ORACLE

Oracle® Fusion Applications
Developer's Guide for Oracle Enterprise Scheduler

11g Release 1 (11.1.1.5)
E10142-01

August 2011

Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler 11g Release 1 (11.1.1.5)
E10142-01

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Thomas Van Raalte

Contributors: Kirk Bittler, Weifeng Bao, Shelly Butcher, David Craft, Diane Davison, Carlos Fuentes, Charles
Hall, Vaibhav Lole, Solomon Nelson, Shengsong Ni, Rachna Shukla, Steven Traut, Venkat Vengala, Aaron
Weisberg

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

Preface

AUAIEIICE ...ttt ettt ettt et et e e te e s e eseessessaesseessesbeessasbeessesbeessasseessesssensesreenbesseensenreans
Documentation AcCesSIDIlityccociiiiiiiiiiiiiiiiii e
Related DOCUIMENTESccueeviriiiiieieieietetetete et e e s sessesbeste st esseseeseasaesaasassessessessessessessessassessnsessensenses
CONVENTIONS ..vvieitieiieiieesteeteesteeteesttessteesteesteesteesseeassaeassassseesssaesseesssessseesssesssessssesssessseesseesssessssessseessesans

1 Introduction to Oracle Enterprise Scheduler

1.1 About Oracle Enterprise Scheduler..............cooooiiiiii e
1.2 Oracle Enterprise Scheduler Overview for Application Developersc.c.ccccccvueiiurnnen.
1.2.1 Introduction to Working with Oracle Enterprise Scheduler at Design-time...............
1.2.2 Introduction to Working with Oracle Enterprise Scheduler at Runtime
1.2.3 Oracle Enterprise Scheduler Job Requests.........ccccccocuiiiiiiiiiiiniiiiiiiiiiiciccicccce
1.2.4 Overview oOf INtegration SLEPScccueuiuiueuiiiiiiiiiiccceeeeeee e
1.3 Fixed-Rate Scheduling with Oracle Enterprise Scheduler.............ccccooooiin

2 Verifying the Oracle Enterprise Scheduler Installation

2.1 Introduction to Verifying the Oracle Enterprise Scheduler Installation.............cccc.co......
2.2 How to Verify the Oracle Enterprise Scheduler Installation Using a Browser..................
2.3 How to Programmatically Verify the Oracle Enterprise Scheduler Installation................
24 What Happens When You Verify the Oracle Enterprise Scheduler Installation...............
2.5 What Happens at Runtime: How the Oracle Enterprise Scheduler Installation is
Verified ..o s

3 Use Case Oracle Enterprise Scheduler Sample Application

3.1 Introduction to the Scheduler Sample Applicationc.ccooeeeeiiiiniiniieece
3.2 Creating the Application and Projects for Scheduler Sample Application.............ccc.......
3.2.1 How to Create the EssDemoApp Application ..o
3.2.2 How to Create a Project in the Scheduler Sample Applicationccccococevviiiicnnnnne.
3.2.3 How to Set Project Properties for Enterprise Scheduler ...,
3.3 Creating a Java Implementation Class for the Sample Application...........ccccovirrreinnne.
3.3.1 How to Create a Java Class Using the Executable Interface............ccccooovvveriiinicnnnnn.
3.3.2 What Happens When You Create a Java Class That Implements the Executable
INtEIface ..cocvoioiciiiici s

3.3.3 What You Need to Know About the Executable Interface...........ccccccoevviiiiinininnnnns
3.4 Adding Application Code to Submit Oracle Enterprise Scheduler Job Requests.............

3.4.1 How to Add Required Libraries to Projectccccooeveiiiiniiiiiii 3-10

3.4.2 How to Create the EssDemo Servlet ..o 3-10
3.5 Creating Metadata for Scheduler Sample Application...........cccocevuvvevrvvincnvrninenes 3-13
3.5.1 How to Create a Job Type for Java ..o 3-13
3.5.2 How to Create a Job Definition for Javaccoeeerereneiieieieeeeeee et 3-15
3.6 Assembling the Scheduler Sample Applicationccccvuveeeeuiiririiiierrrrcrereceeeees 3-17
3.6.1 How to Assemble the EJB Jar Files for Scheduler Sample Application.................... 3-17
3.6.2 How to Assemble the MAR File for User Metadata..........ccccccoeeuiiiiiiiiinininnnnn, 3-24
3.6.3 How to Assemble the EAR File for Scheduler Sample Application...........cccccceuuu.e. 3-26
3.6.4 Add oracle.ess Library Weblogic Application Descriptor..........ccccevvveiieiiiiiiinnnnnnn 3-27
3.7 Deploying and Running the Scheduler Sample Applicationccccecevvrviiiivniniiinnnnnn 3-28
3.7.1 How to Deploy the EssDemoApp Application.........cccccocccucccccciceccccccicenenne 3-28
3.7.2 How to Run the Scheduler Sample Applicationccccceeveiiieiiieiiiniiiiiii 3-30
3.7.3 How to Purge Jobs in the Scheduler Sample Applicationccccccvviviniiininininnns 3-31
3.8 Troubleshooting the Oracle Enterprise Scheduler Sample Application..........cccccceuuceeee. 3-32
3.8.1 How to Create the Oracle Enterprise Scheduler Database Schema 3-33
3.8.2 How to Drop the Oracle Enterprise Scheduler Runtime Schema..............cccccc...... 3-33
3.9 Using Submitting and Hosting Split Applicationscccoeeveieiniiecniiiiccccccccenen 3-34
3.9.1 How to Create the Backend Hosting Application for Scheduler.............cccccceuvunnennn. 3-34
3.9.2 How to Create the Frontend Submitter Application for Oracle Enterprise

Scheduler ... 3-44

4 Using the Metadata Service

4.1 Introduction to Using the Metadata Service...........ccooooiruiioiiiiiniicicccce
411 Introduction to Metadata Service Namespaces............ccococeureeucueiccueeucecneneeenenenenes
412 Introduction to Metadata Service Operationsccccoeeiuiiiiiiiiinieiniiiccicceeees
413 Introduction to Metadata Service Transactionsccocoeviiiiiiiiiiiiiiiiines
4.2 Accessing the Metadata SEIVICE.........cocciuiuiiiiiiiiiiieeeecee et
4.2.1 How to Access the Metadata Service with a Stateless Session EJBccccccevevenenene
4.3 Accessing the Metadata Service with Oracle JDeveloper ..o
4.4 Querying Metadata Using the Metadata Servicecccocovvvvrnnvinnnnnnrreeceecaee
4.41 How to Create a FIlter ...
4.4.2 How to Query Metadata Objectsccoeviiviiiieiiiiiicc e,

5 Using Parameters and System Properties

5.1 Introduction to Using Parameters and System Propertiesc.cccooeeeiviciiniiicccnennnen.
5.1.1 What You Need to Know About Parameter and System Property Naming
5.1.2 What You Need to Know About Parameter Conflict Resolution and Parameter
MaterialiZation ..o

5.2 Using Parameters with the Metadata Service.........ccoooeriieiiiniinicie
5.2.1 How to Use Parameters and System Properties in Metadata Objectscccccce.....
5.3 Using Parameters with the Runtime Service ..o
5.3.1 How to Use Parameters with the Runtime Service...........cccoovoiiiiiiiiiiiiiiiiennns
5.3.2 How to Use Parameters with a Step ID for Job Set Stepsc.cccccvececiiceccccennnns
5.4 Using System Properties ...t

6 Creating and Using PL/SQL Jobs

6.1 Introduction to Using PL/SQL Stored Procedure Job Definitions............ccccocevuiiiuininnnns 6-1
6.2 Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler...............c.c.c.c.c..... 6-2
6.2.1 How to Define a PL/SQL Stored Procedure with the Correct Signature.................... 6-2
6.2.2 Handling Runtime Exceptions in an Oracle Enterprise Scheduler PL/SQL Stored

Procedure ... 6-3
6.2.3 How to Access Job Request Information In PL/SQL Stored Procedures.................... 6-4
6.2.4 What You Need to Know When You Define a PL/SQL Stored Procedure................. 6-4
6.3 Performing Oracle Database Tasks for PL/SQL Stored Procedures............cccccovuviviiininnnnns 6-5
6.3.1 How to Grant PL/SQL Stored Procedure PermiSsions..........cccceeeeeveereevenreeveesreevennnns 6-5
6.3.2 What You Need to Know About Granting PL/SQL Stored Procedure Permissions 6-5
6.4 Creating and Storing Job Definitions for PL/SQL Job Types.......cccoviiiiiiiiiiiiennnns 6-6
6.4.1 How to Create a PL/SQL JOD TYPe.....cooiiimiiiiiiiieeicieeeieieieeeeeieeeeeseneeeeeneneeeanas 6-6
6.4.2 How to Create and Store a Job Definition for PL/SQL Job Type.........ccccccevvvvvininnnnee. 6-7
6.4.3 Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler

APPLCAtION .o 6-7

7 Creating and Using Process Jobs

7.1 Introduction to Creating Process Job Definitions...........cccocovoiiiieioiiiiieiiicecce 7-1
7.2 Creating and Storing Job Definitions for Process Job TYPescccccoiiiiiciecieccenenns 7-2
7.2.1 How to Create and Store a Process Job Type.........cccccooiiiiiiriiciiic 7-2
722 How to Create and Store a Process Type Job Definition..........ccccoooieiiiiiicciiiiinnnnnn, 7-4
7.3 Using a Perl Agent Handler for Process JODS ... 7-5

8 Defining and Using Schedules

8.1 Introduction to Schedules............cooviiiiiiiii s 8-1
8.2 Defining a RECUITENCEcucviiieiieiiici e 8-1
8.2.1 How to Define a Recurrence with a Recurrence Fields Helper ..o, 8-2
8.2.2 How to Define a Recurrence with an iCalendar RFC 2445 Specification 8-4
8.2.3 What You Need to Know When You Use a Recurrence Fields Helper 8-4
8.2.4 What You Need to Know When You Use an iCalendar Expression...........c.ccccoeuc.... 8-6
8.3 Defining an EXPpLCit Date.......c.ccccceuiiiiiiiiiiiiiiiciceceeeeeeeeeeeeeeee e 8-6
8.3.1 How to Define an Explicit Date ..., 8-6
8.3.2 What You Need to Know About Explicit Dates..........ccoooeeiiiiiiiiiiiiiiiiins 8-6
8.4 Defining and Storing EXCIUSIONSc.cccccccciiiiiriiiriiniiiiiereecrree e 8-7
8.4.1 How to Define an EXCIUSION..........ccoiiuiiiiiiiiiiiiiciccicce e 8-7
8.4.2 How to Create an Exclusions Definitioncccceccevviiicinininneccinneccirrecceeeneees 8-7
8.5 Defining and Storing Schedules............ccccociiiiiiiiiicrrreeree e 8-8
8.5.1 How to Define and Store a Schedule ..., 8-8
8.5.2 What Happens When You Define and Store a Schedule...........cccocooviiiiiinnnn, 8-8
8.5.3 What You Need to Know About Handling Time Zones with Schedules.................... 8-9
8.6 Identifying Job Requests That Use a Particular Schedule............cccooooiiimiiiiiiiinnne 8-9
8.7 Updating and Deleting Schedules.............cccccceiiiiiiiiiiiiiiiiiiiicrces 8-9

9 Working with Extensions to Oracle Enterprise Scheduler

9.1 Introduction to Oracle Enterprise Scheduler Extensionscc.cocooeeeivciiniccininicnnn, 9-2

vi

9.2
9.3
9.3.1
9.3.2

9.4
9.4.1
9.4.2
9.4.3
9.4.4
9.5
9.5.1
9.5.2
9.5.3
9.6
9.6.1
9.6.2
9.6.3
9.6.4
9.6.5
9.7
9.7.1
9.7.2
9.7.3
9.74
9.7.5
9.8
9.8.1
9.8.2
9.9
9.9.1
9.9.2
9.10
9.10.1
9.10.2
9.10.3
9.10.4
9.10.5
9.10.6
9.11
9.12
9.121
9.12.2
9.12.3
9.12.4
9.13
9.13.1
9.13.2

Standards and GUIAEIINES.oeoeuviiieeieceeeee ettt eseae e e sareeeaes 9-2

Creating and Implementing a Scheduled Job in JDeveloper............ccccevvvnnnnnninininnnn. 9-2
How to Create and Implement a Scheduled Job in JDeveloper..........cccccccocicuereuennnns 9-3
What Happens at Runtime: How a Scheduled Job Is Created and Implemented in
JDEVEIOPET .ot 9-3

Creating a Job Definitioncoooiiiiiii s 9-3
How to Create a Job Definition.......cccivviviirerierieieieieieeee et ee e enee e s s saens 9-3
How to Define File Groups for @ JOb........ccccoiiiiiiiiiiiiiiccccceeas 9-9
What Happens When You Create a Job Definitioncccccceeiiiniiiiinnnnnnnn 9-10
What Happens at Runtime: How Job Definitions Are Created............cccccvrueuennene 9-10

Configuring a Spawned Job Environmentcccooviiiiiiiiiiiic 9-10
How to Create an Environment File for Spawned Jobsccccoooi 9-11
How to Configure an Oracle Wallet for Spawned Jobscccccccveeccciiiiicnnnne 9-12
What Happens When You Configure a Spawned Job Environment......................... 9-13

Implementing a PL/SQL Scheduled JOboooiiii 9-14
Standards and Guidelines for Implementing a PL/SQL Scheduled Job.................. 9-14
How to Define Metadata for a PL/SQL Scheduled JObcccoevvevievievieieieeeieienen, 9-14
How to Implement a PL/SQL Scheduled JOb ..o, 9-14
What Happens When You Implement a PL/SQL Job.......ccccccociiiiiiiiiiiicnne 9-14
What Happens at Runtime: How a PL/SQL Job is Implemented.............cccc.c........ 9-16

Implementing a SQL*Plus Scheduled JODbcoooiiiiiiii 9-16
Standards and Guidelines for Implementing a SQL*Plus Scheduled Job................ 9-16
How to Implement a SQL*PIUS JOb.......cccevviiiiiiiiiiiiiiiiiciii 9-17
How to Use the SQL*Plus RUnNtime APL.........coooouieiieiieiiseeeceeeeeeeeeee e 9-17
What Happens When You Implement a SQL*PIus Job......c.ccccceecucciccciiccccnnee 9-17
What Happens at Runtime: How a SQL*Plus Job Is Implemented......................... 9-18

Implementing a SQL*Loader Scheduled JODbcccooiiiii 9-19
How to Implement a SQL*Loader Scheduled JObcccccoeeiiiiiiniciiiciicicnee 9-19
What Happens When You Implement a SQL*Loader Scheduled Job 9-19

Implementing a Perl Scheduled JOD ..o 9-20
How to Implement a Perl Scheduled Job ..o 9-20
What Happens When You Implement a Perl Scheduled Job ... 9-20

Implementing a C Scheduled JObccccceiiiiiiiiiiiniiiiiiiccs 9-22
How to Define Metadata for a C Scheduled JODbcccccovvvirerierieieieieieeee e 9-23
How to Implement a C Scheduled Jobcccccoviiiiiiiiii 9-23
Scheduled C JOD APL ...ttt sttt a et seesesseeseesens 9-23
How to Test a C Scheduled JOD........cccocveieieieieieieieieieee et ee e e e sse s enens 9-25
What Happens When You Implement a C Scheduled Job ... 9-26
What Happens at Runtime: How a C Scheduled Job Is Implemented 9-29

Implementing a Host Script Scheduled Jobccccocooiiiiiiicce 9-29

Implementing a Java Scheduled JOb ..o 9-30
How to Define Metadata for a Scheduled Java JOD......cccccoceeiririninenenieeeieeeenee 9-30
How to Use the Java RUNtME APccccooiiiiiieieieieeieeeeeeee ettt enens 9-30
How to Cancel a Scheduled Java JODcocoiiiereiiiiinirieseseeeteeeeeese e 9-30
What Happens at Runtime: How a Java Scheduled Job Is Implemented 9-31

Elevating Access Privileges for a Scheduled Job.........cccoiiiiiiiiiccccenee 9-31
How to Elevate Access Privileges for a Scheduled Jobcccooooiiiiininnn. 9-32
How Access Privileges Are Elevated for a Scheduled Job........ccocoovriiniiinninne. 9-33

9.13.3
9.14

9.14.1
9.14.2

9.14.3

9.144
9.14.5
9.14.6
9.14.7

9.14.8

9.15
9.16

9.16.1
9.16.2

9.16.3

9.16.4

9.16.5
9.17

9.17.1
9.17.2
9.17.3
9.17.4

9.18

9.18.1

9.18.2

9.18.3

9.18.4

9.19
9.20
9.21
9.21.1
9.21.2
9.21.3

What Happens When Access Privileges Are Elevated for a Scheduled Job 9-34
Creating an Oracle ADF User Interface for Submitting Job Requests...........c.cccoccueeeie. 9-34
How to Create an Oracle ADF User Interface for Submitting Job Requests............ 9-34
How to Add a Custom Task Flow to an Oracle ADF User Interface for Submitting Job
REQUESES e 9-41
How to Enable Support for Context-Sensitive Parameters in an Oracle ADF User
Interface for Submitting Job Requestsccccoooiiiiiiiiii 9-42
How to Save and Schedule a Job Request Using an Oracle ADF Ul......................... 9-43
How to Submit a Job Using a Saved Schedule in an Oracle ADF Ul........................ 9-44
How to Notify Users or Groups of the Status of Executed Jobsccccccvueuinnnnn. 9-44
What Happens When You Create an Oracle ADF User Interface for Submitting Job
REQUESLES .o 9-46
What Happens at Runtime: How an Oracle ADF User Interface for Submitting Job
Requests Is Created ... 9-46
Submitting Job Requests Using the Request Submission APIL............cccccccevvvinnninnn 9-47
Defining Oracle Business Intelligence Publisher Post-Processing Actions for a Scheduled
JOD ettt ettt ettt et b et e b es b e st e s b e s b e st e st e st et e eseeseeseeaeesensensentans 9-47
How to Define Oracle BI Publisher Post-Processing for a Scheduled Job................ 9-48
How to Define Oracle BI Publisher Post-Processing Actions for a Scheduled PL/SQL
JOD s 9-52
What Happens When You Define Oracle BI Publisher Post-Processing Actions for a
o Tel o T=Te L0 =T B o) o U U USRS 9-52
What Happens at Runtime: How Oracle BI Publisher Post-Processing Actions are
Defined for a Scheduled JODcoiviriiriieiieieeeeeeee e 9-53
Invoking Post-Processing Actions Programmaticallyccoooeeiiiiiiiiiciinnnne 9-53
Monitoring Scheduled Job Requests Using an Oracle ADF Ul..........cccccccovvvvnnnincnne. 9-56
How to Monitor Scheduled Job Requestsccooviiiiiiiiiiiiiiicccc 9-56
How to Embed a Table of Search Results as a Region on a Pageccccoeueveunee. 9-57
How to Log Scheduled Job Requests in an Oracle ADF UlL........ccccccocevvvvnnnncnne. 9-59
How to Troubleshoot an Oracle ADF Ul Used to Monitor Scheduled Job
ReQUESES ..oeieeeie e 9-59
Using a Task Flow Template for Submitting Scheduled Requests through an Oracle ADF
UL et 9-61
How to Use a Task Flow Template for Submitting Scheduled Requests through an
Oracle ADF UL ..o 9-62
How to Extend the Task Flow Template for Submitting Scheduled Requests through
an Oracle ADF UL ..o s 9-63
What Happens When you Use a Task Flow Template for Submitting Scheduled
Requests through an Oracle ADF ULccoooiiiiiiiccc s 9-64
What Happens at Runtime: How a Task Flow Template Is Used to Submit Scheduled
Requests through an Oracle ADF UL ... 9-64
Securing Oracle ADF Uls.........ccooiiiiiiiiiii s 9-64
Integrating Scheduled Job Logging with Fusion Applications...........ccccceevvivviininninnes 9-65
Logging Scheduled JODSs. ...t 9-65
Using the Request LOg ..ot 9-65
Using the Output File........cccccooiiiiiiiiiiics 9-66
Debugging and Error LOGZIng.........cccocciiiiiiiiiiiiiiccceceeceeeeeeeeeeeeeeeeeeeeees 9-66

vii

10 Using the Oracle Enterprise Scheduler Web Service

11

viii

10.1 Introduction to the Oracle Enterprise Scheduler Web Service...........cccccceviiiiinnnnnn. 10-1
10.2 Developing and Using ESSWebservice Applications............cccccoeeeueecereeccceceenenennn. 10-3
10.2.1 How to Develop and Use an ESSWebservice Java EE Application............ccccceueune 10-3
10.2.2 How to Develop and Use an ESSWebservice SOA Application with BPEL............ 10-4
10.2.3 Setting Web Service Addressing Headers for getCompletionStatus() Operation... 10-4
10.2.4 Limitations for ESSWebservice..........cccoviiiiiiiiiiiiiiiiiiiicccccccs 10-4
10.2.5 ESSWebservice Implementation............c.ociiiiicceccec e 10-5
10.3 ESSWebservice WSDL Filecoooviiiiiiiiiiiiicc s 10-5
10.4 Use Case Using Scheduler ESSWebservice from a BPEL Processc.ccccevviiueieinnne. 10-5
10.5 Creating the ESSWebService Application and a SOA Project ..o 10-5
10.5.1 How to Create the ESSWebService Application and Projectcccccocovevvirinnccncee 10-5
10.6 Creating the ESSWebService Reference..........cccoooiiiiiiiiiiiiiicc 10-6
10.6.1 How to Add the ESSWebService Partner Link...........ccccccooeiiiiiiniiiiiiiin, 10-6
10.7 Adding the BPEL Process to Call the ESSWebService.........c.ccccceeuiiiiiniciiceicecene 10-9
10.7.1 How to Add a BPEL Process to Call the ESSWebServicecccoceeviiiiiiiiinicnennnn 10-9
10.7.2 Copy Types Into BPEL Process Schema..............coooouiiiiiiiiiiiic 10-11
10.7.3 How to Invoke the ESSWebService submitRequest Operation..........cccccceueuvureence. 10-13
10.7.4 Assign Required Input Parameters for Request Submissioncccoceevviniiiniinne 10-15
10.7.5 Invoke the getCompletionStatus Operationcccooeoiiiiiiieii, 10-21
10.7.6 Assign Input to the getCompletionStatus Operation............cceeeveeiiiicccciccncnes 10-22
10.7.7 Receive the Job Completion Status...........cccoeeiviiiiiiiniiiiniiiie 10-25
10.7.8 Return Result to CLent.........cccciiiiiiiiiiiiiiiiiis 10-27
10.8 Using Additional ESSWebService Operationsccccccecucucueueieuemeicieueinienceeeeeieenceenenns 10-30
10.8.1 How to Invoke the ESSWebService submitRecurringRequest Operation 10-31
10.8.2 How to Invoke the ESSWebService setSubmitArgs Operationcccooeueueeee. 10-34
10.8.3 How to Invoke the ESSWebService addPPActions Operationcccccceuvueerenence. 10-37
10.8.4 How to Invoke the ESSWebService setStepsArgs Operationccccevvvvivninnne, 10-41
10.9 Securing the Oracle Enterprise Scheduler Web Service...........ccccoooiiiriiiiiiiii, 10-46
10.9.1 How to Secure the Oracle Enterprise Scheduler Web Serviceccccccovuvuverenencne. 10-46
10.9.2 What Happens When You Secure the Oracle Enterprise Scheduler Web Service 10-48
10.10 Deploying and Testing the Projectccccoviviiiiiiniiiiiiiiiiicccccccces 10-48
10.10.1 How to Test the Web Service ... 10-48

Defining and Using Job Sets

11.1 Introduction to Defining and Using JOb Setsc.cccoiiiiiiiiiiiicecceceeeenenenennes 11-1
11.2 Defining JOD Sets ..o e 11-2
11.2.1 HOW t0 Define @ JOD Stociiieieiieiieiiiieieieeeee ettt ettt sseene 11-2
11.2.2 How to Define Serial Job Set Steps......c.cccocucueuiiiiiiiririiiiiicirirccecreeeeee s 11-4
11.2.3 How to Define Parallel Job Set Stepsc.cccoviiiiiiiiiiiiicccc 11-6
11.24 What Happens When You Define a Job Set.........cccoiiiiiiiiiiiiiiiccicicce 11-7
11.2.5 What You Need to Know About Serial JOb Sets......ccccovevierievieciecisieninenierierieeeeeeenens 11-7
11.2.6 What You Need to Know About Job Set Parameters and System Properties.......... 11-8
11.2.7 What Happens at Runtime for Job Set State Priorities and State Transitions.......... 11-8
11.3 Cross Application JOD Sets.........ocouiiiiriiiiiiiiicc e 11-10
11.3.1 Overview of Cross Application Job Setscccccoveieiiiiiiiiiiiiii 11-11
11.3.2 Requirements for Cross Application Job Sets.........c.ccccvvvniniiinininiiiiiiicicce, 11-11

12

13

14

11.4 Using Input and Output FOrwardingccceeueiiiiiiiiiiieccence e, 11-12

11.4.1 Supporting Input and Output Forwarding in Job Setscccooeueiiiiiiinni. 11-12
Defining and Using a Job Incompatibility
12.1 Introduction to Using a Job Incompatibilityccccooeueioiiiiiiiiiiiiic 12-1
12.1.1 Job Self Incompatibilityc.ccceeuiiiiiiiiiiccceccee e 12-2
12.2 Defining Incompatibility with Oracle JDeveloperccccovrreiiiicicciicc 12-2
12.2.1 How to Define a Global Incompatibilitycccoeuoiieiiiiiiiiie 12-2
12.2.2 How to Define a Domain Incompatibility..........cccccooeiiiinininininnrencnreccnes 12-4
12.3 What Happens at Runtime to Handle Job Incompatibilityccccooovvviiiiiniiinnnnen. 12-6
12.3.1 What Happens to Subrequests with an Incompatible Parent Request..................... 12-6
12.3.2 What Happens to the Scope of Request Incompatibility ..o 12-6
Using the Runtime Service
13.1 Introduction to the RUNtImMe SeIvicecccovimiviiiiiiiiiiiiiccc s 13-1
13.2 Accessing the Runtime Serviceoooeuiiiiiiiiiic 13-1
13.2.1 How to Access the Runtime Service and Obtain a Runtime Service Handle........... 13-2
13.3 Submitting JObD REGUESESceuimiiiiiiiiiiicccccecce e 13-2
13.3.1 How to Submit a Request to the Runtime Service...........cccocovvvviniinnnnnnnnn 13-3
13.3.2 What You Should Know About Default System Properties When You Submit a
ReQUESE oo 13-3
13.3.3 What You Should Know About Metadata When You Submit a Request 13-4
13.4 Managing Job ReqUESES.......cc.coiiuiiiiiiiic e 13-4
13.4.1 How to Get Job Request Information with getRequestDetailccccoeorrenni. 13-4
13.4.2 How to Change Job Request State...........cccccieuiiiiiiiiiiiiccccecceeeeeeeeeeeees 13-5
13.4.3 How to Update Job Request Priority and Job Request Parameters.............c.cccoo..e. 13-6
13.5 Querying Job ReqUESES.........ccviimiiiiii e 13-7
13.6 Submitting Ad HOC JOb REGUESESc.ouiuiimiiiiiiicicccccccece s 13-9
13.6.1 How to Create an Ad Hoc Requestcccoouveieiiiiiiniiiiiiic 13-9
13.6.2 What Happens When You Create an Ad Hoc Request..........cccccevvivniiinnnininnne, 13-11
13.6.3 What You Need to Know About Ad Hoc Requests..........cccccoeiciciciccccicicnnne. 13-11
Using Subrequests
14.1 Introduction to Using SUDTEQUESLS..........cccoevviriririiiriiiccccccccccc e 14-1
142 Sample SUDTEQUESL.........ccooiiiiiiii s 14-2
14.3 Creating and Managing SUbrequests...........c.cccooueieiiiiiiiiiiiiciccccecee s 14-3
14.3.1 How to Submit SUDTeqUESLS..........ccccovviviiiiiiiiiiiii e 14-3
14.3.2 How to Cancel SUbrequests ... 14-3
14.3.3 How to Hold SUbrequestsccccccuiiuiiiiiiiiiiiiciiciccicceeees 14-4
14.3.4 How to Delete SUDTEQUESLSc.c.ceuiuiiimiiiicicicicccicceccce s 14-4
14.3.5 How to Submit Multiple Subrequestscccoooeiiiiiiiiiiiii 14-4
14.3.6 How to Manage Paused SUbrequestscccoeueviiiiniiicniicccccee 14-4
14.3.7 How Subrequests Are Processed.........c.cccccucucuiueueieiiieiiinieieieeieeeieeeeeeeeieeeeeeeeeeneeeneees 14-5
14.3.8 How to Identify SUDTEqUESTEScc.cviiirieiiii e 14-6
14.3.9 How to Manage Subrequests and Incompatibilitycccocooeemiiiiniiicine 14-6
14.4 Creating a Java Procedure that Submits a Subrequestc.cocceveiviveiiiiiccciiiccnen. 14-6

15

16

14.5 Creating a PL/SQL Procedure that Submits a Subrequest............cccccooevviiiiiiinnnnen 14-9

Working with Asynchronous Java Jobs

15.1 Introduction to Working with Asynchronous Java Jobs.........cccccooiiiiii 15-1
15.2 Creating an Asynchronous Java JOb ... 15-1
15.2.1 Implementing the Asynchronous Java Job Asynchronous Interface......................... 15-2
15.2.2 Asynchronous Java Job execute() Method ... 15-2
15.2.3 Invoking a Remote Job from an Asynchronous Java Job........ccccccevviiiiiiiiinnnn, 15-2
15.2.4 Calling Back to Oracle Enterprise Scheduler with Status Updates............c.c.c.c........ 15-3
15.2.5 Updating the Asynchronous Java Job.........ccoiiii 15-3
15.2.6 Notifying Oracle Enterprise Scheduler When an Asynchronous Job Completes... 15-3
15.2.7 Asynchronous Java Job AsyncCancellable Interface.........ccccccoeueuvvvivrvnninnnceccnee 15-4
15.2.8 Sample Asynchronous Java Job Invoking a BPEL Process Through Event Delivery

INEtWOTK i 15-5
15.3 A Use Case Illustrating the Implementation of a BPEL Process as an Asynchronous

JOD s 15-10

15.3.1 Introduction to the Recommended Design Pattern...........ccccocevevvvrnnnnnnncnccnes 15-11
15.3.2 Potential Approaches ..o 15-11
15.3.3 Use Case SUMIMATYcccoeiiiiiiiiiiiieiiii e 15-11
15.4 How to Implement BPEL with an Asynchronous Job...........ccccceiiiiiicncccciccnennn. 15-12
15.4.1 Use Case: Add Oracle JDeveloper Librariesccccooeeviiiiiniininninn 15-12
15.4.2 Use Case: Create the Asynchronous Job Definition ... 15-13
15.4.3 Use Case: Design the Event Payload Schema and Event Definition Files.............. 15-14
15.4.4 Programmatically Raise a Business Event from the Asynchronous Job Methods 15-15
15.4.5 Design the SOA Composite with Meditator and BPELcccccoooniiiiinnne. 15-17
15.4.6 Add Fault Handling and Correlated onMessage Branch for Error and Cancel

JOD s 15-18
15.4.7 Validating the Deployment..........ccccooviiiiiiiiiiii s 15-24
15.4.8 Troubleshooting the Use Casecccoeueiiiiiiieiiiccc 15-26
15,5 Handling Time Outs and Recovery for Asynchronous Jobscccccceiiviiiincnnee. 15-26
15.5.1 Asynchronous Request Time Outs...........cooiueieiiiiiiiiiii e 15-26
15.5.2 Handling Asynchronous Jobs Marked for Manual Recovery...........cccccoevuvninnnne 15-28
15.5.3 Using RecoverRequest to Manually Recover a Job Request............ccccoociiirncnnne. 15-28
15.6 Oracle Enterprise Scheduler Interfaces and Classes............cccoouvvviniiniiiiiiniinninnn. 15-29

Oracle Enterprise Scheduler Security

16.1 Introduction to Oracle Enterprise Scheduler Security...........cccocovvinnnniniiiinnnn, 16-1
16.1.1 Oracle Enterprise Scheduler Metadata Access Controlcccccoevueiiiiciciiinicicnnnnnnn 16-1
16.1.2 Oracle Enterprise Scheduler Job Execution Securityc.cccococcccccccceicccncnenne 16-2
16.2 Configuring Metadata Security for Oracle Enterprise Scheduler.............ccccccevviinnnnnnn. 16-2
16.2.1 How to Enable Application Security with Oracle ADF Security Wizard................. 16-3
16.2.2 How to Define Principals for SECUTItYcccccoeiiiiiiieiniiiiiiiiicicrreeerreeereeas 16-3
16.2.3 How to Create Grants with Oracle Enterprise Scheduler Metadata Pages.............. 16-4
16.2.4 How to Create Grants with Oracle ADF Security Wizard.........c.cocoooeenciinnnnn 16-5
16.2.5 About MetadataPermission APIS ... 16-7
16.2.6 What Happens When You Configure Metadata Security........cccooouirieieiirieninnne. 16-7
16.3 Configuring Web Service Security for Oracle Enterprise Scheduler...............cccccoeuenee. 16-8

17

16.4 Configuring PL/SQL Job Security for Oracle Enterprise Scheduler-.............ccccccoevevnncn. 16-8

16.5 Elevating Privileges for Oracle Enterprise Scheduler Jobs ..o, 16-8
16.6 Configuring a Single Policy Stripe in Oracle Enterprise Schedulerc.cccccceeueunnene. 16-8
16.6.1 How to Configure a Single Policy Stripe in Oracle Enterprise Scheduler................ 16-9
16.6.2 What Happens When You Configure a Single Policy Stripecccooovioriieiennne. 16-10
16.6.3 What Happens at RUNEME ..o 16-10
16.7 Configuring Oracle Fusion Data Security for Job Requests.........c.cccooooreiiiiiinne, 16-10
16.7.1 Oracle Fusion Data Security Artifacts..........ocooeeioiiiiiiiiic 16-11
16.7.2 How to Apply Oracle Fusion Data Security Policies...........cocouiveiiiiicccicncnenes 16-15
16.7.3 How to Create Functional and Data Security Policies for Oracle Enterprise Scheduler
COMPONENES ..t 16-16

Managing Business and System Errors

17.1 Introduction to Managing Business and System Errors............ccccooioiriiiiiciciiiicncne, 17-1
17.2 Indicating EITOTS ...c.coouiviiiii e 17-1
17.2.1 How to Indicate a Business EIrTor.........cccoviiiiiiiiiiiiiccccnes 17-2
17.2.2 How to Indicate a System EITor..........oooooiiiieiiiiiic 17-2
17.3 Configuring Retries for a Job Requestccouoviriiiiii 17-3
17.3.1 How to Configure Retries for a Job Request.........cccccceciiiiiiiiiiiiiccccccne 17-3
17.3.2 What Happens at Run Time: How a Job Request Is Retried...........ccccoceeviiiiinnnnnnnn. 17-3
17.3.3 What You Should Know about Configuring Retries for a Job Request.................... 17-4
17.4 Finding and Diagnosing Job Requests in Error Stateccccoeeiiiiiiiiiccccnccenne 17-4
17.4.1 Retrieving the State of a Job Request ... 17-5
17.4.2 Finding Job Requests with Business Errorsccccooiiiiiiiiiincccc 17-5
17.4.3 Determining the Number of Times a Job Request Has Been Retried 17-6

xi

Xii

Audience

Preface

Oracle Enterprise Scheduler provides the ability to run different job types, including:
Java, PL/SQL, and binary scripts, distributed across the nodes in an Oracle WebLogic
Server cluster. Oracle Enterprise Scheduler runs these jobs securely, with high
availability and scalability, with load balancing and provides monitoring and
management through Oracle Enterprise Manager Fusion Applications Control.

This document is intended for Oracle applications developers and assumes familiarity
with Java and SQL.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http: //www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents

For more information, see the following documents in the Oracle 11g Fusion
Middleware documentation set:

xiii

» Oracle Fusion Middleware Fusion Developer’s Guide for Oracle Application Development
Framework

» Oracle Fusion Middleware Web User Interface Developer’s Guide for Oracle Application
Development Framework

» Oracle Fusion Middleware Developer’s Guide for Oracle SOA Suite
» Oracle Fusion Middleware Application Security Guide
» Oracle Fusion Applications Administrator’s Guide

The following chapters in this guide describe Oracle Enterprise Scheduler
administrative functions:

- "Managing Oracle Enterprise Scheduler Service and Jobs"
"Troubleshooting Oracle Enterprise Scheduler"

"High Availability for Oracle Enterprise Scheduler"

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Xiv

1

Introduction to Oracle Enterprise Scheduler

This chapter includes the following sections:
= Section 1.1, "About Oracle Enterprise Scheduler"
» Section 1.2, "Oracle Enterprise Scheduler Overview for Application Developers"

= Section 1.3, "Fixed-Rate Scheduling with Oracle Enterprise Scheduler"

1.1 About Oracle Enterprise Scheduler

Enterprise applications require the ability to respond to many real-time transactions
requested by online users or web services. However, they also require the ability to
offload larger transactions to run at a future time or automate the running of
application maintenance work based on a defined schedule.

Oracle Enterprise Scheduler provides the ability to run different job types, including:
Java, PL/SQL, and binary scripts, distributed across the nodes in an Oracle WebLogic
Server cluster. Oracle Enterprise Scheduler runs these jobs securely, with high
availability and scalability, with load balancing and provides monitoring and
management through Fusion Applications Control.

Oracle Enterprise Scheduler provides scheduling services for the following purposes:
= To distribute job request processing across a grid of application servers,

s Torun Java, PL/SQL and binary process jobs,

= To group job requests into job sets,

= To schedule job requests based on recurrence expressions,

= To administer job requests with Fusion Applications Control.

Oracle Enterprise Scheduler provides the critical requirements in a service-oriented
environment to automate processes that must recur on a scheduled basis and to defer
heavy processing to specific time windows. Oracle Enterprise Scheduler lets you:

= Support sophisticated scheduling and workload management,
= Automate the running of administrative jobs,
» Schedule the creation and distribution of reports,

» Schedule a future time for a step in a business flow for business process
management.

Oracle Enterprise Scheduler provides features to manage the complete life cycle of a
job definition: development, distribution, scheduling, and monitoring. Using Oracle
JDeveloper, application developers can easily create job requests in their development

Introduction to Oracle Enterprise Scheduler 1-1

Oracle Enterprise Scheduler Overview for Application Developers

environment. Application administrators and other users can specify when and where
they want their job requests to run. Users and administrators can monitor how the job
ran and access the end results of those jobs.

Customers that implement large systems typically have to manage a large number of
diverse machines to handle the workload of their users. Oracle Enterprise Scheduler
provides the ability to control how work is distributed to individual machines or
groups of machines.

1.2 Oracle Enterprise Scheduler Overview for Application Developers

Oracle Enterprise Scheduler is primarily a Java EE application that provides time and
schedule based callbacks to other applications to run their jobs. Oracle Enterprise
Scheduler compares with the Calendar application you might use in your phone or the
Oracle Calendar, where you create events and meetings with details about time and
recurrence; the application sends an alarm or notification at the right time for the
particular event. Similarly, Oracle Enterprise Scheduler applications define jobs and
specify when those jobs need to be executed, and Oracle Enterprise Scheduler gives
these applications a callback when that time or when a particular event arrives. This is
a simplified model of how a particular application can interact with an instance of
Oracle Enterprise Scheduler. Oracle Enterprise Scheduler does not execute the jobs
itself, it gives a callback to the application and the application actually executes the job
request. This implies that Oracle Enterprise Scheduler is not aware of the details of the
job request, all the job request details are owned and consumed by the application. An
application that submits requests to run a job is called a client application.

For development purposes, both Oracle Enterprise Scheduler and the Oracle
Enterprise Scheduler client application are deployed on the same Oracle WebLogic
Server. Oracle Enterprise Scheduler does not provide a direct interface for the end
user. The end user interacts with the client application which decides what the
interface should be and how it is experienced; the client application interacts with
Oracle Enterprise Scheduler to setup a job request and to specify when the job request
is scheduled to be executed, and eventually gets a callback from Oracle Enterprise
Scheduler when the time or event arrives.

1.2.1 Introduction to Working with Oracle Enterprise Scheduler at Design-time

At design time an application developer uses Oracle JDeveloper to create a Java EE
application that contains the Oracle Enterprise Scheduler executable class and Oracle
Enterprise Scheduler specific metadata for this executable. The Oracle Enterprise
Scheduler metadata consists of job definitions, including the executable class and
parameters, and schedules. Schedules capture the times when a job request can be sent
for execution. Schedules are defined independent of job requests and get associated
with job requests at runtime when the job request is submitted for execution.

Figure 1-1 shows the design time view of an Oracle Enterprise Scheduler
application.

1-2 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Oracle Enterprise Scheduler Overview for Application Developers

Figure 1-1 Oracle Enterprise Scheduler Design Time Integration

{ Oracle JDeveloper client-app.ear
L D._evelopmg a A class
- client application B. class
Aldob.class
&

Metadata
Store

Metadata _I

| Essjar —» | metadata

In Figure 1-1, although the metadata is written to the MDS store through Oracle
Enterprise Scheduler APIs, the client application owns the metadata and the metadata
does not belong to the Oracle Enterprise Scheduler application. This metadata together
with the job implementation is packaged in an OAR, including the EAR for the
application and the MAR containing the metadata; this is deployed in the runtime
environment.

The following types of Oracle Enterprise Scheduler Metadata can be created at design
time. The metadata is called Oracle Enterprise Scheduler Metadata because it is used for
scheduling and not because it is owned by Oracle Enterprise Scheduler, it is actually
owned by and packaged with the client application.

= Job type: This is a basic definition of what a job would be comprised of and
defines the following:

a. The type of job to be run, such as Java, PL/SQL, C, binary script, and so on.

b. The Java executable class if the job is of Java type, or the PL/SQL function if
the job is of PL/SQL type, or the script if the job is of Script type.

c. Parameters definitions for the job and their data type, and default values.

= Job definition: A job definition, or job, is the smallest unit of work which gets
performed in context of the client application. It is defined by an underlying job
type and any parameters additional to the ones defined in the job type.

= Job set: A job set is a sequential or parallel set of job steps, where a job step can be
a single job or another job set. A job set and each of its job set steps can have
additional parameters, the value for which will be provided when the job or job
set is submitted as a job request.

= Schedule: A job schedule is a predefined time or a recurrence for a period of time
or indefinite. Schedules are defined independent of jobs but are associated with
one or more jobs at run time when a job request is submitted.

= Incompatibility: An Incompatibility lets you specify job definitions and job sets
that cannot run at the same time.

1.2.2 Introduction to Working with Oracle Enterprise Scheduler at Runtime

At run time an application user associates a Schedule with the job to be submitted and
provides values for the job parameters. This information is then submitted as a job
request. Once Oracle Enterprise Scheduler receives a job request it determines the right
time to execute the job request, and at that time sends a message to the owning client

Introduction to Oracle Enterprise Scheduler 1-3

Oracle Enterprise Scheduler Overview for Application Developers

application. The client application then executes the job based on the job metadata and
run time values for the parameters.

Figure 1-2 Oracle Enterprise Scheduler Runtime Integration

Oracle Weblogic Server

T [

. 0

‘ Oracle Enterprise Scheduler
: !
¢ & ¢

(s (s

Oracle Enterprise Oracle Enterprise
Scheduler metadata Scheduler Data

l‘ —a ——1-| client application

Figure 1-2 shows the sequence involved with running an application using Oracle
Enterprise Scheduler, and the following steps:

1. User submits a request using a client application.

2. Client application sends the request to Oracle Enterprise Scheduler.
3. Oracle Enterprise Scheduler reads the metadata for the request.
4

Oracle Enterprise Scheduler puts the request in a wait queue in Oracle Enterprise
Scheduler data store, along with the metadata.

5. At the appropriate time, according to the request specifics, Oracle Enterprise
Scheduler sends a message to the client application with all the request parameters
and metadata captured at the time of submission.

6. Client application performs the jobs and returns a status.

7. Oracle Enterprise Scheduler updates the history with the job request status.

1.2.3 Oracle Enterprise Scheduler Job Requests

Figure 1-3 shows the important Oracle Enterprise Scheduler components, including
the following:

s The scheduler component itself, including the runtime module, request dispatcher
and request processor.

s The client application, including the run time EJB and end point
Message-Driven-Bean (MDB) which it calls and the job it requests to execute.

s Oracle Metadata Store and the client application metadata.

s Oracle Enterprise Scheduler schema, including the wait and ready queues and job
history.

1-4 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Oracle Enterprise Scheduler Overview for Application Developers

Figure 1-3 Oracle Enterprise Scheduler Runtime Details

Oracle Weblogic Server
client application

¢ ¢

Runtime EJB Oracle Enterprise

(®
§ i1
iu._ = .—I client interface ‘ scheduled job

Scheduler application
Endpoint MDB -—|
@ g
Oracle Enterprise Scheduler
Runtime Request Request
Maodule Dispatchear Processar
f : f

|
Kﬁr 8 6 7
Oracle Metadata
Store
Wait
= Queue

client application
metadata

Oracle Enterprise
Scheduler Schema

As shown in Figure 1-3, a client application is composed and runs as follows:

1.
2.

A user interacts with the client application, submitting a job request.

The client application specifies the two E]Bs and the Endpoint MDB in its
ejb-jar.xml. These beans are then instantiated in the client application context.

The beans in the application context contact the underlying Oracle Enterprise
Scheduler modules. The run time EJB sends the job request to the underlying run
time module in Oracle Enterprise Scheduler.

The run time module accesses the client application metadata from Oracle MDS.

The run time module persists the request along with its metadata and schedule in
the wait queue in the Oracle Enterprise Scheduler schema.

The Oracle Enterprise Scheduler request dispatcher determines the correct time to
run the job request based on its corresponding schedule. At this time, the request
dispatcher moves the request to a ready queue in Oracle Enterprise Scheduler
schema.

The Oracle Enterprise Scheduler request processor continues picking up job
requests to be processed from the ready queue.

The request processor sends a message to the application using the endpoint MDB.

Oracle Enterprise Scheduler executes the scheduled job.

Introduction to Oracle Enterprise Scheduler 1-5

Fixed-Rate Scheduling with Oracle Enterprise Scheduler

In most cases or at least in the simplified case, this application will be the same as the
application which submitted the request.

1.2.4 Overview of Integration Steps

Once you have installed a basic Oracle WebLogic Server instance, take the following
steps to setup Oracle Enterprise Scheduler.

1. Configure Oracle Enterprise Scheduler.

2. Develop your client application which has your job definitions and other required
metadata.

3. Deploy your client application.

4. Invoke your client application to submit job request, which in turn calls Oracle
Enterprise Scheduler.

5. Invoke your client application to check the status of job request, or other history,
which in turn calls Oracle Enterprise Scheduler. Alternatively, use Fusion
Applications Control to check the status of a given job request.

1.3 Fixed-Rate Scheduling with Oracle Enterprise Scheduler

Oracle Enterprise Scheduler supports fixed-rate scheduling where instances of a
repeating job requests are executed at a constant rate starting from the initial
scheduled execution time. Each job request runs as near to the absolute time of the
schedule as possible. Oracle Enterprise Scheduler ensures that only one job request
in a repeating request is running at any one time. If a job request runs beyond the
scheduled execution time of the next job request, the next job request becomes late and
is dispatched immediately upon completion of the previous job request.

When a job request is dispatched, the next request is placed in the wait queue. The
execution time for the next job request is the next time in the schedule that is no earlier
than the current time. Oracle Enterprise Scheduler skips time slots that are in the past.

If the desired behavior is to run all instances of the repeating request regardless of
when they are run and regardless of the requested or recurrence end date, the request
must set the system property EXECUTE_PAST.

Oracle Enterprise Scheduler does not support fixed-delay scheduling. Using fixed-delay
scheduling, each request is executed a fixed delay period after the previous request
completes. This means that when one request is late, all subsequent requests will be
late as well. In contrast, fixed-rate scheduling tries to get things back on schedule after
a late request.

1-6 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

2

Verifying the Oracle Enterprise Scheduler

Installation

This chapter describes how to ensure that Oracle Enterprise Scheduler has been
correctly installed.

This chapter includes the following sections:

Section 2.1, "Introduction to Verifying the Oracle Enterprise Scheduler Installation”

Section 2.2, "How to Verify the Oracle Enterprise Scheduler Installation Using a
Browser"

Section 2.3, "How to Programmatically Verify the Oracle Enterprise Scheduler
Installation"

Section 2.4, "What Happens When You Verify the Oracle Enterprise Scheduler
Installation"

Section 2.5, "What Happens at Runtime: How the Oracle Enterprise Scheduler
Installation is Verified"

2.1 Introduction to Verifying the Oracle Enterprise Scheduler Installation

The Oracle Enterprise Scheduler health check enables verifying the Oracle Enterprise
Scheduler installation using a web browser. The health check web page submits a
simple scheduled job so as to verify that Oracle Enterprise Scheduler works as it
should.

2.2 How to Verify the Oracle Enterprise Scheduler Installation Using a

Browser

Access the Java health check servlet in a web browser. Access to the health check page
is available only to users with administrator privileges.

To verify the Oracle Enterprise Scheduler installation:

1.

In a web browser, enter the following URL:

http://<hostName>:<port>/EssHealthCheck/checkHealth.jsp
where hostName is the server to which Oracle Enterprise Scheduler is installed and
port is the port number.

To verify an Oracle Enterprise Scheduler cluster, use the following URL:

http://<hostName>:<port>/EssHealthCheck/diagnoseHealth. jsp

Verifying the Oracle Enterprise Scheduler Installation 2-1

How to Programmatically Verify the Oracle Enterprise Scheduler Installation

The Oracle Enterprise Scheduler Diagnostic Health Check page displays, as shown
in Figure 2-1.

Figure 2—1 Diagnostic Health Check Page
ESS - Diagnostic health check service

Check Health

2. Login to the diagnostic servlet using an Oracle WebLogic Server administrator
username and password.

3. (Click the Check Health button to verify the installation.

2.3 How to Programmatically Verify the Oracle Enterprise Scheduler
Installation

Programmatically access the health check servlet from your application. Access to the
health check page is available only to users with administrator privileges.

To programmatically verify the Oracle Enterprise Scheduler installation:
1. Access the following URL:

http://<hostName>:<port>/EssHealthCheck/checkHealth
where hostName is the server to which Oracle Enterprise Scheduler is installed and
port is the port number.

2. Use the HTTP response codes to gauge the health of the Oracle Enterprise
Scheduler installation, as shown in Table 2-1.

2-2 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

What Happens When You Verify the Oracle Enterprise Scheduler Installation

Table 2-1 HTTP Response Codes

Response Code

Oracle Enterprise Scheduler Comments
Status Code

200 (0K)

Oracle Enterprise Scheduler is The test job has been submitted and has succeeded
up and running. within the default duration.

202 (ACCEPTED)

Oracle Enterprise Scheduler is The test job has been submitted but has failed to
up and running but a delay in complete within the default duration.
processing has occurred.

A value of 202 (SC_ACCEPTED)
indicates to the client that the
request is being acted upon but
processing is not yet complete.

500 (INTERNAL_SERVER_ The Oracle Enterprise An error has occurred during the submission or
ERROR) Scheduler installation has execution of the job.
errors.

2.4 What Happens When You Verify the Oracle Enterprise Scheduler

Installation

The health check mechanism consists of an ESSHealthcheck servlet that extends
HttpServlet. The metadata and packaging dependencies are the same as that of the
web service approach.

Metadata services are used to retrieve metadata objects such as job type and job
definition. The required metadata files are EssHealthcheckJobType.xml and
EssHealthcheckJobDefinition.xml. These are packaged as ess-app-meta.mar, which
must itself be packaged with the file eas-app.ear. The servlet, archived as
ess-health-check.war, accesses the runtime metadata in order to schedule the job.

Note: Make sure to properly configure the file adf-config.xml so as
to register all metadata with the repository.

Example 2-1 illustrates the structure of the files ess-app. ear, ess-ejb.jar, and
ess-app-meta.mar.

Example 2-1 The Structure of the Health Check Files
ESS-APP.EAR

||
| |_APP-INF/classes/META-INF/ESSWebService.wsdl
|__ess-ejb.jar
|__ess-mbeans.war
| __ess-ws.war
|__ess-ra.rar |
|__ess-health-check.war
| __WEB-INF
|__web.xml
|__weblogic.xml
|__classes/oracle/ess/healthcheck/view/EssHealthcheckServlet.class
|__classes/oracle/ess/healthcheck/view/EssConsoleServlet.class
|__classes/oracle/ess/healthcheck/view/EssClusterHealthcheckServlet.class
|__checkHealth.jsp
|__diagnoseHealth.jsp
|__essVersion.jsp

Verifying the Oracle Enterprise Scheduler Installation 2-3

What Happens at Runtime: How the Oracle Enterprise Scheduler Installation is Verified

ESS-EJB.JAR
Along with the existing set of files,
oracle/ess/healthcheck/core/EssHealthcheckJob.class is added to the ess-ejb.jar.

ESS-APP-META.MAR

oracle/as/ess/essapp/internal /WorkAssignment/ESSInternalWA.xml
oracle/as/ess/essapp/internal/Workshift/ESSInternalWs.xml
oracle/as/ess/essapp/healthcheck/Jobs/EssHealthcheckdJobDefn.xml
oracle/as/ess/essapp/batchdelete/Jobs/BatchDeletedob.xml
oracle/as/ess/essapp/healthcheck/JobType/EssHealthcheckJobType.xml
oracle/as/ess/essapp/batchdelete/JobType/BatchDeleteJobType.xml

The health check servlet schedules a trivial job with Oracle Enterprise Scheduler as
part of an HTTP request. After a few seconds, the servlet calls
RuntimeServiceBean.getRequestState () to check the status of the job and constructs
a response message within the servlet code. The servlet then returns a response
indicating the success or failure of the job.

2.5 What Happens at Runtime: How the Oracle Enterprise Scheduler
Installation is Verified

The servlet waits for the job to either reach a terminal state, or run for 10 seconds,
whichever occurs first.

» If the job reaches a terminal state in less than 10 seconds, the job results in a state
of success.

» If the job's terminal state does not change within 10 seconds, the job results in a
state of success. However, the job is listed as not having been executed. This is
because the system may be overloaded such that executing the job may take some
time.

= If any problems occur when submitting or executing the job, the job results in a
state of failure.

When checking the health of a single node or cluster, the processor specific to the
server where the health check is submitted processes the health check request. This is
achieved through a system property called SYS_requestedProcessor. For more
information about system properties, see the table in the section "Creating or Editing a
Job Set" in the chapter "Managing Oracle Enterprise Scheduler Service and Jobs" in
Oracle Fusion Applications Administrator’s Guide.

2-4 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

3

Use Case Oracle Enterprise Scheduler
Sample Application

This chapter describes how to create and run an application that uses Oracle
Enterprise Scheduler to run job requests and demonstrates how to work with Oracle
JDeveloper to create an application using Oracle Enterprise Scheduler. It then shows a
variation on the sample application using two split applications — a job submission
application, a submitter, and a job execution application, a hosting application.

This chapter includes the following sections:
= Section 3.1, "Introduction to the Scheduler Sample Application"

= Section 3.2, "Creating the Application and Projects for Scheduler Sample
Application”

= Section 3.3, "Creating a Java Implementation Class for the Sample Application"

= Section 3.4, "Adding Application Code to Submit Oracle Enterprise Scheduler Job
Requests"

= Section 3.5, "Creating Metadata for Scheduler Sample Application”

= Section 3.6, "Assembling the Scheduler Sample Application”

= Section 3.7, "Deploying and Running the Scheduler Sample Application"

= Section 3.8, "Troubleshooting the Oracle Enterprise Scheduler Sample Application"
= Section 3.9, "Using Submitting and Hosting Split Applications"

3.1 Introduction to the Scheduler Sample Application

The scheduler sample application includes a complete application that you build with
Oracle JDeveloper using Oracle Enterprise Scheduler APIs. Oracle Enterprise
Scheduler lets you run different types of job requests, including: Java classes, PL/SQL
procedures, and process type jobs. To create an application that schedules job requests
you need to do the following;:

» Create the Java classes, PL/SQL procedures, or executable processes that specify
the routine you want to schedule and run with Oracle Enterprise Scheduler.

= Specify Oracle Enterprise Scheduler metadata and the characteristics for job
requests.

» Define the Java application that uses Oracle Enterprise Scheduler APIs to specify
and submit job requests.

Use Case Oracle Enterprise Scheduler Sample Application 3-1

Creating the Application and Projects for Scheduler Sample Application

= Assemble and deploy the Java application that uses Oracle Enterprise Scheduler
APIs.

= Run the Java application that uses Oracle Enterprise Scheduler APIs.

Note: The instructions in this chapter assume that you are using a
new Oracle JDeveloper that you install without previously saved
projects or other saved Oracle JDeveloper state. If you have previously
used Oracle JDeveloper, some of the instructions may not match the
exact steps shown in this chapter, or you may be able to shorten
procedures or perform the same action in fewer steps. In some cases
Oracle JDeveloper does not show certain dialogs based on your past
use of Oracle JDeveloper.

When you use Oracle Enterprise Scheduler the application Metadata is stored with
MDS. To use MDS you need to have access to a database with MDS user and schema
configured.

3.2 Creating the Application and Projects for Scheduler Sample

Application

Using Oracle JDeveloper you create an application and the projects within the
application contain the code and support files for the application. To create the
scheduler sample application you need to do the following:

s Create an application in Oracle JDeveloper.

s Create a project in Oracle JDeveloper.

n Create the application code that uses the Oracle Enterprise Scheduler APIs. For the
scheduler sample application you create the EssDemo servlet in the EssDemoApp
application.

3.2.1 How to Create the EssDemoApp Application

To work with Oracle Enterprise Scheduler, you first create an application and a project
in Oracle JDeveloper.

To create the EssDemo application:
1. In the Application Navigator, select New Application....

2. In the Name your application window enter the name and location for the new
application.

In the Application Name field, enter an application name. For this sample
application, enter EssDemoApp.

In the Directory field, accept the default.
Enter an application package prefix or accept the default, no prefix.

The prefix, followed by a period, applies to objects created in the initial project
of an application.

In the Application Template area, select Fusion Web Application (ADF).
Click Next.
Click Finish.

3-2 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating the Application and Projects for Scheduler Sample Application

3.

This displays the File Summary page, as shown in Figure 3-1.

Figure 3—1 Sample Application File Summary Page

File

faces-config.xml
i trinidad-config.xml

ﬁ Page Flows
[+ Application Resources

[+ Data Contrals
[+ Recently Opened Files

Edit View Search Navigate Build BRun Refactor Versioning Tools Window Help ADF
RoE@ > 90 XBR O -0 - atidm- > -&- A (@-
{=l Application Navigator 2] [ElEssDemotpp jus ¥ [RRresources =
. EssDemaoipp - @ ~l|| Showe All Projects = B 5 iS-(é- @)
= Projects Bl Y& File Summary: Total 4 () A\ i) [My Catalogs
" = Mo del * IDE Connections
E"" Jawa Files Getting Started = MNew~ . [0 | =ML Files [@ File System

-7 web Content - 3 _ l

-] WEB-INF Overview The Java Files category contains java classes and EEED

H - interfaces i

L-—||.§| adfc-config.xml Jawa Class XML File

Jawva Interface

fE YiewZaontrollerjpr - Struct...

Enterprise Javafeans 3.0 S0A Components ADF Binding Files Web Services

=
Owerview
Messages - Log E]

CADE wersion extension: set the ADE active wiew to enable versioning operf

Messages Extenzionsz Feedback

=)

o1 Editing

W Heap: SL1W of 119M, Perm Gen: 103M of 256M

3.2.2 How to Create a Project in the Scheduler Sample Application

When you create an application using the Fusion Web Application (ADF) template,
Oracle JDeveloper adds two projects in the application named Model and
ViewController (Oracle ADF is based on the MVC design pattern that includes these
areas). To organize an Oracle Enterprise Scheduler application you add another project
and use this project to add the Oracle Enterprise Scheduler metadata and the Oracle
Enterprise Scheduler implementation for the Java classes that you want to run with
Oracle Enterprise Scheduler.

To create a scheduler project:

1. From the Application Menu for the EssDemoApp application select New
Project....

2.
3.

In the New Gallery, under Categories expand General and select Projects.

In the Items area select ADF Model Project, as shown in Figure 3-2.

Use Case Oracle Enterprise Scheduler Sample Application 3-3

Creating the Application and Projects for Scheduler Sample Application

Figure 3-2 Adding an Empty Project for Sample Application

|§| Hew Gallery

|/AII Technologies |/ Current Project Technologies
Thiz list iz filtered according to the current project's selected technologies.
’
(6B)

Categories: Items: [] Show Al Descriptions

----- Applications || — -
o2 Generic Praject =

----- Cannections h
----- Deplayment Descriptors ADF Model Project

----- Deployment Profiles Creates a project that defines a data model for an ADF web applications
..... Diagrams uzing ADF Business Components.
""" External Applications ADF viewController Project

Jawa Application Project
Jawa Project
Project from Existing Source

Praject from WaR File

i Project Template

S04 Project

TopLink Project

e

4. Click OK.

5. On the Name Your Project page enter a project name. For example, enter EssDemo
as the project name, as shown in Figure 3-3.

Figure 3-3 Adding the EssDemo Project to the Sample Application

[®] create ADF Model Project - Step 1 of 2

Name your project

Project Mame: |EssDemo |

w) Project Name
l Project |ava Settings Directory: |.."scratch,."jde\rl,"my\mrkassDemoApp,"EssDem0 |

r Project Technologies r Cenerated Components rAssociated Libraries |

Selected

ADF Faces aa
ADF Library Web Application Suppaol
ADF Page Flow

ADF Swing
Announcement Service ¢
Ant

Content Repository

Technology Description:

ADF Business Components is the business services APl provided by the Cracle -
Application Development Framework (Oracle ADF). ADF Business Components —
gowerns interaction between the rest of the application and the data stared in - .,

L Mext = I[Einizh H Cancel]

6. Click Finish.

3-4 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating the Application and Projects for Scheduler Sample Application

Configure Oracle JDeveloper resource options for project:

1.
2.
3.

In the Application Navigator, select the EssDemo project.
Right-click and from the dropdown list select Project Properties....

In the Project Properties window, in the navigator expand Project Source Paths
and select Resources.

Select the Included tab and then select the Include Content From Subfolders
checkbox, as shown in Figure 3—4.

Click OK.

Figure 3—-4 Updating Project Resources for Sample Project

|§| Project Properties - fscratchfjdev1/mywork/Ess Demofpp/EssDemo/EssDemo.jpr

(68
hS

Project Source Paths: Resources

- ADF Model

- Business Camponents
-~ Compiler

- Javadoc

Project Source Paths () Use Custom Settings
i ADFM SOurces
Modelers

Offline Databaze

() Use Project Settings

Rezources:

B /scratchfjdevl/mywark/EssDemoipp,/EssDemo

SOUFCES
S0A Content
+ TaopLink

Web Application

Add... |

| Remowe |

ADF Wiew

Included Excluded

Dependencies [¥]Include Content from Subfalders

Deployment
EJE Module
Extension

Java EE Application

J5P Tag Libraries

J5P Yisual Editor
Libraries and Classpath

Rezource Bundle

Help |

| QK Cancel

]|

3.2.3 How to Set Project Properties for Enterprise Scheduler

You need to add the Oracle Enterprise Scheduler extensions to the project before you
use the Oracle Enterprise Scheduler APIs.

To allow Oracle JDeveloper to use Oracle Enterprise Scheduler extensions:

1.

2
3
4.
5

In Oracle JDeveloper, in the Application Navigator select the EssDemo project.
Right-click and from the dropdown list select Project Properties....

In the Project Properties navigator, select Libraries and Classpath.

In the Libraries and Classpath area, click Add Library....

In the Add Library dialog, in the Libraries area select Enterprise Scheduler
Extensions.

In the Add Library dialog click OK. This adds the appropriate libraries, as shown
in Figure 3-5.

Use Case Oracle Enterprise Scheduler Sample Application 3-5

Creating a Java Implementation Class for the Sample Application

Figure 3-5 Adding Oracle Enterprise Scheduler Extensions to Project

[®] Project Properties - fscratchfschedimywork/EssDemoApp1 /EssDemo/EssDemo . jpr

(@@)| Libraries and Classpath
F- Project Source Paths () Use Custom Settings
[ADF Model (3) Use Project Settings
----- ADF Wiew
B Ant lava SE Version:
- Business Components |1-5-U—U? (Defauity | | Change... |
i il
e Domplder . Claszpath Entries:
----- ependencies
_____ Deplayment Export Description | Add Library... |
_____ EIE Module §ll ADF Madel Runtime o el
_____ EthensiDn §l 6C4) Oracle Domains |M|
[Javadoc @l 5C4 Runtime | Remove |
o §l BC4y Security
----- Java EE Application “ BC4) Tester -
----- J5P Tag Libraries g DS Runtime | Vigw |
""" 5P ¥izual Editor @l MDS Rurtime Dependencies
----- Enowdedge Modules “ Oracle JDBC
Libraries and Classpath Ii Enterprise Scheduler Extensions | Move Up |
| Help | | Ok | | Cancel

7. Click OK to dismiss the Project Properties dialog.

3.3 Creating a Java Implementation Class for the Sample Application

To define an application that runs a Java class under control of Oracle Enterprise
Scheduler you need to create the Java class that implements the Oracle Enterprise
Scheduler Executable interface. The Executable interface specifies the contract that
allows you to use Oracle Enterprise Scheduler to invoke a Java class.

3.3.1 How to Create a Java Class Using the Executable Interface

A Java class that implements the Executable interface must provide an empty
execute () method.

To create a Java class that implements the executable interface:
1. Inthe Application Navigator, select the EssDemo project.

2. Inthe Overview area, select the Java Class navigation tab as shown in Figure 3-6.

3-6 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating a Java Implementation Class for the Sample Application

Figure 3-6 Add a Java Class to the EssDemo Project

Application Nav igator E] EssDemoApp.j\nrs
. EzzDemoipp - -| Showe All Projects =
7 Projects Q] @) - 3~ File Summary: Total: 4

G

Model Jawa Files Getting Started > New~ - [J

=] WiewContraller .
E1-3 web Content Owerview Java Classes are fundamental to the java language.
E] D WEB-INF Java Class Thiz wizard makes it easy to create ajava class.
- [adfc-configxmi Java Interface

@ faces-config.xml
trinidad-config.xml

% wieh xml

7] Page Flows

Cue Cards | Tutorials | Detailed Help -

Page Flows Cetting Started ™ Meww - [

3. Inthe Overview area in the Java Files area, select New and from the dropdown list
select Java Class.

In the Select a Project dialog, select the EssDemo.jpr project.
Click OK. This displays the Create Java Class dialog.
In the Create Java Class dialog, in the Name field, enter HelloWorld.

In the Create Java Class window, in the Package field, enter essdemo.

® N o o &

In other fields accept the defaults as shown in Figure 3-7.

Figure 3—-7 Adding a Java Implementation Class to the Sample Application

Create Java Class &|

Enter the details of your new class, I:l

Mame: | Hellaborld |

Package: | Ck
Extends: | java.lang.Object | Ck
Optional Atkributes
Implements: “i' b4

Access Modifiers Other Modifiers

public
() package protected

Constructors From Superclass
Implement Abstract Methods
[Main Method

| Help | [0]4 J | Cancel

9. C(lick OK.

Use Case Oracle Enterprise Scheduler Sample Application 3-7

Creating a Java Implementation Class for the Sample Application

10. Replace the generated contents of the HelloWorld. java file with the contents of
the HelloWorld. java supplied with the scheduler sample, as shown in
Example 3-1. This code is also shown in Figure 3-8.

Figure 3-8 Java Class That Implements Executable for Sample Application

[®] oracle JDeveloper 11g Development Build - EssDemofpp3 .jws : EssDemo.jpr : !scratchﬂtemp!nw\lmﬂdEssDen‘lo.ﬂppS!EssDenw!srt:!essden‘lo.@l

File Edit View Search Navigate Build PRun Source Refactor Mersioning Tools Window Help

RoEad 90 XEAR O-0 5 - AXde- > - 4 (@-)
Application Ma... E] @)Star‘t Page |@E55Demoﬁpp3.j\ms @HelloWnrld.ja\ra s BPELProcess1 bpel |.£.%.BPELPr0cessl E]E]E] Ea

@ essoemonpes ~|E - |8 IDVSKABURER ARk =8 - (g
TP.E®@Y-E- package essdeno; i

E EszDema s
ED Application Sources =] jmpurt oracle.as.scheduler. RequestParameters; () ar
B essdemo import oracle.as.scheduler.Executahle;

import oracle.as.scheduler.ExecutionCancelledException;
import oracle.as.scheduler.ExecutionErraorException;
import oracle.as.scheduler.ExecutionPausedException;
5] Model import oracle.as.scheduler.ExecutionWarningException;
5] viewCortroller import oracle.as.scheduler.RequestExecutionContext;

N @ HelloWarld java
-] Resources

Epublic class Hellokorld implements Executable {
< . |'% =] public Helloklorld{d {

I Ap\plication Resources ; h

[+ Data Controls
 Recently Opened Files
@ HelloWorld java

public void execute(RequestExecutionContext ctx,
FeguestParameters params)
throws ExecutionErrorException,
ExecutionWarningException,
ExecutionCancelledException,
= ExecutionPausedException {
Systemn.gud.printin{"**** Sanple lob Running, Reguest ID:
ctx.getRequestId() J;

+

1 Editing & He

Example 3-1 shows HelloWorld(), the Java class that implements the interface
oracle.as.scheduler.Executable.

Example 3—1 Oracle Enterprise Scheduler HelloWorld Java Class

package essdemo;

import oracle.as.scheduler.RequestParameters;

import oracle.as.scheduler.Executable;

import oracle.as.scheduler.ExecutionCancelledException;
import oracle.as.scheduler.ExecutionErrorException;
import oracle.as.scheduler.ExecutionPausedException;
import oracle.as.scheduler.ExecutionWarningException;
import oracle.as.scheduler.RequestExecutionContext;

public class HelloWorld implements Executable {
public HelloWorld() {
}

public void execute(RequestExecutionContext ctx, RequestParameters params)
throws ExecutionErrorException,
ExecutionWarningException,
ExecutionCancelledException,
ExecutionPausedException

System.out.println("**** Sample Job Running, Request ID: " +
ctx.getRequestId());

3-8 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Adding Application Code to Submit Oracle Enterprise Scheduler Job Requests

3.3.2 What Happens When You Create a Java Class That Implements the Executable

Interface

You need to create a Java class to use Oracle Enterprise Scheduler. The Oracle
Enterprise Scheduler executable interface provides a hook for using the Java class
that you supply with Oracle Enterprise Scheduler. A Java class that implements the
Executable interface can be submitted to Oracle Enterprise Scheduler for execution.

3.3.3 What You Need to Know About the Executable Interface

When you create a class that implements the Executable interface you should follow
certain practices to make sure that your code performs correctly. These practices allow
you to handle Oracle Enterprise Scheduler exceptions.

Note: Every time a job request executes, Oracle Enterprise Scheduler
calls the execute () method. All of the business logic associated with a
job request should be implemented through this method. Thus, the
Java implementation should not rely on instance or static member
variables for maintaining state. The Java implementation can use static
variables but their use is not recommended to manage state.

In Example 3-1, note the following:

The routine should throw the ExecutionErrorException to signal to the Oracle
Enterprise Scheduler runtime that an unrecoverable error occurred during
execution. For example, you can wrap your exception generated during execution
with this exception. Upon this exception, Oracle Enterprise Scheduler transitions
the request to the ERROR state.

The routine should throw the ExecutionWarningException when the
implementation detects a failure condition that it needs to communicate to Oracle
Enterprise Scheduler. Upon this exception, Oracle Enterprise Scheduler transitions
the request to the WARNING state.

The routine should throw the ExecutionCancelledException when the
implementation detects a condition for request cancellation that it needs to
communicate to Oracle Enterprise Scheduler. Upon this exception, Oracle
Enterprise Scheduler transitions the request to the CANCELLED state.

The routine should throw the ExecutionPausedException to indicate that the class
implementing the Executable interface should pause for the completion of a
subrequest. Upon this exception, Oracle Enterprise Scheduler transitions the
request to the PAUSED state.

3.4 Adding Application Code to Submit Oracle Enterprise Scheduler Job

Requests

In an Oracle Enterprise Scheduler application you use the Oracle Enterprise Scheduler
APIs to submit job requests from any component in the application. The EssDemoApp
sample application provides a Java servlet for a servlet based user interface for
submitting job requests (using Oracle Enterprise Scheduler).

Use Case Oracle Enterprise Scheduler Sample Application 3-9

Adding Application Code to Submit Oracle Enterprise Scheduler Job Requests

3.4.1 How to Add Required Libraries to Project

You need to add the EJB3.0 libraries and the Oracle Enterprise Scheduler extensions to

the ViewController project before you use the Oracle Enterprise Scheduler APIs in a
servlet.

To add Oracle JDeveloper EJB3.0 and Enterprise Scheduler libraries:

1.

2
3
4
5.
6
7

In the Application Navigator select the ViewController project.

Right-click and from the dropdown list select Project Properties....

In the Project Properties navigator, select Libraries and Classpath.

In the Libraries and Classpath area, click Add Library....

In the Add Library dialog select Enterprise Scheduler Extensions.
In the Add Library dialog also select EJB 3.0.

Click OK. This action adds the libraries as shown in Figure 3-9.

Figure 3-9 Adding Enterprise Scheduler Extensions to ViewController Project

[®] Project Properties - fscratchfsched/mywork/EssDemoApp1 /view Controllerfview Controller.jpr

[#- Project Source Paths
[+-- ADF Madel

----- ADF Wiew

[Ant
[Business Components
[Compiler

----- Dependencies
----- Deployment
----- EJE Maodule

----- Extenziaon

[Javadoc

----- Jawa EE Application

----- J5P Tag Libraries

----- J5P Visual Editor

----- Enowdedge Modules
Libraries and Classpath

Libraries and Classpath

() Use Custom Settings

() Use Project Settings

lava SE Version:

HEEEEEREEEEEEEEEE

1.6.0_07 (Defaulty | | Change... |
Classpath Entries:
Export Description Add Library... |

ey 1o L
@l stz

m ADF Page Flow Runtime

@l ADF Controller Runtime

@l ADF Controller Schema

m ADF Faces Runtime 11

@il ADF Common Runtime

@l ADF Web Runtime

gl MDs Runtime

m MDS Runtime Dependencies
@l Commons Beanutils 1.6

m Commaons Logging 1.0.4
@l Commons Collections 3.1
@l ISP Runtime

m Servlet Runtime

il E63.0

m Enterprise Scheduler Extenszions

|
| Add)ARsDirectory... |

Help |

Cancel

ok, | |

8. Click OK to dismiss the Project Properties dialog.

3.4.2 How to Create the EssDemo Servlet

Using MVC design pattern you create the EssDemo servlet in the ViewController
project.

To create the sample servlet:

1.
2.
3.

3-10 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

In Application Navigator select the ViewController project.

Click the New... icon to open the New Gallery.

In the New Gallery, in the Categories area expand Web Tier and select Servlets.

Adding Application Code to Submit Oracle Enterprise Scheduler Job Requests

In the New Gallery, in the Items area select HTTP Servlet.
Click OK. This starts the Create HTTP Servlet Wizard.
On the create HTTP Servlet Page - Welcome, click Next.

N o a &

On the Create HTTP Servlet - Step 1 of 3: Servlet Information page, enter the class
name in the Class field. For this example in the Class field, enter EssDemo.

8. Enter the package name in the Package field. For this example, in the Package
field, enter demo.

9. In the Generate Content Type field, from the dropdown list select HTML.

10. In the Implement Methods area, select the doGet() and doPost() checkboxes, as
shown in Figure 3-10.

Figure 3-10 Using the Create HTTP Serviet Wizard to Create the Sample Serviet

|§| Create HTTP Servlet - Step 1 of 3: Servlet Informatior

Create HTTP Servlet - Step 1 of 3: Servlet Information

Enter zervlet details

Class: |EssDem0 |
Package: |dem0 |V|| Browse...
Generate Cantent Type: |HTML v|

[] Generate Header Comments
Implement Methods
doGetd doPost(y [] service)
[]doPuty [] doDeleted

| Help | « Back " Mext = Cancel

11. Click Next.

12. In the Create HTTP Servlet - Step 2 of 3: Mapping Information dialog, in the Name
field, enter: EssDemo

13. In the Create HTTP Servlet - Step 2 of 3: Mapping Information dialog, in the URL
Pattern field, enter: /essdemo/*, as shown in Figure 3-11.

Use Case Oracle Enterprise Scheduler Sample Application 3-11

Adding Application Code to Submit Oracle Enterprise Scheduler Job Requests

Figure 3—-11 Using the Create HTTP Serviet Wizard: Step 2 of 3 Dialog

|§| Create HTTP Servlet - Step 2 of 3: Mapping Informatior

Create HTTP Servlet - Step 2 of 3: Mapping Information

Enter servlet mapping.
‘While this iz not required to create a servlet, it is required to run a servlet.

Specify a name and mapping for the servlet.

Mapping Details

Mame:

URL Pattern: | fessdemo/™ |

’ < Back " ﬁext>J’ Einish]’ Cancel]

14. Click Finish.

15. The supplied EssDemo application includes the completed servlet. You need to
copy the source code into your project. To do this, in Oracle JDeveloper replace the
contents of the servlet with the contents of the file EssDemo. java supplied with the
sample application, as shown in Figure 3-12. The EssDemo . java sample code
includes several hundred lines, so it is not included in this text in an example.

3-12 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating Metadata for Scheduler Sample Application

Figure 3-12 Adding the Sample Servlet to the ViewController Project

[®] oracle JDeveloper 11g Development Build - Ess Demofpp.jws : View Controller jpr

1 File Edit Yiew Search Navigate Build Run

Refactor VYersioning Tools Window Help ADF

[Foad > 9o xEn 0 ¢ 8- AnEa- >4 (-)
Application MNavigator |_ E] orld java |L?_’,j’]obtype_essdemol.xml |@Job_essdemol.xml @EssDemo.java E]E]E] Ea
= — G — =
{| [Esspemonpr &~ ISR DURTGE ARl 3" (4
= Projects B8 W= | package demo; | Bl
£)-[E] viewController i s
! B D Application Sources import ... =-{5 Fil
E@ dema QEIBs(
. @ m_ s
=0 web Content {

.77 WEB-IMF
adfc-config.xml

faces-config.xml

|°'—'| trinidad-config.xml »
[+ Application Resources

[+ Data Controls

I+ Recently Qpened Files

A -EEBue

D Imports

=] 7y EzsDemao

% extends HitpServlet

E 9y EszDemol}

= g ClozemetadataCheckediMetadatase
= g closeRuntimeChecked{RuntimeSer
= 9y doCet{HttpiervietRequest, Hitpler
= oy doPost{HttpServletRequest, Hitpbe
= g metadataObjectldToString{Metadat
b = g populatelistzd :woid

[== R SRy PR SR T

<

Source EDesign |

= A |
.= EssDemo java - Structure E]

-l demo ~ 8

@EJB{description="FReference to RuntimeSerwiceBean",
name="ess/runtine”,
heanInterface=Runtineseryicelocal.class,
heanName="RuntineserviceBean"),

@EJB{description="Reference to MetadataSerwiceBean", B
name="ess/metadata”,
heanInterface=Metadataservicelocal.class,
heanName="MetadataServiceBean")
1
J
Epublic class EssDhemo extends HttpServilet {
private static final 5tring CONTENT_TY¥PE = "text/shtml; charset:
private static final 5tring MESSAGE_KEY = "Message"; |
sl
private static final 5tring PATH_SUBMIT = "/submitReguest";
private static final 5tring PATH_ALTER =\",/a1‘terRequest"; v
| source | Design | Histary | <] | >
[ElrFeedback - Log =
1 el ¥
| Feedback [Wri=

Perm Cen

3.5 Creating Metadata for Scheduler Sample Application

To use the Oracle Enterprise Scheduler sample application to submit a job request you
need to create metadata that defines a job request, including the following:

= Ajob type: this specifies an execution type and defines a common set of
parameters for a job request.

= A job definition: this is the basic unit of work that defines a job request in Oracle
Enterprise Scheduler.

3.5.1 How to Create a Job Type for Java

An Oracle Enterprise Scheduler job type specifies an execution type and defines a
common set of parameters for a job request.

To create a job type:

1. In the Application Navigator, select the EssDemo project.
2. Press Ctrl-N. This displays the New Gallery.
3. Inthe New Gallery, select the All Technologies tab.

4. In the New Gallery, in the Categories area expand Business Tier and select
Enterprise Scheduler Metadata.

5. In the New Gallery, in the Items area select Job Type as shown in Figure 3-13.

Use Case Oracle Enterprise Scheduler Sample Application 3-13

Creating Metadata for Scheduler Sample Application

Figure 3-13 Adding Job Type Metadata to the Sample Application

[#] Hew Gallery

rAII Technologies r Current Project Technaologies

(d8)
LCategories: Items: |:| Show All Descriptions
""" UL [S Incompatiblity
----- Unit Tests
..... WML [E Job Definition
[Zh-Business Tier @ Job Set
----- ADF Business Components
| | -
----- Business Intelligence ® Job Type
..... Eusiness Rules Launches Job Type Creation.

----- Content Repository
----- Data Controls
-E|B

To enable this option, you must select a project, or a file within a
project inthe Application Mavigator.

heduler Metadata % Schedule

o SRCUFITY
----- TopLink/|Pa
----- Web Services

[=H-Client Tier

----- ADF Mative Mobile

----- ADF Swing

----- Extenzion Development
..... Swing/AWT

Help | ok || concel

6. Click OK. This displays the Create Job Type dialog.

7. In the Create Job Type dialog, specify the following:

a. In the Name field, enter a name for the job type. For this example, enter the
name: Jobtype_essdemol.

b. In the Package field, enter a package name. For example, enter mypackage.
c. In the Execution Type field, from the dropdown list select JAVA_TYPE as

shown in Figure 3-14.

Figure 3-14 Creating a Job Type with the Job Type Creation Wizard

[®] Job Type Creation

Job Type E-’Q—
A jobtype describes the commaon characteristics for all the jobs of a '¢'
given type.

Enter the information to create a job type.

Mame: |Jobtype_essdem01 |
Package: |mypackage |
Location: |l."scratchl."jtempl."my\m\:urkl."EssDemoAppBI.fEssDemol.foraclel."essl." |
Execution Type: [JAVA_TYPE V]

[Ok J ’ Cancel]

d. Click OK. This creates the Jobtype_essdemol .xml file and Oracle JDeveloper
displays the Job Type page.

3-14 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating Metadata for Scheduler Sample Application

10.

In the Job Type page, in the Description field enter a description for the job type.
For this example enter: Sample Java Job Type.

In the Class Name field, click the Browse icon.

Click the Hierarchy tab and then navigate to select the appropriate class. For this
sample application, select essdemo.HelloWorld. Click OK.

The Job Type page displays, as shown in Figure 3-15.

Tip: You can add the job class at either the job type level or the job
definition level.

Figure 3—-15 Adding Sample Job Type Metadata

Application Mavigator E] jEssDemoApp.jws mjobtype_essdemol.xml E]
EzsDemoipp '_ T @juh Type
~ Projects A= TR
J @ G\’} ? E= Mame: Jobtype_essdemaol
EI--- EzzDemn .
B[Application Sources LRSI sample Job Type
| B essdema
LB Hellowarld java
E‘B Restlirces Execution Type: JAVA_TYPE
D classes Class Mame: ecsdemo HelloWarld | Q, []Read Only
ED essmeta
Er——l mypackage = Parameters VL B
Bl JobType
el @Jobtype_essdemol.xml Mo Parameters
-5 sre)
-] Model = E System Properties Pk
(G wiewController Mo System Properties
= &= Access Control / %+ %
Mo Access Control
[+ Application Resources
[+ Data Contrals
| Recently Opened Files JobType Editor I
Log

3.5.2 How to Create a Job Definition for Java

To use a Java class with Oracle Enterprise Scheduler you need to create a job
definition. A job definition is the basic unit of work that defines a job request in Oracle
Enterprise Scheduler.

When you create a job definition you specify a name, select a job type, and specify
system properties.

To create a job definition:

1.
2.
3.

In the Application Navigator, select the EssDemo project.
Press Ctrl-N. This displays the New Gallery.

In the New Gallery in the Categories area expand Business Tier and select
Enterprise Scheduler Metadata.

In the New Gallery in the Items area select Job Definition.

Use Case Oracle Enterprise Scheduler Sample Application 3-15

Creating Metadata for Scheduler Sample Application

5. Click OK. Oracle JDeveloper displays the Create Job Definition dialog.
6. Use the Create Job Definition dialog to specify the following:

a. Enter a name for the job definition or accept the default name. For example,
for the scheduler sample application, enter Job_essdemol.

b. In the Package field, enter a package name. For example, enter mypackage.

c. In the JobType field, from the dropdown list select a value. For example for
the scheduler sample application select the job type you previously created,
Jobtype_essdemol, as shown in Figure 3-16.

Figure 3-16 Using the Job Definition Creation Dialog

[®] Create Joh Definition

Job Definition
A job definition describes a job (basic unit of wark) that runs in the E

scheduler. A job defintion requires ajob type.

Mame: |Job_essdem01 |

Package: |mypackage |

Job Type: |fmypackagefJobtype_essdem01 v|

Location: | fscratchfsched/ mywork/EssDemofppl/EssDemao |

| Help | | Ok J | Cancel |

d. Click OK. This creates the job definition Job_essdemol.xml and the jobs folder
in mypackage and shows the Job Definition page, as shown in Figure 3-17.

3-16 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Assembling the Scheduler Sample Application

Figure 3—17 Job Definition Page for Sample Application

Application Nav igator [:] ‘| EzzDemofpp. jws |E§J0btype_essdem ol.xml @Job_essdem al.xml E]
. e —
=] EssDemoapp ~ &l -|| [)ob Definition
~ Projects A=
= Jm E" Eﬁ ? = Mame: Job_essdemol
ED Application Saurces XS
[}l essdemo
8] Hellowaorld java
ED REsolEces Job Type: fmypackageflobtype_essdemol
D classes Class Mame: eszdemo.HelloWorld | |:| Cwernrite
Bl essmeta
ED mypackage = Parameters 7K
| B+ Jobs
- bo[BJob_essdemal.xml RClanamE ers
= JobType _
. @fjobtype_essdemol.xml g @System Eionertics / + X
. D srC Mo System Properties
[]--- Madel
I:I--- WiewController = &= Access Control / + x
Mo Access Cantrol
[+ Application Resources
[+ Data Contraols
| Recently Qpened Files Jobdefinition Editor D
Log

e. Inthe System Properties field, click the add button and create a system
property called EffectiveApplication. Setits value to that used in
Section 3.6.1, "How to Assemble the EJB Jar Files for Scheduler Sample

Application."

3.6 Assembling the Scheduler Sample Application

After you create the scheduler sample application you use Oracle JDeveloper to
assemble the application.

To assemble the application you do the following:
Create the EJB Jar files
Create the application MAR File

Create the application EAR file
Update WAR File options

3.6.1 How to Assemble the EJB Jar Files for Scheduler Sample Application

The sample application needs to contain the required EJB descriptors. You need to
create the ejb-jar.xml and weblogic-ejb-jar.xml files and include these files with
any Java implementation class that you create.

Oracle Enterprise Scheduler requires an application to assemble and provide an E]B
JAR so that Oracle Enterprise Scheduler can find its entry point in the application
while running job requests on behalf of the application. This EJB jar should have its
required EJB descriptors in ejb-jar.xml and weblogic-ejb-jar, as well as any Java
class implementations that are going to be submitted to Oracle Enterprise Scheduler.

