

Oracle® Fusion Middleware
Administrator’s Guide for Oracle Web Cache

11g Release 1 (11.1.1)

E10143-02

October 2009

Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache, 11g Release 1 (11.1.1)

E10143-02

Copyright © 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Deborah Steiner

Contributing Author: Kurt Heiss

Contributor: Rick Anderson, Fang Chen, Joseph Errede, Patrick Fry, Hideaki Hayashi, Suresh Kotha, Gary
Ling, Rabah Mediouni, Mohamed Sharfudeen, Raymond Pfau, Michael Skarpelos, Parthiban Thilager, Bill
Wright, Zhong Xu, Rama Vijjapurapu, Jean Zeng, Naveen Zulpuri

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xiii

Audience... xiii
Documentation Accessibility ... xiii
Related Documents ... xiv
Conventions ... xiv

What's New in This Guide? ... xv

New Features for Release 11g .. xv

Part I Understanding Secure Proxy Caching and Load Balancing

1 Understanding Reverse Proxying

1.1 About the Web Tier .. 1-1
1.1.1 Reverse Proxying ... 1-2
1.2 Request Flow in Web Tier.. 1-3
1.2.1 HTTP Traffic Management... 1-5
1.2.2 Request Filtering and Routing ... 1-5
1.2.3 Origin Server Load Balancing and Failover... 1-5
1.2.4 Caching.. 1-6
1.2.5 Compression... 1-7
1.2.6 Session Binding .. 1-7
1.3 Compatibility with Oracle Fusion Middleware Components.. 1-8

Part II Basic Administration

2 Getting Started with Administering Oracle Web Cache

2.1 About Oracle Web Cache Management Tools ... 2-1
2.2 About Site Configuration... 2-2
2.3 About Resource Limits in Oracle Web Cache Management .. 2-3
2.3.1 Cache Memory Limit... 2-3
2.3.2 Maximum Incoming Connections... 2-4
2.3.3 Maximum Size of Single Cached Object... 2-6
2.3.4 Network Timeouts... 2-6
2.4 About Oracle Web Cache Ports .. 2-7

iv

2.5 About IP Addresses .. 2-7
2.6 Getting Started with Managing Oracle Web Cache with Oracle Enterprise Manager Fusion

Middleware Control Console .. 2-8
2.6.1 Logging into Fusion Middleware Control ... 2-8
2.6.2 Navigating to Oracle Web Cache Administration Pages... 2-9
2.6.3 Understanding Statistics on the Web Cache Home Page ... 2-11
2.6.4 Using the Fusion Middleware Control Help .. 2-13
2.7 Getting Started with Managing Oracle Web Cache with Oracle Web Cache Manager 2-14
2.7.1 Starting Oracle Web Cache Manager... 2-14
2.7.2 Navigating Oracle Web Cache Manager... 2-14
2.7.3 Understanding the Cache Operations Page.. 2-17
2.8 Getting Started with Managing Oracle Web Cache with Oracle Process Manager and

Notification (OPMN) ... 2-17
2.9 Basic Tasks for Configuring and Managing Oracle Web Cache 2-18
2.10 Adding an Oracle Web Cache System Component to an Environment.......................... 2-19
2.11 Specifying Properties for an Oracle Web Cache System Component 2-19
2.11.1 Task 1: Configure Port Configuration for Oracle Web Cache.................................... 2-20
2.11.1.1 Verifying Port Configuration for Oracle Web Cache with Fusion Middleware

Control .. 2-20
2.11.1.2 Verifying Port Configuration for Oracle Web Cache with OPMN 2-21
2.11.1.3 Adding an Oracle Web Cache Listening Port ... 2-21
2.11.1.4 Modifying Oracle Web Cache Operation Ports .. 2-22
2.11.2 Task 2: Specify Origin Server Settings ... 2-23
2.11.3 Task 3: Specify Site Definitions... 2-26
2.11.3.1 Disabling Compression for All Responses .. 2-27
2.11.4 Task 4: Map Site Definitions to Origin Servers ... 2-28
2.11.5 Task 5: Set Resource Limits and Network Thresholds ... 2-29
2.11.6 Task 6: Configure Error Pages .. 2-30
2.11.7 Task 7: Restart Oracle Web Cache.. 2-31
2.12 Creating Session Definitions .. 2-31
2.13 Starting and Stopping Oracle Web Cache .. 2-32
2.13.1 Starting and Stopping Using opmnctl ... 2-33
2.13.2 Starting and Stopping Using the Fusion Middleware Control 2-33
2.13.3 Starting and Stopping Using Oracle Web Cache Manager .. 2-34

3 Configuring High Availability Solutions

3.1 Overview of Origin Server Load Balancing and Failover... 3-1
3.1.1 Surge Protection... 3-1
3.1.2 Stateless Load Balancing .. 3-2
3.1.3 Backend Failover.. 3-4
3.2 Overview of Session Binding .. 3-5
3.3 Overview of Cache Clusters .. 3-7
3.4 Overview of High Availability without a Hardware Load Balancer 3-10
3.4.1 Oracle Web Cache Solely as a Software Load Balancer or Reverse Proxy 3-10
3.4.2 Operating System Load Balancing Support.. 3-11
3.5 Configuring Session Binding.. 3-11
3.6 Configuring a Cache Cluster for Caches Using the Same Oracle WebLogic Server...... 3-13

v

3.6.1 Configuration Prerequisites .. 3-13
3.6.2 Understanding Failover Threshold and Capacity Settings .. 3-13
3.6.2.1 Failover Threshold for the Cache Cluster .. 3-14
3.6.2.2 Capacity for Cache Cluster Members... 3-14
3.6.3 Task 1: Add Caches to the Cluster and Configure Properties 3-16
3.6.4 Task 2: Enable Tracking of Session Binding .. 3-16
3.6.5 Task 3: Synchronize the Configuration to Cluster Members 3-17
3.6.6 Removing a Cache Member from a Cluster.. 3-17
3.6.7 Configuring Administration and Invalidation-Only Clusters 3-18
3.7 Configuring a Cache Cluster for Unassociated Caches or Caches Using Different Oracle

WebLogic Servers .. 3-18
3.7.1 Task 1: Configure Cache Cluster Settings ... 3-19
3.7.2 Task 2: Add Caches to the Cluster ... 3-20
3.7.3 Task 3: Enable Tracking of Session Binding .. 3-20
3.7.4 Task 4: Synchronize the Configuration to Cluster Members 3-21
3.7.5 Removing Caches from a Cluster... 3-21
3.7.6 Configuring Administration and Invalidation-Only Clusters 3-22
3.8 Configuring Oracle Web Cache as a Software Load Balancer .. 3-23
3.9 Configuring Microsoft Windows Network Load Balancing ... 3-24

4 Configuring Request Filtering

4.1 Introduction to Request Filtering ... 4-1
4.2 Types of Request Filters ... 4-2
4.3 About Learned Rules.. 4-4
4.4 About the Monitor Only Mode ... 4-4
4.5 Configuring Rules for the Privileged IP Filter.. 4-5
4.6 Configuring Rules for the Client IP Request Filter .. 4-6
4.7 Configuring Rules for the Method Request Filter.. 4-7
4.8 Configuring Rules for the URL Request Filter ... 4-9
4.9 Configuring Rules for the Header Request Filter ... 4-11
4.10 Configuring Rules for the Query String Request Filter.. 4-13
4.11 Configuring Rules for the Format Request Filter.. 4-15
4.12 Deleting Rules for a Request Filter .. 4-16
4.13 Monitoring Statistics for Request Filter Types and Rules.. 4-16
4.14 Reducing Time to Configure Request Filters... 4-17
4.14.1 Activating Learned Rules for the Method and URL Request Filters 4-17
4.14.2 Copying Rules from a Source Site to a Target Site... 4-18
4.14.3 Reverting Configuration Settings... 4-19

5 Configuring Security

5.1 Introduction to Security in Oracle Web Cache ... 5-1
5.1.1 Oracle Web Cache Security Model ... 5-1
5.1.1.1 Restricted Administration ... 5-2
5.1.1.2 Secure Sockets Layer (SSL) ... 5-2
5.1.1.2.1 Certificate Authority ... 5-2
5.1.1.2.2 Certificate.. 5-3

vi

5.1.1.2.3 Wallet .. 5-4
5.1.1.2.4 How SSL Works... 5-5
5.1.1.3 SSL Acceleration ... 5-5
5.1.2 Resources Protected... 5-5
5.1.3 Authorization and Access Enforcement... 5-6
5.1.4 Leveraging Oracle Identity Management Infrastructure... 5-6
5.1.4.1 About Caching Content from Oracle Single Sign-On Servers 5-6
5.1.4.2 About Caching Oracle Single Sign-On Partner Applications (mod_osso)........... 5-6
5.1.4.3 About Authentication through Oracle Single Sign-On... 5-6
5.2 Configuring Password Security.. 5-7
5.3 Configuring Access Control .. 5-7
5.4 Configuring Oracle Web Cache for HTTPS Requests .. 5-8
5.4.1 Task 1: Create Wallets ... 5-8
5.4.2 Task 2: Configure an HTTPS Listening Port.. 5-9
5.4.3 Task 3: Configure SSL Settings for Oracle Web Cache Connections to Origin Servers

... 5-10
5.4.4 Task 4: Configure a Site to Require HTTPS Requests ... 5-11
5.4.4.1 Modify ssl.conf for Keep-Alive Connections... 5-11
5.4.5 Task 5: Restart Oracle Web Cache.. 5-11
5.5 Additional HTTPS Configuration ... 5-11
5.5.1 Configuring HTTPS Operation Ports... 5-12
5.5.2 Requiring Client-Side Certificates .. 5-13
5.5.2.1 Configuring Client-Side Certificate Settings for the HTTPS Listening Ports ... 5-14
5.5.2.2 Configuring Client-Side Certificate Settings for Cache Clusters........................ 5-14
5.5.2.3 Configuring Client-Side Certificate Settings for a Site... 5-14
5.5.3 Configuring Certificate Revocation Lists (CRLs)... 5-15
5.6 Configuring HTTP Request Header Size.. 5-16
5.7 Ensuring That ClientIP Headers Are Valid.. 5-17
5.8 Configuring Support for Caching Secured Content ... 5-17
5.9 Running webcached with Root Privilege ... 5-18
5.9.1 Configuring Process Identity .. 5-18
5.9.2 Configuring Root Privilege for Privileged Ports and More than 1,024 File Descriptors...

... 5-19
5.9.3 Configuring Root Privilege for the Current User ... 5-19
5.9.4 Reverting Permissions Back to Installation State .. 5-20
5.10 Script for Setting File Permissions on UNIX.. 5-20

6 Caching and Compressing Content

6.1 About Cache Population ... 6-1
6.2 About Cache Consistency.. 6-1
6.2.1 Expiration.. 6-2
6.2.2 HTTP Cache Validation .. 6-2
6.2.3 Invalidation... 6-2
6.3 About Caching Decisions... 6-2
6.4 Introduction to Creating Caching Rules.. 6-4
6.5 Introduction to Configuring Advanced Settings.. 6-5
6.5.1 Caching for Objects with Multiple Versions ... 6-5

vii

6.5.2 Caching for Objects with Embedded URL and POST Body Parameters..................... 6-8
6.5.3 Caching Error Responses.. 6-9
6.5.4 Caching for Objects with Sessions... 6-9
6.5.5 Caching for Objects with Session-Encoded URLs... 6-9
6.6 Basic Tasks for Configuring and Monitoring Caching Rules .. 6-11
6.7 Configuring Expiration Policies... 6-11
6.8 Configuring and Monitoring Caching Rules ... 6-12
6.8.1 Configuring General Rule Settings .. 6-12
6.8.1.1 Regular Expression Parameters... 6-16
6.8.2 Configuring Settings for Rules with Multiple Versions of the Same Object............ 6-16
6.8.3 Excluding the Value of Embedded URL or POST Body Parameters 6-17
6.8.4 Recognizing Similar Browser Types for Multiple-Version Objects Containing HTTP

Request Headers ... 6-18
6.8.5 Configuring Error Responses for Rules... 6-19
6.8.6 Configuring Session Caching Rules... 6-20
6.8.7 Configuring Support for Session-Encoded URLs ... 6-21
6.8.8 Configuring Rules for Popular Pages with Session Establishment........................... 6-21
6.9 Monitoring Summary Settings for Caching Rules .. 6-22
6.10 Using the Surrogate-Control Response Header as an Alternative to Caching Rules 6-23
6.10.1 Surrogate-Control Response-Header Field... 6-23

7 Invalidating Content

7.1 Overview of Invalidation... 7-1
7.2 About Out-of-Band Invalidations... 7-2
7.3 About ESI Inline Invalidations.. 7-2
7.4 About Response Header Invalidations.. 7-3
7.5 Format of Invalidation Requests for Out-of-Band and ESI Inline Mechanisms 7-3
7.5.1 Invalidation Request Syntax .. 7-4
7.5.2 Invalidation Response Syntax.. 7-8
7.5.3 Invalidation Preview Request Syntax... 7-9
7.5.4 Invalidation Preview Response Syntax .. 7-10
7.5.5 Invalidation Examples ... 7-11
7.5.5.1 Example: Invalidating One Object .. 7-12
7.5.5.2 Example: Invalidating Multiple Objects... 7-13
7.5.5.3 Example: Invalidating a Subtree of Objects... 7-14
7.5.5.4 Example: Invalidating All Objects for a Web Site... 7-15
7.5.5.5 Example: Invalidating Objects Using Prefix Matching.. 7-15
7.5.5.6 Example: Invalidating Objects Using Substring and Query String Matching.. 7-16
7.5.5.7 Example: Invalidating Objects Using Search Key Matching............................... 7-17
7.5.5.8 Example: Propagating Invalidation Requests Throughout a Cache Cluster 7-18
7.5.5.9 Example: Previewing Invalidation.. 7-19
7.6 About Search Keys in Invalidations.. 7-19
7.7 Initiating Out-of-Band Invalidations .. 7-20
7.7.1 Using Telnet to Send Invalidation Requests... 7-20
7.7.2 Using Oracle Web Cache Manager to Send Invalidation Requests........................... 7-21
7.7.2.1 Submitting Basic Invalidation Requests... 7-21
7.7.2.2 Submitting Advanced Invalidation Requests ... 7-23

viii

7.7.3 Using Application Program Interfaces (APIs) for Automated Invalidation Requests
7-25

7.7.4 Using Database Triggers for Automated Invalidation Requests............................... 7-26
7.7.5 Using Scripts for Automated Invalidations .. 7-26
7.8 Enabling Response-Header Invalidation.. 7-26
7.8.1 Example Usage.. 7-28
7.8.1.1 Basic URI Invalidation .. 7-29
7.8.1.2 Directory URI Invalidation .. 7-29
7.8.1.3 Asychronous Invalidation.. 7-30
7.8.1.4 Search Key Invalidation with Explicit URI.. 7-30
7.8.1.5 Search Key Invalidation with Implicit URI.. 7-30
7.8.1.6 Multiple Invalidation Directives ... 7-31
7.8.1.7 Mixing Commas and Semicolons.. 7-32
7.8.1.8 Multiple Invalidation Response Headers .. 7-32
7.9 Enabling Search Keys for Invalidations.. 7-32
7.10 Security Considerations .. 7-33
7.10.1 About the invalidator account ... 7-33
7.10.2 Propagation of Invalidation Messages .. 7-34
7.10.2.1 Invalidation in Cache Clusters .. 7-34
7.10.2.2 Invalidation in Hierarchies .. 7-34

8 Using Diagnostic Features

8.1 Introduction to Diagnostic Solutions ... 8-1
8.2 Introduction to Listing Popular Requests and Cache Contents... 8-1
8.3 Introduction to Displaying Diagnostic and Event Log Information in the HTML Body or

Server Response-Header Field ... 8-2
8.4 Viewing General and Detailed Statistics ... 8-4
8.5 Viewing Configuration Statistics .. 8-4
8.6 Listing Popular Requests ... 8-5
8.7 Listing Cache Contents to a File ... 8-7
8.8 Configuring Where to Display Diagnostic Information.. 8-8

9 Logging

9.1 Introduction to Event Logs.. 9-1
9.1.1 Event Logging Formats... 9-1
9.1.1.1 Oracle Diagnostics Logging Text and XML Formats .. 9-2
9.1.1.2 Oracle Web Cache Classic Format ... 9-7
9.1.1.3 Request Details in Message 9720.. 9-8
9.1.1.4 About the Oracle-ECID Request-Header Field .. 9-8
9.1.2 Event Log Examples .. 9-9
9.1.2.1 Example: Event Log with Unsuccessful Startup Entries .. 9-9
9.1.2.2 Example: Event Log with Shutdown Entries .. 9-10
9.1.2.3 Example: Event Log with Cache Miss and Cache Hit Entries 9-10
9.1.2.4 Example: Event Log with an Invalidation Entry .. 9-11
9.1.2.5 Example: Analyzing ESI Events .. 9-11
9.2 Introduction to Access Logs ... 9-12
9.2.1 Access Log Formats .. 9-12

ix

9.2.1.1 Common Log Format (CLF)... 9-12
9.2.1.2 Enhanced CLF (ECLF) .. 9-13
9.2.1.3 Combined Log Format.. 9-13
9.2.1.4 Enhanced Combined Log Format ... 9-13
9.2.1.5 End-User Performance Monitoring Format... 9-14
9.2.2 Access Log Fields.. 9-15
9.2.2.1 cs(header_name) and sc(header_name) Access Log Fields 9-20
9.2.3 Access Log Examples ... 9-21
9.2.3.1 Example: Access Log with Reload Entries... 9-21
9.2.3.2 Example: Access Log with Status Code 404 Entry.. 9-22
9.2.3.3 Example: Access Log in Combined Format... 9-22
9.2.3.4 Example: Access Log with Site Information.. 9-22
9.2.3.5 Example: Access Log with ESI Diagnostic Information 9-22
9.2.3.6 Example: Access Log with ESI Log Information... 9-23
9.3 Configuring Event Logs.. 9-23
9.4 Configuring Access Logs .. 9-26
9.5 Creating a Customized Access Log Format ... 9-28
9.6 Creating a Customized Access Log Rollover Policy... 9-29
9.7 Viewing Event Logs and Access Logs .. 9-30
9.8 Rolling Over Event and Access Logs ... 9-30
9.9 Using Audit Logs ... 9-30

10 Configuring Common Deployment Scenarios

10.1 Using Oracle Web Cache In a Common Deployment ... 10-1
10.2 Using a Cache Hierarchy for a Global Intranet Application ... 10-3
10.3 Using Oracle Web Cache for High Availability Without a Hardware Load Balancer .. 10-6

Part III Advanced Administration

11 Caching Dynamic Content with ESI Language Tags

11.1 Introduction to ESI for Partial Page Caching... 11-1
11.1.1 ESI Features ... 11-5
11.1.1.1 ESI for Java (JESI)... 11-5
11.1.2 ESI Language Elements in the Surrogate-Control Response Header 11-6
11.1.3 About the Surrogate-Control Response Header and Surrogate-Capability Request

Header for Cached Objects ... 11-8
11.1.4 Syntax Rules .. 11-8
11.1.5 Nesting Elements .. 11-9
11.1.6 Variable Expressions .. 11-9
11.1.6.1 Variable Usage ... 11-10
11.1.6.2 Variable Default Values ... 11-10
11.1.6.3 HTTP Request Variables... 11-11
11.1.7 Exceptions and Errors .. 11-13
11.1.8 About Fragmentation with the Inline and Include Tags .. 11-14
11.1.8.1 Using Inline for Non-Fetchable Fragmentation .. 11-14
11.1.8.2 Using Inline for Fetchable Fragmentation ... 11-15

x

11.1.8.3 Using Include for Fragmentation .. 11-15
11.1.8.4 Selecting the Fragmentation Mechanism for Your Application 11-16
11.1.9 Referer Request-Header Field... 11-16
11.1.10 Cookie Management for Template Pages and Fragments.. 11-16
11.2 Enabling Dynamic Assembly of Content and Partial Page Caching 11-17
11.2.1 Enabling Partial Page Caching.. 11-17
11.2.2 Using ESI for Simple Personalization .. 11-18
11.2.3 Examples of ESI Usage... 11-18
11.2.3.1 Example of a Portal Site Implementation .. 11-18
11.2.3.1.1 Portal Example Using inline Tags.. 11-19
11.2.3.1.2 Portal Example Using Include Tags .. 11-24
11.2.3.2 Example of Simple Personalization with Variable Expressions 11-29
11.3 Using Inline Invalidation in HTTP Responses .. 11-30
11.3.1 Example: Using Inline Invalidation ... 11-31
11.4 ESI Tag Descriptions.. 11-34
11.4.1 ESI choose | when | otherwise Tags... 11-34
11.4.1.1 Syntax .. 11-34
11.4.1.2 Attributes .. 11-34
11.4.1.3 Usage .. 11-35
11.4.1.4 Boolean Expressions.. 11-35
11.4.1.5 Statements... 11-36
11.4.1.6 Example... 11-37
11.4.2 ESI comment Tag .. 11-37
11.4.2.1 Syntax .. 11-37
11.4.2.2 Usage ... 11-37
11.4.2.3 Example... 11-37
11.4.3 ESI environment Tag.. 11-37
11.4.3.1 Syntax .. 11-37
11.4.3.2 Attributes .. 11-38
11.4.3.3 Elements.. 11-38
11.4.3.4 Syntax Usage .. 11-39
11.4.3.5 Example... 11-39
11.4.4 ESI include Tag ... 11-40
11.4.4.1 Syntax .. 11-40
11.4.4.2 Attributes .. 11-40
11.4.4.3 Elements.. 11-41
11.4.4.4 Syntax Usage .. 11-42
11.4.4.5 Usage ... 11-42
11.4.4.6 Examples... 11-43
11.4.5 ESI inline Tag... 11-44
11.4.5.1 Syntax .. 11-44
11.4.5.2 Attributes .. 11-44
11.4.5.3 Usage ... 11-44
11.4.5.4 Example... 11-44
11.4.6 ESI invalidate Tag .. 11-45
11.4.6.1 Syntax .. 11-45
11.4.6.2 Attributes .. 11-46

xi

11.4.6.3 Usage ... 11-46
11.4.6.4 Example... 11-46
11.4.7 ESI remove Tag ... 11-46
11.4.7.1 Syntax .. 11-46
11.4.7.2 Usage ... 11-46
11.4.7.3 Example... 11-46
11.4.8 ESI try | attempt | except Tags.. 11-46
11.4.8.1 Syntax .. 11-46
11.4.8.2 Usage ... 11-47
11.4.8.3 Example... 11-48
11.4.9 ESI vars Tag ... 11-49
11.4.9.1 Syntax .. 11-49
11.4.9.2 Syntax Usage .. 11-50
11.4.9.3 Usage ... 11-50
11.4.9.4 Example... 11-50
11.4.10 ESI <!--esi-->Tag.. 11-51
11.4.10.1 Syntax .. 11-51
11.4.10.2 Usage ... 11-51
11.4.10.3 Example... 11-51

12 Caching with Third-Party Application Servers

12.1 Introduction to Third-Party Application Servers.. 12-1
12.1.1 Web Site Configuration.. 12-2
12.1.2 Caching Rules and Expiration Rules ... 12-2
12.2 IBM WebSphere.. 12-2
12.2.1 WebSphere Snoop Servlet ... 12-3
12.2.2 WebSphere Calendar Creator JSP .. 12-4
12.3 Apache Tomcat... 12-5
12.3.1 Apache Tomcat Snoop JSP .. 12-6
12.3.2 Apache Tomcat Session Servlet .. 12-6
12.4 Microsoft IIS.. 12-10
12.4.1 ServerVariables_Jscript ASP ... 12-10
12.4.2 Cookie_Jscript ASP... 12-11

A Troubleshooting Oracle Web Cache

A.1 Problems and Solutions .. A-1
A.1.1 No Response from Application Web Server Error .. A-1
A.1.2 Load Issues on Oracle Web Cache Computer .. A-2
A.1.3 Performance Degradation and Memory ... A-2
A.1.4 Invalidation Timeouts in a Cache Cluster... A-3
A.1.5 Capacity Issues on Origin Server ... A-4
A.1.6 Browsers Not Receiving Complete Responses... A-4
A.1.7 Browser Presenting a Page Not Displayed Error... A-5
A.1.8 ESI Errors with IBM Websphere Application Server .. A-6
A.1.9 XML Parsing Errors of webcache.xml Appears in Event Viewer................................ A-6
A.2 Common Configuration Mistakes ... A-7

xii

A.3 Diagnosing Cache Content Results ... A-7
A.4 Diagnosing Common Edge Side Includes (ESI) Syntax Errors ... A-8
A.4.1 Template Syntax Error Example... A-8
A.4.2 Fragment Syntax Error Example .. A-9
A.4.3 Fragment Syntax Error with Exception Handling Example... A-9
A.5 Impact of HTTP Traffic Changes ... A-11
A.6 Need More Help?... A-12

Glossary

Index

xiii

Preface

Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache describes how to
use Oracle Web Cache to cache both static and dynamically generated content for at
least one origin server.

Audience
Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache is intended for Web
site administrators who perform the following tasks:

■ Web site administration

■ Origin server administration

■ Domain Name System (DNS) administration

■ Security administration

To use this guide, become familiar with release 1.0 and 1.1 of the HTTP protocol, as
well as application server and DNS administration.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

xiv

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documents
For more information, see the following documents:

■ Oracle Fusion Middleware 2 Day Administration Guide

■ Oracle Fusion Middleware Administrator's Guide

■ Oracle Fusion Middleware Oracle Process Manager and Notification Server
Administrator's Guide

■ Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xv

What's New in This Guide?

This preface introduces the new and changed administrative features of Oracle Web
Cache that are described in this guide, and provides pointers to additional
information.

New Features for Release 11g
11g Release 1 (11.1.1) includes many new features:

■ Request filtering: You can configure Oracle Web Cache with request filters to take
actions on incoming requests based on certain attributes of the request. An
incoming request must pass through configured request filters for a given site
before Oracle Web Cache processes it. By configuring request filters, you can
prevent malicious code from exploiting software vulnerabilities. For more
information, see Chapter 4, "Configuring Request Filtering."

■ MIME Type Match Criteria for Caching Rules: In addition to specifying the
criteria for matching a caching rule to incoming requests based on the URL
expression, you can base the match evaluation on the value of the Content-Type
response header of objects. This feature simplifies the definition of caching rules,
reduces the overall number of caching rules, and improves Oracle Web Cache
performance. For more information, see Section 6.4 and Section 6.8.1.

■ Invalidation using response headers: You can enable an origin server to
invalidate cached content through an HTTP response header. For more
information, see Section 7.4.

■ Request-based logging: Oracle Web Cache stores every request internally and
then writes them in bulk after the request to the event logs. In this way, Oracle
Web Cache groups all the requests For more information, see Section 9.1.

■ Oracle Diagnostic Logging (ODL) format for event logs: Oracle Web Cache
supports the ODL format, which provides a common format for all diagnostic
messages and log files. For more information, see Section 9.1.

■ Audit logging: Oracle Web Cache supports the Common Audit Framework for
providing a uniform system for administering audits across Oracle Fusion
Middleware components. The audit log files generated by Oracle Web Cache
processes provide important information that can help you identify and diagnose
potential security performance and configuration issues. For more information, see
the Oracle Fusion Middleware Security Guide.

■ Secure caching: You can configure Oracle Web Cache to support caching content
that is secured by Oracle Single Sign-On authentication with no other
authorization requirements. For more information, see Section 5.8.

xvi

Part I
Part I Understanding Secure Proxy Caching and

Load Balancing

This part presents introductory and conceptual information about Oracle Web Cache.
It contains the following chapter:

■ Chapter 1, "Understanding Reverse Proxying"

1

Understanding Reverse Proxying 1-1

1 Understanding Reverse Proxying

This chapter provides a general introduction to Oracle Web Cache and its role in
providing secure reverse proxying.

This chapter includes the following topics:

■ Section 1.1, "About the Web Tier"

■ Section 1.2, "Request Flow in Web Tier"

■ Section 1.3, "Compatibility with Oracle Fusion Middleware Components"

1.1 About the Web Tier
The Web tier of a J2EE application server is responsible for interacting with the end
users, such as Web browsers primarily in the form of HTTP requests and responses. It
is the outermost tier in the HTTP stack, closest to the end user. At the highest level, the
Web tier performs four basic tasks:

■ Interprets client requests

■ Dispatches those requests to an object (for example, an enterprise Java bean) that
encapsulates business logic

■ Selects the next view for display,

■ Generates and delivers the next view

The Web tier receives each incoming HTTP request and invokes the requested business
logic operation in the application. Based on the results of the operation and state of the
model, the next view is selected to display. The selected view is transmitted to the
client for presentation.

Oracle Web Cache is a content-aware server accelerator, or reverse proxy, for the Web
tier that improves the performance, scalability, and availability of Web sites that run on
any Web server or application server, such as Oracle HTTP Server and Oracle
WebLogic Server.

Oracle Web Cache is the primary caching mechanism provided with Oracle Fusion
Middleware. Caching improves the performance, scalability, and availability of Web
sites that run on Oracle Fusion Middleware by storing frequently accessed URLs in
memory.

By storing frequently accessed URLs in memory, Oracle Web Cache eliminates the
need to repeatedly process requests for those URLs on the application Web server and
database tiers. Unlike legacy proxies that handle only static objects, Oracle Web Cache
caches both static and dynamically generated content from one or more application
Web servers. Because Oracle Web Cache can cache more content than legacy proxies, it

About the Web Tier

1-2 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

provides optimal performance by greatly reducing the load on application Web server
and database tiers. As an external cache, Oracle Web Cache is also an order of
magnitude faster than object caches that run within the application tier.

Because Web Cache is fully compliant with HTTP 1.0 and 1.1 specifications, it can
accelerate Web sites that are hosted by any standard Web servers, such as Apache
Tomcat and Microsoft IIS. In Oracle Fusion Middleware, Oracle Web Cache resides in
front of one or more instances of Oracle HTTP Server. Responses to browser based
HTTP requests are directed to the Oracle HTTP Server instance and transmitted
through Oracle Web Cache. The Oracle Web Cache instance can handle any Web
content transmitted with the standard HTTP protocol.

1.1.1 Reverse Proxying
You can configure Oracle Web Cache as a reverse proxy to origin servers, such as
Oracle HTTP Server.

A reverse proxy appears to be the content server to clients but internally retrieves its
objects from other back-end origin servers as a proxy. A reverse proxy acts as a
gateway to the origin servers. It relays requests from outside the firewall to origin
servers behind the firewall, and delivers retrieved content back to the client.

Figure 1–1 shows an overview of how reverse proxy Web caching works. Oracle Web
Cache has an IP address of 144.25.190.241 and the application Web server has an IP
address of 144.25.190.242.

The steps for browser interaction with Oracle Web Cache are as follows:

1. A browser sends a request to a Web site named www.company.com:80.

This request in turn generates a request to Domain Name System (DNS) for the IP
address of the Web site.

2. DNS returns the IP address of the load balancer for the site, that is, 144.25.190.240.

3. The browser sends the request for a Web page to the load balancer. In turn, the
load balancer sends the request to Oracle Web Cache server 144.25.190.241.

4. If the requested content is in its cache, then Oracle Web Cache sends the content
directly to the browser. This is called a cache hit.

5. If Oracle Web Cache does not have the requested content or the content is stale or
invalid, it hands the request off to application Web server 144.25.190.242. This is
called a cache miss.

6. The application Web server sends the content to Oracle Web Cache.

7. Oracle Web Cache sends the content to the client and stores a copy of the page in
cache.

A page stored in the cache is removed when it becomes invalid or outdated.

Request Flow in Web Tier

Understanding Reverse Proxying 1-3

Figure 1–1 Web Server Acceleration

1.2 Request Flow in Web Tier
Figure 1–2 shows further details of the request flow within the Web tier.

Application
Web Server

IP Address:
144.25.190.242

IP Address:
144.25.190.241

Oracle Web
Cache

Web
Browser

DNS
Server

1 2

3

4

7

3

4

7 6

5

www.company.com:80 =
144.25.190.240

Load
Balancer

IP Address:
144.25.190.240

Request Flow in Web Tier

1-4 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Figure 1–2 Request Flow to Oracle Web Cache within the Web Tier

As shown in Figure 1–2, the following occurs within the Web tier:

1. The incoming browser request is analyzed for the correct HTTP format.

2. The browser request is then further analyzed to determine if it is in HTTPS format:

a. If the browser request is in HTTPS format, SSL decryption is performed.

b. If the browser request is not in HTTPS format, the request is parsed.

3. After the request is understood, it is filtered by a set of prescribed filtering rules.

4. A cache lookup is performed to see if the HTTP request was sent previously and is
present in the cache.

If the request is present in the cache, a cache hit, the request is compressed and the
content is sent directly to the browser.

If the request is not present in the cache, a cache miss, then either:

Was request
HTTPS?

Yes

Parse Request

Apply Request
Filtering Rules

Incoming Browser
Request

No

Cache Lookup

In Cache?
No (Cache Miss) Yes (Cache Hit)

Multiple Origin
Servers?

Yes No

Load Balance to
Pick Origin Server

Send Request to
Origin Server

Is Object
Cacheable?

NoYesInsert Cacheable Object
in Web Cache

Compress and Serve
Object Response

Perform SSL Decryption

Request Flow in Web Tier

Understanding Reverse Proxying 1-5

a. The request is sent directly to a single origin server.

b. The request is sent to load-balanced origin servers.

Each load balanced origin server pings each Oracle Web Cache server on a periodic
basis to check the status of the cache. The load balancer distributes any incoming
requests among cache cluster members. If Oracle Web Cache does not have the
requested content or the content is stale or invalid, it hands the request off to the
application Web server. The application Web server sends the content to Oracle Web
Cache. Oracle Web Cache sends the content to the client and stores a copy of the page
in cache.

The proxy server is placed in a less secure zone, the Demilitarized Zone (DMZ),
instead of the origin server.

Caching rules determine which objects to cache. When you establish a caching rule for
a particular URL, those objects contained within the URL are not cached until there is a
client request for them. When a client first requests an object, Oracle Web Cache sends
the request to the origin server. This request is a cache miss. Because this URL has an
associated caching rule, Oracle Web Cache caches the object for subsequent requests.
When Oracle Web Cache receives a second request for the same object, Oracle Web
Cache serves the object from its cache to the client. This request is a cache hit.

When you stop Oracle Web Cache, the cache clears all objects. In addition, Oracle Web
Cache clears and resets statistics.

1.2.1 HTTP Traffic Management
You can deploy Oracle Web Cache inside or outside a firewall. Deploying Oracle Web
Cache inside a firewall ensures that HTTP traffic enters the DMZ, but only authorized
traffic from the application Web servers can directly interact with the database. When
deploying Oracle Web Cache outside a firewall, the throughput burden is placed on
Oracle Web Cache rather than the firewall. The firewall receives only requests that
must go to the application Web servers. This topology requires securing Oracle Web
Cache from intruders.

Security experts disagree about whether caches should be placed outside the DMZ.
Oracle recommends that you check your company's policy before deploying Oracle
Web Cache outside the DMZ.

1.2.2 Request Filtering and Routing
Request filtering checks either the normalized request (for most filter types) or the
original raw un-normalized request (for the following format filter rules: null byte,
strict encoding, and double encoding). If a match is found on a rule and it is a deny
rule, then the request is denied. If the match is for an allow rule, then the request is
allowed. For a deny rule, if the rule is in monitor only mode, then the request is logged
(to the audit log and the event log), but the request is not denied.

For more information about request filtering, see Chapter 4, "Configuring Request
Filtering."

1.2.3 Origin Server Load Balancing and Failover
Origin server load balancing is a feature in which HTTP requests are distributed
among origin servers so that no single origin server is overloaded.

Oracle Web Cache supports load balancing and failover detection for application Web
servers.

Request Flow in Web Tier

1-6 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Oracle Web Cache ensures that cache misses are directed to the most available,
highest-performing Web server in the server farm. A capacity heuristic guarantees
performance and provides surge protection when the application Web server load
increases.

For more information about load balancing and failover, see Section 3.1.

1.2.4 Caching
Caching improves the performance, scalability, and availability of Web sites that run
on Oracle Fusion Middleware by storing frequently accessed URLs in memory, Oracle
Web Cache eliminates the need to repeatedly process requests for those URLs on the
application Web server and database tiers. Unlike legacy proxies that handle only
static objects, Oracle Web Cache caches both static and dynamically generated content
from one or more application Web servers. Because Oracle Web Cache can cache more
content than legacy proxies, it provides optimal performance by greatly reducing the
load on application Web server and database tiers. As an external cache, Oracle Web
Cache is also an order of magnitude faster than object caches that run within the
application tier.

Oracle Web Cache sits in front of application Web servers, caching their content, and
providing their content to clients that request it. When Web browsers access the Web
site, they send HTTP protocol or HTTPS protocol requests to Oracle Web Cache.
Oracle Web Cache, in turn, acts as a virtual server on behalf of the application Web
servers. If the requested content has changed, Oracle Web Cache retrieves the new
content from the application Web servers. The application Web servers may retrieve
their content from an Oracle database. Oracle Web Cache can be deployed on its own
dedicated tier of computers or on the same computer as the application Web servers.

Web caching provides the following benefits for Web-based applications:

■ Performance: Running on inexpensive hardware, caching combined with
compression can increase the throughput of a Web site by several orders of
magnitude. In addition, Oracle Web Cache significantly reduces response time to
client requests by storing objects in memory and by serving compressed versions
of objects to clients that support the GZIP encoding method. See Section 1.2.5 for
more information about compression.

■ Scalability: In addition to unparalleled throughput, Oracle Web Cache can sustain
thousands of concurrent client connections, meaning that visitors to a site see
fewer application Web server errors, even during periods of peak load.

■ High availability: Oracle Web Cache supports load balancing and failover
detection for application Web servers. These features ensure that cache misses are
directed to the most available, highest-performing Web server in the server farm.
Moreover, a patent-pending capacity heuristic guarantees performance and
provides surge protection when the application Web server load increases.

■ Cost savings: Better performance, scalability and availability translates into cost
savings for Web site operators. Because fewer application Web servers are required
to meet the challenges posed by traffic spikes and denial of service attacks, Oracle
Web Cache offers a simple and inexpensive means of reducing a Web site's cost for
each request.

■ Developer productivity: Application developers can use Oracle Web Cache to
cache content rather than design and develop application-specific caches.

For more information about caching, see Chapter 6, "Caching and Compressing
Content."

Request Flow in Web Tier

Understanding Reverse Proxying 1-7

1.2.5 Compression
Oracle Web Cache can compress both cacheable and non-cacheable objects. You can
specify compression settings from either Oracle Enterprise Manager Fusion
Middleware Control or the compress control directive of the Surrogate-Control
response-header field. Oracle Web Cache provides compression configuration at both
the site and caching-rule level. If you enable compression for a site, then Oracle Web
Cache performs automatic compression for that site. Fine tuning of compression
settings can be done by configuring individual caching rules.

Oracle Web Cache correctly handles compression of different types of content and
different types of browsers. It enables compression automatically for common
compressible content types such as HTML, Javascript, or cascading style sheets (CSS).
It disables compression automatically where compression either breaks the application
in browsers, or does not provide any gain. These files types include GIF, JPEG, and
PNG images, or files that are already compressed with utilities like WinZip or GZIP.
Similarly, Oracle Web Cache disables compression for Netscape 4 browsers and for
some file types for Internet Explorer 5.5 browsers due to known bugs with these
browsers.

Because compressed objects are smaller, they are delivered faster to browsers with
fewer round-trips, reducing overall latency. Compressed content is then expanded by
browsers that support the GZIP compression in the Accept-Encoding
request-header field.

On average, Oracle Web Cache can compress text files by a factor of 4. For example,
300 KB files are compressed down to 75 KB.

For more information about compression, see:

■ Section 2.11.3 for instructions on configuring compression at the site level

■ Section 2.11.3.1 for instructions on disabling compression for all requests

■ Section 6.8.1 for instructions on configuring compression for individual caching
rules

■ Section 6.10 for instructions on configuring the Surrogate-Control
response-header field

1.2.6 Session Binding
Oracle Web Cache supports sites that use a session ID or session cookie to bind user
sessions to a given origin server to maintain state for a period. To use the session
binding feature, the origin server itself must maintain state, that is, it must be stateful.
A site binds user sessions by including session data in the HTTP header or body it
sends to a client in such a way that the client is forced to include it with its next
request. This data is transferred between the origin server and the client through
Oracle Web Cache either with an embedded URL parameter or through a cookie,
which is a text string that is sent to and stored on the client. Oracle Web Cache does
not process the value of the parameter or cookie; it simply passes the information back
and forth between the origin server and the client.

For more information about session binding, see Section 3.2.

Note: If an origin server cannot accept any more connections because
of the load, Oracle Web Cache disables session binding to that origin
server and attempts to connect to another origin server.

Compatibility with Oracle Fusion Middleware Components

1-8 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

1.3 Compatibility with Oracle Fusion Middleware Components
Table 1–1 describes Oracle Web Cache compatibility with several Oracle Fusion
Middleware components. It is not an exhaustive list.

Table 1–1 Compatibility with Other Oracle Fusion Middleware Components

Component Description

Oracle HTTP Server In Oracle Fusion Middleware, Oracle Web Cache resides in front of
one or more instances of Oracle HTTP Server. Responses to browser
based HTTP requests are directed to the Oracle HTTP Server
instance and transmitted through Oracle Web Cache. The Oracle
Web Cache instance can handle any Web content transmitted with
the standard HTTP protocol.

See Also: Oracle Fusion Middleware Administrator's Guide for Oracle
HTTP Server

Oracle Business
Intelligence Discoverer

Oracle BI Discoverer is closely integrated with Oracle Web Cache to
improve Discoverer Viewer's overall scalability, performance, and
availability. Oracle BI Discoverer uses ESI Surrogate-Control
headers to govern cacheability of other non-configured responses.
Because of this integration, the load on mid-tier and database
servers in Oracle BI Discoverer deployments is reduced, more
Discoverer Viewer users are able to access the system concurrently,
and those users experience significantly better response times for
workbook operations and common business intelligence queries.

See Also: Oracle Business Intelligence Discoverer Configuration Guide

Oracle Forms Services You can deploy Oracle Web Cache as a load balancer with Oracle
Forms Services applications.

See Also: Oracle Fusion Middleware Forms Services Deployment Guide

Oracle Portal Oracle Web Cache has been closely integrated with Oracle Portal to
improve its overall scalability, performance, and availability. Oracle
Portal ships with several pre-defined caching and invalidation
policies that ensure optimal use of Oracle Web Cache. Oracle Web
Cache controls have been built into the Oracle Portal administrative
user interface and can also be specified by content providers
through the Portal Developer Kit (PDK).

See Also: Oracle Fusion Middleware Administrator's Guide for Oracle
Portal

Part II
Part II Basic Administration

This part presents information about performing basic administration tasks for Oracle
Web Cache. It contains the following chapters:

■ Chapter 2, "Getting Started with Administering Oracle Web Cache"

■ Chapter 3, "Configuring High Availability Solutions"

■ Chapter 4, "Configuring Request Filtering"

■ Chapter 5, "Configuring Security"

■ Chapter 6, "Caching and Compressing Content"

■ Chapter 7, "Invalidating Content"

■ Chapter 8, "Using Diagnostic Features"

■ Chapter 9, "Logging"

2

Getting Started with Administering Oracle Web Cache 2-1

2 Getting Started with Administering Oracle
Web Cache

This chapter describes how to get started administering Oracle Web Cache. It discusses
the main administration tasks.

This chapter includes the following topics:

■ Section 2.1, "About Oracle Web Cache Management Tools"

■ Section 2.2, "About Site Configuration"

■ Section 2.3, "About Resource Limits in Oracle Web Cache Management"

■ Section 2.4, "About Oracle Web Cache Ports"

■ Section 2.5, "About IP Addresses"

■ Section 2.6, "Getting Started with Managing Oracle Web Cache with Oracle
Enterprise Manager Fusion Middleware Control Console"

■ Section 2.7, "Getting Started with Managing Oracle Web Cache with Oracle Web
Cache Manager"

■ Section 2.8, "Getting Started with Managing Oracle Web Cache with Oracle Process
Manager and Notification (OPMN)"

■ Section 2.9, "Basic Tasks for Configuring and Managing Oracle Web Cache"

■ Section 2.10, "Adding an Oracle Web Cache System Component to an
Environment"

■ Section 2.11, "Specifying Properties for an Oracle Web Cache System Component"

■ Section 2.12, "Creating Session Definitions"

■ Section 2.13, "Starting and Stopping Oracle Web Cache"

2.1 About Oracle Web Cache Management Tools
Oracle stores configuration for Oracle Web Cache in the webcache.xml file, located
in the following directories:

(UNIX) ORACLE_INSTANCE/<instance_name>/config/WebCache/<webcache_name>
(Windows) ORACLE_INSTANCE\<instance_name>\config\WebCache\<webcache_name>

Oracle offers two tools for managing Oracle Web Cache:

■ Oracle Enterprise Manager Fusion Middleware Control. See Section 2.6.

■ Oracle Web Cache Manager. See Section 2.7.

About Site Configuration

2-2 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Use these tools rather than edit the webcache.xml configuration file, to perform all
administrative tasks unless a specific procedure requires you to edit a file. Editing a
file may cause the settings to be inconsistent and generate problems.

2.2 About Site Configuration
Oracle Web Cache caches and assembles dynamic content for one or more Web sites.
When you configure the following properties for Oracle Web Cache, you apply them
to all sites or to a particular site:

■ Sessions

■ Security

■ Request filtering

■ Caching rules

■ Access logging

You must create site definition for any named sites. A site definition consists of a host
name, port information, and optional URL path prefix about the site and its aliases.
Alias information is essential, because many sites are represented by one or more
aliases. Oracle Web Cache recognizes and caches requests for a site and its aliases. For
example, site www.company.com:80 may have an alias of company.com:80. By
specifying this alias, Oracle Web Cache caches the same content from either
company.com:80 or www.company.com:80.

When configuring a named site, you can enable compression for a site, permitting
Oracle Web Cache to perform automatic compression for that site. You can also
configure compression for undefined sites. Oracle Web Cache uses the compression
setting for undefined sites for client requests that do not match a defined site. If you
prefer to disable compression for all requests, see Section 2.11.3.1.

In addition to configuration for named sites and undefined sites, Oracle Web Cache
provides configuration for a default site for client requests without host information.
When you install Oracle Web Cache, the default site uses the host name and listening
port of the computer on which Oracle HTTP Server was installed.

Because Oracle Web Cache resolves a request first to a site definition, and then to the
first matching site-to-origin server mapping, the order in which you configure the site
definitions is important.

For example, consider site definitions configured in this order:

www.company.com:80
www.company.com:80/sales

Because www.company.com:80 is a superset of www.company.com:80/sales,
Oracle Web Cache matches requests for www.company.com:80/sales to site
definition www.company.com:80 rather than www.company.com:80. In addition,
Oracle Web Cache uses the site-to-server mapping for www.company.com:80.

To avoid this problem, you would have to configure the site definitions in the
following order:

www.company.com:80/sales
www.company.com:80

After you create site definitions, create ordered mappings of sites to origin servers. To
avoid requests being mapped to the wrong site, you must be careful in how you order
these mappings:

About Resource Limits in Oracle Web Cache Management

Getting Started with Administering Oracle Web Cache 2-3

■ Because mappings that use the wildcard * encompass a broader scope, give these
mappings a lower priority than other mappings.

■ Because requests are resolved to the first matching mapping, give mappings that
contain the optional URL path prefix a higher priority than those mappings
without an URL path prefix.

For example, you should order the following mappings as follows:

http://www.company.com/portal/page?_pageid=33,4232&_dad=portal
http://www.company.com/um/traffic_cop?mailid=inbox
http://www.company.com

If you instead reorder the mappings as follows, the request for URLs
http://www.company.com/portal/page?_pageid=33,4232&_
dad=portal and http://www.company.com/um/traffic_
cop?mailid=inbox do not resolve as expected. Requests for these URLs instead
resolve to http://www.company.com because it is listed first:

http://www.company.com
http://www.company.com/portal/page?_pageid=33,4232&_dad=portal
http://www.company.com/um/traffic_cop?mailid=inbox

For instructions on creating site definitions and site-to-server mappings, see
Section 2.11.3 and Section 2.11.4.

2.3 About Resource Limits in Oracle Web Cache Management
As a part of configuration, specify caching and network thresholds to ensure Oracle
Web Cache runs efficiently.

Oracle Web Cache provides the following types of configurable thresholds:

■ Section 2.3.1, "Cache Memory Limit"

■ Section 2.3.2, "Maximum Incoming Connections"

■ Section 2.3.3, "Maximum Size of Single Cached Object"

■ Section 2.3.4, "Network Timeouts"

2.3.1 Cache Memory Limit
When the maximum cache memory limit is reached, Oracle Web Cache performs
garbage collection. During garbage collection, Oracle Web Cache removes stale objects
based on popularity and validity. In a cache cluster environment, Oracle Web Cache
removes on-demand objects before it removes owned objects.

To avoid swapping objects in and out of the cache, it is crucial to configure enough
memory for the cache. Generally, the amount of memory (maximum cache size) for
Oracle Web Cache should be set to at least 512 MB.

Your application's memory requirements vary based upon factors such object size,
number of objects, the number of HTTP headers returned, and whether ESI is present.
To get a close approximation on the maximum amount of memory required, you may
apply the formula provided below.

Most customers leave this setting to the default which is 500 MB. If want to change the
default, perform the following steps to determine the maximum amount of memory
required:

About Resource Limits in Oracle Web Cache Management

2-4 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

1. Use the following formula to determine an estimate of the maximum memory, in
bytes, needed

1.25*(TotalDocs * ((AvgDocSize/8192+1) *8192 + 16384))

In the formula:

■ .25 accounts for the run time memory overhead.

■ TotalDocs is the total number of objects you intend to store in the cache.

■ AvgDocSize is the average size of objects, in bytes, you intend to store in the
cache. You can determine the average size by viewing the following metrics on
the Performance Summary page.

– Performance of each Site with Summary > site > Cache Size

– Performance of each Site with Summary > site > Number of Cached

See Section 8.4 for further information about the Performance Summary page.

