking Changes in an ADF Table Component"

Working with ADF Desktop Integration Table-Type Components 7-1

Introduction to ADF Desktop Integration Table-Type Components

7.1 Introduction to ADF Desktop Integration Table-Type Components

ADF Desktop Integration provides the following table-type components to display
structured data:

= ADF Table component
= ADF Read-only Table component

The ADF Table and ADF Read-only Table components provide end users the
functionality to download rows of data from the Fusion web application. The ADF
Table component provides additional functionality that allows end users to edit or
delete the downloaded data, or to insert new rows of data. The ADF Table
component’s Upload action is used to upload the resulting data.

The number of rows that an ADF Table or ADF Read-only Table component contains
expands or contracts based on the number of rows to download from a Fusion web
application. You should not place anything to the left or right of a table-type
component unless you want to replicate it when Excel inserts rows to accommodate
the data that one of the table-type components downloads. You can place other
components above or below a table-type component as they maintain their position
relative to the table-type component at runtime. End users who want to insert new
rows of data into an ADF Table component at runtime must insert full rows into the
Excel worksheet that hosts the ADF Table component.

Each ADF Table component contains a Key column. Do not remove the Key column as
it contains important information that is used by ADF Desktop Integration for proper
functioning of the table. Removal of the Key column, or any modification in the Key
column cell, results in errors and data corruption. For more information about the Key
column, see Section 7.12, "Configuring ADF Table Component Key Column."

The other ADF Desktop Integration components that you can use with these table-type
components are described in Chapter 6, "Working with ADF Desktop Integration
Form-Type Components."

7.2 Page Definition Requirements for an ADF Table Component

The ADF Table component is one of the Oracle ADF components that ADF Desktop
Integration exposes. It appears in the components palette of the ADF Desktop
Integration Designer task pane and, after inserted into an Excel worksheet, allows the
following operations:

= Read-only

= Insert-only

= Update-only

= Insert and update

Review the following sections for information about page definition file requirements
specific to an ADF Table component.

Before you can configure an ADF Table component to provide data-entry functionality
to your end users, you must configure the underlying page definition file for the Excel
worksheet with ADF bindings. For general information about the page definition file
requirements for an integrated Excel workbook, see Section 4.3, "Working with Page
Definition Files for an Integrated Excel Workbook."

Expose the following control bindings when you create a page definition file for
authoring an ADF Table component:

7-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Inserting an ADF Table Component into an Excel Worksheet

s Tree binding that exposes desired attribute bindings and a tree binding attribute
that uniquely identifies each row in the table.

= Method action bindings and action bindings if you intend to configure values for
the ADF Table component’s RowActions and BatchOptions groups of
properties. Examples of procedures where you set values for these groups of
properties include:

- Section 7.3, "Inserting an ADF Table Component into an Excel Worksheet"
- Section 7.5, "Configuring an ADF Table Component to Insert Data"

- Section 7.7, "Configuring a Worksheet to Download Pre-Insert Data to an ADF
Table Component”

Note: The previous list is not exhaustive.

= (Optional) Update record action binding.

Note: Use descriptive names for the attributes of different iterators.
Excel displays a flat list of bindings, so iterators are not displayed.

Figure 7-1 shows the bindings that the ExcelPriceListPageDef .xml page
definition file includes. This page definition file can support the use of an ADF Table
component in the Excel worksheet that it is associated with.

Figure 7-1 ADF Bindings Supporting Use of an ADF Table Component

[“]ErcelPriceListPageDef.xml | =
Page Data Binding Definition
This shiows the Oracle ADF data bindings defined for your page. Select a binding ko see its relationship ko the underlying Data Control,
Data Binding Registry: oracle/foddema/masterpricelistiview/DataBindings. cpx
r Bindings and Executables r Contextual Events r Parameters |
= Model
Bindings e Z X Executables 3 7 ¥ Data Control
. PraductTable — [ProductListIterator [MasterPriceListServiceDataContral
E8) Execute (=] wariables B ActiveDiscounts
[searchTerm 8% invokeConnectelser - E] AvailableL anguagesLov
@ includeliscontinued E ProductCateqaries
executesimpleProductQuery
execuFeAdvancedProductQuery =] ProducttatusLov
@ Cornmit E ProductSuppliers
lgetCannEctedUser E TopLevelCategories
oggecintiser e getConnectedUser)
Owerview | Source | Histary [’_

7.3 Inserting an ADF Table Component into an Excel Worksheet

After you have configured a page definition file correctly, you can insert the ADF Table
component into the worksheet and configure its properties to achieve the functionality
you want.

To insert an ADF Table component into an Excel worksheet:
1. Open the integrated Excel workbook.

Working with ADF Desktop Integration Table-Type Components 7-3

Inserting an ADF Table Component into an Excel Worksheet

2. Select the cell in the Excel worksheet where you want to insert the ADF Table
component. When inserting an ADF Table component, you must ensure that the
data of two tables do not overlap at runtime.

3. In the bindings palette of the ADF Desktop Integration Designer task pane, select
the tree binding to use and click Insert Binding. Based on your selection, the
Select Component dialog or the Insert Component dialog appears.

4. In the dialog that appears, select ADF Table and click OK.

Notes:

= You can also insert an ADF Table component by using the
components palette or the Oracle ADF tab. Select ADF Table and
click Insert Component. Alternatively, in the Oracle ADF tab,
select ADF Table from the Insert Component dropdown list. If
you use either the components palette or the Oracle ADF tab to
create the table component, you would have to add each column
to appear in the component at runtime.

s When you insert an ADF Table component using Insert Binding,
then by default, InputText is defined as the subcomponent type
for all columns. If you want a column to have a list subcomponent
(TreeNodeList or ModelDrivenColumnComponent), then
delete the old column and reinsert it with your desired
subcomponent type.

5. Configure properties for the ADF Table component using the property inspector
shown in Figure 7-2.

Figure 7-2 ADF Table Property Inspector

Edit Component: ADF Table

£

Edit the properties and press OK to save your changes.

o2/24

Behavior

BratchOptions

Rowéctions

FiowLimit

Data

Columnz T ableColumn[] Array
FiowD ata

TreelD ProductT able
Uniquedttibute t{row bindings Productd input¥aluel]
Design

Annotation

HEODHEED

o

B Layout
Puogition C9

UniqueAttribute

A, row-specific attibute from the tree binding for this table whose walue uniquely identifies each row in
the table.

[oK H Cancel]

6. Specify a binding expression for the attribute that uniquely identifies each row in
the iterator associated with the tree binding. The UniqueAttribute property
may be left blank if the binding's iterator supports row keys.

7. Configure the BatchOptions properties of the ADF Table component as
described in Table 7-1.

7-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Configuring an ADF Table Component to Update Existing Data

Table 7-1 BatchOptions Properties of the ADF Table Component

Set this property to... This value...

CommitBatchActionID The Commi t action binding that the page definition file exposes.

8. Optionally, configure the RowLimit group of properties to determine what
number of rows the ADF Table component can download.

For more information, see Section 7.17, "Limiting the Number of Rows Your
Table-Type Component Downloads."

9. C(lick OK.

For more information about the properties that you can set for the ADF Table
component, see Section A.9, "ADF Table Component Properties and Actions."

7.3.1 How to Add a Column in an ADF Table Component

After inserting an ADF Table component in the worksheet of your integrated Excel
workbook, you may want to add a column that is not available in the tree binding. For
example, you may want to add a column that displays values calculated by an Excel
formula.

To add a column in an ADF Table component:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component
and click the Edit Component button in the Oracle ADF tab. You can also
right-click and select Edit ADF Component Properties from the context menu.

3. In the the Edit Component: ADF Table dialog, click ellipses button (...) of the
Columns property to open the TableColumn Collection Editor dialog. The dialog
lists all columns of the selected ADF Table component.

4. Click Add to add a new column. The new column is inserted at the end of the
Members list. To move the column to a specific position, select the column and use
Up and Down arrow keys.

5. Configure the new column’s properties in the right pane of the dialog. For
information about ADF Table component properties, see Section A.9, "ADF Table
Component Properties and Actions."

6. Click OK.

ADF Desktop Integration does not limit the number of columns you can add in an
ADF Table component, you can add as many columns as your version of Excel
supports. However, it has been observed that a very wide table gives slow
performance and poor user experience. If you experience the same, try reducing the
number of columns of the table before diagnosing other reasons for slow performance.

7.4 Configuring an ADF Table Component to Update Existing Data

When you add the ADF Table component, by default, it allows end users to edit the
existing data, but it does not allow them to add new data rows or delete existing data
rows.

Working with ADF Desktop Integration Table-Type Components 7-5

Configuring an ADF Table Component to Insert Data

7.4.1 How to Configure an ADF Table Component to Update Data

If you want the end user to be able to edit existing data, but would like to restrict
addition or deletion of data rows, no additional configuration is required. Ensure that
the ADF Table component RowAction properties are set, as described in Table 7-2.

Table 7-2 RowAction properties of ADF Table Component

Property Value
InsertRowEnabled False
DeleteRowEnabled False
UpdateRowEnabled True

7.4.2 What Happens at Runtime When an ADF Table Component Updates Data

When the end user changes data in a row, ADF Desktop Integration marks the row
and an upward pointing triangle appears in a row of the _ADF_ChangedColumn
column. After updating the existing data, the end user initiates upload process to save
the changes. For more information about the ADF Table component's upload process,
see Section 7.8, "Configuring an Oracle ADF Component to Upload Changes from an
ADF Table Component.”

Excel uploads modified rows from the integrated workbook in batches rather than row
by row. You can configure the size of batches and the actions an ADF Table
component invokes when it uploads a batch. For more information about batch
processing, see Section 7.10, "Batch Processing in an ADF Table Component.”

For more information about the properties that you can set for the ADF Table
component, see Section A.9, "ADF Table Component Properties and Actions."

7.5 Configuring an ADF Table Component to Insert Data

The primary purpose of an ADF Table component is to provide end users with an
interface where they can input or edit data which can then be uploaded to the
database that serves your Fusion web application. For this to happen, you must expose
methods on data controls, create action bindings in your page definition file, and set
properties for the ADF Table component that an Excel worksheet hosts. Note that a
full Excel row must be inserted for this functionality to work correctly.

7.5.1 How to Configure an ADF Table Component to Insert Data Using a View Object’s
Operations

If you want the changes that the end user makes in an ADF Table component to be
committed invoking the ADF Table component’s Upload action, you must configure
some of the ADF Table component’s properties.

To configure an ADF Table component to insert data using a view object’s
operations:

1. Open the project in JDeveloper.

2. Ifnot present, add a CreateInsert and a Commit action binding to the page
definition file that is associated with the Excel worksheet that hosts the ADF Table
component.

7-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Configuring an ADF Table Component to Insert Data

For more information, see Section 4.3, "Working with Page Definition Files for an
Integrated Excel Workbook" and Section 7.2, "Page Definition Requirements for an
ADF Table Component.”

3. Open the integrated Excel workbook.

4. Select the cell in the Excel worksheet that references the ADF Table component
and click the Edit Component button in the Oracle ADF tab.

5. Inthe Edit Component: ADF Table dialog, configure the RowActions properties
of the ADF Table component as described in the Table 7-3:

Table 7-3 RowActions properties of ADF Table component

Set this property to... This value...

InsertRowEnabled True

InsertBeforeRowAction The CreateInsert action binding that the page definition file
1D exposes.

InsertRowsAfterUpload True, to upload the inserted rows again regardless of whether
Enabled they have been previously uploaded. By default, this property is

set to False.

The property is ignored if InsertRowEnabled is set to False.

6. Configure the BatchOptions properties of the ADF Table component as
described in the following table:

Table 7-4 BatchOptions Properties of the ADF Table Component

Set this property to... This value...

CommitBatchActionID The Commi t action binding that the page definition file exposes.

7. Configure the Columns property of the ADF Table component as described in the
following table:

Table 7-5 Columns property of ADF Table component

Set this property to... This value...
InsertUsesUpdate True
UpdateComponent = Set the Value field of the UpdateComponent property to

the update attribute from the page definition file. For
example, # {row.bindings.ProductId.inputValue}.

= Verify that ReadOnly property of UpdateComponent is
set appropriately.

This property only appears if you selected InputText or
TreeNodeList as the subcomponent to associate with the
column. Set ReadOnly to False if you do want users to
edit the values in the column, set to True otherwise.

For more information about the components that you can
use as a subcomponent, see Chapter 6, "Working with ADF
Desktop Integration Form-Type Components."

1D Set a value in this field that uniquely identifies the column in the
ADF Table component’s list of columns. A value for this
property is required. The ADF Table component generates an
initial value that you need not modify.

Working with ADF Desktop Integration Table-Type Components 7-7

Configuring Oracle ADF Component to Download Data to an ADF Table Component

Table 7-5 (Cont.) Columns property of ADF Table component

Set this property to... This value...

CellStyleName Set this property to a style defined in the workbook or to an EL
expression that applies a style to the cells in the column at
runtime. For more information about styles, see Chapter 9,
"Configuring the Appearance of an Integrated Excel Workbook."

HeaderLabel Set this property to a label or to an EL expression that evaluates
to a label which is rendered in the column header at runtime.
For more information about labels, see Section 9.4, "Using Labels
in an Integrated Excel Workbook."

HeaderStyleName Set this property to a style defined in the workbook or to an EL
expression that applies a style to the column’s header cell at
runtime. For more information about styles, see Chapter 9,
"Configuring the Appearance of an Integrated Excel Workbook."

8. Repeat Step 7 for each column that contains data to commit during invocation of
the Upload action.

For information about ADF Table component properties, see Section A.9, "ADF
Table Component Properties and Actions."

Note: If the InsertRowsAfterUploadEnabled property is set to
False and the end user tries to upload the inserted rows again, an
error message in the status column is displayed indicating that the
row cannot be inserted more than once.

7.5.2 How to Insert a New Row in a Polymorphic View Object

If you are using a polymorphic view object and want to insert a new row, you should
create a custom method to set the discriminator value to the newly inserted row. The
default CreateInsert action binding does not support polymorphic view objects.

Example 7-1 shows the sample code of a custom method used to insert a new row.

Example 7-1 Insert a New Row in a Polymorphic View Object

public void createInsertWithDiscriminator ()

{
Attributelist attrs = new NameValuePairs();
attrs.setAttribute("<Discriminator_Attribute>", <Discriminator_Value>);
ViewRowImpl row = (ViewRowImpl)<View_Object>.createAndInitRow(attrs);
<View_Object>.insertRow (row);

}

Before implementing the sample code of Example 7-1, replace <Discriminator_
Attribute> with the attribute name, <Discriminator_value> with the
discriminator value, and <View_Object> with the view object name.

7.6 Configuring Oracle ADF Component to Download Data to an ADF
Table Component

After you add an ADF Table component to a worksheet, you configure it and the
worksheet that hosts it, so that the ADF Table component downloads data from the
Fusion web application. To achieve this, you configure an Oracle ADF component,
such as ADF Button, a worksheet ribbon button, or a worksheet event to invoke an

7-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

Configuring Oracle ADF Component to Download Data to an ADF Table Component

action set. The action set that is invoked must include the ADF Table component
Download action among the actions that it invokes.

7.6.1 How to Configure an Oracle ADF Component to Download Data to an ADF Table

Component

Configure an Oracle ADF component, a worksheet ribbon button, or a worksheet
event to invoke an action set that, in turn, invokes the ADF Table component
Download action.

To configure an Oracle ADF component to download data to an ADF Table
component:

1.
2.

Open the integrated Excel workbook.

Open the Action Collection Editor to configure an action set for the worksheet
event, worksheet ribbon button, or Oracle ADF component (a button, for example)
that is going to invoke the action set at runtime.

For more information about invoking action sets, see Section 8.2, "Using Action
Sets."

Add the ADF Table component Download action to the list of actions that the
action set invokes at runtime.

The ADF Table component Download action downloads the current state of the
binding referenced by the ADF Table component TreeID property. To ensure that
the state of this binding is up to date before download, add a query action that
refreshes the binding before the action set invokes the ADF Table component
Download action.

Figure 7-3 shows the Action Collection Editor in the EditPriceList-DT.xlsx
workbook where the action set invoked by the worksheet event Startup is
configured.

Figure 7-3 Action Set Downloading Data to an ADF Table Component

Norksheet Prope

E dit the properties and press OK. to save your changes.
E =
SN ET YWorksheetbvent Lollection Edito
Ewvents
Protectio b Actio ollectio dito m
Ribbon C 0
B Data Download Collection of Products properties:

Page Defif Bz | A -

Paramete v |E‘_'f| 421=
FowD ata 3+ B Action
ServerCo Action D ownload

Title Component!D TAB416222534
Design Design

Ly
L] « C
Events [Add '] [Remave]
The collectics
Ok l [Cancel]
)
L J L

Working with ADF Desktop Integration Table-Type Components 7-9

Configuring a Worksheet to Download Pre-Insert Data to an ADF Table Component

4. Click OK.

7.6.2 What Happens at Runtime When an ADF Table Component Downloads Data

The end user invokes the action set that you configured. The action set invokes the list
of actions specified in order. These include an action that invokes the Download
action of the ADF Table component. This action downloads the current state of the
binding referenced by the ADF Table component TreeID property. If the tree binding
referenced by the TreeID property contains data with a master-detail relationship (for
example, a product category with multiple products), the ADF Table component
shows the first record in the detail result set (for example, the first product). How you
configured the tree binding in the Fusion web application determines which of the
detail records is defined as the first record. For more information about using tree
bindings to display master-detail data, see the "Using Trees to Display Master-Detail
Objects" section in the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle
Application Development Framework.

The number of rows that the action downloads depends on the values set for the
RowLimit group of properties in the ADF Table component. For more information,
see Section 7.17, "Limiting the Number of Rows Your Table-Type Component
Downloads."

7.7 Configuring a Worksheet to Download Pre-Insert Data to an ADF
Table Component

Pre-insert data is data contained in one or more rows of data that you configure an
iterator in a Fusion web application to reference. These rows of data have not yet been
committed to the Fusion web application’s database. You can configure the iterator to
populate values for some or all of its attributes.

At design time in the integrated Excel workbook, you can configure an ADF Table
component and the worksheet that hosts it so that the ADF Table component
downloads pre-insert data from the Fusion web application. To achieve this, you
configure an Oracle ADF component, such as an ADF Button component, a worksheet
ribbon button, or a worksheet event to invoke an action set. The action set that is
invoked must include the ADF Table component DownloadForInsert action among
the actions that it invokes.

The DownloadForInsert action differs from the Download action as follows:

» DownloadForInsert populates table cell data with the value of the EL
expression for the insert component that is associated with each column in the
ADF Table component. Download populates the table cell data with the EL
expression for the update component that is associated with each column in the
ADF Table component.

» The EL expression # { components . componentID.currentRowMode} returns
Insert when evaluated by the DownloadForInsert action. In contrast, the
same EL expression evaluated by the Download action returns Update. The
componentID part of the EL expression references the ID of the ADF Table
component.

Note the following points to invoke the DownloadForInsert action:

» Use the action with data rows that are in the STATUS_INITIALIZED state, as
these data rows are ignored when the transaction is committed.

7-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

Configuring an Oracle ADF Component to Upload Changes from an ADF Table Component

» An action set that includes the DownloadForInsert action does not execute this
action if an ADF Table component’s RowActions. InsertRowEnabled property
is set to False.

= It serves no purpose to include both the DownloadForInsert and Download
actions in the same action set, as the last executed action determines what data
appears in the ADF Table component.

7.7.1 How to Configure a Worksheet to Download Pre-Insert Data to an ADF Table

Component

Configure an Oracle ADF component, a worksheet ribbon button, or a worksheet
event to invoke an action set that, in turn, invokes the ADF Table component
DownloadForInsert action.

To configure a worksheet to download pre-insert data to an ADF Table
component:

1. Open the integrated Excel workbook.
2. Open the Action Collection Editor to configure an action set for the worksheet

event, worksheet ribbon button, or Oracle ADF component that is going to invoke
the action set at runtime.

For more information about invoking action sets, see Section 8.2, "Using Action
Sets."

3. Add the ADF Table component DownloadForInsert action to the list of actions
that the action set invokes at runtime.

4. Click OK.

7.7.2 What Happens at Runtime When an ADF Table Component Downloads Pre-Insert

Data

The end user invokes the action set that you configured. The action set invokes the list
of actions specified in order. These include an action that invokes the
DownloadForInsert action of the ADF Table component. This action downloads
pre-insert data from the Fusion web application and inserts it in rows of the ADF
Table component in the Excel worksheet. The InsertComponent property is
configured for the ADF Table component columns associated with the rows inserted
to host the pre-insert data. End users can invoke the ADF Table component’s Upload
action to commit the pre-insert data to the Fusion web application’s database.

7.8 Configuring an Oracle ADF Component to Upload Changes from an
ADF Table Component

You configure the ADF Table component and the worksheet that hosts it so the end
user can upload changes they make to data in the ADF Table component to the Fusion
web application. To configure this functionality, you decide what user gesture or
worksheet event invokes the action set that invokes the ADF Table component’s
Upload action.

To provide upload options to end users in a web page from the Fusion web
application that differ from the default upload dialog, you must specify a Dialog
action in the action set before the action that invokes the ADF Table Component’s
Upload action. For more information, see Section 7.8.5, "How to Create a Custom
Upload Dialog."

Working with ADF Desktop Integration Table-Type Components 7-11

Configuring an Oracle ADF Component to Upload Changes from an ADF Table Component

Note:

In a master-detail relationship, ADF Desktop Integration does

not support editing of the ViewLink attribute, as it changes the
selections in the child view object. To prevent any accidental editing,
define the ViewLink attributes to be read-only, or use a model
configuration that does not include a view link between master and

detail.

7.8.1 How to Configure an Oracle ADF Component to Upload Data from an ADF Table

Component

Configure an Oracle ADF component, a worksheet ribbon button, a component (a
button, for example), or a worksheet event to invoke an action set that, in turn, invokes

the ADF Table component Upload action.

To configure an Oracle ADF component to upload changed data from an ADF
Table component:

1. Open the integrated Excel workbook.

2. Open the Action Collection Editor to configure the action set that invokes the ADF
Table component Upload action.

For more information about action sets, see Section 8.2, "Using Action Sets."

3. Add the ADF Table component Upload action to the list of actions that the action

set invokes at runtime.

Figure 7-4 shows the Action Collection Editor in the EditPriceList-DT.x1lsx
workbook where the action set invoked by the ADF Button labeled Save Changes

at runtime is configured.

Figure 7-4 Action Set Uploading Data from an ADF Table Component

fHres['excel saveB

£

o2zl

El Behavior

B ClickActionSet
ActionOptions
Actions
Alert

Annotation

Statuz

E Data
Label

E Design
Annotation

F1 1 amnut
Actions
The collection of actions invol

Members:

1] Upload data +

4. Click OK.

Edit the properties and prezs O Action Collection Editor @@

Upload data properties:
a|2d
E Action
Action Upload
Companent| D TAB416222534
= Design
Annotation Upload data
ak. l [Cancel

7-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

Configuring an Oracle ADF Component to Upload Changes from an ADF Table Component

Note: The action set does not include a call to a commit-type action
as the ADF Table component's batch options already include calls to
Commi t. For more information, see Section 7.10.1, "Configuring Batch
Options for an ADF Table Component."

7.8.2 What Happens at Runtime When an ADF Table Component Uploads Data

At runtime, the end user invokes the action set through whatever mechanism you
configured (ADF component, worksheet ribbon button, worksheet event). This
triggers the following sequence of events:

1.

If the ADF Table component contains dynamic columns, ADF Desktop Integration
verifies whether the dynamic columns that were expanded the last time the ADF
Table component’s Download action was invoked are still present in the Fusion
web application. If the columns are not present, ADF Desktop Integration prompts
the end user to determine whether to continue upload process. If the end user
decides not to continue, ADF Desktop Integration returns an abort code to the
executing action set.

If the ADF Table component contains no pending changes to upload, the ADF
Table component’s Upload action returns a success code to the executing action
set.

If you did not configure a custom upload dialog for the action set, as described in
Section 7.8.5, "How to Create a Custom Upload Dialog," ADF Desktop Integration
presents the default upload dialog shown in Figure 7-5.

Figure 7-5 Default Upload Dialog

Upload Options

Specify options to uze during the Upload operation.

On failure, continue to upload subsequent roves

[Dowrload all roves after successful upload

[0K][Cancel]

If the end user clicks Cancel, ADF Desktop Integration returns an abort code to the
executing action set. If the end user clicks OK, the action set continues executing
with the options specified in the dialog for the upload operation.

The ADF Table component uploads modified rows in batches, rather than row by
row. You can configure the batch options using the BatchOptions group of
properties. For more information about batch options for the ADF Table
component, see Section 7.10, "Batch Processing in an ADF Table Component."

Each row of a batch is processed in the following way, and the process continues
until all changed rows of each batch are processed:

a. For inserted rows, invoke the InsertBeforeRowActionID action, if
specified.

b. Set attributes from the worksheet into the model, including any cached row
attribute values.

c. For edited rows, invoke the UpdateRowActionID action; and for inserted
rows, invoke the InsertAfterRowActionID action, if specified.

Working with ADF Desktop Integration Table-Type Components 7-13

Configuring an Oracle ADF Component to Upload Changes from an ADF Table Component

d. For each uploaded row, displays a status message in the Status column. For
more information, see Section 8.2.5, "How to Display a Status Message While
an Action Set Executes."

e. For any row failure, it verifies the value of AbortOnFail. If AbortOnFail is
set to False, it continues upload process, otherwise it stops uploading data
and invokes the commit action.

5. While uploading data, the ADF Table component returns a success or failure code
to the executing action set based on the following:

s If the ADF Table component uploads all batches successfully, it returns the
success status to the executing action set. If the end user has selected the
Download all rows after successful upload option in Step 3, the ADF Table
component then downloads all rows from the Fusion web application.

s If the ADF Table component did not upload all batches successfully, the action
set invokes the action specified by the RowActions.FailureActionID
property, if an action is specified for this property. ADF Desktop Integration
returns a failure code to the action set.

If you selected On failure, continue to upload subsequent rows in the Upload
Options dialog of Step 3, the Upload action returns a success code to the action set
even if some individual rows encountered validation failures.

Note: If an ADF Table component column’s ReadOnly property
evaluates to True, the ADF Table component’s Upload action ignores
changes in the column’s cells.

For more information about an ADF Table component column’s
properties, see Table A-10.

7.8.3 What Happens at Runtime When a ReadOnly EL Expression is Evaluated During

Upload

At runtime, if an ADF Table component column’s ReadOnly property evaluates to
True, the ADF Table component’s Upload action ignores all changes in the column’s
cells.

It is recommended that you avoid Readonly EL Expressions that specifies row value
binding expressions as part of the expression. If a row value binding must be used,
you must understand how the EL expression is evaluated during Upload.

Currently, all EL expression evaluation is performed on the client. Therefore, an extra
round trip to the server would be needed to first evaluate a ReadOnly EL expression
containing a row value binding before the row value can be updated. In order to avoid
the high cost of making an extra call to the server, ReadOnly EL expression evaluation
during upload is performed the same as during table change tracking (as if the user
were offline).

For more information about change tracking, see Section 7.19, "Tracking Changes in an
ADF Table Component.”

7.8.4 What Happens at Runtime When an Upload Fails

When the ADF Table component starts uploading data, ADF Desktop Integration
creates a savepoint before initiating the upload process. In case of any failure, ADF
Desktop Integration reverts back to the same savepoint, ensuring the integrity of the
server-side state of the Fusion web application.

7-14 Desktop Integration Developer's Guide for Oracle Application Development Framework

Configuring an Oracle ADF Component to Upload Changes from an ADF Table Component

For each row that is uploaded, ADF Desktop Integration does the following:
1. Creates a DataControlFrame savepoint on the server.

2. Applies row attribute value changes, and performs data validation.

3. In case of any error, reverts back to the savepoint state.

For more information about savepoints, see the "Using Trees to Display Master-Detail
Objects" section in the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle
Application Development Framework.

7.8.5 How to Create a Custom Upload Dialog

You display a page from Fusion web application that offers end users different options
to those presented in the default upload dialog. You add a Dialog action before the
action that invokes the ADF Table component’s Upload action in the action set.

To create a custom upload dialog:

1. Create a page in the JDeveloper project where you develop the Fusion web
application. For information on how to create this page, see Section 8.4,
"Displaying Web Pages from a Fusion Web Application."

2. Inaddition to the ADFdi_CloseWindow element (for example, a span element)
described in Section 8.4, "Displaying Web Pages from a Fusion Web Application,"
the page that you create in Step 1 must include the elements described in
Table 7-6.

Table 7-6 Span Elements Required for Custom Upload

Name Description

ADFdi_ If you set this element to True, the action set stops uploading if

AbortUploadOnFailure it encounters a failure. If the element references False, the
action set attempts to upload all rows and indicates if each row
succeeded or failed to upload.

ADFdi_ Set this element to True so the action set downloads data from
DownLoadAfterUpload the Fusion web application to the ADF Table component after
the action set uploads modified data.

Note: The page you create must include both elements to prevent
ADF Desktop Integration presenting the default upload dialog to end
users.

3. AddaDialog action to invoke the page you created in Step 1 before the action in
the action set that invokes the ADF Table component’s Upload action.

For more information about displaying pages from a Fusion web application, see
Section 8.4, "Displaying Web Pages from a Fusion Web Application.”

7.8.6 What Happens at Runtime When a Custom Upload Dialog Appears

When a custom dialog appears, the page from the Fusion web application that you
configure the Dialog action in the action set to display appears instead of the default
upload dialog.

Working with ADF Desktop Integration Table-Type Components 7-15

Configuring an ADF Table Component to Delete Rows in the Fusion Web Application

Note: If there is no server connectivity when the end user tries to
upload data, or if the end user is using the integrated Excel workbook
in offline mode, the end user gets an error when the Dialog action
fails to find the custom upload page. ADF Desktop Integration does
not revert to the standard dialog when server connectivity is not
available.

For more information about displaying a page from the Fusion web application, see
Section 8.4, "Displaying Web Pages from a Fusion Web Application." Otherwise, the
runtime behavior of the action set that you configure to upload data is as described in
Section 7.8.2, "What Happens at Runtime When an ADF Table Component Uploads
Data."

7.9 Configuring an ADF Table Component to Delete Rows in the Fusion
Web Application

The ADF Table component exposes an action (DeleteFlaggedRows) that, when
invoked, deletes the rows in the Fusion web application that correspond to the flagged
rows in the ADF Table component. A flagged row in an ADF Table component is a row
where the end user has double-clicked or typed a character in the cell of the _ADF_
FlagColumn column as described in Section 7.10, "Batch Processing in an ADF Table
Component.”" The _ADF_FlagColumn column must be present in the ADF Table
component to configure it to delete rows in the Fusion web application.

In addition, the page definition file that you associate with the worksheet that hosts
the ADF Table component must expose a Delete action binding.

7.9.1 How to Configure an ADF Table Component to Delete Rows in the Fusion Web

Application

To delete rows from an ADF Table component, you must add the Delete action
binding to the page definition file, configure RowActions group of properties of the
ADF Table component, and configure an action set to invoke the
DeleteFlaggedRows action.

To configure an ADF Table component to delete rows in a Fusion web
application:
1. Open your Fusion web application in JDeveloper.

2. Ifnot present, add a Delete action binding to the page definition file that is
associated with the Excel worksheet that hosts the ADF Table component.

For more information, see Section 4.3, "Working with Page Definition Files for an
Integrated Excel Workbook."

3. Open the property inspector for the ADF Table component and set values for the
RowActions group of properties as described in Table 7-7.

Table 7-7 RowActions properties of ADF Table component

Set this property... To...

DeleteRowActionID The Delete action binding that the page definition file exposes.

7-16 Desktop Integration Developer's Guide for Oracle Application Development Framework

Configuring an ADF Table Component to Delete Rows in the Fusion Web Application

Table 7-7 (Cont.) RowActions properties of ADF Table component

Set this property... To...

DeleteRowEnabled True to enable the ADF Table component to delete rows in the

Fusion web application.

False is the default value.

For more information about ADF Table component properties, see Section A.9,
"ADF Table Component Properties and Actions."

Click OK.
Open the integrated Excel workbook.

Open the Action Collection Editor to configure an action set for the Oracle ADF
component, ribbon control, or worksheet event that the end user uses to invoke
the action set at runtime.

Add the ADF Table component’s DeleteFlaggedRows action to the list of
actions that the action set invokes at runtime.

For more information about invoking action sets, see Section 8.2, "Using Action
Sets."

Click OK.

7.9.2 What Happens at Runtime When an ADF Table Component Deletes Rows in a
Fusion Web Application

The end user flags rows to delete, as described in Section 7.10.2, "Row Flagging in an
ADF Table Component.” The end user then invokes the action set. The following
sequence of events occurs:

1.

If specified, the action binding referenced by the
BatchOptions.StartBatchActionID property is invoked.

Failures from this step are treated as errors. An error stops the action set invoking.
It also returns the error condition to the action set. If an action binding is specified
for the ActionSet.FailureActionID property, the action set invokes the
specified action binding.

For more information about configuring batch options, see Section 7.10, "Batch
Processing in an ADF Table Component."

The action set invokes the Delete action binding specified by
RowActions.DeleteRowActionID.

Note: Rows inserted since the last invocation of the ADF Table
component’s Download action but not uploaded to the Fusion web
application are ignored even if flagged for deletion.

If no errors occur during the invocation of the Delete action binding, a success
message entry appears in the _ADF_StatusColumn column. If a failure occurs,
the ADF Table component stops invocation of the Delete action binding and
continues to Step 4.

If an action binding is specified for the BatchOptions.CommitBatchActionID
property, the action set invokes it. If this step fails, the action set stops processing
batches. If no failures occur, the action set processes the next batch by invoking the

Working with ADF Desktop Integration Table-Type Components 7-17

Batch Processing in an ADF Table Component

action binding specified by the BatchOptions.StartBatchActionID
property, and so on until the action set processes all batches.

5. If the action set processes all batches successfully, it invokes the action binding
specified by its ActionOptions.SuccessActionID property if an action
binding is specified for this property. It then removes the rows deleted in the
Fusion web application by invocation of the Delete action binding specified by
RowActions.DeleteRowActionID from the worksheet and returns a success
code to the action set.

If failures occur while the action set processes the batches, the action set invokes
the action binding specified by its ActionOptions.FailureActionID
property if an action binding is specified for this property. This action binding
returns a failure code to the action set.

6. If an unexpected exception occurs while the action set invokes its actions, an error
code is returned to the action set. All row level errors are displayed in the Status
column, and all batch level errors can be tracked through Table.errors. For
more information about error handling, see Section 12.4, "Error Reporting in an
Integrated Excel Workbook."

7.10 Batch Processing in an ADF Table Component

The ADF Table component uploads modified rows from the Excel workbook in
batches rather than row-by-row. You can configure batch option properties that
determine the size of batches and what actions the ADF Table component invokes
when it uploads a batch.

Note that end users might encounter unexpected reports of errors under certain
circumstances while uploading data from ADF Table components. After posting
changes from a batch, ADF Desktop Integration runs the action specified by the
CommitBatchActionID. Errors that occur during the commit action might continue
to be reported on subsequent batch commit actions, even though those batches of
records do not contain the error. This happens when any pending model updates that
exist when the CommitBatchActionID gets called are not automatically reverted
when commit fails.

To avoid any such error, you must create a custom action for the
CommitBatchActionID that first attempts to commit the pending model changes.
However, if an exception occurs during commit, the custom method should first
rollback the pending model changes, so that any subsequent batch commit attempts
can succeed.

Note: It is important that the commit exception gets thrown again
after rollback so that the commit errors are reported, as expected on
the client.

7.10.1 Configuring Batch Options for an ADF Table Component

The ADF Table component has a group of properties (BatchOptions) that allow you
to configure how the ADF Table component manages batches of rows. Information
about these properties can be found in Section A.9, "ADF Table Component Properties
and Actions."

To configure batch options for an ADF Table component:
1. Open the integrated Excel workbook.

7-18 Desktop Integration Developer's Guide for Oracle Application Development Framework

Batch Processing in an ADF Table Component

2. Select the cell in the Excel worksheet that references the ADF Table component,
and then click the Edit Component button in the Oracle ADF tab.

3. Set values for the BatchOptions group of properties in the property inspector
that appears.

Table 7-8 RowData.BatchOptions Properties

Set this property... To...

BatchSize Specify how many rows to process before an ADF Table
component action (Upload or DeleteFlaggedRows) invokes
the action binding specified by CommitBatchActionID. Any
value other than a positive integer results in all rows being
processed in a single batch. The default value is 100 rows.

CommitBatchActionID The action binding to invoke after the ADF Table component
processes each batch. Typically, this is the Commit action
binding.

LimitBatchSize True

When True, the ADF Table component processes rows in
batches determined by the value of BatchSize. When False,
the ADF Table component uploads all modified rows in a single
batch.

True is the default value.

StartBatchActionID Specify the action binding to invoke at the beginning of each
batch.

4. Click OK.

Note that a failure at the Entity level is not considered a batch failure. A failure at
commit level (for example, a wrong value for a foreign key attribute) is considered as
batch failure.

7.10.2 Row Flagging in an ADF Table Component

By default, the ADF Table component includes a column, _ADF_FlagColumn, that
facilitates the selection of rows for flagged-row processing. Double-clicking a cell of
the _ADF_FlagColumn column flags the corresponding row for processing by actions
invoked by a component action.

When the end user double clicks a cell of the _ADF_FlagColumn column, a solid
circle appears, or disappears, in the cell to indicate that the row is flagged, or not.
Figure 7-6 shows an example of a flagged column.

Figure 7-6 Flagged Column in an ADF Table Component

Note: By default, the solid circle character indicates a row flagged
for flagged-row processing. However, any nonempty cell ina _ADF_
FlagColumn column flags the corresponding row for flagged-row
processing.

Working with ADF Desktop Integration Table-Type Components 7-19

Special Columns in the ADF Table Component

The following component actions can be invoked on flagged rows:
m DeleteFlaggedRows
s DownloadFlaggedRows

You can use the FlagAl1lRows component action to flag all rows, and the
UnflagAllRows component action to unflag all rows of the ADF Table component.

Use of these component actions is dependent on the appearance of the _ADF_
FlagColumn column in the ADF Table component. If you remove the _ADF_
FlagColumn column from the ADF Table component, you cannot invoke any of these
component actions. For more information about these component actions, see

Section A.9.3, "ADF Table Component Actions."

At runtime, the end user can invoke any of the previously listed component actions
from an action set. The invoked component action processes all flagged rows. For
example, it downloads or deletes all flagged rows. For more information about
configuring an action set to invoke a component action, see Section 8.2.2, "How to
Invoke Component Actions in an Action Set."

7.11 Special Columns in the ADF Table Component

By default, the ADF Table component includes some columns when you insert an
ADF Table component in a worksheet. You can retain or remove these columns, if
required. The following list describes the columns and the purpose they serve:

m _ADF_ChangedColumn

The cells in this column track changes to the rows in the ADF Table component. If
a change has been made to data in a row of the ADF Table component since
download or the last successful upload, a character that resembles an upward
pointing arrow appears in the corresponding cell of the _ADF_ChangedColumn
column. This character toggles (appears or disappears) when a user double-clicks
a cell in this column. Figure 7-7 shows an example.

Figure 7-7 Changed Column in an ADF Table Component

Note: If the end user does not want the ADF Table component's
Upload action to upload changes in the rows flagged by this column,
he or she must clear the entry that appears in the corresponding cell.

A confirmation dialog appears to end users when the ADF Table component’s
Download action is invoked, and one or more rows in this column are flagged as
changed. The end user clicks OK to allow the Download action to execute, or
Cancel to stop the execution of the Download action.

m _ADF_FlagColumn

When the end user double-clicks a cell in this column, the corresponding row is
flagged for flagged-row processing. A solid circle character appears to indicate
that the row is flagged for flagged-row processing. For more information about

7-20 Desktop Integration Developer's Guide for Oracle Application Development Framework

Special Columns in the ADF Table Component

the use of this column, see Section 7.10.2, "Row Flagging in an ADF Table
Component."

A confirmation dialog appears to end users when the ADF Table component’s
DownloadFlaggedRows action is invoked, and one or more rows in _
ADFChangedColumn and _ADF_FlagColumn are flagged. The end user clicks
OK to allow the action to execute or Cancel to stop the execution of the action.

Note: By default, the solid circle character indicates a row flagged
for flagged-row processing. However, any nonempty cell ina _ADF_
FlagColumn flags the corresponding row for flagged-row processing.

_ADF_StatusColumn

This column reports the results of invocation of the following ADF Table
component actions:

— DeleteFlaggedRows
— Upload

A message appears in the cell of the _ADF_StatusColumn to indicate the result
of the invocation for the corresponding row. If the end user invokes a
DoubleClickActionSet defined in an ADF Table column and an error occurs,
the errors are also reported in the status column of the corresponding row.
Figure 7-8 shows an example of Status column message.

Figure 7-8 Status Column in an ADF Table Component

Status

Row updated successfully

_ADF_RowKeyColumn

This column, also referred as the Key column, contains important information
about the ADF Table component that is used by ADF Desktop Integration at
runtime. The column appears both at runtime and design time. You can remove
the column from the table at design time, but note that it automatically appears at
runtime.

For more information about the _ADF_RowKeyColumn see Section 7.12,
"Configuring ADF Table Component Key Column."

The ADF Table component treats the properties of the _ADF_ChangedColumn, ADF_
FlagColumn, and _ADF_StatusColumn columns differently to the properties of
other columns that it references. It ignores the values set for properties such as
InsertComponent, InsertUsesUpdate, and UpdateComponent unless it invokes
the DisplayRowErrors action described in Table A-11. It reads the values for
properties related to style and appearance, for example CellStyleName and
HeaderStyleName.

Working with ADF Desktop Integration Table-Type Components 7-21

Configuring ADF Table Component Key Column

7.12 Configuring ADF Table Component Key Column

When you add ADF Table to your integrated Excel workbook, the Key column
(column ID: _ADF_RowKeyColumn) appears automatically at design time. The Key
column contains important information that is used by ADF Desktop Integration for
proper functioning of the table. Note that you must not remove the Key column at
runtime.

7.12.1 How to Configure Key Column

You can configure the Key column’s position, style properties, and the header label.
By default, the _ADFDI_TableKeyCellStyle styleis applied to it.

To configure Key column:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component
and click the Edit Properties button in the Oracle ADF tab.

3. In the Edit Component: ADF Table dialog, click the ellipsis button (...) beside the
input field for Columns to invoke the TableColumn Collection Editor.

4. Select the column with ID as _ ADF_RowKeyColumn.

5. Change the column properties as desired, but do not change the following
properties:

s DynamicColumn

n InsertComponent

m InsertUsesUpdate

s UpdateComponent

L] ID

m Visible
6. If desired, change the position of the column using Up and Down arrow keys.
7. Click OK to close TableColumn Collection Editor.
8. Click OK to close the Edit Component: ADF Table dialog.

7.12.2 How to Manually Add Key Column At Design Time

If you are using the integrated Excel workbook prepared and configured using an old
version of ADF Desktop Integration, the Key column would not be available at design
time. It would only appear at runtime. If you want to configure the Key column
properties, you can add it in workbook at desgn time.

To manually add key column at design time:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component,
and then click the Edit Properties button in the Oracle ADF tab.

3. Add anew column in the ADF Table, and specify the properties as described in
Table 7-9. For more information about adding a column, see Section 7.3.1, "How to
Add a Column in an ADF Table Component.".

7-22 Desktop Integration Developer's Guide for Oracle Application Development Framework

Creating a List of Values in an ADF Table Component Column

Table 7-9 Key Column Properties

Set this property... To ...

CellStyleName _ADFDI_TableKeyCellStyle

HeaderStyleName _ADFDI_HeaderStyle

DynamicColumn False

HeaderLabel #{_ADFDIres [COMPONENTS_TABLE_ROWKEY_COL_LABEL]}
ID _ADF_RowKeyColumn

InsertUsesUpdate True

UpdateComponent OutputText

The Value property must be empty.

Visible True

If desired, you may change the position of the Key column using Up and Down
arrow keys.

4. Click OK.

Note: You must specify the ID property of the new column as _
ADF_RowKeyColumn, otherwise the column will not be considered as
a Key column, and another Key column would automatically appear
at runtime.

7.13 Creating a List of Values in an ADF Table Component Column

Use the TreeNodeList subcomponent when you want to render a dropdown list of
values in an ADF Table component column. The list of values can display a maximum
of two hundred and fifty values at runtime. Unlike other ADF Desktop Integration
components, the TreeNodeList subcomponent does not appear in the components
palette described in Section 5.5, "Using the Components Palette." Instead, you invoke it
as a subcomponent when you specify values for the InsertComponent or
UpdateComponent properties of an ADF Table component column. For information
about the properties of an ADF Table component column, see Section A.9.2, "ADF
Table Component Column Properties."

After you invoke the TreeNodeList subcomponent, you must specify a tree binding
attribute associated with a model-driven list as a value for the TreeNodeList
subcomponent’s List property. The tree binding attribute associated with a
model-driven list populates the dropdown menu in the Table component’s column
with a list of values after invocation of the Table component’s Download action.

Note: You can create a model-driven list of values in your ADF
Table component by choosing ModelDrivenColumnComponent as
the subcomponent type. For more information about creating a
model-driven list, see Section 7.14, "Adding a
ModelDrivenColumnComponent Subcomponent to Your ADF Table
Component."

For information about the properties of a TreeNodeList subcomponent, see
Section A.6, "TreeNodeList Subcomponent Properties."

Working with ADF Desktop Integration Table-Type Components 7-23

Creating a List of Values in an ADF Table Component Column

Figure 7-9 shows the property inspector for an ADF Table component column in
AdvEditPriceList-DT.xlsx after TreeNodeList is selected as the
subcomponent for the column’s UpdateComponent property.

Figure 7-9 ADF Table Component Column Configured to Display a List of Values

E dit the properties and prezz OK. to zave wour changes.

=z | A

[CES A

B Behavior ~

B atchOptions
Flowdctions

RowLirnit
E Data
B Columnz TableColumn[] Array
[0] _ADF_ChangedColumn
[1] _ADF_FlagColumn
[2] _ADF_StatusColumn
[3 Hrow. bindings. Product!d.inputy alue}

[4] Hirow. bindings. Product ame.inputy/alue}

TableColumn Collection Editor

Members: fHrow. bindings. ParentCategoryld.inpufy/alue} properties:
0] _ADF_ChangedColurnn + = | A
1| _ADF_FlaoColurn o= /2
2| _ADF_StatusCalumn B Data : 5
3| tHirow.bindings. Product! d.inputyalus DynamicColumn False
4| H#irow bindings. ProductM ame. input, HeaderLabel #{bindings.ProductT able.hints. ParentCateqg:
[#Hrow bindings. ParentCategoryld.in InsetComponent
E#{row.bindings.EategoryId.inputVaIl InsertUseslpdate True
7| #{rowe. bindings. ListPrice.inputt/ alue B UpdateComporent | #{row.bindings. ParentCategoryld.input¥ alue
8] #{row.bindings. CastPrice.inputyalue DependsOrList
3] Margin #Hrow.bindings_ParentCategoryld.inputvd..]
ReadOnly False
L]) E Design
Annotation
Add R
_ocncee ID COL1431150694 =

ak] [Cancel

7.13.1 How to Create a List of Values in an ADF Table Component Column

You add a column to the ADF Table component column and select TreeNodeList as
the subcomponent. You then specify a tree binding attribute as the value for the
TreeNodeList subcomponent’s List property. A model-driven list must be
associated with the tree binding attribute that you specify.

To create a list of values in an ADF Table component column:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component
and click the Edit Component button in the Oracle ADF tab.

3. In the Edit Component: ADF Table dialog, click the ellipsis button (...) beside the
input field for Columns to invoke the TableColumn Collection Editor.

4. Click Add to add a new column.
5. Choose the appropriate option for the newly created column:

» Click the ellipsis button (...) beside the input field for InsertComponent to
configure the runtime list of values for insert operations.

» Click the ellipsis button (...) beside the input field for UpdateComponent to
configure the runtime list of values for update and download operations.

7-24 Desktop Integration Developer's Guide for Oracle Application Development Framework

Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table Component

In both options, the Select subcomponent to create dialog appears.
6. Select TreeNodeList and click OK.
7. Expand the property that you selected in Step 5 and configure values as follows:
= Select a tree binding attribute associated with a model-driven list for the List
property.
= Select a value for DependsOnList only if you intend to create a dependent
list of values as described in Section 8.8, "Creating Dependent Lists of Values
in an Integrated Excel Workbook." The tree binding attribute or list binding

you select for DependsOnList serves as the parent list of values in a
dependent list of values.

s Configure the ReadOnly property as desired.

For information about these properties, see Section A.6, "TreeNodeList
Subcomponent Properties."

8. Click OK.

7.13.2 What Happens at Runtime When a Column Renders a List of Values

At runtime, the ADF Table component invokes the Download action and populates
each column. This action also populates the list of values in the column that you
configure to render a list of values. Figure 7-10 shows an example from
AdvEditPriceList-DT.x1lsx of the Master Price List module where Category is
the column configured to display a list of values.

Figure 7-10 Runtime View of an ADF Table Component Column Displaying a List of

Values
Prod. No |Product Mame Category Sub-Category Site Price
1|Plasma HD Television Electronics Audio and Video $1,999.09
2|PlayStation 2 Video Game Electronics Games £199,95
3|Treo 650 Phone/PDA Electronics Cell Phones $299.99
4|Treo 700w FPhone/PDA Electronics Cell Phones $309.99

5|Tungsten E PDA ~ |dio and Video $195,99

6|%Box Video Game System $159.99
7|¥Box 360 Video Game System $299.99
8|Playstation Portable Electronics Games $199,99

7.14 Adding a ModelDrivenColumnComponent Subcomponent to Your
ADF Table Component

You can add a ModelDrivenColumnComponent subcomponent to an ADF Table
component. The value of ModelDrivenColumnComponent is determined by the
Control Type hint specified for each attribute on the server.

At design time, for a column, specify the subcomponent type as
ModelDrivenColumnComponent for the UpdateComponent or
InsertComponent properties. At runtime, if there is a model-driven list associated
with the attribute, then the column uses a dropdown list using the TreeNodeList
subcomponent. If there is no model-driven list associated with the attribute, or if any
non-list-based control type is specified, then the column uses an InputText
subcomponent.

Working with ADF Desktop Integration Table-Type Components 7-25

Adding a Dynamic Column to Your ADF Table Component

For more information about creating a model-driven list, see the "How to Create a
Model-Driven List" section of the Oracle Fusion Middleware Fusion Developer’s Guide for
Oracle Application Development Framework.

Support for Dependent List of Values

When multiple ModelDrivenColumnComponent list subcomponents are exposed in
an ADF Table component, then for each list ADF Desktop Integration determines
whether it depends on another model-driven list. It verifies that the bind variable
specified for a list references an attribute bound to another list.

If the list depends on another model-driven list, the subcomponent's DependsOnList
value is set automatically at runtime.

As server-side list binding dependencies are determined only for lists in the same tree
node, the following tree node list bindings are not supported:

= A binding that depends on a list binding in a different tree or tree node

= A binding that depends on a list binding in the page definition file

7.15 Adding a Dynamic Column to Your ADF Table Component

You can add dynamic columns to an ADF Table component so that the ADF Table
component expands or contracts at runtime depending on the available attributes
returned by the view object. The DynamicColumn property of the Columns group in
the TableColumn array controls this behavior. To make a column dynamic, set the
DynamicColumn property to True. A dynamic column in the TableColumn array is
a column that is bound to a tree binding or a tree node binding whose attribute names
are not known at design time. A dynamic column can expand to more than a single
worksheet column at runtime.

The ADF Table component's dynamic column supports the following subcomponent
types:
s InputText

s OutputText

» ModelDrivenColumnComponent

Note: ADF Desktop Integration does not support the subcomponent
type TreeNodeList in a dynamic column.

Support for Model-Driven List of Values

You can also configure a dynamic column to support the List of Values subcomponent
where the subcomponent type is determined from model metadata at runtime. At
design time, specify the subcomponent type as ModelDrivenColumnComponent for
the UpdateComponent or InsertComponent properties. At runtime, during
dynamic column expansion, the model-driven runtime component is determined
before caching the list of values. The remote servlet allows the client to retrieve Model
metadata, allowing the client to choose the desired column subcomponent type. For
more information about ModelDrivenColumnComponent, see Section 7.14, "Adding a
ModelDrivenColumnComponent Subcomponent to Your ADF Table Component.”