Use Case Oracle Enterprise Scheduler Sample Application 3-17

Assembling the Scheduler Sample Application

The descriptor files ejb-jar.xml and weblogic-ejb-jar must contain descriptions for
the Oracle Enterprise Scheduler EJBs and should not be modified.

To prepare for the assembly of the scheduler sample application, do the following to
add the EJB jar files:

Create the ejb-jar.xml file: this provides the description for the Oracle Enterprise
Scheduler EJBs and associated resources. The context of Oracle Enterprise
Scheduler request submission, processing, metadata, and runtime data for an
application is specified as the name of an Oracle Enterprise Scheduler client
application using the deployment name. You can also specify the context using the
applicationName property, as shown in Example 3—4.

Create the weblogic-ejb-jar.xml file: this provides the Oracle WebLogic Server
specific descriptions for the Oracle Enterprise Scheduler E]Bs and associated
resources.

Create the EJB JAR archive: this includes descriptors for the Java Job
implementations.

To create the ejb-jar.xml file in the Java implementation project:

1.

In Application Navigator select the EssDemo project.
Click the New... icon.

In the New Gallery, in the navigator expand General and select Deployment
Descriptors.

In the New Gallery in the Items area select Java EE Deployment Descriptor.
Click OK.

In the Select Descriptor page select ejb-jar.xml.

Click Next.

In the Select Version page select 3.0.

Click Finish.

. This creates ejb-jar.xml file and the META-INF directory in the EssDemo project,

as shown in Figure 3-18.

Figure 3—18 Adding the ejb-jar.xml File to the Sample Application

11.

Application Navigator 2] piws |[Eilobtype_essdemolxml | [Fijob_essdemol.xml [ejb-jar.xml K0
— |
EssDemoipp - - - Iy]
Projects &l W= <?xml wersion = '1.0' encoding = 'UTF-8'%>
EI"' <ejb-jar xmins:xsi="http: /A w3, org 2001 HML5chema-instance’

[Resources
Maodel
WiewZontraoller

Source | Histary

Replace the entire contents of the ejb-jar.xml file that you just created with a
copy of the scheduler ejb-jar.xml supplied with the scheduler sample
application. This sample ejb-jar.xml file is shown in Example 3-2.

3-18 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Assembling the Scheduler Sample Application

Example 3-2 EJB Contents to Copy to ejb-jar.xml

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
version="3.0">
<display-name>ESS</display-name>
<enterprise-beans>
<message-driven>
<ejb-name>ESSAppEndpoint</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.EssAppEndpointBean</ejb-class>
</message-driven>

<session>
<description>Async Request Bean</description>
<ejb-name>AsyncRequestBean</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.AsyncRequestBean</ejb-class>
</session>

<session>
<description>Runtime Session Bean</description>
<ejb-name>RuntimeServiceBean</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.RuntimeServiceBean</ejb-class>
</session>

<session>
<description>Metadata Session Bean</description>
<ejb-name>MetadataServiceBean</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.MetadataServiceBean</ejb-class>
</session>
</enterprise-beans>

To create the weblogic-ejb-jar.xml file in the Java implementation project:
1. In Application Navigator select the EssDemo project.

2, Click New... icon.

3. Under Categories expand General and select Deployment Descriptors.

4. In the Items area select Weblogic Deployment Descriptor.

5. Click OK.

6. In the Select Descriptor dialog, select weblogic-ejb-jar.xml.

7. Click Next.

8. Click Next.

9. Click Finish. This creates weblogic-ejb-jar.xml file.

10. Replace the entire contents of the weblogic-ejb-jar.xml file with the sample

weblogic-ejb-jar.xml supplied with the scheduler sample application. This file is
shown in Example 3-3.

Example 3-3 EJB Descriptor Contents to Copy to weblogic-ejb-jar.xml File

<?xml version="1.0" encoding="US-ASCII" ?>

<weblogic-ejb-jar xmlns="http://www.bea.com/ns/weblogic/10.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.bea.com/ns/weblogic/10.0

Use Case Oracle Enterprise Scheduler Sample Application 3-19

Assembling the Scheduler Sample Application

http://www.bea.com/ns/weblogic/10.0/weblogic-ejb-jar.xsd">
<weblogic-enterprise-bean>
<ejb-name>ESSAppEndpoint</ejb-name>
<message-driven-descriptor>
<resource-adapter-jndi-name>ess/ra</resource-adapter-jndi-name>
</message-driven-descriptor>
<dispatch-policy>ESSRAWM</dispatch-policy>
</weblogic-enterprise-bean>

<run-as-role-assignment>
<role-name>essSystemRole</role-name>
<run-as-principal-name>weblogic</run-as-principal-name>
</run-as-role-assignment>
</weblogic-ejb-jar>

To create the EJB JAR archive:
1. In Application Navigator select the EssDemo project.

2. Right-click and from the dropdown list, select Make EssDemo.jpr. In the
Messages Log you should see a successful compilation message, for example:

[3:40:22 PM] Successful compilation: 0 errors, 0 warnings.

3. In Application Navigator select the EssDemo project.
4. Select the New... icon.

5. In the New Gallery, in the Categories area expand General and select
Deployment Profiles.

6. In the New Gallery, in the Items area select EJB JAR File.
7. Click OK. This displays the Create Deployment Profile - EJB JAR File dialog.

8. In the Create Deployment Profile - EJB JAR File dialog, in the Deployment Profile
Name field enter ess-ejb.

9. Click OK. This displays the Edit EJB JAR Deployment Profile Properties dialog.

10. In the Edit EJB JAR Deployment Profile Properties dialog, in the Enterprise
Application Name field enter EssDemoApp, as shown in Figure 3-19.

3-20 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Assembling the Scheduler Sample Application

Figure 3-19 EJB JAR Deployment Profile for Sample Application

[#] Edit E.JB JAR Deployment Profile Properties

AR Cptions

E} File Groups

! = Project Output
Contributors
Filters

- Profile Dependencies
E} Platform

- WebSphere &.x

General

ELB JAR File:

|:ratch.."sched?jmy\mrk,."EssDemoApp,"EssDem ojdeploy,"ess—ejb.jar|
EAR File:

| ratchfsched? fmywork/EssDemofpp/EssDem ofdeployfess—ejb.ear|

Enterprise Application Mame: |EssDemofpp |

Deployment Client Maximum Heap Size {in Megabytes):

ox [conen |

11. In the EJB JAR Deployment Profile Properties dialog, in the Navigator expand File
Groups and expand Project Output, and select Contributors.

12. In the Contributors area select Project Output Directory and Project
Dependencies as shown in Figure 3-20.

Figure 3-20 Selecting EJB Contributors for the EJB JAR Deployment

[#] Edit E.JB JAR Deployment Profile Properties

Ceneral

o JAR Options

E| File Groups

! B Project Output

ntributors
- Filters

Prafile Dependencies

Platfarm

Contributors

Project Qutput Directory

[] Praject HTML Root Directory
[Project Source Path

[] Praject Additional Classpath

Project Dependencies

Order of Contributors:

FProject Output Directory Add...
Froject Dependencies

[Ok I[Cancel]

13. In the EJB JAR Deployment Properties dialog, in the Navigator expand File
Groups and Project Output, and select Filters.

Use Case Oracle Enterprise Scheduler Sample Application 3-21

Assembling the Scheduler Sample Application

14. Select the META-INF folder and the essdemo folder as shown in Figure 3-21.

Figure 3-21 EJB JAR Deployment Profile File Groups Filters

[#] Edit E.JB JAR Deployment Frofile Properties

- General

- JAR Options

E| File Groups

=S Praject Output
Contributors

Ly

Filters

Files Fatterns

This file group includes the project output directory as a contributor. You may
need to compile the project to see all files coming from the output directory.

E|"' 8] Merged Contents of This File Group's Contributors

: H =[] C3 data
----- Profile Dependencies -] £3 oooooooo
B Platform 5[] £ META-INF
Lo ebSphere Bx] ejb-jar.xml
A [E] weblogic-ejb-jar.xmi
3 essdemao
[B HelloWorld.class

=[] E3 essmeta
B[] £3 mypackage

..... [1[E Essbemo.cdi

----- O @ EzsDemazyxm.cdi

----- [1[E] EssDemozyxr.cdi

Expand All Modes | Collapse All Modes |

]|

| Help | | ok Cancel |

15. On the EJB JAR Deployment Profile Properties page, click OK.

16. On the Project Properties page, click OK.

To update WAR archive options:

1.

2
3
4.
5
6

3-22 Oracle Fusion

In the Application Navigator, select the ViewController project.

Right-click and select Project Properties....

In the Navigator, select Deployment.

In the Deployment page, in the Deployment Profiles area select the WAR File.
Click Edit.... This displays the Edit WAR Deployment Profile Properties dialog.

In the Edit War Deployment Profile Properties dialog, select General and
configure the General page as follows, as shown in Figure 3-22:

a. Setthe WAR File: path to_mywork
/mywork/EssDemoApp/ViewController /deploy /EssDemoApp_
ViewController_webappl.war

b. Inthe Web Application Context Root area, select Specify Java EE Web
Context Root:

c. In the Specify Java EE Web Context Root: text entry area, enter EssDemoApp.

d. In the Deployment Client Maximum Heap Size (in Megabytes): dropdown
list select Auto

Applications Developer's Guide for Oracle Enterprise Scheduler

Assembling the Scheduler Sample Application

Figure 3-22 WAR Deployment Configuration Options

[¢] Edit WAR Deployment Profile Properties

(@@)| General
Wi R File:
WAR Options Browse. . |
[=}- File Groups -
B} Web Files Web Application's Context Root:
Contributors (") Use Project's Java EE Web Context Root
Filters |EssDemoApp—ViewCDntroller—context—root |
WEE-INF/classes (3) Specify |ava EE Web Context Root:
Contributors
A |EssDemoApp |
- Filters —
= \'_\fEB—INFfIib A Deployment Client Maximum Heap Size {in Megabytes):|AutL|
Contributors
L Filters W
----- Profile Dependencies
= Platfarm
[Webiphere 6.x
| Help | | [o].4 J | Cancel

7. In the Edit WAR Deployment Profile Properties dialog, click OK.
Oracle JDeveloper updates the deployment profile.
8. In the Project Properties dialog, click OK.

9. An application either uses the deployment name as the default value for its
application name or you can set the application name using the property
applicationName in the ejb-jar.xml. The default application name is the
deployment name if the applicationName is not specified.

To set the applicationName edit the ejb-jar.xml file to set the value of the

<activation-config-property> named applicationName, as shown in
Example 3-4.

Example 3—4 Setting applicationName in ejb-jar.xml

<enterprise-beans>
<message-driven>
<ejb-name>ESSAppEndpoint</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.EssAppEndpointBean</ejb-class>
<activation-config>
<activation-config-property>
<activation-config-property-name>
applicationName
</activation-config-property-name>
<activation-config-property-value>
MY APPLICATION NAME
</activation-config-property-value>
</activation-config-property>
</activation-config>
</message-driven>
<enterprise-beans>

Use Case Oracle Enterprise Scheduler Sample Application 3-23

Assembling the Scheduler

Sample Application

3.6.2 How to Assemble the MAR File for User Metadata

The

sample application needs to contain the required MAR profile.

To create the MAR file:

1.

a & 0N

Open the EssDemoApp application and from the Application Menu select
Application Properties...

In the Application Properties dialog, in the navigator select Deployment.
Select and delete the default deployment profile.
Click New.... This displays the Create Deployment Profile page.

In the Archive Type field, from the dropdown list select MAR File as shown in
Figure 3-23.

Figure 3-23 Create Deployment Profile Page for New MAR

Deployment

-~ Application Cantent

() Use Custom Settings
Deployment [g] Create Deployment Profil

Rezource B
Run Click Ok to create your new deployment profile and immediately open it to see its configur...
------ WS Policy Std e rune: | Edit... |
[MaF File -| | Newr.. |
e | Delete |
|metadatal |
Descriptian:
Creates a profile for deploying a metadata MAR file.
loyment
ousky
Help | [o].4 J | Cance|
|| Credentials
Decide whether to migrate the following security objects,
Users and Groups
| Help | | Ok J | Cancel |

10.

In the Create Deployment Profile dialog, in the Name field enter a name, for
example enter essMAR.

In the Create Deployment Profile dialog, click OK.

On the Edit MAR Deployment Profile dialog, in the navigator expand Metadata
File Groups and select User Metadata.

Click Add.... This displays the Add Contributor dialog.

On the Add Contributor dialog click Browse to add the essmeta metadata that
contains the namespace for the Jobs and JobTypes directory, as shown in
Figure 3-24. Note, you select the path that you need to include in the Add
Contributor dialog by double-clicking the essmeta directory.

3-24 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Assembling the Scheduler Sample Application

Figure 3-24 Adding User Metadata to MAR Profile

[¢] Edit MAR Deployment Profile Properties

(&8)| User Metadata
£ MAR Options File G Mame: User Metadat |
Bl Metadata File Croups (112 (e Wl =er Metadata
er Metadata
- Directories
Directory or Archive: |fscratchfsched?l.fmywurkl."EssDemoApprssDemofessmeta || Erowse... | |
Help | Ok | | Cancel |
)
| Delete |
| Help | [o].4 J | Cancel

11. On the Add Contributor dialog, click OK.

12. In the navigator expand Metadata File Groups and User Metadata and select
Directories.

13. Select the mypackage directory. This selects all the appropriate information for
Oracle Enterprise Scheduler application user metadata for the application.

Select the bottom most directory in the tree. This is the directory from which the
namespace is created. For example, when selecting oracle, the namespace is
oracle. When selecting the product directory, the namespace is
oracle/apps/product. For example, to create the namespace
oracle/apps/product/component/ess, click the ess directory.

The folder you select in this dialog determines the top level namespace in
adf-config.xml. For more information, see Section 3.6.3, "How to Assemble the
EAR File for Scheduler Sample Application.” This namespace should be the same
as the package defined in job and job type definition. For more information, see
Section 3.5, "Creating Metadata for Scheduler Sample Application."

Note: If your namespace is too generic, then your Oracle ADF
application might fail. Make sure to use proper package structure and
map only the required namespaces.

14. On the Edit MAR Deployment Profile Properties page, click OK.

15. On the Application Properties page, in the navigator expand Run and select
MDS.

16. Select the MAR profile you just created, essMAR, as shown in Figure 3-25.
17. Click OK.

Use Case Oracle Enterprise Scheduler Sample Application 3-25

Assembling the Scheduler Sample Application

Figure 3-25 Setting Application Properties Run MDS MAR Profile

[®] Application Properties - fscratchfsched7/imywork/EssDemoApp/EssDemofpp.jws

(@)| Run:MDS
- Application Content (") Use Custom Settings
Deplayment () Use Application Settings
+o Rezource Bundles
- Run MAR Profile: [essMAR =
g MDS
L WS Policy Store Change from default only in advanced scenarios

MD% Repository Directory

Thiz directory stores customizations and metadata documents generated at application
runtime

Default Location:

|?fsystem 11.1.1.1.32.53.52/0.mds.dtfadrsfEssDem oAppfessMARImds_adrs_uuritedir|

Dwerride Location:

| | | Browse... |
Directory Content:
-::}::- Preserve customizations across application runs
() Delete customizations before each run
| Help | | o] J | Cancel

3.6.3 How to Assemble the EAR File for Scheduler Sample Application

You need to prepare an EAR file that assembles the scheduler sample application. The
EAR archive consists of the following:

= EJBJAR including the Oracle Enterprise Scheduler Java job implementation.
s WAR archive with the EssDemo servlet.

To create the EAR file for the application:
1. Inthe Application Navigator, select the EssDemoApp application.

From the Application Menu, select Application Properties....
In the Application Properties Navigator, select Deployment.

2
3
4. Click New... to create a new deployment descriptor.
5. In the Archive Type dropdown list, select EAR File.
6

In the Create Deployment Profile dialog in the Name field enter the application
name. For the scheduler application, enter EssDemoApp.

Click OK.

N

8. In the Edit EAR Deployment Profile Properties dialog, in the navigator select
Application Assembly.

9. In the Application Assembly page in the Java EE Modules area select the
appropriate checkboxes, including the following: essMAR, the WEB module in the
ViewController project and the EJB module, ess-ejb, in the EssDemo project as
shown in Figure 3-26.

3-26 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Assembling the Scheduler Sample Application

Figure 3-26 Setting Application Assembly Options for EAR File

[#] Edit EAR Deployment Profile Properties

I Application Assembly

Select the Jawva EE modules that you would like to assemble into your Java EE

- General
pplication Assembly
- EAR Options
E| File Groups
E---Application Dezcriptary £ AR
: L Contributors = Maodel jpr
- Filters [O EzzDemofpp_Model_adflibEssDemofppl
E} Platform E] WiewContraller jpr
b WehSphere &.x EzzDemofpp_WiewController_nebappl

application.

Java EE Modules:

A EszDemo jpr
|:| EzsDemofpp_EszDemo_adflibEssDemobppl
[L ess-gjb

Fath in EAR: |

| Help | Ok J | Cancel |

10. Click OK.
11. On the Application Properties page, click OK.

3.6.4 Add oracle.ess Library Weblogic Application Descriptor
You need to update the weblogic-application.xml file to include the oracle.ess
library.
1. Inthe Application Navigator expand Application Resources.

2. In the navigator expand Descriptors and expand META-INF, as shown in
Figure 3-27.

Figure 3-27 Viewing weblogic-application.xml in Application Resources

= Application Resaurces -

o {:I Connections
ElD Deszcriptors
B[META-INF
(- % wehlogic-application.zml
-7 ADF META-INF

[+ Data Cantrols
[+ Recently Opened Files

3. Double-click to open the weblogic-application.xml file.

4. Add the following to the weblogic-application.xml file. Example 3-5 shows a
complete weblogic-application.xnl file, including this <library-ref> element.

<library-ref>
<library-name>oracle.ess</library-name>

</library-ref>

Use Case Oracle Enterprise Scheduler Sample Application 3-27

Deploying and Running the Scheduler Sample Application

Example 3-5 Contents of Sample weblogic-application.xml File with oracle.ess
<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="http://www.bea.com/ns/weblogic/weblogic-application
http://www.bea.com/ns/weblogic/weblogic-application/1.0/weblogic-application.xsd"
xmlns="http://www.bea.com/ns/weblogic/weblogic-application">
<listener>
<listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-class>
</listener>
<listener>

<listener-class>oracle.adf.share.weblogic.listeners.ADFApplicationLifecycleListene
r</listener-class>
</listener>
<library-ref>
<library-name>adf.oracle.domain</library-name>
<implementation-version>11.1.1.1.0</implementation-version>
</library-ref>

<library-ref>
<library-name>oracle.ess</library-name>
</library-ref>

</weblogic-application>

3.7 Deploying and Running the Scheduler Sample Application

After you complete the steps to build and assemble the scheduler sample application
you need to deploy the application to Oracle WebLogic Server. After you successfully
deploy an application you can run the application. For the scheduler sample
application you use a browser to run the EssDemo servlet to submit job requests to
Oracle Enterprise Scheduler running on Oracle WebLogic Server.

3.7.1 How to Deploy the EssDemoApp Application

To deploy the EssDemoApp application you need a properly configured and running
Oracle WebLogic Server, and you need an active metadata server. When you deploy
the application Oracle JDeveloper brings up the Deployment Configuration page.
Select your repository from the dropdown list and Enter a partition name (the
partition name defaults to application name).

To deploy the EssDemoApp application:

1. Check the Run Manager to make sure the Oracle WebLogic Server is up and
running. If the Oracle WebLogic Server is not running, start the server. To start the
server, from the Run menu click Start Server Instance.

2. Inthe Application Navigator, select the EssDemoApp application.

3. Inthe Application Navigator from the Application Menu select Deploy >
EssDemoApp > to > Integrated WLSConnection, as shown in Figure 3-28.

3-28 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Deploying and Running the Scheduler Sample Application

Figure 3-28 Deploying the EssDemoApp Application

Oracle JDeveloper 11g Development Build - EssDemofpp.

File Edit VYiew Application Refactor Search Navigate Build Run 0Dl Versioning Tools Window Help ADF

iCEAa P 90 XEE O-@- - b aRda- p--0 A | @8 ~MyConnection i
E] Q)Star‘tPage |ejb—jar.xm|

df-config.xml %mblogic—applicaﬂon.xml \m\eblogic—ejb—jar.xm\ E]

Mewy Project...
Open Project...

Close Application
x Delete Application
Rename Application...

WiewContr

“Wersion Application.. 1istener-clag

@8 Find Application Files
Showe e rviewn - n<,/11 brary -nam
57 Filter Application... i L1.1.1. mplementation-version:

Secure

55 Reforma Crrl+Al-L

essMAR
Organize Imports Ctel+Al -0

to EARfile

Mew Connection...
Compare With] -

Replace With [

Application Properties...

Populate Setld Metadata
i e
[Runwith PUTF -) 5T
[Runwith PerfTrace :
e o

HlsniUD AM PUE SNOTTCES =SePVers ZBEA-UU/bls= <UNanhel “UETal|T® 15 howW [TSTERThY OR LU, 279, 1as, o
=May 20, 2003 9:26:08 AM PDT= =Hotice= =keblLogicServers= =BEA-000331= =Started WeblLogic Admin Serwver "DefaultSer

=May 20, 2009 9:26:08 AM PDT> =Motice= =WeblogicServers= =BEA-DO0365> =Server state changed to RUMNING=
=HMay 20, 2009 9:26:08 AM PDT= =Motice= =WeblogicServers =BEA-000360- =Server started in RUNNING modes

I» Application Res... pefaultServer startup time: 78466 ms.

I+ Data Controls befaultServer started. 3

[+ Recently Opene... o 1l
Messages Extensions | Feedback | [Running: DefaultServer |<\ & 2 [

4. Oracle JDeveloper shows the Deployment Configuration page, as shown in
Figure 3-29. Select the appropriate options for your Metadata Repository.

Use Case Oracle Enterprise Scheduler Sample Application 3-29

Deploying and Running the Scheduler Sample Application

Figure 3-29 Deployment Configuration Page with Metadata Repository Options

Configure and customize settings for this deployment .
MDS
- Metadata Repository
Bepositary Mame: |mds—AppIicationMDSDB v|
Repository Type: DB
Partition Mame: |APMApp |V|
Fath/MDI Info: jdbcfmds/mds-ApplicationMD5SDEDS
- Shared Metadata Repositories
Mamespace Repository Type Partition Path/INDI Info
| Help | Deplaoy | | Cancel

5. Click Deploy.
6. Verify the deployment using the Deployment Log.

3.7.2 How to Run the Scheduler Sample Application

To run the scheduler sample application you access the EssDemo servlet in a browser.

To access the EssDemo servlet:
1. Enter the following URL in a browser:

http:/ / host:http-port / context-root / essdemo
For example,

http://myserver.us.oracle.com:7101/EssDemoApp/essdemo

This shows the EssDemo servlet, as shown in Figure 3-30.

3-30 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Deploying and Running the Scheduler Sample Application

Figure 3-30 Running EssDemo Servlet for Oracle Enterprise Scheduler Sample
Application

Enterprise Scheduler Service Tutorial

Launch Job

Job: | JobwithFarams v Messages
Schedule: | Immediately v

Request Status

|req]I)| Description | Scheduled time | State | Action
1 [rob_essdemo 1 @Immediately [Wed Tan 07 14:05:05 PST 2009 [SUCCEEDED |[Purge |

Select a job definition from the Job drop-down menu.
Select a value from the Schedule drop-down menu.

Click Submit.

a & Db

Refresh the browser to see the progress of the job in the Request Status area, as
shown in Figure 3-31.

Figure 3-31 Running EssDemo Servlet with Request Status for Submitted Requests

Enterprise Scheduler Service Tutorial

Launch Job
Joh: | JobWithParams Messages
Schedule: | Immedistely = New request 2 launched using Job_essdemo 1(@Imme diately
Request Status
|req]:D| Description | Scheduled time | State | Action

1 [rob_essdemol @Emme diately [Wed Tan 07 14:05:05 PST 2009 [SUCCEEDED | Purge
2 [Tob_essdernol @Emmediately [Fri Jan 09 14:3147 PST 2009 [WAIT [Ccancer]

3.7.3 How to Purge Jobs in the Scheduler Sample Application

Using the scheduler sample application and the EssDemo servlet you can remove
completed jobs from the Request Status list.

Use Case Oracle Enterprise Scheduler Sample Application 3-31

Troubleshooting the Oracle Enterprise Scheduler Sample Application

To remove completed jobs:
1. Click Purge to purge a request.

2. Click Cancel to cancel a request that is either RUNNING or WAITING.

3.8 Troubleshooting the Oracle Enterprise Scheduler Sample Application
This section covers common problems and solutions for these problems.
1. Problem: sglplus: Command not found.

Solution: Run the Oracle Database commands in an environment that includes
Oracle Database.

2. Problem: SP2-0310: unable to open file "createuser_ess_oracle.sql"

Solution: Change to the /rcu/integration/ess/sql directory before running
sqlplus scripts.

3. Problem:

404 Not Found
Resource /EssDemoApp-ViewController-context-root/essdemo not found on this
server

Solution: This and similar problems can be due to not using a URL that matches
the root URL that you specify when set the context-root on the URL to access the
application. To use a context-root that matches the deployed application, use the
value that you specified.

To check and set the context-root value in the WAR archive:
Select the ViewController project.

a
b. Right-click and from the dropdown list select Project Properties.

o

In the navigator, select Deployment.

e

In the Deployment Profiles area, select essdemoapp and click Edit.

e. Choose the desired context-root, this forms the context-root on the URL to
access the application.

=h

In the General area, select Specify Java EE Web Context Root.

g. For the Java EE Web Context Root: text entry area, enter EssDemoApp.
h. In the WAR Deployment Profile Properties window, click OK.

i. Inthe Project Properties window, click OK.

4. Problem: Unresolved application library references, defined in
weblogic-application.xml: [Extension-Name: oracle.ess, exact-match:
false]..

Deployment fails with errors. For example:

09:30:59 AM] Building...

[09:31:00 AM] Deploying 2 profiles...

[09:31:01 AM] Wrote Web Application Module to
/scratch/sched7/mywork/EssDemoApp/ViewController/deploy/EssDemoApp_
ViewController_ webappl.war

[09:31:01 AM] removed bundleresolver.jar from APP-INF because it cannot be part
of an EJB deployment[09:31:01 AM] Wrote Enterprise Application Module to
/scratch/sched7/mywork/EssDemoApp/deploy/EssDemoApp_applicationl.ear

[09:31:02 AM] Deploying Application...

3-32 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Troubleshooting the Oracle Enterprise Scheduler Sample Application

[09:31:04 AM] [Deployer:149193]Deployment of application 'EssDemoApp_
applicationl' has failed on 'DefaultServer'

[09:31:04 AM] [Deployer:149034]An exception occurred for task
[Deployer:149026]deploy application EssDemoApp_applicationl on DefaultServer.:
[J2EE:160149]Error while processing library references. Unresolved application
library references, defined in weblogic-application.xml: [Extension-Name:
oracle.ess, exact-match: false]..

[09:31:05 AM] Weblogic Server Exception:

weblogic.management .DeploymentException: [J2EE:160149]Error while processing
library references. Unresolved application library references, defined in
weblogic-application.xml: [Extension-Name: oracle.ess, exact-match: false].
[09:31:05 AM] See server logs or server console for more details.

[09:31:05 AM] weblogic.management.DeploymentException: [J2EE:160149]Error while
processing library references. Unresolved application library references,
defined in weblogic-application.xml: [Extension-Name: oracle.ess, exact-match:
false].

[09:31:05 AM] #### Deployment incomplete. ####

[09:31:05 AM] Deployment Failed

Solution: This deployment error can be seen when the application is correct, but
the Oracle WebLogic Server configuration is not correct. The configuration
includes the step, 3.1.4, "Create WLS domain". This configuration step is required.

3.8.1 How to Create the Oracle Enterprise Scheduler Database Schema

You need to create the Oracle Enterprise Scheduler Oracle Database schema. Oracle
Enterprise Scheduler uses this schema to maintain information about job requests.

Note: In the Oracle Fusion Applications environment, this step is not
required. In this environment the database is installed with the Oracle
Enterprise Scheduler schema pre-configured. Thus, in this
environment you can skip this step.

In order to create the Oracle Enterprise Scheduler database schema, you need to install
Oracle JDeveloper for use with Oracle Enterprise Scheduler. For more information, see
the Oracle Fusion Applications Installation Guide.

3.8.2 How to Drop the Oracle Enterprise Scheduler Runtime Schema

If you have been running with previous version of the Oracle Enterprise Scheduler
runtime schema, or if for any reason you need to drop the schema, you can do this
using the dropschema_ess_oracle.sql script.

Use these steps only to drop the Oracle Enterprise Scheduler runtime schema. These
steps clean up certain database objects and then drop the schema user. Note that
simply dropping the Oracle Enterprise Scheduler schema is not sufficient to correctly
drop and remove an existing schema.

Note: For a first time installation you do not need to perform these
steps. Only use these steps if you need to drop the database schema
due to a previous installation error or to clean up your database after a
previous use of Oracle Enterprise Scheduler.

To drop the database schema:
1. Terminate any container that is using Oracle Enterprise Scheduler schema.

Use Case Oracle Enterprise Scheduler Sample Application 3-33

Using Submitting and Hosting Split Applications

2. Change to the ess/sql directory with the following command:
% cd JDEV_install_dir/rcu/integration/ess/sql

3. Do the following, when connected as SYS or as SYSDBA. In the text, ess_schema
represents Oracle Enterprise Scheduler schema being removed:

@dropschema_ess_oracle.sql ess_schema
alter session set current_schema=sys;
drop user ess_schema cascade;

Example in which ess_schema is oraess:

> @dropschema_ess_oracle.sgl oraess

> alter session set current_schema=sys;
> drop user oraess cascade;

> exit

3.9 Using Submitting and Hosting Split Applications

When you build and deploy Oracle Enterprise Scheduler applications, you can use
two split applications — a job submission application, a submitter, and a job execution
application, a hosting application. Using this design you need to configure and deploy
each application with options that support such a split configuration. In addition,
some Oracle Enterprise Scheduler deployments use a separate Oracle WebLogic Server
for the hosting and the submitting applications; for this deployment option the
submitting application and the hosting application are deployed to separate Oracle
WebLogic Servers. When the submitter application and the hosting application for
Oracle Enterprise Scheduler run on separate Oracle WebLogic Servers, you need to
configure the Oracle WebLogic Server for the hosting application so that the
submitting application can find the hosting application.

To build the sample split applications, you do the following;:

1. Build a backend hosting application that includes the code to be scheduled and
run.

2. Build a frontend submitter application initiates the job requests.

3.9.1 How to Create the Backend Hosting Application for Scheduler

Using Oracle JDeveloper you create the backend application. To create the scheduler
backend sample application you do the following:

» Create a backend application and project.
= Configure security.
» Define the deployment descriptors.

» Create the Java class that implements the Oracle Enterprise Scheduler executable
interface.

» Create the Oracle Enterprise Scheduler metadata to describe the job
= Assemble the application.

= Deploy the application.

3-34 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Submitting and Hosting Split Applications

3.9.1.1 Creating the Backend Hosting Application

To work with Oracle Enterprise Scheduler with a split application you use Oracle
JDeveloper to create the backend application and project, and to add Oracle Enterprise
Scheduler extensions to the project.

To create the backend hosting application:

1.
2.

10.
11.
12.

From JDeveloper choose File > New from the main menu.

In the New Gallery, expand General, select Applications and then Generic
Application, and click OK.

In the Name your application page of the Create Generic Application wizard, set
the Application Name field to EssDemoApp.

In the Name your project page, set the Project Name to SuperEss.

This project is where you will create and save the Oracle Enterprise Scheduler
metadata.

Add the EJB technology to the project.

In the Project Java Settings page, change the default package to
oracle.apss.ess.howto.

In the Configure E]B Settings page, select Generate ejb-jar.xml in this project and
click Finish.

In the Application Navigator, right-click the SuperEss project and select Project
Properties.

In the Project Properties dialog, expand Project Source Paths and click the
Resources navigation tab.

Select Include Content from Subfolders.
Click the Libraries and Classpath navigation tab.
Click Add Library, select Enterprise Scheduler Extensions, and click OK.

3.9.1.2 Configuring Security for the Backend Hosting Application

You need to create a user that is assigned to the EssDempAppRole role.

To configure security for the backend hosting application:

1.
2.

Select Application > Secure > Configure ADF Security from the main menu.

In the ADF Security page of the Configure ADF Security wizard, select ADF
Authentication.

In the Authentication Type page, accept the default values as this application will
not have a web module to secure.

Click Finish.

A file named jps-config.xml is generated. You can find this file in the
Application Resources panel by expanding Descriptors, and expanding
META-INF. This file contains a security context or security stripe named after the
application.

Select Application > Secure > Users from the main menu.

A file named jps-config.xml is generated.

Use Case Oracle Enterprise Scheduler Sample Application 3-35

Using Submitting and Hosting Split Applications

6. In the overview editor for the jps-config.xml file, click the Add icon in the Users
list.

7. Set the name to EssDemoAppUser and set the password to welcomel.
8. (Click the Application Roles navigation tab.

9. Click the Add icon in the Roles list and choose Add New Role.

10. Set the name to EssDemoAppRole.

11. Click the Add icon in the Mappings tab and choose Add User.

12. Select EssDemoAppUser and click OK.

3.9.1.3 Defining the Deployment Descriptors for the Backend Hosting Application

The sample application needs to contain the required EJB descriptors. You need to
create the ejb-jar.xml and weblogic-ejb-jar.xml files and include these files with
any Java implementation class that you create.

Oracle Enterprise Scheduler requires an application to assemble and provide an E]JB
JAR so that Oracle Enterprise Scheduler can find its entry point in the application
while running job requests on behalf of the application. This E]B jar should have its
required E]B descriptors in ejb-jar.xml and weblogic-ejb-jar, as well as any Java
class implementations that are going to be submitted to Oracle Enterprise Scheduler.
The descriptor files ejb-jar.xml and weblogic-ejb-jar must contain descriptions for
the Oracle Enterprise Scheduler EJBs.

The Oracle Enterprise Scheduler backend application is deployed to Oracle WebLogic
Server. You need to create a deployment profile in Oracle JDeveloper to deploy the
EssDemoApp application.

The EssDemoApp application is a standalone application that contains an Oracle
Enterprise Scheduler Java job and includes the required Oracle Enterprise Scheduler
metadata, an Oracle Enterprise Scheduler message-driven bean (MDB), and the EJB
descriptors for the application. This application does not perform Oracle Enterprise
Scheduler submit API; in this hosting application the submission occurs in the
frontend submitter application. In the hosting application, EssDemoApp, the
weblogic-ejb-jar.xml exposes the EJB remote interface through JNDI (using the E]B
remote interface allows for the job submission to occur in the frontend application).

You also need to create the weblogic-application.xml file to include the oracle.ess
library, to add an Oracle Enterprise Scheduler listener, and to indicate which stripe to
use to upload the jazn-data.xml policy.

To define the deployment descriptors for the backend hosting application:

1. In the Application Navigator, expand SuperEss, expand Application Sources,
expand META-INF, and double-click ejb-jar.xml.

2. Replace the contents of the file with the XML shown in Example 3—-6

Example 3—-6 Contents to Copy to ejb-jar.xml for a Backend Hosting Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
version="3.0">
<display-name>ESS</display-name>

3-36 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Submitting and Hosting Split Applications

<enterprise-beans>
<message-driven>
<ejb-name>ESSAppEndpoint</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.EssAppEndpointBean</ejb-class>
<activation-config>
<activation-config-property>
<!-- The "applicationName" property specifies the logical name used
- by Oracle Enterprise Scheduler to identify this application.
- This name is independent of the application name used when
- deploying the application to the container. This decoupling
- allows applications to safely hardcode the logical application
- name in source code without having to worry about the more
- frequently changed deployment name.

- Note: The name given here must also be specified in the
- SYS_effectiveApplication property of each job definition and
- job set of this application.

<activation-config-property-name>applicationName</activation-config-property-name>

<activation-config-property-value>EssDemoApp</activation-config-property-value>
</activation-config-property>
<activation-config-property>
<!-- The "applicationStripe" property specifies which JPS security
- stripe or "security context" Oracle Enterprise Scheduler should
- use to perform security checks.
- The value here must be the same as the "injection-target-name"
- value used by the "oracle.security.jps.ee.ejb.JpsInterceptor"
- interceptor descriptor below.

- Note: When creating jps-config.xml through JDev, it will create
- default security context using the JDev workspace name. In
- order to simplify things, we will use the JDev workspace name
- as our value. Otherwise, you will have to rename the security
- context created by JDev or create your own.
-—>

<activation-config-property-name>applicationStripe

</activation-config-property-name>

<activation-config-property-value>EssDemoApp

</activation-config-property-value>

</activation-config-property>
</activation-config>
</message-driven>

<!-- The AsyncBean allows asynchronous Java jobs to notify
- Oracle Enterprise Scheduler of its status through Java EE EJB APIs.
- It is recommended to use the WebService callback pattern
- instead of the EJB callbacks wherever possible.
-—>
<gsession>
<description>Async Request Bean</description>
<ejb-name>AsyncRequestBean</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.AsyncRequestBean</ejb-class>

</session>

<!-- The Runtime Service allows users to interact with an Executable.
- Operations include submitting, cancelling, querying, etc.
-

Use Case Oracle Enterprise Scheduler Sample Application 3-37

Using Submitting and Hosting Split Applications

<session>
<description>Runtime Session Bean</description>
<ejb-name>RuntimeServiceBean</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.RuntimeServiceBean</ejb-class>
</session>

<!-- The Metadata Service allows user to interact with
- Oracle Enterprise Scheduler, metadata including job definitions,
- job sets, job types, schedules, and so on. Operations include reading,
- writing, querying, copying, deleting, and so on.
-——>
<session>
<description>Metadata Session Bean</description>
<ejb-name>MetadataServiceBean</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.MetadataServiceBean</ejb-class>
</session>

</enterprise-beans>

<!--
- The JPS interceptor is used by JPS (Java Platform Security) in order to
- perform security checks. The "stripe name" is usually associated with
- the application name but some groups split their security permissions
- between Oracle ADF grants and Oracle Enterprise Scheduler grants, creating
- two stripes.
- For example, the Oracle ADF grants would live in the "MyApp" stripe while
- the Oracle Enterprise Scheduler grants would live in the "MyAppEss".

- Note: For this example, we will use only 1 stripe.

- Note: When creating jps-config.xml through JDev, it will create
- default security context using the JDev workspace name. In
- order to simplify things, we will use the JDev workspace name
- as our value. Otherwise, you will have to rename the security
- context created by JDev or create your own.

-—>

<interceptors>
<interceptor>

<interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
<env-entry>
<env-entry-name>application.name</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>EssDemoApp</env-entry-value>
<injection-target>

<injection-target-class>oracle.security.jps.ee.ejb.JpsInterceptor</injection-targe
t-class>
<injection-target-name>application_name</injection-target-name>
</injection-target>
</env-entry>
</interceptor>
</interceptors>

</ejb-jar>

3. In Application Navigator, right-click the SuperEss project and select New.

4. In the New Gallery, expand General, select Deployment Descriptors and then
Weblogic Deployment Descriptor, and click OK.

5. In the Select Descriptor page select weblogic-ejb-jar.xml.

3-38 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Submitting and Hosting Split Applications

6. Click Next, click Next again, and click Finish.

7. In the source editor, replace the contents of the weblogic-ejb-jar.xml file that you
just created with the XML shown in Example 3-7.

This XML associates the MDB in the ejb-jar.xml file with the Oracle Enterprise
Scheduler Resource Adapter. Without this XML, the application would not know
what to talk to.

Example 3-7 Contents to Copy to weblogic-ejb-jar.xml for a Backend Hosting
Application

<?xml version = '1.0' encoding = 'UTF-8'?>

<weblogic-ejb-jar xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://www.bea.com/ns/weblogic/weblogic-ejb-jar

http://www.bea.com/ns/weblogic/weblogic-ejb-jar/1.0/weblogic-ejb-jar.xsd"
xmlns="http://www.bea.com/ns/weblogic/weblogic-ejb-jar">

<weblogic-enterprise-bean>
<ejb-name>ESSAppEndpoint</ejb-name>
<message-driven-descriptor>
<resource-adapter-jndi-name>ess/ra</resource-adapter-jndi-name>
</message-driven-descriptor>
<dispatch-policy>ESSRAWM</dispatch-policy>
</weblogic-enterprise-bean>

</weblogic-ejb-jar>

8. In Application Navigator, right-click the SuperEss project and select New.

9. In the New Gallery, expand General, select Deployment Descriptors and then
Weblogic Deployment Descriptor, and click OK.

10. In the Select Descriptor page select weblogic-application.xml.
11. Click Next, click Next again, and click Finish.

12. In the source editor, replace the contents of the weblogic-application.xml file
that you just created with the XML shown in Example 3-8.

Example 3-8 Contents to Copy to weblogic-application.xml for a Backend Hosting
Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemalocation="http://www.bea.com/ns/weblogic/weblogic-application

http://www.bea.com/ns/weblogic/weblogic-application/1.0/weblogic-application.xsd"
xmlns="http://www.bea.com/ns/weblogic/weblogic-application">

<!-- The following application parameter tells JPS which stripe it should
- use to upload the jazn-data.xml policy. If this parameter is not
- specified, it will use the Java EE deployment name plus the version
- number (e.g. EssDemoApp#V2.0).

<application-param>
<param-name>jps.policystore.applicationid</param-name>
<param-value>EssDemoApp</param-value>
</application-param>

Use Case Oracle Enterprise Scheduler Sample Application 3-39

Using Submitting and Hosting Split Applications

<!-- This listener allows JPS to configure itself and upload the
- jazn-data.xml policy to the appropriate stripe
-—>

<listener>

<listener-class>oracle.security.jps.wls.listeners.JpsApplicationLifecycleListener<
/listener-class>
</listener>

<!-- This listener allows MDS to configure itself and upload any metadata
- as defined by the MAR profile and adf-config.xml
-—>

<listener>

<listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-class>
</listener>

<!-- This listener allows Oracle Enterprise Scheduler to configure itself
-—>
<listener>

<listener-class>oracle.as.scheduler.platform.wls.deploy.ESSApplicationLifecycleLis
tener</listener-class>
</listener>

<!-- This shared library contains all the Oracle Enterprise Scheduler classes
-—>
<library-ref>
<library-name>oracle.ess</library-name>
</library-ref>
</weblogic-application>

3.9.1.4 Creating a Java Implementation Class in the Backend Hosting Application

To define an application that runs a Java class under control of Oracle Enterprise
Scheduler you need to create the Java class that implements the Oracle Enterprise
Scheduler Executable interface. The Executable interface specifies the contract that
allows you to use Oracle Enterprise Scheduler to invoke a Java class.

A Java class that implements the Executable interface must provide an empty
execute () method.

To create a Java class that implements the executable Interface:
1. In the Application Navigator, right-click the SuperEss project and choose New.

2. Inthe New Gallery, expand General, select Java and then Java Class, and click
OK.

3. In the Create Java Class dialog, set the name to HelloWorldJob.
4. Set the package to oracle.apps.ess.howto.

5. Click the Add icon, add the oracle.as.scheduler.Executable interface, and click

OK.
6. In other fields accept the defaults.
7. Click OK.

3-40 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Submitting and Hosting Split Applications

8. In the source editor, replace the generated contents of the HelloWorldJob. java file
with the code shown in Example 3-9.

Example 3—-9 Oracle Enterprise Scheduler HelloWorldJob Java Class

package oracle.apps.ess.howto;

import java.util.

import
import
import
import
import
import
import

public

oracle.
oracle.
oracle.
oracle.
oracle.
oracle.
oracle.

as

as.
as.
as.
as.

as

logging.Logger;

.scheduler.
scheduler.
scheduler.
scheduler.
scheduler.
.scheduler
as.

class HelloWorldJob
public HelloWorldJob()
super () ;

Executable;
ExecutionCancelledException;
ExecutionErrorException;
ExecutionPausedException;
ExecutionWarningException;

.RequestExecutionContext;
scheduler.

RequestParameters;

implements Executable {

{

public void execute(RequestExecutionContext requestExecutionContext,
RequestParameters requestParameters)

throws ExecutionErrorException, ExecutionWarningException,
ExecutionCancelledException, ExecutionPausedException

printBanner (requestExecutionContext, requestParameters);

protected void printBanner (RequestExecutionContext requestExecutionContext,

RequestParameters requestParameters)

StringBuilder sb = new StringBuilder (1000);

sb.append (" \n:

sb.append ("\n= EssDemoApp request is now running");

long myRequestId = requestExecutionContext.getRequestId();
sb.append ("\n= Request Id = " + myRequestId);

sb.append ("\n= Request Properties:");

for (String paramKey : requestParameters.getNames()) {
Object paramValue = requestParameters.getValue (paramKey) ;
sb.append ("\n=\t (" + paramKey + ", " + paramValue + ")");

}

sb.append("\n=");

sb.append ("\n:

Logger logger = Logger.getLogger ("oracle.apps.ess.howto");
logger.info(sb.toString());

3.9.1.5 Creating Metadata for the Backend Hosting Application

To use the Oracle Enterprise Scheduler split application to submit a job request you
need to create metadata that defines a job request, including the following:

= Ajob type: this specifies an execution type and defines a common set of
parameters for a job request.

Use Case Oracle Enterprise Scheduler Sample Application 3-41

Using Submitting and Hosting Split Applications

A job definition: this is the basic unit of work that defines a job request in Oracle
Enterprise Scheduler.

Note: For Oracle Fusion Applications use cases, use the prepackaged
Oracle Enterprise Scheduler job types instead of creating your own.
For demonstration purposes, you will create your own job type.

To create metadata for the backend hosting application:

1.
2
3.

© N o

10.
11.
12.

13.
14.
15.

16.
17.

In the Application Navigator, right-click the SuperEss project and choose New.
In the New Gallery, select the All Technologies tab.

Expand Business Tier, select Enterprise Scheduler Metadata and then Job Type,
and click OK.

In the Create Job Type dialog, specify the following:

a. Inthe Name field, enter HelloWorldJobType.

b. In the Package field, enter /oracle/apps/ess/howto/.

c. Select JAVA_TYPE from the Execution Type dropdown list.

d. Click OK. This creates the HelloWorldJobType.xml file and Oracle JDeveloper
displays the file in the editor.

In the editor window, set the description to HelloWorld Example.
Set the class name to oracle.apps.ess.howto.HelloWorldJob.
In the Application Navigator, right-click the SuperEss project and choose New.

Expand Business Tier, select Enterprise Scheduler Metadata and then Job
Definition, and click OK.

In the Create Job Definition dialog, specify the following:

a. Set the name to HelloWorldJobDef.

b. Set the package to /oracle/apps/ess/howto/.

c. Set the job type to /oracle/apps/ess/howto/HelloWorldJobType.

d. Click OK. This creates the HelloWorldJobDef .xml file and Oracle JDeveloper
displays the file in the editor.

In the editor window, set the description to HelloWorld Example.
Click the Add icon in the System Properties section.

In the Add System Property dialog, select SYS_effectiveApplication from the
Name dropdown list.

Set the initial value to EssDemoApp and click OK.
Click the Add icon in the Access Control section.

In the Add Access Control dialog, ensure that EssDemoApp role is selected in the
Role dropdown list.

This is the role that you created in Section 3.9.1.2, "Configuring Security for the
Backend Hosting Application.”

Select Read and select Execute.

Click OK.

3-42 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Submitting and Hosting Split Applications

3.9.1.6 Assembling the Backend Hosting Application for Oracle Enterprise
Scheduler

After you create the backend sample application you use Oracle JDeveloper to
assemble the application.

To assemble the backend application you do the following:
n Create the EJB Java Archive
» Create the application MAR and EAR files

3.9.1.6.1 How to Assemble the EJB JAR File for the Backend Hosting Application The EJB Java
archive file includes descriptors for the Java job implementations.

To assemble the EJB JAR file for the backend hosting application:

1. In Application Navigator, right-click the SuperEss project and select Rebuild
SuperEss.jpr.

In the Messages Log you should see a successful compilation message, for
example:

[3:40:22 PM] Successful compilation: 0 errors, 0 warnings.

2. In Application Navigator, right-click the SuperEss project and choose New.

3. In the New Gallery, expand General, select Deployment Profiles and then EJB
JAR File, and click OK.

4. In the Create Deployment Profile dialog, set the Deployment Profile Name to
JAR_SuperEssEjbJar.

5. Optionally, in the Edit E]B JAR Deployment Profile Properties dialog, expand File
Groups, expand Project Output, and select Filters and clear the essmeta
checkbox.

Clearing this checkbox prevents the JAR file from being cluttered with
unnecessary XML files and reduces the overall memory footprint.

6. On the E]JB JAR Deployment Profile Properties dialog, click OK.
7. On the Project Properties dialog, click OK.
3.9.1.6.2 How to Assemble the MAR and EAR Files for the Backend Hosting Application The

sample application needs to contain the MAR profile and the EAR file that assembles
the scheduler backend application.

To create the MAR and EAR files for the backend hosting application:
1. From the main menu, choose Application Menu > Application Properties...

2. In the Application Properties dialog, click the Deployment navigation tab and
click New.

3. In the Create Deployment Profile dialog, select MAR File from the Archive Type
dropdown list.

4. In the Name field, enter MAR_EssDemoAppMar and click OK.

5. In the Edit MAR Deployment Profile dialog, expand Metadata File Groups and
click User Metadata.

6. Click Add.
7. Inthe Add Contributor dialog add the essmeta directory.

Use Case Oracle Enterprise Scheduler Sample Application 3-43

Using Submitting and Hosting Split Applications

For example, if your work space is at /tmp/EssDemoApp, then the directory to add
is /tmp/EssDemoApp/SuperEss/essmeta.

8. On the Add Contributor dialog, click OK.

9. In the navigator expand Metadata File Groups and User Metadata and select
Directories.

10. Expand the directories and select the deepest directory of the package name,
which is the howto directory.

The directory that you select forms the MDS namespace. In order to avoid
conflicts, you must select the most specific namespace.

11. Click OK.
12. In the Deployment page of the Application Properties dialog, click New.

13. In the Create Deployment Profile dialog, select EAR File from the Archive Type
dropdown list.

14. In the Name field, enter EAR_EssDemoAppEar and click OK.

15. In the Edit EAR Deployment Profile dialog, click the General navigation tab and
enter EssDemoApp in the Application Name field.

16. Click the Application Assembly navigation tab, then select MAR_ESSDemoAppMar
and select JAR_SuperEssEjbJar.

17. Click OK.
18. In the Application Properties dialog, click OK.

3.9.1.7 Deploying the Backend Hosting Application

After assembling the application, you can deploy it to the server.

To deploy the backend hosting application:
1. From the main menu, choose Application > Deploy > EAR_EssDemoAppEar...

2. Set up and deploy the application to a container.

3. When the Deployment Configuration dialog appears, make a note of the default
values, but do not change them.

3.9.2 How to Create the Frontend Submitter Application for Oracle Enterprise
Scheduler

In an Oracle Enterprise Scheduler split application you use the Oracle Enterprise
Scheduler APIs to submit job requests from a frontend application. The EssDemoAppUT
application provides a Java servlet for a servlet based user interface for submitting job
requests (using Oracle Enterprise Scheduler).

To create the frontend submitter sample application you do the following:
» Create a frontend application and project.

» Configure the ejb-jar.xml file.

» Create the web project

= Configure security.

» Create the HTTP servlet.

= Edit the web.xml file.

3-44 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Submitting and Hosting Split Applications

s Edit the weblogic-application.xml file.
s Edit the adf-config file.
= Assemble the application.

= Deploy the application.

3.9.2.1 Creating the Frontend Submitter Application

You use JDeveloper to build the frontend submitter application using similar steps as
you used for the backend hosting application.

To create the frontend submitter application:

1. Complete the steps in Section 3.9.1.1, "Creating the Backend Hosting Application”
but this time use ESSDemoAppUTI as the name of the application.

2. In the Application Navigator, right-click the SuperEss project and choose New.
3. In the New Gallery, select General, select Folder, and click OK.

4. Set the folder name to essmeta and click OK.

3.9.2.2 Configuring the ejb-jar.xml File for the Frontend Submitter Application

You need to add entries to the ejb-jar.xml file to enable asynchronous Java jobs to
notify the Oracle Enterprise Scheduler of its status and to enable users to interact with
executable operations, such as submitting operations, and with Oracle Enterprise
Scheduler metadata, such as job definitions. You also need to indicate which stripe to
use.

To define the deployment descriptors for the frontend submitter application:

1. In the Application Navigator, expand SuperEss, expand Application Sources,
expand META-INF, and double-click ejb-jar.xml.

2. Replace the contents of the file with the XML shown in Example 3-10

Example 3—-10 Contents to Copy to ejb-jar.xml for a Frontend Submitter Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
version="3.0">
<display-name>ESS</display-name>

<enterprise-beans>

<!-- Note that the UI application does NOT have a message driven bean.
- This is because the UI application does not run any jobs. The UI
- application does have the other EJBs.
-—>

<!-- The AsyncBean allows asynchronous Java jobs to notify
- Oracle Enterprise Scheduler of its status through Java EE EJB APIs.
- It is recommended to instead use the WebService callback pattern
- instead of the EJB callbacks wherever possible.
-—>
<session>
<description>Async Request Bean</description>

Use Case Oracle Enterprise Scheduler Sample Application 3-45

Using Submitting and Hosting Split Applications

<ejb-name>AsyncRequestBean</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.AsyncRequestBean</ejb-class>

</session>

<!-- The Runtime Service allows users to interact with an Executable.
- Operations include submitting, cancelling, querying, etc.
-=>

<gsession>

<description>Runtime Session Bean</description>

<ejb-name>RuntimeServiceBean</ejb-name>

<ejb-class>oracle.as.scheduler.ejb.RuntimeServiceBean</ejb-class>
</session>

<!-- The Metadata Service allows users to interact with
- Oracle Enterprise Scheduler, metadata, including job definitions,
- job sets, job types, schedules, and so on.
- Operations include reading, writing, querying, copying, deleting,
- and so on.
-—>
<gsession>
<description>Metadata Session Bean</description>
<ejb-name>MetadataServiceBean</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.MetadataServiceBean</ejb-class>
</session>

</enterprise-beans>

<!--
- The JPS interceptor is used by JPS (Java Platform Security) in order to
- perform security checks. The "stripe name" is usually associated with
- the application name but some groups split their security permissions
- between Oracle ADF grants and Oracle Enterprise Scheduler grants, thereby
- creating two stripes. For example, the Oracle ADF grants would live
- in the "MyApp" stripe while the Oracle Enterprise Scheduler
- grants would live in the "MyAppEss".

- Note: For this example, we will use only 1 stripe.

- Note: When creating jps-config.xml through JDev, it will create
- default security context using the JDev workspace name. In
- order to simplify things, we will use the JDev workspace name
- as our value. Otherwise, you will have to rename the security
- context created by JDev or create your own.

-—>

<interceptors>
<interceptor>

<interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
<env-entry>
<env-entry-name>application.name</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>EssDemoApp</env-entry-value>
<injection-target>

<injection-target-class>oracle.security.jps.ee.ejb.JpsInterceptor</injection-targe
t-class>
<injection-target-name>application_name</injection-target-name>
</injection-target>
</env-entry>
</interceptor>

3-46 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Submitting and Hosting Split Applications

</interceptors>
</ejb-jar>

3.9.2.3 Creating the SuperWeb Project

You need to create a web project for the servlet.

To create the SuperWeb project:
1. Right-click the SuperEss project and choose New.

2. Inthe New Gallery, expand General, select Projects and then Generic Project, and
click OK.

3. In the Name your application page of the Create Generic Application wizard, set
the Application Name field to Superieb.

4. In the Name your project page, set the Project Name to SuperEss.
5. Add the JSP and Servlets technology to the project.

6. In the Project Java Settings page, change the default package to
oracle.apss.ess.howto and click Finish.

7. Inthe Application Navigator, right-click the SuperWeb project and choose Project
Properties.

8. Click the Libraries and Classpath navigation tab.

9. Click Add Library, select ADF Web Runtime and Enterprise Scheduler
Extensions, and click OK.

3.9.2.4 Configuring Security for the Frontend Submitter Application

You need to configure security for the application. You do not have to create any users
or roles as the EssDemoAppUI application will simply share the users and roles
created by the EssDemoApp application.

To configure security for the frontend submitter application:
1. Select Application > Secure > Configure ADF Security from the main menu.

2. Inthe ADF Security page of the Configure ADF Security wizard, select ADF
Authentication.

3. In the Authentication Type page, select SuperWeb.jpr from the Web Project
dropdown list.

4. Select HTTP Basic Authentication.
5. Click Finish.

A file named jps-config.xml is generated. You can find this file in the
Application Resources panel by expanding Descriptors, and expanding
META-INF.

3.9.2.5 Creating the HTTP Servlet for the Frontend Submitter Application

Normally, more complex user interfaces that are built on heavy weight frameworks
such as Oracle Application Development Framework are employed, but for the sake of
simplicity, you use a basic HTTP servlet for the submitter application.

Use Case Oracle Enterprise Scheduler Sample Application 3-47

Using Submitting and Hosting Split Applications

To create the HTTP Servlet for the frontend submitter application:

1.
2.

Right-click the SuperEss project and choose New.

In the New Gallery, expand Web Tier, select Servlets and then HTTP Servlet, and
click OK.

In the Web Application page of the Web Application wizard, select Servlet 2.5\JSP
2.1 (Java EE 1.5).

In the Create HTTP Servlet - Step 1 of 3: Servlet Information page, enter
EssDemoAppServlet in the Class field.

Enter oracle.apps.ess.howto in the Package field and click Next.
Click Finish.

In the source editor, replace the contents of ESSDemoAppServletjava with the
code in Example 3-11.

Example 3—-11 HTTP Servlet Code for the Frontend Submitter Application

package oracle.apps.ess.howto;

import java.io.IOException;
import java.io.PrintWriter;
import java.io.StringWriter;

import java.util.ArrayList;
import java.util.Calendar;
import java.util.Enumeration;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;

import java.util.ListIterator;
import java.util.Map;

import java.util.Set;

import java.util.SortedSet;
import java.util.TreeSet;
import java.util.logging.Level;
import java.util.logging.Logger;
import java.util.regex.Pattern;

import javax.servlet.ServletConfig;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import oracle.as.scheduler.MetadataObjectId;

import oracle.as.scheduler.MetadataObjectId.MetadataObjectType;
import oracle.as.scheduler.MetadataService;

import oracle.as.scheduler.MetadataService.QueryField;
import oracle.as.scheduler.MetadataServiceHandle;
import oracle.as.scheduler.RequestDetail;

import oracle.as.scheduler.RequestParameters;

import oracle.as.scheduler.RuntimeService;

import oracle.as.scheduler.RuntimeServiceHandle;
import oracle.as.scheduler.State;

import oracle.as.scheduler.core.JdndiUtil;

3-48 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Submitting and Hosting Split Applications

public class EssDemoAppServlet extends HttpServlet {
@SuppressWarnings ("compatibility:4685800289380934682")
private static final long serialVersionUID = 1L;

private static final String CONTENT TYPE = "text/html; charset=UTF-8";
private static final String MESSAGE_KEY = "Message";
private static final String PATH_SUBMIT = "/submitRequest";
private static final String PATH_ALTER = "/alterRequest";
private static final String MDO_SEP = ";";
private static final String ACTION_CANCEL = "Cancel";
private static final String ESS_UNAVAIL_MSG =
"<p>Enterprise Scheduler Service is currently unavailable. Cause: %s</p>";

private enum PseudoScheduleChoices {
Immediately (0),
InTenSeconds (10),
InTenMinutes (10 * 60);

@SuppressWarnings ("compatibility:-5637079380819677366")
private static final long serialVersionUID = 1L;

private int m_seconds;
private PseudoScheduleChoices(int seconds) {

m_seconds = seconds;

public int getSeconds() {
return m_seconds;

public EssDemoAppServlet() throws ServletException {
super () ;

@override
public void init(ServletConfig config) throws ServletException {
super.init (config);

@override
public void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

response.setContentType (CONTENT _TYPE) ;

HttpSession session = request.getSession(true);
String lastMessage = String.valueOf (session.getAttribute (MESSAGE_KEY)) ;

if ("null".equals(lastMessage)) ({
lastMessage = "";

try {
RuntimeLists runtimeLists = getRuntimeLists();

Use Case Oracle Enterprise Scheduler Sample Application 3-49

Using Submitting and Hosting Split Applications

MetadataLists metadatalists = getMetadataLists();
renderResponse (metadatalists, runtimeLists,
request, response, lastMessage);
} catch (ServletException se) {
throw se;
} catch (Exception e) {
throw new ServletException(e);

@override
public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

response.setContentType (CONTENT_TYPE) ;
request.setCharacterEncoding ("UTF-8") ;

HttpSession session = request.getSession(true);
String pathInfo = request.getPathInfo();

// Clear the message on every post request
StringBuilder message = new StringBuilder("");

try {
// Select each handler based on the form action
if ("".equals(pathInfo)) {

// No processing
} else if (PATH_SUBMIT.equals(pathInfo)) {
postSubmitRequest (request, message);
} else if (PATH_ALTER.equals(pathInfo)) {
postAlterRequest (request, message) ;
} else {
message.append (String. format ("<p>No handler for pathInfo=%s</p>",
pathInfo));

}

catch (ServletException se) {
Throwable t = se.getCause();
String cause = (t == null) ? se.toString() : t.toString();
message.append (String.format (ESS_UNAVAIL_MSG, cause));

// Storing the messages in the session allows them to persist
// through the redirect and across refreshes.
session.setAttribute (MESSAGE_KEY, message.toString());

// render the page by redirecting to doGet(); this intentionally

// strips the actions and post data from the request.

response.sendRedirect (request.getContextPath() +
request.getServletPath()) ;

/**
* Handle the job submission form.
* @param request
* @param message
* @throws ServletException
*/
private void postSubmitRequest (HttpServletRequest request,

3-50 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Submitting and Hosting Split Applications

StringBuilder message)
throws ServletException

{
String jobDefName = request.getParameter ("job");
String scheduleDefName = request.getParameter ("schedule");
// Various required args for submission
Calendar start = Calendar.getInstance();
start.add(Calendar.SECOND, 2);
// Launch the job based on form contents
if (jobDefName == null || scheduleDefName == null) {
message.append ("Both a job name and a schedule name must be
specified\n");
} else {
PseudoScheduleChoices pseudoSchedule = null;
// See if schedule given is actually a pseudo schedule
try {
pseudoSchedule = PseudoScheduleChoices.valueOf (scheduleDefName) ;
} catch (IllegalArgumentException e) {
// The string is not a valid member of the enum
pseudoSchedule = null;
}
MetadataObjectId scheduleDefId = null;
String scheduleDefNamePart = null;
MetadataObjectId jobDefId = stringToMetadataObjectId(jobDefName) ;
// Don't look up schedules that aren't real
if (pseudoSchedule != null) {
scheduleDefNamePart = scheduleDefName;
start.add(Calendar.SECOND, pseudoSchedule.getSeconds());
} else {
scheduleDefId = stringToMetadataObjectId(scheduleDefName) ;
scheduleDefNamePart = scheduleDefId.getNamePart();
}
String jobDefNamePart = jobDefId.getNamePart();
String requestDesc = jobDefNamePart + "@" + scheduleDefNamePart;
Logger logger = getLogger();
long requestId = submitRequest (pseudoSchedule, requestDesc,
jobDefId, scheduleDefId, start,
logger) ;
// Populate the message block based on results
message.append (String. format ("<p>New request %d launched using
%s</p>",
requestId, requestDesc));
}
}

private Long submitRequest(final PseudoScheduleChoices pseudoSchedule,
final String requestDesc,
final MetadataObjectId jobDefId,
final MetadataObjectId scheduleDefId,

Use Case Oracle Enterprise Scheduler Sample Application 3-51

Using Submitting and Hosting Split Applications

final Calendar start,
final Logger logger)
throws ServletException

{
RuntimeServicePayload<Long> myPayload = new RuntimeServicePayload<Long> ()
{
@override
Long execute (RuntimeService service,
RuntimeServiceHandle handle,
Logger logger)
throws Exception
{
RequestParameters params = new RequestParameters();
return (null !'= pseudoSchedule)
? service.submitRequest (handle, requestDesc, jobDefId,
start, params)
service.submitRequest (handle, requestDesc, jobDefId,
scheduleDefId, null,
start, null, params);
}
}i
try {
return performOperation(myPayload, logger);
} catch (Exception e) {
throw new ServletException("Error submitting request using job: " +
jobDefId + " and schedule: " +
scheduleDefId, e);
}
}
/**

* Handle the "Cancel" and "Purge" actions from the form enclosing
* the Request Status table.
* @param request
* @param message
* @throws ServletException
*/
private void postAlterRequest (HttpServletRequest request,
StringBuilder message)
throws ServletException

String cancelID = null;

* there are a few assumptions going on here...
* the HTTP button being used to transmit the action and
* request is backwards from its normal usage (eg. the name
* should be invariable, and the value variable). Because we
* want to display either "Purge" or "Cancel" on the button, and
* transmit the reqId with it, we are reversing the map entry
* to get the key (which in this case will be the reqgID), and
* match it to the value (Purge or Cancel).
* Assumptions are that there will be only one entry in the map
* per request (one purge or cancel). Also, that the datatypes
* for the key and value willl be those documented for
* ServletRequest (<K,V> = <String, String[]>).
*/
Map requestMap = request.getParameterMap() ;
Iterator maplter = requestMap.entrySet().iterator();
while (mapIter.hasNext()) {

3-52 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Submitting and Hosting Split Applications

Map.Entry entry = (Map.Entry)mapIter.next();

String key = (String)entry.getKey();

String[] values = (Stringl[])entry.getValue();

if (ACTION_CANCEL.equals(values[0])) {
cancellID = key;

if (cancelID != null) {
try {
final String cancelId2 = cancellD;
RuntimeServicePayload<Void> myPayload = new
RuntimeServicePayload<Void> () {
@Override
Void execute (RuntimeService service,
RuntimeServiceHandle handle,
Logger logger)
throws Exception

service.cancelRequest (handle, Long.valueOf (cancelId?2));
return null;

}i

Logger logger = getLogger () ;
performOperation (myPayload, logger);
message.append
(String. format ("<p>Cancelled request %$s</p>", cancellD));
} catch (Exception e) {
throw new ServletException
("Error canceling or purging request", e);
}
} else {
message.append ("<p>No purge or cancel action specified</p>");

private String metadataObjectIdToString(MetadataObjectId mdoID)
throws ServletException {

String mdoString =
mdoID.getType() .value() + MDO_SEP + mdoID.getPackagePart() +
MDO_SEP + mdoID.getNamePart () ;

return mdoString;

private MetadataObjectId stringToMetadataObjectId(String mdoString)
throws ServletException {
String[] mdoStringParts = mdoString.split(Pattern.quote (MDO_SEP));
if (mdoStringParts.length != 3) {
throw new ServletException(String.format ("Unexpected number of
components %d found " +
"when converting %s to
MetadataObjectID",
mdoStringParts. length,
mdoString)) ;

MetadataObjectType mdType =

Use Case Oracle Enterprise Scheduler Sample Application 3-53

Using Submitting and Hosting Split Applications

MetadataObjectType.getMOType (mdoStringParts[0]) ;
String mdPackage = mdoStringParts([1];
String mdName = mdoStringParts[2];

MetadataObjectId mdoID =
MetadataObjectId.createMetadataObjectId (mdType, mdPackage, mdName) ;
return mdoID;

/**
* this changes the format used in this class for job definitions to the one
* which will be used in the runtime query.
* @param strMetadataObject
* @return string representing object in runtime store
* @throws ServletException
*/
private String fixMetadataString(String strMetadataObject)
throws ServletException {
String fslash = "/";
String[] mdoStringParts =
strMetadataObject.split (Pattern.quote (MDO_SEP)) ;
if (mdoStringParts.length != 3) {
throw new ServletException(String.format ("Unexpected number of
components %d found " +
"when converting %s to
MetadataObjectID",
mdoStringParts.length,
strMetadataObject)) ;
}
String[] trimStringParts = new String[mdoStringParts.length];
for (int 1 = 0; i < mdoStringParts.length; i++) {
String mdoStringPart = mdoStringParts[i];
trimStringParts[i] = mdoStringPart.replaceAll (fslash, " ").trim();

MetadataObjectType mdType =
MetadataObjectType.getMOType (trimStringParts[0]) ;
String mdPackage = fslash + trimStringParts[1];
String mdName = trimStringParts([2];
MetadataObjectId metadataObjId =
MetadataObjectId.createMetadataObjectId (mdType, mdPackage, mdName);
return metadataObjId.toString();

private Set<String> getSetFromMetadataEnum (Enumeration<MetadataObjectId>
enumMetadata)
throws ServletException {
Set<String> stringSet = new HashSet<String>();

while (enumMetadata.hasMoreElements()) {
MetadataObjectId objId = enumMetadata.nextElement () ;
String strNamePart = objId.getNamePart();
stringSet.add(strNamePart) ;

}
return stringSet;

//**

//
// HTML Rendering Methods

3-54 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Submitting and Hosting Split Applications

/1

//****‘k*'k**********‘k*'k**'k*‘k**************'k**********‘k*'k**'k*‘k**************'k***

* Rendering code for the page displayed.
* In a real application this would be done using JSP, but this approach
* keeps everything in one file to make the example easier to follow.
* @param response The response object from the main request.
* @param message Text that will appear in the message panel, may contain HTML
* @throws IOException
*/
private void renderResponse (MetadataLists ml,
RuntimeLists rl,
HttpServletRequest request,
HttpServletResponse response,
String message)
throws IOException, ServletException

{

response.setContentType (CONTENT_TYPE) ;

PrintWriter out = response.getWriter();

String urlBase = request.getContextPath() + request.getServletPath();

// Indents maintained for clarity

out.println("<html>");

out.println("<head><title>EssDemo</title></head>");

out.println("<body>");

out.println("<table align=\"center\"><tbody>");

out.println(" <tr><td align=\"center\"><hl>Enterprise Scheduler Service
Tutorial</hl></td></tr>");

out.println(" <tr><td align=\"center\"><table cellspacing=6><tr>");

// Job launch form

out.println(" <td align=\"center\">");

out.println(" <h2>Launch Job</h2>");

renderLaunchJobForm(ml, out, urlBase);

out.println(" </td>");

out.println(" <td align=\"center\" bgcolor=\"blue\" width=\"2\"/>");

out.println(" </tr></table></td></tr>");
out.println(" <tr><td bgcolor=\"red\"/></tr>");

// Message panel

out.println(" <tr><td align=\"center\"><h3>Messages</h3></td></tr>");
out.println(" <tr><td>");

out.println(message);

out.println(" </td></tr>");

out.println(" <tr><td bgcolor=\"red\"/></tr>");

// Request status

out.println(" <tr><td align=\"center\">");

out.println(" <form name=\"attrs\" action=\"" + urlBase +
PATH_ALTER + "\" method=\"post\">");

out.println(" <h2>Request Status</h2>");

out.println(" <table border=2><tbody>") ;

out.println(" <th>reqID</th>");

out.println(" <th>Description</th>");

Use Case Oracle Enterprise Scheduler Sample Application 3-55

Using Submitting and Hosting

Split Applications

out.println("
out.println("
out.println("

<th>Scheduled time</th>");
<th>State</th>");
<th>Action</th>");

renderStatusTable (out, rl.requestDetails);

out.println(" </tbody></table>");
out.println(" </form>") ;
out.println(" </td></tr>");
out.println("</tbody></table>");
out.println("</body></html>");
out.close();
}
private void renderLaunchJobForm(Metadatalists ml, PrintWriter out, String
urlBase)
throws ServletException {
out.println(" <form name=\"attrs\" action=\"" + urlBase +
PATH_SUBMIT + "\" method=\"post\">");
out.println(" <table><tbody>") ;
out.println(" <tr><td align=\"right\">");
out.println(" Job:");
out.println(" <select name=\"job\">");
renderMetadataChoices (out, ml.jobDefList, false);
renderMetadataChoices (out, ml.jobSetList, false);
out.println(" </select>");
out.println(" </td></tr>");
out.println(" <tr><td align=\"right\">");
out.println(" Schedule:") ;
out.println(" <select name=\"schedule\">");
renderPseudoScheduleChoices (out) ;
renderMetadataChoices (out, ml.scheduleList, false);
out.println(" </select>");
out.println(" </td></tr>");
out.println(" <tr><td align=\"center\">");
out.println(" <input name=\"submit\" value=\"Submit\"
type=\"submit\">");
out.println(" </td></tr>");
out.println(" </tbody></table>");
out.println(" </form>") ;
}
/**
*
* @param out - printwriter
* @param jobChoices -- metadata to be displayed
* @param bBlankFirst -- blank first (so that this param is not required)
* @throws ServletException
*/

private void renderMetadataChoices (PrintWriter out,

throws ServletException

if (jobChoices == null)

return;

Enumeration<MetadataObjectId> jobChoices,
boolean bBlankFirst)

3-56 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Submitting and Hosting Split Applications

boolean bFirst = true;

while (jobChoices.hasMoreElements()) {
MetadataObjectId job = jobChoices.nextElement () ;
String strJob = metadataObjectIdToString(job);
String strNamePart = job.getNamePart();

if (strNamePart.compareTo ("BatchPurgeJob") == 0) {
continue;
} else {

if (bFirst && bBlankFirst) {
out.printf ("<option value=\"%s\">%s</option>", "", "");
bFirst = false;
}
out.printf ("<option value=\"%s\">%s</option>", strJob,
strNamePart) ;

* helper method for rendering choices based on strings, adding an empty
* string to the beginning of the list
* @param out
* @param choices
*/
private void renderStringChoices (PrintWriter out, Set<String> choices) {
if (choices == null)
return;

choices.add("");
SortedSet<String> sorted = new TreeSet<String> (choices);
Iterator choicelter = sorted.iterator();
while (choiceIter.hasNext()) {
String choice = (String)choicelter.next();

out.printf ("<option value=\"%s\">%s</option>", choice, choice);

private void renderPseudoScheduleChoices (PrintWriter out) {
for (PseudoScheduleChoices c¢ : PseudoScheduleChoices.values()) {
out.printf ("<option value=\"%s\">%s</option>", c, c);

private void renderStatusTable
(PrintWriter out, List<RequestDetail> regDetails)

if (regDetails == null) {
return;
for (RequestDetail regDetail : regDetails) {

State state = regDetail.getState();

Calendar scheduledTime = regDetail.getScheduledTime() ;
String scheduledTimeString = null;

if (scheduledTime == null) {
scheduledTimeString = "null scheduled time";

Use Case Oracle Enterprise Scheduler Sample Application 3-57

Using Submitting and Hosting Split Applications

} else {
scheduledTimeString = String.valueOf (scheduledTime.getTime());

final String actionButton;
if (!state.isTerminal()) {
String action = ACTION_CANCEL;
String reqId = String.valueOf (regDetail.getRequestId());
actionButton = String.format
("<button type=submit value=%s name=\"%s\">%s</button>",
action, regId, action);
} else {
actionButton = " ";

out.printf ("<tr><td>%d</td><td>%s</td><td>%s</td><td>%s</td><td>%s</td></tr>\n",
regDetail.getRequestId(), regDetail.getDescription(),
scheduledTimeString, state, actionButton);

private MetadataService getMetadataService() throws Exception {
return JndiUtil.getMetadataServiceEJB();

private RuntimeService getRuntimeService() throws Exception {
return JndiUtil.getRuntimeServiceEJB() ;

private abstract class Payload<SERVICE, HANDLE, RETURN> ({
abstract SERVICE getService() throws Exception;
abstract HANDLE getHandle (SERVICE service) throws Exception;
abstract void closeHandle (SERVICE service,
HANDLE handle,
boolean abort)
throws Exception;
abstract RETURN execute(SERVICE service, HANDLE handle, Logger logger)
throws Exception;

private abstract class MetadataServicePayload<T>
extends Payload<MetadataService, MetadataServiceHandle, T>

@Override
MetadataService getService() throws Exception {
return getMetadataService();

@Override
MetadataServiceHandle getHandle (MetadataService service)
throws Exception

return service.open();

@Override
void closeHandle (MetadataService service,
MetadataServiceHandle handle,

3-58 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Submitting and Hosting Split Applications

boolean abort)
throws Exception

service.close(handle, abort);

private abstract class RuntimeServicePayload<T>
extends Payload<RuntimeService, RuntimeServiceHandle, T>

@Override
RuntimeService getService() throws Exception {
return getRuntimeService();

@Override
RuntimeServiceHandle getHandle (RuntimeService service)
throws Exception

return service.open();

@override
void closeHandle (RuntimeService service,
RuntimeServiceHandle handle,
boolean abort)
throws Exception

service.close(handle, abort);

private <S, H, R> R performOperation
(Payload<S, H, R> payload, Logger logger)
throws Exception

S service = payload.getService();
H handle = payload.getHandle (service);

Exception origException = null;
try {

return payload.execute(service, handle, logger);
} catch (Exception e2) {

origException = e2;

throw e2;
} finally {
if (null != handle) ({
try {
boolean abort = (null != origException);

payload.closeHandle (service, handle, abort);
} catch (Exception e2) {
if (null != origException) {
logger.log(Level .WARNING, "An error occurred while " +
"closing handle, however, a previous failure was " +
"detected. The following error will be logged " +
"but not reported: " + stackTraceToString(e2));

Use Case Oracle Enterprise Scheduler Sample Application 3-59

Using Submitting and Hosting Split Applications

private final String stackTraceToString (Exception e) {
StringWriter sw = new StringWriter();
PrintWriter pw = new PrintWriter (sw);
e.printStackTrace (pw) ;
pw.flush();
pw.close();
return sw.toString();

private Logger getLogger () {
return Logger.getLogger (this.getClass () .getName());

private class MetadataLists {
private final Enumeration<MetadataObjectId> jobDefList;
private final Enumeration<MetadataObjectId> jobSetList;
private final Enumeration<MetadataObjectId> schedulelList;
private final Enumeration<MetadataObjectId> jobTypelList;

private MetadataLists (Enumeration<MetadataObjectId> jobDefList,
Enumeration<MetadataObjectId> jobSetList,
Enumeration<MetadataObjectId> schedulelList,
Enumeration<MetadataObjectId> jobTypelist)

this.jobDefList = jobDefList;
this.jobSetList = jobSetList;
this.scheduleList = scheduleList;
this.jobTypelList = jobTypelList;

private class RuntimeLists {
private final List<RequestDetail> requestDetails;
private final Set<String> applicationChoices;
private final Set<String> stateChoices;
private final Set<MetadataObjectId> jobDefMDOChoices;

private RuntimeLists(List<RequestDetail> requestDetails,
Set<String> applicationChoices,
Set<String> stateChoices,
Set<MetadataObjectId> jobDefMDOChoices)

super () ;

this.requestDetails = requestDetails;
this.applicationChoices = applicationChoices;
this.stateChoices = stateChoices;
this.jobDefMDOChoices = jobDefMDOChoices;

/**
* Retrieve lists of jobs, schedules, and status for use by the renderer
* @throws ServletException
*/
private Metadatalists getMetadatalLists() throws Exception {
Logger logger = getLogger();

MetadataServicePayload<MetadataLists> myPayload =

3-60 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Submitting and Hosting Split Applications

new MetadataServicePayload<MetadatalLists> ()

@Override
Metadatalists execute (MetadataService service,
MetadataServiceHandle handle,
Logger logger)
throws Exception

Enumeration<MetadataObjectId> jobDefs =
service.queryJobDefinitions (handle, null, QueryField.NAME,

true) ;

Enumeration<MetadataObjectId> jobSets =
service.queryJobSets (handle, null, QueryField.NAME, true);
Enumeration<MetadataObjectId> schedules =
service.querySchedules (handle, null, QueryField.NAME, true);
Enumeration<MetadataObjectId> jobTypes =
service.queryJobTypes (handle, null, QueryField.NAME, true);
return new MetadataLists(jobDefs, jobSets, schedules, jobTypes);
}
}i
MetadataLists ml = performOperation(myPayload, logger);
return ml;
}

private RuntimeLists getRuntimeLists() throws Exception {
Logger logger = getLogger();

RuntimeServicePayload<List<RequestDetail>> myPayload2 =
new RuntimeServicePayload<List<RequestDetail>>()

@Override
List<RequestDetail> execute(RuntimeService service,
RuntimeServiceHandle handle,
Logger logger)
throws Exception

List<RequestDetail> regDetails =
new ArraylList<RequestDetail>(10);
Enumeration requestIds = service.queryRequests
(handle, null, RuntimeService.QueryField.REQUESTID, true);

while (requestIds.hasMoreElements()) {
Long reqgld = (Long)requestIds.nextElement();
RequestDetail detail = service.getRequestDetail (handle,

reqld) ;

reqgDetails.add(detail) ;

return regDetails;

b

List<RequestDetail> regDetails = performOperation (myPayload2, logger);
RuntimeLists rl = getRuntimeLists (regDetails);

return rl;

private RuntimeLists getRuntimeLists (List<RequestDetail> regDetails) {
Set<String> applicationSet = new HashSet<String>(10);
Set<String> stateSet = new HashSet<String>(10);

Use Case Oracle Enterprise Scheduler Sample Application 3-61

Using Submitting and Hosting Split Applications

Set<MetadataObjectId> jobDefMOSet = new HashSet<MetadataObjectId>(10);

if (regDetails != null) {

ListIterator detaillter = regDetails.listIterator();

while (detailIter.hasNext()) {
RequestDetail detail = (RequestDetail)detaillter.next();
applicationSet.add(detail.getDeployedApplication());
State state = detail.getState();
if (state.isTerminal())

stateSet.add(state.name());

jobDefMOSet .add (detail.getJobDefn ()) ;

}

RuntimeLists rl = new RuntimelLists
(regqDetails, applicationSet, stateSet, jobDefMOSet);
return rl;

3.9.2.6 Editing the web.xml File for the Frontend Submitter Application

You need to edit the web.xml file to and Oracle Enterprise Scheduler metadata and
runtime EJB references.

To edit the web.xml file for the frontend submitter application:

1. In the Application Navigator, expand SuperWeb, expand Web Content, expand
WEB-INF and double-click web.xml.

2. In the overview editor, click the References navigation tab and expand the EJB
References section.

3. Add two EJB resources with the information shown in Table 3-1.

Table 3—-1 EJB Resources for the Frontend Submitter Application

Interface EJB

EJB Name Type Type Local/Remote Interface
ess/metadata Local Session oracle.as.scheduler.MetadataServiceLocal
ess/runtime Local Session oracle.as.scheduler.RuntimeServiceLocal

4. Click the Servlets navigation tab and click the Servlet Mappings tab.

5. Change the /essdemoappservlet URL pattern to /essdemoappservlet/*.

3.9.2.7 Editing the weblogic-application.xml file for the Frontend Submitter
Application

You need to create and edit the weblogic-application.xml file.

To edit the weblogic-application.xml file for the frontend submitter application:
1. In Application Navigator, right-click the SuperEss project and select New.

2. In the New Gallery, expand General, select Deployment Descriptors and then
Weblogic Deployment Descriptor, and click OK.

3. In the Select Descriptor page select weblogic-application.xml.

4. Click Next, click Next again, and click Finish.

3-62 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Submitting and Hosting Split Applications

5. In the source editor, replace the contents of the weblogic-application.xml file
that you just created with the XML shown in Example 3-12.

Example 3—-12 Contents to Copy to weblogic-application.xml for a Frontend Submitter
Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemalocation="http://www.bea.com/ns/weblogic/weblogic-application

http://www.bea.com/ns/weblogic/weblogic-application/1.0/weblogic-application.xsd"
xmlns="http://www.bea.com/ns/weblogic/weblogic-application">

<!-- The following application parameter tells JPS which stripe it should
- use to upload the jazn-data.xml policy. If this parameter is not
- specified, it will use the Java EE deployment name plus the version
- number (e.g. EssDemoApp#V2.0).

<application-param>
<param-name>jps.policystore.applicationid</param-name>
<param-value>EssDemoAppUI</param-value>
</application-param>

<!-- This listener allows JPS to configure itself and upload the
- jazn-data.xml policy to the appropriate stripe
-=>

<listener>

<listener-class>oracle.security.jps.wls.listeners.JpsApplicationLifecycleListener<
/listener-class>

</listener>

<!-- This listener allows MDS to configure itself and upload any metadata
- as defined by the MAR profile and adf-config.xml
-—>

<listener>

<listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-class>
</listener>

<!-- This listener allows Oracle Enterprise Scheduler to configure itself
-—>

<listener>

<listener-class>oracle.as.scheduler.platform.wls.deploy.ESSApplicationLifecycleLis
tener</listener-class>
</listener>

<!-- This shared library contains all the Oracle Enterprise Scheduler classes
-—>
<library-ref>
<library-name>oracle.ess.client</library-name>
</library-ref>
<library-ref>
<library-name>adf.oracle.domain</library-name>
</library-ref>
</weblogic-application>

Use Case Oracle Enterprise Scheduler Sample Application 3-63

Using Submitting and Hosting Split Applications

3.9.2.8 Editing the adf-config file for the Frontend Submitter Application

You need to edit the adf-config.xml file to tell the application to share the metadata
that was created in the hosting application.

To edit the adf-config.xml file for the frontend submitter application:

1. From the Application Resources panel, expand Descriptors, expand ADF
META-INF, and double-click adf-config.xml.

2. In the source editor, replace the contents of the adf-config.xml file with the XML
shown in Example 3-13.

Example 3-13 Contents to Copy to adf-config.xml for a Frontend Submitter Application

<?xml version="1.0" encoding="UTF-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config">
<adf-security-child xmlns="http://xmlns.oracle.com/adf/security/config">
<JaasSecurityContext
initialContextFactoryClass="oracle.adf.share.security.JAASInitialContextFactory"

jaasProviderClass="oracle.adf.share.security.providers.jps.JpsSecurityContext"
authorizationEnforce="false"
authenticationRequire="true"/>
</adf-security-child>
<adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
<mds-config xmlns="http://xmlns.oracle.com/mds/config" version="11.1.1.000">
<persistence-config>
<metadata-namespaces>
<namespace metadata-store-usage="ess_shared metadata"
path="/oracle/apps/ess/howto"/>
</metadata-namespaces>
<metadata-store-usages>
<metadata-store-usage default-cust-store="false" deploy-target="false"
id="ess_shared_metadata"/>
</metadata-store-usages>
</persistence-config>
</mds-config>
</adf-mds-config>
</adf-config>

3.9.2.9 Assembling the Frontend Submitter Application for Oracle Enterprise
Scheduler

After you create the frontend sample application you use Oracle JDeveloper to
assemble the application.

To assemble the backend application you do the following:
s Create the EJB Java Archive

» Create the WAR file

» Create the application MAR and EAR files

3.9.2.9.1 How to Assemble the EJB JAR File for the Frontend Submitter Application The E]JB
Java archive file includes descriptors for the Java job implementations.

To assemble the EJB JAR File for the frontend submitter application:
1. In Application Navigator, right-click the SuperEss project and choose New.

3-64 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Submitting and Hosting Split Applications

2. In the New Gallery, expand General, select Deployment Profiles and then EJB
JAR File, and click OK.

3. In the Create Deployment Profile dialog, set the Deployment Profile Name to
JAR_SuperEssEjbJar.

4. On the Edit E]B JAR Deployment Profile Properties dialog, click OK.
5. On the Project Properties dialog, click OK.

3.9.29.2 How to Assemble the WAR File for the Frontend Submitter Application You need to
create a web archive file for the web application.

To assemble the WAR file for the frontend submitter application
1. In Application Navigator, right-click the SuperWeb project and choose New.