2. Convert the result to megabytes.

3. Specify the estimated memory in the Oracle Web Cache configuration. See
Section 2.11.5.

4. Use a simulated load or an actual load to monitor the cache to see how much
memory it really uses in practice.

Remember that the cache is empty when Oracle Web Cache starts. For monitoring
to be valid, ensure that the cache is fully populated. That is, ensure that the cache
has received enough requests so that a representative number of objects are
cached.

The Performance Summary page of Fusion Middleware Control provides
information about the current memory use and the maximum memory use. To
access this page:

a. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

b. From the Web Cache menu, select Monitoring and then Performance
Summary.

2.3.2 Maximum Incoming Connections
In addition to the cache size, it is important to specify a reasonable number for the
maximum connection limit for the Oracle Web Cache server. The default is 500. If you
set a number that is too high, performance can be affected, resulting in slower
response time. If you set a number that is too low, Oracle Web Cache serves fewer
requests. You must strike a balance between response time and the number of requests
processed concurrently.

To help determine a reasonable number, consider the following factors:

Note: Even though you specify that certain objects should be cached,
not all of the objects are cached at the same time. Only those objects
that have been requested and are valid are stored in the cache. As a
result, only a certain percentage of your objects are stored in the cache
at any given time. That means that you may not need the maximum
memory derived from the preceding formula.

About Resource Limits in Oracle Web Cache Management

Getting Started with Administering Oracle Web Cache 2-5

■ The maximum number of clients you intend to serve concurrently at any given
time.

■ The average size of a page and the average number of requests for page.

■ Network bandwidth. The amount of data that can be transferred at any one time is
limited by the network bandwidth.

■ The percentage of cache misses. If a large percentage of requests are cache misses,
the requests are forwarded to the application Web server. Those requests consume
additional network bandwidth and result in longer response times.

■ How quickly a page is processed. Use a network monitoring utility, such as ttcp
or LoadRunner, to determine how quickly your system processes a page.

■ The cache cluster member capacity, if you have a cache cluster environment. The
capacity reflects the number of incoming connections from other cache cluster
members. See Section 3.6.3 to configure this setting in Fusion Middleware Control
and Section 3.7.1 to configure this setting in Oracle Web Cache Manager.

Use various tools, such as those available with the operating system and with Oracle
Web Cache, to help you determine the maximum number of connections. For example,
the netstat -a command on UNIX and Windows operating systems enables you to
determine the number of established connections; the ttcp utility enables you to
determine how fast a page is processed. The Web Cache Statistics page in Fusion
Middleware Control provides statistics on hits and misses.

Do not set the value to an arbitrarily high value, because Oracle Web Cache sets aside
some resources for each connection, which could adversely affect performance. For
many UNIX systems, 5000 is usually a reasonable number.

To specify the maximum number of incoming connections, see Section 2.11.5.

Connections on UNIX
On most UNIX platforms, each client connection requires a separate file descriptor.
Oracle Web Cache tries to reserve the maximum number of file descriptors (Max_
File_Desc) when it starts. If the Oracle Web Cache webcached executable is run as
root, you can increase this number. For example, on Sun Solaris, you can increase the
maximum number of file descriptors by setting the rlim_fd_max parameter. If the
webcached executable is not run with the root privilege, Oracle Web Cache fails to
start.

On most UNIX platforms, each client connection requires a separate file descriptor.
The Oracle Web Cache server attempts to reserve the maximum number of file
descriptors when it starts. If you have root privileges, you can increase this number.
For example, for the LINUX Red Hat Operating System you can increase the
maximum number of file descriptors by modifying Oracle Web Cache users file
descriptors limits in /etc/security/limits.conf.

For example to allow the user WC_USER to have 4092 connections, in the
/etc/security/limits.conf file add the following entries:

WC_User soft nofile 4092
WC_User hard nofile 4092

Make sure the parameter fs.file-max is set to 65k in the /etc/sysctl.conf. On
Solaris Operating System you can increase the maximum number of file descriptors by
setting the rlim_fd_max parameter. If webcached is not run as root, the Oracle Web
Cache server logs an error message and fails to start.

About Resource Limits in Oracle Web Cache Management

2-6 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

For instructions on changing the webcached executable to run with the root privilege,
see Section 5.9.

For more information, see:

■ Operating system-specific documentation for connection limitations

■ Oracle Fusion Middleware Performance Guide for TCP/IP performance tuning tips

Connections on Windows
On Windows operating systems, the number of file handles as well as socket handles
is limited only by available kernel resources, more precisely, by the size of paged and
non-paged pools. However, the number of active TCP/IP connections is restricted by
the number of TCP ports the system can open.

The default maximum number of TCP ports is set to 5000 by the operating system. Of
those, 1024 are reserved by the kernel. You can modify the maximum number of ports
by editing the Windows registry. Windows operating systems allow up to 65534 ports.

To change the default, you must add a new value to the following registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

Add a new value, specifying the following:

■ Value Name: MaxUserPort

■ Value Type: DWORD

■ Value Data: 65534

■ Valid Range: 5000 to 65534

On Windows operating systems, Oracle Web Cache does not attempt to reserve file
handles or to check that the number of current maximum incoming connections is less
than the number of TCP ports.

2.3.3 Maximum Size of Single Cached Object
To conserve system resources, you can limit the size of objects that are cached, even if
the objects meet other caching rules.

If you specify a maximum cached object size, the cache only stores objects that are not
larger than a specified size and that match the caching rules. Oracle Web Cache does
not cache objects larger than the specified size, even if they match caching rules. The
default is 100 KB. For upgraded caches, the default is that no limit is specified.

If you have objects that are larger than the maximum cached object size and those
objects are requested frequently, consider increasing the limit. When you specify a
value of 0, Oracle Web Cache does not cache any objects, effectively turning off
caching.

To specify the size of single cached object, see Section 2.11.5.

2.3.4 Network Timeouts
Oracle Web Cache enables you to specify settings for the following timeouts:

■ Keep-Alive Timeout: The keep-alive timeout is the time limit for the client to
process a request from Oracle Web Cache. After Oracle Web Cache sends a
response to a client, the connection is left open for five seconds, which is typically
enough time for the client to process the response from Oracle Web Cache. If the

About IP Addresses

Getting Started with Administering Oracle Web Cache 2-7

network between the client and Oracle Web Cache is slow, consider increasing the
keep-alive timeout.

■ Client Send: Specifies the allowed time for Oracle Web Cache to finish a send
operation to the client.

■ Client Receive: Specifies the allowed for Oracle Web Cache to wait for a receive
operation to complete from the client.

■ Origin Server Send: Specifies the time allowed for the Oracle Web Cache to finish a
send operation to the origin server.

■ Origin Server Receive: Specifies the time allowed for the origin server to generate
and start sending a response to Oracle Web Cache.

■ Origin Server Connect: Specifies the time allowed for Oracle Web Cache to
complete connection establishment to an origin server. If an origin server has
multiple IP addresses (for example., IPv4 and IPv6) that will be retried, the
timeout refers to connecting to one origin server IP address. If the origin server
cannot generate a response within that time, Oracle Web Cache drops the
connection and sends a network error page to the client. If applications require a
shorter timeout, adjust the timeout.

To specify the timeouts, see Section 2.11.5.

2.4 About Oracle Web Cache Ports
Ports are dynamically assigned to many components when they are provisioned. The
port numbers stay the same after the provisioning unless they are manually changed.

Oracle Web Cache uses a HTTP or a HTTPS listening port to receive requests. In
addition to a listening port, Oracle Web Cache also receives administration,
invalidation, and statistics monitoring requests on specific HTTP or HTTPS listening
ports.

http://web_cache_hostname:http_port
https://web_cache_hostname:https_port

To configure port settings, see Section 2.11.1.

2.5 About IP Addresses
Oracle Web Cache supports both IP version 4 and version 6 addresses.

The following examples show IP version 4 addresses:

■ 138.1.16.102 specifies an IP address.

■ 138.1.16.102/255.255.0.0 specifies an IP address and subnet mask, 138.1.any.any.
The zeros in the mask mean that any value is OK. This address is equivalent to
138.1.0.0/255.255.0.0 or 138.1.*.*.

■ 138.1.16.102/16 is another way to specify the previous example. It means that only
the high 16 bits matter.

You must use the wildcard for an entire field. Therefore, you cannot use a wildcard to
specify something like 138.128.0.0/255.128.0.0. In this example, the high 9 bits need to
be checked. 138.128*.*.* is not allowed. 138.*.*.* would check only the high 8 bits, and
the other 3 8-bit fields could have any value.

The following examples show IP version 6 addresses:

Getting Started with Managing Oracle Web Cache with Oracle Enterprise Manager Fusion Middleware Control Console

2-8 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

■ FE80:0:0:0:205:2FF:FE71:2594 specifies an IP address.

■ FE80:0:0:0:205:0:0:0/FFFF:FFFF:FFFF:FFFF:FFFF:0:0:0 specifies an IP address and
subnet mask. Here the high 16*5 = 80 bits, where 16*5 is 16 bits from each FFFF * 5
fields of FFFF, need to be checked for a match. If you prefer to use a wildcard, you
can specify the same address as FE80:0:0:0:205:*:*:*.

■ FE80:0:0:0:205:0:0:0/80 is another way to specify the previous example. It also
specifies to check the high 80 bits.

You must use the wildcard for an entire field.

2.6 Getting Started with Managing Oracle Web Cache with Oracle
Enterprise Manager Fusion Middleware Control Console

Oracle Enterprise Manager Fusion Middleware Control enables you to manage Oracle
Fusion Middleware components in a farm, including Oracle Web Cache.

A farm is a collection of components managed by Fusion Middleware Control. It can
contain Oracle WebLogic Server domains, one Administration Server, one or more
Managed Servers, and the Oracle Fusion Middleware components that are installed,
configured, and running in the domain.

From the Fusion Middleware Control, you can configure the following:

■ Properties for the cache, including origin servers, sites, passwords, sessions, and
cookies

■ Multiple caches into one cache cluster for shared configuration, scalability, and
high availability

■ Request filtering to block invalid or illegal HTTP requests

■ Caching rules and expiration policies

Oracle Web Cache Manager provides additional configuration areas. See Section 2.7
for more information about using Oracle Web Cache Manager.

You can also monitor performance statistics and perform operational tasks, such as
starting and stopping a cache, synchronizing configuration among cache cluster
members using Fusion Middleware Control.

This section covers the following topics:

■ Section 2.6.1, "Logging into Fusion Middleware Control"

■ Section 2.6.3, "Understanding Statistics on the Web Cache Home Page"

■ Section 2.6.4, "Using the Fusion Middleware Control Help"

For general information about Fusion Middleware Control, see the Oracle Fusion
Middleware Administrator's Guide.

2.6.1 Logging into Fusion Middleware Control
To view the Oracle Web Cache pages:

1. To display Fusion Middleware Control, you enter the Fusion Middleware Control
URL, which includes the name of the host and the port number assigned to Fusion
Middleware Control during the installation. The following shows the format of the
URL

http://hostname.domain:port/em

Getting Started with Managing Oracle Web Cache with Oracle Enterprise Manager Fusion Middleware Control Console

Getting Started with Administering Oracle Web Cache 2-9

The port number is the number of the Administration Server of Oracle WebLogic
Server. By default, the port number is 7001.

2. Enter the Oracle Fusion Middleware administrator user name and password and
click Login.

The default user name for the administrator user is weblogic. The password is
the one you supplied during the installation of Oracle Fusion Middleware.

2.6.2 Navigating to Oracle Web Cache Administration Pages
To navigate to Oracle Web Cache administration tasks:

1. From the navigation pane, expand the farm and then the Web Tier installation
type, and select Oracle Web Cache component.

The Web Cache home page displays. See Section 2.6.3 for further information
about the contents of the home page.

2. Select the Web Cache menu.

The Web Cache menu displays the following options described in Table 2–1

Table 2–1 Web Cache Menu Options

Element Description

Home This option displays the Web Cache Home page. See
Section 2.6.3 for further information about the contents of this
page.

Getting Started with Managing Oracle Web Cache with Oracle Enterprise Manager Fusion Middleware Control Console

2-10 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Monitoring This option displays the following options:

■ Performance Summary: This option enables you to view
performance metrics for Oracle Web Cache. See Section 8.4
for further information.

■ Popular Requests: This option enables you to view the most
popular requests for determining if the caching rules are
caching the correct objects. See Section 8.6 for further
information.

Control This option provides options for starting, stopping, and
restarting Oracle Web Cache. See Section 2.13.2 for further
information.

Logs The View Log Message option displays the Log Messages page
for viewing the contents of event log files. See Section 9.7 for
further information.

Port Usage This option display the ports in use. See Section 2.11.1 for more
information.

Administration This option displays the following options:

■ Caching Rules: This option enables you to configure
caching rules. See Chapter 6, "Caching and Compressing
Content," for more information.

■ Request Filters: This option enables you to configure
request filters for protecting against common HTTP request
attacks. See Chapter 4, "Configuring Request Filtering," for
more information.

■ Expiration: This option enables you to specify expiration
policies. See Section 6.7 for more information.

■ Sites: This option enables you to configure the Web sites for
which Oracle Web Cache caches content. See Section 2.11.3
for more information.

■ Origin Servers: This option enables you to configure to
configure application Web servers or proxy servers to which
Oracle Web Cache sends cache misses. See Section 2.11.4 for
more information.

■ Cluster: This option enables you to configure a cache
cluster. See Section 3.6 for more information.

■ Passwords: This option enables you to configure security
options for Oracle Web Cache. See Chapter 5, "Configuring
Security," for more information.

■ Session Configuration: This option enables you to create
session definitions for:

- Specifying how session requests are served by the cache

- Enabling session binding, whereby a user session for a
particular site is bound to an origin server to maintain state
for a period

- Substituting session information in session-encoded URLs

See Section 2.12 for more information.

■ Multi-Version Cookies: This option enables you to specify
cookie values for multiple-version URLs. See Section 6.5.1
for more information.

■ Ports Configuration: This option enables you to configure
ports for Oracle Web Cache. See Section 2.11.1 for more
information.

Table 2–1 (Cont.) Web Cache Menu Options

Element Description

Getting Started with Managing Oracle Web Cache with Oracle Enterprise Manager Fusion Middleware Control Console

Getting Started with Administering Oracle Web Cache 2-11

2.6.3 Understanding Statistics on the Web Cache Home Page
The Web Cache Home page provides general information about the selected cache
system component, as well as the supported sites and origin server.

You can also use this page as a starting point for monitoring and administering Oracle
Web Cache. Figure 2–1 shows a portion of the Web Cache Home page.

Figure 2–1 Web Cache Home Page

This page contains the following statistical regions:

■ Response and Load Region

■ CPU and Memory Usage Region

■ Performance Region

■ Origin Servers Region

Security This option displays the following options:

■ Audit Policy: This option enables you to configure audit
policy settings. See the Oracle Fusion Middleware Security
Guide.

■ SSL Configuration: This option enables you to SSL
configuration for Oracle Web Cache. See Section 5.4.2 and
Section 5.4.3 for more information.

■ Wallets: This option enables you to create and manage
wallets. See Section 5.4.1 for more information.

General Information This option displays general details about the instance.

Table 2–1 (Cont.) Web Cache Menu Options

Element Description

Getting Started with Managing Oracle Web Cache with Oracle Enterprise Manager Fusion Middleware Control Console

2-12 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Response and Load Region
Table 2–2 describes the performance-monitoring statistics in the Response and Load
region.

CPU and Memory Usage Region
Table 2–3 describes the performance-monitoring statistics in the Response and Load
region.

Performance Region
Table 2–4 describes the performance-monitoring statistics in the Origin Servers region.

Table 2–2 Response and Load Statistics

Statistic Description

Request Processing Time This metric specifies the average number of milliseconds
used to process requests.

Request Throughput This metric specifies the average number of requests served
for each second.

Table 2–3 CPU and Memory Usage Statistics

Statistic Description

CPU Usage This metric specifies the percentage of the CPU that is being
used for Oracle Web Cache. As traffic increases, CPU
utilization increases.

Memory Usage This metric specifies the total memory used by the Oracle
Web Cache component.

Table 2–4 Performance Statistics

Statistic Description

Open Connections This metric specifies the current number of incoming open
connections to the Oracle Web Cache server.

Requests Served This metric specifies the accumulated number of requests
that Oracle Web Cache has served since it was started.

Hit Rate This metric specifies the percentage of requests resolved by
cache content.

Cached Objects This metric specifies the total number of objects stored in the
cache.

Cache Size This metric specifies the size, in megabytes, of the objects
currently stored in the cache. For a cache cluster member,
this number is an aggregate of the owned and on-demand
objects.

Requests Denied by Request
Filtering

This metric specifies the accumulated number of requests
denied by request filters.

Any nonzero number may be an indication of an attack on
the site or an issue with the configuration of request filters.

Bytes Saved by Compression This metric specifies the accumulated number of bytes that
would be sent to clients if in-cache compression is disabled.

Error Pages Served This metric specifies the accumulated number of error pages
that Oracle Web Cache served to Web browsers since the
cache was started.

Getting Started with Managing Oracle Web Cache with Oracle Enterprise Manager Fusion Middleware Control Console

Getting Started with Administering Oracle Web Cache 2-13

Origin Servers Region
Table 2–5 describes the performance-monitoring statistics in the Origin Servers region.

2.6.4 Using the Fusion Middleware Control Help
The Oracle Enterprise Manager Help command on the Help menu provides users
with access to task-related or conceptual information relating to the current Fusion
Middleware Control page. In addition, you can click a Help icon on some pages,
where further explanation of page elements is necessary.

There is also a search feature, allowing you to search the help and selected Oracle
Fusion Middleware documents that are included with the online help system. The
help guides you to specific, context-sensitive information in these documents.

Table 2–5 Origin Server Statistics

Statistic Description

Server This metric displays the name of the origin server.

Current Status This metric displays the status of the origin server when
Oracle Web Cache last attempted to communicate with that
origin server. (Oracle Web Cache attempts to reach the origin
server only for specific purposes, such as retrieving
responses for a cache miss.)

Up Time (%) This metric is the up time is from the perspective of Oracle
Web Cache. It is an approximation of the origin server's
uptime. The accuracy is based on how long Web Cache has
been up and how often Oracle Web Cache sends requests to
that origin server.

Requests This metric category provides the following metrics:

■ Total: This metric specifies the accumulated number of
requests that the origin server has processed.

■ Errors: This metric specifies the number of errors
encountered from this origin server by Oracle Web
Cache. These errors may include:

- Oracle Web Cache failed to connect to the origin
server.

- There was an error transmitting the request or
receiving the response to or from the origin server

- There was an HTTP 500 class response from the origin
server.

■ Average Response Time The metric specifies the average
time the origin server has taken to process and reply to
requests which it has received from this Oracle Web
Cache.

Capacity This metric category provides the following metrics:

■ Current Load: The metric specifies the current number
of connections from Oracle Web Cache that the origin
server has open.

■ Maximum Load: The metric specifies the maximum
number of connections that the origin server has had
open simultaneously.

■ Configured: The metric specifies the capacity set for the
server in the Origin Servers page.

Note: If the value for the Maximum Load metric is close to
the Configured metric, then increase the capacity in the
Origin Servers page. See Section 2.11.2.

Getting Started with Managing Oracle Web Cache with Oracle Web Cache Manager

2-14 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

2.7 Getting Started with Managing Oracle Web Cache with Oracle Web
Cache Manager

Oracle Web Cache Manager is a graphical user interface tool that provides
configuration capabilities for the following areas not provided by Fusion Middleware
Control:

■ Invalidation

■ Learned rules for request filters

■ Resource-limit thresholds for Oracle Web Cache

■ Advanced security options

■ Invalidation

■ Event and access logging

■ Diagnostics features

■ Error pages to be served by Oracle Web Cache

This section introduces you to the features of Oracle Web Cache Manager. This section
contains these topics:

■ Section 2.7.1, "Starting Oracle Web Cache Manager"

■ Section 2.7.2, "Navigating Oracle Web Cache Manager"

2.7.1 Starting Oracle Web Cache Manager
To start Oracle Web Cache Manager:

1. Configure a secure password for the Oracle Web Cache administrator with the
monitor account. You use the password for the monitor account to log in to Oracle
Web Cache Manager. See Section 5.2 to set a secure password.

2. Start the admin server process with the following command:

opmnctl startproc ias-component=WebCache process-type=WebCache-admin

WebCache-admin represents the admin server process.

3. Determine the port for the admin server process. See Section 2.11.1.

4. Point your browser to the following URL:

http://web_cache_hostname:admin_port/webcacheadmin

See Section 2.11.1.2 to determine the port.

5. Enter the Oracle Web Cache administrator user name, administrator and the
password you set in Step 1.

2.7.2 Navigating Oracle Web Cache Manager
The Oracle Web Cache Manager interface includes:

■ Top frame containing Apply Changes and Cancel Changes buttons and Oracle
Web Cache status message

■ Navigator frame with configuration and monitoring menu items

■ Right frame with property sheet for selected menu item

Getting Started with Managing Oracle Web Cache with Oracle Web Cache Manager

Getting Started with Administering Oracle Web Cache 2-15

Figure 2–2 shows the Oracle Web Cache Manager interface.

Figure 2–2 Oracle Web Cache Manager Interface

The interface contains the following features:

■ The Home link directs you to a welcome page.

■ Navigation Pane provides a graphical tree view of configuration, administration,
and performance monitoring capabilities for Oracle Web Cache and its supported
Web sites.

■ Content Pane shows the property sheet for the selected option from the navigation
pane.

■ The Apply Changes button applies submitted static and dynamic configuration
changes to Oracle Web Cache; the Cancel Changes button cancels submitted static
and dynamic configuration changes to Oracle Web Cache.

■ Status Message provide the following possible status messages:

– Web Cache running with current configuration: This message appears if
Oracle Web Cache is running with an up-to-date configuration.

– Web Cache running in Routing Only mode with current configuration: This
message appears if Oracle Web Cache is running with an up-to-date
configuration.

– Press "Apply Changes" to commit your modifications: This message appears
if Submit has been selected in some dialog box, but the Apply Changes button
has not been chosen.

– Restart Web Cache to make configuration changes take effect: This message
appears if Oracle Web Cache is running with an older version of the
configuration. This can happen when static configuration changes have been
applied to webcache.xml, but Oracle Web Cache was not restarted.

Content PaneNavigator Pane Status Message

Getting Started with Managing Oracle Web Cache with Oracle Web Cache Manager

2-16 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

– Dynamic Changes Applied. Restart Not Needed: This message appears if one
or more dynamic configuration changes were applied, which do not require a
restart of Oracle Web Cache.

– Retrieve configuration from remote cache: This message appears if the cache
has been recently upgraded to the current version of Oracle Web Cache but the
configuration has not been copied to the local cache configuration file.

The navigator frame contains the following major categories described in Table 2–1.
Additional categories and options are available, but Fusion Middleware Control
provides the preferred functionality in these areas.

Table 2–6 Web Cache Manager Navigation Pane Options

Category Description

Operations This category contains the following options:

■ Cache Operations: This option displays the Cache
Operations page for starting, stopping, or restarting the
cache server process. See Section 2.7.3 for further
information.

■ Basic Content Invalidation: and Advanced Content
Invalidation: These options enable you to invalidate
content in the cache. See Section 7.7.2.1 for further
information.

■ On-Demand Log File Rollover: This option enables you to
immediately roll over event and access logs. See Section 9.8
for further information.

Filtering The preferred method for configuring request filters is using
Fusion Middleware Control, as described in Chapter 4,
"Configuring Request Filtering." Use the Request Filters option
in Oracle Web Cache Manager to activate learned rules, copy
rules, and revert configuration settings, as described in
Section 4.14.1.

Properties This category contains the following options:

■ Security: This option provides advanced security options.
See Chapter 5 for further information.

■ Network Timeouts: This option enables you to configure
the network setting for connections. See Section 2.11.5 for
further information.

■ Resource Limits: This option enables you to configure the
maximum thresholds for cache size (memory usage), cached
objects, and incoming connections. See Section 2.11.5 for
further information.

Logging and Diagnostics This category contains the following options:

■ Event Logs: This option enables you to configure Oracle
Web Cache event logs. See Section 9.3 for further
information.

■ Access Logs: This option enables you to configure Oracle
Web Cache access logs. See Section 9.4 for further
information.

■ Diagnostics: This option enables diagnostics information to
display in the HTML response body of an object. See
Section 8.8 for further information.

Getting Started with Managing Oracle Web Cache with Oracle Process Manager and Notification (OPMN)

Getting Started with Administering Oracle Web Cache 2-17

2.7.3 Understanding the Cache Operations Page
The Cache Operations page of Oracle Web Cache Manager (Operations > Cache
Operations) provides information about the status of a cache and what operations are
needed. From this page, you can start, stop, or restart a cache.

If the cache is part of a cache cluster, all caches in the cluster are listed on the Cache
Operations page. In addition to starting, stopping, and restarting a cache, you can
propagate the configuration to other cluster members from this page. You can perform
the operations on a selected cache or on all caches in the cluster. To minimize
disruption in your Web site, you can specify an interval to stagger the times that the
operations begin on the caches.

2.8 Getting Started with Managing Oracle Web Cache with Oracle
Process Manager and Notification (OPMN)

Oracle Process Manager and Notification (OPMN) Server manages Oracle Web Cache
processes, including the admin server process and cache server process:

■ The admin server process transfers the contents of the webcache.xml
configuration file between the Oracle Web Cache instance and the Oracle
WebLogic Server environment where Fusion Middleware Control is running.

■ The cache server process manages the cache.

OPMN provides the opmnctl command. The command is located in the following
directory:

(UNIX) ORACLE_INSTANCE/bin/
(Windows) ORACLE_INSTANCE\bin

To get started with OPMN, use the opmnctl command to query the status of the
components in your installation and obtain a list of all the ports in use:

opmnctl status -l

Then, you use OPMN to control Oracle Web Cache. The following shows the format of
the opmnctl commands:

opmnctl command [parameter=value] [parameter=value]

Table 2–7 shows the commands of the opmnctl utility that are applicable to Oracle
Web Cache.

Table 2–7 Commands of the opmnctl Utility

Command Description

startproc Starts the specified process or component.

stopproc Stops the specified process or component. If used to stop the cache server
process, this command also clears the cache of all content and all statistics. It
waits for all currently accepted requests to be served, or until the
user-specified timeout, before stopping the cache.

To stop the specified process immediately, use the WCShutdown=abort
parameter shown in Table 2–8.

restartproc Stops, then restarts the specified process or component.

startall Starts all processes controlled by OPMN.

stopall Stops all processes controlled by OPMN.

Basic Tasks for Configuring and Managing Oracle Web Cache

2-18 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Table 2–8 shows the parameters for the opmnctl utility. It also shows the valid values
that are applicable for Oracle Web Cache. Unless otherwise noted, you can use any
parameter with any command, except for status, listed in Table 2–7.

For additional information about using OPMN and its supported commands, see
Oracle Fusion Middleware Oracle Process Manager and Notification Server Administrator's
Guide.

2.9 Basic Tasks for Configuring and Managing Oracle Web Cache
When you configure an environment with Oracle Web Cache, you first ensure the
Oracle Web Cache component is added to the installation. If it is not, add the Oracle
Web Cache component to the configuration.

status Shows the status of the processes controlled by OPMN. For more
information about the options for the status command, at the command line,
enter:

opmnctl status -help

Table 2–8 Parameters for the opmnctl Utility

Parameter Valid Values Description

ias-component=compo
nent_name

Oracle Web
Cache instance
name

Takes the specified action for the Oracle Web Cache admin server
process and cache server process. For example, the following
command starts both the Oracle Web Cache admin server and
cache server processes on system component webache1:

opmnctl startproc ias-component=webcache1

You must always specify this parameter to administer any Oracle
Web Cache process.

process-type=value WebCache

WebCache-admi
n

Takes the specified action for the process specified in the value:

■ WebCache: The cache server process

■ WebCache-admin: The admin server process

The parameter ias-component=component_name must
precede this parameter. For example, the following command
starts only the cache server process for Oracle Web Cache
webcache1:

opmnctl startproc ias-component=webcache1
process-type=WebCache

WCShutdown=value abort Used only with the stopproc command. Aborts (immediately
stops) the specified process or component. Note the following
differences between a normal shutdown and an abort shutdown:

During an normal shutdown, Oracle Web Cache does not accept
any new connections, but it satisfies the request for connections
that were made before receiving the stopproc command. After
the requests are satisfied, the cache shuts down.

During an abort shutdown, Oracle Web Cache does not accept any
new connections. In addition, it drops all existing connections,
even if the requests have not been satisfied. Then, the cache shuts
down.

The parameter ias-component=component_name must
precede this parameter.

Table 2–7 (Cont.) Commands of the opmnctl Utility

Command Description

Specifying Properties for an Oracle Web Cache System Component

Getting Started with Administering Oracle Web Cache 2-19

The following provides a summary of the steps to configure and manage a basic
Oracle Web Cache:

1. Add Oracle Web Cache system component to an environment. See Section 2.10.

To create a cache cluster, see Section 3.6.

2. Specify properties for an Oracle Web Cache instance after it is added to an
installation. See Section 2.11.

3. Configure secure passwords for Oracle Web Cache. See Section 5.2

4. Configure session definitions for session-related properties. See Section 2.12.

5. Configure access and event logs. See Chapter 9, "Logging."

6. Configure request filtering. See Chapter 4, "Configuring Request Filtering."

7. Configure and monitor caching rules. See Section 6.6.

8. Invalidate content. See Chapter 7, "Invalidating Content."

2.10 Adding an Oracle Web Cache System Component to an Environment
For an Oracle Web Tier or an Oracle Portal, Forms, Reports and Discoverer installation
in which Oracle Web Cache was not selected, you can easily add an Oracle Web Cache
system component, because the Oracle Universal Installer installs the necessary
software.

To add an Oracle Web Cache system component to an installation:

1. From the command line, go the following directory:

(UNIX) ORACLE_INSTANCE/bin
(Windows) ORACLE_INSTANCE\bin

2. Create the Oracle Web Cache system component:

createcomponent -componentType WebCache -oracleHome ORACLE_HOME -oracleInstance
ORACLE_INSTANCE -componentName component_name

For example to create an Oracle Web Cache system component named
webcache2, you would enter syntax similar to the following:

createcomponent -componentType WebCache -oracleHome /scratch/webtier
-oracleInstance /scratch/instances/instance1 -componentName webcache2

3. Configure caching rules. See Section 6.6.

4. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

5. View the Origin Servers section to ensure requests for the origin server are going
through the Oracle Web Cache.

2.11 Specifying Properties for an Oracle Web Cache System Component
To establish properties for an Oracle Web Cache system component, perform the
following tasks:

■ Section 2.11.1, "Task 1: Configure Port Configuration for Oracle Web Cache"

■ Section 2.11.2, "Task 2: Specify Origin Server Settings"

■ Section 2.11.3, "Task 3: Specify Site Definitions"

Specifying Properties for an Oracle Web Cache System Component

2-20 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

■ Section 2.11.4, "Task 4: Map Site Definitions to Origin Servers"

■ Section 2.11.5, "Task 5: Set Resource Limits and Network Thresholds"

■ Section 2.11.6, "Task 6: Configure Error Pages"

■ Section 2.11.7, "Task 7: Restart Oracle Web Cache"

2.11.1 Task 1: Configure Port Configuration for Oracle Web Cache
Oracle Web Cache uses a HTTP or HTTPS listening port to received requests. You can
add listening ports, if necessary. For example, it may be necessary to add a listening
port to assign Oracle Web Cache a port that an origin server was previously listening
on.

In addition to a listening port, Oracle Web Cache also receives requests for the admin
server process, invalidation, and statistics monitoring requests on specific HTTP or
HTTPS listening ports. You can modify these operation ports.

This section contains the following topics related to port configuration for Oracle Web
Cache:

■ Section 2.11.1.1, "Verifying Port Configuration for Oracle Web Cache with Fusion
Middleware Control"

■ Section 2.11.1.2, "Verifying Port Configuration for Oracle Web Cache with OPMN"

■ Section 2.11.1.3, "Adding an Oracle Web Cache Listening Port"

■ Section 2.11.1.4, "Modifying Oracle Web Cache Operation Ports"

2.11.1.1 Verifying Port Configuration for Oracle Web Cache with Fusion Middleware
Control
To determine ports in use by Oracle Web Cache with Fusion Middleware Control:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration > Port Usage.

The Ports Usage page displays.

In this example:

■ Port 7785 is the HTTPS listening port for Oracle Web Cache.

■ Port 7786 is the HTTP listening port for the admin server process.

■ Port 7787 is the HTTP listening port for statistics monitoring requests.

■ Port 7788 is the HTTP listening port for invalidation requests.

■ Port 7789 is the HTTP listening port for Oracle Web Cache.

Specifying Properties for an Oracle Web Cache System Component

Getting Started with Administering Oracle Web Cache 2-21

2.11.1.2 Verifying Port Configuration for Oracle Web Cache with OPMN
To determine ports in use by Oracle Web Cache with OPMN:

(UNIX) ORACLE_INSTANCE/bin/opmnctl status -l
(Windows) ORACLE_INSTANCE\bin\opmnctl status -l
Processes in Instance: instance1
---------------------------------+--------------------+---------+----------+------
------+----------+-----------+------
ias-component | process-type | pid | status |
uid | memused | uptime | ports
---------------------------------+--------------------+---------+----------+------
------+----------+-----------+------
webcache1 | WebCache-admin | 11244 | Alive |
458185369 | 45852 | 180:27:00 | http_admin:7786
webcache1 | WebCache | 11243 | Alive |
458185368 | 72540 | 180:27:00 | http_stat:7787,http_invalidation:7788,https_
listen:7789,http_listen:7785
ohs1 | OHS | 6077 | Alive |
458185358 | 349220 | 180:48:14 | https:9999,https:4443,http:7777

In this example:

■ Port 7785 is the HTTP listening port for Oracle Web Cache, represented by http_
listen.

■ Port 7786 is the HTTP listening port for the admin server process, represented by
WebCache-admin

■ Port 7787 is the HTTP listening port for statistics monitoring requests, represented
by http_stat.

■ Port 7788 is the HTTP listening port for invalidation requests, represented by
http_invalidation.

■ Port 7789 is the HTTP listening port for Oracle Web Cache, represented by https_
listen.

2.11.1.3 Adding an Oracle Web Cache Listening Port
You can add listening ports, if necessary. For example, it may be necessary to add
listening port to assign Oracle Web Cache a port that an origin server was previously
listening on. If want to configure an HTTPS port, see Section 5.4.2.

To add an HTTP listening port:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration > Ports Configuration.

The Ports Configuration page displays.

3. Click Create.

The Create Port page appears.

4. From the Port Type list, select NORM.

5. In the IP Address field, specify the computer running Oracle Web Cache:

■ IP version 4 address written in a 32-bit dotted decimal notation or an IP
version 6 address written in a 128-bit notation. See Section 2.5.

■ A host name that resolves to an IP address of the computer running Oracle
Web Cache. If you do not want to rely on Domain Name System (DNS) to

Specifying Properties for an Oracle Web Cache System Component

2-22 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

resolve the host name, use a different name resolution mechanism, such as the
UNIX etc/hosts file.

■ ANY to represent any IP address

6. In the Port field, enter the listening port from which Oracle Web Cache receives
client requests for the Web site.

Ensure that this port number is not already in use.

Port numbers less than 1024 are reserved for use by privileged processes on UNIX.
To configure Oracle Web Cache to listen on a port less than 1024, such as on port
80, run the Oracle Web Cache webcached executable with the root privilege. If the
webcached executable is not run as root, Oracle Web Cache fails to start.

See Section 5.9 for instructions on changing the webcached executable to run as
root.

7. If you are changing the listening port from an HTTP port to an HTTPS port, see
Section 5.4.2 to configure SSL settings.

8. Click OK.

2.11.1.4 Modifying Oracle Web Cache Operation Ports
To modify ports from which Oracle Web Cache receives administration, invalidation,
or statistics monitoring requests:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration > Ports Configuration.

The Ports Configuration page displays.

3. Select the port you want to modify and click Edit.

The Edit Port page appears.

4. In the Endpoint Attributes section, from the Port Type list, select
ADMINISTRATION, INVALIDATION, or STATISTICS.

5. In the IP Address field, specify the computer running Oracle Web Cache:

■ IP version 4 address written in a 32-bit dotted decimal notation or an IP
version 6 address written in a 128-bit notation. See Section 2.5.

■ A host name that resolves to an IP address of the computer running Oracle
Web Cache. If you do not want to rely on Domain Name System (DNS) to
resolve the host name, use a different name resolution mechanism, such as the
UNIX etc/hosts file.

■ ANY to represent any IP address

6. In the Port field, enter the listening port from which Oracle Web Cache receives
client requests for the Web site.

Ensure that this port number is not already in use.

Port numbers less than 1024 are reserved for use by privileged processes on UNIX.
To configure Oracle Web Cache to listen on a port less than 1024, such as on port
80, run the Oracle Web Cache webcached executable with the root privilege. If the
webcached executable is not run as root, Oracle Web Cache fails to start.

See Section 5.9 for instructions on changing the webcached executable to run as
root.

Specifying Properties for an Oracle Web Cache System Component

Getting Started with Administering Oracle Web Cache 2-23

7. If you are changing a port from an HTTP port to an HTTPS port, see Section 5.5.1
to configure SSL settings.

8. Click OK.

2.11.2 Task 2: Specify Origin Server Settings
Configure Oracle Web Cache with the application Web servers or proxy servers to
which it sends cache misses. Typically, Oracle Web Cache uses application Web servers
for internal sites and proxy servers for external sites outside a firewall.

If Oracle HTTP Server was installed, the installation process creates a default origin
server based on the host name and listening port of Oracle HTTP Server.

Oracle Web Cache only forwards requests to a configured origin server if the origin
server is mapped to a Web site.

When you configure multiple origin servers, ensure the host and port settings are not
identical. If you configure origin servers with duplicate host and port settings, both the
cache server and admin server processes fail to start.

To configure Oracle Web Cache with origin server information:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration and then Origin Servers.

The Origin Servers page displays.

3. Click Create.

The Create Origin Server page displays.

4. Configure the Host, Port, Capacity, Protocol, and Routing Enabled settings for
each origin server to send Oracle Web Cache requests using the descriptions in
Table 2–9.

5. For configurations with multiple origin servers, specify how you want to HTTP
distribute requests Oracle Web Cache sent to other origin servers when there is a
failure in the Failover section using the descriptions in Table 2–9.

6. Specify these settings if these origin server is a proxy server in the Proxy Web
Server section using the descriptions in Table 2–9.

7. Click Apply to apply changes.

Table 2–9 Create Origin Server

Element Description

Host Enter the host name of the origin server.

Port Enter the listening port from which the origin server receives
Oracle Web Cache requests.

Note: Oracle Web Cache must listen on the same port as the
application Web server being proxied. When configuring proxy
servers, ensure there is a corresponding listening port for every
proxied port.

Specifying Properties for an Oracle Web Cache System Component

2-24 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Capacity Enter the maximum number of concurrent connections that the
origin server can accept.

You determine this number by load testing the origin server
until it runs out of CPU, responds slowly, or until a back-end
database reaches full capacity.

In a cache cluster, Oracle Web Cache ensures that the total
number of connections from all cluster members to the origin
server does not exceed the capacity. Each cluster member is
allowed a percentage of the maximum connections, using the
following formula:

connections_from_each_cluster_member = capacity /
number_of_cluster_members

Protocol Select either HTTP to send HTTP requests on the port or HTTPS
to send HTTPS requests on the port.

Routing Enabled Click to permit Oracle Web Cache to route requests to the origin
server or leave unchecked to only serve requests from cache.

Oracle recommends not selecting this option if temporary
maintenance of an origin server is needed.

Oracle Web Cache tries to route a request matching a particular
site to all origin servers mapped to that site. If all of the origin
servers have Routing Enabled not selected, Oracle Web Cache
serves a network error page to clients. See Section 2.11.6 for
further information about configuring error pages.

Table 2–9 (Cont.) Create Origin Server

Element Description

Specifying Properties for an Oracle Web Cache System Component

Getting Started with Administering Oracle Web Cache 2-25

Failover Threshold Enter the number of allowed continuous read and write failures
with an origin server on established connections.

The default is five request and response failures.

If any connection failure occurs, Oracle Web Cache immediately
considers an origin server down.

When the threshold is met, Oracle Web Cache considers the
origin server down and performs automatic failover of the
origin servers. If an origin server fails at any time after Oracle
Web Cache has started to send a request, then Oracle Web Cache
increments the failure counter. The failure counter is reset if
there is a successful server response. A request is considered
failed if:

■ There are any network errors other than connection failure
errors.

■ The HTTP response status code is something other than 1xx,
2xx, 3xx, 4xx, 501 Not Implemented, and 505 HTTP Version
Not Supported.

After the threshold is met, Oracle Web Cache considers the
server down and uses other servers for future requests. Oracle
Web Cache starts polling the down server, by sending requests
to the URL specified in the Ping URL field. When Oracle Web
Cache receives a successful response from the server without
any network errors and the HTTP response code is not less than
100, or not equal to 500, 502, 503, 504, Oracle Web Cache
considers the server up again and uses it for future requests.

Notes:

■ The threshold does not apply if Oracle Web Cache cannot
connect to an origin server. In this case, Oracle Web Cache
immediately considers the server down and does not use it
for future requests. If there are other origin servers, Oracle
Web Cache retries the request to another origin server. If
there no servers configured, Oracle Web Cache returns an
error.

■ The failover to another origin server does not apply if there
is only one origin server left.

Ping URL Enter the URL that Oracle Web Cache uses to poll an origin
server that has reached its failover threshold:

■ For an application Web Server, enter either a relative or a
fully qualified URL that includes the domain name, or site
name, representing the virtual host of the application Web
server.

■ For a proxy server, enter a fully qualified URL that includes
the domain name, or site name, representing the virtual host
of the origin server behind the proxy server.

The default value is:

/

Rather than using a static URL, Oracle recommends using a URL
that checks the health of the application logic on the origin
server and returns the appropriate HTTP 200 or 500 status codes.

Ping Frequency (seconds) Enter the time, in seconds, that Oracle Web Cache uses to poll an
origin server that has reached its failover threshold.

The default is 10 seconds.

Proxy Web Server Click to treat this origin server as a proxy server.

Table 2–9 (Cont.) Create Origin Server

Element Description

Specifying Properties for an Oracle Web Cache System Component

2-26 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

2.11.3 Task 3: Specify Site Definitions
For Oracle Web Cache to act as a virtual server for one or more Web sites, configure
Oracle Web Cache with information about the named Web sites. For an overview of
site configuration, see Section 2.2.

To create site definitions:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration and then Sites.

The Sites page displays.

3. From the Site Definitions section, click Create.

The Create Site page displays.

4. In the Create section, configure the elements using the descriptions in Table 2–10.

5. In the Aliases section, specify all the possible aliases for the site to ensure requests
are directed to the correct site. An alias specifies the host and port in which
browsers use to connect to the site.

a. Click Create to create an alias.

b. Configure the Host and Port fields using the descriptions in Table 2–10.

6. Click OK.

7. Repeat Steps 3 to 6 for each additional site.

8. In the Sites page, use the Move Up and Move Down icons to order the definitions.

Oracle Web Cache resolves an incoming request first to a site definition, and then
to the first matching site-to-origin server mapping. See Section 2.2 for more
information about how Oracle Web Cache uses the order of site definitions and
site-to-server mappings to match requests.

9. Click Apply.

Username Enter the user name for the proxy server administrator.

Password Enter the password of the proxy server administrator

Confirm Password Reenter the password for the proxy server administrator.

Table 2–10 Create Site Page

Element Description

Host In the Create Site section, enter the site pattern, such as
www.company.com. To enable Oracle Web Cache to match
requests to this site, do not add protocol information (http://
or https://) to the host name.

In the Aliases section, enter the alias name for the site, such as
company.com. To enable Oracle Web Cache to match requests
to this alias, do not add protocol information (http:// or
https://) to the host name.

Note: Do not use the wildcard * to represent multiple sites.

Table 2–9 (Cont.) Create Origin Server

Element Description

Specifying Properties for an Oracle Web Cache System Component

Getting Started with Administering Oracle Web Cache 2-27

2.11.3.1 Disabling Compression for All Responses
You can disable Oracle Web Cache from compressing all responses.

1. For named sites, deselect the Compression option in the Create Site page in
Fusion Middleware Control, as described in Section 2.11.3.

2. For undefined sites for requests that do not match any site, use Oracle Web Cache
Manager and perform the following tasks:

a. From Oracle Web Cache Manager, in the navigator frame, select Origin
Servers, Sites, and Load Balancing > Site Definitions. See Section 2.7.2.

The Site Definitions page displays.

b. Select the Undefined Sites row, and then click Show/Edit Selected.

The Show/Edit Undefined Sites Definition dialog displays.

c. For the Site-Wide Compression element, click No.

d. Click Submit.

e. Click Apply Changes.

f. Restart Oracle Web Cache. See Section 2.13.

Port Enter the HTTP or HTTPS port number from which Oracle Web
Cache is listening for incoming requests.

URL Prefix To distinguish sites that share the same host name, enter the
path prefix of the URLs. Ensure the prefix starts with "/". Do not
include the file name or embedded URL parameters in the
prefix.

For example, the following URLs share the same site name, but
belong to two entirely differently applications potentially hosted
on entirely different computers:

http://www.company.com/portal/page?_pageid=33,4232&_
dad=portal
http://www.company.com/um/traffic_cop?mailid=inbox

These URLs are from completely different applications hosted
on the same or different origin server. While the first URL shows
an mail user a front page after login, the second URL displays an
inbox. If the site host name is defined as www.company.com,
then you specify the prefixes as /portal and /um to distinguish
the sites.

Default Site Click this option to make this site the default site Oracle Web
Cache uses to forward requests without host information.

Compression Click to instruct Oracle Web Cache to serve cacheable and
non-cacheable content compressed to browsers. Not selecting
this option means you are instructing Oracle Web Cache to not
serve compressed content for this site.

See Section 1.2.5 to understand when Oracle Web Cache
automatically disables compression.

You can disable compression for requests that do not match any
site using Oracle Web Cache Manager. See Section 2.11.3.1.

Table 2–10 (Cont.) Create Site Page

Element Description

Specifying Properties for an Oracle Web Cache System Component

2-28 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

2.11.4 Task 4: Map Site Definitions to Origin Servers
After you specify site definitions, you create ordered mappings of sites to origin
servers. For an overview of site configuration, see Section 2.2.

If Oracle HTTP Server was installed, the installation process creates a default
site-to-server mapping based on the host name and listening port of Oracle HTTP
Server.

If you configured multiple origin servers in Section 2.11.2 for load balancing, then
create one site-to-server mapping that maps all the applicable origin servers to the site.
In that site-to-server mapping, select all the origin servers that apply for the site. If you
split the origin servers among multiple site-to-server mappings, load balancing for the
site does not occur in the intended manner.

To map sites to origin servers:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration and then Sites.

The Sites page displays.

3. From the Site-to-Server Mapping section, click Create.

The Create Site-to-Server Mapping page displays.

4. Configure the Host Pattern, Port Pattern, and Prefix elements:

a. In the Host Pattern field, enter the site pattern, such as www.company.com.
To enable Oracle Web Cache to match requests to this site, do not add protocol
information (http:// or https://) to the host name.

You can use the wildcard * in the Host Pattern field in the following ways:

 - Map multiple site names to one or more application Web server or proxy
servers. For example, *.company.com can be used to match sites
site1.company.com and site2.company.com.

- Route cache misses to sites outside a firewall and accessible by a proxy
server. For example, * can be used to map to proxy server proxy-host.

b. In the Port Pattern field, enter the HTTP or HTTPS port number for the Web
site from which Oracle Web Cache is listening for incoming requests.

You can use the wildcard * in the Port Pattern field to map the same site name
with different port numbers to the same origin servers. If the origin servers are
proxy servers, ensure they were configured to listen on the same port as the
application Web server being proxied, as described in Section 2.11.2.

5. In the Origin Servers section, select the origin servers.

If you select multiple origin servers, the servers must be of the same type and use
the same protocol on their listening port (HTTP or HTTPS). For example, you
cannot have a mix of application Web servers and proxy servers

6. Click OK.

7. Repeat Steps 3 to 6 for each additional mapping.

8. In the Sites page, use the Move Up and Move Down features to order the
mappings.

Oracle Web Cache resolves an incoming request first to a site definition, and then
to the first matching site-to-origin server mapping. See Section 2.2 for more

Specifying Properties for an Oracle Web Cache System Component

Getting Started with Administering Oracle Web Cache 2-29

information about how Oracle Web Cache uses the order of site definitions and
site-to-server mappings to match requests.

9. Click Apply.

2.11.5 Task 5: Set Resource Limits and Network Thresholds
For more information about resource limits, see Section 2.3.

To specify caching and network thresholds for Oracle Web Cache:

1. From Oracle Web Cache Manager, in the navigator frame, select Properties >
Resource Limits. See Section 2.7.2.

2. For each cache member, specify the following settings:

a. In the Maximum Cache Size field, enter the amount of memory the Oracle
Web Cache requires.

For more information about the value to enter, see Section 2.3.1

b. In the Maximum Incoming Connections field, enter the maximum number of
incoming connections to Oracle Web Cache.

For more information about the value to enter, see Section 2.3.2.

3. For all the caches, specify the maximum size of objects to be stored in the cache:

a. In the Maximum Cache Size table, click Edit.

b. Select an option:

- Don't set maximum cached object size: Select if you not want to limit the
size of objects that are stored in the cache.

- Set maximum cached object size: Select to specify a maximum size of objects
to be stored in the cache. Then, specify the size in kilobytes (KB).

For more information about the value to enter, see Section 2.3.3.

4. From Oracle Web Cache Manager, select Properties > Network Timeouts.

5. For all the caches, modify the network timeouts:

a. From the For Cache list, select a specific cache.

b. Select a timeout type and click Edit Selected. For more information about the
timeouts, see Section 2.3.4.

c. In the Edit dialog for the threshold, modify the value for the Duration field or
select Use Default to use the default value.