7-26 Desktop Integration Developer's Guide for Oracle Application Development Framework

Adding a Dynamic Column to Your ADF Table Component

7.15.1 How to Configure a Dynamic Column

You configure a dynamic column by specifying an EL expression with the following
format for the Value property of the component specified by the ADF Table
component column’s InsertComponent property as a subcomponent:

#{bindings. TreelID. [TreeNodeID] .AttributeNamePrefix*.inputValue}

or:

#{bindings. TreeID.AttributeNamePrefix*.inputValue}

where:
s TreeIDis the ID of the tree binding used by the ADF Table component

s TreeNodelD is an optional value that specifies the tree node binding ID. If you
omit this value, all matching attributes from the tree binding display regardless of
which tree node binding the attribute belongs to.

s AttributeNamePrefix identifies a subset of attributes that exist within the tree
binding’s underlying iterator. If you do not specify a value for
AttributeNamePrefix, all attributes for the tree binding or tree binding node
are returned. Always use the * character.

Note: While adding a dynamic column, ensure that tree node
attribute names are not specified in the page definition file. At
runtime, the tree node object returns all attribute names from the
underlying iterator. If there are attribute names specified in the page
definition file, the tree node object limits the list of available attribute
names based on that list.

The following example returns all attributes that begin with the name "period" in the
model . EmpView node of the EmpTree binding;:

#{bindings.EmpTree. [model .EmpView] .period*.inputValue}

7.15.2 What Happens at Runtime When Data Is Downloaded or Uploaded

When the ADF Table component's Download or DownloadForInsert action is
invoked, the ADF Table component automatically updates the dynamic columns so
that they contain an up-to-date set of matching attributes. For each invocation of
Download, ADF Desktop Integration requires that all rows must have the same set of
attributes for the dynamic column. It may generate errors if the set of attributes
changes from row to row during Download.

If a dynamic column supports both Insert and Update operations, you should
specify the same EL expression for the Value properties of the dynamic column’s
InsertComponent and UpdateComponent subcomponents. At runtime, the ADF
Table component expands to include a dynamic column that displays the value of the
attribute binding returned by the EL expression.

When the ADF Table component’s Upload action is invoked, the workbook prompts
the end user to determine if the end user wants to continue to upload data when the
previously downloaded attributes no longer exist in the tree binding.

Working with ADF Desktop Integration Table-Type Components 7-27

Adding a Dynamic Column to Your ADF Table Component

Support for View Objects with Declarative SQL Mode

To support view objects that are configured with declarative SQL mode and
customized at runtime, ADF Desktop Integration ignores all attributes with the
selected property set to False. On the server side, the JUCtrl1HierNodeBinding
object determines the attribute list and passes it to the integrated Excel workbook on
request.

7.15.3 How to Specify Header Labels for Dynamic Columns

Use the following syntax to write EL expressions for the HeaderLabel property of a
dynamic column:

#{bindings.TreelD. [TreeNodeID] .hints.AttributeNamePrefix*.label}

or:

#{bindings.TreelID.hints.AttributeNamePrefix*.label}

Specify the same tree binding ID, tree node binding ID, and attribute name prefix
values in the HeaderLabel property of the dynamic column as the values you specify
for the Value properties of the dynamic column’s InsertComponent and
UpdateComponent if the dynamic column supports Insert and Update operations.

Note: The ADF Table component ignores the value of a column’s
Visible property when you configure a column to be dynamic. For
more information about ADF Table component column properties, see
Table A-10.

If you want the mandatory columns, where the end user must enter a value, to be
marked with a character or a string, you must configure the HeaderLabel property.
Use the following syntax to write EL expression to add a character or string to all
mandatory columns:

=IF (#{bindings.TreelID.[TreeNodeID].hints.* .mandatory}, "<prefix
for _mandatory_cols>", "") &
"#{bindings.TreeID.[TreeNodeID] .hints.*.label}"

For example, the following EL expression adds an asterisk (*) character to the
mandatory columns label:

=IF (#{bindings.MyTree. [myapp.model .MyChildNode] .hints. * .mandator
y} , n % n , nn) &
"#{bindings.MyTree. [myapp.model .MyChildNode] .hints.*.label}"

7.15.4 How to Specify Styles for Dynamic Columns According to Attribute Data Type

You can specify different styles for each data type according to the data type of the
column. Use the following syntax to write EL expressions for the Cel1StyleName
property of a dynamic column:

=IF ("#{bindings. TreeID.[TreeNodeID] . hints.*.dataType}"="<data_
type>", <custom_style_expressionl>, <custom_style expression2>)

In the following example, the MyDateStyle style is applied to all date columns, and
MyDefaultStyle is applied to other data type columns:

=IF ("#{bindings.MyTree. [myapp.model .MyChildNode] .hints. *.dataTyp
e}"="date", "MyDateStyle", "MyDefaultStyle")

7-28 Desktop Integration Developer's Guide for Oracle Application Development Framework

Creating an ADF Read-Only Table Component

The following example shows another scenario where the MyDateStyle style is
applied to all date data type columns, MyNumberStyle is applied to all number data
type columns, and MyDefaultStyle is applied to other data type columns:

=IF ("#{bindings.MyTree. [myapp.model .MyChildNode] .hints. *.dataTyp

e}"="date", "MyDateStyle",
IF ("#{bindings.MyTree. [myapp.model .MyChildNode] .hints.*.dataType
}"="number", "MyNumberStyle", "MyDefaultStyle"))

For more information about EL expressions, see Appendix B, "ADF Desktop
Integration EL Expressions."

7.16 Creating an ADF Read-Only Table Component

At runtime, the ADF Read-only Table component renders a table across a continuous
range of cells that displays data from the tree binding that the ADF Read-only Table
component references. Use this component to display data that you do not want the
end user to edit.

This component supports several properties, such as RowLimit, that determine how
many rows the component downloads when it invokes its Download action. It also
includes a group of properties (Columns) that determine what columns from the tree
binding appear at runtime in the Excel worksheet. The TreeID property specifies the
tree binding that the component references. More information about these properties
and others that the ADF Read-only Table component supports can be found in
Section A.10, "ADF Read-only Table Component Properties and Actions."

Figure 7-11 shows the columns that an ADF Read-only Table component which
references the ProductList tree binding in the ExcelReadOnlyPageDef . xml page
definition file of the Master Price List module renders at runtime.

Figure 7-11 Columns in an ADF Read-only Table Component at Runtime

Current . Cost| Man. Rec. ;] Current

Prod. No|Product Name Product Supplier e e Site Price e
14 Bluetooth Phone Headset AVAILABLE Electronics and More $20.00 £24.99 £40.99 150.0%

15 Ipod Speakers AVAILABLE Transistor City $35.00 $55.99 £§9.99 157.1%

16 Creative Zen Vision W 60 GB AVAILABLE Transistor City $2890.00 $329.99 $389.99 34.5%

Figure 7-12 shows the corresponding view of the same ADF Read-only Table
component at design time with the property inspector in the foreground.

Working with ADF Desktop Integration Table-Type Components 7-29

Creating an ADF Read-Only Table Component

Figure 7-12 ADF Read-only Table Component at Design Time

ints.Producgld.label}l#{bindings.ProductList.hints.Pr #{bindings.Prt # {bindings.ProductList.ice.label} \Price.label} Price.label} gin.label T}

Edit Component: ADF Read-only Table

ezl

E Behavior

FiowLimit

B Data

B Colurnnz

B [0

Annotation
CellStylet ame
HeaderLabel

1D
OutputText
1D

E dit the properties and press OK. to zave your changes.

ReadOnlyColumn[] Array

o bindings. Productl d inputy alue}

_ADFDI_ReadOnlyT ableStyle
#{bindings. ProductList_hints_Productld.label}

HeaderStleMame HeaderStyleRight

Productld

#{row_bindings. Productld_input¥alue}

The unique, required identifier of this column.

l

ak l [Cancel

7.16.1 How to Insert an ADF Read-only Table Component

You use the ADF Desktop Integration Designer task pane to insert an ADF Read-only
Table component into a worksheet.

To insert an ADF Read-only Table component:
1. Open the integrated Excel workbook.

. bit #{row.bindi #{row.bind =(("#{row.t

2. Select the cell in the Excel worksheet where you want to anchor the component.

3. In the bindings palette, select the binding to create the ADF Read-only Table
component, and then click Insert Binding.

4. In the dialog that appears, select ADF Read-only Table.

Note: You can also insert an ADF Read-only Table component by
using the components palette or Oracle ADF tab. Select ADF
Read-only Table and click Insert Component. If you use the
components palette to create the component, you would have to add

each column to appear in the component at runtime.

5. Configure properties in the property inspector that appears to determine the
columns to appear and the actions the component invokes at runtime.

6. Click OK.

Note: You can modify the properties of the component at a later time
by selecting the cell in the worksheet that anchors the component and
then displaying the property inspector.

7.16.2 How to Manually Add a Column to the ADF Read-only Table Component

You can manually add additional columns to an ADF Read-only Table component or
re-add columns that you previously removed.

7-30 Desktop Integration Developer's Guide for Oracle Application Development Framework

Limiting the Number of Rows Your Table-Type Component Downloads

To manually add a column to the ADF Read-only Table component:
1. Open the integrated Excel workbook.

2. Select the cell in the worksheet that hosts the ADF Read-only Table component
and click the Edit Component button in the Oracle ADF tab to display the Edit
Component: ADF Read-only Table dialog.

3. Click the ellipsis button (...) beside the input field for Columns to invoke the
ReadOnlyColumn Collection Editor.

4. Click Add to add a new column to the ADF Read-only Table component.
5. Set values for the properties of the new column.

For information about the properties of an ADF Read-only Table component
column, see Table A-13.

6. Click OK.

7.17 Limiting the Number of Rows Your Table-Type Component

Downloads

You can configure the number of rows that an ADF Table or ADF Read-only Table
component downloads by setting values for the component’s RowLimit group of
properties. You can also display a warning message, if desired, that alerts the end user
when the number of rows available to download exceeds the number of rows specified
for download.

7.17.1 How to Limit the Number of Rows a Component Downloads

Specify the number of rows that the component downloads when it invokes its
Download action as a value for the RowLimit .MaxRows property. Optionally, write
an EL expression for the RowLimit .WarningMessage property so that the end user
receives a message if the number of rows available to download exceeds the number
specified by RowLimit . MaxRows.

To limit the number of rows a table-type component downloads:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the table-type component and
click the Edit Component button in the Oracle ADF tab.

For more information, see Section 8.2, "Using Action Sets."

3. Configure properties for the RowLimit group of properties, as described
inTable 7-10. For more information about these properties, see Section A.1,
"Frequently Used Properties in the ADF Desktop Integration."

Table 7-10 RowLimit Group of Properties

Set this property to... This value...

RowLimit.Enabled Set to True to limit the number of rows downloaded to the
value specified by RowLimit .MaxRows.

RowLimit .MaxRows Specify an EL expression that evaluates to the maximum
number of rows to download.

Working with ADF Desktop Integration Table-Type Components 7-31

Limiting the Number of Rows Your Table-Type Component Downloads

Table 7-10 (Cont.) RowLimit Group of Properties

Set this property to... This value...

RowLimit.WarningMessa Write an EL expression for this property to generate a message
ge for the end user if the number of rows available to download
exceeds the number specified by RowLimit .MaxRows.

The default value also generates a message:
#{_ADFDIres['ROWLIMIT_ WARNINGS_MESSAGE_1']}

If the value for this property is null, the Download action
downloads the number of rows specified by

RowLimit .MaxRows without displaying a message to the end
user.

4. C(lick OK.

Figure 7-13 shows the Edit Component dialog in the EditPriceList-DT.x1lsx
workbook where the row limit of an ADF Table component is configured.

Figure 7-13 Limiting Number of Rows of an ADF Table Component

Edit Component: ADF Table §|

Edit the properties and press OK to save your changes.

z: | A
[GES ¥4
E Behavior
B atchOptions
Rowéctions

=] FiowLimit
Enabled True
M axFows 500
wWaringMessage #{_ADFDIres['ROWLIMIT_WARMINGS_MESSAGE_1']}
B Data
Columng TableColumn[] Armray
FowData
TreslD ProductT able
I niquedsttribute #H{row_bindings. Productl d.input¥ alue}
E Design
Anrotation
E Layout
Puosition $Cs12
RowLimit

The properties that govern the behavior of row limits.

Ok] [Cancel

7.17.2 What Happens at Runtime When You Limit the Number of Rows a Component

Downloads

When invoked, the Table-type component’s Download action downloads the number
of rows that you specified as the value for RowLimit .MaxRows from the Fusion web
application. A message dialog similar to the one in Figure 7-14 appears if you specify
an EL expression for RowLimit .MaxRows or do not modify its default value:

#{_ADFDIres['ROWLIMIT_ WARNINGS_MESSAGE_1']}

7-32 Desktop Integration Developer's Guide for Oracle Application Development Framework

Clearing the Values of Cached Attributes in an ADF Table Component

Figure 7-14 Row Limit Exceeded Warning Message

Row Limit Exceeded

7.18 Clearing the Values of Cached Attributes in an ADF Table
Component

The RowData group of properties described in Table A-9 allow you to specify data to
cache in the ADF Table component. For more information about this functionality, see
the following:

s Section 12.7, "Handling Data Conflicts When Uploading Data from a Workbook"

s Chapter 15, "Using an Integrated Excel Workbook Across Multiple Web Sessions
and in Disconnected Mode"

The ADF Table component exposes an action (ClearCachedRowAttributes) that,
when invoked, clears the values of cached attributes for the current row of the ADF
Table component.

Do not configure a component (for example, an ADF Table component’s column or an
ADF Input Text component) so that an end user can view or edit an attribute binding
that you have also specified for an element in the RowData.CachedAttributes
array. The RowData.CachedAttributes array caches the values retrieved by the
worksheet DownSync action. The worksheet UpSync action sends the values of the
RowData.CachedAttributes array to the Fusion web application. This may
override edits an end user makes to an attribute binding exposed through a
component in the worksheet.

7.18.1 How to Clear the Values of Cached Attributes in an ADF Table Component

Configure a DoubleClickActionSet that includes an action to invoke the ADF
Table component’s ClearCachedRowAttributes action.

To clear the values of cached attributes in an ADF Table component:
1. Open the integrated Excel workbook.

2. Open the Action Collection Editor for the Oracle ADF component that is going to
invoke the DoubleClickActionSet at runtime.

For more information about invoking action sets, see Chapter 8.2, "Using Action
Sets."

3. Add an action to the DoubleClickActionSet that invokes the ADF Table
component’s ClearCachedRowAttributes action.

4. Click OK.

7.18.2 What Happens at Runtime When the ADF Table Component Clears Cached
Values

The action set invokes the ADF Table component’s ClearCachedRowAttributes
action. This action clears the cached values specified by the

Working with ADF Desktop Integration Table-Type Components 7-33

Tracking Changes in an ADF Table Component

RowData.CachedAttributes property for the current row of the ADF Table
component.

7.19 Tracking Changes in an ADF Table Component

End users can create or modify data in the cells of an integrated Excel workbook that
hosts an ADF Table component.

If a column is updatable and not read-only, change tracking is activated. End users can
make the following changes to activate change tracking:

s Edit cell values
m Insert or delete cell values

= Paste values to cells in the ADF Table component column that they copied
elsewhere

A character that resembles an upward pointing arrow appears in a row of the _ADF_
ChangedColumn column if the end user makes a change to data in a corresponding
row. Figure 7-15 shows an example.

Figure 7-15 Changed Column in an ADF Table Component

This character appears if the end user makes a change to data hosted by a component
where the component’s ReadOnly property value is False. The ADF Input Text and
TreeNodeList subcomponents both have a ReadOnly property. You can write an EL
expression or a static string for this ReadOnly property that evaluates to True or
False. If you write a static string or an EL expression that evaluates to True, no
character appears in the _ ADF_ChangedColumn column. For more information about
ReadOnly EL expressions and change tracking, see Section 7.8.2, "What Happens at
Runtime When an ADF Table Component Uploads Data."

If you write an EL expression for this ReadOnly property that evaluates to True, ADF
Desktop Integration evaluates it differently to other EL expressions during change
tracking. This is because it is not desirable to invoke a connection to the Fusion web
application if the end user makes changes to data in an ADF Table component while
working in disconnected mode. Instead, ADF Desktop Integration substitutes an
empty string value for any part of an EL expression that requires a connection to the
Fusion web application. This behavior also applies to the ADF Table component
column’s CellStyleName property.

Note: During change tracking, cell styles are applied when the end
user inserts new worksheet rows.

For example, the end user in disconnected mode makes a change to a data value
hosted by the ADF Input Text component in an ADF Table component column.
During change tracking, ADF Desktop Integration substitutes an empty string value in
the parts of the EL expression for the ADF Input Text component’s ReadOnly
property and the ADF Table component column’s Cel1lStyleName property that
require a connection to the Fusion web application. For this reason, write EL

7-34 Desktop Integration Developer's Guide for Oracle Application Development Framework

Tracking Changes in an ADF Table Component

expression for these properties that evaluate as you intend if an empty string value is
substituted for a part of the expression that requires a connection to the Fusion web
application to retrieve a runtime value.

The ADF Output Text component does not have a ReadOnly property. Changes that
you make to a value hosted by this component, or the ADF Input Text and
TreeNodeList subcomponents, do not result in a change to the _ADF_
ChangedColumn column.

Working with ADF Desktop Integration Table-Type Components 7-35

Tracking Changes in an ADF Table Component

7-36 Desktop Integration Developer's Guide for Oracle Application Development Framework

8

Adding Interactivity to Your Integrated Excel
Workbook

This chapter describes how to add interactivity options to your integrated Excel
workbook.

This chapter includes the following sections:

= Section 8.1, "Introduction to Adding Interactivity to an Integrated Excel
Workbook"

m Section 8.2, "Using Action Sets"

= Section 8.3, "Configuring the Runtime Ribbon Tab"

= Section 8.4, "Displaying Web Pages from a Fusion Web Application”

= Section 8.5, "Inserting Values in ADF Table Columns from a Web Page Pick Dialog"

= Section 8.6, "Creating ADF Databound Search Forms in an Integrated Excel
Workbook"

= Section 8.7, "Adding a Form to an Integrated Excel Workbook"

= Section 8.8, "Creating Dependent Lists of Values in an Integrated Excel Workbook"
= Section 8.9, "Using EL Expression to Generate an Excel Formula"

= Section 8.10, "Using Calculated Cells in an Integrated Excel Workbook"

= Section 8.11, "Using Macros in an Integrated Excel Workbook"

8.1 Introduction to Adding Interactivity to an Integrated Excel Workbook

Adding interactivity to an integrated Excel workbook permits end users to execute
action sets that invoke Oracle ADF functionality in the workbook. It also provides
status messages, alert messages, and error handling in the integrated Excel workbook
while these action sets execute. In addition to end-user gestures (double-click, click,
select) on the ADF Desktop Integration components that invoke action sets, you can
configure workbook and worksheet ribbon buttons that end users use at runtime to
invoke action sets.

The action sets that end users invoke can make use of functionality defined in the
Excel workbook and in pages of the Fusion web application with which you integrate
the Excel workbook. For example, the EditPriceList-DT.x1lsx workbook in the
Master Price List module renders an ADF Button component that, at runtime, invokes
a page from the Fusion web application. The invoked page allows end users to specify
additional search criteria to what can be specified in the workbook’s search form
which is rendered using ADF Button, ADF Input Text, and ADF Label components.

Adding Interactivity to Your Integrated Excel Workbook 8-1

Using Action Sets

In addition to action sets, you can configure Excel functionality, such as macros and
Excel formulas, to manage the data that you want to download from or upload to your
Fusion web application.

8.2 Using Action Sets

An action set is an ordered list of one or more of the following actions that execute in a
specified order:

s ADFmAction

s ComponentAction
m WorksheetMethod
m Confirmation

s Dialog

An action set can be invoked by an end-user’s gesture (for example, clicking an ADF
Button) or an Excel worksheet event. Where an end-user gesture invokes an action set,
the name of the action set property in the ADF component’s property inspector is
prefaced by the name of the gesture required. The following list describes the property
names that ADF Desktop Integration displays in property inspectors, and what user
gesture can invoke an action set:

s ClickActionsSet for an ADF Button component, as the end user clicks the
button to invoke the associated action set

s DoubleClickActionSet for an ADF InputText or ADF Output Text component,
as the end user double-clicks these components to invoke the associated action set

m SelectActionSet for a worksheet ribbon button, as the end user selects a
button to invoke the associated action set

= Actionset for a worksheet event, as no explicit end-user gesture is required to
invoke the action set

You invoke the Action Collection Editor from an ADF component, worksheet ribbon
button, or worksheet event to define or configure an action set. In addition to defining
the actions that an action set invokes, you can configure the action set’s Alert
properties to provide feedback on the result of invocation of an action set. You
configure the Status properties for an action set to display a status message to end
users while an action set executes the actions you define. For information about
opening the Action Collection Editor, see Section 5.12, "Using the Collection Editors."

The Master Price List module provides many examples of action sets in use. One
example is the ADF Button component labeled Upload Data at runtime in the
EditPriceList-DT.x1sx workbook. An action set has been configured for this
ADF Button component that invokes the ADF Table component’s Upload action
illustrated by Figure 8-1 which shows the Action Collection Editor in design mode.

8-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Action Sets

Figure 8-1 Action Set for Upload Data Button in the EditPriceList-DT.xIsx Workbook

E dit the properties and press OK to save your changes.

e/l
E Behavior
B ClickfctionSet
ActionOptions
Actions Action]] Array

Action Collection Editor

= Members: Upload data properties:
-] Upload data + 8: @

E Action

Action Upload
= ComponentlD TAB416222534
E Design
Annotation Upload data
A
T
Add '] [Remove
]9] [Cancel

Tip: Write a description in the Annotation field for each action that
you add to the Action Collection Editor. The description you write
appears in the Members list view and, depending on how you write
it, may be more meaningful than the default entry that ADF Desktop
Integration generates.

Note: ADF Desktop Integration invokes the actions in an action set
in the order that you specify in the Members list view.

8.2.1 How to Invoke an ADF Model Action in an Action Set

You can invoke multiple ADF Model actions in an action set. An ADF Model action is
also known as an action binding in the JDeveloper project where you develop your
Fusion web application. Page definition files define what action bindings are available
to invoke in a worksheet that you integrate with your Fusion web application. For
more information about page definition files and action bindings in an integrated
Excel workbook, see Section 4.3, "Working with Page Definition Files for an Integrated
Excel Workbook."

You use the Action Collection Editor to specify an ADF Model action to invoke.

To invoke an ADF Model action in an action set:
1. Open the integrated Excel workbook.

2. Open the Action Collection Editor and invoke the dropdown list from the Add
button illustrated here.

Add R
]i% [EMOve

3. Select ADFmAction and configure its properties as described in the following list:

Adding Interactivity to Your Integrated Excel Workbook 8-3

Using Action Sets

s ActionID

Click the ellipsis button (...) beside the input field for ActionID to invoke the
Binding ID picker and select the ADF Model action that the action set invokes
at runtime.

s Annotation

Optionally, enter a comment about the purpose of the action that you are
configuring. The value you set for this property has no functional impact.

4. Click OK.

8.2.2 How to Invoke Component Actions in an Action Set

The ADF Table and the ADF Read-only Table components in ADF Desktop
Integration expose actions that can be used to manage the transfer of data between
Excel worksheets that you integrate with a Fusion web application. The ADF
Read-only Table component exposes one component action, Download, while the
ADF Table component exposes many other actions. More information about the
actions for both components can be found in Appendix A, "ADF Desktop Integration
Component Properties and Actions."

You configure action sets to invoke one or more component actions by referencing the
component action in the array of actions. For example, Figure 8-2 shows the Choose
Component Action dialog where the actions exposed by the ADF Table and ADF
Read-only Table components present in a worksheet can be invoked by a
SelectActionSet action set.

Figure 8-2 Choose Component Method Dialog

orks heet Prope

E dit the properties and press DK ta zave your changes.
=2l | =
El Behavior
E Ewvents worksheetEvent[] Amray
B [0 Download all products on startup
B ActionSet
Actiondptions
B Achions Action[] Array

Members: D ownload Collectio Choose an action exposed by components on the curment worksheet.
tion of Froducts + Bz | A = B TAB416222534
|| = ClearCachedR owdtribute s
+ E Action DeleteFlaggedRiows
Action DisplayFowE rors

|2

Component| DisplayT ableE mors
El Design
Arnnotation DrownloadFlaggeds ows
DownloadForlnsert
FlagélR ows
Iritialize:
| M arkAlRowsChanged
— MarkAllRowsUnchanged
add v] [Remave] RowDownSync
RowlpSync

E UnflagéllFowes
Upload

|A

[Ok] [Cancel]

Note: An Excel worksheet must include an ADF Table or ADF
Read-only Table component before one or more of these components’
actions can be invoked by an action set.

8-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Action Sets

To invoke a component action from an action set:
1. Open the integrated Excel workbook.

2. Open the Action Collection Editor and invoke the dropdown list from the Add
button illustrated here.

Add]kL [Remove
g

3. Select ComponentAction and configure its properties as described in the
following list:

s ComponentID

Click the ellipsis button (...) beside the input field for ComponentID to invoke
the Choose Component Method dialog and select the component action that
the action set invokes at runtime. This populates the ComponentID and
Method input fields.

= Action
The component’s action that the action set invokes at runtime.
= Annotation

Optionally, enter a comment about the purpose of the action that you are
configuring. The value you set for this property has no functional impact.

4. C(lick OK.

8.2.3 What You May Need to Know About an Action Set Invoking a Component Action

Note the following pieces of information about the behavior of action sets in
integrated Excel workbooks.

Verifying an Action Set Invokes the Correct Component Action

When creating an action set, ensure that you invoke the component action from the
correct instance of a component when a worksheet includes multiple instances of an
ADF Read-only Table or ADF Table component. Figure 8-3 shows the Choose
Component Action dialog displaying two instances of the ADF Read-only Table
component. Use the value of the ComponentID property described in Table A-1 to
correctly identify the instance of a component on which you want to invoke a
component action.

Adding Interactivity to Your Integrated Excel Workbook 8-5

Using Action Sets

Figure 8-3 Choose Component Method Dialog

Members: Componentiction properties:
0] ROT1332764337 Download + Bz; | A
il Componentdction | Ll
= Ac?ion
Action
Cormpanent| D

Choose Component Action

Choose an action expozed by components on the curment work sheet.
=-E3 ROT1232764337
Download
=-E3 ROTE76382750
[ownload
Add
L il 7

Invoking Action Sets in a Disconnected Workbook

End users can use integrated Excel workbooks while disconnected from a Fusion web
application, as described in Chapter 15, "Using an Integrated Excel Workbook Across
Multiple Web Sessions and in Disconnected Mode." Some component actions, such as
the Download action of the ADF Table component, require a connection to the Fusion
web application to complete successfully. If the end user invokes an action set that
includes such a component action, the integrated Excel workbook attempts to connect
to the Fusion web application and, if necessary, invokes the authentication process
described in Section 11.2, "Authenticating the Excel Workbook User."

8.2.4 How to Invoke an Action Set from a Worksheet Event

ADF Desktop Integration provides several worksheet events that, when triggered, can
invoke an action set. The following worksheet events can invoke an action set:

n Startup
s Shutdown

Do not invoke a Dialog action from this event if the Dialog action’s Target
property is set to TaskPane.

s Activate
s Deactivate

You add an element to the array of events (WorksheetEvent [] Array) referenced
by the Events worksheet property. You specify an event and the action set that it
invokes in the element that you add. For more information about the Events
worksheet property and the worksheet events that can invoke an action set, see
Table A-19. See Table A-14 for more information about action sets.

Use the WorkSheetEvent Collection Editor to specify an action set to be invoked by a
worksheet event.

To invoke an action set from a worksheet event:
1. Open the integrated Excel workbook.

2. In the ADF Desktop Integration task pane, click Worksheet Properties to display
the Edit Worksheet Properties dialog.

8-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Action Sets

Click the ellipsis button (...) beside the input field for the Events property to
display the WorksheetEvent Collection Editor.

Click Add to add a new element that specifies an event and a corresponding
action set that the event invokes.

Figure 8-4 shows an example from the EditPriceList-DT.x1sx file in the
Master Price List module where the worksheet event, Startup, invokes an action
set that invokes the ADF Table component’s Download action.

Figure 8—4 Worksheet Startup Event Invokes an Action Set

i

Edit the properties and prezz OK to zave your changes.

T4
El Behavior
Events ‘WorkzheetE vent[] Arrap
Protection
Riibbon Commands WorksheetEvent Collection Editor
El Data
Page Definition Diowrdoad all products on startup properties:
Paramneters .
RowD ata * %_' ﬁ'l'
ServerContext E Behavior
Title B ActionSet
Design ActionJptionz
B Actions Action[] Amrray
Download Collection of
Action | Download
Annotath Download Collection
Compore TAB416222534
Alert
Anniotation
Statuz
Events 44 |3 IrweokeOncelrnly Falze
The collection of worksheet g Add] [Ferare] Design
I 0K l [Cancel

5.

Click OK.

8.2.5 How to Display a Status Message While an Action Set Executes

You can display a status message to end users while an action set executes by
specifying values for the Status properties in an action set.

Some of the default values for properties in the ActionSet.Status group are EL
expressions that resolve to strings defined in the reserved resource bundle at runtime.
You can replace these default values with EL expressions that refer to your custom
resource bundles. For more information, see Section 10.2, "Using Resource Bundles in
an Integrated Excel Workbook."

You use the Action Collection Editor to configure values for the ActionSet.Status
properties.

To display a status message:

1.
2.
3.

Open the integrated Excel workbook.
Open the Action Collection Editor.

Set values for the properties in the ActionSet. Status group of properties as
described in the following table.

Adding Interactivity to Your Integrated Excel Workbook 8-7

Using Action Sets

Table 8—1 ActionSet.Status Group of Properties

For this property... Enter or select this value...
Enabled True to display a status message. True is the default value.
Message An EL expression or string that resolves to the status message to

display at runtime. For example, the Search button in the Master
Price List module’s EditPriceList-DT.x1lsx file has the
following value configured for the Message property:

Searching and downloading...

Title An EL expression or string that resolves to the title of the status
message to display at runtime. For example, the Search button
in the Master Price List module’s EditPriceList-DT.xlsx
file has the following value configured for the Tit1le property:

Query Products

For this property... Enter or select this value...

Figure 8-5 shows the values configured for the ActionSet.Status group of
properties of the Search ADF Button component in the
EditPriceList-DT.x1sx workbook of the Master Price List module that is
labeled Search at runtime.

Figure 8-5 Status Message Properties in an Action Set

fires['ercel searc
Edit Component: ADF Button E|
Edit the properties and press OK. to save your changes.
=z | A
[CES A
E Behavior -~
Bl Click&ctionSet
Actiond ptions
Actions Action[] Amray
Alert
Annatation
Enabled True
Meszage Searching and downloading...
Title Query Products w
Status
The properties of the status feature that may appear while the Actions are invoked.
[Ok] [Cancel]

For more information about the ActionSet . Status group of properties, see the
entry for Status in Table A-14.

4. Click OK.

8.2.6 What Happens at Runtime When an Action Set Displays a Status Message

Once an action set is invoked, a status message appears if the ActionSet.Status
properties are configured to display a status message. Figure 8-6 shows the status
message that appears at runtime when the action set configured for the Search button
in the EditPriceList-DT.x1sx workbook executes.

8-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Action Sets

Figure 8-6 Runtime View of Status Message

Master Price List in Excel (Editable)

Search Area Table Errors
Search For |Ipod Waorksheet Errors
Advanced Search... Table Errors
47 records found
Upload to Server
Prod. Mo|Product Name Cost Price Site Price Difference Current Margin

14|Bluetooth Phone Headset Query Products 50.0%
15|Ipod Speakers 57.1%
16/60 GB Searching and downloading... 34.5%
17|Ipod Video 80Gb £200.00 £330.99 £139.99 70.0%

8.2.7 How to Provide an Alert After the Invocation of an Action Set

You can display an alert message to end users that notifies them when an action set
operation completes successfully or fails. For example, you can display a message
when all actions in an action set succeed or when there was at least one failure. The
ActionSet.Alert group of properties configures this behavior.

Note: An alert message does not appear if the end user cancels the
execution of an action set. For example, you configure an alert
message to appear after an action set that invokes a web page in a
popup dialog completes execution. At runtime, the end user cancels
execution of the action set by closing the popup dialog using the close
button of the Excel web browser control that hosts the popup dialog.
In this scenario, no alert message appears. For more information about
displaying web pages, see Section 8.4, "Displaying Web Pages from a
Fusion Web Application.”

Many of the default values for properties in the ActionSet.Alert group are EL
expressions that resolve to strings defined in the reserved resource bundle at runtime.
You can replace these default values with EL expressions that refer to your custom
resource bundles. For more information, see Section 10.2, "Using Resource Bundles in
an Integrated Excel Workbook."

You use the Action Collection Editor to configure values for the ActionSet.Alert

group of properties.

To add an alert to an action set:
1. Open the integrated Excel workbook.

2. Open the Action Collection Editor.

3. Set values for the properties in the ActionSet .Alert group of properties as
described in Table 8-2.

Table 8-2 ActionSet.Alert Group of Properties

For this property... Enter or select this value...

Enabled Select True from the dropdown list to display an alert message
once the action set completes. The default value is False.

Adding Interactivity to Your Integrated Excel Workbook 8-9

Using Action Sets

Table 8-2 (Cont.) ActionSet.Alert Group of Properties

For this property... Enter or select this value...

FailureMessage Specify an EL expression or string that evaluates to a message to
appear in the dialog if errors occur during execution of the
action set. For example, the Upload to Server button in the
Master Price List module’s EditPriceList-DT.xlsx
workbook has the following value configured for the
FailureMessage property:

#{components.TAB442758137.errors}

The Upload to Server button invokes an action set that, in turn,
invokes the ADF Table component’s Upload action. The EL
expression specified for FailureMessage retrieves error
messages if the Upload action encounters errors. For more
information about error handling, see Section 12.4, "Error
Reporting in an Integrated Excel Workbook."

OKButtonLabel Specify an EL expression that evaluates to a message to appear
in the OK button of the dialog. The default EL expression is:

#{_ADFDIres['DIALOGS_OK_BUTTON_LABEL']}

SuccessMessage Specify an EL expression that evaluates to a message to appear
in the dialog if no errors occur during the execution of the action
set. For example, the Save Changes button in the Master Price
List module’s EditPriceList-DT.x1sx workbook has the
following value configured for the SuccessMessage property:

Changes saved successfully

Figure 8-7 shows the values configured for an ADF Button component’s
ActionSet.Alert group of properties in the EditPriceList-DT.x1lsx
workbook of the Master Price List module. This ADF Button component is labeled
Upload to Server at runtime.

Figure 8-7 Alert Message Properties in an Action Set

fHres['encel savel

Edit Component: ADF Button E|
Edit the properties and presz OK. to gave your changes.
EpA
El Behavior B
Bl Click&ctionSet
ActionOptions
Actions Action[] Array
B Alert
Enabled True
e #{components DEG 442758137 emors} [
OKButtonLabel #{_ADFDIres['DIALOGS_OK_BUTTON_LABEL')}
Successtessage Changes saved successfully
Title t{res["excel. saveButton.label'l}
Annotation
Statuz
B Data
Label tt{res["excel saveButton. label']} ¥

FailureMessage
The test that appears in the main area of the alertt window when the actions fail to complete
successfully.

QK.] [Cancel

4. Click OK.

8-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Action Sets

8.2.8 What Happens at Runtime When an Action Set Provides an Alert

Figure 8-8 shows the alert message that appears at runtime when the action set
invoked by the ADF Button component labeled Upload to Server successfully
completes execution.

Figure 8-8 Runtime View of an Alert Message

Upload to Server

ame Cost Price Site Price Difference Current b
Phone Headset $20.00 $49.99 $29.99 1t

ikers T
[y Upload to Server

o 80Gh 'E Changes saved successfully
.

fle 1Gb

0 30Gb 10
0 60Gb i
11Gh £
3 26b £100.00 5190.05 $99.05 10
hh «inn nn &«2nn NS «1nn ns 10

8.2.9 How to Configure Error Handling for an Action Set

You specify values for an action set’s Act ionOptions properties to determine what
an action set does if one of the following events occurs:

= An action in the action set fails
= All actions in the action set complete successfully

For information about how to invoke these editors, or about an ADF component’s
property inspector, see Chapter 5, "Getting Started with the Development Tools." More
information about action set properties can be found in Table A.11.

To configure error handling for an action set:
1. Open the integrated Excel workbook.

2. Open the appropriate editor or property inspector and configure values for the
action set’s ActionOptions properties as described in the following table.

Table 8-3 ActionOptions Properties

Set this property... To...

AbortOnFailure True (default value) so that the action set does not any execute
any further actions if the current action fails. When set to False,
the action set executes all actions regardless of the success or
failure of previous actions.

FailureActionID Specify an ADF Model action to invoke if an action set does not
complete successfully. For example, you could specify an ADF
Model action that rolls back changes made during the
unsuccessful invocation of the action set.

Note that calling an action set that changes a record set’s
currency during the execution of FailureActionID methods
is not supported. The Rollback method also should not be
specified as the FailureActionID in an action set.

Adding Interactivity to Your Integrated Excel Workbook 8-11

Using Action Sets

Table 8-3 (Cont.) ActionOptions Properties

Set this property... To...

SuccessActionID Specify an ADF Model action to invoke if an action set
completes successfully. For example, you could specify an action
binding that executes a commi t action. A value for this property
is optional and you can specify a final action, such as an action
binding that executes a commi t action, in the action set itself.

Note that calling an action set that changes a record set’s
currency during the execution of SuccessActionID methods
is not supported.

3. Click OK.

8.2.10 How to Invoke a Confirmation Action in an Action Set

The Confirmation action presents the end user with a simple message dialog that
displays the title and prompt message specified in the Confirmation action properties.

The execution of the action set pauses until the end user clicks one of the two buttons
provided. If the user clicks OK, the action sets proceed with the remaining actions in
the Action Set. If the user clicks Cancel, the action set is aborted at that point and the
remaining actions are not invoked. As there is no error or success, the
FailureActionID or SuccessActionID action is not invoked.

To invoke a Confirmation action from a component
1. Open the integrated Excel workbook.

2. Open the Action Collection Editor and click the down arrow in the Add button to
open a dropdown list, as illustrated here.

Add R
]i% [EMOve |

3. Select Confirmation and configure its Data properties as described in the
following list:

s CancelButtonLabel

Specify an EL expression or string that evaluates to a message to appear in the
Cancel button of the dialog. The default EL expression is:

#{_ADFDIres|['DIALOGS_CANCEL_BUTTON_LABEL']}

s OKButtonLabel

Specify an EL expression or string that evaluates to a message to appear in the
OK button of the dialog. The default EL expression is:

#{_ADFDIres['DIALOGS_OK_BUTTON_LABEL']}

n Prompt

Specify an EL expression or string that evaluates to a message to appear as the
prompt of the dialog. The default EL expression is:

#{_ADFDIres['DIALOGS_ACTION_CONFIRM_PROMPT']}

s Title

8-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Action Sets

Specify an EL expression or string that evaluates to a title of the confirmation
dialog to display at runtime. The default EL expression is:

#{_ADFDIres|['DIALOGS_ACTION_TITLE']}
4. Optionally, enter a comment in the Annotation property about the purpose of

the action that you are configuring. The value you set for this property has no
functional impact.

5. Click OK.

Figure 8-9 shows the Action Collection Editor with default attribute values for a
Delete button.

Figure 8-9 Confirmation Action Attributes

Action Collection Editor

Members: Confirm Delete properties:

o W +| [==a
1| Delete Flagged Fows | Ll

E Data
CancelButtonLabe #{_ADFDIres['DIALOGS_CANCEL_BUTTON_LABEL']}
OKButtonLabel #{_ADFDIres['DIALOGS_OK_BUTTON_LABEL'T}

Prampt #{_ADFDIres['DIALOGS_ACTION_COMFIRM_PROMPT ']}
Title #{_ADFDIres['DIALOGS_ACTION_TITLE'T}
E Design

Confirm Delete

Add '] [Remave

Ok l [Cancel

8.2.11 What Happens at Runtime When an Action Set Provides a Confirmation

Once the action set is invoked, the user is prompted with a confirmation dialog. If the
user clicks OK, the next action operation is performed; and if the user clicks Cancel,
the Action Set execution terminates without an error.

Note: If the user cancels a Confirmation action, the
FailureActionID binding does not run.

Figure 8-10 shows a default Confirmation dialog with OK and Cancel buttons.

Figure 8-10 Confirmation Dialog

Invoke Action

'E Are you sure’?
L

ok] [Cancel

Adding Interactivity to Your Integrated Excel Workbook 8-13

Configuring the Runtime Ribbon Tab

8.3 Configuring the Runtime Ribbon Tab

You can configure the runtime ribbon tab in the Excel Ribbon with items that invoke
Oracle ADF functionality in your integrated Excel workbook. In the Runtime Ribbon
Tab group, setting the Visible workbook property to True makes this tab appear at
runtime. The Tit1le property determines the title of the tab that the end user sees at
runtime. By default, the title is MyWorkbook, as illustrated in Figure 8-11.

Figure 8—-11 Workbook Properties for Runtime Ribbon Tab

Edit Workbook Properties g|
Edit the properties and press OK. to save your changes.
pal
El Behavior -~
Bl Runtime Ribbon Tab
Annotation
Title My orkbook
“isible True
‘wiorkbook, Commands WorkbookMenultem[] Aray [
[0] Lagin
11 Logout
[2] CleartlD ata
[3] EditDptions
41 WiewdboutDialog e

Beset Wiorkbook|D

Workbook Commands
The collection of workbook-level commands in the runtime ribbon tab.

[0K][Cancel]

At runtime, the tab appears as the last tab in the Ribbon and all your configured
commands appear in various groups of the tab, as illustrated by Figure 8-12.

Figure 8—-12 Runtime View of the Ribbon Tab

37
—/) Home Insert Page Layout Formulas Data Review View Developer Oracle ADF MyWarkbook
= ” A
& &
Login Logout Edit Clear About
Options || All Data
Connection Clear About

Figure 8-13 illustrates the runtime ribbon tab in EditPriceList.x1lsx with two
commands configured for worksheet. At runtime, the commands are divided into four
groups: items that invoke commands on the workbook, items that invoke commands
on the current worksheet, a command group to clear all data, and a command
workgroup to display ADF Desktop Integration version information.

Figure 8-13 Runtime View of Ribbon Tab in EditPriceList.xlsx
E;f-a\ d - v EditPriceList.xlsx - Microsoft Excel

o
—-/ Home Insert Page Layout Formulas Data Review View Developer Fusion COrder Demo

RBL BB & @

Login Logout Edit Advanced Upload Clear About
Options Search to Server || All Data

Connection Worksheet Clear About

You configure the Workbook Commands property in the properties of the workbook
so that the runtime ribbon tab contains commands that allow the end user to invoke

8-14 Desktop Integration Developer's Guide for Oracle Application Development Framework

Configuring the Runtime Ribbon Tab

workbook actions such as Login and Logout. You configure the Ribbon Commands
property in the properties of the worksheet so that the ADF Desktop Integration tab
contains items allowing a user to invoke an action set. Worksheet command items
appear when the worksheet is active. If you remove a workbook command, it does not
appear in the runtime tab for that workbook. If you remove all the commands for a
given group, the group does not appear when that workbook is active.

Figure 8-14 shows the Worksheet group at runtime where the worksheet actions, that
invoke SelectActionSet action sets, appear.

Figure 8—-14 Runtime Worksheet Group

Advanced Upload
Search to Server

Worksheet

8.3.1 How to Define a Workbook Command Button for the Runtime Ribbon Tab

To define a workbook command button for the runtime ribbon tab, you configure
some workbook properties. The following procedure shows how to create or remove
an item in the Workbook group by using the workbook action, Login, as an example.

To define a workbook command button:
1. Open the integrated Excel workbook.

2. Click Workbook Properties in the ADF Desktop Integration task pane.

3. Click Workbook Commands and then click the ellipsis button (...) beside the
WorkbookMenuItem[] array to display the dialog as illustrated in Figure 8-15.

Figure 8—-15 WorkbookMenultem Collection Editor

Workbookienultem Collection Editor @E|
tembers: Login properties:
+| [(Ez|s
1| Logout |I§I__B;: -
2| CleardliD ata + ehavior
3| EditOptions . I ethod Login
4| ViewdboutDialog E Data
Label #{_ADFDIres['TOOL
E Deszign
Apnotation
Add] [Remove
[Ok] [Cancel]

4. Click Add and specify values for the properties of the workbook command
buttons as follows:

— Method

Specify the workbook action that you want the workbook command button to
invoke.

— Label

Adding Interactivity to Your Integrated Excel Workbook 8-15

Configuring the Runtime Ribbon Tab

Enter a value in the input field that appears as the label at runtime.
Alternatively, invoke the expression builder by clicking the ellipsis button (...)
and write an EL expression that resolves to a string value in a resource bundle.

Note that the runtime value that appears in the label cannot exceed 1024
characters.

For more information about using resource bundles, see Section 10.2, "Using
Resource Bundles in an Integrated Excel Workbook."

For more information about labels, see Section 9.4, "Using Labels in an
Integrated Excel Workbook."

5. Click OK.

Note: The order of workbook commands in the workbook collection
editor is ignored at runtime. The order and grouping of the
workbook-level commands is always the same.

8.3.2 How to Configure a Worksheet Command for the Runtime Ribbon Tab

To define a worksheet command, you configure properties for the worksheet using the
property inspector. By default, no command buttons are defined for the Worksheet
group in the worksheet properties. You add members to the list that is referenced by
the Ribbon Commands property in the properties of the worksheet.

CAUTION: Set the Runtime Ribbon Tab.Visible workbook
property to TRUE to display command buttons. If the Runtime
Ribbon Tab.Visible is set to FALSE, no command buttons appear.
For more information about workbook properties, see Table A-18.

To define a worksheet command button:
1. Open the integrated Excel workbook.

2. Click Worksheet Properties in the ADF Desktop Integration task pane.

3. Click the ellipsis button (...) beside the input field for the Ribbon Commands
property to invoke the editor, as illustrated in Figure 8-16. Figure 8-14 displays
how the commands appear at runtime.

8-16 Desktop Integration Developer's Guide for Oracle Application Development Framework

Displaying Web Pages from a Fusion Web Application

Figure 8-16 Worksheet Properties Collection Editor

WorksheetMenultem Collection Editor, @E|

Members: Advanced Search properties:

[B2)4)
El Behavior

SelectictionSe

El Data

Label #{res['excel advSe
E Design

Antotation Advanced Search

Add] [Remove

l oK H Cancel]

4. Click Add to add a new ribbon button in the Members list of the collection editor.

5. Configure the properties of SelectActionSet to specify the type of action(s)
that the ribbon button invokes.

6. Click OK.

Note: At runtime, the worksheet commands appear in the same
order as they are defined in the worksheet collection editor.

8.4 Displaying Web Pages from a Fusion Web Application

You configure a Dialog action in an action set to display pages from the Fusion web
application with which you integrate your Excel workbook. These pages provide
additional functionality for your integrated Excel workbook. Examples of additional
functionality that you can provide include search dialogs and display pick dialogs that
interact with your Fusion web application. You can also configure upload options.

The Dialog action in an action set can be configured to display in one of the following
two types of dialog:

= Popup dialog
= Runtime task pane

The value for the Dialog. Target property (Popup or TaskPane) of the
component’s action set determines where a web page is rendered.

The value for the Dialog. Page property specifies the web page to display when the
action is invoked. Valid values include a URL relative to the value of the WebAppRoot
property or an absolute URL. For example, the EditPriceList-DT.x1sx workbook
in the Master Price List module specifies the following relative URL as a value for the
page to invoke when a user clicks the Advanced Search button at runtime:

/faces/secured/excelAdvSearch. jspx

Absolute URLs such as the following are also valid:

http://www.oracle.com/technetwork/middleware/index.html

Adding Interactivity to Your Integrated Excel Workbook 8-17

Displaying Web Pages from a Fusion Web Application

Note: The HTML <select> components, such as list box or
dropdown list, do not follow z-order configuration when the page is
displayed through Dialog actions. In the NET Web Browser control,
on a web page with layered and overlapping components, the
<select> components might appear on top of other components.

8.4.1 How to Display a Web Page in a Popup Dialog

You can configure a Dialog action in an action set to invoke a web page from your
Fusion web application in a modal popup dialog hosted by Excel’s web browser
control. This feature provides end users with functionality that allows them to, for
example, input values displayed by a page from the Fusion web application into the
integrated Excel workbook.

The web page that the action set invokes must contain a reserved HTML Document
Object Model (DOM) element (for example, a span element) that has a case-sensitive
ID attribute set to ADFdi_CloseWindow. Example 8-1 shows how you can
automatically set the value of the span element in the excelAdvSearch. jspx page
of the Master Price List module using the rendered property of the f: verbatim tag.

Example 8-1 Use of HTML Document Object Model Span Element

<f:verbatim rendered="#{requestScope.searchAction eq 'search'}">
Continue

</f:verbatim>

<f:verbatim rendered="#{requestScope.searchAction eg 'cancel'}">
Abort

</f:verbatim>

Figure 8-17 shows the excelAdvSearch. jspx page hosted by the
EditPriceList-DT.x1sx workbook’s browser control.

Figure 8—17 Advanced Search Popup Dialog

Master Price List - Search &|
Advanced Search

Product Category

Books
Camera and Photo %
Indude Discontinued Products []

Search Cancel

In scenarios where you cannot use the rendered property of the f : verbatim tag as
outlined in Example 8-1, you may need to:

1. Create a backing bean that exposes the Dialog action’s result value as a property

2. Use an action listener to invoke the backing bean, and an EL expression in the
span element to set the value ADFdi_CloseWindow to the bean property value.

Whichever approach you take, ADF Desktop Integration monitors the value of
ADFdi_CloseWindow to determine when to close the popup dialog. If ADFd1_
CloseWindow references:

= Anempty string or is not present, the popup dialog remains open.

8-18 Desktop Integration Developer's Guide for Oracle Application Development Framework

Displaying Web Pages from a Fusion Web Application

s 'Continue", the popup dialog closes and the action set invokes its next action.

The following example shows ADFdi_CloseWindow assigned a value of
"Continue™:

var closeWindowSpan = document.getElementById("ADFdi_
CloseWindow") ;

closeWindowSpan. innerHTML = "Continue";
= Some other string value, the popup dialog remains open.

You set the Target property for a Dialog action to Popup to display a web page
from the Fusion web application in a modal popup dialog hosted by Excel’s web
browser control. Displaying a web page in a modal popup dialog differs from
displaying a web page in Excel’s task pane, because the Dialog action that the action
set invokes cannot continue execution until it receives user input. While the popup
dialog is open, the end user cannot interact with any other part of the integrated Excel
workbook, as the popup dialog retains focus.

End users can navigate between multiple web pages from the Fusion web application
within the browser control until they close the browser control, or ADF Desktop
Integration closes it.

To immediately synchronize the changes that the end user makes to a data control
through a popup dialog, specify the next action in the action set after the Dialog
action to download all modified bindings to the worksheet (use the DownSync
worksheet action) or ADF Table component (use the Download action). This scenario
assumes that you specify "Continue" as the value for ADFdi_CloseWindow.

Note: If you configure the web page that appears in the popup
dialog so that the end user can download an integrated Excel
workbook, the Oracle ADF functionality in the integrated Excel
workbook is disabled when the end user opens the workbook after
download.

8.4.2 How to Display a Web Page in ADF Desktop Integration Runtime Task Pane

You set the Dialog. Target property for an action to TaskPane to display a web
page specified by the Dialog. Page property in the ADF Desktop Integration task
pane. In contrast to displaying a web page in a popup dialog, displaying a web page in
the task pane allows an action set to continue executing actions while the web page
displays. End users can access and interact with other parts of the integrated Excel
workbook while the web page displays.

Note the following if you set the Target property of a Dialog action to TaskPane,
ADF Desktop Integration ignores the value of ADFdi_CloseWindow (and other
elements.

8.4.3 What You May Need to Know About Displaying Pages from a Fusion Web

Application

You can keep the data an integrated Excel workbook contains synchronized with a
Fusion web application by specifying additional actions in the action set that invokes
the Dialog action. You can ensure that the Fusion web application page and the
integrated Excel worksheet both use the same data control frame by setting the
ShareFrame property of the Dialog action.