2. In the New Gallery, expand General, select Deployment Profiles and then WAR
File, and click OK.

3. In the Create Deployment Profile dialog, set the Deployment Profile Name to
WAR_SuperWebWar.

4. On the Edit WAR Deployment Profile Properties dialog, click the General
navigation tab, select Specify Java EE Web Context Root, and enter ESSDemoApp.

5. Click OK.
6. On the Project Properties dialog, click OK.
3.9.29.3 How to Assemble the MAR and EAR Files for the Frontend Hosting Application The

sample application needs to contain the MAR profile and the EAR file that assembles
the scheduler backend application.

To create the MAR and EAR files for the frontend submitter application:
1. From the main menu, choose Application Menu > Application Properties...

2. Inthe Application Properties dialog, click the Deployment navigation tab and
click New.

3. In the Create Deployment Profile dialog, select MAR File from the Archive Type
dropdown list.

4. In the Name field, enter MAR_EssDemoAppUIMar and click OK.

5. Click OK.

6. In the Deployment page of the Application Properties dialog, click New.

7. In the Create Deployment Profile dialog, select EAR File from the Archive Type
dropdown list.

8. In the Name field, enter EAR_EssDemoAppUIEar and click OK.

9. In the Edit EAR Deployment Profile dialog, click the General navigation tab and
enter EssDemoAppUI in the Application Name field.

10. Click the Application Assembly navigation tab, then select MAR_ESSDemoAppUIMar
and select JAR_SuperEssEjbJar.

11. Click OK.
12. In the Application Properties dialog, click OK.

Use Case Oracle Enterprise Scheduler Sample Application 3-65

Using Submitting and Hosting Split Applications

3.9.2.10 Deploying the Backend Hosting Application

After assembling the application, you can deploy it to the server.

To deploy the backend hosting application:
1. From the main menu, choose Application > Deploy > EAR_EssDemoAppEar...

2. Set up and deploy the application to a container.

3. On the Deployment Configuration dialog, there should be two entries in the
Shared Metadata Repositories panel. Find the shared repository mapped to the
/oracle/apps/ess/howto namespace. Change its partition to the partition used
when deploying EssDemoApp. If you used the default value, this should be
EssDemoApp_V2.0.

4. Click OK.

3-66 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

4

Using the Metadata Service

This chapter describes how to use the Oracle Enterprise Scheduler Metadata Service.
The Metadata Service allows you to save schedules, job definitions, and other Oracle
Enterprise Scheduler metadata to a repository. You can also use the Metadata Service
query methods to list objects stored in metadata.

This chapter includes the following sections:

» Section 4.1, "Introduction to Using the Metadata Service"

» Section 4.2, "Accessing the Metadata Service"

» Section 4.3, "Accessing the Metadata Service with Oracle JDeveloper"
= Section 4.4, "Querying Metadata Using the Metadata Service"

For information about how to create job definitions, see the following chapters:
Chapter 3, "Use Case Oracle Enterprise Scheduler Sample Application", Chapter 6,
"Creating and Using PL/SQL Jobs", and Chapter 7, "Creating and Using Process Jobs".

4.1 Introduction to Using the Metadata Service

Oracle Enterprise Scheduler provides the Metadata Service and exposes it to your
application program as a Stateless Session Enterprise Java Bean (E]B). The Metadata
Service allows you to save Oracle Enterprise Scheduler application level metadata
objects. The Metadata Service uses Oracle Metadata Services (MDS) to save metadata
objects to a repository (the repository can be either database based or file based). The
Metadata Service allows you to reuse application-level metadata across multiple job
request submissions.

Oracle Enterprise Scheduler metadata objects include the following:

= Application Level Metadata: You use the Metadata Service to store job type, job
definition, job set, and other application-level metadata object definitions for job
requests.

s Default (global) Oracle Enterprise Scheduler Metadata: The global Oracle
Enterprise Scheduler metadata includes administrative objects such as schedules,
workshifts and work assignments. Oracle Enterprise Scheduler provides
MetadataServiceMXBean and the MetadataServiceMXBeanProxy to access and store
default administrative objects

Note: Oracle Enterprise Scheduler Schedule objects are used both in
application level metadata and in global metadata.

Using the Metadata Service 4-1

Introduction to Using the Metadata Service

Access to application level metadata objects is exposed only with the MetadataService
interface. The MetadataService is exposed as a stateless session E]JB. External clients
must access the service only through the corresponding EJB. Clients should not
interact with the internal API layer directly. When an application client uses the
metadata service through the stateless session EJB, all the methods in this interface
accept a reference to a MetadataServiceHandle argument, which stores state across
multiple calls, for example when multiple methods are to be called within a user
transaction. The MBeanProxy interface does not require a handler.

In an Oracle Enterprise Scheduler application you do not need to access or manipulate
the MetadataServiceHandle. The application just needs to hold on to the reference
created by the open method and pass it in methods being called. Finally the handle
must explicitly be closed by calling the close method. Only upon calling the close
method, any changes made using a given handle are committed (or aborted).

Metadata object names must be unique within the scope of a given package or
namespace. Within a given package, two metadata objects with the same name, and of
the same type cannot be created.

4.1.1 Introduction to Metadata Service Namespaces

Each Oracle WebLogic Server domain generally includes one metadata repository. A
metadata repository is divided into a number of partitions, where each partition is
independent and isolated from the others in the repository.

Each application can choose which partition to use. Two applications can also choose
to share a partition.

Within a partition, you can organize the data in any way. Usually, the data is organized
hierarchically like the file system of an operating system. Where a file system uses
folders or directories, the Metadata Service uses namespaces or package names which
form a unique name used to locate a file. In the context of Oracle Fusion Applications,
all data related to Oracle Enterprise Scheduler must be stored in a partition called
globalEss with the namespace /oracle/apps/ess.

Each Fusion Applications product family—SCM, HCM, CRM, and so on—has a
separate namespace under /oracle/apps/ess, such as /oracle/apps/ess/scm,
/oracle/apps/ess/hcm, /oracle/apps/ess/crm, and so on.

For all other Oracle Enterprise Scheduler applications, the application name and an
optional package name containing the application level metadata displays under the
namespace /oracle/apps/ess. For example, the metadata repository for an
application named applicationl can be divided into packages with the names dev,
test, and production.

The metadata repository for this application has the following structure:

/oracle/apps/ess/applicationl/dev/metadata
/oracle/apps/ess/applicationl/test/metadata
/oracle/apps/ess/applicationl/production/metadata

Each Metadata Service method that creates a metadata object takes a required
packageName argument that specifies the package part of the directory structure.

4.1.2 Introduction to Metadata Service Operations

After you access an Oracle Enterprise Scheduler metadata repository you can perform
different types of Metadata Service operations, including;:

= Add, Update, Delete: These operations have transactional characteristics.

4-2 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Accessing the Metadata Service

s Copy: These operations have transactional characteristics.

= Query: These operations have read-only characteristics and let you list metadata
objects in the metadata repository.

s Get: These operations have either read-only or transactional characteristics,
depending on the value of the forUpdate flag.

4.1.3 Introduction to Metadata Service Transactions

Because clients access the Metadata Service through a Stateless Session E]B, each
method uses a reference to a MetadataServiceHandle argument; this argument stores
state for Metadata Service operations. The Metadata Service open () method begins
each Oracle Enterprise Scheduler metadata repository user transaction. In an Oracle
Enterprise Scheduler application client you obtain a MetadataServiceHandle reference
with the open () method and you pass the reference to subsequent Metadata Service
methods. The MetadataServiceHandle reference provides a connection to the
metadata repository for the calling application.

In a client application that uses the Metadata Service you must explicitly close a
Metadata Service transaction by calling close (). This ends the transaction and causes
the transaction to be committed or rolled back (undone). The close () not only controls
the transactional behavior within the Metadata Service, but it also allows Oracle
Enterprise Scheduler to release certain resources. Thus, the close () is also required for
Metadata Service read-only query () and get() operations.

Note: The Metadata Service does not support JTA global
transactions, but you can still make Metadata Service calls in the
boundary of your transactions. While you can make Metadata Service
calls in bean/container managed transactions, the calls will not be
part of your transaction.

4.2 Accessing the Metadata Service
There are several ways to access the Metadata Service, including:

» Stateless Session EJB access: Use this type of access with Oracle Enterprise
Scheduler user applications.

s MBean access: This access is intended for use by administrative applications that
perform administrative functions using the oracle.as.scheduler.management
APIs.

= MBean proxy access: This access is intended for use by administrative applications
that perform administrative functions using the
oracle.as.scheduler.management APIs. Use the MBean proxy if the
administrative client is remote to the Oracle Enterprise Scheduler.

4.2.1 How to Access the Metadata Service with a Stateless Session EJB

User applications use a Stateless Session EJB to access the Metadata Service for
application level metadata operations. Using JNDI you can lookup the Metadata
Service associated with an Oracle Enterprise Scheduler application.

Example 4-1 shows the JNDI lookup for the Oracle Enterprise Scheduler Metadata
Service that allows you to use application level metadata. Note that the
getMetadataServiceEJB () method looks up the metadata service using the name

Using the Metadata Service 4-3

Accessing the Metadata Service with Oracle JDeveloper

"ess/metadata". By convention, Oracle Enterprise Scheduler applications use
"ess/metadata” for the EJB reference to the MetadataServiceBean.

Example 4-1 JNDI Lookup for Stateless Session EJB Access to Metadata Service

// Demonstration on how to lookup metadata service from a Java EE application
// JNDI lookup on the metadata service EJB

import oracle.as.scheduler.core.dndiUtil;

MetadataService ms = JndiUtil.getMetadataServiceEJB();

4.3 Accessing the Metadata Service with Oracle JDeveloper

Using Oracle JDeveloper at design time you can create, view, and update application
level metadata objects.

4.4 Querying Metadata Using the Metadata Service

The Metadata Service query methods let you view objects in the metadata repository.
You can query job types with the queryJobTypes () method, query job definitions with
queryJobDefinitions () method, and likewise you can query other metadata objects
using the corresponding MetadataService query method.

Associated with a query you can use a filter to restrict the output to obtain only items
of interest (in a manner similar to using a SQL WHERE clause).

4.4.1 How to Create a Filter

A filter specifies a comparison or a criteria for a query. You create a filter by creating a
comparison that includes a field argument (String), a comparator, and an associated
value (Object). In a filter, you can use the filter methods to combine comparisons to
form filter expressions.

Table 4-1 lists the comparison operators (comparator argument).

Table 4-1 Filter Comparison Operators

Comparison Operator Description

CONTAINS Field contains the specified value

ENDS_WITH Field ends with the specified value

EQUALS Field equals the specified value

GREATER_THAN Field is greater than the specified value
GREATER_THAN_EQUALS Field is greater than or equal to the specified value
LESS_THAN Field is less than the specified value
LESS_THAN_EQUALS Field is less than or equal to the specified value
NOT_CONTAINS Field does not contain the specified value
NOT_EQUALS Field does not equal the specified value
STARTS_WITH Field starts with the specified value

Example 4-2 shows code that creates a new filter.

4-4 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Querying Metadata Using the Metadata Service

Example 4-2 Creating a Filter with a Filter Comparator for a Query

Filter filter =
new Filter (MetadataService.QueryField.PACKAGE.fieldName(),
Filter.Comparator .NOT_EQUALS, null);

Table 4-2 MetadataService Query Fields

Query Field Description
MetadataService.QueryField.PACKAGE The name of the package.
MetadataService.QueryField.NAME The job definition name.
MetadataService.QueryField.JOBTYPE The job type associated with the job definition.
MetadataService.QueryField.EXECUTIONTYPE The type of job execution, synchronous or
asynchronous.
MetadataService.QueryField.EXECUTIONMODE The mode of job set execution, parallel or serial.
MetadataService.QueryField.FIRSTSTEP The first step in a job set.
MetadataService.QueryField.ACTIVE Indicates whether a work assignment is active.
MetadataService.QueryField.PRODUCT Indicates the name of the product with which
the job is associated.
MetadataService.QueryField.EFFECTIVEAPPLICATION The name of the hosting application wherein
this job should run.

4.4.2 How to Query Metadata Objects

A MetadataService query returns an enumeration list of MetadataObjectIDs of the
form:

java.util.Enumeration<MetadataObjectId>

Example 4-3 shows a sample routine that queries for a list of job types in the metadata.

Example 4-3 Using Metadata Service Query Methods

Enumeration<MetadataObjectId> gryResults
= m_service.queryJobTypes (handle, filter, null, false);

Example 4-3, shows the following important steps for using the queryJobTypes ()
method:

= You need to supply a reference to a metadata repository by obtaining an instance
of MetadataServiceHandle.

= You need to create a filter for the query. The filter contains the fields, comparators,
and values to search for.

= You determine the field to sort by in the query using the orderBy argument, or you
set the orderBy argument to null to indicate that no specific ordering is applied.

= You set the ascending argument for the query. When ordering is applied setting
the ascending argument to true indicates ascending order or false indicates
descending order for the result list.

Using the Metadata Service 4-5

Querying Metadata Using the Metadata Service

4-6 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

O

Using Parameters and System Properties

Using Oracle Enterprise Scheduler you can define parameters in the metadata service
and you can define new parameters or provide new values for existing parameters in
the runtime service when you submit a job request. A given parameter may represent
a value for an Oracle Enterprise Scheduler system property or a value for an
application-specific parameter.

This chapter includes the following sections:

= Section 5.1, "Introduction to Using Parameters and System Properties"”
= Section 5.2, "Using Parameters with the Metadata Service"

= Section 5.3, "Using Parameters with the Runtime Service"

= Section 5.4, "Using System Properties"

5.1 Introduction to Using Parameters and System Properties
You can define Oracle Enterprise Scheduler parameters as follows:
» In metadata associated with a job definition, a job type, or a job set.

s In the request parameters when a job request is submitted. A request parameter
can override a parameter specified in metadata or can specify a value for a
parameter not previously defined in the metadata associated with a job request
(subject to certain constraints). You can also add new parameters or update
parameter values (subject to certain constraints) after a job request has been
submitted.

Oracle Enterprise Scheduler System Properties are parameters with names that Oracle
Enterprise Scheduler reserves. For some system properties Oracle Enterprise
Scheduler also defines the values or provides a default value if you do not specify a
value. For more information on the Oracle Enterprise Scheduler system properties, see
Section 5.4, "Using System Properties".

5.1.1 What You Need to Know About Parameter and System Property Naming

Oracle Enterprise Scheduler parameters and system properties are case sensitive. For
example the parameter name USER_PARA and user_para represent different parameters
in Oracle Enterprise Scheduler.

When you use parameters note that Oracle Enterprise Scheduler reserves the names
starting with "SYS_" (case-insensitive) for Oracle Enterprise Scheduler defined system
properties. Thus, you should not use application-level parameters with names that
start with "SYS_" (case-insensitive).

Using Parameters and System Properties 5-1

Introduction to Using Parameters and System Properties

5.1.2 What You Need to Know About Parameter Conflict Resolution and Parameter
Materialization

When submitting a job request, Oracle Enterprise Scheduler combines parameters
specified in the job metadata with any submission parameters to form the runtime
request parameters. The runtime parameters are saved to the database runtime store
and used for subsequent processing of the request. The metadata parameters are
obtained from the job definition, job type, and if applicable, the job set as they are
defined in the metadata repository at the time of submission. Any subsequent changes
to the metadata is normally not seen or used as the request is processed. Oracle
Enterprise Scheduler resolves parameter conflicts for parameters with the same name
associated with the job metadata or the submit parameters.

A parameter conflict can occur in the following cases:

= A parameter is defined repeatedly with different values. For example if the
SystemProperty.PRIORITY property is set with different values in the job type and
in the job definition associated with a request.

= A parameter is defined repeatedly and at least one definition is specified as
read-only with the ParameterInfo readonly flag set to true.

To resolve conflicts with parameters Oracle Enterprise Scheduler uses one of the
following conflict resolution models and the parameter value inheritance hierarchy
shown in Table 5-1:

» Last definition wins: used when the same parameter is defined repeatedly with the
readonly flag set to false in all cases. In the last definition wins model, conflicts are
resolved according to the precedence rules where the highest level wins (last
definition). For example a property specified at the job request level wins over the
same property specified at the job definition level.

» First read-only definition wins: used when the same parameter is defined repeatedly
and at least one definition is read-only (the ParameterInfo readonly flag is set to
true.) In the first read-only definition wins model, parameter conflicts are resolved
according to the precedence rules shown in Table 5-1, lowest level wins. For
example a readonly parameter specified at the job type definition level wins over
the same property specified at the job definition level, read-only or not.

Table 5-1 Parameter Precedence Levels

Object Level

JobType 1 - Lowest Level
JobDefinition 2

job set step 3

job set 4

Job request (via 5 - Highest Level

RequestParameters passed to
submitRequest ())

5.1.2.1 What You Need to Know About Job Definition Parameter Materialization

Figure 5-1 illustrates the order of precedence taken by parameters defined in various
components.

5-2 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Introduction to Using Parameters and System Properties

Figure 5-1 Parameter Precedence

Job definition Job set
request request
JobType JobSet (top-lavel)

JobDefinition

—

Request parameters

In the case of a job request, the parameters defined by the job type take first
precedence, followed by the parameters defined in the job definition. The parameters
submitted with the job request take final precedence. In the case of a job set request,
the parameters defined in the job set take first precedence, followed by the parameters
defined by the job request run as a child of the job set.

5.1.2.2 What You Need to Know About Job Set Level Parameter Materialization

When the job set step parameters are materialized, if the job set defines any of the
following system properties as read-only, and those properties are defined in the
definition of the topmost job set, that is the job set of the absolute parent, the job set
values will override the values set at the job set step level. This causes every definition,
job definition or job set definition, that runs in the context of a specific job set to run
with the same values.

PRIORITY
REQUEST_EXPIRATION
RETRIES, only if the step definition value is > 0

There is an exception for RETRIES because a value of 0 may mean that the job is not
capable of being restarted. So if a step is defined with RETRIES = 0, it is not
overridden, but if the step has RETRIES > 0, it will be overridden with the job set
value.

Properties for a job set step request are materialized during the processing of a job set
when the step is reached. Properties for a job step request are materialized in the
following order.

1. Job type and job definition (if the step is a job definition) or job set (if the step is a
job set).

2. Job set step.
3. Parent request properties and system properties (parent is step's parent job set).
4. Scoped request properties.

Figure 5-2 illustrates the parameter precedence for job set steps.

Using Parameters and System Properties 5-3

Using Parameters with the Metadata Service

Figure 5-2 Parameter Precedence for Job Set Steps

Job definition Job set
step step
JobType JobSet (for step)
JobDefinition

Voo

| JobSet Step

}

Parent JobSet and
other parameters
from parent request

}

Owverwrite specific
read-only System
Froperties with
values from top-level
JobSat

}

Scoped request
parameters

When job sets include steps that are job sets, this is a nested job set. For a nested job
set, the precedence shown in Table 5-1 applies. When a nested job set is reached,
Oracle Enterprise Scheduler applies the parameters of the parent request and the
parameters of the parent request follow the same precedence. The effect is that
parameters of the parent request, job set and job set step are inherited by nested job
sets.

5.2 Using Parameters with the Metadata Service

Oracle Enterprise Scheduler metadata includes parameters that you can associate with
a metadata object. The parameters can include both application level parameters and
system properties for a given definition (metadata object). An instance of the
ParameterList class declares the parameters for a given job definition, job type or job
set. To set parameters for a given job definition, job type, or job set definition, you can
use a ParameterList object with the setParameters () method for the metadata object
or you can use the constructor and supply a ParameterList. To supply parameter
information in a parameter list, each ParameterList object includes ParameterInfo
objects that represent parameters, such that each parameter is defined with properties
as shown in Table 5-2.

Table 5-2 Parameterinfo Parameter Properties

Parameter Property Description

Name Specifies the parameter name.

Value Specifies the parameter value.

5-4 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Parameters with the Metadata Service

Table 5-2 (Cont.) Parameterinfo Parameter Properties

Parameter Property Description

Readonly This boolean flag can be set for each parameter. This flag indicates
whether the parameter is read-only.

When true, subsequent objects in the parameter precedence hierarchy,
such as request submission parameter, cannot change the parameter
value. Typically a read-only parameter will have a default value that
cannot be changed by subsequent objects.

Note that the value of a read-only parameter can be changed in the
object itself where this parameter is defined. For example if this
parameter is defined in a job type as a read-only parameter, its value can
be changed in the job type definition itself, but a job definition that uses
the job type or a request submission parameter cannot override the
value, subject to the conflict resolution rules specified for parameter
values. For more information, see Section 5.1.2, "What You Need to
Know About Parameter Conflict Resolution and Parameter

Materialization".

Legacy A boolean that specifies that a parameter should be visible when used in
a GUL

DataType Values can only be one of the supported types, including: Boolean,

Integer, Long, String, and DATETIME that represents a date as a
java.util.Calendar object.

You can set parameters at different levels appropriate to parameter precedence rules
for a job request. For example, you can set parameters that apply for a job type, a job
definition, a job set, a job set step, or a request submission parameter. For information
about the precedence rules, see Section 5.1.2, "What You Need to Know About
Parameter Conflict Resolution and Parameter Materialization".

5.2.1 How to Use Parameters and System Properties in Metadata Objects

Example 5-1 shows code that uses a ParameterList to set parameter and system
property values in a metadata object.

Example 5-1 Adding Parameters and System Properties in a Metadata Object

String name = "JobDescription_name";
MetadataObjectId jobtype;

JobDefinition jd = new JobDefinition(name, jobtype);

ParameterList parlist = new ParameterList();
parlist.add(SystemProperty.APPLICATION, "METADATA_UNITTEST_APP", false);
parlist.add(SystemProperty.PRODUCT, "METADATA_UNITTEST_PROD", false);
parlist.add(SystemProperty.CLASS_NAME, "oracle.as.scheduler.myself", false);
parlist.add(SystemProperty.RETRIES, "2", false);
parlist.add(SystemProperty.REQUEST EXPIRATION, "60", false);
parlist.add("MyProp", "Value", false);

parlist.add("MyReadOnlyProp", "readyOnlyValue", true);

jd.setParameters (parlist);

Example 5-1, shows the following important steps for using parameters with a
metadata object:

= You need a reference to a metadata service handle to create the metadata object
where you want to add parameters.

Using Parameters and System Properties 5-5

Using Parameters with the Runtime Service

= You need to use the ParameterList add () method to add parameter information.

= You can use a SystemProperty as the name for a parameter to specify a value for a
system property.

= You can specify an application specific property by using a name that you define
with the parameter information in a ParameterList.

= You need to use a metadata object setParameters () method to apply the
parameters specified in the ParameterList to the metadata object. In this case, use
the job definition setParameters () method.

5.3 Using Parameters with the Runtime Service

You can specify parameters when a job request is submitted by supplying a
RequestParameters object with submitRequest (). A request parameter can override a
parameter specified in metadata or can specify a value for a parameter not previously
defined in the metadata associated with a job request (subject to certain constraints).
You can also use the runtime service setRequestParameter () method to set or modify
request parameters (subject to certain constraints) after the request has been
submitted.

The submitRequest () method will validate each request parameter against its
definition in the metadata, if one exists. Such validations include checking the data
type of the parameter against the data type specified in the metadata, checking the
read-only constraint for the parameter, and so on. If a given request parameter does
not exist in the corresponding metadata, the data type for the parameter is determined
by doing an instanceof on the parameter value. The data type of a request parameter
value must be one of the supported types specified by ParameterInfo.DataType.

If the value of a request parameter is null and the property has not been assigned in
the metadata, it defaults to the STRING data type when calling submitRequest ().
Oracle Enterprise Scheduler assigns a null value to the parameter. As such, a
parameter need not be assigned in the metadata.

The RuntimeService setRequestParameter () method, which is similar to
updateRequestParameter (), allows a previously undefined request parameter to be
set by a job during execution.

5.3.1 How to Use Parameters with the Runtime Service

When you submit a job request you set a parameter in a RequestParameters object.
This parameter may represent an Oracle Enterprise Scheduler system property or an
application-specific parameter. The RequestParameters parameter value may be used
to override a parameter specified in metadata, or to specify the value for a parameter
not previously defined in metadata associated with the job request.

Example 5-2 shows code using a RequestParameters object with the add () method to
set a system property value.

Example 5-2 Using the PRIORITY System Property with Request Parameters

import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.RuntimeService;
import oracle.as.scheduler.RuntimeServiceHandle;
import oracle.as.scheduler.SystemProperty;

RuntimeService runtime;

5-6 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Parameters with the Runtime Service

RuntimeServiceHandle rs_handle;
MetadataObjectId jobSetId;

int startsIn;

long requestID = 0L;

RequestParameters req par = new RequestParameters();
req_par.add(SystemProperty.PRIORITY, new Integer(7));

Calendar start = Calendar.getInstance();
start.add(Calendar.SECOND, startsIn);

requestID =
runtime.submitRequest (rs_handle, "My job set", jobSetId, start, req par);

The example assumes that there is a user-created runtimeServiceHandle named rs_
handle.

5.3.2 How to Use Parameters with a Step ID for Job Set Steps

The RequestParameters object is a container for all the parameters for a request. Some
of the RequestParameters methods take a step ID as an argument. Such methods
allow you to specify parameters for a job set at request submission, where parameters
can be specified for, or scoped to, individual steps associated with a job set request. For
such methods, the step ID argument identifies the step within the job set to which the
given parameter applies. For non-job set requests, the step ID does not apply, but you
can use the parameter as required by your application requirements.

When a step ID is specified in a RequestParameters method such as add (), you need
to specify the step ID using the following format:

idl.id2.id3...

where the fully qualified step ID identifies the unique step, node, in the job set
hierarchy (tree).

Parameters without a step ID in a job set request are treated as global parameters and
they apply to each step of the job set request. The step ID argument for
RequestParameters provides the capability to support shared parameters, where the
parameter can apply to both a job set and either a job definition or a job type.

Oracle Enterprise Scheduler prepends the step ID to the name in the form of
stepId:name to generate the unique identifier, with a colon as a separator.

Example 5-3 shows code using a RequestParameters object with a step ID specified
with the add () method to set a system property value for a step in a job set.

Example 5-3 Using the CLASS_NAME System Property with Job Set Request
Parameters

import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.RuntimeService;
import oracle.as.scheduler.RuntimeServiceHandle;
import oracle.as.scheduler.SystemProperty;

RuntimeService runtime;
RuntimeServiceHandle rs_handle;

Using Parameters and System Properties 5-7

Using System Properties

MetadataObjectId jobSetId;
int startsIn;
long requestID = 0L;

RequestParameters req par = new RequestParameters();

req par.add(SystemProperty.PRIORITY, "stepId-1", new Integer(8));
req _par.add(SystemProperty.PRIORITY, "stepId-2.stepId-1", new Integer(6));

Calendar start = Calendar.getInstance();
start.add(Calendar.SECOND, startsIn);

requestID =
runtime.submitRequest (rs_handle, "My job set", jobSetId, start, req par);

The example assumes that there is a user-created runtimeServiceHandle named rs_
handle.

5.4 Using System Properties

Oracle Enterprise Scheduler represents parameter names that are known to and used
by the system in the SystemProperty class. You can specify system properties as
parameter names in the application metadata and using request parameters when a
request is submitted. Oracle Enterprise Scheduler sets certain system properties when
a request is submitted or at some point in the life cycle of a request.

Table 5-3 lists the available system properties, as defined in

oracle.as.scheduler. SystemProperty. Most system properties are common to all job
types while some system properties are specific to a particular job type, as indicated in
the descriptions in Table 5-3.

When you use parameters, note that Oracle Enterprise Scheduler reserves the
parameter names starting with "SYS_" (case-insensitive) for Oracle Enterprise
Scheduler defined properties.

Table 5-3 System Properties

Name Description

ALLOW_MULT_PENDING Specifies whether multiple pending requests for the same job definition is allowed. This
property has no meaning for a job set step.

Type: BOOLEAN

APPLICATION Specifies the logical name of the Java EE application used for request processing. This
property is automatically set by Oracle Enterprise Scheduler during request submission.

Type: STRING

ASYNC_REQUEST Specifies the time, in minutes, that the processor waits for an asynchronous request after
TIMEOUT it has begun execution. Following this period, the request is considered to have timed out.
Type: LONG

BIZ_ERROR_EXIT CODE Specifies the process exit code for a process job request that denotes an execution business
error. If this property is not specified, the system treats a process exit code of 4 as an
execution business error.

This property is optional for a process job type. It is not used for other job types.
Type: STRING

5-8 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using System Properties

Table 5-3 (Cont.) System Properties

Name Description

CLASS_NAME Specifies the Java executable for a Java job request. This should be the name of a Java
class that implements the oracle.as.scheduler.Executable interface. This property is
required for a Java job type. It is not used for other job types.

Type: STRING

CMDLINE Specifies the command line used to invoke an external program for a Process job request.
This property is required for a Process job type. It is not used for other job types.
Type: STRING

EFFECTIVE_ Specifies the logical name of the Java EE application that will be the effective application

APPLICATION used to process the request. A job definition, job type, or a job set step can be associated
with a different application by defining the EFFECTIVE_APPLICATION system property.
This property can only be specified via metadata and cannot be specified as a submission
parameter.

Type: STRING

ENVIRONMENT_ Specifies the environment variables to be set for the spawned process of a Process job
VARIABLES request.The property value should be a comma separated list of name value pairs
(name=value) representing the environment variables to be set.

This property is optional for a process job type. It is not used for other job types.
Type: STRING

EXECUTE_PAST Specifies whether instances of a repeating request with an execution time in the past
should be generated. Instances are never generated before the requested start time nor
after the requested end time. To cause past instances to be generated, you must set this
property to TRUE and specify the requested start time as the initial time from which
instances should be generated. Note that a null requested start time defaults to the
current time.

Valid values for this property are:

= TRUE: All instances specified by a schedule are generated regardless of the time of
generation.

= FALSE: Instances with a scheduled execution time in the past (that is, before the time
of generation) will not be generated.

If this property is not specified, the system defaults to TRUE.
Type: BOOLEAN

EXTERNAL_ID Specifies an identifier for an external portion of an asynchronous Java job. For example,
an asynchronous Java job usually invokes some remote process and then returns control
to Oracle Enterprise Scheduler. This property can be used to identify the remote process.
This property should be set by the job implementation of asynchronous Java jobs when
the identifier is known. It is never set by Oracle Enterprise Scheduler.

Type: STRING

GROUP_NAME Specifies the name of the Oracle Enterprise Scheduler isolation group to which this
request is bound. This property is automatically set by Oracle Enterprise Scheduler
during request submission.

Type: STRING

INPUT_LIST Specifies input to a request. The input to a serial job set is forwarded as input to the first
step only. The input to a parallel job set is forwarded as input to all the parallel steps.

Oracle Enterprise Scheduler imposes no format on the value of this property.

Type: STRING

LISTENER Specifies the event listener class associated with the request. This should be the name of a
Java class that implements the oracle.as.scheduler.EventListener interface.

Type: STRING

Using Parameters and System Properties 5-9

Using System Properties

Table 5-3 (Cont.) System Properties

Name

Description

LOCALE

OUTPUT_LIST

POST_PROCESS

PRE_PROCESS

PRIORITY

PROCEDURE_NAME

PRODUCT

REDIRECTED_OUTPUT_
FILE

REPROCESS_DELAY

REQUEST_CATEGORY

REQUEST_EXPIRATION

Specifies the locale associated with the request.

Type: STRING

Specifies output from a request.

The output of a serial job set is the OUTPUT_LIST of the last step. The output of a parallel
job set is the concatenation of the OUTPUT_LIST of all the steps, in no guaranteed order,
with oracle.as.scheduler.SystemProperty.OUTPUT_LIST DELIMITER as a separator.

Type: STRING

Specifies the post-process callout handler class. This should be the name of a Java class
that implements the oracle.as.scheduler. PostProcessHandler interface.

Type: STRING

Specifies the pre-process callout handler class. This should be the name of a Java class
that implements the oracle.as.scheduler. PreProcessHandler interface.

Type: STRING

Specifies the request processing priority. The priority interval is [0..9] with 0 as the lowest
priority and 9 as the highest.

Default: If this property is not specified, the system default value used is 4.
Type: INTEGER

Specifies the name of the PL/SQL stored procedure to be called for a SQL job request. The
stored procedure should be specified using schema.name format.

The property is required for a SQL job type. It is not used for other job types.
Type: STRING

Specifies the product within the application that submitted the request.
Type: STRING

Specifies the file where standard output and error streams are redirected for a Process job
request. This represents the full path of the log file where the standard output and error
streams are redirected for the spawned process when the request is executed.

This property is optional for a Process job type. It is not used for other job types.
Type: STRING

Specifies the callout handler processing delay time. This represents the time, in minutes,
to delay request processing when a delay is requested by a callback handler.

Default: If this property is not specified, the system default used is 5.
Type: INTEGER

Specifies an application-specific label for a request. The label, defined by an application
or system administrator, allows administrators to group job requests according to their
own specific needs.

Type: STRING

Specifies the expiration time for a request. This represents the time, in minutes, that a
request will expire after its scheduled execution time. A expiration value of zero (0)
means that the request never expires. If this property is not specified, the system default
value used is 0.

Request expiration only applies to requests that are waiting to run. If a request waits
longer than the specified expiration period, it does not run. After a request starts running
the request expiration no longer applies.

Type: INTEGER

5-10 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using System Properties

Table 5-3 (Cont.) System Properties

Name

Description

REQUESTED_PROCESSOR

RETRIES

RUNAS_APPLICATIONID

SELECT_STATE

SQL_JOB_CLASS

SUBMITTING_
APPLICATION

SUCCESS_EXIT_CODE

Specifies the request processor node on which the request should be processed. This
allows processor affinity to be specified for a request. If this property is not specified, the
request can run on any available request processor node. In general, this property should
not be specified.

If this property is specified for a request, the request processor's work assignments
oracle.as.scheduler.WorkAssignment (specialization) must allow the execution of such
requests, otherwise the request will never be executed. If the specified node is not
running, the request will remain in READY state and will not be executed until the node is
restarted.

Type: STRING

Specifies the retry limit for a failed request. If request execution fails, the request will
retried up to the number of times specified by this property until the request succeeds. If
retry limit is zero (0), a failed request will not be retried.

Default: If this property is not specified, the system default used is 0.
Type: INTEGER

Specifies the runAs identifier that should be used to execute the request. Normally, a
request runs as the submitting user. However, if this property is set in the metadata of the
job associated with the request, then the request executes under the user identified by this
property. This property can only be specified via metadata and cannot be specified as a
submission parameter.

Type: STRING

Specifies whether the result state of a job set step affects the eventual state of its parent job
set. In order for the state of a job set step to be considered when determining the state of
the job set, the SELECT_STATE must be set to true. If SELECT_STATE is not specified on a job
set step, the state of the step will be included in the determination of the state of the job
set.

Type: BOOLEAN

Specifies an Oracle Enterprise Scheduler job class to be assigned to the Oracle Enterprise
Scheduler job used to execute a SQL job request. This property need not be specified
unless the job used for a job request is associated with a particular Oracle Database
resource consumer group or has affinity to a database service.

If this property is not specified, a default Oracle Enterprise Scheduler job class is used for
the job that executes the SQL request. That job class is associated with the default
resource consumer group. It belongs to the default service, such that it has no service
affinity and, in an Oracle RAC environment, any one of the database instances within the
cluster might run the job. No additional privilege or grant is required for an Oracle
Enterprise Scheduler SQL job request to use that default job class.

This property is optional for a SQL job type. It is not used for other job types.
Type: STRING

Specifies the logical name of the Java EE application for the submitted (absolute parent)
request. This property is automatically set by Oracle Enterprise Scheduler during request
submission.

Type: STRING

Specifies the process exit code for a Process job request that denotes an execution success.
If this property is not specified the system treats a process exit code of 0 as execution
success.

This property is optional for a Process job type. It is not used for other job types.
Type: STRING

Using Parameters and System Properties 5-11

Using System Properties

Table 5-3 (Cont.) System Properties

Name Description

USER_FILE_DIR Specifies a base directory in the file system where files, such as input and output files,
may be stored for use by the request executable.

Oracle Enterprise Scheduler supports a configuration parameter that specifies a file
directory where requests may store files. At request submission, a USER_FILE_DIR
property is automatically added for the request if the configuration parameter is currently
set and USER_FILE_DIR property was not specified for the request. If the property is
added, it will be initialized to the value of the configuration parameter. The property will
not be added if the configuration parameter is not set at the

time of request submission.

Type: STRING

USER_NAME Specifies the name of the user used to execute the request. Normally this is the submitting
user unless the RUNAS_APPLICATIONID property was set in the job metadata. This property
is automatically set by Oracle Enterprise Scheduler during request submission.

Type: STRING

WARNING_EXIT_CODE Specifies the process exit code for a Process job request that denotes an execution
warning. If this property is not specified, the system treats a process exit code of 3 as
execution warning.

This property is optional for a Process job type. It is not used for other job types.
Type: STRING

WORK_DIR_ROOT Specifies the working directory for the spawned process of a Process job request.
This property is optional for a Process job type. It is not used for other job types.
Type: STRING

5-12 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

6

Creating and Using PL/SQL Jobs

This chapter describes how to create PL/SQL stored procedures for use with Oracle
Enterprise Scheduler, and describes Oracle Database tasks that you need to perform to
use PL/SQL stored procedures with Oracle Enterprise Scheduler. After you create a
PL/SQL procedure and define a job definition, you can use the Oracle Enterprise
Scheduler runtime service to submit a job request for a PL/SQL procedure.

This chapter includes the following sections:

= Section 6.1, "Introduction to Using PL/SQL Stored Procedure Job Definitions"

» Section 6.2, "Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler"
= Section 6.3, "Performing Oracle Database Tasks for PL/SQL Stored Procedures"

= Section 6.4, "Creating and Storing Job Definitions for PL/SQL Job Types"

For information about how to use the Runtime Service, see Chapter 13, "Using the
Runtime Service".

6.1 Introduction to Using PL/SQL Stored Procedure Job Definitions

Oracle Enterprise Scheduler lets you run job requests of different types, including: Java
classes, PL/SQL stored procedures, and process requests that run as a forked process.
To use Oracle Enterprise Scheduler with PL/SQL stored procedures you need to do
the following:

s Create or obtain the PL/SQL stored procedure that you want to use with Oracle
Enterprise Scheduler.

s Load the PL/SQL stored procedure in the Oracle Database and grant the required
permissions and perform other required DBA tasks.

= Use Oracle JDeveloper to create job type and job definition objects and store these
objects with the Oracle Enterprise Scheduler application metadata.

» Use Oracle JDeveloper to create an application with Oracle Enterprise Scheduler
APIs that runs and submits a PL/SQL stored procedure.

Finally, after you create an application that uses the Oracle Enterprise Scheduler APIs
you use Oracle JDeveloper to deploy and run the application.

At runtime, after you submit a job request you can monitor and manage the job
request. For more information, see Chapter 13, "Using the Runtime Service".

Oracle Enterprise Scheduler uses an asynchronous execution model for PL/SQL stored
procedure job requests. This means that Oracle Enterprise Scheduler does not directly
call the PL/SQL stored procedure, but instead uses Oracle Enterprise Scheduler (part
of the Oracle Database). When a PL/SQL stored procedure job request is ready to

Creating and Using PL/SQL Jobs 6-1

Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler

execute, Oracle Enterprise Scheduler creates an immediate, run-once Oracle Enterprise
Scheduler job. This Oracle Enterprise Scheduler job is owned by the Oracle Enterprise
Scheduler runtime schema user associated with the container instance that executes
the application that specifies the PL/SQL stored procedure. Finally, when the Oracle
Enterprise Scheduler job runs, the PL/SQL stored procedure is called using dynamic
SQL. After the PL/SQL stored procedure completes, either by a successful return or by
raising an exception, the Oracle Enterprise Scheduler job completes.

6.2 Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler

When you want to use a PL/SQL stored procedure with Oracle Enterprise Scheduler,
the PL/SQL procedure must have certain characteristics to work with an Oracle
Enterprise Scheduler application and a DBA must assure that certain Oracle Database
permissions are assigned to the PL/SQL stored procedure.

Creating a PL/SQL stored procedure involves the following steps:

» Define the PL/SQL stored procedure that has the correct signature for use with
Oracle Enterprise Scheduler

s Perform the required DBA tasks to make the PL/SQL stored procedure available
to Oracle Enterprise Scheduler

6.2.1 How to Define a PL/SQL Stored Procedure with the Correct Signature

Note: For more information about defining a PL/SQL stored
procedure job in the context of Oracle Fusion Applications, see
Section 9.6, "Implementing a PL/SQL Scheduled Job."

The PL/SQL stored procedure that you call from Oracle Enterprise Scheduler must
have a specific signature and include specific procedure parameters, as follows:

PROCEDURE my_proc (request_handle IN VARCHAR2) ;
The request_handle parameter is an opaque value representing an execution context
for the Oracle Enterprise Scheduler request being executed.

Example 6-1 shows a sample HELLO_WORLD stored procedure for use with Oracle
Enterprise Scheduler.

Example 6-1 HELLO_WORLD PL/SQL Stored Procedure

create or replace procedure HELLO_WORLD(request_handle in varchar2)

as
v_request_id number := null;
v_prop_name varchar2(500) := null;
v_prop_int integer := null;
begin
-- Get the Oracle Enterprise Scheduler request ID being executed.
begin
v_request_id := ess_runtime.get_request_id(request_handle);
exception

when others then
raise_application_error (-20000,
'Failed to get request id for request handle ' ||
request_handle || '. [' || SQLERRM || '1');
end;

6-2 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler

-- Retrieve value of an existing request property.

begin
v_prop_name := 'mytestIntProp';
vV_prop_int := ess_runtime.get_regprop_int (v_request_id, v_prop_name);
exception
when others then
rollback;
raise_application_error (-20001,
'Failed to get request property ' || v_prop_name |
' for Oracle Enterprise Scheduler request ID ' || v_request_id |
“. [' || SQLERRM || '1');
end;

-- Update an existing request property with a new value.
-- This procedure is responsible for commit/rollback of the update operation.

begin
vV_prop_name := 'myJobdefProp’;
ess_runtime.update_regprop_varchar2 (v_request_id, v_prop_name,
'myUpdatedalue') ;
commit;
exception
when others then
rollback;
raise_application_error (-20002,
'Failed to update request property ' || v_prop_name |
' for Oracle Enterprise Scheduler request ID ' || v_request_id |
"o [' || SQLERRM || '1');:
end;
end helloworld;

/

6.2.2 Handling Runtime Exceptions in an Oracle Enterprise Scheduler PL/SQL Stored

Procedure

Oracle Enterprise Scheduler uses an asynchronous execution model for PL/SQL stored
procedure job types. Oracle Enterprise Scheduler does not directly call the PL/SQL
stored procedure, but instead uses the Oracle Enterprise Scheduler in the Oracle
Database. When a PL/SQL stored procedure request is ready to execute, Oracle
Enterprise Scheduler creates an immediate, run-once Oracle Enterprise Scheduler job
that is owned by the Oracle Enterprise Scheduler runtime schema user associated with
the container instance executing that executes the application associated with the
PL/SQL stored procedure. The PL/SQL stored procedure is called using dynamic SQL
when the Oracle Enterprise Scheduler job runs. After the PL/SQL stored procedure
completes, either by a successful return or by raising an exception, the Oracle
Enterprise Scheduler job completes.

In the PL/SQL stored procedure, you can handle exceptions and other issues by
raising a RAISE_APPLICATION_ERROR exception. The RAISE_APPLICATION_ERROR
requires that the error code from the PL/SQL stored procedure range from -20000 to
-20999. The PL/SQL stored procedure can use RAISE_APPLICATION_ERROR if it needs to
raise an exception. RAISE_APPLICATION_ERROR requires that the error code range from
-20000 to -20999.

Table 6-1 indicates the Oracle Enterprise Scheduler state based on the result of the
PL/SQL stored procedure.

Creating and Using PL/SQL Jobs 6-3

Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler

Table 6-1 Terminal States for PL/SQL Stored Procedure Results

Final State Description

SUCCEEDED If the PL/SQL stored procedure returns normally, without raising an
exception, the request state transitions to the SUCCEEDED state, bearing any
subsequent errors completing the request.

WARNING If the PL/SQL stored procedure returns with an exception, the request state is
based on the SQL error code of the exception.

The request transitions to the WARNING terminal state if the SQL error code
ranges from -20900 to -20919.

ERROR If the PL/SQL stored procedure returns with an exception, the request state is
based on the SQL error code of the exception.

The request transitions to the ERROR terminal state for any error code outside
the range of -20900 to -20919 (error codes within this range indicate a
WARNING).

Return codes in the range -20920 to -20929 result in an ERROR state with a
BUSINESS error type, where the request is not subject to automatic retries.

6.2.3 How to Access Job Request Information In PL/SQL Stored Procedures

Oracle Enterprise Scheduler provides a PL/SQL package, ESS_RUNTIME to perform
certain operations that you may need when you are working in a PL/SQL stored
procedure. You can use these procedures perform job request operations and to obtain
job request information for an Oracle Enterprise Scheduler runtime schema. For
example, you can use these runtime procedure to submit requests and retrieve and
update request information associated with an Oracle Enterprise Scheduler job
request.

The following sample code shows use of an ESS_RUNTIME procedure:

v_request_id := ess_runtime.get_request_id(request_handle);

This request obtains the request ID associated with a job request.

Certain procedures in the ESS_RUNTIME package require a request handle parameter
and provide information on an executing request (these should only be called from the
PL/SQL stored procedure that is executing the PL/SQL stored procedure request).
You can call some procedures in the ESS_RUNTIME package from outside of the context
of an executing request; these procedures may include a request id parameter.

6.2.4 What You Need to Know When You Define a PL/SQL Stored Procedure

6-4

You need to know the following when you create an use a PL/SQL stored procedure
with Oracle Enterprise Scheduler:

s Itis not required that the PL/SQL stored procedure exist when the Oracle
Enterprise Scheduler request is submitted, but the PL/SQL stored procedure must
exist and be callable by the Oracle Enterprise Scheduler runtime schema user
when the request is ready to run.

s The PL/SQL stored procedure must exist on the same database as the Oracle
Enterprise Scheduler Runtime schema.

Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Performing Oracle Database Tasks for PL/SQL Stored Procedures

6.3 Performing Oracle Database Tasks for PL/SQL Stored Procedures

After you create the PL/SQL stored procedure that you want to use with Oracle
Enterprise Scheduler a DBA needs to load the PL/SQL stored procedure in the Oracle
Database and grant the required permissions.

6.3.1 How to Grant PL/SQL Stored Procedure Permissions

Before the DBA grants permissions, the DBA must determine the Oracle Database and
the Oracle Enterprise Scheduler run time schema that is associated with the deployed
Java EE application that is going to submit the Oracle Enterprise Scheduler PL/SQL
stored procedure request.

Use the following definitions when you grant PL/SQL stored procedure permissions:

ess_schema: specifies the Oracle Enterprise Scheduler runtime schema associated with
the Java EE application.

user_schema: specifies the name of the application user schema.

PROC_NAME: specifies the name of the PL/SQL stored procedure associated with the
Oracle Enterprise Scheduler job request.

To grant Oracle Database permissions:

1. In the Oracle Database grant execute on the ESS_RUNTIME package to the
application user schema. For example:

GRANT EXECUTE ON ess_schema.ess_runtime to user_schema;

2. In the Oracle Database, create a private synonym for the ESS_RUNTIME package.
This is a convenience step that allows the PL/SQL stored procedure to reference
the ESS_RUNTIME as simply ESS_RUNTIME rather than using the full scherma_
name.ESS_RUNIME. For example:

create or replace synonym user_schema.ess_runtime for ess_schema.ess_runtime;

3. In the Oracle Database, grant execute on the PL/SQL stored procedure to the
Oracle Enterprise Scheduler runtime schema user.

GRANT EXECUTE ON user_schema.proc_name to ess_schema;

For example, if the Oracle Enterprise Scheduler runtime schema is TEST_ORAESS,
the application user schema is HOWTO, and the PL/SQL procedure is named HELLO_
WORLD, the DBA operations needed would be:

GRANT EXECUTE ON test_oraess.ess_runtime to howto;
create or replace synonym howto.ess_runtime for test_oraess.ess_runtime;
GRANT EXECUTE ON howto.hello_world to test_oraess;

6.3.2 What You Need to Know About Granting PL/SQL Stored Procedure Permissions

The first two steps shown for DBA tasks for granting permissions on the ESS_RUNTIME
package are only required if the ESS_RUNTIME package is referenced by a PL/SQL
procedure. These two steps are not required if the ESS_RUNTIME package is never used
from that application user schema. The third step shown is always required since it
allows Oracle Enterprise Scheduler to call the user defined PL/SQL stored procedure.

All PL/SQL stored procedures in a given application user schema that are used for
Oracle Enterprise Scheduler PL/SQL stored procedure jobs should always be
associated with the same (single) Oracle Enterprise Scheduler Runtime schema. While

Creating and Using PL/SQL Jobs 6-5

Creating and Storing Job Definitions for PL/SQL Job Types

this is not technically required, it greatly simplifies the DBA setup and does not
require the PL/SQL stored procedure to explicitly specify the Oracle Enterprise
Scheduler Runtime schema if the procedure references the ESS_RUNTINME.

6.4 Creating and Storing Job Definitions for PL/SQL Job Types

To use PL/SQL stored procedures with Oracle Enterprise Scheduler you need to locate
the Metadata Service and create a job definition. You create a job definition by
specifying a name and a job type. When you create a job definition you also need to set
certain system properties. You can then store the job definition and other associated
objects using the Metadata Service.

For information about how to use the Metadata Service, see Chapter 4, "Using the
Metadata Service".

You can use Oracle Enterprise Scheduler system properties to specify certain attributes
for the Oracle Enterprise Scheduler job that calls the PL/SQL stored procedure.

These SystemProperty properties apply specifically to SQL job types; PROCEDURE_NANME,
SQL_JOB_CLASS.

The PROCEDURE_NAME system property specifies the name of the PL/SQL stored
procedure to be executed. The stored procedure name should have a schema.name
format. This property must be specified for either the job type or job definition.

The SQL_JOB_CLASS system property specifies an Oracle Enterprise Scheduler job class
to be assigned to the Oracle Enterprise Scheduler job used to execute an SQL job
request. This property does not need to be specified unless the Oracle Enterprise
Scheduler job used for a request should be associated with a particular Oracle
Database resource consumer group or have affinity to a database service.

Oracle Enterprise Scheduler uses an Oracle Enterprise Scheduler job to execute the
PL/SQL stored procedure for a SQL job request. An Oracle Enterprise Scheduler job
class can be associated with the Scheduler job when that job needs to have affinity to a
database service or is to be associated with an Oracle Database resource consumer
group. The Oracle Enterprise Scheduler job owner must have EXECUTE privilege on the
Oracle Enterprise Scheduler job class in order to successfully create a Scheduler job
using that job class.

If the SQL_JOB_CLASS system property is not specified, a default Oracle Enterprise
Scheduler job class is used for the Oracle Enterprise Scheduler job. The default job
class is associated with the default resource consumer group. It will belong to the
default service, which means it will have no service affinity and, in an Oracle RAC
environment any one of the database instances within the cluster might run the
Scheduler job. No additional privilege grant is needed for an Oracle Enterprise
Scheduler SQL request to use that default job class.

6.4.1 How to Create a PL/SQL Job Type

An Oracle Enterprise Scheduler JobType object specifies an execution type and defines
a common set of properties for a job request. A job type can be defined and then
shared among one or more job definitions. Oracle Enterprise Scheduler supports
three execution types:

= JAVA_TYPE: for job definitions that are implemented in Java and run in the
container.

= SQL_TYPE: for job definitions that run as PL/SQL stored procedures in a database
server.

6-6 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating and Storing Job Definitions for PL/SQL Job Types

= PROCESS_TYPE: for job definitions that are binaries and scripts that run as separate
processes.

When you specify the JobType you can also specify properties that define the
characteristics associated with the JobType. Table 6-2 describes the SystemProperties
that are appropriate for a PL/SQL stored procedure job type.

Table 6-2 Oracle Enterprise Scheduler System Properties for a PL/SQL Stored Procedure Job Type

System Property

Description

PROCEDURE_NAME

SQL_JOB_CLASS

Specifies the name of the stored procedure to run as part of PL/SQL job execution.
For a SQL_TYPE application, this is a required property.

Specifies an Oracle Enterprise Scheduler job class to be assigned to the Oracle Enterprise
Scheduler job used to execute an SQL job request.

This is an optional property for a SQL_TYPE job type.

When you create and store a PL/SQL job type, you do the following;:

s Use the JobType constructor and supply a String name and a
JobType.ExecutionType.SQL_TYPE argument.

= Set the appropriate properties for the new JobType.

s Obtain the metadata pointer, as shown in Section 4.2, "Accessing the Metadata
Service". Use the Metadata Service addJobType () method to store the JobType in
metadata.

s Use aMedatdataObjectId that uniquely identifies metadata objects in the
metadata repository, and, using a unique identifier the MetadataObjectID contains
the fully qualified name for a metadata object.

See Section 6.4.3, "Using a PL/SQL Stored Procedure with an Oracle Enterprise
Scheduler Application" for sample code.

6.4.2 How to Create and Store a Job Definition for PL/SQL Job Type

To use PL/SQL with Oracle Enterprise Scheduler, you need to create and store a job
definition. A job definition is the basic unit of work that defines a job request in Oracle
Enterprise Scheduler. Each job definition belongs to one and only one job type.

Note: Once you create a job definition with a job type, you cannot
change the type or the job definition name. To change the type or the
job definition name, you need to create a new job definition.

Section 6.4.3, "Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler
Application" shows how to create a job definition using the job definition constructor
and the job type.

6.4.3 Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler

Application

Example 6-2 shows sample code in which job type and job definition application
metadata are created for a SQL job type.

Creating and Using PL/SQL Jobs 6-7

Creating and Storing Job Definitions for PL/SQL Job Types

Example 6-2 Oracle Enterprise Scheduler Program Using PL/SQL Stored Procedure

import oracle.as.scheduler.JobType;

import oracle.as.scheduler.JobDefinition;

import oracle.as.scheduler.MetadataService;

import oracle.as.scheduler.MetadataServiceHandle;
import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.ParameterInfo;

import oracle.as.scheduler.ParameterInfo.DataType;
import oracle.as.scheduler.ParameterList;

void createDefinition()

{
MetadataService metadata =
MetadataServiceHandle mshandle = null;

try

{
ParameterInfo pinfo;
ParameterList plist;

mshandle = metadata.open();

// Define and add a PL/SQL job type for the application metadata.
String jobTypeName = "PLSQLJobDefType";

JobType jobType = null;

MetadataObjectId jobTypeId = null;

jobType = new JobType (jobTypeName, JobType.ExecutionType.SQL_TYPE);

plist = new ParameterList();
pinfo = SystemProperty.getSysPropInfo (SystemProperty.PROCEDURE_NAME) ;

plist.add(info.getName (), pinfo.getDataType(), "HOWTO.HELLO_WORLD", false);
pinfo = SystemProperty.getSysPropInfo (SystemProperty.PRODUCT) ;
plist.add(pinfo.getName (), pinfo.getDataType(), "HOW_TO_PROD", false);

jobType.setParameters (plist);
jobTypeld = metadata.addJobType (mshandle, jobType, "HOW_TO_PROD");

// Define and add a job definition for the application metadata.
String jobDefName = "PLSQLJobDef";

JobDefinition jobDef = null;

MetadataObjectId jobDefId = null;

jobDef = new JobDefinition (jobDefName, jobTypeId);
jobDef.setDescription("Demo PLSQL Job Definition " + jobDefName) ;

plist = new ParameterList();
plist.add("myJobdefProp", DataType.STRING, "myJobdefval", false);
jobDef.setParameters (plist) ;

jobDefId = metadata.addJobDefinition(mshandle, jobDef, "HOW_TO_PROD");
}
catch (Exception e)
{

}

finally

{
// always close metadata service handle in finally block
if (null != mshandle)

6-8 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating and Storing Job Definitions for PL/SQL Job Types

metadata.close (mshandle) ;
mshandle = null;

Creating and Using PL/SQL Jobs 6-9

Creating and Storing Job Definitions for PL/SQL Job Types

6-10 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

7

Creating and Using Process Jobs

This chapter describes how to create process jobs with an Oracle Enterprise Scheduler
job definition. After you create a script or binary command that you want to run as a
process job in a forked process, you define a job definition and then use the Oracle
Enterprise Scheduler runtime service to submit a job request that runs as a spawned
job.

This chapter includes the following sections:
» Section 7.1, "Introduction to Creating Process Job Definitions"
» Section 7.2, "Creating and Storing Job Definitions for Process Job Types"

For information about how to use the Runtime Service, see Chapter 13, "Using the
Runtime Service".

7.1 Introduction to Creating Process Job Definitions

Oracle Enterprise Scheduler lets you run job requests of different types, including: Java
classes, PL/SQL stored procedures, or process jobs that run as spawned jobs. To use
Oracle Enterprise Scheduler to run process type jobs you need to specify certain
metadata to define the characteristics of the process type job that you want to run. You
may also want to specify properties of the job request, such as the schedule for when it
runs.

Specifying a process type job request with Oracle Enterprise Scheduler is a three step
process:

1. You create or obtain the script or binary command that you want to run with
Oracle Enterprise Scheduler. We do not cover this step because we assume that
you have previously created the script or command for the spawned process.

2. Using the Oracle Enterprise Scheduler APIs in your application, you create job
type and job definition objects and store these objects to the metadata repository.

3. Using the Oracle Enterprise Scheduler APIs you submit a job request. For
information about how to submit a request, see Chapter 13, "Using the Runtime
Service".

After you create an application that uses the Oracle Enterprise Scheduler APIs, you
need to package and deploy the application.

At runtime, after you submit a job request you can monitor and manage the job
request. For more information on monitoring and managing job requests, see
Chapter 13, "Using the Runtime Service".

Creating and Using Process Jobs 7-1

Creating and Storing Job Definitions for Process Job Types

7.2 Creating and Storing Job Definitions for Process Job Types

To use process type jobs with Oracle Enterprise Scheduler, you need to locate the
Metadata Service and create a job definition. You create a job definition by specifying a
name and a job type. When you create a job definition you also need to set certain
system properties. You can store the job definition in the metadata repository using the
Metadata Service.

For information about how to use the Metadata Service, see Chapter 4, "Using the
Metadata Service".

7.2.1 How to Create and Store a Process Job Type

An Oracle Enterprise Scheduler JobType object specifies an execution type and defines
a common set of properties for a job request. A job type can be defined and then
shared among one or more job definitions. Oracle Enterprise Scheduler supports
three execution types:

= JAVA_TYPE: for job definitions that are implemented in Java and run in the
container.

= SQL_TYPE: for job definitions that run as PL/SQL stored procedures in a database
server.

= PROCESS_TYPE: for job definitions that are binaries and scripts that run as separate
processes under the control of the host operating system.

When you specify the JobType you can also specify SystemProperties that define the
characteristics associated with the JobType. Table 7-1 describes the properties that
specify how the request should be processed if the request results in spawning a
process for a process job type.

Table 7-1 System Properties for Process Type Jobs

System Property

Description

BIZ_ERROR_EXIT_CODE Specifies the process exit code for a process job request that denotes an execution

business error. If this property is not specified, the system treats a process exit code
of 4 as an execution business error.

CMDLINE Command line required for invoking an external program.

ENVIRONMENT VARIABLES A comma separated list of name value pairs (name=value) representing the
environment variables to be set for Spawned processes.

REDIRECTED_OUTPUT_FILE Specifies the file where standard output and error streams are redirected for a
process job request.

REQUESTED_PROCESSOR The Oracle WebLogic Server node on which a spawned job is executed.

SUCCESS_EXIT_CODE The process exit code for a process job request that denotes a successful execution.
If this property is not specified, the system treats a process exit code of 0 as a
successful completion.

WARNING_EXIT CODE The process exit code for a Spawned job that denotes a successful execution. If this

WORK_DIR_ROOT

property is not specified, the system treats a process exit code of 3 as a warning
exit.

The working directory for a Spawned process.

For more information about system properties, see Chapter 5, "Using Parameters and
System Properties."

Example 7-1 shows a sample job type definition with a PROCESS_TYPE.

7-2 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating and Storing Job Definitions for Process Job Types

Example 7-1 Creating an Oracle Scheduler JobType and Setting JobType Properties

import
import
import
import
import
import
import
import
import
import
import
import

oracle.as.scheduler.ConcurrentUpdateException;
oracle.as.scheduler.JobType;
oracle.as.scheduler.JobDefinition;
oracle.as.scheduler.MetadataService;
oracle.as.scheduler.MetadataServiceHandle;
oracle.as.scheduler.MetadataObjectId;
oracle.as.scheduler.MetadataServiceException;
oracle.as.scheduler.ParameterInfo;
oracle.as.scheduler.ParameterInfo.DataType;
oracle.as.scheduler.ParameterList;
oracle.as.scheduler.SystemProperty;
oracle.as.scheduler.ValidationException;

void createDefinition()
throws MetadataServiceException,ConcurrentUpdateException,

ValidationException

MetadataService metadata =
MetadataServiceHandle mshandle = null;

try
{

ParameterInfo pinfo;
ParameterList plist;

mshandle = metadata.open() ;

// Define and add a PL/SQL job type for the application metadata.
String jobTypeName = "ProcessJobDefType";

JobType jobType = null;

MetadataObjectId jobTypeId = null;

jobType = new JobType (jobTypeName, JobType.ExecutionType.
PROCESS_TYPE) ;

plist = new ParameterList();
pinfo = SystemProperty.getSysPropInfo (SystemProperty.CMDLINE) ;
plist.add(pinfo.getName (), pinfo.getDataType(), "/bin/myprogram
argl arg2", false);
pinfo = SystemProperty.getSysPropInfo (SystemProperty.
ENVIRONMENT VARIABLES) ;
plist.add(pinfo.getName (), pinfo.getDataType(),
"LD_LIBRARY_PATH=/usr/lib", false);
pinfo = SystemProperty.getSysPropInfo (SystemProperty.PRODUCT) ;
plist.add(pinfo.getName (), pinfo.getDataType(), "HOW_TO_PROD", false);
jobType.setParameters (plist);

jobTypeId = metadata.addJobType (mshandle, jobType, "HOW_TO_PROD");
// Define and add a job definition for the application metadata.
String jobDefName = "ProcessJobDef";

JobDefinition jobDef = null;

MetadataObjectId jobDefId = null;

jobDef = new JobDefinition(jobDefName, jobTypelId);
jobDef.setDescription("Demo Process Type Job Definition " +

jobDefName) ;

plist = new ParameterList();

Creating and Using Process Jobs 7-3

Creating and Storing Job Definitions for Process Job Types

plist.add("myJobdefProp", DataType.STRING, "myJobdefVal", false);

pinfo = SystemProperty.getSysPropInfo (SystemProperty.
REDIRECTED_OUTPUT_FILE) ;
plist.add(pinfo.getName(), pinfo.getDataType(), "/tmp/" + jobDefName
+ ".out", false);

jobDef.setParameters (plist) ;

jobDefId = metadata.addJobDefinition(mshandle, jobDef, "HOW_TO_PROD");
}
catch (Exception e)
{
[...]
}
finally

{
// Close metadata service handle in finally block.
if (null != mshandle)
{
metadata.close (mshandle) ;
mshandle = null;

}

As shown in Example 7-1, when you create and store a process job type, you do the
following:

= Use the JobType constructor and supply a String name and a
JobType.ExecutionType.PROCESS_TYPE argument.

= Obtain the metadata pointer, as shown in Section 4.2, "Accessing the Metadata
Service". Use the Metadata Service addJobType () method to store the JobType in
metadata.

s The MedatdataObjectId, returned by addJobType(), uniquely identifies metadata
objects in the metadata repository using a unique identifier.

7.2.2 How to Create and Store a Process Type Job Definition

To use process type jobs, you need to create and store a job definition.

Note: Once you create a job definition with a job type, you cannot
change the type or the job definition name. To change the job type or
the job definition name, you need to create a new job definition.

Example 7-1 shows how to create a job definition using the job definition constructor
and the job type. Table 7-1 describes some of the system properties that are associated
with the job definition.

As shown in Example 7-1, when you create and store a job definition you do the
following:

= Use the JobDefinition constructor and supply a String name and a
MetadataObjectID that points to a job type stored in the metadata.

= Set the appropriate properties for the new job definition.

7-4 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using a Perl Agent Handler for Process Jobs

s Obtain the metadata pointer, as shown in Section 4.2, "Accessing the Metadata
Service". Then, use the Metadata Service addJobDefinition () method to store the
job definition in the metadata repository and to return a MetadataObjectID.

7.3 Using a Perl Agent Handler for Process Jobs

Oracle Enterprise Scheduler requires a Perl agent to manage individual process jobs.
The Perl agent is responsible for validating, spawning, monitoring and controlling
process job execution, as well as returning the exit status of process jobs to Oracle
Enterprise Scheduler. The Perl agent also monitors Oracle Enterprise Scheduler
availability and handles job cancellation requests. In the event of abnormal job
termination (or job cancellation requests), the Perl agent terminates the spawned
process (along with its children) and exits. It detects the operating system type and
uses appropriate system calls to invoke, manage and terminate process jobs.

The Oracle Enterprise Scheduler Perl agent can generate its log under the /tmp folder.
This must be enabled by setting the Oracle Enterprise Scheduler log level to FINE,
FINER or FINEST and ensuring read and write access to the /tmp folder. One log file is
generated for each process job invocation. The log file lists the process job invocation
log, including a list of environment variables, the command line and redirected output
file specified for the process job, process ID and exit code for the process job or errors
detected while spawning the process.

Oracle Enterprise Scheduler Perl agent requires Oracle Perl version 5.10 or later.

Creating and Using Process Jobs 7-5

Using a Perl Agent Handler for Process Jobs

7-6 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

8

Defining and Using Schedules

This chapter describes how to define schedules that can be associated with a job
definition. Using a schedule you can specify when a job request runs. You can also
define and use schedules to specify administrative actions such as workshifts that
specify time-based controls for processing with Oracle Enterprise Scheduler.

This chapter includes the following sections:

Section 8.1, "Introduction to Schedules"

Section 8.2, "Defining a Recurrence"

Section 8.3, "Defining an Explicit Date"

Section 8.4, "Defining and Storing Exclusions"

Section 8.5, "Defining and Storing Schedules"

Section 8.6, "Identifying Job Requests That Use a Particular Schedule"
Section 8.7, "Updating and Deleting Schedules"

8.1 Introduction to Schedules

Using Oracle Enterprise Scheduler you can create a schedule to determine when a job
request runs or use a schedule for other purposes, such as determining when a work
assignment becomes active. A schedule can contain a list of explicit dates, such as July
14, 2008. A schedule can also include expressions that represent a set of recurring dates
(or times and dates).

Using Oracle Enterprise Scheduler you create a schedule with one or more of the
following:

Explicit Date: Defines a date for use in a schedule or exclusion.

Recurrence: Contains an expression that represents a pattern for a recurring date
and time. For example, you can specify a recurrence representing a regular period
such as Mondays at 10:00AM.

Exclusion: Contains a list of dates to exclude or dates and times to exclude from a
schedule. For example, you can create an exclusion that contains a list of holidays
to exclude from a schedule.

8.2 Defining a Recurrence

A recurrence is an expression that represents a recurring date and time. You specify a
recurrence using an Oracle Enterprise Scheduler Recurrence object. You use a

Defining and Using Schedules 8-1

Defining a Recurrence

Recurrence object when you create a schedule or with an exclusion to specify a list of
dates.

The Recurrence constructor allows you to create a recurrence as follows:
s Using the fields defined in the RecurrenceFields class, such as DAY_OF_MONTH.

= Using a recurrence expression compliant with the iCalendar (RFC 2445)
specification. For information about using iCalendar RFC 2245 expressions see,

http://www.ietf.org/rfc/rfc2445.txt

Note: When you create a recurrence you can only use one of these
two mechanisms for each recurrence instance.

A recurrence can also include the following (these are not required):
= Start date: The starting time and date for the recurrence pattern.
= End date: The ending time and date for the recurrence pattern.

= Count: The count for the recurrence pattern. The count indicates the maximum
number of occurrences the object generates. For example, if you specify a
recurrence representing a regular period such as Mondays at 10:00AM, and a
count of 4, then the recurrence includes only four Mondays.

The start date, end date, and count attributes are valid for either a RecurrenceFields
helper based instance or an iCalendar based instance of a recurrence.

You can validate a recurrence using the recurrence validate () method that checks if
an instance of a Recurrence object represents a well defined and complete recurrence
pattern. A Recurrence instance is considered complete if it has the minimum required
fields that can generate occurrences of dates or dates and times.

8.2.1 How to Define a Recurrence with a Recurrence Fields Helper

You can create a recurrence using a recurrence fields helper. The RecurrenceFields
helper class provides a user-friendly way to specify a recurrence pattern. Table 8-1
shows the recurrence fields helper classes available to specify a recurrence pattern.

Table 8—-1 Recurrence Field Helper Patterns

Recurrence Field Description

DAY_OF_MONTH Defines the day of a month

DAY OF WEEK Enumeration of the day of a week

FREQUENCY Defines the repeat frequency of a Recurrence. Choices are:

= DAILY: Indicates every day repetition

= HOURLY: Indicates every hour repetition

= MINUTELY: Indicates every minute repetition
= MONTHLY: Indicates every month repetition

= SECONDLY: Indicates every second repetition
= WEEKLY: Indicates every week repetition

= YEARLY: Indicates every year repetition
MONTH_OF_YEAR Defines the months of the year

TIME_OF_DAY Defines the time of the day

8-2 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Defining a Recurrence

Table 8—-1 (Cont.) Recurrence Field Helper Patterns

Recurrence Field Description
WEEK_OF_MONTH Enumerations for the week of a month
YEAR Encapsulate the value of a year

Example 8-1 shows a sample recurrence created using the RecurrenceFields helper
class with a weekly frequency (every Monday at 10:00 a.m.) using no start or end date.

Example 8—-1 Defining a Recurrence with Weekly Frequency

Recurrence recurl =

new Recurrence (RecurrenceFields.FREQUENCY.WEEKLY, 1, null, null);
recurl.addDayOfWeek (RecurrenceFields.DAY_OF_WEEK.MONDAY) ;
recurl.setRecurTime (RecurrenceFields.TIME_OF_DAY.valueOf (10, 0, 0));
recurl.validate();

In Example 8-1, note the following:

s The schedule becomes active as specified with the start time supplied at runtime
by Oracle Enterprise Scheduler when a job request that uses the schedule is
submitted.

s The interval parameter 1 specifies that this recurrence generates occurrences every
week. You calculate this value by multiplying the frequency with the interval.

Example 8-2 shows a sample recurrence for every 4 hours with no start or end date.
The recurrence was created using the RecurrenceFields helper class with an hourly
frequency, an interval multiplier of 4, a null start date, and a null end date.

Example 8-2 Defining a Recurrence with Four Hourly Frequency

Recurrence recur?
new Recurrence

(RecurrenceFields.FREQUENCY.HOURLY, 4, null, null);
recur?2.validate(

)i

In Example 8-2, note the following:

» The schedule becomes active as specified with the start time supplied at runtime
by Oracle Enterprise Scheduler when a job request that uses the schedule is
submitted.

= The interval parameter 4 specifies that this recurrence generates occurrences every
4 hours. You calculate this value by multiplying the frequency with the interval.

Example 8-3 shows a sample recurrence created using the RecurrenceFields helper
class and a monthly frequency.

Example 8-3 Defining a Recurrence with Monthly Frequency

Recurrence recur3 =

new Recurrence (RecurrenceFields.FREQUENCY.MONTHLY, 1, null, null);
recur3.addWeekOfMonth (RecurrenceFields.WEEK_OF_MONTH.SECOND) ;
recur3.addDayOfWeek (RecurrenceFields.DAY_OF WEEK.TUESDAY) ;
recur3.setRecurTime (RecurrenceFields.TIME_OF_DAY.valueOf (11, 00, 00));
recur3.validate();

Example 8-3 specifies a recurrence with the following characteristics:

Defining and Using Schedules 8-3

Defining a Recurrence

s Includes an interval parameter with the value 1 specifies that this recurrence
generates occurrences every month.

s Includes a specification for the week of month, indicating the second week.
= Includes a specification for the day of week, Tuesday.
= Includes the specification for the time of day, with the value 11:00.

Example 8—4 shows a sample recurrence created using the RecurrenceFields helper
class and a monthly frequency specified with a start date and time.

Example 8-4 Defining a Recurrence with Start Date and Time Specified

Calendar cal = Calendar.getInstance();

cal.set(Calendar.YEAR, 2007);

cal.set (Calendar.MONTH, Calendar.JULY);
cal.set(Calendar.DAY_OF MONTH, 1);

cal.set(Calendar.HOUR, 9);

cal.set(Calendar.MINUTE, 0);

cal.set(Calendar.SECOND, 0);

Recurrence recurd = new Recurrence (RecurrenceFields.FREQUENCY.WEEKLY,

recurd.validate();

Example 8—4 defines a recurrence with the following characteristics:
s The end date is specified as null meaning no end date.

= Using this recurrence, the start date is specified with the Calendar instance cal,
and its value is set with the set () method calls.

8.2.2 How to Define a Recurrence with an iCalendar RFC 2445 Specification

You can specify a recurrence pattern using the Recurrence constructor with a String
containing an iCalendar (RFC 2445) specification.

For information about using iCalendar RFC 2245 expressions see the following link:
http://www.ietf.org/rfc/rfc2445.txt

Example 8-5 shows a sample recurrence created using an iCalendar expression.

Example 8-5 Defining a Recurrence with an iCalendar String Expression

Recurrence recur5 = new Recurrence ("FREQ=YEARLY; INTERVAL=1; BYMONTH=5; BYDAY=2MO; ") ;
recur5.validate() ;

Note: The following are not supported through iCalendar
expressions:

COUNT, UNTIL, BYSETPOS, WKST

You can still directly specify a count on the Recurrence object using
the setCount method.

8.2.3 What You Need to Know When You Use a Recurrence Fields Helper

When you define a recurrence with a RecurrenceFields helper, note the following:

8-4 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Defining a Recurrence

Providing a frequency with one of the RecurrenceFields.FREQUENCY constants is
always mandatory when you define a recurrence pattern using the

RecurrenceFields helper classes (for more information on frequency, see
Table 8-1).

The frequency interval supplied with the recurrence constructor is an integer that
acts as a multiplier for the supplied frequency. For example if the frequency is
RecurrenceFields.FREQUENCY.HOURLY and the interval is 8, then the combination
represents every 8 hours.

Providing either a start or end date is optional. But if a start or end date is
specified, it is guaranteed that the object will not generate any occurrences before
the start date or after the end date (and if specified, any associated start time or
end time).

In general if both start date and recurrence fields are used, then the recurrence
fields always take precedence. This qualification means the following;:

- If a start date is specified with just the frequency fields from the
RecurrenceFields then the start date defines the occurrences with the
frequency field, starting with the first occurrence on the start date itself. For
example if a start date is specified as 01-MAY-2007:09:00:00 with a
RecurrenceFields.FREQUENCY of WEEKLY without using other recurrence fields,
the occurrences happen once every week starting on 01-MAY-2007:09:00:00
(and including 08-MAY-2007:09:00:00, 15-MAY-2007:09:00:00, and so on).

Thus, providing a start date along with a specification of frequency fields
provides a quick way of defining a recurrence pattern.

— If the start date or end date is specified together with additional recurrence
fields, the recurrence fields take precedence, and the start date or end date
only act as absolute boundary points. For example, with a start date of
01-MAY-2007:09:00:00 and a frequency of WEEKLY if the additional recurrence
field DAY_OF_WEEK is used with a value of WEDNESDAY the occurrence happens
on every Wednesday starting with the first Wednesday that comes after
01-MAY-2007. Because 01-MAY-2007 is a Tuesday, the first occurrence happens
on 02-MAY-2007:09:00:00 and not on 01-MAY-2007:09:00:00.

In this case, with the start date of 01-MAY-2007:09:00:00, if the TIME_OF_DAY is
also specified as 11:00:00, all the occurrences happen at 11:00:00 overriding the
09:00:00 time from the starting date specification.

When just a frequency is supplied and a recurrence does not include either a start
date, start time, or a TIME_OF_DAY field, the occurrences happen based on a
timestamp that Oracle Enterprise Scheduler supplies at runtime (typically this
timestamp is provided during request submission).

For example, when a recurrence indicates a 2 hour recurrence then the time of the
job request submission determines the start time for the occurrences. Thus, in such
cases the occurrences for a job request are each 2 hours apart, but when multiple
job requests are submitted, the start times will be different and are set at the
request submission time for the job requests.

When the start date is not used, recurrence fields can be included such that a
recurrence pattern is completely defined. For example, specifying a MONTH_OF_
YEAR alone does not define a recurrence pattern when a start date is not also
present. Without a start date the number of minimum recurrence fields required to
define a pattern depends upon the value of the frequency used. For example with
frequency of WEEKLY, only DAY_OF_WEEK and TIME_OF_DAY are sufficient to define
which day the weekly occurrences should happen. With a frequency of YEARLY,

Defining and Using Schedules 8-5

Defining an Explicit Date

MONTH_OF_YEAR, DAY_OF_MONTH (or the WEEK_OF_MONTH and DAY_OF_WEEK) and the
TIME_OF_DAY are sufficient to define the recurrence pattern.

= You can supply multiple values for recurrence fields, except for the frequency
field. However, at runtime Oracle Enterprise Scheduler skips invalid combinations
silently. For example with MONTH_OF_YEAR specified as January and ending in June,
and with DAY_OF_MONTH as 30, the recurrence skips an invalid day, that is day 30 for
February.

8.2.4 What You Need to Know When You Use an iCalendar Expression
When you define a recurrence with an iCalendar expression, note the following:

= When the recurrence does not include either a start date or time and the iCalendar
expression does not specify a time of day, the occurrences happen based on a
timestamp that Oracle Enterprise Scheduler supplies at runtime (typically this
timestamp is provided during request submission).

For example a recurrence can indicate a 2 hour recurrence, and the start date and
time of the job request submission determines the exact start time for the
occurrences. Note that in such cases, when the start time is not specified,
occurrences for different job requests can happen at different times, based on the
submission time, but the individual occurrences will be 2 hours apart.

= Providing either a start date with setStartDate() or an end date with
setEndDate () is optional. But if a start or end date is specified, it is guaranteed
that the object will not generate any occurrences before the start date or after the
end date (and if specified, any associated start time or end time).

8.3 Defining an Explicit Date

An explicit date defines a date and time for use in a schedule or an exclusion. You
construct an ExplicitDate using appropriate fields from the RecurrenceFields class.

8.3.1 How to Define an Explicit Date

Example 8-6 shows an explicit date definition.

Example 8-6 Defining an Explicit Date

ExplicitDate date = new ExplicitDate(RecurrenceFields.YEAR.valueOf (2007),
RecurrenceFields.MONTH_OF_YEAR.AUGUST,
RecurrenceFields.DAY_OF_MONTH.valueOf (17));

In Example 8-6 a RecurrenceFields helper defines a date in the constructor and the
value does not include a time of day. You can optionally use setTime to set the time
associated with an explicit date.

8.3.2 What You Need to Know About Explicit Dates

The ExplicitDate class provides the ability to define a partial date, when compared
with java.util.Calendar where the time part is not specified. Also all other
java.util.Calendar fields such as TimeZone are not defined with an ExplicitDate.
When the time part is not specified in an ExplicitDate, Oracle Enterprise Scheduler
computes the time appropriately. For example, consider a schedule that indicates
every Monday after June 1, 2007, and adds an explicit date for the 17th of August 2007
(a Friday). In this example, the 17th of August 2007 is a partial date since it does not
include a time.

8-6 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Defining and Storing Exclusions

8.4 Defining and Storing Exclusions

Using an Oracle Enterprise Scheduler exclusion you can represent dates that need to
be excluded from a schedule. For example, you can use an exclusion to create a list of
holidays to skip in a schedule.

8.4.1 How to Define an Exclusion

You represent an individual exclusion with an Exclusion object. You can define the
dates to exclude in an exclusion using either an ExplicitDate or with a Recurrence
object.

Example 8-7 shows how to create an Exclusion instance using a recurrence.

Example 8-7 Defining Explicit Dates and an Exclusion

Recurrence recur = new Recurrence (RecurrenceFields.FREQUENCY.YEARLY, 1);
recur.addMonth (RecurrenceFields.MONTH_OF_YEAR.JULY) ;

recur.addDayOfMonth (RecurrenceFields.DAY_OF MONTH.valueOf (4));

Exclusion e = new Exclusion("Independence Day", recur);

Example 8-7 defines an individual exclusion. For information about creating a list of
Exclusions, see Section 8.4.2, "How to Create an Exclusions Definition".

8.4.2 How to Create an Exclusions Definition

To create a list of exclusions and persist the exclusion dates you do the following;:
1. Create a list of exclusions.
2. Define an ExclusionsDefinition object using the list of exclusions.

3. Use the Metadata Service addExclusionDefinition () method to persist the
ExclusionsDefinition.

Finally, when you want to associate an ExclusionsDefinition with a schedule, you
use the schedule addExclusion () method.

Example 8-8 shows how to create an ExclusionDefinition and store the definition to
the metadata repository.

Example 8-8 Creating and Storing a List of Exclusions in an ExlusionDefinition

Collection<Exclusion> exclusions = new ArrayList<Exclusion>();
Exclusion e = new Exclusion("Independence Day", recur);
exclusions.add(e);
ExclusionsDefinition exDefl =
new ExclusionsDefinition("OrclHolidaysl", "Annual Holidays", exclusions);
MetadataObjectId exIdl =
m_service.addExclusionDefinition (handle,
exDefl,
"METADATA_UNITTEST_PROD") ;

Note in Example 8-8 that the ExclusionsDefinition constructor needs three
arguments.

Defining and Using Schedules 8-7

Defining and Storing Schedules

8.5 Defining and Storing Schedules

Using Oracle Enterprise Scheduler you can create a schedule to determine when a job
request runs or use the schedule for other purposes (such as determining when a work
assignment becomes active). A schedule contains a list of explicit dates, such as June
13,2007 or a set of expressions that represent a recurring date or date and time. A
schedule can also specify specific exclusion and inclusion dates.

You create a schedule using the following;:

Explicit Dates: Define a date for use in a schedule or exclusion. For more
information, see Section 8.3, "Defining an Explicit Date"

Recurrences: Contain an expression that represents a pattern for a recurring date
and time. For example, you can specify a recurrence representing a regular period
such as Mondays at 10:00AM. For more information, see Section 8.2, "Defining a
Recurrence"

Exclusions: Contain a list of dates to exclude or dates and times to exclude from a
schedule. For example, you can create an exclusion that contains a list of holidays
to exclude from a schedule. For more information, see Section 8.4, "Defining and
Storing Exclusions”

8.5.1 How to Define and Store a Schedule

To define a schedule:

1.

Create a schedule by defining an Oracle Enterprise Scheduler Schedule object and
using the schedule constructor to create a new schedule.

Obtain a metadata service reference, m_metadataService, and open a metadata
session in a try block with MetadataServiceHandle.

MetadataObjectId schedulelId = m_service.addScheduleDefinition(handle, sl, "HOW_
TO_PROD") ;

Define the date, recurrences and exclusions.
Store the schedule using addScheduleDefinition.

Close the session with a finally block.

8.5.2 What Happens When You Define and Store a Schedule

Example 8-9 shows a sample schedule definition using a recurrence with the
RecurrenceFields helper class for a weekly schedule, specified to run on Mondays at
10:00AM.

The schedule uses the addInclusionDate () method to add an explicit date to the
occurrences in the schedule, and the addExclusionDate () method to explicitly exclude
the date of May 15 from schedule occurrences.

Example 8-9 Creating a Schedule Recurrence with RecurrenceFields Helpers

Recurrence recur = new Recurrence (RecurrenceFields.FREQUENCY.WEEKLY) ;
recur.addDayOfWeek (RecurrenceFields.DAY_OF_WEEK.MONDAY) ;
recur.setRecurTime (RecurrenceFields.TIME_OF_DAY.valueOf (10, 0, 0));

ExplicitDate julyl0 = new ExplicitDate(RecurrenceFields.YEAR.valueOf (2008),

RecurrenceFields.MONTH_OF_YEAR.JULY
RecurrenceFields.DAY OF_MONTH.valueOf (10));

8-8 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Updating and Deleting Schedules

ExplicitDate mayl5 = new ExplicitDate(RecurrenceFields.YEAR.valueOf (2008),
RecurrenceFields.MONTH _OF_ YEAR.MAY,
RecurrenceFields.DAY OF_MONTH.valueOf (15));

Schedule schedule = new Schedule("everyMonday", "Weekly Schedule", recur);
schedule.addInclusionDate (julyl0) ;
schedule.addExclusionDate (mayl5) ;

Example 8-10 shows sample code used to store a schedule. The method
addScheduleDefinition() is used to store the schedule within a try block, followed
by a finally block that includes error handling.

Example 8-10 Storing a Schedule

MetadataServiceHandle handle = null;
boolean abort = true;

try
{
handle = m_service.open();
m_service.addScheduleDefinition(handle, schedule, "HOW_TO_PROD");
abort = false;
}
finally

{
if (handle != null)
{

m_service.close (handle, abort);

}

8.5.3 What You Need to Know About Handling Time Zones with Schedules

You can use a java.util.TimeZone object to set the time zone for a schedule. Use the
Schedule setTimeZone () method to set or clear the TimeZone for a Schedule. The
Schedule method getTimeZone () returns a java.util.TimeZone value if the Schedule
object has as TimeZone set.

8.6 Identifying Job Requests That Use a Particular Schedule

You can use Fusion Applications Control to search for job requests that use a particular
schedule.

For more information about searching for job requests that use a certain schedule, see
the section "Searching for Oracle Enterprise Scheduler Job Requests” in the chapter
"Managing Oracle Enterprise Scheduler Service and Jobs" in Oracle Fusion Applications
Administrator’s Guide.

8.7 Updating and Deleting Schedules
You can use Fusion Applications Control to edit and delete schedules.

For information about editing and deleting schedules, see the section "Managing
Schedules" in the chapter "Managing Oracle Enterprise Scheduler Service and Jobs" in
Oracle Fusion Applications Administrator’s Guide.

Defining and Using Schedules 8-9

Updating and Deleting Schedules

8-10 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

9

Working with Extensions to Oracle
Enterprise Scheduler

This chapter explains how to use extensions to Oracle Enterprise Scheduler to manage
job request submissions.

Section 9.1, "Introduction to Oracle Enterprise Scheduler Extensions"
Section 9.2, "Standards and Guidelines"

Section 9.3, "Creating and Implementing a Scheduled Job in JDeveloper"
Section 9.4, "Creating a Job Definition"

Section 9.5, "Configuring a Spawned Job Environment"

Section 9.6, "Implementing a PL/SQL Scheduled Job"

Section 9.7, "Implementing a SQL*Plus Scheduled Job"

Section 9.8, "Implementing a SQL*Loader Scheduled Job"

Section 9.9, "Implementing a Perl Scheduled Job"

Section 9.10, "Implementing a C Scheduled Job"

Section 9.11, "Implementing a Host Script Scheduled Job"

Section 9.12, "Implementing a Java Scheduled Job"

Section 9.13, "Elevating Access Privileges for a Scheduled Job"

Section 9.14, "Creating an Oracle ADF User Interface for Submitting Job Requests”
Section 9.15, "Submitting Job Requests Using the Request Submission API"

Section 9.16, "Defining Oracle Business Intelligence Publisher Post-Processing
Actions for a Scheduled Job"

Section 9.17, "Monitoring Scheduled Job Requests Using an Oracle ADF UI"

Section 9.18, "Using a Task Flow Template for Submitting Scheduled Requests
through an Oracle ADF UI"

Section 9.19, "Securing Oracle ADF Uls"
Section 9.20, "Integrating Scheduled Job Logging with Fusion Applications"
Section 9.21, "Logging Scheduled Jobs"

Working with Extensions to Oracle Enterprise Scheduler 9-1

Introduction to Oracle Enterprise Scheduler Extensions

9.1 Introduction to Oracle Enterprise Scheduler Extensions

Oracle Enterprise Scheduler provides the ability to run different job types, including:
Java, PL/SQL and spawned jobs. Jobs can run on demand, or scheduled to run in the
future.