For the keep-alive timeout, if you set the value to 0, the connection to the client
is not kept open. In addition, Oracle Web Cache sends the following
response-header field in the response:

Connection: Close

For more information about the value to enter, see Section 2.3.4.

d. Select option Use for all caches in the cluster to apply the duration to all
caches; deselect the option to apply the change to current cache only.

e. Click Submit.

6. Click Apply Changes to apply changes.

Specifying Properties for an Oracle Web Cache System Component

2-30 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

You can always revert to the default values. In the Network Timeouts page, click
Use Defaults, and then click Apply Changes to apply changes.

2.11.6 Task 6: Configure Error Pages
For situations in which there is a network communication error, site busy error, or ESI
<esi:include> error, applications serve error pages. Rather than burden the origin
server with this task, you can configure these pages to be served from Oracle Web
Cache.

To configure Oracle Web Cache to serve error pages for a site:

1. Create error pages and place them in the following directory locations:

(UNIX) ORACLE_INSTANCE/<instance_name>/config/WebCache/<webcache_name>/files
(Windows) ORACLE_INSTANCE\<instance_name>\config\WebCache\<webcache_name>\files

The default settings are as follows:

■ For network errors, the default setting is set to network_error.html. This
error page is served when there is a network problem while connecting,
sending, or receiving a response from an origin server for a cache-miss
request.

■ For site busy errors, the default setting is set to busy_error.html. This page
is served when origin server capacity is reached.

■ For ESI default fragments, the default setting is set to esi_fragment_
error.txt. This page is served when Oracle Web Cache cannot fetch the src
specified in an <esi:include> tag and the alt attribute, onerror attribute,
or the try |attempt |except block are either not present or fail.

For a production environment, modify the defaults or create entirely new error
pages to be consistent with other error pages for the site.

2. From Oracle Web Cache Manager, in the navigator frame, select Origin Servers,
Sites, and Load Balancing > Error Pages.

The Error Pages page appears.

3. Select either Default Pages or a site name in the table, and then click Edit.

The Edit Error Pages dialog box appears.

4. In the Network Error Page field, enter the file name of the error page delivered for
network communication problems between Oracle Web Cache and the Web site.

If you are using the default network_error.html page, leave the field as is.

5. In the Site Busy Page field, enter the file name of the error page delivered when a
Web site is saturated with requests.

If you are using the default busy_error.html page, leave the field as is.

6. In the ESI Default Fragment field, enter the file name of the page delivered when
Oracle Web Cache cannot retrieve an HTML fragment for an <esi:include> tag.

If you are not using <esi:include> tags for partial page caching or you want to
use only ESI language elements for exceptions, do not enter a value.

7. Click Apply Changes.

If you selected Default Pages, Oracle Web Cache applies the new settings to all
defined sites with the default page setting. However, Oracle Web Cache does not

Creating Session Definitions

Getting Started with Administering Oracle Web Cache 2-31

apply the new setting to undefined sites. If you selected a specific site in Step 3,
Oracle Web Cache applies the new settings to the specific site.

2.11.7 Task 7: Restart Oracle Web Cache
See Section 2.13 for instructions on restarting Oracle Web Cache.

2.12 Creating Session Definitions
You create session definitions for the following features:

■ Specify how session requests are served by the cache

■ Enable session binding, whereby a user session for a particular site is bound to an
origin server to maintain state for a period.

■ Substitute session information in session-encoded URLs

When you enable these features, you must select a session definition.

To create a session definition:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration, and then Session
Configuration.

The Session Configuration page displays.

3. From the Site list, select the specific site for which you want to apply this session
definition. To create a global session definition that can be applied to any site,
select Global.

See Section 2.11.3 to specify additional sites.

4. In the Session Definitions section, click Create.

A new row in the table appears.

5. In the Session Name field, enter an easy-to-remember unique name for the
session.

6. Enter the cookie name in the Cookie Name field and the embedded URL
parameter in the URL Post Body Parameters field.

If you enter both a cookie name and an embedded URL parameter, keep in mind
that both must be used to support the same session. If they support different
sessions, create separate session definitions.

7. In the URL Post Body Parameters field, enter the embedded URL parameter or
POST body parameter containing the session information.

8. In the Default Value field, enter the default string for Oracle Web Cache to use for
the cookie or embedded URL parameter value. Oracle Web Cache uses the default
string for those requests without the cookie or parameter information. For these

Note: When a cookie expires, the client browser removes the cookie
and subsequent requests for the object are directed to the origin server.
To avoid pages from being served past the client session expiration
time, ensure that the session cookie expires before the application Web
server expires the client session.

Starting and Stopping Oracle Web Cache

2-32 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

requests, Oracle Web Cache substitutes the session ID information with the default
string. The default string defaults to default.

9. Click Apply to apply changes

10. Restart Oracle Web Cache. See Section 2.13.

For more information about Oracle Web Cache properties requiring session
definitions, see:

■ Section 3.5 to configure session binding

■ Section 6.8.6 to configure session caching rules

■ Section 6.8.7 to configure support for session-encoded URLs

2.13 Starting and Stopping Oracle Web Cache
Most configuration changes are static. When you apply static changes, you must
restart Oracle Web Cache to apply changes.

However, Oracle Web Cache recognizes some changes as dynamic. Oracle Web Cache
Manager provides dynamic configuration for the following features:

■ Request filtering in both Fusion Middleware Control and Oracle Web Cache
Manager

■ Setting buffering and verbosity detail level in the Event Logs page (Logging and
Diagnostics > Event Logs) in Oracle Web Cache Manager

■ Setting buffering in the Access Logs page (Logging and Diagnostics > Access
Logs) in Oracle Web Cache Manager

■ Enabling and disabling of diagnostics information in the HTML response body of
an object in the Diagnostics page (Logging and Diagnostics > Diagnostics) in
Oracle Web Cache Manager

■ Setting routing to origin servers in the Origin Servers page (Origin Servers, Sites,
and Load Balancing > Origin Servers) in Fusion Middleware Control

Anytime the Oracle Web Cache configuration is statically modified, you must stop and
restart Oracle Web Cache processes:

■ The admin server process manages the administrative interface.

■ The cache server process manages the cache.

The cache server binary is managed by the webcached executable, and the admin
server binary webcachea. These executable reside in the following directories:

(UNIX) ORACLE_HOME/webache/bin
(Windows) ORACLE_HOME\bin

When you stop Oracle Web Cache, all objects are cleared from the cache. In addition,
all statistics are cleared.

After you configure Oracle Web Cache, restart Oracle Web Cache. To restart Oracle
Web Cache, use these tools:

■ Use Fusion Middleware Control or opmnctl command-line tool to restart the
cache or admin server processes.

■ Use Oracle Web Cache Manager to restart the cache server process.

You must restart both the cache server and admin server processes if you modified
any of these configuration settings:

Starting and Stopping Oracle Web Cache

Getting Started with Administering Oracle Web Cache 2-33

■ Administration port properties (Section 2.11.1.4)

■ Trusted subnets (Section 5.3)

■ User and group ID information (Section 5.9.1)

2.13.1 Starting and Stopping Using opmnctl
To start, stop, or restart the Oracle Web Cache processes with opmnctl:

1. Determine the status of Oracle Web Cache. From the command line, enter:

(UNIX) ORACLE_INSTANCE/bin/opmnctl status
(Windows) ORACLE_INSTANCE\bin\opmnctl status

OPMN generates a list of the running processes. The following message indicates
that the Oracle Web Cache admin server (WebCache-admin) and the cache
server (WebCache) are already running:

opmnctl status -l
Processes in Instance: instance1
---------------------------------+--------------------+---------+----------+---
---------+----------+-----------+------
ias-component | process-type | pid | status |
uid | memused | uptime | ports
---------------------------------+--------------------+---------+----------+---
---------+----------+-----------+------
webcache1 | WebCache-admin | 11244 | Alive |
458185369 | 45852 | 180:27:00 | http_admin:7786
webcache1 | WebCache | 11243 | Alive |
458185368 | 72540 | 180:27:00 | http_stat:7787,http_invalidation:7788,https_
listen:7789,http_listen:7785
ohs1 | OHS | 6077 | Alive |
458185358 | 349220 | 180:48:14 | https:9999,https:4443,http:7777

2. To start, stop, or restart both the admin server (WebCache-admin) and the cache
server (WebCache) processes, from the command line, enter:

opmnctl startproc|stopproc|restartproc ias-component=component_name

To individually start, stop, or restart the admin server (WebCache-admin) and
the cache server (WebCache) processes, from the command line, enter:

opmnctl startproce|stopproc|restartproc ias-component=component_name
process-type=WebCache-admin

opmnctl startproce|stopproc|restartproc ias-component=component_name
process-type=WebCache

For more information about opmnctl for Oracle Web Cache, see the following:

■ Section 2.8 for a list of the opmnctl commands for Oracle Web Cache

■ Oracle Fusion Middleware Oracle Process Manager and Notification Server
Administrator's Guide to learn more about using opmnctl

2.13.2 Starting and Stopping Using the Fusion Middleware Control
To start, stop, or restart Oracle Web Cache from Fusion Middleware Control:

1. Start Fusion Middleware Control. See Section 2.6.1.

Starting and Stopping Oracle Web Cache

2-34 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

2. From the navigation pane, expand the farm and then the Web Tier installation
type.

3. Select the Oracle Web Cache component, such as webcache1.

4. View the target name to determine the status of the cache:

The arrow reflects the up or down status of the cache server process, not the
admin server process.

A green up arrow means the following:

■ The cache server is running, but the admin server process is not running.

■ Both the cache server and admin server process are running.

A red down arrow means the following:

■ The cache server is not running, but the admin server process is running.

■ Both the cache server and admin server process are not running.

If the admin server process is down, the context pane for the configuration pages
displays an error, indicating that configuration is unavailable because the admin
server process is down.

5. From the Web Cache menu, choose Control, then Start Up, Shut Down, or
Restart.

These commands start, stop, or restart both processes, if they have the same up or
down status. If the two processes have different up and down statuses, then
Fusion Middleware Control starts, stops, or restarts the appropriate process. For
example, if the cache server process is running, but the admin server process is
not and you choose Start Up, then only the admin server is started.

2.13.3 Starting and Stopping Using Oracle Web Cache Manager
Oracle Web Cache Manager enables you to start and stop the cache server process.
You must use Fusion Middleware Control or opmnctl to start, stop, or restart the
admin server process.

To start, stop, or restart the cache server process with Oracle Web Cache Manager:

1. Start Oracle Web Cache Manager. See Section 2.7.1.

2. In the navigator frame, select Operations > Cache Operations. See Section 2.7.2.

The Cache Operations page appears in the right pane.

3. Select the cache, and then click Start, Stop, or Restart.

To perform the operation on one cache in a cache cluster:

Select one cache, choose Selected Cache from the Operate On field, and then click
Start, Stop, or Restart.

To perform the operation on all caches in a cache cluster:

Choose All Caches from the Operate On field, and then click Start, Stop, or Restart.

3

Configuring High Availability Solutions 3-1

3 Configuring High Availability Solutions

This chapter describes how to configure and implement high availability solutions
using Oracle Web Cache.

This chapter includes the following topics:

■ Section 3.1, "Overview of Origin Server Load Balancing and Failover"

■ Section 3.2, "Overview of Session Binding"

■ Section 3.3, "Overview of Cache Clusters"

■ Section 3.4, "Overview of High Availability without a Hardware Load Balancer"

■ Section 3.5, "Configuring Session Binding"

■ Section 3.6, "Configuring a Cache Cluster for Caches Using the Same Oracle
WebLogic Server"

■ Section 3.7, "Configuring a Cache Cluster for Unassociated Caches or Caches
Using Different Oracle WebLogic Servers"

■ Section 3.8, "Configuring Oracle Web Cache as a Software Load Balancer"

■ Section 3.9, "Configuring Microsoft Windows Network Load Balancing"

3.1 Overview of Origin Server Load Balancing and Failover
You can configure Oracle Web Cache with the application Web servers or proxy
servers to which it sends cache misses. Typically, Oracle Web Cache uses application
Web servers for internal sites and proxy servers for external sites outside a firewall.

This section covers the following concepts:

■ Section 3.1.1, "Surge Protection"

■ Section 3.1.2, "Stateless Load Balancing"

■ Section 3.1.3, "Backend Failover"

For instructions on configuring origin servers, see Section 2.11.2.

3.1.1 Surge Protection
Oracle Web Cache passes requests for non-cacheable, stale, or missing objects to origin
servers. To prevent an overload of requests on the origin servers, Oracle Web Cache
has a surge protection feature that enables you to set a limit on the number of
concurrent requests that the origin servers can handle. When the limit is reached,
subsequent requests are queued. If the queue is full, then Oracle Web Cache rejects the
request and serves a site busy error page to the client that initiated the request.

Overview of Origin Server Load Balancing and Failover

3-2 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

3.1.2 Stateless Load Balancing
Most Web sites are served by multiple origin servers running on multiple computers
that share the load of HTTP and HTTPS requests. All requests that Oracle Web Cache
cannot serve are passed to the origin servers. Oracle Web Cache balances the load
among origin servers by determining the percentage of the available capacity, the
weighted available capacity of each origin server. Oracle Web Cache sends a request
to the origin server with the most weighted available capacity. The weighted available
capacity is determined by the following formula:

(Capacity - Load) / Capacity

where:

■ Capacity is the maximum number of concurrent connections that the origin
server can accept

■ Load is the number of connections currently in use

If the weighted available capacity is equal for multiple origin servers, Oracle Web
Cache sends requests to the origin servers using round robin. With round robin, the
first origin server in the list of configured servers receives the request, then the second
origin server receives the second request. If the weighted available capacity is not
equal, Oracle Web Cache sends the request to the origin server with the most available
capacity.

If the load of origin servers is equivalent, Oracle Web Cache continues to use round
robin, even when capacity is not equal for origin servers. Therefore, it is possible to see
an even distribution of requests to origin server when the capacities are not configured
to be the same.

To configure load balancing for a site, set the capacity of each origin server, and create
one site-to-server mapping that maps all the applicable origin servers to the site.

For further information about configuration, see:

■ Section 2.11.2 for instructions on specifying capacity

■ Section 2.11.4 for instructions on creating site-to-server mappings

Figure 3–1 shows two sites, www.company.com:80 and www.server.com:80. The
site www.company.com:80 is supported by application servers company-host1 and
company-host2 with capacities of 50 each. The site www.server.com:80 is
supported by application servers server-host1, server-host2, and
server-host3 with capacities of 150, 50, and 50, respectively.

Overview of Origin Server Load Balancing and Failover

Configuring High Availability Solutions 3-3

Figure 3–1 Load Balancing

Assuming all application Web servers have an initial load of 0, Oracle Web Cache
distributes the requests to www.company.com:80 and www.server.com:80 in the
following manner:

■ Oracle Web Cache distributes the requests to www.company.com:80 between the
two application servers using round robin.

Oracle Web Cache distributes the requests to company-host1 and
company-host2 between the two application servers so that they maintain an
equal load. The first request is sent to company-host1. The second request is sent
to company-host2 if company-host1 is still processing the first request. The
third and subsequent requests are sent to the application server that has the
highest weighted available capacity.

When the capacities are equal, Oracle Web Cache uses round robin to distribute
requests.

Application Servers

company1-host

company2-hostOracle Web
Cache

Web
Browser

Web
Browser

Web
Browser

Web
Browser

Incoming Requests
to www.company.com:80

Incoming Requests
to www.server.com:80

Capacity:50

Capacity:50 Application Servers

server1-host

server2-host

server3-host

Capacity:150

Capacity:50

Capacity:50

Load balancing of requests

Load balancing
of requests

Site: www.server.com:80

Site: www.company.com:80

Overview of Origin Server Load Balancing and Failover

3-4 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

■ Oracle Web Cache distributes the requests to www.server.com:80 between
three origin servers using the weighted available capacity percentage.

The first request to www.server.com:80 is sent to server-host1, because it is
the first in the configured list. The second request is sent to server2-host,
because server-host1 is still processing the first request and has a weighted
available capacity of 99.3 percent and server-host2 has a weighted available
capacity of 100 percent. The third request is sent to server-host3 because
server2-host is still processing a request and has a weighted available capacity
of 98 percent and server3-host has a weighted available capacity of 100
percent. The fourth request is sent to server-host1 because server-host2
and server3-host are still processing requests and have weighted available
capacities of 98 percent. The fifth request is sent to server-host1 because its
weighted available capacity is 98.6 percent, which is still greater than
server-host2 and server-host3, respectively.

When the capacities and loads are not equal, Oracle Web Cache uses the weighted
available capacity to distribute requests. If requests were processed before new
requests came in, then it is possible for all three origin servers to have loads of 0. In
this case, Oracle Web Cache uses round robin.

If you do not require caching support and need a low-cost solution to a hardware load
balancer, you can configure Oracle Web Cache solely as a software load balancer. This
configuration mode is useful for managing traffic to a low-volume, departmental, or
test Web site. See Section 3.4 for further information.

3.1.3 Backend Failover
After a specified number of continuous request failures, Oracle Web Cache considers
an origin server as failed. When an origin server fails, Oracle Web Cache automatically
distributes the load over the remaining origin servers and polls the failed origin server
for its current up or down status until it is back online. Existing requests to the failed
origin server result in errors. However, new requests are directed to the other origin
servers. When the failed server returns to operation, Oracle Web Cache includes it in
its weighted available capacity to load balance requests.

For further information about configuring the number of request failures, see
Section 2.11.2.

The failover feature is shown in Figure 3–2. An outage of server-host3, which had
a capacity of 50, results in 75 percent of requests being distributed to server-host1
and 25 percent request being distributed to server-host2.

Overview of Session Binding

Configuring High Availability Solutions 3-5

Figure 3–2 Failover

3.2 Overview of Session Binding
You can configure Oracle Web Cache to support session binding, whereby a user
session for a particular site is bound to an origin server to maintain state for a period.
To use this feature, the origin server itself must maintain state; that is, it must be
stateful.

If a request is forwarded to an origin server for an object requiring session binding, the
origin server creates the user session by including the session information to clients
through Oracle Web Cache in the form of a session cookie or an embedded URL
parameter. Oracle Web Cache does not process the value of the parameter or cookie; it
simply passes the information back to the client browser. When a client includes the
session information in a subsequent request, Oracle Web Cache forwards the request
to the origin server that created the user session. Oracle Web Cache binds the user
session to that particular origin server.

Figure 3–3 shows how Oracle Web Cache supports objects that use session binding.

company1-host

company2-hostOracle Web
Cache

Web
Browser

Web
Browser

Web
Browser

Web
Browser

Incoming Requests
to www.company.com:80

Incoming Requests
to www.server.com:80

Capacity:50

Capacity:50

server1-host

server2-host

server3-host

Capacity:150

Capacity:50

Load balancing of requests

Load balancing
of requests

Site: www.server.com:80

Site: www.company.com:80

Application Servers
www.company1.com

Application Servers

Overview of Session Binding

3-6 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Figure 3–3 Session Binding

The steps for how session binding works for requests are as follows:

1. When a request first comes in, Oracle Web Cache uses load balancing to determine
to which origin server the request is forwarded. In this example, application server
www.server2.com is selected.

2. If the requested object requires session binding, the origin server sends the session
information back to the client through Oracle Web Cache in the form of a cookie or
an embedded URL parameter.

3. Oracle Web Cache sends subsequent requests for the session to the origin server
that established the session, bypassing load balancing. In this example, application
server www.server2.com handles the subsequent requests.

For instructions on configuring origin servers, see Section 2.12.

If you configure a cache cluster, when you configure session binding, do not select the
Internal-Tracking mechanism option, as it does not work for cache clusters. The other
mechanisms work for cache clusters. See Section 3.6.4 for further information.

Application
Servers

server1-host

server2-host

server3-host

Oracle Web
Cache

Web
Browser

1

3

2

1

3

2

Incoming Requests
to www.server.com:80

Overview of Cache Clusters

Configuring High Availability Solutions 3-7

3.3 Overview of Cache Clusters
In a cache cluster, multiple system components of Oracle Web Cache operate as one
logical cache. This one logical cache is referred to as the cache cluster member. The
cache cluster members communicate with one another to request cacheable content
that is cached by another cache cluster member and to detect when a cache cluster
member fails.

Figure 3–4 shows an Oracle Web Cache cluster that contains three cache cluster
members. As the figure shows, the cluster members communicate with one another as
well as with the application Web servers and with the clients.

Notes:

■ When a session expires, Oracle Web Cache does not continue to
bind the user session to the origin server. Instead, Oracle Web
Cache uses load balancing to choose an origin server. To avoid
pages being served past the client session expiration time, ensure
that the session cookie expires before the origin server expires the
client session.

■ If an origin server is busy, Oracle Web Cache disables session
binding to that origin server.

Overview of Cache Clusters

3-8 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Figure 3–4 Oracle Web Cache Cluster Architecture

Oracle Web Cache uses the relative capacity of each cache instance to distribute the
cached content among the cache cluster members. In effect, it assigns a cache cluster
member to be the owner of a particular object. This content is called owned content.

In addition to the owned content, Oracle Web Cache stores popular objects in the cache
of each cluster member. These objects are known as on-demand content. By storing
the on-demand content, Oracle Web Cache responds to requests for those objects
quickly and decreases the number of cache misses. Fewer requests are sent to the
application Web server. The result is improved performance.

A cache cluster uses one configuration that is synchronized with all cluster members.
The configuration contains general information, such as security, session information,
and caching rules, which is the same for all cluster members. It also contains
cache-specific information, such as capacity, administration and other ports, resource
limits, and log files, for each cluster member.

Each member must be authenticated before it is added to the cache cluster. The
authentication requires that the administration username and password of the Oracle
Web Cache instance to be added be the same as the administration username and
password of the cluster.

When you add a cache to the cluster, the cache-specific information of the new cluster
member is added to the configuration of the cache cluster. Then, Oracle Web Cache
synchronizes the configuration to all members of the cluster. Because adding a new

Application
Server

Application
Server

Internet

Oracle Web
Cache Cluster

Overview of Cache Clusters

Configuring High Availability Solutions 3-9

member changes the relative capacity of each Web cache, Oracle Web Cache uses the
information about capacity to recalculate which cluster member owns which content.

When cache cluster members detect the failure of another cluster member, the
remaining cache cluster members automatically take over ownership of the content of
the failing member. When the cache cluster member is reachable again, Oracle Web
Cache again reassigns the ownership of the content.

When you remove a Web cache from a cache cluster, the remaining cache cluster
members take over ownership of the content of the removed member. In addition, the
configuration information about the removed member is deleted from the
configuration and the revised configuration is synchronized with the remaining cache
cluster members.

In a cache cluster, administrators can decide whether to propagate invalidation
messages to all cache cluster members or to send invalidation messages individually
to cache cluster members.

Cache clusters provide the following benefits:

■ High availability

With or without cache clusters, Oracle Web Cache ensures that cache misses are
directed to the most available, highest-performing Web server. With cache clusters,
Oracle Web Cache supports failure detection and failover of caches. If a Web cache
fails, other members of the cache cluster detect the failure and take over
ownership of the cacheable content of the failed cluster member.

■ Scalability and performance

By distributing the site's content across multiple caches, more content can be
cached and more client connections can be supported, expanding the capacity of
your Web site.

By deploying multiples caches in a cache cluster, you make use of the processing
power of more CPUs. Because multiple requests are executed in parallel, you
increase the number of requests that are served concurrently.

Network bottlenecks often limit the number of requests that can be processed.
Even on a node with multiple network cards, you can encounter operating system
limitations. By deploying caches on separate nodes, more network bandwidth is
available. Response time is improved because of the distribution of requests.

In a cache cluster, fewer requests are routed to the application Web server.
Retrieving content from a cache (even if that request is routed to another cache in
the cluster) is more efficient than materializing the content from the application
Web server.

■ Reduced load on the application Web server

In a cache cluster environment, popular objects are stored in multiple caches. If a
cache fails, requested cacheable objects are likely to be stored in the cache of
surviving cluster members. As a result, fewer requests for cacheable objects
require routing to the application Web server even when a cache fails.

When a failed cache returns to operation, it has no objects cached. In a noncluster
environment with multiple independent caches, that cache must route cache
misses to the application Web server. In a cache cluster environment, that cache
can route cache misses to other caches in the cluster, reducing the load on the
application Web server.

Cache clusters maximize system resource utilization. When each cache in a cache
cluster resides on a separate node, more memory is available than for one cache on

Overview of High Availability without a Hardware Load Balancer

3-10 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

a single node. With more memory, Oracle Web Cache can cache more content,
resulting in fewer requests to the application Web server.

■ Improved data consistency

Because Oracle Web Cache uses one set of invalidation rules for all cache cluster
members and because it makes it easy to propagate invalidation requests to all
cache cluster members, the cached data is more likely to be consistent across all
caches in a cluster.

You can configure a cache cluster that does not support requests between cache
cluster members, but allows propagating invalidation requests, as well as
synchronizing configuration changes. See Section 3.6.7 for more information.

■ Manageability

Cache clusters are easy to manage because they use one configuration for all cache
cluster members. For example, you specify one set of caching rules and one set of
invalidation rules. Oracle Web Cache distributes those rules throughout the cluster
by synchronizing the configuration to each cluster member.

3.4 Overview of High Availability without a Hardware Load Balancer
For environments in which a hardware load balancer is not available, you can select to
configure the following options:

■ Section 3.4.1, "Oracle Web Cache Solely as a Software Load Balancer or Reverse
Proxy"

■ Section 3.4.2, "Operating System Load Balancing Support"

3.4.1 Oracle Web Cache Solely as a Software Load Balancer or Reverse Proxy
You can configure a special mode of Oracle Web Cache that enables you to use Oracle
Web Cache solely as a software load balancer of HTTP traffic or reverse proxy to
origin servers. This configuration mode is useful to:

■ Manage low-volume, departmental, or test Web sites

■ Manage traffic in the DMZ between a hardware load balancer and an application
using Oracle Portal or Oracle Single Sign-On

This mode does not cache any content or provide support for the following features:

■ Compression: Oracle Web Cache ignores all compression settings.

■ ESI: Oracle Web Cache does not assemble ESI content.

■ Cache hierarchies: If you plan to configure two caches in a cache hierarchy, then
you should not configure one cache as a load balancer.

You can deploy a single Oracle Web Cache server as a load balancer. However, this
deployment makes the Oracle Web Cache server a single point of failure for your
application. You can instead configure a cache cluster using multiple Oracle Web
Cache servers with operating system load balancing capabilities. Take note of the
capacity changes mentioned earlier in this section.

In this mode, you can configure Oracle Web Cache to load balance HTTP traffic in
front of an application using ESI or in front of another Oracle Web Cache. The Oracle
Web Cache load balancer does not process ESI content or participate in hierarchical
caching. For example, a typical Oracle Portal deployment has a built-in Oracle Web

Configuring Session Binding

Configuring High Availability Solutions 3-11

Cache used for ESI assembly. For these configurations, do not configure the Oracle
Web Cache used for ESI assembly as a load balancer.

If you require other Oracle Web Cache features, such as caching or compression
support, do not configure this mode. Instead, configure a hardware load balancer or
operating system load balancing support, and use the load balancing feature to
manage requests to origin servers.

For more information, see:

■ Section 3.8 for instructions on configuring Oracle Web Cache as a load balancer

■ Section 3.9 for instructions on configuring operating system load balancing
capabilities

■ Section 3.6 for instructions on configuring a cache cluster

■ Oracle Fusion Middleware Enterprise Deployment Guide for Java EE for instructions on
using Oracle Web Cache as reverse proxy for Oracle Portal and Oracle Single
Sign-On.

3.4.2 Operating System Load Balancing Support
Certain operating systems provide load balancing support, which can increase the
availability of Oracle Web Cache, particularly in cache clusters.

When the operating system detects a failure of one cache, automatic IP takeover is
used to distribute the load to the remaining caches in the cluster configuration.
Because requests are sent to the virtual IP address, not to a specific host, requests can
be served even if one hosts is unreachable.

In addition, some operating systems provide load balancing for incoming requests.
You can configure the operating system to balance the load of incoming requests
across caches on multiple nodes.

A network load balancer does not provide all the features, such as firewall or ping
URL mechanisms, that a hardware load balancer may provide, but if those needs are
met, you could consider using a network load balancer.

Section 3.9 describes how to configure a network load balancer on one operating
system.

3.5 Configuring Session Binding
For more information about session binding, see Section 3.2.

To configure session binding, you specify a set of session binding rules, and then apply
them to the sites. By default, sites are configured to use a default rule. You can use the
default rule or select another rule customized for the site.

If you decide to change the value of the default session binding rule, ensure all named
sites currently configured with this rule require session binding. If some sites do not
require session binding, leave the value of default rule, and instead specify session
binding settings for the site.

To configure session binding:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration and then select Session
Configuration.

Configuring Session Binding

3-12 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

The Session Configuration page displays.

3. From the Site list, select the site to create customized session-bindings.

Select Global to specify default settings for requests which do not match any
defined site. If you do not specify customized session-binding settings for a site,
then you can click the Use global settings option to apply the settings you specify
for Global. The default selection for the Global selection is the Disable session
binding. You change the default setting by selecting Global from the Site list and
selecting on of the other session-binding selections.

4. Create a session definition in the Session Definitions table. See Section 2.12.

- Use global settings: Select this option to apply the session-binding settings you
configured for the Global selection from the Site list.

By default, Oracle Web Cache disables session binding for all requests. The default
selection for Global is the Disable session binding option. When you first create a
site, it is set by default to use the global session binding settings

- Disable session binding: Select this option to disable session binding. This
selection is the default for the Global site. You change the default setting by
selecting Global from the Site list and selecting on of the other session-binding
selections.

- Cookie based session binding with any Set-Cookie: Select this option if the
client supports cookies and your origin server uses one or more cookies for session
state. Oracle Web Cache uses its own cookie to track a session. This cookie, which
contains routing information, is maintained between Oracle Web Cache and the
client browser. The client/server binding is initiated by the first cookie that the
application server sends to the client.

- Bind using a session: Select this option to enable binding for a specific session,
and then perform the following steps:

a. From the Session Name list, select a session to enable binding for a specific
session.

b. From the Session Binding Mechanism list, select a binding mechanism for the
selected session definition:

- Cookie Based: Select if the client supports cookies. Oracle Web Cache uses its
own cookie to track a session. This cookie, which contains routing
information, is maintained between Oracle Web Cache and the client browser.

- Session Binding IAS: Select if the application is based on OC4J. Oracle Web
Cache forwards routing information with each request to OC4J through Oracle
HTTP Server.

- Internal-Tracking: Select if the client does not support cookies and the
application is not based on Oracle HTTP Server and OC4J. This option is
intended for backward compatibility with earlier releases of Oracle Web
Cache. Oracle Web Cache maintains an in-memory routing table, of which
each entry maps a session ID to an origin server. The routing table is not
shared among cluster nodes. If you select this option and you have a cache
cluster configuration, then you must also bind at the load balancer layer.

5. Click Apply to submit changes.

6. Restart Oracle Web Cache. See Section 2.13.

Configuring a Cache Cluster for Caches Using the Same Oracle WebLogic Server

Configuring High Availability Solutions 3-13

3.6 Configuring a Cache Cluster for Caches Using the Same Oracle
WebLogic Server

To increase the availability and scalability of your Web site, you can configure multiple
instances of Oracle Web Cache to run as members of a cache cluster. For more
information about cache clusters, see Section 3.3.

To configure a cache cluster, you configure two or more Oracle Web Cache instances as
cache cluster members, and specify properties for the cluster.

A cache cluster uses one configuration that is synchronized from the current cache (the
cache to which your client browser is connected) to all cluster members. The
configuration contains settings that are the same for all cluster members as well as
cache-specific settings for each cluster member.

This section contains the following topics to aid you in configuring a cache cluster in a
environment in which all the caches are associated with the same Oracle WebLogic
Server. These instruction explain how to configure a cluster using Fusion Middleware
Control, which requires all the cache members to use the same Oracle WebLogic
Server:

■ Section 3.6.1, "Configuration Prerequisites"

■ Section 3.6.2, "Understanding Failover Threshold and Capacity Settings"

■ Section 3.6.3, "Task 1: Add Caches to the Cluster and Configure Properties"

■ Section 3.6.4, "Task 2: Enable Tracking of Session Binding"

■ Section 3.6.5, "Task 3: Synchronize the Configuration to Cluster Members"

In addition, see the following information about configuring clusters:

■ Section 3.6.6, "Removing a Cache Member from a Cluster"

■ Section 3.6.7, "Configuring Administration and Invalidation-Only Clusters"

If you have want to configure a cache cluster for a configuration in which the caches
are associated with different Oracle WebLogic Servers, follow the instructions in
Section 3.7 to use Oracle Web Cache Manager to configure the cluster.

3.6.1 Configuration Prerequisites
Because a cache cluster contains two or more instances of Oracle Web Cache, you must
have two or more instances of Oracle Web Cache installed on one or more nodes
before you configure a cache cluster. The instances must be the same version of Oracle
Web Cache. In addition, the respective passwords for the Oracle Web Cache
administrator, and the invalidator user, invalidator, must be the same across the
cluster members. If they are different, you must connect to the cache's admin server
and modify the administration password, as described in Section 5.2.

3.6.2 Understanding Failover Threshold and Capacity Settings
To ease with configuration, take the time to understand the following key
configuration settings for a cache cluster and its members:

■ Section 3.6.2.1, "Failover Threshold for the Cache Cluster"

■ Section 3.6.2.2, "Capacity for Cache Cluster Members"

Configuring a Cache Cluster for Caches Using the Same Oracle WebLogic Server

3-14 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

3.6.2.1 Failover Threshold for the Cache Cluster
You set the failover threshold when you configure cache cluster properties. This
setting reflects the number of allowed consecutive request failures before Oracle Web
Cache considers another cache cluster member to have failed. In other words, Oracle
Web Cache consecutively retries a failed member for certain number of times, before
considering the cache-member as down. The number of times Oracle Web Cache is
allowed to retry is termed as failover threshold.

Oracle Web Cache considers a request to another cache cluster member to have failed
if:

■ There are any network errors

■ The HTTP response status code is 500 Internal Server Error, 502 Bad Gateway, 503
Service Unavailable, or 504 Gateway Timeout, or less than 100.

For each failed request, Oracle Web Cache increments the failure counter for that
cluster member. This counter is kept separately by each cluster member. When a
request is successfully processed by a cluster member, Oracle Web Cache resets the
failure counter.

When the failover threshold is met, Oracle Web Cache considers the cache cluster
member to have failed. Oracle Web Cache recalculates the relative capacity of the
remaining cache cluster members. It then reassigns ownership of cache content.

When a cache cluster member is down, Oracle Web Cache starts polling the cache
cluster member. It does this by sending requests to the ping URL you specify. When
Oracle Web Cache receives a success response from the cache cluster member, it
considers that cache cluster member to be up again. It recalculates the relative capacity
of the cache cluster members and it reassigns ownership of cache content.

3.6.2.2 Capacity for Cache Cluster Members
When you configure a cache cluster member, you specify capacity for that member.

Oracle Web Cache uses capacity in two different ways:

■ As the absolute capacity for the number of concurrent incoming connections to
this cache cluster member from all other cache cluster members.

The connections are used to receive requests for owned content from other cache
cluster members. The number of connections are divided among the other cluster
members. For example, in a three-cache cluster, if the capacity of Cache_A is 50,
Cache_B can open 25 connections to Cache_A and Cache_C can open 25
connections to Cache_A.

More connections are used when another cache cluster member contains little or
no data in its cache, such as when it is initially started, when it recovers from a
failure, or after invalidation. During this time, the cluster member sends many of
the requests to its peers, the owners of the content. In most cases, these requests
are served more quickly than requests to the origin server. Having a higher
number of connections increases performance during this time and shortens the
time it takes to fully load the cache. After a cache is fully loaded, fewer of the
connections are used. There is no overhead for unused connections.

■ As the relative capacity of the cache cluster member.

The capacity of a cache cluster member is weighted against the total capacity of all
active cache cluster members. When you set the capacity, Oracle Web Cache
assigns a percentage of the ownership array to the cluster member, indicating how

Configuring a Cache Cluster for Caches Using the Same Oracle WebLogic Server

Configuring High Availability Solutions 3-15

much of the cached content is to be owned by the cluster member. The percentage
is calculated using the following formula:

cluster_member_capacity / total_capacity_of_all_active_cluster_members

For example, if cache cluster member Cache_A has a capacity of 100 and cache
cluster member Cache_B has a capacity of 300, for a total capacity of 400, Cache_A
is assigned 25 percent of the ownership array and Cache_B is assigned 75 percent
of the ownership array. That means that Cache_A owns 25 percent of the cached
content.

Note that in calculating the relative capacity, Oracle Web Cache considers the
capacity of active cluster members; it does not consider the capacity of cluster
members that it has determined to have failed.

Set the initial capacity for each cache cluster member to 10 percent of the Maximum
Incoming Connections setting.

After you have a better idea of an application's capacity needs and hit rates, fine tune
the capacity. If these two assumptions apply to your cache cluster, then apply the
following formula to determine the capacity for each cluster member:

1. Incoming traffic is distributed equally to all the cache cluster members.

2. Ownership of content is distributed equally among all the cache cluster members.

In the following formula, pick the highest value between the default value or the max_
incoming_connections formula:

max(default_value, (max_incoming_connections * (cacheable_misses%/100) * (number_
of_caches - 1) / number_of_caches))

In the formula:

■ default_value is:

– 100 for production environments

– 30 for test environments

– 0 for invalidation-only clusters

When the capacity increases, the number of file descriptors needed by Oracle Web
Cache also increases.

See Section 3.6.7 for further information about invalidation-only clusters.

■ max_incoming_connections is the Maximum Incoming Connections setting
from the Resource Limits page of Fusion Middleware Control.

■ cacheable_misses% is the percentage of requests for cacheable objects that
were not served directly by Oracle Web Cache, but were served by Oracle Web
Cache after it fetched the content from the origin server.

You can find the Cacheable Misses setting in the Web Cache Statistics page of
Fusion Middleware Control.

For example, assume a cache cluster with four members. If Oracle Web Cache is
operating at 1500 maximum incoming connections, with a 30 percent cacheable miss
rate, then the equation to calculate capacity for this configuration looks like the
following:

(1500 * (30/100) * (4 - 1) / 4

Configuring a Cache Cluster for Caches Using the Same Oracle WebLogic Server

3-16 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

The equation calculates to 337.5. You would round up to 338, which is the capacity you
would then enter for each cache cluster member.

1500 * .3 * 3 / 4 = 337.5

If you assign a capacity of 0 to a cluster member, that cluster member does not receive
requests from other cluster members. However, that cluster member does forward
requests to other cluster members, the owners of the content. If you assign a capacity
of 0 to all cluster members, Oracle Web Cache does not forward requests between
cluster members. Even when capacity is set to 0, you can still synchronize the
configuration and Oracle Web Cache can automatically propagate invalidation
requests to cluster members.

3.6.3 Task 1: Add Caches to the Cluster and Configure Properties
Before you add a cache to the cluster, ensure the conditions described in Section 3.6.1
are met.

To add cache members to a cluster with Fusion Middleware Control:

1. Navigate to the Web Cache Home page in Fusion Middleware Control for an
Oracle Web Cache instance. See Section 2.6.2.

2. From the Web Cache menu, select Administration and then select Cluster.

The Cluster page displays.

3. For each cache member you want to add:

a. Click Add.

b. In the Component field, enter the name of the cache member.

The Capacity field is auto-filled with a default value. You can modify this
value. See Section 3.6.2 for more information about capacity.

4. In the Failover Threshold field, enter the number of allowed consecutive request
failures before Oracle Web Cache considers another cache cluster member to have
failed.

The default is five failures.

See Section 3.6.2 for further information about this field.

5. In the Ping URL field, enter the URL that cache cluster members uses to attempt to
contact a cache cluster member that has reached its failover threshold.

Use a URL that is cacheable and that you can guarantee is stored in each cache.
The default is _oracle_http_server_webcache_static_.html, which is
stored in the cache.

6. In the Ping Frequency field, enter the time, in seconds, between attempts by a
cluster member to reach the failed cluster member.

The default, 10 seconds, is a reasonable interval for most situations.

7. Click Apply.

3.6.4 Task 2: Enable Tracking of Session Binding
In a cache cluster, all cache cluster members must be able to determine which origin
server established the session, although the request was routed originally through only
one cache cluster member.

Configuring a Cache Cluster for Caches Using the Same Oracle WebLogic Server

Configuring High Availability Solutions 3-17

For the Oracle Web Cache you established properties for in Section 3.6.3, configure
session binding with a session binding mechanism of Cookie Based or Session
Binding IAS. Do not use the Internal-Tracking option, as it does not work for cache
clusters.

To configure session binding with the Cookie-based mechanism, see Section 3.5.

3.6.5 Task 3: Synchronize the Configuration to Cluster Members
When you modify the cluster and apply changes, Oracle Web Cache adds the
cache-specific information from the new cache cluster members to the configuration.
For those changes to take affect in all cluster members, you must synchronize the
configuration and restart the cluster members.

To synchronize configuration from a newly-added cache member to the other caches in
the cluster with Fusion Middleware Control:

1. Navigate to the Web Cache Home page in Fusion Middleware Control for the
Oracle Web Cache you established properties for in Section 3.6.3.

2. From the Web Cache menu, select Administration and then select Cluster.

The Cluster page displays.

3. Select the other cache members in the cluster, click Synchronize.

4. Select all the cache members, select an interval for staggering the time that
operation begins on the cache sand click Start Up.

The cache cluster is ready to use.

3.6.6 Removing a Cache Member from a Cluster
To remove a cache-member from a cluster, you must not only ensure that remaining
cluster members no longer include that cache in cluster, but that the removed cache no
longer considers itself to be part of the cluster.

To remove a cache from a cluster with Fusion Middleware Control:

1. Navigate to the Web Cache Home page in Fusion Middleware Control for an
Oracle Web Cache instance, but not the cache to remove from the cluster. See
Section 2.6.2.

2. From the Web Cache menu, select Administration and then select Cluster.

The Cluster page displays.

3. Select the cache you want to remove and click Delete.

4. Select the other cache members in the cluster, click Synchronize.

5. With the other caches still selected, click Restart.

All remaining caches in the cluster no longer consider the removed cache to be
part of the cluster. However, the removed cache still considers itself to be part of
the cluster. You remedy this situation in the next steps.

6. Navigate to the Web Cache Home page in Fusion Middleware Control of the cache
you removed from the cluster.

7. From the Web Cache menu, select Administration and then select Cluster.

The Cluster page displays with all the member of the cache.

Configuring a Cache Cluster for Unassociated Caches or Caches Using Different Oracle WebLogic Servers

3-18 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

8. Select a cache except the current one, and click Delete. Repeat until only the
current cache remains in the Cluster Members list.

9. Click Restart.

3.6.7 Configuring Administration and Invalidation-Only Clusters
You can configure a cluster that supports synchronizing the configuration and
invalidation requests across all cache cluster members, but that does not forward
requests between cache cluster members. That is, in processing requests, each cluster
member acts as an individual cache and does not request objects from its peer cluster
members. However, configuration changes and invalidation requests can be
synchronized among cluster members.

You can use this configuration to simplify administration of many caches. It may be
needed in a cluster where members are separated by a firewall. For example, you can
have a cluster where two caches are located on either side of a firewall that separates
the intranet from Internet. (The network settings of such a setup—of sending Internet
traffic to one cache and intranet traffic to another—is beyond the scope of this
document.)

To manage these caches as a cluster and avoid sharing contents between the caches,
take the following steps:

1. Create a cluster and add members to it as discussed in Section 3.6.3 and
Section 3.6.4, with the following exceptions:

■ For each cluster member, set the capacity to 0.

■ In the Cluster Properties section, select option Invalidation requests sent to
any cluster member will be propagated to all cluster members.

2. Synchronize the configuration to all cluster members, as described in Section 3.6.5.

3.7 Configuring a Cache Cluster for Unassociated Caches or Caches
Using Different Oracle WebLogic Servers

This section contains the following topics to help you in configuring a cache cluster in
a configuration in which all unassociated caches are using different Oracle WebLogic
Servers. These instruction explain how to configure a cluster using Oracle Web Cache
Manager.

■ Section 3.7.1, "Task 1: Configure Cache Cluster Settings"

■ Section 3.7.2, "Task 2: Add Caches to the Cluster"

■ Section 3.7.3, "Task 3: Enable Tracking of Session Binding"

■ Section 3.7.4, "Task 4: Synchronize the Configuration to Cluster Members"

In addition, see the following information about configuring clusters:

■ Section 3.7.5, "Removing Caches from a Cluster"

■ Section 3.7.6, "Configuring Administration and Invalidation-Only Clusters"

To configure a cache cluster for a configuration in which the caches are associated with
same Oracle WebLogic Server, follow the instructions in Section 3.6 to use Fusion
Middleware Control to configure the cluster.

Configuring a Cache Cluster for Unassociated Caches or Caches Using Different Oracle WebLogic Servers

Configuring High Availability Solutions 3-19

3.7.1 Task 1: Configure Cache Cluster Settings
To configure settings for a cache cluster with Oracle Web Cache Manager:

1. From Oracle Web Cache Manager, in the navigator frame, select Properties >
Clustering. See Section 2.7.2.

The Clustering page appears. The General Cluster Information section displays the
default clusterwide values for failover and invalidation synchronization. The
Cluster Members table displays the current cache (the cache to which you are
connected) as the only cluster member. Oracle Web Cache ignores the cluster
information if there is only one cluster member.

2. In the General Cluster Information section of the Clustering page, click Edit.

The Edit General Cluster Information dialog box appears.

3. In the Cluster Name field, enter a name for the cluster.

4. In the Failover Threshold field, enter the number of allowed consecutive request
failures before Oracle Web Cache considers another cache cluster member to have
failed.

The default is five failures.

See Section 3.6.2 for further information about this field.

5. In the Ping URL field, enter the URL that cache cluster members uses to attempt to
contact a cache cluster member that has reached its failover threshold.

Use a URL that is cacheable and that you can guarantee is stored in each cache.
The default is _oracle_http_server_webcache_static_.html, which is
stored in the cache.

6. In the Ping Interval field, enter the time, in seconds, between attempts by a cluster
member to reach the failed cluster member.

The default, 10 seconds, is a reasonable interval for most situations.

7. In the Propagate Invalidation field, select Yes or No to specify whether you want
all invalidation requests from any cache cluster member to be synchronized with
other cache cluster members.

8. Click Submit.

9. In the Cluster Members table of the Clustering page, default values are displayed
for the current cache. Select the cache and click Edit Selected.

The Edit Cluster Member dialog box appears.

10. In the Cache Name field, enter a name for the Oracle Web Cache instance. The
name must be unique from the names of other caches in the cache cluster.

11. By default, the Host Name field contains the host name of the node on which
Oracle Web Cache is installed. Usually, you do not have to modify this field.

12. By default, the Oracle Home field contains the file specification for the Oracle
home in which Oracle Web Cache is installed. Usually, you do not have to modify
this field. Note that the combination of Host Name and Oracle Home must be
unique in a cache cluster.

13. In the Capacity field, enter the number of concurrent incoming connections from
other cache cluster members that Oracle Web Cache can sustain.

See Section 3.6.2 for further information about this field.

14. Click Submit.

Configuring a Cache Cluster for Unassociated Caches or Caches Using Different Oracle WebLogic Servers

3-20 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

You now have one cache, the current cache, in the cluster. However, the cluster
information is ignored until you have multiple Oracle Web Cache system
components in the cluster.

3.7.2 Task 2: Add Caches to the Cluster
Before you add a cache to the cluster, ensure the conditions described in Section 3.6.1
are met.

To add another cache to the cluster with Oracle Web Cache Manager:

1. In the navigator frame, select Properties > Clustering.

The Clustering page appears.

2. In the Cluster Members section of the Clustering page, click Add.

The Add Cache to Cluster dialog box appears.

3. In the Host Name field, enter the host name of the cache to be added to the cluster.

4. In the Admin Port field, enter the administration port for the cache to be added to
the cluster.

The administration port is the listening port for administrative requests.

5. In the Protocol for Admin Port field, select either HTTP or HTTPS to accept
HTTP or HTTPS client requests.

6. In the Cache Name field, enter a name for the cache. The name must be unique
from the names of other caches in the cache cluster.

7. In the Capacity field, enter the number of concurrent incoming connections from
other cache cluster members that Oracle Web Cache can sustain.

See Section 3.6.2 for further information about this field.

8. Click Submit.

The cache is now part of the cluster and is listed in the Cluster Member table.

9. To add more Oracle Web Cache instances to the cache cluster, repeat Steps 2
through 8.

10. When you have completed adding members to the cache cluster, click Apply
Changes.

Oracle Web Cache adds the cache-specific information from the new cache cluster
members to the cluster configuration.

You can add more Oracle Web Cache instances to the cluster at any time by choosing
Add. You can modify the settings for a cache cluster member by choosing Edit
Selected. You can delete a cache cluster member, other than the current cache, by
choosing Delete Selected.

3.7.3 Task 3: Enable Tracking of Session Binding
In a cache cluster, all cache cluster members must be able to determine which origin
server established the session, although the request was routed originally through only
one cache cluster member. To configure session binding in a cache cluster, you select a
session binding mechanism of Cookie-based. Setting this mechanism adds a cookie
that tracks session information so that it can be read by all cluster members. Oracle
Web Cache includes a Set-Cookie response-header in the response so that
subsequent requests from the client include the cookie. The cookie provides

Configuring a Cache Cluster for Unassociated Caches or Caches Using Different Oracle WebLogic Servers

Configuring High Availability Solutions 3-21

information so that any of the cluster members can resolve the binding regardless of
which cache handled the initial request.

To configure session binding with the Cookie-based mechanism, see Section 3.5.

3.7.4 Task 4: Synchronize the Configuration to Cluster Members
When you modify the cluster and apply changes, Oracle Web Cache adds the
cache-specific information from the new cache cluster members to the configuration.
For those changes to take affect in all cluster members, you must synchronize the
configuration and restart the cache server process of the cluster members.

To synchronize the configuration to new cluster members with Oracle Web Cache
Manager:

1. In the navigator frame, select Operations > Cache Operations.

The Cache Operations page appears. The Operation Needed column indicates the
caches to which the configuration should be synchronized.