Adding Interactivity to Your Integrated Excel Workbook 8-19

Displaying Web Pages from a Fusion Web Application

Notes:

= If your custom web page is based on ADF Faces and opens a
popup window, the web page must be configured in a certain
way to work properly. On the command component, set the
windowEmbedStyle to inlineDocument. For more information,
see Oracle Fusion Middleware Web User Interface Developer’s Guide
for Oracle Application Development Framework.

» TheDialog.Page property does not accept EL expressions.

Keeping an Integrated Excel Workbook and a Fusion Web Application
Synchronized

To ensure that data in the integrated Excel workbook and the Fusion web application
remains synchronized while end users use pages from the Fusion web application,
configure the action set that invokes the Dialog action to:

= Send changes from the integrated Excel workbook to the Fusion web application
before invoking the Dialog action.

Invoke the RowUpSync worksheet action to synchronize changes from the current
row in the ADF Table component.

= Send changes from the Fusion web application to the integrated Excel workbook
after invoking the Dialog action.

Invoke the RowDownSync worksheet action to send changes from the Fusion web
application to the current row in the ADF Table component.

For DoubleClickActionSet, you must ensure that the server-side model is in the
same state after executing the action set as it was before executing the action set. In
most cases, it is sufficient to roll back any and all uncommitted changes at the end of
each DoubleClickActionsSet, as there are no pending uncommitted changes when
the action set execution begins.

For more information about synchronizing data between an integrated Excel
workbook and a Fusion web application, see Chapter 15, "Using an Integrated Excel
Workbook Across Multiple Web Sessions and in Disconnected Mode." For information
about worksheet actions and ADF Table component actions, see Chapter A, "ADF
Desktop Integration Component Properties and Actions."

Sharing Data Control Frames Between Integrated Excel Worksheets and Fusion
Web Application Pages

Fusion web applications and integrated Excel workbooks both use data control frames
to manage the transactions and state of view objects and, by extension, the bindings
exposed in a page definition file. When you invoke a Fusion web application’s page
from an integrated Excel worksheet, you can ensure that the page and the integrated
Excel worksheet both use the same data control frame by setting the ShareFrame
property of the Dialog action that invokes the page to True.

The Page property in the Dialog action specifies the page that the Dialog action
invokes. If the Dialog action invokes an absolute URL or a page that is not part of
your Fusion web application, ADF Desktop Integration ignores the value of
ShareFrame if ShareFrame is set to True.

Set ShareFrame to False in the following scenarios:

» TheDialog.Page property in the action set references an absolute URL or a page
that is not part of your Fusion web application.

8-20 Desktop Integration Developer's Guide for Oracle Application Development Framework

Inserting Values in ADF Table Columns from a Web Page Pick Dialog

s The Dialog.Page property in the action set references a page that is part of your
Fusion web application, but that does not need to share information with the
integrated Excel worksheet. For example, a page that displays online help
information.

For more information about data control frames in a Fusion web application, see the
"Sharing Data Control Instances" section of the Oracle Fusion Middleware Fusion
Developer’s Guide for Oracle Application Development Framework.

Configuring a Fusion Web Application for ADF Desktop Integration Frame
Sharing

When you add the ADF Desktop Integration Technology scope to your Fusion web
application, the application is automatically configured to support ADF Desktop
Integration frame sharing. Frame sharing allows each worksheet of an integrated Excel
workbook to use a dedicated DataControl frame. Web pages displayed in dialogs
invoked from each worksheet can then share the same DataControl frame as the
integrated Excel worksheet.

To verify that your Fusion web application is configured to support frame
sharing:
1. Open your Fusion web application project in JDeveloper.

2. In the Application Navigator, expand the Application Resources panel.

3. Openthe adf-config.xml file available in Descriptors > ADF META-INF
folder.

4. Click the Source tab to open the source editor.

5. Confirm that the following adf-desktopintegration-servlet-config
element is present in the file before the </adf-config> tag:

<adf-desktopintegration-servlet-config
xmlns="http://xmlns.oracle.com/adf/desktopintegration/servliet/config">
<controller-state-manager-class>
oracle.adf.desktopintegration.controller.impl.ADFcControllerStateManager
</controller-state-manager-class>
</adf-desktopintegration-servlet-config>

6. Savethe adf-config.xmnl file and close JDeveloper.

8.5 Inserting Values in ADF Table Columns from a Web Page Pick Dialog

You can configure the DoubleClickActionSet of an ADF Table component’s
column to invoke a Fusion web application page that renders a pick dialog where the
end user selects a value to insert in the ADF Table component column.

This functionality is useful when you want to constrain the values that end users can
enter in an ADF Table component. For example, you may want a runtime ADF Table
component column to be read-only in the Excel worksheet so that end users cannot
manually modify values to prevent them from introducing errors. Invoking a pick
dialog rendered by a Fusion web application page allows the end user to change
values in the ADF Table component without entering incorrect data.

In addition to configuring the DoubleClickActionSet, you configure the ADF
Table component’s RowData .CachedAttributes property to reference attribute
binding values if you want:

Adding Interactivity to Your Integrated Excel Workbook 8-21

Inserting Values in ADF Table Columns from a Web Page Pick Dialog

End users to modify values in the Fusion web application’s page that you do not
want to appear in the ADF Table component of the integrated Excel workbook

An ADF Table component’s column to be read-only in the integrated Excel
workbook

Cache data in an ADF Table component over one or more user sessions that is not
visible to end users but is modified by a pick dialog

For example, an ADF Table component displays a list of product names to end
users. A pick dialog is invoked that refreshes the list of product names in the ADF
Table component and, as part of the process, sets the value of product IDs. In this
scenario, you specify the attribute binding value for the product ID in the ADF
Table component’s RowData.CachedAttributes property. After the action set
executes, the ADF Table component displays the refreshed list of product names
in the rows of the Excel worksheet and references the associated product IDs in its
RowData.CachedAttributes property.

For information about populating values in the pick dialog, see the "Creating
Databound Selection Lists and Shuttles" chapter in the Oracle Fusion Middleware Fusion
Developer’s Guide for Oracle Application Development Framework.

To invoke a pick dialog from an ADF Table component:

1.
2

Open the integrated Excel workbook.

Select the cell in the Excel worksheet that anchors the ADF Table component and
click the Edit Properties button in the Oracle ADF tab to display the property
inspector.

Configure the ADF Table component’s RowData.CachedAttributes property
to reference attribute binding values.

Click the ellipsis button (...) beside the input field for Columns to display the
TableColumn Collection Editor.

In the Members list, select the column from which the end user invokes the pick
dialog at runtime.

Configure the DoubleClickActionSet of the UpdateComponent property, as
described in Table 8—4.

Table 8-4 DoubleClickActionSet Properties

Add this action... To...

ADFmAction (Optional) Invoke the CreateInsert action binding if the end

user invokes the DoubleClickActionSet from a newly
created row in the Excel worksheet’s ADF Table component. In
this scenario, the ADF Table component’s RowUpSync action
(invoked in the next action) fails if the Fusion web application
does not contain a placeholder row.

ComponentAction Invoke the ADF Table component’s Table . RowUpSync action

to synchronize any pending changes in the current row of the
ADF Table component to the Fusion web application.

Dialog Configure the Dialog action to invoke the pick dialog page

from the Fusion web application. Set the Dialog action’s
ShareFrame property to True. For more information, see
Section 8.4, "Displaying Web Pages from a Fusion Web
Application."

8-22 Desktop Integration Developer's Guide for Oracle Application Development Framework

Creating ADF Databound Search Forms in an Integrated Excel Workbook

Table 8—-4 (Cont.) DoubleClickActionSet Properties
Add this action... To...

ComponentAction Invoke the ADF Table component’s Table . RowDownSync
action to synchronize data from the row in the ADF Table
component's iterator in the Fusion web application that
corresponds to the current ADF Table component row in the
worksheet. If you added a CreateInsert action binding, you
should also add the Delete action binding to remove the
placeholder row.

7. Click OK.

8.6 Creating ADF Databound Search Forms in an Integrated Excel

Workbook

You can create forms in your integrated Excel workbooks using ADF Input Text and
ADF Button components. End users can use the forms you create to insert data or
query for information. This section uses the latter example to demonstrate how you
create forms.

End users can enter a search term in the ADF Input Text component and retrieve
matching results by clicking an ADF Button component. To present a more
sophisticated user interface to end users for a search operation, you can invoke search
forms from your Fusion web application. Results from these search operations can be
downloaded to the ADF Table or ADF Read-only Table components in your integrated
Excel workbook.

Figure 8-18 shows a design time view of the Oracle ADF components that the
EditPriceList-DT.x1sx workbook in the Master Price List module uses to
configure search options where:

1. ADF Label component is used in a simple search form

2. ADF Input Text component is used in a simple search form
3. ADF Button component is used in a simple search form
4

ADF Button component is used to invoke an advanced search form

Figure 8-18 Oracle ADF Components Used for Search in the EditPriceList-DT.xisx Workbook

#{res['excel.edit.searchPrompt']} #{bindings.searchTerm} [

1

fHres['encel searchButton label']] 3

2 [fHres['excel advSearchButton la] 4

Note: ADF Desktop Integration does not support usage of the
FindMode attribute in page definition files. For more information
about the FindMode attribute, see the "pageNamePageDef.xml" section
of the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle
Application Development Framework.

8.6.1 How to Create a Simple Search Form in an Integrated Excel Workbook

You insert an ADF Input Text component and configure it so that the end user can
enter a search term. Insert an ADF Button component and configure its action set to:

1. Take the value the end user enters in the ADF Input Text component.

Adding Interactivity to Your Integrated Excel Workbook 8-23

Creating ADF Databound Search Forms in an Integrated Excel Workbook

2.
3.

Query for the value.

Download the results to an ADF Table or ADF Read-only Table component in the
integrated Excel workbook.

To create a simple search form in an integrated Excel workbook:

1.
2

Open the integrated Excel workbook.

Insert an ADF Input Text component in the Excel worksheet cell where you want
the end user to enter the search criteria.

Configure the ADF Input Text component so that it assigns the search term, that a
user enters, to an attribute binding.

Figure 8-19 shows an example from the EditPriceList-DT.x1sx workbook in
the Master Price List module where an ADF Input Text component assigns the
user-entered value to the searchTerm attribute binding. The searchTerm,
which is a part of variable iterator, is then passed as a NamedData argument to the
executeSimpleProductQuery method.

Figure 8—-19 ADF Input Text Component for a Simple Search Form

#/bindings.searchTerm} |||

Edit Component: ADF Input Text E|

Edit the properties and press 0K to save your changes.
Ez: | A
[CEs A
E Appearance A

StyleM ame _ADFDI_InputTextStyle
B Data
Bl InputText t#{bindings.searchT erm}

D oubleClickA.ctior

FeadOnly False
t#{bindings.searchT erm} [

E Design

Anhotation

v

Value

The walue of thiz component.

[oK H Canecel]

Optionally, apply a style to the ADF Input Text component to indicate to end
users that they can enter a search term in the cell.

Optionally, create an ADF Label component in an adjoining cell to indicate to end
users that they can enter a search term in the ADF Input Text component you
created in Step 2.

Create an ADF Button component in the Excel worksheet.

Set the Label property of the ADF Button component so that it displays a string
at runtime to indicate to end users that they can start a search operation by
clicking the button.

Open the Action Collection Editor to configure the array of actions
(Action[]Array) in the ClickActionSet properties of the ADF Button
component. Table 8-5 describes the actions to invoke in sequence.

8-24 Desktop Integration Developer's Guide for Oracle Application Development Framework

Creating ADF Databound Search Forms in an Integrated Excel Workbook

Table 8-5 ClickActionSet Properties of the ADF Button Component
Add this action... To...

Worksheet Invoke the UpSync worksheet action to copy the value entered
in the cell that hosts an ADF Input Text or ADF List of Values
component to the Fusion web application. For more information
about worksheet actions, see Section A.13, "Worksheet Actions
and Properties."

ADFmAction Invoke an ADF Model action that is bound to the attribute
binding you specified in Step 3. The ADF Model action queries
for the end user’s search term value referenced by the attribute
binding.

The corresponding example in the EditPriceList-DT.xlsx
workbook is the executeSimpleProductQuery action
binding, which is bound to the searchTerm attribute binding.

Worksheet Invoke the DownSync worksheet action to synchronize any
pending changes from the Fusion web application to the ADF
Input Text, ADF Output Text, and ADF List of Values
components in the worksheet. For more information about
worksheet actions, see Section A.13, "Worksheet Actions and
Properties.”

Component Invoke a Download action from the ADF Table or ADF
Read-only Table components to download the results that the
ADF Model action retrieved.

9. Click OK.

Figure 8-20 shows an example from the EditPriceList-DT.x1sx workbook in
the Master Price List module where an ADF Button component invokes the
executeSimpleProductQuery action binding using the search term the end
user entered in the ADF Input Text component.

Figure 8-20 ADF Button Component for Simple Search Form

| Hires['encel searchButton label'] I

Edit Component: ADF Button g|
Edit the properties and press OK. to save your changes.
e
E Behavior -~
B ClickfctionSet
ActionOptions
Action[] Arrap [
= [0 push the query spec up to the server
Annotation puzh the query spec up to the server
Method UpSync
11 invoke my query actions
[2] refrezh the quemny zpec in caze the action alkered it
[3] Download Results
Alert
Annotation
Status v
Actlions

The collection of actions invoked.

Ok] [Cancel

8.6.2 How to Create an Advanced Search Form in an Integrated Excel Workbook

You use the ADF Button component to invoke a page from the Fusion web application
that displays a search form to the end user. Configure the action set for the ADF

Adding Interactivity to Your Integrated Excel Workbook 8-25

Creating ADF Databound Search Forms in an Integrated Excel Workbook

Button component to invoke the Download action for the ADF Table or ADF
Read-only Table component so that the search results from the search operation are
downloaded to the integrated Excel workbook.

For information about creating a search form in a Fusion web application, see the
"Creating ADF Databound Search Forms" chapter in the Oracle Fusion Middleware
Fusion Developer’s Guide for Oracle Application Development Framework.

To invoke an advanced search form in an integrated Excel workbook:
1. Open the integrated Excel workbook.

2. Create an ADF Button component in the Excel worksheet.

3. Set the Label property of the ADF Button component so that it displays a string
at runtime to indicate to end users that they can start a search operation by
clicking the button.

4. Use the Action Collection Editor to configure the array of actions
(Action[]Array) in the ClickActionSet properties of the ADF Button
component. Table 8-6 describes the actions to invoke in sequence.

Table 8-6 Actions to Invoke an Advanced Search Form

Add this action... To...

Dialog Display the page from your Fusion web appl ication that
contains the search form. For more information about displaying
pages from a Fusion web application, see Section 8.4,
"Displaying Web Pages from a Fusion Web Application."

Component Invoke a Download action from the ADF Table or ADF
Read-only Table components to download the results that the
ADF Model action retrieved.

5. Click OK.

Figure 8-21 shows an example from the EditPriceList-DT.x1sx workbook in
the Master Price List module where an ADF Button component invokes the
Execute action binding to retrieve the values specified by the end user in the
Master Price List’s module Search page (excelAdvSearch. jspx). The ADF
Table component’s Download action downloads the returned values to the
integrated Excel workbook.

8-26 Desktop Integration Developer's Guide for Oracle Application Development Framework

Adding a Form to an Integrated Excel Workbook

Figure 8-21 ADF Button Component for an Advanced Search Form

tHres['excel advSearchButton.la I

Edit Component: ADF Button

Edit the properties and press OK to save vour changes.

=: | A

[CES A

E Behavior

B ClickactionSet
AchionO ptions

[0]

= 1]
Action
Annotation
ComponentlD
Alert
Annotation

Statuz

Actions
The collection of actions invoked.

Action[] Array [
Dizplay custom zearch dialog
Download results from the search
Download

Download results from the search

TAB416222534

X

Ok] [Cancel

8.7 Adding a Form to an Integrated Excel Workbook

You can use the ADF Desktop Integration components described in Chapter 6,
"Working with ADF Desktop Integration Form-Type Components," to create forms in

your integrated Excel workbook. These components can be useful when you want to
provide end users with functionality that allows them to view and edit individual
fields rather than use the functionality provided by the table-type components to
download rows of data from the Fusion web application. Use one or more of the
following components to create a form:

ADF Button

Use this component to provide end users with a button that can invoke a
ClickActionSet. Figure 8-22 shows an ADF Button labeled Search that invokes
a search operation using the search term entered by the end user in the ADF Input
Text component.

ADF Input Text

Use this component to provide end users with a read /write field where the
current value of a binding appears. This component can also be used to input a
value, as in the example illustrated in Figure 8-22, where users enter a search term
in the ADF Input Text component.

ADF Output Text

Use this component to provide end users with a read-only field where the current
value of a binding appears.

ADF List of Values

Use this component to provide end users with a dropdown menu from which a
user can select a value from a list binding.

ADF Label

Use this component to provide end users with instructions or other information on
how to use the form you create. For example, the Master Price List module's
EditPriceList-DT.x1sx workbook uses ADF Label components to display an
instruction to end users and the number of matches for a search term. Figure 8-22

Adding Interactivity to Your Integrated Excel Workbook 8-27

Creating Dependent Lists of Values in an Integrated Excel Workbook

shows the runtime values of these components. The text Search For: is a label
instructing end uses to enter the search string, and 8 records found label
displays the number of records found matching the search string.

Figure 8-22 Runtime View of a Form in an Integrated Excel Workbook

Search Area

Advanced Search...

8 records found

You use the ADF Desktop Integration task pane to insert the components you require
into a worksheet.

To create a form in an integrated Excel workbook:
1. Decide which ADF form components you require for the finalized form and insert
them in the Excel worksheet.

For more information about these components, see Chapter 6, "Working with ADF
Desktop Integration Form-Type Components."

2. Configure the layout and appearance of the components you insert.

For more information about configuring the appearance of components, see
Chapter 9, "Configuring the Appearance of an Integrated Excel Workbook."

3. Test your form.

For more information about testing an integrated Excel workbook, see Chapter 13,
"Testing Your Integrated Excel Workbook."

8.8 Creating Dependent Lists of Values in an Integrated Excel Workbook

ADF Desktop Integration provides the following components that you use to create
lists of values in an integrated Excel workbook:

s ADF List of Values

You configure properties for this component when you want to create a list of
values in the Excel worksheet.

» TreeNodeList subcomponent

You configure properties for this component when you want to create a list of
values in an ADF Table component column.

Using these two components, you can create a dependent list of values in your
integrated Excel workbook. A dependent list of values is a list of values component
(referred to as a child list of values) whose values are determined by another list of
values component (referred to as a parent list of values).

The server-side list bindings must be defined such that when the selected item of the
parent list of values is changed, the available child list of values items are updated
properly. Figure 8-23 shows an example with two illustrations from the
AdvEditPriceList-DT.x1sx file of Master Price List module, where the
Sub-Category column (child list of values) changes when the value in the Category
column (parent list of values) changes.

8-28 Desktop Integration Developer's Guide for Oracle Application Development Framework

Creating Dependent Lists of Values in an Integrated Excel Workbook

Figure 8-23 List of Values and Dependent List of Values in Master Price List Module

Prod. Mo |Product Name Category Sub-Category Site Price

5|Tungsten E PDA Electronics Audio and Video | +][5195.90

6[XBox Video Game System ECronics AULIL L YUY Fs150.00
. 8 Camera and Photo
7|¥Box 360 Video Game System |Electronics ell Phones $209.99
8|Playstation Portable Electronics Games £199.99
Prod. Mo |Product Mame Category Sub-Category Site Price
5(Tungsten E PDA Office Hardware |+l s195.09
6/ %Box Video Game System Electronics Hardware $159.99
7 [XBox 360 Video Game System |Electronics £299.99
8|Playstation Portable Electronics £199.99

Table 8-7 describes the dependent list of values implementations you can create using
the previously listed components and the requirements to achieve each
implementation.

Some of the implementations described in Table 8-7 require model-driven lists. For
information about creating a model-driven list, see the "How to Create a Model-Driven
List" section of the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle
Application Development Framework.

Table 8-7 Dependent List of Values Configuration Options

Configuration Requirements

Render both the parent and child list of
values in the Excel worksheet using
ADF List of Values components.

Both instances of the ADF List of Values component must reference a
list binding. One or both of the list bindings that you reference can be
model-driven lists.

Both list bindings can reference model-driven lists only if the
underlying iterator has at least one row of data. At runtime, if the
underlying iterator has zero rows of data and the end user selects a
value from the parent list of values (list binding referenced by the ADF
List of Values component’s DependsOnListID property), the child list
of values (list binding referenced by the ADF List of Values
component’s ListID property) does not get filtered based on the value
the end user selects.

To work around this scenario, choose one of the following options:
= Ensure that the underlying iterator has at least one row of data

= Use an alternative list binding configuration where you expose
multiple iterators and all necessary iterators get refreshed

For more information, see Section 8.8.1, "How to Create a Dependent
List of Values in an Excel Worksheet."

Render both the parent and child list of
values in ADF Table component
columns using TreeNodeList
subcomponents.

Both the parent and child list of values (TreeNodeList subcomponents)
must reference tree binding attributes associated with model-driven
lists.

For more information, see Section 8.8.3, "How to Create a Dependent
List of Values in an ADF Table Component’s Columns."

Render the parent list of values in an
ADF List of Values component and the
child list of values in an ADF Table
component column using the
TreeNodeList subcomponent.

The child list of values (TreeNodeList subcomponent) must reference a
tree binding attribute associated with a model-driven list. The parent
list of values (ADF List of Values component) must reference a list
binding.

For more information, see Section 8.8.5, "Creating a Dependent List of
Values in an Excel Worksheet and an ADF Table Component Column."

Note the following points if you plan to create a dependent list of values:

Adding Interactivity to Your Integrated Excel Workbook 8-29

Creating Dependent Lists of Values in an Integrated Excel Workbook

= When the cell value referenced by DependsOnList or DependsOnListID is
changed, ADF Desktop Integration overrides any previous changes to the child
component list of values without warning the end user.

= The dependent list of values does not work unless the list specified in the
DependsOnList (or DependsOnListID) property is referenced by a component
in the Excel worksheet.

s If acircular dependency is defined (List A depends on List B, and List B depends
on List A), the first dependency (List A depends on List B) triggers the expected
behavior. ADF Desktop Integration considers other dependencies to be
misconfigurations.

= You can create a chain of dependencies as follows:
- List A depends on List B
- List B depends on List C

In this scenario, a change in List C (grandparent list of values) updates both Lists
A (grandchild list of values) and B (child list of values). If you create a similar
scenario, you must ensure that both the grandchild list of values and the child list
of values, get refreshed whenever the parent list of values selection is changed.
You can do this by specifying the two bind variables on the grandchild list of
values to set up an implicit dependency between the view attributes. Another
way is to declare explicit attribute dependencies between each of the view
attributes that have model-driven lists configured. For example, specify that
attribute A depends on attribute B and attribute C, and attribute B depends on
attribute C.

s Caching in a dependent list of values is discussed in Section 15.3, "Caching Lists of
Values for Use in Disconnected Mode."

= ADF Desktop Integration caches the values that appear in a dependent list of
values. Hence, the dependent list item values for a given parent list selection must
remain constant across all rows of an ADF Table component.

8.8.1 How to Create a Dependent List of Values in an Excel Worksheet

Use two instances of the ADF List of Values component to create a dependent list of
values in an Excel worksheet.

Specify the list binding referenced by the parent ADF List of Values component as a
value for the child ADF List of Values component’s
ListOfValues.DependsOnListID property.

For more information about ADF List of Values, see Section A.5, "ADF List of Values
Component Properties."

To create a dependent list of values in an Excel worksheet:
1. If not present, add the required list bindings to your page definition file.

For more information about adding bindings to page definition files, see
Section 4.3, "Working with Page Definition Files for an Integrated Excel
Workbook."

2. Open the integrated Excel workbook.

3. Insert two ADF List of Values components into your integrated Excel workbook,
as described in Section 6.6, "Inserting an ADF List of Values Component."

8-30 Desktop Integration Developer's Guide for Oracle Application Development Framework

Creating Dependent Lists of Values in an Integrated Excel Workbook

Display the property inspector for the ADF List of Values component that is to
serve as the parent in the dependent list of values and set the value of the
ListOfValues.ListID property to the list binding that is the parent.

Display the property inspector for the ADF List of Values component that is to
serve as the child in the dependent list of values and set its values as follows:

m ListOfValues.ListID
Specify the list binding that is the child in the dependent list of values.
m ListOfValues.DependsOnListID

Select the list binding that you specified for the ADF List of Values component
that serves as a parent in Step 4.

Figure 8-24 shows the property inspector for the child ADF List of Values
where the CountryId list binding is specified as the parent list of values and
StateId listis the dependent list of values.

Figure 8-24 Design Time Dependent List of Values in an Excel Worksheet

f

6.

E dit the properties and press DK, to save your changes.

o= |2
Annotation
B ListOfalues Stateld
DependsOnlListiD Countryld
LigtD Stateld
ReadOnly 3
Position Select Binding g|
Stylet ame
Page Definition: wiew_formPageDef
[Stateld flist
[Countryld fist)

DependsOnListiD
A list binding on which thi

Cancel

Click OK.

8.8.2 What Happens at Runtime When a Dependent List of Values Renders in an Excel

Worksheet

At runtime, ADF Desktop Integration renders both instances of the ADF List of Values
component. When the end user selects a value from the parent list of values, the
selected value determines the list of values in the child list.

Figure 8-25 shows an example where StatelD, a dependent list value, displays only
the states from the selected Countryld list value.

Adding Interactivity to Your Integrated Excel Workbook 8-31

Creating Dependent Lists of Values in an Integrated Excel Workbook

Figure 8-25 Runtime Dependent List of Values in an Excel Worksheet

1d 3
Mame PRASAMNMNA

CountryId INDIA

Stakeld k.arnataka %2

Kerala

Madheya Pradesh
Maharashtra

Manipur

Meghalaya

Mizaram

Magaland hd

8.8.3 How to Create a Dependent List of Values in an ADF Table Component’s Columns

Use instances of the TreeNodeList subcomponent to render both lists of values in a
dependent list of values in ADF Table component columns at runtime.

Specify a tree binding attribute as a value for the parent TreeNodeList subcomponent’s
List property. You also specify a tree binding attribute as a value for the child
TreeNodeList subcomponent’s List property and the same tree binding attribute
referenced by the parent TreeNodeList subcomponent as a value for its
DependsOnList property.

Ensure that both tree binding attributes are associated with model-driven lists before
you add the tree binding to your page definition file. For information about creating a
model-driven list, see the "How to Create a Model-Driven List" section of the Oracle
Fusion Middleware Fusion Developer’s Guide for Oracle Application Development
Framework. For information about adding a tree binding to your page definition file,
see Section 4.3, "Working with Page Definition Files for an Integrated Excel
Workbook."

For information about the TreeNodeList subcomponent, see Section A.6,
"TreeNodeList Subcomponent Properties."

To create a dependent list of values in an ADF Table component:
1. Open the integrated Excel workbook.

2. If not present, insert an ADF Table component.

For more information, see Section 7.3, "Inserting an ADF Table Component into an
Excel Worksheet."

3. Display the property inspector for the ADF Table component and invoke the
TableColumn Collection Editor by clicking the ellipsis button (...) beside the input
field for TableColumnl[] Array.

4. If not created, click Add to add a new column to serve as the parent list of values.
For more information about creating a list of values, see Section 7.13, "Creating a
List of Values in an ADF Table Component Column."

5. Add a new column to the ADF Table component to serve as the child list of values
in the runtime-dependent list of values. For more information about creating a list
of values, see Section 7.13, "Creating a List of Values in an ADF Table Component
Column."

6. Specify the tree binding attribute of the parent list of values as a value for the
DependsOnList property.

Figure 8-26 shows the property inspector for a child ADF Desktop Integration Tree
Node component, where the ParentCategoryId tree binding attribute is
specified as the parent list of values.

8-32 Desktop Integration Developer's Guide for Oracle Application Development Framework

Creating Dependent Lists of Values in an Integrated Excel Workbook

Figure 8-26 Design Time Dependent List of Values in an ADF Table Component's

Columns

|21
Behavior
B atchDptions
Rowdctions
RiowLimit
Data
Calurns
[0]

1

[2]

13

141

18l

[E]

ODDHEHEED

TableColumn Collection Editor,

E dit the properties and press DK to save vour changes.

|

T ableColumn[] Array
_ADF_ChangedCalurin

_ADF_FlagColumn

_ADF_StatusColumn

Hrow bindings. Product d.inputy slue}

Hrow bindings. Product arme. inputy alue}
HHrow bindings. P arent Categaoryl d.inputy alue!
Hrow bindings. C ategonl d.inputyalus}

Members: tt{row bindings. Categoryld inputy alue} properties:
0| _ADF_ChangedColumn @z | A
7| _ADF_FlagColumn a2
2| _ADF_StatusColurn Bl Appearance 5
3| tHrow. bindings. Productld inputy al. CellStyleName _ADFDI_T ableCellStyle
4 o, bindings. Producth ame. input HeaderStyleMame _ADFDI_HeaderStyle
= fHrow. bindings. ParentCategoryld.ir E Data
[§ #Hirow bindin te: DynamicColumn False
7| #row. bindings. ListPrice. input alug Headerahel #{bindings. ProductT able. hints.Categoryld.
8| #iow. bindingz. CostPrice. inputy'alu InsertCampanent
9] Margin Inzertllsesllpdate True
B UpdateComponent #{row_bindings. Categoryld.input¥alue}
DR #{row_bindings. ParentCategoryl d.inputy...|
List #{row_bindings.Categoryld.input¥alue}
< > ReadOnly False
E Design
Add] [Remave Annotation w
QK. l [Cancel
7. Click OK.

8.8.4 What Happens at Runtime When a Dependent List of Values Renders in an ADF

Table Component’s Columns

At runtime, the ADF Table component renders both instances of the TreeNodeList
subcomponent in the columns that you configured to display these instances. When
the end user selects a value from the parent list of values, the selected value
determines the list of values in the child list.

Figure 8-27 shows an example where the value that the end user selects in the
Category column list of values results in the corresponding values for sub-category
appearing in the Sub-Category column list of values.

Figure 8-27 Runtime Dependent List of Values in an ADF Table Component’s Columns

Prod. Mo |Product Name Category Sub-Category Site Price
1|Plasma HD Television Electronics |Audio and Video $1,999.99
2|PlayStation 2 Video Game Electronics Games £199.95
3| Treo 650 Phone/FDA Electronics Cell Phones £200.99
4|Treo 700w Fhone/PDA Electronics Cell Phones £399.99
5|Tungsten E PDA Electronics Audio and Video $195.99
6|XBox Video Game System Electronics falaEEy Ry £159.99

- - Camera and Photo
7|XBox 360 Video Game System |Electronics Cell Phones $299.99
8|Playstation Portable Electronics Games £199.99

Adding Interactivity to Your Integrated Excel Workbook 8-33

Creating Dependent Lists of Values in an Integrated Excel Workbook

Note: If the child list and the parent list are bound to columns in the
same ADF Table component, the child list items are changed for the
current row only, when the end user changes the parent list selection.

8.8.5 Creating a Dependent List of Values in an Excel Worksheet and an ADF Table
Component Column

Use an instance of the ADF List of Values component and an instance of the
TreeNodeList subcomponent to create a dependent list of values where you render the
parent and the child list of values.

s Parent list of values in the Excel worksheet

An instance of the ADF List of Values component renders the parent list of values
in the Excel worksheet.

» Child list of values in an ADF Table component column

An instance of the TreeNodeList subcomponent renders the child list of values in
the ADF Table component column.

Specify a list binding as a value for the parent ADF List of Values component’s
ListID property. You specify a tree binding attribute as a value for the child
TreeNodeList subcomponent’s List property, and the same list binding referenced by
the parent ADF List of Values component as a value for its DependsOnList property.

Ensure that the tree binding attribute is associated with a model-driven list before you
add the tree binding to your page definition file. For information about creating a
model-driven list, see the "How to Create a Model-Driven List" section of the Oracle
Fusion Middleware Fusion Developer’s Guide for Oracle Application Development
Framework. For information about adding a list and tree binding to your page
definition file, see Section 4.3, "Working with Page Definition Files for an Integrated
Excel Workbook."

For more information about the ADF List of Values component, see Section A.5, "ADF
List of Values Component Properties.” For information about the TreeNodeList
subcomponent, see Section A.6, "TreeNodeList Subcomponent Properties."

To create a dependent list of values in an Excel worksheet and an ADF Table
component column:

1. Open the integrated Excel workbook.

2. Insert an ADF List of Values component into your integrated Excel workbook, as
described in Section 6.6, "Inserting an ADF List of Values Component."

3. Display the property inspector for the ADF List of Values component and set the
value of the ListID property to the list binding that is to serve as the parent list of
values in the dependent list of values.

4. C(lick OK.

5. Display the property inspector for the ADF Table component and invoke the
TableColumn Collection Editor by clicking the ellipsis button (...) beside the input
field for TableColumnl[] Array.

6. Click Add to add a new column to the ADF Table component to serve as the child
list of values in the runtime-dependent list of values.

7. Choose the appropriate option for the newly created column:

8-34 Desktop Integration Developer's Guide for Oracle Application Development Framework

Creating Dependent Lists of Values in an Integrated Excel Workbook

» Click the ellipsis button (...) beside the input field for InsertComponent to
configure the runtime list of values for insert operations.

s Click the ellipsis button (...) beside the input field for UpdateComponent to
configure the runtime list of values for update and download operations.

In both options, the Select subcomponent to create dialog appears.
8. Select TreeNodeList and click OK.
9. Expand the property that you selected in Step 7 and configure values as follows:

= Select the same list binding that you specified as a value for the ADF List of
Values component’s ListID property in Step 3 as a value for the
DependsOnList property.

= Select a tree binding attribute associated with a model-driven list for the List

property.
s Configure the ReadOnly property as desired.
10. Click OK.

Figure 8-28 shows the property inspector for a child ADF Desktop Integration Tree
Node component where the countryList list binding is specified as the parent
list of values.

Figure 8-28 Design Time Dependent List of Values in an Excel Worksheet and an ADF
Table Component's Column

o bindings. S tateld.inputy alue} properties:
;| A l
EEsl A

El Appearance

CellStyleM ame
HeaderStyleMame
El Data
DwnaricCalurnn
Headerlabel
IngetComponent
Inzetlseslpdate
B UpdateComponent

Depend:OnList #{bindings.countyList}
List #{row_bindings.Stateld.input¥alue}
FeadOnly False
El Design
Annotation Select Tree Binding Attribute or List Binding
I
El Layout
“izible

= @ PerzonlViewd [tree)

_ADFDI_T ableCellStyle
_ADFDI_HeaderStyle

Falze
#{bindings.Person1¥iew1.hints. Statel d.label}

True
#{row.bindings.Stateld.inputyalue}

= E Person1View
& |d
¥ Mame
=@ Countryld
= Stateld

[0k I [Cancel

8.8.6 What Happens at Runtime When a Dependent List of Values Renders in an Excel
Worksheet and an ADF Table Component Column

At runtime, the ADF List of Values component renders the parent list of values and the
ADF Table component renders the child list of values in the column that you

Adding Interactivity to Your Integrated Excel Workbook 8-35

Using EL Expression to Generate an Excel Formula

configured to display the TreeNodeList subcomponent. When the end user selects a
value from the parent list of values, the selected value determines the list of values in
the child list.

Figure 8-29 shows an example where the value that the end user selects in the
Countryld list of values determines the list of values that appears in the Stateld
column of the ADF Table component.

Figure 8-29 Runtime-Dependent List of Values in an Excel Worksheet and an ADF Table
Component's Column

CountryId MDA

Mame Stakeld
1 SIREESHA Andhra Pradesh
2 ARUM
3 PRASAMMA
4 ALEX
5 SHalM
6 BRIAN

Arunachala Pradesh

Note: When the parent list is bound to a cell in the worksheet and
the child list is bound to an ADF Table Component column, the child
list items are updated for all rows in the table when the end user
changes the parent list selection.

8.9 Using EL Expression to Generate an Excel Formula

You can use an EL expression to generate an Excel formula as the vlaue of an ADF
component. For example, you can use an Excel HYPERLINK function in an EL
expression. If you use the Excel HYPERLINK function in an EL expression, you must
enclose the HYPERLINK function within an Excel T function if you want an Oracle
ADF component, such as an ADF Output Text component, to display a hyperlink at
runtime.

You enclose the HYPERLINK function because ADF Desktop Integration interprets the
Excel formula. To work around this, you wrap the T function around the HYERLINK
function so that the value of the HYPERLINK function is evaluated by the T function.
The resulting value is inserted into the Excel cell that the ADF component references.
Use the following syntax when writing an EL expression that invokes the HY PERLINK
Excel function:

=T ("=HYPERLINK (""link_location"", ""friendly_ name"")")

For example, the following EL expression uses HYPERLINK function to navigate to
http://www.oracle.com when end user clicks the component.

=T ("=HYPERLINK(""http://www.oracle.com"",
""#{bindings.ProductId.inputValue}"")")

If you write an EL expression using the HYPERLINK function, it is recommended that
you select the Locked checkbox in the Protection tab of the Format Cells dialog for the
custom style that you apply to prevent error messages appearing.

8-36 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using EL Expression to Generate an Excel Formula

8.9.1 How to Configure a Cell to Display a Hyperlink Using EL Expression

You write an EL expression that uses the Excel T function to evaluate the output of the
Excel HYERLINK function. The following task illustrates how you configure an ADF
Output Text component to display a hyperlink that, when clicked, invokes a search
operation on the Oracle OTN Discussion Forum for Developer Tools using the value of
the ProductName binding as the search term.

To configure a cell to display a hyperlink using EL expression:
1. Open the integrated Excel workbook.

2. Insert an ADF Output Text component into the Excel worksheet.

3. Write an EL expression for the Value property of the ADF Output Text
component.

The EL expression that you write invokes the Excel HYPERLINK function and uses
the Excel T function to evaluate the output. In our example, we entered the
following EL expression for the Value property:

=T ("=HYPERLINK (" "http://forums.oracle.com/forums/search.jspa?objID=cl9&g=#{bind
ings.ProductName}"", ""#{bindings.ProductName}"")")

Note: Excel requires that you write double quotes (for example,
""#{bindings.ProductName} " ") in the EL expression so that it
can evaluate the expression correctly.

4. Click OK.

8.9.2 What Happens at Runtime When a Cell Displays a Hyperlink using EL Expression

ADF Desktop Integration evaluates the EL expression that you write at runtime. In the
following example, ADF Desktop Integration:

= Retrieves the value of the ProductName binding
= Inserts the value of the ProductName binding into a URL
= Inserts the result into a hyerlinked cell that a user can click to invoke a search

Figure 8-30 shows the runtime view of the example configured in Section 8.9.1, "How
to Configure a Cell to Display a Hyperlink Using EL Expression," where Zune 30GB
is the retrieved value of the ProductName binding. When the end user clicks the cell
that hosts the ADF Output Text component, he or she invokes a search operation for
Zune 30GB on the Oracle OTN Discussion Forum for Developer Tools.

Adding Interactivity to Your Integrated Excel Workbook 8-37

Using Calculated Cells in an Integrated Excel Workbook

Figure 8-30 ADF Output Text Component Configured to Display a Hyperlink

Zune 30Gh

{"‘ OTN Discussion Forums : Forum Search - Windows Internet Explorer

@.\-— J |E http: f{forums, oracle .comyforumssear ch. jspa?objlD=c1 9&0=2une%:2030Gb

File Edit Wiew Favorites Tools Help

w ﬁ'ﬁ [E OTM Discussion Forums : Forum Search] l

Forurm Home

Forum Search

Use the form below ko search the forum content, You can choose to search all content or reskrict it ko certain forums or dates.

| Forurn | User

Search Terms: |Zune 30Gh H Search] Search Tips

Category or Forum: | Developer Tools v |

Date Range: Last 90 Days - 8/23/08 v

8.10 Using Calculated Cells in an Integrated Excel Workbook

You can write Excel formulas that perform calculations on values in an integrated
Excel workbook. Before you write an Excel formula that calculates values in an
integrated Excel workbook, note the following points:

= Formulas can be entered in cells that reference Oracle ADF bindings and cells that
do not reference Oracle ADF bindings

= End users of an integrated Excel workbook can enter formulas at runtime
= You (developer of the integrated Excel workbook) can enter formulas at design
time

s During invocation, the ADF Table component actions Upload and RowUpSync
send the results of a formula calculation to the Fusion web application and not the
formula itself

» Excel recalculates formulas in cells that reference Oracle ADF bindings when these
cells are modified by:

- Invocation of the ADF Table component RowDownSync and Download
actions

- Rendering of Oracle ADF components

s The ADF Table and ADF Read-only Table components insert or remove rows as
they expand or contract to accommodate data downloaded from the Fusion web
application. Formulas are replicated according to Excel’s own rules.

= You can enter formulas above or below a cell that references an ADF Table or ADF
Read-only Table component. A formula that you enter below one of these
components maintains its position relative to the component as the component
expands or contracts to accommodate the number of rows displayed.

For more information about Excel functions, see the Function reference section in
Excel’s online help documentation.

8-38 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Calculated Cells in an Integrated Excel Workbook

8.10.1 How to Create a Column That Displays Values Generated by an Excel Formula

You insert a column that displays values calculated by an Excel formula directly into a
worksheet using the menu options on Excel’s Ribbon. You cannot add a column that
displays calculated values using the collection editor that manages columns for an
ADF Table or ADF Read-only Table component.

To create a column that displays values generated by an Excel formula:

1. In design mode in the Excel worksheet, select the cell in which you want the
column that displays the values generated by the Excel formula to appear at
runtime.

For example, the H13 cell of EditPriceList-DT.x1sx contains a formula:
=G13-F13

Cell G13 is the design time reference for the ADF Table component column
labeled List Price at runtime, and F13 is the design time cell reference for the ADF
Table component column labeled Cost Price at runtime.

The H12 cell marks the header for the formula. It contains an ADF Label
component with its Label property set to the following EL expression:

#{res['excel.difference.label']}

The EL expression retrieves the value of the excel.difference. label string
key at runtime.

Figure 8-31 shows the design time view of the manually inserted column, with the
Excel formula appearing in the formula bar, and the ADF Label component that
retrieves the string key value from the resource bundle at runtime.

Figure 8-31 Design Time View of Column That Displays Values Generated by an Excel

Formula
S| =G13-F13
G H
|
*rice.label} [{res['excel.difference.label'T} #{res['excel.margin.label']} dyr
.hindings.Ll EWALUE! |:("#{row.bindings.ListPrice.inputValue}"-"#{row.bindi =

2. Save your changes using Excel’s Save button.

8.10.2 What Happens at Runtime When a Column Displays Values Generated by an
Excel Formula

At runtime, Excel replicates and adjusts its formula as the ADF Table and ADF
Read-only components expand or contract so that the correct value appears in each
row of a manually inserted column. Figure 8-32 shows an extract of the runtime view
of the example that appears in Figure 8-31 where Excel adjusted the formula so that it
evaluates each corresponding row.

Adding Interactivity to Your Integrated Excel Workbook 8-39

Using Calculated Cells in an Integrated Excel Workbook

Figure 8-32 Runtime View of Column That Displays Values Generated by an Excel

Formula
fe| =H13-G13

H J K
e Site Price Difference Current Margin MNew Margin
0 S49.99| 529.99! 150.0% -40.0%
0 $89.99 $54.99 157.1% -38.9%
0 $389.99 $99.99 34.5% -74.4%

8.10.3 How to Calculate the Sum of a Table-Type Component Column

The following task illustrates how you use the Excel functions SUM and OFFSET to
calculate the total of the column labeled Difference in the EditPriceList-DT.x1lsx
of the Master Price List module at runtime. You use the OFFSET function in an Excel
formula that you write where you want to reference a range of cells that expands or
contracts based on the number of rows that an ADF Table or ADF Read-only Table
component downloads. The SUM function calculates the total in a range of Excel cells.

To calculate the sum of a column in an ADF Table component:

1. In design mode in the Excel worksheet, select the cell in which you want to write
the Excel formula. In EditPriceList-DT.x1sx, this is the cell with the
reference, H14.

2. Write the Excel formula that performs a calculation on a range of cells at runtime.
For example:

=SUM (OFFSET (G12,1,0) : OFFSET (G13,-1,0))

where SUM calculates the total of values in the range of cells currently referenced
by G12 and G13.

Figure 8-33 shows the design time view of the Excel formula in the integrated
Excel workbook.

Figure 8-33 Design Time View of Excel Formula in an Integrated Excel Workbook

- (fi | =SUM{OFFSET(G12,1,0):0FFSET(G13,-1,0))

G H | J
abel}its.ListPrice.label} |.difference.label']} ['excel.margin.label']} namicMargin.label'T}
lings. f‘:‘{rov.r.hindings.Li' #VALUE! =(("#{row.bindings.Li =(RC[-2]-RC[-3])/RC

DT Taotal I ol

3. Save your changes and switch to runtime mode to test that the Excel formula you
entered evaluates correctly.

8.10.4 What Happens at Runtime When Excel Calculates the Sum of a Table-Type
Component Column

Figure 8-34 shows the runtime view in the integrated Excel workbook when the Excel
formula shown in Figure 8-33 is evaluated. The Excel formula calculates the total of
the values in the range of cells that you specified in design mode. The cell references
that appear in Excel’s formula bar at runtime (H12 and H59) differ from those that
appear in the formula bar at design time (G12 and G13) because the ADF Table
component has moved and expanded to include the rows of data that it downloads.

8-40 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Macros in an Integrated Excel Workbook

Figure 8-34 Runtime View of Excel Formula in an Integrated Excel Workbook

fe | =SUM(OFFSET(H12,1,0):0FFSET(H59,-1,0))

G H | J
Cost Price Site Price Difference Current Margin
$200.00 $299.99 $99.99 50.0%

£300.00 $499.99 100.99 66.7%
DT Total 2063?.38.

8.11 Using Macros in an Integrated Excel Workbook

You can define and execute macros based on Excel events in an integrated Excel
workbook.

Note the following points:

= Macros triggered by an Excel event do not get triggered if the Excel event is
invoked by ADF Desktop Integration.

= ADF Desktop Integration code invoked by an Excel event is executed when the
Excel event is triggered by a macro.

Adding Interactivity to Your Integrated Excel Workbook 8-41

Using Macros in an Integrated Excel Workbook

8-42 Desktop Integration Developer's Guide for Oracle Application Development Framework

9

Configuring the Appearance of an Integrated

Excel Workbook

This chapter describes how you configure the appearance of an integrated Excel
workbook using styles that ADF Desktop Integration defined and that you define in
Excel. The chapter also discusses how you can use EL expressions to dynamically
apply styles to Oracle ADF components in a workbook at runtime.

This chapter includes the following sections:

= Section 9.1, "Introduction to Configuring the Appearance of an Integrated Excel
Workbook"

= Section 9.2, "Working with Styles"

= Section 9.3, "Applying Styles Dynamically Using EL Expressions"
= Section 9.4, "Using Labels in an Integrated Excel Workbook"

= Section 9.5, "Using Styles to Improve the User Experience"

= Section 9.6, "Branding Your Integrated Excel Workbook"

m Section 9.7, "Using Worksheet Protection”

9.1 Introduction to Configuring the Appearance of an Integrated Excel

Workbook

You can configure the appearance of an integrated Excel workbook using both Excel
functionality and Oracle ADF functionality. Configuring the appearance of a
workbook may make the workbook more usable for end users. For example, applying
a particular style to cells that render ADF Output Text components at runtime may
indicate to end users that the cell is read-only. You may also want to configure the
appearance of an integrated Excel workbook so that it aligns with your company’s
style sheet or the color scheme of the Fusion web application that the Excel workbook
integrates with.

ADF Desktop Integration provides several predefined Excel styles to apply to the ADF
Desktop Integration components you configure in a workbook. You may want to
define additional styles to meet the needs of your desktop integration project. If you
do, familiarize yourself with the formats in an Excel workbook that render differently
depending on the locale, region, and language.

Once you have decided what styles to apply to the ADF Desktop Integration
components at runtime, you write EL expressions to associate a style with a
component. The ADF Desktop Integration component properties that include
StyleName in their name take an EL expression as a value. The ADF Label component

Configuring the Appearance of an Integrated Excel Workbook 9-1

Working with Styles

and the Label property of other ADF components also support EL expressions. These
EL expressions can retrieve the values of string keys defined in resource bundles or
the values of attribute control hints defined in your Fusion web application.

Finally, in addition to styles that allow you to configure the appearance of an
integrated Excel workbook, ADF Desktop Integration provides a collection of
properties (BrandingItems) that enable you to brand your integrated Excel
workbook with application name, application version details, and copyright
information.

9.2 Working with Styles

ADF Desktop Integration provides a mechanism to apply Excel-defined styles to some
Oracle ADF components at runtime. The Oracle ADF components that support the
application of styles have properties with StyleName in their name. For example, the
column properties of the ADF Table and ADF Read-only Table components both
support the properties HeaderStyleName and CellStyleName that determine
styles to apply at runtime.

Predefined Styles in ADF Desktop Integration

Many properties have default values that are drawn from a predefined list of ADF
Desktop Integration module styles. For example, the HeadersStyleName property’s
default value is _ADFDI_HeaderStyle, one of the predefined styles in ADF Desktop
Integration. ADF Desktop Integration automatically adds these predefined styles to
the Excel workbook once when it is enabled for use with ADF Desktop Integration.

The following is the list of predefined styles:

m _ADFDI_FormBottomStyle

m _ADFDI_FormDoubleClickCellStyle
m _ADFDI_FormTopStyle

m _ADFDI_HeaderStyle

m _ADFDI_InputTextStyle

m _ADFDI_LabelStyle

m _ADFDI_OutputTextStyle

m _ADFDI_ReadOnlyTableStyle

m _ADFDI_TableCellROStyle

m _ADFDI_TableCellStyle

m _ADFDI_TableChangedColumnStyle
s _ADFDI_TableDoubleClickCellStyle
m _ADFDI_TableFlagColumnStyle

m _ADFDI_TriangleHeaderStyle

You can merge these styles and other styles that you define yourself from an
integrated Excel workbook into another Excel workbook that you intend to integrate
with a Fusion web application. You may create additional styles for use in your Excel
workbook. For example, to add a date-specific formatting, you can duplicate _ADFDI_
TableCellStyle, call it MyTableCellDateStyle, and add your date-specific
formatting.

9-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Working with Styles

For more information about creating new styles and merging styles into a workbook,
see Excel’s documentation.

Excel’s Date Formats and Microsoft Windows’ Regional and Language Options
Some formats in the Date category of the Number styles that Excel can apply to cells
change if a user changes the locale of the local system using the Regional and
Language Options dialog that is accessible from the Microsoft Windows Control
Panel. The * character precedes these formats in the Type list. Figure 9-1 shows an
example of a Date type that formats dates in a cell using French (France) conventions.

Figure 9—1 Date Formats in Excel

US English 29-Jan-00
French 29/01/00
_ADFDI_OutputTextStyle 29,99

Format Cells

Number | Alignment Fant Border Fill Protection
Cateqgary:
p General Sample
Turnber
Currency 4
Accountini Type:
*
Time 14 0320
Percentage .
Fraction 14/3
Sciertific 301
= 140501
2 14-mars
Special v
Cuskom 14-mars-01
Locale {location):
French (France) b

Date formats display date and time serial numbers as date values, Date formats that
begin with an asterisk {(*) respond ko changes in regional date and time settings that are
specified For the operating system, Formats without an asterisk are not affected by
operating system settings.

If the end user changes the regional options of a system to use English (United
States), as illustrated in Figure 9-2, the cells that are formatted with the style in
Figure 9-1 use the English (United States) conventions.

Configuring the Appearance of an Integrated Excel Workbook 9-3

Working with Styles

Figure 9-2 Regional and Language Options in Excel

Regional and Language Options

Regional Options | |anguages | Advanced
Standards and formats

Thiz option affects how sore pragrars farmat numbers, currencies,
dates, and time.

Select an item to match itz preferences, or click Customize to choose
yaur awin farmats:

Englsh (Urited States) v

Samples

Humber: 123,456.789.00

Currency: $123,456,785.00

Time: 10:259:47 A4

Short date: |5 14/2008

Long date: |wednesday, May 14, 2008

Location

To help services provide you with lozal information, such as news and
weather, select pour present location:

United States w

[u] l [Cancel] [Apply]

9.2.1 How to Apply a Style to an Oracle ADF Component

To apply a style to an Oracle ADF component, use the property inspector to set values
for properties with StyleName in their name.

To apply a style:

1. In the integrated Excel workbook, select the cell that references the Oracle ADF
component you want to modify and then click the Edit Component button in the
Oracle ADF tab.