Oracle Enterprise Scheduler provides scheduling services for the following purposes:
= Distributing job request processing across a grid of application servers

= Running Java, PL/SQL and process or spawned jobs

= Processing multiple jobs concurrently

= Running the same job in different languages

Using Oracle JDeveloper, application developers can easily create and implement jobs.
While implemented in JDeveloper, Oracle Enterprise Scheduler runs the jobs. A
number of APIs are provided to interface between jobs executed within applications
developed in JDeveloper and Oracle Enterprise Scheduler Service.

The Oracle JDeveloper extensions to Oracle Enterprise Scheduler enable the following;:

= Running scheduled Oracle BI Publisher, spawned, Java, PL/SQL, Perl, SQL*Plus,
SQLoader and C jobs

= Running the same job in multiple locales, time zones, currencies, and so on.

» Creating log and output files for jobs, as well as acting upon those files, such as
enabling notifications.

» Creating Oracle ADF task flows to schedule jobs and job sets, as well as monitor
job requests.

Before you begin:

Install Oracle Enterprise Scheduler Service to the WLS server. For more information,
see the chapter "Setting Up Your Development Environment" in Oracle Fusion
Applications Developer’s Guide.

9.2 Standards and Guidelines

The following standards and guidelines apply to working with extensions to Oracle
Enterprise Scheduler Service:

= Always use the pre-configured job types provided when defining metadata for job
definitions.

9.3 Creating and Implementing a Scheduled Job in JDeveloper

Submitting job requests from an Oracle Fusion application requires developing the
following components:

= Ajob definition, created in JDeveloper

s Thejob itself, implemented in Java, PL/SQL, SQL*Loader, SQL*Plus, Perl, C or
host scripts

= A user interface enabling end-users to submit job requests and/or additional
properties for the job

9-2 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating a Job Definition

A wizard enables easily defining a new job within the context of an Oracle Fusion
application. The job can be any one of the following types: Java, PL/SQL, SQL*Loader,
SQL*Plus, Perl, C or host scripts.

9.3.1 How to Create and Implement a Scheduled Job in JDeveloper

Creating and implementing a scheduled job in JDeveloper involves creating a package
or class from which to call the job, as well as defining a job definition. The job must
then be deployed and tested, and a job request submission interface defined.

To create and implement a scheduled job in JDeveloper:

1.

Create a package, class, or job, and include the minimum required methods or
functions.

= Define the job request
» Define any sub-requests, if required.

If a job requires parameters to be filled in by end users using an Oracle ADF user
interface, define a standard ADF Business Components view object with
validation.

For example, if a job requires information regarding duration, date, and time,
create an ADF Business Components view object with the properties duration,
date, and time.

Create a job definition in JDeveloper using the wizard.

If using an ADF Business Components view object to collect additional values at
runtime from end users, specify the name of the view object as a property of the
job definition.

Deploy the job.
Test the job.
Create the end user job request submission interface.

For more information about creating the end user job request submission interface,
see Section 9.14, "Creating an Oracle ADF User Interface for Submitting Job
Requests".

9.3.2 What Happens at Runtime: How a Scheduled Job Is Created and Implemented in

JDeveloper

An Oracle ADF interface is provided to enable application end-users to submit job
requests from an Oracle Fusion application. The Oracle ADF interface is easily
integrated into an Oracle Fusion application. Once a job request is submitted through
the interface, Oracle Enterprise Scheduler Service runs the job as scheduled.

9.4 Creating a Job Definition

In order to submit a job request, you must first create a job definition.

9.4.1 How to Create a Job Definition

A job definition and job type are required to submit a job request.

Job Definition: This is the basic unit of work that defines a job Request in Oracle
Enterprise Scheduler.

Working with Extensions to Oracle Enterprise Scheduler 9-3

Creating a Job Definition

= Job Type: This specifies an execution type and defines a common set of properties
for a job request.

The extensions to Oracle Enterprise Scheduler Service provide the following execution

types:
= JavaType: for job definitions that are implemented in Java and run in the
container.

= SQLType: for job definitions that run as PL/SQL stored procedures in a database
server.

s CJobType: for job definitions that are implemented in C and run in the container.

s PerlJobType: for job definitions that are implemented in Perl and run in the
container.

= SqlLdrJobType: for job definitions that are implemented in SQL*Loader and run
in the container.

= SqlPlusJobType: for job definitions that are implemented in SQL*Plus and run in
the container.

= BIPJobType: for job definitions that are executed as Oracle BI Publisher (BIP)
reports. Oracle BI Publisher jobs require configuring the parameter reportID.

For more information about defining a Business Intelligence Publisher job, see the
Business Intelligence Publisher Administrator’s and Developer’s Guide and the Business
Intelligence Publisher Report Designer’s Guide.

= HostJobType: for job definitions that run as host scripts executed from the
command line.

Before you begin:

If your job definition requires additional properties to be filled in by end users at
submission time, you'll need to create a view object that defines these properties. The
view object must be associated with the job definition you create. The view object is
later associated with the user interface you create to allow end users to submit job
requests along with the properties at submission time.

For more information about defining properties to be filled in at runtime by end users,
see Section 9.14, "Creating an Oracle ADF User Interface for Submitting Job Requests."

To create a new job definition in Oracle JDeveloper:

1. In Oracle JDeveloper, create an Oracle Fusion web application by clicking the
Application Menu icon on the Application Navigator, selecting New Project >
Projects > Generic Project and clicking OK.

2. Right-click the project and select Properties. In the Resources tab, add the directory
SMW_HOME/jdeveloper/integration/ess/extJobTypes.

3. If your job includes any properties to be filled in by end users using an Oracle
ADF user interface at runtime, create an ADF Business Components view object
with validation and the parameters to be filled in by end users.

a. Right-click the Model project and select Properties. In the Resource Bundle
section, configure one bundle per file and select resource bundle type Xliff
Resource Bundle.

b. Define attributes for the view objects sequentially, ATTRIBUTE1, ATTRIBUTE2,
and so on, with an attribute for each required parameter. Use ADF Business
Components attribute control hints to specify required prompt, validation,

9-4 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating a Job Definition

and formatting for each parameter. For more information, see the chapter
"Creating a Business Domain Layer Using Entity Objects" in Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development
Framework.

Add the property parametersVo to your job definition and specify the fully
qualified path of the view object as the value of parametersvo. For example,
set parametersVO0 to oracle.my.package.TestV0. A maximum of 100
attributes can be used for parametersvo. The attributes should be named
incrementally, for example ATTRIBUTEL, ATTRIBUTE2, and so on.

Define the following required properties:
jobDefinitionName: The short name of the job.

jobDefinitionApplication: The short name of the application running the
job.

jobPackageName: The name of the package running the job.

Additional properties can be defined as shown in Table 9-1.

Table 9-1 Additional Job Definition Properties

Property

Description

completionText

CustomDatacontrol

defaultOutputExtension

enableTimeStatistics

enableTrace

executionLanguage

An optional string value that can be used to communicate details of the final
state of the job.

This property value is displayed in the UI used to monitor job request
submissions in the details section of the job request. It can be useful for
displaying a short explanation as to why a request ended in an error or warning
state.

The name of the data control for the application to which the parameter task
flow is bound. Following is an example.

<parameter name="CustomDatacontrol"
data-type="string">ExtParameterAM</parameter>

Use this property when adding a custom task flow to an Oracle ADF user
interface used to submit job requests at run time. For more information, see
Section 9.14.2, "How to Add a Custom Task Flow to an Oracle ADF User
Interface for Submitting Job Requests."

The suffix of the output file. Possible values are txt, xml, pdf, html.

A boolean parameter that enables or disables the accumulation of time statistics
(Y or N).

A numerical value that indicates the level of tracing control for the job. Possible
values are as follows:

» 1: Database trace

= 5: Database trace with bind

= 9: Database trace with wait

= 13: Database trace with bind and wait

= 16: PL/SQL profile

= 17: Database trace and PL/SQL profile

= 21: Database trace with bind and PL/SQL profile

= 25: Database trace with wait and PL/SQL profile

= 29: Database trace with bind, wait and PL/SQL profile

Stores the preferred language in which the job request should run.

Working with Extensions to Oracle Enterprise Scheduler 9-5

Creating a Job Definition

Table 9-1 (Cont.) Additional Job Definition Properties

Property Description

executionNumchar The numeric characters used in the preferred language in which the job runs, as
defined by executionLanguage.

executionTerritory The territory of the preferred language in which the job runs, as defined by
executionLanguage.

EXT Specifies the name of the web module for the Oracle Enterprise Scheduler Ul

PorEletContainerWebModule

incrementProc

application to use as a portlet when submitting a job request. The Oracle
Enterprise Scheduler central Ul looks up the producer from the topology based
on the registered producer application name derived from EXT_
PortletContainerWebModule.

Enables a PL/SQL procedure evaluated at runtime which calculates the next set
of date parameter values for a recurring request. Enter the name of the PL/SQL
procedure. The procedure expects one argument—a number signifying the
change in milliseconds between the start dates of the first and current requests.

9-6 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating a Job Definition

Table 9-1 (Cont.) Additional Job Definition Properties

Property

Description

incrementProcArgs

A list of comma-separated date arguments to be incremented. The
incrementProc property is used to increment these values. Alternatively, a
default value is used if the property incrementProc is not defined. Enter a list of
argument numbers to identify which job arguments are to be incremented (for
example, "1, 2, 5").

In the example shown here, an incrementProc procedure calculates the next set
of date parameter values for a recurring request. The procedure expects one
argument: a number signifying the change in milliseconds between the start
dates of the first and current requests.

-- incr_test - Sample PL/SQL incrementProc procedure
-- This procedure gets the list of arguments to be incremented
-- using the incrementProcArgs property and increments each
-- argument by the delta provided. This behavior is identical
-- to the default behavior if no incrementProc is set for the
-- job.
procedure incr_test (delta IN number) is

request_id number;

incrProcArgs varchar2(200);

curr_arg_n varchar2(100);

curr_arg_v varchar2 (2000) ;

del_pos number := 0;

prev_pos number := 1;

old_date date;

new_date date;

delta_days number;

begin
request_id := FND_JOB.REQUEST_ID;
delta_days := delta / (1000*60*60%*24);

-- incrProcArgs must be defined for this procedure to be

-- called.

incrProcArgs := ESS_RUNTIME.GET REQPROP_VARCHAR (request_id,
FND_JOB.INCR_PROC_ARGS_P) || B

LOOP
del_pos := INSTR(incrProcArgs, ',', prev_pos);
EXIT WHEN del_pos = 0;

curr_arg n := FND_JOB.SUBMIT_ARG_PREF_P || SUBSTR (incrProcArgs,
prev_pos, del_pos-prev_pos);

curr_arg_v := ESS_RUNTIME.GET_REQPROP_VARCHAR (request_id,
curr_arg._n) ;

old_date := FND_DATE.CANONICAL_TO_DATE (curr_arg v);
new_date := old_date + delta_days;

ESS_RUNTIME.UPDATE_REQPROP_VARCHAR (request_id, curr_arg_n,
FND_DATE.DATE_TO_
CANONICAL (new_date));

prev_pos := del_pos+l;

END LOOP;
end incr_test;

Working with Extensions to Oracle Enterprise Scheduler 9-7

Creating a Job Definition

Table 9-1 (Cont.) Additional Job Definition Properties

Property

Description

logLevel

optimizerMode

parametersVO

ParameterTaskflow

reportID

rollbackSegment

srsFlag

The level at which events are logged (between 0 and 4). Each job type has a
logLevel of 1 by default. This optional value is used to override the job type
logLevel in the job definition. For more information about log levels, see the
Enterprise Scheduler Service Developer’s Guide.

This flag enables setting the database optimizer mode for the job. Optimizer
mode is useful for fine-tuning performance.

The ADF Business Components view object you define for additional properties
to be entered at runtime by end users using an Oracle ADF user interface.

Enter the name of the task flow as a parameter. The name of the taskflow.xml
file must be the same as the taskflowId. Following is an example.

<parameter name="ParameterTaskflow"
data-type="string">/WEB-INF/oracle/apps/prod/project/ParamTestTaskFlo
w.xml#ParamTestTaskFlow</parameter>

Use this property when adding a custom task flow to an Oracle ADF user
interface used to submit job requests at run time. For more information, see
Section 9.14.2, "How to Add a Custom Task Flow to an Oracle ADF User
Interface for Submitting Job Requests."

The BIP report value specified in the Oracle BI Publisher repository. Required
parameter for Oracle BI Publisher jobs only.

Enables setting a database rollback segment for the job, which will be used until
the first commit. When implementing the rollback segment, use FND_JOB.AF_
COMMIT and FND_JOB.AF_ROLLBACK to commit and rollback.

A boolean parameter (Y or N) that controls whether the job displays in the job
request submission user interface (see Section 9.14, "Creating an Oracle ADF
User Interface for Submitting Job Requests").

SYS_runasApplicationID Enables elevating access privileges for completing a scheduled job. For more

information about elevating access privileges for the completion of a particular
job, see Section 9.13, "Elevating Access Privileges for a Scheduled Job."

4,

Create a new job. From the New Gallery, select SOA Tier > Enterprise Scheduler
Metadata and click Job Definition.

In the Job Definition Name & Location page in the Job Definition Creation Wizard,
do the following:

= Name: Enter a name for the job.
= JobType: Select the job type from the drop-down list.
Click Finish. The new job definition displays.

Edit the following properties in the job definition as required for the selected job
type:

= JavaJobType: Uncheck the read-only checkbox next to className and set its
value to the value of the business logic class.

= PlsqlJobType: Uncheck the read-only checkbox next to procedureName and set
its value to the name of the procedure (such as myprocedure.proc). Create a
new parameter named numberOfArgs. Set numberOfArgs to the number of job
submission arguments, excluding errbuf and retcode.

s CJobType: Add the parameter executableName and set its value to the name
of the C job to be executed. The executable file identified by the

9-8 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating a Job Definition

executableName parameter must exist in the directory $APPLICATIONS_
BASE/SAPPLBIN.

s PerlJobType: Add the parameter executableName and set its value to the
name of the Perl script.

= SqlLdrJobType: Add the parameter executableName and set its value to the
name of the control file to be executed (located under PRODUCT _TOP/$APPLBIN).
Add SQL*Loader options such (such as direct=yes) as a sqlldr.directoption
parameter in the job definition.

= SqlPlusJobType: Add the parameter executableName and set its value to the
name of the SQL*Plus job script to be executed (located under PRODUCT _
TOP/$APPLSQL).

s HostJobType: Add the parameter executableName and set its value to the
name of the host script job to be executed. The executable file identified by the
executableName parameter must exist in the directory PRODUCT_TOP/$APPLBIN.

Note: Make sure the $APPLBIN and $APPLSQL variables are
configured in the environment .properties file. The $APPLBIN and
$APPLSQL variables point to the location of executable files under
PRODUCT_TOP. These variables enable the extensions to Oracle
Enterprise Scheduler Service to locate the jobs to be run. Typically,
these variables are set in a pre-existing environment properties file in
the system.

9.4.2 How to Define File Groups for a Job

A file group is a collection of output files such as text files, XML files, and so on. File
groups enable categorizing files together for a specific purpose, such as file groups for
human resources or financial reports.

File groups are used for post-processing jobs such as Business Intelligence Publisher
jobs. Using post-processing actions, the results of a job can be saved as an HTML file,
for example, or printed. File groups specify the type of post-processing action to be
taken for a given job.

There are two types of file groups: output and layout. Post-processing layout actions
create additional output files using the job request output files. For example, an XML
job output file can be processed as an HTML or PDF file.

Post-processing output actions act upon job request output files by printing, faxing, or
e-mailing the files, for example. Output post-processing actions can be taken on job
request output files, as well as files created by layout post-processing actions. For
example, a job request output XML file can be converted to a PDF file using layout
post-processing actions, and then e-mailed using output post-processing actions.

For more information about defining a Business Intelligence Publisher job, see the
Business Intelligence Publisher Administrator’s and Developer’s Guide and the Business
Intelligence Publisher Report Designer’s Guide.

To define file group properties:

1. In the job definition for which you want to define post-processing, define a file
group.
a. Name the property Program. FMG.

Working with Extensions to Oracle Enterprise Scheduler 9-9

Configuring a Spawned Job Environment

b. For the value of the property, enter a list of comma-separated file management
groups, where each file group is prefixed by an L or O to indicate a layout or
output file group, respectively. A sample file group property is shown in
Example 9-1:

Example 9—1 File Group Property Sample Value
Program.FMG = L.MYXML, O.ALL, O.PDF

Three file groups are listed in this example.

2. In the job definition, create a property containing a regular expression used to
filter the files in the output work directory of the job request. Any output files that
match the filter will be part of the relevant file group.

Example regular expressions are shown in Example 9-2, Example 9-3 and
Example 9-4.

Example 9-2 File Group Regular Expression Filtering for All Files with the Suffix XML
MYXML = '.*. \xml$'

Example 9-3 File Group Regular Expression Filtering for All Files
ALL = '.*§!

Example 9—4 File Group Regular Expression Filtering for All Files with the Suffix PDF
PDF = '.*.\pdf$'

An example of file group properties in a job definition is shown in Example 9-5.

Example 9-5 File Group Properties with File Group Regular Expression Filtering

Program.FMG = L.MYXML, O.ALL, O.PDF
MYXML = '.*.\xml$' ALL = '.*$' PDF = '.*.\pdf$'

These properties specify the use of the Business Intelligence Publisher
post-processing action on the MYXML file group, followed by the print
post-processing action on either ALL or PDF file groups.

3. Optionally, rename the file group and store it in Oracle Metadata Store so that it
displays in a more user-friendly way in the scheduled job request submission UL

9.4.3 What Happens When You Create a Job Definition

The job definition is written to an XML file called <job name>.xml.

9.4.4 What Happens at Runtime: How Job Definitions Are Created

The Fusion application passes the job definition file to Oracle Enterprise Scheduler
Service, which runs the job defined in the file.

9.5 Configuring a Spawned Job Environment

Configuring a spawned job involves creating an environment file and configuring an
Oracle wallet.

9-10 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Configuring a Spawned Job Environment

9.5.1 How to Create an Environment File for Spawned Jobs

Spawned jobs require an environment .properties file to provide the correct
environment for execution. The environment .properties file should be located in the
config/fmwconfig directory under the domain.

Additional environment variables may be added to the same directory in a similar file
called env.custom.properties. Variables defined in this file take precedence over
those in the environment .properties file.

Similarly, server-specific environment variables may be set in the server config
directory in files called environment .properties and env.custom.properties.

Before you begin:

The following variables are used to identify the correct interpreters for various
spawned job types:

= AFSQLPLUS: The executable for SQL*Plus scripts.
= AFSQLLDR: The executable for SQL*Loader uploads.
= AFPERL: The Perl interpreter.

» ATGPF_TOP: The TOP directory for ATGPF files, needed to locate key files for
SQL*Plus and Perl jobs.

The following environment properties are available to all spawned jobs:
= REQUESTID: The request ID of the current job request.

= WORK_DIR_ROOT: The directory on the local file system where the request can
perform file operations.

= OUTPUT_WORK_DIR: The directory to which the job writes all output files.
= LOG_WORK_DIR: The directory to which the job writes all log files.

= INPUT_WORK_DIR: The directory to which input files are saved before the job is
spawned.

= OUTFILE_NAME: The default name for the job output file.
= LOGFILE_NAME: The name of the log file for the job.

= USER_NAME: The name of the user submitting the job. The job runs in the context of
this user.

= REQUEST_HANDLE: The Oracle Enterprise Scheduler request handle for the current
request.

The environment variables must point to the client ORACLE_HOME and environment so
that spawned jobs can connect to the database.

Note: Make sure the variables you define in the
environment.properties file do not include any trailing spaces.
Follow the guidelines required by java.util.properties.

Make sure to restart the server after editing the
environment.properties file.

To create an environment file for spawned jobs:
1. Use a text editor to create an environment .properties file for the spawned job.

Working with Extensions to Oracle Enterprise Scheduler 9-11

Configuring a Spawned Job Environment

2. Set the following environment variables in the environment.properties file:
n LD_LIBRARY_ PATH
n ORACLE_HOME

s PATH: The full path of the spawned job. In Windows environments, the PATH
must include all directories that are normally part of LD_LIBRARY PATH.

= TNS_ADMIN: The directory which stores files related to the database connection
(such as tnsnames.ora, sqlnet.ora).

s TWO_TASK: The TNS name identifying the database to which spawned jobs
should connect. In Windows environments, the environment variable is LOCAL.

3. Configure the following variables, which are required to locate spawned jobs:

s APPLBIN: C executables and SQL*Loader control files must reside in the
$APPLBIN directory under the product TOP.

= APPL_TOP: Set this property to the top level directory where the bin directory
of C executables resides.

= APPLSQL: SQL*Plus scripts must reside in the $APPLSQL directory under the
product TOP. This means that the product TOP should be accessible to the
environment.

» ATGPF_TOP: This variable is required for SQL*Plus jobs. This should point to
where the wrapper script is available.

4. Save the environment.properties file and restart the server.

9.5.2 How to Configure an Oracle Wallet for Spawned Jobs

Use the TNS_ADMIN and ORACLE_HOME variables specified in the
environment.properties file created in Section 9.5.1.

A configured Oracle wallet enables spawned jobs to connect to the database at the
command line. A provisioned Fusion applications environment will have this wallet
pre-configured.

To configure an Oracle wallet for the spawned job:
1. At the prompt, enter the following commands as shown in Example 9-6.

Example 9-6 Creating a Wallet

cd $TNS_ADMIN
mkdir wallet
mkstore -wrl ./wallet -create

2. When prompted, choose a password for the wallet.

3. At the prompt, enter the following command as shown in Example 9-7.

Example 9-7 Creating Wallet Credentials

mkstore -wrl ./wallet -createCredential <$TWO_TASK> fusion_runtime <fusion_
runtime_password password>

where TWO_TASK is the variable in the environment .properties file and <fusion
password> is the password for the fusion username.

This command creates permissions for accessing the wallet.

9-12 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Configuring a Spawned Job Environment

4. When prompted, enter the wallet password created earlier.

5. In a text editor, create a file called sglnet.ora that includes the lines shown in
Example 9-8.

Example 9—-8 Create a File Called sqlnet.ora

SQLNET.WALLET_OVERRIDE = TRUE
WALLET _LOCATION =
(SOURCE =
(METHOD = FILE)
(METHOD_DATA =
(DIRECTORY = <STNS_ADMIN>/wallet)
)
)

6. In a text editor, create a file called tnsnames.ora that includes the lines shown in
Example 9-9.

Example 9-9 Create a File Called tnsnames.ora

dbname =
(DESCRIPTION =
(ADDRESS =
(PROTOCOL = TCP)
(HOST = host.us.oracle.com)
(PORT = 1521)
)
(CONNECT_DATA = (SID-sidname))
)

7. Execute the following commands as shown in Example 9-10.

Example 9-10 Set Directory and File Permissions

chmod 755 wallet
chmod 744 wallet/cwallet.sso

The first command enables anyone to read and execute files in the directory, while
reserving write access to the directory creator.

The second command enables only the file owner to read, write and execute the
file, while anyone can read the file.

8. Test the wallet by connecting to it. Execute the following command as shown in
Example 9-11.

Example 9—11 Connect to the Wallet
sqlplus /@<$TWO_TASK>

9.5.3 What Happens When You Configure a Spawned Job Environment

A configured Oracle wallet enables spawned jobs to connect to the database at the
command line.

Working with Extensions to Oracle Enterprise Scheduler 9-13

Implementing a PL/SQL Scheduled Job

9.6 Implementing a PL/SQL Scheduled Job

Implementing a PL/SQL scheduled job requires creating a job definition and creating
a PL/SQL package.

9.6.1 Standards and Guidelines for Implementing a PL/SQL Scheduled Job

Be sure to run sub-requests through Oracle Enterprise Scheduler Service using
theOracle Enterprise Scheduler APIs to access Oracle Enterprise Scheduler.

A PL/SQL stored procedure scheduler job should have a signature with the first two
arguments being errbuf and retcode. The remaining arguments are used as required
for defining job parameters. All arguments have a data type of varchar2.

9.6.2 How to Define Metadata for a PL/SQL Scheduled Job

Create a job definition as described in Section 9.4, "Creating a Job Definition."

PL/SQL jobs require setting an additional property numberOfArgs in the job definition.
This property identifies the number of job submission arguments (not including the
required arguments errbuf and retcode.)

9.6.3 How to Implement a PL/SQL Scheduled Job

Oracle Enterprise Scheduler Service provides runtime PL/SQL APIs for implementing
PL/SQL jobs and running the jobs using Oracle Enterprise Scheduler. A view object is
defined and associated with the job definition for the job.

When create a PL/SQL job, use the fusion database user. For information about
granting access privileges to database users in the context of Oracle Fusion
Applications, see the "Security" section in Oracle Fusion Applications Developer’s Guide.

Before you begin:

For more information about implementing a PL/SQL stored procedure scheduled job
see Chapter 6, "Creating and Using PL/SQL Jobs."

To implement a PL/SQL scheduled job:

1. Create a PL/SQL package, including at minimum the required errbuf and
retcode arguments.

2. Deploy the package to a database.
3. Test the package.

9.6.4 What Happens When You Implement a PL/SQL Job

The sample PL/SQL job shown in Example 9-12 provides a signature of a PL/SQL
procedure run as a job. The first two arguments to the PL/SQL procedure, errbuf and
retcode, are required. The remaining arguments are properties filled in by end users
and passed to Oracle Enterprise Scheduler when the job is submitted.

The example shown in Example 9-12 illustrates a sample PL/SQL job that uses the
PL/SQL API.

Example 9-12 Running a Job Using the PL/SQL API

procedure fusion_plsgl_sample (
-- The first two arguments are required: errbuf and retcode

9-14 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Implementing a PL/SQL Scheduled Job

errbuf out NOCOPY varchar2,
retcode out NOCOPY varchar2,

-- The errbuf is logged when a job request ends in a warning or error state to

-- provide a quick indication as to why the job request ended in an error or

-- warning state.

-- Job submission arguments, as collected from the view object associated with the
-- job as configured in the job definition. The view object is used to present a
-- user interface to end users, allowing them to enter the properties listed in

-- the following lines of code.

-- interface. These values are submitted by the end user.

run_mode in varchar2 default 'BASIC',
duration in varchar2 default '0',
p_num in varchar2 default NULL,
p_date in varchar2 default NULL,
p_varchar in varchar2 default NULL) is

begin
-- Write log file content using FND_FILE API
FND_FILE.PUT_LINE(FND_FILE.LOG, "About to run the sample program");

-- Implement the business logic of the job here.

FND_FILE.PUT_LINE(FND_FILE.OUT, " RUN MODE : " H run_mode) ;

(
FND_FILE.PUT_LINE (FND_FILE.OUT, "DURATION: " || duration);
FND_FILE.PUT_LINE (FND_FILE.OUT, "P_NUM: " || p_num);
FND_FILE.PUT_LINE (FND_FILE.OUT, "P_DATE: " || p_date);

(

FND_FILE.PUT LINE(FND_FILE.OUT, "P_VARCHAR: " p_varchar);

-- Retrieve the job completion status which is returned to Oracle
-- Enterprise Scheduler.
errbuf := fnd_message.get ("FND", "COMPLETED NORMAL");
retcode := 0;
end;

The sample shown in Example 9-13 illustrates a PL/SQL job with a sub-request
submission. The no_requests argument identifies the number of sub-requests that
must be submitted.

Example 9-13 Submitting a Sub-request Using the PL/SQL Runtime API

procedure fusion_plsqgl_subreq sample (
errbuf out NOCOPY varchar2,
retcode out NOCOPY varchar2,
no_requests in varchar2 default '5',
) is
req_cnt number := 0;
sub_reqgid number;
submitted_requests varchar2(100);
request_prop_table_t jobProp;
begin
-- Write log file content using FND_FILE API
FND_FILE.PUT_LINE (FND_FILE.LOG, "About to run the sample program with
sub-request functionality");

-- Requesting the PAUSED_STATE property set by job identifies request as

-- having started for the first time or restarting after being paused.

if (ess_runtime.get_regprop_varchar (fnd_job.job_request_id, 'PAUSED_
STATE')) is null) -- first time start

Working with Extensions to Oracle Enterprise Scheduler 9-15

Implementing a SQL*Plus Scheduled Job

then
-- Implement the business logic of the job here.
FND_FILE.PUT_LINE (FND_FILE.OUT, " About to submit sub-requests : " ||
no_requests) ;

-- Loop through all the sub-requests.
for reg cnt 1..no_requests loop
-- Retrieve the request handle and submit the subrequest.
sub_reqid := ess_runtime.submit_subrequest (request_handle => fnd_
job.request_handle,
definition_name => 'sampleJob',
definition_package => 'samplePkg',
props => JjobProp) ;
submitted_requests := sub_regid || ',';
end loop;

-- Pause the parent request.
ess_runtime.update_regprop_varchar (fnd_job.request_id, 'STATE', ess_
job.PAUSED_STATE) ;

-- Update the parent request with the state of the sub-request, enabling

-- the job to retrieve the status during restart.

ess_runtime.update_regprop_int (fnd_job.request_id, 'PAUSED_STATE',
submitted_requests) ;

else
-- Restart the request, retrieve job completion status and return the
-- status to Oracle Enterprise Scheduler Service.
errbuf := fnd_message.get ("FND", "COMPLETED NORMAL") ;
retcode := 0;
end if;
end;

9.6.5 What Happens at Runtime: How a PL/SQL Job is Implemented

Oracle Enterprise Scheduler Service calls routines to initialize the context of the
PL/SQL job, including PL/SQL global values, local values (such as language and
territory), and request-specific values such as request ID and request handle.

The view object associated with the job definition displays a user interface so that end
users may fill in values for each property. The Oracle Fusion web application calls
Oracle Enterprise Scheduler using the provided APIs and submits the job request.
Oracle Enterprise Scheduler runs the job, which calls the context routines and then
runs the job logic. The job ends with a retcode value of 0, 1, 2 or 3, representing
SUCCESS, WARNING, FAILURE or BUSINESS ERROR, respectively. The Oracle Fusion web
application can retrieve the result from Oracle Enterprise Scheduler and display it in
the user interface.

9.7 Implementing a SQL*Plus Scheduled Job

Implementing a SQL*Plus scheduled job involves writing a SQL*Plus script and
configuring an environment file for the job.

9.7.1 Standards and Guidelines for Implementing a SQL*Plus Scheduled Job

Be sure to run sub-requests through Oracle Enterprise Scheduler Service using the
Oracle Enterprise Scheduler APIs to access Oracle Enterprise Scheduler.

9-16 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Implementing a SQL*Plus Scheduled Job

9.7.2 How to Implement a SQL*Plus Job

Implementing a SQL*Plus stored procedures job involves writing the SQL*Plus script,
storing the script and configuring a spawned job environment.

To implement a SQL*Plus job:

1. Write the SQL*Plus job as a SQL*Plus script. Include the FND_JOB. set_sqglplus_
status call so as to report the final job status.

Include the following in the SQL*Plus scheduled job:

= FND_JOB.set_sglplus_status: Call to report the final job status. Statuses
include:

— FND_JOB.SUCCESS_V: Success.
— FND_JOB.WARNING_V: Warning.
— FND_JOB.FAILURE_V: Failure.
— FND_JOB.BIZERR_V: Business Error.
= FND_FILE routines: Can be used for producing log data and output files.

= FND_JOB API for request values: API calls are initialized for SQL*Plus jobs.

Note: SQL*Plus jobs must not exit.

2. Store the script under PRODUCT_TOP/$APPLSQL.

3. Configure the spawned job environment as described in Section 9.5, "Configuring
a Spawned Job Environment". Be sure to configure the ATGPF_TOP value in the
environment.properties file for spawned jobs.

4. Run and test the job.

9.7.3 How to Use the SQL*Plus Runtime API

Oracle Enterprise Scheduler Service provides runtime SQL*Plus APlIs for
implementing SQL*Plus jobs and running the jobs using Oracle Enterprise Scheduler.

This sample SQL*Plus job provides a signature of a SQL*Plus procedure run as a job.
Any necessary arguments are properties filled in by end users and passed to Oracle
Enterprise Scheduler when the job is submitted. A view object is defined and
associated with the job definition for the job. The view object is then used to display a
user interface so that end users may fill in values for each property. Finally, the sample
prints to an output file.

9.7.4 What Happens When You Implement a SQL*Plus Job

Example 9-14 shows a sample SQL*Plus scheduled job, which is executed by a
wrapper script.

Example 9-14 Implementing a SQL*Plus Scheduled Job

SET VERIFY OFF
SET linesize 132

WHENEVER SQLERROR EXIT FAILURE ROLLBACK;

WHENEVER OSERROR EXIT FAILURE ROLLBACK;
REM dbdrv: none

Working with Extensions to Oracle Enterprise Scheduler 9-17

Implementing a SQL*Plus Scheduled Job

/* __ */
DECLARE

errbuf varchar2 (240) := NULL;

retval boolean;

run_mode varchar2 (200) := '&l';

BEGIN

DBMS_OQUTPUT.PUT_LINE (run_mode) ;
update dual set dummy = 'Q';
FND_FILE.PUT_LINE (FND_FILE.LOG, 'Parameter 1 = ' || nvl (run_mode, 'NULL')) ;

/* print out test message to log file and output file */
/* Dby making direct call to FND_FILE.PUT_LINE */
/* from sgl script. */

FND_FILE.PUT_LINE (FND_FILE.LOG, '
')
FND_FILE.PUT_LINE (FND_FILE.LOG, b e e

FND_FILE.PUT_LINE (FND_FILE.LOG, 'Printing a message to the LOG FILE
")
FND_FILE.PUT_LINE(FND_FILE.LOG, '-—==m——mmmmmm oo oo m oo o mmmmmmmmo

FND_FILE.PUT_LINE (FND_FILE.LOG, ' SUCCESS!
")
FND_FILE.PUT_LINE (FND_FILE.LOG, !
")
FND_FILE.PUT_LINE (FND_FILE.QUTPUT, '========= === mmm oo

FND_FILE.PUT_LINE(FND_FILE.OUTPUT, 'Printing a message to the OUTPUT FILE
")
FND_FILE.PUT_LINE(FND_FILE.QUTPUT, '--=-—-————mmmmmmmm oo oo oo

FND_FILE.PUT_LINE (FND_FILE.OUTPUT, ' SUCCESS!
')

FND_FILE.PUT_LINE (FND_FILE.OUTPUT,
")

retval := FND_JOB.SET_SQLPLUS_STATUS (FND_JOB.SUCCESS_V) ;

END;

/

COMMIT;

-- EXIT; Fusion Applications SQL*Plus Jobs must not exit.

9.7.5 What Happens at Runtime: How a SQL*Plus Job Is Implemented

Oracle Enterprise Scheduler Service calls routines in a wrapper script to initialize the
context of the SQL*Plus job, including global values, local values (such as language
and territory), and request-specific values such as request ID and request handle. The
wrapper script introduces the prologue of commands shown in Example 9-15.

Example 9-15 SQL*Plus wrapper script
SET TERM OFF

9-18 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Implementing a SQL*Loader Scheduled Job

SET PAUSE OFF
SET HEADING OFF
SET FEEDBACK OFF
SET VERIFY OFF
SET ECHO OFF

SET ESCAPE ON

WHENEVER SQLERROR EXIT FAILURE

The Fusion application calls Oracle Enterprise Scheduler using the provided APIs.
Oracle Enterprise Scheduler runs the job, and the final job status—SUCCESS, WARNING,
BUSINESS ERROR or FAILURE—is communicated to Oracle Enterprise Scheduler. The
Oracle Fusion web application can retrieve the result from Oracle Enterprise Scheduler
and display it in the user interface.

9.8 Implementing a SQL*Loader Scheduled Job

Implementing a SQL*Loader scheduled job involves creating a SQL*Loader control file
and configuring a spawned job environment.

9.8.1 How to Implement a SQL*Loader Scheduled Job

Before you begin:

Keep in mind that the control file and data file must conform to the following
SQL*Loader standards:

= Place control files in the $APPLBIN directory under the product TOP.

s Make sure that the control file's name is the same as the executableName
parameter in the job definition.

= Ensure that the data file's location is the first submit argument to the job.

s Add SQL*Loader options such as direct=yes, if needed, as the
sqlldr.directoption parameter in the job definition.

To implement a SQL*Loader scheduled job:
1. Create a SQL*Loader control file (.ctl).

2. Enter the full path of the data file as the first submit argument to the job.
3. Store the control file under PRODUCT_TOP/$APPLBIN.

4. Configure the spawned job environment as described in Section 9.5, "Configuring
a Spawned Job Environment."

5. Test the file.

9.8.2 What Happens When You Implement a SQL*Loader Scheduled Job
A sample SQL*Loader scheduled job is shown in Example 9-16.

Example 9-16 Sample SQL*Loader scheduled job

This sample control file will upload data from the data file into the fnd_applcp_test
table, into the columns listed here (id1, id2, ..., mesg). See the SQL*Loader
documentation for more information on writing control files.

OPTIONS (silent=(header, feedback,discards))

Working with Extensions to Oracle Enterprise Scheduler 9-19

Implementing a Perl Scheduled Job

LOAD DATA

INFILE *

INTO TABLE fnd_applcp_test
APPEND

FIELDS TERMINATED BY ','
(id1,

id2,

id3,

func CHAR(30),

time SYSDATE,

action CHAR(30),
mesg CHAR(240))

9.9 Implementing a Perl Scheduled Job

Implementing a Perl scheduled job involves creating a job definition, enabling the Perl
job to connect to a database and configuring a spawned job environment.

9.9.1 How to Implement a Perl Scheduled Job

Before you begin:

For more information about creating a Perl scheduled job see Chapter 6, "Creating and
Using PL/SQL Jobs."

To implement a Perl scheduled job:

1.
2.

Place the Perl job under the directory PRODUCT_TOP/$APPLBIN.

Create a job definition for the Perl job, setting the executableName parameter to
the name of the Perl script. The following functions can be used in the Perl script:

= writeln(): Write a message to the log file.
» timestamp(): Write a timestamped message.

To enable the Perl job to connect to a database, use /@$TWO_TASK as a connection
string without specifying a username or password.

Configure the spawned job environment as described in Section 9.5, "Configuring
a Spawned Job Environment". The context provides values for the following:

s reqgid: The request ID.

» outfile: The full path to the output file.

= logfile: The full path to the log file.

= username: The name of the user submitting the job request.
= log: The log object.

Implement an exit code for the job, with values of 0, 2 or 3 representing the
following states: success, warning and business error. All other values represent an
errored state.

Test the job.

9.9.2 What Happens When You Implement a Perl Scheduled Job
Example 9-17 shows a sample scheduled Perl job which does the following;:

9-20 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Implementing a Perl Scheduled Job

1. Checks for basic or full mode.

2. Prints arguments.

3. Gets the scheduled job request context object.

4. Retrieves contextual information about the scheduled job request, which is stored
in the context object.

5. Writes the request to the log file.

6. Prints information as required.

Example 9-17 Perl Scheduled Job

dbdrv: none

use strict;

(my S$VERSION) = gS$Revision: 120.1 $ =~ /(\d+(\.\d+)*)/;
print_header ("Begin Perl testing script (version $VERSION)");

check first argument for BASIC or FULL mode
1f not FULL mode, exit successfully without doing anything

if (! $ARGV[0] || uc($ARGV[0]) ne "FULL") {
exit (0);
}
-- If argument #1 was passed, use it as a sleep time

if ($ARGV[1]) {

if ($ARGV[1] =~ /\D/) {
print "** Argument #1 is not a valid number, unable to sleep!\n\n";
} else {

printf("Sleeping for %d seconds...\n", SARGV[1]);
sleep (SARGVI[1]);
}

}
-- Arguments
print_header ("Arguments") ;
my $i = 1;
foreach (@ARGV) {
print "Argument #", $i++, ": $_\n";
}

-- Get the request context object
my Scontext = get_context();

-- Use this object to retrieve context information about this request
print_header ("Context Information");

printf "Request id \t= %d\n", Scontext->regid();

printf "User name \t= %d\n", Scontext->username();

printf "Logfile \t= %s\n", S$context->logfile();

printf "Outfile \t= %s\n", S$Scontext->outfile();

-- Writing to the request log file
print_header ("Writing to log file");

-- retrieve a Logfile object from the context

Working with Extensions to Oracle Enterprise Scheduler 9-21

Implementing a C Scheduled Job

my $log = Scontext->log();
Slog->writeln("This message should appear in the request logfile");
Slog->timestamp ("This is a timestamped message to the request logfile");

print "Wrote two messages to the request logfile\n";
-- Print out some useful information

print_header ("Environment") ;
foreach (sort keys $%ENV) {
print "$_=$ENV{S_}\n";

print_header ("Perl Information");
print "PROCESS ID = $$\n";

print "REAL USER ID = $<\n";
print "EFF USER ID = $>\n";

print "SCRIPT NAME = $0\n";
print "PERL VERSION = $]\n";
print "OS NAME = $70\n";

print "EXE NAME = $*X\n";

print "WARNINGS ON = $"W\n";

print "\n\@INC path:\n";
foreach (@INC) ({
print "$_\n";

print "\nAll loaded perl modules:\n";
foreach (sort keys $INC) {
print "$_ => SINC{S$_}\n";

-- Exiting the script

-- The exit status of the script will be used as the request exit status.
A zero exit status is reported as state of success.

-- An exit status of 2 is reported as a warning state.

-- An exit status of 3 is reported as a business error state.

-- Any other exit status is reported as an error state.

HH H H H H FHF
|
I

print_header ("Exiting script with status 0. (Normal completion)");
exit (0);

sub print_header {

my Smsg = shift;
print "\1’1\1’1", n_mox 40, ||\n||, $msg, ||\n||, ooy 40’ u\nu;

9.10 Implementing a C Scheduled Job
The main steps required to implement a C scheduled job are as follows:
= Creating a job definition
= Configuring a spawned job environment

= Implementing and testing a C scheduled job

9-22 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Implementing a C Scheduled Job

9.10.1 How to Define Metadata for a C Scheduled Job

Create a job definition as described in Section 9.4, "Creating a Job Definition".

9.10.2 How to Implement a C Scheduled Job

To implement a C scheduled job:

1.

In a separate function or file rather than in main, implement your required
business logic.

Include the following header files:

» afcp.h: This is the header file for Oracle Enterprise Scheduler.

= afstd.hand afstr.h: These are Fusion Application header files.
Call afpend in the business logic function.

In the main function, call afprcp, passing to it a pointer to the business logic
function.

The business logic function is called by afprcp, taking the arguments argc, argv,
and reginfo.

Save the executable job file to the $APPLICATIONS_BASE/$APPLBIN directory.

Configure the spawned job environment, as described in Section 9.5, "Configuring
a Spawned Job Environment".

Be sure to set both the TOP and APPLBIN variables for your application in the
environment .properties file.

9.10.3 Scheduled C Job API

Several C functions are available for use in developing Fusion applications, while
several others are not. Table 9-2 and Table 9-3 list the available and unavailable
functions.

Working with Extensions to Oracle Enterprise Scheduler 9-23

Implementing a C Scheduled Job

Table 9-2 C Functions Available for Developing Fusion Applications

Function Description

afprcp Run C program. The recommended API for writing a C program. The main .oc
file should call this function to run the program logic. It initializes the context
and calls the program.

int afprcp (uword argc, text **argv, afsglopt *options, afpfcn
*function) ;

afpend End C program. All programs must call this to signal the completion of the
program. The program should pass completion status, and message if necessary.

Indicate completion status with the following constants:
= FDP_SUCCESS: Success

= FDP_WARNING: Warning

. FDP_ERROR: System Error

» FDP_BIZERR: Business Error

boolean afpend (text *outcome, dvoid *handle, text *compmesg);

fdpfrs Find request status. For a given request, retrieve the status. The following are
possible request states:

s ESS_WAIT_STATE

= ESS READY STATE

= ESS_RUNNING_STATE

= ESS _COMPLETED_STATE

= ESS_BLOCKED_STATE

= ESS_HOLD_STATE

= ESS_CANCELLING_STATE

= ESS_EXPIRED_STATE

= ESS_CANCELLED_STATE

= ESS _ERROR_STATE

= ESS_WARNING_STATE

= ESS_SUCCEEDED_STATE

= ESS_PAUSED_STATE

= ESS_PENDING_VALID_STATE

= ESS_VALID_FAILED_STATE

= ESS_SCHEDULE_ENDED_STATE
= ESS_FINISHED_STATE

= ESS_ERROR_AUTO_RETRY_STATE
= ESS_MANUAL RECOVERY_STATE

afregstate fdpfrs (text *request_id, text *errbuf);

9-24 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Implementing a C Scheduled Job

Table 9-2 (Cont.) C Functions Available for Developing Fusion Applications

Function Description
fdpgret Get the error type of a specific job request ID. The following are possible error
types:

= ESS_UNDEFINED_ERROR_TYPE

s ESS_SYSTEM_ERROR_TYPE

= ESS_BUSINESS_ERROR_TYPE

= ESS_TIMEOUT_ERROR_TYPE

= ESS_MIXED_NON_BUSINESS_ERROR_TYPE
s ESS_MIXED_BUSINESS_ERROR_TYPE

afregstate fdpgret (text *request_id, text *status, text *errbuf);

fdpgrs Get request status. For a given request, retrieve the current status and
completion text.

afregstate fdpgrs (text *request_id, text *status, text *errbuf);

fdplck Lock table. Locks the desired table with the specified lock mode and NOWAIT.

fdpscp Legacy API for concurrent programs. All new concurrent programs should use
afprcp.
boolean fdpscp (sword *argc, text **argv[], text args_type, text
*errbuf) ;

fdpwrt Routines for creating log/output files and writing to files. These are routines

concurrent programs should use for writing to all log and output files.

Table 9-3 C Functions Not Available for Developing Fusion Applications

Function Description

fdpgoi Get Oracle data group.

fdpgpn Get program name.

fdpgrc Get request count.

fdpimp Run the import utility.

fdpldr Run SQL*Loader.

fdpperl Run Perl concurrent program.
fdprep Run report.

fdprpt Run SqI*Rpt program.

fdprsg Submit concurrent program. Use the afpsub routines instead.
fdpscr Get resource security group.
fdpsqgl Run SQL*Plus concurrent program.
fdpstp Run stored procedure.

9.10.4 How to Test a C Scheduled Job

When developing a C job, it is possible to test the job by running it from a command
line interface.

Running a C job from the command line involves the following main steps:

Working with Extensions to Oracle Enterprise Scheduler 9-25

Implementing a C Scheduled Job

s Invoking the job

s Obtaining a database connection and setting the runtime context by passing
special arguments.

= Passing any program-specific parameters at the command line.

To run a C job from the command line:

= Use the syntax shown in Example 9-18 to run a C job from the command line for
testing purposes.

Example 9-18 Syntax for Running a C Job from the Command Line

$program <heavyweight user connection string> <lightweight username> <flag> <job
parameters> ...

where

<heavyweight user connection string> is the username/password@TWO_TASK
pair used to connect to the database

<lightweight username> is the name of the lightweight user submitting the job.
This value is used to set the user context in the database connection.

<flag> must be set to 'L' for lightweight user.

An example illustrating running a C job from the command line is shown in
Example 9-19.

Example 9-19 Running a C Job from the Command Line for Testing Purposes

program username/password@my_db MYUSER L <parameterl> <parameter2>

9.10.5 What Happens When You Implement a C Scheduled Job

The sample C job shown in Example 9-20 uses afprcp to initialize and obtain a
database connection. It uses both Pro*C and afupi.

Example 9-20 Using the C Runtime API

#ifndef AFSTD
#include <afstd.h>
#endif

#ifndef AFSTR
#include <afstr.h>
#endif

#ifndef AFCP
#include <afcp.h>
#endif

#ifndef SQLCA
#include <sglca.h>
#endif

#ifndef AFUPI

#include <afupi.h>
#endif

9-26 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Implementing a C Scheduled Job

#ifndef FDS
#include <fds.h>
#endif

boolean testupi ()
{
text
text
text
text
text

*sqgltext;

buffer [ERRLEN] ;
os_user[31];
session_user([31];
db_name[31];

*use_curs;
errcode;

aucursor
word

os_user[0] session_user[0] = db_name[0]

sgltext (text*)
ERENV', 'SESSION_USER',30),

use_curs = NULLCURSOR;

use_curs = afuopen (NULLHOST, NULLCURSOR, (dvoid *)
sgltext,
UPISTRING) ;

if (use_curs == NULLCURSOR) {goto upierror;}

afudefine (use_curs,
afudefine (use_curs,
afudefine(use_curs,

1, AFUSTRING,
2, AFUSTRING,
3, AFUSTRING,

(dvoid *)db_name, 31)

(dvoid *)os_user, 31)

(text) '\0"';

"SELECT sys_context ('USERENV', 'DB_NAME',30),
sys_context ('USERENV', 'OS_USER', 30)

(dvoid *)session_user,

sys_context ('US
from dual";

31);

7

if (lafuexec (use_curs, (uword)l, (uword)l, CSTATHOLD|CSTATEXACT)

(errcode = afuerror (NULLHOST, (text *) NULL, 0)) !
goto upierror;
}
DISCARD afurelease (use_curs);

DISCARD sprintf((char *)buffer, "%s as %s@%s",
session_user, db_name);

os_user,

DISCARD fdpwrt (AFWRT_OUT | AFWRT_NEWLINE, buffer);

return TRUE;

upierror:
if (use_curs != NULLCURSOR)

DISCARD afurelease (use_curs);

N
= ORA_NORMAL) {

DISCARD fdpwrt (AFWRT_LOG | AFWRT_NEWLINE, "Error in testupi");

return FALSE;

void testrpc()
{
text buffer[256];

EXEC SQL BEGIN DECLARE SECTION;

VARCHAR os_user[31];

Working with Extensions to Oracle Enterprise Scheduler

9-27

Implementing a C Scheduled Job

VARCHAR session_user[31];
VARCHAR db_name[31];

EXEC SQL END DECLARE SECTION;
buffer[0] = os_user.arr[0] = session user.arr[0] = db_name.arr[0] = '\0';

EXEC SQL SELECT sys_context ('USERENV', 'DB_NAME',30),
sys_context ('USERENV', 'SESSION_USER',30),
sys_context ('USERENV', 'OS_USER', 30)

INTO :db_name, :session_user, :0S_user
from dual;

nullterm(os_user);
nullterm(session_user) ;
nullterm(db_name) ;

DISCARD sprintf((char *)buffer, "%$s as %s@%s", os_user.arr,
session_user.arr, db_name.arr);

DISCARD fdpwrt (AFWRT_OUT | AFWRT_NEWLINE, buffer);

sword cptest(argc, argv, reqginfo)
/* ARGSUSED */
sword argc;
text *argvl(];
dvoid *reqginfo;
{
ub2 1i;
text errbuf [ERRLEN+1];

/* Write to the log file */
pwr _ | , ex es uccess") ;
DISCARD fdj t (AFWRT_LOG AFWRT _NEWLINE, (text *)"Test S ")
/* Write to the out file */
DISCARD fdpwrt (AFWRT_OUT | AFWRT NEWLINE, (text *)"Test Args:");
/* Loop through argv and write to the out file. */
for (i1=0; i<argc; i++)
DISCARD fdpwrt (AFWRT_OUT ‘ AFWRT_NEWLINE, argv[i]);
a e Fusion Applications function afpoget to return the value of a
/* Call the Fusi Applicati f ti f tt t th 1 f */
/* profile option called SITENAME and write the results to the error buffer. */
DISCARD afpoget((text *)"SITENAME", errbuf);
/* Write the value to the output file. */
DISCARD fdpwrt (AFWRT_OUT | AFWRT _NEWLINE, errbuf);
/* Connect to the database and run a SELECT against the database. Creates a */
/* string and writes the returned data to the output file. Uses prc APIs. */
testrpc();
/* Open a cursor for the SELECT statement, defines variables to collect data */
/* upon running statement, and executes SELECt. Creates a string which it */
/* writes to the output file. Uses afupi APIs. */
testupi () ;
/* Writes the string "Test Completed." to the output file. */
DISCARD fdpwrt (AFWRT_OUT | AFWRT NEWLINE, (text *)"Test Completed.");
/* Call afpend to identify the exit status, which in this case is successful. */
/* Other possible values are FDP_WARNING, FDP_ERROR and FDP_BIZERR. The
/* reginfo originally passed to cptest is passed here. Optionally, additional */
/* text can be passed here, for example explaining the outcome of the exit */
/* status. */
return ((sword) afpend (FDP_SUCCESS, reginfo, (text *)NULL));

9-28 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Implementing a Host Script Scheduled Job

int main(/*_ int argc, text *argv([] _*/);
int main(argc, argv)
int argc;

text *argvl[];
{

/* Run cptest and return an exit value to Oracle ESS. */
return (afprcp((uword)argc, (text **)argv,
(afsglopt *)NULL, (afpfcn *)cptest));

9.10.6 What Happens at Runtime: How a C Scheduled Job Is Implemented

When Oracle Enterprise Scheduler Service runs a C job, afprcp () runs first to initialize
the context and obtain the database connection. The function afprcp() then calls the
function containing the program logic. Oracle Enterprise Scheduler runs the job, and
the result of the job is returned to Oracle Enterprise Scheduler. The Fusion Application
can retrieve the result from Oracle Enterprise Scheduler and display it in the user
interface.

Note: Wallet configuration is required for the client ORACLE_HOME to
obtain the database connection. The operating system environment in
which the job runs (including the location of the client ORACLE_HOME,
which is also required) is set in the environment .properties file. The
environment.properties file must be configured and placed in the
config/fmwconfig directory under the domain.

You can add your own environment variables by creating an
env.custom.properties file in the same directory. Variables you
define in this file take precedence over those in the
environment.properties file.

Similarly, you can set server-specific environment variables with
environment.properties and env.custom.properties files in the
server config directory.

9.11 Implementing a Host Script Scheduled Job

Arguments submitted for a host script job request are passed to the script at the
command line. Host scripts may access the standard environment variables to get
REQUESTID, LOG_WORK_DIRECTORY, OUTPUT_WORK_DIRECTORY, and so on. Script output is
redirected to the request log file by default.

Use the following steps when implementing a host script job:

s Complete the steps for configuring a spawned job as described in Section 9.5,
"Configuring a Spawned Job Environment".

= Create one script file each for Unix and Windows platforms. Name each script file
the same as executableName parameter in the job definition. For example, if your
executableName is "myscript", the script files would be called myscript.sh (on
Unix platforms) and myscript.cmd (on Windows).

s Put host scripts in the $SAPPLBIN directory under the product TOP.

» The script should exit with one of the following exit codes (anything else is
considered a SYSTEM ERROR):

Working with Extensions to Oracle Enterprise Scheduler 9-29

Implementing a Java Scheduled Job

- 0 for SUCCESS
- 2 for WARNING
— 3 for BUSINESS ERROR

9.12 Implementing a Java Scheduled Job

For more information about implementing Java Scheduler jobs, see Chapter 3, "Use
Case Oracle Enterprise Scheduler Sample Application.”

9.12.1 How to Define Metadata for a Scheduled Java Job

Create a job definition as described in Section 9.4, "Creating a Job Definition".

9.12.2 How to Use the Java Runtime API

For information about the Java runtime API, see the Oracle Fusion Applications Java API
Reference for Oracle Enterprise Scheduler Service.

You can access the Oracle Fusion Middleware Extensions for Applications Message
and Profile objects directly, using those APIs which handle the service accessing
themselves.

9.12.3 How to Cancel a Scheduled Java Job

You can cancel a scheduled Java job by implementing the Cancellable interface.

The Cancellable implementation in Example 9-21 checks as logic progresses to see if
the job has been canceled. If it has, the code cleans up after itself before exiting.

Example 9-21 Handling a Job Cancellation Request

import oracle.as.scheduler.Cancellable;

import oracle.as.scheduler.Executable;

import oracle.as.scheduler.ExecutionCancelledException;
import oracle.as.scheduler.ExecutionErrorException;
import oracle.as.scheduler.ExecutionPausedException;
import oracle.as.scheduler.ExecutionWarningException;
import oracle.as.scheduler.RequestExecutionContext;
import oracle.as.scheduler.RequestParameters;

public class MyExecutable
implements Executable, Cancellable

{

private volatile boolean m_cancel = false;

public void execute(RequestExecutionContext reqCtx,
RequestParameters regParams)
throws ExecutionErrorException, ExecutionWarningException,
ExecutionPausedException, ExecutionCancelledException

// Do some work and check if this request has been canceled.
// ... work ...
checkCancel (reqCtx) ;

// Do more work and check if this request has been canceled.
// ... work ...

checkCancel (reqCtx) ;

// Finish work.

9-30 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Elevating Access Privileges for a Scheduled Job

// ... work ...
}

// Set flag that the app logic should check periodically to
// determine if this request has been canceled.

public void cancel()

{

m_cancel = true;

}

// Check if request has been canceled. If not, do nothing.
// Otherwise, do any clean up work that may be needed for
// this request and end by throwing an ExecutionCancelledException.
private void checkCancel (RequestExecutionContext reqCtx)
throws ExecutionCancelledException

{

if (m_cancel)

// Do work any clean up work that may be needed

// prior to ending this executable.

// ... clean up work ...

String msg = "Request " + reqCtx.getRequestId() +
" was cancelled.";

throw new ExecutionCancelledException (msg) ;

9.12.4 What Happens at Runtime: How a Java Scheduled Job Is Implemented

Oracle Enterprise Scheduler Service initializes the context of the job. The Fusion
application calls Oracle Enterprise Scheduler Service using the provided APIs. Oracle
Enterprise Scheduler runs the job, and a result of success or failure is returned to
Oracle Enterprise Scheduler. The Fusion Application can retrieve the result from
Oracle Enterprise Scheduler and display it in the user interface.

9.13 Elevating Access Privileges for a Scheduled Job

Oracle Enterprise Scheduler executes jobs in the user context of the job submitter at the
scheduled time. Some scheduled jobs require access privileges that are different from
those of the submitting user. However, information regarding the submitter of the
scheduled job must be retrievable for auditing purposes.

In Oracle Enterprise Scheduler, it is prohibited to run a job in the context of a user
other than the submitting user with runas. Doing so would be considered a security
breach. Using an application identity enables running a job with different access
privileges from those allotted to the submitting user.

Application identity is a SOA and JPS concept that addresses the requirement for
escalated privileges in completing an action. The application installer creates an
application identity in Oracle Identity Management Repository.

For more information, see the following chapters in the Oracle Fusion Applications
Developer’s Guide:

s "Implementing Oracle Fusion Data Security"
s "Implementing Application User Sessions"

= "Implementing Function Security"

Working with Extensions to Oracle Enterprise Scheduler 9-31

Elevating Access Privileges for a Scheduled Job

9.13.1 How to Elevate Access Privileges for a Scheduled Job

The Oracle Enterprise Scheduler job system property SYS_runasApplicationID
enables elevating access privileges for completing a scheduled job.

To elevate access privileges for a scheduled job:
1. Create a job definition, as described in Section 9.4, "Creating a Job Definition."

2. Under the Parameters section, add a parameter called SYS_runasaApplicationID.

3. In the text field for the SYS_runasApplicationID, enter the application ID under
which you want to run the job, as shown in Figure 9-1.

Make sure the input string is a valid ApplicationID that exists when the job
executes.

Figure 9—1 Defining the runAs User for the Job

[F3cpPlsqlobDefinition xml B CpPisqliobDefinitionHo.xm| [jazn-datz xm!]
=]
[Job Definition ;
Mame: CpPlzgllobDefinitionHC
Description: Test PliglJob
Job Type: fmypackage fPlsqllobType
Procedure Mame: FRD_CP_RT.BASIC_TWo | O ernite
= FParameters / + R
Mame Type Initial Walue Read Cnly
jobDefinitionApplication STRIMG
lication|D [STRING DemoApplser I
jobPackageMame STRIMG
jobDefinitionMame STRIMG CpPlzgllabDefinitionHO
submit.argument2 STRIMG Test Twm
submit.argumentl STRIMG 1
requestitatus STRIMG 1]
numberafArgs STRIMG 2
2 %System Properties .--’/9 + %
Mame Type Initial Walue Read Only
SYS_priority INTECER a
= &= Access Control / EF b4
Mo Access Cantrol
|obdefinition Editar I

You can retrieve the executing user by running either of the methods shown in
Example 9-22 and Example 9-23.

Example 9-22 Retrieving the Executing User with getRunAsUser()
requestDetail .getRunAsUser ()

Example 9-23 Retrieving the Executing User with getRequestParameter()

String sysPropUserName =
(String) runtime.getRequestParameter (h, reqid, SystemProperty.USER_NAME) ;

Given a request ID, you can retrieve the submitting and executing users of a job
request.

9-32 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Elevating Access Privileges for a Scheduled Job

To retrieve the submitting and executing users of a job request in Oracle

Enterprise Scheduler RuntimeService EJB:

= Example 9-24 shows a code snippet for retrieving the submitting and executing
users of a job request using the Oracle Enterprise Scheduler RuntimeService EJB.

Example 9-24 Retrieving the Submitting and Executing Users of a Job Request Using
the RuntimeService EJB

// Lookup runtimeService

RequestDetail requestDetail = runtimeService.getRequestDetail (h, regid);
String runAsUser = requestDetail.getRunAsUser();
String submitter = requestDetail.getSubmitter();

To retrieve the submitting and executing users of a job request from within an

Oracle Fusion application:

= Example 9-25 shows a code snippet for retrieving the submitting and executing
users of a job request from within an Oracle Fusion application.

Example 9-25 Retrieving the Submitting and Executing Users of a Job Request from an
Oracle Fusion Application

import oracle.apps.fnd.applcore.common.ApplSessionUtil;
// The elevated privilege user name.
ApplSessionUtil.getUserName ()

// The submitting user.
ApplSessionUtil.getHistoryOverrideUserName ()

9.13.2 How Access Privileges Are Elevated for a Scheduled Job

When a job request schedule executes, Oracle Enterprise Scheduler:
1. Validates the submitter's execution privileges on the job metadata.

2. Retrieves the application identity information from the job metadata. If the job
metadata does not specify an application identity for the job, Oracle Enterprise
Scheduler executes the job in the context of the job submitter.

= Javajob: An FND session is established as the user with elevated privileges.

The executing user is taken from the current subject as viewed from the job
logic.

Note: Oracle Enterprise Scheduler does not directly support
invoking a web service or composite. If your job logic invokes a web
service or composite, you must write the client code logic in your job,
establish a connection and propagate the job submitter information as
a payload for auditing purposes. For an asynchronous web service
call, the job must wait for a response.

= Spawned C job: An application user session is established as the executing
user. The submitter information is an attribute of the application user session.

The spawned job executes as the operating system user who starts Oracle
WebLogic Server.

Working with Extensions to Oracle Enterprise Scheduler 9-33

Creating an Oracle ADF User Interface for Submitting Job Requests

s PL/SQL job: An FND session is established as the executing user. The
submitter information is attribute of the FND session.

The job runs in the context of the FND session in the RDBMS job scheduler.

3. Executes the job logic.

9.13.3 What Happens When Access Privileges Are Elevated for a Scheduled Job

Oracle Enterprise Scheduler validates the user's execution privileges on the job
metadata. If so, the user context is captured and stored in the Oracle Enterprise
Scheduler database as the submitting user, and the request is placed in the queue.

9.14 Creating an Oracle ADF User Interface for Submitting Job Requests

When implemented as part of an Oracle Fusion application, the Oracle ADF user
interface enables end users to submit job requests.

9.14.1 How to Create an Oracle ADF User Interface for Submitting Job Requests

The Oracle ADF Ul enables end users to submit job requests. End users can enter
complex data types for the arguments of descriptive and key flexfields. The
Parameters tab in the Oracle ADF Ul interface allows end users to enter parameters to
be used when submitting the job request.

Flexfields display in a separate task flow region. This region is a child task flow of the
parent task flow displayed in the Parameters tab.

Note: Make sure to define customization layers and authorize
runtime customizations to the adf-config.xml file as described in the
chapter "Creating Customizable Applications" in Oracle Fusion
Applications Developer’s Guide.

To create a user interface for submitting job requests:

1. Create a new Oracle Fusion web application by clicking New Application in the
Application Navigator and selecting Fusion Web Application (ADF) from the
Application Templates drop-down list.

Model and ViewController projects are created within the application.

2. Right-click the Model project and select Project Properties > Libraries and
Classpath > Add Library.

3. From the list, select the following libraries, as shown in Figure 9-2:
= Applications Core
= Applications Concurrent Processing

= Enterprise Scheduler Extensions

9-34 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating an Oracle ADF User Interface for Submitting Job Requests

Figure 9-2 Adding the Libraries to the Model Project

== dd Library
(d8- ®)
Libraries:

..... @l ADF Swing Runtime
----- #ll ADF Toplink Runtime
..... @l ADF Web Runtime

..... #ll ADFm Designtime APT
..... il Apache At
..... m applics g

-----] Applications Concurrent Processing (YiewController)
----- Applications Core

----- m Applications Core {Attachments Model)

----- m Applications Core (viewController)

----- “ Applications Diagnostics Framework

----- m Appserver Connection

5 Concurrent Pro

-----] E36 Data Control
----- @] Embedded 0C43 Clisnt

I Mew. .. “ Load Dir... |

Help | | QK J | Cancel ‘

Click OK to close the window and add the libraries.

4. Right-click the View Controller project and select Project Properties > Libraries
and Classpath > Add Library.

Add the library Applications Core (ViewController), as shown in Figure 9-3.

Figure 9-3 Adding the Library to the View Controller Project

—

=2+ Project Properties - D:\jdev_5023\mywork\SubmitJob_SRSDrop6i¥iewControlleri¥iewController. jpr

n,

Libraries and Classpath

| - Project Source Paths () Use Custam Settings
| G- ADF Model (%) Use Project Settings
ADF Task Flows
BOF View Jdawva SE Wersion:
| Bk [1.5.0_t5 (Default) | Changs. .. |
| - Business Components
| Lol th Entries:
| Bl Compiler AERRAHLED rle.s - .
Dependencies Export Description | Add Library... |
“ AL UEILTUNET R e . ——t
Deployment “ ADF Controller Schema | Add JAR/Directary... |

EJE Module
Extension

[Javadoc

| - Java EE Application
JSP Taq Libraries
J5P Wisual Editar

@l ADF Faces Runtime 11 —_—

@l AOF Common Runtime Remave |

§l ADF web Runtime

@l MDS Runtime

ﬂ MDS Runtime Dependencies

§l Cormons Beanutils 1.6.1

@l Cormons Logging 1.0.3

@l Cornmons Collections 2.1

gisFie

@ stz

@l Trinidad Runtime 11

35F Runtime
I+ Applica

Resource Bundle
| Run{Debug/Prafile
| e Technology Scope

REEEEEEREEEEERE

<]

| Help | | oK ZI | Cancel |

5. In the Project Properties dialog, in the left pane, click Business Components.

Working with Extensions to Oracle Enterprise Scheduler 9-35

Creating an Oracle ADF User Interface for Submitting Job Requests

6. The Initialize Business Components Project window displays. Click the Edit icon
to create a database connection for the project.

Fill in the database connection details as follows:
= Connection Exists in: Application Resources
s Connection Type: Oracle (JDBC)

s Username/Password: Fill in the relevant username and password for the
database.

» Driver: thin
» Host Name: Enter the host name of the database server.
= JDBC port: Enter the port number of the database.
s SID: The unique Oracle system ID for the database.
Click OK.
7. Inthe file weblogic.xml, import oracle.applcp.view.
8. In the file weblogic-application.xml, import the following libraries:
m oracle.applcore.attachments (for ESS-UCM)
m oracle.applcp.model
m oracle.applcp.runtime
m oracle.ess
m oracle.sdp.client (for notification)
m oracle.ucm.ridc.app-lib (for ESS-UCM)
m oracle.webcenter.framework (for ESS-UCM)
m oracle.xdo.runtime
m oracle.xdo.service.client
m oracle.xdo.webapp

The libraries oracle.applcp.model and oracle.applcp.view are deployed as part
of the installation while running the config. sh wizard.

9. Create a new JSPX page for the ViewController project by right-clicking
ViewController and selecting New > Web Tier >JSF > JSF JSP Page.

10. Create a new File System connection. In the Resource Palette, right-click File
System, select New File System Connection, and do the following:

a. Provide a connection name and directory path for the Oracle ADF Library files
(<jdev_install>/jdev/oaext/adflib).

b. Click Test Connection and click OK once the connection is successful.

11. Expand the contents of the SRS-View. jar file to display the list of available task
flows that can be used in the application, as shown in Figure 9-4.

9-36 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating an Oracle ADF User Interface for Submitting Job Requests

Figure 9-4 Displaying the List of Available Task Flows

&

-@Resource Palette
- (60)
I My Catalogs

~ IDE Connections
-{gd Application Server
E!r['_a File: System
£l AdfLib

F]'"“ Applications-Model. jar
1§l Applications-view jar
[]---“ Attachments-Model, jar
Ft- @l Comman-Modsl jar
[“ Common-Yiew, jar
[@l Custornization-Model, jar
-l Customization-Wiew. jar
[]---“ DataSecurity-Model. jar
r]---“ Diagnastics-Enging . jar
[]---“ ServiceTester-Model. jar
[]---“ ServiceTester-Yiew. jar
-l Setld-Mode jar
-l SetId-View.jar
JEagi 1] el.jar
ADF Task Flows
@ adfc-config

-0 Library Connections

L]---n Taxonomy-Madel.jar

B ,:'r:] SaveSchedule-taskflow
[[d achedulelohset-taskflow
L_|E| ScheduleRequest-taskflow
i E‘ﬂ ScheduleRMN_taskflow

E}@ Library Dependencies

12. To include the job request submission page in the application, select the

ScheduleRequest-taskflow from the Resource Palette and drop it onto the JSF

page in the area where you want to create a call to the taskflow. Create the
taskflow call as a link or button.

For example, to invoke the job request submission page from within a dialog box
in the application, do the following:

a. From the Component Palette, drag and drop a Link onto the form in the JSPX

page.

b. In the Property Inspector, configure the behavior of the link to showpopup.

c. From the Component Palette, drag and drop a Popup component with a
dialog component onto the form.

d. To enable submitting a job request, drag and drop ScheduleRequest-taskflow
onto the dialog component as a dynamic region.

To enable submitting a job set request, drag and drop
ScheduleJobset-taskflow onto the dialog component.

Figure 9-5 displays the task flows in the Resource Palette.

Working with Extensions to Oracle Enterprise Scheduler

9-37

Creating an Oracle ADF User Interface for Submitting Job Requests

Figure 9-5 Including the Job Request Submission Page in the Application

File Edit ¥iew Search MNavigate Build Run Refactor ¥Yersioning Tools Window Help

Godd 90 X8I0 - 5 &idw- >- ¢-@EHEE PIEE A B GG

£ E

e.

d=lapplication Mavigator 5] Seibmie E]E]E] :E,-."UComponant Palette SiResource Palette
Ed
= = —=] . _
SubmitJob_SRSDraps - & -] E) - show=[Ful| oG- (@@)
SiBroterts & V-E- e a] I My Catalags
g2 R e = IDE Connections
2] Databindings.cpx -l SetTd-Model jar

1 MFTA-TNF - i ji
I Application Resources t- i setla V':V‘I"]ar
| Data Controls -l SRS’MO e..]ar
| Recently Opened Files =l SR-eww far

B[] ADF Task Flows

— ’:‘;_. adfc-config
= SubmitJob.jspx - Structure 5| 2 saveschedule-taskfiow

- Warnings (4)

= &§ jspiroot
b spidirective.page

IviEw

=5 af document
[

EE f:popup :E:c.ummandlink @Llnk - Submit Job - Property Inspector @
; E-[E] af:dislag L I L, A B vore- (G0 34)®
& af region - #{hindings SrhedueR: [=]mass, . O [p—
[-'md Dialog facgts | e s Al 1d: | | i B

=4 Document Facets

& Scheduledobset-taskflow
& ScheduleRequest-taskflow
= SchedulsRi_taskflom
B+ Library Connections

&| Library Dependencies

[3--“ Taxonomy-Madel, jar

[ﬂ Taxonormy-Yiew, jat
P e Tack Mndal iz

af:Form

aficommandlink - Subrait Job

150 afishowPopupBehavior

 Jul 18, 2008 @ Appearance
| VARNING: Unknc | spyle

Rendered: | <defaults (trus) |-

From the context menu, select Create a Dynamic Region.

13. When prompted, add the required library to the ViewController project by clicking
Add Library. Save the JSF page.

14. Edit the task flow binding. Define the following parameters for the task flow, as
shown in Figure 9-6.

a.

jobdefinitionname: Enter the name of the job definition to be submitted. This
is not the name that displays. This is the job definition defined in Section 9.4,
"Creating a Job Definition". Required.

jobdefinitionpackagename: Enter the package name under which the job
definition metadata is stored. This should be the namespace path appended to
the package name, for example /oracle/ess/Scheduler. The namespace path
typically begins with a forward slash ("/"), but should have no forward slash
at the end. Required.

centralui: When setting this parameter to true, then the task flow Ul does
not display the header section containing the name, description and basic
Oracle BI Publisher actions (such as e-mail, print and notify). This parameter
must be a boolean value. Optional.

pageTitle: When passed, the task flow will render this passed String value as
the page title. The pageTitle value is currently configured to be truncated at
30 characters. Optional.

requireRootOutcome: If true is passed as the value, then the task flow will
generate root-outcome when the user clicks the Submit or Cancel buttons. By
default, the task flow generates parent-outcome. Optional.

requestparametersmap: Enter the name of the map object variable that
contains the parameters required for the job request submission. If this
parameter is filled in, the Parameters tab in the request scheduling submission
page will not prompt end users to enter parameters for executing the request.
The map can be passed to the task flow as a parameter. Typically, this
parameter takes the data type java.util.Map in which keys are parameter
names and values are parameter values. For example, if you will be using a

9-38 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating an Oracle ADF User Interface for Submitting Job Requests

paramsMap object in the pageFlowScope, you might enter a
requestparametersmap value of #{pageFlowScope.paramsMap}. Optional.

In the page that holds the SRS task flow region, set the following property for
the popup that launches the SRS window: contentDelivery = immediate.

In the page definition file of the page that contains the task flow region, set the
following property for the task flow: Pagedef > executables > taskflow >
Refresh=IfNeeded.

Figure 9-6 Defining Parameters for the Task Flow

Edit Task Flow Binding

Task Flow: WEB-INF fScheduleRequest-taskflow. xml#ScheduleRequest-taskflow

=l Input Parameters

Tame Yalue
jobdefinitionname * #{TestlobDef1'H
jobdefinitionpackagename * #4'foraclefessfSchedulert

requestparametersmap -

* = Required

| Help | | (a4 H | Cancel |

15. If you are using a map to pass parameters to the taskflow
(requestparametersmap), create a new taskflow parameter, such as the paramsMap
object in the pageFlowScope of a pageflow.

These values can be accessed in the job executable, for example from the
RequestParameters object in the case of a Java job. Example 9-26 illustrates
passing the values stored in the RequestParameters object to a Java job. This code
is used in the class that implements the oracle.as.scheduler.Executable
interface.

Example 9-26 Passing Values in a Map Object to a Java Job

public void execute(RequestExecutionContext ctx,RequestParameters props)
throws ExecutionErrorException, ExecutionWarningException,
ExecutionCancelledException, ExecutionPausedException

String pageTitle = (String) props.getValue("pageTitle");

// Retrieve other parameters.
/] ...

Working with Extensions to Oracle Enterprise Scheduler 9-39

Creating an Oracle ADF User Interface for Submitting Job Requests

Note: When using a requestparametersmap, make sure to set the
following properties for the popup within which the task flow is

launched.

= Set Content Delivery to Immediate.

= In the page definition XML file for the page that contains the
region, select PageDef > Executables > taskflow > set Refresh =

ifNeeded.

16. If the job is defined with properties that must be filled in by end users, the user
interface allows end users to fill in these properties prior to submitting the job
request. For example, if the job requires a start and end time, end users can fill in
the desired start and end times in the space provided by the user interface.

The properties that are filled in by end users are associated with a view object,
which in turn is associated with the job definition itself. When the job runs, Oracle
Enterprise Scheduler Service accesses the view object to retrieve the values of the

properties.

If using a view object to pass parameters to the job definition, do the following:

a. Create a view object called TestVO using a query such as the one shown in

Example 9-27.

Example 9-27 Creating a View Object Using a Query

select null as Attributel, null as Attribute2 from dual"

b. Specify control UI hints, for example set the display label for Attributel to

Run Mode and for Attribute2 to Duration.

As a result, the parameters tab in the job request submission Ul renders with
the input fields Run Mode and Duration.

In order to render the Parameters tab in the job request submission Ul, add the
DynamicComponents 1.0 library as follows. Right-click ViewController and
select Project Properties > JSP Tag Libraries > Add. In the Choose Tag
Libraries window, select the library DynamicComponents 1.0 and click OK.
Figure 9-7 displays the Choose Tag Libraries window.

9-40 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating an Oracle ADF User Interface for Submitting Job Requests

Figure 9-7 Adding the Library DynamicComponents 1.0

Choose Tag Libraries
) List of available 15P tag libraries compatible with
s ——— ‘Web Application version: Servlet 2.51J5P 2.1 {Java EE 1.5)
[#-Project Source Paths excluding already used libraries,
[} ADF Model 1o User / |
""" ADF TfaSk Flows =[] Extension Version: Required 5P Yersion:
------ ADF View - ADF Fares Cache 11.1.1
B-snt | 1 61 ADF 11
[#-Busingss Components | | L enamicCompanents 1.0 |
B Compiler) | B 5Tl Core 1.2 {separated by semi-calons)
------ Dependencies ~{il§ I5TL Format 1.2
----- Deployment m JSTL Functions 1.2
ame:
------ EJE Madule @ 15TL Permitted Taglibs 1.2 =
------ Extension - I5TL Seript Free 1.2
B-Jdavados || o5 sTLsaLiz
------ Java EE Application @ I15TL %ML 1.2
S 15 Tag Librarics [I I S #8 oracle ADF DataTag library 1.0
------ 5P Visual Editor @ PDK Struks HTML 1.0
------ Libtaties and Classpath -l portlet 1.0
----- Resource Bundle - Struts Bean (Backwards Compatibility) 1.2
------ RunDebug/Profile - struts Bean 1.2
""" Technology Scope ﬁ Struts HTML (Backwards Compatibility) 1.2
----- i Struks HTML 1.2
----- E Struks Logic (Backwards Compatibility) 1.2
| Clear Cache |
| Help | | Help | | oK J | Caricel | | oK J | Cancel |

17. In the JSF application you created, create another project called Scheduler. Select
File > New, and choose General > Empty Project. This project will be used to
create Enterprise Scheduler Service metadata and job implementations.

18. In the Scheduler project, add the Enterprise Scheduler Extensions library to the
classpath. Right-click the Scheduler project and select Project Properties >
Libraries and Classpath > Add Library > Enterprise Scheduler Extensions.

19. Deploy the libraries oracle.xdo.runtime and oracle.xdo.webapp to the Oracle
Enterprise Scheduler Ul managed server. These libraries are located in the
directory $MW_HOME/jdeveloper/xdo, where Mii_HOME is the Oracle Fusion
Middleware home directory.

20. Deploy the application.

9.14.2 How to Add a Custom Task Flow to an Oracle ADF User Interface for Submitting

Job Requests

You can add a custom task flow to an Oracle ADF user interface used to submit job
requests at run time.

To add a custom task flow to an Oracle ADF user interface for submitting job
requests:

1. Create a task flow and bind it to your Oracle ADF user interface for submitting a
job request created in Section 9.14.1, "How to Create an Oracle ADF User Interface
for Submitting Job Requests."

For more information about creating task flows and binding them to an Oracle
ADF user interface, see the following chapters in Oracle Fusion Middleware Fusion
Developer’s Guide for Oracle Application Development Framework:

» "Getting Started with ADF Task Flows"
= "Working with Task Flow Activities"

Working with Extensions to Oracle Enterprise Scheduler 9-41

Creating an Oracle ADF User Interface for Submitting Job Requests

s "Using ADF Task Flows as Regions"

2. Create an ADF Business Components view object for each Ul field. Name the view
objects that are bound to Ul fields ParameterVv0l, ParameterV02, and so on.

Name the attributes of the view objects as follows: ATTRIBUTEL, ATTRIBUTE2, and
So on.

For more information about creating an ADF Business Components view object,
see the chapters "Defining SQL Queries Using View Objects" and "Advanced View
Object Techniques" in Oracle Fusion Middleware Fusion Developer’s Guide for Oracle
Application Development Framework.

3. Include the view objects in the relevant application module. Even if their names
are different, make sure the view object instance names are ParameterVo1l,
ParameterV02, ParameterV03, and so on.

4. In the job definition, make sure to define the properties CustomDataControl and
ParameterTaskflow For more information, see Section 9.4.1, "How to Create a Job
Definition."

For more information about passing parameters to the Oracle ADF task flow, see
the chapter "Using Parameters in Task Flows" in Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

5. Optionally, include the method preSubmit () in the application module. Oracle
Enterprise Scheduler invokes this method before retrieving the parameter values
for the submission request.

Your implementation of the preSubmit () method (which returns a boolean value)
could include validation code in the custom task flow. If the validation fails, your
code can throw an exception with the proper internationalized error message.

If this validation fails while submitting the request, the error message is displayed
to the user and the submission doesn't go through.

9.14.3 How to Enable Support for Context-Sensitive Parameters in an Oracle ADF User
Interface for Submitting Job Requests

After integrating your application with the Oracle ADF UI for submitting job requests,
enable context-sensitive parameter support in the Ul

The request submission Ul will render the context-sensitive parameters first so that the
end user will specify the context-sensitive parameter values. Context is set in the
database based on these parameters. After setting the context, it renders the rest of the
parameters based on context set at database layer. When the job runs, the actual
business logic will run after setting the context based on the context-sensitive
parameter values inside the database.

Follow this procedure to enable context-sensitive parameter support in the UL

To enable support for context sensitive parameters in an Oracle ADF user
interface for submitting job requests:

1. Follow the instructions described in Section 9.14.1.

2. Create a native ADF Business Components view object with attributes
CTXATTRIBUTE1, CTXATTRIBUTEZ, and so on, with a maximum of 100 attributes.

For example, create a view object with the query Select null as CTXATTRIBUTEL,
CTXATTRIBUTE2, CTXATTRIBUTE3 from dual. Include required UI hints such as
display label, tool tip, and so on.

9-42 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating an Oracle ADF User Interface for Submitting Job Requests

3. Create a PL/SQL procedure or function in order to set the context.

4. Specify the parameters shown in Example 9-28 and Example 9-29 in the job
definition metadata.

m contextParametersVO: Enter the fully qualified name of the view object that
holds the context sensitive parameters.

Example 9-28 contextParametersVO

<parameter name="contextParametersVO" data-type="string">_
oracle.apps.mypkg.TestCtxVO</parameter>_

= setContextAPI: PL/SQL API to set the context, along with the package name.
The _myPkgl.mySetCtx procedure receives arguments based on attributes in
the contextParametersVo.

Example 9-29 setContextAPI

<parameter name="setContextAPI" data-type="string">_myPkgl.mySetCtx</parameter>_

9.14.4 How to Save and Schedule a Job Request Using an Oracle ADF Ul

Saving and scheduling a job request using an Oracle ADF Ul involves using the
Enterprise Scheduler Extensions library in conjunction with a JSF application that
includes a task flow in which a job is scheduled and saved.

To schedule a job request using an Oracle ADF Ul:

1. Follow the instructions in Section 9.14.1, "How to Create an Oracle ADF User
Interface for Submitting Job Requests" up to step 9.

Note: If the custom parameters task flow has no transactions of its
own, it must set the data-control-scope to "isolated". This ensures that
multiple ParameterVOs using the same application module get their
independent application module instance.

2. Drag and drop SaveSchedule-taskflow onto the dialog. No input parameters are
required.

3. When prompted, add the required library to the ViewController project by clicking
Add Library. Save the JSF page.

4. In the JSF application you created, create another project called Scheduler. Select
File > New, and choose General > Empty Project. This project will be used to
create Enterprise Scheduler Service metadata and job implementations.

5. In the Scheduler project, add the Enterprise Scheduler Extensions library to the
classpath. Right-click the Scheduler project and select Project Properties >
Libraries and Classpath > Add Library > Enterprise Scheduler Extensions.

6. Deploy the application as described in the Oracle Enterprise Scheduler Developer’s
Guide.

7. Launch the application using the following URL:

http://<machine>:<http-port>/<context-root>/faces/<page>

Working with Extensions to Oracle Enterprise Scheduler 9-43

Creating an Oracle ADF User Interface for Submitting Job Requests

8. Enter a schedule name, description and package name with the namespace

appended, as shown in Figure 9-8.

Figure 9-8 Saving a Job Submission Schedule

]

_;) Information

Saved Schedule with MetadataObjectId : Schedule:/SubmitJab_SRSDropé_application1foracle/ess/ TestPkg/MyDailySchedule
Save Schedule

Schedule Details

* Schedule Mame | MyDailyScheduls
Description | Daily Schedule
Package | foraclefess/TestPkg

Frequency | Daily »
Every 2 i Days
Start |07/18/2008 08:11:15)
Repeat Untl | 07(z2/2008 20:41:26)

Show/Change Times

O Cancel

9. Save the schedule.

A message displays indicating the metadata object ID of the saved schedule. This
ID can be used for further job or job set request submissions

9.14.5 How to Submit a Job Using a Saved Schedule in an Oracle ADF Ul

Submitting a saved job request schedule using an Oracle ADF Ul involves using the
Enterprise Scheduler Extensions library in conjunction with a JSF application that
includes a task flow in which a saved job schedule can be submitted.

To submit a job using a saved schedule in an Oracle ADF Ul:

1.

Follow the instructions in Section 9.14.1, "How to Create an Oracle ADF User
Interface for Submitting Job Requests".

Deploy the application. Launch the page using the following URL:

http://<machine>:<http-port>/<context-root>/faces/<page>

Click the Schedule tab. In the Run option field, select the Use a Schedule radio
button.

From the Frequency drop-down list, select Use a Saved Schedule.

Enter the namespace and package names for the schedule along with the name of
the schedule.

To view the list of scheduled jobs, click Get Details. Click Submit to submit the
saved job request.

9.14.6 How to Notify Users or Groups of the Status of Executed Jobs

The Oracle ADF user interface for submitting job requests provides the ability to notify
users of the status of submitted jobs (via the Notification tab of the user interface). For
example, users can request a notification to be sent to the originator of the job request.

9-44 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating an Oracle ADF User Interface for Submitting Job Requests

A notification includes two components: the user or group to whom the notification is
to be delivered, and the completion status of the job that triggers the notification. For
example, notifications can be sent upon the successful completion of a job, or when a
job completes in an error or warning state.

To notify users or groups of the status of executed jobs:

1. Configure Oracle User Messaging Service. For more information, see the chapter
"Configuring Oracle User Messaging Service" in Oracle Fusion Middleware
Administrator’s Guide for Oracle SOA Suite and Oracle Business Process Management
Suite.

2. Deploy the drivers required for Oracle User Messaging Service. You can do so
using Oracle WebLogic Server Scripting Tool. For more information, see the
chapter "Managing Oracle User Messaging Service" in Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite and Oracle Business Process
Management Suite.