2. Synchronize the configuration to all cache cluster members:

a. Select All caches in the Operate On field.

b. Select an Interval of Immediate. (No other interval is allowed for
synchronization.)

c. Click Propagate.

(Alternatively, you can synchronize the configuration to one cluster member at a
time. Click Selected cache in the Operate On field, and then click Propagate.)

When the operation completes, the Operation Needed column in the Cache
Operations page indicates the cluster members that must be restarted.

3. Stop and restart all cluster members:

a. Select All caches in the Operate On field.

b. Select an Interval to stagger the time that operation begins on the caches, and
then click Restart.

(Alternatively, you can restart one cluster member at a time.) Choose Selected
cache in the Operate On field and then click Restart.)

When the operation completes, the Operation Needed column in the Cache
Operations page indicates that no operations are needed. The cache cluster is ready to
use.

3.7.5 Removing Caches from a Cluster
To remove a cache from a cluster, you must not only ensure that remaining cluster
members no longer include that cache in cluster, but that the removed cache no longer
considers itself to be part of the cluster.

To remove a cache from a cluster with Oracle Web Cache Manager:

1. Enter the URL for the Oracle Web Cache Manager of a cache in cluster, but not the
cache to remove from the cluster.

2. In the navigator frame, select Properties > Clustering.

3. In the Cluster Members section of the Clustering page, select the cache you want
to remove from the cluster and click Delete Selected.

Configuring a Cache Cluster for Unassociated Caches or Caches Using Different Oracle WebLogic Servers

3-22 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

4. In the Oracle Web Cache Manager main window, click Apply Changes.

5. Synchronize the change to the other remaining cache cluster members:

a. In the navigator frame, select Operations > Cache Operations.

b. Select All caches in the Operate On field.

c. Select an Interval of Immediate.

d. Click Propagate.

The change is synchronized with all the remaining cluster members, but not to
the removed cluster member.

6. Restart all cluster members:

a. In the Cache Operations page, select All caches in the Operate On field.

b. Select an Interval to stagger the time that operation begins on the caches, and
then click Restart.

All remaining caches in the cluster no longer consider the removed cache to be
part of the cluster. However, the removed cache still considers itself to be part of
the cluster. To remedy that situation, take the next steps.

7. Enter the URL for the Oracle Web Cache Manager of the cache you removed from
the cluster.

8. In the navigator frame, select Properties > Clustering.

The Clustering page appears. The Cluster Members section still shows all
members of the cluster.

9. In the Cluster Members section of the Clustering page, select each cache except the
current one, and click Delete Selected. Repeat until only the current cache remains
in the Cluster Members list.

10. In the Oracle Web Cache Manager main window, click Apply Changes.

11. In the navigator frame, select Operations > Cache Operations.

12. Select the cache and click Restart.

3.7.6 Configuring Administration and Invalidation-Only Clusters
You can configure a cluster that supports synchronizing the configuration and
invalidation requests across all cache cluster members, but that does not forward
requests between cache cluster members. That is, in processing requests, each cluster
member acts as an individual cache and does not request objects from its peer cluster
members. However, configuration changes and invalidation requests can be
synchronized among cluster members.

You can use this configuration to simplify administration of many caches. It may be
needed in a cluster where members are separated by a firewall. For example, you can
have a cluster where two caches are located on either side of a firewall that separates
the intranet from Internet. (The network settings of such a setup—of sending Internet
traffic to one cache and intranet traffic to another—is beyond the scope of this
document.)

To manage these caches as a cluster and avoid sharing contents between the caches,
take the following steps:

1. Create a cluster and add members to it as discussed in Section 3.7.1 and
Section 3.7.2, with the exception noted in the following step.

Configuring Oracle Web Cache as a Software Load Balancer

Configuring High Availability Solutions 3-23

2. For each cluster member, set the capacity to 0. (Select Properties > Clustering.
Then, select a cluster member and click Edit. In the Edit Cluster Member dialog
box, set the Capacity to 0.)

3. Synchronize the configuration to all cluster members, as described in Section 3.7.4.

3.8 Configuring Oracle Web Cache as a Software Load Balancer
For an overview of high availability without a hardware load balancer, see Section 3.4.

To configure a single Oracle Web Cache server as a software load balancer:

1. Use a text editor to open webcache.xml, located in:

(UNIX) ORACLE_INSTANCE/<instance_name>/config/WebCache/<webcache_name>
(Windows) ORACLE_INSTANCE\<instance_name>\config\WebCache\<webcache_name>

2. Locate the CACHE element.

3. Add the ROUTINGONLY attribute to the CACHE element. For example:

...
<CACHE WCDEBUGON="NO" CHRONOSONPERNODE="NO" CAPACITY="301" VOTES="1"
INSTANCENAME="instance_name" COMPONENTNAME="component_name"
ORACLEINSTANCE="instance" HOSTNAME="web_cache_host_name"
ORACLEHOME="directory" NAME="web_cache_name"
ROUTINGONLY="YES">
...

4. Save webcache.xml.

5. Restart Oracle Web Cache with the following command:

opmnctl restartproc ias-component=component_name

This executable is found in the following directory:

(UNIX) ORACLE_INSTANCE/bin
(Windows) ORACLE_INSTANCE\bin

6. Verify Oracle Web Cache is running in the load balancer mode from the Oracle
Web Cache Manager by verifying the following status message displays beneath
the Apply Changes and Cancel Changes buttons:

Web Cache running in Routing Only Mode with current configuration

Fusion Middleware Control does not provide an equivalent verification status.

7. Configure origin servers, as described in Section 2.11.2.

8. Create site definitions and map them to the origin servers, as described in
Section 2.11.3 and Section 2.11.4.

9. If your application deployment requires session stickiness, enable session binding.
See Section 2.12.

Consider the topology depicted in Figure 3–5.

Configuring Microsoft Windows Network Load Balancing

3-24 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Figure 3–5 Deploying Oracle Web Cache as a Load Balancer

To configure this topology:

1. Register the IP address of the Oracle Web Cache server webche-host with
www.app1.company.com.

2. Configure the Oracle Web Cache server with the following:

a. Receive HTTP and HTTPS requests on designated listening ports.

b. Send HTTP and HTTPS requests to application Web servers app1-host1 and
app1-host2 on designated listening ports.

c. Map virtual host site definition for www.app1.company.com mapped to
app1-host1 and app1-host2.

3.9 Configuring Microsoft Windows Network Load Balancing
For an overview of high availability without a hardware load balancer, see Section 3.4.

On certain Microsoft Windows platforms, you can use the Microsoft Network Load
Balancing (NLB) component of the operating system instead of a hardware load

Application Servers

webche-host

Oracle Web Cache Server
Site:
www.appl.company.com

appl-host1 appl-host2

Network

HTTP and HTTPS Requests for
www.app1.company.com

HTTP and HTTPS

Database

Configuring Microsoft Windows Network Load Balancing

Configuring High Availability Solutions 3-25

balancer. NLB is part of the Microsoft clustering offerings and is available on the
following platforms:

■ Windows 2000 Advanced Server

■ Windows 2000 Datacenter Server

■ Windows 2003 (all editions)

You configure the hosts as a cluster and you configure the operating system to provide
load balancing. Then, you configure NLB for hosts running Oracle Web Cache in a
cache cluster, taking the following steps for each host:

1. Choose Start > Settings > Network and Dial-up Connections.

2. Select the network adapter. Then, right-click and select Properties.

3. In the Properties dialog box, select Network Load Balancing. Then, click
Properties.

4. In the Cluster Parameters tab of the Network Load Balancing Properties dialog
box, take the following steps:

a. For Primary IP Address, enter the virtual IP address to be shared by all
members of the cluster.

b. For Subnet mask, enter the subnet mask for the virtual IP address.

c. For Full Internet Name, enter the full internet name for the virtual IP address.

d. Note the Network Address, which is a generated address.

e. For Multicast support, check enabled.

f. Optionally, enter a Remote password and enable Remote control.

5. Select the Host Parameters tab and take the following steps:

a. For Priority, enter an integer between 1 and 32. The lower the number, the
higher the priority. Priority establishes the default handling priority among
hosts for requests that are not load-balanced by port rules. (See Step 6 for
information about configuring port rules.)

b. For Initial cluster state, check active. This specifies that this host should be
included in the cluster array immediately upon Windows startup.

c. For Dedicated IP address, enter the IP address of this host.

d. For Subnet mask, enter the subnet mask of this host.

6. Select the Port Rules tab, and take the following steps:

a. For Port Range, to balance the load from all client requests with a single port
rule, use the default port range (1-65535). Use multiple port rules if different
applications require different protocols, filtering modes, or affinity.

b. For Protocols, select TCP. If your application uses software that requires UDP,
select Both.

c. For Filtering Mode, select Multiple Hosts.

d. For Affinity, you can select one of three options. None results in load
balancing of all requests across all hosts. Single results in all requests from a
particular client being processed by the same host. Use this option to maintain
session state. Class C results in all client requests from a TCP/IP class C
address range being processed by the same host.

Configuring Microsoft Windows Network Load Balancing

3-26 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

e. For Load Weight, either enter a percentage of the load to be handled by the
host or select equal.

Note that Port Rules must be identical for all hosts in the cluster.

For more information about Microsoft Network Load Balancing, see the Microsoft
documentation at:

http://www.microsoft.com

http://www.microsoft.com

4

Configuring Request Filtering 4-1

4 Configuring Request Filtering

This chapter introduces the request filters provided by Oracle Web Cache and explains
how you can enable them to protect against common HTTP request attacks.

This chapter includes the following topics:

■ Section 4.1, "Introduction to Request Filtering"

■ Section 4.2, "Types of Request Filters"

■ Section 4.3, "About Learned Rules"

■ Section 4.4, "About the Monitor Only Mode"

■ Section 4.5, "Configuring Rules for the Privileged IP Filter"

■ Section 4.6, "Configuring Rules for the Client IP Request Filter"

■ Section 4.7, "Configuring Rules for the Method Request Filter"

■ Section 4.8, "Configuring Rules for the URL Request Filter"

■ Section 4.9, "Configuring Rules for the Header Request Filter"

■ Section 4.10, "Configuring Rules for the Query String Request Filter"

■ Section 4.11, "Configuring Rules for the Format Request Filter"

■ Section 4.12, "Deleting Rules for a Request Filter"

■ Section 4.13, "Monitoring Statistics for Request Filter Types and Rules"

■ Section 4.14, "Reducing Time to Configure Request Filters"

4.1 Introduction to Request Filtering
Oracle Web Cache provides request filters to filter incoming HTTP or HTTPS requests
to configured sites on the origin server.

Request filtering aids administrators in controlling access to Web sites:

■ The planting of malicious code within the Web site that, when executed by a user,
steals the user's identity or personal information

■ Attacks that try to exploit software vulnerabilities in the site that enable the
attacker to execute arbitrary code on the application server.

■ Attacks that try to render a Web site unusable by bombarding it with extremely
high volumes of bogus requests that effectively consume the application server
resources or bandwidth thereby preventing access for other users.

Types of Request Filters

4-2 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

In addition, request filtering controls which clients and requests are allowed to access
to a Web site or certain parts of a Web site.

To defend against Web site attacks, you can enable a series of filters that each request
must pass through before being processed. Each filter is composed of customizable
rules that can either identify the requests to allow or deny.

You can configure filters and filter rules for specific sites or undefined sites. Oracle
Web Cache directs client requests that do not match a defined site to the request filters
configured for Undefined Sites.

The requests filters are processed in the order presented in the Request Filter Summary
page. To access this page:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration and then Request Filters.

The Request Filters Summary page displays.

You select an individual filter from the Filter column, and specify individual rules for
the filter. When configuring rules, you order the rules based on the order you want
Oracle Web Cache to match requests. When ordering caching rules, give allow rules a
higher priority than deny rules.

After configuring rules for a filter and enabling or disabling the rules, you return to
the Request Filters Summary page to enable the filters. If you do not click Enable for a
filter, then you are disabling the rule, which means Oracle Web Cache ignores any
configured rules for that filter.

4.2 Types of Request Filters
Oracle Web Cache provides the following filters, each designed to focus on a particular
type of HTTP request vulnerability.

■ Privileged IP

■ Client IP

■ Method

■ URL

■ Header

Types of Request Filters

Configuring Request Filtering 4-3

■ Query String

■ Format

The privileged IP filter permits allow-only rule; the header, query string, and format
filters permit deny-only rules; and the client IP, method, and URL filters permit both
allow and deny rules. Because the list of rules in the header, query string, and format
filters are independent of each other, permitting allow rules could result in the
skipping of other deny rules. Therefore, these filters only permit deny rules.

Privileged IP
The privileged IP filter enables Oracle Web Cache to bypass the other request filters.
You use this filter to allow specified privileged IP addresses access.

Client IP
The client IP filter allows or denies site access to specific IP addresses.

It enables Oracle Web Cache to restrict access to a site URL prefix within the site to
only certain IP addresses. This filter restricts clients from certain IP addresses from
launching attacks on a system. Not restricting access could allow clients access to the
application or to areas of the site that contain sensitive information. An attacker from a
certain IP address can continue making malicious attacks if Oracle Web Cache does not
deny access.

You can configure a black list by denying requests if the IP address and URL match or
a white list if the IP address and URL match.

Method
The method filter allows or denies site access based on the HTTP request method. For
example, if only GET and POST methods are allowed, Oracle Web Cache would refuse
all other requests.

This filter protects against clients attempting to read restricted files or modifying files
using various HTTP methods. In addition to the HTTP request method, you can
configure a URL to limit the rule to only requests that match the method and the
specified URL.

URL
The URL filter allows or denies site access based on a URL.

This filter protects against Internet attacks to an application server through a specific
URL.

Header
The header filter denies site access based on HTTP header values. In addition to the
HTTP header value, you can configure a URL to limit the rule to only requests that
match the header value and the specified URL.

Incoming requests matching the HTTP header and URL are compared to the
expression in the rule. The expression can be either a substring or a regular expression.
For both substring and regular expression comparisons, a rule can deny requests in
which the request's header value matches the rule's value expression.

This filter protects against clients attempting to break into an application by manually
creating header values and clients submitting unwanted content in header values.

About Learned Rules

4-4 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Query String
The query string filters denies site access based on query string parameters. For a
POST request, Oracle Web Cache checks both the query string, if is present, and the
POST body. In addition to the query string, you can configure a URL to limit the rule
to only requests that match the query string and the specified URL.

Incoming requests matching the query string and URL are compared to the expression
in the rule. The expression can be either a substring or a regular expression. For both
substring and regular expression comparisons, a rule can deny requests in which the
request's query string matches the rule's value expression.

This filter protects against clients attempting to break into a site by manually
manipulating the query string parameters and values and clients submitting
unwanted content within parameter values.

Format
The format filter denies site access based on the format of the HTTP request. This filter
checks for embedded null byte characters, strict encoding and valid Unicode, and
double URL encoding. Oracle Web Cache checks the format for each enabled type and
denies the request if the format is invalid.

This filter checks the components of the URL, including the path, filename, query
string, and for POST requests, the request entity body. It protects against hackers
attempting to disrupt a Web application by either sending a request which is not well
formed or sending characters not expected to be in the URL.

4.3 About Learned Rules
Oracle Web Cache automatically creates learned rules for the method and URL filters.
You can then choose to activate these learned rules.

Client requests that match the filter's catch-all rule are evaluated to see if there is some
commonality to them that might warrant a new rule. These common patterns are
shown as learned rules. You can then chose to activate or ignore these learned rules.
After a rule is activated in the configuration, you can select to enable or disable it just
like any other rule. Even if you selected not to activate learned rules, Oracle Web
Cache continues to collect and evaluate all common patterns for requests that fall into
the catch-all rule.

See Section 4.14.1 to enable learned rules.

4.4 About the Monitor Only Mode
When you configure rules for the filters, you can select the Monitor Only option.
When you enable this option for a rule, Oracle Web Cache treats the rule as if it was
disabled. However, Oracle Web Cache tracks matches in the statistics and writes them
to the event log (if verbosity is set to TRACE or higher) and to the audit log if audit
logging is enabled for the match action.

When monitoring is enabled, requests are allowed, so you can examine results in the
Request Statistics section. When you disable Monitor Only for a deny rule, the deny
action is enforced. You typically set Monitor Only on to see the match activity of the
rule. When results are expected, then disable Monitor Only to enforce the rule’s
action.

Configuring Rules for the Privileged IP Filter

Configuring Request Filtering 4-5

4.5 Configuring Rules for the Privileged IP Filter
The privileged IP request filter enables Oracle Web Cache to bypass all request filters
for certain privileged IP addresses. Any request from a privileged IP address does not
pass through the other request filters.

See Section 4.2 for further information about the privileged IP request filter.

To configure the privileged IP request filter:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration and then Request Filters.

The Request Filters Summary page displays.

3. From the Site list, select the site to apply the filter. See Section 2.11.3 and
Section 2.11.4 to create additional sites.

You can configure filters and filter rules for specific sites or Undefined Sites.
Oracle Web Cache directs client requests that do not match a defined site to the
request filters configured for Undefined Sites.

4. Click the Privileged IP link.

The Privileged IP Request Filter page displays.

5. From the Audit list, select the level of action for Oracle Web Cache to include in
the audit log for the request filter.

6. Create a new rule.

a. Click Create to create a row in the table.

b. In the IP Address field, enter the IP address, either as an IP version 4 or IP
version 6 address mask of the client.

See Section 2.5 for examples of IP addresses.

c. Click the Enable check box to enable the rule; deselect the check box to disable
the rule temporarily without losing the rule definition.

d. Click the Monitor Only check box to see the match activity of the rule without
enforcing the rule.

When results are expected, then disable Monitor Only to enforce the rule. See
Section 4.4 for further information about the Monitor Only option.

e. Click Apply to save the rule settings.

7. Perform Step 6 for any additional rules.

8. Use the Move Up and Move Down icons to change the order in which the rules
are matched against requests.

The order of the rules is important. Oracle Web Cache matches higher priority
rules first.

9. Click the Request Filters Summary breadcrumb at the top of the page, or from the
Web Cache menu, select Administration and then Request Filters to navigate
back to the Request Filters Summary page.

10. In the Privileged IP row, click Enable to enable the filter.

If you do not click Enable, Oracle Web Cache ignores any configured filter rules
for this filter.

Configuring Rules for the Client IP Request Filter

4-6 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

11. Click Apply to save the configuration for the request filter.

4.6 Configuring Rules for the Client IP Request Filter
This client IP request filter restricts application access to specific IP addresses or range
of IP addresses. Not restricting access enables access to restricted information and
potential attackers from particular IP addresses.

See Section 4.2 for further information about the client IP request filter.

To configure rules for the client IP request filter:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration and then Request Filters.

The Request Filters Summary page displays.

3. From the Site list, select the site to apply the filter. See Section 2.11.3 and
Section 2.11.4 to create additional sites.

You can configure filters and filter rules for specific sites or Undefined Sites.
Oracle Web Cache directs client requests that do not match a defined site to the
request filters configured for Undefined Sites.

4. Click the Client IP link.

The Client IP Request Filter page displays.

5. From the Audit list, select the level of action for Oracle Web Cache to include in
the audit log for the request filter.

6. From the Response to deny list, select the HTTP response for Oracle Web Cache to
return to browsers for requests that are denied by this request filter.

The Close Connection option does not return any HTTP responses. It just closes
the connection.

7. Create a new rule.

a. Click Create to create a row in the table.

b. In the IP Address field, enter the IP address, either as an IP version 4 or IP
version 6 address mask of the client.

See Section 2.5 for examples of IP addresses.

c. Click the Enable check box to enable the rule; deselect the check box to disable
the rule temporarily without losing the rule definition.

d. In the URL field, based on the URL Type you select, enter an optional URL
string. If no URLs are specified, then all requests are checked. It is equivalent
to specifying a URL with a prefix /.

- Path Prefix: Enter the path prefix of the objects. Start the path with /; do not
start the path with http://host_name:port/. The prefix is interpreted
literally, including reserved regular expression characters. These characters
include periods (.), question marks (?), asterisks (*), brackets ([]), curly braces
({}), carets (^), dollar signs ($), and backslashes (\).

- File Extension: Enter the file extension. Because Oracle Web Cache internally
starts the file extension with a period (.), it is not necessary to enter it.

Configuring Rules for the Method Request Filter

Configuring Request Filtering 4-7

- Regular Expression: Enter the regular expression of the objects. Remember
to use "^" to denote the start of the URL and "$" to denote the end of the URL.

e. From the URL Type list, select an option to determine how the rule's URL is
compared to the request's URL:

- Path Prefix: Select to allow or deny access to requests matching a path prefix.

- File Extension: Select to allow or deny access to requests matching a
particular file extension.

- Regular Expression: Select to allow or deny access to requests matching
regular expression syntax.

f. Click the Case Insensitive Match check box to match requests regardless of
the case. If you do not select this check box, the rule bases the match on the
case.

g. Click the Allow check box for Oracle Web Cache to allow requests matching
the IP address and URL fields; deselect the check box for Oracle Web Cache to
deny requests matching the IP address and URL fields.

h. Click the Monitor Only check box to see the match activity of the rule without
enforcing the rule.

When results are expected, then disable Monitor Only to enforce the rule. See
Section 4.4 for further information about the Monitor Only option.

i. Click Apply to save the rule settings.

8. Perform Step 7 for any additional rules.

9. Modify the Catch All rule, keeping in mind it is applied to all requests that do not
match a defined rule.

Oracle recommends creating allow rules, followed by a Catch All deny rule.

10. Use the Move Up and Move Down icons to change the order in which the rules
are matched against requests.

The order of the rules is important. Oracle Web Cache matches higher priority
rules first.

11. Click the Request Filters Summary breadcrumb at the top of the page, or from the
Web Cache menu, select Administration and then Request Filters to navigate
back to the Request Filters Summary page.

12. In the Client IP row, click Enable to enable the filter.

If you do not click Enable, Oracle Web Cache ignores any configured filter rules
for this filter.

13. Click Apply to save the configuration for the request filter.

4.7 Configuring Rules for the Method Request Filter
The method request filter enables Oracle Web Cache to restrict access based on the
HTTP request method.

See Section 4.2 for further information about the method request filter.

To configure rules for the method request filter:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

Configuring Rules for the Method Request Filter

4-8 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

2. From the Web Cache menu, select Administration and then Request Filters.

The Request Filters Summary page displays.

3. From the Site list, select the site to apply the filter. See Section 2.11.3 and
Section 2.11.4 to create additional sites.

You can configure filters and filter rules for specific sites or Undefined Sites.
Oracle Web Cache directs client requests that do not match a defined site to the
request filters configured for Undefined Sites.

4. Click the Method link.

The Method Request Filter page displays.

5. From the Audit list, select the level of action for Oracle Web Cache to include in
the audit log for the request filter.

6. From the Response to deny list, select the HTTP response for Oracle Web Cache to
return to browsers for requests that are denied by this request filter.

The Close Connection option does not return any HTTP responses. It just closes
the connection.

7. Create a new rule.

a. Click Create to create a row in the table.

b. In the Method field, enter the HTTP request method, such as GET, POST, or
PUT.

c. Click the Enable check box to enable the rule; deselect the check box to disable
the rule temporarily without losing the rule definition.

d. In the URL field, based on the URL Type you select, enter an optional URL
string. If no URLs are specified, then all requests are checked. It is equivalent
to specifying a URL with a prefix /.

- Path Prefix: Enter the path prefix of the objects. Start the path with /; do not
start the path with http://host_name:port/. The prefix is interpreted
literally, including reserved regular expression characters. These characters
include periods (.), question marks (?), asterisks (*), brackets ([]), curly braces
({}), carets (^), dollar signs ($), and backslashes (\).

- File Extension: Enter the file extension. Because Oracle Web Cache internally
starts the file extension with a period (.), it is not necessary to enter it.

- Regular Expression: Enter the regular expression of the objects. Remember
to use "^" to denote the start of the URL and "$" to denote the end of the URL.

e. From the URL Type list, select an option to determine how the rule's URL is
compared to the request's URL:

- Path Prefix: Select to allow or deny access to requests matching a path prefix.

- File Extension: Select to allow or deny access to requests matching a
particular file extension.

- Regular Expression: Select to allow or deny access to requests matching
regular expression syntax.

f. Click the Case Insensitive Match check box to match requests regardless of
the case. If you do not select this check box, the rule bases the match on the
case.

Configuring Rules for the URL Request Filter

Configuring Request Filtering 4-9

g. Select the Allow check box for Oracle Web Cache to allow requests matching
the method and URL fields; deselect the check box for Oracle Web Cache to
deny requests matching the method and URL fields.

h. Click the Monitor Only check box to see the match activity of the rule without
enforcing the rule.

When results are expected, then disable Monitor Only to enforce the rule. See
Section 4.4 for further information about the Monitor Only option.

i. Click Apply to save the rule settings.

8. Perform Step 7 for any additional rules.

9. Modify the Catch All rule, keeping in mind it is applied to all requests that do not
match a defined rule.

Oracle recommends creating allow rules, followed by a Catch All deny rule.

10. Use the Move Up and Move Down icons to change the order in which the rules
are matched against requests.

The order of the rules is important. Oracle Web Cache matches higher priority
rules first.

11. Click the Request Filters Summary breadcrumb at the top of the page, or from the
Web Cache menu, select Administration and then Request Filters to navigate
back to the Request Filters Summary page.

12. In the Method row, click Enable to enable the filter.

If you do not click Enable, Oracle Web Cache ignores any configured filter rules
for this filter.

13. Click Apply to save the configuration for the request filter.

4.8 Configuring Rules for the URL Request Filter
The URL request filter enables Oracle Web Cache to allow or deny access to a specific
site URL.

See Section 4.2 for further information about the URL request filter.

To configure rules for the URL request filter:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration and then Request Filters.

The Request Filters Summary page displays.

3. From the Site list, select the site to apply the filter. See Section 2.11.3 and
Section 2.11.4 to create additional sites.

You can configure filters and filter rules for specific sites or Undefined Sites.
Oracle Web Cache directs client requests that do not match a defined site to the
request filters configured for Undefined Sites.

4. Click the URL link.

The URL Request Filter page displays.

5. From the Audit list, select the level of action for Oracle Web Cache to include in
the audit log for the request filter.

Configuring Rules for the URL Request Filter

4-10 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

6. From the Response to deny list, select the HTTP response for Oracle Web Cache to
return to browsers for requests that are denied by this request filter.

The Close Connection option does not return any HTTP responses. It just closes
the connection.

7. Create a new rule.

a. Click Create to create a row in the table.

b. In the Method field, enter the HTTP request method, such a GET, POST, or
PUT.

c. Click the Enable check box to enable the rule; deselect the check box to disable
the rule temporarily without losing the rule definition.

d. In the URL field, based on the URL Type you select, enter an optional URL
string. If no URLs are specified, then all requests are checked. It is equivalent
to specifying a URL with a prefix /.

- Path Prefix: Enter the path prefix of the objects. Start the path with /; do not
start the path with http://host_name:port/. The prefix is interpreted
literally, including reserved regular expression characters. These characters
include periods (.), question marks (?), asterisks (*), brackets ([]), curly braces
({}), carets (^), dollar signs ($), and backslashes (\).

- File Extension: Enter the file extension. Because Oracle Web Cache internally
starts the file extension with a period (.), it is not necessary to enter it.

- Regular Expression: Enter the regular expression of the objects. Remember
to use "^" to denote the start of the URL and "$" to denote the end of the URL.

e. From the URL Type list, select an option to determine how the rule's URL are
compared to the request's URL:

- Path Prefix: Select to allow or deny access to requests matching a path prefix.

- File Extension: Select to allow or deny access to requests matching a
particular file extension.

- Regular Expression: Select to allow or deny access to requests matching
regular expression syntax.

f. Click the Case Insensitive Match check box to match requests regardless of
the case. If you do not select this check box, the rule bases the match on the
case.

g. Click the Allow check box for Oracle Web Cache to allow requests matching
the URL fields; deselect the check box for Oracle Web Cache to deny requests
matching the IP address and URL fields.

h. Click the Monitor Only check box to see the match activity of the rule without
enforcing the rule.

When results are expected, then disable Monitor Only to enforce the rule. See
Section 4.4 for further information about the Monitor Only option.

i. Click Apply to save the rule settings.

8. Perform Step 7 for any additional rules.

9. Modify the Catch All rule, keeping in mind it is applied to all requests that do not
match a defined rule.

Oracle recommends creating allow rules, followed by a Catch All deny rule.

Configuring Rules for the Header Request Filter

Configuring Request Filtering 4-11

10. Use the Move Up and Move Down icons to change the order in which the rules
are matched against requests.

The order of the rules is important. Oracle Web Cache matches higher priority
rules first.

11. Click the Request Filters Summary breadcrumb at the top of the page, or from the
Web Cache menu, select Administration and then Request Filters to navigate
back to the Request Filters Summary page.

12. In the URL row, click Enable to enable the filter.

If you do not click Enable, Oracle Web Cache ignores any configured filter rules
for this filter.

13. Click Apply to save the configuration for the request filter.

4.9 Configuring Rules for the Header Request Filter
The header request filter enables Oracle Web Cache to deny access based on HTTP
header values. Rules for the header request filter are most effective for white box lists.

See Section 4.2 for further information about the header request filter.

To configure rules for the header request filter:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration and then Request Filters.

The Request Filters Summary page displays.

3. From the Site list, select the site to apply the filter. See Section 2.11.3 and
Section 2.11.4 to create additional sites.

You can configure filters and filter rules for specific sites or Undefined Sites.
Oracle Web Cache directs client requests that do not match a defined site to the
request filters configured for Undefined Sites.

4. Click the Header link.

The Header Request Filter page displays.

5. From the Audit list, select the level of action for Oracle Web Cache to include in
the audit log for the request filter.

6. From the Response to deny list, select the HTTP response for Oracle Web Cache to
return to browsers for requests that are denied by this request filter.

The Close Connection option does not return any HTTP responses. It just closes
the connection.

7. Create a new rule.

a. Click Create to create a row in the table.

b. In the Header Name field, enter the name of the HTTP request header name,
such as Cookie.

c. In the Value Expression field, enter the expression, as a substring or regular
expression, for the header's value used to compare against an incoming
request.

d. From the Type list, select to base the match evaluation on the substring or
regular expression in the Value Expression field.

Configuring Rules for the Header Request Filter

4-12 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

e. Click the Enable check box to enable the rule; deselect the check box to disable
the rule temporarily without losing the rule definition.

f. In the URL field, based on the URL Type you select, enter an optional URL
string. If no URLs are specified, then all requests are checked. It is equivalent
to specifying a URL with a prefix /.

- Path Prefix: Enter the path prefix of the objects. Start the path with /; do not
start the path with http://host_name:port/. The prefix is interpreted
literally, including reserved regular expression characters. These characters
include periods (.), question marks (?), asterisks (*), brackets ([]), curly braces
({}), carets (^), dollar signs ($), and backslashes (\).

- File Extension: Enter the file extension. Because Oracle Web Cache internally
starts the file extension with a period (.), it is not necessary to enter it.

- Regular Expression: Enter the regular expression of the objects. Remember
to use "^" to denote the start of the URL and "$" to denote the end of the URL.

g. From the URL Type list, select an option to determine how the rule's URL is
compared to the request's URL:

- Path Prefix: Select to allow or deny access to requests matching a path prefix.

- File Extension: Select to allow or deny access to requests matching a
particular file extension.

- Regular Expression: Select to allow or deny access to requests matching
regular expression syntax.

h. Click the Case Insensitive Match check box to match requests regardless of
the case. If you do not select this check box, the rule bases the match on the
case.

i. Click the Match If Found check box for Oracle Web Cache to match incoming
requests in which the header value matches the substring or regular
expression specified in the Value Expression field. If there is a match with a
request and the rule is enabled, the filter denies the request.

Do not select the Match If Found check box for Oracle Web Cache to match
incoming requests in which the header value does not match the substring or
regular expression specified in the Value Expression field. Oracle Web Cache
denies the request only if the string or expression is not found, meaning that
the request is allowed if the string is found.

Create a rule with the Match If Found check box selected, followed by rules
without the check box selected.

j. Click the Monitor Only check box to see the match activity of the rule without
enforcing the rule.

When results are expected, then disable Monitor Only to enforce the rule. See
Section 4.4 for further information about the Monitor Only option.

k. Click Apply to save the rule settings.

8. Perform Step 7 for any additional rules.

9. Use the Move Up and Move Down icons to change the order in which the rules
are matched against requests.

The order of the rules is important. Oracle Web Cache matches higher priority
rules first.

Configuring Rules for the Query String Request Filter

Configuring Request Filtering 4-13

10. Click the Request Filters Summary breadcrumb at the top of the page, or from the
Web Cache menu, select Administration and then Request Filters to navigate
back to the Request Filters Summary page.

11. In the Header row, click Enable to enable the filter.

If you do not click Enable, Oracle Web Cache ignores any configured filter rules
for this filter.

12. Click Apply to save the configuration for the request filter.

4.10 Configuring Rules for the Query String Request Filter
The query string request filter enables Oracle Web Cache to deny access based on
query string parameter values.

See Section 4.2 for further information about the query-string request filter.

To configure rules for the query string request filter:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration and then Request Filters.

The Request Filters Summary page displays.

3. From the Site list, select the site to apply the filter. See Section 2.11.3 and
Section 2.11.4 to create additional sites.

You can configure filters and filter rules for specific sites or Undefined Sites.
Oracle Web Cache directs client requests that do not match a defined site to the
request filters configured for Undefined Sites.

4. Click the Query String link.

The Query String Request Filter page displays.

5. From the Audit list, select the level of action for Oracle Web Cache to include in its
audit log for the request filter.

6. From the Response to deny list, select the HTTP response for Oracle Web Cache to
return to browsers for requests that are denied by this request filter.

The Close Connection option does not return any HTTP responses. It just closes
the connection.

7. Create a new rule.

a. Click Create to create a row in the table.

b. In the Query String Expression field, enter the query string, as a substring or
regular expression, to compare against an incoming request.

c. Click the Enable check box to enable the rule; deselect the check box to disable
the rule temporarily without losing the rule definition.

d. From the Type list, select to base the match evaluation on the substring or
regular expression in the Query String Expression field.

e. Click the Match If Found check box for Oracle Web Cache to match incoming
requests in which the query string matches the substring or regular expression
specified in the Value Expression field. If there is a match with a request and
the rule is enabled, the filter denies the request.

Configuring Rules for the Query String Request Filter

4-14 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Do not select the Match If Found check box for Oracle Web Cache to match
incoming requests in which the query string does not match the substring or
regular expression specified in the Value Expression field. Oracle Web Cache
denies the request only if the string or expression is not found, meaning that
the request is allowed if the string is found.

For example, if you specify a rule with a Query String Expression of abc,
Type of substring, and do not select the Match If Found check box, the filter
would deny a request which did not contain the string abc in the query string
(or POST body). It would allow a request which contains the string abc.

You can create multiple rules to allow requests with a certain string and deny
requests with another string. For example, if you specify a second rule with a
Query String Expression of def, Type of substring, and click the Match If
Found check box, the filter would allow a request with abc in the query string
but would deny a request with def in the query string.

f. In the URL field, based on the URL Type you select, enter an optional URL
string. If no URLs are specified, then all requests are checked. It is equivalent
to specifying a URL with a prefix /.

- Path Prefix: Enter the path prefix of the objects. Start the path with /; do not
start the path with http://host_name:port/. The prefix is interpreted
literally, including reserved regular expression characters. These characters
include periods (.), question marks (?), asterisks (*), brackets ([]), curly braces
({}), carets (^), dollar signs ($), and backslashes (\).

- File Extension: Enter the file extension. Because Oracle Web Cache internally
starts the file extension with a period (.), it is not necessary to enter it.

- Regular Expression: Enter the regular expression of the objects. Remember
to use "^" to denote the start of the URL and "$" to denote the end of the URL.

g. From the URL Type list, select an option to determine how the rule's URL are
compared to the request's URL:

- Path Prefix: Select to allow or deny access to requests matching a path prefix.

- File Extension: Select to allow or deny access to requests matching a
particular file extension.

- Regular Expression: Select to allow or deny access to requests matching
regular expression syntax.

h. Click the Case Insensitive Match check box to match requests regardless of
the case. If you do not select this check box, the rule bases the match on the
case.

i. Click the Monitor Only check box to see the match activity of the rule without
enforcing the rule.

When results are expected, then disable Monitor Only to enforce the rule. See
Section 4.4 for further information about the Monitor Only option.

j. Click Apply to save the rule settings.

8. Perform Step 7 for any additional rules.

9. Use the Move Up and Move Down icons to change the order in which the rules
are matched against requests.

The order of the rules is important. Oracle Web Cache matches higher priority
rules first.

Configuring Rules for the Format Request Filter

Configuring Request Filtering 4-15

10. Click the Request Filters Summary breadcrumb at the top of the page, or from the
Web Cache menu, select Administration and then Request Filters to navigate
back to the Request Filters Summary page.

11. In the Query String row, click Enable to enable the filter.

If you do not click Enable, Oracle Web Cache ignores any configured filter rules
for this filter.

12. Click Apply to save the configuration for the request filter.

4.11 Configuring Rules for the Format Request Filter
The format request filter enables Oracle Web Cache to deny access based on
well-formed and valid URLs.

See Section 4.2 for further information about the format request filter.

To configure rules for the format request filter:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration and then Request Filters.

The Request Filters Summary page displays.

3. From the Site list, select the site to apply the filter. See Section 2.11.3 and
Section 2.11.4 to create additional sites.

You can configure filters and filter rules for specific sites or Undefined Sites.
Oracle Web Cache directs client requests that do not match a defined site to the
request filters configured for Undefined Sites.

4. Click the Query String link.

The Query String Request Filter page displays.

5. From the Audit list, select the level of action for Oracle Web Cache to include in its
audit log for the request filter.

6. From the Response to deny list, select the HTTP response for Oracle Web Cache to
return to browsers for requests that are denied by this request filter.

The Close Connection option does not return any HTTP responses. It just closes
the connection.

7. Define a rule for the validation type:

a. Click the Enable check box to enable the validation check:

- Null Byte: This validation checks for encoding as a null byte as %00. Most
applications do not expect null bytes in the URL. This may cause a string
which contains tricks after a null byte to pass an application check because the
application stops checking when it hits the null byte, thinking that it is the end
of string marker.

- Valid Unicode: This validation checks for Unicode characters, either encoded
or raw in the URL for an application that is not set up to handle Unicode.

- Strict Encoding: This validation checks for unencoded characters, such as a
space, backslash (\), or non-printable characters.

- Double Encoding: This validation checks for %XY sequences using %XY
encoding, in an attempt to get the %XY sequence to be passed to the

Deleting Rules for a Request Filter

4-16 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

application. This could allow the hacker to specify a character that would
otherwise be rejected.

- Uencoded Unicode Characters: This validation checks for Unicode
characters, either encoded or raw in the URL for an application that is not set
up to handle Unicode.

b. Click the Check Query String check box to check the URL's format, as well as
the query string or request body for a POST request; leave this option
unchecked to check only the URL's format.

c. Click the Allow check box for Oracle Web Cache to allow requests containing
the invalid format; deselect the check box for Oracle Web Cache to deny
requests containing the invalid format.

d. Click the Monitor Only check box to see the match activity of the rule without
enforcing the rule.

When results are expected, then disable Monitor Only to enforce the rule. See
Section 4.4 for further information about the Monitor Only option.

e. Click Apply to save the rule settings.

8. Click the Request Filters Summary breadcrumb at the top of the page, or from the
Web Cache menu, select Administration and then Request Filters to navigate
back to the Request Filters Summary page.

9. In the Format row, click Enable to enable the filter.

If you do not click Enable, Oracle Web Cache ignores any configured filter rules
for this filter.

10. Click Apply to save the configuration for the request filter.

4.12 Deleting Rules for a Request Filter
To delete a rule for a request filter:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration and then Request Filters.

The Request Filters Summary page displays.

3. Click the filter you want to modify.

4. From the Site list, select the site.

5. Select a rule in the table and click the Delete icon.

6. Repeat Step 5 for each additional rule you want to remove.

7. Click Apply to save the configuration for the request filter.

4.13 Monitoring Statistics for Request Filter Types and Rules
Fusion Middleware Control provides statistics for assessing the effectiveness of
configured request filters and rules. By analyzing the rules, you can determine if you
prioritized the rules incorrectly. For example, if the you notice a deny rule is matched
but configured allow rules are never matched, then prioritize the allow rules first.

If you make changes to the configuration settings for Oracle Web Cache, Oracle Web
Cache disables the request-filter statistics and labels them as NA.

Reducing Time to Configure Request Filters

Configuring Request Filtering 4-17

To view request-filter statistics:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration and then Request Filters.

The Request Filters Summary page displays.

3. Scroll to the far right, to view the Request Statistics and Post Allow Statistics. The
Request Statistics display the run time statistics for tracking how the configured
request filters handle the incoming requests:

■ Matched Catch All: Displays the number of requests that matched the Catch
All rules.

■ Matched Others: Displays the number of requests that matched the rules that
were not Catch All requests.

■ Matched Denied: Displays the number of requests that matched the rule and
were denied by Oracle Web Cache.

If there are few requests matching the filter, then consider changing the rules for
the filter to improve its effectiveness.

The Post Allow Statistics display the statistics for allowed requests:

■ Succeeded: Displays the number of requests that were allowed and
succeeded.

■ Denied Later: Displays the number of requests that were allowed, but
subsequently denied by another filter.

■ Failed: Displays the number of requests that were allowed, but the request
failed with an error.

4. To gather more information for a particular filter, click the filter to view the
individual rules and accompanying statistics.

4.14 Reducing Time to Configure Request Filters
This section covers the following configuration tasks for easing configuration work.
These features are only available in Oracle Web Cache Manager.

■ Section 4.14.1, "Activating Learned Rules for the Method and URL Request Filters"

■ Section 4.14.2, "Copying Rules from a Source Site to a Target Site"

■ Section 4.14.3, "Reverting Configuration Settings"

4.14.1 Activating Learned Rules for the Method and URL Request Filters
See Section 4.3 for further information about learned rules. You can enable learned
rules for the method and URL filters using Oracle Web Cache Manager.

To enable learned rules for the method and URL filters:

1. From Oracle Web Cache Manager, in the navigator frame, select Filtering >
Request Filters. See Section 2.7.2.

2. In the Request Filters Summary page, select either Method or URL.

The URL Filter or Method Filter page displays.

Reducing Time to Configure Request Filters

4-18 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

3. If you see under the Catch All Rule that some learned rules have been suggested,
click Show Learned Rules to view the learned rules.

If no rules display under Catch All Rule, then there are no learned rules.

4. Monitor the statistics for these rule by watching this page for awhile. When you
decide that one or more learned rules make sense, proceed.

5. Click Activate Learned Rules to show the rules.

6. Select the rules you want to add.

7. In the Activate Learned Rules dialog, select the rules you want to activate, and
then click Submit.

The selected rules are added to the Filter Rules table in the URL Filter or Method
Filter page. Because Oracle Web Cache removes the data for the learned rules you
do not select, select all the rules that may apply. It is easier to remove rules from
the URL Filter or Method Filter page.

8. Click Apply Changes.

4.14.2 Copying Rules from a Source Site to a Target Site
You can reduce the time spent configuring filters and associated rules by completing
the configuration for one site and applying the configuration to other sites. You can
copy the complete configuration for all filters, or you can copy the configuration for
the rules for a specific filter.

To copy the complete configuration for all the filters from a source site to a target site:

1. Configure settings for the various filters, as described in Section 4.5 to Section 4.11.

2. From Oracle Web Cache Manager, in the navigator frame, select Filtering >
Request Filters. See Section 2.7.2.

The Request Filters Summary page displays.

3. From the For Site list, select the source site with the complete configuration you
want to copy.

4. Click Copy All Filters toward the bottom of the page.

5. In the Copy All Request Filter dialog, from the To Site list, select the target site to
apply the configuration settings, and then click Submit.

6. Click Apply Changes.

To copy the rule configuration for a specific filter from a source site to a target site:

1. Configure settings for the various filters, as described in Section 4.5 to Section 4.11.

2. From Oracle Web Cache Manager, in the navigator frame, select Filtering >
Request Filters. See Section 2.7.2.

The Request Filters Summary page displays.

3. Select a specific filter from the Filter Type column.

The configuration page for the selected filter displays.

4. From the For Site list, select the source site with the complete configuration you
want to copy.

5. Click Copy Filter toward the bottom of the page.

Reducing Time to Configure Request Filters

Configuring Request Filtering 4-19

6. In the Copy Request Filter dialog, from the To Site list, select the target site to
apply the configuration settings, and then click Submit.

7. Click Apply Changes.

4.14.3 Reverting Configuration Settings
You can revert to the original configuration settings provided by Oracle Web Cache for
all filters or a specific filter.

To revert the configuration settings for all filters:

1. From Oracle Web Cache Manager, in the navigator frame, select Filtering >
Request Filters. See Section 2.7.2.

The Request Filters Summary page displays.

2. From the For Site list, select the site you want to revert configuration settings.

3. Click Clear All Filters.

4. Click Apply Changes.

To revert the configuration settings for a specific filter:

1. From Oracle Web Cache Manager, in the navigator frame, select Filtering >
Request Filters. See Section 2.7.2.

The Request Filters Summary page displays.

2. Select a specific filter from the Filter Type column.

The configuration page for the selected filter displays.

3. From the For Site list, select the site you want to revert configuration settings.

4. Click Clear Filter.

5. Click Apply Changes.

Reducing Time to Configure Request Filters

4-20 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

5

Configuring Security 5-1

5 Configuring Security

The ability to control user access to Web content and to protect against intrusion is the
critical issue affecting enterprise deployment. This chapter describes how to configure
security for Oracle Web Cache.

For general information about security, see the Oracle Fusion Middleware Security Guide.

This chapter includes the following topics:

■ Section 5.1, "Introduction to Security in Oracle Web Cache"

■ Section 5.2, "Configuring Password Security"

■ Section 5.3, "Configuring Access Control"

■ Section 5.4, "Configuring Oracle Web Cache for HTTPS Requests"

■ Section 5.5, "Additional HTTPS Configuration"

■ Section 5.6, "Configuring HTTP Request Header Size"

■ Section 5.7, "Ensuring That ClientIP Headers Are Valid"

■ Section 5.8, "Configuring Support for Caching Secured Content"

■ Section 5.9, "Running webcached with Root Privilege"

■ Section 5.10, "Script for Setting File Permissions on UNIX"

5.1 Introduction to Security in Oracle Web Cache
This section describes the Oracle Web Cache security model. It contains the following
topics:

■ Section 5.1.1, "Oracle Web Cache Security Model"

■ Section 5.1.2, "Resources Protected"

■ Section 5.1.3, "Authorization and Access Enforcement"

■ Section 5.1.4, "Leveraging Oracle Identity Management Infrastructure"

5.1.1 Oracle Web Cache Security Model
Oracle Web Cache provides the following security-related features:

■ Section 5.1.1.1, "Restricted Administration"

■ Section 5.1.1.2, "Secure Sockets Layer (SSL)"

■ Section 5.1.1.3, "SSL Acceleration"

Introduction to Security in Oracle Web Cache

5-2 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

5.1.1.1 Restricted Administration
Oracle Web Cache restricts administration with the following features:

■ Password authentication for administration and invalidation operations

■ Control over which ports are used for administration and invalidation operations

■ IP and subnet administration restrictions

5.1.1.2 Secure Sockets Layer (SSL)
The HTTPS protocol (HTTP over SSL) is used to encrypt network traffic. Oracle Web
Cache supports HTTPS for all of its network traffic, including HTTP clients,
administration, invalidation, and statistics requests, and to communicate with its
origin servers and cache cluster peers.

As shown in Figure 5–1, you can configure Oracle Web Cache to receive HTTPS client
requests and send HTTPS requests to origin servers.

Figure 5–1 SSL for Secure Connections

When sending requests to origin servers, note that HTTPS traffic can be processor
intensive. If traffic from Oracle Web Cache to an origin server must travel over the
open Internet, configure Oracle Web Cache to send HTTPS requests to the origin
servers. If traffic only travels through a LAN in a data center, then consider using
HTTP to reduce load on the origin servers.

Oracle Web Cache supports both server-side and client-side certificates. SSL server
certificates can be used to verify the authenticity of the server, and SSL client
certificates can be used to restrict access to certain clients. SSL however is generally not
used alone for user verification.

This section interacts with the following entities:

■ Section 5.1.1.2.1, "Certificate Authority"

■ Section 5.1.1.2.2, "Certificate"

■ Section 5.1.1.2.3, "Wallet"

5.1.1.2.1 Certificate Authority A certificate authority (CA) is a trusted third party that
certifies the identity of third parties and other entities, such as users, databases,
administrators, clients, and servers. The certificate authority verifies the party identity

Note: Oracle Web Cache does not cache pages that support basic
HTTP authentication. These pages result in cache misses.

Application
Web Server

OracleAS Web
Cache

Web
Browser

HTTP
and

HTTPS

HTTP
or

HTTPS SSL

Oracle
Net

Oracle
Database

Introduction to Security in Oracle Web Cache

Configuring Security 5-3

and grants a certificate, signing it with its private key. The certificate you use in Oracle
Web Cache must be signed by a CA.

Different CAs may have different identification requirements when issuing certificates.
One may require the presentation of a user's driver's license, while another may
require notarization of the certificate request form, or fingerprints of the requesting
party.

The CA publishes its own certificate, which includes its public key. Each network
entity has a list of certificates of the CAs it trusts. Before communicating with another
entity, a given entity uses this list to verify that the signature on the other entity's
certificate is from a known, trusted CA.

Network entities can obtain their certificates from the same or different CAs. By
default, Oracle Wallet Manager automatically installs with trusted certificates from
VeriSign, RSA, Entrust, and GTE CyberTrust.

5.1.1.2.2 Certificate A certificate is a digital data record used for authenticating
network entities such as a server or a client. It is created when a party's public key is
signed by a trusted CA. A certificate ensures that a party's identification information is
correct, and that the public key actually belongs to that party.

A certificate contains the party's name, public key, and an expiration date—as well as a
serial number and certificate chain information. It can also contain information about
the privileges associated with the certificate.