For example, select a cell that references an ADF Table component.

2. (Click Columns and then the value for the column in the array of columns where
you want to modify the format of cells at runtime.

3. Select the CellStyleName property and click the ellipsis button (...) to display the
Edit Expression dialog.

4. Expand the Styles node and select the style to apply to cells in the column at
runtime.

For example, apply a currency-based style (Currency[0] style) to the Cost Price
databound column of Currency type. Applying the Currency[0] style rather
than a general style to a databound column of Currency type results in runtime
data (price values) appearing as values rounded off to zero decimal places rather
than a regular value (with two decimal places).

5. Click Insert Into Expression to insert Currency [0] into the Expression field.

Figure 9-3 shows the Edit Expression dialog.

9-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Applying Styles Dynamically Using EL Expressions

Figure 9-3 Edit Expression Dialog Applying a Style

Edit Expression E|

I

[H @ e

Expression:

Edit the properties and press OK to save

5284
E Behavior
B atchDptions
Rowdctions
FiowaLirnit
B Data [4% Inzert Into Expression
E Columnz TableC.
[0] _ADF_CI
[1 Hrow bin = imn‘g &
(2 Hirow bin = Bcze”‘
= [3 0w bin b Bad
: @3 Calculation
Annotation Check Cel
CelStishame TableCd &) sl
B &8 Comma
DynamicColurnn Falze c 0
Headelabel ft{bindin = C”“m"'[!
HeaderStyleMame HeaderR) &l Lunency
5 [Currency [0]
o CostPrig
= CustomFootMateStyle
InzettCompaonent Exnl T
InzertUzeslJpdate True g prznatow Gt
Qi
UpdateC: 1 _b
= SR amponen _{mw @8 HeaderRightStyle
Cell5tyleN ame &3 Heading 1
The name of the Excel Style defined in [Heading 2
& Heading 3 v

Ok] [Cancel

6. Click OK.

9.2.2 What Happens at Runtime When a Style Is Applied to an Oracle ADF Component

The EL expression that you entered as a value for the property with StyleName in its
name is evaluated at runtime. If it corresponds to one of the predefined styles or one
that you defined, the style is applied to the Oracle ADF component that you set the

property for.

If a cell that references an Oracle ADF component has a style applied to it that differs
from the style defined in the properties of the Oracle ADF component, the Oracle ADF
component overwrites the existing style at runtime and applies the style defined by its
properties.

For example, Figure 9—4 shows the runtime values of the Cost Price column after the
Currency [0] style is applied, overriding the default TableCellCurrency style.

Figure 9-4 Runtime Values After Applying Another Style

Prod. Mo |Product Name Cost Price Site Price
10/ Zune 30Gb 5 100 $225.99
11 RAZR Cellular Phone 5 140 £250,00
Muvo Personal MP3
12 |Player 5 64 £00.99
13 Bluetooth Adaptor 5 5 $19.99

9.3 Applying Styles Dynamically Using EL Expressions

Oracle ADF component properties that include StyleName in their name can take an EL
expression as a value. The EL expressions that you write can resolve to a named Excel

style at runtime that is applied to the Oracle ADF component. The EL expressions that
you write are Excel formulas that may include Oracle ADF data binding expressions.

Configuring the Appearance of an Integrated Excel Workbook 9-5

Applying Styles Dynamically Using EL Expressions

ADF Desktop Integration does not evaluate or apply results when a user navigates
between cells or during upload.

The following examples show different contexts where you can use EL expressions to
determine the behavior and appearance of Oracle ADF components at runtime.
Example 9-1 applies a style dynamically during download. If the status value for
binding is Closed, apply a read-only style (MyReadOnlyStyle). Otherwise apply
another style (MyReadWriteStyle).

Example 9-1 Applying a Style Dynamically During Download
=IF ("#{bindings.Status}" = "Closed", "MyReadOnlyStyle", "MyReadWriteStyle")

Example 9-2 uses a mixture of Excel formulas and ADF binding expressions to handle
errors and type conversion.

Example 9-2 EL Expressions to Handle Errors and Type Conversion

=IF (ISERROR (VALUE ("#{bindings.DealSize}")), "BlackStyle",
IF (VALUE ("#{bindings.DealSize}") > 300, "RedStyle", "BlackStyle"))

9.3.1 What Happens at Runtime When an EL Expression Is Evaluated

When evaluating EL expressions at runtime, ADF Desktop Integration determines the
value that the EL expression references. It then replaces the EL expression in the Excel
formula with the value. In Example 9-1, ADF Desktop Integration first determines that
value of the EL expression, # {bindings.Status}, in the following Excel formula:

=IF("#{bindings.Status}" = "Closed", "MyReadOnlyStyle", "MyReadWriteStyle")

It then replaces the EL expression with the runtime value, as in the following example,
where the expression evaluated to Closed:

=IF("Closed" = "Closed", "MyReadOnlyStyle", "MyReadWriteStyle")

Excel evaluates the formula and, in this example, applies the M\yReadOnlyStyle
style.

9.3.2 How to Write an EL Expression That Applies a Style at Runtime

You write EL expressions for the Oracle ADF component properties that support EL
expressions in the Edit Expression dialog that is accessible from the Oracle ADF
component’s property inspector. Figure 9-5 displays an Edit Expression dialog
launched from the property inspector window of an ADF Button component.

9-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Applying Styles Dynamically Using EL Expressions

Figure 9-5 Edit Expression Dialog

Edit Expression &|

E wprezsion: ':@ @j &
|

&

m Bindings

{21 Companents
{21 Resources

23 Styles

{21 warkbocok

[0 Warkshest

{23 Excel Functions

I Ok l[Cancel]

To write an EL expression that applies a style at runtime:
1. Open the integrated Excel workbook.

2. Select a cell in the Excel worksheet that references the Oracle ADF component for
which you want to write an EL expression.

3. Click the Edit Component button in the Oracle ADF tab to display the property
inspector.

4. Select the property in the property inspector with which you want to associate an
EL expression and click the ellipsis button (...) to display the Edit Expression
dialog.

Note: The Edit Expression dialog appears only if the Oracle ADF
component that you selected in Step 2 supports EL expressions.
Depending on the context, the ellipsis button (...) can launch other
editors such as the Action Collection Editor.

The Edit Expression dialog, as illustrated in Figure 9-5, displays a hierarchical list
of the Oracle ADF components, bindings, styles, resources, and Excel functions
that you can reference in EL expressions. For more information about the syntax of
EL expressions that you enter in this dialog, see Appendix B, "ADF Desktop
Integration EL Expressions.”

9.3.3 What You May Need to Know About EL Expressions That Apply Styles

Note the following points when writing EL expressions that apply styles at runtime.

How the ADF Desktop Integration Applies Styles
EL expressions that evaluate to styles are applied when:

Configuring the Appearance of an Integrated Excel Workbook 9-7

Using Labels in an Integrated Excel Workbook

= An ADF Table component invokes its Download or DownloadForInsert actions
= Rows are inserted into an ADF Table component

s A worksheet invokes its DownSync action

EL expressions that evaluate to styles are not applied when:

= An ADF Table component invokes its RowDownSync action

= The end user edits the format properties of a cell

Note also that an EL expression that evaluates to a style is not reevaluated when
the end user edits a cell’s value.

s The runtime value of an EL expression does not match a style defined in the end
user’s integrated Excel workbook

In this scenario the style formats of the targeted cells do not change. Instead, they
retain their existing style formats. If you configured client-side logging, ADF
Desktop Integration generates an entry in the log file when an EL expression
evaluates to a style that is not defined in the end user’s integrated Excel
workbook. For more information about client-side logging, see Section C.3,
"Generating Log Files for an Integrated Excel Workbook."

9.4 Using Labels in an Integrated Excel Workbook

Use labels to provide end users with information about how they use the functionality
in an integrated Excel workbook. You can write EL expressions that retrieve the value
of string keys defined in a resource bundle or that retrieve the values of attribute
control hints. An integrated Excel workbook evaluates the value of a Label property
only when the workbook is initialized.

Retrieving the Values of String Keys from a Resource Bundle

Figure 9-6 shows a portion of the design time view of the EditPriceList-DT.x1lsx
workbook in the Master Price List module. It shows examples of ADF Label
components and ADF Button components that have EL expressions specified for their
Label properties.

Figure 9-6 Design Time View of an ADF Label Component and an ADF Button
Component with Label Property

Search Area

#{res['excel.edit.searchPrompt']} e?{hindings.searchTerm}[Hliesl'excel searchButton label I]

[fHres['encel advSearchButton lab]

0 #{res['excel.search.hits']}

[Hires['encel saveButton. label T}]

At runtime, these EL expressions resolve to string keys defined in the res resource
bundle that is registered with the Master Price List module. You define resource
bundles in the workbook properties dialog. For information about referencing string
keys from a resource bundle, see Section 10.2, "Using Resource Bundles in an
Integrated Excel Workbook."

Figure 9-7 shows the corresponding runtime view of the ADF Label component and
ADF Button component illustrated in design mode in Figure 9-6.

9-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Labels in an Integrated Excel Workbook

Figure 9-7 Runtime View of an ADF Label Component and an ADF Button Component
with Label Property

Search Area

Advanced Search...

records found

Search For:

47

Upload ta Server

Retrieving the Values of Attribute Control Hints

In addition to string keys from resource bundles, the ADF Label component and the
Label property of other ADF components can reference attribute control hints that
you define for entity objects and view objects in your JDeveloper project. Figure 9-8
shows the expression builder for the Product Name column in the
EditPriceList-DT.x1sx workbook’s ADF Table component. The expression
builder contains an EL expression for the HeaderLabel property of the
ProductName column that retrieves the value (Product Name) defined for an
attribute control hint at runtime.

Figure 9-8 EL Expression That Retrieves the Value of an Attribute Control Hint for a
Label Property

Edit Component: ADF Table —— El
Edit the properties and press OK to save your changes. =
[2=]4) | E i
=LAl 1, \Column Collection Edit 2] i
O Behavio eColumn Collection Editor i | Al
BatChDPt Members: row bindingz. Productt ame. inputvalue} pr... g
Romactiol o DF ChangedCol =24 i
FowLimit _ADF_ChangedColumn + 5 E
I;| D:\‘alml indings. Product!d. inpufyal. |E‘— ‘ = o

i tH ame. input] Bl Appearance
S (Sl it{row. bindings. CostPrice. inputyalu CellStyleName _ADFDI_TableCellSt
o #{row. bindings. ListPrice.inputy alue HeaderStyleN am: _ADFDI_HeaderStyh
1] Margin E Data
[2] <T["<[RC[-2FRC-3/RCT DynamicColumn False
[3] 7| _ADF_StatusColumn Headerlabel #{bindings_ProductT
[4]
[5] Edit Expression
[E]
[7] !
FowData Expression:
TreelD £ #{bindings. ProductT able. hints. Productt ame. [abel}
Uniquedt —
E Design 1 [s

Attribute control hints can be configured for both view objects and entity objects.
Information about how to add an attribute control hint to an entity object can be found
in the "Defining Attribute Control Hints for Entity Objects" section of the Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework.
Information about how to add an attribute control hint to a view object can be found
in the "Defining Attribute Control Hints for View Objects" section of the Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework.

How an Integrated Excel Workbook Evaluates a Label Property

An integrated Excel workbook evaluates the Label properties of ADF components
when the workbook is initialized after you or the end user opens the workbook for the
first time. The integrated Excel workbook saves the retrieved values for the Label
properties when the workbook itself is saved to a directory on the system.

Configuring the Appearance of an Integrated Excel Workbook 9-9

Using Styles to Improve the User Experience

The retrieved values for the Label properties do not get refreshed during invocation
of actions such as the worksheet’s DownSync action or the ADF Table component’s
Download action. You indirectly refresh the retrieved values of the Label properties
if you invoke the workbook actions ClearAllData or EditOptions described in
Table A-17.

9.5 Using Styles to Improve the User Experience

It is good practice to provide end users of integrated Excel workbooks with
information that helps them understand how to use the ADF components that you
provide to integrate with a Fusion web application. You can do this by:

= Providing end users with instructions on how to use Oracle ADF components
such as ADF Button and ADF Input Text components.

The ADF Label component and the Label property of other ADF components is
useful for this task, as you can write labels that instruct the end user on how to use
the component.

= Apply styles that indicate if an ADF component is read-only or read-write.

Using ADF Label Components to improve the User Experience

You can use ADF Label components to provide end users of an integrated Excel
workbook information about how to use other ADF components in the workbook. For
example, many forms, by convention, use an * to indicate to end users that they must
enter a value in an input field. Figure 9-9 shows three ADF Input Text components
with ADF Label components in adjoining cells. Each ADF Label component references
an EL expression that retrieves the value of a string key from a resource bundle at
runtime. Each string key includes the * character to indicate to end users that they
must supply a value.

Figure 9-9 ADF Label Components Providing End-User Instruction

* Enker wour first name: l:l
* Enter your last name: l:l
* Enter vour email address: l:l

For information about using resource bundles, see Section 10.2, "Using Resource
Bundles in an Integrated Excel Workbook."

About the Read-Only Property in an Integrated Excel Workbook

Note the following points about the read-only property in an integrated Excel
workbook:

s ADF Output Text, ADF Label, and ADF Table header row do not have read-only
properties. However, these components have implied read-only behavior. In
addition, end users can enter values in the cells that host these components and
temporarily change the values that appear in these cells. ADF Desktop Integration
ignores these changes when uploading from the worksheet and overwrites them
when it downloads data from the Fusion web application.

9-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

Branding Your Integrated Excel Workbook

s The ADF Input Text component, ADF List of Values component, and TreeNodeList
subcomponent each have a read-only property (ReadOnly).

Note: If you specify an Excel formula in the Value property of an
ADF Input Text component, the component behaves as if its
ReadOnly property were True. The component ignores the actual
value of the ReadOnly property.

= To protect the values of read-only cells at runtime, set the worksheet protection to
automatic. When an attempt is made to edit a read-only cell after enabling
worksheet protection, Excel displays a warning message and the edit is blocked.
For more information about worksheet protection, see Section 9.7, "Using
Worksheet Protection.”

= Do not use the Excel’s Protect Sheet or Protect Workbook features directly in an
integrated Excel workbook. Also, enure that end users do not also use these
features.

To prevent end-user confusion, apply styles to components, such as the ADF Output
Text component, that indicate to end users whether a component is read-only or can
be edited. By default, the ADF Output Text component uses the predefined style, _
ADFDI_OutputTextStyle. You can define your own styles and apply them to
components as described in this chapter.

For more information about the properties that ADF Desktop Integration components
support, see Appendix A, "ADF Desktop Integration Component Properties and
Actions."

9.6 Branding Your Integrated Excel Workbook

ADF Desktop Integration provides several features that you can configure to brand
your integrated Excel workbook with information such as application name, version
information, and copyright information. You can use the workbook BrandingItems
group of properties to associate this information with an integrated Excel workbook.
You must configure a Ribbon tab as described in Section 8.3, "Configuring the Runtime
Ribbon Tab" so that the end user can view this branding information by clicking a
ribbon button that invokes the ViewAboutDialog workbook action at runtime. For
more information about workbook actions, see Table A-17.

You can also define string keys in a resource bundle to define information, such as
titles, in one location that can then be used in multiple locations in an integrated Excel
workbook at runtime when EL expressions retrieve the values of these string keys. For
information about defining string keys, see Section 10.2, "Using Resource Bundles in
an Integrated Excel Workbook."

9.6.1 How to Brand an Integrated Excel Workbook

You define values for the workbook BrandingItems group of properties.

To brand an integrated Excel workbook:
1. Open the integrated Excel workbook.

2. Inthe Oracle ADF tab, click Workbook Properties.

3. In the Edit Workbook Properties dialog, click the ellipsis button (...) beside the
input field for BrandingItems.

Configuring the Appearance of an Integrated Excel Workbook 9-11

Branding Your Integrated Excel Workbook

4. In the the NameValuePair Collection Editor, click Add and specify values for the
new element as follows:

n Name

Specify the name, or the EL expression, of the branding item to define.

s Value

Specify a literal string or click the ellipsis button (...) to invoke the expression
builder and write an EL expression that retrieves a value at runtime.
BrandingItems must use literal strings or resource expressions, and must
not contain any binding expression.

Figure 9-10 shows the design time view of branding items in the Master Price List
module.

Figure 9-10 Design Time View of Branding Items in the Master Price List Module

E dit the properties and press OK. ta zave wour changes.
ez 24
B Behavior
Runtime Ribbon T ak
E Data . . .
E1 Brantinalters NameValuePair] MameValuePair Collection Editor
[0] Application MName : G G
1] Application Wersion .".'.'.?mbe's' ..t?«_p_pllcatlon ileme =S
2 workbook Name] Zpplication Name [@=]4)
(3] Warkbook Version | |1 Application Yersion o Mi
] Copyright 2| Warkbook Mame 15C S
Parameters 3| workbook Version Mame Application Hame
i VE Fusion Order D
RemoteServetPath | fadfdiBemoteSer 4] Copyright e uswan Sieer Jemd
Resources ResourceBundle[j
‘wiebApph oot http:/ flocalhost: 3
Reset WorkboaklD
Add] [Remove
Brandingltems
The branding items that appear in the runtime [el l [Eance|]
[1] 3] [Cancel]

5. Click OK.

9.6.2 What Happens at Runtime to the Branding Items in an Integrated Excel Workbook

At runtime, the name-value pairs that you define for the BrandingItems group of
properties appear in a dialog that the end user invokes from the About button of the
Oracle ADF tab, which you configured to appear, as described in Section 8.3,
"Configuring the Runtime Ribbon Tab." Figure 9-11 shows the runtime view of
branding items in the Master Price List module’s EditPriceList .x1sx workbook.

9-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Worksheet Protection

Figure 9-11 Runtime View of Branding Items in the Master Price List Module

About &|

About | Verzions | Properties

M ame Value

Application Hame Fusion Order Demo

Application Yersion 1.0

Workbook Mame Edit Price List

W orkbook Yersion 1.0

Copright Copyright (¢] 2003, Oracle and/or its affilates. Al

rights reserved.

9.7 Using Worksheet Protection

By default, the end user can edit the values of read-only cells and ADF Desktop
Integration read-only components, such as ADF Label and ADF Output Text, at
runtime. While uploading data, ADF Desktop Integration ignores these changes and
overwrites them when it downloads data from the Fusion web application.

To prevent editing of read-only cells at runtime, you must enable the worksheet
protection. Optionally, you can also provide a password to prevent the end user from
turning off worksheet protection.

9.7.1 How to Enable Worksheet Protection

Worksheet protection enables true read-only mode for read-only cells and prevents
any editing at runtime.

To enable Worksheet Protection
1. Open the integrated Excel workbook.

2. In the Oracle ADF tab, click Worksheet Properties.

3. In the Edit Worksheet Properties dialog, expand the Protection property and
configure values as follows:

= To enable the worksheet protection at runtime, set the Mode to Automatic.

= If desired, provide a value in the Password field. The end-user cannot turn off
sheet protection at runtime without knowing this value.

Note that the password is not encrypted and the maximum password length
allowed by Excel is 255 characters. If you specify a longer password, it will be
truncated silently at runtime when sheet protection is toggled.

Figure 9-12 shows the design time view of worksheet protection in Master Price
List module.

Configuring the Appearance of an Integrated Excel Workbook 9-13

Using Worksheet Protection

Figure 9-12 Design Time View of Worksheet Protection in the Master Price List Module

Edit Worksheet Properties g|
Edit the propertiez and press OK to save your changes.
o224
El Behavior ~
Events ‘WorksheetEvent[] Array
8] Pratection
Mode Automatic
Passwaord helloworld
Ribbon Commands ‘WorksheetM enultem[] Array
El Data
FPage Definition ExcelPricelistPageDef
Paramneters
RowD ata e
Protection

The protection options for this workshest at runtime,

oK] [Cancel

4. C(lick OK.

9.7.2 What Happens at Runtime When Worksheet Protection is Enabled

At runtime, if the end user tries to edit a read-only cell or a ADF Desktop Integration
read-only component, Excel displays the warning message as shown in Figure 9-13.

Figure 9-13 Worksheet Protection Warning at Runtime

Table Errors

Worksheet Errors I |

Table Erraors

Microsoft Office Excel

The cell or chart that you are trying ko change is protected and therefore read-only,

! To modify a protected cell or chart, first remove protection using the Unprotect Sheet command (Review ktab,
Changes group). ¥ou may be prompted For a password,

—

When worksheet protection is enabled, ADF Desktop Integration controls the Locked
property for cells that are within the bounds of ADF Desktop Integration components.
The Locked property of cells outside the bounds of ADF Desktop Integration
components is not affected.

At runtime, ADF Desktop Integration evaluates the read-only behavior of its
components. Some components such as ADF Labels and ADF Output Text are always
read-only, and other components, such as ADF Input Text, have a read-only property.
At runtime, the Locked property is set to true when read-only for the component
evaluates to true. The header labels of ADF Table components are always read-only,
but column subcomponents might be ADF Output Text or ADF Input Text. At
runtime, each components read-only behavior is evaluated and the corresponding
cell’s Locked property is set to the appropriate value.

9-14 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Worksheet Protection

9.7.3 What You May Need to Know About Worksheet Protection

Worksheet protection is not enabled by default, you need to enable it at design time if
you want to use it for a particular worksheet. Also, note that after enabling worksheet
protection, the Locked property for cells is set at runtime, not at design time.

It is important to note that the password used for worksheet protection is itself not
encrypted or stored in a safe location. The worksheet protection is used to improve
worksheet usability, not to protect sensitive data.

After worksheet protection is enabled, Excel behaves differently. Here are some
differences that you can expect:

s The ADF Table components cannot be sorted, as they include read-only cells in the
Key column.

s The end user can insert a full row or column. However, once inserted, they cannot
be deleted.

= The end user cannot insert partial rows or columns.

Configuring the Appearance of an Integrated Excel Workbook 9-15

Using Worksheet Protection

9-16 Desktop Integration Developer's Guide for Oracle Application Development Framework

10

Internationalizing Your Integrated Excel
Workbook

This chapter describes internationalization issues to consider when developing an
integrated Excel workbook.

This chapter includes the following sections:
= Section 10.1, "Introduction to Internationalizing Your Integrated Excel Workbook"
= Section 10.2, "Using Resource Bundles in an Integrated Excel Workbook"

= Section 10.3, "Localization in ADF Desktop Integration"

10.1 Introduction to Internationalizing Your Integrated Excel Workbook

ADF Desktop Integration provides several features that allow you to deliver
integrated Excel workbooks as part of an internationalized Fusion web application.
One of the principal features is the use of resource bundles to manage the localization
of user-visible strings that appear in Oracle ADF components at design time. It also
uses resource bundles to manage the user-visible strings that appear in these
components at runtime. This chapter also describes the use of resource bundles.

Note the following points about internationalization and localization in an integrated
Excel workbook:

s Internationalized Data

ADF Desktop Integration supports both single- and double-byte character sets. It
marshals data transmitted between an Excel worksheet and a Fusion web
application into XML payloads. These XML payloads use UTF-8 encoding with
dates, times, and numbers in canonical formats.

s Locale

The locale of the system where the Excel workbook is used determines the format
for dates, times, and numbers. These settings (formats and the locale of the
system) may differ from the settings used by the Fusion web application. ADF
Desktop Integration does not attempt to synchronize these settings, but it ensures
that the data retains its integrity. ADF Desktop Integration does not provide a
mechanism for end users to change the language or display settings of the Oracle
ADF components in an integrated Excel workbook at runtime.

When configuring or applying styles to ADF components in an integrated Excel
workbook, configure or choose styles that are locale-sensitive. For more
information, see Section 9.2, "Working with Styles."

Internationalizing Your Integrated Excel Workbook 10-1

Using Resource Bundles in an Integrated Excel Workbook

For information about internationalizing Fusion web applications, see the
"Internationalizing and Localizing Pages" chapter in the Oracle Fusion Middleware Web
User Interface Developer’s Guide for Oracle Application Development Framework.

10.2 Using Resource Bundles in an Integrated Excel Workbook

ADF Desktop Integration uses resource bundles to manage user-visible strings that
appear in the ADF components of an integrated Excel workbook at design time and
runtime. JDeveloper stores resource bundles in the ADF Desktop Integration project.

You can register up to twenty resource bundles containing string values you define
with an integrated Excel workbook. A resource bundle must not exceed 1 megabyte. If
you attempt to register more than twenty resource bundles or a resource bundle that
exceeds 1 megabyte, ADF Desktop Integration writes a warning to the client-side log
file and stops registration of additional resource bundles or resource bundle data after
the 1 megabte limit is reached.

For example, if resource bundle A measures 2 megabyte and resource bundle B
measures 1 megabyte, ADF Desktop Integration registers the first megabyte of data in
resource bundle A and all of the data in resource bundle B. For information about
client-side logging, see Section C.3.2, "About Client-Side Logging."

The Resources workbook property specifies what resource bundles an integrated
Excel workbook can use. This property specifies an array of resource bundles
(ResourceBundle[] Array) in the integrated Excel workbook. Each element in the
array has a property that uniquely identifies a resource bundle (Alias) and a
property that identifies the path to the resource bundle in the JDeveloper desktop
integration project (Class). For example, EditPriceList-DT.x1lsx in the Master
Price List module references the res resource bundle that has the following value for
the Class property:

oracle.fodemo.masterpricelist.resources.UIStrings

More information about the Resources workbook property can be found in
Section A.12, "Workbook Actions and Properties."

By default, ADF Desktop Integration provides a reserved resource bundle that supplies
string key values used by many component properties at runtime. When you enable
an Excel workbook to integrate it with a Fusion web application, the reserved resource
bundle is registered by default with the workbook. ADF Desktop Integration uses the
value _ADFDIres to uniquely identify this resource bundle. Many EL expressions
reference string values in this resource bundle. For example, the following EL
expression is the default value of the Label property for the Login button in
WorkbookMenulItems:

#{_ADFDIres['TOOLBAR_MENU_CMD_LOGIN']}

where _ADFDIres identifies the reserved resource bundle and TOOLBAR_MENU_CMD_
LOGIN is the key that identifies the string (Login. . .) in the resource bundle to use at
runtime for the Login button.

If you register another resource bundle, you can replace default string key values
assigned from the _ADFDIres resource bundle to many of the ADF component
properties.

10.2.1 How to Register a Resource Bundle in an Integrated Excel Workbook

You register a resource bundle by adding an element to the ResourceBundle|]
Array using the ResourceBundle Collection Editor.

10-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Resource Bundles in an Integrated Excel Workbook

To register a resource bundle:

In the Excel workbook, click Workbook Properties in the ADF Desktop
Integration task pane to display the Edit Workbook Properties dialog.

1.

2.

Click the ellipsis button (...) beside the input field for Resources to display the
ResourceBundle Collection Editor shown in Figure 10-1.

Figure 10-1 ResourceBundle Collection Editor

fforkbook Prope

E dit the properties and press OK. to save your changes.

)y =

E Behavior

Toolbarkdenu

B Data

Brandingltems
Parameters
RemoteServetPath

B Resources
[0]
‘wiehapph oot

E Design
Annokation
ApplicationHomeF ol
Project
‘wiebPagesFolder

E Security
Login

Resources
The collection of resor

ResourceBundle Collection Editor

Members: Fesource Bundle properties:
+ B E
E Design

res

Annotation Regource Bundle

Clazs oracle_foddemo.masterprice

Add] [Remave
[0] l [Cancel]
I 1] 9 I I Cancel]

3.

Specify values for the resource bundle and then click OK.

For information about the values to specify for a resource bundle, see the entry for
Resources in Table A-18.

10.2.2 How to Replace String Key Values from the Reserved Resource Bundle

You can replace a string key from the reserved resource bundle by specifying a string
key from a resource bundle that you registered with the integrated Excel workbook.

To replace a string key value from the reserved resource bundle:
Open the integrated Excel workbook.

Click Workbook Properties in the Oracle ADF tab.

Click Runtime Ribbon Tab and click the ellipsis button (...) beside the input field
for WorkbookMenultem[] Array.

1.
2.
3.

Click the ellipsis button (...) beside the input field for the Label property to
display the expression builder.

Write an EL expression to retrieve the string key value you want to display at

runtime.

Figure 10-2 shows an example where the EL expression references a string key
(key_Login) defined in a resource bundle (res). This EL expression replaces the

Internationalizing Your Integrated Excel Workbook 10-3

Using Resource Bundles in an Integrated Excel Workbook

default EL expression that references a string key in the _ADFDIres resource
bundle.

Figure 10-2 Expression Builder Replacing a Key String Value

Edit Workbook Properties

Edit the properties and press OK. to gave your changes.
BENE]
El Behavior
El Runtime Ribbon Tab
Annotation
Title
isible
B workbook Commands
[
[l
[2]
5
E} E=pression: E‘a @2 é
El Data #{_ADFDIres TOOLBAR_MENU_CMD_LOGINTY
Brandingltems
Parameters
FemateServietPath

Resources

‘wehdppR oot)
—_ - PP & |nzert Into Expresszion

&dd
Reset ‘WorkbooklD

Workbook Commands E Bindings :] Cancal

The collection of workbook-le D Companents
D Resources

-] Workbook

-0 worksheet

: C. |
{20 Evcel Functions j

WorkbookMenultem Collection Editor

Members: Login properties:
B=

E Behavior
Method Login

|Z| ADFDIres['TODL

6. Click OK.

10.2.3 How to Override Resources That Are Not Configurable

The overridable resources contains several user-visible runtime strings that you
cannot replace by configuring the properties of the ADF Desktop Integration
components. Examples include the strings that appear in the default upload dialog
illustrated in Figure 7-5.

To replace these user-visible runtime strings, you create a resource bundle in your
Fusion web application that contains the string keys from the overridable resource
that ADF Desktop Integration supports. Appendix F, "String Keys in the Overridable
Resources" lists these string keys. You define values for the string keys listed in
Appendix F to override in the resource bundle you create.

To override resources that are not configurable:
1. Create a resource bundle in your Fusion web application.
For information about creating a resource bundle, see the "Defining Locales and

Resource Bundles" section in the Oracle Fusion Middleware Web User Interface
Developer’s Guide for Oracle Application Development Framework.

2. Define the string key values you want to appear at runtime in the resource bundle
for the string keys listed in Appendix F, "String Keys in the Overridable
Resources."

10-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using Resource Bundles in an Integrated Excel Workbook

3. Set _ADFDIres as the value of the Alias property when you register the resource
bundle you created in Step 1.

For information about how to register a resource bundle, see Section 10.2.1, "How
to Register a Resource Bundle in an Integrated Excel Workbook."

Table F-1 describes the string keys in the overridable resources that ADF Desktop
Integration supports. Supply an alternative value to the value listed in the English
value column for each string key in the overridable resource.

10.2.4 What Happens at Runtime When You Override Resources That Are Not

Configurable

ADF Desktop Integration retrieves the values of string keys listed in Table F-1 that you
defined in the resource bundle you created. It retrieves the values of other string keys
that you did not define in the resource bundle you created from the reserved resource
bundle.

Note: If you provide override values for LOGIN_WINDOW_TITLE or
LOGIN_CONFIRM_CONNECT_2, the override values will not appear on
the first connection to the web application. The default values will be
used on the first connection. For more information, see Section 10.2.2,
"How to Replace String Key Values from the Reserved Resource
Bundle."

10.2.5 What You May Need to Know About Resource Bundles

See the following sections for additional information about resource bundles in an
integrated Excel workbook.

Resource Bundle Types
ADF Desktop Integration supports use of the following types of resource bundle:

= Properties bundle (.properties)
m List resource bundle (.rts)
» Xliff resource bundle (.x1f)

For more information about resource bundles, see the "Manually Defining Locales and
Resource Bundles" section in the Oracle Fusion Middleware Web User Interface
Developer’s Guide for Oracle Application Development Framework.

Caching of Resource Bundles in an Integrated Excel Workbook

ADF Desktop Integration caches the values of string keys from the resource bundles
that an integrated Excel workbook retrieves when it first connects to the Fusion web
application. If you change a string key value in a resource bundle after an integrated
Excel workbook has cached the previous value, the modified value does not appear in
the workbook unless the ClearAllData workbook action is invoked and the end
user closes and reopens the workbook so that it retrieves the modified value from the
Fusion web application. For more information about the ClearAllData workbook
action, see Table A-17.

EL Expression Syntax for Resource Bundles

ADF Desktop Integration requires that you enclose the string key name in EL
expressions using the [] characters, as in the following example:

Internationalizing Your Integrated Excel Workbook 10-5

Localization in ADF Desktop Integration

#{res['StringKey']}
Note that ADF Desktop Integration does not support the following syntax:

#{res.StringKey}

10.3 Localization in ADF Desktop Integration

ADF Desktop Integration integrates several diverse sets of technologies. Each of these
technologies provides various options for controlling the choice of natural human
language when you localize your Fusion web application.

When the end user interacts with an integrated Excel workbook, various elements are
involved. Each of these elements has its own set of supported languages and resource
translations. In such a scenario, the translation of language is the responsibility of the
respective publisher.

Table 10-1 presents a summary of elements involved and their role in translation:

Table 10-1 Summary of Localization

Area subject to
localization Determination of language to use

Microsoft operating system Operating system language settings. You can choose the
language through Regional Settings on Control Panel.

Microsoft Office Microsoft Office language settings

Web pages displayed in Usually controlled by Microsoft Internet Explorer’s Language
ADF Desktop Integration Preferences.
Dialog actions

ADF Desktop Integration Microsoft Office language settings
client resources

ADF Desktop Integration Microsoft Internet Explorer language preferences
server resources

ADF Desktop Integration Microsoft Internet Explorer language preferences
custom resource bundles

Figure 10-3 illustrates how various elements involved in a Fusion web application
play their role in translation.

10-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Localization in ADF Desktop Integration

Figure 10-3 Localization in ADF Desktop Integration

< Windows Control Panel > < Desktop Client >
Reglonal Sattings Browser Settings

Culture Controlled By Locale Controlled by
e Windows Operating System =N Pe Application Server ™
MS Office Language
Settings

Excel

—»1 Resources —l
T g

Worksheet

)

Application Custom
Resources

Embedded \ Application Web Pages

—

o

Internet Explorer

Locale Controlied w—/ K
|

Internet Explorer
Browser Settings

For more information about localization in ADF Desktop Integration, see the "Oracle
ADF 11g Desktop Integration Localization whitepaper" on OTN at:

_/\

http://www.oracle.com/technetwork/developer-tools/jdev/adfdi-loc
alization-129807.pdf

Internationalizing Your Integrated Excel Workbook 10-7

Localization in ADF Desktop Integration

10-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

11

Securing Your Integrated Excel Workbook

This chapter provides information about how to secure your integrated Excel
workbook with a Fusion web application by providing authentication and
authorization capabilities in an authenticated session. The chapter describes how to
access integrated Excel workbooks in an authenticated and non authenticated session.
It also describes issues that you should be aware of so that you can secure your Excel
workbook.

It is recommended that you configure ADF Security for the Fusion web application
before you deploy the integrated Excel workbook; however, it is not required. For
information about ADF Security, see the “Enabling ADF Security in a Fusion Web
Application” chapter in the Oracle Fusion Middleware Fusion Developer’s Guide for Oracle
Application Development Framework.

This chapter includes the following sections:

» Section 11.1, "Introduction to Security In Your Integrated Excel Workbook"

» Section 11.2, "Authenticating the Excel Workbook User"

= Section 11.3, "Checking the Integrity of an Integrated Excel Workbook’s Metadata"

= Section 11.4, "What You May Need to Know About Securing an Integrated Excel
Workbook"

11.1 Introduction to Security In Your Integrated Excel Workbook

If you are using a Fusion web application that does not enforce authentication, then
the integrated Excel workbook verifies and creates a valid user session before
connecting to the Fusion web application and downloading data. The session that is
established is used for each and every data transfer between the integrated Excel
workbook and Fusion web application. The session is also used for web pages
referenced from the integrated Excel workbook.

In a Fusion web application that is enforcing authentication, the integrated Excel
workbook ensures that a valid, authenticated user session is established before
transferring data to or from the web application.

For both authenticated and non-authenticated Fusion web applications, ADF Desktop
Integration relies on the establishment of cookie-based sessions. With no
authentication mechanism in place, your integrated Excel workbooks are not
completely safe. Hence, it is recommended that you enable ADF Security in your
Fusion web application before you deploy your web application with integrated Excel
workbooks.

Securing Your Integrated Excel Workbook 11-1

Authenticating the Excel Workbook User

11.2 Authenticating the Excel Workbook User

The integration of an Excel workbook with a secure Fusion web application requires
an authenticated web session established between the integrated Excel workbook and
the server that hosts the Fusion web application. ADF Security determines the
mechanism used to authenticate the user.

If the end user opens an Excel workbook without a valid authenticated session, a login
mechanism is invoked to authenticate the end user.

11.2.1 What Happens at Runtime When the Login Method Is Invoked

After the login method is invoked, a new session between the integrated Excel
workbook and the Fusion web application is created, and a modal dialog appears that
contains a web browser control. This web browser control displays whatever login
mechanism the Fusion web application uses. For example, if the Fusion web
application uses HTTP Basic Authentication, the web browser control displays the
simple dialog shown in Figure 11-1.

Figure 11-1 Dialog That Appears When a Fusion Web Application Uses Basic
Authentication

f

Connect to 127.0.0.1

=
X

W A

The server 127.0.0.1 at FODMasterPriceList requires a
username and password,

‘Warning: This server is requesting that your username and
password be sent in an insecure manner (basic authentication
without & secure connection).

User name: L <l -

Password:

[CIremember my passwaord

[OK] [Cancel]

The end user enters user credentials and, assuming these are valid, an authentication
session is created and assigned to the client (the web browser control hosted by the
Excel workbook).

Note: If the Login method is invoked when a session has already
been established, it first invokes the Logout action internally to free
that session.

11.2.2 What Happens at Runtime When the Logout Method Is Invoked

After the logout method is invoked, a dialog appears informing users that they have
logged out of the current session. The user is automatically logged out when the
workbook is closed, or when the Clear All Data option is selected from the runtime
custom tab in Excel ribbon.

11-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Checking the Integrity of an Integrated Excel Workbook’s Metadata

Figure 11-2 Dialog That Appears When a User Logs Out

\y You have been logged out from your current session,

After logging out, the user must log in again to upload or download data.

If two or more workbooks are open (in test or runtime mode) with same credentials,
closing one workbook does not initiate the logout mechanism. The user continues to
stay logged in and may continue to work on remaining open workbooks, and can
open the closed workbook without being asked for credentials again. The user is
logged out when all workbooks, requiring same credentials, are closed.

11.3 Checking the Integrity of an Integrated Excel Workbook’s Metadata

ADF Desktop Integration provides a mechanism to verify that the metadata it uses to
integrate an Excel workbook with a Fusion web application is not tampered with after
you publish the Excel workbook for end users. It generates a hash code value and
inserts the value into the ADF Desktop Integration client registry file
(adfdi-client-registry.xml) that it also creates when you publish the
integrated Excel workbook as described in Section 14.3, "Publishing Your Integrated
Excel Workbook." ADF Desktop Integration stores the
adfdi-client-registry.xml file in the WEB-INF directory of the Fusion web
application.

If you republish the integrated Excel workbook, ADF Desktop Integration generates a
new hash code value and replaces the value in the adfdi-client-registry.xml
file. ADF Desktop Integration creates the adfdi-client-registry.xml file if it
does not exist.

The ApplicationHomeFolder and WebPagesFolder workbook properties allow
the integrated Excel workbook to identify the location of the Fusion web application’s
WEB-INF directory. You must set valid values for these properties before you can
publish the integrated Excel workbook and ADF Desktop Integration can generate a
hash code value.

ADF Desktop Integration generates the hash code value using most of the elements in
the metadata for the workbook and the value of the WorkbookID workbook property.
The WorkbookID workbook property is read-only and uniquely identifies the
integrated Excel workbook. You must reset the WorkbookID workbook property if
you create a new integrated Excel workbook by copying an existing integrated Excel
workbook. ADF Desktop Integration excludes the WebAppRoot property from the
hash code calculation since its value is expected to change at runtime.

For more information about the workbook properties discussed here, see Table A-18.

11.3.1 How to Reset the Workbook ID

The value of the WorkbookID workbook property is unique to each workbook and
cannot be modified by you. You can, however, reset the WorkbookID workbook
property. You must do this when you create a new integrated Excel workbook by
copying an existing integrated Excel workbook.

Securing Your Integrated Excel Workbook 11-3

Checking the Integrity of an Integrated Excel Workbook’s Metadata

To reset a workbook ID:
1. Open the integrated Excel workbook.

2. Click Workbook Properties in the Oracle ADF tab.
3. In the Edit workbook Properties dialog, click the Reset WorkbookID link.

4. Click Yes to confirm and reset the WorkbookID workbook property in the dialog
that appears.

5. Click OK.

11.3.2 How to Disable the Metadata Tamper-Check in the Fusion Web Application

By default, ADF Desktop Integration verifies that the metadata it uses to integrate an
Excel workbook with a Fusion web application is not tampered with after you publish
the Excel workbook for end users. You can disable the metadata tamper-check by
configuring a parameter in the deployment descriptor file (web . xm1) of the Fusion
web application, although this is not recommended.

To disable the metadata tamper-check in the Fusion web application:
1. Stop your Fusion web application.

2. Open the web.xml file of your Fusion web application.
3. Add an initialization parameter to the adfdiRemote servlet to disable the

metadata tamper-check, as described in Table 11-1.

Table 11-1 Disabling Metadata Tamper-Check

Property Value

Name Enter the name of the initialization parameter as follows:

TamperingCheck.Enabled

Value Set the value of TamperingCheck.Enabled to False.

Figure 11-3 shows the web.xm1l editor in JDeveloper.

11-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Checking the Integrity of an Integrated Excel Workbook’s Metadata

Figure 11-3 Disabling the Metadata Tamper Check In JDeveloper

%weh.ﬂml x E]
@

Application Serviets “i' x

Servlets

Filkers

Security Mame Type Servlet Class [J5P File

Pages Faces Serviet Servlet Class javax.faces.webapp.Fa...

References resources Serviet Class org.apache. myfaces.tri... 5
adfdiRemate Servlet Class oracle. adf, deskbopinte {}
adfduthentication Servlet Class oracle.adf share, securi,..
EIGRAPHSERYLET Servlet Class oracle.adfinternal view. ... 0
BIGALUGESERYLET Servlet Class oracle.adfinternal view. ... Q
MapProxyServlet Servlet Class oracle. adfinternal view.. ..
GatewaySerylet Serviet Class oracle. adfinkernal. view. ... y
|/ Serviet Mappings |/ Initialization Parameters r Security Role References | j_

+ X
Marne Walue Description -
TampetingCheck.Enabled False
Crverview | Source | Histary ['_

4. Save the web.xml file.
The web . xm1 file of your Fusion web application has the following entries:

<servlet>
<servlet-name>adfdiRemote</servlet-name>
<servlet-class>...</servlet-class>
<init-param>
<param-name>TamperingCheck.Enabled</param-name>
<param-value>False</param-value>
</init-param>
</servlet>

5. Rebuild and restart your Fusion web application.

For more information about the web . xm1 file, see Appendix E, "ADF Desktop
Integration Settings in the Web Application Deployment Descriptor."

11.3.3 How to Allow Missing Entries in the ADF Desktop Integration Client Registry

You can configure the metadata tamper-check so that a missing entry for the
WorkbookID workbook property is allowed in the adfdi-client-registry.xml
file. To do this, you configure a parameter in the deployment descriptor file
(web.xml) of the Fusion web application, although this is not recommended.

To allow missing entries in the metadata of the Fusion web application:
1. Stop your Fusion web application.

Securing Your Integrated Excel Workbook 11-5

Checking the Integrity of an Integrated Excel Workbook’s Metadata

2. Open the web.xml file of your Fusion web application.

3. Add aninitialization parameter to the adfdiRemote servlet to allow missing
entries in the metadata as described in Table 11-2.

Table 11-2 Allowing Missing Entries in the Metadata

Property

Value

Name

Enter the name of the initialization parameter as follows:

TamperingCheck.AllowMissingEntries

Value

Set the value of TamperingCheck.AllowMissingEntries to
True.

Figure 11-4 shows the web.xml editor in JDeveloper.

Figure 11-4 Enabling Missing Metadata Entries In JDeveloper

%weh.uml x =
@

Application Servlets + x

Servlets

Filkers

Security Mame Type Serviet Class f JSPFile =

Pages Faces Serviet Servlet Class jawvax.faces.webapp.Fa. ..

References resources Serviet Class org.apache. myfaces tri... 5
adfdiRemate & oracle.adf.d pinkeq. .. {}
adfAuthentication Servlet Class oracle.adf share, securi...
EIGRAPHSERYLET Servlet Class oracle,adfinternal vigw, ... G
EIGALGESERYLET Servlet Class oracle.adfinternal view. ... Q
IMapProsxySerylet Servlet Class oracle. adfinkernal. view.. ..
GatewaySerylet Serviet Class oracle, adfinkernal. view. ... /

|/ Serviet Mappings r Initialization Parameters r Security Role References | il_
@ X
Mame Walue Description -
TampertingCheck. AllowMissingEntries True
Crverview | Source | Histary [’_

4. Save the web.xml file.

The web . xm1 file of your Fusion web application has the following entries:

<servlet>

<servlet-name>adfdiRemote</servlet-name>

<servlet-class>...</servlet-class>

<init-param>
<param-name>TamperingCheck.AllowMissingEntries</param-name>
<param-value>True</param-value>

</init-param>

</servlet>

Desktop Integration Developer's Guide for Oracle Application Development Framework

What You May Need to Know About Securing an Integrated Excel Workbook

5.

Rebuild and restart your Fusion web application.

For more information about the web . xm1 file, see Appendix E, "ADF Desktop
Integration Settings in the Web Application Deployment Descriptor."

11.3.4 What Happens When the Metadata Tamper-Check is Performed

At runtime, the integrated Excel workbook regenerates the metadata hash code and
provides it to the Fusion web application with the first server request. If the Fusion
web application cannot get a match on this hash code, it returns an error to the
integrated Excel workbook. On receiving an error from the tamper check process, the
integrated Excel workbook reports this failure to the end user and closes the
integration framework.

11.4 What You May Need to Know About Securing an Integrated Excel

Workbook

Note the following points about securing an integrated Excel workbook with a Fusion
web application:

Data security

If you save an Excel workbook containing data downloaded from a Fusion web
application to a location, such as a network directory, where other users can access
the Excel workbook, the data stored in the Excel workbook is accessible to other
users.

Security and protection in Microsoft Excel

Certain security and protection features that Microsoft Excel provides do not work
for workbooks or worksheets that are integrated with a Fusion web application.
For example, you cannot use the worksheet protection feature for a worksheet that
you integrate with a Fusion web application. You can, however, use Excel’s
functionality to set a password on an integrated Excel workbook to prevent
unauthorized users from opening or modifying it. For more information about
Excel security features, see Excel’s documentation.

Integrated Excel workbooks can be configured to cache data, as described in
Section 15.2, "Restore Server Data Context Between Sessions." Make sure that you
do not cache sensitive data in the integrated Excel workbook.

If the Fusion web application is running on the ht tps protocol and you have not
installed the security certificate on the client, the integrated Excel workbook gives
an error on login and the connection is not established. To establish a connection,

you must install the security certificate.

For applications running in an environment using Oracle Access Manager, the
system administrator should ensure that the URL for the ADF Desktop Integration
Remote servlet is configured as a protected resource for Oracle Access Manager.
For more information, see the Oracle Access Manager Access System Administration
Guide.

For applications running in an environment using WebGate, set the user-defined
parameter £ilterOAMAuthnCookie to False. For more information, see the
chapter on registering partners (agents and applications) remotely in the Oracle
Access Manager Access System Administration Guide.

Securing Your Integrated Excel Workbook 11-7

What You May Need to Know About Securing an Integrated Excel Workbook

= System administrators should ensure that applications using ADF Desktop
Integration have a security constraint configured in web . xm1 that protects the
ADF Desktop Integration remote servlet.

The following code extract from web.xml shows a security constraint protecting
the remote servlet:

<security-constraint>
<web-resource-collection>
<web-resource-name>adfdiRemote</web-resource-name>
<url-pattern>/adfdiRemoteServlet</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>valid-users</role-name>
</auth-constraint>
</security-constraint>

11-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

12

Adding Validation to an Integrated Excel
Workbook

This chapter describes how to provide validation for your integrated Excel workbook
This chapter includes the following sections:

= Section 12.1, "Introduction to Adding Validation to Integrated Excel Workbook"

= Section 12.2, "Providing Server-Side Validation for an Integrated Excel Workbook"
= Section 12.3, "Providing Client-Side Validation for an Integrated Excel Workbook"
= Section 12.4, "Error Reporting in an Integrated Excel Workbook"

= Section 12.5, "Providing a Row-by-Row Status on an ADF Table Component"

= Section 12.6, "Adding Detail to Error Messages in an Integrated Excel Workbook"
= Section 12.7, "Handling Data Conflicts When Uploading Data from a Workbook"

12.1 Introduction to Adding Validation to Integrated Excel Workbook

You configure server-side and client-side validation for the Fusion web application
and the integrated Excel workbook to make use of the validation options offered by
the ADF Model Layer and Microsoft Excel. In addition to these validation options, you
can make use of components in ADF Desktop Integration to return error messages
from the Fusion web application, to provide status on the results of component
actions, and to manage errors that may occur when data is changed in an integrated
Excel workbook conflict with data hosted by the Fusion web application.

12.2 Providing Server-Side Validation for an Integrated Excel Workbook

ADF Desktop Integration uses the validation rules that the ADF Model Layer sets for a
binding’s attributes. Data that the end user enters or edits in one of the ADF Desktop
Integration components, such as the ADF Table component, can be validated against
set rules and conditions in the Fusion web application. For general information about
defining validation rules in Oracle ADF, see the "Defining Validation and Business
Rules Declaratively" chapter in the Oracle Fusion Middleware Fusion Developer’s Guide
for Oracle Application Development Framework.

For information about adding ADF Model layer validation, see the "Adding ADF
Model Layer Validation" section in the Oracle Fusion Middleware Fusion Developer’s
Guide for Oracle Application Development Framework.

Adding Validation to an Integrated Excel Workbook 12-1

Providing Client-Side Validation for an Integrated Excel Workbook

12.3 Providing Client-Side Validation for an Integrated Excel Workbook

ADF Desktop Integration does not provide client-side validation. However, you can
use Excel’s data validation features to control the type of data or the values that end
users enter into a cell. These features allow you to restrict data entry to a certain range
of dates, limit choices by using a list, or ensure that only positive whole numbers are
entered in a cell. For example, you could configure the Product Number column in
the EditPriceList-DT.x1lsx workbook so that users can enter only whole
numbers in the cells of this column.

If you apply custom validation to columns within an ADF Table component, the
validation is propagated when the ADF Table component’s columns are populated at
runtime. Note, however, that ADF Desktop Integration overwrites at runtime any
custom validation applied to columns that reference the TreeNodeList
subcomponent at design time. This is because ADF Desktop Integration applies its
own list-constraint validation, which is invoked at runtime.

Note:

= Excel displays error messages when a validation fails; these error
messages cannot be localized.

= ADF Desktop Integration does not support server-side validation
warnings. Validation warnings, set for rules defined in the Fusion
web application, are not displayed by the integrated Excel
workbook.

For more information about data validation in Excel, see Excel’s documentation.

12.4 Error Reporting in an Integrated Excel Workbook

The server that hosts the Fusion web application you integrate your Excel workbook
with can return error messages to end users that provide feedback on the results of
operations. The error messages returned can be one many types: validation failures,
conflict errors, deleted records, and so on.

12.4.1 Error Reporting Using EL Expressions

To return error message summaries to end users, you must set an EL expression for
the Value property of an ADF Output Text component. At runtime, the ADF Output
Text component displays the error message summary to the end user if an error
occurs.

The type of EL expression that you set for the Value property of the ADF Output Text
component depends on whether you want to return error message summaries
generated by action sets invoked on a worksheet, or by actions invoked by other
components such as the ADF Table and ADF Read-only Table components. The
following EL expression displays error message summaries which are returned during
the invocation of an action set on a worksheet:

#{worksheet.errors}
At runtime, the previous error message summary is cleared (if one existed) when the
action set starts the invocation. If no errors occur during invocation, error message

remains blank. If an error occurs, the ADF Output Text component displays the error
message summary.

12-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Error Reporting in an Integrated Excel Workbook

An alternative approach to returning error message summaries generated by action
sets invoked on a worksheet is to set # {worksheet .errors} as the value for an
action set’s Alert . FailureMessage property. This approach displays the generated
error message summary in a dialog.