3. In the Oracle Enterprise Scheduler connections.xml file, specify the URL of the
notification service. An example is shown in Example 9-30. While you cannot edit
this file, you can browse Oracle ADF connection information using MBeans. For
more information on configuring application properties, see the chapter
"Monitoring and Configuring ADF Applications" in Oracle Fusion Middleware
Administrator’s Guide for Oracle Application Development Framework.

Example 9-30 Specify the URL of the Notification Service

<References>
<Reference name="EssConnectionl"
className="oracle.as.scheduler.config.ca.EssConnection">
<Factory className="oracle.as.scheduler.config.ca.EssConnectionFactory"/>

<RefAddresses>

<StringRefAddr addrType="NotificationServiceURL">
<Contents>http://localhost:8001</Contents>
</StringRefAddr>

<StringRefAddr addrType="RequestFileDirectory">
<Contents>/tmp/ess/requestFileDirectory</Contents>
</StringRefAddr>

<StringRefAddr addrType="SAMLTokenPolicyURI">
<Contents/>
</StringRefAddr>

<StringRefAddr addrType="FilePersistenceMode">
<Contents>file</Contents>
</StringRefAddr>
</RefAddresses>
</Reference>
</References>

4. Follow the instructions described in Section 9.14.1, "How to Create an Oracle ADF
User Interface for Submitting Job Requests."

5. Create a native ADF Business Components view object with attributes
representing the following properties:

Working with Extensions to Oracle Enterprise Scheduler 9-45

Creating an Oracle ADF User Interface for Submitting Job Requests

= Recipient Type: Specify whether the notification recipient is a user or a group
of users. This should be defined as a radio button. Values are User or Group.

= Recipient ID: Specify the User- or GrouplD, depending on the recipient type.
Create an LOV that provides a list of users or groups for the current
submitting user. This LOV is dependent on the selected recipient type.

= On Success: Notify the recipient upon successful completion of the job.

= On Warning: Notify the recipient in the event of a job that ends with a
warning.

= On Error: Notify the recipient in the event that a job completes in an error
state.

Note: If using the post-processing action infrastructure to display the
notification view object, it is not necessary to define status options in
the view object (On Success, On Warning, On Error). Status data
collection is built into the post-processing action infrastructure.

6. Launch the application using the following URL:

http://<machine>:<http-port>/<context-root>/faces/<page>

9.14.7 What Happens When You Create an Oracle ADF User Interface for Submitting
Job Requests

The Oracle ADF interface is integrated with the Fusion application, and the
application is tested and deployed. End users access the Oracle ADF user interface, fill
in optional job properties, and click a button to submit the job request.

9.14.8 What Happens at Runtime: How an Oracle ADF User Interface for Submitting Job
Requests Is Created

The application receives the submitted job request and calls Oracle Enterprise
Scheduler Service to run the job. The Fusion application accesses the values of the
properties entered by end users through the view object in which these properties
were defined at design time. The job returns a result of success or failure, and the
result passes from the Fusion application to Oracle Enterprise Scheduler.

Custom Task Flow

A job that includes properties to be filled in by end users through an Oracle ADF user
interface at runtime includes ADF Business Components view objects with validation
and the parameters to be filled in by end users. These parameters are submitted at
runtime in the order in which they have been defined, meaning the first custom
parameter to be defined is submitted first. The custom parameters must be named as
follows:

ParameterVO1l.ATTRIBUTEL, ParameterVOl.ATTRIBUTE2, ParameterVO2.ATTRIBUTEL,
ParameterV03.ATTRIBUTEL, and so on.

If the job definition includes ContextParametersVo, ParameterTaskflow and
parametersVo, these properties render in that order at run time.

9-46 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Defining Oracle Business Intelligence Publisher Post-Processing Actions for a Scheduled Job

Context-Sensitive Parameters

When launching the SRS UI to submit a job or job set request with context-sensitive
parameters, contextParametersVo initially renders in the Parameters tab of the Oracle
ADF user interface.

The end-user can then enter values for the context-sensitive parameters. Clicking Next
invokes setConextAPI by passing the context parameters. The context is set at the
database level and the remaining parametersVo job parameters are rendered.

When the context-sensitive parameters are modified, end-users must click Next in
order to set the context with the new values.

Notifications

When the final status of the job is determined, Oracle Enterprise Scheduler delivers the
notifications to the relevant users or groups using the User Messaging Service. Groups
receive notifications via e-mailed, whereas users receive notifications based on their
messages preferences.

The notification view object defined at design time populates the input box in the
submission request user interface at run time.

9.15 Submitting Job Requests Using the Request Submission API

You can submit, cancel and otherwise manage job requests using the request
submission APL

For information about using the request submission API, see Section 13, "Using the
Runtime Service."

9.16 Defining Oracle Business Intelligence Publisher Post-Processing
Actions for a Scheduled Job

Oracle Business Intelligence Publisher enables generating reports from a variety of
data sources, such as Oracle Database, web services, RSS feeds, files, and so on. BI
Publisher provides a number of delivery options for generated reports, including
print, fax, and e-mail.

In order to create an Oracle BI Publisher report, an Oracle BI Publisher report
definition is required. Oracle BI Publisher report definitions consist of a data model
that specifies the type of data source (database, web service, and so on) and a template
for output formatting.

With report definitions in place, options for reporting are available to end users in the
Output tab of the Oracle ADF user interface. The Output tab provides options through
which an end user can define templates for reports. They can specify layout templates,
document formats (such as PDF, RTF, and more), report destinations (email addresses,
fax numbers, or printer addresses), and so on. When the user submits a request, this
information is stored in the Oracle Enterprise Scheduler schema. The post-processor
then invokes the Oracle BI Publisher service and passes the saved data to it.

Extensions to Oracle Enterprise Scheduler provide the ability to run Oracle BI
Publisher reports as batch jobs. The Oracle Enterprise Scheduler post-processing
infrastructure enables applying Oracle BI Publisher formatting templates to XML data
and delivering the formatted reports by printing, faxing, and so on.

For more information about defining post-processing actions for scheduled jobs, see
"Creating a Business Domain Layer Using Entity Objects" in the Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework.

Working with Extensions to Oracle Enterprise Scheduler 9-47

Defining Oracle Business Intelligence Publisher Post-Processing Actions for a Scheduled Job

9.16.1 How to Define Oracle Bl Publisher Post-Processing for a Scheduled Job

Defining post-processing for a scheduled job involves the following:
= Define the post-processing action.

s Create a Java class for the post-processing action. The Java class uses the
parameters collected by the Oracle Enterprise Scheduler Ul and calls Oracle BI
Publisher APIs as required.

» Create a native ADF Business Components view object to save parameters for
post-processing, such as template name, output format, locale, and so on.

Before you begin:

1. Follow the instructions for setting up Oracle BI Publisher reporting as described in
the Oracle BI Publisher documentation.

Use the following file to set up reporting and seed your database with the relevant
Oracle BI Publisher data:

Example 9-31 Location of the File for Setting Up Oracle Bl Publisher Reporting and
Seeding the Database

$SBEAHOME/jdeveloper/jdev/oaext/adflib/PPActions. jar

2. Create an Oracle Bl Publisher job definition, following the instructions in the
Oracle BI Publisher documentation.

3. Define File Management Group (FMG) properties for the Oracle BI Publisher job
definition as described in Section 9.4.2, "How to Define File Groups for a Job."

To create an Oracle Bl Publisher post-processing action:

1. In the table APPLCP_PP_ACTIONS, define the post-processing action to be executed
for the job.

The columns to be seeded in the APPLCP_PP_ACTIONS table are as follows:

» Action_SN: Define a short name for the action, used when post-processing
actions are submitted programatically. For example, OBFUSCS.

m Action Name: Enter a name for the action to be displayed in the user interface.
This name is stored separately for translation purposes.

» Class: Enter the name of the Java class that defines the logic for the
post-processing action. For example,
oracle.apps.shh.obfuscate.PPobfuscate.

m VO_Def_Name: Enter the name of the view object used to collect the arguments
for the post-processing action. For example,
oracle.apps.shh.obfuscate.PPobfuscateVoO.

= Type: Enter the category of the post-processing action to be taken. Enter one of
the following categories of post-processing actions:

— L:Indicates a Layout post-processing action. Layout actions change the
output of the job, and produce new output.

- 0: Indicates an Output post-processing action. Output actions act on the
output created by the job and its layout actions, performing delivery,
publishing, printing, and so on.

9-48 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Defining Oracle Business Intelligence Publisher Post-Processing Actions for a Scheduled Job

- F:Indicates a Final post-processing action. Final Actions take no input.
Final post-processing actions execute using the final status of the job after
all Layout and Output actions have executed.

On_Success: Indicate whether the post-processing action runs following a
successful job. Enter Y or N.

On_Warning: Indicate whether the post-processing action runs following a job
that ends in a warning. Enter Y or N.

On_Failure: Indicate whether the post-processing action runs following a
failed job. Enter Y or N.

SEQ_NUM: Enter a number to sequentially order the post-processing actions.
Only registered post-processing actions of the same type can be sequentially
ordered. This value determines both the order in which the tabs corresponding
to the actions appear in the user interface, and the order in which the actions
run.

Each action can also specify request parameters used by the post-processing action
view object. These parameters must be set in the job definition for any job using
this action. The parameter names are stored in the APPLCP_PP_ACTION_PARAMS
table. The values of these parameters are accessible from the parameter view object
at the time of job request submission. Post-processing actions can access all request
parameters at runtime using the request ID.

2. Define a Java class for the post-processing action, implementing the interface
oracle.apps.fnd.applcp.request.postprocess.PostProcess. Use the methods
required by the interface as described in Table 94.

Table 9-4 Methods Required When Implementing the Interface
oracle.apps.fnd.applcp.request.postprocess.PostProcess

Method Description
PostProcessState Receives the requestID, the ppArguments|[] array
invokePostProcess (long requestID, of arguments collected from the view object (or
String ppArguments[], ArrayList submitted programmatically), and the files
files); array list which identifies the files on which the
action is to be taken.
It is possible to specify the location of the output
file.
ArrayList getOutputFileList(); Returns an array of the output files created by the

post-processing action.

Additional methods used by the invokePostProcess method are shown in
Table 9-5.

Table 9-5 Oracle Bl Publisher Client API oracle.xdo.service.client.ReportService Used
by the invokePostProcess method

Method

Description

runReport () Enables the post-processing action to pass to the

Business Intelligence Publisher the job's XML
output along with the template ID and format (all
collected during job request submission).

Additional methods used by the ReportRequest object are shown in Table 9-6.

Working with Extensions to Oracle Enterprise Scheduler 9-49

Defining Oracle Business Intelligence Publisher Post-Processing Actions for a Scheduled Job

Table 9-6 Oracle Bl Publisher Client API oracle.xdo.service.client.types.ReportRequest
Used by the ReportRequest Object

Method Description

setAttributeFormat () Set the format for the Oracle BI Publisher report
request.

setAttributeLocale () Set the locale data for the Oracle BI Publisher

report request.

setAttributeTemplate () Set the template for the Oracle BI Publisher
report request.

setXMLData () Set the XML data for the Oracle BI Publisher
report request.

An example of a Java class that defines a post-processing action is shown in
Example 9-32:

Example 9-32 A Java Class that Defines a Post-Processing Action
package oracle.apps.shh.Obfuscate;

import oracle.apps.fnd.applcp.request.postprocess.PostProcess;
import oracle.apps.fnd.applcp.util.ESSContext;

import oracle.apps.fnd.applcp.util.PostProcessState;

import oracle.as.scheduler.*;

public class PPobfuscate implements PostProcess {
ArrayList myOutputFiles;

ArrayList getOutputFileList()
{

return myOutputFiles;

PostProcessState invokePostProcess(long requestID, String ppArguments(],
ArrayList files)
{

RuntimeService rService = null;
RuntimeServiceHandle rHandle = null;
try {
// Accessing Runtime Details for a given requestID
RequestDetail rDetail = null;
RequestParameters rParam = null;
String obfuscationSeed = ppArguments[0];
String codedFileName = ppArguments[1];
String myNewFile;
String outDir = null;

rService = ESSContext.getRuntimeService();

if (rService != null) rHandle = rService.open();

if (rHandle != null) rDetail = getRequestDetails(rHandle, requestID);
if (rDetail != null) rParam = rDetail.getParameters();

if (rParam != null) outDir = rParam.getValue ("outputWorkDirectory");
if (outDir == null)

{
// Didn't get our details for some reason, usually an exception
// would have been thrown by now. We handle this case to be robust.

9-50 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Defining Oracle Business Intelligence Publisher Post-Processing Actions for a Scheduled Job

// log the ERROR to ODL
return PostProcessState.ERROR;
}
// Check files
if (files[0] == null)
{
// no files - PostProcessing should never call us in this state
// in case it does - log Error to ODL
return PostProcessState.ERROR;
}
// This example expects a single file
myNewFile = outputDir + System.getProperty("file.separator") +
codedFileName;
Obfuscate.performObfuscation(files[0], obfuscationSeed, myNewFile);
myOutputFiles[0] = myNewFile;

// In case we're called on multiple files

for (i =1; files[i] !'= null; i++)

{
// appending a counter to the filename to be unique
myNewFile = outputDir + System.getProperty("file.separator") +
codedFileName + 1 ;
Obfuscate.performObfuscation(files[i], obfuscationSeed, myNewFile);
myOutputFiles[i] = myNewFile;

// Return our success
return PostProcessState.SUCCESS;

} catch (RuntimeServiceException rse)

// log RuntimeServiceException to ODL
return PostProcessState.ERROR;
} catch (Exception e)

// log Exception to ODL
return PostProcessState.ERROR;
} finally {
if (rHandle != null)
rService.close(rHandle) ;

}
} // end class

3. Create a native ADF Business Components view object to collect the parameters to
be used in the post-processing action. Follow the procedure described in
Section 9.4, "Creating a Job Definition." Define any view object attributes
sequentially.

If the view object requires access to action-specific values from the job definition,
specify the required job definition parameters in the action definition. The
submission UI automatically retrieves the values from the job definition metadata
and sets them as Applications Core Session attributes that may be retrieved using
the ApplSession standard APIL.

Working with Extensions to Oracle Enterprise Scheduler 9-51

Defining Oracle Business Intelligence Publisher Post-Processing Actions for a Scheduled Job

9.16.2 How to Define Oracle Bl Publisher Post-Processing Actions for a Scheduled

PL/SQL Job

Example 9-33 shows a PL/SQL job that includes Oracle BI Publisher post-processing
actions. The PL/SQL job calls ess_runtime.add_pp_action so as to generate a layout
for the data from the post-processing action. This example formats the XML generated
by the job as a PDF file.

Example 9-33 Defining a Scheduled PL/SQL Job with Oracle Bl Publisher
Post-Processing Actions

declare

1_reqgid number ;

1_props ess_runtime.request_prop_table_t;
begin

ess_runtime.add_pp_action (

props => 1_props, -- IN OUT
request_prop_table_t,

action_order =1, -- order in which this post
processing action will execute.

action_name => 'BIPDocGen', -- Action for Document
Generation (layout)

on_success = 'y', -- Should this be called on
success,

on_warning = 'N', -- Should this be called on
warning,

on_error => 'N', -- Should this be called on
error,

file_mgmt_group => 'XML', -- File types this action
will process. It has to be defined in Job Defintion,

step_path => NULL, -- IN varchar2 default NULL,

argumentl => 'XLABIPTEST RTF', -- Template name needed for
Documnet Generation action,

argument2 => 'pdf"' -- What type of layout file

will be generated by Document Generation action,

)

1_reqgid :=

ess_runtime.submit_request_adhoc_sched
(application => 'SSEssWls', -- Application
Application
definition_type => 'JOB',
definition_name => 'BIPTestJob', -- Job definition
definition_package => '/mypackage', -- Job definition package
props => 1_props);
commit;
dbms_output.put_line('request_id = :'||1l_regid);
end;

9.16.3 What Happens When You Define Oracle Bl Publisher Post-Processing Actions
for a Scheduled Job

Depending on the FMG property set for the job definition, the relevant post-processing
action is selected for the job.

9-52 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Defining Oracle Business Intelligence Publisher Post-Processing Actions for a Scheduled Job

The ppArguments array stores the values collected from the view object attributes. The
array is passed to the invokePostProcess method which executes in the Java class that
defines the post-processing action.

9.16.4 What Happens at Runtime: How Oracle Bl Publisher Post-Processing Actions
are Defined for a Scheduled Job

At runtime, the user interface uses the view object to collect the arguments for
executing the post-processing action as defined in the table APPLCP_PP_ACTIONS. These
arguments also instruct the user interface as to how to invoke the action logic.

The post-processing action accesses the XML output file from the job request, and
passes the XML output to Oracle BI Publisher. The post-processing action creates a
report request containing the XML data.

The post-processing action displays in the submission Oracle ADF Ul. The Ul enables
adding a post-processing action for the scheduled job, selecting arguments for the
action using the view object and selecting output options for the action. The user
interface also displays the name of the file management group with which the output
files are associated.

9.16.5 Invoking Post-Processing Actions Programmatically

You can invoke post-processing actions programmatically from a client using a Java or
web service API. Both APIs require the same set of parameter values described in table
Table 9-7.

For Java clients, call the addpPPAction method of
oracle.as.scheduler.cp.SubmissionUtil. The method takes the values needed to
invoke the action and throws IllegalArgumentException if the number of arguments
exceeds 10. Here's the method's declaration:

public static void addPPAction (RequestParameters params,

int actionOrder,

String actionName,

String description,

boolean onSuccess,

boolean onWarning,

boolean onError,

String fileMgmtGroup,

String[] arguments)

throws IllegalArgumentException

For web service clients, you invoke the method using a proxy, as in Example 9-34. For
more on the web service, see Chapter 10, "Using the Oracle Enterprise Scheduler Web
Service.".

Example 9-34 Adding Post-Processing Actions for a Request

ESSWebService proxy = createProxy ("addPPActions");

PostProcessAction ppAction = new PostProcessAction();
ppAction.setActionOrder (1) ;

ppAction.setActionName ("BIPDocGen") ;
ppAction.setOnSuccess (true) ;

ppAction.setOnWarning (false);

ppAction.setOnError (false);
ppAction.getArguments () .add ("argumentl") ;
ppAction.getArguments () .add ("argument2") ;

Working with Extensions to Oracle Enterprise Scheduler 9-53

Defining Oracle Business Intelligence Publisher Post-Processing Actions for a Scheduled Job

List<PostProcessAction> ppActionList = new ArrayList<PostProcessAction>();
ppActionList.add (ppAction) ;

RequestParameters regParams = new RequestParameters();
regParams = proxy.addPPActions (regParams, ppActionList);

9-54 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Defining Oracle Business Intelligence Publisher Post-Processing Actions for a Scheduled Job

Table 9-7 Parameters for Adding a Post-Processing Action

Parameter Description

params A RequestParameters object into which this method adds parameters.

actionOrder The ordinal location of this action in the sequence of actions to be performed
within the action domain. BIP processes requests starting with action order
index 1.

actionName The name of the action to perform. The following lists acceptable values for this

parameter, along with the acceptable values you can use in the arguments

parameter of this method.

= BIPDocGen: for applying Oracle Business Intelligence Publisher templates.
Acceptable argument parameter values are:

argumentl:

maps to report parameter

TEMPLATE, the template name.

argument2:

maps to report parameter

OUTPUT_FORMAT, the output format for BIP
document generation, for example, "pdf" or

"html".

argument3:

maps to report parameter

LOCALE, the locale to be used while
generating output.

= BIPPrintService: for specifying the print action. Acceptable argument

parameter values are:

argumentl:
argument2:
argument3:
argument4:
argument5:

argumentoé:

maps to printerName
maps to numberOfCopies
maps to side

maps to tray

maps to pagesRange

maps to orientation

= BIPDeliveryEmail: for specifying the email action. Acceptable argument

parameter values are:

argumentl:
argument2:
argument3:
argumentd:
argument5:
argument6:
argument7:

argument8:

maps to emailServerName
maps to from

maps to to

maps to cc

maps to bcc

maps to replyTo

maps to subject

maps to messageBody

= BIPDeliveryFax: for specifying the fax action. Acceptable argument

parameter values are:

description Description of this post processor action.

argumentl:

argument2:

maps to faxServerName

maps to faxNumber

Working with Extensions to Oracle Enterprise Scheduler 9-55

Monitoring Scheduled Job Requests Using an Oracle ADF Ul

Table 9-7 (Cont.) Parameters for Adding a Post-Processing Action

Parameter Description

onSuccess Determines whether this action should be performed on successful completion
of the job.

onWarning Determines whether this action should be performed when the job or step has
completed with a warning.

onError Determines whether this action should be performed when the job or step has
completed with an error.

fileMgmtGroup Name of the File Management Group.For BIP applying template this will be
"XML'; defined in job definition Program.FMG property with value 'L.XML'".

arguments A list of arguments for the post processor action. See the actionName parameter

for values you can use for the arguments parameter.

9.17 Monitoring Scheduled Job Requests Using an Oracle ADF Ul

It is possible to view previously submitted jobs by integrating the Monitoring
Processes taskflow into an application.

For information about enabling tracing for jobs, see "Developing Diagnostic Tests" in
Oracle Fusion Applications Developer’s Guide. For more information about tracing Oracle
Enterprise Scheduler jobs, see the section "Tracing Oracle Enterprise Scheduler Jobs" in
the chapter "Managing Oracle Enterprise Scheduler Service and Jobs" in the Oracle
Fusion Applications Administrator’s Guide.

9.17.1 How to Monitor Scheduled Job Requests

The main steps involved in monitoring scheduled job requests using an Oracle ADF Ul
are as follows:

s Configure Oracle Enterprise Scheduler in JDeveloper
s Create and initialize an Oracle Fusion web application

s Create a UI Shell page and drop the Monitor Processes task flow onto it

Note: Fields such as submission date, ready time, scheduled date,
process start, name, type, definition, and so on, are not set unless the
job request or sub-request is successfully validated.

To monitor scheduled job requests using an Oracle ADF Ul:

1. Follow the instructions in Section 9.14.1, "How to Create an Oracle ADF User
Interface for Submitting Job Requests" up to and including step 5.

2. Under the ViewController project, right-click Web Content and create a new JSF
page called Consumer.jspx. Be sure to select the following options:

» UIShell (template)

s Create as XML Document
3. Create a new JSF page fragment. This page initializes the project.
4. Open adfc-config.xml and drag Consumer.jspx onto adfc-config.xml.
5. Right-click adfc-config.xml and select Create ADF Menu.

The Create ADF Menu Model window displays.

9-56 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Monitoring Scheduled Job Requests Using an Oracle ADF Ul

6. Rename the default file root_menu.xml to something else.

7. Open the XML file created in the previous step. Look for an itemNode element as
follows:

<itemNode id="itemNode_JSF/JSPX page name">

For example, the Consumer.jspx page has the following itemNode value:

<itemNode id="itemNode_Consumer">

8. In the Structure window, right-click the root itemNode and select Insert inside
itemNode-itemNode_]JSF/JSPX page name > itemNode.

9. In Common Properties, enter the following values:

= id: MonitorNode

s focusViewld: /Consumer
10. In Advanced Properties, enter Monitor Processes in the label field.
11. Right-click the itemNode you just added and select Go to Properties.
12. In the Property Inspector, select Advanced and do the following:

= Select the dynamicMain task type.

= Inthe taskFlowId field, enter the following;:

/WEB-INF/oracle/apps/fnd/applcp/monitor/ui/flow/MonitorProcessesMainAreaFlo
w.xml#MonitorProcessesMainAreaFlow

= Enter a string for the pageTitle parameter, which will become the title for the
monitoring page. If this parameter is not specified, then the page title will be
shown as "Manage Scheduled Processes".

13. Repeat steps 8-12 to create a second itemNode element with the following
properties:

s id: _ Launcher itemNode_ FndTaskList
s focusViewld: /Launcher

= label: #{applcoreBundle. TASKS}

s Task Type: defaultRegional

s taskFlowld:
/WEB-INF/oracle/apps/fnd/applcore/patterns/uishell/ui/publicFlow/Ta
sksList.xml#TasksList

14. Right-click adfc-config.xml and select Link ADF Menu to Navigator.

15. Configure Oracle JDeveloper Integrated Oracle WebLogic Server for development
with Oracle Enterprise Scheduler extensions.

16. Deploy and test the application.

9.17.2 How to Embed a Table of Search Results as a Region on a Page

You can embed a table of job request search results as a region on a page. A number of
task flow parameters can be used to further specify the job requests returned by the
search.

Working with Extensions to Oracle Enterprise Scheduler 9-57

Monitoring Scheduled Job Requests Using an Oracle ADF Ul

To embed a search results table as a region:

1. Add the Applications Concurrent Processing (View Controller) library to the
ViewController project.

For more information about adding this library to the project, see Section 9.3.1.

2. In the Resource Palette, select File System > Applications Core >
MonitorProcesses-View.jar > ADF Task Flows.

3. Drag and drop onto the page as a region the SearchResultsFlow task flow.
The task flow accepts the following parameters:
» processId: The request ID number uniquely identifying the process.

» processName: The name of the process, which corresponds to the name of the
job definition.

»s processNameList: Fetches the job requests of multiple process names using a
list which contains the relevant job names.

When specifying the task flow parameter processName, this parameter takes
precedence over the task flow parameter processNameList. The requests
returned are for the single process name specified by the processName
parameter only.

» scheduledDays: Queries requests for the last n days. If this parameter is not
specified in a work area task flow, job requests from the last three days are
displayed. If the value of this parameter is greater than three days, then the
parameter value will be taken as three and only the last three days of job
requests display.

= status: The status of the request. This filter narrows down the result set to
display only the requests with the selected status in the filter.

If the status input parameter is not specified, then the results table shows all
requests with all statuses (by default, A11 is selected in the status filter list).

If the status input parameter is specified, then the results table show only the
requests of the given status. The selected status is chosen as the default in the
status filter list.

m isEmbedResults: A boolean value that indicates whether search results are
embedded in the task flow. True or false.

Set to true in order to embed table results.

= Time Range Filter: This filter is used to narrow down the result set to show
only the requests for last n hours. This filter lists the following values in a
combobox: (1) Last 1 Hour, (2) Last 12 Hours, (3) Last 24 Hours, (4) Last 48
Hours and (5) Last 72 Hours.

The default selected item displays based on the value assigned or given to the
task flow parameter scheduledDays.

A scheduledDays value of 1 means the time range filter list displays only the
first three items.

A scheduledDays value of 2 means the time range filter list displays only the
first four items.

If the value of scheduledDays is 1, then by default, the time range combobox
displays Last 24 Hours.

9-58 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Monitoring Scheduled Job Requests Using an Oracle ADF Ul

If the value of scheduledDays is 3 or more, then by default, the time range
combobox displays Last 72 Hours.

s pageTitle: When passed, the task flow will render this passed String value as
the page title. Optional.

s requireRootOutcome: If true is passed as the value, then the task flow will
generate root-outcome when the user clicks on the Submit or Cancel buttons.
By default the task flow generates parent-outcome.

Specifying more than one of these parameters causes the search to run using the
AND conjunction.

9.17.3 How to Log Scheduled Job Requests in an Oracle ADF Ul

You can enable Oracle Diagnostic Logging in an Oracle ADF UI used to monitor
scheduled job requests. When enabling logging, the Ul displays a View Log button.

The View Log functionality in the monitoring UI applies only to scheduled requests
with a persistenceMode property set to file. Hence, the View Log button in the
scheduled request submission monitoring Ul displays only when viewing requests
with persistenceMode property set to file.

The only other valid value for the persistecelMode is content. The View Log button is
hidden for all requests with a persistenceMode property value of content. If the
persistenceMode property is not specified for a given request, then the monitoring Ul
defaults to a persistencelMode value of file, and displays the View Log button when
viewing relevant requests.

To log scheduled job requests:
1. Open the server's logging.xml file.

2. Inthe logging.xml file, enter the required logging level for
oracle.apps.fnd.applcp.srs, for example: INFO, FINE, FINER or FINEST.

Example 9-35 shows a snippet of a logging.xml file with Oracle Diagnostic
Logging configured.

Example 9-35 Enabling Logging in the logging.xml File
<logger name='oracle.apps.fnd.applcp.srs' level='FINEST'
useParentHandlers="'false'>
<handler name='odl-handler'/>
</logger>

3. Save the logging.xml file and restart the server.

9.17.4 How to Troubleshoot an Oracle ADF Ul Used to Monitor Scheduled Job Requests

Some useful tips for troubleshooting the Oracle ADF Ul used to monitor scheduled job
requests.

s Displaying a readable name. When defining metadata, use the display-name
attribute to configure the name to be displayed in the Oracle ADF UL The
monitoring Ul will display the value defined for the display-name attribute. If this
attribute is not defined, the Ul displays the value of the metadata-name attribute
assigned to the metadata.

» Displaying multiple links in the task flow UI that each display a pop-up
window with a different job definition. The recommended approach is to create

Working with Extensions to Oracle Enterprise Scheduler 9-59

Monitoring Scheduled Job Requests Using an Oracle ADF Ul

a single page fragment that contains the scheduled request submission task flow
within an Oracle ADF region. This page is re-used by each link to display a
different job definition in the scheduled request submission Ul For each link, be
sure to pass the relevant parameters such as the job definition name, package
name, and so on. This approach ensures that the Ul session creates and uses a
single instance of the task flow.

= Displaying the correct name given the metadata name and display name
attributes. By default, the display name takes precedence and displays in the UL If
the display name is not defined, then the Ul displays the job or job set name.

= Resolving name conflicts between a job metadata parameter name and a request
parameter with the same name. Oracle Enterprise Scheduler uses the following
rules to resolve parameter name conflicts.

— The last definition takes precedence. When the same parameter is defined
repeatedly with the read-only flag set to false in all cases, the last parameter
definition takes precedence. For example, a property specified at the job
request level takes precedence over the same property specified at the job
definition level.

— The first read-only definition takes precedence. When the same parameter is
defined repeatedly and at least one definition is read-only (that is, the
ParameterInfo read-only flag is set to true), the first read-only definition takes
precedence. For example a read-only parameter specified at the job type
definition level takes precedence over a property with the same name
specified at the job definition level, regardless of whether or not it is read-only.

= Resolving name conflicts between the job or job set metadata name and display
name attributes. By default, the display name takes precedence over the metadata
name. If the display name is not defined, then the UI defaults to displaying the job
or job set name.

= Understanding the state of a job request. There are 20 possible states for a job
request, each with a corresponding number value. These are shown in Table 9-8.

Table 9-8 Job Request States

Job State Number Job Request State Description

-1 UNKNOWN The state of the job request is unknown.

1 WAIT The job request is awaiting dispatch.

2 READY The job request has been dispatched and is awaiting processing.

3 RUNNING The job request is being processed.

4 COMPLETED The job request has completed and post-processing has
commenced.

5 BLOCKED The job request is blocked by one or more incompatible job
requests.

6 HOLD The job request has been explicitly held.

7 CANCELLING The job request has been cancelled and is awaiting
acknowledgement.

8 EXPIRED The job request expired before it could be processed.

9 CANCELLED The job request was cancelled.

10 ERROR The job request has run and resulted in an error.

11 WARNING The job request has run and resulted in a warning.

9-60 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using a Task Flow Template for Submitting Scheduled Requests through an Oracle ADF Ul

Table 9-8 (Cont.) Job Request States

Job State Number

Job Request State Description

12 SUCCEEDED The job request has run and completed successfully.

13 PAUSED The job request paused for sub-request completion.

14 PENDING_VALIDATION The job request has been submitted but has not been validated.

15 VALIDATION_FAILED The job request has been submitted, but validation has failed.

16 SCHEDULE_ENDED The schedule for the job request has ended, or the job request
expiration time specified at submission has been reached.

17 FINISHED The job request, and all child job requests, have finished.

18 ERROR_AUTO_RETRY The job request has run, resulted in an error, and is eligible for
automatic retry.

19 ERROR_MANUAL_ The job request requires manual intervention in order to be retried

RECOVERY or transition to a terminal state.

» Fixing an Oracle BI Publisher report that does not generate, even though the
Oracle Enterprise Scheduler schema REQUEST_PROPERTY table contains all the
relevant post-processing parameters. Verify that the post-processing parameters
begin with index value of 1. If a set of parameters begins with an index value of 0
(such as pp.0.action), then the Oracle BI Publisher report will not generate.
Oracle BI Publisher expects parameters to begin with an index value of 1. In the
case of a job set with multiple Oracle BI Publisher jobs, verify that all the
individual step post-processing actions begin with an index value of 1.

» Fixing a scheduled request submission UI that does not display, and throws a
partial page rendering error in the browser indicating that the drTaskflowId is
invalid. This error may occur as a result of any of the following.

— The object oracle.as.scheduler.JobDefinition may be unavailable to the
scheduled request submission U, which attempts to query the object using the
MetadataService APL

— The job definition name or the job definition package name is incorrect when
passed as task flow parameters. Ensure that the package name does not end
with a trailing forward slash.

- The metadata permissions are not properly configured for the user who is
currently logged in. The JobDefinition object, being stored in Oracle
Metadata Repository, requires adequate metadata permissions in order to read
and modify the JobDefinition metadata. Ensure that the Oracle Metadata
Repository to which you are referring contains the job definition name in the
proper package hierarchy.

9.18 Using a Task Flow Template for Submitting Scheduled Requests
through an Oracle ADF Ul

The Oracle ADF Ul used to submit scheduled requests supports basic and advanced
modes. Switching between modes requires page navigation between two view
activities.

In some cases, you may want to use a custom parameter task flow for the Ul in the
context of an Oracle Fusion web application. One such use case is when you require a
method call activity as the default activity of a custom bounded task flow so as to
initialize the parameters view object and flex filters defined in that task flow.

Working with Extensions to Oracle Enterprise Scheduler 9-61

Using a Task Flow Template for Submitting Scheduled Requests through an Oracle ADF Ul

When using page navigation between two view activities and custom bounded task
flows with a default method call activity, switching between basic and advanced
modes might re-initialize the related view objects and entity objects. If this happens,
any data entered in basic mode is lost when changing to advanced mode.

The task flow template enables switching between basic and advanced modes in the
scheduled request submission Oracle ADF Ul without losing data.

9.18.1 How to Use a Task Flow Template for Submitting Scheduled Requests through
an Oracle ADF Ul

A bundled task flow template is provided, containing the components required to
enable switching between basic and advanced modes in the Oracle ADF UL The task
flow template adds a router activity and an input parameter to the custom bounded
task flow. Configure the router activity as the default activity.

You need only extend the task flow template as needed and implement the activity IDs
defined in the task flow template.

Example 9-36 shows a sample implementation of the task flow template.

Example 9-36 Task Flow Template

<?xml version="1.0" encoding="UTF-8" ?>
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2">
<task-flow-template id="srs-custom-task-flow-template">
<default-activity id="defActivity">defaultRouter</default-activity>
<input-parameter-definition id="paraml">

<description id="paramDescription">Parameter to decide on initialization.</description>

<name id="paramName">shouldInitialize</name>
<value id="paramID">#{pageFlowScope.shouldInitialize}</value>
<class id="paramType">boolean</class>
<required/>
</input-parameter-definition>

<router id="defaultRouter">
<case id="routerCaseID">
<expression id="routerExprID">#{pageFlowScope.shouldInitialize}</expression>
<outcome id="outcomeID">initializeTaskflow</outcome>
</case>
<default-outcome id="defOutcomeID">skip</default-outcome>
</router>

<control-flow-rule id="ctrlFlwRulID">
<from-activity-id id="FrmAcl">defaultRouter</from-activity-id>
<control-flow-case id="CtrlCasel">
<from-outcome id="FrmAct3">initializeTaskflow</from-outcome>
<to-activity-id id="ToActl">initActivity</to-activity-id>
</control-flow-case>
<control-flow-case id="CtrlCase2">
<from-outcome id="FrmAct2">skip</from-outcome>
<to-activity-id id="ToAct2">defaultView</to-activity-id>
</control-flow-case>
</control-flow-rule>
<use-page-fragments/>
</task-flow-template>
</adfc-config>

The task flow template defines the following;:

9-62 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using a Task Flow Template for Submitting Scheduled Requests through an Oracle ADF Ul

s A default-activity,
= Aninput parameter of boolean type,
= A router activity,

= A control-flow-rule containing two cases.

9.18.2 How to Extend the Task Flow Template for Submitting Scheduled Requests
through an Oracle ADF Ul

If you need to create your own custom bounded task flow UI for the parameters
section of the scheduled request submission Ul, you will need to extend this template.

To extend the task flow template for the Oracle ADF Ul used to submit scheduled
requests:

1. When creating a new task flow, extend the task flow by selecting Use a template.
(For more information, see the chapter "Creating ADF Task Flows in Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework.")
Alternatively, add the lines of code shown in Example 9-37 to the task flow XML
file.

Example 9-37 Extending a Task Flow

<template-reference>
<document id="docl">/WEB-INF/srs-custom-task-flow-template.xml</document>
<id id="temid">srs-custom-task-flow-template</id>

</template-reference>

Note: Make sure that your bounded task flow does not define any
default activity.

2. Implement the activity IDs defined in the template, which are invoked by the
router activity in the template.

= initActivity: The ID of the method call activity.
s defaultView: The ID of the default view activity.

To do this, to the task flow drag and drop the createInsert method from the VO
used in the defaultView. This creates a pagedef file and adds the binding details in
DateBinding.cpx.

3. Define a control flow rule to navigate from initActivity to defaultview. This
navigation depends on the outcome of initActivity, as well as individual use
cases.

Example 9-38 shows a sample implementation of a control flow rule.

Example 9-38 Implementing a Control Flow Rule

<control-flow-rule>
<from-activity-id>initActivity</from-activity-id>
<control-flow-case>
<from-outcome>outcome_of_init_activity</from-outcome>
<to-activity-id>defaultView</to-activity-id>
</control-flow-case>
</control-flow-rule>

Working with Extensions to Oracle Enterprise Scheduler 9-63

Securing Oracle ADF Uls

9.18.3 What Happens When you Use a Task Flow Template for Submitting Scheduled
Requests through an Oracle ADF Ul

Based on the value of the input parameter, the router invokes the method call activity
or skips it, and invokes the view activity directly. The Oracle ADF Ul must pass the
correct parameter values to the task flow while switching modes.

9.18.4 What Happens at Runtime: How a Task Flow Template Is Used to Submit
Scheduled Requests through an Oracle ADF Ul

When loading the initial page in basic mode, the method call activity is invoked. While
loading the page in the advanced mode, the custom bounded task flow directly
invokes the view activity. This ensures that the user entered data persists in the view
objects across modes.

If the custom task flow Ul does not render correctly, check whether transactional
properties have been set in the custom task flow, such as requires-transaction, and
SO on.

Remove transactional properties from the task flow definition and set the data control
scope to shared.

As the parent scheduled request submission Ul task flow already has a transaction,
Oracle ADF will commit all called task flow transactions as long as the data controls
are shared.

Note: When using the Ul to schedule a job to run for a year, for
example, a maximum of 300 occurrences display when clicking
Customize Times.

9.19 Securing Oracle ADF Uls

When creating Oracle ADF Uls for scheduled jobs, you can secure the individual task
flows involved using a security policy.

The task flows you can secure are as follows.

Scheduling Job Requests Ul
m /WEB-INF/ScheduleRequest-taskflow.xml

— /WEB-INF/srs-test-task-flow.xml#srs-test-task-flow
— /WEB-INF/LayoutRN-taskflow.xml#LayoutRN-taskflow
— /WEB-INF/NotifyRN-taskflow.xml#NotifyRN-taskflow

— /WEB-INF/ScheduleRN_taskflow.xml#ScheduleRN_taskflow

Monitoring Job Requests Ul

m /WEB-INF/oracle/apps/fnd/applcp/monitor/ui/flow/MonitorProcessesMainAreaF
low.xml#MonitorProcessesMainAreaFlow

— /WEB-INF/oracle/apps/fnd/applcp/monitor/ui/flow/EmptyFlow.xml

9-64 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Logging Scheduled Jobs

9.20 Integrating Scheduled Job Logging with Fusion Applications

Oracle Enterprise Scheduler is fully integrated with Oracle Fusion Applications
logging. The logger captures Oracle Enterprise Scheduler-specific attributes when
invoking logging from within the context of a running job request. You can set the
values to these Oracle Enterprise Scheduler attributes within the context of defining a
job.

Jobs can generate a log file on the file system that can be viewed with the Monitoring
UL

In a typically configured Oracle Enterprise Scheduler hosting application, log and
output files are stored in an Oracle Universal Content Management content repository
rather than on the file system. These files are available to end users through a page you
provide for monitoring scheduled job requests. For more on request monitoring, see
Section 9.17, "Monitoring Scheduled Job Requests Using an Oracle ADF UL"

9.21 Logging Scheduled Jobs

Log messages written using the request log file APIs are written to the request log file
and Oracle Fusion Applications logging at a severity level of FINE (only if logging is
enabled at a level of FINE or lower).

9.21.1 Using the Request Log

Note: Do not use the Request Log for debug and internal error
reporting. For Oracle Enterprise Scheduler jobs, the "Request Log" is
equivalent to the end-user UI for online applications. When writing
Oracle Enterprise Scheduler job code, you should ideally log only
translatable end user-oriented messages to the Request Log. You
should not use the Request Log for debug messages or internal error
messages that are oriented to system administrators and/or Oracle
Support. Please keep in mind that the audience for debug messages
and detailed internal error messages is typically system
administrators and Oracle Support, not the end user.

Therefore, debug and detailed internal error messages should be
logged to FND_LOG only.

For Oracle Enterprise Scheduler jobs, the request log is equivalent to the end user
interface for web applications. When developing an Oracle Enterprise Scheduler job,
make sure to log to the request log only translatable end-user oriented messages.

For example, if an end user inputs a bad parameter to the Oracle Enterprise Scheduler
job, a translated error message logged to the request log is displayed to the end user.
The end user can then take the relevant corrective action.

Example 9-39 shows how to set log messages using the request log.

Example 9-39 Setting Log Messages Using the Request Log

-- Seeded message to be displayed to the end user.
FND_MESSAGE.SET NAME ('FND', 'INVALID_PARAMETER');
-- Runtime parameter information
FND_MESSAGE.SET_TOKEN (' PARAM_NAME', pName) ;
FND_MESSAGE.SET_TOKEN (' PARAM_VALUE', pValue);

-- The following is useful for auto-logging errors.

Working with Extensions to Oracle Enterprise Scheduler 9-65

Logging Scheduled Jobs

FND_MESSAGE.SET MODULE (' fnd.plsqgl .mypackage.myfuntionA') ;
fnd_file.put_line(FND_FILE.LOG, FND_MESSAGE.GET);

If the Oracle Enterprise Scheduler job fails due to an internal software error, log the
detailed failure message to FND_LOG for the system administrator or support. You can
also log a high-level generic message to the request log so as to inform end users of the
error. An example of a generic error message intended for end users: "Your request
could not be completed due to an internal error."

9.21.2 Using the Output File

Note: Do not use the output file for debugging and internal error
reporting.

The output file is a formally formatted file generated by an Oracle Enterprise
Scheduler job. An output file can be sent to a printer or viewed in a Ul window.
Example 940 shows an invoice sent to an output file.

Example 9-40 Invoice Output File
fnd_file.put_line(FND_FILE.QUTPUT, '*****x*x*x XYy7 Invoice ****xxxx1).

9.21.3 Debugging and Error Logging

Debug and error logging should be done using the Diagnostic Logging APIs only. The
Oracle Enterprise Scheduler Request Log should not be used for system administrator
or Oracle support-oriented debug and error logging purposes. The Request Log is for
the end users and it should only contain messages that are clear and easy for end users
to understand. When an error occurs in an Oracle Enterprise Scheduler job, an
appropriate high-level (and, ideally, translated) message should be used to report the
error to the end user through the Request Log. The details of the error and any debug
messages should be logged with Diagnostic Logging APlIs.

Common PL/SQL, Java, or C code that could be invoked by both Oracle Enterprise
Scheduler jobs and interactive application code should only use Diagnostic Logging
APIs. If needed, the wrapper Oracle Enterprise Scheduler job should perform
appropriate batching and logging to the Request Log for progress reporting purposes.

For more information, see the chapter "Managing Log Files and Diagnostic Data" in
Oracle Fusion Middleware Administrator’s Guide.

Using Logging in a Java Application
In Java jobs, use AppsLog for debugging and error logging. You can retrieve an AppsLog
instance from the CpContext object, by calling getLog ().

Example 9-41 shows the use of logging in a Java application.

Example 9-41 Logging in Java Using AppsLog

public boolean authenticate (AppsContext ctx, String user, String passwd)
throws SQLException, NoSuchUserException {
AppsLog alog = (AppsLog) ctx.getLog();
if (alog.isEnabled(Log.PROCEDURE)) /* To avoid String Concat if not enabled */
alog.write("fnd.security.LoginManager.authenticate.begin",
"User=" + user, Log.PROCEDURE) ;

9-66 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Logging Scheduled Jobs

/* Never log plain-text security sensitive parameters like passwd! */
try {
validUser = checkinDB(user, passwd);
} catch(NoSuchUserException nsue) {
if (alog.isEnabled (Log.EXCEPTION))
alog.write("fnd.security.LoginManager.authenticate",nsue, Log.EXCEPTION) ;
throw nsue; // Allow the caller to Handle it appropriately
} catch(SQLException sqgle) {
if(alog.isEnabled (Log.UNEXPECTED)) {
alog.write("fnd.security.LoginManager.authenticate", sqle,
Log .UNEXPECTED) ;
Message Msg = new Message("FND", "LOGIN_ERROR"); /* System Alert */
Msg.setToken ("ERRNO", sqgle.getErrorCode(), false);
Msg.setToken ("REASON", sqgle.getMessage(), false);
/* Message Dictionary messages should be logged using write(..Message..),
* and never using write(..String..) */
alog.write("fnd.security.LoginManager.authenticate", Msg, Log.UNEXPECTED) ;
}
throw sgle; // Allow the caller to handle it appropriately
} // End of catch(SQLException sqgle)
if (alog.isEnabled (Log.PROCEDURE)) /* To avoid String Concat if not enabled */
alog.write("fnd.security.LoginManager.authenticate.end",
"validUser=" + validUser, Log.PROCEDURE);
return success;

}

Note: Example 9-41 uses an active WebAppsContext. Do not attempt
to log messages using an inactive or freed WebAppsContext, as this can
cause connection leaks.

Using Logging in a PL/SQL Application

PL/SQL APIs are part of the FND_LOG package. These APIs require invoking relevant
application user session initialization APIs—such as FND_GLOBAL. INITIALIZE () — in
order to set up user session properties in the database session.

These application user session properties, including UserId, Respld, AppId, SessionId,
are needed for the log APIs. Typically, Applications Core invokes these session
initialization APlIs.

Log plain text messages with FND_LOG. STRING (). Log translatable message dictionary
messages with FND_LOG.MESSAGE (). FND_LOG.MESSAGE () logs messages in encoded, but
not translated, format, and allows the Log Viewer Ul to handle translating messages
based on the language preferences of the system administrator viewing the messages.

For details regarding the FND_LOG API, run $fnd/patch/115/sql/AFUTLOGB.pls at the
prompt.

Example 9-42 PL/SQL Logging Syntax

PACKAGE FND_LOG IS
LEVEL_UNEXPECTED CONSTANT NUMBER := 6
LEVEL_ERROR CONSTANT NUMBER := 5
LEVEL_EXCEPTION CONSTANT NUMBER := 4;
LEVEL_EVENT CONSTANT NUMBER := 3
LEVEL_PROCEDURE CONSTANT NUMBER := 2
LEVEL_STATEMENT CONSTANT NUMBER := 1

/*

Working with Extensions to Oracle Enterprise Scheduler 9-67

Logging Scheduled Jobs

** Jrites the message to the log file for the specified
** level and module
** if logging is enabled for this level and module
*/
PROCEDURE STRING (LOG_LEVEL IN NUMBER,
MODULE IN VARCHAR2,
MESSAGE IN VARCHAR2) ;

/*

** Writes a message to the log file if this level and module
** are enabled.

** The message gets set previously with FND_MESSAGE.SET_NAME,
** SET_TOKEN, etc.

** The message is popped off the message dictionary stack,

** if POP_MESSAGE is TRUE.

** Pass FALSE for POP_MESSAGE if the message will also be

** displayed to the user later.

** Example usage:

** FND_MESSAGE.SET_NAME(...); -- Set message
** FND_MESSAGE.SET_TOKEN(...); -- Set token in message
** FND_LOG.MESSAGE(..., FALSE); -- Log message
** FND_MESSAGE.RAISE_ERROR; -- Display message
*/
PROCEDURE MESSAGE (LOG_LEVEL IN NUMBER,
MODULE IN VARCHAR2,

POP_MESSAGE IN BOOLEAN DEFAULT NULL) ;

/*
** Tests whether logging is enabled for this level and module,
** to avoid the performance penalty of building long debug
** message strings unnecessarily.
*/
FUNCTION TEST (LOG_LEVEL IN NUMBER, MODULE IN VARCHAR2)
RETURN BOOLEAN;

Example 943 shows how to log a message in PL/SQL after the AOL session has been
initiliazed.

Example 9-43 Logging a Message in PL/SQL After the AOL Session Has Been Initialized
begin

/* Call a routine that logs messages. */
/* For performance purposes, check whether logging is enabled. */
if(FND_LOG.LEVEL_PROCEDURE >= FND_LOG.G_CURRENT RUNTIME_LEVEL) then
FND_LOG. STRING (FND_LOG.LEVEL_PROCEDURE,
'fnd.plsqgl .MYSTUFF.FUNCTIONA.begin', 'Hello, world!');
end if;

The global variable FND_LOG.G_CURRENT_RUNTIME_LEVEL allows callers to avoid a
function call for messages at a lower level than the current configured level. If logging
is disabled, the current runtime level is set to a large number such as 9999 so that it is
sufficient to simply log messages with levels greater than or equal to this number. This
global variable is automatically populated by the FND_LOG_REPOSITORY package during
session and context initialization.

Example 9-44 shows sample code that illustrates the use of the global variable FND_
LOG.G_CURRENT_RUNTIME_LEVEL

9-68 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Logging Scheduled Jobs

Example 9-44 Logging a Message in PL/SQL Using FND_LOG.G_CURRENT_RUNTIME_
LEVEL

if (FND_LOG.LEVEL_STATEMENT >= FND_LOG.G_CURRENT_RUNTIME_LEVEL) then
dbg_msg := create_lengthy_debug_message(...);
FND_LOG.STRING (FND_LOG.LEVEL_STATEMENT
'fnd. form.ABCDEFGH. PACKAGEA.FUNCTIONB. firstlabel', dbg_msg);
end 1if;

Note: For PL/SQL in a forms client, use the same APIs. Use FND_
LOG.TEST () to check whether logging is enabled.

Example 9-45 shows logging message dictionary messages.

Example 9-45 Logging Message Dictionary Messages

if (FND_LOG.LEVEL_UNEXPECTED >=
FND_LOG.G_CURRENT_RUNTIME_LEVEL) then
FND_MESSAGE.SET_NAME ('FND', 'LOGIN_ERROR'); -- Seeded Message
-- Runtime Information
FND_MESSAGE.SET TOKEN('ERRNO', sqglcode);
FND_MESSAGE.SET _TOKEN('REASON', sqglerrm);
FND_LOG.MESSAGE (FND_LOG.LEVEL_UNEXPECTED,
'fnd.plsgl.Login.validate', TRUE);
end if;

Using Logging in C
Example 946 illustrates the use of logging in a C application.

Example 9-46 Logging in C

#define AFLOG_UNEXPECTED 6
#define AFLOG_ERROR 5
#define AFLOG_EXCEPTION 4
#define AFLOG_EVENT 3
#define AFLOG_PROCEDURE 2
#define AFLOG_STATEMENT 1

/*

** Writes a message to the log file if this level and module is
** enabled

*/

void aflogstr(/*_ sbd4 level, text *module, text* message _*/);

/*

** Writes a message to the log file if this level and module is

** enabled.

** Tf pop_message=TRUE, the message is popped off the message

** Dictionary stack where it was set with afdstring() afdtoken(),

** etc. The stack is not cleared (so messages below will still be

** there in any case).

*/

void aflogmsg(/*_ sb4 level, text *module, boolean pop_message _*/);

/*

** Tests whether logging is enabled for this level and module, to
** gvoid the performance penalty of building long debug message

Working with Extensions to Oracle Enterprise Scheduler 9-69

Logging Scheduled Jobs

** strings
*/
boolean aflogtest(/*_ sbd level, text *module _*/);

/*

** Internal

** This routine initializes the logging system from the profiles.

** Tt will also set up the current session and username in its state */
void afloginit();

9-70 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

10

Using the Oracle Enterprise Scheduler Web
Service

Oracle Enterprise Scheduler provides a rich set of functionality for enterprise level
scheduling. This functionality includes support for the Oracle Enterprise Scheduler
web service (ESSWebservice) to access a subset of the Oracle Enterprise Scheduler
runtime functionality.

This chapter includes the following sections:

= Section 10.1, "Introduction to the Oracle Enterprise Scheduler Web Service"

= Section 10.2, "Developing and Using ESSWebservice Applications"

m Section 10.3, "ESSWebservice WSDL File"

= Section 10.4, "Use Case Using Scheduler ESSWebservice from a BPEL Process"
= Section 10.5, "Creating the ESSWebService Application and a SOA Project”

= Section 10.6, "Creating the ESSWebService Reference"

= Section 10.7, "Adding the BPEL Process to Call the ESSWebService"

= Section 10.8, "Using Additional ESSWebService Operations"

» Section 10.9, "Securing the Oracle Enterprise Scheduler Web Service"

= Section 10.10, "Deploying and Testing the Project"

10.1 Introduction to the Oracle Enterprise Scheduler Web Service

Oracle Enterprise Scheduler provides a rich set of functionality for enterprise level
scheduling. This functionality includes support for the following operations:

s Creating and managing Oracle Enterprise Scheduler metadata
= Submitting and managing Oracle Enterprise Scheduler job requests
s Configuring and managing Oracle Enterprise Scheduler

Client applications can use the Oracle Enterprise Scheduler web service
(ESSWebservice) to access a subset of the Oracle Enterprise Scheduler runtime
functionality. The ESSWebservice is provided primarily to support SOA integration,
for example invoking Oracle Enterprise Scheduler from a BPEL process. However, any
client that needs a web service to interact with Oracle Enterprise Scheduler can use
ESSWebservice. ESSWebservice exposes job scheduling and management functionality
for request submission and request management.

Using the Oracle Enterprise Scheduler Web Service 10-1

Introduction to the Oracle Enterprise Scheduler Web Service

ESSWebservice is deployed within the Oracle Enterprise Scheduler application, where
the application is a Java EE application within the Oracle Enterprise Scheduler runtime
framework. Thus, the ESSWebservice is available on every node where Oracle
Enterprise Scheduler is installed and deployed.

The ESSWebservice is a synchronous web service, such that all the operations invoked
are synchronous operations. Since internally, the job execution model in Oracle
Enterprise Scheduler is asynchronous, the APIs themselves do not need to be
asynchronous. However, Oracle Enterprise Scheduler web service also provides the
capability to retrieve the job completion events asynchronously (in a manner similar to
implementing the Oracle Enterprise Scheduler EventListener contract in the core API
layer).

The ESSWebservice WSDL describes the complete functionality for the ESSWebservice.
Table 10-1 summarizes the operations available with ESSWebservice.

Table 10-1 Summary of Operations Available with ESSWebservice

Operation Communication Type Description

addPPAction Synchronous Adds a post-processing action to a step in a job set request. This method
is called prior to submitting the request. The method provides support
for action previously supported by add_printer, add_notification, add_
layout in concurrent processing. The parameters to these legacy routines
are passed as arguments to addPPAction in the order in which they
were declared in the original routine. For more information, see
Section 10.8, "Using Additional ESSWebService Operations"

addPPActions Synchronous Similar to addPPAction, except that you can package multiple actions in
your request.

cancelRequest Synchronous Cancels the processing of a request that is not in a terminal state.

deleteRequest Synchronous Marks a request in a terminal state for deletion. This does not physically
remove any data, although the request will no longer be accessible by
most methods.
For parent requests, this operation will cascade to all children.

getCompletionStatus Asynchronous Registers for an asynchronous status update when the request
completes. A one-way operation with a separate asynchronous
response.

getRequestDetail Synchronous Gets the runtime details of the specified request.

getRequestState Synchronous Retrieves the current state of the specified request.

holdRequest Synchronous Withholds further processing of a request that is in WAIT or READY state.
For parent requests, this operation will cascade to all eligible child
requests.

releaseRequest Synchronous Releases a request from the HOLD state. For parent requests, this
operation will cascade to all eligible child requests.

setAsyncRequestStatus Synchronous Sets the status of an asynchronous java job.

setNLSOptions Synchronous Sets NLS environment options for a request.

setStepsArgs Synchronous Marshals arguments in the previous concurrent processing style into a

10-2 Oracle Fusio

Oracle Enterprise Scheduler properties for a step in a job set request.
This operation is invoked prior to submitting a request. For more
information, see Section 10.8, "Using Additional ESSWebService
Operations".

n Applications Developer's Guide for Oracle Enterprise Scheduler

Developing and Using ESSWebservice Applications

Table 10-1 (Cont.) Summary of Operations Available with ESSWebservice

Operation

Communication Type Description

setSubmitArgs

Synchronous Marshals arguments in the previous concurrent processing style into
Oracle Enterprise Scheduler properties.This operation is invoked prior
to submitting the request. The key of each argument is ARGUMENT_
PREFIX#, where # is the ordinal value of the argument. For example
ARGUMENT_PREFIX1="firstArg" and ARGUMENT_
PREFIX2="secondArg". For more information, see Section 10.8, "Using
Additional ESSWebService Operations".

submitRecurringRequest Synchronous Submits a new recurring job request (a request with a schedule). For

submitRequest

more information, see Section 10.8, "Using Additional ESSWebService
Operations".

Synchronous Submits a new job request. For more information, see Section 10.4, "Use
Case Using Scheduler ESSWebservice from a BPEL Process"

10.2 Developing and Using ESSWebservice Applications

Oracle Enterprise Scheduler executes a job request, for example a Java type job
request, in the context of the application that submitted the job. Typically, for
development purposes, Oracle Enterprise Scheduler and client applications co-exist
locally on any given node which allows Oracle Enterprise Scheduler to execute the job
in the context of the target application. For the purposes of production, the client
application and Oracle Enterprise Scheduler often reside on different servers.

A Java EE application that uses Oracle Enterprise Scheduler contains all the Oracle
Enterprise Scheduler artifacts including the following:

= Metadata, including a job type, a job definition, a schedule, and any other required
metadata such as a job set.

= Job implementation classes (for Java jobs).

= A Required Oracle Enterprise Scheduler endpoint description (an MDB
description in ejb-jar.xml).

Any clients interacting with Oracle Enterprise Scheduler using ESSWebservice need to
provide such a Java EE application, such that Oracle Enterprise Scheduler can run jobs
in the context of the correct target application. All such web service clients must know
the name of the corresponding Java EE hosting application and should pass it to
Oracle Enterprise Scheduler using the web service call wherever required (where this
is required is defined in the WSDL).

The details for developing this hosting application are described in Chapter 3, "Use
Case Oracle Enterprise Scheduler Sample Application.” Such an application is a
regular Oracle Enterprise Scheduler client application, but the job request submission
and other Oracle Enterprise Scheduler interactions may be skipped, as these calls are
generated through the ESSWebservice.

10.2.1 How to Develop and Use an ESSWebservice Java EE Application

When the Oracle Enterprise Scheduler functionality is accessed using the
ESSWebservice web service, a corresponding hosting Java EE application needs to be
available to Oracle Enterprise Scheduler. Even though clients can interact with Oracle
Enterprise Scheduler remotely using the Oracle Enterprise Scheduler web service, the
associated Java EE application must still be co-located with Oracle Enterprise
Scheduler. This allows Oracle Enterprise Scheduler to execute job requests in the
correct application context. Therefore ESSWebservice clients still need to develop,
package and deploy a corresponding Java EE application that contains all the required
Oracle Enterprise Scheduler artifacts. For information about developing an Oracle

Using the Oracle Enterprise Scheduler Web Service 10-3

Developing and Using ESSWebservice Applications

Enterprise Scheduler application, see Chapter 3, "Use Case Oracle Enterprise
Scheduler Sample Application."

10.2.2 How to Develop and Use an ESSWebservice SOA Application with BPEL

For SOA clients all the SOA components such as a BPEL processor are deployed as a
SOA composite. A SOA composite is not a Java EE application. The composite is
executed using the SOA fabric runtime framework (within soa-infra).

For SOA components, create a separate Java EE hosting application that acts as the
proxy between the composite and Oracle Enterprise Scheduler. This hosting
application can either be created in a one-to-one association with one Oracle Enterprise
Scheduler application for each composite deployed, or multiple composites can share
a single Java EE hosting application. The Java EE hosting application contains all the
desired Oracle Enterprise Scheduler artifacts.

10.2.3 Setting Web Service Addressing Headers for getCompletionStatus() Operation

As shown in the ESSWebservice WSDL, if clients want to be notified asynchronously
on job completion they can invoke the getCompletionStatus () operation. Upon job
completion, Oracle Enterprise Scheduler will invoke the callback operation
onJobCompletion() following ws-addressing where ESSWebservice captures the
caller's address in the incoming call. Clients should be capable of receiving the callback
at any arbitrary time in future. Such a callback depends entirely upon the time
required to complete the job. This is similar to the Oracle Enterprise Scheduler
functionality for invoking a client's listener (that implements Oracle Enterprise
Scheduler EventListener contract) upon job completion.

When you use getCompletionStatus () clients must include certain required web
service addressing headers (in particular the wsa:MessageID and wsa:ReplyTo
headers). This allows the Oracle Enterprise Scheduler runtime to asynchronously
notify the job completion status be sent to the correct ReplyTo address. When you use
getCompletionStatus () from a BPEL process the SOA runtime automatically adds the
required headers. When using getCompletionStatus () programatically on the client
side, using the web service proxies, then the web service client must set these
addressing headers.

10.2.4 Limitations for ESSWebservice

ESSWebservice does not support the following Oracle Enterprise Scheduler features:

= Ad hoc Request Submission: ESSWebservice does not support ad hoc job request
submission (ad hoc request submission is available using the EJB APIs). Therefore
any job that is submitted using the ESSWebservice must have its corresponding
definition, including a job type and job definition along with the schedule
definitions created as metadata objects in the associated proxy application. The
web service operation can then refer to such metadata objects using their identifier
arguments as specified in the WSDL.

s Query API: ESSWebservice does not expose the query APIs. Web service clients do
not need to obtain the query information for Oracle Enterprise Scheduler requests.
ESSWebservice web service clients do not provide generic monitoring and
managing functionality that would require the use of query APIs.

10-4 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating the ESSWebService Application and a SOA Project

10.2.5 ESSWebservice Implementation

The Oracle Enterprise Scheduler functionality is exposed as web service using an
interface (SEI) annotated with the JAX-WS annotations. The implementation of this
(SEI) web service invokes the common Oracle Enterprise Scheduler implementation
layer. The ESSWebservice is exposed in Document/Literal / Wrapped mode for
maximum interoperability.

Some of the data types used in ESSWebservice are not suitable to be used in web
service directly. Such data types cannot be readily converted into corresponding XML
representation. Therefore the Oracle Enterprise Scheduler web service layer defines
wrapper classes around these data types that are exposed in the ESSWebservice, and
visible in the WSDL. Otherwise in general, the web service layer reuses the existing
data types where possible.

10.3 ESSWebservice WSDL File

When Oracle Enterprise Scheduler is installed and running, you can obtain the WSDL
definition file from the web services page at the following type of URL:

http://host:port/ess/esswebservice?WSDL

For example,

http://systeml:7001/ess/esswebservice?WSDL

10.4 Use Case Using Scheduler ESSWebservice from a BPEL Process

The following sections show use of ESSWebService from a BPEL process; in the BPEL
process you use ESSWebService to submit a job request. The use case demonstrates
one path for using Oracle Enterprise Scheduler for BPEL and SOA users. Experienced
SOA users and designers may have other ideas for how work with Oracle Enterprise
Scheduler using the web service. To submit an Oracle Enterprise Scheduler job request
from a BPEL process, you need to deploy an application that provides the required
Oracle Enterprise Scheduler artifacts. For this use case you can deploy the EssDemoApp
described in Chapter 3, "Use Case Oracle Enterprise Scheduler Sample Application."

10.5 Creating the ESSWebService Application and a SOA Project

Using Oracle JDeveloper you create an application and the projects within the
application that contain the code and support files for the application. To create the
ESSWebService sample application, you do the following:

» Create an application and an SOA project in Oracle JDeveloper

= Configure the SOA project in Oracle JDeveloper

10.5.1 How to Create the ESSWebService Application and Project

To work with Oracle Enterprise Scheduler you first create an application and an SOA
project in Oracle JDeveloper.

To create EssWebApplication:
1. Click the New... icon.

2. Inthe New Gallery, in the navigator, expand General and select Applications.

3. In the Items area select SOA Application.

Using the Oracle Enterprise Scheduler Web Service 10-5

Creating the ESSWebService Reference

4. Click OK.

5. Use the Name your application window to enter the name and location for the
new application and to specify the application template.

a. Inthe Application Name field, enter an application name. For this sample
application, enter EssWebApplication.

b. In the Directory field, accept the default.
c. Enter an application package prefix or accept the default, no prefix.

The prefix, followed by a period, applies to objects created in the initial project
of an application.

d. Click Next.
6. In the Name your project dialog select SOA project options.
a. In the Project Name field, enter a project name or accept the default, Projectl.
b. On the Project Technologies tab, the Selected shuttle should show SOA.
c. Click Finish. This creates the EssWebApplication that contains an SOA project.

10.6 Creating the ESSWebService Reference

In the SOA composite application you need to add the ESSWebservice reference to
make the web service available for a partner link in the SOA composite application.

10.6.1 How to Add the ESSWebService Partner Link

10-6

You need to add the ESSWebService partner link to the SOA composite application.

To add the Oracle Enterprise Scheduler web service as a partner link:

1. In the Application Navigator open the ESSWebApplication and expand Projectl
and then expand SOA Content.

2. In the Application Navigator select composite.xml.

3. Right-click and from the dropdown list select Open. This displays the composite
as shown in Figure 10-1.

Figure 10-1 EssWebService Application composite.xml

(2)start Page | [l Esswebapplication jus oS composite.xml =
v B B X @ Composite Mame: Projectl
Exposed Services Components External References

To begin creating a SOA composite application,
drag-and-drop a Service Component or an Adapter
from the Component Palette

Design | Source | History

Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating the ESSWebService Reference

In the Component Palette from the SOA dropdown list, in the Service Adapters
area select Web Service.

Drag-and-drop the web service icon to the External References lane in
composite.xml. This displays the Create Web Service window, as shown in
Figure 10-2.

Figure 10-2 Create Web Service Dialog

2 Create Web Service [oO][x]

Web Service

elp | | Cancel |

Create aweb service for services external to the S0OA composite. %

Mame: |
Type: [Reference v/

WSDL URL: | | &
Port Type: | -
Callback Port Type: [-

[] copy wsdl and its dependent artifacts into the project.

Mote: Keeping a copy of a WSDL may result in synchronization issues if the remote WSDL is
updated. It is recommended not make local copies - this should be reserved for situations such
as offline dezigning.

Transaction Participation: i_WSDLDri\ten -

10.

11.

In the Name field, enter a service name, or accept the default name.
In the Type field, from the dropdown list select Reference.

In the WSDL URL text field enter the value for the WSDL URL manually, for
example:

http://host:port/ess/esswebservice?WSDL

In the SOA Resource Lookup dialog, click OK.

In the Create Web Service dialog, in the Port Type field, from the dropdown list
select ESSWebService.

In the Create Web Service dialog, in the Callback Port Type select
ESSWebServiceCallback from the dropdown list, as shown in Figure 10-3.

Using the Oracle Enterprise Scheduler Web Service 10-7

Creating the ESSWebService Reference

Figure 10-3 Create Web Service with ESSWebService WSDL

& Create Web Service [a[x]
Web Service %

Create aweb service for services external to the 504 composite, 4
Mame: |EssWebSer\rice_I0caI |

Type: |Reference s’

WSDL URL: |hnp:;;host.com:?0ol,ress,resswebsemice?wsol_ | '@

Port Type: |ESSWebSer\fice v|

Callback Port Type: [EsswebserviceCallback -

[¥]icopy wsdl and its dependent artifacts into the project.

Mote: Keeping a copy of a WSDL may result in synchronization issues if the remote WSDL is
updated. It is recommended not make local copies - this should be reserved for situations such
az offline dezigning.

Transaction Participation: 'WSDLDriven '|

| Help | | Ok || Cance| |

Select the checkbox Copy WSDL and its dependent artifacts into the project. This
allows the local copy of the Oracle Enterprise Scheduler abstract WSDL and
ESSTypes.xsd files to be moved into the SOA composite project.

Note: Keeping a local copy of a WSDL file may result in
synchronization issues if the remote WSDL file is updated. Making a
local copy of the remote WSDL file is therefore not recommended.
However, doing so may be useful for certain scenarios such as offline
designing.

12. Click OK. Now the External References lane in composite.xml displays the new
web service, as shown in Figure 10-4.

10-8 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Adding the BPEL Process to Call the ESSWebService

Figure 10-4 Composite.xml with ESSWebService External Reference

|Esswebapplication jus o[compuos ite.xmi ™

v FHXD Composite: SOACompositel

@
Servicel

Operations:

subm itRegqu...
subm itRecu. ..
getCom plet...
getRequest...
getRequest...
holdRegquest
releaseReq... [~
setAsyncRe... [¥]

Design | Source | History

10.7 Adding the BPEL Process to Call the ESSWebService

Now you need to add a BPEL Process to call the ESSWebService operations.

10.7.1 How to Add a BPEL Process to Call the ESSWebService
You need to add a BPEL process to use the ESSWebService.

To add a BPEL process to use the ESSWebService:
1. In the Application Navigator, in Project] select composite.xml.

2. Inthe Component Palette, from the SOA dropdown list in the Service Components
area select BPEL Process.

3. Drag-and-drop a BPEL process to the components swim lane. This displays the
Create BPEL Process dialog, as shown in Figure 10-5.

Using the Oracle Enterprise Scheduler Web Service 10-9

Adding the BPEL Process to Call the ESSWebService

Figure 10-5 Create BPEL Process Dialog for New BPEL Process

[®] create BPEL Process

BPEL Process |_;[

A BPEL process is a service orchestration, used to describe/fexecute a business process {or ﬁ
large grained serwice), which iz implemented as a stateful service.

Mame:

Mamezpace: | http:ff=mins.oracle.com JEssWebApplicationfProjectl JEPELProcess1 |

Template: [4=!! Azynchronous BPEL Process V] @

Service Mame: |bpe|pr0cessl_client |

Expose as a SOAP service

Input: |:om,."EssWebAppIication.."Projectl,."BPELProcessl}BPELProcesslProcessRequest| Ck

Qutput: |ml."EssWebApplicationl."ProjectlfBPELProcessl}BPELProcesslProcessResponse| Q

4. Click OK. This adds the BPEL process to composite.xml, as shown in Figure 10-6.

Figure 10-6 Adding a BPEL Process to the SOA Composite Application

[[l Essweba pplication jus o[cormpos ite.xml =
IFTHEZRED Composite: SOACompositel |
Exposed Services Components External References

submitRegu...
submitRecu...

e
bpelprocessl...

process

getComplet...
getRequest...
getRequest...
holdReguest
releaseReq...
setAsyncRe.. [E]

< >
Ce=zign I Source I History |

5. In composite.xml, select BPELProcessl and then select and drag the right arrow to
create a reference to Servicel, as shown in Figure 10-7.

10-10 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Adding the BPEL Process to Call the ESSWebService

Figure 10-7 Adding A Reference to the Oracle Enterprise Scheduler Web Service in

composite.xml
5| EzsWebApplication jws D{Ecomposke.xm! E]
L FTHEHRE® Composite: SOACompositel
% - @ BPELPruces ‘);—{), -
bpelprocessl... Servicel
(Operations: | [Operations: |
'pmcess | subm itRequ...
S -, subm itRecu. .
getCom plet...
getRequest...
getRequest...
holdRequest
releaseReq...

setAsyncRe.. [¥]|

Dezign | Source | History

6. Click the Save All icon to save the project files.

10.7.2 Copy Types Into BPEL Process Schema

You need to change the schema of the BPEL process by opening up the corresponding
XSD file in the xsd folder under the project. This step is a shortcut for the
demonstration purposes for this sample application. In your own application, you
would use the schema types required for the ESSWebservice operations. This allows
the clients of the BPEL process, for this example a simplified test case, to provide all
the necessary inputs (this is required because clients are based on BPEL process
schema). This step allows you to map, or assign inputs for the web service. This step is
only required to correctly generate the sample application. In real scenarios the BPEL
process designer is responsible for defining or supplying the input schema, and
mapping this to the web service inputs.

Note: The steps outlined require manual changes, depending on the
BPEL process you are working with and the particular naming you are
using for your BPEL process. You can find the types that are required
for ESSWebService operations in the ESSWebService WSDL file. It is
also possible to individually add these types to the schema.

To update the BPEL process schema:

1. In the Application Navigator, in Project] expand the SOA Content folder and
expand the xsd folder.

2. In the xsd folder, double-click the BPELProcess1.xsd file.
3. Select the Source tab.

4. Copy the EssWebService types so that the schema includes the contents shown in
Example 10-1.

Using the Oracle Enterprise Scheduler Web Service 10-11

Adding the BPEL Process to Call the ESSWebService

The ESSTypes . xsd file and other WSDL artifacts exposed by the Oracle Enterprise
Scheduler web service are imported into the composite and renamed
esswebservice XSD _<XSD file name>.xsd.

Note: The schema shown in Example 10-1 includes the application
and project name. If you change the application name or the project
name for this example, you also need to update the schema
targetNamespace and xmlns: tns elements to reflect the names that
you use.

5. Inthe BPELProcessl.xsd file, refer to the artifacts created in Section 10.6, "Creating
the ESSWebService Reference" that have been imported into the composite. The
directory path should be relative the BPELProcessl.xsd file. Example 10-1 shows
the composite schema file with a reference to the web service artifacts.

Example 10-1 BPEL XSD Schema

<?xml version="1.0" encoding="UTF-8"?>

<schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-Instance"
xmlns:nsl="http://xmlns.oracle.com/scheduler/types"
targetNamespace="http://xmlns.oracle.com/

EssWebApplication/Projectl/BPELProcessl"
xmlns:tns="http://xmlns.oracle.com/
EssWebApplication/Projectl/BPELProcessl"

xmlns="http://www.w3.0rg/2001/XMLSchema">

<import namespace="http://xmlns.oracle.com/scheduler/types"
schemalocation="../esswebservice XSD_ESSTypes.xsd" />

<element name="process">
<complexType>
<Xs:sequence>
<xs:element name="description" type="xs:string"/>
<xs:element name="jobDefinitionId" type="nsl:metadataObjectId"/>
<xs:element name="requestedStartTime" type="xs:dateTime"/>
<xs:element name="application" type="xs:string"/>
<xs:element name="requestParameters" type="nsl:requestParameters"/>
</Xs:sequence>
</complexType>
</element>
<element name="processResponse">
<complexType>
<sequence>
<element name="result" type="string"/>
<element name="requestId" type="long"/>
<element name="state" type="nsl:state"/>
</sequence>
</complexType>
</element>
</schema>

6. Click the Save icon.

10-12 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Adding the BPEL Process to Call the ESSWebService

10.7.3 How to Invoke the ESSWebService submitRequest Operation

In the BPEL process you add an invoke activity to perform the Oracle Enterprise
Scheduler web service submitRequest () operation. In this step you need to select the
input and output for the Invoke Activity by associating values with the Input and
Output variables.

To add the Invoke activity to submit the request using ESSWebService:

1. Inthe Application Navigator, in Projectl expand SOA Content and select the BPEL
file. For example, select BPELProcess1.bpel. This displays the BPEL swim lane as
shown in Figure 10-8.

Figure 10-8 BPEL Process Before Adding Invoke Activity for ESSWebService SubmitRequest

b Application jus Mtgcomposite.xml |ﬂ"_-'e,BPELProcessl.xsd ﬁgaBPELPI’DCESSl.bDH Da @E]E] ﬁ(‘nmpon... (] E]
- Q- @ - o (8-) &3 epEL- (@) [BPEL -
Partner Links = Partner Links & (5]
. O e [+ BPA Elue Prints
) ﬁ] = BPEL Activities and Co...
{"D = . W
£ v - Ser\ucel @| Create Entity
& - Email
s] —
= | |Empry
o o
"""""""""""""""""""""""""""" @« Bl Flow
|’y '
| bpelprocess1_cli.. ‘ ¢$m Flowd
... |_J o

|§| Java Embedding

|g| Phaze

callbackClient

O @ Receive
Receive Signal

I% Rem ove Entity

Reply
|E| Scope

- = 5
Zoom: w ﬁ‘.; |é| BQUENCE :
Design | Source | History I “BPEL Ser;vi'c'e-s. -
Log

2. From the Component Palette, drag-and-drop an Invoke Activity and place the
activity before callbackClient.

3. Link the invoke activity to the ESSWebService by selecting the right arrow and
dragging it to the Partner Link Servicel. This brings up the Edit Invoke dialog, as
shown in Figure 10-9.

Using the Oracle Enterprise Scheduler Web Service 10-13

Adding the BPEL Process to Call the ESSWebService

Figure 10-9 Edit Invoke Dialog for BPEL Activity

[#] Edit Invoke

AN Errors: 3
|/ Ceneral |/ Correlations |/ Sensars |/ Properties rAnnotations |
Mame: |In\foke_1 |
— Interaction Type: |9,.§ Parther Link v|
Partner Role Web Service Interface
Partner Link: |Ser\ricel | Q
Operation: | Ty submitRequest v|
Wariables
Input: | | + Q
Qutput: | | I% Ck
| Help | | Apply | | 814 || Cancel |

4. In the Edit Invoke dialog, in the Operation field, select submitRequest.
5. In the Variables field, click the Add icon next to the Input field.
The Create Variable dialog displays. Accept the default value and click OK.
6. In the Edit Invoke dialog, click the Add icon next to the Output field.
The Create Variable dialog displays. Accept the default value and click OK.
The new invoke link to Servicel displays.

7. Select the Invoke activity and double-click the name Invoke_1 to select the text
entry field. In the text entry field enter submitReqguest, as shown in Figure 10-10.

10-14 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Adding the BPEL Process to Call the ESSWebService

Figure 10-10 Adding the submitRequest Invoke Activity

swebApplicationjws |ecompositexml | 2 BPELProcessl.xsd IES,BPELHM&&LM! x| 5: 0=

o - []- @ %o .;’.“. &d BPEL” (2)
Partner Links = Fartner Links
(=) Q
:
&
Lil
< |
oY
1
A 1
® (@
bpelprocess1_cli... - Servicel
i
’
callbackClient
submitRequest - fprocess/zequence finvake[1] Zoom: @1;
Design | Source | History

10.7.4 Assign Required Input Parameters for Request Submission

You add an Assign activity and then assign inputs from the BPEL process to the
submitRequest Invoke activity.

Note: In most cases, the input payload of the BPEL process will not
directly match the input payload of the submit Request web service.
Coaxing into use of CopyList will only work in the scenarios where
there is a one to one mapping of the input payload to the submit
Request.

For the mapping for an Assign activity with a Copy operation, the arguments
correspond to the input parameters for Oracle Enterprise Scheduler submitRequest, as
shown in Table 10-2. If your BPEL schema differs from the submitRequest message
type, use Table 10-2 as a guide for how to populate the values manually with the
Assign activity Copy operation.

Table 10-2 Submit Request Web Service Arguments for BPEL Assign Activity Mapping

Argument Description

Description Context for the ad hoc submission of this job, such as the 'Order
Import'.

Application The application name can be the deployment name of the hosting

Oracle Enterprise Scheduler application or it can be a logical
application name.

Using the Oracle Enterprise Scheduler Web Service 10-15

Adding the BPEL Process to Call the ESSWebService

Table 10-2 (Cont.) Submit Request Web Service Arguments for BPEL Assign Activity

Argument Description

JobDefinitionId = name: The name of the Oracle Enterprise Scheduler job

= package: The name of the path containing the Oracle Enterprise
Scheduler job

= type: 'JOB_DEFINITION'

parameter(s) dataType: Value type for this parameter (STRING, INTEGER, LONG,
BOOLEAN, DATETIME)

name: String containing the name of the parameter defined in the
Oracle Enterprise Scheduler job definition.

scope: String containing the named scope for this parameter - used
only for job sets.

value: Element containing the parameter's value

To add an assign activity:

1. Drag-and-drop an Assign activity from the BPEL Activities area in the Component
Palette to just before the Invoke Activity named submitRequest.

2. Select the Assign activity and double-click the name Assign_1 to enter new text. In
the text entry box enter Job_Inputs, as shown in Figure 10-11.

Figure 10-11 Adding an Assign Activity to BPEL

ssebtpplicationjws |officompositexml | 5L BPELProcessl xsd IEE,BPELProcessprel =} W=
- Q-@- 5@l (@) 63 wpeL (D)
Partner Links = Partner Links -
(x) Q
& g
&
o
C]
i e W Ny
: “Tre 2§
I
: |
: Job_Inputs :
) Nemmcemme—— s
| ®
| bpelprocessd_cli...
. B
| Serwicel
submiRequest L e
|
.|é§?_]
Job_lnputs - fprocessfsequence fassign Zoom: v @L
Design | Source | History

Add Copy for description JobDefinitionID requestedStartTime application:

1. Double click the new Assign activity named Job_Inputs to show the Assign page
with the Copy Operation tab, as shown in Figure 10-12.

10-16 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Adding the BPEL Process to Call the ESSWebService

Figure 10-12 Copy Operation for BPEL Assign Activity

ﬂEssWebApplication.jws Mtgcomposite_xml |.:."_'E,BPELPr0ce552.xsd ES,BPELPmcenQ.bpeJ E][E]E]

@ O ® G- of {ggv) &3 BPELY (2)
+ |
Assign b4
A\ Errors: 1 X,
r Ceneral |/ Copy Operation |/ Sensors rAnnotations | —
/S Xt I
From To
Help Apply || Ok “ Cancel
Assign_l - fprocessfsequencefassign Zoom: @‘.;
Design | Source | History

2. Click the Add icon and from the dropdown list select Copy Operation, to add
copy operations for variables. This displays the Create Copy Operation dialog.

3. In the Create Copy Operation dialog, expand and then navigate to select a copy
operation for each input parameter (you only use a copy operation for
description, jobDefinitionID, requestedStartTime, and application). This
copies the input parameters to Invoke_1_submitRequest_InputVariable
parameters for the invoke activity. Figure 10-13 shows one of these copy
operations.

Using the Oracle Enterprise Scheduler Web Service 10-17

Adding the BPEL Process to Call the ESSWebService

Figure 10-13 Copy Operation for Description Parameter for submitRequest

[®] Create Copy Operation

From To
Type: |‘u’ariab|e v| Type: |‘u’ariab|e -
|5 variables |5 wariables
E}ﬁgi Process E}ﬁga Process
=2 Variables =2 Variables
EF-(%) inputvariable B (%) inputvariable
=-[E] payload () outputvariable
B} client:process (%) Invoke_1_submitRequest_InputVariable
-4y [client:description] - =[] parameters

¥ clientjobDefinitionld El-4#p nslisubmitRequest
= clientrequestedStartTime < Lk tioh

£} clientapplication H £ ns1jobCefinitionld
[F-4&¥ client:requestParameters 4 nslaapplication

B-(%) outputyariable £ nzlirequestedStantTime
F-(x) Invoke_1_submitRequest_Inputyariable G4y nslirequestParam eters

(%) Invoke_1_submitRequest_Outputiariable ---(Jr) Inwoke_1_submitRequest_Outputiariable
[] how Detailed Node Information ["] how Detailed Node Information
*Path: |fc11ent:pr0cessx‘c11ent: description | *Path: |,fnsl:subm1’tRequest,fnsl: description |
| Help | | Ok || Cancel |

4. Click OK to add the copy operation for description.

5. In asimilar manner, perform additional copy operations for the jobDefintionID,
requestedStartTime, and application parameters.

To add a copy list for RequestParameters:

1. Double click the Assign activity named Job_Inputs to show the Assign page with
the Copy Operation tab.

2. Click the Add icon and from the dropdown list select CopyList Operation..., to
add CopyList operations for the requestParameters. This displays the Create
CopyList Operation dialog.

3. In the Create CopyList Operation dialog, expand and then navigate to select a
copylist operation for requestParameters. To do this you navigate and select the
parameter element, as shown in Figure 10-14.

10-18 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Adding the BPEL Process to Call the ESSWebService

Figure 10-14 CopyList Operation for Request Parameters

[®] Create CopyLlist Operation

From To
Type: [‘ufariable v] E Wariables
Eﬁga Process
=2 Variables

E-(x) inputiariable
E| payload
B4 clientiprocess
ey client:description
client;jobDefinitionld
¢ clientrequestedstartTime
» client:application
» client:requestParameters

-(x) inputvariahle

I3 Variables
B Process (%) outputvariable
B[variables %) Invoke_1_submitRequest_Inputvariable
EH-[E] parameters

-4y nslisubmitRequest

=y nzl:idescription

-§ep nzljobDefinitionld

=% nsliapplication

=y nzlirequestedStartTime
-4 nsl:irequestParameters

e

---(.I.') Invake_1_submitRequest_OutputWariable

<> [nsZparaneer]

[(x) outputvariahle
G-(%) Invoke_1_submitRequest_Inputyariable
G-(%) Invoke_1_submitRe quest_Outputiariable

[] Show Detailed Node Information

[] Show Detailed Node Information

KPath: |uest,a‘nsl: requestParaneters/ns2:paranete rl

H#Path: |s,a‘c1 jent:reguestParameters /ns2: parameter|

4. In the Create CopyList Operation dialog, click OK.

5. Inthe Assign activity, click OK.
Figure 10-15 shows the BPEL Design page.

Using the Oracle Enterprise Scheduler Web Service 10-19

Adding the BPEL Process to Call the ESSWebService

Figure 10-15 BPEL with Job_Inputs Add Activity and submitRequest Invoke

ve |offcompositexml | ZBPELProcesslxsd | [@]BPELProcesslwsdl | £ BPELFrocess Lbpet X (U0
- ™ -
-9 5 W (@b) eaerer @

Partner Links Partner Links =

-
A=

urrw [

o Bo by &

&

receivelnput

|

{é’ Job_lnputs
J

bpelprocessl_cli..

48h

Servicel

submitRequest

callbackClient

Zoom: E @“.;

Design | Source | History

When BPEL Element Does Not Have Same Type as Oracle Enterprise Scheduler
web service:

If your BPEL payload is not the same element type as that of the Oracle Enterprise
Scheduler web service and you need to assign values to one or more job parameters,
you can use the following approach.