When a network entity receives a certificate, it verifies that it is a trusted
certificate—one issued and signed by a trusted certificate authority. A certificate
remains valid until it expires or is terminated.

Oracle Web Cache supports the following:

■ Server-side certificates: A server-side certificate is a method for verifying the
identity of the contacted server. It binds information about the server to the
server's public key and must be signed by a trusted CA.

For server-side certificates, Oracle Web Cache sends the server certificate to the
client browser during the SSL handshake, then processes the request for the object.
If the requested object is not stored in the cache, the cache forwards the request to
the application Web server, a peer cache (in a cluster), or a subordinate cache (in a
hierarchy).

One server-side certificate is required for each unique site configuration. HTTPS
does not support multiple virtual hosts on a single port. For example, an
environment with 20 site IP address and port number configurations requires 20
separate certificates.

■ Client-side certificates: A client-side certificate is a method for verifying the
identity of the client. It binds information about the client user to the user's public
key and must be digitally signed by a trusted CA. Certificate Revocation Lists
(CRLs) validate the peer certificate in the SSL handshake and ensure that the
certificate is not on the list of revoked certificates issued by the CA.

For client-side certificates, the client browser sends the certificate to the cache
during the SSL handshake, then the cache processes the request for the object. If
the requested object is not stored in the cache, the cache forwards the request to
the application Web server, a peer cache (in a cluster), or another cache (in a
hierarchy). To transfer information about the client-side certificate to another cache
or to the application Web server, Oracle Web Cache adds HTTP headers to the
request. These headers begin with the string SSL-Client-Cert.

Introduction to Security in Oracle Web Cache

5-4 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

In addition, depending on your deployment, you configure caches to accept the
certificate information in HTTP headers from peer caches or from any entities
(such as a provider or remote cache) or to not accept the certificate information in
headers.

Note the following about client-side certificates:

■ Client-side certificates are not required for HTTPS requests. They are generally
used when PKI-based user authentication is needed, such as in finance,
government, or military applications.

■ You can specify that an entire site require client-side certificates.

■ If the listening port requires client certificates, then the connection is refused.
If the site requires client certificates and the SSL port does not, then HTTP
error 403 Forbidden returns.

■ Oracle Web Cache supports the use of client-side certificates with Oracle
HTTP Server only.

■ Oracle Web Cache does not support client-side certificates with a distributed
cache hierarchy because the security of the certificates cannot be guaranteed.

■ Although the Oracle HTTP Server supports OpenSSL certificate revocation
lists, Oracle Web Cache does not. If you use client-side certificates, you must
modify your application to check if the client-side certificate has been revoked.
You can do this using a CGI script or servlet.

■ Oracle Fusion Middleware does not support Microsoft Server Gated
Cryptography Certificates (SGC) or VeriSign Global Server IDs. This
cryptography enables export version browsers to transparently upgrade to
strong 128-bit encryption from weaker 40-bit encryption when communicating
with an application server. Without this cryptography, browsers with the
weaker 40-bit encryption cannot negotiate a secure connection to Oracle
Fusion Middleware.

5.1.1.2.3 Wallet A wallet is a repository used to manage authentication data such as
keys, certificates, and trusted certificates needed by SSL. A wallet has an X.509 version
3 certificate, private key, and list of trusted certificates.

Security administrators use Oracle Wallet Manager to manage security credentials on
the Oracle Web Cache server. Wallet owners use it to manage security credentials on
clients. Specifically, Oracle Wallet Manager is used to do the following:

■ Generate a public-private key pair and create a certificate request for submission
to a certificate authority.

■ Install a certificate for the identity.

■ Configure trusted certificates for the identity.

To configure HTTPS for Oracle Web Cache, create a wallet on the Oracle Web Cache
server for each supported site. You specify the location of the wallet for each of the
Oracle Web Cache HTTPS listening and operations ports (to support incoming HTTPS
requests), and the origin server (to support outgoing HTTPS requests). You can share
one wallet, or you can create separate wallets. If you use the same wallet, keep in mind
that it can support only one server-side certificate.

Note that Oracle Web Cache installs a default wallet with a default certificate, but this
wallet should only be used for testing purposes, not in production environments. The
SSL connection is not considered secure when using the default wallet. In a production

Introduction to Security in Oracle Web Cache

Configuring Security 5-5

environment, create a new wallet and create a new certificate or import a trusted
certificate into the wallet.

See Oracle Fusion Middleware Administrator's Guide for further information about Oracle
Wallet Manager.

5.1.1.2.4 How SSL Works To describe how SSL works in an HTTPS connection, the
word client is used to describe either a browser or Oracle Web Cache, and the word
server is used to describe either Oracle Web Cache or an origin server. For example,
when a browser is the client, the server can be Oracle Web Cache or an origin server;
when Oracle Web Cache is the client, the server can be an origin server.

The authentication process between the client and server consists of the steps that
follow:

1. The client and server determine which cipher (encryption algorithm) to use.

2. SSL performs the handshake between the client and the server to establish a secure
connection.

An SSL handshake includes the following actions:

1. The client and server establish which cipher suites to use.

2. The server sends its certificate to the client, and the client verifies that the server's
certificate was signed by a trusted CA.

3. Optionally, the server requests a client certificate and the client responds by
sending the client certificate to the server. The server verifies that the client
certificate was signed by a trusted CA.

4. The client and server exchange key information using public key cryptography;
based on this information, each generates a session key. All subsequent
communications between the client and the server is encrypted and decrypted by
using this set of session keys and the cipher.

5.1.1.3 SSL Acceleration
Oracle Web Cache provides SSL acceleration by moving the SSL processing to the Web
tier.

In addition to off-board SSL acceleration solutions, Oracle Fusion Middleware
supports both software-only SSL operations and nCipher's BHAPI-compliant
hardware for deployment on servers running Oracle Web Cache and Oracle HTTP
Server. When executed in software, SSL operations place a strain on server CPU
resources, causing a reduction in throughput and slower overall performance. The
nCipher hardware off loads the SSL key exchange processing from a server's CPUs,
increasing the number of concurrent SSL connections and improving response times
for SSL-protected content.

See http://www.ncipher.com for more information about nCipher.

5.1.2 Resources Protected
By default, the user that performed the installation is the owner of Oracle Web Cache
files. Most files are readable by the user ID specified in the Process Identity page of
Oracle Web Cache Manager (Properties > Process Identity).

If you change the process identity user, you must manually change the ownership of
Oracle Web Cache files and directories to the new user ID and group ID with the
chown command.

Introduction to Security in Oracle Web Cache

5-6 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

5.1.3 Authorization and Access Enforcement
The mod_access module of Oracle HTTP Server controls access to the URLs based on
characteristics of a request, such as host name or IP address. Oracle Web Cache does
not restrict IP address restrictions on a URL basis. If you are using mod_access with
Oracle Web Cache, ensure that the protected resources are not cached either by not
specifying a caching rule or by explicitly setting a caching rule not to cache the
content.

To pass the client IP directly to the Oracle HTTP Server, configure the Order directive
in the httpd.conf file. For more information, see the Oracle Fusion Middleware
Administrator's Guide for Oracle HTTP Server.

5.1.4 Leveraging Oracle Identity Management Infrastructure
The Oracle Identity Management infrastructure centralizes management of security
across the enterprise

■ Section 5.1.4.1, "About Caching Content from Oracle Single Sign-On Servers"

■ Section 5.1.4.2, "About Caching Oracle Single Sign-On Partner Applications (mod_
osso)"

■ Section 5.1.4.3, "About Authentication through Oracle Single Sign-On"

5.1.4.1 About Caching Content from Oracle Single Sign-On Servers
For security reasons, you should not cache content from Oracle Single Sign-On servers

5.1.4.2 About Caching Oracle Single Sign-On Partner Applications (mod_osso)
You can configure Oracle Web Cache to cache content for Oracle HTTP Servers
running Single Sign-On partner applications. By default, mod_osso protected pages
are configured as non-cacheable with a Surrogate-Control: no-store response
header.

To override mod_osso default behavior, set OssoSendCacheHeaders to off in the
httpd.conf file. For example:

<Location /foo/>
OssoSendCacheHeaders off
</Location>

This example disables the setting by mod_osso of any cache headers for any URL that
starts with /foo. For these URLs, the application is responsible for setting the cache
control headers, including Surrogate-Control as appropriate.

If Oracle Web Cache is load balancing requests for identical Single Sign-On partner
applications, configure the Oracle HTTP Servers as a cluster, so the applications act as
a single partner application. You can then configure Oracle Web Cache to perform
stateless load balancing of requests to the servers. If the application mid-tier is not
clustered, stateful load balancing is necessary.

5.1.4.3 About Authentication through Oracle Single Sign-On
You can configure Oracle Web Cache to require authentication through Oracle Single
Sign-On. Incoming requests must have a valid Oracle Single Sign-On cookie to be
served by Oracle Web Cache. See Section 5.8 for configuration details.

Configuring Access Control

Configuring Security 5-7

5.2 Configuring Password Security
Before submitting invalidation and statistics monitoring requests, establish secure
passwords for sending the requests.

The invalidator account is an administrator authorized to send invalidation
requests. The invalidator account sends HTTP POST requests to invalidate objects
in the cache.

The administrator account is the Oracle Web Cache administrator authorized to
log in to Oracle Web Cache Manager and make configuration changes through that
interface. This administrator is also authorized to send statistic monitoring requests to
the Oracle Web Cache statistics monitoring port. If after monitoring metrics from
Fusion Middleware Control you need additional performance metrics, you can access
the statistic monitoring port with the administrator account to view detailed
performance metrics. See Section 8.4.

The default password for these accounts is the password you supplied in the Web
Cache Administrator page of the Oracle Universal Installer. Before you begin
configuration, change the passwords for these accounts to a secure password. You
must perform this configuration in Fusion Middleware Control.

To establish secure passwords for the invalidator and monitor accounts:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration > Passwords.

The Passwords page displays.

3. In the New Password field, enter a new password, keeping the following
restrictions in mind:

■ Passwords must be between 5 and 30 characters.

■ At least one character must be a number.

■ Passwords can contain only alphanumeric and underscore (_) characters.

■ Passwords must begin with an alphabetic character. Passwords cannot begin
with a number, the underscore (_), the dollar sign ($), or the number sign (#).

■ Passwords cannot be Oracle reserved words. The Oracle Database SQL
Reference lists the reserved words.

4. In the Confirm Password field, reenter the new password to confirm you entered
the password correctly.

5. Click Apply.

6. Restart Oracle Web Cache. See Section 2.13.

5.3 Configuring Access Control
By default, the computer on which you installed Oracle Web Cache is the trusted host.
You can change the trusted subnet or trusted host from which administration,
invalidation, and statistics monitoring requests can take place.

To specify if some or all of the traffic to an application is restricted to use HTTPS:

1. From Oracle Web Cache Manager, in the navigator frame, select Properties >
Security. See Section 2.7.2.

The Security page appears.

Configuring Oracle Web Cache for HTTPS Requests

5-8 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

2. In the Security page, click Change Trusted Subnets under the Current Trusted
Subnets.

The Change Trusted Subnets dialog box appears.

3. Select an option:

All subnets: Allows requests from all computers in all the subnets in the network.

This machine only: Allows requests from only this computer.

Enter list of IP addresses: Allows requests from all IP addresses you enter in a
comma-delimited list. You can enter IP addresses in using these format:

– Complete IP address in dot notation, including the network number, subnet
address, and unique host number

Example: 10.1.0.0

– Network/netmask pair for subnet restriction through masking

Example: 10.1.0.0/255.255.0.0 allows all the hosts in the 10.1 subnet access.

– Network/nnn Classless Inter-Domain Routing (CIDR) specification to require
nnn bits from high end to match

Example: 10.1.0.0/16 allows all the hosts in the 10.1 subnet access. This
example is similar to the network/netmask example, except the netmask
consists of nnn high-order 1 bits.

4. Click Submit.

5. Restart Oracle Web Cache using opmnctl. See Section 2.13.1.

5.4 Configuring Oracle Web Cache for HTTPS Requests
To provide more security for your Web site, you can configure Oracle Web Cache to
receive HTTPS protocol client requests and send HTTPS requests to the origin server.
HTTPS uses SSL to encrypt and decrypt user page requests as well as the pages that
are returned by the Oracle Web Cache and origin servers. You can also configure
Oracle Web Cache to send traffic to the origin server through an HTTPS listening port.

To configure HTTPS support for Oracle Web Cache, perform these tasks:

■ Section 5.4.1, "Task 1: Create Wallets"

■ Section 5.4.2, "Task 2: Configure an HTTPS Listening Port"

■ Section 5.4.3, "Task 3: Configure SSL Settings for Oracle Web Cache Connections to
Origin Servers"

■ Section 5.4.4, "Task 4: Configure a Site to Require HTTPS Requests"

■ Section 5.4.5, "Task 5: Restart Oracle Web Cache"

5.4.1 Task 1: Create Wallets
To support HTTPS for Oracle Web Cache, you must create a wallet on the Oracle Web
Cache server for each supported site. You need wallets to support the following
HTTPS requests:

■ Client requests for sites hosted by Oracle Web Cache

■ Administration, invalidation, and statistics monitoring requests to Oracle Web
Cache

Configuring Oracle Web Cache for HTTPS Requests

Configuring Security 5-9

■ Oracle Web Cache requests to origin servers, as well as admin server process
requests for requests to invalidation and statistics monitoring ports enabled for
SSL

For each site that Oracle Web Cache supports, configure at least one wallet. You
specify the location of the wallet for each of the Oracle Web Cache HTTPS listening
and operations ports (to support incoming HTTPS requests), and the origin server (to
support outgoing HTTPS requests). You can share one wallet, or you can create
separate wallets. If you use the same wallet, keep in mind that it can support only one
server-side certificate.

To create a wallet:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Security and then Wallets.

The Wallets page displays.

3. Perform the tasks in section "Create a Wallet" of the Oracle Fusion Middleware
Administrator's Guide.

5.4.2 Task 2: Configure an HTTPS Listening Port
To configure HTTPS protocol support between client and Oracle Web Cache, you must
configure an HTTPS listening port for Oracle Web Cache.

To add an HTTPS listening port:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. Create the listening port:

a. From the Web Cache menu, select Administration > Ports Configuration.

The Ports Configuration page displays.

b. Click Create.

The Create Port page appears.

c. From the Port Type list, select NORM.

d. In the IP Address field, specify the computer running Oracle Web Cache:

- IP version 4 address written in a 32-bit dotted decimal notation or an IP
version 6 address written in a 128-bit notation. See Section 2.5.

- A host name that resolves to an IP address of the computer running Oracle
Web Cache. If you do not want to rely on Domain Name System (DNS) to
resolve the host name, use a different name resolution mechanism, such as the
UNIX etc/hosts file.

- ANY to represent any IP address

e. In the Port field, enter the listening port from which Oracle Web Cache
receives client requests for the Web site.

Ensure that this port number is not in use.

Port numbers less than 1024 are reserved for use by privileged processes on
UNIX. To configure Oracle Web Cache to listen on a port less than 1024, such
as on port 80, run the Oracle Web Cache webcached executable with the root

Configuring Oracle Web Cache for HTTPS Requests

5-10 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

privilege. If the webcached executable is not run as root, Oracle Web Cache
fails to start.

See Section 5.9 for instructions on changing the webcached executable to run
as root.

f. Click OK.

3. Enable the port for SSL:

a. From the Web Cache menu, select Security > SSL Configuration.

The SSL Configuration page displays.

b. Select the row for the endpoint you created in Step 2 and click Edit.

The Edit Port page displays.

c. In the SSL Configuration section, click Enable SSL.

d. In the Server Wallet Name field, select the wallet you created in Section 5.4.1.

e. In the Advanced SSL Settings section, click Expand (+) to expand the
configuration settings:

f. From the Client Authentication list, select the type of client authentication.

- Server Authentication: A server authenticates itself to a client.

- Mutual Authentication: A client authenticates itself to a server and that
server authenticates itself to the client.

- No Authentication: Neither server nor client are required to authenticate.

- Optional Client Authentication: The server authenticates itself to the client,
but the client may or may not authenticate itself to the server. Even if the client
does not authenticate itself, the SSL session still goes through.

g. From the SSL protocol version list, select the version of SSL to use.

h. Click OK.

5.4.3 Task 3: Configure SSL Settings for Oracle Web Cache Connections to Origin
Servers

In this task, specify which SSL wallet to use for Oracle Web Cache connections to
origin servers. This wallet must contain a certificate that matches the wallet used by
the origin servers.

To specify which SSL wallet to use for Web Cache connections to origin servers:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Security and then SSL Configuration.

The SSL Configuration page displays.

3. Click the Expand icon next to the SSL Communication Between Web Cache and
Oracle HTTP Server section.

4. Click Change Wallet to display the Select Client Wallet dialog.

5. Select the wallet to use, and click OK. Ensure this wallet contains a certificate that
matches the wallet used by the origin server.

Additional HTTPS Configuration

Configuring Security 5-11

5.4.4 Task 4: Configure a Site to Require HTTPS Requests
If your environment has a mix of HTTP and HTTPS traffic, follow these instructions to
restrict traffic for a specific site (or URL prefix subset of the site), so that the requests
must be received by Oracle Web Cache over SSL connections only.

To configure the site settings, use a combination of Fusion Middleware Control and
Oracle Web Cache Manager:

1. In the Fusion Middleware Control, specify a site definition and site-to-server
mapping, as described in Section 2.11.3 and Section 2.11.4. When configuring the
site definition, ensure you specify an HTTPS listening port. This site uses the
wallet defined for that port.

2. From the Web Cache menu, select Availability > Restart to save the configuration
settings and restart Oracle Web Cache.

3. From Oracle Web Cache Manager, in the navigator frame, select Properties > Site
Definition. See Section 2.7.2.

4. Select the site you created in Step 1, and click Show/Edit Site.

5. In the Show/Edit dialog, in the HTTPS Only Prefix field, enter the URL prefix for
which only HTTPS requests are served. If all traffic must be restricted to HTTPS,
enter "/ " for the entire site.

6. Click Submit.

5.4.4.1 Modify ssl.conf for Keep-Alive Connections
By default, Oracle HTTP Server does not maintain keep-alive connection for HTTPS
client requests from Microsoft Internet Explorer 5.5 and later releases. Internet
Explorer has known issues with trying to reuse SSL connections after they have timed
out. In order for Oracle HTTP Server to maintain keep-alive connections from Oracle
Web Cache, you must remove the following entry from the ssl.conf file in
$ORACLE_HOME/Apache/Apache/conf directory on UNIX or ORACLE_
HOME\Apache\Apache\conf directory on Windows.

SetEnvIf User-Agent ".*MSIE.*" nokeepalive ssl-unclean-shutdown

The ssl.conf file specifies the SSL definitions for Oracle HTTP Server. If this entry is
not removed, then keep-alive connections are disabled. See Section 2.11.5 for further
information about configuring the keep-alive timeout in Oracle Web Cache.

5.4.5 Task 5: Restart Oracle Web Cache
See Section 2.13.

5.5 Additional HTTPS Configuration
After performing the tasks in Section 5.4, you can perform the following optional
configuration:

■ Section 5.5.1, "Configuring HTTPS Operation Ports"

■ Section 5.5.2, "Requiring Client-Side Certificates"

■ Section 5.5.3, "Configuring Certificate Revocation Lists (CRLs)"

Additional HTTPS Configuration

5-12 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

5.5.1 Configuring HTTPS Operation Ports
To configure HTTPS ports to listen for administration, invalidation, or statistics
monitoring requests in Fusion Middleware Control:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. Create the listening port:

a. From the Web Cache menu, select Administration > Ports Configuration.

The Ports Configuration page displays.

b. Click Create.

The Create Port page appears.

c. From the Port Type list, select the port type, ADMINISTRATION,
INVALIDATION, or STATISTICS.

d. In the IP Address field, specify the computer running Oracle Web Cache:

- IP version 4 address written in a 32-bit dotted decimal notation or an IP
version 6 address written in a 128-bit notation. See Section 2.5.

- A host name that resolves to an IP address of the computer running Oracle
Web Cache. If you do not want to rely on Domain Name System (DNS) to
resolve the host name, use a different name resolution mechanism, such as the
UNIX /etc/hosts file.

- ANY to represent any IP address

e. In the Port field, enter the listening port from which Oracle Web Cache
receives client requests for the Web site.

Ensure that this port number is not in use.

Port numbers less than 1024 are reserved for use by privileged processes on
UNIX. To configure Oracle Web Cache to listen on a port less than 1024,
such as on port 80, run the Oracle Web Cache webcached executable with
the root privilege. If the webcached executable is not run as root, Oracle
Web Cache fails to start.

See Section 5.9 for instructions on changing the webcached executable to run
as root.

f. Click OK.

3. Enable the port for SSL:

a. From the Web Cache menu, select Security > SSL Configuration.

The SSL Configuration page displays.

b. Select the row for the endpoint you created in Step 2 and click Edit.

The Edit Port page displays.

c. In the SSL Configuration section, click Enable SSL.

d. In the Server Wallet Name field, select the wallet you created in Section 5.4.1.

e. In the Advanced SSL Settings section, click Expand (+) to expand the
configuration settings:

f. From the SSL Authentication list, select the type of client authentication.

- Server Authentication: A server authenticates itself to a client.

Additional HTTPS Configuration

Configuring Security 5-13

- Mutual Authentication: A client authenticates itself to a server and that
server authenticates itself to the client.

- No Authentication: Neither server nor client are required to authenticate.

- Optional Client Authentication: The server authenticates itself to the client,
but the client may or may not authenticate itself to the server. Even if the client
does not authenticate itself, the SSL session still goes through.

g. From the SSL Protocol Version list, select the version of SSL to use.

h. Click OK.

5.5.2 Requiring Client-Side Certificates
You can require that clients send certificates (client-side certificates) to the cache to
verify the identity of the client.

With client-side certificates, the client browser sends the certificate to the cache during
the SSL handshake. Then, the server processes the request for the object. If the
requested object is not stored in the cache, the cache forwards the request to the
application Web server, a peer cache (in a cluster), or a subordinate cache (in a
hierarchy). To transfer information about the client-side certificate to another cache or
to the application Web server, Oracle Web Cache adds HTTP headers to the request.
The headers begin with the string SSL-Client-Cert.

Note the following points about using client-side certificates:

■ In a simple configuration (client to cache to application Web server), the client
sends the certificate to the cache during the SSL handshake. If the requested object
is not stored in the cache, the cache forwards the request to the application Web
server and transfers the client-side certificate information in headers to the
application Web server. The application Web server recognizes the headers and
responds to the request.

■ In a cluster, the client sends the certificate to a cache cluster member during the
SSL handshake. If the requested object is not stored in that cache, the cluster
member requests it from a peer (the cluster member that owns the object). With
client-side certificates, Oracle Web Cache must be able to pass the client-side
certificate information in headers to the peer cluster member, and the peer must be
able to pass the headers to the application Web server.

■ If a site requires client certificates, then a 403 Forbidden error returns if a client
certificate is not provided. If a listen port requires client certificates, then the SSL
handshake fails if a client certificate is not provided.

The following topics describe how to configure client-side certificate settings:

■ Section 5.5.2.1, "Configuring Client-Side Certificate Settings for the HTTPS
Listening Ports"

■ Section 5.5.2.2, "Configuring Client-Side Certificate Settings for Cache Clusters"

Note: Oracle Web Cache supports the use of client-side certificates
with Oracle HTTP Server only.

Oracle Web Cache does not support client-side certificates with a
distributed cache hierarchy because the security of the certificates
cannot be guaranteed.

Additional HTTPS Configuration

5-14 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

■ Section 5.5.2.3, "Configuring Client-Side Certificate Settings for a Site"

5.5.2.1 Configuring Client-Side Certificate Settings for the HTTPS Listening Ports
To use client-side certificates, you must enable an HTTPS listening port, as described
in Section 5.4.2. If you have a cache cluster, you must enable HTTPS listening ports for
all cluster members. In addition, you must configure Oracle Web Cache to require
client browsers to provide SSL certificates.

After configuring the client-side certificate, to enable Oracle Web Cache to transfer
certificate information to Oracle HTTP Server, add the AddCertHeader directive to
httpd.conf. See the Oracle Fusion Middleware Administrator's Guide for Oracle HTTP
Server for information about adding the AddCertHeader directive.

5.5.2.2 Configuring Client-Side Certificate Settings for Cache Clusters
If you have a cache cluster, you must prevent a cache from accepting the certificate
information in HTTP headers from any source other than a peer cluster member. In
addition, each cache must be able to pass the client-side certificate information in
headers to the peer cluster member, and the peer must be able to pass them to the
application Web server.

To configure this behavior in Oracle Web Cache Manager:

1. From Oracle Web Cache Manager, in the navigator frame, select Properties >
Security. See Section 2.7.2.

2. In the Security Header Configuration section of the Security page, set the value of
Accept SSL client certificates encoded in SSL-Client-Cert HTTP headers to NO
(the default), so Oracle Web Cache does not accept the certificate information in
HTTP headers. This setting prevents caches in a cache cluster from accepting the
certificate information in HTTP headers.

3. In the Cluster Security Configuration section, set the value of the Route requests
that contain SSL client certificates to cache cluster peers to YES, enabling Oracle
Web Cache to pass information about the client-side certificate in HTTP headers to
a peer cache. This setting is used for caches in a cache cluster so that they can pass
the information to a peer cache.

4. Click Apply Changes.

5. Restart Oracle Web Cache. See Section 2.13.

5.5.2.3 Configuring Client-Side Certificate Settings for a Site
You can also specify that an entire site require client-side certificates. If a site requires
client certificates, then a 403 Forbidden error returns if a client certificate is not
provided.

To configure a site to use client-side certificates:

1. From Oracle Web Cache Manager, in the navigator frame, select Properties > Site
Definition. See Section 2.7.2.

2. In the Site Definitions page, select the site and click Show/Edit Site.

3. In the Show/Edit dialog, in the Client-Side Certificate field, select Required.

4. Click Submit.

5. Restart Oracle Web Cache. See Section 2.13.

Additional HTTPS Configuration

Configuring Security 5-15

5.5.3 Configuring Certificate Revocation Lists (CRLs)
Fusion Middleware Control or Oracle Web Cache Manager do not provide support for
client certificate validation with Certificate Revocation Lists (CRLs). You can configure
this support by manually editing the webcache.xml file.

Client certificate revocation status is checked against CRLs that are located in a file
system directory. Typically, CRL definitions are valid for a few days, and must be
updated on a regular basis. Whenever the CRL definitions are modified, you must
restart Oracle Web Cache.

When CRL validation is enabled and available, Oracle Web Cache performs certificate
revocation status checking for client certificates. The SSL connection is rejected if a
certificate is revoked. SSL connections are accepted if no CRL is found, or if the
certificate has not been revoked.

To configure certificate validation with CRL

1. Enable client certificate for the HTTPS listen port. See Section 5.5.2.

2. Use a text editor to open webcache.xml, located in:

(UNIX) ORACLE_INSTANCE/<instance_name>/config/WebCache/<webcache_name>
(Windows) ORACLE_INSTANCE\<instance_name>\config\WebCache\<webcache_name>

3. Locate the HTTPS listen port in webcache.xml for which CRL checking needs to
be enabled, and add the SSLCRLENABLE="YES" parameter to the LISTEN
directive. For example:

...
<LISTEN IPADDR="ANY" PORT="443" PORTTYPE="NORM" SSLENABLED="SSLV3_V2H" CLIENT_
CERT="YES" SSLCRLENABLE="YES" STRONG_CRYPTO_ONLY="NO">
...

4. Configure CRL file location by adding the SSLCRLPATH and SSLCRLFILE
parameters to the HTTPS LISTEN directive.

■ SSLCRLPATH: Enter the path to the directory where CRLs are stored. Ensure
that the path is correct; otherwise CRL checking will not work. This parameter
has no default value.

■ SSLCRLFILE: Enter the path to a comprehensive CRL file where
PEM-encoded (BASE64 CRLs are concatenated in order of preference in one
file. If this parameter is set, then the file must be present at the specified
location. Otherwise CRL checking will not work.

For example:

...
<LISTEN IPADDR="ANY" PORT="443" PORTTYPE="NORM" SSLENABLED="SSLV3_V2H" CLIENT_
CERT="YES" SSLCRLENABLE="YES" SSLCRLFILE="/ORACLE_HOME/webcache/crls/sample_
crl" SSLCRLPATH="/ORACLE_HOME/webcache/crls/" STRONG_CRYPTO_ONLY="NO">
...

Use the command line utility orapki to rename CRLs in your file system. See
section "Certificate Revocation List Management" in the Oracle Database Advanced
Security Administrator's Guide from the Oracle Database documentation library for
information about using orapki.

5. Save webcache.xml.

6. Restart Oracle Web Cache with the following command:

opmnctl restartproc ias-component=component_name

Configuring HTTP Request Header Size

5-16 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

This executable is found in the following directory:

(UNIX) ORACLE_INSTANCE/bin
(Windows) ORACLE_INSTANCE\bin

In a cluster configuration, when configuration changes are made directly to a
cluster member's webcache.xml file, use Fusion Middleware Control or Oracle
Web Cache Manager to propagate the change to other cluster members. See
Section 3.6 and Section 3.7.

5.6 Configuring HTTP Request Header Size
By default, Oracle Web Cache provides the following limits for HTTP request header
field:

■ 819000 bytes for the total sum of all HTTP request header fields in requests

Oracle recommends setting the header size to a lower value than the default to
ensure security and prevent denial-of-service attacks from malicious clients.

If the length of the request is larger than the allowed limit,Oracle Web Cache sends
an error to the client and reports the error 11356 to the event log:

Total request header length exceeds configured maximum. A forbidden error
response is returned to the client.

■ 8152 bytes for an individual HTTP request header field

Oracle recommends setting the individual header size based on how large an
application sets HTTP requests header fields.

If the length of the request is larger than the allowed limit, Oracle Web Cache
sends an error to the client and reports the error 11355 to the event log:

Single request header length exceeds configured maximum. A forbidden error
response is returned to the client.

To modify the default header limits:

1. From Oracle Web Cache Manager, in the navigator frame, select Properties >
Security. See Section 2.7.2.

The Security page appears.

2. In the HTTP Request Header Limits section of the Security page, click Edit.

The HTTP Request Header Limits dialog box appears.

3. In the Maximum combined header size in bytes field, specify the total sum of all
HTTP request header fields in requests. Specify a limit of at least 4096 bytes (4 KB).

4. In the Maximum individual header size in bytes field, specify the allowed length
limit of an individual HTTP request header fields. Specify a limit of at least 256
bytes.

5. Click Submit, and then click Apply Changes.

6. Restart Oracle Web Cache. See Section 2.13.

Configuring Support for Caching Secured Content

Configuring Security 5-17

5.7 Ensuring That ClientIP Headers Are Valid
A client, such as a browser, can send information about its IP address in a header in a
request. However, because a client could use a false IP address in the header, allowing
a cache to forward that information to another cache or to the origin server can be a
potential security problem. By default, Oracle Web Cache removes any IP header
information forwarded from a client and replaces it with a header that contains the
correct IP address of the client. (In this case, a client can be a browser or another cache
in a hierarchy.)

In a cache hierarchy, Oracle Web Cache must be able to preserve the information that is
forwarded from one cache to another in the hierarchy or from a cache to the origin
server.

To configure these settings:

1. From Oracle Web Cache Manager, in the navigator frame, select Properties >
Security. See Section 2.7.2.

2. In the Security Header Configuration section of the Security page, check the value
of the Accept client IP addresses encoded in ClientIP headers field.

If the value is NO, Oracle Web Cache removes any ClientIP request-header
forwarded from the client and replaces it with a header that contains the correct IP
address.

If the value is YES, Oracle Web Cache accepts the header received from the client
and can forward it to another cache or the origin server.

3. If the settings do not match the following information, click Edit and change the
settings in the Security Header Configuration dialog:

– For a simple configuration, the value should be NO.

– In a cache cluster, the value should be NO for all cluster members.

– In a distributed cache hierarchy, for the remote cache, the value should be NO.

– In a distributed cache hierarchy, for a central cache that receives requests only
from other caches, the value should be YES.

If the central cache receives requests from both browsers and other caches in
the hierarchy, Oracle Web Cache cannot distinguish which is a browser and
which is another cache. In this case, if you specify YES, a false IP address
could potentially be forwarded from a browser. However, correct information
would be forwarded from another cache. If you specify NO, a false IP address
could not be forwarded from a browser. However, the information forwarded
from another cache would contain the IP address of the cache, not of the
original client.

4. Click Submit, and then click Apply Changes.

5. Restart Oracle Web Cache. See Section 2.13.

5.8 Configuring Support for Caching Secured Content
You can configure Oracle Web Cache to support caching content that is secured by
Oracle Single Sign-On authentication with no other authorization requirements.

To enable this setting in Oracle Web Cache Manager:

1. From Oracle Web Cache Manager, in the navigator frame, select Origin Servers,
Sites, and Load Balancing > Site Definitions. See Section 2.7.2.

Running webcached with Root Privilege

5-18 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

2. Select a configured site and click Edit Show/Edit Site.

3. In the For Site dialog, in the Attributes section, select the type of authentication
required for requested objects:

■ Oracle Single Sign-On: Select to require authentication through Oracle Single
Sign-On. Oracle Web Cache requires a valid Oracle Single Sign-On cookie to
serve requests.

■ None: Select to not require any authentication.

4. Click Submit.

5. Restart Oracle Web Cache. See Section 2.13.

5.9 Running webcached with Root Privilege
On UNIX, you must configure webcached to run with root privilege in the following
cases:

■ Privileged port numbers less than 1024 are being used for Oracle Web Cache
listening ports.

■ There are more than 1,024 file descriptors being used for connections to Oracle
Web Cache.

■ The current opmnctl user does not match the configured process identity user in
the Process Identity page (Properties > Process Identity) of Oracle Web Cache
Manager.

This section contains the following topics:

■ Section 5.9.1, "Configuring Process Identity"

■ Section 5.9.2, "Configuring Root Privilege for Privileged Ports and More than 1,024
File Descriptors"

■ Section 5.9.3, "Configuring Root Privilege for the Current User"

■ Section 5.9.4, "Reverting Permissions Back to Installation State"

5.9.1 Configuring Process Identity
By default, the user that performed the installation is the owner of Oracle Web Cache
processes. This user can execute opmnctl commands. Users that belong to the same
group ID of the user that performed installation can also execute opmnctl commands.

If the current opmnctl user does not match the configured user in the Process Identity
page of Oracle Web Cache Manager, the Oracle Web Cache webcached executable
must run as root. If the webcached executable is not able to run as root, error events
are reported to the event log file, and Oracle Web Cache fails to start.

To change the user ID and group ID for the Oracle Web Cache processes on UNIX:

1. From Oracle Web Cache Manager, in the navigator frame, select Properties >
Process Identity. See Section 2.7.2.

The Process Identity page appears.

2. Select the cache for which you want to modify settings, and then click Change
IDs.

The Change Process Identity dialog box appears.

Running webcached with Root Privilege

Configuring Security 5-19

3. Enter the new user in the User ID field and the group ID of the user in the Group
ID field.

4. Click Submit.

5. Use the webcache_setuser.sh script as follows to change file and directory
ownership:

webcache_setuser.sh setidentity <user_ID>

where <user_ID> is the user you specified in the User ID field of the Process
Identity page.

The setidentity command changes the ownership of the following files and
directories to the new user ID:

■ webcache.xml configuration file in:

(UNIX) ORACLE_INSTANCE/<instance_name>/config/WebCache/<webcache_name>
(Windows) ORACLE_INSTANCE\<instance_name>\config\WebCache\webcache_name>

■ Event and access log files in:

(UNIX) ORACLE_INSTANCE/diagnostics/logs/WebCache/<webcache_name>
(Windows) ORACLE_INSTANCE\diagnostics\logs\WebCache\<webcache_name>

6. Restart Oracle Web Cache using opmnctl. See Section 2.13.1.

5.9.2 Configuring Root Privilege for Privileged Ports and More than 1,024 File
Descriptors

For a configuration with privileged ports or to increase the file descriptor limit for
Oracle Web Cache, you have two options:

■ Raise the limit for the particular user that is running Oracle Web Cache. Oracle
recommends this mechanism. Refer to operating-system documentation for
further information about raising the limit for a user.

■ Use the setroot command of webcache_setuser.sh to provide Oracle Web
Cache with root privilege without requiring changing the process identity settings

To use the setroot command of webcache_setuser.sh:

1. From $ORACLE_HOME/webcache/bin, execute:

webcache_setuser.sh setroot user_ID

where user_ID is the user that performed installation. See Section 5.10 for further
information about the webcache_setuser.sh script.

2. Log out of the computer, and re-login as the user that installed Oracle Application
Server.

3. Restart Oracle Web Cache using opmnctl. See Section 2.13.1.

5.9.3 Configuring Root Privilege for the Current User
For a configuration in which the current user does not match the configured user
settings, change the process identity of the Oracle Web Cache processes and use the
setidentity command of webcache_setuser.sh to provide Oracle Web Cache
with root privilege:

1. Change the process identity of the Oracle Web Cache processes.

Script for Setting File Permissions on UNIX

5-20 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Oracle recommends running Oracle Web Cache using a restricted user. See
Section 5.9.1 for instructions on setting the group ID and user ID to establish
process identity.

2. Use the webcache_setuser.sh script as follows to run Oracle Web Cache as a
different user and add set-user ID permission to the webcached executable:

webcache_setuser.sh setidentity user_ID

where user_ID is the user ID you specified in Step 2. See Section 5.10 for further
information about the webcache_setuser.sh script.

3. Log out of the computer, and re-login as the user you configured in Step 2.

4. Restart Oracle Web Cache using opmnctl. See Section 2.13.1.

5.9.4 Reverting Permissions Back to Installation State
You can revert permissions back to the installation state with the revert command of
webcache_setuser.sh. It is necessary to revert permissions if you used the
setidentity command and plan to install a patch release. Otherwise, you cannot
write to files in the $ORACLE_HOME/webcache directory. After the patch installation
is complete, you can choose to change the process identity again with the
setidentity command.

To revert file permissions:

1. Use the webcache_setuser.sh script as follows to revert file permissions back
to the installed state:

webcache_setuser.sh revert user_ID

where user_ID is the user that performed installation. See Section 5.10 for further
information about the webcache_setuser.sh script.

2. Log out of the computer, and re-login as the user that installed Oracle Application
Server.

3. Restart Oracle Web Cache using opmnctl. See Section 2.13.1.

5.10 Script for Setting File Permissions on UNIX
For UNIX operating systems, use the webcache_setuser.sh script to set the file
permissions according to the mode in which to run Oracle Web Cache. The file
webcache_setuser.sh is located in the directory $ORACLE_HOME/webcache/bin.

Prior to running the webcache_setuser.sh script, stop both the cache and admin
server processes, using the OPMN utility command:

opmnctl stopproc ias-compononent=WebCache

The following shows the format of the webcache_setuser.sh syntax:

webcache_setuser.sh command user_ID

Table 5–1 describes the commands.

Table 5–1 Commands of the webcache_setuser.sh Script

Command Description

setroot Sets the ownership of the webcached executable to root, and runs Oracle
Web Cache as the user that performed the installation.

Script for Setting File Permissions on UNIX

Configuring Security 5-21

The parameter user_ID is the user ID associated with the Oracle Web Cache
processes. (By default, that user ID is the ID of the user that performed the
installation.) For setroot and revert modes, the user ID must be the ID of the user
that performed the installation. The user ID must match the user ID specified in the
Process Identity page (Properties > Process Identity) of Oracle Web Cache Manager.
See the Section 5.9 for further information about when running the webcache_
setuser.sh script is necessary.

setidentity Changes the ownership of the run time Oracle Web Cache user. This
command adds set-user ID permission to the webcached executable.

revert Reverts the file permissions back to the installation state.

It is necessary to revert permissions if you used the setidentity
command and plan to install a patch release. Otherwise, you cannot write to
files in the $ORACLE_HOME/webcache directory. After the patch installation
is complete, you can choose to change the process identity again with the
setidentity command.

Table 5–1 (Cont.) Commands of the webcache_setuser.sh Script

Command Description

Script for Setting File Permissions on UNIX

5-22 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

6

Caching and Compressing Content 6-1

6 Caching and Compressing Content

This chapter introduces techniques to cache and compress content using Oracle Web
Cache. It discusses cache population, consistency, and rules. The chapter describes the
properties for configuring caching rules and expiration policies.

This chapter includes the following topics:

■ Section 6.1, "About Cache Population"

■ Section 6.2, "About Cache Consistency"

■ Section 6.3, "About Caching Decisions"

■ Section 6.5, "Introduction to Configuring Advanced Settings"

■ Section 6.4, "Introduction to Creating Caching Rules"

■ Section 6.6, "Basic Tasks for Configuring and Monitoring Caching Rules"

■ Section 6.7, "Configuring Expiration Policies"

■ Section 6.8, "Configuring and Monitoring Caching Rules"

■ Section 6.9, "Monitoring Summary Settings for Caching Rules"

■ Section 6.10, "Using the Surrogate-Control Response Header as an Alternative to
Caching Rules"

6.1 About Cache Population
You define caching rules to determine which objects to cache. When you establish a
caching rule, objects matching the rule are not cached until there is a client request for
them. When a client first requests an object, Oracle Web Cache sends the request to the
origin server. This request is a cache miss. Because this URL has an associated caching
rule, Oracle Web Cache caches the object for subsequent requests. When Oracle Web
Cache receives a second request for the same object, Oracle Web Cache serves the
object from its cache to the client. This request is a cache hit.

When you stop Oracle Web Cache, the cache clears all objects. In addition, Oracle Web
Cache clears and resets statistics.

See Section 6.3 for a description of how Oracle Web Cache determines cache
population through caching rules.

6.2 About Cache Consistency
Consistency is crucial for the reliability of Oracle Web Cache. The following features
ensure consistency between the cache and origin servers:

About Caching Decisions

6-2 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

■ Section 6.2.1, "Expiration"

■ Section 6.2.2, "HTTP Cache Validation"

■ Section 6.2.3, "Invalidation"

6.2.1 Expiration
With expiration, Oracle Web Cache marks objects as invalid after a certain amount of
time in the cache. Expirations are useful if you can accurately predict when content
changes on an origin server or database. To prevent objects from remaining in the
cache indefinitely, Oracle recommends creating expiration policies for all cached
objects.

For instructions on creating expiration policies, see Section 6.7.

6.2.2 HTTP Cache Validation
Oracle Web Cache uses HTTP/1.1 validation models to determine how to best serve a
response to clients. Validation works by the comparing two validators to determine if
they represent the same or different entities. Specifically, Oracle Web Cache uses the
If-Modified-Since and If-None-Match headers to determine the following
validity:

■ Browser header is valid as compared with the cached copy's header

■ Cached copy's header is valid as compared with the origin server's header

For further information about validation, see:

■ Section 13.3 Validation Model of the HTTP/1.1 specification available at
http://www.ietf.org/rfc/rfc2616.txt for further information about the
validation caching

■ Section 6.2.3 for instructions on invalidating content

■ Section 6.7 for instructions on configuring expiration policies

6.2.3 Invalidation
You use invalidation for content that does not have predictable expiration times. With
invalidation, Oracle Web Cache marks objects as invalid. When objects are marked as
invalid and a client requests them, they are removed and then refreshed with new
content from the origin servers. You can choose to remove and refresh invalid objects
immediately, or base the removal and refresh on the current load of the origin servers.

For further information about invalidation, see Chapter 7, "Invalidating Content."

6.3 About Caching Decisions
You can choose to cache or not to cache content for static objects, multiple-version
objects, personalized pages, pages that support a session cookie, embedded URL
parameter, or POST body parameter, and dynamic pages with caching rules.

Note: Oracle Web Cache does not support weak validators for the
If-None-Match validator. Oracle Web Cache supports all other
If-None-Match request-header field formatting.

About Caching Decisions

Caching and Compressing Content 6-3

You configure a caching rule by specifying caching attributes based on the URL or the
Content-Type response header with Fusion Middleware Control, or you set the
caching attributes for a specific object within a Surrogate-Control
response-header field. Those objects matching the rule are not cached until there is a
client request for them.

 Oracle Web Cache uses the following priority to determine object cacheability:

1. Surrogate-Control response header

2. Caching rule configured with Fusion Middleware Control

3. Other HTTP headers:

■ Authorization request header

■ Proxy-Authorization request header

■ Pragma: no-cache response header

■ Warning response header

If any of these headers are present, then Oracle Web Cache does not cache the
object.

4. Cookie values from Cookie request header and Set-Cookie response header

5. Cache-Control response header

6. Expires response header

The Surrogate-Control response-header field enables the origin server to override
the caching rules configured through Fusion Middleware Control. When both a
Surrogate-Control response header and a caching rule for the same object are
present, Oracle Web Cache merges the two. For example, if there is a caching rule for
an non-cacheable object set in Fusion Middleware Control with compression enabled,
and the response header contains Surrogate-Control: max-age=30+60, then
Oracle Web Cache respects both settings. Oracle Web Cache uses the max-age control
directive from the Surrogate-Control response-header to cache the object and the
compression setting from the caching rule. If there is a conflict between the
Surrogate-Control response header and a caching rule, then Oracle Web Cache
uses the settings from the Surrogate-Control response header.

If no caching rules or the Surrogate-Control response header are specified, then
Oracle Web Cache behaves just as HTTP proxy cache does, that is, it relies on HTTP
header information to determine what is cacheable. Generally, HTTP proxy caches
store only pages with static content.

For a description of how Oracle Web Cache determines cache population, see
Section 6.1.

Notes:

■ You can pre-populate the cache using Web crawler freeware such
as WGET to warm up the cache on restart or after bulk
invalidation operations. See
http://www.gnu.org/software/wget/wget.html for
further information about WGET.

■ When you stop Oracle Web Cache, all objects are cleared from the
cache. In addition, all statistics are cleared.

Introduction to Creating Caching Rules

6-4 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

6.4 Introduction to Creating Caching Rules
When you decide to create a caching rule for an object, determine first whether the
rule for the object is for a specific site or global to all sites. Oracle Web Cache gives
site-specific caching rules a higher priority than the global rules. After you determine
that choice, you configure general attributes for the rule:

■ Information about the rule, such as its name, description, site, and whether or not
to enable the rule

■ Actions for Oracle Web Cache to take when an incoming request matches a rule

■ Match criteria for Oracle Web Cache to locate the matching rule for incoming
requests.

Select to base the match evaluation on the request URL expression, the response MIME
type, or both criteria. If you do not select a match criteria, Oracle Web Cache matches
the rule to all URLs and all MIME types.

Matching the evaluation on the MIME type makes sense when entering URL
expressions becomes cumbersome. For example, the following shows a complicated
URL expression for various image types:

\.(gif|jpe?g|png|bmp)$

Instead, you can select the MIME Type option, select Starts with, and enter the
following string in the expression field:

image/

For most match evaluations, select the Starts with option, because the Content-Type
response header typically has additional content parameter values.

You can also enter a list in the expression field, separated by commas. Continuing with
the same example, if you want to match only GIF or JPEG responses, enter the
following string in the expression field:

image/gif, image/jpeg

After you create caching rules, you order the priority of caching rules. Higher priority
rules are matched first. Oracle Web Cache gives site-specific caching rules a higher
priority than the global caching rules. When ordering caching rules for cacheable and
non-cacheable objects, give the non-cacheable objects a higher priority than the
cacheable objects.

In the rules shown in Table 6–1, rule 2 caches objects of the URL that use the GET and
GET with query string methods, and rule 3 caches objects of the URL that use the
POST method and a POST body matching action=search. If the order were
reversed, all objects starting with /cec/cstage?ecaction=ecpassthru would be
cached, including /cec/cstage?ecaction=ecpassthru2.

Introduction to Configuring Advanced Settings

Caching and Compressing Content 6-5

For more information about specifying general attributes for caching rules and
specifying priority, see Section 6.8.1

6.5 Introduction to Configuring Advanced Settings
In addition to general attributes, you can configure advanced settings, as described in
the following topics:

■ Section 6.5.1, "Caching for Objects with Multiple Versions"

■ Section 6.5.2, "Caching for Objects with Embedded URL and POST Body
Parameters"

■ Section 6.5.3, "Caching Error Responses"

■ Section 6.5.4, "Caching for Objects with Sessions"

■ Section 6.5.5, "Caching for Objects with Session-Encoded URLs"

6.5.1 Caching for Objects with Multiple Versions
Some pages have multiple versions, enabling categorization. Figure 6–1 shows the
same object, https://oraclestore.oracle.com/OA_
HTML/ibeCCtpItmDspRte.jsp?item=293017§ion=11538, with different
prices for customers and internal Oracle employees. While customers pass a cookie
name and value of ec-400-id-acctcat=WALKIN, employees pass a cookie name
and value of ec-400-id-acctcat=INTERNAL.

Table 6–1 Example of Priority for Different HTTP Methods

Priority Match Criteria
HTTP
Methods

POST Body
Expression Action

1 URL Expression:

Regular Expression:
^/cec/cstage\?ecaction=ecpassthru2

Path Prefix:
/cec/cstage\?ecaction=ecpassthru2

GET and
GET
with
query
string

N/A Don’t
Cache

2 URL Expression:

Regular Expression:
^/cec/cstage\?ecaction=ecpassthru.*

Path Prefix:
/cec/cstage\?ecaction=ecpassthru

GET and
GET
with query
string

N/A Cache

3 URL Expression:

Regular Expression:
^/cec/cstage\?ecaction=ecpassthru.*

Path Prefix:
/cec/cstage\?ecaction=ecpassthru

POST Body
Expression

action=search Cache

4 MIME Type:

/image

GET and
GET
with
query
string

N/A Cache

Introduction to Configuring Advanced Settings

6-6 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Figure 6–1 Multiple-Version Object

You can configure Oracle Web Cache to recognize and cache multiple-version pages by
using the:

■ Values of the cookie for the page

■ HTTP request headers for the page

For those objects that use a cookie (sometimes referred to as a category cookie),
configure caching rules that specify the cookie name and whether to cache versions of
the object that do not use the cookie.