Components such as the ADF Table and ADF Read-only Table components that have
actions which interact with the Fusion web application can also return error message
summaries. Set the following EL expression for the Value property of the ADF
Output Text component or for an action set’s Alert . FailureMessage property:

#{components.componentID.errors}

where componentID refers to the ID of the component (ADF Table or ADF Read-only
Table component) that invokes the action.

The EditPriceList-DT.x1lsx file in the Master Price List module of the Fusion
Order Demo application demonstrates how to return error message summaries
generated by action sets invoked on a worksheet and by the actions of an ADF Table
component. Figure 12-1 shows these EL expressions in design mode.

Figure 12-1 EL Expressions to Return Error Messages in an ADF Output Text
Component

Table Errors

Worksheet Errars #{worksheet.errors}

Tahle Errors #{components.TAB416222534.errors}

12.4.2 Error Reporting Using Component Actions

ADF Desktop Integration provides actions that display error details generated by an
ADF Table component or an integrated Excel worksheet.

The action set in which you invoke one of these actions must include only one action.
In general, action sets clear error labels and message lists when invoked. An action set
that invokes one of the following actions returns error labels and message lists to the
end user:

s Worksheet’s DisplayWorksheetErrors action

To display a worksheet’s error messages, configure the action set of a component
on the worksheet or the worksheet ribbon button to invoke this action. For
example, Figure 12-2 shows the Action Collection Editor dialog configuring the
DisplayWorksheetErrors action as a DoubleClickActionSet item for an
ADF Output Text component on the worksheet.

Adding Validation to an Integrated Excel Workbook 12-3

Error Reporting in an Integrated Excel Workbook

Figure 12-2 DisplayWorksheetErrors Action

(2|2 | =

B DutputText
B DoubleClickactionSet
ActionOptions
B Actions
= [0]
Annotation
Method

Edit the properties and press OK to save your changes.

#{worksheet_errors}

Action]] Amray
DizplaytforksheetErors

DizplayWworksheetE rrors

Action Collection Editor

DizplaytforksheetE rars properties:

| 24l |3
! B Action
Method DizplayWorksheetErrors
E Design

|

l

)8 H Cancel]

At runtime, double-clicking the ADF OutputText component invokes the
DisplayWorksheetErrors action as shown in Figure 12-3.

Figure 12-3 Runtime View of DisplayWorksheetErrors action

Table Errors

Worksheet Errors I

Upload to Server failed

one o ed
Ttz Eets Worksheet Errors
@ Upload to Server failed

For more information about the Worksheet’s DisplayWorksheetErrors action,
see Section A.13, "Worksheet Actions and Properties."

ADF Table component’s DisplayRowErrors action

To display row-level failures that occur in an ADF Table component, invoke this
action. Row-level failures occur when end user invokes the following actions:

Upload
— DeleteFlaggedRows

DoubleClickActionSet invoked from an ADF Table component column

For more information about using this action, see Section 12.5, "Providing a
Row-by-Row Status on an ADF Table Component."

ADF Table component’s DisplayTableErrors action

12-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Providing a Row-by-Row Status on an ADF Table Component

To display table-level failures that occur in an ADF Table component, invoke this
action. It is not intended that an ADF Table component column’s
DoubleClickActionSet invoke this action. Instead add this action to an action
set that returns error messages to end users when failures occur during invocation
of the action binding specified by an ADF Table component’s
BatchOptions.CommitBatchActionID property.

At runtime, double-clicking the ADF OutputText component invokes the
DisplayTableErrors action as shown in Figure 12—4.

Figure 12-4 Runtime View of DisplayTableErrors action

Table Errors

Worksheet Errors Upload to Server failed |

Table Errors I one or more rows could not be uploaded l

Table Errors

@ one ar more rows could not be uploaded

® Current Margi gin| Status

150.0% - Update failed

" 1ET AN a0 AR

For more information about ADF Table component actions, see Section A.9, "ADF
Table Component Properties and Actions."

12.5 Providing a Row-by-Row Status on an ADF Table Component

The ADF Table component provides a mechanism to indicate to end users whether
rows from the ADF Table component have been processed successfully or not after
invocation of following ADF Table component actions:

m DeleteFlaggedRows
s Upload
s DoubleClickActionSet invoked from an ADF Table component’s column

The ADF Table component populates the _ADF_StatusColumn column with the
status for each row following the invocation of the ADF Table component action. For
example, it populates the _ADF_StatusColumn column with the upload status for
each row following the invocation of the ADF Table component’s Upload action.

Figure 12-5 shows rows in an ADF Table component where the values in those rows
have been changed, as indicated by the upward pointing arrows in the Changed
column. In the CostPrice column, two string values have been entered where a
number value is expected.

Figure 12-5 ADF Table Component with Changed Rows Before Upload

Prod. Mo|Product Name Cost Price| Site Price| Difference Current Margin| New Margin|Status
17|Ipod Video 80Gb £200.00| $330.09| £130.00 70.0% -58.8%
18|Ipod Shuffle 1Gb $45.00 $99.99 $54.99 122.2% -45.0%
19| Ipod Video 30Gb £135.00| £240.99| £114.09 100.0% -54.0%
20|Ipod Video 60Gh string text " #vaLUE! 128.6%| #VALUE!
21|Ipod Mano 1Gb £90.00| £149.95 £50.95 66.6% -60.0%

Adding Validation to an Integrated Excel Workbook 12-5

Adding Detail to Error Messages in an Integrated Excel Workbook

Figure 12-6 shows the same rows in the ADF Table component after invocation of the
ADF Table component’s Upload action. The ADF Table component populates the _
ADF_StatusColumn column (labeled Status in this example at runtime) with a
message indicating whether the row updated successfully or not.

Figure 12-6 ADF Table Component with Changed Rows After Upload

Prod. Mo|Product Mame Cost Price| Site Price| Difference| Current Margin| New Margin| Status
17|Ipod Video 80Gh $200.00| $330.99| £130.09 70.0% -58.8%
18|Ipod Shuffle 1Gb $45.00 $99.99 $54.99 122.2% -45.0%
19|Ipod Video 30Gb $135.00| $249.99) $114.99 100.0% -54.0% |Row updated successfully
20|Ipad Video 60Gb |string text " £VALUE! 128.6%)| #VALUE! Update failed
21|Ipod Nano 1Gb $90.00| $149.95 $59.95 66.6% -60.0%

By default, the _ADF_StatusColumn column’s DoubleClickActionSet is
configured to invoke the ADF Table component’s DisplayRowErrors action. When
end users double-click a row in this column at runtime, the ADF Table component
invokes the DisplayRowErrors action. This action displays a dialog with a list of
errors for that row if errors exist. If no errors exist, the dialog displays a message to
indicate that no errors occurred. Figure 12-7 shows the dialog that appears if the end
user double-clicks the cell in Figure 12-6 that displays Update failedin the Status
column.

Figure 12-7 Dialog Displaying Row Error Message

Errors for this row:

* CostPrice: cannot convert the input value (string) to the expected data type (Number).

* Site Price: cannot convert the input value (text) to the expected data type (Number).

For more information about the _ ADF_ StatusColumn column, see Section 7.11,
"Special Columns in the ADF Table Component."

12.6 Adding Detail to Error Messages in an Integrated Excel Workbook

You can configure your Fusion web application to report errors using a custom error
handler to provide more detail to the error messages displayed to end users in an
integrated Excel workbook.

To implement this functionality, the custom error handler must override the
getDetailedDisplayMessage method to return a DCErrorMessage object. At
runtime, ADF Desktop Integration detects the custom error handler and invokes the
getHtmlText method on the DCErrorMessage object. ADF Desktop Integration
includes the HTML returned by the getHtmlText method in the error message list as
detail.

For more information about creating a custom error handler, see the "Customizing
Error Handling" section of the Oracle Fusion Middleware Fusion Developer’s Guide for
Oracle Application Development Framework.

12-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Handling Data Conflicts When Uploading Data from a Workbook

12.7 Handling Data Conflicts When Uploading Data from a Workbook

If one of your end users (John) makes changes to a row of data that he downloaded
from a Fusion web application to an Excel workbook and another end user (Jane) in a
different session modifies the same row in the Fusion web application after John
downloads the row, John may encounter an error when he attempts to upload the
modified row, as his changes conflict with those that Jane made. Depending on the
configuration of your Fusion web application, John may receive
RowInconsistentException type error messages. For information about how to
configure your Fusion web application to protect your data, see the "How to Protect
Against Losing Simultaneously Updated Data" section in the Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

To resolve this conflict in the integrated Excel workbook, John needs to download the
most recent version of data from the Fusion web application. However, invoking the
ADF Table component’s Download action causes the component to refresh all data
that the component hosts in the Excel workbook. This may overwrite other changes
that John made that do not generate conflict error messages. To resolve this scenario,
you can expose the ADF Table component’s DownloadFlaggedRows action. When
invoked, this action downloads data only for the rows that the end user flags for
download. Using this action, John can resolve the conflict issues and upload his
modified data.

Chapter 15, "Using an Integrated Excel Workbook Across Multiple Web Sessions and
in Disconnected Mode" provides information about using an integrated Excel
workbook across multiple sessions. For information about flagging rows, see

Section 7.10.2, "Row Flagging in an ADF Table Component." For information about
invoking component actions, see Section 8.2.2, "How to Invoke Component Actions in
an Action Set." For more information about the components that the ADF Table
component supports, see Section A.9, "ADF Table Component Properties and Actions."

12.7.1 How to Configure a Workbook to Handle Data Conflicts When Uploading Data

You specify a row-specific attribute of the tree binding for the
RowData.ChangeIndicatorAttribute property to determine whether a row has
been modified by another user since the row was last downloaded by the ADF Table
component.

To configure a workbook to handle data conflicts:
1. Open the integrated Excel workbook.

2. Select the cell in the Excel worksheet that references the ADF Table component
and click Edit Properties in the Oracle ADF tab to display the Edit Component:
ADF Table dialog.

3. For the RowData.ChangeIndicatorAttribute property, specify the
row-specific attribute of the tree binding that you use to determine whether a row
has been modified by another user since the row was last downloaded by the ADF
Table component in your integrated Excel workbook.

4. Click OK.

12.7.2 What Happens at Runtime When You Configure a Workbook to Handle Data
Conflicts

The ADF Table component caches the original value of the row-specific attribute of the
tree binding that you specified as a value for

Adding Validation to an Integrated Excel Workbook 12-7

Handling Data Conflicts When Uploading Data from a Workbook

RowData.ChangeIndicatorAttribute when it invokes the RowDownSync action.
When the ADF Table component invokes the RowUpSync action, it checks if the value
of the binding hosted by the Fusion web application and the original value cached by
the ADF Table component differ. If they differ, it indicates data conflict, as changes
have been made to the value of the binding hosted by the Fusion web application since
the ADF Table component downloaded the value of the binding.

12-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

13

Testing Your Integrated Excel Workbook

This chapter describes features in ADF Desktop Integration that help you test your
integrated Excel workbook as you configure it. It includes the following sections:

= Section 13.1, "Introduction to Testing Your Integrated Excel Workbook"
» Section 13.2, "Testing Your Fusion Web Application"
» Section 13.3, "Testing Your Integrated Excel Workbook"

13.1 Introduction to Testing Your Integrated Excel Workbook

Testing an integrated Excel workbook before you publish and deploy it to your end
users enables you to verify that the functionality you configure behaves as you intend.
Before you test your integrated Excel workbook, test the Fusion web application with
which you integrate the Excel workbook. Once your Fusion web application functions
as you intend, use the test mode provided by ADF Desktop Integration to test the
functionality in your integrated Excel workbook.

13.2 Testing Your Fusion Web Application

Test the Fusion web application that you integrate your Excel workbook with before
you start testing the integrated Excel workbook. For information about testing a
Fusion web application, see the Oracle Fusion Middleware Fusion Developer’s Guide for
Oracle Application Development Framework. Verify that the Fusion web application you
want to integrate an Excel workbook with, supports ADF Desktop Integration by
carrying out the procedure described in Section C.1, "Verifying That Your Fusion Web
Application Supports ADF Desktop Integration.”

There are some differences between the test mode and the runtime mode when you
run the integrated Excel workbook. Table 13-1 lists these differences.

Table 13—-1 Differences between Test mode and Runtime mode

Test mode Runtime mode

Does not perform tamper check Performs tamper check

Does not display the connection confirmation Displays the connection confirmation dialog
dialog

Displays the Oracle ADF ribbon tab Does not display Oracle ADF tab

Allows you to switch back to design mode Does not allow you to switch back to design

mode

Testing Your Integrated Excel Workbook 13-1

Testing Your Fusion Web Application

Before you run the Fusion web application in JDeveloper, ensure that you have closed
all integrated Excel workbooks and the Excel application. The application deployment
may fail if it encounters locked files as Excel locks the files that it opens.

Tip: If you plan to test integrated Excel workbooks that you
downloaded from web pages of the Fusion web application, you
should republish them before redeploying the application.
Republishing the workbooks ensures that you have their latest
versions.

If you make changes to the Fusion web application to resolve problems identified by
testing the application, you need to:

s Close Excel and all integrated Excel workbooks. The application deployment may
fail if it encounters locked files, as Excel locks the files that it opens.

= Rebuild the JDeveloper project where you develop the Fusion web application.
= Run the Fusion web application.

= Reload the page definition files that are associated with the integrated Excel
workbook. Click the Refresh Bindings button in Oracle ADF tab of the integrated
Excel workbook to reload the page definition files.

These steps make sure that the changes in the Fusion web application are available to
the integrated Excel workbook. For information about how to reload a page definition
file, see Section 4.3.3, "Reloading a Page Definition File in an Excel Workbook."

Server Ping Test

The server ping test enables you to check the version of ADF Desktop Integration
Remote Servlet in a running system. It also helps to confirm that the remote servlet is
loaded and responding.

After running the Fusion web application and logging in as a valid user, open a URL
in the following format to verify whether the remote servlet is running:

http://<hostname>:<portnumber>/<context-root>/adfdiRemoteServlet

For example, if you run the Master Price List Fusion web application, open the
following URL:

http://127.0.0.1:7101/FODMasterPricelList/adfdiRemoteServiet
The following response verifies that the remote servlet is running;:
Oracle ADF 1lg Desktop Integration (11.1.1.55.30) [1738]

Response from
oracle.adf.desktopintegration.servlet.DIRemoteServlet: OK.

In the above example, the remote servlet versionis 11.1.1.55.30 and the ADF
Desktop Integration version corresponding to the remote servlet is 173 8.

Note: A valid user session is required to run the server ping test. If
authentication is enabled for the web application, you will be
prompted for valid credentials to log in.

13-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Testing Your Integrated Excel Workbook

13.3 Testing Your Integrated Excel Workbook

As you configure your Excel workbook to integrate with a Fusion web application,
you can switch to test mode from design mode to test the functionality that you add to
the workbook. You use the Oracle ADF tab to switch to test mode from design mode
and from design mode to test mode.

Test mode enables you to test the functionality of your integrated Excel workbook as
you configure it incrementally. It also enables you to view the integrated Excel
workbook from the end user’s perspective, as test mode corresponds to what end
users see when they view and execute the published integrated Excel workbook. The
difference between an integrated Excel workbook in test mode and a published
integrated Excel workbook is that the ADF Desktop Integration task pane is not
available to users of the published integrated Excel workbook.

For more information about test mode and design mode, see Section 5.1, "Introduction
to Development Tools."

ADF Desktop Integration can generate log files that capture information based on
events triggered by an integrated Excel workbook. For more information about these
log files, see Appendix C, "Troubleshooting an Integrated Excel Workbook."

Note: Before you start testing the integrated Excel workbook, ensure
that:

s The Fusion web application is running

= The ping to server is successful, and the server is configured for
ADF Desktop Integration

To run an integrated Excel workbook in test mode:

= To test and run an integrated Excel workbook, click the Run button on the Oracle
ADF tab.

The integrated Excel workbook switches to test mode from design mode.

To stop test mode and return the integrated Excel workbook to desigh mode:

= In the integrated Excel workbook that you are testing, click the Stop button on the
Oracle ADF tab.

The integrated Excel workbook switches to design mode from test mode.

Note: When the end user tries to close the integrated Excel
workbook, Microsoft Excel prompts a dialog to save the workbook
even if the end user has not modified it after opening it. This behavior
is expected because ADF Desktop Integration modifies an integrated
Excel workbook each time the end user opens it.

Testing Your Integrated Excel Workbook 13-3

Testing Your Integrated Excel Workbook

13-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

14

Deploying Your Integrated Excel Workbook

This chapter describes how to deploy a workbook that you have integrated with a
Fusion web application to your end users after you have finalized the integration.

This chapter includes the following sections:

= Section 14.1, "Introduction to Deploying Your Integrated Excel Workbook"
= Section 14.2, "Making ADF Desktop Integration Available to End Users"

= Section 14.3, "Publishing Your Integrated Excel Workbook"

= Section 14.4, "Deploying a Published Workbook with Your Fusion Web
Application”

» Section 14.5, "Passing Parameter Values from a Fusion Web Application Page to a
Workbook"

14.1 Introduction to Deploying Your Integrated Excel Workbook

After you finish development of your integrated Excel workbook, you make the final
integrated Excel workbook available to end users by deploying the resulting Fusion
web application to an application server. Before you deploy a finalized Excel
workbook that integrates with the Fusion web application, you must publish it as
described in Section 14.3, "Publishing Your Integrated Excel Workbook." After you
have published the Excel workbook, you can deploy it using one of the methods
outlined in the "Deploying Fusion Web Applications" chapter of the Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework.

The end users that you deploy an integrated Excel workbook to must do the following:
= Set up ADF Desktop Integration on their machines.

Make the ADF Desktop Integration setup . exe tool available to end users from,
for example, a directory on your network. For more information, see Section 14.2,
"Making ADF Desktop Integration Available to End Users."

s Ifrequired, configure the security settings for their Excel application.

14.2 Making ADF Desktop Integration Available to End Users

End users who want to use the functionality that you configure in an integrated Excel
workbook must install the Runtime edition of ADF Desktop Integration. The
setup.exe toolislocated in the

adfdi-excel-runtime-client-installer. zip file available in MW _
HOME\oracle_common\modules\oracle.adf.desktopintegration_11.1.1
directory, where 1w_HOME is the Middleware Home directory.

Deploying Your Integrated Excel Workbook 14-1

Publishing Your Integrated Excel Workbook

For information about using the setup . exe tool, see Section 1.1, "Installing the
Runtime Edition of ADF Desktop Integration."

For more information about Microsoft ClickOnce installer, see the following:

http://msdn.microsoft.com/en-us/library/71baz9ah.aspx

14.3 Publishing Your Integrated Excel Workbook

After you finish configuring the Excel workbook with Oracle ADF functionality, you
must publish it. Publishing a workbook makes it available to the end users for whom
you configured the integrated Excel workbook.

ADF Desktop Integration also provides you with two methods to publish your
workbook. You can publish your integrated Excel workbook directly from Excel, or
you can use the publish tool available in JDeveloper to publish the workbook from the
command line. The command-line publish tool enables you to use ANT build scripts
to publish an integrated Excel workbook from your Fusion web application.

14.3.1 How to Publish an Integrated Excel Workbook from Excel

You publish a workbook by clicking a button on the Oracle ADF tab and specifying
values in the dialogs that appear, or by using the command-line publish tool. You can
use the command line publish tool to publish a workbook from your Fusion web
application.

To publish a workbook from Excel:
1. Open the integrated Excel workbook.

2. Ensure that the ApplicationHomeFolder and WebPagesFolder properties in
the Edit Workbook Properties dialog are correct. If these properties are not set,
ADF Desktop Integration prompts you to set them when you publish the
integrated Excel workbook.

For more information, see Section 4.4.3, "How to Configure a New Integrated
Excel Workbook."

3. In the Oracle ADF tab, click the Publish button.

4. Specify the directory and file name for the published workbook in the Publish
Workbook dialog that appears. The directory and file name that you specify for the
published workbook must be different from the directory and file name for the
design time workbook.

5. Click Save to save changes.

14.3.2 How to Publish an Integrated Excel Workbook Using the Command Line Publish

Tool

The publish tool is run from the command line, and is available in the M _
HOME\jdeveloper\adfdi\bin\excel\tools\publish directory as
publish-workbook. exe. Before you run the publish tool, open the source
integrated Excel workbook and ensure that the ApplicationHomeFolder and
WebPagesFolder properties in the Edit Workbook Properties dialog are correct.

Now, run the publish tool using the following syntax:

publish-workbook -workbook (-w) <source-workbook-path> -out (-0)
<destination-workbook-path>

14-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Publishing Your Integrated Excel Workbook

where source-workbook-path is the path of sthe ource workbook, and
destination-workbook-path is the path where the published workbook is saved.
Note that the destination workbook cannot have the same name as the source, even if
the directory locations are different.

For example:

publish-workbook -workbook
D:\Applicationl\Projectl\ViewController\src\oracle\foddemo\maste
rpricelist\excel\workbook-src.xlsx -out
D:\Applicationl\Projectl\ViewController\public_
html\excel\published\workbook.xlsx

Tip: For more information about the arguments required by the
publish tool, run the following command:

publish-workbook -help (-h)

After publishing the integrated Excel workbook successfully, the publish tool displays
a success message. If there is any error while publishing the workbook, the publish
tool aborts the process and the error messages are displayed on the command line
console.

If you are using the command line publish tool, note that by default the publish tool
logs messages to the command line console at information level.

Using the Publish Tool with ANT

You can create ANT scripts to run the publish tool from JDeveloper when you build
your Fusion web application. You can use either of the following methods to run the
utility using ANT:

= Generate an ANT build script for the project and add a target to run the workbook
command line publish tool

= Generate or create a separate ANT build script for running the workbook
command line publish tool

A sample ANT build script (publish-workbook.xml) to run the publish tool is
available in the Mw_HOME\ jdeveloper\adfdi\bin\excel\samples directory.
The sample ANT script demonstrates the invocation of the command-line workbook
publishing tool.

14.3.3 What Happens When You Publish an Integrated Excel Workbook

When you click the Publish button in design mode, ADF Desktop Integration
performs the following actions:

= Removes binding expressions that are visible in the worksheet while the
workbook is in design mode.

= Changes the workbook mode to runtime mode.

m Clears the ApplicationHomeFolder, WebAppRoot, and WebPagesFolder
properties from the workbook settings of the published workbook.

» Creates the published workbook with the file name you specified in the directory
that you specified.

= Updates the client registry. For more information, see Section 11.3, "Checking the
Integrity of an Integrated Excel Workbook’s Metadata."

Deploying Your Integrated Excel Workbook 14-3

Deploying a Published Workbook with Your Fusion Web Application

14.4 Deploying a Published Workbook with Your Fusion Web Application

Add the integrated Excel workbook to the JDeveloper project for your Fusion web
application if it is not packaged with the other files that constitute your JDeveloper
project. This makes sure that the Excel workbooks you integrate with your Fusion web
application get deployed when you deploy your finalized Fusion web application. For
example, the Master Price List module stores the Excel workbooks that it integrates at
the following location:

FOD_
HOME\MasterPriceList\ViewController\src\oracle\foddemo\masterpri
celist\excel\excel

where FOD_HOME is the installation directory for the Fusion Order Demo application.

After you decide on a location to store your integrated Excel workbooks, you can
configure web pages in your Fusion web application allowing end users to access the
integrated Excel workbooks. For example, Figure 14-1 shows Internet Explorer’s File
Download dialog, which was invoked by clicking the Excel > Edit Using Live
Spreadsheet menu options on the PriceListSummary . jspx page displayed by the
Master Price List module.

Figure 14-1 Invoking an Integrated Excel Workbook from a Fusion Web Application

Excel w | Vieww Formate Save Freeze ffiDetach | ol Wrap

Export as Read-only Spreadsheet

Edit Using Live Spreadshest
Edit Using Advanced Live Spreadsheet

View and Query Using Live Spreadsheet

File Download

Do you want to open or zave this file?

i~ j Mame: EditPricelist,xlsx
H]

Type: Microsoft Office Excel Worksheet
Fram: 127.0.0.1

Open] [Save] [Cancel l

Always ask before opening this bype of file

harm your computer. |f you do not tust the zource, do not open or o

B) | ‘while files from the Internet can be useful, zome filez can potentially
= save this file. What's the rigk?

To enable the functionality illustrated in Figure 141, the HTTP filter parameters for
your Fusion web application must be configured to recognize Excel workbooks.
JDeveloper automatically configures these parameters for you when you add ADF
Desktop Integration to the technology scope of your Fusion web application, as
explained in Section 4.2, "Adding ADF Desktop Integration to a Fusion Web
Application." If you want to manually configure the HTTP filter parameters, see
Appendix E, "ADF Desktop Integration Settings in the Web Application Deployment
Descriptor.”

After you have configured the HTTP filter for your Fusion web application, you
configure the web pages that the Fusion web application displays to end users to allow
them to invoke Excel workbooks. A basic method of invoking an Excel workbook that
you have integrated with a Fusion web application is to provide a hyperlink that
invokes the workbook. For example, you could write the following HTML in a web

page:

14-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Passing Parameter Values from a Fusion Web Application Page to a Workbook

0Open the Master Price List
in Excel

where excel is a subdirectory of the directory specified by the WebPagesFolder
workbook property and EditPriceList.x1sx is the Excel workbook that the end
user invokes.

You can provide functionality that allows end users to invoke Excel workbooks from
buttons, lists and ribbon command buttons. The following list provides some
examples:

s Button

Display a button on the web page that, when clicked, invokes the integrated Excel
workbook.

m Selection list

Use the ADF Faces selectOneChoice component with a button to invoke an
integrated Excel workbook.

= Menu
Use the ADF Faces goMenuItem component.

The View and Query Using Live Spreadsheet menu, as illustrated in Figure 14-1,
uses the goMenuItem component. The PriceListSummary.jspx page displays
this menu. The following entry appears in the PriceListSummary . jspx page of
the Master Price List module and demonstrates the goMenuItem component:

<af:goMenuItem id="goReadOnly"
textAndAccessKey="#{res['pls.productList.menu.lsr.label']}"
destination="/excel/published/ReadOnlyPriceList.xlsx"/>

For more information about creating web pages for a Fusion web application, see the
Oracle Fusion Middleware Web User Interface Developer’s Guide for Oracle Application
Development Framework.

14.5 Passing Parameter Values from a Fusion Web Application Page to a

Workbook

You can configure a page in your Fusion web application to pass parameter values to
an integrated Excel workbook when the end user downloads the workbook from the
page. For example, if the end user attempts to download a workbook from a page that
displays a list of products, the list of products that appears in the workbook
corresponds to the list of products displayed in the page when the end user invoked
the download. Subsequent changes that the end user makes to data in one location
(the worksheet or the Fusion web application’s page) do not affect data in the other
location.

To configure this functionality, you must:

s Verify that the HTTP filter is configured to allow end users to download integrated
Excel workbooks from the Fusion web application. By default, JDeveloper
configures the HTTP filter with appropriate values when you add ADF Desktop
Integration to the technology scope of your Oracle ADF Desktop Integration
project. To verify the parameter values of the HTTP filter, see Section E.2,
"Configuring the ADF Desktop Integration Excel Download Filter."

= Configure the page in your Fusion web application from which the end user
downloads the integrated Excel workbook so that it passes its parameters through

Deploying Your Integrated Excel Workbook 14-5

Passing Parameter Values from a Fusion Web Application Page to a Workbook

URL arguments to the integrated Excel workbook when the end user downloads
it.

Configure the page definition file associated with the worksheet in the integrated
Excel workbook so that the worksheet is initialized with the parameters from the
page in the Fusion web application from which the end user downloads the
workbook.

Configure workbook and worksheet properties in the integrated Excel workbook
that end users download so that the workbook contains the parameters from the
page in the Fusion web application from which the end invokes download.

14.5.1 How to Configure the Fusion Web Application’s Page to Pass Parameters

You insert an <af : goLink> tag and specify property values for it that reference the
integrated Excel workbook the end user downloads and the values to download. You
also specify the commands on the page that, when invoked, require the Fusion web
application to refresh the values referenced by the <af : goLink> tag and its property
values.

To configure the page in the Fusion web application:

1.

In JDeveloper, insert the af : goLink tag into the page from which the end user
downloads the integrated Excel workbook.

In the Structure window;, right-click the af:goLink node and choose Go to
Properties.

Expand the Common section and set values for the properties, as described in
Table 14-1.

Table 14-1 Properties for af:goLink Tag

Property Value

Text Write the text that appears to end users at runtime.

For example, write text such as the following to appear at
runtime:

Download to Excel

14-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Passing Parameter Values from a Fusion Web Application Page to a Workbook

Table 14-1 (Cont.) Properties for af:goLink Tag

Property Value

Destination Invoke the expression builder to write an EL expression that

specifies the integrated Excel workbook and the values to
download as a URL argument:

For example, write an EL expression such as the following:

" /excel /workbook.xlsx?productName=#{bindings.pr
oductName.attributevValue}"

Note that the runtime URL-encoded value of the EL expression
to the right of ? must be less than 2048 bytes. If the runtime
value exceeds 2048 bytes, the integrated Excel workbook
downloads the URL arguments in the first 2048 bytes.
Subsequent URL arguments do not get downloaded to the
integrated Excel workbook. Instead, the Fusion web application
writes log entries for these URL arguments identifying them as
having not been downloaded.

For example, the runtime URL-encoded value of
productName=# {bindings.productName.attributevVal
ue} must be less than 2048 bytes.

Also note that if the URL contains more than 256 characters, an
exception is raised when the end user downloads and opens the
integrated Excel workbook without saving it. To resolve this
problem, you must limit your URL length to 256 characters, or
instruct the end user to save the workbook before opening it.

Optionally, expand the Behavior section and specify component IDs for the
partialTriggers property that, when invoked, update the values of the
af :goLink tag and its Destination property.

For example, if you have navigation buttons with the IDs NextButton,
PreviousButton, FirstButton, and LastButton, specify them as follows:

:NextButton :PreviousButton :FirstButton :LastButton
Save the page.

The following example shows the entries that JDeveloper generates in a JSF page
using the examples in this procedure:

<af:goLink text="Download to Excel"
destination="/excel/workbook.xlsx?productName=#{bindings.productName.attributeVv
alue}"

partialTriggers=":NextButton :PreviousButton :FirstButton :LastButton"/>

14.5.2 How to Configure the Page Definition File for the Worksheet to Receive

Parameters

You configure the page definition file associated with the worksheet in the integrated
Excel workbook as follows:

Add one or more parameter elements that initialize the worksheet with the
values specified by the workbook Parameters property that you configure in
Section 14.5.3, "How to Configure Parameters Properties in the Integrated Excel
Workbook."

The following example shows a parameter element in a page definition file that is
associated with a worksheet in an integrated Excel workbook:

<parameters>

Deploying Your Integrated Excel Workbook 14-7

Passing Parameter Values from a Fusion Web Application Page to a Workbook

<parameter id="ProductNameParam" />
</parameters>

Add an invokeAction and a method action binding so that the page definition
file associated with the worksheet initializes correctly.

The following example shows the initializeProductTable invokeAction
invoking the filterByProductName method action binding. The
invokeAction is refreshed only when a value for ProductNameParam is

supplied.

<executables>
<invokeAction Binds="filterByProductName" id="initializeProductTable"
Refresh="deferred"
RefreshCondition="${bindings.ProductNameParam != null}"/>

</executables>

The method action binding invokes a view object method
(filterByProductName). The view object method takes a single String
argument (ProductNameArg) that references the value of ProductNameParam.

<bindings>

<methodAction id="filterByProductName" RequiresUpdateModel="true"
Action="invokeMethod" MethodName="filterByProductName"
IsViewObjectMethod="true" DataControl="AppModuleDataControl"
InstanceName="AppModuleDataControl.ProductvVOl">

<NamedData NDName="ProductNameArg" NDValue="${bindings.ProductNameParam}"

NDType="java.lang.String"/>

</methodAction>

</bindings>

For more information about configuring a page definition file, see Section 4.3,
"Working with Page Definition Files for an Integrated Excel Workbook."

14.5.3 How to Configure Parameters Properties in the Integrated Excel Workbook

You configure the workbook Parameters property and the worksheet Parameters
property so that the integrated Excel workbook that the end user downloads from the
Fusion web application receives parameter values included in the query string of the

workbook download URL.

To configure the workbook Parameters property:

1.
2.
3.

Open the integrated Excel workbook.
Click Workbook Properties in the Oracle ADF tab.

Click the ellipsis button (...) beside the input field for Parameters to invoke
WorkbookParameter Collection Editor.

Click Add to add a new workbook initialization parameter and configure its
properties as follows:

= (Optional) In the Annotation field, enter a description of the workbook
initialization parameter.

= In the Parameter field, specify the name of the URL argument that you
configured for the af : goLink tag’s Destination property as described in
Section 14.5.1, "How to Configure the Fusion Web Application’s Page to Pass
Parameters."

14-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

Passing Parameter Values from a Fusion Web Application Page to a Workbook

5. Repeat Step 4 as necessary to add other workbook initialization parameters.
6. Click OK.

For more information about the workbook Parameters property, see Table A-18.

To configure the worksheet Parameters property:
1. Open the integrated Excel workbook.

2. Click Worksheet Properties in the Oracle ADF tab.

3. Click the ellipsis button (...) beside the input field for Parameters to invoke the
WorksheetParameter Collection Editor.

4. Click Add to add a new worksheet parameter and configure it as in Figure 14-2:

= (Optional) In the Annotation field, enter a description of the worksheet
parameter.

= In the Parameter field, specify a parameter element that you added to the page
definition file associated with the worksheet, as described in Section 14.5.2,
"How to Configure the Page Definition File for the Worksheet to Receive
Parameters."

s In the Value field, write an EL expression that references the value of the
Parameter property you specified for the workbook initialization parameter
(workbook Parameters array). Use the following syntax when writing the
EL expression:

#{workbook.params . productName}

where productName references the value of the Parameter property you
specified for the workbook initialization parameter.

Figure 14-2 Worksheet Parameters

Edit Worksheet Properties @

Edit the properties and prezs OK to save your changes.
| A
ozl
E Behavior ~
Events WorksheetEvent[] Array
Pratection
Ribbon Commands WorksheetMenultem[] Array
B Data
Page Definition ExcelPricelListPageDef
8] Parameters WorksheetParameter[] Array [
= [0] ProductMameParam
Anhotation Product Name
Parameter ProductN ameP.aram
Walue {workbook_params_productNameParam}
Parameters
The collaction of wark sheet-level parameters that azsociate ah expression to a
page definition parameter.
I 0K l [Cancel]

5. Repeat Step 4 as necessary to add other workbook initialization parameters.
6. Click OK.
For more information about the worksheet Parameters property, see Table A-19.

By default, the workbook parameters are not sent every time the workbook connects to
the server to request metadata, the end user logs out, or the session expires. If

Deploying Your Integrated Excel Workbook 14-9

Passing Parameter Values from a Fusion Web Application Page to a Workbook

required, you can configure the workbook to send the initialization parameters by
configuring the SendParameters property.

To configure the worksheet SendParameters property:
1. Open the integrated Excel workbook.

2. Click Worksheet Properties in the Oracle ADF tab.

3. In the property inspector, set the value of SendParameters as shown in the
following table and Figure 14-2:

Set this property to... This value...

SendParameters True to send workbook parameters when the workbook connects
to the server to request metadata or data. When set to True,
parameters are sent everytime when the metadata is requested and
the first time when data is requested, during each user session.
False is the default value.

For more information, see Section 15.2, "Restore Server Data
Context Between Sessions."

4. Click OK.

14.5.4 What Happens at Runtime When a Fusion Web Application Page Passes
Parameters to an Integrated Excel Workbook

When the end user downloads the integrated Excel workbook from the Fusion web
application, the af : goLink tag is evaluated and the current product name is captured
and included on the URL. The adfdiExcelDownload filter embeds the names and
values of all the parameters from the URL into the downloaded integrated Excel
workbook.

After downloading the workbook, when the end user opens it for the first time, the
active worksheet of the integrated Excel workbook is initialized. The initialization
process includes fetching metadata from the web application. As part of retrieving the
worksheet metadata, the stored workbook parameters (if any) are sent to the ADF
Desktop Integration remote servlet and are available for application logic such as
<invokeAction> executables. Specifically, the parameters are set into
BindingContainer DCParameters before the binding container is refreshed. The
action set in the worksheet Startup event is also executed during initialization. After
initialization, the initialization status for each worksheet is recorded when the
integrated Excel workbook is saved to disk.

After the integrated Excel workbook has been saved, closed, and reopened , the
first-time initialization is skipped for any worksheets that were previously initialized.
If workbook parameters were captured when the integrated Excel workbook was first
downloaded, and those parameters are required to set up server context, then the
Worksheet.ServerContext.SendParameters property should be set to True.
When the SendParameters property is True, workbook parameters are sent on
every request for metadata, and also on the first request for data in each user session.

To reset the initialization state for all worksheets in the workbook, invoke the
ClearAllData action. For more information about the ClearAllData action, see
Table A-17.

14-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

Passing Parameter Values from a Fusion Web Application Page to a Workbook

Note: Parameter values passed to the server might reset when a web
dialog is invoked in an action set where the ShareFrame property is
True. Custom code, which uses the parameters and requires that
values be maintained across the invocation of a web dialog, should
ensure that the values in the user session data structures are saved.

Deploying Your Integrated Excel Workbook 14-11

Passing Parameter Values from a Fusion Web Application Page to a Workbook

14-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

15

Using an Integrated Excel Workbook Across
Multiple Web Sessions and in Disconnected
Mode

This chapter describes the functionality that your end users can use when they are not
connected to a Fusion web application. It also describes how to restore server data
context when the end user connects to a Fusion web application through an integrated
Excel workbook after having previously been disconnected from the application.

This chapter includes the following sections:
m Section 15.1, "Introduction to Disconnected Workbooks"
m Section 15.2, "Restore Server Data Context Between Sessions"

» Section 15.3, "Caching Lists of Values for Use in Disconnected Mode"

15.1 Introduction to Disconnected Workbooks

End users can open an integrated Excel workbook and log on to a Fusion web
application from the workbook ribbon command button that you configure. The
Fusion web application assigns a session to the user. After a connection to the Fusion
web application is established and a valid session assigned, end users can download
data from the Fusion web application to the workbook. They can then log off from the
Fusion web application using the workbook ribbon command button or otherwise
disconnect from the Fusion web application by, for example, disconnecting from the
network that hosts the Fusion web application.

How the Fusion web application terminates the session assigned to the user depends
on how the user disconnects from the Fusion web application. If the user logs off from
the Fusion web application using a workbook command, the Fusion web application
terminates the session immediately. If the user disconnects from the Fusion web
application by some other means (for example, closing the workbook), the Fusion web
application terminates the session assigned to the user after session timeout expires.

Functionality Available to End Users in an Integrated Excel Workbook When
Disconnected from a Fusion Web Application

When end users are disconnected from the Fusion web application, they can perform
the following actions:

= Modify data downloaded from the Fusion web application

= Insert new data into the appropriate ADF Table component contained in the
workbook

Using an Integrated Excel Workbook Across Multiple Web Sessions and in Disconnected Mode 15-1

Restore Server Data Context Between Sessions

= Save changes to data and close and reopen the workbook without having to
upload data to the Fusion web application

s Track and update changes in the ADF Table component

Caching of Static Information in an Integrated Excel Workbook

Certain types of relatively static data are cached in the integrated Excel workbook to
allow end users to use the workbook while disconnected from the Fusion web
application. Table 15-1 describes the types of data that an integrated Excel workbook
caches. It also describes when the integrated Excel workbook refreshes the data.

Table 15-1

Types of Data an Integrated Excel Workbook Caches

This type of data...

Is cached when...

And refreshed when...

Page definition metadata that
is not runtime specific such as
control binding types, IDs,

An integrated Excel
worksheet bound to a page
definition file is activated and

The page definition metadata
is not refreshed unless you
download a new copy of the

and labels. no cache of the page integrated Excel workbook or
definition file’s metadata invoke the workbook actions
exists. ClearAllData and
EditOptions described in
Table A-17.
ADF List of Values The ADF List of Values The values of the list items

component list items

component first downloads
the list items from the Fusion
web application.

hosted by the Fusion web
application differ from those
cached by the integrated Excel
workbook. The cached list
items are refreshed only once
per workbook session and
only if a workbook session
exists.

Invoking the workbook
actions ClearAllData and
EditOptions described in
Table A-17 also clears cached
list items.

Resource bundle strings

The integrated Excel
workbook is first initialized. A
workbook is initialized when
it is opened for the first time
after conversion, or after
ClearAllData is invoked.

The cache of resource bundle
strings is not refreshed unless
you download a new copy of
the integrated Excel
workbook or invoke the
workbook actions
ClearAllData and
EditOptions described in
Table A-17.

15.2 Restore Server Data Context Between Sessions

You must configure the page definition file so that the correct view object state is
restored if the Fusion web application assigns the end user a new session after one of

the following events occurs:

= The end user makes changes to data in a workbook, saves and closes the
workbook, reopens the workbook at a later time, and attempts to upload the
changes he or she made before saving and closing the workbook.

= The time between invocation of an ADF Table component’s Download and
Upload actions (or some other ADF Table component action that contacts the
Fusion web application) exceeds the session timeout value specified for a Fusion

web application session.

15-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Restore Server Data Context Between Sessions

Both the scenarios described in the previous list involve two sessions. The first session
is assigned when the end user opens an integrated Excel workbook and logs on to the
Fusion web application. The Fusion web application terminates this session when the
end user logs off from the Fusion web application or when the session expires. The
Fusion web application assigns a second session when the end user reopens the
integrated Excel workbook or invokes an action that interacts with the Fusion web
application.

In addition to configuring the page definition file, configure the functionality in an
integrated Excel workbook so that pending changes are not lost if the end user logs off
from the Fusion web application or a session expires before changes are committed to
the Fusion web application. For example, you configure the worksheet Startup event
to invoke a CreateInsert action binding and a worksheet DownSync action. You
also configure an ADF Button component labeled Save to invoke the worksheet
UpSync action and the Commit action binding. If the end user’s session ends, no
record is saved even if the end user clicks the Save button after the Fusion web
application assigns a new session. To prevent this scenario occurring, it is better to
invoke the CreateInsert action binding from the ADF Button component labeled
Save.

Another example is the behavior of the ADF Table component’s
DownloadForInsert action. If you create a custom method in the Fusion web
application that creates temporary records to support the invocation by the ADF Table
component of the DownloadForInsert action, make sure to remove these temporary
records after successful invocation of the DownloadForInsert action. For more
information about the use of the DownloadForInsert action, see Section 7.7,
"Configuring a Worksheet to Download Pre-Insert Data to an ADF Table Component."

15.2.1 How to Configure an Integrated Excel Workbook to Restore Server Data Context

You specify the attribute bindings that you want to cache in an integrated Excel
workbook between sessions as values for the worksheet’s ServerContext group of
properties. This group of properties also enables you to specify the action binding that
uses the attribute binding data to restore server-side context when a Fusion web
application assigns a new session to the integrated Excel workbook.

Before you can specify values for the ServerContext group of properties, the page
definition file that is associated with the worksheet must expose the attribute bindings
and action bindings for which you want to restore server context. For information
about adding attribute bindings and action bindings to a page definition file, see
Section 4.3, "Working with Page Definition Files for an Integrated Excel Workbook."
For information about the ServerContext group of properties, see the entry for
ServerContext in Table A-19.

To configure an integrated Excel workbook to restore server data context:
1. In the integrated Excel workbook, click Worksheet Properties.

2. In the property inspector that appears, configure values for the ServerContext
group of properties as described by the following table:

Using an Integrated Excel Workbook Across Multiple Web Sessions and in Disconnected Mode 15-3

Caching Lists of Values for Use in Disconnected Mode

Table 15-2 ServerContext Properties to Restore Server Data Context

For this property... Enter or select this value...

CacheDataContexts Add an element to the collection of CacheDataContexts.
Configure the element you add as follows:

[RestoreDataContextActionID

Specify the action binding (for example, the Execute action
binding) that connects to the Fusion web application to
restore the data specified by CachedServerContexts.

u CachedServerContexts

An array that identifies the attribute binding values to cache
and set before the action binding specified by
RestoreDataContextActionID is invoked. Each
element in the array (CachedServerContext) supports
the CachedAttributelID and RestoredAttributeID
properties.

For more information about the CacheDataContexts property
and its subproperties, see Section A-19, " Worksheet Properties."

IDAttributeID Specify the attribute binding that uniquely identifies the row
displayed in the current worksheet. At runtime, the value that
this property references is used to determine if the server data
context has been correctly restored.

For more information about this property and its subproperties,
see Section A-19, " Worksheet Properties."

If your integrated Excel workbook uses parameters and you have deployed it by
downloading it from your Fusion web application, see Section 14.5.3, "How to
Configure Parameters Properties in the Integrated Excel Workbook."

3. Click OK.

Note: For integrated Excel workbooks that use Parameters and
<invokeAction> executables, you may not need to configure
RestoreDataContextActionID and CachedServerContexts, if
Parameters and <invokeAction> can restore server data context
when a new session is created.

15.2.2 What Happens at Runtime When an Integrated Excel Workbook Restores Server
Data Context

During the session that is assigned the initial session (for example, session ID 1),
the worksheet caches data using the ServerContext group of properties. In a later
session with a different session ID (for example, session ID 2), where the ADF
Table component’s Upload action is invoked, the data cached in the ServerContext
group of properties is sent to the Fusion web application.

15.3 Caching Lists of Values for Use in Disconnected Mode

ADF Desktop Integration caches the values referenced by the ADF List of Values and
the TreeNodeList subcomponents that you use to create lists of values and dependent
lists of values so that these components do not send a request to the Fusion web
application when the end user selects a value at runtime. For more information about
using these components to create lists of values, see the following sections:

= Section 6.6, "Inserting an ADF List of Values Component”

15-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Caching Lists of Values for Use in Disconnected Mode

» Section 7.13, "Creating a List of Values in an ADF Table Component Column"
= Section 8.8, "Creating Dependent Lists of Values in an Integrated Excel Workbook"

ADF Desktop Integration caches up to two hundred and fifty values for each
component. If a component references a list of values with more than two hundred
and fifty values, ADF Desktop Integration caches the first two hundred and fifty
values and writes a warning message to the client-side log file for subsequent values.
Consider configuring your integrated Excel workbook to invoke a pick dialog from a
page in your Fusion web application where a list of values references more than two
hundred and fifty values. For more information about client-side log files, see
Section C.3, "Generating Log Files for an Integrated Excel Workbook." For more
information about invoking a pick dialog from a Fusion web application page, see
Section 8.4, "Displaying Web Pages from a Fusion Web Application" and Section 8.5,
"Inserting Values in ADF Table Columns from a Web Page Pick Dialog."

Cached list of values in an integrated Excel workbook get refreshed once per
workbook session. This refresh occurs after the user reestablishes a web session with
the Fusion web application and if the values referenced by the Fusion web application
have changed since the integrated Excel workbook last cached the list of values.

The upload of a selected value from a list of values causes the upload to fail if the
selected value no longer exists in the Fusion web application. This may occur if, for
example, one end user deletes the value in the Fusion web application while another
end user modifies the selected value in the cached list of values of an integrated Excel
workbook and attempts to upload the modified value to the Fusion web application.
For more information about handling data conflict, see Section 12.7, "Handling Data
Conflicts When Uploading Data from a Workbook."

Note that if you change the Fusion web application configuration after you have
deployed the Fusion web application and the end users have started using the
published integrated Excel workbooks, you must inform the end users to download a
fresh copy of the integrated Excel workbook, or run the ClearAllData command.
For more information about the ClearAllData action, see Table A-17

The changes in your Fusion web application might include changing the definitions of
the list bindings associated with the ADF List of Values and TreeNodeList
subcomponents exposed in the worksheet. Changing list binding metadata can cause
unexpected exceptions in workbooks that have been downloaded and run prior to the
change.

Using an Integrated Excel Workbook Across Multiple Web Sessions and in Disconnected Mode 15-5

Caching Lists of Values for Use in Disconnected Mode

15-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

A

ADF Desktop Integration Component
Properties and Actions

This appendix lists and describes the properties of ADF Desktop Integration
components. It also describes the actions that certain components in this module
expose.

This appendix includes the following sections:

= Section A.1, "Frequently Used Properties in the ADF Desktop Integration”
m Section A.2, "ADF Input Text Component Properties"

m Section A.3, "ADF Output Text Component Properties"

= Section A .4, "ADF Label Component Properties"

= Section A.5, "ADF List of Values Component Properties”

= Section A.6, "TreeNodeList Subcomponent Properties"”

= Section A.7, "ModelDrivenColumnComponent Subcomponent Properties”
= Section A.8, "ADF Button Component Properties"

= Section A.9, "ADF Table Component Properties and Actions"

= Section A.10, "ADF Read-only Table Component Properties and Actions"
= Section A.11, "Action Set Properties"

» Section A.12, "Workbook Actions and Properties"

m Section A.13, "Worksheet Actions and Properties"

A.1 Frequently Used Properties in the ADF Desktop Integration

Table A-1 lists alphabetically properties in ADF Desktop Integration that many
components reference.

ADF Desktop Integration Component Properties and Actions A-1

Frequently Used Properties in the ADF Desktop Integration

Table A-1 Frequently Used Properties in ADF Desktop Integration

Name Type EL Description

ActionSet N For information about action sets, see Section A.11,
"Action Set Properties."

Annotation String N Use this field to enter a comment about the
component’s use in the worksheet. Comments you
enter have no effect on the behavior of the
workbook. They are the equivalent of code
comments.

ComponentID String N ADF Desktop Integration generates this string to
uniquely identify each instance of an ADF
component in an integrated Excel workbook.

Label String Y Specify an EL expression that is evaluated at
runtime. For information about EL expressions in
ADF Desktop Integration, see Appendix B, "ADF
Desktop Integration EL Expressions." For
information about using labels, see Section 9.4,
"Using Labels in an Integrated Excel Workbook."

Position N This property defines the upper-left corner of the
Oracle ADF component in the integrated Excel
workbook.

ReadOnly Boolean Y Set this property to TRUE so that ADF Desktop

Integration ignores changes a user makes to a cell
that references a component which uses this
property. This property is independent of Excel’s
workbook and worksheet protection functionality.
Setting ReadOnly to TRUE does not prevent a user
from modifying a cell. When TRUE, the behavior for
cells that reference Oracle ADF components is as
follows:

= ADF Desktop Integration overwrites changes
without warning when a worksheet is refreshed.

= No changes are sent to the Fusion web
application when the integrated Excel workbook
is synchronized with the Fusion web
application.

To avoid end user confusion, apply styles to the cells
where you set ReadOnly to TRUE that provide a
visual clue to users that they cannot modify the cell’s
contents. For information about applying styles, see
Section 9.2, "Working with Styles."

RowLimit This group of properties allows you configure the
number of rows that the ADF Table component or
ADF Read-only Table component download and
display.

For more information, see Section 7.17, "Limiting the
Number of Rows Your Table-Type Component
Downloads."

RowLimit.Enabled Boolean N Set to TRUE to limit the number of rows downloaded
to the value specified by RowLimit .MaxRows. TRUE
is the default value.

A value for this property is required.

A-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Frequently Used Properties in the ADF Desktop Integration

Table A-1 (Cont.) Frequently Used Properties in ADF Desktop Integration

Name Type EL Description

RowLimit .MaxRows Integer Y Specify an EL expression that evaluates to the
maximum number of rows to download. The
component evaluates the EL expression when it
invokes its Download action. The default value is
500. If MaxRows is not a positive integer, the
component attempts to download as many rows as
possible. An invalid expression such as "ABC" is
interpreted as -1 (negative integer). As a result, the
component attempts to download as many rows as
possible.

Note that setting the value of MaxRows to 0 results
in a message where the user is asked if they want to
download the first 0 rows. To avoid this, set
MaxRows to a positive integer other than 0.

ADF Desktop Integration Component Properties and Actions A-3

ADF Input Text Component Properties

Table A-1 (Cont.) Frequently Used Properties in ADF Desktop Integration

Name

Type

EL

Description

RowLimit.WarningMessage

String

Y

Write an EL expression to generate a message to
display to the end user if the number of rows
available to download exceeds the number specified
by RowLimit .MaxRows. The component evaluates
this EL expression each time it invokes its Download
action. The maximum number of rows that a Excel
2007, or a higher version, worksheet can contain is
approximately 1 million.