1. Populate the first parameter element using copy operations, as done in previous
steps.

2. Add or clone additional parameter elements using the Insert-After, as shown in
Figure 10-16.

10-20 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Adding the BPEL Process to Call the ESSWebService

Figure 10-16 Using Insert-After to Clone Parameters

Edit insert-After Operation

From To
Type: | Variable) [AErABRES
Za Process
&[] Variables
Wariables 2 |2 Scope - Submitjob
& ?mcess =] I___| Wariables
FH) Wariables =-(x) Invoke_1_submit Request_Inputyar lable
Eb 3‘~J Scope - Submitob i = parameters
= :‘ ‘Variables [E 49 nsl:isubmitRequest
= (x) invoke_1_submitRequest_InputVar iable i ey nslidescription
| E-[E] parameters : F-gp nsLjobDefinitionld
=h-4e» nslsubmitRequest | &3 nzlapplication
i {o4ed hsldescription i & nslirequesteditantTime
| :' £=» nsljobDefinitionid E1-¢) nslirequestParameters
| - 4=¥ nzlapplication | - g [nsZparameter]
gy pslrequestedStartTime G- (x) Invoke_1_submit Request_OutputVar iable

B4 nslirequestParameters
i # < [nsz parameter]
() Invoke_1_submitRequest_Outputyar iable

["| Show Detailed Node Inform ation | Show Detailed Maode Informatian

XPath: |/nsl:suhm'itkgquest,fnsl:requestParameter} HPath; |;‘nsl:subm1’tRequest/nsl: requestParameterI

i. Help | ok | i Ca.ncel._|

3. Populate the additional parameter elements using XPath array subscripting.

4. This action effectively copies the entire parameter element along with all
sub-element values and appends it to the end of the XML array. In order to
populate the values of the second job parameter, add additional copy operations
and modify the XPath expressions in the bottom right of the dialog to add the
appropriate array subscript [n]. where 'n' is the # of the parameter. Note that all
XML arrays start with 1, not 0.

10.7.5 Invoke the getCompletionStatus Operation

Add another Invoke activity and link it to Servicel to invoke the ESSWebService
getCompletionStatus operation.

To add the Invoke activity for the getCompletionStatus operation:

1. From the Component Palette, drag-and-drop an Invoke activity and drop it after
submitRequest and before callbackClient.

2. In the new Invoke activity, select the text entry area with the name Invoke_1, and
enter the name, getStatusAsync.

3. Link the invoke activity to Servicel by selecting the right arrow and dragging it to
the Partner Link Servicel. This displays the Edit Invoke dialog.

4. In the Edit Invoke dialog for getStatusAsync, in the Operation field, from the
dropdown list select getCompletionStatus.

5. In the Input Variable field select the Add icon. This displays the create variable
dialog, as shown in Figure 10-17.

Using the Oracle Enterprise Scheduler Web Service 10-21

Adding the BPEL Process to Call the ESSWebService

Figure 10-17 Create Variable Window for getStatusAsync

Mame: g yhc_getCampletionStatus_|nputhariable
Type: |{http:l."l."xmIns.oracle.comfscheduler}getCompleti0n5|
(3) Global Variable () Local Variable
| Help | | o184 || Cancel |

6. In the Create Variable dialog, click OK. This displays the Edit Invoke dialog, as
shown in Figure 10-18.

Figure 10-18 Edit Invoke Window for getStatusAsync

|§| Edit Invoke

M Errors: 3 £

rCeneraI rCUrreIations rSensors rAdapters rAnnotations |

Mame: |getStatusAsync |

Partner Role Web Service Interface

Parther Link: |Semice1 | L §

Operation: | Ty getCompletionStatus v|

Input Variable: |\sync_getC0mpIetionStatus_Input‘u‘ariabIe| ‘* Qg

Qutput Variable: ‘% q

| Help | | Apply || oK || Cancel |

7. In the Edit Invoke dialog, click OK. This displays the new Invoke Activity
getStatusAsync and the link to Servicel.

10.7.6 Assign Input to the getCompletionStatus Operation

Add a new Assign Activity after submitRequest to assign the RequestID and pass it to
the getStatusAsync invoke activity.

To add the assign activity:

1. Drag-and-drop an Assign activity from the BPEL Activities area in the Component
Palette to just after the Invoke Activity named submitRequest and before the
Invoke Activity named getStatusAsync.

2. Select the Assign activity and double-click the name Assign_1 to select the text
entry area. In the text entry area, enter RequestID. Figure 10-19 shows the Assign
activity.

10-22 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Adding the BPEL Process to Call the ESSWebService

Figure 10-19 Adding RequestID Assign Activity

|Dﬂﬂcomposite.xml |é.E‘JE,BPELPr0cessl.xsd |BPELPr0cessl.wsdI Iﬁ?,BPELProcessl.bpeJ W=
VR @@ (&) woEr @

I :

"Sé’ submitRequest
]

'y ¢
Servicel

RequestiD

l

bpelprocess1_cli...

getStatusisync

N |

callbackClient

©

BPELProcessl - fprocessfprocess Zoom: E

Dezign | Source | History

N

3. Double click the new Assign activity, RequestID to show the Assign page with the
Copy Operation tab.

4. Click the Add icon and select Copy Operation... from the dropdown list.

5. In the From area expand Invoke_1_submitRequest_OutputVariable and select
requestID. Map this in the To area to the requestID in getStatusAsync_
getCompletionStatus_InputVariable, as shown in Figure 10-20.

Using the Oracle Enterprise Scheduler Web Service 10-23

Adding the BPEL Process to Call the ESSWebService

Figure 10-20 Edit Copy Operation Window for Request ID Assign

|§| Create Copy Operation

From To
Type: |Variab|e V| Type: |Variab|e -
D “Wariables |_:| “ariables
g Process Eh-ga Process
=[] variahles =7 variables

@-{x) inputVariable
#-{x) outputvariable
---(.l.‘) Invoke_1_submit Request_InputVariable {x) Invoke_1_submitRequest_InputVariable
E}---(x} submitRequest_submitRequest_OutputVar {x) submitRequest_submitRequest_OutputVar
{ B-[F] parameters H-{x) getStatus Async_getCompletionStatus _Input

-4y nzlisubmitRequestResponse E}--- parameters

o [reguesti]

---(x} getStatus Async_getCompletionStatus _Inpun

[] Show Detailed Mode Information [] Show Detailed Mode Information
Path: |/n51:submitRequestResponse;‘requestId | Path: |,a‘nsl:get(0mp1 etionStatus/requestId |
| Help | | [o]:4 || Cancel |

6. On the Edit Copy Operation dialog, click OK.
7. On the Copy Operation dialog, click OK.

8. On the BPEL Design page, click Validate Process. This displays the BPEL, as
shown in Figure 10-21.

10-24 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Adding the BPEL Process to Call the ESSWebService

Figure 10-21 BPEL with Request ID Assign Activity Added

‘ebApplication jws Mtﬂcomposite.xml ﬁgaEPELP{’OCESSI.bp&' ﬂJa,BPELProcessl.xsd @@E]
v Rre-saEas (B) bobrE @

submitRequest
)
By
bpelprocess1_cli...
G N
4
Servicel
Request|Dr

getstatusAsync

callbackClient

o)

Zoom:

Dezign | Source | History

10.7.7 Receive the Job Completion Status
Add a Receive Activity and link it to the onJobCompletion ESSWEbService operation.

Add a receive activity:

1. Drag-and-drop a Receive activity from the BPEL Activities area in the Component
Palette to a position after the getStatusAsync Invoke activity and before the
callbackClient.

2. Select the text entry area in the Receive Activity named Receive_1 and enter
onJobCompletion, as shown in Figure 10-22.

Using the Oracle Enterprise Scheduler Web Service 10-25

Adding the BPEL Process to Call the ESSWebService

Figure 10-22 Adding Receive Activity to BPEL Process

[offf composite.xml | SLEBPELProcesslxsd | [@] BPELProcesslwsd Iﬁ?,BPﬂﬁ'ocessl.bpﬂ 0]

v-R-o- o @k (-) saurer @ |
|
submitRequest
8 e
bpelprocess1_cli.. Servicel
RequestiD
getStatusisync
v
onjobCompletion - fprocess/sequence/receive[2] Zoom: a

3. Drag the right arrow from the receive activity onJobCompletion to Service 1. This
displays the Edit Receive dialog, as shown in Figure 10-23.

Figure 10-23 Edit Receive Window for ondJobCompletion Receive Activity

[#] Edit Receive

.3 Errors: 3

General

Mame: |0nJ0bC0mpIeti0n |

— Interaction Type: @ Partner Link «

by Role Web Service Interface

Partner Link: | Servicel | &
Operation: | G onjobCompletion ~|
Variable

Variable: | |4 Q

[] Create Instance

| ooy || ok || cance |

4. In the Edit Receive dialog, in the Operation field from the dropdown list select
onJobCompletion.

5. In the Variable field, click the Add icon. This displays the Create Variable dialog.

10-26 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Adding the BPEL Process to Call the ESSWebService

6. In the Create Variable dialog, click OK.

7. In the Edit Receive dialog, click OK. This adds an arrow from Servicel to the new
Receive activity, onJobCompletion as shown in Figure 10-24.

Figure 10-24 Adding the ondobCompletion Receive Activity

Mﬂcomposite.xml a‘-'aBPELProcessl.xsd

|[@] erELProcess1 wsdl [ﬁ?, BPELProcess Lbpel M=

v--2- S @R

(8-) 6a EPEL- (2)

%ﬁ! [|

-
bpelprocess1_cli...

submitRequest

)5

RequestID

{ @

% Servicel

getstatushsync

Zoom: E &

Dezign | Source | History

10.7.8 Return Result to Client

Add an Assign activity to copy the result output from onJobCompletion to the output
for the client. Assign all the results from onJobCompletion to the callbackClient input

variable.

To add the result assign activity:

1. Drag-and-drop an Assign activity from the BPEL Activities area in the Component
Palette to a position after the Receive activity onJobCompletion and before the

callbackClient.

2. Select the Assign activity and double-click the name Assign_1 to enter new text.
Enter the value Result, as shown in Figure 10-25.

Using the Oracle Enterprise Scheduler Web Service 10-27

Adding the BPEL Process to Call the ESSWebService

Figure 10-25 Adding Assign Activity for Output to Client

[off composite.xml | S BPELProcesslxsd | [@]BPELProcesslwsdl IEE,BPELPmceupreJ W=

y s ~
L Dv D v i m ﬂg |\-“v) &a BPEL™ @
-
% Request|D
1
bpelprocess1_cli... @J
Servicel
getstatusfsync
callbackClient
Result - fprocessfzequence fassign[3] Zoom: E w &
Dezign | Source | Histaory
—

3. Double click the new Result Assign activity to show the Assign page with the
Copy Operation tab.

4. Click the Add icon and select Copy Operation... from the dropdown list.

5. Navigate to select the variables, for the From area for onJobCompletion_
onJobCompletion_InputVariable and select resultMessage. In the To area,
expand outputVariable and select client:result, shown in Figure 10-26.

10-28 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Adding the BPEL Process to Call the ESSWebService

Figure 10-26 Create Copy Operation for Result

[®] create Copy Operation

From To
Type: |Variab|e v| Type: |Variab|e v|
| variables | variables
Eh-ga Process E-ga Process
EIl:l “Wariables EID “Wariables

[-{x) inputVariable
[-{X) outputVariable
---(x} Invoke_1_submitRequest_InputVariable
---(x} Invoke_1_submitRequest_OutputVariable
...(x} getStatus Async_get Comp letionStatus _Inpunt
G-{x) getStatus Async_getComp letionStatus _Input
E}---(;) on Job Completion_on Job Completion_Input
=[] parameters
1% nsl:onjobCompletion

LedepiresultMessage

[-{x) inputvariable

E}--- payload
[Eh-€sy client:BPELProcess1ProcessResponse]
R clic it

-{x) Invoke_1_submitRequest_InputVyariable

%) Invoke_1_submitRequest_OutputVariable
[#-{x) getStatus Async_get CompletionStatus _Input
-{x) getStatus Async_get CompletionStatus _Input
---(.l.') on Job Completion_on Job Completion_Input

[] Showe Detailed Made Informatian

xPath: |,fnsl:0nJ0bC0mp1et'ion,a‘resthessage |

| ten |

[] Showe Detailed Mode Information

xPath: |,/c1 ient:BPELProcessl1ProcessResponse/cli E‘

QK || Cancel |

u < |l

6. In the Create Copy Operation dialog, click OK.
7. In the Assign area, click OK.
8. Click Validate Process.

The final BPEL is shown in Figure 10-27.

Using the Oracle Enterprise Scheduler Web Service 10-29

Using Additional ESSWebService Operations

Figure 10-27 Result Assign Activity with callbackClient Invoke Activity

[off compositexml | S5 EBPELProcesslxsd | [@|BPELProcessLwsdl | & BPELProcessLbpel | (U0
v R o- 5@ 8 C)

submitRequest

A

% RequestlD
1) .
X .
bpelprocess1_cli.. : %
1 Servicel

getstatushsync

onjobCampletion

LR

Result

callbackClient

Zoom: o\

Design | Source | History

10.8 Using Additional ESSWebService Operations

You can use other EssWebService operations, including:

= When you want to submit a request with an associated schedule, you use the
submitRecurringRequest web service operation. For more information, see
Section 10.8.1, "How to Invoke the ESSWebService submitRecurringRequest
Operation."

= When you want to marshal arguments in the previous concurrent processing style
into Oracle Enterprise Scheduler properties, you use the setSubmitArgs operation.
This operation should be invoked prior to submitting a request. The key of each
argument is submit.argument#, where # is the ordinal value of the argument, for
example submit.argumentl="firstArg" and submit.argument2="secondArg". For
more information, see Section 10.8.2, "How to Invoke the ESSWebService
setSubmitArgs Operation."

= When you want to add a post-processing action to a step in a job set request, you
use the addPPAction operation. This method is called prior to submitting the
request. This operation provides support for action previously supported by add_
printer, add_notification and add_layout in concurrent processing. The
parameters to these legacy routines are passed as arguments to addPPAction in the
order in which they were declared in the original concurrent processing routine.
Section 10.8.3, "How to Invoke the ESSWebService addPPActions Operation”

10-30 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Additional ESSWebService Operations

10.8.1 How to Invoke the ESSWebService submitRecurringRequest Operation

In the BPEL process you add an invoke activity to perform the Oracle Enterprise
Scheduler web service submitRecurringRequest () operation. In this step you need to
select the input and output for the Invoke Activity by associating values with the
Input and Output variables. In order to submit jobs that repeat or will run at a later
date that job must be submitted with an Oracle Enterprise Scheduler schedule which is
constructed declaratively and stored in the metadata repository. Once the schedule has
been defined, BPEL can submit jobs with that schedule through the
submitRecurringRequest () operation.

To add the Invoke activity to submit the request using ESSWebService:

1.

In the Application Navigator, in Project]l expand SOA Content and select the BPEL
file. For example, select BPELProcess1.bpel. This displays the BPEL swim lane.

From the Component Palette, drag-and-drop an Invoke Activity and place the
activity in the process. This activity populates the request submission payload and
submits it to the Oracle Enterprise Scheduler web service.

Select the Invoke activity and double-click the name Invoke_1 to select the text
entry field. In the text entry field enter submitRecurringRequest.

Link the invoke activity to the ESSWebService by selecting the right arrow and
dragging it to the Partner Link Servicel. This brings up the Edit Invoke dialog, as
shown in Figure 10-28.

Figure 10-28 Edit Invoke Window for BPEL Activity

A Errors: 3 Y

rGeneraI rCorreIations rSensors rProper‘ties rAnnotations |

Mame: |In\t0ke_1 |

— Interaction Type: |~..‘;_! Partner Link v|

Partner Role Wb Service Interface
Partner Link: | Servicel | &
Operation: | Gy submitRequest ~|

Variables

| EX

ouput: | & Q
| [z) [oxJ (o]

In the Edit Invoke dialog, in the Operation field, select submitRecurringRequest.

In the Edit Invoke dialog, in the Input field click the Add icon. This displays the
Create Variable dialog and lets you create a scope-level variable to contain the
request payload.

In the Create Variable dialog, click OK.

In the Edit Invoke dialog, in the Output field select the Add icon. This displays the
Create Variable dialog and lets you create scope-level variable to contain the
response payload.

In the Create Variable dialog, click OK.

Using the Oracle Enterprise Scheduler Web Service 10-31

Using Additional ESSWebService Operations

10. In the Edit Invoke dialog, click OK. This displays the new invoke link to Servicel,
as shown in Figure 10-29.

Figure 10-29 Submitting a Request with a Schedule

nl |:,f._\,BPELPr0cessl.xsd | @| BPELProcesslwsdl [ﬁga BPELFrocess Lhpel Slatxt 00

; . - = P
o - []- - SR ol (&8~) &d BrEL- (D)
getitatusAsync v,
¥ @
B Servicel
onjobCompletion
CTR
Rezult
I
I
]
i
]
LsubmitRecurringRequest:

callbackClient
wcessdsequencefinvoke[3] Zoom: v &5
Design | Source | History

To assign inputs for recurring request submission:

You add an Assign activity and then assign inputs from the BPEL process to the
submitRecurringRequest Invoke activity. This allows you to populate the input
variable with recurring request submission parameters.

Note: In most cases, the input payload of the BPEL process will not
directly match the input payload of the submit recurring request web
service. Coaxing into use of CopyList will only work in the scenarios
where there is a one to one mapping of the input payload to the
submit Request.

For the mapping for an Assign activity with a Copy operation, the arguments
correspond to the input parameters for Oracle Enterprise Scheduler submitRequest, as
shown in Table 10-3. If your BPEL schema differs from the submitRequest message
type, use Table 10-3 as a guide for how to populate the values manually with the
Assign activity Copy operation.

10-32 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Additional ESSWebService Operations

Table 10-3 Submit Recurring Request Web Service Arguments for BPEL Assign Activity
Mapping

Argument Description

Description Context for the ad hoc submission of this job, such as the 'Order
Import'.

Application The "application” name can be the deployment name of the hosting
Oracle Enterprise Scheduler application or it can be a logical
application name.

JobDefinitionId = name: The name of the Oracle Enterprise Scheduler job

= package: The name of the path containing the Oracle Enterprise
Scheduler job

[type: 'JOB_DEFINITION'

parameter(s) dataType: Value type for this parameter (STRING, INTEGER, LONG,
BOOLEAN, DATETIME)

name: String containing the name of the parameter defined in the
Oracle Enterprise Scheduler job definition.

scope: String containing the named scope for this parameter - used
only for job sets.

value: Element containing the parameter's value
scheduleID = name: String containing the name of the schedule metadata file

= packageName: String containing the name of the MDS package
containing the metadata file (sans the 'Schedule' path)

= type: SCHEDULE_DEFINITION"

It is possible to define multiple parameters to be passed to the Oracle Enterprise
Scheduler job. When adding additional parameters to the Oracle Enterprise Scheduler
service payload in BPEL, you must first add a new parameter element to the DOM
using an 'Insert-After' of the original parameter element, then use array subscripting to
populate that new parameter with the correct values. Repeat as needed.

First, copy and clone the existing parameter element back into the variable using the
Insert-After operation. This creates a second parameter element in the XML array. For
example, see Figure 10-30.

Using the Oracle Enterprise Scheduler Web Service 10-33

Using Additional ESSWebService Operations

Figure 10-30 Copy with Insert-After Operation

Edit insert-After Operation

From

Type: |Variable

|Wariables
!,3, Process
| [0 variables
& | Scope - Submitob
=57 Variables
= {x) Invoke_1_submitRequest_InputVar iable
o B[parameters
=hedey nslsubmitRequest

£=» nsl:description
2oy nsljobDefinitionld
~4=} nzlapplication
4ed nslirequestedStartTime

-

To
“ariables
Za Process
&[] Variables
[E |44 Scope - Submitjob
=3 variables
= (x) Invoke_1_submit Request_InputVariable
= parameters
[E € nslisubmitRequest
iy nsLidescription
g nzljobDefinitionld
& nzlapplication
oded nslirequestedStanTime
=4y nslirequest Param eters
(¥ gpinsZparametar

@ (%) Invoke_1_submit Request_OutputVar iab le

B4 nslirequestParameters
| #-<p{nsz parameter]
{2} invoke_ 1_submitRequest_ OutputVar iable

["| Show Detailed Node Inform ation | Show Detailed Maode Informatian

XPath: |/‘nsl:suhm1 tReguest/nsl: requestParamQter| xPath; |/nsl:subm1’ tRequestnsl: requestParameter]

; Help | OK . Cancel |

Second, create a new Copy operation and choose the parameter elements in the
To/From areas of the dialog in the same manner as when copying values for the first
parameter. However, in the lower right corner, change the XPath path to include a [2]
(XML Arrays start at 1 and not 0) and click OK. Repeat as needed for each parameter
required.

10.8.2 How to Invoke the ESSWebService setSubmitArgs Operation

In the BPEL process you add an invoke activity to perform the Oracle Enterprise
Scheduler web service setSubmitArgs () operation.

To add the Invoke activity to use setsubmitArgs for a request using
ESSWebService:

1. Inthe Application Navigator, in Projectl expand SOA Content and select the BPEL
file. For example, select BPELProcess1.bpel. This displays the BPEL swim lane.

2. From the Component Palette, drag-and-drop an Invoke Activity and place the
activity before callbackClient.

3. Link the invoke activity to the ESSWebService by selecting the right arrow and
dragging it to the Partner Link Servicel. This brings up the Edit Invoke dialog.

4. In the Edit Invoke dialog, in the Operation field select setSubmitArgs.

5. In the Edit Invoke dialog, in the Input field click the Add icon. This displays the
Create Variable dialog.

6. In the Create Variable dialog, click OK.

7. In the Edit Invoke dialog, in the Output field select the Add icon. This displays the
Create Variable dialog.

8. In the Create Variable dialog, click OK.
9. In the Edit Invoke dialog, click OK. This displays the new invoke link to Servicel.

10-34 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Additional ESSWebService Operations

10.

11.

12,

13.
14.

15.

16.

Select the Invoke activity and double-click the name Invoke_1 to select the text
entry field. In the text entry field enter setSubmitArgs.

From the Component Palette, drag-and-drop a Transform Activity and place the
activity before the setSubmitArgs. This transformation maps the BPEL flow input
variable to the setSubmitArgs input variable.

Open the transformation activity. On the Transformation tab, in the Source area
click the Add icon. This displays the Source Variable dialog.

In the Source Variable dialog select inputVariable and click OK.

In the transformation activity, on the Transformation tab, in the Target Variable
field select setSubmitArgs_setSubmitArgs_InputVariable as the target.

In the transformation activity, on the Transformation tab, in the Mapper File field,
click Add to create a new mapper file.

This creates a mapper file, as shown in Figure 10-31. Note that a "for-each"
construct can be inserted by dragging an item from the XSLT Constructs area of
the Component Palette.

Figure 10-31 Transformation for Set Submit Arguments

File Edit ¥Yiew Application

Refactor Search MNavigate Build PBun Versioning Tools Window Help ADF

ReEE > 9C XEROQ-O H- b ABAm- > -&- A (@-

Application Mavigator
EzsWebApplication

 Prajects Bl -

EI--- Projectl
r_—l Resources
B3 SO& Content
; Dtestsuites

{7 Business Rules
ﬁaa BPELFrocessl byel

EPELProcessLwsdl
ﬂiﬁ composite.xml
[@] ervire wsdl

I“Application Resources
I+ Data Controls
|+ Recently Qpened Files

EE Transformation_3.xsl - Struct...

L =

Source | Design

{ﬁ‘n BEPELProcessl.componentTy

E] armPPACtions-S0urce xml |E]TransformPPActions—Target.xmI [Tramformaﬁon_lxﬂ G]E]E]
=5 -/ | Source: BPELProcessl wesdl *SLT File: Servicel.wsd|
35.' E}[% <sOUrCes> <targets @E

- [} <o client:BEPELProcess1ProcessR, thsisetiubmithrgs 32
thsrrequestParameters <n>---E;I

----- <e¥ client:description

[42 client;jobDefinitionld for-each &3-2
----- <er client:requestedStartTim, nsl:parameter F@JE
----- <oy client:application wsihil EE--

[E1- 4o client:requestParameters
B8 nsocparameter

ns:dataType Eﬂ
nsO:name ke
nsl:scope Eﬂ H
ni nslidataType |[hs0walue E“i i

of neloname || L for-each B0

of nsliscope ([T arguments g8

B-Red] clientnlsSptions
----- E& clientarguments
B8 client:postProcessiction

8]

Design | Source | History

1/BPELPra

Using the Oracle Enterprise Scheduler Web Service 10-35

Using Additional ESSWebService Operations

17. The transformation tool does not create exactly what is needed. You need to edit
the XSLT source. In the source, find the following mapping.

<xsl:for-each select="/client:BPELProcesslProcessRequest/client:arguments">
<arguments>
<xsl:value-of select="."/>
</arguments>
</xsl:for-each>

Replace this with the following; add "tns:" as a qualifier to "arguments", resulting
in the following fragment. Note that the transformation tool design tab may
incorrectly complain that this is not a valid transformation:

<xsl:for-each select="/client:BPELProcesslProcessRequest/client:arguments">
<tns:arguments>
<xsl:value-of select="."/>
</tns:arguments>
</xsl:for-each>

Example 10-2 shows the complete transformation source file.

Example 10-2 Transformation Source for Set Submit Arguments Transformation

<?xml version="1.0" encoding="UTF-8" ?>
<?oracle-xsl-mapper
<!-- SPECIFICATION OF MAP SOURCES AND TARGETS, DO NOT MODIFY. -->

<mapSources>
<source type="WSDL">
<schema location="../BPELProcessl.wsdl"/>

<rootElement name="BPELProcesslProcessRequest"
namespace="http://xmlns.oracle.com/EssWebApplication/
Projectl/BPELProcessl"/>

</source>
</mapSources>
<mapTargets>
<target type="WSDL">
<schema location="../Servicel.wsdl"/>

<rootElement name="setSubmitArgs"
namespace="http://xmlns.oracle.com/scheduler"/>

</target>
</mapTargets>
<!-- GENERATED BY ORACLE XSL MAPPER 11.1.1.0.0(build 090113.2000.2412) AT [FRI
FEB 06 08:27:53 PST 2009]. -->

?>
<xsl:stylesheet version="1.0"
xmlns:xpath20="http://www.oracle.com/XSL/Transform/java
/oracle.tip.pc.services. functions.Xpath20"
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/
business-process/"
xmlns:client="http://xmlns.oracle.com/EssWebApplication
/Projectl/BPELProcessl"”
xmlns:oraext="http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services. functions.ExtFunc"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:dvm="http://www.oracle.com/XSL/Transform/java/
oracle.tip.dvm.LookupValue"
xmlns:hwf="http://xmlns.oracle.com/bpel /workflow/xpath"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:med="http://schemas.oracle.com/mediator/xpath"
xmlns:mhdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.
mediator.service.common. functions

10-36 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Additional ESSWebService Operations

.GetRequestHeaderExtnFunction"
xmlns:ids="http://xmlns.oracle.com/bpel/services/
IdentityService/xpath"
xmlns:tns="http://xmlns.oracle.com/scheduler"
xmlns:xdk="http://schemas.oracle.com/bpel/extension
/xpath/function/xdk"
xmlns:soapl2="http://schemas.xmlsoap.org/wsdl/soapl2/"
xmlns:xref="http://www.oracle.com/XSL/Transform/java
/oracle.tip.xref.xpath.XRefXPathFunctions"
xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:nsO0="http://xmlns.oracle.com/scheduler/types"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmlns:socket="http://www.oracle.com/XSL/Transform/
java/oracle.tip.adapter.socket.ProtocolTranslator"
xmlns:ldap="http://schemas.oracle.com/xpath/extension/ldap"
exclude-result-prefixes="xsi xsl client plnk
xsd ns0 wsdl tns soapl2 soap mime xpath20 bpws oraext
dvm hwf med mhdr ids xdk xref ora socket ldap">
<xsl:template match="/">
<tns:setSubmitArgs>
<tns:requestParameters>
<xsl:for-each select="/client:BPELProcesslProcessRequest/client:
requestParameters/ns0:parameter">
<ns0:parameter>
<ns0:dataType>
<xsl:value-of select="ns0:dataType"/>
</ns0:dataType>
<ns0:name>
<xsl:value-of select="nsO:name"/>
</ns0:name>
<ns0:scope>
<xsl:value-of select="ns0:scope"/>
</ns0:scope>
<ns0:value>
<xsl:value-of select="nsO:value"/>
</ns0:value>
</ns0:parameter>
</xsl:for-each>
</tns:requestParameters>
<xsl:for-each select="/client:BPELProcesslProcessRequest/client:arguments">
<tns:arguments>
<xsl:value-of select="."/>
</tns:arguments>
</xsl:for-each>
</tns:setSubmitArgs>
</xsl:template>
</xsl:stylesheet>

10.8.3 How to Invoke the ESSWebService addPPActions Operation

In the BPEL process you add an invoke activity to perform the Oracle Enterprise
Scheduler web service addPPActions () operation.

Using the Oracle Enterprise Scheduler Web Service 10-37

Using Additional ESSWebService Operations

To add the Invoke activity for addPPActions operation using ESSWebService:

1.

In the Application Navigator, in Projectl expand SOA Content and select the BPEL
file. For example, select BPELProcess1.bpel. This displays the BPEL swim lane.

From the Component Palette, drag-and-drop an Invoke Activity and place the
activity before callbackClient.

Select the Invoke activity and double-click the name Invoke_1 to select the text
entry field. In the text entry field enter addPPActions.

Link the invoke activity to the ESSWebService by selecting the right arrow and
dragging it to the Partner Link Servicel. This brings up the Edit Invoke dialog.

In the Edit Invoke dialog, in the Operation field select addPPActions, as shown in
Figure 10-32.

Figure 10-32 Adding AddPP Actions Operation

' Errors: 3

rCeneraI rCUrreIations rSensors rProper‘ties rAnnotations |

Mame: |addPPActi0ns |

— Interaction Type: |'-,,5;_1 Partner Link V|

Partner Role Web Serwice Interface
Partner Link: |Ser\tice1 | 2,
Operation: |la addPPActions v|
Wariables
Input: | | + Q
Qutput: | | ‘+ Q

| Help | | Apply | | Ok || Cancel |

10.

11.

12.

13.
14.

15.

In the Edit Invoke dialog, in the Input field click the Add icon. This displays the
Create Variable dialog.

In the Create Variable dialog, click OK.

In the Edit Invoke dialog, in the Output field select the Add icon. This displays the
Create Variable dialog.

In the Create Variable dialog, click OK.
In the Edit Invoke dialog, click OK. This displays the new invoke link to Servicel.

From the Component Palette, drag-and-drop a Transform Activity and place the
activity before the addPPActions. This transformation maps the BPEL flow input
variable to the addPPActions input variable.

Open the transformation activity. On the Transformation tab, in the Source area
click the Add icon. This displays the Source Variable dialog.

In the Source Variable dialog select inputVariable and click OK.

In the transformation activity, on the Transformation tab in the Target Variable
field select addPPActions_addPPActions_InputVariable as the target.

In the transformation activity, on the Transformation tab in the Mapper File field,
click Add to create a new mapper file. This displays the XSL transformation file.

10-38 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Additional ESSWebService Operations

16. Create mappings as shown in Example 10-3.

The requestParameters come from the addPPActions, overriding what is in the
transformation. The remainder of the input still comes from the BPEL flow input
variable. Assign requestParametersReturn/ns2:parameter of the addPPActions
output variable to requestParameters/ns2:parameter of the addPPActions input
variable, as in the previous examples.

Example 10-3 addPPActions Transformations

<?xml version="1.0" encoding="UTF-8" ?>
<?oracle-xsl-mapper
<!-- SPECIFICATION OF MAP SOURCES AND TARGETS, DO NOT MODIFY. -->

<mapSources>
<source type="WSDL">
<schema location="../BPELProcessl.wsdl"/>

<rootElement name="BPELProcesslProcessRequest"
namespace="http://xmlns.oracle.com/EssWebApplication/Projectl/BPELProcessl"/>
</source>
</mapSources>
<mapTargets>
<target type="WSDL">
<schema location="../Servicel.wsdl"/>
<rootElement name="addPPActions" namespace="http://xmlns.oracle.com/scheduler"/>
</target>
</mapTargets>
<!-- GENERATED BY ORACLE XSL MAPPER 11.1.1.0.0(build 090113.2000.2412) AT [FRI FEB 06 10:29:28
PST 2009]. -->
?>
<xsl:stylesheet version="1.0"
xmlns:xpath20="http://www.oracle.com/XSL/Transform/java/
oracle.tip.pc.services.functions.Xpath20"
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:client="http://xmlns.oracle.com/EssWebApplication/Projectl/BPELProcessl"
xmlns:oraext="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.
services.functions.ExtFunc"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:dvm="http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.LookupValue"
xmlns:hwf="http://xmlns.oracle.com/bpel /workflow/xpath"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:med="http://schemas.oracle.com/mediator/xpath"
xmlns:mhdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.
mediator.service.common. functions.GetRequestHeaderExtnFunction"
xmlns:ids="http://xmlns.oracle.com/bpel/services/IdentityService/xpath"
xmlns:tns="http://xmlns.oracle.com/scheduler"
xmlns:xdk="http://schemas.oracle.com/bpel/extension/xpath/function/xdk"
xmlns:soapl2="http://schemas.xmlsoap.org/wsdl/soapl2/"
xmlns:xref="http://www.oracle.com/XSL/Transform/java/
oracle.tip.xref.xpath.XRefXPathFunctions"
xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-1link/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:nsO0="http://xmlns.oracle.com/scheduler/types"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmlns:socket="http://www.oracle.com/XSL/Transform/java/oracle.tip.
adapter.socket.ProtocolTranslator"
xmlns:ldap="http://schemas.oracle.com/xpath/extension/ldap"
exclude-result-prefixes="xsi xsl client plnk

Using the Oracle Enterprise Scheduler Web Service 10-39

Using Additional ESSWebService Operations

xsd ns0 wsdl tns soapl2 soap mime xpath20 bpws oraext dvm
hwf med mhdr ids xdk xref ora socket ldap">
<xsl:template match="/">
<tns:addPPActions>
<tns:requestParameters>
<xsl:for-each select="/client:BPELProcesslProcessRequest/client:
requestParameters/ns0:parameter">
<ns0:parameter>
<ns0:dataType>
<xsl:value-of select="nsO:dataType"/>
</ns0:dataType>
<ns0:name>
<xsl:value-of select="ns0:name"/>
</ns0:name>
<ns0:scope>
<xsl:value-of select="ns0:scope"/>
</ns0:scope>
<ns0:value>
<xsl:value-of select="ns0:value"/>
</ns0:value>
</ns0:parameter>
</xsl:for-each>
</tns:requestParameters>
<xsl:for-each select="/client:BPELProcesslProcessRequest/client:postProcessAction">
<tns:postProcessActions>
<ns0:actionName>
<xsl:value-of select="ns0:actionName"/>
</ns0:actionName>
<ns0:actionOrder>
<xsl:value-of select="ns0:actionOrder"/>
</ns0:actionOrder>
<xsl:for-each select="ns0:arguments">
<ns0:arguments>
<xsl:value-of select="."/>
</ns0:arguments>
</xsl:for-each>
<ns0: fileMgmtGroup>
<xsl:value-of select="ns0:fileMgmtGroup"/>
</ns0:fileMgmtGroup>
<ns0:description>
<xsl:value-of select="ns0:description"/>
</ns0:description>
<ns0:onError>
<xsl:value-of select="nsO:onError"/>
</ns0:onError>
<ns0:onSuccess>
<xsl:value-of select="ns0:onSuccess"/>
</ns0:onSuccess>
<ns0:onWarning>
<xsl:value-of select="ns0:onWarning"/>
</ns0:onWarning>
</tns:postProcessActions>
</xsl:for-each>
</tns:addPPActions>
</xsl:template>
</xsl:stylesheet>

10-40 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Additional ESSWebService Operations

10.8.4 How to Invoke the ESSWebService setStepsArgs Operation

In the BPEL process, you add an invoke activity to perform the Oracle Enterprise
Scheduler web service addPPActions () operation.

As shown in Example 104, you can add the following to the BPELProcess1.xsd file to
allow input for setStepsArgs.

Example 10-4 Enabling Input for setStepsArgs

<xs:element name="stepArgs" type="nsl:stepArgs"

minOccurs="0" maxOccurs="unbounded" />

The main steps are as follows:

1.

Create a transformation to map the BPEL flow input variable to the setStepsArgs
input variable.

From BPEL Activities and Components, select Transform and place before
setStepsArgs. Open the new transformation activity. Select inputVariable as the
source and setStepsArgs_setStepsArgs_InputVariable as the target. Create a new
mapper file. Create the mappings as shown in the SetStepsArgs transformation
example.

Create an assignment activity. In this example, you want the requestParameters to
come from the previous step, addPPActions, overriding what is in the
transformation. The remainder of the input still comes from the BPEL flow input
variable. Assign requestParametersReturn/ns2:parameter of the addPPActions
output variable to requestParameters/ns2:parameter of the setStepsArgs input
variable, just as in previous examples.

In the BPEL process you add an invoke activity to perform the Oracle Enterprise
Scheduler web service submitRecurringRequest () operation. In this step you
need to select the input and output for the Invoke Activity by associating values
with the input and output variables.

To add the Invoke activity use setStepsArgs operation:

1.

In the Application Navigator, in Project]l expand SOA Content and select the BPEL
file. For example, select BPELProcess1.bpel. This displays the BPEL swim lane.

From the Component Palette, drag-and-drop an Invoke Activity and place the
activity before callbackClient.

Select the Invoke activity and double-click the name Invoke_1 to select the text
entry field. In the text entry field enter setStepsArgs.

Link the invoke activity to the ESSWebService by selecting the right arrow and
dragging it to the Partner Link Servicel. This brings up the Edit Invoke dialog.

In the Edit Invoke dialog, in the Operation field select setStepsArgs as shown in
Figure 10-33.

Using the Oracle Enterprise Scheduler Web Service 10-41

Using Additional ESSWebService Operations

Figure 10-33 Set Step Arguments Operation

[#] Edit Invoke

N Errors: 3

rCeneraI rCUrreIations |/Sensors rPropenies rAnnotations |

Y

Mame: |setStepsArgs

— Interaction Type: |~,.§ Parther Link vl

Wariables

Partnier Role Web Service Interface

Operation: | Ty setStepsArgs v|

Partner Link: |Ser\rice1

|4 Q
|4 A

Input: |

Dutput: |

10.

11.

12,

13.
14.

15.

16.

rm

| Apply || QF || Cancel |

In the Edit Invoke dialog, in the Input field click the Add icon. This displays the
Create Variable dialog.

In the Create Variable dialog, click OK.

In the Edit Invoke dialog, in the Output field select the Add icon. This displays the
Create Variable dialog.

In the Create Variable dialog, click OK.
In the Edit Invoke dialog, click OK. This displays the new invoke link to Servicel.

From the Component Palette, drag-and-drop a Transform Activity and place the
activity before the setStepsArgs. This transformation maps the BPEL flow input
variable to the setStepsArgs input variable.

Open the transformation activity. On the Transformation tab, in the Source area
click the Add icon. This displays the Source Variable dialog.

In the Source Variable dialog select inputVariable and click OK.

In the transformation activity, on the Transformation tab in the Target Variable
field select setStepsArgs_setStepsArgs_InputVariable as the target.

In the transformation activity, on the Transformation tab in the Mapper File field,
click Add to create a new mapper file. This displays the XSL transformation file.

Create mappings as shown in Figure 10-34 using the mappings shown in
Example 10-5.

10-42 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Additional ESSWebService Operations

Figure 10-34 Using the Transformation for Set Step Arguments Operation

File Ednrt View Application Refactor Search Mavigate Build Run Versiohing Tools Window Help ADF

ReEgd > 90 XERO-0- - > aBlluw- > -84 (@8-

Application Mavigator E] E'aTransform_StepsArgs.xsl l'-|§T>_]Transform_StepsArgs—Source.xmI ||E]Transform_5tepsArg @E]E]
' EssWebapplication 2 MM Scurce: BPELPro s LT File: Servicelawsdl
: B — <S0UFCes> =target
= PJECtS_ El Gﬁ ?' &= <o client:BPELProcess1ProcessReqy| thsisetStepshrgs £

g s Tl i <o client:description thzrequestParameters <ek-[

Eg E;T;r::em it <oy clientjobDefinitiontd for-each &5-E

: I B (| <oy clientrequestedStanTime
g txess;sunes ----- <y client:application
R [42y client:requestParam eters
L & BPELProcessl.xsd B8 nei parameter
-3 xsl :
[Business Rules o nsD:dataType
i BPELProcessd bpel Eed nsoname for-each B0
{% LIRS L LR °>] nzl:scope thzistephrgsList Fﬂl’:’!
BPELProFessl.uusdI fed nsovalue for—cach B2
l_ui composlte.xml] [#-Ked client:nlsOptions nslarguments G882
@l Sericel el :
" A Fn“,a client:arguments A - - R xsinil ﬁ
I+ Application Resources F-E8 client:postProcessAction [AT e nsO:NLSOptions Red-=
[+ Data Controls I':'}anﬂ clientistepfrgs [} s ns0:language Eﬂi
[Recently Opened Files BB nzdiarguments T |lnumericCharacters ke
=-Ked ns0:NLSOptions [T T nsO:territary Red..
Stranstorm_Stepsargsoxsi-str.. |)| fed nsoianguage S foreach &1
----- Eed msonumericCharact(| -~ o ns0:PRactions B8-2
----- ke nso:territory e xsinil B
=& ns0:PPACtions e sactionMame Red
..... w wxithil L hsDractionOrder gobe
----- fed ns0:actiontame S for -each &30
----- <o nsOiactionOrder e e argumennts B8R
B8 nsO:arguments [T wsicnil B
----- Eed nsosfileMamtGroup || HfjlemgmtGroup ke
----- ¥ nsiidescription o InsDidescription Bed
----- <2y nzlionError B S nzlonErrar gap--
----- 4 hslionSuccess || nsD:nSuccess <sbo
----- <e» nsO:oniarning | nsD:onWarning <ey--
----- kedl ns0:stepPath T S S S nslistepPath ged--
DESign Source | HlStDrY - - . . -
Source | Design [E]Log :

17. Create an assignment activity. In this example, we want the requestParameters to
come from the previous step, addPPActions, overriding what is in the
transformation. There remainder of the input still comes from the BPEL flow input
variable. Assign the requestParametersReturn/ns2:parameter of the addPPActions
output variable to the requestParameters/ns2:parameter of the setStepsArgs input
variable, just as in previous examples.

Example 10-5 Mapping Transformation for Set Steps Arguments Operation

<?xml version="1.0" encoding="UTF-8" ?>
<?oracle-xsl-mapper
<!-- SPECIFICATION OF MAP SOURCES AND TARGETS, DO NOT MODIFY. -->
<mapSources>
<source type="WSDL">
<schema location="../BPELProcessl.wsdl"/>
<rootElement name="BPELProcesslProcessRequest"namespace="http://xmlns.
oracle.com/EssWebApplication/Projectl/BPELProcessl"/>
</source>
</mapSources>
<mapTargets>
<target type="WSDL">

Using the Oracle Enterprise Scheduler Web Service 10-43

Using Additional ESSWebService Operations

<schema location="../Servicel.wsdl"/>
<rootElement name="setStepsArgs"
namespace="http://xmlns.oracle.com/scheduler"/>

</target>
</mapTargets>
<!-- GENERATED BY ORACLE XSL MAPPER 11.1.1.0.0(build 090113.2000.2412) AT [FRI

?>

FEB 06 10:56:22 PST 2009]. -->

<xsl:stylesheet version="1.0"

xmlns:

xmlns:

xmlns:

xmlns:

xmlns:

xmlns:

xmlns:

xmlns:

xmlns:

xmlns:

xpath20="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.
functions.Xpath20"

bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
client="http://xmlns.oracle.com/EssWebApplication/Projectl/BPELProcessl"

oraext="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.
functions.ExtFunc"
xsi="http://www.w3.0rg/2001/XMLSchema-instance"

dvm="http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.LookupValue"
xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:med="http://schemas.oracle.com/mediator/xpath"

mhdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.mediator.service.
common . functions.GetRequestHeaderExtnFunction"

ids="http://xmlns.oracle.com/bpel/services/IdentityService/xpath"
xmlns:tns="http://xmlns.oracle.com/scheduler"

xdk="http://schemas.oracle.com/bpel/extension/xpath/function/xdk"
xmlns:soapl2="http://schemas.xmlsoap.org/wsdl/soapl2/"

xref="http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.
XRefXPathFunctions"
xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:nsO0="http://xmlns.oracle.com/scheduler/types"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmlns:socket="http://www.oracle.com/XSL/Transform/java
/oracle.tip.adapter.socket.ProtocolTranslator"
xmlns:ldap="http://schemas.oracle.com/xpath/extension/ldap"
exclude-result-prefixes="xsi xsl client plnk xsd ns0
wsdl tns soapl2 soap mime xpath20 bpws oraext dvm
hwf med mhdr ids xdk xref ora socket ldap">

<xsl:template match="/">
<tns:setStepsArgs>

<tns:requestParameters>
<xsl:for-each select="/client:BPELProcesslProcessRequest/client:
requestParameters/ns0:parameter">
<ns0:parameter>
<ns0:dataType>
<xsl:value-of select="nsO:dataType"/>
</ns0:dataType>
<ns0:name>

10-44 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Additional ESSWebService Operations

<xsl:value-of select="ns0:name"/>
</ns0:name>
<ns0:scope>
<xsl:value-of select="ns0:scope"/>
</ns0:scope>
<ns0:value>
<xsl:value-of select="ns0O:value"/>
</ns0:value>
</ns0:parameter>
</xsl:for-each>
</tns:requestParameters>
<xsl:for-each select="/client:BPELProcesslProcessRequest/client:stepArgs">
<tns:stepArgsList>
<xsl:for-each select="ns0:arguments">
<ns0:arguments>
<xsl:value-of select="."/>
</ns0:arguments>
</xsl:for-each>
<ns0:NLSOptions>
<ns0:language>
<xsl:value-of select="ns0:NLSOptions/ns0:language"/>
</ns0:language>
<ns0:numericCharacters>
<xsl:value-of select="ns0:NLSOptions/ns0:numericCharacters"/>
</ns0:numericCharacters>
<ns0:territory>
<xsl:value-of select="ns0:NLSOptions/ns0:territory"/>
</ns0:territory>
</ns0:NLSOptions>
<xsl:for-each select="ns0:PPActions">
<ns0:PPActions>
<ns0:actionName>
<xsl:value-of select="ns0:actionName"/>
</ns0:actionName>
<ns0:actionOrder>
<xsl:value-of select="ns0:actionOrder"/>
</ns0:actionOrder>
<xsl:for-each select="ns0:arguments">
<ns0:arguments>
<xsl:value-of select="."/>
</ns0:arguments>
</xsl:for-each>
<ns0:fileMgmtGroup>
<xsl:value-of select="ns0:fileMgmtGroup"/>
</ns0:fileMgmtGroup>
<ns0:description>
<xsl:value-of select="ns0:description"/>
</ns0:description>
<ns0:onError>
<xsl:value-of select="ns0:onError"/>
</ns0:onError>
<ns0:onSuccess>
<xsl:value-of select="ns0:onSuccess"/>
</ns0:onSuccess>
<ns0:onWarning>
<xsl:value-of select="ns0:onWarning"/>
</ns0:onWarning>
</ns0:PPActions>
</xsl:for-each>
<ns0:stepPath>

Using the Oracle Enterprise Scheduler Web Service 10-45

Securing the Oracle Enterprise Scheduler Web Service

<xsl:value-of select="ns0:stepPath"/>
</ns0:stepPath>
</tns:stepArgsList>
</xsl:for-each>
</tns:setStepsArgs>
</xsl:template>
</xsl:stylesheet>

10.9 Securing the Oracle Enterprise Scheduler Web Service

You can secure any of the Oracle Enterprise Scheduler web service operations using an
Oracle Web Services Manager security policy.

For more information, see the "Securing and Administering WebLogic Web Services"
chapter in the Oracle Fusion Middleware Security and Administrator’s Guide for Web
Services.

10.9.1 How to Secure the Oracle Enterprise Scheduler Web Service

Securing the Oracle Enterprise Scheduler web service involves attaching one security
policy to the method that calls the web service, and another to the asynchronous
callback to the SOA composite.

Note: Oracle Fusion Applications make use of an Oracle WSM
feature called global policy attachments (GPA). Using GPA, policies
are not attached locally, but are specified at a global level. At runtime,
components simply inherit the global policy and Oracle WSM
enforces it.

Unlike local policy attachments (LPA), which need to be added at
every web service client and server, global policy attachment (GPA)
can be attached at a domain level. This makes it easy for the system
administrator to have a uniform policy for all web services across the
domain.

For more information about global policy attachments, see the
"Securing Web Services Use Cases" chapter in the Oracle Fusion
Applications Developer's Guide.

To secure the Oracle Enterprise Scheduler web service:
1. Open the SOA composite that calls the Oracle Enterprise Scheduler web service.

2. Inthe swim lane on the right, right-click the Oracle Enterprise Scheduler web
service and select Configure WS Policies > For Request.

The Configure SOA WS Policies window displays.
3. In the Security field, click the add button to attach a security policy to the client.

Select the policy oracle/wssll_saml_token with message_protection_client_
policy or oracle/wssll_username_token_with_message_protection_client_
policy as shown in Figure 10-35, and click OK.

10-46 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Securing the Oracle Enterprise Scheduler Web Service

Figure 10-35 Client Security Policy for the Oracle Enterprise Scheduler Web Service

Configure S0A IS Palicies
50A Client WS Policies

Configure Web Services client policies to request bindings
Enable or disable each policy status by checking the box on the left side

Select Request Binding

| ¢ {http:f fxmins.oracle.com fscheduleriESSiveb Service | SchedulerServicelmplPort 'I
MTOM 4 B
Reliability a4 %
| I
Addressing 4 %
Security 4 R /

oraclefussll_saml_token_with_message_protection_client_policy

Management ”ﬁ' x f

| Disable Al | Rremovesn |

| Help | ot || Cancel I

4. Inthe swim lane on the right, right-click the Oracle Enterprise Scheduler web
service and select Configure WS Policies > For Callback.

The Configure SOA WS Policies window displays.

5. In the Security field, click the add button to attach a security policy to the callback
method.

Select the policy oracle/wssll_saml_token with message_protection_service_
policy, as shown in Figure 10-36, and click OK.

Using the Oracle Enterprise Scheduler Web Service 10-47

Deploying and Testing the Project

Figure 10-36 Callback Security Policy for the Oracle Enterprise Scheduler Web Service

S0A Server WS Policies

Configure Web Services server policies to callback bindings

Eriahle ordisable each policy status by checking the box on the left side

Select Callback Binding

QWS c{httpd famins oracle.com fecheduleriES SWebService | ESSWebServiceCallback pt = |
MTCM + X
| |
Reliability + %
| |
Addressing + X
| |
Security @ %

|_7| oracle fmss11_saml_token_with_message_protection_service_policy

Management

| Disable Al

| Remove All |

I Help

| Cance| |

6. Save your changes to the SOA composite file.

10.9.2 What Happens When You Secure the Oracle Enterprise Scheduler Web Service

The security policy oracle/wssll_saml_token_with_message_protection_client_
policy secures the method that calls the Oracle Enterprise Scheduler web service. The
security policy wssll_saml_token_with_message_protection_service_policy
secures the asynchronous callback method that the web service uses to call back the

SOA composite.

10.10 Deploying and Testing the Project

Next, you deploy the BPEL process to the Oracle WebLogic Server as described in
"Deploying SOA Composite Applications" in Oracle Fusion Middleware Developer’s
Guide for Oracle SOA Suite. Following deployment, you can test the web service using

Oracle SOA Console.

10.10.1 How to Test the Web Service

To test the web service:

1. Open a browser and go to the SOA Console at the following URL.

http://<machine>:<port>/soa-console

2. In the Applications area, select the deployed composite.

3. Click the Test dropdown and choose the service endpoint Test Client.

10-48 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Deploying and Testing the Project

©® N o a &

This an endpoint page where you can provide input to the BPEL process.
In the payload area, enter values for the job parameters.

Click Invoke.

Refresh the console page.

Click the latest instance ID to verify the progress of the BPEL file.

Using the Oracle Enterprise Scheduler Web Service 10-49

Deploying and Testing the Project

10-50 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

11

Defining and Using Job Sets

This chapter describes how to define and submit a job set. Oracle Enterprise Scheduler
job sets provide for collections of job definitions that can be grouped together to run as
a single unit.

This chapter includes the following sections:

= Section 11.1, "Introduction to Defining and Using Job Sets"
= Section 11.2, "Defining Job Sets"

» Section 11.3, "Cross Application Job Sets"

= Section 11.4, "Using Input and Output Forwarding"

11.1 Introduction to Defining and Using Job Sets

Oracle Enterprise Scheduler provides for collections of job definitions that can be
grouped together to run as a single unit called a job set. A job set may be nested; thus a
job set may contain a collection of job definitions or one or more child job sets. Each
job definition or job set included within a job set is called a job set step.

A job set is defined as either a serial job set or a parallel job set. At runtime, Oracle
Enterprise Scheduler runs parallel job set steps together, in parallel. When a serial job
set runs, Oracle Enterprise Scheduler runs the steps one after another in a specific
sequence. Using a serial job set Oracle Enterprise Scheduler supports conditional
branching between steps based on the execution status of a previous step.

You can define a serial job set to include a parallel job set, or a parallel job set to
include a serial job set. job sets that include a mix of parallel and serial job sets are
called complex job sets. For example, when a serial job set contains a child parallel job
set, the serial job set runs serially until it reaches the child parallel job set. Then, all the
job definitions or job set definitions in the child parallel job set run in parallel. Upon
completion of the child parallel job set the serial job set continues running its
remaining steps serially. Nested parallel job sets behave the same as non-nested
parallel job sets.

For every step in a job set Oracle Enterprise Scheduler supports properties that
provide runtime flexibility for how a particular step affects the entire job set. These
properties are defined on a per step basis. Table 11-1 shows properties that are useful
for job set steps. Any property can be defined on a job set step.

Defining and Using Job Sets 11-1

Defining Job Sets

Table 11-1 Job Set Step Properties

Property

Description

EFFECTIVE_APPLICATION Specifies if the step is a job, the job will execute in the effective application. If the step is

SELECT_STATE

a nested job set, the jobs in the nested job set will execute in the effective application.
The effective application becomes the application for the request for the step and for any
child requests of the step.

This property can be defined for job definitions and job types as well as job sets.

Specifies whether the result state of a job set step should be included when determining
the state of the job set. Specifies whether the execution state of the step affects the
eventual state of entire job set.

By default, all job set steps affect the job set state. To prevent the state of a particular job
set step from affecting the state of the job set, set SELECT_STATE to false for that step. To
allow the state of a job set step to affect the overall state of the job set, set SELECT_
STATE to true for that step.

Oracle Enterprise Scheduler provides the capability for a job set to execute across
multiple applications. A job set runs in its hosting application and by default all job set
steps also run in this application. A job set step can be associated with a different
application by defining the EFFECTIVE_APPLICATION system property on the step. If the
step is a job definition, the job definition executes in the effective application. If the
step is a nested job set definition, the job definitions or job set definitions in the nested
job set execute in the effective application. The effective application becomes the
application for the request for the step and for any child requests of the step. For more
information, see Section 11.3, "Cross Application Job Sets".

11.2 Defining Job Sets

You can define a job set in Oracle JDeveloper by specifying the following:
= The name, package, and description for the job set

s The parameters for the job set

» The system properties for the job set

» Specifying the job set steps

The contents of a job set are specified when you define the job set steps. For example,
for a serial job set you specify the name and the execution mode and then you add the
job set steps to define the sequence of job definitions or child job sets that run when
the job set runs.

11.2.1 How to Define a Job Set

An Oracle Enterprise Scheduler job set is defined by a name, a package, a job set
execution mode, step definitions, parameters, and system properties.

To create a job set:
1. In Oracle JDeveloper, right-click in the project to view the New Gallery.

2. Under Categories, expand Business Tier and select Enterprise Scheduler
Metadata.

3. Under Items, select job set and click OK. This displays the Create Job Set window.
4. In the Create Job Set window, specify the following:

a. In the Name field, enter a name for the job set or accept the default name.

11-2 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Defining Job Sets

b. In the Package field, optionally enter a package name for the job set.

c. The Location field displays the full path of the directory where the job set file
is stored.

d. Click OK. This creates the job set and displays the Job Set Definition page, as
shown in Figure 11-1.

Figure 11-1 Job Set Editor with Serial Job Set

|E-<%Inc0mpatibility8.xml |E-<%Incompatibility9.xml @Johsetz.ﬂml E%Incompatibilitylﬂ.xml |EE-:Z_1'J0bt\,-'|: @E]E]
I Job Set

Mame: Jobset?

Drescription:

I “@* Job Set Steps L PR aw

() Parallel (3) Serial

Available Steps

= Parameters / di- ®

Mo Parameters
=] @. System Propetties / 4= X
Jobset Editar [’_

5. In the Job Set Editor pane, in the Description field enter a description for the job
set.

6. In the Job Set Steps area, select the Parallel or Serial radio button to specify
parallel or serial execution mode for the job set.

7. In the Job Set Editor pane add the job set steps. For more information on adding
job set steps, see Section 11.2.2, "How to Define Serial Job Set Steps" or
Section 11.2.3, "How to Define Parallel Job Set Steps".

8. In the Parameters area, click Add to add parameters associated with the job set.
You use parameters to represent an application-specific parameter for the job set
or a step specific parameter for the job set. For more information on using
parameters, see Section 5.1, "Introduction to Using Parameters and System
Properties". For more information, see Section 5.1.2.2, "What You Need to Know
About Job Set Level Parameter Materialization".

Defining and Using Job Sets 11-3

Defining Job Sets

9. In the System Properties area, click Add to add system properties associated with
the job set. For more information on using system properties, see Section 5.4,
"Using System Properties".

10. Save the job set.

11.2.2 How to Define Serial Job Set Steps

To define serial job set steps you select the serial execution mode and then add job set
steps. Job set steps are created from the available job definitions and job sets defined in
the current project. You define serial job set steps when you specify a step ID and a job
definition child job set definition associated with the step. You also define links from a
job set step terminal states to specify the next step. Table 11-2 lists the possible
terminal states that you can specify using JDeveloper.

Table 11-2 Job Set Serial Execution Step Terminal States

Terminal State

Description

SUCCEEDED

WARNING

ERROR

Oracle JDeveloper indicates this state with a checkmark icon. This path represents a child step
or child job set was successfully processed by the system.

Oracle JDeveloper indicates this step with a warning icon. A child step or child job set resulted
in a warning.

Oracle JDeveloper indicates this step with an error icon. Some aspect of the request to run the
child step or child job set processing resulted in an error.

To add serial job set steps:

1. First, define the appropriate job definitions or job sets and define the parent job set
to contain the steps.

In the Job Set Editor pane, in the Job Set Steps area, select Serial execution mode.
Click the Add icon to add a job set step. This displays the Add Step window.
In the Step ID field, enter the step ID. For example, enter stepl.

a & 0N

In the Job field, from the dropdown list select a job definition or a job set to
associate with the step. For example, select Job1.

6. If you need to define step level parameters, then select the Parameters tab and add
job set step parameters for the step.

7. If you need to define step level system properties, then select the System
Properties tab and add job set step system properties for the step.

8. Select a destination for the step. The step can be added as part of the job set by
selecting Insert into main diagram. To make the step available for use in another
step, for either error or warning states, select Add to list of available steps.

9. Click OK, this adds the job set step, as shown in Figure 11-2.

11-4 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Defining Job Sets

Figure 11-2 Job Set with a Step Added

A ?..Z'Start Page | =40radeRulest.rules | _n].ﬂ.pplication 11.jws | @jJDbtypel Ll | E{i]obl el @Jﬂbsetl.xm} E]

=] @JthetSteps / Eﬂ' Xaw

() Parallel (3) Serial

Available Steps

O

@ —9'|Stop - |
stepl
........... > | Stop - |

L
O

= Aramerers / 4 x
Tbset ter € I
10. From the dropdown list next to the error icon, select Stop or select the step for the

11.

12.
13.

ERROR terminal state for the step. For example, from the dropdown list select Step_
error (Step_error needs to be defined).

From the dropdown list next to the warning icon, select Stop or select the step for
the WARNING terminal state for the step. For example, from the dropdown list select
Step_warning (Step_warning needs to be defined).

Click the Add icon and add additional steps as needed.
Click OK, as shown in Figure 11-3.

Defining and Using Job Sets 11-5

Defining Job Sets

Figure 11-3 Job Set with Two Steps Added

(2)start Page | =A0radeRulest.rules | | Application 1l jws | .j_iJobtypel Ll | .j_iJobl Ll @Jﬂbseu.xml E]

() Parallel (3) Serial
Available Steps
O Skep_error
Skep_warning
@ | Step_error - |
stepl
Ay |Step_warning V|
v
@ |Step_err0r - |
Stepz ftest/lobl
Y |Step_warning v|
v
= [parameters VB
M Paramebprs
Jobset Editor 0

11.2.3 How to Define Parallel Job Set Steps

You can add parallel job set steps to a job set.

To add parallel job set steps:

1.

First, define the appropriate job definitions and job set definitions and the parent
job set.

In the Job Set Editor, select the Parallel execution mode.
Click the Add icon to add a job set step to the job set.
The Add Step window displays.

In the Job field, select a job definition or a job set.

If you need to define step level parameters, then select the Parameters tab and add
job set step parameters for the step.

If you need to define step level system properties, then select the System
Properties tab and add job set step system properties for the step.

Click OK, this adds the job set step.
Click the Add icon.

In the Add Step dialog, select the job set or job definition to use for next job in the
parallel job set.

10. Click OK. The job set step displays in the job set, as shown in Figure 11-4.

11-6 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Defining Job Sets

Figure 11-4 Adding Job Set Steps to a Parallel Job Set

[[F1ob3.aml |[& Incompatibilicys.cml | (8, Incompatibility@.cml |53 Jobsekz,xml @Jﬂbset&‘.xml W=

[Job Set

Mame: Jobset

Description:

=] @JthetSteps / + R a w
() Parallel () Serial
Stepl Stepz
= [GE] Parameters / 4‘ b 4
Mo Parameters
= P System Properties S+ R
Mo Syskem Properties
= E= Access Control / “* b 4
Mo Access Control
Jobset Editor 7]

11.2.4 What Happens When You Define a Job Set

When you define a job set with Oracle JDeveloper, Oracle JDeveloper creates an XML
file containing elements that represent the steps that you define.

When you define a parallel job set you specify a set of job set steps that run together. A
parallel job set only contains steps, and does not contain links between steps, as all the
steps execute together and do not depend on each other or upon the order in which
each step runs.

When you define a job set Oracle JDeveloper creates an XML document that conforms
to the Oracle Enterprise Scheduler job step schema.

11.2.5 What You Need to Know About Serial Job Sets

When you define a serial job set the associated XML document includes job set steps
and links. Oracle Enterprise Scheduler enforces the following limitations for serial job
set definitions:

= To prevent looping within a job set, job set definitions should not contain circular
execution paths. A circular execution path, or a loop, is defined at the job set level
as follows: loop is a path from one job set step along the links of any number of
other steps back to the same job set step. For example, in a job set with a flow from

Defining and Using Job Sets 11-7

Defining Job Sets

Job_A, to Job_B, to Job_C defined, Oracle Enterprise Scheduler does not allow you
to define an execution path from Job_B or Job_C back to Job_A. For example you
could a create circular execution path, or a loop, if one of the links in a job set step
for success, error, or warning links back to the same job set step. Thus, each job set
step can link to any of the available job definitions or job sets, or they could all use
the same job definition or job set as a link for the success, error and warning case.
There is only a possible loop based on the path through the job set steps, as
identified by the job set step ID. Oracle Enterprise Scheduler validates job sets at
submission time to try to prevent job set step level looping. Also, Oracle
JDeveloper does not allow you to create a job set containing a job set step level
loop.

= To prevent looping within a job set, job set definitions should not contain
self-referencing execution paths. For example, in a job set with Job_B defined,
Oracle Enterprise Scheduler does not allow you to define an execution path from
Job_B to Job_B itself if Job_B ends up with a terminal state of ERROR. However
using the RETRIES property available for a job definition or a job set, you can have
multiple executions up to the configured RETRIES number.

= When there is no job set link defined for a terminal state of a step, it implies that
the job set should stop if the step ends with the unspecified terminal state. For
example if there is no link defined for a step Job_D for the state WARNING, and if the
step Job_D ends up with the state of WARNING, the job set stops execution.

Each job set step can be defined to use any of the available job definitions or job sets,
and multiple steps may use the same job definition or job set.

11.2.6 What You Need to Know About Job Set Parameters and System Properties

There are cases where job set parameters or system properties may conflict with
parameters or system properties set either in metadata or when a job request is
submitted. For more information on how job set parameters and system properties are
handled, see Section 5.2, "Using Parameters with the Metadata Service" and

Section 5.3, "Using Parameters with the Runtime Service".

11.2.7 What Happens at Runtime for Job Set State Priorities and State Transitions

At runtime, the individual steps in a job set can end up with different terminal states,
as indicated in Table 11-2. When a job set step is a job set, the job set step also ends
with one of these terminal states. Oracle Enterprise Scheduler provides a priority
hierarchy for the terminal states of job set steps. This means that when there are
multiple steps in a job set, the job set terminal state is applied the terminal state of the
step with the highest priority terminal state. Thus, the highest priority terminal state of
the steps determines the resulting state for the entire job set.

The resulting state of a job set affects all subsequent state dependent processing within
the system. A job set always follows the basic rule of transitioning to a terminal state
based on the terminal states of its child requests, only after the completion of all child
requests. As a rule, the job set transitions to one of the computed terminal states only
after all child requests have finished and transitioned to terminal states. For example,
if a given job set is actually a step within another job set, then the way in which the
state of the inner job set request is computed affects the conditional execution within
the outer job set.

Table 11-3 shows the possible job set terminal states with the level indicated in the
Priority column.

11-8 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Defining Job Sets

Table 11-3 Job Set Terminal State Transitions

Terminal State Description Priority

ERROR If any step in a job set finishes with the terminal state of ERROR, the entire job The ERROR state
set is marked with the terminal state of ERROR no matter what the state of the has the highest
other steps. priority.

For serial job sets, if one step goes to ERROR, subsequent steps will not
execute. For parallel job sets, all steps begin at the same time, and the job set
state is not determined until the job set steps reach a terminal state.

WARNING If any step in a job set ends up with the terminal state of WARNING, and there =~ Lower than ERROR
is no step with the terminal state of ERROR then the job set is marked with the
terminal state WARNING. When the terminal state is WARNING, post processing
will begin.

EXPIRED The job set transitions to EXPIRED state if at least one of the child requests Lower than ERROR
expires while there is no step that ends with the terminal state of ERROR or and WARNING
WARNING.

CANCELLED Based on the actual outcome of a cancellation attempt, the job set can Lower than ERROR,
transition to CANCELLED if at least one child request successfully processes the WARNING, and
cancellation attempt and transitions to CANCELLED state. The cancellation EXPIRED
might have been requested on the entire job set or just a specific child
request.

Further the transition to CANCELLED follows the priorities of terminal states.
Therefore the job set transitions to CANCELLED terminal state only if there is
no step that ends with the state of ERROR, WARNING, or EXPIRED and there is at
least one step with terminal state of CANCELLED.

When a job set is cancelled, steps that have not been added or run are
considered to be CANCELLED for the purpose of final state.

SUCCEEDED The job set is considered as SUCCEEDED if and only if all child requests The SUCCEEDED
completed with the terminal state of SUCCEEDED. state has the

lowest priority

among all

terminal states
Table 11-4 lists additional possible states for a job set:

Table 11-4 Possible Job Set Runtime States

State Description

WAIT This is the initial state of the submitted job set request. Once the job set request
transitions to RUNNING state, however, all generated child requests transition directly
to READY state rather than WAIT state.

READY Job sets never go to READY state. The submitted job set request transitions from WAIT to
RUNNING state. Nested job sets are generated in RUNNING state. The only job set steps
that begin in READY state are steps composed of job definitions.

RUNNING The submitted job set transitions from WAIT to RUNNING state when it begins to be

processed. Nested job sets start in RUNNING state and remain in RUNNING state as long

as at least one child is in a non-terminal state.

Defining and Using Job Sets 11-9

Cross Application Job Sets

Table 11-4 (Cont.) Possible Job Set Runtime States

State

Description

CANCELLING

COMPLETED

BLOCKED

HOLD

A job set transitions to CANCELLING when the user requests a cancellation for the entire
job set. This can be done by calling cancelRequest () with the request ID of the parent
request representing the job set. Passing the parent request ID indicates that the user
wants to cancel entire job set irrespective of its current, non-terminal, state and the
states of its child requests.

In such cases, a cancellation will be attempted on all child requests that are still active
and have not already transitioned to a terminal state.

On the other hand if cancellation is attempted only on a specific child request in the
job set, there won't be any state change for the parent request and only the particular
child request will transition to CANCELLING if possible.

If the cancel happens during post-processing, the state is set to WARNING rather than
CANCELLED. If the job set finishes before the cancel is issued, the job set can have state
SUCCEEDED.

This state indicates that the job set or job set step has finished executing and
post-processing will begin.

The BLOCKED state is not a terminal state. However any request can remain in a
BLOCKED state for a long period until the blocking condition is eliminated (such as
incompatibility).

In the case of a job set, any individual step might be BLOCKED while other steps either
complete or may be running. The job set itself, however, remains in a RUNNING state.
Eventually if all steps in the job set complete except the ones that are in the BLOCKED
state, the job set cannot continue further until the blocking step is ready to run. When
the blocked step unblocks and completes, the job set can proceed. After the steps
complete, the job set eventually goes to the appropriate terminal state.

For a serial job set, the job set may stop at a step that is in BLOCKED state. In such cases,
all previous steps are complete and the job set cannot continue until the blocked step
executes.

However for a parallel job set, multiple steps can remain in BLOCKED state. Further,
while some steps are blocked, other steps can still continue to run.

The HOLD state is very similar to the BLOCKED state. Following the same rules for the
BLOCKED state, a job set cannot continue running while a step is in HOLD state. A serial
job set cannot continue if the current step in the execution flow is stuck at HOLD state.
In the case of a parallel job set, if at least one step is stuck in HOLD state while all other
steps have completed, the job set can complete when the step is no longer in HOLD
state.

11.3 Cross Application Job Sets

Oracle Enterprise Scheduler provides the capability for a job or a job set to execute
across multiple applications as shown in Figure 11-5:

= Job set FIN has three steps, two of which are defined to execute in different
applications.

= Job set FIN is submitted to the GL application.

= Step 1 has the EFFECTIVE_APPLICATION system property set to ODI, so Step 1
executes in the ODI application.

= Step 2 does not have an effective application set, so it executes in the GL
application.

= Step 3 has the EFFECTIVE_APPLICATION system property set to INV, so Step 3
executes in the INV application.

11-10 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Cross Application Job Sets

Figure 11-5 Cross Application Job Set Steps

Jobset FIN Definition Oracle Weblogic Server

Stepi Submit Jobset FIN GL oDl INV

EFFECTIVE_APPLICATION to GL App
="0oo" ‘ FIN.Step2 FIN.Step1 FIN.Step3

Step2

| Oracle Enterprise Scheduler

Step3
EFFECTIVE_APPLICATION
="INV"

11.3.1 Overview of Cross Application Job Sets

A job set runs in its hosting application and by default, all job set steps also run in this
application. A job set step can be associated with a different application by defining
the EFFECTIVE_APPLICATION system property on the step. If the step is a job, the job
will execute in the effective application. If the step is a nested job set, the jobs in the
nested job set execute in the effective application. When EFFECTIVE_APPLICATION is
defined for a step, the request for the step and any child requests of the step are
associated with the effective application, meaning the APPLICATION system property
for those requests will be set to the effective application.

The EFFECTIVE_APPLICATION system property may only be defined in metadata,
specifically job set, job set step, job type, and job. The property EFFECTIVE_
APPLICATION is not supported in the request parameters. The effective application
must be in the same cluster as the hosting application, or an error will result. If a
submitted job set defines the effective application, that value must be the same as the
hosting application, or the job set submission will be rejected.

Subrequests created by a job set step must run in the same application as the job set
step. In other words, EFFECTIVE_APPLICATION is not supported for subrequests. If the
job for a subrequest defines the effective application, that value must be the same as
the application of the job submitting the subrequest, or the subrequest submission will
be rejected.

For a job set that executes across multiple applications, querying for requests by
application is not sufficient to retrieve all children. Oracle Enterprise Scheduler
supports absolute parent id as a query field, making it possible to query for all
requests in a job set regardless of the application. The absolute parent id is the request
id of the job set that was submitted to the hosting application.

11.3.2 Requirements for Cross Application Job Sets

Oracle Enterprise Scheduler supports cross-application job set subject to the following
requirements:

1. All applications for a given job set must be deployed in the same cluster.
2. All applications in the job set must share the same enterprise security.

3. All request metadata must be accessible from the application the job set is
submitted to, referred to as the hosting application. All metadata for the request
are persisted to the runtime store for the hosting application. The persisted
metadata include all metadata used by the submitted job set and any nested job
set.

Defining and Using Job Sets 11-11

Using Input and Output Forwarding

4. Metadata for subrequests must be accessible from the application that submits the
subrequest, unless the metadata used by the subrequest were already persisted to
the runtime store at job set submission time.

11.4 Using Input and Output Forwarding

Oracle Enterprise Scheduler configures a USER_FILE_DIR parameter to specify the
directory for all jobs to store their input and output files. This parameter is populated
by the property RequestFileDirectory in the connections.xml file. When this
parameter is set, Oracle Enterprise Scheduler set the system property USER_FILE_
DIR for all job requests. When a job request is processed, in the pre- or post-processor
or its execution the job can read, write, create, delete and manage files and
sub-directories based this property. Oracle Enterprise Scheduler does not impose
any structure on the user file directory nor support any file or directory operations.

The purpose of this file support is to allow job implementation to reference files
relative to a configurable location so that the job implementation is not tied to a
particular environment. It de-couples job implementation with file input and output
from the job execution environment.

The USER_FILE_DIR property allows job requests to dynamically change the file.

11.4.1 Supporting Input and Output Forwarding in Job Sets

Sometimes a step in a job set needs input from the previous step in the job set. Oracle
Enterprise Scheduler uses two system properties INPUT_LIST and OUTPUT_LIST to
facilitate forwarding the output from one step to the input of the next step.

When a job produces information, such as a list of output files, that needs to be passed
on to the next step in a job set, the job adds the information to the OUTPUT_LIST
property. Upon completion of the job request execution, Oracle Enterprise Scheduler
forwards the OUTPUT_LIST property of the request so that it becomes the INPUT_LIST
property of the next step before it executes. The next step takes as its input the output
of the previous step.

A job set step can be a single job or a job set, Oracle Enterprise Scheduler supports
forwarding with nested job sets as well. For a serial job set, Oracle Enterprise
Scheduler defines the output of the job set as the output of the last step of the job set,
meaning that only the OUTPUT_LIST property of the last step is forwarded to the next
step. Similarly, the input to a serial job set is forwarded only to the first step of the job
set; that is, only the first step of a serial job set has the INPUT_LIST property set to the
value of the OUTPUT_LIST property of the previous step.

For a parallel job set, Oracle Enterprise Scheduler specifies that the output of the job
set is the concatenation of the OUTPUT_LIST property of every job in the job set,
separated by a delimiter (with no order guaranteed). The input to a parallel job set is
forwarded to every job in the job set, meaning that every job in the parallel job set has
the same INPUT_LIST property. The system property OUTPUT_LIST DELIMITER specifies
the delimiter used when listing output files.

Suppose a job set has two jobs, each job producing its own output file, filel.txt and
file2.txt. The system property OUTPUT_LIST for that job set will have the values
filel.txt;file2.txt, assuming the value of OUTPUT_LIST_ DELIMITER is a semi-colon.
The concatenated list of output files enables the next job step in the job set to access
output files generated by previous steps within the job set.

The InputFile class provides access to files as input to a job definition. There is
currently no mechanism for accepting a file as an input to a job request.

11-12 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Using Input and Output Forwarding

Except for forwarding the value of the OUTPUT_LIST property of a step to the value of
the INPUT_LIST property of the next step, Oracle Enterprise Scheduler treats the two
properties like any other system properties. Oracle Enterprise Scheduler does not
define the format for the value of the properties (except for the semicolon delimiter in
case of parallel job set). It is the responsibility of the job to define the syntax and
semantics for the properties; for example using a fully qualified name or relative path
name and a comma or space as a delimiter.

Defining and Using Job Sets 11-13

Using Input and Output Forwarding

11-14 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

12

Defining and Using a Job Incompatibility

This chapter describes how to use an Oracle Enterprise Scheduler job incompatibility.
The incompatibility feature lets you specify job requests that cannot run together.

This chapter includes the following sections:

Section 12.1, "Introduction to Using a Job Incompatibility"
Section 12.2, "Defining Incompatibility with Oracle JDeveloper"
Section 12.3, "What Happens at Runtime to Handle Job Incompatibility"

For information about how to create and submit job requests see the following
chapters, for Java jobs, Chapter 3, "Use Case Oracle Enterprise Scheduler Sample
Application", and Chapter 6, "Creating and Using PL/SQL Jobs", and Chapter 7,
"Creating and Using Process Jobs". For more information on using job sets, see
Chapter 11, "Defining and Using Job Sets".

Note: To simplify the discussion we refer only to job definitions in
this incompatibility chapter, but in all cases this discussion applies to
both job definitions and job sets.

12.1 Introduction to Using a Job Incompatibility

A given incompatibility specifies either a global incompatibility or a domain,
property-based, incompatibility. Oracle Enterprise Scheduler supports incompatibility
between job definitions or job sets based on an incompatibility definition as
represented by the oracle.as.scheduler. Incompatibility Java class. The
IncompatibilityType enum specifies the valid incompatibility types.

Domain-Specific (DOMAIN): where at most two job definitions are marked as
incompatible within the scope of a resource, where the resource is identified by a
system property name or a user-defined parameter name. A property name must
be specified for each job definition used to define the incompatibility. Parameters
specified through parametervo will be submitted to the request as request
properties submit.argumentl, ... submit.argument#. In the incompatibility
definition for the properties, specify submit.argumentl, ... submit.argument#,
Oracle Enterprise Scheduler ensures that requests for the incompatible jobs do not
run at the same time if they have the same value for that resource.

Global (GLOBAL): where at most two job definitions are marked as incompatible,
regardless of any resource or property. Oracle Enterprise Scheduler ensures that
requests for the incompatible jobs do not run at the same time.

An Oracle Enterprise Scheduler incompatibility definition specifies either a global
incompatibility or a domain (property-based) incompatibility. An incompatibility

Defining and Using a Job Incompatibility 12-1

Defining Incompatibility with Oracle JDeveloper

consists of at most two entities (job definition or job set) and the resource over which
they need to be incompatible. A resource is not specified for a global incompatibility.
Each entity can be flagged as being self-incompatible. Oracle Enterprise Scheduler
does not support a mixed mode where one entity represents a domain
(property-based) entity and another entity represents a global (no property) entity.

For a domain incompatibility, the resource is represented by a property name that
might be different for each entity of the incompatibility. For example, if a domain
incompeatibility is created for two job definitions, JobA and JobB, then the resource
(property) identified for each entity might have different property names in JobA and
JobB. It might be called foo in JobA while it might be called foo2 in JobB. Oracle
Enterprise Scheduler considers a request for JobA and a request for JobB to be
incompatible if they have the same value for their respective property, and those
requests would not run at the same time. If the requests have a different value for their
respective property, they are considered compatible and allowed to run concurrently.

An incompatibility definition specifies which job definition is incompatible with
another job definition. A given job definition does not directly point to or reference
any incompatibility definitions.

Oracle Enterprise Scheduler determines which, if any, incompatibility definitions
reference the job definition at request submission. It also determines the resource
(property) value for any domain incompatibility. That information is used throughout
the processing life cycle of the request.

12.1.1 Job Self Incompatibility

A job definition or job set can be defined as self incompatible where the job definition
or job set is incompatible with itself. A self-incompatibility implies that multiple job
requests associated with a single job definition cannot run together. An incompatibility
definition can contain a single entity if it is marked as self-incompatible. For global
self-incompatibly, Oracle Enterprise Scheduler ensures that multiple requests for that
particular job or job set definition are not run simultaneously. For property-based
self-incompatibly, Oracle Enterprise Scheduler ensures that requests for that particular
job or job set definition, and having the same value for the property, are not run at the
same time.

12.2 Defining Incompatibility with Oracle JDeveloper

You can define an incompatibility in Oracle JDeveloper by specifying the following:
s The name and package for the incompatibility

s The incompatibility type

» The entity for the incompatibility and whether there is a self incompatibility

» For a domain specific incompatibility, the property associated with the
incompatibility for each entity

12.2.1 How to Define a Global Incompatibility

12-2

An Oracle Enterprise Scheduler global incompatibility is defined by a name, a package
and entities.

To create a global incompatibility:
1. In Oracle JDeveloper, right-click in the project to view the New Gallery.

Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Defining Incompatibility with Oracle JDeveloper

2. Under Categories, expand Business Tier and select Enterprise Scheduler
Metadata.

3. Under Items, select Incompatibility and click OK. This displays the Create
Incompatibility window, as shown in Figure 12-1.

Figure 12-1 Create Incompatibility Window

Create Incompatibility. E|
Incompatiblity |‘_‘:"‘
Allaws wou to specify jobs that cannot be executed at the same time, %

Mame: | Incornpatibility 1 |

Package: | |

Location: |,I'C:,I'JDeveloper,l’myworkl'npplication15,|’Pr0ject1,|' |

Incompatibility Type:
(3) Global {entire job)

() Domain {property of the job)

| Help | | (o] 4 J | Cancel |

4. Use the Create Incompatibility dialog to specify the following:

a. In the Name field, enter a name for the incompatibility or accept the default
name.

b. In the Package field, enter a package name for the incompatibility.

c. The Location field displays the full path of the directory where the
incompatibility file is stored.

d. In the Incompatibility Type field, select Global. and click OK.

The incompatibility is created, and the Incompatibility Definition page
displays.

5. In the Incompatibility Editor pane, in the Description field enter a description for
the incompatibility.

6. In the Incompatibility Entities area, click Add to add entities. This displays the
Add Entity dialog, as shown in Figure 12-2.

Defining and Using a Job Incompatibility 12-3

Defining Incompatibility with Oracle JDeveloper

Figure 12-2 Incompatibility Add Entity Window

Add Entity X

Select one of mare jobs.

Jobz
Jobset1

| Help | | (04 | | Cancel |

7. Select one or more entities for the incompatibility and click OK. The
Incompatibility Editor displays.

8. To specify a self incompatibility or to change the entity, double-click the entity in
the Entities area. This displays the Edit Entity dialog as shown in Figure 12-3.

Figure 12-3 Edit Entity Window for Global Incompatibility

Edit Entity 3
Self Incompatible
Jab: |J0b1 -

| Help | | (o4 J | Cancel |

9. To specify self incompatibility, select Self Incompatible.
10. Save the incompatibility.

12.2.2 How to Define a Domain Incompatibility

An Oracle Enterprise Scheduler domain incompatibility is defined by a name, a
package, entities, and properties for each entity.

To create an incompatibility:
1. In Oracle JDeveloper, right-click in the project to view the New Gallery.

2. Under Categories, expand Business Tier and select Enterprise Scheduler
Metadata.

12-4 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Defining Incompatibility with Oracle JDeveloper

3. Under Items, select Incompatibility and click OK. This displays the Create
Incompatibility window.

4. Use the Create Incompatibility dialog to specify the following:

a. Inthe Name field, enter a name for the incompatibility or accept the default
name.

b. In the Package field, optionally enter a package name for the incompatibility.

c. The Location field displays the full path of the directory where the
incompatibility file is stored.

d. In the Incompatibility Type field, select Domain, as shown in Figure 12—4.

Figure 12-4 Create Incompatibility Window

Create Incompatibility. E|
Incompatiblity |‘_‘:"‘
Allaws wou to specify jobs that cannot be executed at the same time, %

Mame: | Incornpatibility 1 |

Package: | |

Location: |,I'C:,I'JDeveloper,l’myworkl'npplication15,|’Pr0ject1,|' |

Incompatibility Type:
() Global {entire job)

() Domain {property of the job)

Help | | (o] 4 J | Cancel |

Click OK. This creates the incompatibility and displays the Incompatibility
Editor.

5. In the Incompatibility Editor pane, in the Description field enter a description for
the incompatibility.

6. In the Incompatibility Entities area, click Add.
The Add Entity window displays.

7. Select one or more jobs or job sets to add to the incompatibility and click OK.
The Incompatibility Editor displays.

8. To specify a self incompatibility or modify an entity or its properties, under the
Entities field, double-click an entity.

The Edit Entity window displays, as shown in Figure 12-5.

Defining and Using a Job Incompatibility 12-5

What Happens at Runtime to Handle Job Incompatibility

Figure 12-5 Incompatibility Edit Entity Window

Edit Entity X

[] self Incompatible

Job: [70b3 -|

Property: |parameterl -|

Datatype: STRIMG

| Help | | (o4 | | Cancel |

9. To specify self incompatibility, select Self Incompatible.
10. Save the incompatibility.

12.3 What Happens at Runtime to Handle Job Incompatibility

At runtime, Oracle Enterprise Scheduler handles incompatibility definitions according
to the incompatibility type, global or domain (property-based). When a job request is
submitted, Oracle Enterprise Scheduler determines which incompatibility definitions
reference the job or job set definition used for the request submission. For each domain
incompatibility it also determines the value of the resource, property, for that
incompatibility. When the request is ready to be executed, Oracle Enterprise Scheduler
checks if there are any incompatible requests already executing. If so, the request is
blocked until all requests for which it is incompatible have completed.

Note: The value of the property for a domain incompatibility is
determined at request submission, and originates either in the job
definition or a request parameter passed during submission. If no
such parameter is found, that incompatibility is ignored during
subsequent request processing. The request will be compatible with
any other request with regard to that incompatibility definition. This
initial value as specified at request submission time is used even if it is
subsequently altered.

12.3.1 What Happens to Subrequests with an Incompatible Parent Request

A request which is incompatible with another request is also incompatible with the
subrequests of that request (the children). A request that has been blocked by a
subrequest parent remains blocked while any subrequests execute and until the
subrequest parent request is resumed and completes.

12.3.2 What Happens to the Scope of Request Incompatibility

Every validated request is assigned to an enterprise. Incompatibility is supported only
among requests that are associated with the same enterprise. A request for one
enterprise is never incompatible with a request for a different enterprise even if an
incompatibility has been defined between the job definitions used by those requests.

12-6 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

13

Using the Runtime Service

This chapter describes how to use the runtime service that provides the APIs for
submitting and managing job requests and for querying job request information from
the job request history.

This chapter includes the following sections:

s Section 13.1, "Introduction to the Runtime Service"
» Section 13.2, "Accessing the Runtime Service"

= Section 13.3, "Submitting Job Requests"

= Section 13.4, "Managing Job Requests"

» Section 13.5, "Querying Job Requests"

= Section 13.6, "Submitting Ad Hoc Job Requests"

13.1 Introduction to the Runtime Service

Oracle Enterprise Scheduler lets you define and run different job types including: Java
classes, PL/SQL procedures, and process job types (forked processes). To run these job
types you need to submit a job definition.

You can use the runtime service to perform different types of operations, including:

= Submit: These operations let you supply a job definition to Oracle Enterprise
Scheduler to create job requests

= Manage: These operations allow you to change the state of job requests and to
update job requests

s Query: These operations let you find the status of job requests and report job
request history

13.2 Accessing the Runtime Service

Like the metadata service, Oracle Enterprise Scheduler provides a runtime MBean
proxy interface.

The runtime service open () method begins each Oracle Enterprise Scheduler runtime
service user transaction. In an Oracle Enterprise Scheduler application client you
obtain a RuntimeServiceHandle reference that is created by open () and you pass the
reference to runtime service methods. The RuntimeServiceHandle reference provides a
connection to the runtime service for the client application. In the client application
you must explicitly close the runtime service by calling close (). This ends the
transaction and causes the transaction to be committed or rolled back (undone). The

Using the Runtime Service 13-1

Submitting Job Requests

close() not only controls the transactional behavior within the runtime service, but it
also allows Oracle Enterprise Scheduler to release the resources associated with the
RuntimeServiceHandle.