When a client sends an initial request for a multiple-version object, Oracle Web Cache
passes the request to the origin server. In its response, the origin server includes a
Set-Cookie response-header with the category cookie and its value:

Set-Cookie:cookie=value

Oracle Web Cache does not cache this initial response. Upon receiving the
Set-Cookie response-header field, the client stores the cookie in memory. With its
next request to the same origin server, the client includes the Cookie request-header
field with the category cookie name and value that was received in the last response:

Cookie:cookie=value

Introduction to Configuring Advanced Settings

Caching and Compressing Content 6-7

Oracle Web Cache still forwards the request to the origin server, which responds with
or without the Set-Cookie header. Oracle Web Cache then evaluates whether the
cookie and its value set in the Set-Cookie response-header matches the cookie and
its value set in the Cookie request-header. If the cookie and value match, then the
response is cached. Oracle Web Cache consider the absence of the Set-Cookie header
a match. If cookie and its value do not match, then the response is not cached. After
versions of the object are cached, Oracle Web Cache uses the value of the cookie in the
client's request to serve the appropriate version of the object to the client browser.

Table 6–2 shows four different versions of same URL,
http://www.dot.com/page1.htm. The URL uses a cookie named user_type,
which supports client requests that contain cookie values of Customer, Internal,
and Promotional. You can configure Oracle Web Cache to recognize the user_type
cookie, enabling Oracle Web Cache to cache three different objects. In addition, you
can configure Oracle Web Cache to cache a fourth object for those requests that do not
use a cookie.

For those objects that have different versions based on HTTP request headers,
configure caching rules that specify the HTTP request header. HTTP request headers
enable clients to pass additional information about the request and about themselves.
Oracle Web Cache uses the header to serve the appropriate version of the URL to
clients.

Oracle Web Cache supports all valid HTTP request headers. Table 6–3 lists the HTTP
request-header fields supported by Fusion Middleware Control. You can specify any
of the standard or other HTTP request-header fields with the Surrogate-Control
response-header field.

Note: Oracle Web Cache does not cache the Set-Cookie response
header field.

Table 6–2 Multiple-Version Object with Different Cookie Values

Version URL Cookie Name/Value

1 http://www.dot.com/page1.htm user_type=Customer

2 http://www.dot.com/page1.htm user_type=Internal

3 http://www.dot.com/page1.htm user_type=Promotional

4 http://www.dot.com/page1.htm No cookie

Table 6–3 HTTP Request-Header Field

Header Field Description

Accept Specifies which media types are acceptable for the response

Example: Accept: image/gif, image/x-xbitmap,
image/jpeg, image/pjpeg, image/png, */*

Accept-Charset Specifies which character sets are acceptable for the response

Example: Accept-Charset: iso-8859-1,*,utf-8

Accept-Encoding Restricts the content-encodings that are acceptable in the response

Example: Accept-Encoding: gzip

Accept-Language Specifies the set of languages that are preferred as a response

Example: Accept-Language: en

Introduction to Configuring Advanced Settings

6-8 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

For configuration details, see Section 6.8.2.

6.5.2 Caching for Objects with Embedded URL and POST Body Parameters
By default, Oracle Web Cache distinguishes origin server responses by the request
URLs. However, if the request contains an embedded URL or POST body parameter,
the request URL to the same page content is distinct for each session. Therefore, Oracle
Web Cache caches responses for each of the distinct URLs. This can result in low cache
hit rates and redundantly cached objects.

By configuring Oracle Web Cache to ignore the value of embedded URL or POST body
parameters, you enable Oracle Web Cache to serve one cached object to multiple
sessions requesting the same page. Oracle Web Cache caches the response to the first
request and serves subsequent requests for the page from its cache.

Consider user Jane Doe accessing a page with a request URL of:

https://oraclestore.oracle.com/OA_HTML/ibeCCtpSctDspRte.jsp?section=10103&session_ID=33436

User John Doe accesses the same page with a request URL of:

https://oraclestore.oracle.com/OA_HTML/ibeCCtpSctDspRte.jsp?section=10103&session_ID=33437

In addition, this page contains the following POST body for Jane Doe and John Doe,
respectively:

section=1013
&session_ID=3346

section=1013
&session_ID=3347

The only distinct part to the request URL and the POST body is the value of the
session_ID parameter. Rather than caching and serving two versions of the same

User-Agent Contains information about the client that initiated the request

Example: User-Agent: Mozilla/4.61 [en] (WinNT; U)

Note: By default, Oracle Web Cache does not interpret the values of
these HTTP request headers. If the values for two pages are different,
Oracle Web Cache caches both pages separately.

This issue is especially problematic with the User-Agent request
header, whereby the browser type, version, and operating system can
result in too many duplicate cache entries. For example, if one request
sends an HTTP request-header field of User-Agent: Mozilla/4.0
(compatible; MSIE 5.5; Windows) and another request sends
an HTTP request-header field of User-Agent: Mozilla/4.0
(compatible; MSIE 5.0; Windows; DigExt) for different
versions of Internet Explorer, Oracle Web Cache serves two pages for
the two requests.

You can override this behavior for the User-Agent request header by
configuring Oracle Web Cache to cache and serve the same page for
the same browser type, as described in Section 6.8.4.

Table 6–3 (Cont.) HTTP Request-Header Field

Header Field Description

Introduction to Configuring Advanced Settings

Caching and Compressing Content 6-9

object, you can configure Oracle Web Cache to ignore the value of session_ID so
that one cached object can be served to both users.

To configure parameters to ignore, establish global parameters to be applied to all
caching rules or site-specific parameters to be applied to caching rules for a specific
site. See Section 6.8.3.

6.5.3 Caching Error Responses
If there is a problem on the origin server that does not result in a 200 OK HTTP
response status for a request that matches this rule, then Oracle Web Cache does not
attempt to send the request to the origin server again. Instead, it serves the cached
HTTP error, saving origin server resources for known bad responses.

By default, Oracle Web Cache does not cache any non-200 OK HTTP responses. If you
want these errors to be cached, then you must configure caching rules to specifically
cache error responses. Oracle Web Cache caches the error pages according to the
expiration policy of the rule. After the problem is resolved, invalidate the HTTP error
responses.

For configuration details, see Section 6.8.5.

6.5.4 Caching for Objects with Sessions
You can specify how Oracle Web Cache serves requests with the existence or
nonexistence of session cookies, embedded URL parameters, or POST body
parameters. You can choose to:

■ Serve or not serve cached objects to requests that have a session cookie, embedded
URL parameter, or POST body parameter

■ Serve or not serve cached objects to requests that do not have a session cookie,
embedded URL parameter, or POST body parameter

For example, if you want the first request of a new user to establish a session from the
origin server, then choose to serve cached objects to requests that have the session
cookie or parameter, but do not serve cached objects to requests that do not have the
session cookie or parameter.

When you choose to serve for both, you can then specify if requests with or without
the session cookie or parameter can share the same cached object. Oracle Web Cache
uses a default string for those requests without the cookie or parameter.

For configuration details, see Section 6.8.6.

6.5.5 Caching for Objects with Session-Encoded URLs
The section Section 6.5.2 describes how you can ignore the value of embedded URL or
POST body parameters for objects with identical content for all sessions. However, in
some cases, the HTML content of objects is programmed with hyperlink tags, such as
, that contain embedded session information to distinguish users.
These links are called session-encoded URLs. The use of session-encoded URLs
results in responses that vary slightly from session to session.

You can configure Oracle Web Cache to substitute sessions within HTML hyperlink
tags with the session values obtained from a session cookie, embedded URL
parameter, or POST body parameter. By configuring session value substitution in
combination with ignoring the value of embedded URL parameters, you can configure
Oracle Web Cache to cache one object for multiple sessions, even if the session
parameter values in session-encoded URLs vary.

Introduction to Configuring Advanced Settings

6-10 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Continuing with the example from Section 6.5.2, assume that Jane Doe and John Doe
are again assigned an embedded URL parameters of session_ID=33436 and
session_ID=33437 by the origin server. The page shown in Figure 6–2 has several
 links that include the session_ID parameter. The Oracle Database
Standard Edition link under the Oracle Database heading for Jane Doe uses the
following HTML code:

<A HREF="http://oraclestore.oracle.com/OA_
HTML/ibeCCtpSctDspRte.jsp?section=10166&session_ID=334326">Oracle Database
Standard Edition

The same link for John Doe uses the following HTML code:

<A HREF="http://oraclestore.oracle.com/OA_
HTML/ibeCCtpSctDspRte.jsp?section=10166&session_ID=334327">Oracle Database
Standard Edition

By using the value of the session_ID embedded URL parameter, Oracle Web Cache
substitutes the correct session information for Jane Doe and John Doe.

Figure 6–2 Session-Encoded URLs

After the cache is populated with a page that contains session-encoded URLs, other
requests for the page are served from the cache, regardless of whether the request has
a session cookie, embedded URL parameter, or POST body parameter. If the request
does not contain a session cookie or embedded URL parameter, you can configure
Oracle Web Cache to substitute the session information in the session-encoded URLs
with a configurable default string.

For configuration details, see Section 6.8.7.

Note: Oracle Web Cache does not cache the Set-Cookie response
header field.

Configuring Expiration Policies

Caching and Compressing Content 6-11

6.6 Basic Tasks for Configuring and Monitoring Caching Rules
The following provides a summary of the steps required to cache and monitor objects:

1. Configure expiration policies. See Section 6.7.

2. Create sites for which Oracle Web Cache manages requests. See Section 2.11.3 and
Section 2.11.4.

3. Configure general settings for a caching rule. See Section 6.8.1.

4. Configure advanced settings for a caching rule:

■ Configure cookie and HTTP request-header fields for rules supporting
multiple-version objects. Section 6.8.2.

■ Configure Oracle Web Cache to ignore the value of embedded URL or POST
body parameters. See Section 6.8.3.

■ Configure error responses for rules. See Section 6.8.5.

■ Configure session settings for rules. See Section 6.8.6.

■ Configure support for session-encoded URLs. See Section 6.8.7.

5. Restart Oracle Web Cache to apply caching rule. See Section 2.13.

6. Monitor statistics for caching rules. See Section 6.9.

7. View popular requests. See Section 8.2.

6.7 Configuring Expiration Policies
Prior to creating a caching rule, you create expiration policies. Later, when you create
caching rules, you specify an expiration policy to apply with the caching rule.

You can create expiration policies that specify when to expire objects in the cache. In
addition, you can specify how long objects can reside in the cache after they have
expired. When an object expires, Oracle Web Cache removes it either immediately or
as permitted by origin server capacity up to a maximum time limit.

To create an expiration policy:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration and then Expiration.

The Expiration Policies page displays.

3. Click Create.

The Create Expiration Policy dialog displays.

4. In the Objects Expire section, specify when to expire objects by selecting an
option:

■ As per HTTP Expires Header: Select this option to respect the HTTP
Cache-Control or Expires response-header fields. This is the default.

■ After Cache Entry: Select this option to base expiration on when the objects
entered the cache. Enter the time to expire the objects in the Time Limit field.

■ After Creation: Select this option to base expiration on when the objects were
created, as indicated by the origin server. Enter the time to expire the objects in
the Time Limit field.

Configuring and Monitoring Caching Rules

6-12 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

5. In the Action On Expired Objects section, specify how you want Oracle Web
Cache to process objects after they have expired:

■ Remove Immediately: Oracle Web Cache marks objects as invalid and then
removes them immediately. An object is refreshed from the origin server when
the cache receives the next request for it.

■ Refresh on Demand as Origin Server Permits: Oracle Web Cache marks
objects as stale and then refreshes them based on origin server capacity. Oracle
Web Cache may serve the stale content when the origin server is heavily
loaded. Enter the maximum time in which the objects can reside in the cache
and be served stale in the Time Limit field.

6. Click OK to apply changes.

7. Restart Oracle Web Cache. See Section 2.13.

6.8 Configuring and Monitoring Caching Rules
This section describes how to configure caching rules for Oracle Web Cache. It
includes the following topics:

■ Section 6.8.1, "Configuring General Rule Settings"

■ Section 6.8.2, "Configuring Settings for Rules with Multiple Versions of the Same
Object"

■ Section 6.8.3, "Excluding the Value of Embedded URL or POST Body Parameters"

■ Section 6.8.4, "Recognizing Similar Browser Types for Multiple-Version Objects
Containing HTTP Request Headers"

■ Section 6.8.5, "Configuring Error Responses for Rules"

■ Section 6.8.6, "Configuring Session Caching Rules"

■ Section 6.8.7, "Configuring Support for Session-Encoded URLs"

■ Section 6.8.8, "Configuring Rules for Popular Pages with Session Establishment"

6.8.1 Configuring General Rule Settings
Before you create a caching rule, determine first whether the rule for the object is for a
specific site or global to all sites. Oracle Web Cache gives site-specific caching rules a
higher priority than the global rules.

For more information about caching decisions, see Section 6.3.

To create a caching rule:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration and then Caching Rules.

The Caching Rules page displays.

3. Create a new rule.

a. From Site Specific Caching Rules or Global Caching Rules section, click
Create.

The Create Caching Rule page displays with the General tab in view.

b. Complete the elements using the descriptions in Table 6–4.

Configuring and Monitoring Caching Rules

Caching and Compressing Content 6-13

When completing the elements, in the Match Criteria section, select to base
match evaluation on the request URL expression, the response MIME type, or
both criteria. If you do not select a match criteria, Oracle Web Cache matches
the rule to all URLs and all MIME types.

If you find entering URL expressions is cumbersome for your rules, select the
MIME Type option in the Match Criteria section. See Section 6.4 for further
information about using the MIME Type option in place of complicated URL
expressions.

c. Click OK to create the caching rule.

d. Click the Caching Rules breadcrumb at the top of the page, or from the Web
Cache menu, select Administration and then Caching Rules to navigate back
to the Caching Rules page.

4. Repeat Step 3 for each additional rule.

5. Use the Move Up and Move Down icons to change the order in which the rules
are matched against requests.

The order of the rules is important. Oracle Web Cache matches higher priority
rules first.

6. In the Caching Rules page, click Enable to enable rules.

If you do not click Enable, Oracle Web Cache ignores any the settings for the rule.

7. Click Apply to save the configuration for the request filter.

8. Restart Oracle Web Cache. See Section 2.13.

Table 6–4 Caching Rules - General Page

Element Description

Name Enter a string that uniquely identifies the caching rule.

Description Enter a descriptive comment about the caching rule.

Enabled Select to enable the caching rule; deselect to disable the caching
rule temporarily without losing the rule definition.

Site Displays the site for which to apply this rule.

If you do not see the site required, create one, following the
procedure in Section 2.11.3.

Cache Select this option to instruct Oracle Web Cache to cache content;
deslect this option to instruct Oracle Web Cache to forward
requests to the origin server and to not cache the content.

Expiration From the list, select an expiration policy to apply to the objects.
If you do not see an expiration policy suitable for the objects,
click the Expiration Policies link.

Configuring and Monitoring Caching Rules

6-14 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Compress Select this option to instruct Oracle Web Cache to serve
compressed cacheable and non-cacheable objects to browsers. To
enable compression for this rule, you must also enable
compression for the site.

To set the compression property for a site, see Section 2.11.3.

Oracle Web Cache automatically disables compression for some
common file types which are known to be already compressed.
Oracle recommends not compressing content for these file type,
including GIF, JPEG, and PNG images, or files that are already
compressed with utilities like WinZip or GZIP. Compressing
these files incurs additional overhead without gaining any
compression benefit. See Section 1.2.5 to better understand when
Oracle Web Cache automatically disables compression.

Match URL By Select to base the match evaluation on the URL expression:

1. Select the expression type:

- File Extension: Select to apply the caching rule to objects
ending in a particular file extension, such as .gif.

In the accompanying field, enter the file extension. Because
Oracle Web Cache internally starts the file extension with a
period (.), it is not necessary to enter it.

- Path Prefix: Select to apply the caching rule to objects
matching a path prefix.

In the accompanying field, enter the path prefix of the
objects. Start the path with /; do not start the path with
http://host_name:port/.

The prefix is interpreted literally, including reserved regular
expression characters. These characters include periods (.),
question marks (?), asterisks (*), brackets ([]), curly braces
({}), carets (^), dollar signs ($), and backslashes (\).

- Regular Expression: Select to apply the caching rule to
objects matching regular expression syntax.

In the accompanying field, enter the regular expression of
the objects. Remember to use "^" to denote the start of the
URL and "$" to denote the end of the URL.

2. Click the Case Insensitive Match check box to match
requests regardless of the case. If you do not select this
check box, the rule bases the match on the case.

Table 6–4 (Cont.) Caching Rules - General Page

Element Description

Configuring and Monitoring Caching Rules

Caching and Compressing Content 6-15

MIME Type Select to base the match evaluation on the Content-Type
response header:

1. Select an operation value to determine where Oracle Web
Cache searches for the expression value in the response's
MIME type:

-Equals: Select to instruct Oracle Web Cache to match the
MIME type if it equals the expression.

-Starts With: Select to instruct Oracle Web Cache to match
the MIME type if it starts with the expression.

-Contains: Select to instruct Oracle Web Cache to match the
MIME type if it contains the expression.

For most match evaluations, select the Starts with option,
because the Content-Type response header typically has
additional content parameter values. If you select Equals,
then the match may not work as you expect.

2. In the accompanying field, enter the string value that you
want Oracle Web Cache to compare against the response's
MIME type. You can enter a list in the expression field,
separated by commas.

HTTP Methods Select one or more of the following HTTP request methods:

■ GET: An HTTP request method used for simple requests for
Web pages. A GET method is made up of a URL. Requests
for pages that use the GET methods are typically cached.

■ GET with query string: An HTTP request method made up
of a URL and a query string containing parameters and
values.

■ POST Body Expression: An HTTP request method used for
requests that modify the contents of the data store on the
application Web server, such as posting a message to a
mailing list, submitting forms for registration purposes, or
adding entries to the database.

Note: If your Web site's GET with query string or POST methods
are used for forms that make changes to the origin server or
database, do not select GET with query string or POST Body
Expression. Select these options only if the forms are used in
search forms.

Required Request
Parameters

Click Add to enter an embedded URL parameter or POST body
parameter and its value in the corresponding Parameter Name
and optional Value fields.

Notes:

■ If you selected Regular Expression from the Match URL By
list, you either use the Required Request Parameters
section or manually enter the embedded URL parameters
alphabetically in the accompanying Match URL By field.
When you use the Required Request Parameters section,
the embedded URL parameters are automatically sorted.
See Section 6.8.1.1 for information about how to specify
parameters in the accompanying Match URL By field.

■ If you selected POST in the HTTP Methods section and do
not specify POST body parameters in this section, specify
the HTTP POST body in the accompanying POST Body
Expression field. To apply this rule to any POST request
body, enter .*" in the field.

Table 6–4 (Cont.) Caching Rules - General Page

Element Description

Configuring and Monitoring Caching Rules

6-16 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

6.8.1.1 Regular Expression Parameters
The request URL that client browsers send to Oracle Web Cache and the internal URL
expression that Oracle Web Cache uses for that request are different. When Oracle Web
Cache serves a page request, it alphabetically sorts any embedded URL parameters of
the URL. However, the caching rules are matched against only the internal
representation of the URL in which any embedded URL parameters are sorted. To
ensure caching rules are matched correctly, you either use the Required Request
Parameters section or manually enter the embedded URL parameters alphabetically in
regular expression syntax in the Match URL By field. When you use the Required
Request Parameters section, the Oracle Web Cache automatically sorts the embedded
URL parameters.

For example, consider the following URL:

http://my.oracle.com/servlet/page?_pageid=53&_dad=moc&_schema=MOC

If you enter the regular expression without manually sorting the embedded URL
parameters in the Match URL By expression field, ^/servlet/page\?_
pageid=53&_dad=moc&_schema=MOC$, then the caching rule does not match the
internal representation of the URL used by Oracle Web Cache. To ensure matching,
you must enter the regular expression in the URL Expression field as:

^/servlet/page\?_dad=moc&_pageid=53&_schema=MOC$

6.8.2 Configuring Settings for Rules with Multiple Versions of the Same Object
For more information about caching multiple-version objects, see Section 6.5.1.

To specify a caching rule for multiple-version objects:

1. For sites with category cookies that affect caching, specify which category cookies
whose values Oracle Web Cache uses to cache and identify multiple-version
objects:

a. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

b. From the Web Cache menu, select Administration and then Multi-Version
Cookies.

The Multi-Version Cookie page displays.

c. Click Create.

d. In the Cookie Name field, enter the name of the cookie.

e. Click the Cache If Absent check box to cache versions of the object that do not
contain this cookie. This option enables Oracle Web Cache to serve objects
from the cache for client requests that do not contain this cookie. Keep this
option unchecked to not cache versions of objects that do not contain this
cookie.

f. Click Apply.

2. Create a caching rule. See Section 6.8.1.

3. From Site Specific Caching Rules or Global Caching Rules section of the
Caching Rules page, select the rule you created and click Edit.

The Create Caching Rule page displays.

4. Click the Multi Versioning tab.

Configuring and Monitoring Caching Rules

Caching and Compressing Content 6-17

5. For multiple-version objects that rely on a cookie or HTTP request header, specify
the cookies or HTTP request headers to enable Oracle Web Cache to cache
multiple versions of an object and serve the appropriate version to requests.

For multiple-version objects with cookies, select the cookie you created in Step 1.

For multiple-version objects with HTTP headers, from the By HTTP Request
Headers section, select one or more of the headers from the Available Headers
and click Move or Move All to move them to the Selected Headers list.

6. Click OK to apply changes.

7. Restart Oracle Web Cache. See Section 2.13.

6.8.3 Excluding the Value of Embedded URL or POST Body Parameters
By configuring Oracle Web Cache to ignore the value of embedded URL or POST body
parameters, you enable Oracle Web Cache to serve one cached object to multiple
sessions requesting the same page. Oracle Web Cache caches the response to the first
request and serves subsequent requests for the page from its cache.

For more information about configuring Oracle Web Cache to ignore the value of
parameters can enable Oracle Web Cache to serve one cached object to multiple
sessions, see Section 6.5.2.

You have two configuration options for specifying parameters to ignore. You can:

■ Establish global parameters to be automatically applied to all global caching rules
and site-specific caching rules.

■ Specify site-specific parameters to be automatically applied to caching rules for
that site.

To establish global parameters:

1. From Oracle Web Cache Manager, in the navigator frame, select Origin Servers,
Sites, and Load Balancing > Site Definitions. See Section 2.7.2.

The Site Definitions page displays.

2. Click Edit Global URL Parameters to Ignore to specify global parameters for all
sites.

The Global URL Parameters to Ignore dialog displays.

3. In the Parameters to Ignore field, specify the global parameters. Separate multiple
parameters by commas or blank spaces.

4. Click Submit.

5. Click Apply Changes.

6. Restart Oracle Web Cache. See Section 2.13.

7. Create a site-specific caching rule. See Section 6.8.1

To establish site-specific parameters:

1. From Oracle Web Cache Manager, in the navigator frame, select Origin Servers,
Sites, and Load Balancing > Site Definitions. See Section 2.7.2.

The Site Definitions page displays.

2. Select a site, and then click Show/Edit Selected.

The Show/Edit Site Definition dialog displays.

Configuring and Monitoring Caching Rules

6-18 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

3. In the URL Parameters to Ignore field, specify the site-specific parameters.
Separate multiple parameters by commas or blank spaces.

4. Click Submit.

5. Click Apply Changes.

6. Restart Oracle Web Cache. See Section 2.13.

7. Create a site-specific caching rule. See Section 6.8.1

6.8.4 Recognizing Similar Browser Types for Multiple-Version Objects Containing HTTP
Request Headers

By default, Oracle Web Cache does not interpret the values of the HTTP request
headers. When the Multiple Objects with the Same Selector by Other Headers for
the User-Agent request-header field is selected in Fusion Middleware Control and
the value of the User-Agent request header of the same URL differ, then Oracle Web
Cache caches both pages separately. For example, if one request sends an HTTP
request header of User-Agent: Mozilla/4.0 (compatible; MSIE 5.5;
Windows) and another request sends an HTTP request header of User-Agent:
Mozilla/4.0 (compatible; MSIE 5.0; Windows; DigExt) for different
versions of Internet Explorer, Oracle Web Cache caches two separate pages.

You can override this default behavior by configuring Oracle Web Cache with a
User-Agent pattern string for a particular client. For the affected multiple-version
objects, Oracle Web Cache adds an x-Oracle-Mapped-User request-header field,
and uses the value of the string rather than the entire User-Agent value:

x-Oracle-Mapped-User: MAPPEDUSERAGENT_String

To configure Oracle Web Cache to cache and serve the same page for each browser
type:

1. Create a caching rule for the pages that support the User-Agent request header,
as described in Section 6.8.2, ensuring you select the User-Agent header.

2. Use a text editor to open webcache.xml, located in:

(UNIX) ORACLE_INSTANCE/<instance_name>/config/WebCache/<webcache_name>
(Windows) ORACLE_INSTANCE\<instance_name>\config\WebCache\<webcache_name>

3. Locate the GLOBALCACHINGRULES element.

4. For each browser type, add the following subelements in the next line after the
GLOBALCACHINGRULES element:

<USERAGENTREMAPRULE MATCHSTRING="browser"
MAPPEDUSERAGENT="x-Oracle-Mapped-User-Agent_value" MAPTYPE="USERAGENT"/>

If you enter multiple entries, order them according to how you want Oracle Web
Cache to match. The order of these rules work in the same fashion as priority
works for caching rules.

Table 6–5 describes how to enter values for the subelements.

Configuring and Monitoring Caching Rules

Caching and Compressing Content 6-19

The following webcache.xml fragment shows the User-Agent remapping:

<USERAGENTREMAPRULE MATCHSTRING="MSIE *" MAPPEDUSERAGENT="MSIE"
MAPTYPE="USERAGENT"/>
<USERAGENTREMAPRULE MATCHSTRING="Mozilla*" MAPPEDUSERAGENT="MOZ"
MAPTYPE="USERAGENT"/>

If an incoming request does not match any of the rules, Oracle Web Cache appends
a default mapping to the request. The default value of the
x-Oracle-Mapped-User-Agent header is DEFAULT_USER_AGENT.

These mapping rules are executed for every incoming request. If you create several
mapping rules, you may experience a performance degradation.

5. Locate the <MULTIVERSIONHEADERSRULE> subelement of CACHEABILITYRULE
for the caching rule created in Step 1.

<MULTIVERSIONHEADERSRULE>
 <HTTPHEADER NAME="User-Agent"/>
</MULTIVERSIONHEADERSRULE>

6. To match on the value of the MAPPEDUSERAGENT string rather than the entire
User-Agent value, change the User-Agent header to
x-Oracle-Mapped-User-Agent in the HTTPHEADER attribute of the rule:

<MULTIVERSIONHEADERSRULE>
 <HTTPHEADER NAME="x-Oracle-Mapped-User-Agent"/>
</MULTIVERSIONHEADERSRULE>

7. Save webcache.xml.

8. Restart Oracle Web Cache using opmnctl. See Section 2.13.1.

6.8.5 Configuring Error Responses for Rules
To understand how you can cache HTTP error responses to save origin server
resources, see Section 6.5.3.

To create a caching rule for an error response:

1. Create a caching rule. See Section 6.8.1.

2. From the Site Specific Caching Rules or the Global Caching Rules section of the
Caching Rules page, select the rule you created and click Edit.

The Create Caching Rule page displays.

3. Click the Error Responses tab.

Table 6–5 GLOBALCACHINGRULES Subelements

Subelement Description

MATCHSTRING Enter the pattern that used to match the incoming request header.

Note: You can use the wildcard * to pattern match for multiple
browser type variants. For example, Mozilla* can be used to match
all variations of Mozilla.

MAPPEDUSERAGENT Enter a unique value of the User-Agent pattern that to be added to
the x-Oracle-Mapped-User-Agent request header by Oracle Web
Cache.

MAPTYPE Enter USERAGENT to pattern match on the User-Agent request
header.

Configuring and Monitoring Caching Rules

6-20 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

4. Select the HTTP error codes you want Oracle Web Cache to cache and serve for
this rule.

Ensure the origin server generates the HTTP error itself.

5. Click OK to apply changes.

6. Restart Oracle Web Cache. See Section 2.13.

6.8.6 Configuring Session Caching Rules
To understand how Oracle Web Cache serves requests with the existence or
nonexistence of session cookies, embedded URL parameters, or POST body
parameters, see Section 6.5.4.

To specify how session-related pages are served by Oracle Web Cache:

1. From the Web Cache menu, select Administration and then select Session
Configuration.

The Session Definitions page displays.

2. Create a session definition in the Session Definitions table. See Section 2.12.

3. Specify session policy settings:

a. In the Session Policy Configuration section, click Create.

A new row in the table appears.

b. From the Session Name list, select the session you created in Step 2.

c. In the Cache column, select the Without Session check box for Oracle Web
Cache to cache versions of objects that do not use the cookie or parameter;
select No for Oracle Web Cache not to serve objects from the cache for requests
without the session information.

d. In the Cache column, select the With Session check box for Oracle Web Cache
to cache versions of objects that use the cookie or parameter.

e. In the Substitute Default Value column, select the check box to instruct
Oracle Web Cache to cache one version of the object. For those requests
without a cookie or parameter, a default value is used. Do not select the check
box to instruct Oracle Web Cache to cache two different versions of the object.
Oracle Web Cache serves one version to those requests that support the cookie
or parameter and serves the other version to those requests that do not
support the cookie or parameter.

4. Create a caching rule. See Section 6.8.1.

5. Associate session policies with a caching rule:

a. From the Site-Specific Caching Rules or the Global Caching Rules section of
the Create Caching Rule page, select the rule you created and click Edit.

The Edit Caching Rules page displays.

b. Click the Sessions tab.

c. From the Session Definition list, select the sessions you created in Step 2 and
defined a policy for in Step 3.

d. Click OK to apply changes.

6. Restart Oracle Web Cache. See Section 2.13.

Configuring and Monitoring Caching Rules

Caching and Compressing Content 6-21

6.8.7 Configuring Support for Session-Encoded URLs
You can configure Oracle Web Cache to substitute sessions within HTML hyperlink
tags with the session values obtained from a session cookie, embedded URL
parameter, or POST body parameter. To understand how Oracle Web Cache can cache
one object for multiple sessions, even if the session parameter values in
session-encoded URLs vary, see Section 6.5.5.

To substitute session values in session-encoded URLs:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration and then select Session
Configuration.

The Session Definitions page displays.

3. Create a session definition in the Session Definitions table. See Section 2.12.

When entering data for the Default Value field, enter a default string for the value
of the embedded URL parameter.

Oracle Web Cache uses the value you enter in the Default Value field for those
requests without the value for an embedded URL parameter. For these requests,
Oracle Web Cache substitutes the value with a default string. The string defaults to
default. For example, the following contains a session_ID
parameter without a value:

<A HREF="https://oraclestore.oracle.com/OA_
HTML/ibeCCtpSctDspRte.jsp?section=11886&session_ID=">Master Index

If the string is set to default, Oracle Web Cache substitutes the value with
default.

<A HREF="https://oraclestore.oracle.com/OA_
HTML/ibeCCtpSctDspRte.jsp?section=11886&session_ID=default">Master Index

4. Create a caching rule. See Section 6.8.1.

5. From the Site Specific Caching Rules or the Global Caching Rules section of the
Caching Rules page, select the rule you created and click Edit.

The Create Caching Rule page displays.

6. Click the Sessions tab.

7. Click Process for Session-Encoded URLs.

8. Click OK to apply changes.

9. Restart Oracle Web Cache. See Section 2.13.

6.8.8 Configuring Rules for Popular Pages with Session Establishment
Some Web sites require users to have sessions while surfing most pages. To preserve
the session requirement, create a session caching rule for those pages. This way, Oracle
Web Cache always forwards a request without a session to the origin server.

For some popular site entry pages, such as "/", that typically require session
establishment, session establishment effectively makes the page non-cacheable to all
new users without a session. To cache these pages while preserving session
establishment, make the following minor modifications to your application:

Monitoring Summary Settings for Caching Rules

6-22 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

1. Create a blank page for the entry URL, such as "/", that redirects to the real entry
page.

2. Configure the origin server to create a session when the blank page is requested
without a session cookie.

3. Create a session caching rule for the real entry page and the blank page, as
described in Section 6.8.6, and click both the Cache With and Cache Without
options.

With this configuration, all initial user requests to the entry URL first go to the blank
page, which requires minimal resources to generate. The clients receive the response
and session establishment from the application Web server. Subsequent redirected
requests to the entry page carry the session, enabling the entry page to be served out of
the cache.

Another solution is to use a Javascript that sets a session cookie for the pages requiring
sessions:

1. Create a Javascript that sets a session cookie when one does not exist.

2. Add the Javascript to each of the pages that require the session.

3. Create caching rules for the Javascript and the session pages, as described in
Section 6.8.1 and Section 6.8.6.

6.9 Monitoring Summary Settings for Caching Rules
Fusion Middleware Control provides statistics for assessing the effectiveness of
configured caching rules.

To view caching-rule statistics:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Administration and then Caching Rules.

The Caching Rules page displays.

3. Scroll to the far right to view the statistics for a caching rule:

■ Multi-Versionings: Shows whether this caching rule contains settings for
requests with multiple versions.

■ Sessions: Shows whether this caching rule contains settings for requests with
a cookie, embedded URL parameter, or POST body parameter with user
session information.

■ Error Responses: Shows whether this caching rule contains settings for
requests with HTTP error responses.

■ Matched: Displays the number of requests that matched the caching rule.

See Section 8.2 to view the objects cached by Oracle Web Cache

Note: Using the Javascript solution, it is not necessary to create a
session caching rule for the pages requiring sessions.

Using the Surrogate-Control Response Header as an Alternative to Caching Rules

Caching and Compressing Content 6-23

6.10 Using the Surrogate-Control Response Header as an Alternative to
Caching Rules

In addition to, or as an alternative to, creating caching rules with Fusion Middleware
Control, application developers can choose to store many of the caching attributes in
the header of an HTTP response message. This feature enables the application Web
server to override the settings configured through Fusion Middleware Control
interface, as well as allow other third-party caches to use Oracle Web Cache caching
attributes. All except the following attributes described in Section 6.8 are supported:

■ Session caching rules

■ HTTP error response caching rules

To enable this feature, set the HTTP response with the Surrogate-Control
response-header field as described in the following section.

For a description of how Oracle Web Cache uses caching attributes from the
Surrogate-Control response header and Oracle Web Cache Manager to determine
cache population, see Section 6.1.

6.10.1 Surrogate-Control Response-Header Field
The Surrogate-Control response-header field enables application developers to
specify caching attributes of an object. This response-header field enables the
application Web server to override the caching rules configured through
administrative interfaces Fusion Middleware Control or Oracle Web Cache Manager.

The Surrogate-Control response-header field supports the following syntax:

Surrogate-Control:[content=content_type, content_type,..]
[no-store][max-age=expiration_time[+removal_time]]
[vary=headers(header header...)][cookie(cookie_name cookie_name...)]
[compress=yes|no]

Table 6–6 describes the supported control directives.

Using the Surrogate-Control Response Header as an Alternative to Caching Rules

6-24 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Table 6–6 Control Directives for Surrogate-Control

Control Directive Description

content Specify what kind of processing is required:

■ "ORAESI/9.0.4" to process ESI tags with Oracle-proprietary additions for content
assembly and partial page caching. "ORAESI/9.0.4" supports all the ESI tags
provided by Oracle Web Cache in 10g (9.0.4) and later releases.

■ "ORAESI/9.0.2" to process ESI tags with Oracle proprietary additions for content
assembly and partial page caching. "ORAESI/9.0.2" supports all the ESI tags
provided by Oracle Web Cache in Release 2 (9.0.2 and 9.0.3).

■ "ESI/1.0" to process standard ESI tags for content assembly and partial page caching

■ "ESI-Inline/1.0" to process <esi:inline> tags

■ "ESI-INV/1.0" to process <esi:invalidate> tags

■ "webcache/1.0" to process the <!-- WEBCACHETAG--> and
<!-- WEBCACHEEND--> tags for personalized attributes

"ORAESI/9.0.2", "ESI/1.0", and "ESI-Inline/1.0" are subsets of
"ORAESI/9.0.4". In this release, you specify only "ORAESI/9.0.4" for ESI assembly,
"ESI-INV/1.0" for inline invalidation, or "webcache/1.0" for personalized attributes.

For further information about the ESI tags supported for each processing version, see
Chapter 11, "Caching Dynamic Content with ESI Language Tags."

no-store Specify for Oracle Web Cache to not cache the object.

vary Specify the HTTP request headers or cookies to instruct Oracle Web Cache to cache and
identify multiple-version objects. Use the following format:

vary=[headers(header[/f] *);] [cookies(cookie_name[/f] *)]

Specify /f to instruct Oracle Web Cache to only cache versions of the object based on the
existence of the HTTP request headers or cookies. Exclude /f to instruct Oracle Web Cache
to cache versions of the object, regardless of whether the HTTP request headers or cookies
exist.

Usage notes:

■ Specify at least one HTTP header or cookie.

■ If you specify both HTTP request headers and cookies, specify the HTTP request header
before the cookies.

■ Use zero or more spaces between the parentheses and semicolons.

■ When specifying multiple HTTP request headers or cookies, use one or more spaces
between the HTTP request headers and cookie names.

compress Specify yes for Oracle Web Cache to serve compressed cacheable and non-cacheable objects
to all browser types; specify no for Oracle Web Cache to not serve compressed cacheable and
non-cacheable objects to browsers.

This control directive does not enable you to specify browser types. If you specify yes and
must limit the browser types, specify a compression caching rule, as described in
Section 6.8.1.

To understand what Oracle Web Cache automatically compressed and does not compress,
see Section 1.2.5.

max-age Specify for Oracle Web Cache to cache the object.

Specify the time, in seconds, to expire the object after it enters the cache. Optionally, specify
the time, in seconds, to remove the object from the cache after the expiration time. Use the
following format:

max-age=expiration_time[+removal_time]

Usage notes:

■ The default removal time is 0 seconds

■ max-age=infinity specifies that the object never expires

Using the Surrogate-Control Response Header as an Alternative to Caching Rules

Caching and Compressing Content 6-25

Usage Notes
■ Control directives are case sensitive.

■ content="ORAESI/9.0.4", content="ESI-Inline/1.0",
content="ESI-INV/1.0", content="ESI/1.0" are mutually exclusive with
content="webcache/1.0"

Refer to http://www.esi.org/spec.html for the Edge Architecture Specification,
which contains specification information about the Surrogate-Control response
header.

Example Usage
In the following example, the Surrogate-Control response-header field specifies
that the object is to expire 30 seconds after it enters the cache and be removed 60
seconds after expiration. It also specifies that the object contains ESI tags that require
processing:

Surrogate-Control: max-age=30+60, content="ORAESI/9.0.4"

In the following example, the Surrogate-Control response-header field specifies
that the object is not to be cached:

Surrogate-Control: no-store

In the following example, the Surrogate-Control response-header field specifies
ESI processing with the content control directive. The vary control directive
specifies to cache versions of the multiple-version object based on the HTTP Accept
request header value, regardless of whether the request contains the HTTP Accept
request header.

Surrogate-Control: content="ORAESI/9.0.4", vary=headers(Accept)

In the following similar example, the Surrogate-Control response-header field
specifies ESI processing with the content control directive. The vary control
directive specifies to cache versions of the multiple-version object only if the request
contains the Accept and MyCustomHeader headers and news and sports cookies.

Surrogate-Control: content="ORAESI/9.0.4", vary=headers(Accept/f
MyCustomHeader/f);cookies(news/f sports/f)

Using the Surrogate-Control Response Header as an Alternative to Caching Rules

6-26 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

7

Invalidating Content 7-1

7 Invalidating Content

This chapter explains how to send invalidation requests to Oracle Web Cache.

This chapter includes the following topics:

■ Section 7.1, "Overview of Invalidation"

■ Section 7.2, "About Out-of-Band Invalidations"

■ Section 7.3, "About ESI Inline Invalidations"

■ Section 7.4, "About Response Header Invalidations"

■ Section 7.5, "Format of Invalidation Requests for Out-of-Band and ESI Inline
Mechanisms"

■ Section 7.6, "About Search Keys in Invalidations"

■ Section 7.7, "Initiating Out-of-Band Invalidations"

■ Section 7.8, "Enabling Response-Header Invalidation"

■ Section 7.9, "Enabling Search Keys for Invalidations"

■ Section 7.10, "Security Considerations"

7.1 Overview of Invalidation
As described in Section 6.7, you create expiration policies and associate them with
caching rules to refresh content from the origin server. Even with expiration policies, it
is often difficult to predict when exactly content becomes stale. As an alternative,
Oracle Web Cache provides mechanisms for explicitly invalidating content when an
administrator or application knows that such content has become stale.

With invalidation, Oracle Web Cache marks objects as invalid. When objects are
marked as invalid and a client requests them, they are removed and then refreshed
with new content from the origin servers. You can choose to remove and refresh
invalid objects immediately, or base the removal and refresh on the current load of the
origin servers.

Oracle Web Cache supports the following forms of invalidation:

■ Invalidation through a special invalidation port. This type of invalidation is
known as an out-of-band invalidation, because such invalidation requests do not
go through the Oracle Web Cache listening port. See Section 7.2.

■ ESI inline invalidation where the invalidation directive comes as an ESI tag
through the response body to a normal request. See Section 7.3.

About Out-of-Band Invalidations

7-2 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

■ Response-header invalidation where the invalidation directive comes as a special
(and proprietary) response header in the response to a normal request. See
Section 7.4.

7.2 About Out-of-Band Invalidations
To invalidate objects in the cache, you can send an HTTP POST request from the
invalidator account through the invalidation listening port. The invalidator
account is authorized to send invalidation requests. As shown in Figure 7–1, you send
invalidation requests using these methods:

■ Manually, using Fusion Middleware Control or telnet

■ Automatically, using database triggers, scripts, or application logic

Figure 7–1 Invalidation

The following sections describe the specific methods you can use:

■ Section 7.7.1, "Using Telnet to Send Invalidation Requests"

■ Section 7.7.2, "Using Oracle Web Cache Manager to Send Invalidation Requests"

■ Section 7.7.3, "Using Application Program Interfaces (APIs) for Automated
Invalidation Requests"

■ Section 7.7.4, "Using Database Triggers for Automated Invalidation Requests"

■ Section 7.7.5, "Using Scripts for Automated Invalidations"

7.3 About ESI Inline Invalidations
Inline invalidation is implemented as part of Edge Side Includes (ESI) and provides a
useful way for origin servers to "piggyback" invalidation messages on HTTP responses
sent to Oracle Web Cache. Specifically, origin servers embed an XML invalidation
document within the HTML of the response body using ESI tags.

Oracle
Database

Application
ServerOracle Web

Cache

Internet

Browser Running
Oracle Web Cache
Manager

Manual
or
Scripted

Programmatic

Database Trigger

Format of Invalidation Requests for Out-of-Band and ESI Inline Mechanisms

Invalidating Content 7-3

For instance, when a customer purchases a vegetarian cookbook on an e-commerce
site, the confirmation response could contain instructions for invalidating all catalog
pages related to the book, its author and vegetables. The ability to send invalidation
message inline reduces the connection overhead associated with sending out-of-band
invalidations and is a useful tool for ESI developers.

For more information about using ESI invalidation, see Section 11.3.

7.4 About Response Header Invalidations
Response header invalidation is Oracle Web Cache functionality that enables an origin
server to return a transactional response whose response body contains something
other than HTML. This is a circumstance in which ESI inline invalidation does not
work; Oracle Web Cache can only use ESI invalidation tags in conjunction with a
response body that contains HTML. With response header invalidation, origin servers
can send invalidation directives in a proprietary invalidation response header.

In addition to its greater flexibility in terms of response body content returned,
response header invalidation requires less coding effort on the part of the Web
applications since building an invalidation header is a fairly lightweight task.

Response header invalidation functions similarly to inline invalidation; origin servers
"piggyback" invalidation directives on responses sent to Oracle Web Cache. However,
the response header invalidation enables invalidation when the response body
contains something other than HTML.

The origin server adds a special invalidation header to its response. Oracle Web Cache
extracts the invalidation header, invalidates the corresponding content and forwards
the response to its client but without the invalidation header in the response.

Origin Servers can piggyback an invalidation response header on any random
response. For example, an origin server may delay the sending of an invalidation
directive and then send it later in a response to a request that has nothing to do with
the request that caused the invalidation in the first place.

Oracle Web Cache strips out the invalidation response header when returning the
response to a Web client. Oracle Web Cache even strips out the invalidation response
header when returning the response to another member of an cache cluster, since
cluster propagation forwards the invalidation to other peers in the cluster.

For more information about enabling response header invalidation, see Section 7.8.

7.5 Format of Invalidation Requests for Out-of-Band and ESI Inline
Mechanisms

The out-of-band mechanisms send out-of-band HTTP POST invalidation requests in
Extensible Markup Language (XML) syntax. The ESI inline mechanism also uses the
same syntax within the <esi:invalidate> tag. The contents of the XML request
body instructs the cache which URLs to mark as invalid.

The following sections describe invalidation request syntax:

■ Section 7.5.1, "Invalidation Request Syntax"

■ Section 7.5.2, "Invalidation Response Syntax"

■ Section 7.5.3, "Invalidation Preview Request Syntax"

■ Section 7.5.4, "Invalidation Preview Response Syntax"

■ Section 7.5.5, "Invalidation Examples"

Format of Invalidation Requests for Out-of-Band and ESI Inline Mechanisms

7-4 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

7.5.1 Invalidation Request Syntax
Use the following syntax to invalidate objects contained within an exact URL that
includes the complete path and file name:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATION SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATION VERSION="WCS-1.1">
 <SYSTEM>
 <SYSTEMINFO NAME="name" VALUE="value"/>
 </SYSTEM>
 <OBJECT>
 <BASICSELECTOR URI="URL"/>
 <ACTION REMOVALTTL="TTL"/>
 <INFO VALUE="value"/>
 </OBJECT>
</INVALIDATION>

Use the following syntax to invalidate objects based on more advanced invalidation
selectors:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATION SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATION VERSION="WCS-1.1">
 <SYSTEM>
 <SYSTEMINFO NAME="name" VALUE="value"/>
 </SYSTEM>
 <OBJECT>
 <ADVANCEDSELECTOR URIPREFIX="prefix"
 URIEXP="URL_expression"
 HOST="host_name:port"
 METHOD="HTTP_request_method"
 BODYEXP="HTTP_body"/>
 <COOKIE NAME="cookie_name" VALUE="value"/>
 <HEADER NAME="HTTP_request_header" VALUE="value"/>
 <OTHER NAME="URI|BODY|QUERYSTRING_PARAMETER|SEARCHKEY"
 TYPE="SUBSTRING|REGEX"
 VALUE="value"/>
 </ADVANCEDSELECTOR>
 <ACTION REMOVALTTL="TTL"/>
 <INFO VALUE="value"/>
 </OBJECT>
</INVALIDATION>

The body of a valid invalidation request must begin with the following:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATION SYSTEM "internal:///WCSinvalidation.dtd">

The first line denotes version 1.0 of XML. The second line denotes that the request is
an invalidation request using the WCSinvalidation.dtd file as the XML document
type. WCSinvalidation.dtd is the Document Type Definition (DTD) that defines
the grammar of invalidation requests and responses.

Note the following:

■ No white space is allowed before "<?xml".

■ If an application is sharing invalidation requests with a third-party XML parser,
replace "internal:///WCSinvalidation.dtd" with the following path:

"http://www.oracle.com/webcache/90400/WCSinvalidation.dtd"

Format of Invalidation Requests for Out-of-Band and ESI Inline Mechanisms

Invalidating Content 7-5

The root element INVALIDATION contains one or more of the attributes and elements
described in Table 7–1.

Table 7–1 INVALIDATION Elements and Attributes

Invalidation
Element/Attribute Description

VERSION attribute Required attribute in the INVALIDATION element

Denote the version of the WCSinvalidation.dtd file to use as the XML document
type.

For versions 9.0.x and later, always use VERSION="WCS-1.1", unless you require
previous existing applications to remain unchanged. For these applications, you can
use VERSION="WCS-1.0", but the new invalidation functionality is not available.

SYSTEM element Optional element in the INVALIDATION element. The SYSTEM element requires the
SYSTEMINFO element.

SYSTEMINFO element Required element in the SYSTEM element

The possible NAME/VALUE pairs are:

■ NAME="WCS_PROPAGATE" VALUE="TRUE|FALSE"

This pair specifies whether invalidation requests are propagated to cache cluster
members. If WCS_PROPAGATE is TRUE, it overrides the setting for invalidation
propagation in the configuration. If WCS_PROPAGATE is FALSE, it uses the setting
specified in the configuration.

The default is FALSE.

■ NAME="WCS_DISCONNECTED_MODE_OK" VALUE="TRUE|FALSE"

This pair specifies how soon invalidation takes place. If WCS_DISCONNECTED_
MODE_OK is TRUE, invalidation is not immediately performed. The invalidation
response is sent as soon as the invalidation request is received. Set this element to
TRUE, if you do not want to wait for the invalidation result. If WCS_
DISCONNECTED_MODE_OK is FALSE, invalidation is completed immediately and
the invalidation result is sent.

The default is FALSE.

OBJECT element Required element in the invalidation request. You can specify multiple OBJECT
elements in the request.

BASICSELECTOR element URI attribute: Required attribute of the BASICSELECTOR element. Specify the URL of
the objects to be invalidated. Use these formats:

■ http://host_name:port/path/filename

■ https://host_name:port/path/filename

host_name:port is not required if the administrator account is sending the
request.

ADVANCEDSELECTOR
element

URIPREFIX attribute: Required attribute of the ADVANCEDSELECTOR element.
Specify the path prefix of the objects to be invalidated. The path prefix must begin
with http|https://host_name:port/path/filename or "/" and end with "/".
host_name:port is required if the HOST attribute is not specified and the
invalidator account is sending the request.

The prefix is interpreted literally, including reserved regular expression characters.
These characters include periods (.), question marks (?), asterisks (*), brackets ([]),
curly braces ({}), carets (^), dollar signs ($), and backslashes (\).

Format of Invalidation Requests for Out-of-Band and ESI Inline Mechanisms

7-6 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

URIEXP attribute: Optional attribute of the ADVANCEDSELECTOR element. Specify the
URL of the objects to be invalidated underneath the URIPREFIX. If no value is
entered, everything under the URIPREFIX are matched.