The default value for RowLimit .WarningMessage
is:

#{_ADFDIres['ROWLIMIT WARNINGS_MESSAGE_
1'1}

You can specify a string key from a custom resource
bundle to use instead of the default value. Write a
value similar to the following for a string key in your
resource bundle if you want the warning message to
let the end user know how many rows he or she can
download:

Too many rows available. Do you want to
download the first {0} rows-?

where {0} is a placeholder that references the value
of RowLimit .MaxRows at runtime.

Write an EL expression similar to the following for
RowLimit.WarningMessage:

#{res['‘stringkey’]}

where res refers to the custom resource bundle and
stringkey refers to the string key that you defined
in the custom resource bundle. For more information
about resource bundles, see Section 10.2, "Using

Resource Bundles in an Integrated Excel Workbook."

If the value for this property is null, the Download
action downloads the number of rows specified by
RowLimit .MaxRows without displaying a message
to the end user.

StyleName

String

Y

Specifies the style in the current Excel workbook to
apply when the Oracle ADF component is rendered.
For more information, see Section 9.2, "Working with
Styles."

Value

Varies

Y

This property references an EL expression that is
evaluated after the invocation of the ADF Table
component’s RowDownSync action or a worksheet’s
DownSync action. The resulting value is typically the
primary value seen in the selected component.

A.2 ADF Input Text Component Properties

Table A-2 lists alphabetically the properties of the ADF Input Text component.

A-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

ADF Label Component Properties

Table A-2 ADF Input Text Component Properties

Name Description
Annotation For information about this property, see Table A-1.
ComponentID For information about this property, see Table A-1.

InputText.DoubleClickAction
Set

Specifies the action set invoked when a user double-clicks the cell. For
information about action sets, see Section A.11, "Action Set Properties."

InputText.ReadOnly

For information about this property, see Table A-1.

InputText.Value

For information about this property, see Table A-1.

Position

For information about this property, see Table A-1.

StyleName

For information about this property, see Table A-1.

A.3 ADF Output Text Component Properties

Table A-3 lists alphabetically the properties of the ADF Output Text component.

Table A-3 ADF Output Text Component Properties

Name Description
Annotation For information about this property, see Table A-1.
ComponentID For information about this property, see Table A-1.

OutputText.DoubleClickActio
nsSet

Specifies the action set invoked when a user double-clicks the cell. For
information about action sets, see Section A.11, "Action Set Properties."

OutputText.Value

For information about this property, see Table A-1.

Position

For information about this property, see Table A-1.

StyleName

For information about this property, see Table A-1.

A.4 ADF Label Component Properties

The ADF Label component displays a static string value at runtime. ADF Desktop
Integration generates the value when the EL expression that the Label property
references is evaluated. For information about using labels, see Section 9.4, "Using
Labels in an Integrated Excel Workbook."

Table A—4 lists alphabetically the properties that the ADF Label component references.

Table A-4 ADF Label Component Properties

Name Description

Annotation For information about this property, see Table A-1.

ComponentID For information about this property, see Table A-1.

Label For information about this property, see Table A-1.
Position For information about this property, see Table A-1.
StyleName For information about this property, see Table A-1.

ADF Desktop Integration Component Properties and Actions A-5

ADF List of Values Component Properties

A.5 ADF List of Values Component Properties

Table A-5 lists the properties of the ADF List of Values component. For information
about creating an ADF List of Values component, see Section 6.6, "Inserting an ADF
List of Values Component."

Table A-5 ADF List of Values Component Properties

Name Type EL Description

Annotation For information about this property, see Table A-1.
ComponentID For information about this property, see Table A-1.
ListOfvalues.DependsOnLis List N Select the list binding whose value at runtime determines the
tID binding choices available in the dependent list of values at runtime.

The list binding that you select can be a model-driven list.

For more information about dependent list of values, see
Section 8.8, "Creating Dependent Lists of Values in an
Integrated Excel Workbook."

ListOfvalues.ListID List N Select the list binding that defines the values available in the
binding list of values. The list binding that you select can be a
model-driven list.
ListOfvalues.ReadOnly Boolean N For information about this property, see Table A-1.
Position For information about this property, see Table A-1.
StyleName For information about this property, see Table A-1.

A.6 TreeNodeList Subcomponent Properties

The TreeNodeList is an ADF Table subcomponent that renders dropdown menus in
columns of the ADF Table component at runtime. It provides the same functionality to
end users as the ADF List of Values component.

The TreeNodeList subcomponent does not appear in the components palette of the
ADF Desktop Integration task pane. Instead, you configure properties for this
subcomponent when you specify TreeNodeList as the subcomponent to invoke for
the ADF Table component’s UpdateComponent or InsertComponent table column
properties described in Section A.9.2, "ADF Table Component Column Properties."

Table A—6 describes the properties that you configure for the TreeNodeList
subcomponent.

Table A-6 TreeNodeList Subcomponent Properties

Name Type EL Description

DependsOnList Tree Y Specify the tree binding attribute or list binding that serves as the
binding parent list of values in a dependent list of values.
z;tlg})s?te Note that the tree binding attribute you specify must be associated

. with a model-driven list.
binding
For more information about dependent list of values, see
Section 8.8, "Creating Dependent Lists of Values in an Integrated
Excel Workbook."

List Tree Y Specify the tree binding attribute associated with a model-driven
binding list that defines the values available in the runtime dropdown
attribute menu to appear in the ADF Table component’s column.

ReadOnly Boolean Y For information about this property, see Table A-1.

A-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

ADF Table Component Properties and Actions

A.7 ModelDrivenColumnComponent Subcomponent Properties

The ModelDrivenColumnComponent subcomponent, like the TreeNodeList
subcomponent, does not appear in the components palette of the ADF Desktop
Integration task pane. Instead, you configure properties for this subcomponent when
you specify ModelDrivenColumnComponent as the subcomponent to invoke for the
ADF Table component’s UpdateComponent or InsertComponent table column
properties described in Section A.9.2, "ADF Table Component Column Properties."

Table A-7 describes the properties that you configure for the
ModelDrivenColumnComponent subcomponent.

Table A-7 ModelDrivenColumnComponent Subcomponent Properties

Name Type EL Description

DoubleClickActionSet Specifies the action set invoked when a user
double-clicks the cell. For information about action sets,
see Section A.11, "Action Set Properties."

ReadOnly Boolean Y For information about this property, see Table A-1.

Value Varies Y For information about this property, see Table A-1.

A.8 ADF Button Component Properties

Table A-8 lists alphabetically the properties of the ADF Button component.

Table A-8 ADF Button Component Properties

Name Description

Annotation For information about this property, see Table A-1.

ClickActionSet Specify the action set to invoke when a user clicks the button. For information about action
sets, see Section A.11, "Action Set Properties."

ComponentID For information about this property, see Table A-1.

Label For information about this property, see Table A-1.

LowerRightCorn This property is an Excel cell reference. Used with Position, it specifies the area that the
er button occupies on the Excel worksheet.

Position For information about this property, see Table A-1.

A.9 ADF Table Component Properties and Actions

The ADF Table component uses the properties and component actions listed here.

A.9.1 ADF Table Component Properties
Table A-9 lists alphabetically the properties the ADF Table component uses.

ADF Desktop Integration Component Properties and Actions A-7

ADF Table Component Properties and Actions

Table A-9 ADF Table Component Properties

Name Type

EL

Description

Annotation

For information about this property, see Table A-1.

BatchOptions

This group of properties enables you to configure
batch options for the ADF Table component. For
more information about how you use these
properties, see Section 7.10, "Batch Processing in an
ADF Table Component.”

BatchOptions.BatchSize Integer

Specifies how many rows to process before an
ADF Table component action (Upload or
DeleteFlaggedRows) invokes
CommitBatchActionID. Any value other than a
positive integer results in all rows being processed
in a single batch. The default value is 100 rows.

A value for this property is required.

BatchOptions.CommitBatchAction Action
ID binding

Specify an action binding to invoke when the
number of rows specified by BatchSize have
been processed. The action binding is expected to
be a commit-type action.

BatchOptions.LimitBatchSize Boolean

Set this property to TRUE to process rows in
batches where each batch contains the number of
rows specified by BatchSize. If set to FALSE, all
rows are processed in a single batch.

BatchOptions.StartBatchActionI Action
D binding

Specify an action binding to invoke at the
beginning of each batch. For example, this
property might be used for an operation like "start
transaction", if required by a particular database.

A value for this property is optional.

Columns

An array of columns. For information about the
properties that each column in the array supports,
see Section A.9.2, "ADF Table Component Column
Properties."

ComponentID

For information about this property, see Table A-1.

Position

For information about this property, see Table A-1.

RowActions

This group of properties allows you specify which
actions are enabled and can be invoked.

Action
binding

RowActions.DeleteRowActionID

Specify an action binding to invoke for each row
flagged for deletion.

A value for this property is optional.

RowActions.DeleteRowEnabled Boolean

Set to TRUE to allow a user to delete existing rows.
FALSE is the default value.

A value for this property is required.

Action
binding

RowActions.FailureActionID

Specify an action binding to invoke if failures
occur during the processing of rows.

A value for this property is optional.

RowActions.InsertAfterRowActio Action
nID binding

Specify an action binding to invoke for each row
inserted using the ADF Table component Upload
action. The action binding is invoked after the
attributes are set. Use of this property is suitable
with a custom action where a variable iterator is
employed along with the main iterator.

A value for this property is optional.

A-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

ADF Table Component Properties and Actions

Table A-9 (Cont.) ADF Table Component Properties

Name Type

EL

Description

RowActions.InsertBeforeRowActi Action
onID binding

N

Specify an action binding to invoke for each row
inserted using the Upload component action. The
action binding specified is invoked before the
attributes are set.

A value for this property is optional.

RowActions.InsertRowEnabled Boolean

N

Set to TRUE to allow the end user insert new rows
in the ADF Table component. FALSE is the default
value.

If you set this property to TRUE, you must specify
values for one or both of the following properties:

n RowActions.InsertAfterRowActionID
. RowActions.InsertBeforeRowActionID

Which property (InsertAfterRowActionID or
InsertBeforeRowActionID) you specify a
value for depends on how your Fusion web
application creates new rows. Typically, a Fusion
web application uses the CreateInsert action
binding to create and insert a new row. In this
scenario, you specify the CreateInsert action
binding as the value for
InsertBeforeRowActionID.

For more information about inserting rows in an
ADF Table component, see Section 7.5,
"Configuring an ADF Table Component to Insert
Data."

RowActions.InsertRowsAfterUplo Boolean
adEnabled

N

Set to TRUE to allow the end user to reinsert
changed rows regardless of whether they have
been previously uploaded. FALSE is the default
value.

The property is ignored if InsertRowEnabled is
set to FALSE.

Action
binding

RowActions.UpdateRowActionID

Specify an action binding to invoke for each row
updated.

A value for this property is optional.

RowActions.UpdateRowEnabled Boolean

N

Set to TRUE to allow a user update an existing row.
TRUE is the default value.

A value for this property is required.

RowData

Set values for the CachedAttributes property
when you want to cache data in an integrated
Excel workbook across multiple sessions with the
Fusion web application.

Set a value for the
ChangeIndicatorAttributelID property to
determine whether a row has been modified by
another user since you downloaded it from the
Fusion web application.

ADF Desktop Integration Component Properties and Actions A-9

ADF Table Component Properties and Actions

Table A-9 (Cont.) ADF Table Component Properties

Name Type

EL

Description

RowData.CachedAttributes Array

N

Specify values for the properties in this array to
determine the attributes for which data is cached.
Each CachedTreeAttribute element in this
array supports the following properties:

n Value

Select the tree binding attribute for which data
is to be cached.

. Annotation

For more information about this property, see
Table A-1.

Do not configure a component (for example, an
ADF Table component’s column or an ADF Input
Text component) so the end user can view or edit
an attribute binding that you have also specified
for an element in the
RowData.CachedAttributes array. The
RowData.CachedAttributes array caches the
values retrieved by the worksheet DownSync
action. The worksheet UpSync action sends the
values cached by the
RowData.CachedAttributes array to the
Fusion web application. This may override edits
the end user makes to an attribute binding
exposed through a component in the worksheet.

For information about using the
RowData.CachedAttributes array to cache
data in an ADF Table component, see Section 8.5,
"Inserting Values in ADF Table Columns from a
Web Page Pick Dialog."

RowData.ChangeIndicatorAttribu Binding
telD

N

Specify the row-specific attribute of the tree
binding used to determine if a row has been
modified by another user since the row was last
downloaded by to your integrated Excel
workbook.

For more information, see Section 12.7, "Handling
Data Conflicts When Uploading Data from a
Workbook."

A-10 Desktop Integration Developer's Guide for Oracle Application Development Framework

ADF Table Component Properties and Actions

Table A-9 (Cont.) ADF Table Component Properties

Name

Type

EL Description

RowLimit

For information about this group of properties, see
Table A-1.

TreeID

Binding

N Specify a tree binding from the current
worksheet’s page definition file. You must specify
a value for this property so that row downloads
and uploads function properly. For more
information about the page definition
requirements for an integrated Excel workbook,
see Table 4-1.

UniqueAttribute

Attribute Y Write an EL expression to specify an attribute of
binding

the tree binding that you specified as the value for
TreelID. The value of this attribute is cached in the
integrated Excel workbook during invocation of
the ADF Table component’s Download action.
ADF Desktop Integration uses this value to ensure
that the tree binding’s iterator is positioned
correctly before setting or getting data from the
current row.

A value for this property is optional if the:

= ADF Table component is configured to be
insert-only
(RowActions.InsertRowEnabled is set to
True and
RowActions.UpdateRowEnabled is set
False)

= Underlying tree binding exposes a rowKey (in
which case the rowKey is used for
positioning)

A value is required if the tree binding’s iterator
does not expose a rowKey.

A.9.2 ADF Table Component Column Properties

Table A-10 describes the properties that a column in the TableColumn array can use.

Table A-10 ADF Table Component Column Properties

Name Type EL Description

Annotation For information about this property, see Table A-1.

CellStyleName String Y Write an EL expression that resolves to an Excel style name that
is applied to each cell in the column.

DynamicColumn Boolean N Set to True to make a column dynamic. False is the default
value. For more information about dynamic columns, see
Section 7.15, "Adding a Dynamic Column to Your ADF Table
Component."

HeaderLabel String Y Write an EL expression that, when evaluated at runtime,
displays a label in the column header.

HeaderStyleName String Y Write an EL expression that resolves to an Excel style name that

is applied to each cell in the column header.

ADF Desktop Integration Component Properties and Actions A-11

ADF Table Component Properties and Actions

Table A-10 (Cont.) ADF Table Component Column Properties

Name Type EL Description

1D String N Assign a name to the column to identify it and its purpose. The
value that you assign for this property has no functional
impact. However, you must specify a value and the value that
you specify must be unique within the list of columns. It serves
to help you keep track of columns in the ADF Table
component. The following IDs are reserved to the three default
columns in the ADF Table component:

n _ADF_ChangedColumn
n _ADF_FlagColumn
n _ADF_StatusColumn

For more information about these columns, see Section 7.11,
"Special Columns in the ADF Table Component.”

InsertComponent ADF N Specifies the properties of the component that represents the
component binding for insert operations. This component can be one of the
following:

n InputText component

For information about the properties that this component
supports, see Section A.2, "ADF Input Text Component
Properties.”

= OutputText component

For information about the properties that this component
supports, see Section A.3, "ADF Output Text Component
Properties."

» TreeNodeList component

For information about the properties that this component
supports, see Section A.6, "TreeNodeList Subcomponent
Properties."

= ModelDrivenColumnComponent

For information about the properties that this component
supports, see Section A.7,
"ModelDrivenColumnComponent Subcomponent
Properties."

When InsertUsesUpdate is set to True, the ADF Table
component ignores the value of the InsertComponent

property.

A-12 Desktop Integration Developer's Guide for Oracle Application Development Framework

ADF Table Component Properties and Actions

Table A-10 (Cont.) ADF Table Component Column Properties

Name Type EL Description
InsertUsesUpdate Boolean N Set to True if insert and update operations use the same
component type. When True, the ADF Table component
ignores the values of the InsertComponent property and
reads the value of the UpdateComponent property.
The default value is True.
UpdateComponent ADF N Specifies the properties of the component that represents the
component binding for update and download operations. This component
can be one of the following:
s InputText component
For information about the properties that this component
supports, see Section A.2, "ADF Input Text Component
Properties."
= OutputText component
For information about the properties that this component
supports, see Section A.3, "ADF Output Text Component
Properties.”
= TreeNodeList component
For information about the properties that this component
supports, see Section A.6, "TreeNodeList Subcomponent
Properties."
s ModelDrivenColumnComponent
For information about the properties that this component
supports, see Section A.7,
"ModelDrivenColumnComponent Subcomponent
Properties."
Visible Boolean Y Write an EL expression that resolves to True or False. If

True, the column appears in the ADF Table component. If
False, the column does not appear. True is the default value.

If you make a column dynamic, the ADF Table component
ignores the value of the Visible property. For more
information about dynamic columns, see Section 7.15, "Adding
a Dynamic Column to Your ADF Table Component."

A.9.3 ADF Table Component Actions

Table A-11 describes the component actions available for use with the ADF Table

component.

Table A-11 ADF Table Component Actions

Component Action

Description

ClearCachedRowAttributes

Clears the values of cached attributes for the current row of the ADF Table
component. Only a DoubleClickActionSet in an ADF Table component’s
column should invoke this action.

DeleteFlaggedRows Invokes a specified action on each of a set of flagged rows in the ADF Table
component and then removes these rows from the ADF Table component.
For more information, see Section 7.9, "Configuring an ADF Table Component
to Delete Rows in the Fusion Web Application."

DisplayRowErrors Displays error details for the current row in the ADF Table component if error

details are available. This action should only be invoked from a column’s action
set in an ADF Table component. By default, the _ADF_StatusColumn
described in Table 7.11 is configured with an action set that invokes this action.

ADF Desktop Integration Component Properties and Actions A-13

ADF Table Component Properties and Actions

Table A-11 (Cont.) ADF Table Component Actions

Component Action

Description

DisplayTableErrors

Displays a detailed list of errors in a message dialog for the ADF Table
component if any errors are available. Do not invoke this action from a
column’s action set in an ADF Table component. Instead configure an action set
for an ADF Button, ADF Output Text component, or worksheet ribbon button
to invoke this action.

Download

Download the rows corresponding to the current state of TreeID. For
information about TreeID, see Section A.9.1, "ADF Table Component
Properties."

DownloadFlaggedRows

Downloads the flagged rows corresponding to the current set of items available
within TreeID. For information about TreeID, see Table A-9.

DownloadForInsert

Invoke this action to download rows to the ADF Table component from the
Fusion web application and treat each row as a pending insert.

Do not specify Download and DownloadForInsert as actions within the
same action set. The last of these actions that the action set invokes determines
what data appears in the ADF Table component.

Specify the MarkAl1lRowsChanged component action as the next component
action to invoke in an action set where you want all rows that the
DownloadForInsert action downloads to be marked as changed.

The DownloadForInsert action is ignored if it is invoked from an action set
while the ADF Table component’s RowActions . InsertRowEnabled
property is set to False. Set RowActions.InsertRowEnabled to True to
correctly invoke the DownloadForInsert action.

For more information, see Section 7.7, "Configuring a Worksheet to Download
Pre-Insert Data to an ADF Table Component" and Section 15.2, "Restore Server
Data Context Between Sessions."

FlagAllRows Sets the flag for all rows.
Invoke this action to set a flag character in all rows of the _ADF_FlagColumn
column. The flag character has the following properties:
Character Code 25CF, Unicode (hex)
It appears as a solid circle.
For more information about the _ADF_FlagColumn column, see Section 7.10.2,
"Row Flagging in an ADF Table Component" and Section 7.11, "Special
Columns in the ADF Table Component."

Initialize This action performs the following actions:
= Removes all rows of data from the ADF Table component
n Clears the values of cached attributes from rows in the ADF Table

component
= Creates the placeholder row
= Recalculates how many dynamic columns to render in the ADF Table
component

= Redraws column headers
If the ADF Table component contains pending changes that have not been
saved in the integrated Excel workbook, a dialog appears to the end user that
allows cancellation of invocation of this action.

MarkAllRowsChanged After an action set invokes a DownloadForInsert component action, specify

the MarkAl1lRowsChanged component action as the component action to
invoke if you want all rows downloaded by the DownloadForInsert
component action marked as changed in the _ADF_ChangedColumn column.

MarkAllRowsUnchanged

Specify this component action to clear all flags from the _ADF_
ChangedColumn column.

A-14 Desktop Integration Developer's Guide for Oracle Application Development Framework

ADF Read-only Table Component Properties and Actions

Table A-11 (Cont.) ADF Table Component Actions

Component Action

Description

RowDownSync

Synchronizes data from the row in the ADF Table component’s iterator in the
Fusion web application that corresponds to the current worksheet row to the
worksheet. As this action acts upon the current worksheet row, only a
DoubleClickActionSet associated with a column in the ADF Table
component should invoke this action.

The ADF Table component does not evaluate or apply the value of a column’s
Visible property when invoking RowDownSync. The ADF Table component
evaluates and applies the value of a column’s Cel1StyleName property when
invoking RowDownSync. For more information about column properties, see
Section A.9.2, "ADF Table Component Column Properties."

RowUpSync

Synchronizes any pending changes in the current worksheet row that the ADF
Table component references to the Fusion web application. RowUpSync acts
upon the current worksheet row so only a DoubleClickActionSet
associated with a column in the ADF Table component should invoke this
action. The DoubleClickActionSet that invokes RowUpSync also changes
the position of the ADF Table component’s iterator on the Fusion web
application to the current worksheet row (assuming it exists in the Fusion web
application).

UnflagAllRows

Removes flags from cells in the _ADF_FlagColumn column.

For more information about the _ADF_FlagColumn, see Section 7.10.2, "Row
Flagging in an ADF Table Component” and Section 7.11, "Special Columns in
the ADF Table Component."

Upload

Uploads pending changes to the Fusion web application.

For more information, see Section 7.8, "Configuring an Oracle ADF Component
to Upload Changes from an ADF Table Component.”

For more information about resolving data conflict between the Excel
workbook and the Fusion web application, see Section 12.7, "Handling Data
Contflicts When Uploading Data from a Workbook".

A.10 ADF Read-only Table Component Properties and Actions

The ADF Read-only Table component exposes one action, Download. This action
downloads the current rows in the table identified by the ADF Read-only Table
property, TreeID. Table A-12 describes TreeID and the other properties that the ADF
Read-only Table component supports.

Table A-12 ADF Read-only Table Component Properties

Name Type EL Description

Annotation For information about this property, see Table A-1.

Columns Array N References an array of read-only columns. For information about the properties

that a column in this array can support, see Table A-13.

ComponentI For information about this property, see Table A-1.

D

Position For information about this property, see Table A-1.

RowLimit For information about this group of properties, see Table A-1.

TreeID Tree N References a tree binding ID from the page definition file associated with the
binding current worksheet if the ADF Read-only Table component was created by inserting

a tree binding into the worksheet.

ADF Desktop Integration Component Properties and Actions A-15

Action Set Properties

Table A-13 lists alphabetically the properties that a column in the ReadOnlyColumn

array can use.

Table A-13 ADF Read-only Table Component Column Properties

Name Type EL Description

Annotation For information about this property, see Table A-1.

CellStyleName String Y Write an EL expression that resolves to an Excel style name that is
applied to each cell in the column.

HeaderLabel String Y Write an EL expression that resolves to a label for the column header.

HeaderStyleName String Y Write an EL expression that resolves to an Excel style name that is
applied to each cell in the column header.

1D String N Assign a name to the column to identify it and its purpose. The value
that you assign for this property has no functional impact. However,
you must specify a value and the value that you specify must be
unique within the list of columns. It serves to help you keep track of
columns in the ADF Read-only Table component.

OutputText ADF For information about the properties that this component supports, see

Component Section A.3, "ADF Output Text Component Properties."

A.11 Action Set Properties

Table A-14 lists alphabetically the properties that you can configure for an action set.

Table A-14 Action Set Properties

Name Type EL Description
ActionOptions This group of properties specifies options for invoking local and
remote actions.
ActionOptions.AbortOnFailu Boolea N When set to TRUE, the remaining actions in the array are not
re n invoked if an action fails. If FALSE, all actions are invoked
regardless of the success or failure of previous actions. The
default value is TRUE.
ActionOptions.FailureActio Action N Specify the action binding to invoke if an action set does not
nID bindin complete successfully. For example, you could specify an action
g binding that rolls back changes made during the unsuccessful
invocation of the action set.
ActionOptions.SuccessActio Action N Specify an action binding to invoke if an action set completes
nID bindin successfully. For example, you could specify an action binding
g that executes a commi t action. A value for this property is

optional.

A-16 Desktop Integration Developer's Guide for Oracle Application Development Framework

Action Set Properties

Table A-14 (Cont.) Action Set Properties

Name

Type EL Description

Actions

Array N

Specifies an ordered array of actions. An action can be one of
the following;:

n ADFmAction

Invokes an action binding or method action binding in the
underlying page definition file. The
ADFmAction.ActionID property identifies the action
binding or method action binding to invoke. For
information about page definition files, see Section 4.3,
"Working with Page Definition Files for an Integrated Excel
Workbook."

n ComponentAction

Invokes an action that a component on the worksheet
exposes. ComponentAction.ComponentID identifies the
component that exposes the action while
ComponentAction.Method identifies the action to
invoke.

The ADF Table and ADF Read-only Table components are
the only components in ADF Desktop Integration that
expose actions. For information about these actions, see
Section A.9, "ADF Table Component Properties and
Actions" and Section A.10, "ADF Read-only Table
Component Properties and Actions.” For information about
invoking component actions, see Section 8.2.2, "How to
Invoke Component Actions in an Action Set."

n WorksheetMethod

Invokes a worksheet action. For information about
worksheet actions, see Section A.13, "Worksheet Actions
and Properties.”

n Confirmation

Invokes a confirmation dialog. For more information about
the properties that this action uses, see Section A.11.1,
"Confirmation Action Properties."

n Dialog

Invokes a web page in a popup dialog or Excel’s task pane.
For more information, see Section 8.4, "Displaying Web
Pages from a Fusion Web Application."

Alert

This group of properties determines if and how an alert-style
dialog appears to the user to indicate that the requested action
is complete. The dialog that appears contains one button that
allows the user to acknowledge the message and dismiss the
dialog. For information about how to display an alert message,
see Section 8.2.7, "How to Provide an Alert After the Invocation
of an Action Set."

Many properties in this group make use of EL expressions to
retrieve string values from resource bundles. For more
information about using EL expressions, see Section 10.2,
"Using Resource Bundles in an Integrated Excel Workbook."

Alert.Enabled

Boolea N

Set to TRUE to display an alert message to end users that
notifies them when an action set operation completes
successfully or includes one or more failures.

For more information, see Section 8.2.7, "How to Provide an
Alert After the Invocation of an Action Set."

ADF Desktop Integration Component Properties and Actions A-17

Action Set Properties

Table A-14 (Cont.) Action Set Properties

Name Type EL Description

Alert.FailureMessage String Y Specify an EL expression that evaluates to a message to appear
in the dialog if errors occur during execution of the action set.
The default EL expression is:

#{_ADFDIres|'DIALOGS_ACTION_ALERT FAILURE_PROMPT']}

Alert.OKButtonLabel String Y Specify an EL expression that evaluates to a message to appear
in the OK button of the dialog. The default EL expression is:

#{_ADFDIres['DIALOGS_OK_BUTTON_LABEL']}

Alert.SuccessMessage String Y Specify an EL expression that evaluates to a message to appear
in the dialog if no errors occur during the execution of the
action set. The default EL expression is:

#{_ADFDIres|['DIALOGS_ACTION_ALERT_ SUCCESS_PROMPT']}

Alert.Title String Y Specify an EL expression that evaluates to a message to appear
in the title area of the dialog. The default EL expression is:

#{_ADFDIres['DIALOGS_ACTION_TITLE']}

Annotation For information about Annotation, see Table A-1.

Status This group of properties determines if and how a status
message appears during the execution of an action set. For
information about how to display a status message, see
Section 8.2.5, "How to Display a Status Message While an
Action Set Executes."

Many properties in this group make use of EL expressions that
reference string keys defined in resource bundles. For more
information, see Section 10.2, "Using Resource Bundles in an
Integrated Excel Workbook."

Status.Enabled Boolea N If TRUE (default), a status window appears during the execution
n of the action set. If FALSE, no status window appears.
Status.Message String Y Specify an EL expression to evaluate and display in the status

window while the action set executes. The default value is:

#{_ADFDIres['STATUS_MESSAGE_PROMPT']}

Status.Title String Y Specify an EL expression to evaluate and display in the title
area of the status window while the action set executes. The
default value is:

#{_ADFDIres['DIALOGS_ACTION_TITLE']}

A.11.1 Confirmation Action Properties

Table A-15 lists alphabetically the properties that the Confirmation action in the
array of Actions of an action set supports. For information about the other properties
the array of Actions and action sets use, see Table A-14.

A-18 Desktop Integration Developer's Guide for Oracle Application Development Framework

Action Set Properties

Table A-15 Confirmation Action Properties

Name

Type

EL Description

Annotation

For information about Annotation, see Table A-1.

CancelButtonLabel String Y An EL expression that is evaluated and displayed in the Cancel button at

runtime. The default value is:

#{_ADFDIres['DIALOGS_CANCEL_BUTTON_ LABEL']}

OKButtonLabel

String Y An EL expression that is evaluated and displayed in the OK button at

runtime. The default value is:

#{_ADFDIres['DIALOGS_OK_BUTTON_LABEL']}

Prompt

String Y An EL expression that is evaluated and displayed in the main area of the

confirmation dialog at runtime. The default value is:

#{_ADFDIres['DIALOGS_ACTION_CONFIRM_ PROMPT']}

Title

String Y An EL expression that is evaluated and displayed in the title area of the

confirmation dialog at runtime. The default value is:

#{_ADFDIres['DIALOGS_ACTION_TITLE']}

A.11.2 Dialog Action Properties

Table A-16 describes the properties that the Dialog action in the array of Actions of
an action set supports. For information about the other properties the array of
Actions and action sets use, see Table A-14.

For information about how to use the properties in Table A-16 to invoke a web page
from a Fusion web application, see Section 8.4, "Displaying Web Pages from a Fusion
Web Application."

Table A-16 Dialog Action Properties

Name Type EL Description

Annotation String N For information about this property, see Table A-1.

Page String N Specify the web page that the action invokes. Relative and absolute URLs are valid
values.

ShareFrame Boolean N Setto TRUE (default) to execute the web page specified by the Dialog. Page
property in the same data control frame as the Excel worksheet. If you specify an
absolute URL, ADF Desktop Integration ignores the value of the
Dialog.ShareFrame property.

Target List N Specifies how the web page the action invokes is rendered. Select:

n Popup to render the web page in a modal dialog within an embedded web
browser.
= TaskPane to render the web page in runtime task pane.

Title String Y Write an EL expression that resolves to the title of the Dialog at runtime or write a
literal string.

WindowSize Integer N Specify the initial size in pixels of the dialog that appears to the user. Valid values

range from 0 to 2147483647. Values will be revised upwards or downwards as
appropriate at runtime if the specified values are too large or too small. The default
value for Height is 625 and 600 for Width.

ADF Desktop Integration Component Properties and Actions A-19

Workbook Actions and Properties

A.12 Workbook Actions and Properties

Table A-17 describes the actions that a workbook can invoke. For information about
configuring ribbon buttons to invoke these actions, see Section 8.3.1, "How to Define a
Workbook Command Button for the Runtime Ribbon Tab."

Table A-17 Workbook Actions

Action Description

Login When invoked, this action creates a new session between the integrated Excel workbook
and the Fusion web application.

If invoked when a session has already been established, it first invokes the Logout action
internally to free that session. For a workbook running against a web application that is
enforcing authentication, the Login action prompts the end user to provide valid user
credentials.

Logout When invoked, ADF Desktop Integration sends a request to the Fusion web application to
invalidate the session between the integrated Excel workbook and the Fusion web
application. After invoking this action, the end user must be authenticated the next time the
Excel workbook accesses the Fusion web application.

A-20 Desktop Integration Developer's Guide for Oracle Application Development Framework

Workbook Actions and Properties

Table A-17 (Cont.) Workbook Actions

Action

Description

ClearAllData

When invoked, this action clears all data entered by the user from cells that reference Oracle
ADF bindings. Tables, such as those created by the ADF Table and ADF Read-only Table
components, will be truncated so that they only display header rows with labels cleared.
Values in cells that reference the Input Text or Output Text components are cleared. Column
headers and labels are cleared as well. References to all resource bundles that the integrated
Excel workbook uses are cleared. Worksheets that do not contain bindings or reference a
page definition file remain unchanged. A dialog prompts the end user to confirm invocation
of this action. Once the end user confirms invocation, ADF Desktop Integration executes the
following events after invocation of the action:

= Invokes the integrated Excel workbook’s Logout action

s Terminates the runtime session and clears all data from the integrated Excel workbook
and all caches

= Reinitializes the integrated Excel workbook and invokes the workbook’s Login action

Invocation of the ClearAllData action does not change data hosted by the Fusion web
application. One or more of the following actions must be invoked to change data hosted by
the Fusion web application:

s A worksheet’s UpSync action

This action synchronizes all data referenced by non-table type components. For more
information, see Section A.13, "Worksheet Actions and Properties."

= An ADF Table component’s RowUpSync action can be used to synchronize any pending
changes in a row to the Fusion web application. The ADF Table component’s
DeleteFlaggedRows action can be invoked to delete flagged rows. For more
information about ADF Table component actions, see Section A.9.3, "ADF Table
Component Actions."

EditOptions

When invoked, this action launches a dialog that shows the current value of the
WebAppRoot property and allows the end user to enter a new value.

If the end user chooses to change the value of WebAppRoot, a confirmation dialog appears
after the end user clicks OK. Once the change is confirmed, the following events occur:

s Workbook ClearAllData action is invoked

s Workbook Logout action is invoked

s All data referenced by bindings in the workbook is removed

= References to WebAppRoot are updated in the Excel workbook's metadata

s Workbook Login action is invoked to authenticate the user with the Fusion web
application that is specified as the value for WebAppRoot

The clearAllData workbook action clears all resource bundles referenced by the
integrated Excel workbook. After WebAppRoot is changed, the integrated Excel
workbook attempts to retrieve resource bundles from the Fusion web application as
part of the reinitialization process. This request to the Fusion web application triggers
the authentication process.

ViewAboutDialog

When invoked, this action launches a dialog called About that displays information defined
in the BrandingItems workbook property and other information such as the versions of
supporting software.

Table A-18 lists alphabetically the ADF Desktop Integration properties that an Excel
workbook can use.

ADF Desktop Integration Component Properties and Actions A-21

Workbook Actions and Properties

Table A-18 Workbook Properties

Name Type

EL

Description

ApplicationHomeFolder String

Specify the absolute path to the directory that is the root for
the JDeveloper application workspace (. jws) where you
developed the desktop integration project.

For example, the value of this property in a workbook
integrated with the Master Price List module could be
something similar to the following;:

C:\FusionOrderDemo\MasterPricelList

ADF Desktop Integration prompts you to specify a value for
this property the first time that you open an integrated Excel
workbook. If you click Cancel in the dialog that prompts you
for a value, ADF Desktop Integration sets the value of
ApplicationHomeFolder to the directory that contains the
Excel workbook.

For more information, see Section 4.4.3, "How to Configure a
New Integrated Excel Workbook."

BrandingItems Array

An array of name-value pairs that resolve to resource bundle
references (for example, # {res ['myAppName '] }) or a literal
string. Each pair in the array consists of a name and a value.
Each name and value can reference a literal string or an EL
expression.

For information about branding your integrated Excel
workbook, see Section 9.6, "Branding Your Integrated Excel
Workbook."

Login.WindowSize Integer

N

Specify the initial size in pixels of the login dialog that appears
to the user. Valid values range from 0 to screen width or
height. Values will be revised upwards or downwards as
appropriate at runtime if the specified values are too large or
too small. The default value for Height is 625 and Width is
600.

Parameters Array

N

An array of workbook initialization parameters that you
configure to pass the parameters from a page in a Fusion web
application to an integrated Excel workbook. You can define
multiple workbook initialization parameters in the Fusion
web application’s page. Each workbook initialization
parameter (parameter that references a URL argument) that
you define in a page must be specified in a Parameter
property of this array, otherwise it is ignored.

Each element in the array supports the following properties:
s Annotation

For more information about this property, see Table A-1.
s Parameter

You specify the name of the workbook initialization
parameter you defined in the page of the Fusion web
application from which the end user downloads the
integrated Excel workbook.

For information about using this property, see Section 14.5,
"Passing Parameter Values from a Fusion Web Application
Page to a Workbook."

A-22 Desktop Integration Developer's Guide for Oracle Application Development Framework

Workbook Actions and Properties

Table A-18 (Cont.) Workbook Properties

Name

Type

EL

Description

Project

String

N

Specify the name of a JDeveloper project in the current
JDeveloper workspace. ADF Desktop Integration attempts to
load the . jpr file that corresponds to the project that you
specify. An error appears if the . jpr file is not available or is
not in the expected format.

When you open an integrated Excel workbook for the first
time in design mode, ADF Desktop Integration searches for a
. jpr file in the parent folder hierarchy. If it finds a . jpr file,
it sets the value of Project to the name of the project that
corresponds to the . jpr file.

ADF Desktop Integration loads the names of the available
projects from the application_name.jws file specified by
ApplicationHomeFolder.

RemoteServletPath String

N

Specify the path to the ADF Desktop Integration remote
servlet. This path must be relative to the value specified for
WebAppRoot. Note that the value you specify for
RemoteServletPath must match the value that is specified
in the web application’s deployment descriptor file
(web.xml). The default value for this property is:

/adfdiRemoteServlet

Resources

Array

N

Specifies an array of resource bundles to register with the
workbook. Each element in the array supports the following
properties:

= Alias
Specify a string value that is unique within

Workbook .Resources. EL expressions use this string to
reference the resource bundle.

= Annotation
For more information about this property, see Table A-1.
s Class

Specify a fully qualified class name. The class name that
you specify is expected to be a Java resource bundle class
that the Fusion web application you integrate your
workbook with uses. For example, the
EditPriceList-DT.x1lsx workbook in the Master
Price List module references the following resource
bundle:

oracle.fodemo.masterpricelist.resources.UIStrings

For more information, see Section 10.2, "Using Resource
Bundles in an Integrated Excel Workbook."

Runtime Ribbon

Tab -

This group of properties defines whether and how a Ribbon
tab appears in Excel at runtime. The following entries in this
table describe the properties in the Runtime Ribbon Tab
group. For more information about Ribbon tab and its
commands, see Section 8.3, "Configuring the Runtime Ribbon
Tab."

Runtime Ribbon
Tab.Annotation

String

N

For information about this property, see Section A.1,
"Frequently Used Properties in the ADF Desktop Integration.”

Runtime Ribbon

Tab.Visible Boolean

N

If TRUE, the Ribbon tab appears at runtime. The Ribbon tab
does not appear if you set Enabled to FALSE. TRUE is the
default value.

ADF Desktop Integration Component Properties and Actions A-23

Worksheet Actions and Properties

Table A-18 (Cont.) Workbook Properties

Name Type EL Description

Runtime Ribbon Tab.Title String Y Specify an EL expression that evaluates to the title that
appears for the Ribbon tab in the title area. Excel imposes a
maximum limit of 1024 characters for Ribbon tab titles. Ensure
that the runtime value of the EL expression you specify does
not exceed 1024 characters as ADF Desktop Integration
truncates the value so that Excel does not generate an error

message.
Runtime Ribbon Array N Each element in this array corresponds to a workbook
Tab.Workbook Commands command at runtime. Each element in the array uses the

following properties:
= Annotation

For more information about this property, see Table A-1.
= Label

For more information about this property, see Table A-1.

If you want the & character to appear in the command
label, you must specify &&. Excel interprets a single &
character as a special character, and assigns the next
character after & as the keyboard accelerator for the
workbook command at runtime.

n Method

Specify the workbook action that the workbook ribbon
button invokes. For more information about workbook
actions, see Table A-17.

WebAppRoot String N A fully qualified URL to the Fusion web application’s root.

WebPagesFolder String N Specify the path to the directory that contains the web pages
that you intend to use with your integrated Excel workbooks.
The value that you specify for the path most be relative to the
value of ApplicationHomeFolder.

WorbookID String N A unique identifier for the integrated Excel workbook. ADF
Desktop Integration generates the unique identifier when you
open the workbook for the first time in design mode.

The value cannot be modified. However, ADF Desktop
Integration can generate a new value if you use the Reset
WorkbookID link in the Edit Workbook Properties dialog.

The value of this property is used during tamper check, as
described in Section 11.3, "Checking the Integrity of an
Integrated Excel Workbook’s Metadata."

A.13 Worksheet Actions and Properties
An Excel worksheet with ADF Desktop Integration can invoke the following actions:
s UpSync

Synchronizes any pending changes from the ADF Input Text and ADF List of
Values components in the worksheet to the Fusion web application.

s DownSync

Downloads any changes from the Fusion web application to the ADF Input Text,
ADF Output Text, and ADF List of Values components in the worksheet.

m DisplayWorksheetErrors

A-24 Desktop Integration Developer's Guide for Oracle Application Development Framework

Worksheet Actions and Properties

Displays a detailed list of errors in a message dialog for the integrated Excel
worksheet if any errors are available. Invoke this action in an action set that is
invoked by an ADF component (other than the ADF Table-type components) or a
worksheet ribbon button.

When you configure an ADF Button component to invoke an action binding or
method action binding, the action set to invoke when a user clicks the ADF Button
component at runtime is populated as follows by default:

1. UpSync
2. Action or method action binding that you specify for the ADF Button component
3. DownSync

If the first action that you invoke on a worksheet with an empty form is the UpSync
worksheet action, you may encounter errors. For this reason, ensure that the first
action invoked is the DownSync worksheet action. You can configure the ADF Button
component’s action set or one of the worksheet events (Startup or Activate)
described in Table A-19 to invoke the DownSync worksheet action first.

Table A-19 describes the ADF Desktop Integration properties that an Excel worksheet
can use.

Table A-19 Worksheet Properties

Name Type EL Description
Annotation String N For information about this property, see Table A-1.
Events Array N Each element in this array specifies an action set to

invoke if the associated worksheet event occurs. For
information about action sets, see Section A.11, "Action
Set Properties." For information about worksheet
events, see the entry in this table for Events.n.Event.

The following entries in this table prefaced by Events.n
describe the properties that an element in this array
supports where 7 refers to a specific element in the

array.
Events.n.ActionSet ActionSe N For more information about the properties of action
t sets, see Section A.11, "Action Set Properties."
Events.n.InvokeOnceOnly Boolean N The default value of this property is FALSE.

When set to TRUE, the workbook stores information
about whether the worksheet invoked the action set for
this event and, if so, prevents the worksheet from
invoking the action set a second time. Note that if the
workbook is not saved, this information is lost. This
means that the worksheet can invoke the event again
the next time that the workbook opens.

Events.n.Annotation String N For information about the annotation property, see
Table A-1.

ADF Desktop Integration Component Properties and Actions A-25

Worksheet Actions and Properties

Table A-19 (Cont.) Worksheet Properties

Name

Type

EL Description

Events.n.Event

List

N

The worksheet supports the following events that you
can configure to invoke an action set:

n Startup
Excel starts.
u Shutdown
Excel workbook closes or Excel application exits.
m Activate
User navigates to the current worksheet.
m Deactivate

User navigates away from the current worksheet or
Shutdown event triggered.

Note that the worksheet events complete execution
even if the action sets that it invokes fails.

For more information about worksheet events and
action sets, see Section 8.2.4, "How to Invoke an Action
Set from a Worksheet Event."

Protection.Mode

List

N

The worksheet provides two options:
] Off

Worksheet protection is not used at runtime.
= Automatic

Worksheet protection is enabled automatically at
runtime.

The default value for this property is Of £.

Protection.Password

String

N

Specify a password to prevent end-users from turning
off sheet protection at runtime. The maximum
password length allowed by Excel is 255 characters.

Ribbon Commands

Array

N

Specify one or more workbook actions that appear as
commands at runtime. Each command is an element in
the WorksheetMenuItem array. Entries in this array
support the following properties:

n Annotation
] Label
n SelectActionSet

For more information about the Annotation and
Label properties, see Table A-1. For more information
about the SelectActionSet property, see

Section A.11, "Action Set Properties."

If you want the & character to appear in the command
label, you must specify &&. Excel interprets a single &
character as a special character, and assigns the next
character after & as the keyboard accelerator for the
worksheet command at runtime.

Page Definition

String

N

Specify the page definition file to associate with the
worksheet. For information about page definition files,
see Section 4.3, "Working with Page Definition Files for
an Integrated Excel Workbook."

A-26 Desktop Integration Developer's Guide for Oracle Application Development Framework

Worksheet Actions and Properties

Table A-19 (Cont.) Worksheet Properties

Name

Type

EL Description

Parameters

Array

N

An array of worksheet parameters that you configure to
pass the parameters from a workbook Parameters
property to a worksheet in an integrated Excel
workbook. Each element in the array supports the
following properties:

n Annotation

For more information about this property, see
Table A-1.

[Parameter

Specify the ID of a parameter element that you
added to the page definition file associated with
the worksheet.

n Value

Write an EL expression that references the value of
the Parameter property you specified for the
workbook initialization parameter (workbook
Parameters.Parameter property). The
workbook Parameters.Parameter property
supplies this value the first time that the page
definition file associated with this worksheet is
initialized.

For information about using this property, see

Section 14.5, "Passing Parameter Values from a Fusion

Web Application Page to a Workbook."

RowData

Set values for the CachedAttributes property when
you want to cache data in an integrated Excel

workbook across a multiple sessions with the Fusion
web application.

Set a value for the ChangeIndicatorAttributelID
property to determine if a row has been modified by

another user since you downloaded it from the Fusion
web application.

RowData.CachedAttributes

Array

N

Specify values for the properties in this array to
determine the attributes for which data is cached. Each
CachedAttribute element in this array supports the
following properties:

n AttributeID

This property references the attribute binding for
which data is to be cached. Do not specify an
attribute binding for AttributeID and as an
editable field in a form (for example, in an ADF
Input Text component) in the same worksheet.

n Annotation

For more information about this property, see
Table A-1.

For more information about clearing the values of
cached attributes, see Section 7.18, "Clearing the Values
of Cached Attributes in an ADF Table Component.”

ADF Desktop Integration Component Properties and Actions A-27

Worksheet Actions and Properties

Table A-19 (Cont.) Worksheet Properties

Name Type

EL Description

RowData.ChangeIndicatorAttribu Binding N
telD

Specify the row-specific attribute of the tree binding
used to determine if a row has been modified by
another user since the row was last downloaded by to
your integrated Excel workbook.

For more information, see Section 12.7, "Handling Data
Conflicts When Uploading Data from a Workbook."

ServerContext

This group of properties references the attribute
bindings that uniquely identify the row displayed in
the current worksheet so that you can reestablish server
data context across multiple sessions.

For more information, see Section 15.2, "Restore Server
Data Context Between Sessions."

ServerContext.CacheDataContext Array N
S

Add elements to the CacheDataContexts array for
cases where there is more than one iterator defined in
the binding container whose server-side context must
be reestablished. The CacheDataContexts array
supports the following properties to store the
worksheet’s cached data context:

[RestoreDataContextActionID
References an action binding to invoke.
n CachedServerContexts

An array that identifies the attribute binding
values to cache and set before the action binding
specified by RestoreDataContextActionID is
invoked. Each element in the
CachedServerContext array supports the
CachedAttributelID and
RestoredAttributelID properties.
CachedAttributeID identifies the attribute
binding value to cache in the worksheet.
RestoredAttributeID is an optional property
for which you specify a value when the destination
attribute binding value is different from the source
attribute binding value. If you do not specify a
value for RestoredAttributelID, the value of
CachedAttributelID is used as the destination
attribute binding value and its value is set before
invoking the action set.

n Annotation

For more information about this property, see
Section A.1, "Frequently Used Properties in the
ADF Desktop Integration.”

A-28 Desktop Integration Developer's Guide for Oracle Application Development Framework

Worksheet Actions and Properties

Table A-19 (Cont.) Worksheet Properties

Name Type EL Description

ServerContext.IDAttributeID Binding N Specifies an attribute binding that uniquely identifies
the row displayed in the current worksheet. This
property is used at runtime to determine whether the
server context has been reestablished properly for
non-table type components in the worksheet.

ServerContext.SendParameters Boolean N The default value of this property is FALSE.

When set to TRUE, the workbook sends initialization
parameters for this worksheet when reestablishing
context across multiple sessions.

Title String Y Specifies an EL expression that resolves to a string and
sets the name of the worksheet. At design time, the EL
expression can be of any length and can include the
following special characters:

L1 N/ *x

At runtime, the evaluated string can display a
maximum of 31 characters and ignores the above
special characters. If the length of the evaluated string
exceeds 31 characters, the extra characters are truncated
and are not displayed.

Ensure that the EL expressions you write for the Title
property generate unique values for each worksheet at
runtime and contain fewer than 31 characters. For
example, if an EL expression generates a value for the
Title property of an integrated worksheet that
matches the name of an existing worksheet, an error
occurs.

ADF Desktop Integration Component Properties and Actions A-29

Worksheet Actions and Properties

A-30 Desktop Integration Developer's Guide for Oracle Application Development Framework

B

ADF Desktop Integration EL Expressions

This appendix describes the syntax for EL expressions in ADF Desktop Integration
and provides guidelines for writing EL expressions.

This appendix includes the following sections:

Section B.1, "Guidelines for Creating EL Expressions"
Section B.2, "EL Syntax for ADF Desktop Integration Components"
Section B.3, "Attribute Control Hints in ADF Desktop Integration"

B.1 Guidelines for Creating EL Expressions

The following list describes the characteristics that EL expressions for your integrated
Excel workbook can have and provides recommendations for writing EL expressions:

Literal values that evaluate correctly to the type expected for the Oracle ADF
component property. The following list describes some examples:

— Boolean values true and false
- Integer values such as -1, 0, and 100
- String values such as hello world

Strings that contain one or more valid EL expression parts. The following list
shows examples of valid syntax:

- #{row.bindings.ProductId.inputValue}
— #{components.TAB416222534.errors}
— #{res['excel.saveButton.label']}

A valid Excel formula. An Excel formula string must start with the = character. If
the literal string includes an #{ . . . } expression, ADF Desktop Integration
evaluates this expression first and inserts the resulting value into the Excel
formula string. Excel then evaluates the Excel formula.

Note the following points if you write an EL expression:
— Excel formula elements must not be used inside an #{ . . . } expression.

— EL expressions should not contain references to Excel cells because EL
expressions are managed within ADF metadata. Excel cannot update the ADF
metadata if the referenced cell moves. A workaround is to define a named cell
reference or range using the Name box in the Excel Formula Bar. You can
reference the named cell reference or named cell range reference from an EL

ADF Desktop Integration EL Expressions B-1

EL Syntax for ADF Desktop Integration Components

expression. For information about defining named cell references or ranges,
see Excel’s documentation.

s EL expressions in a page definition file

For information about the syntax that you use to write EL expressions in a page
definition file, see Section 4.3, "Working with Page Definition Files for an
Integrated Excel Workbook."

B.2 EL Syntax for ADF Desktop Integration Components

Table B-1 lists supported expression properties for the ADF Desktop Integration
components that support EL expressions.

The EL expressions use the following syntax to reference these properties:
{components.componentID.property}
where component ID references the ID of the component and property references

the property (for example, rowCount).

Table B-1 Expression Properties for ADF Desktop Integration Components

Component Value at Design
Property Type Property Type Expected Runtime Values Time
rowCount Table Int >=(0

ROTable
currentRowInd Table Int >= 0 AND < RowCount (zero based -1
ex ROTable index)
currentRowMod Table String "insert" "unknown"
e " "

update

errors Table String N/A N/A
readOnly Table.Colum Boolean TRUE FALSE

n FALSE

Write EL expressions with the following syntax to retrieve:
= Worksheet errors at runtime
#{worksheet.errors}

For more information about worksheet errors, see Section 12.4, "Error Reporting in
an Integrated Excel Workbook."

= Workbook initialization parameters
#{workbook.params . parameterName}

where parameterName is the name of the workbook initialization parameter. For
information about using these parameters, see Section 14.5, "Passing Parameter
Values from a Fusion Web Application Page to a Workbook."

= Resource bundle string key values
#{resourceBundleAlias| ' resourceBundleKey']}

where resourceBundleAlias is the alias of the resource bundle and
resourceBundleKey is the string key value. For more information about

B-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Attribute Control Hints in ADF Desktop Integration

resource bundles, see Section 10.2, "Using Resource Bundles in an Integrated Excel
Workbook."