13.2.1 How to Access the Runtime Service and Obtain a Runtime Service Handle

Oracle Enterprise Scheduler exposes the runtime service to your application program
as a Stateless Session Enterprise Java Bean (EJB). You can use JNDI to locate the Oracle
Enterprise Scheduler runtime service Stateless Session EJB.

Example 13-1 shows a lookup for the Oracle Enterprise Scheduler runtime service
using the RuntimeServiceLocalHome object.

Example 13—1 JNDI Lookup to Access Oracle Scheduler Runtime Service

import oracle.as.scheduler.core.JndiUtil;
// Demonstration of how to lookup runtime service from a
// Java EE application component

RuntimeService runtime = JndiUtil.getRuntimeServiceEJB();
RuntimeServiceHandle rHandle = null;

try

rHandle = runtime.open();

}
finally
{
if (rHandle != null)
{
runtime.close(rHandle) ;

}

Note: When you access the runtime service:

s JndiUtil.getRuntimeServiceEJB () assumes that the
RuntimeService E]JB has been mapped to the local JNDI location
"ess/runtime". This happens automatically in the hosted
application's message-driven bean (MDB).

s Theopen() call provides a RuntimeServiceHandle reference. You
use this reference with the methods that access the runtime service
in your application program.

= When you finish using the runtime service you must call close()
to release the resources associated with the
RuntimeServiceHandle.

13.3 Submitting Job Requests

When you submit a job definition you create a new job request. You can submit a job
request using a job definition that is persisted to a metadata repository, or you can

13-2 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Submitting Job Requests

create a job request in an ad hoc manner where the job definition or the schedule is not
stored in the metadata repository (for information about ad hoc requests, see
Section 13.6, "Submitting Ad Hoc Job Requests").

13.3.1 How to Submit a Request to the Runtime Service

You create a job request by calling submitRequest (). Depending on your needs, you
can create a job request with one of the following formats:

» Create a new job request using a job definition stored in the metadata repository,
to run once at a specific time.

» Create a new job request using a job definition and a schedule, each stored in the
metadata repository.

Example 13-2 shows the submitRequest () method that creates a new job request with
a job definition that resides in the metadata repository. You can also submit an ad hoc
job request where the job definition and schedule are not stored in the metadata
repository. For more information, see Section 13.6, "Submitting Ad Hoc Job Requests".
You can also submit a sub-request. For more information, see Chapter 14, "Using
Subrequests".

Example 13-2 Creating a Job Request with submitRequest()

long requestID = 0L;
MetadataObjectId jobDefnId;

RequestParameters p = new RequestParameters();
p.add(SystemProperty.CLASS_NAME, "demo.jobs.Job");

Calendar start = Calendar.getInstance();
start.add(Calendar.SECOND, startsIn);

requestID =
runtime.submitRequest (r,
"My Java job",
jobDefnId,
start,
p);

Note: When you submit a job request using the runtime service:
= You obtain the runtime service handle as shown in Example 13-1.

s The runtime service internally uses the metadata service to obtain
job definition metadata with the supplied MetadataObjectId,
jobDefnId.

13.3.2 What You Should Know About Default System Properties When You Submit a

Request

When you create a job request Oracle Enterprise Scheduler resolves and stores the
properties associated with the job request. Oracle Enterprise Scheduler requires that
certain system properties are associated with a job request. If you do not set these
required properties anywhere in the properties hierarchy when a job request is
submitted, then Oracle Enterprise Scheduler provides default values.

Using the Runtime Service 13-3

Managing Job Requests

Table 13-1 shows the runtime service field names and the corresponding system
properties for the required job request properties.

Table 13-1 Runtime Service Default Value Fields and Corresponding System Properties
Runtime Service Default Value Corresponding System

Value Field Property Description

0 DEFAULT_REQUEST EXPIRATION REQUEST_EXPIRATION The default expiration time, in minutes,
for a request. The default value is 0
which means the request will never
expire.

4 DEFAULT_PRIORITY PRIORITY The default system priority associated
with a request.

5 DEFAULT_REPROCESS_DELAY REPROCESS_DELAY The default period, in minutes, in
which processing must be postponed
by a callout handler that returns
Action.DELAY.

0 DEFAULT_RETRIES RETRIES The default number of times a failed

request will be retried. The default
value is 0 which means a failed request
is not retried.

13.3.3 What You Should Know About Metadata When You Submit a Request

All Oracle Enterprise Scheduler Metadata associated with a job request is persisted in
the runtime store at the time of request submission. Persisted metadata objects include
job definition, job type, job set, schedule, incompatibility definitions, and exclusion
definition. Metadata is stored in the context of a top level request, and each metadata
object is uniquely identified by the absolute parent request id and its metadata id.
Each unique metadata object is stored only once for a top-level request, even if the
definition is used multiple times in the request. This ensures that every child request
uses the same definition.

When a request is submitted, all known metadata for the request is persisted. For
subrequests, the metadata is not know until the subrequest is submitted, so subrequest
metadata is persisted when the subrequest is submitted, after first checking that the
metadata object is not already persisted in the runtime store.

Metadata persisted in the runtime store is removed when the absolute parent request
is deleted.

13.4 Managing Job Requests

After you submit a job request, using the requestID you can do the following:
= Get request information

= Change the state of the request

= Update request parameters

= Purge a request

13.4.1 How to Get Job Request Information with getRequestDetail

Using the runtime service, with a requestID, you can obtain information about a job
request that is in the system. Table 13-2 shows the runtime service methods that allow
you to obtain job request information.

13-4 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Managing Job Requests

Table 13-2 Runtime Service Get Request Methods

Runtime Service Method Description
getRequestDetail () Retrieves complete runtime details for the specified request
getRequestDetailBasic () Retrieves basic runtime details of the specified request. The

getRequestParameter ()

getRequests ()

getRequestState()

RequestDetail returned by this method includes most of the
information as getRequestDetail (), but certain less
commonly used information is omitted to improve
performance.

Retrieves the value of a request parameter.

Retrieves an enumeration of immediate child request
identifiers associated with the specified request

Retrieves the current state of the specified request

Example 13-3 shows code that determines if there is any immediate child request in

the HOLD state.

Example 13-3 Determining Whether Any Immediate Child Job Requests Are on Hold

h = s_runtime.open();

try {

s_runtime.holdRequest (h, reqid) ;

Enumeration

e s_runtime.getRequests(h, reqgid);

boolean foundHold = false;

while

(e.hasMoreElements()) {

long childid = ((Long)e.nextElement()).longValue();
State state s_runtime.getRequestState (h,childid) ;
if (state == State.HOLD) {

foundHold = true;

break;

13.4.2 How to Change Job Request State

Using the runtime service, with a requestID, you can change the state of a job request.
Table 13-3 shows the runtime service job request state change methods. The job
request management methods allow you to change the state of a request, depending
on the state of the job request. For example, you cannot cancel a request with

cancelRequest (

) if the request is in the COMPLETED state.

Table 13-3 Runtime Service Job Request State Methods

Runtime Service
Method

Description

cancelRequest ()
deleteRequest ()

holdRequest ()

releaseRequest ()

Cancels the processing of a request that is not in a terminal state.
Marks a request in a terminal state for deletion.

Withholds further processing of a request that is in WAIT or READY
state.

Releases a request from the HOLD state.

Using the Runtime Service 13-5

Managing Job Requests

Example 13-4 shows a submitRequest () with methods that control the state of the job
request. The holdRequest () holds the processing of the job request. The corresponding
releaseRequest () releases the request. This example does not show the conditions
that require the hold for the request.

Example 13-4 Runtime Service releaseRequest() Usage

rHandle = s_runtime.open();

try {
s_runtime.holdRequest (rHandle, reqid) ;
Enumeration e = s_runtime.getRequests(rHandle, reqgid);
while (e.hasMoreElements()) {

long childid = ((Long)e.nextElement()).longValue();
State state = s_runtime.getRequestState(rHandle,childid);
if (state == State.HOLD) {

foundHold = true;

break;

s_runtime.releaseRequest (rHandle, reqgid);

Note: Note the following in Example 13—4:

= You obtain the runtime service handle, rHandle, as shown in
Example 13-1.

» The holdRequest () places the request in the HOLD state.

= You may do some required processing while the request is in the
HOLD state.

» The releaseRequest () releases the request from the HOLD state.

13.4.3 How to Update Job Request Priority and Job Request Parameters

Using the runtime service you can update job request system properties or request
parameters. Table 13—4 shows the runtime service methods that allow you to lock and
update up a job request.

Table 13-4 Runtime Service Update Methods

Runtime Service Method Description

lockRequest () Acquires a lock for the given request. The lock is released
when close () operation is subsequently invoked or the
encompassing transaction is committed. If an application
tries to invoke this operation while the lock is being held by
another thread, this method will block until the lock is
released. Use this method to ensure data consistency when
updating request parameters or system properties.

updateRequestParameter () Updates the property value of the specified request subject to
the property read-only constraints.

13-6 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Querying Job Requests

Example 13-5 shows code that updates a job request parameter. This code would be
wrapped in a try/finally block as shown in Example 13-1.

Example 13—-5 Sample Runtime Service Parameter Update

s_runtime.lockRequest (rhandle, reqid);
s_runtime.updateRequestParameter (rhandle, reqld, paramName, "yy");

Example 13-5 shows the following:

s Obtain the runtime service handle, rhandle, as shown in Example 13-1.
» Acquire a lock for either the request using lockRequest ()

s Perform the update operation with updateRequestParameter ()

» Use close() to cause the transaction to be committed or rolled back (undone). The
close() not only controls the transactional behavior within the runtime service,
but it also allows Oracle Enterprise Scheduler to release the resources associated
with the RuntimeServiceHandle.

13.5 Querying Job Requests

Using the runtime service you can query job request information. This involves the
following steps:

= Query for request identifiers and limit results with a filter.

= Get request details to provide additional information for each request ID that the
query returns.

There is only one query method; the runtime service queryRequests () method returns
an enumeration of request IDs that match the query. The queryRequests () method
includes a filter argument that contains field, comparator, and value combinations that
help select query results. For more information on filters, see Section 4.4.1, "How to
Create a Filter".

When you create a filter for a query, you can use any of the field names shown in
Table 13-5 when querying the runtime store.

Table 13-5 Query Filter Fields For Querying the Runtime (Defined in Enum RuntimeService.QueryField)

Name Description

ABSPARENTID The absolute parent request ID of a request.

APPLICATION The application name.

ASYNCHRONOUS Indicates if the job is asynchronous, synchronous or unknown. The value of the field
is not set until the request is processed. The field data type is java.lang.Boolean. The
value may be NULL if the nature of the job has not yet been determined.

CLASSNAME The name of the executable class that processed the request

COMPLETED_TIME

DEFINITION
ELAPSEDTIME
ENTERPRISE_ID

ERROR_TYPE

The date and time that Oracle Enterprise Scheduler finished processing the request.
This field represents the time the process phase was set to COMPLETED.

The job definition ID (Metadata Object ID).
The amount of time, in milliseconds, that elapsed while the request was running.
The enterprise ID.

The request error type.

Using the Runtime Service 13-7

Querying Job Requests

Table 13-5 (Cont.) Query Filter Fields For Querying the Runtime (Defined in Enum

Name Description

EXTERNAL_ID The identifier for an external portion of an Enterprise Scheduler asynchronous Java
job.

INSTANCEPARENTID The request ID of the instance parent request.

JOB_TYPE The job type ID (Metadata Object ID).

NAME The request description.

PARENTREQUESTID The parent request ID.

PRIORITY The priority of the request.

PROCESS_PHASE

PROCESSEND

PROCESSOR

PROCESSSTART

PRODUCT

READYWAIT_TIME

REQUEST_CATEGORY
REQUESTEDEND
REQUESTEDSTART
REQUESTID
REQUESTTYPE

RESULTINDEX

RETRIED_COUNT

SCHEDULE
SCHEDULED
STATE
SUBMISSION
SUBMITTER
SUBMITTERGUID
TIMED_OUT
TYPE

USERNAME
WAITTIME

WORKASSIGNMENT

The process phase of the request.

The date and time that the process ended. The PROCESSSTART is set only when a
request transitions from READY to RUNNING. This implies that (PROCESSEND -
PROCESSSTART) encompasses the entire span of execution: from the time the state
becomes RUNNING to the time it transitions to a terminal state.

The name of the instance that processed the request.

The date and time that the process started. The PROCESSSTART is set only when a
request transitions from READY to RUNNING. This implies that (PROCESSEND -
PROCESSSTART) encompasses the entire span of execution: from the time the state
becomes RUNNING to the time it transitions to a terminal state.

The product name.

The amount of time, in milliseconds, a request has been waiting to run since it became
READY.

The request category specified for the request.

The requested end time.

The requested start time.

The request ID of a submitted request.

The type of request (that is, an element of RequestType)

Controls the starting and ending index of the returned results. This field allows users
to express result constraints such as "return only results 10 through 20".

The retried count associated with a job. This field represents the number of times the
job was retried.

The schedule ID (Metadata Object ID).

The time when the request is scheduled to be executed.

The job request state.

The submission time of the request.

The submitter of the request.

The submitter GUID of the request.

Indicates whether the job has timed out.

The execution type of the request.

The name of the user who submitted the request.

The amount of time, in milliseconds, a request has been waiting to run.

The name of the work assignment that was active when the request was processed.

13-8 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Submitting Ad Hoc Job Requests

Table 13—-6 shows the runtime service method for querying job requests and
Example 13-6 shows the use of this method.

Table 13-6 Runtime Service Query Methods

Runtime Query Method Description

queryRequests () Gets a summary of requests.

Example 13-6 Using queryRequest() Method
Filter filter =
new Filter (RuntimeService.QueryField.DEFINITION. fieldName(),
Filter.Comparator.EQUALS,
m_myJavaSucJobDef.toString())
.and (RuntimeService.QueryField.STATE. fieldName (),
Filter.Comparator.EQUALS,
new Integer(12));

//
Enumeration requests =
s_runtime.queryRequests (h,
filter,
RuntimeService.QueryField.REQUESTID,
false);

13.6 Submitting Ad Hoc Job Requests

To use an ad hoc request you supply request parameters, a job definition, and
optionally a schedule that you create and define without saving it to a metadata
repository. An ad hoc request does not require you define the details of a job request in
a metadata repository. Thus, ad hoc requests support an abbreviated job request
submission process that can occur without using a connection to the metadata
repository.

Note: Ad hoc requests have the following limitation: job sets are not
supported with ad hoc requests.

13.6.1 How to Create an Ad Hoc Request

To create an ad hoc request you use the ad hoc version of submitRequest (). For the job
definition, instead of supplying a job definition MetadataObjectId, you can define the
job definition object and use a system property that corresponds to the job type, as
shown in Table 13-7.

Table 13-7 Ad Hoc Request Job Definition System Properties for Job Types

System Property Description

CLASS_NAME Specifies the Java class to execute (for a Java job type).

PROCEDURE_NAME Specifies the PL/SQL stored procedure to execute (for an SQL job type).

CMDLINE Specifies the command line used to invoke an external program for a process job
request.

With one signature of the ad hoc version of submitRequest () you do not need to
supply MetadataObjectIds, you can provide the Schedule object as an argument as

Using the Runtime Service 13-9

Submitting Ad Hoc Job Requests

object instances directly to submitRequest (). Other ad hoc submitRequest ()
signatures allow you to submit a job request using a job definition from metadata and
an instance for the Schedule object.

Example 13-7 shows sample code for an ad hoc request submission that uses a
schedule.

Example 13-7 Creating Request Parameters and a Schedule for an Ad Hoc Request

RequestParameters p = new RequestParameters();

String propName = "testProp";

String propValue = "testValue";

p.add (propName, propValue);

p.add (SystemProperty.REQUEST EXPIRATION, new Integer(10));
p.add(SystemProperty.LISTENER, "test.listener.TestListener");
p.add (SystemProperty.EXECUTE_PAST, "TRUE");
p.add("application", getApplication());
p.add(SystemProperty.CLASS_NAME, "test.job.HelloWorld");

Calendar start = Calendar.getInstance();
start.add(Calendar.SECOND, 5);

Calendar end = (Calendar) start.clone();
end.add(Calendar.SECOND, 5);

Recurrence recur = new Recurrence (RecurrenceFields.FREQUENCY.SECONDLY,
2,
start,
end) ;

Schedule schedule = new Schedule("mySchedule",
"Run every 2 sec for 3 times.",
recur) ;

// adhoc submission, no metadata definitions passed
reqId = s_runtime.submitRequest (h,
"testAdhocJavaWithSchedule",
JobType.ExecutionType.JAVA TYPE,
schedule,
null,
Calendar.getInstance(),
null,
p);

In this example, note the following ad hoc specific details for the request submission:

s The CLASS name is set to define the Java class that runs when Oracle Enterprise
Scheduler executes the job request: p.add (SystemProperty.CLASS_NAME,
"test.job.HelloWorld");

» The submitRequest () includes an argument that specifies the job type:
JobType.ExecutionType.JAVA_TYPE.

= Specify the Java class, the procedure name, or the command line program to
execute when the ad hoc Request is processed by setting one of the system
properties shown in Table 13-7.

= Call the ad hoc version of submitRequest () specifying the type argument to
correspond with the system property you set to define the request. The type you
supply must be one of JAVA_TYPE, SQL_TYPE, or PROCESS_TYPE.

13-10 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Submitting Ad Hoc Job Requests

= As with any job request, set the appropriate system properties to be associated
with the job request.

13.6.2 What Happens When You Create an Ad Hoc Request

The ad hoc submitRequest () returns the request identifier for the request. You can use
this request identifier with runtime calls such as updateRequestParameter () or
getRequestDetail () as you would with any other job request.

There is only one submitRequest signature that will create a request with an ad hoc job
definition. The job definition ID, obtained from RequestDetail.getJobDefn (), is null
in this case. Without an ad hoc job definition, a request cannot be considered ad hoc.

13.6.3 What You Need to Know About Ad Hoc Requests

If you want to define a schedule to use with an ad hoc request and you want to specify
exclusion dates, you need to exclude the dates using the addExclusionDate () method
for the schedule. For ad hoc requests, you cannot use a schedule that specifies
exclusion dates using addExclusion () method for the schedule.

Currently, if the schedule is ad hoc, a check of ExclusionDefinition is skipped. Thus,
if you use a schedule and use addExclusion() and submit an ad hoc job request, then
Oracle Enterprise Scheduler does not use the ExclusionsDefinition IDs with the job
request.

Using the Runtime Service 13-11

Submitting Ad Hoc Job Requests

13-12 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

14

Using Subrequests

This chapter describes how to use Oracle Enterprise Scheduler subrequests, and
includes the following sections:

= Section 14.1, "Introduction to Using Subrequests"

= Section 14.2, "Sample Subrequest"

= Section 14.3, "Creating and Managing Subrequests"

= Section 14.4, "Creating a Java Procedure that Submits a Subrequest"

» Section 14.5, "Creating a PL/SQL Procedure that Submits a Subrequest”

14.1 Introduction to Using Subrequests

Oracle Enterprise Scheduler subrequests are useful when you want to process data in
parallel. A request submitted from a running job is called a subrequest. You can submit
multiple subrequests from a single parent request. The customary method of parallel
execution in Oracle Enterprise Scheduler is the job set concept but there might be cases
where the number of parallel processes may not be fixed in number. For example,
when you want to allocate one request per million rows and in the last week 9.7
million rows have accumulated to process. In this case, you would allocate ten
requests as opposed to 5 for a week that accumulated 4.6 million rows.

Oracle Enterprise Scheduler supports subrequest functionality so that a given running
request (Job Request) can submit a subrequest and wait for the completion of such a
request before it continues.

Oracle Enterprise Scheduler supports subrequests by exposing an overloaded
subrequest method submitRequest (). An application that submits a job request can
invoke this API to submit a subrequest.

The following restrictions apply to subrequests:

= A subrequest can be submitted only for onetime execution. No schedule can be
specified. The subrequest is always treated as a "run now" request.

= Ad hoc subrequests are not supported. A subrequest must be submitted for an
existing JobDefinition object in the application.

= Job sets are not supported for subrequests. A subrequest can only be submitted to
a JobDefinition object. However, any running job (which may be part of a job set)
can submit a subrequest.

These restrictions simplify the execution of subrequests and avoid any complications
and delays in the execution of the submitting request itself.

Using Subrequests 14-1

Sample Subrequest

There are different kinds of parent requests in Oracle Enterprise Scheduler, for the
description in this chapter, a parent request refers to the request that is submitting a
subrequest.

A subrequest follows the normal flow of a regular one-time request. However the
processing of a subrequest starts only when the parent request pauses its execution. To
indicate this, Oracle Enterprise Scheduler uses the PAUSED state. This state implies that
the parent request is paused and waiting for the subrequest to finish.

Once a parent request submits a subrequest, that parent must return control back to
Oracle Enterprise Scheduler, in the manner appropriate for its job type, indicating that
it has paused execution. Oracle Enterprise Scheduler then sets the parent state to
PAUSED and starts processing the subrequest. Once the subrequest finishes, Oracle
Enterprise Scheduler places the parent request on the ready queue, where it remains
PAUSED, until it is picked up by an appropriate request processor. The parent is then set
to RUNNING state and re-run as a resumed request.

14.2 Sample Subrequest

Example 14-1 is a sample PL/SQL job that submits five subrequests. The subrequests
are submitted one at a time. Each time a subrequest is submitted, the parent exits to a
paused state, so that it does not consume any resources while waiting for the child
request to complete. When the child completes the parent is restarted.

Example 14-1 PL/SQL Procedure Subrequest

procedure fusion_plsgl_subreqg sample (
errbuf out NOCOPY varchar2,
retcode out NOCOPY varchar2,
no_requests in varchar2 default '5',
) is
req_cnt number := 0;
sub_regid number;
submitted_requests varchar2(100);
request_prop_table_t jobProp;
begin
-- Write log file content using FND_FILE API
FND_FILE.PUT_LINE (FND_FILE.LOG, "About to run the sample program with sub-request
functionality");

-- Requesting the PAUSED_STATE property set by job identifies request as
-- having started for the first time or restarting after being paused.
if (ess_runtime.get_regprop_varchar (fnd_job.job_request_id, 'PAUSED_STATE')) is null
-- first time start
then
-- Implement the business logic of the job here.
FND_FILE.PUT_LINE (FND_FILE.OUT, " About to submit sub-requests : " || no_requests) ;

-- Loop through all the sub-requests.
for reg cnt 1..no_requests loop
-- Retrieve the request handle and submit the subrequest.
sub_reqid := ess_runtime.submit_subrequest (request_handle => fnd_job.request_handle,
definition_name => 'sampleJob',
definition_package => 'samplePkg',
props => jobProp) ;
submitted_requests := sub_regid || ',';
end loop;

-- Pause the parent request.

14-2 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating and Managing Subrequests

ess_runtime.update_regprop_varchar (fnd_job.request_id, 'STATE', ess_job.PAUSED_STATE);

-- Update the parent request with the state of the sub-request, enabling
-- the job to retrieve the status during restart.
ess_runtime.update_regprop_int (fnd_job.request_id, 'PAUSED_STATE', submitted_requests);

else
-- Restart the request, retrieve job completion status and return the
-- status to Oracle Enterprise Scheduler Service.
errbuf := fnd_message.get ("FND", "COMPLETED NORMAL") ;
retcode := 0;
end if;
end;

14.3 Creating and Managing Subrequests
= Section 14.3.1, "How to Submit Subrequests"
= Section 14.3.2, "How to Cancel Subrequests"
= Section 14.3.3, "How to Hold Subrequests"
= Section 14.3.4, "How to Delete Subrequests"
= Section 14.3.5, "How to Submit Multiple Subrequests"
= Section 14.3.6, "How to Manage Paused Subrequests"
= Section 14.3.7, "How Subrequests Are Processed"
= Section 14.3.8, "How to Identify Subrequests"
= Section 14.3.9, "How to Manage Subrequests and Incompatibility"

14.3.1 How to Submit Subrequests

A subrequest can be submitted by calling the submitRequest API. The subrequest is
set to WAIT state, but Oracle Enterprise Scheduler will not process the request while the
parent request is running. A subrequest can be processed only once the parent request
has paused.

14.3.2 How to Cancel Subrequests

There are two main ways a subrequest can be cancelled, either by the user cancelling
the subrequest directly or as a result of the parent request being cancelled. For either
method, the cancellation process of the subrequest is handled in the same manner as
any other executable request. The difference lies in how Oracle Enterprise Scheduler
treats the parent request once all pending subrequests have completed and reached a
terminal state.

Oracle Enterprise Scheduler sets a subrequest that is in WAIT or READY state directly to
CANCELLED. If a subrequest is currently running, then the subrequest is set to
CANCELLING and Oracle Enterprise Scheduler then attempts to cancel the running
executable in the manner appropriate for its job type. Usually, the subrequest ends up
in CANCELLED state, but it may end in some other terminal state depending on the life
cycle stage where the subrequest was at. The parent request remains in PAUSED or
CANCELLING state until all subrequests have reached a terminal state.

If the user cancels a subrequest, then Oracle Enterprise Scheduler cancels that
subrequest, as described previously. The parent request remains in PAUSED state until
all subrequests are complete, at which point Oracle Enterprise Scheduler resumes or

Using Subrequests 14-3

Creating and Managing Subrequests

restarts the parent request. This enables the parent request to handle the completion of
the subrequest, possibly as cancelled, in an appropriate fashion. Cancellation of
subrequests is thus not propagated upwards.

If the user cancels the parent request, Oracle Enterprise Scheduler sets the parent
request to CANCELLING state, and then initiates a cancellation for all pending
subrequests in the manner described previously. Once all subrequests have completed,
Oracle Enterprise Scheduler sets the parent request to CANCELLED, and the parent
request does not resume. Cancellation of a parent request is propagated down to its
subrequests.

14.3.3 How to Hold Subrequests

A subrequest has the same life cycle as an ordinary request, and can be held when it is
in WAIT or READY state. The parent request remains in PAUSED state while the subrequest
is on hold.

14.3.4 How to Delete Subrequests

The delete operation will not be allowed on a subrequest, since it might lead to
ambiguous data where the information about the subrequest will get lost. A
subrequest is automatically purged when its parent request is purged.

14.3.5 How to Submit Multiple Subrequests

Oracle Enterprise Scheduler allows requests to submit multiple subrequests. A
running request may submit more than one subrequest. All of these subrequests are
processed by Oracle Enterprise Scheduler when the parent request pauses and goes to
PAUSED state.

In case of multiple such subrequests, the parent request will be resumed only when all
the subrequests finish.

Also it is possible to submit subrequests up to any depth. This creates nested
subrequests. As such there are no restrictions on the depth of such subrequest
submissions. This is kind of similar to stack push and pop operations.

14.3.6 How to Manage Paused Subrequests
= Section 14.3.6.1, "Indicating Paused Status"

= Section 14.3.6.2, "Storing the Paused State for a Parent Request"

14.3.6.1 Indicating Paused Status

A Java executable can submit subrequests using RuntimeService.submitRequest.
After the subrequest has been submitted, the parent request must indicate to Oracle
Enterprise Scheduler that it is pausing to allow the subrequest to be processed. This is
accomplished by the parent throwing an ExecutionPausedExcpetion which causes the
request to transition to PAUSED state.

Once the subrequests have completed, the parent request is runs again as a resumed
request. The RequestExecutionContext can be used to determine if the executable is
being run as a resumed request.

14.3.6.2 Storing the Paused State for a Parent Request

When a job execution pauses after submitting a subrequest, Oracle Enterprise
Scheduler regards its execution as complete, for all intents and purposes, as

14-4 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating and Managing Subrequests

implementation-wise there is no notion of pausing an execution thread. Therefore, to
resume such a paused job, Oracle Enterprise Scheduler must restart the job. In such
cases, the job execution restarts from the beginning, whereas the desired behavior is to
continue from the point at which execution was paused. This requires the job
execution to store some kind of execution state that would represent the paused point.
On resuming, the job can retrieve such a state and jump to the paused point to
continue from there.

In general, it is incumbent on individual jobs to define an execution state that would
allow it to resume in a deterministic way from each pause point throughout the
business logic (jobs can have multiple pause points). In some cases, it can be as simple
as storing the step number and jumping to that particular step on resuming, while in
other cases it can be a huge data set that stores critical state for the business logic when
it pauses. Oracle Enterprise Scheduler cannot provide a complete solution or
framework to store the entire state.

Oracle Enterprise Scheduler provides a simplistic means for jobs to store their pause
point in the form of a string that can be specified when the parent job pauses its
execution. Upon resuming the parent job, the paused state value can be obtained by
the parent to use as required.

Java jobs can specify a paused state string using a special ExecutionPausedException
constructor. The state parameter represents the paused state string saved by Oracle
Enterprise Scheduler when it sets the parent request to PAUSED state.

public ExecutionPausedException(String message, String state)

The resumed parent can retrieve the paused state value by calling getPausedState ()
on the RequestExecutionContext passed to the parent executable.

In case a single string value is not sufficient, the parent job can write any number of
properties back into Oracle Enterprise Scheduler using setRequestParameter (), and
retrieve those properties on resuming using getRequestParameter ().

14.3.7 How Subrequests Are Processed

When a subrequest is submitted, Oracle Enterprise Scheduler sets the request state to
WAIT but in a deferred mode so it will not be dispatched until the parent request
pauses.

The parent request of a Java job indicates that it is ready for subrequests to be
processed by throwing ExecutionPausedException. When the Oracle Enterprise
Scheduler receives such an exception, it sets the parent request state to PAUSED,
publishes a system event message that the parent has paused, and then dispatches all
waiting subrequests for that parent to the ready queue.

Subrequest execution follows the normal life cycle within Oracle Enterprise Scheduler.
Once all subrequests for a given parent request are finished, the parent request can be
resumed.

When a parent is ready to resume, Oracle Enterprise Scheduler places the parent
request in the ready queue. The parent state remains as PAUSED while it is waiting to be
picked up. Once Oracle Enterprise Scheduler picks up the parent request from the
ready queue, the request state will be set to RUNNING and the request executable called
as a resumed request.

If a request is paused without submitting any subrequests, it will be treated as if all
subrequests had finished. That is, it will be placed in the ready queue, at PAUSED state,
to be picked up for processing as a resumed request.

Using Subrequests 14-5

Creating a Java Procedure that Submits a Subrequest

The final state of a subrequest does not influence how Oracle Enterprise Scheduler
handles the parent request or the final state of the parent request once that parent
executable has completed. When the parent request resumes, the parent request job
logic can retrieve information about the subrequest, using this data as needed to
determine subsequent actions. The final state of the parent request is based entirely on
the state in which the parent request completed: succeeded, error, warning or
cancelled.

14.3.8 How to Identify Subrequests

In Oracle Enterprise Scheduler, each request has a RequestType attribute. That
attribute indicates whether the request is a singleton, part of a job set, a recurring
request, a subrequest, and so on.

A subrequest has a RequestType of SUB_REQUEST or UNVALIDATED_SUB_REQUEST. An
UNVALIDATED_SUB_REQUEST represents a subrequest that was submitted via the Oracle
Enterprise Scheduler PL/SQL interface but has not yet been validated. The
RequestType of the parent request is either SINGLETON, RECUR_CHILD, JOBSET_STEP, or
SUBREQUEST. All other request types represent requests that can never be the parent of
a subrequest.

The parent request ID attribute for a subrequest is the request that submitted the
subrequest.

14.3.9 How to Manage Subrequests and Incompatibility

In general, a request acquires incompatibility locks when the request transition from
READY to RUNNING state. Those locks are not released until the request finishes and is set
to a terminal state; for example, SUCCEEDED, ERROR, WARNING, CANCELLED.

Incompatibility locks acquired by a subrequest parent remain in effect even while a
parent request is in a PAUSED state. Any requests that were blocked by a subrequest

parent remain blocked while the subrequests execute and until the parent request is
resumed and finishes.

Subrequests follow all the rules of incompatibility. A subrequest therefore may get
blocked if any incompatible requests are currently running when Oracle Enterprise
Scheduler is ready to execute the subrequest. During such time windows, the parent
request remains in PAUSED state while the subrequest transitions to BLOCKED state.

14.4 Creating a Java Procedure that Submits a Subrequest

This is an example of the Java class for a Java job type that submits subrequests. The
procedure submits two subrequests, pausing between each one. Each subrequest uses
the same JobDefinition but specifies a different value for the request parameter
named SubRequestData. The oracle.as.scheduler.Executable.execute method of
the parent request is called a total of three times for a given Oracle Enterprise
Scheduler request and the following summaries the expected conditions and actions
for each.

In the first call to execute method as a non-resumed request:
Entry condition:

RequestExecutionContext.isResumed() will be false
RequestExecutionContext.getPausedState() will be null
Method Action:

14-6 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating a Java Procedure that Submits a Subrequest

-Submit a subrequest with request parameter value of 'MyDatal'
Throw ExecutionPausedException with pausedState of 'MyPausedStatel"

Oracle Enterprise Scheduler will transition the request to PAUSED state, execute the
subrequest, and then resume the request once the subrequest has completed.

First call to execute method as resumed request:
Entry condition:

RequestExecutionContext.isResumed() will be true
RequestExecutionContext.getPausedState() will be 'MyPausedStatel'
Method Action:
Submit a subrequest with request parameter value of 'MyData2'
Throw ExecutionPausedException with pausedState of 'MyPausedState2"

Oracle Enterprise Scheduler will transition the request to PAUSED state, execute the
subrequest, and then resume the request once the subrequest has completed.

Second call to execute method as resumed request:
Entry condition:

RequestExecutionContext.isResumed() will be true
RequestExecutionContext.getPausedState() will be 'MyPausedState2'
Method Action:
Exit normally, no exception.
Oracle Enterprise Scheduler will transition the request to SUCCEEDED state.

Example 14-2 shows a Java procedure with a subrequest.

Example 14-2 Java Procedure with Subrequest

// constants for the pausedState values
private final static String PAUSED_STATE_1 = "MyPausedStatel";
private final static String PAUSED_STATE_2 = "MyPausedState2";

public class SubRequestSubmittor implements Executable {

// method called by Oracle Enterprise Scheduler when the request is executed
public void execute(RequestExecutionContext execCtx,
RequestParameters props)
throws ExecutionWarningException,
ExecutionErrorException,
ExecutionPausedException,
ExecutionCancelledException {

long requestId = execCtx.getRequestId() ;
boolean isResumed = execCtx.isResumed();
String pausedState = execCtx.getPausedState();

if (!isResumed) {
// Method being called for first time, as non-resumed request.
// Submit first subrequest.

submitSubRequest (execCtx, "MyDatal");
throw new ExecutionPausedException("first subrequest", PAUSED_STATE_1);

Using Subrequests 14-7

Creating a Java Procedure that Submits a Subrequest

} else if (PAUSED_STATE_1l.equals (pausedState)) {

// Method being called for a resumed request.
// Submit next subrequest.
submitSubRequest (execCtx, "MyData2");
throw new
ExecutionPausedException ("second subrequest", PAUSED_STATE_2);

} else if (PAUSED_STATE_2.equals (pausedState)) {

// Method being called for a resumed request.
// All done, just return.

} else {

// Method being called for a resumed request.
// Unknown paused state (should never happen) .
String msg = "Request " + requestId +
" was resumed with unexpected pause state " + pausedState;
throw new ExecutionErrorException(msg);

// Submit subrequest with request parameter having the given value.
private void submitSubRequest(RequestExecutionContext execCtx,
String paramValue)
throws ExecutionErrorException{

RuntimeService rs = null;
RuntimeServiceHandle rh = null;

try {
rs = getRuntimeService();

// Retrieve MetadataObjectId of the subrequest job definition
String jobDef = "MySubRequestJobDef";
MetadataObjectId jobDefId = getJobDefinition (jobDef) ;
// Set value for the request parameter used by subrequest.
RequestParameters rp = new RequestParameters();

rp.add("SubRequestData", paramValue);

// Submit the subrequest
rh = rs.open();

long subReqId = rs.submitRequest(rh, execCtx,
"subrequest submitter",
jobDefId, rp);
} catch (Exception e) {
String msg = "Error while submitting subrequest for request " +
ExecCtx.getRequestId();
throw new ExecutionErrorException(msg, e);

} finally {

if (null != rh) {

14-8 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating a PL/SQL Procedure that Submits a Subrequest

try {
rs.close(rh);
} catch (Exception e) {
String msg = "Error while submitting subrequest for request "
+ ExecCtx.getRequestId();
throw new ExecutionErrorException(msg, e);

}

// Get RuntimeService.

private RuntimeService getRuntime ()
throws ExecutionErrorException {
// implementation not shown

}

// Retrieve MetadataObjectId for a given job definition name.
private MetadataObjectId getJobDefinition(String jobDef)
throws ExecutionErrorException {
// implementation not shown

14.5 Creating a PL/SQL Procedure that Submits a Subrequest

The ESS_RUNTIME PL/SQL package is used by an SQL job request to submit a
subrequest. It also contains support to determine if the request procedure is being
executed as a resumed request and retrieve the paused state string.

For a Java request, the parent request submits a subrequest using a
RuntimeService.submitRequest method and then throws ExecutionPausedException
when it is ready to be paused to allow the subrequest to execute.

For a SQL request, ess_runtime.submit_subrequest is used to submit the subrequest.
The parent request must call ess_runtime.mark_paused when it is ready for the
subrequest to run, commit the transaction and return successfully, without rasing an
exception. The mark_paused method informs Oracle Enterprise Scheduler that, upon
successful return from the parent request procedure, the parent request should be set
to PAUSED and the subrequest allowed to execute. The mark_paused method supports
an optional argument by which the paused state string can be specified.

It is important to note that subrequest will not be executed until the parent request has
called mark_paused, commits, and returns normally, without raising an exception. If an
exception is raised, Oracle Enterprise Scheduler will not set parent request to PAUSED
state, but instead, it the parent state will be set to ERROR or WARNING depending on the
SQL error code. Furthermore, the subrequests will be automatically CANCELLED and
will not be executed.

Once the subrequest has finished, PL/SQL procedure for the parent request will be
re-executed again as resumed request, similar to what occurs for a Java Executable.

For a Java executable, the RequestExecutionContext indicates if the request is being
resumed and has the paused state string specified via the ExecutionPausedException
thrown when the parent request paused.

For an SQL request, ess_runtime.is_resumed indicates whether the request procedure
is being executed for a resumed request. The method ess_runtime.get_paused_state

Using Subrequests 14-9

Creating a PL/SQL Procedure that Submits a Subrequest

returns the paused state string specified via the ess_runtime.mark_paused procedure
when the request was paused.

This is an example of the PL/SQL stored procedure for a SQL job type that submits
subrequests using the ESS_RUNTIME package. The procedure submits two subrequests,
pausing between each one. Each subrequest uses the same JobDefinition but
specifies a different value for the request parameter named SubRequestData. The
PL/SQL stored procedure would be called a total of three times for a given Oracle
Enterprise Scheduler request and the following summaries the expected conditions
and actions for each.

First call to procedure as non-resumed request:
Entry condition:

ess_runtime.is_resumed will be false
ess_runtime.get_paused_state will be null

Procedure Action:
Submit a subrequest with request parameter value of 'MyDatal'
Mark request as paused using paused state of 'MyPausedStatel'
Exit normally, no exception

Oracle Enterprise Scheduler will transition the request to PAUSED state, execute the
subrequest, and then resume the request once the subrequest has completed.

First call to procedure as resumed request:
Entry condition:

ess_runtime.is_resumed will be true

ess_runtime.get_paused_state will be 'MyPausedStatel’'
Procedure Action:

Submit a subrequest with request parameter value of 'MyData2'

Mark request as paused using paused state of MyPausedState2'

Exit normally, no exception

Oracle Enterprise Scheduler will transition the request to PAUSED state, execute the
subrequest, and then resume the request once the subrequest has completed.

Second call to procedure as resumed request:
Entry condition:

ess_runtime.is_resumed will be true
ess_runtime.get_paused_state will be 'MyPausedState2'
Procedure Action:
Exit normally, no exception.
Oracle Enterprise Scheduler will transition the request to SUCCEEDED state.

Example 14-3 shows a PL/SQL procedure with a subrequest.

Example 14-3 PL/SQL Procedure with Subrequest

procedure fusion_plsqgl_subreq sample (

14-10 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating a PL/SQL Procedure that Submits a Subrequest

errbuf out NOCOPY varchar2,

retcode out NOCOPY varchar2,
no_requests in varchar2 default '5',
) is

req_cnt number := 0;

sub_regid number;
submitted_requests varchar2(100);
request_prop_table_t jobProp;

begin

Write log file content using FND_FILE API

FND_FILE.PUT_LINE (FND_FILE.LOG, "About to run the sample program with

sub-request functionality");

Requesting the PAUSED_STATE property set by job identifies request as
having started for the first time or restarting after being paused.

if (ess_runtime.get_reqgprop_varchar (fnd_job.job_request_id,
'"PAUSED_STATE')) is null)
-- first time start
then
-- Implement the business logic of the job here.
FND_FILE.PUT_LINE (FND_FILE.OUT, " About to submit sub-requests : " ||
no_requests) ;
-- Loop through all the sub-requests.
for reg cnt 1..no_requests loop
-- Retrieve the request handle and submit the subrequest.
v_idx := v_idx + 1;
v_req props.extend;
V_req props (v_idx) .prop_name := 'SubRequestData';
v_req props (v_idx) .prop_datatype := ess_runtime.STRING_DATATYPE;
v_req _props (v_idx) .prop_value := 'MyDatal';
ess_runtime.set_submit_args(v_req props, 'MyDatal', 'MyDatal2',
'1998-11-29")
sub_reqid := ess_runtime.submit_subrequest (request_handle =>
fnd_job.request_handle,
definition_name => 'sampleJob',
definition_package => 'samplePkg',
props => jobProp);
submitted_requests := sub_regid || ',';
end loop;
-- Pause the parent request.
ess_runtime.update_reqgprop_varchar (fnd_job.request_id, 'STATE',
ess_job.PAUSED_STATE) ;
-- Update the parent request with the state of the sub-request, enabling
-- the job to retrieve the status during restart.
ess_runtime.update_regprop_int (fnd_job.request_id, 'PAUSED_STATE',
submitted_requests) ;
else
-- Restart the request, retrieve job completion status and return the
-- status to Oracle Enterprise Scheduler Service.
errbuf := fnd_message.get ("FND", "COMPLETED NORMAL") ;
retcode := 0;
end if;

Using Subrequests 14-11

Creating a PL/SQL Procedure that Submits a Subrequest

end;

14-12 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

15

Working with Asynchronous Java Jobs

This chapter describes how to invoke asynchronous Java jobs.

This chapter includes the following sections:

= Section 15.1, "Introduction to Working with Asynchronous Java Jobs"
» Section 15.2, "Creating an Asynchronous Java Job"

= Section 15.3, "A Use Case Illustrating the Implementation of a BPEL Process as an
Asynchronous Job"

= Section 15.4, "How to Implement BPEL with an Asynchronous Job"
= Section 15.5, "Handling Time Outs and Recovery for Asynchronous Jobs"

= Section 15.6, "Oracle Enterprise Scheduler Interfaces and Classes"

15.1 Introduction to Working with Asynchronous Java Jobs

Normally Oracle Enterprise Scheduler Java job requests run inside Oracle WebLogic
Server in a dedicated thread; however, there are cases that require the ability to submit
long running or non-container managed Java job requests.

Oracle Enterprise Scheduler supports asynchronous Java job invocation with the
following features:

s From the Oracle Enterprise Scheduler user point of view there is no difference in
scheduling asynchronous Java job invocation.

s From Oracle Enterprise Scheduler perspective, the asynchronous Java job
invocation job request is submitted and is added to the queue, and returns
immediately after running (and the job request enters the RUNNING state). Oracle
Enterprise Scheduler continues operating until it hears back from the job at which
point Oracle Enterprise Scheduler can apply post-processing or complete the job.

= Asynchronous Java jobs begin any variety of external jobs outside of Oracle
Enterprise Scheduler. The external job, or the entity that manages it, must
communicate the status of the job to Oracle Enterprise Scheduler.

15.2 Creating an Asynchronous Java Job

An Oracle Enterprise Scheduler asynchronous Java job consists of an Oracle Enterprise
Scheduler job request and an external mechanism. The Oracle Enterprise Scheduler job
request is implemented similarly to a standard Oracle Enterprise Scheduler Java job
request; however, unlike a standard Oracle Enterprise Scheduler request, an
asynchronous Java job request might not do any work, depending on the scenario. The

Working with Asynchronous Java Jobs 15-1

Creating an Asynchronous Java Job

only purpose of an asynchronous Java job request is to trigger the external mechanism.
The external mechanism executes the payload (monitoring a database, calculating pi,
or any other long lived process), and must be separable from the thread running the
Oracle Enterprise Scheduler Java job. The external mechanism can be a SOA composite
(BPEL) or asynchronous Oracle ADF Business Components web service, another
thread, JVM, machine, or some other mechanism. The means of communication
between the external mechanism and the client application is left to the job owner.
However, an important point for the asynchronous Java job is that the pointer to the
physical Java object representing the asynchronous job is not stored in Oracle
Enterprise Scheduler memory. This is because:

s Thejob can run for an indeterminate amount of time and caching this handle is a
waste of resources

= Long lived jobs should be able to survive container restarts. Because this object is
not cached and most likely garbage collected, the job should be stateless and its
submitting application is responsible for maintaining the correlation between job
requests and the external mechanisms running them. Oracle Enterprise Scheduler
provides the job request ID and job request handle for this reason. This
information should be persisted in order to survive restarts.

15.2.1 Implementing the Asynchronous Java Job Asynchronous Interface

An asynchronous Java job invocation must implement the AsyncExecutable interface.

15.2.2 Asynchronous Java Jobh execute() Method

The duty of an asynchronous Java jobs's execute () method is to set up the external
mechanism in which the real work runs; this should start the external mechanism and
then return. The asynchronous Java job invocation execute () method may not do any
actual work. An exception can be thrown during the execute method to tell Oracle
Enterprise Scheduler that this job had a problem during initialization and failed to run.
The exception during the execute method does not tell Oracle Enterprise Scheduler
that the actual work running on the external mechanism encountered a problem. It is
the responsibility of the job owner to make sure any resources that may have been
started or used are released, since Oracle Enterprise Scheduler does no further
processing if it catches an exception. Assuming no exception is thrown, Oracle
Enterprise Scheduler puts the job into the running state and then releases the handle
on the job's object so that it may be garbage collected.

15.2.3 Invoking a Remote Job from an Asynchronous Java Job

An asynchronous Java job can set web service addressing headers to simplify the work
of the remote job.

Correlation

The WSA messageID header is used to correlate the response message with the request.
Oracle Enterprise Scheduler provides the method
RequestExecutionContext.getIdString, which returns an ID to be used for the value
of the WSA messageID header.

Reply Addressing

The WSA ReplyTo and FaultTo headers can be used to direct replies to the Oracle
Enterprise Scheduler generic callback service. There is currently no Oracle Enterprise
Scheduler support for obtaining these addresses.

15-2 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating an Asynchronous Java Job

15.2.4 Calling Back to Oracle Enterprise Scheduler with Status Updates

Oracle Enterprise Scheduler provides a web service operation for asynchronous
callbacks, setAsyncRequestStatus (see the interface in Example 15-15). It requires
typed information such as status and the status message, as well as the correlation
information to be explicitly given.

Oracle Enterprise Scheduler provides another mechanism: a generic Java Required
Files web service provider for asynchronous callbacks. The web service provider
accepts payloads of any type, and messages are delivered as SOAPMessage objects. The
WSA relatesTo header is extracted so as to correlate the message with the request.
This header is populated with the WSA messageID header of the original request. The
Action header is used to determine whether the response is due to the completion of
the asynchronous job or a fault. If the response is due to a fault, the asynchronous job
request status is provisionally set to ERROR. If the response is due to the successful
completion of the asynchronous job, the asynchronous job request status is
provisionally set to SUCCESS. The SOAPMessage body is extracted and converted to a
string which is passed to the Updatable.onEvent method.

The web service provider address is
http://<host>:<port>/ess-async/essasynccallback.

15.2.5 Updating the Asynchronous Java Job

Oracle Enterprise Scheduler provides the interface oracle.as.scheduler.Updatable,
which allows the job request to receive update events initiated by the application code.
When a job request is updated, Oracle Enterprise Scheduler determines whether the
client class implements the Updatable interface. If the client class does implement the
Updatable interface, it instantiates a new object of the job class and calls the onEvent
method in the context of the MDB of the hosting application. This method accepts the
request status as determined by the web service invocation and a string representing
information in a format known to the job, for example, the SOAPMessage body from the
Oracle Enterprise Scheduler web service. This method may log information or do
some other processing. It then returns an UpdateAction object including a status and a
status message.

The call to onEvent occurs in the context of the user associated with the execution of
the request.

If the job does not implement the Updatable interface, the event is processed based on
the status passed to onEvent, for example, the status determined from the
asynchronous callback to Oracle Enterprise Scheduler.

For more information about the Updatable interface, see Example 15-12.

15.2.6 Notifying Oracle Enterprise Scheduler When an Asynchronous Job Completes

There are two ways to notify Oracle Enterprise Scheduler when an asynchronous job
completes:

= Using a web service interface.

= Using an EJB interface.

15.2.6.1 Using the Web Service to Notify When an Asynchronous Job Completes
When you invoke the Oracle Enterprise Scheduler web service operation,
setAsyncRequestStatus, this sets the asynchronous request's status and associated
information. Associated with this operation, the following pieces of information are
needed:

Working with Asynchronous Java Jobs 15-3

Creating an Asynchronous Java Job

setAsyncRequestStatus (String requestExecutionContext, AsyncStatus status, String
statusMessage)

Where:

» requestExecutionContext is a string that should be passed in as part of the
initiating event. This parameter is derived from the Oracle Enterprise Scheduler
job's RequestExecutionContext object.

m statusis one of the following: SUCCESS, ERROR, WARNING, PAUSE, CANCEL, BIZ_ERROR
or UPDATE.

m statusMessage is:
— An error message if the status is ERROR or BIZ_ERROR.
- A warning message if the status is WARNING.
— A paused state if the status is PAUSED.

- A customized string you define and have the job interpret accordingly if the
status is UPDATE.

— The value is ignored if the status is SUCCESS or CANCEL.

For more information about implementing a web service in a web application, see the
chapters "Integrating Web Services Into a Fusion Web Application" in Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework and
"Securing and Administering WebLogic Web Services" in Oracle Fusion Middleware
Security and Administrator’s Guide for Web Services.

15.2.6.2 Using EJB to Notify When an Asynchronous Job Completes

When an asynchronous Java jobs's execute () method is successful and the job request
is running on the external mechanism, Oracle Enterprise Scheduler continues
processing other jobs. When the job request is complete or encounters an error, it must
communicate back to its submitting application. This communication channel is the
responsibility of the agent and the client application owners. The submitting
application then communicates the status of the job to Oracle Enterprise Scheduler
through a local EJB. This EJB will also have a remote interface, so alternatively the
external mechanism may invoke the remote EJB itself. The E]B sets the job status and
does any appropriate post-processing. A helper class is provided which encapsulates
all the E]B references. This helper only works when it is used inside the container since
the helper uses dependency injection. The helper class contains methods for
communicating success, errors, warnings, and cancellations.

15.2.7 Asynchronous Java Job AsyncCancellable Interface

If you want the job to be cancellable, you must also implement the AsyncCancellable
interface. This interface differs from the normal cancellable interface in that its cancel
method also provides the RequestExecutionContext and the RequestParameters for
that job. The provided context and parameters should be used to determine which
external mechanism is running the payload and then ask it to stop. The external
mechanism (rather than the job's AsyncCancellable.cancel () implementation)
notifies Oracle Enterprise Scheduler that the job has been cancelled.

Note: Currently, there is no way to terminate a running
asynchronous Oracle ADF Business Components web service process.

15-4 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating an Asynchronous Java Job

15.2.8 Sample Asynchronous Java Job Invoking a BPEL Process Through Event
Delivery Network

Using an asynchronous request you can invoke a BPEL process from Oracle Enterprise
Scheduler. An asynchronous Oracle Enterprise Scheduler Java job is used to invoke the
BPEL process. When the BPEL process completes, whether successfully, with an error
or warning, or if it is canceled, the BPEL process notifies Oracle Enterprise Scheduler
using a Oracle Enterprise Scheduler web service operation.

This method for invoking a BPEL process involves the following steps:
1. Create an asynchronous Oracle Enterprise Scheduler Java job.
2. Invoke a BPEL process from the Oracle Enterprise Scheduler Java job.

3. When the BPEL process is done, call back to the Oracle Enterprise Scheduler web
service with the completion status. Use the web service operation method to
inform Oracle Enterprise Scheduler of the request completion. For more
information, see Section 15.2.6.1, "Using the Web Service to Notify When an
Asynchronous Job Completes".

4. Once Oracle Enterprise Scheduler has the completion information, it will complete
any required post-processing of the request (if required).

You can invoke the associated web service directly or you can publish an event telling
the event mediator to start the BPEL process, as shown in Example 15-1.

Example 15-1 Job that Initiates a BPEL Process Through an Event Mediator

import oracle.as.scheduler.RequestParameters;

import oracle.as.scheduler.ExecutionCancelledException;
import oracle.as.scheduler.ExecutionErrorException;
import oracle.as.scheduler.ExecutionPausedException;
import oracle.as.scheduler.ExecutionWarningException;
import oracle.as.scheduler.RequestExecutionContext;

import javax.xml.namespace.QName;

import oracle.fabric.blocks.event.BusinessEventConnection;

import oracle.fabric.blocks.event.BusinessEventConnectionFactory;

import oracle.fabric.common.BusinessEvent;

import oracle.integration.platform.blocks.event.BusinessEventBuilder;

import
oracle.integration.platform.blocks.event.BusinessEventConnectionFactorySupport;
import oracle.xml.parser.v2.XMLDocument;

import org.w3c.dom.Element;

// Async imports
import oracle.as.scheduler.AsyncExecutable;
import oracle.as.scheduler.AsyncCancellable;

public class BPELJob implements AsyncExecutable, AsyncCancellable
{

public BPELJob() {

}

public void execute(RequestExecutionContext ctx, RequestParameters params)
throws ExecutionErrorException,
ExecutionWarningException,
ExecutionCancelledException,
ExecutionPausedException

Working with Asynchronous Java Jobs 15-5

Creating an Asynchronous Java Job

{

// Publish an event to the Event Mediator

publishEvent (ctx.getRequestId() + "", ctx.toString(), "ESS_EVENT");
}
// Cancel

public void cancel (RequestExecutionContext ctx,

RequestParameters requestParams) {

publishEvent (ctx.getRequestId() + "", ctx.toString(), "CANCEL_ESS_EVENT");
return;
} // cancel

// Event publishing

private
private
private

private

private

final String eventName = "ESSDemoEvent";

final String eventElement = "ESSDemoEventElement";

final String eventNamespace =
"http://xmlns.oracle.com/apps/ta/essdemo/events/edl";
final String schemaNamespace =
"http://xmlns.oracle.com/apps/ta/essdemo/events/schema";

XMLDocument buildEventPayload(String correlationId, String key, String
eventType) {

Element masterElem, childEleml, childElem2, childElem3;

XMLDocument document = new XMLDocument () ;

masterElem = document.createElementNS (schemaNamespace, eventElement) ;
document . appendChild (masterElem) ;

childEleml = document.createElementNS (schemaNamespace, "requestId");
childEleml.appendChild (document.createTextNode (correlationId)) ;
masterElem.appendChild(childEleml) ;

childElem2 = document.createElementNS (schemaNamespace,

"executionContext") ;

childElem2.appendChild (document.createTextNode (key)) ;
masterElem.appendChild(childElem2) ;

childElem3 = document.createElementNS (schemaNamespace, "eventType");
childElem3.appendChild(document.createTextNode (eventType)) ;
masterElem.appendChild(childElem3) ;

return document;

private void publishEvent (String correlationId, String key, String eventType)

try {
// Get event connection
BusinessEventConnectionFactory cf =
BusinessEventConnectionFactorySupport.
findRelevantBusinessEventConnectionFactory (true) ;

if (cf !'= null) {
BusinessEventConnection conn =
cf.createBusinessEventConnection() ;

// Build event
BusinessEventBuilder builder =

BusinessEventBuilder.newInstance() ;

// Specify the event name and namespace. In this prototype,

15-6 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating an Asynchronous Java Job

// they are constants, eventNamespace, eventName
builder.setEventName (new QName (eventNamespace, eventName));

// Specify the event payload. In this prototype, the
// getXMLPayload custom method constructs the payload
builder.setBody (buildEventPayload(correlationId, key,
eventType) .getDocumentElement ()) ;
BusinessEvent event = builder.createEvent () ;

// Publish event
conn.publishEvent (event, 5);

// For debug only
System.out.println("Event was sent sucessfully");
} else {
// For debug only
System.out.println("cf is null");
}
} catch (Exception exp) {
// For debug only
System.out.println("Failed sending event: " + exp.getMessage());
exp.printStackTrace();
}
} // publishEvent

15.2.8.1 Sample BPEL Process Design Time with Oracle Enterprise Scheduler

You can use an asynchronous java job to run a BPEL process. The process initiated by
an event, handled by the Event Mediator which starts the process. For an example, see
Figure 15-1.

The real work of the process is done in the DoMyWork module.

If the work completes successfully, control will flow to

AssignAsyncSuccess/ AsyncCallbackSUCCESS, which invokes the Oracle
Enterprise Scheduler web service callback specifying SUCCESS for the status and no
status message.

If the Oracle Enterprise Scheduler request is canceled, the Oracle Enterprise
Scheduler job's cancel method will be called. The job object would then notify the
remote job that it should be canceled. If the cancel succeeds, the remote job notifies
Oracle Enterprise Scheduler using the callback mechanism, setting the status to
CANCEL. In this case, control would jump to the branch on the far right.

If a fault occurs, control will jump to the middle branch. AsyncCallbackERROR
invokes the Oracle Enterprise Scheduler web service callback specifying ERROR for
the status and an error message from the fault. AsyncCallbackCANCEL invokes
the Oracle Enterprise Scheduler web service callback specifying CANCEL for the
status and no status message.

Working with Asynchronous Java Jobs 15-7

Creating an Asynchronous Java Job

Figure 15-1 Java Job to Call a BPEL Process and Return with Asynchronous Request

File Edit View Application Refactor Search Navigate Build Run Versioning Tools Window Help ADF

GeBa k> 90 XEE O-© 5- (b H@de- P-4 (@8- search)
ESSAsyncBPELProcess wedl ‘ ﬁga BPELProcess] bpel Mt& compositexm! ‘ ﬁga ESSA syneBPEL Brocess kpel ‘ IEHeHoWor.ld.java EE]E]
g o & (&) eaws @ |5
T . el
2 & g
a & - @ 5
@ > A |z
I&I 4 , =
= “ receivelnput f
: &
= : el
= e
8 g « J_EI
) | | z
b4
o
% = El =
£
]
@
=] =]
¥ l l
i C e
AssignAsyniSuccess i E -4
l AssignasyncError assighAsyncCancel
l i -
AsyncCallbacks ICCESS | '
AsyheCallbackERROR AsyneCallbackCANCEL
| |

EssDemoComposit cBPELProcess.bpe o1 BPEL editor i Heap : 140M of 1810, Perm Cen : 1210 of Z56M

In the BPEL process, you need the web service operation values to the Oracle
Enterprise Scheduler asynchronous callback, as shown in Figure 15-2, Figure 15-3, and
Figure 154 for the AssignAsyncError assignment activity.

15-8 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Creating an Asynchronous Java Job

Figure 15-2 AsyncCallBackError Argument Mapping for statusMessage Element

From it
Type: !Expression 'i Type: i‘u’ariable =
Exprezsion: E ariables
;a Process
concat'Fault: ', ora:getFaultNamell, '-', -3 Variables
ora: getFauTtAsSTring (10 el et e

| e

Figure 15-3 AsyncCallbackError Argument Mapping for requestExecutionContext

(x) OnMessage_cancel_Inputvar iable
- (%) outputvariable
-(x) AsyncCallback_setAs yncRequestStatus _Inputys;
-(x) AsyncCallback_setAsyncRequestStatus _ Output
-(x) getRequest Detail_getRequestState_InputVar iab
-{x) getRequest Detail_getRRequestState_ OutputVaria
-(x) asyncCancel_setAsyncRequestStatus _Inputvari
-(x) asyncCancel_setAsyncRequestStatus_ Qutputyal
-(x) Invoke_4_setSubmitArgs_InputVariable
(x) Invoke_4_setSubmitArgs _OutputVariable
-(x) AsyncCallbackERROR_setAsyncRequestStatus _|
B[] parameters

E}---(-) nzl:zetAsyncRequestitatus
~ofep nzlirequestExecutionContext
{» nzlistatus
sofepinslistatusMessage
+- (%) As ync CallbackERROR_setAs ync RequestStatus_
=« Scope - Scope_1

THFH - -
(LN g g Ed i e d gy ko yid yEd gy

[] showr Detailed Made Informatian

XPath: |,a'nsl rsethAsyhcRegueststatussnsls statusME{

e
| ok || Cancell

From To

Type: |\u’ariable Vi Type: |Variab|e -
les

Es cess

riables “Wariables

J inputvariable -(x) inputvariable

~[E] payload -{x) OnMessage_cancel_Inputvariable

» nzdESSDemoBventElement
£ nsdrequestid

<> st execuionConied]

£ nzdeventType

J OnMessage_cancel_InputVariable

) outputVariable

) AsyncCallback_setAsyncRequestStatus _Inputvariable

J Async Callback_s et As yncRequestStatus _ OutputVariable
J getRequestDetail_getRequestState_InputVar iable

/ getRequest Detail_getRequestState_ OutputVariable

) asyncCancel_setAs yncRequestStatus_Inputyariable

J async Cancel_setAsync RequestStatus_ QutputVariable

J Invoke_4_setSubmitArgs _ InputVariable

) Invoke_4_setSubmitArgs_ OutputVariable

) AsyncCallbackERROR_s etAs ync RequestStatus _Inputval
J AsyncCallbackERROR_s etAs ync RequestStatus _ Qutput
ope - Scope_1

-{x) output\ariable
-{x) AsyncCallback_setAs ync RequestStatus _InputVariab
-(x) AsyncCallback_setAsync RequestStatus _ Output Varia
-{x) getRequestDetail_getRequestState_InputVariable
-(x) getRequestDetail_getRequestState_QutputVariable
-{x) asyncCancel_setAsyncRequestStatus _InputVvariable
-(x) asyncCance |_setAsync RequestStatus _ OutputVariab |
-(x) Invoke_4_setSubmitArgs _InputVariable
-(x) Invoke_4_setSubmitArgs _OutputVariable
() AsyncCallbackERROR_setAsync RequestStatus _Inpui
[=+-[E] parameters
Eh- 4 nslisethsyncRequestStatus
<->| nsl:requestExecutionContext|
&> nslistatus
£ nslistatushessage
-(x) AsyncCallbackERROR_setAsyncRequestStatus _Outp
Scope - S5cope_l

[] Show Detailed Mode Information

HPath: |,fns4: EssbencEventEl ement,/ns4: executi ond

e |

[] how Detailed Mode Information

#Path: |,/nsl i setdsyncRegquestitatus,msl: requestE]

QK || Cancel |

Working with Asynchronous Java Jobs 15-9

A Use Case lllustrating the Implementation of a BPEL Process as an Asynchronous Job

Figure 15-4 AsyncCallbackError Argument Mapping for status Element

From T
Type: |Expression v| Type: [variable =
Expresszion: Ef‘z iriables

' ' y Process
SR +[[7 wariables

[{x) inputVariable
- (x) OnMessage_cancel_InputVariable
[(x) outpurvariable
- (x) AsyncCallback_setAs ync RequestStatus _Inputva
[#- (%) AsyncCallback_setAs ync RequestStatus _ Output
[(x) get RequestDetail_getRequestState_InputVariab
[{x) get RequestDetail_getRequestState_OutputVarial
- (x) asyncCance l_s etAs ync RequestStatus _InputVar iz
- () async Cance l_setAs ync RequestStatus _ OutputVar
() Invoke_4_setSubmitArgs _InputVariable
() Invoke_4_setSubmitargs _Outputvariable
= ----_"g} AsyncCallbackERROR_setAs ync RequestStatus _
=-[F] parameters

[=}-€p nslsetfhsyncRequestStatus
~féy nzlirequestExecutionContext

<>t

ey nsl:statusMessage
[(x) AsyncCallbackERROR_setAsync RequestStatus _

ra Rt

[] showr Detailed Made Informatian

XPath: |,a'nsl rsethAsyhcRegueststatusnsli status |

Help | (814 /| Cancel
bl sl | CE0CELH

15.3 A Use Case lllustrating the Implementation of a BPEL Process as an
Asynchronous Job
Use cases for implementing a BPEL process as an asynchronous job are as follows:

= Gaining approval for a task using human workflow notifications and other
SOA-specific activities.

= Notifying Oracle Enterprise Scheduler that a job has completed, while allowing
other jobs to run or proceed to the next job in a set.

Design Pattern Summary

Asynchronous Oracle Enterprise Scheduler jobs are Java jobs that implement the
AsyncExecutable interface, which is invoked by Oracle Enterprise Scheduler by
implementing the execute () method. This method enables initiating a long running or
remote task where the execute () method completes (such as raising a business event),
while Oracle Enterprise Scheduler keeps the job in RUNNING status. The remote task
completes and notifies Oracle Enterprise Scheduler of its completion using a status
message using one of the following implementations:

s TheRuntimeService EJB
» The Oracle Enterprise Scheduler web service setAsyncRequestStatus operation.

This pattern assumes the remote task to be invoked is a BPEL process which is
triggered by raising a business event in the execute () method of the asynchronous
job. Upon termination of the process through completion, error or cancellation, the
BPEL process invokes the Oracle Enterprise Scheduler web service and sets the status
accordingly.

Involved Components
Oracle Enterprise Scheduler, SOA Meditator and BPEL, as shown in Figure 15-5.

15-10 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

A Use Case lllustrating the Implementation of a BPEL Process as an Asynchronous Job

Figure 15-5 BPEL Call from Oracle Enterprise Scheduler Asynchronous Job

Oracle Enterprise
Scheduler SOA-BPEL

AsyncJob

— | |
executa() Begin v
RaizeEvent — C

Success

EssWebService
setAsyncStatus « @

15.3.1 Introduction to the Recommended Design Pattern

There are use cases in Oracle Fusion Applications where Oracle Enterprise Scheduler
jobs need to invoke BPEL processes in a bi-directional fashion to track completion of
that BPEL before moving on to other jobs. As invoking asynchronous web services
from Java code (Oracle Enterprise Scheduler or Oracle ADF Business Components) in
Oracle Fusion Applications is prohibited, an Oracle Enterprise Scheduler job cannot
invoke an asynchronous BPEL process directly and must rely on the asynchronous job
implementation type.

This approach is recommended because it leverages existing functionality in Oracle
Fusion Middleware, such as events and BPEL.

15.3.2 Potential Approaches

Instead of the asynchronous Oracle Enterprise Scheduler job functionality, the
following approaches are possible but not allowed:

= Invoking asynchronous web services such as Oracle ADF Business Components or
BPEL via JAX-WS proxies - blocked threads and callback services are disallowed
in Oracle Enterprise Scheduler.

= Raising a business event to trigger BPEL, BPEL invokes an Oracle ADF Business
Components service which invokes the RuntimeService E]B to set the status, a
complex and error prone procedure.

15.3.3 Use Case Summary

An Expenses system has a periodic Oracle Enterprise Scheduler job which runs to
import and process expenses which requires submission of BPEL processes to leverage
Human Workflow for notification and approvals. In this use case, an Oracle Enterprise
Scheduler job would be responsible for importing the expenses and lines and
submitting subrequests for each expense to trigger the asynchronous BPEL
functionality per expense. This subrequest is implemented as an asynchronous Oracle
Enterprise Scheduler job which raises a business event, completing it's Java execute()
method, and staying in a running state while BPEL is initiated, submits the Human
Task notification and awaits the outcome from user interaction. Once this outcome is
obtained, BPEL invokes the Oracle Enterprise Scheduler web service signaling that this
particular subrequest is completed.

Working with Asynchronous Java Jobs 15-11

How to Implement BPEL with an Asynchronous Job

15.4 How to Implement BPEL with an Asynchronous Job

Implementing an Oracle Enterprise Scheduler asynchronous job in BPEL requires
performing the following steps:

1. Author the Oracle Enterprise Scheduler Java job to implement the
AsyncExecutable and AsyncCancellable interfaces by writing execute () and
cancel () methods.

2. Create the asynchronous Oracle Enterprise Scheduler job definition.
3. Design the event payload schema (XSD) and event definition (EDL) files.

4. Programmatically raise a business event from the asynchronous Oracle Enterprise
Scheduler job execute() and (optionally) cancel methods.

5. Design the SOA Composite with Meditator and BPEL.

6. Add fault handling and correlated onMessage branch for error and cancel job
status updates.

15.4.1 Use Case: Add Oracle JDeveloper Libraries

In your Oracle Enterprise Scheduler Application, be sure to add the Applications Core,
and Enterprise Scheduler Service Oracle JDeveloper libraries and create a new Java
class with appropriate class naming and directory structure (per standards) which will
implement both the Oracle Enterprise Scheduler AsyncExecutable and
AsyncCancellable interfaces. Importing both of these interfaces require you to
implement the execute () and cancel () methods which Oracle Enterprise Scheduler
RuntimeService bean invokes to initiate the desired behavior in your Oracle
Enterprise Scheduler job, as shown in Example 15-2.

Example 15-2 Adding Oracle JDeveloper Libraries

public class ASMEventAsyncJob implements AsyncExecutable, AsyncCancellable {
public ASMEventAsyncJdob () {
super () ;

}

public void execute(RequestExecutionContext ctx, RequestParameters params)
throws ExecutionErrorException,
ExecutionWarningException,
ExecutionCancelledException,
ExecutionPausedException

publishEvent (ctx.getRequestId() + "", ctx.toString(), "ESS_EVENT");
return;

public void cancel (RequestExecutionContext ctx,
RequestParameters requestParams) {
publishEvent (ctx.getRequestId() + "", ctx.toString(), "CANCEL_ESS_EVENT");
return;
} // cancel

15-12 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

How to Implement BPEL with an Asynchronous Job

15.4.2 Use Case: Create the Asynchronous Job Definition

In your Oracle Enterprise Scheduler JDeveloper workspace, click "New', choose the
Enterprise Scheduler Service technology group and select "Job Definition". Enter the
name off your Oracle Enterprise Scheduler job definition, choose the provided
"JavaJobType" and select the class build in step 1 as the overriding Java class for this

job definition, as shown in Figure 15-6.

Figure 15-6 Create Job Definition

x|

3 Create Job Definition

Job Definition E
A job definition describes ajob (basic unit of work) that runs in the

scheduler. A job defintion requires a job type.

MName: |Asyncjob| |

Package: |orac|e,.'apps,.’ta,.'ess,.'demo |

Job Type: [,.foracle,fapps,.ffnd,ufappIcore,fcp,.fccmm on/lavalobType

Location: | Jscratchfsmikolaifapplications f/ASMESSApp/EssDemo/essmeta/ |

e |

Now choose the class developed in Step 1 as the overriding Java class for this job
definition, define parameters and access control as required by your use case, as

shown in Figure 15-7.

Figure 15-7 Create Job Definition with Job Type Defined

et
3 Create Job Definition

Job Definition E
A job definition describes ajob (basic unit of work) that runs in the

scheduler. A job defintion requires a job type.

MName: |Asyncjob| |

Package: |orac|e,.'apps,.’ta,.'ess,.'demo |

Job Type: [,.foracle,fapps,.ffnd,ufappIcore,fcp,.fccmm on/lavalobType

Location: | Jscratchfsmikolaifapplications f/ASMESSApp/EssDemo/essmeta/ |

0K ‘ ’ Cancel

Working with Asynchronous Java Jobs 15-13

How to Implement BPEL with an Asynchronous Job

15.4.3 Use Case: Design the Event Payload Schema and Event Definition Files

The SOA composite designer has Ul features to assist in designing business event
payload definitions (EDL); however your schema (.xsd) will need to be designed first.
Example 15-3 shows a sample XSD file.

Example 15-3 Sample XSD File

<?xml version="1.0" encoding="UTF-8" ?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://xmlns.oracle.com/apps/ta/essdemo/events/schema"

targetNamespace="http://xmlns.oracle.com/apps/ta/essdemo/events/schema"
attributeFormDefault="unqualified"
elementFormDefault="qualified">
<xsd:element name="ESSDemoEventElement" type="ESSDemoEventElementType"/>
<xsd:complexType name="ESSDemoEventElementType">
<xsd:sequence>
<xsd:element name="requestId" type="xsd:string"/>
<xsd:element name="executionContext" type="xsd:string"/>
<xsd:element name="eventType" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>

With the payload element type completed, you can either create the EDL by hand or
use the event definition builder. To use the builder, open the SOA composite editor
and click the lightning bolt icon at the top of the Ul to open the Event Definition
Creation window, as shown in Figure 15-8

Figure 15-8 Event Definition Creation

L4 g % % b @ Composite: AsyncEssDemoComposite
|' e Event Definition Creation x|
Event Definition Creation
7 s
The Event Definition Creation dialog allows you to create a Event metadata definition file. tia|
Re
et
Event Definition name: |E\rentDefinitionl | pl
e
Directory: |e:;scratch,fsmikolai,fapplications,fEssDemoSOAApp;AsyncEssDemoComposite,f| e}
fu
MNamespace |http:,.f,fxmIns.oracle.com;AsyncEssDemoComposite;E\rentDefinitionl | RT:
cl
Events: EF / x
Mame T ——————————————.—— ||
i
E
9 sio
3
A [
| Help | | QK || Cancel |

Next, assign a name and namespace per Oracle Fusion Applications naming standards
and click Add to add a new event to this definition, as shown in Figure 15-9.

15-14 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

How to Implement BPEL with an Asynchronous Job

Figure 15-9 Add an Event

= Add an Event x|

Define this event's type:

<e» Element | l.’xmlns.oracle.com,.fapps,.'ta,.fessdemo,.ha\rents,.fschema}ESSDem::\E\nantEIement| Q

Mame |ESSE\rent |

| Help | | QK | Cancel |

Click OK. The event definition summary displays the completed event definition.
Add more events as needed for your requirements, as shown in Figure 15-10.

Figure 15-10 Events List

7? Events

Events: “i‘ / R

Mame

chema}ESSDemoEventEle...

Example 15-4 shows a sample of the EDL file that is created.

Example 15-4 EDL File

<?xml version="1.0" encoding="UTF-8" standalone="vyes"?>
<definitions xmlns="http://schemas.oracle.com/events/edl"
targetNamespace="http://xmlns.oracle.com/
AsyncEssDemoComposite/EventDefinitionl">
<schema-import namespace="http://xmlns.oracle.com/singleString"
location="xsd/singleString.xsd"/>
<schema-import namespace="http://xmlns.oracle.com/apps/ta
/essdemo/events/schema"
location="xsd/ESSDemoEventSchema.xsd" />
<event-definition name="ESSEvent">
<content xmlns:nsl="http://xmlns.oracle.com/apps/ta/essdemo/events/schema"
element="nsl:ESSDemoEventElement" />
</event-definition>
</definitions>

15.4.4 Programmatically Raise a Business Event from the Asynchronous Job Methods

The business event raised from the asynchronous Oracle Enterprise Scheduler job
must contain the request execution context's toString () value in order for BPEL to
indicate which job is completed /cancelled /errored. Programmatically Raising
Business Events from Java is covered in the "Initiating SOA from ADF" section which
contains the specifics on how to write Java code that raises business events. You will
need to design an event schema (.xsd) and definition (EDL) in order to declaratively
build the SOA composite which will subscribe to this raised business event. Your Java
code must create this XML document from scratch and it must exactly match QName
values such as element and namespace attributes in the payload structure.

Working with Asynchronous Java Jobs 15-15

How to Implement BPEL with an Asynchronous Job

Note that your execute() method is invoked when Oracle Enterprise Scheduler starts to
run your job, when an end user or external entity instructs Oracle Enterprise Scheduler
to cancel the running job, Oracle Enterprise Scheduler sets the job's status to
'CANCELLING" and will then invoke the cancel() method. It's recommended that both
methods raise events that contain similar payload types/namespaces so correlation
sets can be used and the cancel event can be sent to the in-flight BPEL process in order
to have it perform alternative functionality and then invoke the Oracle Enterprise
Scheduler web service to set the job status to ' CANCELLED'.

This sample places the event raising code in the Oracle Enterprise Scheduler job's class
code, however, the best approach is to share the code as an Oracle ADF Library which
you can then import into this project to reduce duplication of publishing code.

Sample code calling the event raising code passing in requestID (for the BPEL
correlation set to allow in-flight cancel) and the execution context's toString () value:

publishEvent (ctx.getRequestId() + "", ctx.toString(), "ESS_EVENT");

Sample event raising code is shown in Example 15-5.

Example 15-5 Event Raising Code

private final String eventElement = "ESSDemoEventElement";

private final String eventNamespace =
"http://xmlns.oracle.com/apps/ta/essdemo/events/edl";

private final String schemaNamespace =
"http://xmlns.oracle.com/apps/ta/essdemo/events/schema";

private XMLDocument buildEventPayload(String correlationId, String key, String

eventType) {

Element masterElem, childEleml, childElem2, childElem3;

XMLDocument document = new XMLDocument () ;

masterElem = document.createElementNS (schemaNamespace, eventElement);

document . appendChild (masterElem) ;

childEleml = document.createElementNS (schemaNamespace, "requestId");

childEleml.appendChild(document.createTextNode (correlationId));

masterElem.appendChild(childEleml) ;

childElem2 = document.createElementNS (schemaNamespace,

"executionContext");

childElem2.appendChild(document.createTextNode (key)) ;

masterElem.appendChild(childElem2) ;

childElem3 = document.createElementNS (schemaNamespace, "eventType");

childElem3.appendChild (document.createTextNode (eventType)) ;

masterElem.appendChild(childElem3) ;

return document;

public void publishEvent (String correlationId, String key, String eventType) {
// Determine whether we are outside of a JTA transaction
try {
// Get event connection
BusinessEventConnectionFactory cf =
BusinessEventConnectionFactorySupport.findRelevantBusinessEventConnectionFactory
(true) ;

if (cf !'= null) {
BusinessEventConnection conn =

cf.createBusinessEventConnection () ;

// Build event

15-16 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

How to Implement BPEL with an Asynchronous Job

BusinessEventBuilder builder =
BusinessEventBuilder.newInstance () ;

// Specify the event name and namespace. In this prototype,
// they are constants, eventNamespace, eventName
builder.setEventName (new QName (eventNamespace, eventName)) ;

// Specify the event payload. In this prototype, the
// getXMLPayload custom method constructs the payload
builder.setBody (buildEventPayload (correlationId, key,
eventType) .getDocumentElement ()) ;
BusinessEvent event = builder.createEvent();

// Publish event
conn.publishEvent (event, 5);

// For debug only
System.out.println("Event was sent sucessfully");
conn.close();
} else {
// For debug only
System.out.println("cf is null");
}
} catch (Exception exp) {
// For debug only
System.out.println("Failed sending event: " + exp.getMessage());
exp.printStackTrace() ;

}
} // publishEvent

15.4.5 Design the SOA Composite with Meditator and BPEL

Since this use case depends on BPEL functionality it is necessary to build a SOA
composite which contains a Mediator for event subscription which can then transform
the payload and initiate the BPEL process.

In your SOA workspace, create a new SOA composite. To setup the composite for this
pattern, add a Mediator that subscribes to your Oracle Enterprise Scheduler raised
event and wire it to a BPEL process. Add a service reference to the Oracle Enterprise
Scheduler web service WSDL. For example,

http://myhost.com:7001/ess/esswebservice?WSDL
Continue to build the required functionality in the BPEL process using one or more
nested scopes. Bear in mind that your functionality should reside within at least one

primary scope on which you can add an onMessage event (for in-flight cancel message
receipt) and fault handler branches, as shown in Figure 15-11.

Working with Asynchronous Java Jobs 15-17

How to Implement BPEL with an Asynchronous Job

Figure 15-11 Composite with BPEL and ESSWebService

+

ESSEventMe...

Subscribed:
ESSDemoBvent

ESSWebService

Dperations:
subm itRegu

é% = ® subm itRecu...
etCom plet. .
essasyncbpel.. SetRequpest...
Operations: getRequest...
holdRequest
releaseReq... ™
setAsyncRe... [Z]

process
cancel

For more information about invoking the Oracle Enterprise Scheduler web service, see
Chapter 10, "Using the Oracle Enterprise Scheduler Web Service." For more
information about subscribing to an event, see the chapter "Cross Family Business
Event Subscription Pattern" in Oracle Fusion Applications Developer’s Guide.

15.4.6 Add Fault Handling and Correlated onMessage Branch for Error and Cancel Job

Oracle Enterprise Scheduler does not perform any sort of heartbeat monitoring of
asynchronous Oracle Enterprise Scheduler jobs after the execute () method's Java code
has completed. Once the job is submitted it exists in a RUNNING state within the Oracle
Enterprise Scheduler infrastructure until the remote job code, BPEL, or end user
interacts with Oracle Enterprise Scheduler directly to set the status of the job. Because
of this caveat, developers need to design their BPEL processes to handle, at a
minimum, two types of scenarios that will most often occur in the life span of an
Oracle Enterprise Scheduler job and, whenever possible, push that state information
back to Oracle Enterprise Scheduler so monitoring Uls can reflect the correct state of
the job to end users.

BPEL Handling Cancellation:

For example, if the end user interacts with the monitoring Ul and requests that the job
be cancelled Oracle Enterprise Scheduler will then update the job's status to
CANCELLING and wait for the remote functionality to tidy up and confirm that it has
cancelled, as shown in Figure 15-12.

15-18 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

How to Implement BPEL with an Asynchronous Job

Figure 15-12 BPEL Handling Cancellation

Oracle Enterprise S0OA-BPEL
Scheduler

AsyncJob —(
W

If) C | -,
s @
RaiseEvent [/ &

Cancel [-
invo
L
EssWebService

setAsyncStatus -« @

BPEL Handling Error

Additionally, when the remote functionality encounters a failure, the responsibility to
notify Oracle Enterprise Scheduler of this failure falls on the shoulders of the remote
functionality (in this case, BPEL) to notify Oracle Enterprise Scheduler that the job's
status is ERROR and provide a status message in addition to any logging that was
performed. This is illustrated in Figure 15-13.

Figure 15-13 BPEL Handling Error

Oracle Enterprise SOA-BPEL
Scheduler

Asyncdob —— Q/
i
execute() Begin ~
. e

RaiseEvent e &

Error [
inwoke

EssWebService @

setAsyncStatus -«

In order to acknowledge cancellation and arbitrate proper status back to the Oracle
Enterprise Scheduler infrastructure, BPEL must be designed within a certain layout to
support receipt of the incoming cancellation message and trapping of any failures such
that, in either case, the Oracle Enterprise Scheduler subsystem can be updated. For this
purpose, in the BPEL Process, there should be at least one scope which will contain the
functionality for this asynchronous job. This will allow sufficient control for handling
cancel and error states which must then be sent to the Oracle Enterprise Scheduler web
service in order to update the job's status in the Oracle Enterprise Scheduler runtime.

To build the basic process flow to support these states, the following steps should be
completed in order:

1. Create the correlation set and flag it for imitate on the incoming Receive activity.
2. Create the onMessage branch with use of correlation set created in sub-step 1.

3. Create the fault handling branch.

Working with Asynchronous Java Jobs 15-19

How to Implement BPEL with an Asynchronous Job

4. Populate the onMessage and fault handling branches with cleanup activities as
needed and invoke the Oracle Enterprise Scheduler web service with appropriate
status.

15.4.6.1 Create Correlation Set and Define Initiate Activity

In order to support receiving the cancel event while the BPEL process is in the middle
of performing other activities or waiting for an asynchronous callback the process
must be configured with a correlation set. A correlation set is key value that is built
from one or more incoming payload attributes which are used to uniquely identify the
BPEL process to the BPEL engine whereby additional service requests that contain
matching sets of attributes can be routed to the process that is currently running
instead of initiating a new one. While correlation is standard functionality used for
asynchronous request responses, it can also be used to change the flow of execution in
a BPEL process through scope-level onMessage branches.

To setup the correlation set, open the BPEL process in the designer, double-click the
Receive activity and click the correlations tab.

Note that coarctation sets have an "initiate" property which indicates which activity
will be the starting point for this correlation set's life cycle. In this case, the start of the
BPEL process will be the point at which the correlation set's life cycle should begin
allowing correlated events to route to this process at any point during the process.

To create a correlation set:

s Click the "New" icon in the Correlations tab of any Receive, Invoke or onMessage
activity and provide a name for the correlation set.

s Next, click "Add" to define one or more property attributes to use as the
correlation key.

s Choose a variable attribute as the set property and click "OK".

= Repeat steps 2 and 3 as necessary to build an attribute set that will always be
unique.

= Set the initiate flag on the correlation to "Yes" on the activity for which the
correlation set's life cycle should begin.

Primary (first) Receive Activity with Defined Correlation Set and "Initiate" flagged to
"Yes", as shown in Figure 15-14.

15-20 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

How to Implement BPEL with an Asynchronous Job

Figure 15-14 Correlations for Receive Activity

Receive b4

| General rCorreIations rhnsnrs rPrupznizs rAnnmatinns |

@+ 7 R
Initiate Properties
CorrelationSet_1 [*res NS5 inputvariable_p...

[] show Namespace URIs

| Help | | Apply || Qk. || Cancel |

T

CorrelationSet_1 definition with a single property defined (define more as needed to
ensure unique keys are created), as shown in Figure 15-15.

Figure 15-15 Edit Correlation Set

- Edit Correlation Set - CorrelationSet_1 X
IWETL R C orrelationSet_1 |

Properties

de add # Ean ¥
Mame Type Alias
EI inputVariable_payload... long ESSAsyncEPELProcess...

[] Show Mamespace URIs

| Help | | Ok || Cancel |

15.4.6.2 Create the onMessage Branch with Use of Correlation Set

Once the correlation set has been defined and set for initiate it's now possible to create
the onMessage branch on the scope which will contain the activities necessary to accept
the incoming cancellation message, perform any compensation or cleanup and then
assign the job's completion status to CANCEL.

Note: At this point, the onMessage branch could contain the invoke
activity or finish allowing a higher order scope to perform the invoke,
reducing the overall number of necessary invoke activities in the flow.

The following steps guide you through adding the previously created correlation set to
the onMessage branch activity, as shown in Figure 15-16.

Working with Asynchronous Java Jobs 15-21

How to Implement BPEL with an Asynchronous Job

= On the nested scope containing the process functionality, click the 'Add
onMessage branch' icon which should create a new flow off to the side of the
scope.

= Double-click the onMessage branch activity to open the activity editor.
s Choose the "Correlations" tab.

s Click the Add '+'icon and select the previously created correlation set ensuring
that the initiate flag is set to 'No' and click "Ok".

Figure 15-16 BPEL OnMessage Branch

OnMessage Branch b4
rCeneraI rCorreIations r5£nsors rPropenies rAnnotations |
* /R
Set Initiate Properties
CorrelationSet_1 no nsSinputVariable_p...
[] show Namespace URIs
| Help | | Apply || [o]'4 || Cancel |
e ———————————————————ell

15.4.6.3 Create the Fault Branch

Through the course of performing the various activities in the nested work scope BPEL
may encounter faults from business services or system functionality. In most cases,
business services will define one or more WSDL-defined faults that can be thrown
back to the calling process. Ordinarily, a BPEL CatchAll fault branch will trap any and
all faults that are raised regardless of their type and origin but there may be cases
where product teams have requirements to perform different sets of behavior in
response to specific business faults. In cases where it's desirable to perform unique
compensation behavior for specific business faults, the developer should create a
named fault handling branch for each WSDL-defined fault. In addition to these named
fault handler branches, it is still necessary to add a CatchAll fault handling branch to
trap any system level or unmanaged faults that are raised from the scope.