Regular expression characters are permitted. To interpret these characters literally,
escape them with a backslash (\).

See http://www.cs.utah.edu/dept/old/texinfo/regex/regex_toc.html
for regular expression syntax.

Notes:

■ The request URL that client browsers send to Oracle Web Cache and the URL that
Oracle Web Cache uses internally for that request are different. When Oracle Web
Cache serves a page request, it alphabetically sorts any embedded URL
parameters of the URL. However, the invalidation requests are matched against
only the internal representation of the URL in which any embedded URL
parameters are sorted. To ensure invalidation requests are matched correctly, sort
and enter the embedded URL parameters alphabetically.

■ When the invalidation request is sent, Oracle Web Cache performs a regular
expression match of URIEXP. This can take processing time. As an alternative,
you can use the OTHER element to specify a substring match rather than a regular
expression match.

HOST attribute: This attribute is required if the URIPREFIX value does not include
host_name:port and the invalidator account is sending the request. Specify the
host name and port number of the site (host_name:port). Port 80 is the default port
for HTTP.

METHOD attribute: Optional attribute of the ADVANCEDSELECTOR element. Specify
either GET or POST for the HTTP request method of the objects to be invalidated. GET
is the default value.

BODYEXP attribute: Optional attribute of the ADVANCEDSELECTOR element. If the
METHOD is set POST, specify the HTTP POST body of the objects to be invalidated.

Note: When the invalidation request is sent, Oracle Web Cache performs a regular
expression match of BODYEXP. This can take processing time. As an alternative, you
can use the OTHER element to specify a substring match rather than a regular
expression match.

COOKIE element Optional element in the invalidation request. Use the following attributes:

■ NAME attribute: Required attribute for the COOKIE element attribute. Specify the
cookie name to invalidate multiple-version objects based on the cookie.

■ VALUE attribute: Optional attribute for the COOKIE element. Specify the value of
the cookie. If no value is present, only objects with the named cookie but without
a value are invalidated.

If you specify a cookie that was mistakenly specified for both a multiple-version
object and a session caching policy, invalidation is based on any occurrence of the
cookie. To avoid excessive invalidation, configure distinct cookies for multiple-version
objects and session caching policies.

For more information, see:

■ Section 6.8.2 to create caching rules for multiple-version objects

■ Section 6.8.6 to specify session caching policies

Table 7–1 (Cont.) INVALIDATION Elements and Attributes

Invalidation
Element/Attribute Description

Format of Invalidation Requests for Out-of-Band and ESI Inline Mechanisms

Invalidating Content 7-7

HEADER element Optional element in the invalidation request. Use the following attributes:

■ NAME attribute: Required attribute for the HEADER element. Specify the HTTP
request header to invalidate multiple-version objects based on the request
header.

■ VALUE attribute: Optional attribute for the HEADER element. Specify the value of
the header.

See Section 6.8.2 to create caching rules for multiple-version objects.

OTHER element Optional element in the invalidation request. Use the following attributes:

■ NAME attribute: Required attribute of the OTHER element. NAME supports the
following values:

- URI to specify a match of the URL underneath the URIPREFIX

- BODY to specify a match of the HTTP POST body

- QUERYSTRING_PARAMETER to specify a match of an embedded URL parameter

- SEARCHKEY to specify a match of a search key in the Surrogate-Key response
header

■ TYPE attribute: Required attribute for URI, BODY, and QUERYSTRING_
PARAMETER. This attribute is not recognized for SEARCHKEY. TYPE supports the
following values:

- SUBSTRING to specify an exact string match for QUERYSTRING_PARAMETER
and a substring match for URI and BODY.

- REGEX to specify a regular expression match

■ VALUE attribute: Required attribute for URI, BODY, QUERYSTRING_PARAMETER,
and SEARCHKEY. Specify the value of URI, BODY, QUERYSTRING_PARAMETER, or
SEARCHKEY. If you specify a TYPE of REGEX, then escape regular expression
characters with a backslash (\) for Oracle Web Cache to interpret literally.

For more information, see:

■ Section 7.5.5 to optimize advanced invalidations

■ Section 7.9 to configure search keys

ACTION element Required element in the invalidation request

REMOVALTTL attribute

Optional attribute of the ACTION element. Specify the maximum time that objects can
reside in the cache before they are invalidated. The default is 0 seconds.

INFO element Optional element in the invalidation request

VALUE attribute

Required attribute of the INFO element. Specify a comment to be included in the
invalidation result. After the invalidation request is complete, the message that
contains the comment, along with the result of the invalidation, writes to the event
log:

[15/Oct/2008:19:26:46 +0000] [notification 11748] [invalidation] [ecid:
21085932167,0] Invalidation with INFO 'INFO_comment' has returned with
status 'status'; number of objects invalidated: 'number'.

Note: The following special XML characters must be escaped in the
fields: ampersand (&) with "&", greater than sign (>) with ">",
less than sign (<) with "<", double quotes (") with """, and
single quotes (') with "'".

Table 7–1 (Cont.) INVALIDATION Elements and Attributes

Invalidation
Element/Attribute Description

Format of Invalidation Requests for Out-of-Band and ESI Inline Mechanisms

7-8 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

7.5.2 Invalidation Response Syntax
Invalidation responses are returned in the following format for BASICSELECTOR
invalidation requests:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATIONRESULT SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATIONRESULT VERSION="WCS-1.1">
 <SYSTEM>
 <SYSTEMINFO NAME="name" VALUE="value"/>
 </SYSTEM>
 <OBJECTRESULT>
 <BASICSELECTOR URI="URL">
 </BASICSELECTOR>
 <RESULT ID="ID" STATUS="status" NUMINV="number"/>
 <INFO VALUE="value"/>
 </OBJECTRESULT>
</INVALIDATIONRESULT>

Invalidation responses are returned in the following format for ADVANCEDSELECTOR
invalidation requests:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATIONRESULT SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATIONRESULT VERSION="WCS-1.1">
 <SYSTEM>
 <SYSTEMINFO NAME="name" VALUE="value"/>
 </SYSTEM>
 <OBJECTRESULT>
 <ADVANCEDSELECTOR URIPREFIX="prefix"
 URIEXP="URL_expression"
 HOST="host_name:port"
 METHOD="HTTP_request_method"
 BODYEXP="HTTP_body"/>
 <COOKIE NAME="cookie_name" VALUE="value"/>
 <HEADER NAME="HTTP_request_header" VALUE="value"/>
 <OTHER NAME="URI|BODY|QUERYSTRING_PARAMETER|SEARCHKEY"
 TYPE="SUBSTRING|REGEX"
 VALUE="value"/>
 </ADVANCEDSELECTOR>
 <RESULT ID="ID" STATUS="status" NUMINV="number"/>
 <INFO VALUE="value"/>
 </OBJECTRESULT>
</INVALIDATIONRESULT>

Note: Oracle Web Cache continues to support invalidation requests sent
in the following release 1.0 format:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATION SYSTEM "internal:///invalidation.dtd">
<INVALIDATION>
 <URL EXP="URL" PREFIX="YES|NO">
 <VALIDITY LEVEL="validity" REFRESHTIME="seconds"/>
 <COOKIE NAME="cookie_name"
 VALUE="value"
 NONEXIST="YES|NO"/>
 <HEADER NAME="HTTP_request_header" VALUE="value"/>
 </URL>
</INVALIDATION>

Format of Invalidation Requests for Out-of-Band and ESI Inline Mechanisms

Invalidating Content 7-9

The body of a valid invalidation response begins with the following:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATIONRESULT SYSTEM "internal:///WCSinvalidation.dtd">

The first line denotes version 1.0 of XML. The second line denotes the response is an
invalidation response using the WCSinvalidation.dtd file as the XML document
type.

The root element INVALIDATIONRESULT contains one or more of the attributes and
elements described in Table 7–2. BASICSELECTOR and ADVANCEDSELECTOR are
described in Table 7–1.

7.5.3 Invalidation Preview Request Syntax
To test invalidation, use the following syntax to preview the list of BASICSELECTOR
objects to be invalidated:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATIONPREVIEW SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATIONPREVIEW VERSION="WCS-1.1" STARTNUM="start_number" MAXNUM="max_
number">
 <BASICSELECTOR URI="URL"/>
</INVALIDATIONPREVIEW>

Use the following syntax to preview the list of ADVANCEDSELECTOR objects to be
invalidated:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATIONPREVIEW SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATIONPREVIEW VERSION="WCS-1.1" STARTNUM="start_number" MAXNUM="max_

Table 7–2 INVALIDATIONRESULT Elements and Attributes

Invalidation
Element/Attribute Description

VERSION attribute Version number of the WCSinvalidation.dtd file to use as the XML document type

SYSTEM element Optional element in the INVALIDATIONRESULT element.

The SYSTEM element is optional. The SYSTEM element requires the SYSTEMINFO
element.

SYSTEMINFO element Required element in the SYSTEM element.

The possible NAME/VALUE pairs is as follows:

NAME="WCS_CACHE_NAME" VALUE="string"

This pair specifies the name of the cache.

RESULT element Use the following attributes:

■ ID attribute: Sequence number of all the invalidation objects sent in the invalidation
response. If there are multiple selectors specified in the invalidation request, the
sequence number starts at 1 for the first URL and continues sequentially for each
additional selector.

■ STATUS attribute: Status of the invalidation:

- SUCCESS for successful invalidations

- URI NOT CACHEABLE for objects that are not cacheable

- URI NOT FOUND for objects not found

■ NUMINV attribute: Number of objects invalidated during the invalidation request

INFO element Returns the comment specified in the INFO element of the invalidation request

Format of Invalidation Requests for Out-of-Band and ESI Inline Mechanisms

7-10 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

number">
 <ADVANCEDSELECTOR URIPREFIX="prefix"
 URIEXP="URL_expression"
 HOST="host_name:port"
 METHOD="HTTP_request_method"
 BODYEXP="HTTP_body"
 <COOKIE NAME="cookie_name" VALUE="value"/>
 <HEADER NAME="HTTP_request_header" VALUE="value"/>
 <OTHER NAME="URI|BODY|QUERYSTRING_PARAMETER|SEARCHKEY"
 TYPE="SUBSTRING|REGEX"
 VALUE="value"/>
 </ADVANCEDSELECTOR>
</INVALIDATIONPREVIEW>

The body of a valid invalidation preview request must begin with the following:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATIONPREVIEW SYSTEM "internal:///WCSinvalidation.dtd">

The first line denotes version 1.0 of XML. The second line denotes the request is an
invalidation preview request using the WCSinvalidation.dtd file as the XML
document type.

The root element INVALIDATIONPREVIEW contains one or more of the attributes
described in Table 7–3. BASICSELECTOR and ADVANCEDSELECTOR are described in
Table 7–1.

7.5.4 Invalidation Preview Response Syntax
Invalidation preview responses for preview requests are returned in the following
format:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATIONPREVIEWRESULT SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATIONPREVIEWRESULT VERSION="WCS-1.1" STATUS="status" NUMURLS="number"
TOTALNUMURLS="total_number">
 <SELECTURL VALUE="URL">
 </SELECTEDURL>

Table 7–3 INVALIDATIONPREVIEW Attributes

Invalidation
Element/Attribute Description

VERSION attribute Required attribute in the invalidation preview

Use VERSION="WCS-1.1" as the version of the WCSinvalidation.dtd file to use as
the XML document type.

STARTNUM attribute Required attribute in the invalidation preview

Enter the number representing the first object to be listed. Oracle Web Cache begins the
count of objects with the number 0.

MAXNUM attribute Required attribute in the invalidation preview

Enter the number of objects to be listed.

If fewer objects than the number specified meet the invalidation criteria, Oracle Web
Cache lists only the URLs for those objects that meet the criteria.

If more objects than the number specified meet the invalidation criteria, Oracle Web
Cache lists the URLs for the number of objects requested. It also returns the total number
of objects that meet the invalidation criteria. To obtain the list of URLs for addition
objects, send another preview request with a different STARTNUM that specifies the start
of the next set of objects.

Format of Invalidation Requests for Out-of-Band and ESI Inline Mechanisms

Invalidating Content 7-11

</INVALIDATIONPREVIEWRESULT>

The body of a valid invalidation preview response begins with the following:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATIONPREVIEWRESULT SYSTEM "internal:///WCSinvalidation.dtd">

The first line denotes version 1.0 of XML. The second line denotes that the response is
an invalidation preview response using the WCSinvalidation.dtd file as the XML
document type.

Note the following:

■ No white space is allowed before "<?xml".

■ If an application is sharing invalidation requests with a third-party XML parser,
replace "internal:///WCSinvalidation.dtd" with the following path:

"http://www.oracle.com/webcache/90400/WCSinvalidation.dtd"

The root element INVALIDATIONPREVIEWRESULT contains one or more of the
attributes and elements described in Table 7–4. BASICSELECTOR and
ADVANCEDSELECTOR are described in Table 7–1.

7.5.5 Invalidation Examples
This section contains the following invalidation request examples:

■ Section 7.5.5.1, "Example: Invalidating One Object"

■ Section 7.5.5.2, "Example: Invalidating Multiple Objects"

■ Section 7.5.5.3, "Example: Invalidating a Subtree of Objects"

■ Section 7.5.5.4, "Example: Invalidating All Objects for a Web Site"

■ Section 7.5.5.5, "Example: Invalidating Objects Using Prefix Matching"

■ Section 7.5.5.6, "Example: Invalidating Objects Using Substring and Query String
Matching"

■ Section 7.5.5.7, "Example: Invalidating Objects Using Search Key Matching"

Table 7–4 INVALIDATIONPREVIEWRESULT Elements and Attributes

Invalidation
Element/Attribute Description

VERSION attribute Version number of the WCSinvalidation.dtd file to use as the XML document
type

STATUS attribute Status of the preview:

■ SUCCESS for successful invalidations

■ URI NOT CACHEABLE for objects that are not cacheable

■ URI NOT FOUND for objects not found

STARTNUM attribute Number representing the first object to be listed

NUMURLS attribute Number of URLs returned in this preview result

TOTALNUMURLS attribute Number of URLs matching the BASICSELECTOR or ADVANCEDSELECTOR selectors

SELECTEDURL element URLs matching the BASICSELECTOR or ADVANCEDSELECTOR selectors to be
invalidated

Format of Invalidation Requests for Out-of-Band and ESI Inline Mechanisms

7-12 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

■ Section 7.5.5.8, "Example: Propagating Invalidation Requests Throughout a Cache
Cluster"

■ Section 7.5.5.9, "Example: Previewing Invalidation"

The examples in this section require using the POST method which also requires
sending the number of bytes (or characters) in the content_length: #bytes
portion of the header. Please note that one carriage return is required after the
content_length: #bytes line and before the XML request or BODY information.

7.5.5.1 Example: Invalidating One Object
The following request invalidates the file /images/logo.gif:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATION SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATION VERSION="WCS-1.1">
 <OBJECT>
 <BASICSELECTOR URI="http://www.company.com:80/images/logo.gif"/>
 <ACTION/>
 </OBJECT>
</INVALIDATION>

Invalidation response:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATIONRESULT SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATIONRESULT VERSION="WCS-1.1">
 <OBJECTRESULT>
 <BASICSELECTOR URI="http://www.company.com:80/images/logo.gif"/>
 <RESULT ID="1" STATUS="SUCCESS" NUMINV="1"/>
 </OBJECTRESULT>
</INVALIDATIONRESULT>

The following request invalidates an object exactly matching
/contacts/contacts.html using the BASICSELECTOR element:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATION SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATION VERSION="WCS-1.1">
 <OBJECT>
 <BASICSELECTOR URI="http://www.company.com:80/contacts/contacts.html"/>
 <ACTION REMOVALTTL="0"/>
 </OBJECT>
</INVALIDATION>

This request is equivalent to the following request using the ADVANCEDSELECTOR
element. This request specifies the site information in the HOST attribute.

<?xml version="1.0"?>
<!DOCTYPE INVALIDATION SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATION VERSION="WCS-1.1">
 <OBJECT>
 <ADVANCEDSELECTOR URIPREFIX="/contacts/" URIEXP="^/contacts/contacts\.html$"
HOST="www.company.com:80"/>
 <ACTION REMOVALTTL="0"/>
 </OBJECT>
</INVALIDATION>

The second request specifies the site information in the URIPREFIX attribute:

<?xml version="1.0"?>

Format of Invalidation Requests for Out-of-Band and ESI Inline Mechanisms

Invalidating Content 7-13

<!DOCTYPE INVALIDATION SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATION VERSION="WCS-1.1">
 <OBJECT>
 <ADVANCEDSELECTOR URIPREFIX="http://www.company.com/contacts/"
URIEXP="^/contacts/contacts\.html$"/>
 <ACTION REMOVALTTL="0"/>
 </OBJECT>
</INVALIDATION>

The ADVANCEDSELECTOR element uses the URIPREFIX attribute. This attribute is
used to traverse the directory structure. The quicker invalidation reaches the right tree
level, the quicker the invalidation process is done. The request with the
BASICSELECTOR element is the more efficient of the two examples because there is no
directory structure traversal involved.

7.5.5.2 Example: Invalidating Multiple Objects
The following request invalidates two different objects, summary.jsp and
summary.gif. In addition, the request provides the comments "summary.jsp" and
"summary.gif" to be included in the invalidation result and event log.

<?xml version="1.0"?>
<!DOCTYPE INVALIDATION SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATION VERSION="WCS-1.1">
 <OBJECT>
 <ADVANCEDSELECTOR URIPREFIX="/global/sales/" URIEXP="summary.jsp\?year=2001"
HOST="www.company.com:80"/>
 <COOKIE NAME="group" VALUE="asia"/>
 </ADVANCEDSELECTOR>
 <ACTION />
 <INFO VALUE="summary.jsp"/>
 </OBJECT>
 <OBJECT>
 <ADVANCEDSELECTOR URIPREFIX="/image/" URIEXP="summary.*\.gif$"
HOST="www.company.com:80"/>
 <INFO VALUE="summary.gif"/>
 <ACTION />
 </OBJECT>
</INVALIDATION>

Invalidation response:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATIONRESULT SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATIONRESULT VERSION="WCS-1.1">
 <OBJECTRESULT>
 <ADVANCEDSELECTOR URIPREFIX="/global/sales/" URIEXP="summary.jsp\?year=2001"
HOST="www.company.com:80"/>
 <COOKIE NAME="group" VALUE="asia" />
 </ADVANCEDSELECTOR>
 <RESULT ID="1" STATUS="SUCCESS" NUMINV="2"/>
 <INFO VALUE="summary.jsp"/>
 </OBJECTRESULT>
 <OBJECTRESULT>
 <ADVANCEDSELECTOR URIPREFIX="/image/" URIEXP="summary.*\.gif$"
HOST="www.company.com:80"/>
 </ADVANCEDSELECTOR>
 <RESULT ID="2" STATUS="SUCCESS" NUMINV="14"/>
 <INFO VALUE="summary.gif"/>
 </OBJECTRESULT>
</INVALIDATIONRESULT>

Format of Invalidation Requests for Out-of-Band and ESI Inline Mechanisms

7-14 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

The following messages are written to the event log:

[15/Oct/2008:19:26:46 +0000] [notification 11748] [invalidation] [ecid:
 21085932167,0] Invalidation with INFO 'summary.jsp' has returned with status
 'SUCCESS'; number of objects invalidated: '2'.
.
.
.
[15/Oct/2008:19:26:46 +0000] [notification 11748] [invalidation] [ecid:
 21085932167,0] Invalidation with INFO 'summary.gif' has returned with status
 'SUCCESS'; number of objects invalidated: '14'.

7.5.5.3 Example: Invalidating a Subtree of Objects
The following request invalidates all objects under the /images/ directory:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATION SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATION VERSION="WCS-1.1">
 <OBJECT>
 <ADVANCEDSELECTOR URIPREFIX="/images/" HOST="www.company.com:80"/>
 <ACTION REMOVALTTL="0"/>
 </OBJECT>
</INVALIDATION>

Invalidation response:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATIONRESULT SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATIONRESULT VERSION="WCS-1.1">
 <OBJECTRESULT>
 <ADVANCEDSELECTOR URIPREFIX="/images/" HOST="www.company.com:80"/>
 <RESULT ID="1" STATUS="SUCCESS" NUMINV="125"/>
 </OBJECTRESULT>
</INVALIDATIONRESULT>

The following request invalidates all objects under the /contacts/ directory whose
file names end in .html and uses cookie name cust with a value of oracle:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATION SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATION VERSION="WCS-1.1">
 <OBJECT>
 <ADVANCEDSELECTOR URIPREFIX="/contacts/" URIEXP="\.html$"
HOST="www.company.com:80"/>
 <COOKIE NAME="cust" VALUE="oracle"/>
 </ADVANCEDSELECTOR>
 <ACTION REMOVALTTL="0"/>
 </OBJECT>
</INVALIDATION>

Invalidation response:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATIONRESULT SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATIONRESULT VERSION="WCS-1.1">
 <OBJECTRESULT>
 <ADVANCEDSELECTOR URIPREFIX="/contacts"/> URIEXP="\.html$"
HOST="www.company.com:80"/>
 <COOKIE NAME="cust" VALUE="oracle"/>
 </ADVANCEDSELECTOR>

Format of Invalidation Requests for Out-of-Band and ESI Inline Mechanisms

Invalidating Content 7-15

 <RESULT ID="1" STATUS="SUCCESS" NUMINV="45"/>
 </OBJECTRESULT>
</INVALIDATIONRESULT>

7.5.5.4 Example: Invalidating All Objects for a Web Site
The following request invalidates all objects under /.

<?xml version="1.0"?>
<!DOCTYPE INVALIDATION SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATION VERSION="WCS-1.1">
 <OBJECT>
 <ADVANCEDSELECTOR URIPREFIX="/" HOST="www.company.com:80"/>
 <ACTION REMOVALTTL="0"/>
 </OBJECT>
</INVALIDATION>

Invalidation response:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATIONRESULT SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATIONRESULT VERSION="WCS-1.1">
 <OBJECTRESULT>
 <ADVANCEDSELECTOR URIPREFIX="/" HOST="www.company.com:80"/>
 <RESULT ID="1" STATUS="SUCCESS" NUMINV="17"/>
 </OBJECTRESULT>
</INVALIDATIONRESULT>

7.5.5.5 Example: Invalidating Objects Using Prefix Matching
To better understand the relationship of the URIPREFIX and URIEXP attributes,
consider the examples that follow.

The following syntax invalidates sample.gif files within the
/cec/cstage/graphic* directories:

<ADVANCEDSELECTOR URIPREFIX="/cec/cstage/"
 URIEXP="graphic.*/sample\.gif">
</ADVANCEDSELECTOR>

Note that ".*" in "graphic.*/sample\.gif" are regular expression characters that
match all directories starting with graphic. The "." in "sample\.gif" is escaped for
a literal interpretation.

The following syntax instructs Oracle Web Cache to locate a directory named
graphic*:

<ADVANCEDSELECTOR URIPREFIX="/cec/cstage/graphic*/" URIEXP="sample\.gif"
HOST="www.company.com:80"/>
</ADVANCEDSELECTOR>

The following syntax invalidates objects with a URI containing
/cec/cstage?ecaction=viewitem:

<ADVANCEDSELECTOR URIPREFIX="/cec/" URIEXP="cstage\?ecaction=viewitem"
HOST="www.company.com:80"/>
</ADVANCEDSELECTOR>

Note that "?" is escaped with a backslash.

URLs such as /cec/cstage?ecaction=viewitem&zip=94405 and
/cec/cstage?ecaction=viewitem&zip=94305 match and are invalidated, but

Format of Invalidation Requests for Out-of-Band and ESI Inline Mechanisms

7-16 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

/usa/cec/cstage?ecaction=viewitem&zip=94209 does not match and is not
invalidated.

7.5.5.6 Example: Invalidating Objects Using Substring and Query String Matching
The following request invalidates all objects under / matching the substrings /post/
and htm. In addition, the request provides the comment
"remove-htm-under-all-post-dir" to be included in the invalidation result and
event log.

<?xml version="1.0"?>
<!DOCTYPE INVALIDATION SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATION VERSION="WCS-1.1">
 <OBJECT>
 <ADVANCEDSELECTOR URIPREFIX="/"
 HOST="www.company.com:80">
 <OTHER NAME="URI" TYPE="SUBSTRING" VALUE="/post/"/>
 <OTHER NAME="URI" TYPE="SUBSTRING" VALUE="htm"/>
 </ADVANCEDSELECTOR>
 <ACTION REMOVALTTL="0" />
 <INFO VALUE="remove-htm-under-all-post-dir"/>
 </OBJECT>
</INVALIDATION>

Invalidation response:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATIONRESULT SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATIONRESULT VERSION="WCS-1.1">
 <OBJECTRESULT>
 <ADVANCEDSELECTOR URIPREFIX="/" HOST="www.company.com:80"/>
 <OTHER NAME="URI" TYPE="SUBSTRING" VALUE="/post/"/>
 <OTHER NAME="URI" TYPE="SUBSTRING" VALUE="htm"/>
 <RESULT ID="1" STATUS="SUCCESS" NUMINV="52"/>
 <INFO VALUE="remove-htm-under-all-post-dir"/>
 </OBJECTRESULT>
</INVALIDATIONRESULT>

The following message writes to the event log:

[15/Oct/2008:19:26:46 +0000] [notification 11748] [invalidation] [ecid:
 21085932167,0] Invalidation with INFO 'remove-htm-under-all-post-dir has
 returned with status 'SUCCESS'; number of objects invalidated: '52'.

The following request invalidates all objects under /corporate/asp/, matching the
substring /view_building.asp and the embedded URL parameter value pairs of
building=8 and floor=10. In addition, the request provides the comment
"remove-view-building8-10th-floor" to be included in the invalidation result
and event log.

<?xml version="1.0"?>
<!DOCTYPE INVALIDATION SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATION VERSION="WCS-1.1">
 <OBJECT>
 <ADVANCEDSELECTOR URIPREFIX="/corporate/asp/"
 HOST="www.company.com:80">
 <OTHER NAME="URI" TYPE="SUBSTRING" VALUE="/view_building.asp"/>
 <OTHER NAME="QUERYSTRING_PARAMETER" TYPE="SUBSTRING" VALUE="building=8"/>
 <OTHER NAME="QUERYSTRING_PARAMETER" TYPE="SUBSTRING" VALUE="floor=10"/>
 </ADVANCEDSELECTOR>
 <ACTION REMOVALTTL="0" />

Format of Invalidation Requests for Out-of-Band and ESI Inline Mechanisms

Invalidating Content 7-17

 <INFO VALUE="remove-view-building8-10th-floor"/>
 </OBJECT>
</INVALIDATION>

Invalidation response:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATIONRESULT SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATIONRESULT VERSION="WCS-1.1">
 <OBJECTRESULT>
 <ADVANCEDSELECTOR URIPREFIX="/" HOST="www.company.com:80"/>
 <OTHER NAME="URI" TYPE="SUBSTRING" VALUE="/view_building.asp"/>
 <OTHER NAME="QUERYSTRING_PARAMETER" TYPE="SUBSTRING" VALUE="building=8"/>
 <OTHER NAME="QUERYSTRING_PARAMETER" TYPE="SUBSTRING" VALUE="floor=10"/>
 <RESULT ID="1" STATUS="SUCCESS" NUMINV="3"/>
 <INFO VALUE="remove-view-building8-10th-floor"/>
 </OBJECTRESULT>
</INVALIDATIONRESULT>

The following message writes to the event log:

[15/Oct/2008:19:26:46 +0000] [notification 11748] [invalidation] [ecid: 21085932
167,0] Invalidation with INFO 'remove-view-building8-10th-floor' has returned with
status 'SUCCESS'; number of objects invalidated: '3'.

See Section 7.7.2.2 to optimize invalidations using QUERYSTRING_PARAMETER.

7.5.5.7 Example: Invalidating Objects Using Search Key Matching
The following request invalidates all objects under /pls/publicuser/, matching
the following:

■ Substring /pls/publicuser/!MODULE.wwpob_page.show

■ HTTP request header x-oracle-cache-user and value PUBLICUSER

■ Surrogate-Key response-header field containing a search key of template_
id=33,31345.

<?xml version="1.0"?>
<!DOCTYPE INVALIDATION SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATION VERSION="WCS-1.1">
<OBJECT>
 <ADVANCEDSELECTOR URIPREFIX="/pls/publicuser/" HOST="www.company.com:80"
 METHOD="POST">
 <OTHER NAME="SEARCHKEY" VALUE="template_id=33,31345"/>
 <HEADER NAME="x-oracle-cache-user" VALUE="PUBLICUSER"/>
 <OTHER NAME="URI" TYPE="SUBSTRING"
 VALUE="/pls/publicuser/!MODULE.wwpob_page.show"/>
 </ADVANCEDSELECTOR>
 <ACTION REMOVALTTL="0"/>
</OBJECT>
</INVALIDATION>

Invalidation response:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATIONRESULT SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATIONRESULT VERSION="WCS-1.1">
 <OBJECTRESULT>
 <ADVANCEDSELECTOR URIPREFIX="/pls/publicuser/" HOST="www.company.com:80"
 METHOD="POST">
 <OTHER NAME="SEARCHKEY" VALUE="template_id=33,31345"/>

Format of Invalidation Requests for Out-of-Band and ESI Inline Mechanisms

7-18 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

 <HEADER NAME="x-oracle-cache-user" VALUE="PUBLICUSER"/>
 <OTHER NAME="URI" TYPE="SUBSTRING"
 VALUE="/pls/publicuser/!MODULE.wwpob_page.show"/>
 <RESULT ID="1" STATUS="SUCCESS" NUMINV="3"/>
 </OBJECTRESULT>
</INVALIDATIONRESULT>

7.5.5.8 Example: Propagating Invalidation Requests Throughout a Cache Cluster
In a cache cluster, you can enable or disable the propagation of invalidation requests to
all cluster members in Fusion Middleware Control and Oracle Web Cache Manager, as
described in Section 3.6.5 and Section 3.7.4, respectively.

You can override the setting by using a pair of name/value attributes of the
SYSTEMINFO element. If NAME is set to WCS_PROPAGATE and VALUE is set to TRUE, it
overrides the setting specified in Fusion Middleware Control or Oracle Web Cache
Manager. If NAME is set to WCS_PROPAGATE and VALUE is set to FALSE, it reads the
setting specified in Fusion Middleware Control or Oracle Web Cache Manager.

The following request invalidates the file /images/logo.gif and propagates the
request to all cluster members. In this example, there are three cluster members:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATION SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATION VERSION="WCS-1.1">
 <SYSTEM>
 <SYSTEMINFO NAME="WCS_PROPAGATE" VALUE="TRUE"/>
 </SYSTEM>
 <OBJECT>
 <BASICSELECTOR URI="/web_cache_host_name:port/images/logo.gif"/>
 <ACTION/>
 </OBJECT>
</INVALIDATION>

Invalidation response:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATIONRESULTDETAIL SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATIONRESULTDETAIL VERSION="WCS-1.1">
 <INVALIDATIONRESULT VERSION="WCS-1.1">
 <SYSTEM>
 <SYSTEMINFO NAME="WCS_CACHE_NAME" VALUE="Cache_A"/>
 </SYSTEM>
 <OBJECTRESULT>
 <BASICSELECTOR URI="http://www.company.com:80/images/logo.gif"/>
 <RESULT ID="1" STATUS="SUCCESS" NUMINV="1"/>
 </OBJECTRESULT>
 </INVALIDATIONRESULT>
 <INVALIDATIONRESULT VERSION="WCS-1.1">
 <SYSTEM>
 <SYSTEMINFO NAME="WCS_CACHE_NAME" VALUE="Cache_B"/>
 </SYSTEM>
 <OBJECTRESULT>
 <BASICSELECTOR URI="http://www.company.com:80/images/logo.gif"/>
 <RESULT ID="1" STATUS="SUCCESS" NUMINV="1"/>
 </OBJECTRESULT>
 </INVALIDATIONRESULT>
 <INVALIDATIONRESULT VERSION="WCS-1.1">
 <SYSTEM>
 <SYSTEMINFO NAME="WCS_CACHE_NAME" VALUE="Cache_C"/>
 </SYSTEM>

About Search Keys in Invalidations

Invalidating Content 7-19

 <OBJECTRESULT>
 <BASICSELECTOR URI="http://www.company.com:80/images/logo.gif"/>
 <RESULT ID="1" STATUS="SUCCESS" NUMINV="1"/>
 </OBJECTRESULT>
 </INVALIDATIONRESULT>
</INVALIDATIONRESULTDETAIL>

7.5.5.9 Example: Previewing Invalidation
The following request previews up to 50 objects ending in *.htm:

<?xml version="1.0"?>
<!DOCTYPE INVALIDATIONPREVIEW SYSTEM
"internal:///WCSinvalidation.dtd">
<INVALIDATIONPREVIEW VERSION="WCS-1.1" STARTNUM="0" MAXNUM="50">
 <ADVANCEDSELECTOR URIPREFIX="http://company-sun/"
 URIEXP=".*\.htm" >
 </ADVANCEDSELECTOR>
</INVALIDATIONPREVIEW>

Invalidation response:

"<?xml version="1.0"?>
<!DOCTYPE INVALIDATIONPREVIEWRESULT SYSTEM
"internal:///WCSinvalidation.dtd">
<INVALIDATIONPREVIEWRESULT VERSION="WCS-1.1" STATUS="SUCCESS"
 STARTNUM="0" NUMURLS="2" TOTALNUMURLS="2">
 <SYSTEM>
 <SYSTEMINFO NAME="WCS_CACHE_NAME" VALUE="server-cache"/>
 </SYSTEM>
 <SELECTEDURL VALUE="/company-sun:80/index.htm "/>
 <SELECTEDURL VALUE="/company-sun:80/dtd.htm "/>
</INVALIDATIONPREVIEWRESULT>

7.6 About Search Keys in Invalidations
You can base invalidation on one or more search keys used in the Surrogate-Key
response-header field of objects in the cache.

The Surrogate-Key response-header field enables application developers to identify
search key strings for a given response object. Search keys are strings that may not
appear in the URL, cookies, or HTTP request headers of objects. The intent of the
search keys is to provide another criteria for invalidation. In addition to the URL of
objects, Oracle Web Cache administrators can base invalidation on one or more search
keys used in the Surrogate-Key response-header field of objects in the cache.

The Surrogate-Key response-header field supports the following syntax:

Surrogate-Key: search-key=("key" "key" "key" ...)

Usage Notes
■ If search-key is specified in this header, then at least one search key value must

be present.

■ Search key values must be enclosed within quotes (").

■ Search key values can be of any format, such as "key_value" or "key_
name=key_value".

■ The maximum number of allowed search keys is 20.

■ Space between search keys is optional.

Initiating Out-of-Band Invalidations

7-20 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

■ The search keys must remain the same.

Example Usage
The following examples show valid Surrogate-Key fields. The first example shows
one search key of template_id=33,31345, and the second example shows search
keys of template_id=33,31345 and category.

Surrogate-Key: search-key=("template_id=33,31345")

Surrogate-Key: search-key=("template_id=33,31345" "category")

The following examples show invalid Surrogate-Key fields. The first example
shows one search key of 348 without an ending quote ("), and the second example
shows search-key without any search key values.

Surrogate-Key: search-key=("template_id=348)
Surrogate-Key: search-key=()

For more information about enabling search-key invalidation, see Section 7.9.

7.7 Initiating Out-of-Band Invalidations
The following topics describe how to initiate out-of-band invalidations:

■ Section 7.7.1, "Using Telnet to Send Invalidation Requests"

■ Section 7.7.2, "Using Oracle Web Cache Manager to Send Invalidation Requests"

■ Section 7.7.3, "Using Application Program Interfaces (APIs) for Automated
Invalidation Requests"

■ Section 7.7.4, "Using Database Triggers for Automated Invalidation Requests"

■ Section 7.7.5, "Using Scripts for Automated Invalidations"

7.7.1 Using Telnet to Send Invalidation Requests
When you send an invalidation request with an HTTP POST request, you specify the
host name of Oracle Web Cache, the invalidation listening port number, and the
invalidation request.

For example, if you are using telnet, you send an invalidation request using the
following procedure:

1. Connect to Oracle Web Cache at the invalidation listening port:

telnet web_cache_host invalidation_port

2. Specify a POST message header and authenticate the invalidator account using
Base64 encoding string with the following syntax:

POST /x-oracle-cache-invalidate http/1.0|1
Authorization: BASIC <base64 encoding of invalidator:invalidator_password>
content-length:#bytes

The following shows an example of the Authorization line:

Authorization: BASIC aW52YWxpZGF0b3I6aW52YWxpZGF0b3I=

In this example, aW52YWxpZGF0b3I6aW52YWxpZGF0b3I= is the invalidator user
name and password (invalidator:invalidator) encoded.

Initiating Out-of-Band Invalidations

Invalidating Content 7-21

For more information, see:

■ http://www.rfc-editor.org/ for information about password Base64
encoding

■ readme.examples.htmlfor further information about using the
EncodeBase64.java script to generate the Base64 string for
invalidator:invalidator_password. This file is located in the
following directories:

(UNIX) ORACLE_HOME/webcache/docs
(Windows) ORACLE_HOME\webcache/docs

■ Section 5.2 for further information about changing the invalidation password

3. Enter one carriage return.

4. Send the invalidation request with XML syntax, as specified in Section 7.5.

7.7.2 Using Oracle Web Cache Manager to Send Invalidation Requests
Oracle Web Cache Manager provides an easy-to-use interface for invalidating cached
objects. The advantage of using this interface is that the administrator is isolated from
the intricacies of the HTTP and XML formats, and consequently, there is less chance
for error. The administrator need only specify which objects to invalidate and how
how quickly those objects should be invalidated.

Oracle Web Cache Manager enables you to send either basic invalidation request for
invalidation one object, or an advanced invalidation request for multiple objects, as
described in the following topics:

■ Section 7.7.2.1, "Submitting Basic Invalidation Requests"

■ Section 7.7.2.2, "Submitting Advanced Invalidation Requests"

7.7.2.1 Submitting Basic Invalidation Requests
To send a basic invalidation request using Oracle Web Cache Manager:

1. From Oracle Web Cache Manager, in the navigator frame, select Operations >
Basic Content Invalidation. See Section 2.7.2.

The Basic Content Invalidation page appears in the right pane.

2. From the For Cache list, select a cache. (The list displays multiple caches only if
you configured a cache cluster. If you configured the cluster to propagate

Note: If you receive the following error when you submit
invalidation requests from the Basic Content Invalidation or
Advanced Content Invalidation pages, restart the cache or admin
server processes.

Internal error: can't connect to Oracle Web Cache
Invalidation Listening Port

If you change the property of an invalidation port, restart the cache
server process. If you change the password for the administrator
account in the Security page, restart the cache and admin server
processes. Until you restart the cache server process for either
configuration change, invalidation requests return the error.

See Section 2.13 for restart instructions.

Initiating Out-of-Band Invalidations

7-22 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

invalidation, the cache you select is designated the invalidation coordinator, which
propagates the invalidation request to other cache cluster members. If you did not
configure the cluster to propagate invalidation, the cache you select is the only
cache from which objects are invalidated.)

3. In the Search Criteria section, select the search criteria:

■ Remove all cached objects: Select to remove all objects from the cache.

■ Enter exact URL for removal: Specify the URL of the objects to be invalidated.
Include the complete path and file name.

Note: Because Oracle Web Cache escapes the following characters, you can
enter them in this field: ampersand (&), greater than sign (>), less than sign (<),
double quotes ("), and single quotes (').

4. Optionally, you can preview the list of objects to be invalidated to ensure that you
are removing only the objects you want to remove. To preview the list of objects:

a. In the Action section, choose Preview list of objects that match invalidation
criteria.

b. Specify the Object Range:

– From: Enter the number representing the first object to be listed. Oracle
Web Cache begins the count of objects with the number 0.

– To: Enter the number of objects to be listed.

If fewer objects than the number specified meet the invalidation criteria,
Oracle Web Cache lists the URLs for only those objects that meet the crite-
ria.

If more objects than the number specified meet the invalidation criteria,
Oracle Web Cache lists the URLs for the number of objects requested. It
also returns the total number of objects that meet the invalidation criteria.
To obtain the list of URLs for additional objects, send another preview
request with a different From number that specifies the start of the next set
of objects.

c. Click Submit.

Oracle Web Cache displays the Invalidation Preview Results message box,
which lists the objects that meet the invalidation criteria. Oracle Web Cache
Manager lists only those objects that are valid. Although the cache may
contain objects that are expired or that have been invalidated, those objects are
not listed.

If the listed objects are for those to invalidate, continue with the next step. If
they are not, modify the invalidation criteria and preview the list again.

5. In the Action section, select an option to specify how to process invalid objects:

■ Remove immediately: Oracle Web Cache marks objects as invalid and
removes them immediately. A object is refreshed from the origin server when
the cache receives the next request for it.

■ Remove objects no later than <number> <time> after submission: Oracle Web
Cache marks objects as invalid and then refreshes them based on origin server
capacity. Enter the maximum time in which the objects can reside in the cache.
When you select this option, Oracle Web Cache applies heuristics to determine
when is best time to no longer serve the document.

6. Click Submit.

Initiating Out-of-Band Invalidations

Invalidating Content 7-23

Oracle Web Cache processes the invalidation request, and returns the Cache Cleanup
Result dialog box which shows the invalidation status. The following figure shows the
dialog box:

In a cache cluster environment, if Invalidation requests sent to any cluster member
will be propagated to all cluster members is enabled, Oracle Web Cache sends the
invalidation request to one cluster member who acts as the invalidation coordinator.
The coordinator propagates the invalidation request to other cluster members. When
the invalidation has been completed for all cluster members, Oracle Web Cache returns
a Cache Cleanup box that lists, for each cluster member, the cache name, the status of
the invalidation request, and the number of objects invalidated.

For more information, see Section 3.6.5 for information about enabling invalidation
propagation.

7.7.2.2 Submitting Advanced Invalidation Requests
To send an advanced invalidation request using Oracle Web Cache Manager:

1. In the navigator frame, select Operations > Advanced Content Invalidation.

The Advanced Content Invalidation page appears in the right pane.

2. From the For Cache list, select a cache. (The list displays multiple caches only if
you configured a cache cluster.)

3. In the Search Criteria section, select the search criteria:

■ URL Path Prefix: Required. Specify the path prefix of the objects to be
invalidated. The path prefix must begin with http|https://host_
name:port/path/filename or with "/" and end with "/".

host_name:port is optional. You can also specify the site host name and
port in the Host Name field.

The prefix is interpreted literally, including reserved regular expression
characters. These characters include periods (.), question marks (?), asterisks
(*), brackets ([]), curly braces ({}), carets (^), dollar signs ($), and
backslashes (\).

Note: Because Oracle Web Cache escapes the following characters,
you can enter them in the search criteria fields: ampersand (&), greater
than sign (>), less than sign (<), double quotes ("), and single quotes
(').

Initiating Out-of-Band Invalidations

7-24 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

■ Host Name: Optional. Specify the host name and port number of the site
(host_name:port). Port 80 is the default port for HTTP.

This field is required if the URL Path Prefix does not include
http|https://host_name:port/path/filename.

■ HTTP Method: Optional. Select the HTTP request method (GET or POST) of
the objects to be invalidated. The default value is GET.

■ URL Expression: Optional. Specify the URL of the objects to be invalidated
under the URL Path Prefix. Then, specify how to match by selecting either
substring for an exact string match or regular expression for a regular
expression match.

If no value is entered, everything under the URL Path Prefix is matched.

■ POST Body Expression: Optional. If POST is selected for the HTTP Method,
enter the HTTP POST body of the objects to be invalidated, and then specify
how to match by selecting either substring for a substring string match or
regular expression for a regular expression match.

4. Optionally, in the Cookie/Header Information section, specify the use of cookie
names or HTTP request headers used for multiple-version objects in the search
criteria:

a. From the list, select Cookie or Header.

b. Provide the following information:

– Cookie: Enter the cookie name used by multiple-version objects to be
invalidated in the Name field, and enter its value in the Value field.

– Header: Enter the HTTP request header used by the objects to be
invalidated in the Name field, and enter its value in the Value field.

See Section 6.5.1 to create caching rules for multiple-version objects.

5. Optionally, in the URL Parameters section, enter the name of the embedded URL
parameter used by the objects to be invalidated in the Name field, enter its value
in the Value field, and then specify how to match by selecting either exact strings
or regular expression.

Note: If regular expression is selected for the URL Expression or
POST Body Expression fields, Oracle Web Cache interprets the
following reserved regular expression characters: periods (.), question
marks (?), asterisks (*), brackets ([]), curly braces ({}), carets (^),
dollar signs ($), and backslashes (\). To interpret these characters
literally, escape them with a backslash (\).

Note: If you specify a cookie that was mistakenly specified for both a
multiple-version object and a session caching policy, invalidation is
based on any occurrence of the cookie. To avoid excessive
invalidation, configure distinct cookies for multiple-version objects
(Rules for Caching, Personalization, and Compression > Cookie
Definitions) and session caching policies (Rules for Caching,
Personalization, and Compression > Session Definitions).

Initiating Out-of-Band Invalidations

Invalidating Content 7-25

6. Optionally, in the Search Keys section, enter the name of a search key from the
Surrogate-Key response-header field used by the objects to be invalidated in
the Key field. See Section 7.6 and Section 7.9.

7. Optionally, you can preview the list of objects to be invalidated to ensure that you
are removing only the objects you want to remove. To preview the list of objects:

a. In the Action section, choose Preview list of objects to be removed.

b. Specify the Object Range:

– From: Enter the number representing the first object to be listed. Oracle
Web Cache begins the count of objects with the number 0.

– To: Enter the number of objects to be listed.

If fewer objects than the number specified meet the invalidation criteria,
Oracle Web Cache lists the URLs for only those objects that meet the criteria.

If more objects than the number specified meet the invalidation criteria, Oracle
Web Cache lists the URLs for the number of objects requested. It also returns
the total number of objects that meet the invalidation criteria. To obtain the list
of URLs for additional objects, send another preview request with a different
From number that specifies the start of the next set of objects.

c. Click Submit.

Oracle Web Cache displays the Invalidation Preview Results message box,
which lists the objects that meet the invalidation criteria. Oracle Web Cache
Manager lists only those objects that are valid. Although the cache may
contain objects that are expired or that have been invalidated, those objects are
not listed.

If the listed objects are for those to invalidate, continue with the next step. If
they are not, modify the invalidation criteria and preview the list again.

8. In the Action section, select an option to specify how to process invalid objects:

■ Remove immediately: Oracle Web Cache marks objects as invalid and then
removes them immediately. A object is refreshed from the origin server when
the cache receives the next request for it.

■ Remove objects no later than <number> <time> after submission: Oracle Web
Cache marks objects as invalid and then refreshes them based on origin server
capacity. Enter the maximum time in which the objects can reside in the cache.

9. Click Submit.

Oracle Web Cache processes the invalidation request, and returns a Cache Cleanup
dialog box which shows the invalidation status.

7.7.3 Using Application Program Interfaces (APIs) for Automated Invalidation Requests
Invalidation requests can originate from a Web site's underlying application logic or
from the content management application used to design Web pages.

Note: For prefix-based invalidations that require Oracle Web Cache
to traverse a complex directory structure, invalidation can take some
time. Therefore, do not click Submit again until the Cache Cleanup
Result dialog box appears. Creating a queue of invalidation requests
can degrade the performance of Oracle Web Cache.

Enabling Response-Header Invalidation

7-26 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Oracle Web Cache ships with the following Application Program Interfaces (APIs) that
you can implement:

■ jawc.jar for a Java invalidation API

■ wxvutil.sql and wxvappl.sql for a PL/SQL invalidation API

These APIs are located in the following directories:

(UNIX) ORACLE_HOME/webcache/toolkit
(Windows) ORACLE_HOME\webcache/toolkit

For more information about these APIs, see readme.toolkit.html in the following
directories for further information about the APIs:

(UNIX) ORACLE_HOME/webcache/docs
(Windows) ORACLE_HOME\webcache/docs

7.7.4 Using Database Triggers for Automated Invalidation Requests
Database triggers are procedures that are stored in the database and activated ("fired")
when specific conditions occur, such as adding a row to a table. You can use triggers to
send invalidation requests. Use the UTL_TCP Oracle supplied package to send
invalidation requests through database triggers.

For more information, see Oracle PL/SQL documentation.

7.7.5 Using Scripts for Automated Invalidations
Many Web sites use scripts for uploading new content to databases and file systems. A
large online book retailer, for instance, might run a PERL script once a day to bulk load
new book listings and price changes into its catalog database. The retailer would want
the price changes and availability listings to be reflected in the item views and search
results currently cached in Oracle Web Cache. To achieve this result, you can modify
the PERL script such that when the bulk loading operation has completed, the script
sends an invalidation request to the cache invalidating all catalog views and search
results. (Note that the invalidation request need not list every individual search page
or item view that might be effected by the data change.) The performance assurance
feature of Oracle Web Cache enables administrators to use broad brush strokes when
invalidating content, making it safe to invalidate all catalog content even if only a
fraction of that content has changed.

7.8 Enabling Response-Header Invalidation
Response header invalidation is an Oracle Web Cache feature that enables an origin
server to invalidate cached content through an HTTP response header.

The response-header field supports the following syntax:

Oracle-WebCache-Invalidate:
([SYNCHRONOUS=ON|OFF,]
(URI="value" | (URI_DIR="value" [(;S_KEY="value")*])
 | (S_KEY="value" [(;S_KEY="value")*]))
([,SYNCHRONOUS=ON|OFF,]
 URI="value" | (URI_DIR="value" [(;S_KEY="value")*])
 | (S_KEY="value" [(;S_KEY="value")*]))*
[,SYNCHRONOUS=ON|OFF]

Table 7–5 describes the control directives for response header invalidation.