Table B-2 describes the supported syntax and properties for Oracle ADF control
bindings. For information about the attribute control hints (controlHint) that ADF
Desktop Integration supports, see Table B-3.

You can use the expression builder described in Section 5.8, "Using the Expression
Builder" to generate some of the EL expressions described in Table B-2. You have to
write some other EL expressions as indicated in Table B-2.

Table B-2 Expression Properties and Syntax for Oracle ADF Control Bindings

Value at
Component Design
Syntax Type Object Property Time
Use the expression builder to generate EL expressions with the Attribute Attribute control "
following syntax: hint

#{bindings.attributeID}
#{bindings.attributeID.label}
#{bindings.attributeID.hints.controlHint}

You can also write the previous EL expressions in addition to the
following EL expression:

#{bindings.attributeID.inputValue}

Use the expression builder to generate EL expressions with the List Attribute control "
following syntax: hint

#{bindings.ListID}
#{bindings.ListID.label}
#{bindings.ListID.hints.controlHint}

Write EL expressions with the following syntax for a columnina Table.Colum inputValue e
table-type component n

#{row.bindings.attributeID.inputValue}

Write an EL expression with the following syntax when adding a
dynamic column to an ADF Table component as described in
Section 7.15, "Adding a Dynamic Column to Your ADF Table
Component":

#{bindings. TreeID. [TreeNodeID] .AttributeNamePrefix* .input
Value}

#{bindings. TreeID.AttributeNamePrefix*.inputValue}
#{bindings. TreeID. [TreeNodeID] .hints.AttributeNamePrefix*
.controlHint}

#{bindings. TreeID. [TreeNodeID] .hints.AttributeNamePrefix*
.label}

A value for AttributeNamePrefixand [TreeNodeID] is
optional while * is required.

B.3 Attribute Control Hints in ADF Desktop Integration

ADF Desktop Integration can read the values of the attribute control hint names
described in Table B-3. You write EL expressions that ADF Desktop Integration uses to
retrieve the value of an attribute control hint from your Fusion web application.

ADF Desktop Integration EL Expressions B-3

Attribute Control Hints in ADF Desktop Integration

Table B-2 describes the EL expression syntax that retrieves the values of attribute
control hints at runtime.

You configure attribute control hints in your Fusion web application. Information
about how to add an attribute control hint to an entity object can be found in the
"Defining Attribute Control Hints for Entity Objects" section of the Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework.
Information about how to add an attribute control hint to a view object can be found
in the "Defining Attribute Control Hints for View Objects" section of the Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework.

Table B-3 Attribute Control Hints Used by ADF Desktop Integration

Attribute Control

Hint Type Value to configure in the Fusion web application

label String References the value of the label attribute control hint configured for an entity
or view object.

updateable Boolean Returns true if the associated attribute binding is updatable.

readOnly Boolean This attribute control hint is unique to ADF Desktop Integration. Returns true

if the associated attribute binding is not updatable.

To optimize the performance of an integrated Excel workbook when it evaluates
Excel formulas in EL expressions, it is recommended that you write an EL
expression with the following syntax for a component’s ReadOnly property:

#{bindings.attributeID.hints.readOnly}
rather than:
=NOT (#{bindings.attributeID.hints.updateable})

Note that the attribute control hint readonly property differs to the Readonly
property of ADF Desktop Integration components described in Section A.1,
"Frequently Used Properties in the ADF Desktop Integration.”

mandatory Boolean Returns true if a value for the associated attribute binding is required.

dataType String Returns the data type of the attribute control hint. A Fusion web application can
support many data types with complex names. The dataType attribute control
hint was introduced in ADF Desktop Integration to simplify the writing of EL
expressions. It maps the data types that a Fusion web application supports to
the values supported by ADF Desktop Integration listed here:

] string
s number
s date

s boolean

n other

The ADF Desktop Integration attribute control hints are based on information
available in the web application’s model metadata. ADF Desktop Integration supports
view object or entity object hint values, but does not support programmatic overrides
of hint values if they are calculated at a row-by-row level at runtime.

B-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

C

Troubleshooting an Integrated Excel
Workbook

This appendix provides guidelines on how you can troubleshoot an integrated Excel
workbook when you encounter problems during development. It also describes
possible solutions for a number of problems that you may encounter.

This appendix includes the following sections:

= Section C.1, "Verifying That Your Fusion Web Application Supports ADF Desktop
Integration”

= Section C.2, "Verifying End-User Authentication for Integrated Excel Workbooks"
= Section C.3, "Generating Log Files for an Integrated Excel Workbook"

= Section C.4, "Exporting Excel Workbook Metadata"

s Section C.5, "Common ADF Desktop Integration Problems"

Note: The property inspector does not validate that values you enter
for a property or combinations of properties are valid. Invalid values
may cause runtime errors. To avoid runtime errors, make sure you
specify valid values for properties in the property inspector. For more
information about the property inspector, see Section 5.6, "Using the
Property Inspector.”

C.1 Verifying That Your Fusion Web Application Supports ADF Desktop

Integration

Using a specific URL, you can verify that the Fusion web application is running the
ADF Desktop Integration remote servlet (adfdiRemote), and the version of ADF
Desktop Integration. This information can be useful if you encounter errors with an
integrated Excel workbook. For example, you can determine whether the ADF
Desktop Integration remote servlet is running when you are troubleshooting an
integrated Excel workbook.

To verify that the ADF Desktop Integration remote servlet is running:
1. Log on to the Fusion web application.

2. Type the concatenated values of the workbook properties WebAppRoot and
RemoteServletPath into the address bar of your web browser. This
corresponds to a URL similar to the following:

http://hostname:7101/FusionApp/adfdiRemoteServlet

Troubleshooting an Integrated Excel Workbook C-1

Verifying End-User Authentication for Integrated Excel Workbooks

If the ADF Desktop Integration remote servlet is running, a web page returns
displaying a message similar to the following:

ADF Desktop Integration Remote Servlet 11g (11.1.1.48.86) [520]
Response from oracle.adf.desktopintegration.servlet.DIRemoteServlet: OK.

C.2 Verifying End-User Authentication for Integrated Excel Workbooks

If end users of an integrated Excel workbook do not get prompted for user credentials
when they invoke an action that interacts with the Fusion web application configured
with ADF security, it may mean that security is not configured correctly for either the
integrated Excel workbook or the Fusion web application. You can verify that your
secure Fusion web application authenticates end users and that it is security-enabled
by carrying out the following procedure.

To verify that a secure Fusion web application authenticates end users:

Enter the value of the workbook properties WebAppRoot into the address bar of your
web browser. This corresponds to a URL similar to the following:

http://hostname:7101/FusionApp/adfdiRemoteServlet

If the Fusion web application is security-enabled, it will request that you enter user
credentials.

For more information about securing your integrated Excel workbook, see Chapter 11,
"Securing Your Integrated Excel Workbook."

C.3 Generating Log Files for an Integrated Excel Workbook

ADF Desktop Integration can generate log files that capture information based on
events triggered by the following pieces of software within ADF Desktop Integration:

= HTTP filter and the ADF Desktop Integration remote servlet on the web server
(server-side logging)

For more information about server-side logging, see Section C.3.1, "About
Server-Side Logging."

= Excel workbook which you integrate with your Fusion web application (client-side
logging)
For more information about client-side logging, see Section C.3.2, "About
Client-Side Logging."

C.3.1 About Server-Side Logging

You configure the generation of server-side log files for ADF Desktop Integration the
same way as for other Oracle ADF modules. This involves setting values that specify
the verbosity level and output location in a configuration file named
j2ee-logging.xml. You can also use Oracle Diagnostic Logging Configuration of
JDeveloper to configure the logging levels specified in the 1ogging. xm1 file. For
more information about using the JDeveloper debugging tools and ADF Logger, see
the "Using the ADF Logger" section in Oracle Fusion Middleware Fusion Developer’s
Guide for Oracle Application Development Framework.

Table C-1 describes the package names that you supply as attribute parameters to the
<logger> elements in the j2ee-logging.xml file to configure log file generation in
ADF Desktop Integration.

C-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Generating Log Files for an Integrated Excel Workbook

Table C-1 Package Names for Log File Configuration

To generate log file entries
for this component... Enter this package name...

All ADF Desktop oracle.adf.desktopintegration
Integration server logic

ADF Desktop Integration oracle.adf.desktopintegration.servlet
remote servlet

ADF Desktop Integration oracle.adf.desktopintegration.filter
HTTP filter

Table C-2 describes the types of information that the log file captures and the
corresponding log file entry level.

Table C-2 Server-Side Logging Levels

Log Level Description

SEVERE (ERROR) Captures all exceptions and errors.

WARNING Captures all irrecoverable problem conditions.

INFO or CONFIG Captures lifecycle events such as servlet
initialization, and so on.

CONFIG Captures "heartbeat" events that echo status and
execution context for each client-server
interaction.

FINE These values generate increasing levels of

FINER diagnostic information.

FINEST

C.3.2 About Client-Side Logging

You can configure ADF Desktop Integration to save logs of triggered events on the
client. By default, no log files are generated. For more information about how to
configure the Oracle ADF Desktop Integration module to save logs, see Section C.3.2.1,
"How to Configure ADF Desktop Integration to Save Logs.".

C.3.2.1 How to Configure ADF Desktop Integration to Save Logs

ADF Desktop Integration provides logging tools to generate event logs and make
them easily accessible. The logging tools are located in the Logging group of the
Oracle ADF tab, and are available in both the design mode and the test mode.

Figure C-1 shows the logging tools in the Oracle ADF tab.

Figure C-1 Logging Tools in Oracle ADF Tab

0o) = © = EditPriceList-DT.xlsx - Microsoft Exce
HW)
—/ Hame Insert Page Layout Formulas Data Review View Developer Oracle ADF
[&] workboak Properties Insert Companent = (g} Refresh Bindings D D BA set Output Level Ij
@ Waorksheet Properties @ Edit Properties :\\?S Add Log Output File
= Run 5top Console Publish
(@) About 3K pelete @) refresh Config

Warkbook P ADF Components P Test Logging Puhblish

The Logging group provides the following buttons:

s Console

Troubleshooting an Integrated Excel Workbook C-3

Generating Log Files for an Integrated Excel Workbook

Displays the ADFdi Logging Console window, which enables you to review the
recent log entries while you are developing and testing the integrated Excel
workbook. The console displays entries that are logged while the console is open.
Figure C-2 illustrates the ADFdi Logging Console window with information and
error log entries.

The console is a resizable, non-modal window with a buffer size of 64,000
characters. When the buffer is full, the old entries are removed. If you want to save
log entries, you can copy them to a text file.

Figure C-2 ADFdi Logging Console Window

ADFdi Logging Console: adfdi-common

A~
Information: Initializing Oracle ADF 1lg Desktop Integration Designer, wersion: 11.1.
Information: Initializing Oracle ADF 1lg Desktop Integration runtime, wersion: 11.1.1
Error: ADFDI-07530: in unexpected exception has occurred. The workbook cannot switch
ADFDI-0050Z2: The client was unable to establish an unauthenticated session with the w

TnableToEstablishUnauthenticatediessionException: ADFDI-0050Z: The client was unable
Source: adfdi-excel-runtime
dtack:
at oracle.adf.client.windows. excel. runtime. WebdppLogin., EstablishlUnanuthenticatedSes
at oracle.adf.client.windows. excel.runtine. WebdppLogin. Login()
at oracle.adf.client.windows. datananager. ADFEindingContext.Attenptlogin(Boolean ma
at oracle.adf.client.windows. datananager. ADFEindingContext. GetResourceBundle (Strin

£ >

[SetLevel...] [Clear]

The dialog has the following buttons:

- Set Level: Click to set the log output level. The button opens the Logging
Output Level dialog, where you can choose the desired log output level.

— Clear: Click to clear the log buffer.
- Close: Click to close the dialog.

Note: A common ADEFdi Logging Console window logs entries for
all open integrated Excel workbooks.

= Set Output Level

Prompts you to choose the log output level. Table C-3 describes the log levels that
client-side logging supports.

Figure C-3 Logging Output Level Dialog

Logging Output Level

Set Temporary Logging Output Level:

C-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Generating Log Files for an Integrated Excel Workbook

Table C-3 Client-Side Logging Levels

Level Description

Critical Captures critical information.

Error Captures information about severe errors and exceptions.

Warning Captures irrecoverable conditions.

Information Captures lifecycle and control flow events.

Verbose Captures detailed information about the execution flow of the
application.

Off No logs are captured. This is the default value.

Note: The log output level applies to all listeners for a given logger.

= Add Log Output File

Creates a new temporary logging listener to direct logging output to the specified
file or format. In the Add New Temporary Logging Output File dialog, choose the
desired file output type (text or XML), and specify the path and file name of the
log output file.

Figure C-4 Add New Temporary Logging Output File Dialog

Add New Temporany Logging Output File

Output Type: | Text v

Log File Path: [adidiiog tst

[0k H Canicel]

The temporary listener directs the logging output for the current Excel session
only, and is not registered in the ADF Desktop Integration configuration file. After
you close the integrated Excel workbook, the temporary listener is removed.

Note: When you click the Add Log Output File button, a new
listener is created. The new listener does not replace any existing
listener defined in the ADF Desktop Integration configuration file, or
any other temporary listener.

= Refresh Config

Reloads the ADF Desktop Integration configuration file. The ADF Desktop
Integration configuration file determines the type of information logged by ADF
Desktop Integration. It also determines the location and the output format of the
log file.

For more information about the creation and configuration of the ADF Desktop
Integration configuration file, see Section C.3.2.2, "About the ADF Desktop
Integration Configuration File."

Troubleshooting an Integrated Excel Workbook C-5

Generating Log Files for an Integrated Excel Workbook

C.3.2.2 About the ADF Desktop Integration Configuration File

The ADF Desktop Integration configuration file is saved as
adfdi-excel-addin.dll.config in the Designer edition, and as
adfdi-excel-addin-runtime.dll.config in the Runtime edition. To determine
the correct file name and location, click the About button in the Workbook group of
the Oracle ADF tab. In the dialog that opens, click the Properties tab, and consult the
Configuration entry for file name and location of configuration file.

For more information about elements of the configuration file, see the "Configuration
File Schema for the .NET Framework" section in Microsoft Developer Network
documentation. For more information about trace and debug settings, see the "Trace
and Debug Settings Schema" section in Microsoft Developer Network documentation.

Example C-1 shows a sample configuration file, one of many valid ways to configure
client-side logging, that generates two different log files with different formats (. txt
and .xml). The file captures different types of information such as ThreadId,
ProcessId, and DateTime at a Verbose logging level.

Example C—1 Sample Configuration File

<?xml version="1.0"?>
<configuration>
<system.diagnostics>
<sources>
<source name="adfdi-common" switchValue="Verbose">
<listeners>
<add type="System.Diagnostics.DelimitedListTraceListener"
name="adfdi-common-excel.txt"
initializeData="c:\logs\adfdi-common-excel.txt"
delimiter="|"
traceOutputOptions="ThreadId, ProcessId, DateTime"/>
<add type="System.Diagnostics.XmlWriterTraceListener"
name="adfdi-common-excel .xml"
initializeData="c:\logs\adfdi-common-excel.xml"
traceOutputOptions="None" />
</listeners>
</source>
</sources>
</system.diagnostics>
</configuration>

C.3.2.3 How to Configure Logging Using User Environment Variables

Users who do not have access to the directory that stores the ADF Desktop Integration
configuration file can change the location where log files are saved, and the logging
level by setting values for user environment variables. You can add two user
environment variables to configure the logging level and location for XML log files.

To add or configure user environment variables on Windows:
1. Click the Windows Start button and then click Settings > Control Panel.

2, In the Control Panel, double-click System.

3. In the System Properties dialog, click the Advanced tab, and then click the
Environment Variables button.

4. In the Environment Variables dialog, click New under the User variables for
username input field, and add variables as described in the following table.

C-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Common ADF Desktop Integration Problems

Table C-4 User Enviroment Variables to Configure Logging

Enter a variable named... With a value...

adfdi-common-file That defines the directory path and file name for the XML file
that captures logging information.

The directory that you specify here must exist before you add
the adfdi-common-file variable. The generated log file will
be in XML format.

adfdi-common-level That specifies the level of logging. Table C-3 lists valid values.

5. Click OK.

C.3.2.4 What You May Need to Know About the adfdi-common Object

The adfdi-common object is an instance of the TraceSource class from the
System.Diagnostics namespace in the Microsoft NET Framework. This object is
used to generate log files that capture information about events triggered by the Excel
workbook that you integrate with your Fusion web application.

For more information about the TraceSource class, see Microsoft Developer
Network documentation.

C.4 Exporting Excel Workbook Metadata

You can export the XML metadata in your Excel workbook to an XML file with a name
and location that you specify. This file may be useful if you have to debug or analyze
an Excel workbook that is integrated with a Fusion web application. It contains child
elements for each worksheet in the workbook, resources such as the relative path to
the remote servlet, and so on.

The following procedure describes how you export XML metadata from an Excel
workbook.

To export XML metadata from an integrated Excel workbook:
1. Click About in the Oracle ADF tab.

The About Oracle ADF 11g Desktop Integration dialog box appears.
2. Click the Properties view tab and then click the Export Metadata button.

A dialog box appears that asks you to specify a file name and location for the file
that stores the exported metadata.

3. Specify a file name, a location, and then click Save.

The integrated Excel workbook exports the metadata to the specified file in the
specified format.

C.5 Common ADF Desktop Integration Problems
This section describes the most common problems and their solutions.

Error message: [ADFDI-00127] A version mismatch was detected for
SyncServletResponse. Version x was found, version y was expected

Cause: The client version of ADF Desktop Integration does not match the ADF
Desktop Integration version in the web application.

Troubleshooting an Integrated Excel Workbook C-7

Common ADF Desktop Integration Problems

Action: Uninstall client ADF Desktop Integration, and install the web application
specific ADF Desktop Integration version. For more information about installing
ADF Desktop Integration client, see Section 3.5, "Installing ADF Desktop
Integration."

Error message: 404 Error - servlet not found
Cause: The web.xml deployment descriptor settings are not in sync with
Workbook.RemoteServletPath property value.

Action: Open Workbook Properties editor and verify the
Workbook.RemoteServletPath property value.

Error message: Uncaught exception thrown by method called through Reflection.
(Exception from HRESULT: 0x80131604)

Cause: Microsoft .NET Programmability Support is not enabled.

Action: Enable Microsoft NET Programmability Support. For more information,
see Section 3.3, "Enabling Microsoft .NET Programmability Support."

Problem: Oracle ADF tab is not visible in your integrated Excel Workbook after
installing ADF Desktop Integration

Cause: The ADF Desktop Integration add-in is not enabled in Excel.

Action: Enable the ADF Desktop Integration add-in in the Excel Options dialog.
In Excel, click the Microsoft Office button, and then click Excel Options to open
the Excel Options dialog. In the Add-Ins tab, open the Manage dropdown list,
choose COM Add-ins, and click Go. In the COM Add-ins dialog, select the Oracle
ADF 11g Desktop Integration Add-in for Excel checkbox and click OK.

C-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

D

Using Workbook Management Tools

This appendix describes how to use the workbook administration tool. You can use
the tool to manage workbooks that you integrate with a Fusion web application.

This appendix includes the following sections:

= Section D.1, "Using the Workbook Administration Tool"

D.1 Using the Workbook Administration Tool

Use the workbook administration tool to set values for a number of workbook
properties, such as WebAppRoot, after you publish the finalized integrated Excel
workbook. Use this tool if, for example, the URL of your Fusion web application
changes after you publish the integrated Excel workbook.

You can also use it when you want to change workbook settings but cannot, or do not
want to set values for the HTTP filter as described in Section E.2, "Configuring the
ADF Desktop Integration Excel Download Filter."

The workbook administration tool is a Java-based program that can be executed on
operating systems that support the version of Java used by Oracle ADF. It also
requires access to the adf-desktop-integration-admin-tool. jar file, which is
located in the following directory:

MW_HOME\ jdeveloper\adfdillib

The other requirements for components or utilities in ADF Desktop Integration, as
outlined in Chapter 3, "Setting Up Your Development Environment," do not apply to
the workbook administration tool.

To change workbook settings using the workbook administration tool:
= Open a command line console and execute the following command:

java -cp adf-desktop-integration-admin-tool.jar
oracle.adf.desktopintegration.admintool.WorkbookAdminTool <arg(s)>

where <arg (s) > is one or more of the required or optional arguments that are
described in Table D-1.

Using Workbook Management Tools D-1

Using the Workbook Administration Tool

Table D-1 Command-line Options for the Workbook Administration Tool

Provide a value for Is a value for this
this argument... To... argument required?
-workbook Specify the directory path to the workbook to update. Yes
-root Set the value for this property to the fully qualified URL for the web application to No

integrate your desktop application with.
-mode Change the workbook mode to one of the following: No

L RT

where RT specifies runtime mode.
L] DT

where DT specifies design mode.
L] TST

where TST specifies test mode.

For more information about workbook modes, see Section 5.1, "Introduction to
Development Tools."

-out Specify the directory path and file name for the output file. Yes
-quiet Specify this argument if you do not want to generate verbose output. No
-help Print help information. No

The following command creates a copy of the workbook (text . x1sx) in runtime
mode (RT) for a Fusion web application (http: //hostname:7101/FODADFBC) and
writes it to a directory with a new file name (myresult.x1lsx):

java -cp adf-desktop-integration-admin-tool.jar
oracle.adf.desktopintegration.admintool.WorkbookAdminTool -workbook test.xlsx
-mode RT -root http://hostname:7101/FODADFBC -out myresult.xlsx

D-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

E

ADF Desktop Integration Settings in the Web
Application Deployment Descriptor

This appendix describes the values that you set for the ADF Desktop Integration
servlet (adfdiRemote) so that the Fusion web application can use it. The appendix
also describes the values in the deployment descriptor file that determine the behavior
of the HTTP filter that ADF Desktop Integration provides. Finally, it provides an
extract from a deployment descriptor file that shows these values in use.

This appendix includes the following sections:
= Section E.1, "Configuring the ADF Desktop Integration Servlet"
= Section E.2, "Configuring the ADF Desktop Integration Excel Download Filter"

= Section E.3, "Examples in a Deployment Descriptor File"

Note: Adding ADF Desktop Integration and ADF Library Web
Application Support to the technology scope of your desktop
integration project automatically generates the entries in the web . xml
file discussed in this appendix. For more information, see Section 4.2,
"Adding ADF Desktop Integration to a Fusion Web Application.”

E.1 Configuring the ADF Desktop Integration Servlet

A Fusion web application with integrated Excel workbooks must contain entries in its
deployment descriptor file (web.xml) to use the adfdiRemote servlet. The Excel
workbooks that you integrate with a Fusion web application call this servlet to
synchronize data with the Fusion web application. The
adf-desktop-integration. jar file stores the servlet in the following directory:

Mw_HOME\oracle_common\modules\oracle.adf.desktopintegration_
11.1.1

where MW_HOME is the Middleware Home directory.

When you add ADF Desktop Integration to the technology scope of your project as
described in Section 4.2, "Adding ADF Desktop Integration to a Fusion Web
Application," ADF Desktop Integration automatically configures your deployment
descriptor with the necessary entries to enable the servlet (DIRemoteServlet)on
your Fusion web application. If required, then you can configure the servlet manually.

To configure the ADF Desktop Integration servlet:

1. In]JDeveloper, locate and open the deployment descriptor file (web . xm1) for your
ADF Desktop Integration project.

ADF Desktop Integration Settings in the Web Application Deployment Descriptor E-1

Configuring the ADF Desktop Integration Servlet

Typically, this file is located in the WEB-INF directory of your project.

2, Click the Servlets page, and then click the Add icon to create a row entry in the
Servlets table. The icon is in the top-right corner of the servlets table.

Enter the values as described in Table E-1 to enable the adfdiRemote servlet on
the Fusion web application.

Table E-1

Values to Enable adfdiRemote Servlet

For this property...

Enter this value...

Name adfdiRemote
Type Servlet Class
Servlet Class/]SP file oracle.adf.desktopintegration.servlet.DIRemoteS

ervlet

3. In Servlets page, click the Servlet Mappings tab, and then click the Add icon to
create a row in the Servlet Mapping table.

Enter the value as described in Table E-2 to add a URL pattern for the
adfdiRemote servlet in the Fusion web application. The value that you enter

must match the value that you specify in the integrated Excel workbook for the
RemoteServletPath workbook property. Note that values are case sensitive.

Table E-2 Values to Add A URL Pattern to adfdiRemote Servlet

For this property...

Enter this value...

URL Patterns

/adfdiRemoteServlet

Figure E-1 displays the Servlets page of web.xml of Master Price List module.

Figure E-1 Servlets Page of Deployment Descriptor

[veh, el

Application
Servlets
Filters
Security
Pages

References

Servlets

Mame

Faces Serviet
resources
adfdiRemaote
adfAuthentication
EIGRAPHSERYLET
BIGALGESERVLET
MapProsxyServiet

GatewaySerylet

Type
Servlet Class

Servlet Class

Servlet Class
Serviet Class
Servlet Class
Servlet Class

Serviet Class [ISP File

javax.faces webapp, FacesServlet

org. apache . myfaces. trinidad .webapp. ResourceServlet

oracle. adf, desktopintegratio DIRer st
oracle.adf.share. security . authentication. AuthenticationServiet
oracle. adfinternal. view. faces. bi.renderkit. graph. GraphSerwlet
oracle. adfinternal wiew, Faces, bi.renderkit. gauge . GaugeServiet
oracle. adfinternal view. Faces. bi.renderkit. geoMap. servlet, MapProxyServiet
oracle, adfinternal. view, faces, bi.renderkit. graph, FlashBridgeServlet

I ¢ = B

A

r General Servlet r Servlet Mappings r Initialization Parameters r Security Role References

%+ X/

fadfdiRemoteServlet

URL Patterns

4. Click the Filters page, and verify that whether a adfBindings filter exists in the
Filters table. If an entry exists, select it and proceed to the next step. If there is no
such entry, then click the Add icon to create a row entry in the Filters table. The
icon is available in the top-right corner of the filters table.

E-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Configuring the ADF Desktop Integration Excel Download Filter

Enter the values as described in Table E-3 to add the ADF binding filter to the
adfdiRemote servlet.

Table E-3 Values to Add Binding Filter to adfdiRemote Serviet

For this property... Enter this value...
Name adfBindings
Class oracle.adf.model.servlet.ADFBindingFilter

5. In Filters page, click the Filter Mappings tab, and then click the Add icon to create
a row in the Filter Mapping table.

Enter the values as described in Table E—4 to add the mapping filter to the
adfdiRemote servlet. The filter mapping must match with the Servlet name in
Step 2.

Table E-4 Values to Add Mapping Filter to adfdiRemote Servlet

For this property... Enter this value...
Mapping Type Servlet
Mapping adfdiRemote

Figure E-2 displays the Filters page of web.xml of Master Price List module.

Figure E-2 Filters Page of Deployment Descriptor

%weh.ﬂml
@
Application Filters 4 x
Servlets
Filters
Security Mame Class 5
Pages JpsFilker oracle.security . jps.ee,http, JpsFilter G
References trinidad org. apache . myfaces. trinidad .webapp. TrinidadFilker G
oracle. adf. model. servlet, ADFEindingFilker
adfdiExcelDownload oracle.adF.desktopintegration.Filter.DIExceIDownIoadFiIterﬁ Q
r General Filker r Filter Mappings r Initialization Parameters
+ X
Mapping Type Mapping Dispatcher Type
Serviet Faces Servlet FORMARD, REQUEST
Serviet adfdiRemate H

6. Save the deployment descriptor file, and then rebuild your ADF Desktop
Integration project to apply the changes you made.

E.2 Configuring the ADF Desktop Integration Excel Download Filter

ADF Desktop Integration includes an HTTP filter in the
adf-desktop-integration. jar stored in the following directory:

MW_HOME\oracle_common\modules\oracle.adf.desktopintegration_
11.1.1

where 1w_HOME is the Middleware Home directory.

You configure an entry in the deployment descriptor file (web . xm1) of your Fusion
web application so that the application invokes the HTTP filter to make changes in an

ADF Desktop Integration Settings in the Web Application Deployment Descriptor E-3

Configuring the ADF Desktop Integration Excel Download Filter

integrated Excel workbook before the integrated Excel workbook is downloaded by
the end user from the Fusion web application. These changes ensure that the
integrated Excel workbook functions correctly when the end user opens it. The HTTP
filter makes the following changes:

WebAppRoot

Sets the value for this property to the fully qualified URL for the Fusion web
application from which the end user downloads the integrated Excel workbook.

Workbook mode

Changes the integrated Excel workbook mode to runtime mode in case the
workbook was inadvertently left in design mode or test mode.

Note: If you choose not to use the adfdiExcelDownload filter, you
can instead use the workbook administration tool to set the
WebAppRoot property on your workbooks. For more information, see
Section D.1, "Using the Workbook Administration Tool."

By default, JDeveloper adds the HTTP filter to your ADF Desktop Integration project
when you add ADF Desktop Integration to the technology scope of your project as
described in Section 4.2, "Adding ADF Desktop Integration to a Fusion Web
Application."

To configure the HTTP filter:

1.

In JDeveloper, locate and open the deployment descriptor file (web . xm1) for your
ADF Desktop Integration project.

Typically, this file is located in the WEB-INF directory of your project.

Click the Filters page, and verify that a adfBindings filter exists in the Filters
table. If an entry exists, select it and proceed to the next step. If there is no such
entry, then click the Add icon to create a row entry in the Filters table.

Enter the values as described in Table E-5 to create a filter, or configure the values
to modify the existing HTTP filter.

Table E-5 Properties to Configure HTTP Filter

For this property... Enter this value...

Name adfdiExcelDownload

Class oracle.adf.desktopintegration.filter.DIExcelDow
nloadFilter

Display Name (Optional) In General Filter tab, enter a display name for the
filter that appears in JDeveloper.

Description (Optional) In General Filter tab, enter a description of the filter.

3. In the Filters page, click the Filter Mappings tab, and then click the Add icon to

create a row in Filter Mapping table.

Add a filter mapping for integrated Excel workbooks that use the default file
format (.xIsx) by entering values as described in Table E-6.

E-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Configuring the ADF Desktop Integration Excel Download Filter

Table E-6 Properties to Configure Filter Mappings

For this property... Enter this value...

Mapping Type URL Pattern

Mapping *.xlsx

Dispatcher Type No value is required for this property.

4. Add another filter mapping for integrated Excel workbooks that use the
macro-enabled workbook format (.xIsm) by entering values as described in
Table E-7.

Table E-7 Properties to Configure Filter Mappings

For this property... Enter this value...

Mapping Type URL Pattern

Mapping * . xlsx

Dispatcher Type No value is required for this property.

Figure E-3 displays the Filters page of web.xml of Master Price List module.

Figure E-3 Filters Page of Deployment Descriptor

[Pt
@
Application
k2 Filters GF x
Servlets
Filters
Security darne Slass @
Pages JpsFilker oracle. security . jps. ee. http, JpsFilter {}
trinidad org.apache . myfaces. trinidad . webapp, TrinidadFilker
References)
adfBindings oracle, adf . model. servlet. ADFEindingFilker
adfdiExcelDownload oracle. adf. desktopintegration. filker . DIExcelDownloadFilter 4 4
r General Filker |/ Filker Mappings |/ Initialization Parameters
Mapping Type Mapping Dispatcher Type
URL Pattern *,xlsx
LRL Pattern * xlsm

5. Click the Application page, expand MIME Mappings section, and click the Add
icon.

Add a MIME type for integrated Excel workbooks that use the default file format
(.xlsx) by entering values as described inTable E-8.

Table E-8 Properties to Add MIME Mappings

For this property... Enter this value...
Extension * . xlsx
MIME Type application/vnd.openxmlformats-officedocument.s

preadsheetml.sheet

6. Add another MIME type for integrated Excel workbooks that use the
macro-enabled workbook format (.xIsm) by entering values as described in
Table E-9.

ADF Desktop Integration Settings in the Web Application Deployment Descriptor E-5

Examples in a Deployment Descriptor File

Table E-9 Properties to Add MIME Mappings

For this property... Enter this value...
Extension * . xlsm
MIME Type application/vnd.ms-excel.sheet.macroEnabled.12

Figure E—4 displays the Application page of web . xm1 of Master Price List module.

Figure E-4 Application Page of Deployment Descriptor

%web.xml
@
Application
Serviats web Application Deployment Descriptor
Filkers Yersion:
Security
Display Mame: |
Pages
References Description: Ernpky web. xml file For \Web Application
Session Timeout:
Minutes
[] Distribut able
Context Initialization Parameters 4= ¥
Web Application Listeners o= K
Environment Entries GF X
[# Tag Libraries 4= ¥
Locale Encoding Mapping + X
[=IMIME Mappings Gil x

Extension MIME Type
hkril ket fhiml
tet fplain

applicationvnd. openxmlformats-officedacument . spreadshee. ..

applicationvnd.ms-excel. sheet. macroEnabled. 12

7. Save the deployment descriptor file, and then rebuild your ADF Desktop
Integration project to apply the changes you made.

While updating filter and filter mapping information in the web . xm1 file, ensure that
the filter for ADF Library Web Application Support
(<filter-name>ADFLibraryFilter</filter-name>) appears below the
adfdiExcelDownload filter entries, so that integrated Excel workbooks can be
downloaded from the Fusion web application.

E.3 Examples in a Deployment Descriptor File

E-6

The following extracts from the web . xml file of a Fusion web application with ADF
Desktop Integration in its technology scope show the entries that you configure for a
desktop integration project. For more information ordering of filters, see Section 4.2.2,
"What Happens When You Add ADF Desktop Integration to Your JDeveloper Project."

<filter>
<filter-name>adfBindings</filter-name>
<filter-class>
oracle.adf .model.servlet.ADFBindingFilter</filter-class>

Desktop Integration Developer's Guide for Oracle Application Development Framework

Examples in a Deployment Descriptor File

</filter>
<filter>
<filter-name>adfdiExcelDownload</filter-name>
<filter-class>
oracle.adf.desktopintegration.filter.DIExcelDownloadFilter
</filter-class>
</filter>
<filter-mapping>
<filter-name>adfBindings</filter-name>
<servlet-name>adfdiRemote</servlet-name>
</filter-mapping>
<filter-mapping>
<filter-name>adfdiExcelDownload</filter-name>
<url-pattern>*.xlsx</url-pattern>
</filter-mapping>
<filter-mapping>
<filter-name>adfdiExcelDownload</filter-name>
<url-pattern>*.xlsm</url-pattern>
</filter-mapping>
<servlet>
<servlet-name>adfdiRemote</servlet-name>
<servlet-class>
oracle.adf.desktopintegration.servlet.DIRemoteServlet
</servlet-class>
</servlet>
<servlet-mapping>
<gservlet-name>adfdiRemote</servlet-name>
<url-pattern>/adfdiRemoteServlet</url-pattern>
</servlet-mapping>
<mime-mapping>
<extension>xlsx</extension>
<mime-type>
application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
</mime-type>
</mime-mapping>
<mime-mapping>
<extension>xlsm</extension>
<mime-type>
application/vnd.ms-excel.sheet.macroEnabled.12
</mime-type>
</mime-mapping>

ADF Desktop Integration Settings in the Web Application Deployment Descriptor E-7

Examples in a Deployment Descriptor File

E-8 Desktop Integration Developer's Guide for Oracle Application Development Framework

String Keys in the Overridable Resources

This appendix describes the string keys in the reserved resource bundle that you can

override.

Table F-1 lists the string keys and their current English values. Create a resource

bundle where you define the string keys in Table F-1 and the values that you want to

appear at runtime. For information about how to override the reserved resource
bundle, see Section 10.2.3, "How to Override Resources That Are Not Configurable."

Table F-1

String Keys and Values in the Reserved Resource Bundle

Area where string
key value appears at
runtime

String key

English value in the ADF
Desktop Integration reserved
resource bundle

Upload Options

UPLOAD_OPTIONS_TITLE

Upload Options

Upload Options

UPLOAD_OPTIONS_PROMPT

Specify options to use during the
Upload operation

Upload Options

UPLOAD_OPTIONS_CONTINUE_ON_FATIL_
LABEL

On failure, continue to upload
subsequent rows

Upload Options

UPLOAD_OPTIONS_DOWNLOAD_AFTER__
LABEL

Download all rows after
successful upload

Table.Download

DOWNLOAD_OVERWRITE_TITLE

Download

Table.Download

DOWNLOAD_OVERWRITE_PROMPT

Do you wish to discard the
pending changes?

Table.Download

ROWLIMIT_WARNINGS_TITLE

Row Limit Exceeded

Table.Initialize

INITIALIZE_OVERWRITE_TITLE

Initialize

Table.Initialize

INITIALIZE_OVERWRITE_PROMPT

Do you wish to discard the
pending changes?

Workbook.ClearAl
1Data

CLEARDATA_CONFIRM_TITLE

Clear All Data

Workbook.ClearAl
1Data

CLEARDATA_CONFIRM_PROMPT

This command will log you out
of your current session and clear
all the data from all worksheets
in the workbook. Are you sure?

Workbook.Logout

LOGOUT_STATUS_TITLE

Logout

Workbook.Logout

LOGOUT_STATUS_PROMPT

You have been logged out from
your current session.

Table.Upload

COMPONENTS_TABLE_DYN_COLS_NOT _
AVAIL_TITLE

Upload

String Keys in the Overridable Resources F-1

Comment

Table F-1 (Cont.) String Keys and Values in the Reserved Resource Bundle

Area where string English value in the ADF

key value appears at Desktop Integration reserved

runtime String key resource bundle Comment

Table.Upload COMPONENTS_TABRLE_DYN_COLS_NOT_ One or more dynamic columns is

AVAIL_PROMPT no longer available, do you wish
to continue?

Table status UPLOAD_STATUS_NO_UPDATES No updates detected

Table status TABLE_UPLOAD_RECORD_NOT_ FOUND Record not found

Table status TABLE_UPLOAD_CANNOT_ INSERT MORE_ Cannot insert record more than

THAN_ONCE once

Table status TABLE_COMMIT FAILED_1 See Error Detail {0} {0}isa
batch
number

Table status TABLE_COMMIT FAILURE_DETAILS_2 Error Detail {0}:{1} {0}isa
batch
number
{1} is an
error
message

Table status TABLE_UPLOAD_ROW_UPDATE_SUCCESS Row updated successfully

Table status TABLE_UPLOAD_ROW_INSERT_SUCCESS Row inserted successfully

Table status TABLE_UPLOAD_ROW_UPDATE_FAILURE Update failed

Table status TABLE_UPLOAD_ROW_INSERT_FAILURE Insert failed

Table status TABLE_DELETE_ROW_FAILURE Delete failed

Table status MESSAGE_DETAILS_NONE No error details available.

Table status MESSAGE_DETAILS_ROW_TITLE Row Errors

Table status MESSAGE_DETAILS_ROW_PROMPT Errors for this row:

Table status MESSAGE_DETAILS_TABLE_TITLE Table Errors

Table status MESSAGE_DETAILS_TABLE_PROMPT Error details for this table:

Table status MESSAGE_DETAILS_HELP_LABEL Click on each error to reveal Appears

additional information. in the

Table errors :
error list.

Worksheet errors

Table status MESSAGE_LABEL_DEFAULT_CONTEXT Action

Table errors

Worksheet errors

Worksheet errors MESSAGE_DETAILS_WORKSHEET_TITLE Worksheet Errors

Worksheet errors MESSAGE_DETAILS_WORKSHEET PROMPT Error details for this worksheet:

Worksheet errors MESSAGE_DETAILS_PARSE_FAILURE A problem has occurred while

retrieving the error details. The
information is no longer
available.

Worksheet errors MESSAGE_LABEIL_FAILED_1 {0} failed {0}isa
context
label

Workbook.Login LOGIN_WINDOW_TITLE Login

F-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Table F-1 (Cont.) String Keys and Values in the Reserved Resource Bundle

Area where string
key value appears at

English value in the ADF
Desktop Integration reserved

runtime String key resource bundle Comment
Workbook.Login LOGIN_CONFIRM_CONNECT_2 You are about to connect to the {0} and {1}
following are the
application:\n{0}\nand\n{1}\n\ URLs the
nDo you want to connect? applicatio
n uses.
Workbook.EditOpt SETTINGS_EDIT_TITLE Edﬂ()pﬁons

ions

Workbook.EditOpt
ions

SETTINGS_EDIT_PROMPT

Enter a value for Web App Root.
For example:
"http:/ /localhost:1234/MyApp’.

Workbook.EditOpt
ions

SETTINGS_CONFIRM_TITLE

Web App Root

Workbook.EditOpt
ions

SETTINGS_CONFIRM_PROMPT

Changing the Web App Root will
log you out of your current
session and clear all the data
from all worksheets in the
workbook. Are you sure?

String Keys in the Overridable Resources F-3

F-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

G

Java Data Types Supported By ADF Desktop

Integration

This appendix lists the Java data types that an ADF Desktop Integration project
supports.

Primitive Java Types

long
int
short
boolean
double

float

Object Java Types

java.lang.Long
java.lang.Integer
java.lang.Short
java.lang.Boolean
java.lang.String
oracle.jbo.domain.Date
oracle.jbo.domain.Timestamp
oracle.jbo.domain.TimestampLTZ
oracle.jbo.domain.TimestampTZ
java.util.Date

java.sgl.Date

java.sgl.Time
java.sgl.Timestamp
java.lang.Double
java.lang.Float
java.math.BigDecimal

oracle.jbo.domain.RowID

Java Data Types Supported By ADF Desktop Integration G-1

m oracle.jbo.domain.Number

G-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

H

Using ADF Desktop Integration Model API

This appendix describes how to use the ADF Desktop Integration Model API library to
enable custom ApplicationModule methods to access attribute values passed
during upload process when there are no actual rows available in a tree node binding.

This appendix includes the following sections:

= Section H.1, "About the Temporary Row Object"

= Section H.2, "About ADF Desktop Integration Model API"

= Section H.3, "ADF Desktop Integration Model API Classes and Methods"

H.1 About the Temporary Row Object

Each ADF Table component is bound to a tree binding defined within a page
definition. Each tree control binding has one (or more) tree nodes defined. For
parent-child relationships, the tree binding has two nodes, one for parent table and
another for child table. At runtime, the ADF Table component displays both parent
and child attributes within each worksheet row. On upload, ADF Desktop Integration
sets attribute values to both the parent and child nodes.

In certain situations, a particular tree node may not have actual data rows available
during Table.Upload request processing. Two common scenarios where a tree node
may not have data are:

s The tree node's iterator result set does not have any data rows available. This
could be because of a query returning zero rows.

= Ina parent-child relationship, if the foreign key has not been populated in the
parent table, the link between parent and child tree node may not contain actual
rows.

There may be certain cases when, even though there is no actual row available on the
server, you still want to allow the end user to enter values in the worksheet and
upload them to the server. During upload, ADF Desktop Integration creates a
temporary row object and stores the values uploaded from the worksheet row. Using
the ADF Desktop Integration Model API, you can write custom Java code to access the
temporary row object and collect its values.

To call your custom Java code during upload, you must expose your custom Java code
through a pageDef action binding and then configure the ADF Table component's
UpdateRowActionID or InsertAfterRowActionID to point to the pageDef
action binding.

Using ADF Desktop Integration Model APl H-1

About ADF Desktop Integration Model API

H.2 About ADF Desktop Integration Model API

While data is being uploaded, if a tree node of the ADF Table component contains no
actual rows, the ADF Desktop Integration remote servlet creates a temporary row
object to store the attribute values. If you want to access the temporary row object and
its attribute values, you must write custom Java code that uses the ADF Desktop
Integration Model API library.

For more information about the classes and methods available in the API, see
Section H.3, "ADF Desktop Integration Model API Classes and Methods."

H.2.1 How to Add ADF Desktop Integration Model API Library to Your JDeveloper
Project

You typically add the ADF Desktop Integration Model API Library to your
application’s data model project. The library is an independent library, not included
with any technology scope. You can add it through Project Properties dialog box.

To add ADF Desktop Integration Model API library to your project:

1. Inthe Application Navigator, right-click the data model project and choose Project
Properties.

2. In the Project Properties dialog, select Libraries and Classpath to view the list of
libraries available.

3. Click Add Library and in the Add Library dialog box, select the ADF Desktop
Integration Model API library.

Figure H-1 Add Library Dialog

© Add Library X [x|]
—_
I\“— | &~ [i})l \;I
[#- Project Source Paths \)
[+ ADF Model Libraries:
----- ADF Wiew B Project
[Ant 3 user
B Business Components | | .33 Extension | | Change... |
G Compiler | i @l ADF Comman Web Runtime
""" Dependencies - [l ADF Controller Runtime | add Library. . |
""" Deployment -l ADF Controller Schema -
----- EJB Madule il ADF Designtime APT | &dd 1R Directary... |
""" Extension B8 | §40F Deskiop Integration Model APT
B Javadoc | L [l ADF Deskkop Integration Runtime
""" Java EE Application ..l 4DF DT Care Runtime
----- 5P Tag Libraries -l ADF DT Faces Databinding Runtime
----- J5P Wisual Editar m ADF DYT Faces Runtime
Libraries and Classpath |- il ADF Faces Change Manager Runtime 11
Eh-Maven | L [l ADF Faces Databinding Runtime
""" Resource Bundle [l ADF Faces Dynamic Components
----- Run/DebuafProfils - @l ADF Faces Runtime 11
----- Technology Scope m ADF Management Pages
----- @l ADF Mobile Client Runtime
..... 'm E !E Egdg iﬁﬂﬁ[; B D-tma
| Mew, .. || Load Dir... |
[e | [Help | | OK || Concel | | oK || cancel

4. Click OK. The library name adds to the Classpath Entries list.
5. Click OK to close the Project Properties dialog box.

H-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

ADF Desktop Integration Model API Classes and Methods

H.3 ADF Desktop Integration Model API Classes and Methods

The ADF Desktop Integration Model API library contains one public class that
contains APIs for retrieving temporary row objects.

H.3.1 The oracle.adf.desktopintegration.model.ModelHelper Class

The ModelHelper class is a public class that exposes Model APIs. The following
sections describe the methods available in the class.

H.3.1.1 The getAdfdiTempChildRow Method

The method is used to lookup temporary child row object (ViewRowImpl object)
associated with a particular master row. When required, the servlet code creates the
temporary ViewRowImpl object and stores attribute values when there are no actual
ViewRowImpl objects available.

The method returns the temporary child ViewRowImpl object containing any attribute
values sent from worksheet.

Method Syntax

public static final ViewRowImpl getAdfdiTempChildRow(ViewRowImpl masterRow,
java.lang.String childAccessor)

Parameters
= masterRow —master row object

s childAccessor — child attribute name

H.3.1.2 The getAdfdiTempRowForView Method

The method is used to lookup temporary child row object (ViewRowImpl object)
associated with a particular view. When required, the servlet code creates the
temporary ViewRowImpl object and stores attribute values when there are no actual
ViewRowImpl objects available.

The method returns the temporary child ViewRowImpl object containing any attribute
values sent from worksheet.

Method Syntax

public static final ViewRowImpl getAdfdiTempRowForView (ApplicationModuleImpl am,
java.lang.String viewDefName)

Parameters
= am-—application module instance

m viewDefName — view definition name

H.3.1.3 The getChildViewDef Method

The method is used to lookup polymorphic child view definition if the view link
destination attributes specify one or more child discriminator attributes. The master
row source attributes lookup the correct polymorphic child view definition through
ViewObjectImpl. findviewDefFromDiscrvValues APL If no child discriminator
attributes are defined, or the child view is non-polymorphic, the default child
ViewDefImpl object is returned.

Using ADF Desktop Integration Model APl H-3

ADF Desktop Integration Model API Classes and Methods

The method returns the temporary child ViewRowImpl object containing any attribute
values sent from worksheet, or returns null if the object is not found.

Method Syntax

public static final ViewDefImpl getChildvViewDef (ViewRowImpl masterRow,
java.lang.String childAccessor)

Parameters
s masterRow — master row object

s childAccessor — child attribute name

H-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

End User Actions

This appendix describes the actions your end user would be performing while using
your application and integrated Excel workbook.

The actions described in this appendix assume that you have developed a functioning
Fusion web application similar to Master Price List module. However, your
application might not support all actions provided by Master Price List module.

This appendix includes the following sections:

= Section 1.1, "Installing the Runtime Edition of ADF Desktop Integration"
= Section 1.2, "Importing Data from a Non-Integrated Excel Worksheet"

= Section 1.3, "Removing Personal Information"

= Section 1.4, "Changing an Integrated Excel Workbook at Runtime"

» Section L.5, "Limitations of Integrated Excel Workbook at Runtime"

» Section 1.6, "Using An Integrated Excel Workbook"

l.1 Installing the Runtime Edition of ADF Desktop Integration

To enable end users to use ADF Desktop Integration and integrated Excel workbooks,
you must install the Runtime edition of ADF Desktop Integration.

When you run the ADF Desktop Integration setup tool, it verifies whether required
software is installed on the system. For more information about the required software,
see the following:

= Section 3.2, "Required Oracle ADF Modules and Third-Party Software"
= Section 3.3, "Enabling Microsoft .NET Programmability Support"
= Section 3.4, "Allowing ADF Desktop Integration to Access Microsoft Excel"

Note: JDeveloper is not required to install the runtime edition of
ADF Desktop Integration.

To install the Runtime edition of ADF Desktop Integration:

1. Navigate to the MW_HOME\oracle_
common\modules\oracle.adf.desktopintegration_11.1.1 directory,
where MW_HOME is the Middleware Home directory.

2. Extract the contents of adfdi-excel-runtime-client-installer.ziptoa
temporary directory.

End User Actions I-1

Importing Data from a Non-Integrated Excel Worksheet

3. Runthe setup.exe file located in the extracted directory of the
adfdi-excel-runtime-client-installer. zip file.

4. Follow the instructions that appear in the dialog boxes launched by setup . exe to
successfully install the required components.

5. If prompted, click Yes to restart the system and complete the setup of ADF
Desktop Integration.

Note: You cannot install the Runtime edition of ADF Desktop
Integration from JDeveloper.

Note that you cannot install both the Designer and the Runtime editions of ADF
Desktop Integration on a system. You must uninstall one before installing the other
edition.

1.2 Importing Data from a Non-Integrated Excel Worksheet

End users who use the ADF Table component in an integrated Excel workbook to
upload large batches of data rows to the Fusion web application can prepare these
rows of data in a non-integrated Excel worksheet. They can then insert the data into
the ADF Table component prior to invoking the ADF Table component’s Upload
action.

To prepare data in a non-integrated Excel workbook:

1. End users arrange the layout of data in a non-integrated Excel worksheet to match
the layout of the ADF Table component in the integrated Excel workbook.

For example, if an ADF Table component contains columns such as Product,
Price, and Description, reproduce this layout in the non-integrated Excel
worksheet.

Tip: Copy the column headers from the ADF Table component to the
non-integrated Excel worksheet.

2. End users use functionality of Excel to import the rows of data into the
non-integrated Excel worksheet in rows under the columns arranged in Step 1.

3. Row values that will be inserted into ADF Table component columns that use the
TreeNodeList subcomponent must match a choice from the list of values.

Tip: Copy an ADF Table component row from the integrated Excel
workbook to another worksheet of the same workbook, as the proper
constraints will be defined for such a row and can be reproduced.

To insert data into the ADF Table component from a non-integrated Excel
workbook:

1. In the ADF Table component, end users highlight n existing downloaded rows or
new rows at the end of the ADF Table component where 7 is the number of rows
to insert.

2. End users right-click and choose Insert from the Excel context menu.

3. In the non-integrated Excel worksheet, end users select the cells that they want to
insert into the rows of the ADF Table component created in Step 2.

I-2 Desktop Integration Developer's Guide for Oracle Application Development Framework

Changing an Integrated Excel Workbook at Runtime

WARNING: Select the cells in the non-integrated Excel worksheet
and not the rows or columns.

4. In the Excel menu, choose Home > Copy.

5. In the ADF Table component, select the upper left corner cell of the rows inserted
in Step 2.

6. In the Excel menu, choose Home > Paste. Ensure that you do not paste any value
in the Key column.

Note: Integrated Excel worksheets that contain an ADF Table
component hide column A.

7. End users can now invoke the ADF Table component’s Upload action using
whatever functionality you configured for them as described in Section 7.8,
"Configuring an Oracle ADF Component to Upload Changes from an ADF Table
Component."