Click the CatchFault and CatchAll scope icons to create the desired fault handling
branches, then double-click the named fault handling branches and define the named
fault those branches will catch.

Note the available status, as shown in Figure 15-17.

15-22 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

How to Implement BPEL with an Asynchronous Job

Figure 15-17 Catch Branch for BPEL Flow

(0]
2 @ |
?b Catch 3¢
Dicidioek
o Add Catch Branch P =
L: | General | Annotations
C.L? Fault QMame
Mamespace URL: |http:,."l."xmIns.oracle.com;scheduler |
Azzigniuccess
Local Part: |IIIegaIArgumentException |
{‘% Fault Variable: |Fau|t‘u"ar | l# Ck
i)
IrvokeESS
| Help | Apply || Ok | | Cancel

15.4.6.4 Populate the onMessage and Fault Branch

You need to populate the onMessage and Fault branch with cleanup activities as
needed and invoke Oracle Enterprise Scheduler web service with appropriate status.

In the event of a fault or receipt of the cancellation message through the onMessage
branch the Oracle Enterprise Scheduler infrastructure needs to be updated directly via
the Oracle Enterprise Scheduler web service in order to reflect the job's status and
status message properly in the monitoring Uls. As a result, each fault handling or
onMessage branch should assign the correct status and status message value to the
Oracle Enterprise Scheduler web service invoke variable and optionally contain the
invoke activity or, by design, return to a higher order scope which is designed to be
agnostic to the outcome of the job status and will perform the invoke activity on the
Oracle Enterprise Scheduler web service before completing.

Additionally, drag activities into the onMessage and fault branches as needed to
cleanup/log/compensate.

Example scope with onMessage and Fault handling branches is shown in
Figure 15-18.

Working with Asynchronous Java Jobs 15-23

How to Implement BPEL with an Asynchronous Job

Figure 15-18 Entire BPEL Flow Sample

Bl =

()
)
&
F

C
a

InvakeESS

«

AzsignErrar AzsignCancel

@ | g &

ESSWiehService

InvokeESS

15.4.7 Validating the Deployment

To test that the functionality works you must perform the following sequence of steps:

1. Turn on the EDN-DB-LOG page by navigating to the following site to make sure it
reads "Log is Enabled". If not, click the link for "Enable",

http://host:port/soa-infra/events/edn-db-log

2. Submit your job through your own application, Fusion Applications Control the
task flow user interface for submitting job requests and confirm that the status of
the job is RUNNING.

3. Your event should immediately show up in the EDN-DB-LOG page. Check for this
event payload, as shown in Example 15-6.

Example 15-6 Event Payload

Example:Enqueing event:
http://xmlns.oracle.com/apps/ta/essdemo/events/edl: :ESSDemoEvent from J
Body: <business-event
xmlns:ns="http://xmlns.oracle.com/apps/ta/essdemo/events/edl"
xmlns="http://oracle.com/fabric/businessEvent">
<name>ns : ESSDemoEvent</name>
<id>df8e34cl-4c65-4379-b%be-2c692670ebbe</id>

<content>

<ESSDemoEventElement
xmlns="http://xmlns.oracle.com/apps/ta/essdemo/events/schema">
<requestId>3</requestId>

<executionContext>3, false, null, 6A4A16757764CD60E0402382B7703F44,
12</executionContext>

<eventType>ESS_EVENT</eventType>

</ESSDemoEventElement>

</content>

</business-event>

Subject name:

Enqueing complete

Enqueing event: http://xmlns.oracle.com/apps/ta/essdemo/events/edl: :ESSDemoEvent

15-24 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

How to Implement BPEL with an Asynchronous Job

from J

Body: <business-event
xmlns:ns="http://xmlns.oracle.com/apps/ta/essdemo/events/edl"
xmlns="http://oracle.com/fabric/businessEvent">

<name>ns: ESSDemoEvent</name>
<id>a4104da8-5579-4434-ab8b-d31a226e3b0f</id>

<content>

<ESSDemoEventElement
xmlns="http://xmlns.oracle.com/apps/ta/essdemo/events/schema">
<requestId>4</requestId>

<executionContext>4, false, null, 6A4A2BC7E5477C60E0402382B77041C9,
12</executionContext>

<eventType>ESS_EVENT</eventType>

</ESSDemoEventElement>

</content>

</business-event>

4. Your subscribing mediator will have been triggered, you can check Fusion
Applications Control ($DOMAIN_HOME/as.log) or soa-diagnostic logs
(3DOMAIN_HOME/servers/ <serverName>logs/<serverName>.log) to see any
mediator activity as a result of your event, as shown in Example 15-7.

Example 15-7 Mediator Activity

INFO: MediatorServiceEngine received an event =
{http://xmlns.oracle.com/apps/ta/ess/demo/events/edl}ESSDemoEvent

Apr 17, 2009 1:57:26 PM oracle.tip.mediator.common.persistence.MediatorPersistor
persistCallback

INFO: No call back info set in incoming message

Apr 17, 2009 1:57:26 PM oracle.tip.mediator.common.persistence.MediatorPersistor
persistCallback

INFO: Message properties :

{id=04lecfcf-8b73-4055-b5c0-0b89af04£425, tracking.compositeInstanceId=50003,
tracking.ecid=0000I2pgzVCBLASxrOI7SY19uEYF00004g:47979}

Apr 17, 2009 1:57:26 PM oracle.tip.mediator.dispatch.InitialMessageDispatcher
dispatch

INFO: Executing Routing Service..

Apr 17, 2009 1:57:26 PM oracle.tip.mediator.dispatch.InitialMessageDispatcher
processCases

INFO: Unfiltered case list size :1

Apr 17, 2009 1:57:26 PM oracle.tip.mediator.monitor.MediatorActivityMonitor
createMediatorCaseInstance

INFO: Creating case instance with name :ESSDemoProcess.essdemoprocess_
client.process

Apr 17, 2009 1:57:26 PM oracle.tip.mediator.dispatch.InitialMessageDispatcher
processCase

INFO: Immediate case

{ESSDemoProcess.adedemoprocess_client.process}twith case id :
{5B52B4A02B9211DEAF64D3EF6E2FB21D}will be executed

Apr 17, 2009 1:57:26 PM oracle.tip.mediator.service.filter.FilterFactory
createFilterHandler

INFO: No Condition defined

5. Check the Oracle Enterprise Manager Fusion Middleware Control Console for an
instance of your SOA composite and check for errors.

http://host:port/em

Working with Asynchronous Java Jobs 15-25

Handling Time Outs and Recovery for Asynchronous Jobs

6. If your BPEL process has not errored and is expecting a response from the human
workflow notification, navigate to the worklist, login as the assigned approver and
approve or reject the notification per your design requirements.

7. From here, the BPEL process should complete and invoke the Oracle Enterprise
Scheduler web service to set the job's completion status and status message. Check
the monitoring Ul diagnostic logs for stack traces and log messages.

8. Additionally, you can check the REQUEST_HISTORY table in the Oracle Enterprise
Scheduler schema for details on your job's state.

15.4.8 Troubleshooting the Use Case

To troubleshoot issues with the Oracle ADF UI functionality such as the monitoring
and submission task flows use the server's console log, applications log and server
diagnostic logs for information on what is failing and why.

To troubleshoot issues with the events functionality, such as the event not reaching the
BPEL process with request execution context intact, use the EDN database log page
(http://host:post/soa-infra/events/edn-db-1log) to inspect the event payload and
carefully compare it to the schema definition, even slight mismatches can cause the
transformation to 'succeed' but produce an skeleton payload to BPEL which is missing
any request context values. Oracle JDeveloper and third-party tools can be used to
validate the schema of the event payload and debug the transformation against that
payload.

To troubleshoot the mediator, BPEL SOA functionality, use the Oracle Enterprise
Manager and server console or diagnostics log files for diagnostics and AppsLogger
Sensor variables for logging.

For more information about troubleshooting Oracle Enterprise Scheduler at run time,
see the chapter "Troubleshooting Oracle Enterprise Scheduler" in Oracle Fusion
Applications Administrator’s Guide.

15.5 Handling Time Outs and Recovery for Asynchronous Jobs

Oracle Enterprise Scheduler asynchronous Java jobs depend on the remote job to
update Oracle Enterprise Scheduler with its completion status before it can finish
processing the request. Due to the nature of remote communication, there may be
cases where Oracle Enterprise Scheduler does not receive the remote request status
because of network failures, and so on. In these cases, the request may be stuck in a
non-terminal state.

Transitioning a timed out request to a terminal state is important as it:
» Frees any incompatibility locks held by that job request.

» If the job request is a job set step, allows the job set to continue.

» If the request is a subrequest, allows the parent request to resume.

= Allows the job request to be deleted or purged.

15.5.1 Asynchronous Request Time Outs

An Oracle Enterprise Scheduler system property, SystemProperty.ASYNC_REQUEST_
TIMEOUT, enables setting job request time out values for asynchronous Java jobs. By
default, the property is not enabled, such that its value is less than or equal to zero.

15-26 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Handling Time Outs and Recovery for Asynchronous Jobs

The property may be set in the job definition metadata or when the job request is
submitted. The value represents the duration, in minutes, from the time the job request
begins local execution until a terminal asynchronous job status is received from the
remote job.

15.5.1.1 Setting the TIme Out Value

For a given asynchronous job request, set the system property SystemProperty.ASYNC_
REQUEST_TIMEOUT to a value greater than 0.

15.5.1.2 Discovering the Asynchronous Job Requests that Have Timed Out

For a given request, RequestDetail.isTimedOut indicates the status of the time out.
Requests that have timed out can be discovered using the query shown in
Example 15-8.

Example 15-8 Indicating the Time Out Status

Filter timedOutRunningFilter = new Filter(
RuntimeService.QueryField.TIMED_OUT.fieldName(),
Filter.Comparator.EQUALS,
Boolean.TRUE)

.and (
RuntimeService.QueryField.STATE. fieldName(),
Filter.Comparator.EQUALS,
State.RUNNING.value());

runtimeService.queryRequests (handle, timedOutRunningFilter, null, true);

A similar query can be run using REQUEST_HISTORY_VIEW, as shown in Example 15-9.

Example 15-9 Using REQUEST_HISTORY_VIEW

SELECT requestId FROM request_history view WHERE timedout='Y' AND state=3;

15.5.1.3 Completing Asynchronous Requests without a Time Out

In the absence of a time out value, asynchronous requests whose remote job has
completed without delivering the status to Oracle Enterprise Scheduler may be
completed directly using RuntimeMXBean.completeAsyncRequest. Because there is no
time out value to flag the request as needing attention, you must carefully track
requests without time outs.

For more information about managing job requests without time outs, see the chapter
"Troubleshooting Oracle Enterprise Scheduler" in Oracle Fusion Applications
Administrator’s Guide.

15.5.1.4 What Happens When an Asynchronous Job Request Times Out

Oracle Enterprise Scheduler periodically checks for asynchronous job requests on
which the property SystemProperty.ASYNC_REQUEST_TIMEOUT has been set. When the
time has exceeded without a terminal status having been received, the job is flagged as
timed out. Otherwise, the job state is unaffected, and remains in a RUNNING state.
Meanwhile, Oracle Enterprise Scheduler continues to accept status updates from the
remote job. The flag indicates that the status of the remote job may need to be
investigated.

Working with Asynchronous Java Jobs 15-27

Handling Time Outs and Recovery for Asynchronous Jobs

15.5.2 Handling Asynchronous Jobs Marked for Manual Recovery

If the remote job completed but its status was not delivered to Oracle Enterprise
Scheduler, you can complete the request manually.

In some cases, the status of a job status cannot be determined automatically, such that
it is unknown whether or not a job is executing, for example. If the job is executing, the
job request must not transition to a terminal state. If the job does transition to a
terminal state, incompatibility locks could be released, possibly causing incompatible
job requests to run simultaneously.

For example:

= Anasynchronous Java job encounters an error when starting a remote service,
such that it is unclear that the remote service has actually been invoked. The job
request must not go to an error state until it is determined whether the remote job
is running. If the job might be running, the job should throw an
oracle.as.scheduler.ExecutionManualRecoveryException to indicate to Oracle
Enterprise Scheduler that the job request must transition to ERROR_MANUAL_
RECOVERY state.

= An Oracle Enterprise Scheduler asynchronous Java job throws a java.lang.Error
which does not indicate to Oracle Enterprise Scheduler whether the remote service
has been invoked.

= A spawned job is running in a clustered environment, with the job request
running on Oracle Enterprise Scheduler instancel. The Oracle Enterprise
Scheduler instancel server goes down, along with the associated Perl agent. If
instancel is not going to recover for a while, the job status is unknown. The
property State.ERROR_MANUAL_RECOVERY is used for this type of situation. This is a
non-terminal state that suspends processing on a job request until a recovery
operation is manually invoked. Any incompatibility locks acquired will be
retained until manual recovery completes.

For more information about handling asynchronous jobs marked for manual recovery,
see the section "Handling Stuck Asynchronous Jobs Requiring Manual Recovery" in
the chapter "Troubleshooting Oracle Enterprise Scheduler" in Oracle Fusion Applications
Administrator’s Guide.

15.5.3 Using RecoverRequest to Manually Recover a Job Request

If some job requests are stuck in an incomplete state, it should first be determined
whether the job requests can complete by normal means. For instance, if a job request
is in RUNNING state, it may be for an asynchronous Java job running remotely. If the
remote job is unable to respond, then you must try to cancel the job request. This
transitions the job request to CANCELLING state. If the job request does not transition to
CANCELLED state, then it may be a candidate for recovery.

All child requests of the request to be recovered must have already completed,
meaning that its process phase is ProcessPhase.Complete. You can retrieve the process
phase by executing RequestDetail.getProcessPhase().

Using RuntimeService.queryRequests, you can run a query to determine incomplete
child requests using the filter shown in Example 15-10.

Example 15-10 Filtering for Incomplete Child Requests

Filter filter =
new Filter (RuntimeService.QueryField.ABSPARENTID.fieldName(),
Filter.Comparator.EQUALS, requestId)

15-28 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Oracle Enterprise Scheduler Interfaces and Classes

.and (RuntimeService.QueryField.REQUESTID. fieldName(),
Filter.Comparator.NOT_EQUALS, requestId)

.and (RuntimeService.QueryField.PROCESS_PHASE.fieldName(),
Filter.Comparator.NOT_EQUALS,
ProcessPhase.Complete.value());

If it is determined that any child requests require manual recovery, then invoke
recoverRequest for those jobs first. If recoverRequest is invoked on a parent request
with incomplete child requests, an exception will be thrown. The exception message
will list child requests that are incomplete. Example 15-11 shows the recoverRequest
syntax.

Example 15-11 recoverRequest

/**

* Attempts to force a request to complete under certain conditions.
* <p>

* 1. The request must already by in a terminal state, {@code

* State.CANCELLING}, or {@code State.ERROR_MANUAL_RECOVER}.

* If a request is in another state,

* {@code RuntimeService.cancel} must be called first. If the

* request does not eventually transition to {@code State.CANCELLED},
* then this operation may be invoked on the request.

* 2. All child requests of the given request must already be complete.

* <p>

* A completed> request is a request in a terminal state with

* a process phase of {@code ProcessPhase.Complete}.

* <p>

* Note that this operation will lock the request.

* <p>

* @param requestId the request identifier of the request.

* @throws IOException if a protocol error occurred.

* @throws InstanceNotFoundException if the request is not found

* @throws OperationException if the given request has child requests

* that are not complete.

* @throws RuntimeOperationsException if a RuntimeService subsystem failure

* occurs.

*/

public void recoverRequest(long requestId)

throws IOException, InstanceNotFoundException, OperationsException,
RuntimeOperationsException;

For more information about manually handling synchronous Java jobs, see the section
"Handling Synchronous Java Jobs Requiring Manual Recovery" in "Troubleshooting
Oracle Enterprise Scheduler" in Oracle Fusion Applications Administrator’s Guide.

15.6 Oracle Enterprise Scheduler Interfaces and Classes

Sample code illustrating the new Oracle Enterprise Scheduler asynchronous callback
interfaces and classes are shown in Example 15-12, Example 15-13, Example 15-14
and Example 15-15.

Example 15-12 Oracle Enterprise Scheduler Updatable Interface

public interface Updatable

* Invoked by Enterprise Scheduler when a job request is updated.
* This method must eventually return control to the caller.

Working with Asynchronous Java Jobs 15-29

Oracle Enterprise Scheduler Interfaces and Classes

* @param context An oracle.as.scheduler.RequestExecutionContext
* object for this request.

* @param parameters the request parameters associated with this request

* @param resultCode the {@code
* oracle.as.scheduler.async.UpdateAction.ActionCode} indicating the
* action that generated this event.

* @param messagePayload a {@code String} representing the body of this
* event. The content and format are not known by the Enterprise Scheduling
* Service.
*/
public UpdateAction onEvent (RequestExecutionContext context,
RequestParameters parameters,
oracle.as.scheduler.async.AsyncStatus resultCode,
String messagePayload);

The UpdateAction class is returned by Updatable.onEvent.

Example 15-13 Oracle Enterprise Scheduler UpdateAction Class

package oracle.as.scheduler.async;

/**
* Enumeration of return values from application execution callout. The
* action returned determines how the subsequent processing of the request
* will proceed.
*/
public class UpdateAction
{
/**
* Constructor. Creates an UpdateAction object from the status

* and message components.
*

* @param status Indicates the status of execution of this update event.

* This status may result in a state transition for the request.
*

* @param message A message that, depending on the value of {@code status},
* may be used for various purposes.
*/

public UpdateAction(AsyncStatus status, String message);

public AsyncStatus getAsyncStatus();

public String getMessage();

The AsyncStatus enum has been modified.

Example 15-14 Oracle Enterprise Scheduler AsyncStatus Enum
Package oracle.as.scheduler.async;

/ * %

* Valid values for the callback status of an asynchronous java job.

* Returning an {@code AsyncStatus} does not guarantee that the state of the
* request will change to the corresponding value. The new state of the request

15-30 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Oracle Enterprise Scheduler Interfaces and Classes

* will depend on the old state, the async status, the result of the
* post-Process handler (if any), and any errors that may occur in
* subsequent processing.
*/
public enum AsyncStatus
{
/**
* The asynchronous job ran successfully.
*/
SUCCESS,

/**

* The asynchronous job has paused for the execution of sub-requests.
*/

PAUSE,

/**
* The asynchronous job is issuing a WARNING.
*/

WARNING,

/**

* The asynchronous job encountered an error.
*/

ERROR,

/'k*
* The asynchronous job has canceled its execution. Usually this
* originates from a {@code RuntimeService.cancel} call.
*/

CANCEL,

/'k*
* The asynchronous job is updated. The request state is not changed
* by this action.
*/

UPDATE

/'k *
* The asynchronous job encountered a business error.
*/

BIZ_ERROR,

/ * %
* The asynchronous job requests manual recovery to complete the request.
*/

ERROR_MANUAL_RECOVERY;

Example 15-15 Existing Asynchronous Callback Web Service Operation

/ * %
* Set the status of an Oracle Enterprise Scheduler asynchronous java job.
*
* @param requestExecutionContext A java.lang.String representing
* an oracle.as.scheduler.RequestExecutionContext object.
* @param status
* @param statusMessage
* An error message if the status is ERROR,
* A business error message if the status is BIZ_ERROR,

Working with Asynchronous Java Jobs 15-31

Oracle Enterprise Scheduler Interfaces and Classes

* A warning message if the status is WARNING,

* A paused state if the status is PAUSED.

* The value is ignored if the status is SUCCESS or CANCEL.

*

*/

public void setAsyncRequestStatus(String requestExecutionContext,
AsyncStatus status,
String statusMessage)
throws RequestNotFoundException, RuntimeServiceException ;

15-32 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

16

Oracle Enterprise Scheduler Security

Oracle Enterprise Scheduler Security features provide access control for Oracle
Enterprise Scheduler resources and application identity propagation for job execution.

Section 16.1, "Introduction to Oracle Enterprise Scheduler Security"

Section 16.2, "Configuring Metadata Security for Oracle Enterprise Scheduler"
Section 16.3, "Configuring Web Service Security for Oracle Enterprise Scheduler"
Section 16.4, "Configuring PL/SQL Job Security for Oracle Enterprise Scheduler"
Section 16.5, "Elevating Privileges for Oracle Enterprise Scheduler Jobs"

Section 16.6, "Configuring a Single Policy Stripe in Oracle Enterprise Scheduler"

Section 16.7, "Configuring Oracle Fusion Data Security for Job Requests"

16.1 Introduction to Oracle Enterprise Scheduler Security

Oracle Enterprise Scheduler Security includes the following:

Protected operations on MetadataService; protected by MetadataPermission,
which enforces metadata access control. Access control on metadata objects. Only
privileged user may create, delete, and update job and schedule metadata. For
more information see Section 16.1.1, "Oracle Enterprise Scheduler Metadata Access
Control."

Access control for job requests, enforced by Oracle Fusion Data Security policies.
For more information about using Oracle Fusion Data Security policies, see
Section 16.7, "Configuring Oracle Fusion Data Security for Job Requests."

Support for the use of an application identity. Using an application identity
enables elevated privileges for completing a job that requires higher privileges
than those allotted to the submitting user. For more information, see Section 16.1.2,
"Oracle Enterprise Scheduler Job Execution Security."

16.1.1 Oracle Enterprise Scheduler Metadata Access Control

At design time the Metadata creator needs to decide which job functions can access
which Metadata objects. This is expressed by associating each Metadata object with
one or more roles and specifying one or more actions for each role. Figure 16-1 shows
the metadata security summary.

Oracle Enterprise Scheduler Security 16-1

Configuring Metadata Security for Oracle Enterprise Scheduler

Figure 16-1 Design Time Metadata Security for Oracle Enterprise Scheduler

\ &y oract
f racle
: » () hr-rep Deploy -"E Metadata
-

application

developer JDaveloper hr-admin 1 l.

Oracle

Oracle Enterprise
Scheduler Metadata
| Y

fhr.jobs/ob1

fhr.jobs/job2

I

/payrolljobsi/job2

Jazn-data.xml

Grant

MetadataParm

(e read) - — Store

EAR

Grant

MetadataPerm

{hrfjobs/job1' execute) '
Oracle

Weblogic —
EJB Server

» Jobl.class
Job2 class

LDAP

--I WAR

16.1.2 Oracle Enterprise Scheduler Job Execution Security

During job submission, the user under whose permissions the job request is submitted
is called the submitting user. At request execution time all user Java code including
pre-processing, post-processing, Java jobs, and substitution, is run as the submitting
user, retaining all roles and credentials.

If the job metadata specifies SYS_RUNAS_APPLICAITONID, however, the job runs under
the elevated privileges of an application ID. For more information, see Section 16.5,
"Elevating Privileges for Oracle Enterprise Scheduler Jobs."

16.2 Configuring Metadata Security for Oracle Enterprise Scheduler

When a user accesses Oracle Enterprise Scheduler services using the RuntimeService
or MetadataService, the identity of the user is acquired and Oracle Enterprise
Scheduler checks if the user has the required permissions to access resources (for
example Metadata objects). For example, if a user named tellerl needs to call
getJobDefinition to access a Metadata object named caclulateFees, Oracle
Enterprise Scheduler ensures that tellerl has READ permission for the Metadata object
caclulateFees before returning the object.

At design time the Metadata creator needs to decide which job functions can access
which Metadata objects. This is expressed by associating each Metadata object with
one or more roles and specifying one or more actions for each role.

There are two options for Metadata role assignments:
= Using Oracle JDeveloper Tools Oracle ADF Security Wizard
= Using Oracle JDeveloper Oracle Enterprise Scheduler add-in Metadata pages

Oracle JDeveloper ADF Security wizard creates the roles you use; the roles must be
created before you can register roles with a metadata object.

16-2 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Configuring Metadata Security for Oracle Enterprise Scheduler

16.2.1 How to Enable Application Security with Oracle ADF Security Wizard

These steps describe a minimal, validated security setup for an application using
Oracle Enterprise Scheduler.

Follow these steps to create a working jps-config.xml and a partially-populated
jazn-data.xml. Use these steps to configure servlets to work with JPS.

To enable security using the ADF Security wizard:

1.

7.
8.

In Oracle JDeveloper, with an application open, from the Application menu select
Secure.

From the dropdown list, select Configure ADF Security. The Configure ADF
Security wizard displays.

In the Enable ADF Security page, select either ADF Authentication and
Authorization or ADF Authentication and click Next.

In the Select authentication type page, select either HTTP Basic Authentication or
Form-Based Authentication and click Next.

In the Enable automatic policy grants page, select the appropriate options from the
Enable Automatic Grant area, and click Next.

In the Specify authenticated welcome page, select options as needed and click
Next.

In the Summary page verify the options and click Finish.

In the Security Infrastructure Created dialog, click OK.

Next, to enable security and to ensure that the jazn-data.xml is included in the
application deployment, perform the following steps after assembling the EAR file for
the application. For more information, see Section 3.6.3, "How to Assemble the EAR
File for Scheduler Sample Application."

Ensure the security related files are included with EAR file:

1.
2.
3.

In Oracle JDeveloper, select Application > Application Properties.
In the Application Properties page, in the Navigator select Deployment.

In the Deployment Profiles area, select the EAR file Deployment descriptor. For
example, for the sample application this is shown in Section 3.6.3, "How to
Assemble the EAR File for Scheduler Sample Application”.

Click Edit. This displays the Edit EAR Deployment Profile Properties page.

In the Edit EAR Deployment Profile Properties page, expand File Groups >
Application Descriptors > Filters.

In the Filters area, select the Files tab.

Ensure that the files jazn-data.xml, jps-config.xml, and
weblogic-application.xml are selected under the META-INF folder.

Click OK to save the descriptor.

16.2.2 How to Define Principals for Security

You need to define roles before the roles are used in Oracle Enterprise Scheduler
security. There are two types of roles that may be defined:

Oracle Enterprise Scheduler Security 16-3

Configuring Metadata Security for Oracle Enterprise Scheduler

Enterprise roles: These are defined directly in Oracle WebLogic Server either using
the Oracle WebLogic Server console, using the WLST scripts, or using the ADF
Security Wizard in Oracle JDeveloper.

Application roles: These can be defined in the jazn-data.xml file or using the
ADF Security Wizard.

To define principals security:

1.

N

10.

11.

12.

13.

14.

In Oracle JDeveloper, open the application and expand Application Resources in
the Application Navigator.

In the Application Resources area, expand Descriptors and META-INF.
In META-INF, double-click to open jazn-data.xml.

In the page showing jazn-data.xml, select the Overview tab. Note, if the
Overview tab is not shown, try closing jazn-data.xml and then opening it again.

Click Application Roles...(Manage Users and Roles).

On the Edit JPS Identity and Policy Store page, in the navigator expand Identity
Store and jazn.com.

In the navigator, select Roles and click Add.... This displays the Add Role dialog.
In the Add Role dialog, enter a name in the Name field.
Click OK.

On the Edit JPS Identity and Policy Store page, in the navigator select Application
Policy Store. If there is a sub-element with the same name as the application, go to
the next step, Otherwise, do the following;:

a. Select Application Policy Store.
b. Click New.... This displays the Create Application Policy dialog.

c. In the Create Application Dialog the Display Name field should contain the
application name.

d. Click OK to accept the default Display Name.

On the Edit JPS Identity and Policy Store page, in the navigator expand
Application Policy Store and expand the application name.

In the navigator, select Application Roles. This displays the Application Roles
page.

In the Application Roles page, click Add... to add roles. For correct functionality at

least one enterprise role must be mapped to the application role by adding
enterprise roles in the Member Roles tab.

Click OK.

16.2.3 How to Create Grants with Oracle Enterprise Scheduler Metadata Pages

Access to all Metadata is controlled by grants. In order to ensure access by the right
identities, you need to give the correct grants. It is expected that most Metadata grants
will be done using the Oracle Enterprise Scheduler Oracle JDeveloper add-in.

First, create any required Oracle Enterprise Scheduler Metadata in an application
using File > New > Business Tier > Enterprise Scheduler Metadata. For more
information on creating Metadata, see Section 3.5, "Creating Metadata for Scheduler
Sample Application."

16-4 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Configuring Metadata Security for Oracle Enterprise Scheduler

Using Oracle JDeveloper, you can add security grants to Oracle Enterprise Scheduler
metadata objects.

To secure Oracle Enterprise Scheduler metadata objects:
1. Open the Editor page for any Oracle Enterprise Scheduler Metadata object.

2. In the Access Control area, click Add to add a new access control item.

3. Inthe Add Access Control dialog, select a Role from the dropdown list. This
selects a role to grant access privileges.

4. Select one or more actions from the list, Read, Execute, Update, or Delete.

5. Click OK. This displays the updated role, as shown in Figure 16-2.

o

Repeat for as many roles as needed.

Figure 16-2 Security Roles for Oracle Enterprise Scheduler Metadata

(?.-Start Page | A Cracdefulest rules |£-'_1'Jobtype_essdem01.xm| Ei}obtypel el i"!djazn-data.xml E]
[E 10b Type
Marme: Jobbypel
Dvescription:
Execution Type: Java_TYPE
Class Mame: | Q,
= Parameters P R
Mo Parameters
= [@ System Properties / @+ ¥
Mame Type Initial Yalue Read Only
S¥S_requestCategary STRIMNG Default_Request_Category
33 _retries INTEGER 1]
S5 _priority INTEGER 4
S5 _reprocessDelay INTEGER. 5
S¥5_reguestExpiration INTEGER. 1]
= & Access Control / Ar| %
Role Read Execute Update Delete
test v v L4 v
JobType Editar [’_

16.2.4 How to Create Grants with Oracle ADF Security Wizard

There may be occasions where you want to create grants explicitly, for example when
using wildcards. These steps show how to set up grants using the ADF Security
wizard.

Note that these steps assume you have already created application roles.

To specify grants with the ADF Security wizard:
1. In the Application Navigator, expand the Application Resources panel.

2. Expand Descriptors and META-INF, as shown in Figure 16-3.

Oracle Enterprise Scheduler Security 16-5

Configuring Metadata Security for Oracle Enterprise Scheduler

Figure 16-3 Security Configuration Files Including jazn-data.xml in META-INF

Application MNavigator |
EssDemodpp

-7 Connections
-7 Descriptors

.
=t

]

£l ||

i

Bl& V-

Projects

YiewController

Application Resources

-] META-INF

& cwallet.ssn

% jazn-data, xml

% jps-config. xml

% weblogic-application. xml
[7] ADF META-THF

Data Controls
Recently Opened Files

© ® N o o

12.
13.

14.

15.

Double-click jazn-data.xml to open the file. In the editor panel for
jazn-data.xml, select the Overview tab, and click Application Roles... (Manage
Users and Roles). This displays the JPS Identity & Policy Store dialog. Note, if the
Overview tab is not shown, try closing jazn-data.xml and then opening it again.

In the JPS Identity & Policy Store dialog, in the navigator expand Application
Policy Store.

Expand application-name, and select Application Roles.

Click New.

Enter the display name you wish for this grant, and click OK.
Select the Principals tab, and click Add... .

Enter the name of the application role which will receive the grant; this should be
one of the role names created. Leave the Class field as is.

. Click OK.
11.

With the new role selected in the Principals tab, make sure the Type is role.
Select the Permissions tab, and click Add....

For the Name field, enter a full permission string or a partial string with
wildcards; see Table 16-1 for examples. In the Class field, enter
oracle.as.scheduler.security.MetadataPermission. Click OK.

With the new permission selected in the Permissions tab, enter the desired actions
in the Actions Field.

Click OK to save the grant.

16-6 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Configuring Metadata Security for Oracle Enterprise Scheduler

Note: If necessary, use the following workaround:
1. Right-click the jazn-data.xml file and select Open.
2. Click the Source tab.

3. Under <jazn-policy><grant><grantee>, remove the elements
<display-name> and <type>.

Table 16-1 Sample Permission Grants for Security Using Oracle ADF

Name Actions Effect

package-part.JobDefinition EXECUTE Grants the ability to submit requests

.MyJavaSucJobDef for a single Metadata item.

mypackage . subpackage. * CREATE,EXECUTE Grants to ability to create and execute
any new Metadata items in
/mypackage/subpackage

JobDefinition.SYS_ CREATE,EXECUTE Grants ad hoc submission permission

AdHocRequest

mypackage. * CREATE,EXECUTE,DELETE Grants wide-open permissions

16.2.5 About MetadataPermission APIs

Grants for Metadata are part of the class oracle.as.scheduler.
security.MetadataPermission. The name, or target of the permission is based on the
package, Metadata object type, and name of the Metadata object being protected; this
identifier can be retrieved from MetdataObjectId#toPermissionString().

Table 16-2 lists the actions for the grants. The notation <Type> is a placeholder for all
of the metadata object types. For example, get<Type>() refers to the methods
getJobDefinition(), getJobType (), getJobSet ().

Table 16-2 Grant Actions for Metadata Security

Action Implies Metadata Functions

READ None get<Type>(), query<Type>()
EXECUTE READ submitRequest()

CREATE READ add<Type>()

UPDATE READ update<Type>()

DELETE READ delete<Type>()

If you are submitting ad-hoc requests, you can have full wildcard ("*") permission with

both EXECUTE and CREATE actions. When submitting ad-hoc requests, that is, using
submitRequest () without certain MetadataObjectIds, you can grant permissions with
the full wildcard ("*") name using the EXECUTE and CREATE actions.

16.2.6 What Happens When You Configure Metadata Security

Each time a user application calls a MetdataService or RuntimeService method,
Oracle Enterprise Scheduler checks the current subject for privileges on the metadata
accessed by the methods. For example, submitting a request requires EXECUTE
permissions on the job definition or job set metadata object associated with the
submission. Methods that change metadata, for example calling
updateJobDefinition (), require UPDATE permissions.

Oracle Enterprise Scheduler Security 16-7

Configuring Web Service Security for Oracle Enterprise Scheduler

For all MetadataService methods except queries, an exception is thrown when the
user tries to access a Metadata object for which the user does not have permission.

The MetadataService query methods have different behavior. When a user performs a
query Oracle Enterprise Scheduler only returns Metadata objects that have READ
permission. Thus a user who has no permissions on Metadata objects receives an
empty list for all queries, but this user would not see an exception thrown due to lack
of permissions.

The value of SystemProperty.USER_NAME is overwritten at submission time; the user
cannot spoof an identity at submission time using SystemProperty.USER_NAME.

16.3 Configuring Web Service Security for Oracle Enterprise Scheduler

For information about securing the Oracle Enterprise Scheduler web service, see
Section 10.9, "Securing the Oracle Enterprise Scheduler Web Service."

16.4 Configuring PL/SQL Job Security for Oracle Enterprise Scheduler

For standalone cases, implement the application user session using Java or the
PL/SQL API as described in the chapter "Implementing Application User Sessions" in
Oracle Fusion Applications Developer’s Guide.

16.5 Elevating Privileges for Oracle Enterprise Scheduler Jobs

When a user accesses Oracle Enterprise Scheduler services using the RuntimeService
or MetadataService interfaces, the identity of the user calling the methods is acquired.
This identity is used to check whether the user has the required permissions to access
certain resources such as metadata objects. For example, if user tellerl calls the
method getJobDefinition for metadata object caclulateFees, Oracle Enterprise
Scheduler ensures that tellerl has read permissions for metadata object
caclulateFees before returning the object.

The caller identity is also used to run jobs requested by the user. For example, if user
tellerl calls the method submitRequest () for a Java job, the requested jobs run under
tellerl and retain all roles and credentials assigned to that user.

Oracle Enterprise Scheduler supports the use of an application identity. Using an
application identity enables elevated privileges for completion of a job that requires
higher privileges than those allotted to the submitting user.

For more information about enabling elevating privileges, see Section 9.13, "Elevating
Access Privileges for a Scheduled Job."

16.6 Configuring a Single Policy Stripe in Oracle Enterprise Scheduler

Oracle Platform Security policy store serves as the repository for authorization
policies. Authorization policies load at run time into the Java Virtual Machine, and are
used to make decisions regarding authorization. Authorization policies comprise a
hierarchy of application roles, the mapping of enterprise roles to application roles and
permissions grants to application roles. Application roles can also be hierarchical.

Aside from authorization policies, Oracle Platform Security policy store also stores
administrative constructs that help in maintaining these authorization policies,
including resource catalogs (with associated resource types), permission sets and role
categories. The authorization polices and administrative components are scoped to an
application. This is known as an application stripe.

16-8 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Configuring a Single Policy Stripe in Oracle Enterprise Scheduler

An application stripe is a collection of JAAS policies applicable to the application with
which it is associated. Out of the box, an application stripe maps to an Oracle Java EE
application. Oracle Platform Security also supports mapping multiple Java EE
applications to one application stripe. The application ID string identifies the name of
the application or applications.

16.6.1 How to Configure a Single Policy Stripe in Oracle Enterprise Scheduler

Oracle Enterprise Scheduler allows specifying an applicationStripe name and
mapping it to a JPS policy context ID. You can assign multiple Oracle Enterprise
Scheduler hosting applications to a single policy context.

To configure an Oracle Enterprise Scheduler hosting application to a specific
applicationStripe:

1. Open the ejb-jar.xml file.

2. Under the message-driven element, add an activation-config-properties
element with the value applicationStripe.

3. Under the jpsinterceptor-class element, configure the JpsInterceptor.

Make sure to match the value of applicationStripe under the <message-driven>
element with the application.name value under the <interceptor> element.

Example 16-1 shows an applicationStripe configuration for the policy context
ESS_FUNCTIONAL_TEST_APP_STRIPE.

Example 16—1 Configuring the applicationStripe and the Jpsinterceptor

<ejb-jar>

<enterprise-beans>
<message-driven>
<ejb-name>ESSAppEndpoint</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.EssAppEndpointBean</ejb-class>
<activation-config>

<activation-config-property>
<activation-config-property-name>applicationStripe</activation-config-property-name>
<activation-config-property-value>ESS_FUNCTIONAL_ TESTS_APP_
STRIPE</activation-config-property-value>
</activation-config-property>
</activation-config>
</message-driven>

</enterprise-beans>

<interceptors>
<interceptor>
<interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
<env-entry>
<env-entry-name>application.name</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>ESS_FUNCTIONAL_TESTS_APP_STRIPE</env-entry-value>
<injection-target>
<injection-target-class>oracle.security.jps.ee.ejb.JpsInterceptor
</injection-target-class>
<injection-target-name>application_name</injection-target-name>

Oracle Enterprise Scheduler Security 16-9

Configuring Oracle Fusion Data Security for Job Requests

</injection-target>
</env-entry>
</interceptor>
</interceptors>
</ejb-jar>

4. If your application has a web module, configure the web module JpsFilter to use
the same applicationStripe in the file web.xml. Example 16-2 shows a code
sample.

Example 16-2 Configuring the Web Module in web.xml
<web-app>
<filter>
<filter-name>JpsFilter</filter-name>
<filter-class>oracle.security.jps.ee.http.JpsFilter</filter-class>

<init-param>
<param-name>application.name</param-name>
<param-value>ESS_FUNCTIONAL_TESTS_APP_STRIPE</param-value>
</init-param>
</filter>

</web-app>

16.6.2 What Happens When You Configure a Single Policy Stripe

At design time, an application stripe manifests as:

m An<application> element under the <policystore> element in the
jazn-data.xml file.

s A node under the node
cn=<Weblogic.domain.name>, cn=JPSContext, cn=<root.node>, such as
cn=ATGDemo, cn=base_domain, cn=JPSContext, cn=MY_Node.

16.6.3 What Happens at Runtime

At run time, an application stripe manifests as an instance of the class
oracle.security.jps.service.policystore.ApplicationPolicy.

16.7 Configuring Oracle Fusion Data Security for Job Requests

Oracle Fusion Data Security for Oracle Fusion Applications enforces security
authorizations for access and modification of specific data records. Oracle Fusion Data
Security integrates with Oracle Platform Security Services (OPSS) by granting actions
to OPSS principals. The grant defines who (the principals) can do what (the actions) on
a given resource. A grant in Oracle Fusion Data Security can use any enterprise user or
enterprise group as principals. For more information about implementing Oracle
Fusion Data Security, see the chapter "Implementing Oracle Fusion Data Security” in
Oracle Fusion Applications Developer’s Guide.

In the context of Oracle Enterprise Scheduler, a job request access control data security
policy comprises a grant, a grantee and a set of ESS_REQUEST privileges for a set of job
requests as follows:

16-10 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Configuring Oracle Fusion Data Security for Job Requests

= A grantee, represented by grantee ID such as a user or application role, the ID
should match the user GUID or application role GUID retrieved from Oracle
Fusion Middleware.

= A set of ESS_REQUEST privileges represented by a menu ID mapped to a set of form
functions.

= A set of data represented by an INSTANCE_SET ID. An INSTANCE_SET is typically
represented by a predicate which can be appended to a query to the job request
data exposed to Oracle Fusion Applications (see Section 16.7.1, "Oracle Fusion
Data Security Artifacts").

The job request access control data security policy can be managed using Oracle
Authorization Policy Manager as are other Oracle Fusion Data Security policies. If
Oracle Authorization Policy Manager is not available, you can use SQL scripts to
manipulate the Oracle Fusion Data Security artifacts.

16.7.1 Oracle Fusion Data Security Artifacts

To use Oracle Enterprise Scheduler job request access control feature in the context of
Oracle Fusion Applications, the Oracle Fusion Applications schema and Oracle
Enterprise Scheduler schema must be located in a single database.

Oracle Enterprise Scheduler implements job request data security on top of the
request_history and request_property tables. It exposes Oracle Enterprise
Scheduler job request related data to the Oracle Fusion Applications schema through
the following views: request_history_view and request_property_view. Two
synonyms are created in the Oracle Fusion Applications schema which are linked to
the Oracle Enterprise Scheduler schema.

The request_history_view contains all columns that correspond to
RuntimeService.QueryField, which is used when constructing the filter for
queryRequest () operations, as well as two other columns: submitter and
submitterguid. Be sure to define your INSTANCE_SET based on these columns only.

Table 16-3 lists the Oracle Fusion Applications schema tables and their Oracle
Enterprise Scheduler synonyms, as well as the columns used to define data security
policies.

Oracle Enterprise Scheduler Security 16-11

Configuring Oracle Fusion Data Security for Job Requests

Table 16-3 Mapping Oracle Fusion Applications Schema Synonyms to Oracle Enterprise Scheduler

Schema Views and Relevant Columns

Link to Oracle Enterprise

Oracle Fusion Scheduler Schema View

Applications Schema
Synonym

Columns

ess_request_history request_history_view

See table for the QueryField and View Column
mapping.

ess_request_property request_property_view

create or replace view request_property view
as
select
requestid,
name,
scope,
datatype,
value,
lobvalue,
lobflag
from request_property

with read only;

Table 16—4 shows the mapping of RuntimeService.QueryField columns to the Oracle
Enterprise Scheduler request_history_view columns.

Table 16-4 Mapping RuntimeService.QueryField Columns to request_history_view Columns

RuntimeService.QueryField Columns

Request_history_view Columns

QueryField.REQUESTID requestid
QueryField.APPLICATION application
QueryField.USERNAME userName
QueryField.PRODUCT product
QueryField.REQUEST CATEGORY requestCategory
QueryField.PRIORITY priority
QueryField.NAME name
QueryField.ABSPARENTID absParentId
QueryField.TYPE type
QueryField.DEFINITION definition
QueryField.STATE state
QueryField.SCHEDULE schedule
QueryField.PROCESSSTART processStart
QueryField.PROCESSEND processEnd
QueryField.REQUESTEDSTART requestedStart
QueryField.REQUESTEDEND requestedEnd
QueryField.SUBMISSION submission

16-12 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Configuring Oracle Fusion Data Security for Job Requests

Table 16-4 (Cont) Mapping RuntimeService.QueryField Columns to request_history_view Columns

RuntimeService.QueryField Columns Request_history_view Columns
QueryField.PARENTREQUESTID parentRequestId
QueryField.WORKASSIGNMENT workAssignment
QueryField.SCHEDULE scheduled
QueryField.REQUESTTRIGGER requesttrigger
QueryField.PROCESSOR processor
QueryField.CLASSNAME classname
QueryField.ELAPSEDTIME elapsedtime
QueryField.WAITTIME waittime
QueryField.SUBMITTER submitter
QueryField.SUBMITTERGUID submitterguid

Table 16-5 maps FND_MENUS to FND_FORM_FUNCTIONS as reflected in FND_MENU_ENTRIES.

Table 16-5 Mapping FND_MENUS to FND_FORM_FUNCTIONS

FND_MENUS in the Oracle Fusion Applications
Schema FND_FORM_FUNCTIONS

ESS_REQUEST_ADMIN ESS_REQUEST_READ
ESS_REQUEST_UPDATE
ESS_REQUEST_HOLD
ESS_REQUEST_CANCEL
ESS_REQUEST_LOCK
ESS_REQUEST_ RELEASE
ESS_REQUEST_DELETE
ESS_REQUEST_PURGE

ESS_REQUEST_VIEW ESS_REQUEST_READ

ESS_REQUEST_OPERATE ESS_REQUEST_READ
ESS_REQUEST_HOLD
ESS_REQUEST_CANCEL
ESS_REQUEST_LOCK
ESS_REQUEST RELEASE

ESS_REQUEST_OUTPUT_ADMIN ESS_REQUEST_OUTPUT_VIEW
ESS_REQUEST_OUTPUT_DELETE

Table 16-6 lists the required data privilege (form_function) for a user to perform an
Oracle Enterprise Scheduler runtimeService operation.

Oracle Enterprise Scheduler Security 16-13

Configuring Oracle Fusion Data Security for Job Requests

Table 16-6 Data Privileges Needed to Execute runtimeService Operations

Data Privilege (FND_FORM_

RuntimeService APl Operation FUNCTIONS) Notes

open none

close none Two overloaded methods.
submitRequest none Five overloaded methods, which are

secured by metadata security, not data
security.

getRequestParameter

ESS_REQUEST_READ

getRequestState ESS_REQUEST READ
getRequests ESS_REQUEST READ
getRequestDetail ESS_REQUEST_READ
getRequestDetailBasic ESS_REQUEST_READ
lockRequest ESS_REQUEST_LOCK

updateRequestParameter

ESS_REQUEST_UPDATE

queryRequests ESS_REQUEST_ READ

holdRequest ESS_REQUEST HOLD

releaseRequest ESS_REQUEST RELEASE

cancelRequest ESS_REQUEST CANCEL

deleteRequest ESS_REQUEST_DELETE

purgeRequest ESS_REQUEST PURGE

publishEvent none Not targeted to a request.
isHandleRollbackOnly none Not targeted to a request.
setHandleRollbackOnly none Not targeted to a request.
replaceSchedule none

Table 16-7 displays the INSTANCE_SET conditions provided by Oracle Authorization
Policy Manager.

Table 16-7

INSTANCE_SET Conditions Provided by Oracle Authorization Policy Manager

INSTANCE_SET Condition

Description

REQS_SUBMITTEDBY_SESSIONUSER

Oracle Enterprise Scheduler requests that the submitter is the
current session user.

REQS_RUNAS_SESSIONUSER

Oracle Enterprise Scheduler requests that the RunAs user is the
current session user.

REQS_SUBREQS_BY_SUBMITTER

Oracle Enterprise Scheduler requests and subrequests are all
submitted by the submitter.

REQS_ALL_OF_ONE_APP

Indicates all Oracle Enterprise Scheduler requests related to a
product within a logical application. This condition takes two
parameters that match the job request parameter values of SYS_
application and SYS_product.

ESS_REQS_BY NAME_VALUE_PARAM

Oracle Enterprise Scheduler job request whose
RequestParameter name value pair is specified in data security
grants. This condition takes two parameters that match the one
job request parameter's name and value.

16-14 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Configuring Oracle Fusion Data Security for Job Requests

Table 16-8 lists the Oracle Fusion Data Security policies available for use with Oracle
Enterprise Scheduler out of the box.

Table 16-8 Oracle Fusion Data Security Policies for Oracle Enterprise Scheduler

Oracle Fusion Data Security Policy Description

ESS_REQUEST_SUBMITTER_ADMIN_SUBMITTED_ The submitter of the job request is permitted to view and

REQUESTS

administer the requests they submitted.

ESS_REQUEST_SUBMITTER_ADMIN_SUBMITTED_ The submitter of the job requests and subrequests is permitted to

REQUESTS_ SUBREQS

view and administer on the requests they submitted.

ESS_REQUEST RUNASUSER_ADMIN_EXECUTED_ The runAs user is permitted to view and administer the requests

REQUESTS

they execute.

ESS_REQUEST_RUNASUSER_VIEWOUTPUT_ The runas user is permitted to view the output of the job requests

EXECUTED_REQUESTS

they executed.

For more information about the runAs user, or elevating access privileges, see
Section 9.13, "Elevating Access Privileges for a Scheduled Job."

16.7.2 How to Apply Oracle Fusion Data Security Policies

The Oracle Fusion Data Security components described in Section 16.7.1, "Oracle
Fusion Data Security Artifacts" can be applied as follows.

To apply Oracle Fusion Data Security policies:

1.

5.

Examine the policies described in Table 16-8 and determine whether you can use
any of them in your application.

= If you can use one of these policies, skip to the last step.
» If the policies do not apply, continue on to the next step.

Determine whether any of the FND_MENUS listed in Table 16-5 suit the
out-of-the-box Oracle Fusion Data security policy you selected for your
application. If you cannot apply any of the FND_MENUS listed in Table 16-5, create
your own FND_MENUS and FND_MENUS_ENTRIES as described in the chapter
"Implementing Oracle Fusion Data Security" in the Oracle Fusion Applications
Developer’s Guide.

Determine whether you can use the INSTANCE_SET conditions in Table 167 and the
Oracle Fusion Data Security policies in your application. If you cannot use the
conditions, create your own FND_INSTANCE_SET. For more information about
creating an FND_INSTANCE_SET, see the chapter "Implementing Oracle Fusion Data
Security" in the Oracle Fusion Applications Developer’s Guide.

Create an Oracle Fusion Data Security policy, as described in Section 16.7.3, "How
to Create Functional and Data Security Policies for Oracle Enterprise Scheduler
Components."

Note: If developing an Oracle Fusion application, do not grant an
Oracle Enterprise Scheduler access policy to the grantee of an
authenticated-role or anonymous-role, as doing so may affect the
behavior of Oracle Enterprise Scheduler or other products.

Test your application.

Oracle Enterprise Scheduler Security 16-15

Configuring Oracle Fusion Data Security for Job Requests

16.7.3 How to Create Functional and Data Security Policies for Oracle Enterprise
Scheduler Components

You can use Oracle Authorization Policy Manager to create functional and data
security policies for Oracle Enterprise Scheduler.

For more information about creating policies in Oracle Authorization Policy Manager,
see the chapter "Managing Security Artifacts" in Oracle Fusion Middleware Oracle
Authorization Policy Manager Administrator’s Guide (Oracle Fusion Applications Edition).

To create functional and data security policies for Oracle Enterprise Scheduler:
1. Create a resource.

a. From the list of policies, expand the fcsm policy stripe and select fesm >
Resource Catalog > Resources.

b. From the Actions menu, click New.

c. Define a resource with the resource type ESSMetadataResourceType, as well
as the name and display name of the Oracle Enterprise Scheduler component
using the following syntax:
oracle.apps.ess.applicationName.JobDefintitionName.JobName.

d. Save the resource.

2. Define a resource policy.
a. Select the resource you just created and click Create Policy.
b. Add principals (grantees) by clicking the Add button.

c. In the Add Principal window, search for the relevant application role or roles.
Select the roles and click Add.

d. In the Actions field, select the relevant actions and click Apply.
3. Create an authorization condition.

a. In the Authorization Management tab, select Global and search for the
database resource you want to use. TABLE XY lists the database resources
related to Oracle Enterprise Scheduler.

b. Select the resource and click Edit.

c. Click the Conditions tab and select Actions > New.

d. Enter a name, display name and SQL predicate for the condition.
4. Define a data policy.

a. From the Actions menu, select New Policy.

b. In the New Policy window, use the Role and Database Resource fields to add
the relevant roles and resources.

c. Select the role you defined. In Database Resource Details region, select the
condition name you just created and choose the actions you require.

16-16 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

17

Managing Business and System Errors

This chapter describes how to indicate Oracle Enterprise Scheduler system and
business errors as well as implement job request retries.

This chapter includes the following sections:

» Section 17.1, "Introduction to Managing Business and System Errors"
= Section 17.2, "Indicating Errors"

» Section 17.3, "Configuring Retries for a Job Request”

= Section 17.4, "Finding and Diagnosing Job Requests in Error State"

17.1 Introduction to Managing Business and System Errors

When an Oracle Enterprise Scheduler job request encounters an error during
execution, Oracle Enterprise Scheduler can indicate whether the error is a business or
system error.

A business error occurs when a job request must abort prematurely, but is otherwise
able to exit cleanly, leaving its data in a consistent state. Examples of scenarios
requiring a job to abort prematurely include a particular application setup or
configuration condition, a functional conflict that requires an early exit or corrupt or
inconsistent data.

A system error occurs when a job request encounters a technical error from which it
cannot recover, but otherwise exits of its own volition. Alternatively, a system error
occurs when the server or operating system running the job crashes. Examples of
system errors include table space issues and unhandled runtime exceptions.

A job request that indicates an error is placed in the terminal state of ERROR. The error
type field for a job request indicates whether the error is a business or system error.
System errored job requests can be automatically retried if they are properly
configured. Business errored job requests cannot be retried.

17.2 Indicating Errors

You can indicate business and system errors using specific error statuses or exit codes
for each job type.

For more information about using exit codes, see the following sections:
= Section 5.4, "Using System Properties,"

= Section 7.2.1, "How to Create and Store a Process Job Type,"

= Section 9.7.2, "How to Implement a SQL*Plus Job,"

Managing Business and System Errors 17-1

Indicating Errors

= Section 9.9.1, "How to Implement a Perl Scheduled Job,"
s Section 9.10.3, "Scheduled C Job API"
= Section 9.11, "Implementing a Host Script Scheduled Job."

17.2.1 How to Indicate a Business Error

Table 17-1 shows the code used to indicate a business error for each job type. For a
business error, the job request state is set to ERROR, the error type to Business and the
cause to PROCESS_ERROR. For the Java jobs, the table lists different stages in running a
job along with a business error indication for each.

Table 17-1 Indicating a Business Error

Job Type or Job Stage Business Error Indication

Executable.execute (Java Throw ExecutionBizErrorException (extends

job) ExecutionErrorException).

Asynchronous Java job Send AsyncStatus.BIZ_ERROR.

(initiated from AsyncJava)

Updatable.onEvent Return AsyncStatus.BIZ_ERROR in the UpdateAction.
CJobType Return FDP_BIZERR using afpend () APL
P1SglJobType Return retcode = '3'.

SqlPlusJobType Set FND_JOB.BIZERR_V using FND_JOB. SET_SQLPLUS_STATUS APL
Perl1JobType Return exit code of 3.

HostJobType Return exit code of 3.

17.2.2 How to Indicate a System Error

A system error results from an unhandled exception and may also be explicitly
indicated by the job, as shown in Table 17-2. For a system error, the request state is set
to ERROR and the error type to System. For the Java jobs, the table lists different stages
in running a job along with a system error indication for each.

Table 17-2 Indicating System Errors

Job Type or Job Stage System Error Indication

Executable.execute (Java Throw ExecutionErrorException.

job)

Asynchronous Java job Send AsyncStatus.ERROR.

(initiated from AsyncJava)

Updatable.onEvent Return AsyncStatus.ERROR in the UpdateAction.

CJobType Return FDP_ERROR using afpend () APL

P1SglJobType Return retcode = '2'.

SqlPlusJobType Set FND_JOB.FAILURE_V using FND_JOB. SET_SQLPLUS_STATUS
APIL.

PerlJobType Return an exit code of 1.

HostJobType Return an exit code of 1.

17-2 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Configuring Retries for a Job Request

17.3 Configuring Retries for a Job Request

Job requests that fail as a result of a system error can be retried, meaning they can be
configured to automatically re-run from the pre-process stage.

Oracle Enterprise Scheduler uses an increasing delay algorithm to improve the
chances that the system error will have been resolved when the request is retried.
During the delay, the request is placed in WAIT state. On the first system error, the
delay is 1 minute; on the second, 2 minutes; on the third, 5 minutes; on the fourth
system error and greater, the delay is 10 minutes. For example, suppose a job request
fails with a system error three times before it is successful. The job request is delayed a
total of 8 minutes (1+2+5).

When a job request fails, resources such as incompatibility locks are released, and the
job request goes back to the wait queue. Incompatibility locks are released only for the
job request being retried and not for any parent request that is still active.

The job may have already completed some of its processing when the error occurs. On
retry, the job must be able to continue its processing from the point of error., meaning
it must be an idempotent job. Idempotent jobs can be configured so that the job request
is automatically retried in case of a system error. An idempotent job is able to continue
where it left off when it is retried.

Note: Configure retries only for idempotent jobs.

17.3.1 How to Configure Retries for a Job Request

The system property SYS_retries enables configuring the maximum number of times
a failed job request can be retried.

To configure retries for a job request:
1. In]Developer, edit the job definition.

2. Using the system property SYS_retries, enter the number of times the job request
is to be automatically retried. A value of zero indicates that the job request will not
be retried. The property SYS_retries has a default value of zero, and can only be
defined for idempotent jobs.

Note: Job requests that fail with a business error are never
automatically retried. Oracle Enterprise Scheduler ignores the SYS_
retries parameter in such cases.

For more information about configuring properties for a job request, see
Chapter 9.4.1, "How to Create a Job Definition."

17.3.2 What Happens at Run Time: How a Job Request Is Retried
The behavior of retried job requests differs depending on the type of job request.

= Job set retry: Job sets cannot be retried, however, the steps of a job set can be
retried provided the steps themselves are job definitions. When a job set step
throws a system error, Oracle Enterprise Scheduler retries the step if the job
definition associated with the step is configured for retry. When retrying a step,
the incompatibility locks for the step request are released, while incompatibility
locks for parent job sets continue to be held. This means that the incompatibility
locks for parent job sets are held across retries of a job set step. The state of the job

Managing Business and System Errors 17-3

Finding and Diagnosing Job Requests in Error State

set is unaffected by the state of the step until the step reaches a non-error terminal
state or all retries for the step have been exhausted.

For serial job sets, all retries are completed for a step before any link is followed. If
a job set step defines both ON_SUCCESS and ON_ERROR links, the ON_ERROR link is not
followed until all retries have been exhausted and the step has reached a terminal

state of ERROR.

Sub-request retry: Sub-requests can be retried. When a sub-request throws a
system error, Oracle Enterprise Scheduler retries the sub-request as many times as
specified by the retry configuration for the sub-request. The parent request
remains in PAUSED state until the sub-request reaches a non-error terminal state or
all retries for the sub-request have been exhausted. Neither sub-request execution
nor retry affects the incompatibility locks of the parent job request, meaning the
parent holds its incompatibilities across sub-request retries.

Recurring job request retry: A submitted recurring job request cannot be retried.
However, each recurring instance can itself be retried. For example, suppose the
job definition for a recurring request has SYS_retries set to 3. Each instance of the
recurrence that fails with a system error can be retried up to 3 times.

17.3.3 What You Should Know about Configuring Retries for a Job Request

Following is a list of recommendations for configuring retries for a job request.

To minimize the amount of time and effort required to recover from a job failure, it
is advisable to develop most jobs as idempotent jobs (able to continue from the
point of departure when retried). Thus, if the same job request executes again after
it previously failed, the job code ensures that the retry is handled properly. If a job
is idempotent, it can be configured to automatically retry when encountering
system errors. This is especially important for long running jobs where recovery
involves manually rolling back changes and restarting the job from the beginning.

If the job is idempotent, set SYS_retries to a positive number so that the job can
be automatically retried in case of system error.

If the job is not idempotent, do not set SYS_retries. This prevents the job from
being run twice with unpredictable results.

When defining a job set, make sure the ERROR branch connects to a job set step that
does not depend on the successful completion of the previous step.

When developing parent and sub-requests, use the APIs described in Section 17.4,
"Finding and Diagnosing Job Requests in Error State" in the parent request to
determine the outcome of the sub-request. The state of the sub-request determines
what to do next in the context of the parent request. The APIs enable the parent
request to retrieve the state of the sub-request and determine whether any errors
that have occurred in the sub-request are business or system errors.

17.4 Finding and Diagnosing Job Requests in Error State

You can use APIs to determine the following;:

The state of a job request,
Which job requests have ended in error,

The number of times a job request has been retried.

Alternatively, you can use Fusion Applications Control to search for job requests that
have ended in error. For more information, see the section "Managing Logging for

17-4 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

Finding and Diagnosing Job Requests in Error State

Oracle Enterprise Scheduler" in the chapter "Managing Oracle Enterprise Scheduler
Service and Jobs" in the Oracle Fusion Applications Administrator’s Guide. You can also
use an Oracle ADF Ul to view logging information for Oracle Enterprise Scheduler
jobs. For more information, see Section 9.17.3, "How to Log Scheduled Job Requests in
an Oracle ADF UL"

17.4.1 Retrieving the State of a Job Request

Use the RuntimeService.getRequestDetailBasic API to retrieve the job request state.
If the job request is in error state, retrieve the ErrorType of the job request to determine
the type of terminal error that occurred. Example 17-1 shows sample code illustrating
the use of the APL

Example 17-1 Retrieving the State of a Job Request

RequestDetail detail = runtime.getRequestDetailBasic (handle, requestId);
State state = detail.getState();

if (state == State.ERROR) {
ErrorType errorType = detail.getErrorType();
if (errorType == ErrorType.System) {
// The job request had a system error.
} else if (errorType == ErrorType.Business) ({
// The job request had a business error.
}
}

For PL/SQL job requests, use the get_error_type API to determine the type of
terminal error that has occurred. Example 17-2 shows sample code illustrating the use
of the APL

Example 17-2 Retrieving the State of a PL/SQL Job Request

vV_req_state integer := null;
v_error_type integer := null;

vV_req _state := ess_runtime.get_request_state(v_request_id);
if v_req state = ERROR_STATE then
vV_error_type := ess_runtime.get_error_type(v_request_id);
if v_error_type = ETYPE_SYSTEM then
-- The job request had a system error.
elsif v_error_type = ETYPE_BUSINESS then
-- The job request had a business error.
end if;
end 1if;

17.4.2 Finding Job Requests with Business Errors

Use the RuntimeService.queryRequests API and include a match for the error state
and ErrorType of business. Example 17-3 shows sample code illustrating the use of
the APL

Example 17-3 Finding Job Requests with Business Errors

Filter filter = new Filter(
RuntimeService.QueryField.STATE.fieldName (),
Filter.Comparator.EQUALS,
new Integer (State.ERROR.value()));

Managing Business and System Errors 17-5

Finding and Diagnosing Job Requests in Error State

filter = filter.and(
RuntimeService.QueryField.ERROR_TYPE. fieldName (),
Filter.Comparator.EQUALS,
new Integer (ErrorType.Business.value()));

Enumeration requests = runtime.queryRequests(handle, filter, null, false);

17.4.3 Determining the Number of Times a Job Request Has Been Retried

Use the RuntimeService.getRequestDetailBasic API to retrieve the job request retry
count. The retry count is the number of times Oracle Enterprise Scheduler
automatically retries the job request due to a system error. Example 17—4 shows
sample code illustrating the use of the APL

Example 17-4 Determining the Number of Times a Job Request Has Been Retried

RequestDetail detail = runtime.getRequestDetailBasic (handle, requestId);
int retriedCount = detail.getRetriedCount();
if (retriedCount > 0) {
// The job request has been retried the number of times indicated by
// retriedCount.
} else {
// The job request has not been retried.
}

For PL/SQL job requests, use the get_retried_count API to determine the number of

times Oracle Enterprise Scheduler has automatically retried the job request.
Example 17-5 shows sample code illustrating the use of the APL

Example 17-5 Determining the Number of Times a PL/SQL Job Request Has Been

Retried
v_rcount integer := null;
v_rcount := ess_runtime.get_retried count (v_request_id);

if v_rcount > 0 then

-- The job request has beem retried the number of times indicated by v_rcount.
else

-- The job request has not been retried.
end 1if;

17-6 Oracle Fusion Applications Developer's Guide for Oracle Enterprise Scheduler

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Oracle Enterprise Scheduler
	1.1 About Oracle Enterprise Scheduler
	1.2 Oracle Enterprise Scheduler Overview for Application Developers
	1.2.1 Introduction to Working with Oracle Enterprise Scheduler at Design-time
	1.2.2 Introduction to Working with Oracle Enterprise Scheduler at Runtime
	1.2.3 Oracle Enterprise Scheduler Job Requests
	1.2.4 Overview of Integration Steps

	1.3 Fixed-Rate Scheduling with Oracle Enterprise Scheduler

	2 Verifying the Oracle Enterprise Scheduler Installation
	2.1 Introduction to Verifying the Oracle Enterprise Scheduler Installation
	2.2 How to Verify the Oracle Enterprise Scheduler Installation Using a Browser
	2.3 How to Programmatically Verify the Oracle Enterprise Scheduler Installation
	2.4 What Happens When You Verify the Oracle Enterprise Scheduler Installation
	2.5 What Happens at Runtime: How the Oracle Enterprise Scheduler Installation is Verified

	3 Use Case Oracle Enterprise Scheduler Sample Application
	3.1 Introduction to the Scheduler Sample Application
	3.2 Creating the Application and Projects for Scheduler Sample Application
	3.2.1 How to Create the EssDemoApp Application
	3.2.2 How to Create a Project in the Scheduler Sample Application
	3.2.3 How to Set Project Properties for Enterprise Scheduler

	3.3 Creating a Java Implementation Class for the Sample Application
	3.3.1 How to Create a Java Class Using the Executable Interface
	3.3.2 What Happens When You Create a Java Class That Implements the Executable Interface
	3.3.3 What You Need to Know About the Executable Interface

	3.4 Adding Application Code to Submit Oracle Enterprise Scheduler Job Requests
	3.4.1 How to Add Required Libraries to Project
	3.4.2 How to Create the EssDemo Servlet

	3.5 Creating Metadata for Scheduler Sample Application
	3.5.1 How to Create a Job Type for Java
	3.5.2 How to Create a Job Definition for Java

	3.6 Assembling the Scheduler Sample Application
	3.6.1 How to Assemble the EJB Jar Files for Scheduler Sample Application
	3.6.2 How to Assemble the MAR File for User Metadata
	3.6.3 How to Assemble the EAR File for Scheduler Sample Application
	3.6.4 Add oracle.ess Library Weblogic Application Descriptor

	3.7 Deploying and Running the Scheduler Sample Application
	3.7.1 How to Deploy the EssDemoApp Application
	3.7.2 How to Run the Scheduler Sample Application
	3.7.3 How to Purge Jobs in the Scheduler Sample Application

	3.8 Troubleshooting the Oracle Enterprise Scheduler Sample Application
	3.8.1 How to Create the Oracle Enterprise Scheduler Database Schema
	3.8.2 How to Drop the Oracle Enterprise Scheduler Runtime Schema

	3.9 Using Submitting and Hosting Split Applications
	3.9.1 How to Create the Backend Hosting Application for Scheduler
	3.9.1.1 Creating the Backend Hosting Application
	3.9.1.2 Configuring Security for the Backend Hosting Application
	3.9.1.3 Defining the Deployment Descriptors for the Backend Hosting Application
	3.9.1.4 Creating a Java Implementation Class in the Backend Hosting Application
	3.9.1.5 Creating Metadata for the Backend Hosting Application
	3.9.1.6 Assembling the Backend Hosting Application for Oracle Enterprise Scheduler
	3.9.1.7 Deploying the Backend Hosting Application

	3.9.2 How to Create the Frontend Submitter Application for Oracle Enterprise Scheduler
	3.9.2.1 Creating the Frontend Submitter Application
	3.9.2.2 Configuring the ejb-jar.xml File for the Frontend Submitter Application
	3.9.2.3 Creating the SuperWeb Project
	3.9.2.4 Configuring Security for the Frontend Submitter Application
	3.9.2.5 Creating the HTTP Servlet for the Frontend Submitter Application
	3.9.2.6 Editing the web.xml File for the Frontend Submitter Application
	3.9.2.7 Editing the weblogic-application.xml file for the Frontend Submitter Application
	3.9.2.8 Editing the adf-config file for the Frontend Submitter Application
	3.9.2.9 Assembling the Frontend Submitter Application for Oracle Enterprise Scheduler
	3.9.2.10 Deploying the Backend Hosting Application

	4 Using the Metadata Service
	4.1 Introduction to Using the Metadata Service
	4.1.1 Introduction to Metadata Service Namespaces
	4.1.2 Introduction to Metadata Service Operations
	4.1.3 Introduction to Metadata Service Transactions

	4.2 Accessing the Metadata Service
	4.2.1 How to Access the Metadata Service with a Stateless Session EJB

	4.3 Accessing the Metadata Service with Oracle JDeveloper
	4.4 Querying Metadata Using the Metadata Service
	4.4.1 How to Create a Filter
	4.4.2 How to Query Metadata Objects

	5 Using Parameters and System Properties
	5.1 Introduction to Using Parameters and System Properties
	5.1.1 What You Need to Know About Parameter and System Property Naming
	5.1.2 What You Need to Know About Parameter Conflict Resolution and Parameter Materialization
	5.1.2.1 What You Need to Know About Job Definition Parameter Materialization
	5.1.2.2 What You Need to Know About Job Set Level Parameter Materialization

	5.2 Using Parameters with the Metadata Service
	5.2.1 How to Use Parameters and System Properties in Metadata Objects

	5.3 Using Parameters with the Runtime Service
	5.3.1 How to Use Parameters with the Runtime Service
	5.3.2 How to Use Parameters with a Step ID for Job Set Steps

	5.4 Using System Properties

	6 Creating and Using PL/SQL Jobs
	6.1 Introduction to Using PL/SQL Stored Procedure Job Definitions
	6.2 Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler
	6.2.1 How to Define a PL/SQL Stored Procedure with the Correct Signature
	6.2.2 Handling Runtime Exceptions in an Oracle Enterprise Scheduler PL/SQL Stored Procedure
	6.2.3 How to Access Job Request Information In PL/SQL Stored Procedures
	6.2.4 What You Need to Know When You Define a PL/SQL Stored Procedure

	6.3 Performing Oracle Database Tasks for PL/SQL Stored Procedures
	6.3.1 How to Grant PL/SQL Stored Procedure Permissions
	6.3.2 What You Need to Know About Granting PL/SQL Stored Procedure Permissions

	6.4 Creating and Storing Job Definitions for PL/SQL Job Types
	6.4.1 How to Create a PL/SQL Job Type
	6.4.2 How to Create and Store a Job Definition for PL/SQL Job Type
	6.4.3 Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler Application

	7 Creating and Using Process Jobs
	7.1 Introduction to Creating Process Job Definitions
	7.2 Creating and Storing Job Definitions for Process Job Types
	7.2.1 How to Create and Store a Process Job Type
	7.2.2 How to Create and Store a Process Type Job Definition

	7.3 Using a Perl Agent Handler for Process Jobs

	8 Defining and Using Schedules
	8.1 Introduction to Schedules
	8.2 Defining a Recurrence
	8.2.1 How to Define a Recurrence with a Recurrence Fields Helper
	8.2.2 How to Define a Recurrence with an iCalendar RFC 2445 Specification
	8.2.3 What You Need to Know When You Use a Recurrence Fields Helper
	8.2.4 What You Need to Know When You Use an iCalendar Expression

	8.3 Defining an Explicit Date
	8.3.1 How to Define an Explicit Date
	8.3.2 What You Need to Know About Explicit Dates

	8.4 Defining and Storing Exclusions
	8.4.1 How to Define an Exclusion
	8.4.2 How to Create an Exclusions Definition

	8.5 Defining and Storing Schedules
	8.5.1 How to Define and Store a Schedule
	8.5.2 What Happens When You Define and Store a Schedule
	8.5.3 What You Need to Know About Handling Time Zones with Schedules

	8.6 Identifying Job Requests That Use a Particular Schedule
	8.7 Updating and Deleting Schedules

	9 Working with Extensions to Oracle Enterprise Scheduler
	9.1 Introduction to Oracle Enterprise Scheduler Extensions
	9.2 Standards and Guidelines
	9.3 Creating and Implementing a Scheduled Job in JDeveloper
	9.3.1 How to Create and Implement a Scheduled Job in JDeveloper
	9.3.2 What Happens at Runtime: How a Scheduled Job Is Created and Implemented in JDeveloper

	9.4 Creating a Job Definition
	9.4.1 How to Create a Job Definition
	9.4.2 How to Define File Groups for a Job
	9.4.3 What Happens When You Create a Job Definition
	9.4.4 What Happens at Runtime: How Job Definitions Are Created

	9.5 Configuring a Spawned Job Environment
	9.5.1 How to Create an Environment File for Spawned Jobs
	9.5.2 How to Configure an Oracle Wallet for Spawned Jobs
	9.5.3 What Happens When You Configure a Spawned Job Environment

	9.6 Implementing a PL/SQL Scheduled Job
	9.6.1 Standards and Guidelines for Implementing a PL/SQL Scheduled Job
	9.6.2 How to Define Metadata for a PL/SQL Scheduled Job
	9.6.3 How to Implement a PL/SQL Scheduled Job
	9.6.4 What Happens When You Implement a PL/SQL Job
	9.6.5 What Happens at Runtime: How a PL/SQL Job is Implemented

	9.7 Implementing a SQL*Plus Scheduled Job
	9.7.1 Standards and Guidelines for Implementing a SQL*Plus Scheduled Job
	9.7.2 How to Implement a SQL*Plus Job
	9.7.3 How to Use the SQL*Plus Runtime API
	9.7.4 What Happens When You Implement a SQL*Plus Job
	9.7.5 What Happens at Runtime: How a SQL*Plus Job Is Implemented

	9.8 Implementing a SQL*Loader Scheduled Job
	9.8.1 How to Implement a SQL*Loader Scheduled Job
	9.8.2 What Happens When You Implement a SQL*Loader Scheduled Job

	9.9 Implementing a Perl Scheduled Job
	9.9.1 How to Implement a Perl Scheduled Job
	9.9.2 What Happens When You Implement a Perl Scheduled Job

	9.10 Implementing a C Scheduled Job
	9.10.1 How to Define Metadata for a C Scheduled Job
	9.10.2 How to Implement a C Scheduled Job
	9.10.3 Scheduled C Job API
	9.10.4 How to Test a C Scheduled Job
	9.10.5 What Happens When You Implement a C Scheduled Job
	9.10.6 What Happens at Runtime: How a C Scheduled Job Is Implemented

	9.11 Implementing a Host Script Scheduled Job
	9.12 Implementing a Java Scheduled Job
	9.12.1 How to Define Metadata for a Scheduled Java Job
	9.12.2 How to Use the Java Runtime API
	9.12.3 How to Cancel a Scheduled Java Job
	9.12.4 What Happens at Runtime: How a Java Scheduled Job Is Implemented

	9.13 Elevating Access Privileges for a Scheduled Job
	9.13.1 How to Elevate Access Privileges for a Scheduled Job
	9.13.2 How Access Privileges Are Elevated for a Scheduled Job
	9.13.3 What Happens When Access Privileges Are Elevated for a Scheduled Job

	9.14 Creating an Oracle ADF User Interface for Submitting Job Requests
	9.14.1 How to Create an Oracle ADF User Interface for Submitting Job Requests
	9.14.2 How to Add a Custom Task Flow to an Oracle ADF User Interface for Submitting Job Requests
	9.14.3 How to Enable Support for Context-Sensitive Parameters in an Oracle ADF User Interface for Submitting Job Requests
	9.14.4 How to Save and Schedule a Job Request Using an Oracle ADF UI
	9.14.5 How to Submit a Job Using a Saved Schedule in an Oracle ADF UI
	9.14.6 How to Notify Users or Groups of the Status of Executed Jobs
	9.14.7 What Happens When You Create an Oracle ADF User Interface for Submitting Job Requests
	9.14.8 What Happens at Runtime: How an Oracle ADF User Interface for Submitting Job Requests Is Created

	9.15 Submitting Job Requests Using the Request Submission API
	9.16 Defining Oracle Business Intelligence Publisher Post-Processing Actions for a Scheduled Job
	9.16.1 How to Define Oracle BI Publisher Post-Processing for a Scheduled Job
	9.16.2 How to Define Oracle BI Publisher Post-Processing Actions for a Scheduled PL/SQL Job
	9.16.3 What Happens When You Define Oracle BI Publisher Post-Processing Actions for a Scheduled Job
	9.16.4 What Happens at Runtime: How Oracle BI Publisher Post-Processing Actions are Defined for a Scheduled Job
	9.16.5 Invoking Post-Processing Actions Programmatically

	9.17 Monitoring Scheduled Job Requests Using an Oracle ADF UI
	9.17.1 How to Monitor Scheduled Job Requests
	9.17.2 How to Embed a Table of Search Results as a Region on a Page
	9.17.3 How to Log Scheduled Job Requests in an Oracle ADF UI
	9.17.4 How to Troubleshoot an Oracle ADF UI Used to Monitor Scheduled Job Requests

	9.18 Using a Task Flow Template for Submitting Scheduled Requests through an Oracle ADF UI
	9.18.1 How to Use a Task Flow Template for Submitting Scheduled Requests through an Oracle ADF UI
	9.18.2 How to Extend the Task Flow Template for Submitting Scheduled Requests through an Oracle ADF UI
	9.18.3 What Happens When you Use a Task Flow Template for Submitting Scheduled Requests through an Oracle ADF UI
	9.18.4 What Happens at Runtime: How a Task Flow Template Is Used to Submit Scheduled Requests through an Oracle ADF UI

	9.19 Securing Oracle ADF UIs
	9.20 Integrating Scheduled Job Logging with Fusion Applications
	9.21 Logging Scheduled Jobs
	9.21.1 Using the Request Log
	9.21.2 Using the Output File
	9.21.3 Debugging and Error Logging

	10 Using the Oracle Enterprise Scheduler Web Service
	10.1 Introduction to the Oracle Enterprise Scheduler Web Service
	10.2 Developing and Using ESSWebservice Applications
	10.2.1 How to Develop and Use an ESSWebservice Java EE Application
	10.2.2 How to Develop and Use an ESSWebservice SOA Application with BPEL
	10.2.3 Setting Web Service Addressing Headers for getCompletionStatus() Operation
	10.2.4 Limitations for ESSWebservice
	10.2.5 ESSWebservice Implementation

	10.3 ESSWebservice WSDL File
	10.4 Use Case Using Scheduler ESSWebservice from a BPEL Process
	10.5 Creating the ESSWebService Application and a SOA Project
	10.5.1 How to Create the ESSWebService Application and Project

	10.6 Creating the ESSWebService Reference
	10.6.1 How to Add the ESSWebService Partner Link

	10.7 Adding the BPEL Process to Call the ESSWebService
	10.7.1 How to Add a BPEL Process to Call the ESSWebService
	10.7.2 Copy Types Into BPEL Process Schema
	10.7.3 How to Invoke the ESSWebService submitRequest Operation
	10.7.4 Assign Required Input Parameters for Request Submission
	10.7.5 Invoke the getCompletionStatus Operation
	10.7.6 Assign Input to the getCompletionStatus Operation
	10.7.7 Receive the Job Completion Status
	10.7.8 Return Result to Client

	10.8 Using Additional ESSWebService Operations
	10.8.1 How to Invoke the ESSWebService submitRecurringRequest Operation
	10.8.2 How to Invoke the ESSWebService setSubmitArgs Operation
	10.8.3 How to Invoke the ESSWebService addPPActions Operation
	10.8.4 How to Invoke the ESSWebService setStepsArgs Operation

	10.9 Securing the Oracle Enterprise Scheduler Web Service
	10.9.1 How to Secure the Oracle Enterprise Scheduler Web Service
	10.9.2 What Happens When You Secure the Oracle Enterprise Scheduler Web Service

	10.10 Deploying and Testing the Project
	10.10.1 How to Test the Web Service

	11 Defining and Using Job Sets
	11.1 Introduction to Defining and Using Job Sets
	11.2 Defining Job Sets
	11.2.1 How to Define a Job Set
	11.2.2 How to Define Serial Job Set Steps
	11.2.3 How to Define Parallel Job Set Steps
	11.2.4 What Happens When You Define a Job Set
	11.2.5 What You Need to Know About Serial Job Sets
	11.2.6 What You Need to Know About Job Set Parameters and System Properties
	11.2.7 What Happens at Runtime for Job Set State Priorities and State Transitions

	11.3 Cross Application Job Sets
	11.3.1 Overview of Cross Application Job Sets
	11.3.2 Requirements for Cross Application Job Sets

	11.4 Using Input and Output Forwarding
	11.4.1 Supporting Input and Output Forwarding in Job Sets

	12 Defining and Using a Job Incompatibility
	12.1 Introduction to Using a Job Incompatibility
	12.1.1 Job Self Incompatibility

	12.2 Defining Incompatibility with Oracle JDeveloper
	12.2.1 How to Define a Global Incompatibility
	12.2.2 How to Define a Domain Incompatibility

	12.3 What Happens at Runtime to Handle Job Incompatibility
	12.3.1 What Happens to Subrequests with an Incompatible Parent Request
	12.3.2 What Happens to the Scope of Request Incompatibility

	13 Using the Runtime Service
	13.1 Introduction to the Runtime Service
	13.2 Accessing the Runtime Service
	13.2.1 How to Access the Runtime Service and Obtain a Runtime Service Handle

	13.3 Submitting Job Requests
	13.3.1 How to Submit a Request to the Runtime Service
	13.3.2 What You Should Know About Default System Properties When You Submit a Request
	13.3.3 What You Should Know About Metadata When You Submit a Request

	13.4 Managing Job Requests
	13.4.1 How to Get Job Request Information with getRequestDetail
	13.4.2 How to Change Job Request State
	13.4.3 How to Update Job Request Priority and Job Request Parameters

	13.5 Querying Job Requests
	13.6 Submitting Ad Hoc Job Requests
	13.6.1 How to Create an Ad Hoc Request
	13.6.2 What Happens When You Create an Ad Hoc Request
	13.6.3 What You Need to Know About Ad Hoc Requests

	14 Using Subrequests
	14.1 Introduction to Using Subrequests
	14.2 Sample Subrequest
	14.3 Creating and Managing Subrequests
	14.3.1 How to Submit Subrequests
	14.3.2 How to Cancel Subrequests
	14.3.3 How to Hold Subrequests
	14.3.4 How to Delete Subrequests
	14.3.5 How to Submit Multiple Subrequests
	14.3.6 How to Manage Paused Subrequests
	14.3.6.1 Indicating Paused Status
	14.3.6.2 Storing the Paused State for a Parent Request

	14.3.7 How Subrequests Are Processed
	14.3.8 How to Identify Subrequests
	14.3.9 How to Manage Subrequests and Incompatibility

	14.4 Creating a Java Procedure that Submits a Subrequest
	14.5 Creating a PL/SQL Procedure that Submits a Subrequest

	15 Working with Asynchronous Java Jobs
	15.1 Introduction to Working with Asynchronous Java Jobs
	15.2 Creating an Asynchronous Java Job
	15.2.1 Implementing the Asynchronous Java Job Asynchronous Interface
	15.2.2 Asynchronous Java Job execute() Method
	15.2.3 Invoking a Remote Job from an Asynchronous Java Job
	15.2.4 Calling Back to Oracle Enterprise Scheduler with Status Updates
	15.2.5 Updating the Asynchronous Java Job
	15.2.6 Notifying Oracle Enterprise Scheduler When an Asynchronous Job Completes
	15.2.6.1 Using the Web Service to Notify When an Asynchronous Job Completes
	15.2.6.2 Using EJB to Notify When an Asynchronous Job Completes

	15.2.7 Asynchronous Java Job AsyncCancellable Interface
	15.2.8 Sample Asynchronous Java Job Invoking a BPEL Process Through Event Delivery Network
	15.2.8.1 Sample BPEL Process Design Time with Oracle Enterprise Scheduler

	15.3 A Use Case Illustrating the Implementation of a BPEL Process as an Asynchronous Job
	15.3.1 Introduction to the Recommended Design Pattern
	15.3.2 Potential Approaches
	15.3.3 Use Case Summary

	15.4 How to Implement BPEL with an Asynchronous Job
	15.4.1 Use Case: Add Oracle JDeveloper Libraries
	15.4.2 Use Case: Create the Asynchronous Job Definition
	15.4.3 Use Case: Design the Event Payload Schema and Event Definition Files
	15.4.4 Programmatically Raise a Business Event from the Asynchronous Job Methods
	15.4.5 Design the SOA Composite with Meditator and BPEL
	15.4.6 Add Fault Handling and Correlated onMessage Branch for Error and Cancel Job
	15.4.6.1 Create Correlation Set and Define Initiate Activity
	15.4.6.2 Create the onMessage Branch with Use of Correlation Set
	15.4.6.3 Create the Fault Branch
	15.4.6.4 Populate the onMessage and Fault Branch

	15.4.7 Validating the Deployment
	15.4.8 Troubleshooting the Use Case

	15.5 Handling Time Outs and Recovery for Asynchronous Jobs
	15.5.1 Asynchronous Request Time Outs
	15.5.1.1 Setting the TIme Out Value
	15.5.1.2 Discovering the Asynchronous Job Requests that Have Timed Out
	15.5.1.3 Completing Asynchronous Requests without a Time Out
	15.5.1.4 What Happens When an Asynchronous Job Request Times Out

	15.5.2 Handling Asynchronous Jobs Marked for Manual Recovery
	15.5.3 Using RecoverRequest to Manually Recover a Job Request

	15.6 Oracle Enterprise Scheduler Interfaces and Classes

	16 Oracle Enterprise Scheduler Security
	16.1 Introduction to Oracle Enterprise Scheduler Security
	16.1.1 Oracle Enterprise Scheduler Metadata Access Control
	16.1.2 Oracle Enterprise Scheduler Job Execution Security

	16.2 Configuring Metadata Security for Oracle Enterprise Scheduler
	16.2.1 How to Enable Application Security with Oracle ADF Security Wizard
	16.2.2 How to Define Principals for Security
	16.2.3 How to Create Grants with Oracle Enterprise Scheduler Metadata Pages
	16.2.4 How to Create Grants with Oracle ADF Security Wizard
	16.2.5 About MetadataPermission APIs
	16.2.6 What Happens When You Configure Metadata Security

	16.3 Configuring Web Service Security for Oracle Enterprise Scheduler
	16.4 Configuring PL/SQL Job Security for Oracle Enterprise Scheduler
	16.5 Elevating Privileges for Oracle Enterprise Scheduler Jobs
	16.6 Configuring a Single Policy Stripe in Oracle Enterprise Scheduler
	16.6.1 How to Configure a Single Policy Stripe in Oracle Enterprise Scheduler
	16.6.2 What Happens When You Configure a Single Policy Stripe
	16.6.3 What Happens at Runtime

	16.7 Configuring Oracle Fusion Data Security for Job Requests
	16.7.1 Oracle Fusion Data Security Artifacts
	16.7.2 How to Apply Oracle Fusion Data Security Policies
	16.7.3 How to Create Functional and Data Security Policies for Oracle Enterprise Scheduler Components

	17 Managing Business and System Errors
	17.1 Introduction to Managing Business and System Errors
	17.2 Indicating Errors
	17.2.1 How to Indicate a Business Error
	17.2.2 How to Indicate a System Error

	17.3 Configuring Retries for a Job Request
	17.3.1 How to Configure Retries for a Job Request
	17.3.2 What Happens at Run Time: How a Job Request Is Retried
	17.3.3 What You Should Know about Configuring Retries for a Job Request

	17.4 Finding and Diagnosing Job Requests in Error State
	17.4.1 Retrieving the State of a Job Request
	17.4.2 Finding Job Requests with Business Errors
	17.4.3 Determining the Number of Times a Job Request Has Been Retried