1.3 Removing Personal Information

If the Fusion web application that you integrate an Excel workbook with uses a
security mechanism, such as single sign-on, personally identifying information may be
stored in cookies on the system where the end user accesses the integrated Excel
workbook. End users can remove this information using Microsoft Internet Explorer.
End users must log out and close all integrated Excel workbooks to invalidate all
active cookie-based web sessions.

For information about removing personal information, see Microsoft Internet Explorer
documentation.

l.4 Changing an Integrated Excel Workbook at Runtime

Once you publish and deploy a finalized integrated Excel workbook, as described in
Chapter 14, "Deploying Your Integrated Excel Workbook." end users can make the
following changes to a workbook at runtime:

s Delete a column from an ADF Table or ADF Read-only Table component

s Drag and drop cells to move ADF components other than an ADF Button
component

» Insert new rows into an ADF Table component

s Change the order of columns in an ADF Table or ADF Read-only Table
component

= Insert non-integrated columns between the columns of an ADF Table or ADF
Read-only Table component

However, some changes to a workbook at runtime can corrupt the integration and are
not supported. For example, you must not delete or move the first column of the ADF
Table or ADF Read-only Table component at runtime. For more information about
what changes are not allowed at runtime, see Section 1.5, "Limitations of Integrated
Excel Workbook at Runtime."

End User Actions I-3

Limitations of Integrated Excel Workbook at Runtime

1.5 Limitations of Integrated Excel Workbook at Runtime

There are some known limitations on changing ADF Desktop Integration components
at runtime.

= Moving a column in an ADF Read-only Table component - If the end user
moves a column of an ADF Read-only Table component to be the leftmost column
of the table, ADF Desktop Integration generates an exception when the end user
tries to download data.

To resolve the problem, the end user must close and reopen the workbook without
saving changes.

s Deleting an Integrated Excel Worksheet — If the end user deletes an integrated
Excel worksheet, ADF Desktop Integration generates an exception when the end
user tries to save the integrated Excel workbook.

To resolve the problem, the end user must close and reopen the workbook without
saving changes.

Additional known limitations:

= Excel’s conditional formatting of cells at runtime has no impact on the selected
cells or on the integration of workbook.

s The ADF Button components are disabled when the end user zooms in or out on
an integrated Excel worksheet. The ADF Button components are active at 100%
zoom only.

» Excel's Protect Sheet feature is incompatible with integrated Excel workbooks.

1.6 Using An Integrated Excel Workbook

End users who are new to the ADF Desktop Integration technology and integrated
Excel workbook must be made aware of the following common actions:

= Toinsert a row in an ADF Table component, insert a full row in the worksheet,
and add data in all mandatory columns. Do not insert partial rows, as partial rows
corrupts the ADF Table component.

For more information, see Section 7.5, "Configuring an ADF Table Component to
Insert Data."

s To delete a row from the web application, flag the row by double-clicking the
respective cell of the Flagged column, and click the respective delete button.
Clearing the cell values of a row, or removing the row from the worksheet, does
not remove the row from the web application. Also, deleting the row from Excel
does not delete the row from the web application.

For more information about row flagging, see Section 7.10.2, "Row Flagging in an
ADF Table Component.”

s To download all rows after uploading the changed data, ensure that Download all
rows after successful upload checkbox is selected in Upload Options dialog box.

= To sort table data based on a particular column, select any cell of the column or the
column header. Click Sort and Filter on the Home tab, and choose your desired
option.

To sort table data based on multiple columns, do not select data rows or columns
partially. Select any cell of the table, click Sort and Filter on the Home tab, and
choose Custom Sort to specify desired columns. You will notice that all columns

I-4 Desktop Integration Developer's Guide for Oracle Application Development Framework

Using An Integrated Excel Workbook

of the table are automatically selected. Before you proceed, ensure that the Key
column is also selected. In the Sort dialog box, add the columns, their order
preference, and then click OK. Ensure that the My data has headers checkbox is
enabled before you click OK.

Before uploading the changes, ensure that the Changed column of all modified
rows is marked with an upward pointing triangle. A double-click on the upward
pointing triangle character removes it, and the data of the relevant row is not
uploaded.

While uploading, if you want to have Excel retain the format of a numeric or date
value in a cell formatted with a text style, add an apostrophe symbol () before
entering the value. The apostrophe symbol acts as an escape character and is not
displayed with the value.

Do not delete, edit, or clear any cells in the Key column of the table. Any change to
these values can lead to upload failures and even data corruption.

Do not change Excel’s settings for Protect Sheet or Protect Workbook. These
settings are available in the Changes group of Review tab.

End User Actions I-5

Using An Integrated Excel Workbook

1-6 Desktop Integration Developer's Guide for Oracle Application Development Framework

Symbols

_ADF_ChangedColumn column, 7-20,7-34
_ADF_FlagColumn column, 7-19,7-20
_ADF_RowKeyColumn column, 7-21
_ADF_StatusColumn column, 7-16,7-21
_ADFDI_FormBottomStyle style, 9-2
_ADFDI_FormDoubleClickCellStyle style, 9-2
_ADFDI_FormTopStyle style, 9-2
_ADFDI_HeaderStyle style, 9-2
_ADFDI_InputTextStyle style, 9-2
_ADFDI_LabelStyle style, 9-2
_ADFDI_OutputTextStyle style, 9-2
_ADFDI_ReadOnlyTableStyle style, 9-2
_ADFDI_TableCellROStyle style, 9-2
_ADFDI_TableCellStyle style, 9-2
_ADFDI_TableChangedColumnStyle style, 9-2
_ADFDI_TableDoubleClickCellStyle

style, 9-2
_ADFDI_TableFlagColumnStyle style, 9-2
_ADFDI_TriangleHeaderStyle style, 9-2
_ADFDIres reserved resource bundleID, 10-2

A

AbortOnFailure property, 8-11, A-16
action bindings
Commit, 7-5,7-6,7-7
CreatelInsert, 7-6
Delete, 7-16
Action Collection Editor, invoking, 8-2
action sets
ADF Model action, invoking, 8-3
ADF Table component Download action,
invoking in, 7-10
alert message, displaying, 8-9
ComponentAction action, 8-2
ComponentAction action, invoking in, 8-4
Confirmation action, 8-2
Dialog action, 8-2
disconnected workbook, invoking in, 8-6
error handling, 8-11
invoking, 8-1,8-2
naming conventions, 8-2
status message, displaying, 8-7
worksheet event, invoking from, 8-6

Index

worksheet ribbon button, 8-2
WorksheetMethod action, 8-2
ActionOptions properties
error handling, 8-11
listed, A-16
actions
ActionOptions properties, A-16
ADF Read-only Table component, A-15
ADF Table component, A-13
Confirmation action, A-18
Dialog action, A-19
properties, A-16
workbook actions, A-20
worksheet actions, A-24
Actions property, A-17
ActionSet action, 8-2
Activate worksheet event, 8-6
adding integrated Excl workbook in JDeveloper, 4-8
ADF bindings filter, 4-2
ADF Button component
inserting, 6-2
properties, A-7
ADF component
ReadOnly property, 9-10
style, applying, 9-4
ADF Desktop Integration
deploying to end users, 14-1
deploying web application, 4-3
Designer edition, setting up, 3-4
development environment, setting up, 3-3
editions, 3-4
installation, developers, 3-1 to 3-7
installation, end users, 14-1
logging, C-3
moving installation, 3-6
publish a workbook from Excel, 14-2
publish a workbook using publish tool, 14-2
removing, 3-5
Ribbon tab, 5-2
Runtime edition, setting up, I-1
shared libraries, 4-3
upgrading, 3-5
workbook properties, 4-10
worksheet properties, 4-12
ADF Desktop Integration configuration file, C-6
ADF Desktop Integration List of Values component

Index-1

DependsOnListID property, 8-30
overview, 6-7
TreeNodeList subcomponent, 7-23
ADF Desktop Integration Model API
about, H-1
adding library to JDeveloper project, H-2
classes and methods, H-3
ModelHelper class, H-3
temporary row object, H-1
ADF Desktop Integration servlet. See adfdiRemote
servlet
ADF Desktop Integration task pane
displaying bindings, 4-5
ADF Desktop Integration Tree Node List component
dependent list of values, 8-32, 8-34
ADF Input Text component
inserting, 6-5
properties, A-4
ADF Label component
inserting, 6-3
properties, A-5
string key, retrieving from resource bundle, 9-8
ADF Library Web Application Support, 4-1
ADF List of Values component
dependent, creating, 8-30
properties, listed, A-6
ADF Model action, invoking, 8-3
ADF Model Layer for desktop integration, 12-1
ADF Output Text component
inserting, 6-6
properties, A-5
ADF Read-only Table component
adding columns, 7-30
creating, 7-29 to 7-31
Excel formula
calculating sum of a column, 8-40
generating values for a column, 8-39
functionality, 7-2
limiting number of rows downloaded, 7-31
properties, A-15
TreeID property, A-15
ADF Read-only Table component column properties,
listed, A-16
ADF Table component
actions, listed, A-13
batch processing, 7-18 to 7-20
cached attributes, clearing values, 7-33
ClearCachedRowAttributes action, 7-33
column properties, A-11
creatting list of values, 7-24
DeleteFlaggedRows action, 7-21
deleting data, 7-16 to 7-18
Download action, 7-9
DownloadForInsert action, 7-10,7-11
downloading data, 7-8
dynamic column, 7-13,7-26 to 7-28
error-reporting, 12-5
evaluating ReadOnly EL expression, 7-14
Excel formula
calculating sum of a column, 8-40

Index-2

generating values for a column, 8-39
functionality, 7-2
importing data, 1-2
Importing data from a non-integrated
worksheet, 1-2
inserting data, 7-6
inserting into Excel workbooks, 7-3
Key column, 7-22
limiting number of rows downloaded, 7-31
ModelDrivenColumnComponent
subcomponent, 7-25
page definition file requirements, 7-2
polymorphic view obect, 7-8
properties, A-7
status reporting, 12-5
supported operations, 7-2
tracking changes, 7-34
TreeID property, 7-9, A-11
TreeNodeList subcomponent, 7-23
Upload action, 7-12,7-21
upload fails, 7-14
uploading data, 7-11 to 7-16
ADF Table component actions
error-reporting, 12-4
listed, A-13
ADF Table component column properties,
listed, A-11
adfBindings bindings filter, 4-2
adf-desktop-integration-admin-tool. jar
file, D-1,E-3
adf-desktop-integration.jar file
adding to technology scope, 4-2
location, E-1
adf-desktop-integration-model-api.jar
file, 4-2
ADFdi logging console, C-4
ADFdi_AbortUploadOnFailure span
element, 7-15
ADFdi_CloseWindow span element, 7-15,8-18
ADFdi_DownLoadAfterUpload span
element, 7-15
adfdi-client-registry.xml client registry
file, 11-3,11-5
adfdiExcelDownload download filter, 4-2
adfdiRemote servlet
adding to web application, 4-2
configuration, E-1to E-7
HTTP filter, adding, E-3
URL pattern, E-2
verifying that it is enabled, C-1
ADFLibraryFilter filter, 4-3,E-6
ADFmAction. See ADFm action
administration tool
command-line options, D-1
Excel workbook, D-1
workbook settings, changing, D-1
alert messages
action set, displaying after execution, 8-9
FailureMessage property, 8-10
SuccessMessage property, 8-10

Alert properties, listed, A-17
Annotation property, A-2, A-23
application template, 4-2
ApplicationHomeFolder workbook
property, 4-10,5-11, A-22
attribute control hints, listed, B-4
AttributeNamePrefix property, 7-27
authentication
authenticating an Excel workbook user, 11-2
verifying end-user, C-2
authorization, 11-1

batch processing, 7-18 to 7-20
BatchOptions properties, listed, A-8
BatchOptions property, 7-3,7-4
BatchOptions.StartBatchActionID
property, 7-17

BatchSize property, 7-19, A-8
bindings

binding ID picker, 5-8

supported for ADF Desktop Integration, 4-5
bindings palette, described, 5-5
branding information, for an Excel workbook, 9-11
BrandingItems workbook property

defined, A-22

described, 9-11

Cc

CachceDataContexts property, A-28
CachedAttributes property
ADF Table component RowData
properties, 8-21
described for use with an ADF Table
component, A-10
described for use with an Excel worksheet, A-27
usage in an ADF Table component, 8-21
caching
clearing values of cached attributes, 7-33
resource bundles, 10-5
sensitive data, 11-7
static data, 15-2
calculated cells, using Excel formulas, 8-38 to 8-40
CellStyleName property, 7-8, A-11, A-16
ChangeIndicatorAttribute property, 12-7
ChangeIndicatorAttributeID property
ADF Table component rows, A-10
worksheet rows, A-28
Class property, A-23
ClearAllData workbook action, A-21
ClearCachedRowAttributes action, 7-33, A-13
ClickActionSet action, 8-2
ClickActionSet property, 6-2
client-side logging, C-7
client-side validation, 12-2
columns
ADF Read-only Table component column
properties, A-16

ADF Table component column properties, A-11
calculating sum of a column, 8-40
generating values from Excel formulas, 8-39
Columns property, 7-7,7-29
command buttons
workbook runtime ribbon tab,
creating, 8-15to 8-16
worksheet runtime ribbon tab,
creating, 8-16 to 8-17
commandMenuItem component, downloading Excel
workbook, 14-5
Commit action binding, 7-5,7-6,7-7
CommitBatchActionID property
ADF Table component, 7-5to ??,7-7 to ??
batch options for an ADF Table component, 7-19
deleting rows from an ADF Table
component, 7-17
described, A-8
component layout and design on a worksheet, 7-2
ComponentAction action, 8-2
ComponentID property, 8-5, A-2
components palette
described, 5-6
inserting an ADF Output Text component, 6-6
configuration files
j2ee-logging.xml configuration file, C-2
Confirmation action, 8-2, A-18
Confirmation action properties, A-18
control hints, attribute, B-3 to B-4
CreateInsert actionbinding, 7-6
currentRowIndex EL expression property, B-2
currentRowMode EL expression property, B-2
custom upload dialog, 7-15

D

data

ADF Table component, deleting, 7-16 to 7-18

ADF Table component, uploading

from, 7-11to7-16

data conflict, managing, 12-7
data control frame

ShareFrame property, 8-19,8-20

sharing between an Excel workbook and a web

application, 8-20
data security, 11-7
DataBindings.cpx file in a desktop integration
project, 4-7

dataType attribute control hint, B-4
date format, Excel, 9-3
Deactivate worksheet event, 8-6, A-26
Delete actionbinding, 7-16
DeleteFlaggedRows action, 7-16,7-21, A-13
DeleteRowActionID property, 7-16,7-17, A-8
DeleteRowEnabled property, 7-17, A-8
dependent list of values, creating, 8-28 to 8-30
DependsOnList property, A-6
DependsOnListID property, 8-30, A-6
deployment descriptor file. See web.xml file
deployment of an Excel workbook, 14-1 to 14-5

Index-3

design time, 5-1
desktop integration
Java data types, supported, G-1to G-2
desktop integration. See ADF Desktop Integration
development environment, setting up, 3-1
development tools
described, 5-1
Ribbon tab, 5-2
task pane, 5-4
Dialog action
display options, 8-17
Page property, A-19
ShareFrame property, A-19
Target property, 8-17,8-19, A-19
Title property, A-19
web page, displaying in Excel Document
Actions, 8-19
web page, displaying in popup
dialog, 8-18to 8-19
web page, invoking, 8-17
Dialog.Target property, 8-17
disconnected workbooks
action sets, invoking, 8-6
from web application, 15-1 to 15-4
DisplayRowErrors action, A-13
DisplayTableErrors action, A-14
DisplayWorksheetErrors worksheet action
described, A-24
usage, 12-3
DoubleClickActionSet action, described, 8-2
Download action, ADF Read-only Table
component, A-15
Download action, ADF Table component, A-14
download filter, 4-2
DownloadFlaggedRows action
described, A-14
usage, 12-7
DownloadForInsert action
described, A-14
EL expressions, evaluating, 7-10
usage, 7-10
DownSync worksheet action, 6-5, A-24
dynamic columns
adding to ADF Table components, 7-26 to 7-28
InsertComponent property, 7-27
specifying header labels, 7-28
specifying syles accroding to data type, 7-28
supporting Insert and Update
operations, 7-27
Update operation, 7-27
UpdateComponent property, 7-27
DynamicColumn property, 7-26, A-11

E

EditOptions workbook action, A-21

EL expressions
currentRowIndex EL expression property, B-2
currentRowMode EL expression property, B-2
DownloadForInsert action, 7-10

Index-4

dynamic columns, 7-27

error-reporting, 12-2

errors EL expression property, B-2
Excel formula, B-1

Expression Builder, 5-9

guidelines for syntax, B-1 to B-4
hyperlinks, generating dynamic, 8-37
literal values, B-1

readOnly EL expression property, B-2
referencing managed beans, 6-9
resource bundle string keys, B-2
rowCount EL expression property, B-2
styles, applying, 9-5

syntax for a desktop integration project, 4-8

syntax for resource bundles, 10-5
workbook initialization parameters, B-2
worksheet errors, B-2

writing, 5-9

enable ADF Desktop Integration

executing, 4-9

Enabled property, A-17, A-18
error handling using action sets, 8-11
error-reporting

adding detail, 12-6

component actions, using, 12-3

EL expression, using, 12-2

in an integrated Excel workbook, 12-2

errors EL expression property, B-2
Event property, A-26
Events properties

Event property, A-26
InvokeOnceOnly property, A-25
listed, A-26

Events worksheet property, 8-6, A-25
Excel date format, 9-3
Excel Document Actions

value to display web pages, 8-17
web pages, displaying, 8-19

Excel formulas

calculated cells, 8-38 to 8-40

creating columns with values generated by,
EL expressions, B-1

styles, evaluating EL expressions to apply,

Excel HYPERLINK function, 8-36
Excel OFFSET function, 8-40
Excel SUM function, 8-40
Excel T function, 8-36

Excel workbook

adding a worksheet to integrate with a web
application, 4-12

ADF Table components, inserting, 7-3

administration tool, changing settings, D-1

appearance, configuring, 9-1 to 9-12

associating with page definition files, 4-12

branding information, 9-11

configuring a new workbook, 4-9

conversion utility, D-1, H-1

creating page definition files, 4-6

databound search form, 8-25

deployment, 14-1 to 14-5

8-39

9-5

downloading data to ADF Table components, 7-8
forms, creating, 8-23 to 8-26
HTTP filter parameters, 14-4
metadata, exporting, C-7
MIME mapping, 4-2
publication, 14-2to ??
published, changing at runtime, 1-3
reloading a page definition file, 4-7
search form, creating, 8-23
storing in a desktop integration project, 4-9
styles, predefined, 9-2
styles, using, 9-1to 9-12
supported file formats, 3-2
synchronized with web applications, 8-20
test mode, running in, 13-3
testing, 13-1to 13-3
troubleshooting, C-1to C-7
version information, 9-11
web pages, displaying, 8-17 to 8-19
web pages, invoking, 14-5
Expression Builder, invoking, 5-9

F

FailureActionID property, 7-17,8-11, A-8, A-16
FailureMessage property, 8-10, A-18
file formats
.x1sm file format, 3-2
.x1sx file format, 3-2
filters
adfBindings, 4-2
adfdiExcelDownload, 4-2
ADFLibraryFilter, 4-3,E-6
bindings filter, 4-2
HTTP filter, E-1
FlagAllRows action, A-14
flagged row, 7-16,7-19 to 7-20
forms
Excel workbook, creating in, 8-23 to 8-26
search form, 8-23to 8-26
web application, invoking from, 8-25
form-type component, defined, 6-1
formulas, use of Excel, 8-38 to 8-40
Fusion web applications
application template, 4-2
synchronized with an Excel workbook, 8-20

H

hash code value for metadata tamper-check, 11-3
HeaderLabel property, 7-8, A-11, A-16
HeaderStyleName property, 7-8, A-11, A-16
HTTP filter name property, E-3
HTTP filter parameters for an Excel workbook, 14-4
HTTP filters
adfdiRemote servlet, adding, E-3
parameters, configuring, E-3
HYPERLINK Excel function, 8-36
hyperlink, configuring components to display
dynamically generated, 8-37

ID property, A-12, A-16
IDAttributeID property, A-29
importing data from a non-integrated Excel
worksheet, I-2
Initialize action, A-14
Insert operation, 7-27
InsertAfterRowActionID property, A-8
InsertBeforeRowActionID property, 7-7, A-9
InsertComponent property, 7-27, A-12
InsertRowEnabled property, 7-6,7-7, A-9
InsertRowsAfterUploadEnabled
property, 7-7, A-9

InsertUsesUpdate property, 7-7, A-13
installation

ADF Desktop Integration, for

developers, 3-1to3-7

ADF Desktop Integration, for end users, 14-1
integrated Excel workbook

adding, JDeveloper, 4-8

localizing set up, 3-7

migrating, 3-6
integrated Excel workbook, defined, 1-2
internationalization, 10-1 to 10-6
Internet Explorer

proxy settings, 3-4

supported version, 3-2
InvokeOnceOnly property, A-25

J

j2ee-logging.xml configuration file, C-2
.JAR files
adf-desktop-integration-admin-tool. ja
r file, D-1,E-3
adf-desktop-integration.jar file, 4-2,
E-1
adf-desktop-integration-model-api.jar,
4-2
resourcebundle.jar file, 4-2
Java data types supported by desktop
integration, G-1to G-2
JDeveloper project, adding desktop integration, 4-2

K

Key Column, 7-22
Key column, 7-2

L

label attribute control hint, B-4
Label property

described, A-2

evaluating, 6-4

retrieving string key value, 9-8

value, updating, 9-9
labels

Label property

retrieving string key values, 9-8

Index-5

string key from resource bundle, 9-8
layout of components in Excel workbook, 9-1 to 9-12
Limitations of integrated Excel workbook at

runtime, I-4
LimitBatchSize property, 7-19, A-8
list of values

in ADF Table component, 7-23
list of values, creating dependent, 8-28 to 8-30
List property, A-6
ListID property, 6-7, A-6
literal values in EL expressions, B-1
locales

Excel workbook, 10-1

regional and language options, 9-3
localization

described, 10-1 to 10-6

user-visible strings, 10-1
log files

client-side generation, C-6

client-side logging, C-7

generating, C-2

server-side generation, C-2

server-side logging levels, C-3
logging tools, C-3
login

login mechanism, 11-2

types of authentication, 11-2
Login workbook action, A-20
Login.windowSize workbook property, A-22
Logout workbook action, A-20

macros, use of in an integrated Excel workbook, 8-41
managed beans, configuring ADF components to
display output, 6-9
mandatory attribute control hint, B-4
MarkAllRowsChanged action, A-14
MarkAllRowsUnchanged action, A-14
Master Price List module
Fusion web application
download integrated Excel workbook, 2-5
login, 2-3
overview, 2-3
search product, 2-6
toolbar, 2-4
web interface, 2-3
integrated Excel workbook
download data, 2-8
log in, 2-7
overview, 2-7
search product, 2-9
upload data, 2-10
overview, 2-1
setup, 2-1
user profiles, 2-3
Message property, A-18
metadata
exporting from Excel workbook, C-7
tamper check, 11-3

Index-6

Method property, 8-5
migrating an integrated Excel workbook, 3-6
MIME mapping for an Excel workbook, 4-2
ModelDrivenColumnComponent

creating, 7-25

support for dependent list of values, 7-26
modes

design, 5-1

test, 5-1

(o)

offline

functionality available, 15-1

working, 15-1 to 15-4
OFFSET Excel function, 8-40
OKButtonLabel property, A-18
Oracle ADF tab

reloading page definition files, 4-7
Oracle ADF tab commands

creating, 8-14

Runtime Ribbon tab property, 8-14
OutputText property, A-16
overridable resources, 10-4

P

Page Definition property, A-26
page definition files
associating with an Excel workbook, 4-12
creating for a desktop integration project, 4-6
EL expression syntax, 4-8
Excel workbooks, 4-5
exposing bindings, 5-5
reloading in an Excel workbook, 4-7
requirements for ADF Table components, 7-2
selecting, 5-12
Page property, A-19
PageDefinition property, 5-12
Parameters workbook property, A-22
Parameters worksheet property, A-27
pick dialogs
ADF Table component, inserting values, 8-21
ADF Table component, invoking from, 8-21
web page, 8-21
popup dialog, invoking, 8-18 to 8-19
Position property, A-2
predefined style, 9-2
Pre-insert data, 7-10
Project workbook property, 4-10, A-23
properties
action set, A-16
ADF Button component, A-7
ADF Input Text component, A-4
ADF Label component, A-5
ADF List of Values component, A-6
ADF Output Text component, A-5
ADF Read-only Table component, A-15
ADF Table component, A-7
BatchOptions properties, 7-13

Confirmation action, A-18
Dialog action, A-19
TreeNodeList subcomponent, A-6
WebPagesFolder workbook property, 4-11,
5-11,11-3
workbook, 5-5
.properties resource bundle type, 10-5
property inspector
displaying, 5-2
overview, b5-7
property values, validating, C-1
publish tool, 14-2
publishing
changing a published Excel workbook at
runtime, I-3
Excel workbook, 14-2to ??
publishing an integrated Excel workbook from
Excel, 14-2
publishing an integrated Excel workbook using
publish tool, 14-2

R

readOnly attribute control hint, B-4
readOnly EL expression property, B-2
ReadOnly property, 9-10, A-2
regional and language options, 9-3
RemoteServletPath workbook property, A-23
Removing personal information, I-3
reserved resource bundle

defined, 10-2

overriding, 10-4

string keys, F-1to F-3
resource bundles

caching, 10-5

EL expression syntax, 10-5

EL expressions, B-2

override the reserved, 10-4

.properties resource bundle type, 10-5

registering, 10-2

reserved resource bundle, 10-2

Resources property, A-23

retrieving string keys for labels, 9-8

.rts resource bundle type, 10-5

string keys in reserved resource

bundle, F-1toF-3

supported types, 10-5

working with, 10-1 to 10-5

.x1f resource bundle type, 10-5
resourcebundle. jar file, 4-2
Resources workbook property, 10-2, A-23
Ribbon Commands property, A-26
RowActions properties

ADF Table component, 7-7

listed, A-8

method action control bindings, 7-3
RowActions.FailureActionID property, 7-14
rowCount EL expression property, B-2
RowData properties

CachedAttributes property, 8-21, A-10, A-27

ChangeIndicatorAttributelID
property, A-10, A-28
RowDownSync action, A-15
RowInconsistentExceptions error
messages, 12-7
RowLimit properties
ADF Read-only Table component, 7-29
ADF Table component, 7-5
description, A-2
usage, 7-31
RowLimit property, A-11
RowLimit.Enabled property, 7-31
RowLimit .MaxRows property, 7-31
RowLimit .WarningMessage property, 7-32
RowUpSync action, A-15
.rts resource bundle type, 10-5
Runtime Ribbon Tab workbook property, 8-14,
A-23

S

search forms
creating, 8-23 to 8-26
databound in an Excel workbook, 8-25
Excel workbook, in, 8-23
invoking from a web application, 8-25
security
data security, 11-7
Excel’s security features, 11-7
securing an Excel workbook, 11-1
SelectActionSet action set
usage, 8-2
worksheet ribbon button, 8-2
server data context, reetablishing between
sessions, 15-2 to 15-4
server ping test, 13-2
ServerContext properties
CachceDataContexts property, A-28
IDAttributeID property, A-29
ServerContext property, A-28
server-side logging levels, C-3
server-side validation, 12-1
servlet
adfdiRemote servlet, 4-2,C-1
servlet class property, E-2
servlet name property, E-2
ShareFrame property, 8-19,8-20, A-19
Shutdown worksheet event, 8-6, A-26
span elements
ADFdi_AbortUploadOnFailure, 7-15
ADFdi_CloseWindow, 7-15,8-18
ADFdi_DownLoadAfterUpload, 7-15
StartBatchActionID property, 7-19, A-8
Startup worksheet event, 8-6, A-26
Status action set property, 8-7
status message, displaying during action set
execution, 8-7
Status properties
Enabled, A-18
Message, A-18

Index-7

Title, A-18
string keys
label, associating with, 9-8
reserved resource bundle, F-1to F-3
StyleName property, A-4
styles
_ADFDI_FormBottomStyle, 9-2
_ADFDI_FormDoubleClickCellStyle, 9-2
_ADFDI_FormTopStyle, 9-2
_ADFDI_HeaderStyle, 9-2
_ADFDI_LabelStyle, 9-2
_ADFDI_OutputTextStyle, 9-2
_ADFDI_ReadOnlyTableStyle, 9-2
_ADFDI_TableCellROStyle, 9-2
_ADFDI_TableCellStyle, 9-2
_ADFDI_TableChangedColumnStyle, 9-2
_ADFDI_TableDoubleClickCellStyle, 9-2
_ADFDI_TableFlagColumnStyle, 9-2
_ADFDI_TriangleHeaderStyle, 9-2
_AFDI_InputTextStyle, 9-2
applying, 9-4
EL expression, applying using, 9-5
Excel date format, 9-3
Excel workbook, configuring, 9-1 to 9-12
locale sensitive, applying, 10-1
Oracle ADF component properties, 9-2
predefined, listed, 9-2
usability, 9-10
SuccessActionID property, 7-18,8-12, A-16
SuccessMessage property, 8-10, A-18
SuM Excel function, 8-40

T

T Excel function, 8-36
table-type component, defined, 7-2
tamper check
configuring, 11-3
disabling, 11-4
hash code value, 11-3
Target property, 8-19, A-19
technology scope
ADF Desktop Integration, 4-1
ADF Library Web Application Support, 4-1
Temporary Row Object, H-1
testing an integrated Excel workbook, 13-1 to 13-3
third-party software, required, 3-3
Title property, A-18, A-19, A-24
tracking changes in an ADF Table component, 7-34
TreeID property, 7-9,A-11, A-15
TreeNodeID property, 7-27
TreeNodeList subcomponent
overview, A-6
properties, listed, A-6
troubleshooting an Excel workbook, C-1to C-7

U

UnflagAllRows action, A-15
UniqueAttribute property, A-11

Index-8

Update operation, 7-27
updateable attribute control hint, B-4
UpdateComponent property, 7-7,7-27,A-13
UpdateRowActionID property, A-9
UpdateRowEnabled property, A-9
upload
creating a custom upload dialog, 7-15
data from an ADF Table component, 7-11 to 7-16
invoking Upload action, 7-12
Upload action, 7-21
upload failure, 7-14
Upload action, A-15
UpSync worksheet action, 6-5, A-24
URL pattern for adfdiRemote servlet, E-2
usability, apply styles for, 9-10
using navigation buttons, 6-11
using publish tool with ANT, 14-3

\'}

validation
ADF Model Layer, 12-1
client-side validation, 12-2
property values by property inspector, C-1
server-side validation, 12-1
Value property, A-4
version information for an integrated Excel
workbook, 9-11
ViewAboutDialog workbook action, 9-11, A-21
ViewController project, 4-2
Visible property, A-13, A-23

w

web applications
deploying Excel workbook with, 14-4
desktop integration, verifying support, C-1
using workbook while disconnected, 15-1 to 15-4
web browser control, 11-2
web pages
display options, popup dialog, 8-17
displaying in Excel Document Actions, 8-19
Excel workbook, invoking, 14-5
Excel workbook, invoking from, 8-17 to 8-19
invoking, 5-10
pick dialog, inserting values from, 8-21
popup dialog, displaying, 8-18 to 8-19
WebAppRoot workbook property, 4-11, A-24, C-2
WEB-INF directory, location of, 11-3
WebPagesFolder workbook property, 4-11,5-11,
11-3, A-24
web.xml file
configuration, E-1to E-7
example entries, E-6
modifying, 4-3
workbook actions
listed, A-20
Workbook Commands property, 8-14
workbook commands for the runtime ribbon tab,
creating, 8-15to 8-16

Workbook Commands property, A-24
workbook initialization parameters, EL
expressions, B-2

workbook properties

ApplicationHomeFolder, 4-10,5-11,11-3

listed, A-22

Project, 4-10

reset WorkbookID, 11-3

WebAppRoot, 4-11

WebPagesFolder, 4-11,5-11,11-3
WorkbookID workbook property, 11-3, A-24
worksheet actions

DownSync, 6-5

listed, A-24

UpSync, 6-5
worksheet command buttons, creating, 8-16 to 8-17
Worksheet Commands property, 8-15
worksheet error, retrieving using EL

expressions, B-2

worksheet events

action set, 8-2

action set, invoking an, 8-6

Activate, 8-6

Deactivate, 8-6

listed, A-26

Shutdown, 8-6

Startup, 8-6
worksheet properties

editing, 4-12

listed, A-25

PageDefinition property, 5-12
worksheet protection, 9-13
WorksheetMethod action in action sets, 8-2

X

.x1f resource bundle type, 10-5
.x1sm file format, 3-2
.x1sx file format, 3-2

Index-9

Index-10

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to ADF Desktop Integration
	1.1 Introduction to ADF Desktop Integration
	1.2 About ADF Desktop Integration with Microsoft Excel
	1.2.1 Overview of Creating an Integrated Excel Workbook
	1.2.2 The Advantages of Integrating Excel with a Fusion Web Application

	2 Introduction to the ADF Desktop Integration Sample Application
	2.1 Introduction to the Master Price List Module
	2.2 Setting Up and Executing the Master Price List Module
	2.3 Overview of the Fusion Web Application in the Master Price List Module
	2.3.1 Log on to the Fusion Web Application in the Master Price List Module
	2.3.2 Introduction to the Fusion Web Application in the Master Price List Module
	2.3.3 Using the Matching Products Toolbar
	2.3.3.1 How to Download Integrated Excel Workbooks
	2.3.3.2 How to Sort, Hide and Reorder Columns
	2.3.3.3 Other Toolbar Operations

	2.3.4 Searching a Product

	2.4 Overview of the Integrated Excel Workbooks in the Master Price List Module
	2.4.1 Log on to the Fusion Web Application from an Integrated Excel Workbook
	2.4.2 Download Rows of Data About Product Pricing
	2.4.3 Simple Search for Products in the Workbooks
	2.4.4 Advanced Search for Products in the Edit Price List Workbook
	2.4.5 Modify Product Pricing Information in the Edit Price List Workbook
	2.4.6 Upload Modified Product Information to the Fusion Web Application

	3 Setting Up Your Development Environment
	3.1 Introduction to Setting Up Your Development Environment
	3.2 Required Oracle ADF Modules and Third-Party Software
	3.3 Enabling Microsoft .NET Programmability Support
	3.4 Allowing ADF Desktop Integration to Access Microsoft Excel
	3.5 Installing ADF Desktop Integration
	3.5.1 How to Set Up ADF Desktop Integration

	3.6 Removing ADF Desktop Integration
	3.7 Upgrading ADF Desktop Integration
	3.7.1 How to Migrate an Integrated Excel Workbook to the Current Version of ADF Desktop Integration

	3.8 Using ADF Desktop Integration on a System with Multiple Instances of JDeveloper
	3.9 Localizing the Setup of Visual Studio Tools for Office

	4 Preparing Your Integrated Excel Workbook
	4.1 Introduction to Preparing Your Integrated Excel Workbooks
	4.2 Adding ADF Desktop Integration to a Fusion Web Application
	4.2.1 How to Add ADF Desktop Integration to Your JDeveloper Project
	4.2.2 What Happens When You Add ADF Desktop Integration to Your JDeveloper Project
	4.2.3 What Happens When You Deploy ADF Desktop Integration Enabled Fusion Web Application from JDeveloper
	4.2.3.1 Deploying your Fusion Web Application on Oracle WebLogic Server
	4.2.3.2 Deploying your Web Application on IBM WebSphere Application Server

	4.3 Working with Page Definition Files for an Integrated Excel Workbook
	4.3.1 How to Create a Page Definition File for an Integrated Excel Workbook
	4.3.2 What Happens When You Create a Page Definition File
	4.3.3 Reloading a Page Definition File in an Excel Workbook
	4.3.4 What You May Need to Know About Page Definition Files in an Integrated Excel Workbook

	4.4 Adding Integrated Excel Workbook to a Fusion Web Application
	4.4.1 How to Add an Integrated Excel Workbook in JDeveloper
	4.4.2 How to Enable ADF Desktop Integration in a Workbook
	4.4.3 How to Configure a New Integrated Excel Workbook
	4.4.4 How to Add Additional Worksheets to an Integrated Excel Workbook

	5 Getting Started with the Development Tools
	5.1 Introduction to Development Tools
	5.2 Oracle ADF Tab
	5.3 ADF Desktop Integration Designer Task Pane
	5.4 Using the Bindings Palette
	5.5 Using the Components Palette
	5.6 Using the Property Inspector
	5.7 Using the Binding ID Picker
	5.8 Using the Expression Builder
	5.9 Using the Web Page Picker
	5.10 Using the File System Folder Picker
	5.11 Using the Page Definition Picker
	5.12 Using the Collection Editors

	6 Working with ADF Desktop Integration Form-Type Components
	6.1 Introduction to ADF Desktop Integration Form-Type Components
	6.2 Inserting an ADF Button Component
	6.3 Inserting an ADF Label Component
	6.4 Inserting an ADF Input Text Component
	6.5 Inserting an ADF Output Text Component
	6.6 Inserting an ADF List of Values Component
	6.7 Displaying Output from a Managed Bean in an ADF Component
	6.7.1 How to Display Output from a Managed Bean
	6.7.2 What Happens at Runtime When an ADF Component Displays Output from a Managed Bean

	6.8 Displaying Concatenated or Calculated Data in Components
	6.8.1 How to Configure a Component to Display Calculated Data

	6.9 Using Navigation Buttons

	7 Working with ADF Desktop Integration Table-Type Components
	7.1 Introduction to ADF Desktop Integration Table-Type Components
	7.2 Page Definition Requirements for an ADF Table Component
	7.3 Inserting an ADF Table Component into an Excel Worksheet
	7.3.1 How to Add a Column in an ADF Table Component

	7.4 Configuring an ADF Table Component to Update Existing Data
	7.4.1 How to Configure an ADF Table Component to Update Data
	7.4.2 What Happens at Runtime When an ADF Table Component Updates Data

	7.5 Configuring an ADF Table Component to Insert Data
	7.5.1 How to Configure an ADF Table Component to Insert Data Using a View Object’s Operations
	7.5.2 How to Insert a New Row in a Polymorphic View Object

	7.6 Configuring Oracle ADF Component to Download Data to an ADF Table Component
	7.6.1 How to Configure an Oracle ADF Component to Download Data to an ADF Table Component
	7.6.2 What Happens at Runtime When an ADF Table Component Downloads Data

	7.7 Configuring a Worksheet to Download Pre-Insert Data to an ADF Table Component
	7.7.1 How to Configure a Worksheet to Download Pre-Insert Data to an ADF Table Component
	7.7.2 What Happens at Runtime When an ADF Table Component Downloads Pre-Insert Data

	7.8 Configuring an Oracle ADF Component to Upload Changes from an ADF Table Component
	7.8.1 How to Configure an Oracle ADF Component to Upload Data from an ADF Table Component
	7.8.2 What Happens at Runtime When an ADF Table Component Uploads Data
	7.8.3 What Happens at Runtime When a ReadOnly EL Expression is Evaluated During Upload
	7.8.4 What Happens at Runtime When an Upload Fails
	7.8.5 How to Create a Custom Upload Dialog
	7.8.6 What Happens at Runtime When a Custom Upload Dialog Appears

	7.9 Configuring an ADF Table Component to Delete Rows in the Fusion Web Application
	7.9.1 How to Configure an ADF Table Component to Delete Rows in the Fusion Web Application
	7.9.2 What Happens at Runtime When an ADF Table Component Deletes Rows in a Fusion Web Application

	7.10 Batch Processing in an ADF Table Component
	7.10.1 Configuring Batch Options for an ADF Table Component
	7.10.2 Row Flagging in an ADF Table Component

	7.11 Special Columns in the ADF Table Component
	7.12 Configuring ADF Table Component Key Column
	7.12.1 How to Configure Key Column
	7.12.2 How to Manually Add Key Column At Design Time

	7.13 Creating a List of Values in an ADF Table Component Column
	7.13.1 How to Create a List of Values in an ADF Table Component Column
	7.13.2 What Happens at Runtime When a Column Renders a List of Values

	7.14 Adding a ModelDrivenColumnComponent Subcomponent to Your ADF Table Component
	7.15 Adding a Dynamic Column to Your ADF Table Component
	7.15.1 How to Configure a Dynamic Column
	7.15.2 What Happens at Runtime When Data Is Downloaded or Uploaded
	7.15.3 How to Specify Header Labels for Dynamic Columns
	7.15.4 How to Specify Styles for Dynamic Columns According to Attribute Data Type

	7.16 Creating an ADF Read-Only Table Component
	7.16.1 How to Insert an ADF Read-only Table Component
	7.16.2 How to Manually Add a Column to the ADF Read-only Table Component

	7.17 Limiting the Number of Rows Your Table-Type Component Downloads
	7.17.1 How to Limit the Number of Rows a Component Downloads
	7.17.2 What Happens at Runtime When You Limit the Number of Rows a Component Downloads

	7.18 Clearing the Values of Cached Attributes in an ADF Table Component
	7.18.1 How to Clear the Values of Cached Attributes in an ADF Table Component
	7.18.2 What Happens at Runtime When the ADF Table Component Clears Cached Values

	7.19 Tracking Changes in an ADF Table Component

	8 Adding Interactivity to Your Integrated Excel Workbook
	8.1 Introduction to Adding Interactivity to an Integrated Excel Workbook
	8.2 Using Action Sets
	8.2.1 How to Invoke an ADF Model Action in an Action Set
	8.2.2 How to Invoke Component Actions in an Action Set
	8.2.3 What You May Need to Know About an Action Set Invoking a Component Action
	8.2.4 How to Invoke an Action Set from a Worksheet Event
	8.2.5 How to Display a Status Message While an Action Set Executes
	8.2.6 What Happens at Runtime When an Action Set Displays a Status Message
	8.2.7 How to Provide an Alert After the Invocation of an Action Set
	8.2.8 What Happens at Runtime When an Action Set Provides an Alert
	8.2.9 How to Configure Error Handling for an Action Set
	8.2.10 How to Invoke a Confirmation Action in an Action Set
	8.2.11 What Happens at Runtime When an Action Set Provides a Confirmation

	8.3 Configuring the Runtime Ribbon Tab
	8.3.1 How to Define a Workbook Command Button for the Runtime Ribbon Tab
	8.3.2 How to Configure a Worksheet Command for the Runtime Ribbon Tab

	8.4 Displaying Web Pages from a Fusion Web Application
	8.4.1 How to Display a Web Page in a Popup Dialog
	8.4.2 How to Display a Web Page in ADF Desktop Integration Runtime Task Pane
	8.4.3 What You May Need to Know About Displaying Pages from a Fusion Web Application

	8.5 Inserting Values in ADF Table Columns from a Web Page Pick Dialog
	8.6 Creating ADF Databound Search Forms in an Integrated Excel Workbook
	8.6.1 How to Create a Simple Search Form in an Integrated Excel Workbook
	8.6.2 How to Create an Advanced Search Form in an Integrated Excel Workbook

	8.7 Adding a Form to an Integrated Excel Workbook
	8.8 Creating Dependent Lists of Values in an Integrated Excel Workbook
	8.8.1 How to Create a Dependent List of Values in an Excel Worksheet
	8.8.2 What Happens at Runtime When a Dependent List of Values Renders in an Excel Worksheet
	8.8.3 How to Create a Dependent List of Values in an ADF Table Component’s Columns
	8.8.4 What Happens at Runtime When a Dependent List of Values Renders in an ADF Table Component’s Columns
	8.8.5 Creating a Dependent List of Values in an Excel Worksheet and an ADF Table Component Column
	8.8.6 What Happens at Runtime When a Dependent List of Values Renders in an Excel Worksheet and an ADF Table Component Column

	8.9 Using EL Expression to Generate an Excel Formula
	8.9.1 How to Configure a Cell to Display a Hyperlink Using EL Expression
	8.9.2 What Happens at Runtime When a Cell Displays a Hyperlink using EL Expression

	8.10 Using Calculated Cells in an Integrated Excel Workbook
	8.10.1 How to Create a Column That Displays Values Generated by an Excel Formula
	8.10.2 What Happens at Runtime When a Column Displays Values Generated by an Excel Formula
	8.10.3 How to Calculate the Sum of a Table-Type Component Column
	8.10.4 What Happens at Runtime When Excel Calculates the Sum of a Table-Type Component Column

	8.11 Using Macros in an Integrated Excel Workbook

	9 Configuring the Appearance of an Integrated Excel Workbook
	9.1 Introduction to Configuring the Appearance of an Integrated Excel Workbook
	9.2 Working with Styles
	9.2.1 How to Apply a Style to an Oracle ADF Component
	9.2.2 What Happens at Runtime When a Style Is Applied to an Oracle ADF Component

	9.3 Applying Styles Dynamically Using EL Expressions
	9.3.1 What Happens at Runtime When an EL Expression Is Evaluated
	9.3.2 How to Write an EL Expression That Applies a Style at Runtime
	9.3.3 What You May Need to Know About EL Expressions That Apply Styles

	9.4 Using Labels in an Integrated Excel Workbook
	9.5 Using Styles to Improve the User Experience
	9.6 Branding Your Integrated Excel Workbook
	9.6.1 How to Brand an Integrated Excel Workbook
	9.6.2 What Happens at Runtime to the Branding Items in an Integrated Excel Workbook

	9.7 Using Worksheet Protection
	9.7.1 How to Enable Worksheet Protection
	9.7.2 What Happens at Runtime When Worksheet Protection is Enabled
	9.7.3 What You May Need to Know About Worksheet Protection

	10 Internationalizing Your Integrated Excel Workbook
	10.1 Introduction to Internationalizing Your Integrated Excel Workbook
	10.2 Using Resource Bundles in an Integrated Excel Workbook
	10.2.1 How to Register a Resource Bundle in an Integrated Excel Workbook
	10.2.2 How to Replace String Key Values from the Reserved Resource Bundle
	10.2.3 How to Override Resources That Are Not Configurable
	10.2.4 What Happens at Runtime When You Override Resources That Are Not Configurable
	10.2.5 What You May Need to Know About Resource Bundles

	10.3 Localization in ADF Desktop Integration

	11 Securing Your Integrated Excel Workbook
	11.1 Introduction to Security In Your Integrated Excel Workbook
	11.2 Authenticating the Excel Workbook User
	11.2.1 What Happens at Runtime When the Login Method Is Invoked
	11.2.2 What Happens at Runtime When the Logout Method Is Invoked

	11.3 Checking the Integrity of an Integrated Excel Workbook’s Metadata
	11.3.1 How to Reset the Workbook ID
	11.3.2 How to Disable the Metadata Tamper-Check in the Fusion Web Application
	11.3.3 How to Allow Missing Entries in the ADF Desktop Integration Client Registry
	11.3.4 What Happens When the Metadata Tamper-Check is Performed

	11.4 What You May Need to Know About Securing an Integrated Excel Workbook

	12 Adding Validation to an Integrated Excel Workbook
	12.1 Introduction to Adding Validation to Integrated Excel Workbook
	12.2 Providing Server-Side Validation for an Integrated Excel Workbook
	12.3 Providing Client-Side Validation for an Integrated Excel Workbook
	12.4 Error Reporting in an Integrated Excel Workbook
	12.4.1 Error Reporting Using EL Expressions
	12.4.2 Error Reporting Using Component Actions

	12.5 Providing a Row-by-Row Status on an ADF Table Component
	12.6 Adding Detail to Error Messages in an Integrated Excel Workbook
	12.7 Handling Data Conflicts When Uploading Data from a Workbook
	12.7.1 How to Configure a Workbook to Handle Data Conflicts When Uploading Data
	12.7.2 What Happens at Runtime When You Configure a Workbook to Handle Data Conflicts

	13 Testing Your Integrated Excel Workbook
	13.1 Introduction to Testing Your Integrated Excel Workbook
	13.2 Testing Your Fusion Web Application
	13.3 Testing Your Integrated Excel Workbook

	14 Deploying Your Integrated Excel Workbook
	14.1 Introduction to Deploying Your Integrated Excel Workbook
	14.2 Making ADF Desktop Integration Available to End Users
	14.3 Publishing Your Integrated Excel Workbook
	14.3.1 How to Publish an Integrated Excel Workbook from Excel
	14.3.2 How to Publish an Integrated Excel Workbook Using the Command Line Publish Tool
	14.3.3 What Happens When You Publish an Integrated Excel Workbook

	14.4 Deploying a Published Workbook with Your Fusion Web Application
	14.5 Passing Parameter Values from a Fusion Web Application Page to a Workbook
	14.5.1 How to Configure the Fusion Web Application’s Page to Pass Parameters
	14.5.2 How to Configure the Page Definition File for the Worksheet to Receive Parameters
	14.5.3 How to Configure Parameters Properties in the Integrated Excel Workbook
	14.5.4 What Happens at Runtime When a Fusion Web Application Page Passes Parameters to an Integrated Excel Workbook

	15 Using an Integrated Excel Workbook Across Multiple Web Sessions and in Disconnected Mode
	15.1 Introduction to Disconnected Workbooks
	15.2 Restore Server Data Context Between Sessions
	15.2.1 How to Configure an Integrated Excel Workbook to Restore Server Data Context
	15.2.2 What Happens at Runtime When an Integrated Excel Workbook Restores Server Data Context

	15.3 Caching Lists of Values for Use in Disconnected Mode

	A ADF Desktop Integration Component Properties and Actions
	A.1 Frequently Used Properties in the ADF Desktop Integration
	A.2 ADF Input Text Component Properties
	A.3 ADF Output Text Component Properties
	A.4 ADF Label Component Properties
	A.5 ADF List of Values Component Properties
	A.6 TreeNodeList Subcomponent Properties
	A.7 ModelDrivenColumnComponent Subcomponent Properties
	A.8 ADF Button Component Properties
	A.9 ADF Table Component Properties and Actions
	A.9.1 ADF Table Component Properties
	A.9.2 ADF Table Component Column Properties
	A.9.3 ADF Table Component Actions

	A.10 ADF Read-only Table Component Properties and Actions
	A.11 Action Set Properties
	A.11.1 Confirmation Action Properties
	A.11.2 Dialog Action Properties

	A.12 Workbook Actions and Properties
	A.13 Worksheet Actions and Properties

	B ADF Desktop Integration EL Expressions
	B.1 Guidelines for Creating EL Expressions
	B.2 EL Syntax for ADF Desktop Integration Components
	B.3 Attribute Control Hints in ADF Desktop Integration

	C Troubleshooting an Integrated Excel Workbook
	C.1 Verifying That Your Fusion Web Application Supports ADF Desktop Integration
	C.2 Verifying End-User Authentication for Integrated Excel Workbooks
	C.3 Generating Log Files for an Integrated Excel Workbook
	C.3.1 About Server-Side Logging
	C.3.2 About Client-Side Logging
	C.3.2.1 How to Configure ADF Desktop Integration to Save Logs
	C.3.2.2 About the ADF Desktop Integration Configuration File
	C.3.2.3 How to Configure Logging Using User Environment Variables
	C.3.2.4 What You May Need to Know About the adfdi-common Object

	C.4 Exporting Excel Workbook Metadata
	C.5 Common ADF Desktop Integration Problems

	D Using Workbook Management Tools
	D.1 Using the Workbook Administration Tool

	E ADF Desktop Integration Settings in the Web Application Deployment Descriptor
	E.1 Configuring the ADF Desktop Integration Servlet
	E.2 Configuring the ADF Desktop Integration Excel Download Filter
	E.3 Examples in a Deployment Descriptor File

	F String Keys in the Overridable Resources
	G Java Data Types Supported By ADF Desktop Integration
	H Using ADF Desktop Integration Model API
	H.1 About the Temporary Row Object
	H.2 About ADF Desktop Integration Model API
	H.2.1 How to Add ADF Desktop Integration Model API Library to Your JDeveloper Project

	H.3 ADF Desktop Integration Model API Classes and Methods
	H.3.1 The oracle.adf.desktopintegration.model.ModelHelper Class
	H.3.1.1 The getAdfdiTempChildRow Method
	H.3.1.2 The getAdfdiTempRowForView Method
	H.3.1.3 The getChildViewDef Method

	I End User Actions
	I.1 Installing the Runtime Edition of ADF Desktop Integration
	I.2 Importing Data from a Non-Integrated Excel Worksheet
	I.3 Removing Personal Information
	I.4 Changing an Integrated Excel Workbook at Runtime
	I.5 Limitations of Integrated Excel Workbook at Runtime
	I.6 Using An Integrated Excel Workbook

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X