Enabling Response-Header Invalidation

Invalidating Content 7-27

Usage Notes
■ An invalidation response header consists of the header name

"Oracle-WebCache-Invalidate" followed by a colon (:), followed by one or
more invalidation directives with consecutive pairs of invalidation directives

Table 7–5 Control Directives for Oracle-WebCache-Invalidate

Control Directive Description

SYNCHRONOUS The SYNCHRONOUS directive enables Oracle Web Cache to determine whether to complete
the invalidation before returning the response to the client. It applies to the invalidation as a
whole—the combination of all invalidation response headers for a given response. By
default, Oracle Web Cache waits for the invalidation to complete (SYNCHRONOUS=ON)
before returning the response. Typically the original request updates content hosted by the
origin server, and the origin server, in turn, ensures that Oracle Web Cache invalidates all its
entries associated with the content before the client receives a response. There is a direct link
between the original request and the content identified in the invalidation response header.

If an origin server appends an invalidation response header to a random request, the client
sending the request should not have to wait for the invalidation to complete. In this case, the
origin server should direct Oracle Web Cache to return the response before proceeding with
the invalidation (SYNCHRONOUS=OFF).

URI An invalidation specification with the URI option directive enables Oracle Web Cache to
invalidate the entry with the specified URI; this corresponds to basic invalidation.

URI_DIR An invalidation specification with the URI_DIR option directive enables Oracle Web Cache
to interpret the specified URI as a directory and to invalidate all entries stored in the
specified directory; this corresponds to URI prefix invalidation, a small but often used subset
of advanced invalidation.

Note that the directory URI strings must end in a slash (/) to make the URI_DIR option
directive consistent with current URI prefix invalidation.

S_KEY An invalidation specification with the S_KEY option directive enables Oracle Web Cache to
interpret the quoted string as a search key; this corresponds to search key invalidation,
another small subset of advanced invalidation. Search key matching is case sensitive, the
same as it is for traditional invalidation.

When a S_KEY option directive appears without an explicit URI directory, Oracle Web Cache
uses an implicit URI directory equivalent to the root of the site definition associated with the
incoming request. In particular, if the site definition contains a path prefix, the implicit URI
directory includes this path prefix.

Conjoined Multiple
Directives

An invalidation response header may contain a URI directory followed by one or more
search keys. In this situation, a semicolon (;) delimiter separates each directive. When this
occurs, a Oracle Web Cache entry must match all the directives to qualify for invalidation.

Multiple
Invalidation
Directives

When an invalidation response header contains multiple invalidation directives with each
consecutive pair of invalidation directives separated by a comma, an Oracle Web Cache
entry must match at least one invalidation directive to qualify for invalidation. In other
words, Oracle Web Cache treats each comma-delimited invalidation directive as an
independent invalidation operation.

Mixing Commas
and Semicolons

When an invalidation response header contains both kinds of separators, commas and
semicolons, semicolons take precedence. In other words, the consecutive directives
separated by semicolons must be examined; then consecutive directives separated by
commas are examined.

Multiple
Invalidation
Response Headers

An origin server can store multiple invalidation response headers in its response to Oracle
Web Cache. When this happens, an Oracle Web Cache entry only needs to match one header
to qualify for invalidation. In other words, the content of multiple invalidation response
headers in the same response are treated as if they were part of a single response header
joined by commas.

If a response contains at least one invalid invalidation response header, no invalidation takes
place even if the response contains other valid invalidation response headers.

Enabling Response-Header Invalidation

7-28 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

separated by a comma (,). Optional synchronicity directives may appear before or
after any directive.

■ A synchronicity directive consists of the keyword "SYNCHRONOUS" followed by an
equal sign (=) followed by either the keyword "ON"or the keyword "OFF".

■ An invalidation consists of either a URI or a multi-directive specification.

■ A URI directive consists of a URI option directive followed by an equal sign (=)
followed by a quoted string.

■ A URI option directive consists of the keyword URI.

■ A multi-directive specification has two distinct formats:

– an explicit directory

– an implicit directory

■ The explicit directory format consists of a URI directory directive followed by zero
or more search key directives with consecutive search keys separated by a
semicolon (;) delimiter.

■ The implicit directory format consists of 1 or more search keys with consecutive
search keys separated by a semicolon (;) delimiter.

■ A URI directory consists of a URI directory option directive followed by an equal
sign (=) followed by a quoted string.

■ A URI directory option directive consists of the keyword URI_DIR.

■ A search key consists of a search key option directive followed by an equal sign (=)
followed by a quoted string.

■ A search key option directive consists of the keyword S_KEY.

■ A quoted string contains either a URI or a search key. Case-sensitivity rules and
allowable character sets for URI and search key strings are the same as for other
invalidation functionality.

■ For fully qualified URIs, a valid scheme includes either http:// or https://,
and a valid host name (for example, www.host1.com).

■ Port numbers, when specified, must be valid as well. When a URI does not contain
a port number, Oracle Web Cache assumes a default port number of 80 for HTTP
and 443 for HTTPS. For implicit URI directories, Oracle Web Cache determines the
directory based on the site of the original request. Oracle Web Cache ensures that
the resulting site definition matches the site definition associated with the original
request. In other words, as a security precaution, Oracle Web Cache disallows
cross-site invalidation.

■ Note that with site-to-server mappings involving wildcards, some requests may
have no associated site definition. In this case, the principal of conservatism
applies, and Oracle Web Cache disallows the response header invalidation.

7.8.1 Example Usage
The following sections provide examples of invalidation response headers.

The examples are based on the fictional Web application for Harry's Hardware store
with the Web site:

http://www.HarrysHardware.com

Enabling Response-Header Invalidation

Invalidating Content 7-29

At this site, Harry publishes descriptions (including the retail price) for all the popular
items he sells. Harry improves the response time for his on-line customers by
deploying a Oracle Web Cache in front of the Web server hosting his site, but to ensure
his on-line customers see fresh content, he wants the application to invalidate relevant
Oracle Web Cache entries whenever it updates descriptions or prices for items in the
store. The examples below indicate how to use response header invalidation for
various scenarios that Harry has identified.

The sections include:

■ Section 7.8.1.1, "Basic URI Invalidation"

■ Section 7.8.1.2, "Directory URI Invalidation"

■ Section 7.8.1.3, "Asychronous Invalidation"

■ Section 7.8.1.4, "Search Key Invalidation with Explicit URI"

■ Section 7.8.1.5, "Search Key Invalidation with Implicit URI"

■ Section 7.8.1.6, "Multiple Invalidation Directives"

■ Section 7.8.1.7, "Mixing Commas and Semicolons"

■ Section 7.8.1.8, "Multiple Invalidation Response Headers"

7.8.1.1 Basic URI Invalidation
Harry sells one particularly popular item called the Thor hammer, and the
corresponding description page has the following URI:

http://www.harryshardware.com/products/tools/hammers/Thor.html

If Harry decides to put the Thor on sale, his Web application could invalidate the
appropriate Web Cache entry with an invalidation response header containing a fully
specified URI:

Oracle-WebCache-Invalidate:
URI="http://www.harryshardware.com/products/tools/hammers/Thor.html"

If the original request specified the host name (www.harryshardware.com)
explicitly, the application could return an invalidation response header with a
path-only URI:

Oracle-WebCache-Invalidate: URI="/products/tools/hammers/Thor.html"

7.8.1.2 Directory URI Invalidation
If Harry decides to put all the hammers in his store on sale, his Web application could
invalidate all Web Cache entries for hammers with an invalidation response header
containing a fully specified URI directory:

Oracle-WebCache-Invalidate: URI_
DIR="http://www.harryshardware.com/products/tools/hammers/"

If the original request specified the host name (www.harryshardware.com)
explicitly, the application could return an invalidation response header with a
path-only URI directory:

Oracle-WebCache-Invalidate: URI_DIR="/products/tools/hammers/"

Enabling Response-Header Invalidation

7-30 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

7.8.1.3 Asychronous Invalidation
In the examples so far, we have not specified a synchronicity directive, so by default
Oracle Web Cache would complete the invalidation before returning the response to
the client.

If Harry wanted the example from Section 7.8.1.2 to proceed asynchronously, that is, if
he did not want Oracle Web Cache to wait for the invalidation to complete before
returning the response, his Web application could send an invalidation response
header that looks like this:

Oracle-WebCache-Invalidate: SYNCHRONOUS=OFF,
URI_DIR="http://www.harryshardware.com/products/tools/hammers/"

Notice that the response header above contained a fully qualified URI directory. If the
original request specified the host name (www.harryshardware.com) explicitly, the
application could return an invalidation response header with a path-only URI
directory:

Oracle-WebCache-Invalidate: SYNCHRONOUS=OFF, URI_DIR="/products/tools/hammers/"

7.8.1.4 Search Key Invalidation with Explicit URI
Suppose that Harry wants to reduce the price of all TrueSaw saws but not the
handsaws, just the power saws (for example, skill saws and chainsaws). His Web
application could invalidate all the necessary entries with an invalidation response
header that looks like this:

Oracle-WebCache-Invalidate: URI_
DIR="http://www.harryshardware.com/products/tools/saws/";S_KEY="PowerTool";
S_KEY="TrueSaw"

Notice the addition of the S_KEY directives to ensure the invalidation of only TrueSaw
power saws.

Remember, when an invalidation response header contains multiple directives
separated by semicolons, an Oracle Web Cache entry must match all directives for the
invalidation to take place.

Notice also that the response header above contained a fully qualified URI directory. If
the original request specified the host name (www.harryshardware.com) explicitly,
the application could return an invalidation response header with a path-only URI
directory:

Oracle-WebCache-Invalidate: URI_DIR="/products/tools/saws/";S_KEY="PowerTool";S_
KEY="TrueSaw"

7.8.1.5 Search Key Invalidation with Implicit URI
Suppose that Harry sets up an additional site for selling large appliances
(dishwashers, refrigerators, etc.). Suppose also that he defines this site using a path
prefix of /products/appliances. The following Table 7–6 are the site definitions
for the Web site:

Table 7–6 Web Site Definitions

Scheme Host
Port
Number Path Prefix

http www.harryshardware.c
om

80 /products/appliances

Enabling Response-Header Invalidation

Invalidating Content 7-31

The first site pertains strictly to large appliances; the second site applies to everything
else in Harry's store.

Suppose further that Harry changes the price for all KeepCold refrigerators and that
the site definition for an incoming request pertains to Harry's appliance site; scheme
http, host name www.harryshardware.com, (optional) port 80 and path prefix of
/products/appliances. His Web application could invalidate all the necessary
entries with an invalidation response header that looks like this:

S_KEY="KeepCold";S_KEY="Refrigerators"

Notice that the invalidation response header contains only search key directives; it
does not contain a URI directory directive. When this happens, Oracle Web Cache
forms an implicit URI directory from the site definition associated with the incoming
request. In this case the implicit directory corresponds to:

http://www.harryshardware.com/products/appliances/

As before, with multiple directives separated by semicolons, an Oracle Web Cache
entry must match all directives for the invalidation to take place.

The equivalent invalidation response header with an explicit, fully qualified URI
directory would look like this:

Oracle-WebCache-Invalidate: URI_
DIR="http://www.harryshardware.com/products/appliances/";S_KEY="KeepCold";
S_KEY="Refrigerators"

The equivalent invalidation response header with an explicit, path-only URI directory
would look like this:

Oracle-WebCache-Invalidate: URI_DIR="/products/appliances/";S_KEY="PowerTool";
S_KEY="TrueSaw"

7.8.1.6 Multiple Invalidation Directives
Suppose that Harry wants to upgrade his entire inventory of drills and wrenches. His
Web application could invalidate all the necessary entries with a response containing
the following invalidation response header:

Oracle-WebCache-Invalidate: URI_
DIR="http://www.harryshardware.com/products/tools/drills/",
URI_DIR="http://www.harryshardware.com/products/tools/wrenches/"

Remember, when an invalidation response header contains two consecutive
invalidation specifications separated by a comma, an Oracle Web Cache entry only
needs to match one invalidation specification for the invalidation to take place.

Notice that the response header above contained fully qualified URI directories. If the
original request specified the host name (www.harryshardware.com) explicitly, the
application could return an invalidation response header with path-only URI
directories:

Oracle-WebCache-Invalidate: URI_DIR="/products/tools/drills/", URI_

http www.harryshardware.c
om

80 /

Table 7–6 (Cont.) Web Site Definitions

Scheme Host
Port
Number Path Prefix

Enabling Search Keys for Invalidations

7-32 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

DIR="/products/tools/wrenches/"

7.8.1.7 Mixing Commas and Semicolons
Suppose that Harry wants to put both the Thor hammer and all TrueSaw power saws
on sale. His Web application could invalidate all the necessary entries with a response
containing the following invalidation response header:

Oracle-WebCache-Invalidate:
URI="http://www.harryshardware.com/products/tools/hammers/Thor.html",
URI_DIR="http://www.harryshardware.com/products/tools/saws/";S_KEY="PowerTools";S_
KEY="TrueSaw"

Notice the use of both the comma and semicolon as separators. In this instance, the
first directive consists of only the URI for the Thor hammer. The second directive
consists of three invalidation specifications: the URI directory for saws and the search
keys for Power Tools and TrueSaw tools. Semicolons take precedence over commas.

Notice also that the response header above contained a fully qualified URI and a fully
qualified URI directory.

If the original request specified the host name (www.harryshardware.com)
explicitly, the application could return an invalidation response header with a
path-only URI and a path-only URI directory:

Oracle-WebCache-Invalidate: URI="/products/tools/hammers/Thor.html"
URI_DIR="/products/tools/saws/";S_KEY="PowerTools";S_KEY="TrueSaw"

7.8.1.8 Multiple Invalidation Response Headers
Returning to the example of Section 7.8.1.6, a Web application, alternatively, could
invalidate all the necessary entries with a response containing two separate
invalidation response headers:

Oracle-WebCache-Invalidate: URI_
DIR="http://www.harryshardware.com/products/tools/drills/"
Oracle-WebCache-Invalidate: URI_
DIR="http://www.harryshardware.com/products/tools/wrenches/"

The directives from two different invalidation response headers in the same response
are treated as if they were separate directives in a single response header—that is, they
are treated as if they were separated by commas in a single invalidation response
header. Notice, too, the response headers contained a fully qualified URI directory. If
the original request specified the host name (www.harryshardware.com) explicitly,
the application could return invalidation response headers with path-only URI
directories:

Oracle-WebCache-Invalidate: URI_DIR="/products/tools/drills/"
Oracle-WebCache-Invalidate: URI_DIR="/products/tools/wrenches/"

7.9 Enabling Search Keys for Invalidations
To enable this feature:

1. Configure the HTTP response with the Surrogate-Key response-header field as
follows:

Surrogate-Key: search-key=("key" "key" "key" ...)
See Section 7.6 for a complete description of the Surrogate-Key response-header
field.

By default, Oracle Web Cache supports up to 20 search keys. To increase the limit:

Security Considerations

Invalidating Content 7-33

a. Use a text editor to open the webcache.xml file.

b. Locate the MAXSEARCHKEYSPERDOC attribute in the SEARCHKEYOPTIONS
element:

<GLOBALCACHINGRULES>
 <SEARCHKEYOPTIONS ENABLE="YES" MAXSEARCHKEYSPERDOC="20"/>

 <ERRORPAGES>

c. Modify the value to larger value.

The following example shows a search key limit of 35.

<GLOBALCACHINGRULES>
 <SEARCHKEYOPTIONS ENABLE="YES" MAXSEARCHKEYSPERDOC="35"/>

 <ERRORPAGES>

d. Save webcache.xml.

2. Specify the search key in the invalidation request using these methods:

■ For out-of-band invalidations:

– Use the Search Keys section from the Advanced Content Invalidation
page (Operations > Advanced Content Invalidation) of Oracle Web
Cache Manager. See Section 7.7.2 for instructions on using Oracle Web
Cache Manager.

– Specify the OTHER element in a manual XML invalidation request to use
the ADVANCEDSELECTOR element, and specify the NAME and VALUE
attributes to use SEARCHKEY and the search key value, respectively. See
Section 7.5.1.

■ For ESI inline invalidations, specify the <esi:invalidate> tag with the
OTHER element to use the ADVANCEDSELECTOR element, and specify the NAME
and VALUE attributes to use SEARCHKEY and the search key value,
respectively. See Section 11.4.6.

■ For response header invalidation, specify the S_KEY option directive. See
Section 7.8.

7.10 Security Considerations
This section covers the following topics:

■ Section 7.10.1, "About the invalidator account"

■ Section 7.10.2, "Propagation of Invalidation Messages"

7.10.1 About the invalidator account
To invalidate objects in the cache, send an HTTP POST request from the
invalidator account through an invalidation listening port.

The invalidator account is an administrator authorized to send invalidation
requests. See Section 5.2 for further information about configuring password security.

Security Considerations

7-34 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

7.10.2 Propagation of Invalidation Messages
Propagation of invalidation messages from one Oracle Web Cache server to another
occurs in the following deployments:

■ Cache cluster with multiple Oracle Web Cache servers

■ Cache hierarchy whereby one Oracle Web Cache server acts as an origin server to
another Oracle Web Cache server

7.10.2.1 Invalidation in Cache Clusters
In a cache cluster, administrators can decide whether to propagate invalidation
messages to all cache cluster members or to send invalidation messages individually
to cache cluster members.

When Oracle Web Cache propagates invalidation messages, the cache that received the
invalidation request acts as the invalidation coordinator for that request. The
coordinator propagates the invalidation messages to the other cluster members. The
coordinator waits for responses from all cluster members. When the propagation
completes, the coordinator returns a message to the sender that lists, for each cluster
member, the cluster member name, the status of the invalidation request, and the
number of objects invalidated.

If any cluster member cannot be reached, Oracle Web Cache returns an error message
and does not propagate the invalidation messages.

During a cache cluster upgrade, you upgrade one cache cluster member at a time. The
caches continue to respond to requests. However, because other cluster members have
a different version of the configuration, the caches do not forward invalidation
messages to those cache cluster members operating with a different version. Instead, if
the requested object is not cached by that cache or by cluster members with the same
version of the configuration, Oracle Web Cache forwards the request to the origin
server.

When the cache cluster members are not running the same version of Oracle Web
Cache, you can still invalidate objects, and you can propagate the invalidation to other
cluster members, but the invalidation message must originate from the cache that is
operating with the earlier version of Oracle Web Cache.

See the Oracle Fusion Middleware Upgrade Planning Guide for more information about
upgrading Oracle Web Cache to 11g Release 1 (11.1.1), including information about
upgrading cache cluster members

7.10.2.2 Invalidation in Hierarchies
In a configuration with a hierarchy of Oracle Web Cache servers, a cache hierarchy, it
is likely that content is cached on multiple servers.

Figure 7–2 depicts a distributed cache hierarchy. A central cache is located in the
United States office, and a remote cache is located in the Japan office. While the central
cache stores content from an application Web server, the remote cache stores content
from the central cache. In other words, the central cache acts as an origin server to the
remote cache in Japan.

The central cache uses the invalidator account name and password of the remote
or subscriber Oracle Web Cache server. The invalidation request specifies the objects to
invalidate, as well as the site host name of the objects. The site host name is compared
with the IP address of the cache from which the invalidation request was propagated.
If there is a match, the cache processes the invalidation request. Otherwise, the request
is rejected.

Security Considerations

Invalidating Content 7-35

For automatic propagation of invalidation messages, Oracle Web Cache passes the
encoded invalidator password in the page request between the central and remote
cache during the hierarchy registration process. This HTTP traffic is susceptible to
network sniffing. If the network is unprotected and insecure, configure HTTPS ports
as follows:

■ Disable the default HTTP port and configure an HTTPS port in its place for the
central cache. See Section 5.4.2.

■ Disable the default HTTP port for invalidation and configure an HTTPS port in its
place for the remote cache. See Section 5.5.1.

When an invalidation message is sent to the central cache to refresh content, the
central cache automatically propagates the invalidation message to the remote cache in
Japan to ensure consistency.

Figure 7–2 Invalidating Content in a Distributed Cache Hierarchy

To ensure that the central cache only invalidates its content, the remote cache checks
the site host name specified in the invalidation message with the IP address of the
central cache from which the invalidation message was propagated. If there is a match,
the remote cache processes the invalidation request. Otherwise, the request is rejected.
The site host name for the central and remote caches should be configured to be
identical, making a mismatch unlikely.

See Section 10.2 for instructions on configuring a cache hierarchy.

Central
Oracle Web
Cache

Application
Server

Invalidation
Message
Propagation

Remote
Oracle Web
Cache

Internet

United States Japan

Security Considerations

7-36 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

8

Using Diagnostic Features 8-1

8 Using Diagnostic Features

This chapter describes the diagnostic features available with Oracle Web Cache.

This chapter includes the following topics:

■ Section 8.1, "Introduction to Diagnostic Solutions"

■ Section 8.2, "Introduction to Listing Popular Requests and Cache Contents"

■ Section 8.3, "Introduction to Displaying Diagnostic and Event Log Information in
the HTML Body or Server Response-Header Field"

■ Section 8.4, "Viewing General and Detailed Statistics"

■ Section 8.5, "Viewing Configuration Statistics"

■ Section 8.6, "Listing Popular Requests"

■ Section 8.7, "Listing Cache Contents to a File"

■ Section 8.8, "Configuring Where to Display Diagnostic Information"

8.1 Introduction to Diagnostic Solutions
Oracle Web Cache provides a number diagnostic tools to enable to you evaluate
performance and optimal configuration settings. These tools include:

■ Popular requests reporting. See Section 8.2.

■ Varying levels of statistics monitoring through Fusion Middleware Control. See
Section 8.4 and Section 8.5.

■ Displaying diagnostics information in the Server response-header field or as a
textual string in the HTML response body of an object. See Section 8.3.

8.2 Introduction to Listing Popular Requests and Cache Contents
You can view a list of the most popular requests and a list of the contents of the cache,
as well as requests that were not cache, generating the following types of lists:

■ A list of the URLs of the most popular requests received by the cache since the
cache was last started

Popularity is calculated using two factors: how many times the request was made
and how recently the requests were made. You can specify: only objects stored in
the cache, only objects not stored in the cache, or all requests received by the cache.
See Section 8.6.

■ A list of the requested URLs for objects not stored in the cache.

Introduction to Displaying Diagnostic and Event Log Information in the HTML Body or Server Response-Header Field

8-2 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

You can use this list to verify that the caching rules are caching the correct objects.
See Section 8.6.

■ A list of the cached or non-cached URLs of the objects to an exported file

Oracle Web Cache can write a list of content of the cache to a file. See Section 8.7.

8.3 Introduction to Displaying Diagnostic and Event Log Information in
the HTML Body or Server Response-Header Field

By default, Oracle Web Cache adds diagnostics information to the Server
response-header field. For diagnostics purposes, it can be useful to also display this
information as a textual string in the HTML response body of an object. When
enabled, you simply append a string to the URL of the object into the browser to see
the diagnostic information string embedded in the response body:

Web Cache Debug Info: diagnostic_information

You can also select to display event log information, with a verbosity level of TRACE,
in the HTML response.

You can additionally configure the diagnostic information to be within HTML
comment tags for pages having a Content-Type: text/html response-header
field. When enabled, the diagnostic information appears within HTML comment tags:

<!-- Web Cache Debug Info: diagnostic_information-->

For objects sent to browsers, Oracle Web Cache adds diagnostic information to the
Server response-header field of the HTTP response message:

Server: Oracle Fusion Middleware 11g (multiple_version_object_version_number)
Server_header_from_origin_server Oracle-Web-Cache-11g/11.1.1.0.0 (diagnostic_
information)

The Server response-header field specifies name/value pairs for Oracle HTTP Server
and Oracle Web Cache. The information for Oracle Web Cache includes version and
diagnostic information.

where diagnostic_information has the following format:

{ESI_processing_type}{cache_request_type}[;max-age=expiration_time[+removal_
time];age=object_age;]{ecid=request_ID,sequence_number}

Table 8–1 describes the diagnostic fields.

Introduction to Displaying Diagnostic and Event Log Information in the HTML Body or Server Response-Header Field

Using Diagnostic Features 8-3

Using the Server response header information, you can determine whether a request
was served from the cache or the origin server. In the following example, the Server
field specifies that the object was a cache hit:

Server: Oracle Fusion Middleware 11g (11.1.1.0.0) Oracle-HTTP-Server
Oracle-Web-Cache-11g/11.1.1.0.0 (TH;max-age=60+30;age=55;ecid=23248098121,0)

(TH;max-age=60+30;age=55;ecid=23248098121,0) is the diagnostic
information.

■ T means this page is composed by ESI

■ H means this request resulted in cache hit

■ max-age=60+30 means that the object is to expire in 60 seconds from population
and to be removed from the cache 30 seconds from the expiration. This provides a
total of 90 seconds from population.

■ age=55 in age means that 55 seconds have passed since population of the cache,
meaning there are 5 seconds to expiration and 35 seconds to removal

■ ecid=23248098121,0 specifies the request ID and sequence number from the
Oracle-ECID request header.

To display the Server response header in the access logs, you select the sc(Server)
field. You must configure the sc(Server) field as a user-defined access log format.

For more information, see:

■ Section 9.4 for further information about creating a user-defined access log format
that includes the sc(Server) field

■ Section 8.8 for configuring the display of diagnostics information

Table 8–1 Control Directives for Server

Control Directive Description

ESI_processing_type ESI_processing_type is:

■ T specifies that the object is an ESI template

■ F specifies that the object is an ESI fragment

■ empty specifies that the response does not require ESI processing

cache_request_type cache_request_type is:

■ H specifies a cache hit

■ S specifies a cache hit of a stale object

■ U specifies a cache update of a stale object

■ G specifies a cache update of an object that was marked for removal but still
physically resides in the cache

■ M specifies a cache miss

■ N specifies a non-cacheable cache miss

max-age="expiration_
time[+removal_time]

Specifies the time, in seconds, to expire the object, and optionally, the time, in
seconds, to remove the object from the cache after the expiration time. max_age does
not appear if the cache_request_type is N.

age=object_age Shows how long, in seconds, the object has been in the cache. age does not appear if
the object is non-cacheable

ecid=request_ID,
sequence_number

Specifies the request ID and sequence number specified in Oracle-ECID request
header:

Viewing General and Detailed Statistics

8-4 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

8.4 Viewing General and Detailed Statistics
To view general statistics, navigate to the Web Cache Home page. See Section 2.6.3 for
further information about the statistics provided in the Web Cache Home page.

You can also view detailed statistics about a specific cache instance:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Monitoring and then Performance Summary.

The Performance Summary page displays with performance metrics.

3. To see additional metrics, click Show Metric Palette and expand the metric
categories.

The following figure show the Performance Summary page with the Metric Palette
displayed:

4. Select additional metrics and add them to the Performance Summary.

To obtain a definition of a performance metric, and information about the actions
you should take when the metric is out of range, right-click the name of the metric
and select Help from the context menu.

If after monitoring metrics, you need additional performance metrics, point your
browser to the following URL:

http://web_cache_hostname:stat_port

This URL takes you to the Oracle Web Cache Internal Diagnosability Monitor page,
which provides additional information about cache hits and misses. See Section 2.11.1
for further information about determining the statistics monitoring port.

8.5 Viewing Configuration Statistics
Table 8–2 explains where to find information for evaluating the effectiveness of
configuring rules.

Listing Popular Requests

Using Diagnostic Features 8-5

8.6 Listing Popular Requests
To understand how evaluating the most popular requests can help determine if the
caching rules are caching the correct objects, see Section 8.2.

To view the list of URLs of the most popular requests:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Monitoring and then Popular Requests.

The Popular Request page displays.

3. From the Show Popular Requests list, select an option:

– All: Select to display all requests received by the cache.

– Cache Popular Requests: Select to display only those requests stored in the
cache.

– Non Cache Popular Requests: Select to display only those requests not stored
in the cache.

4. In Number of Popular Requests, enter the maximum number of URLs you want
displayed.

5. Click Go.

The table updates with the list of URLs of requests since the cache was last started.
The table contains the following columns for each request:

■ Site: This column displays the requested site name.

■ HTTP Method: This column displays if the request was using a GET, GET
with query string, or POST HTTP request method.

■ URL: The column displays the URL of the object. The URLs may contain
additional descriptive information, such as cookie or session information.

■ POST Body: This column displays the POST body contents.

■ Cached?: This column display whether the object is cached. The possible
values are:

– Yes: The object is cached.

– Yes, but expired: The object is cached, but it is expired. (To lessen the
performance impact of invalidation and expiration, Oracle Web Cache
serves some stale objects until the origin servers have the capacity to
refresh them.)

– Yes, but needs validation: The object is cached, but it requires validation
by the origin server to be served out of the cache. Validation is done
through a simple conditional request from Oracle Web Cache to the origin
server using the cached object's unique validator.

– No: The object is not cached.

Table 8–2 Configuration Statistics

Type of Statistic See Also

Request filters and rules Section 4.13

Caching rules Section 6.9

Listing Popular Requests

8-6 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

■ Caching Reason: The reason that the object is cached or not cached. Possible
values are:

– ACL document: Cached or not cached because the object is an Access
Control List (ACL) document for authorizing the access of a user to
ACL-protected pages.

– By caching <rule>: Cached or not cached because of a caching rule.

– By ETag response header: Cached or not cached because of the ETag
response header.

– By HTTP headers: Cached or not cached because of information in the
HTTP header.

– By HTTP response code: Cached or not cached because of the HTTP
response code. Normally any response code that is not 200 is not cached,
but some non-200 responses can get cached because of a caching rule
specifically allowing for it.

– By reference TTL in ESI tag: Cached or not cached because of the nonzero
value of the reference TTL (time-to-live parameters) specified in the ESI
tag.

– By Surrogate-Control response header: Cached or not cached because of
information in the Surrogate-Control response header.

– By X-Oracle-Cache response header: Cached or not cached because of
information in the X-Oracle-Cache response header.

– Cookie mismatch: Cached or not cached because the response contains a
cookie that is not present in the request or that has a different value than
the same cookie in the request.

– No directive or rule: Cached or not cached because no directive or rule
has stated that the object should be cached.

– Not a GET or POST method: Not cached because the object was not a
GET or POST method.

– Object is too large: Not cached because the object is larger than the size
specified as the Maximum Size of Single Cached Object specified in the
Resource Limits and Timeout page.

– POST body too large: Cached or not cached because the POST body was
too large to be cached.

– URL contains query string: Cached or not cached because the request
contains a query string but the request did not match any caching rules.

■ Size: The column displays the size of the requested object. The size is
represented in bytes, kilobytes (KB), or megabytes (MB).

■ Compressed?: This column displays the reason the object was compressed or
not compressed:

– Yes, by caching rule: Compressed because the object matched a caching
rule that enabled or disabled compression.

– Yes, by MIME type: Compressed because the object's MIME content type.

– No, by default setting: Compression is enabled for the site and the
browser accepts GZIP compressed response, but there is no matching
caching rule and the response does not contain a compress control
header in the Surrogate-Control response header or a MIME type.

Listing Cache Contents to a File

Using Diagnostic Features 8-7

– Yes, by Surrogate-Control header: Compressed or not compressed
because of the setting of the compress control directive in the
Surrogate-Control response header.

– Yes, by caching rule: Compressed or not compressed because the object
matched a caching rule that enabled or disabled compression.

– No, by MIME type: Not compressed because the object's MIME content
type.

– No, by default setting: Compression is enabled for the site and the
browser accepts GZIP compressed responses, but there is no matching
caching rule and the response does not contain a compress control
header in the Surrogate-Control response header or a MIME type. See
Section 1.2.5 to better understand when Oracle Web Cache automatically
disables compression.

– No, by Surrogate-Control header: Not compressed because of the setting
of the compress control directive in the Surrogate-Control response
header.

– No, limited browser support: Not compressed because the client's
browser has bugs and cannot handle receiving compressed objects.

– No, needs Web Cache processing: Not compressed because the object
requires parsing and tag process. For example, objects containing ESI tag
requiring processing before there can be any cache hits.

– No, browser capability: Not compressed because the client’s browser did
not indicate to Oracle Web Cache that it could accept GZIP compressed
responses. Therefore, Oracle Web Cache does not compress any responses
sent to this browser.

– No, disabled for site: Not compressed because compression was disabled
for the entire site. Section 2.11.3 to enable compression for a site.

– No, object too small: Not compressed because the object was less than 23
bytes for compression to be beneficial.

– No, routing only mode: Not compressed because the ROUTINGONLY
attribute is set to YES in the webcache.xml file. See Section 3.8 for
further information about this attribute.

8.7 Listing Cache Contents to a File
To generate a list of the URLs of all of the objects currently stored in the cache to a file
named webache_contents.txt:

1. Navigate to the Web Cache Home page in Fusion Middleware Control. See
Section 2.6.2.

2. From the Web Cache menu, select Monitoring and then Popular Requests.

The Popular Request page displays.

3. From the Filter Popular Request By list, select an option:

– All: Select to display all requests received by the cache.

– Cache Popular Requests: Select to display only those requests stored in the
cache.

Configuring Where to Display Diagnostic Information

8-8 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

– Non Cache Popular Requests: Select to display only those requests not stored
in the cache.

4. In Number of Popular Requests, enter the maximum number of URLs you want
displayed.

5. Click Export File.

6. In the message dialog, click OK to export the contents.

Oracle Web Cache writes the list of URLs to webcache_contents.txt in this
directories:

(UNIX) ORACLE_INSTANCE/diagnostics/logs/WebCache/<webcache_name>
(Windows) ORACLE_INSTANCE\diagnostics\logs\WebCache\<webcache_name>

Each time you generate the list, Oracle Web Cache appends the data to the existing file.
It lists the date that the data was appended to the file, followed by the URLs of the
objects currently cached. The following example shows an excerpt of the webcache_
contents.txt file:

Cache Contents at Wed Oct 20 11:47:03 2008
www.company.com:80/images/lnav/lnav_products.gif
www.company.com:80/images/rnav/rnav_red_line_1.gif
www.company.com:80/images/bullets_and_symbols/blk_line_bullet_10.gif
.
.
.
Cache Contents at Wed Oct 25 13:01:24 2008
www.company.com:80/images/white_spacer_xp.gif
www.company.com:80/images/white_spacer.gif
www.company.com:80/images/miniappsnet.gif
.
.
.

8.8 Configuring Where to Display Diagnostic Information
To understand how Oracle Web Cache can add diagnostic information to the Server
response-header field or as a textual string in the HTML response body of an object,
see Section 8.3.

To configure diagnostic information in the Server response-header field or the HTML
response body:

1. From Oracle Web Cache Manager, in the navigator frame, select Logging and
Diagnostics > Diagnostics. See Section 2.7.2.

2. From the Cache-Specific Page Body Diagnostics table, select a cache, and then
click Enable to display diagnostic information in the HTML response body or
Disable to disable the display of diagnostic information in the HTML response
body.

3. To set diagnostic settings for the HTML response body:

a. From the Global Page Body Diagnostics Configuration table, click Edit.

The Edit Global Page Body Diagnostics Configuration dialog box displays.

b. In the URL Flag field, enter the string to append to the URL of the object.

By default, the string is set to +wcdebug.

Configuring Where to Display Diagnostic Information

Using Diagnostic Features 8-9

c. In the Display Event Log Entries for Request field, select Yes to display
diagnostic information and TRACE event log entries in the HTML response
body, or select No to only display diagnostic information.

d. Click Submit.

4. To enable or disable diagnostic settings in the Server response header, from the
Global Server Header Diagnostics table, click Enable or Disable.

5. Click Apply Changes.

Configuring Where to Display Diagnostic Information

8-10 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

9

Logging 9-1

9 Logging

The logging feature of Oracle Web Cache enables you to troubleshoot difficulties you
might have in execution and use of Oracle Web Cache and associated processes.

This chapter includes the following topics:

■ Section 9.1, "Introduction to Event Logs"

■ Section 9.2, "Introduction to Access Logs"

■ Section 9.3, "Configuring Event Logs"

■ Section 9.4, "Configuring Access Logs"

■ Section 9.5, "Creating a Customized Access Log Format"

■ Section 9.6, "Creating a Customized Access Log Rollover Policy"

■ Section 9.7, "Viewing Event Logs and Access Logs"

■ Section 9.8, "Rolling Over Event and Access Logs"

■ Section 9.9, "Using Audit Logs"

9.1 Introduction to Event Logs
Oracle Web Cache records event and error information in event logs. An event log
entry can help you determine what objects have been inserted in the cache and alert
you to any cache-related issues. By default, Oracle Web Cache collects all event log
messages associated with each request in memory. If the most severe message in the
request is at or above the selected verbosity level, Oracle Web Cache writes all the
messages related to the request to the event log at once. Oracle Web Cache groups the
messages for the request together in the log file for easier diagnosis. You can se

By default, the event log has a file name of event_log for the Oracle Web Cache and
Oracle Diagnostic Logging (ODL) text formats and log.xml for the ODL XML format.
Oracle Web Cache stores logs files in the following directories:

(UNIX) ORACLE_INSTANCE/diagnostics/logs/WebCache/<webcache_name>
(Windows) ORACLE_INSTANCE\diagnostics\logs\WebCache\<webcache_name>

This section includes the following topics:

■ Section 9.1.1, "Event Logging Formats"

■ Section 9.1.2, "Event Log Examples"

9.1.1 Event Logging Formats
When you configure settings for event logs, select the logging format:

Introduction to Event Logs

9-2 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

■ Section 9.1.1.1, "Oracle Diagnostics Logging Text and XML Formats"

■ Section 9.1.1.2, "Oracle Web Cache Classic Format"

9.1.1.1 Oracle Diagnostics Logging Text and XML Formats
The Oracle Diagnostic Logging (ODL) format provides a common format for all
diagnostic messages and log files, and a mechanism for correlating the diagnostic
messages from various components across Oracle Fusion Middleware.

You can select ODL Text to create a text file or ODL XML to create an XML file.

The format of the ODL Text format follows:

[TSTZ_ORIGINATING] [MSG_TYPE:MSG_ID] [MODULE_ID;MSG_LEVEL] [MODULE_ID] [ECID] MSG_
TEXT

Table 9–4 describes the fields for the ODL Text format.

The following shows an event log excerpt with the ODL Text format:

[2008-11-04T05:55:35-05:00] [webcache] [NOTIFICATION:1] [WXE-08513] [logging]
[ecid:] Cache server process ID 11679 is starting up.
[2008-11-04T05:55:35-05:00] [webcache] [NOTIFICATION:1] [WXE-09612] [main] [ecid:
] Oracle Web Cache 11g (11.1.1)
[2008-11-04T05:55:35-05:00] [webcache] [NOTIFICATION:1] [WXE-13002] [config]
[ecid:] Maximum allowed incoming connections are 700
[2008-11-04T05:55:35-05:00] [webcache] [NOTIFICATION:1] [WXE-09446] [stats] [ecid:
] Statistics initialization commencing.
[2008-11-04T05:55:35-05:00] [webcache] [NOTIFICATION:1] [WXE-09441] [stats] [ecid:
] DMS enabled
[2008-11-04T05:55:35-05:00] [webcache] [NOTIFICATION:1] [WXE-09447] [stats] [ecid:
] Statistics initialization complete.

Table 9–1 ODL Text Message Fields

Fields Description

TSTZ_ORIGINATING The date and time when the message was generated. Time is
either displayed in local or Greenwich Mean Time.

MSG_TYPE The type of message. Possible values are NOTIFICATION,
WARNING, TRACE, and DEBUG.

MSG_LEVEL The message level, represented by an integer value that
qualifies the message type. Possible values are from 1
(highest severity) through 32 (lowest severity).

MSG_ID The ID that uniquely identifies the message within the
component. The ID consists of a prefix that represents the
component, followed by a dash, then a 5-digit number. For
example: WXE-08513.

MODULE_ID The ID of the module that originated the message. If the
component is a single module, the component ID is listed
for this attribute.

ECID The Execution Context ID (ECID), which is a global unique
identifier of the execution of a particular request in which
the originating component participates. You can use the
ECID to correlate error messages from different
components.

See Also: Section 9.1.1.4 for more information about the
Oracle-ECID request header

MSG_TEXT The text of the error message.

Introduction to Event Logs

Logging 9-3

[2008-11-04T05:55:36-05:00] [webcache] [NOTIFICATION:1] [WXE-12209] [cluster]
[ecid:] A 1 node cluster successfully initialized
[2008-11-04T05:55:36-05:00] [webcache] [NOTIFICATION:1] [WXE-09614] [main] [ecid:
] The following Oracle Web Cache internal files are pre-populated to the cache:
[[/host:port/_oracle_http_server_webcache_static_.html]]

Table 9–2 describes the fields for the ODL XML format.

The ODL XML Format provides additional fields, such as the following shows an
event log excerpt for the ODL XML format:

<MESSAGE>
 <HEADER>
 <TSTZ_ORIGINATING>2008-11-04T06:07:14.0116-05:00</TSTZ_ORIGINATING>
 <COMPONENT_ID>WXE</COMPONENT_ID>
 <MSG_ID>8513</MSG_ID>
 <MSG_TYPE TYPE="NOTIFICATION"></MSG_TYPE>
 <MSG_LEVEL>1</MSG_LEVEL>
 <HOST_ID>host</HOST_ID>
 <HOST_NWADDR>10.10.150.35</HOST_NWADDR>
 <MODULE_ID>logging</MODULE_ID>
 </HEADER>
 <CORRELATION_DATA>
 <EXEC_CONTEXT_ID>
 <UNIQUE_ID>-</UNIQUE_ID>
 <SEQ>0</SEQ>

Table 9–2 ODL XML Message Fields

Fields Description

TSTZ_ORIGINATING The date and time when the message was generated. Time is
either displayed in local or Greenwich Mean Time.

COMPONENT_ID The ID of the component that originated the message.

MSG_ID The ID that uniquely identifies the message within the
component. The ID consists of a prefix that represents the
component, followed by a dash, then a 5-digit number. For
example: WXE-08513.

MSG_TYPE The type of message. Possible values are NOTIFICATION,
WARNING, TRACE, and DEBUG.

MSG_LEVEL The message level, represented by an integer value that
qualifies the message type. Possible values are from 1
(highest severity) through 32 (lowest severity).

HOST_ID The name of the host where the message originated.

HOST_NWADDR The network address of the host where the message
originated.

MODULE_ID The ID of the module that originated the message. If the
component is a single module, the component ID is listed
for this attribute.

ECID The Execution Context ID (ECID), which is a global unique
identifier of the execution of a particular request in which
the originating component participates. You can use the
ECID to correlate error messages from different
components.

See Also: Section 9.1.1.4 for more information about the
Oracle-ECID request header

MSG_TEXT The text of the error message.

Introduction to Event Logs

9-4 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

 </EXEC_CONTEXT_ID>
 </CORRELATION_DATA>
 <PAYLOAD>
 <MSG_TEXT>Cache server process ID 13176 is starting up.
</MSG_TEXT>
 </PAYLOAD>
</MESSAGE>
<MESSAGE>
 <HEADER>
 <TSTZ_ORIGINATING>2008-11-04T06:07:14.0117-05:00</TSTZ_ORIGINATING>
 <COMPONENT_ID>WXE</COMPONENT_ID>
 <MSG_ID>9612</MSG_ID>
 <MSG_TYPE TYPE="NOTIFICATION"></MSG_TYPE>
 <MSG_LEVEL>1</MSG_LEVEL>
 <HOST_ID>host</HOST_ID>
 <HOST_NWADDR>10.10.150.35</HOST_NWADDR>
 <MODULE_ID>main</MODULE_ID>
 </HEADER>
 <CORRELATION_DATA>
 <EXEC_CONTEXT_ID>
 <UNIQUE_ID>-</UNIQUE_ID>
 <SEQ>0</SEQ>
 </EXEC_CONTEXT_ID>
 </CORRELATION_DATA>
 <PAYLOAD>
 <MSG_TEXT>Oracle Web Cache 11g (11.1.1)
</MSG_TEXT>
 </PAYLOAD>
</MESSAGE>
<MESSAGE>
 <HEADER>
 <TSTZ_ORIGINATING>2008-11-04T06:07:14.0118-05:00</TSTZ_ORIGINATING>
 <COMPONENT_ID>WXE</COMPONENT_ID>
 <MSG_ID>13002</MSG_ID>
 <MSG_TYPE TYPE="NOTIFICATION"></MSG_TYPE>
 <MSG_LEVEL>1</MSG_LEVEL>
 <HOST_ID>host</HOST_ID>
 <HOST_NWADDR>10.10.150.35</HOST_NWADDR>
 <MODULE_ID>config</MODULE_ID>
 </HEADER>
 <CORRELATION_DATA>
 <EXEC_CONTEXT_ID>
 <UNIQUE_ID>-</UNIQUE_ID>
 <SEQ>0</SEQ>
 </EXEC_CONTEXT_ID>
 </CORRELATION_DATA>
 <PAYLOAD>
 <MSG_TEXT>Maximum allowed incoming connections are 700
</MSG_TEXT>
 </PAYLOAD>
</MESSAGE>
<MESSAGE>
 <HEADER>
 <TSTZ_ORIGINATING>2008-11-04T06:07:14.0191-05:00</TSTZ_ORIGINATING>
 <COMPONENT_ID>WXE</COMPONENT_ID>
 <MSG_ID>9446</MSG_ID>
 <MSG_TYPE TYPE="NOTIFICATION"></MSG_TYPE>
 <MSG_LEVEL>1</MSG_LEVEL>
 <HOST_ID>host</HOST_ID>
 <HOST_NWADDR>10.10.150.35</HOST_NWADDR>

Introduction to Event Logs

Logging 9-5

 <MODULE_ID>stats</MODULE_ID>
 </HEADER>
 <CORRELATION_DATA>
 <EXEC_CONTEXT_ID>
 <UNIQUE_ID>-</UNIQUE_ID>
 <SEQ>0</SEQ>
 </EXEC_CONTEXT_ID>
 </CORRELATION_DATA>
 <PAYLOAD>
 <MSG_TEXT>Statistics initialization commencing.
</MSG_TEXT>
 </PAYLOAD>
</MESSAGE>
<MESSAGE>
 <HEADER>
 <TSTZ_ORIGINATING>2008-11-04T06:07:14.0265-05:00</TSTZ_ORIGINATING>
 <COMPONENT_ID>WXE</COMPONENT_ID>
 <MSG_ID>9438</MSG_ID>
 <MSG_TYPE TYPE="NOTIFICATION"></MSG_TYPE>
 <MSG_LEVEL>1</MSG_LEVEL>
 <HOST_ID>host</HOST_ID>
 <HOST_NWADDR>10.10.150.35</HOST_NWADDR>
 <MODULE_ID>stats</MODULE_ID>
 </HEADER>
 <CORRELATION_DATA>
 <EXEC_CONTEXT_ID>
 <UNIQUE_ID>-</UNIQUE_ID>
 <SEQ>0</SEQ>
 </EXEC_CONTEXT_ID>
 </CORRELATION_DATA>
 <PAYLOAD>
 <MSG_TEXT>The statistics persistent repository is being reset by new
configuration
</MSG_TEXT>
 </PAYLOAD>
</MESSAGE>
<MESSAGE>
 <HEADER>
 <TSTZ_ORIGINATING>2008-11-04T06:07:14.1556-05:00</TSTZ_ORIGINATING>
 <COMPONENT_ID>WXE</COMPONENT_ID>
 <MSG_ID>9441</MSG_ID>
 <MSG_TYPE TYPE="NOTIFICATION"></MSG_TYPE>
 <MSG_LEVEL>1</MSG_LEVEL>
 <HOST_ID>host</HOST_ID>
 <HOST_NWADDR>10.10.150.35</HOST_NWADDR>
 <MODULE_ID>stats</MODULE_ID>
 </HEADER>
 <CORRELATION_DATA>
 <EXEC_CONTEXT_ID>
 <UNIQUE_ID>-</UNIQUE_ID>
 <SEQ>0</SEQ>
 </EXEC_CONTEXT_ID>
 </CORRELATION_DATA>
 <PAYLOAD>
 <MSG_TEXT>DMS enabled
</MSG_TEXT>
 </PAYLOAD>
</MESSAGE>
<MESSAGE>
 <HEADER>

Introduction to Event Logs

9-6 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

 <TSTZ_ORIGINATING>2008-11-04T06:07:14.1559-05:00</TSTZ_ORIGINATING>
 <COMPONENT_ID>WXE</COMPONENT_ID>
 <MSG_ID>9447</MSG_ID>
 <MSG_TYPE TYPE="NOTIFICATION"></MSG_TYPE>
 <MSG_LEVEL>1</MSG_LEVEL>
 <HOST_ID>host</HOST_ID>
 <HOST_NWADDR>10.10.150.35</HOST_NWADDR>
 <MODULE_ID>stats</MODULE_ID>
 </HEADER>
 <CORRELATION_DATA>
 <EXEC_CONTEXT_ID>
 <UNIQUE_ID>-</UNIQUE_ID>
 <SEQ>0</SEQ>
 </EXEC_CONTEXT_ID>
 </CORRELATION_DATA>
 <PAYLOAD>
 <MSG_TEXT>Statistics initialization complete.
</MSG_TEXT>
 </PAYLOAD>
</MESSAGE>
<MESSAGE>
 <HEADER>
 <TSTZ_ORIGINATING>2008-11-04T06:07:14.5912-05:00</TSTZ_ORIGINATING>
 <COMPONENT_ID>WXE</COMPONENT_ID>
 <MSG_ID>12209</MSG_ID>
 <MSG_TYPE TYPE="NOTIFICATION"></MSG_TYPE>
 <MSG_LEVEL>1</MSG_LEVEL>
 <HOST_ID>host</HOST_ID>
 <HOST_NWADDR>10.10.150.35</HOST_NWADDR>
 <MODULE_ID>cluster</MODULE_ID>
 </HEADER>
 <CORRELATION_DATA>
 <EXEC_CONTEXT_ID>
 <UNIQUE_ID>-</UNIQUE_ID>
 <SEQ>0</SEQ>
 </EXEC_CONTEXT_ID>
 </CORRELATION_DATA>
 <PAYLOAD>
 <MSG_TEXT>A 1 node cluster successfully initialized
</MSG_TEXT>
 </PAYLOAD>
</MESSAGE>
<MESSAGE>
 <HEADER>
 <TSTZ_ORIGINATING>2008-11-04T06:07:20.8036-05:00</TSTZ_ORIGINATING>
 <COMPONENT_ID>WXE</COMPONENT_ID>
 <MSG_ID>9614</MSG_ID>
 <MSG_TYPE TYPE="NOTIFICATION"></MSG_TYPE>
 <MSG_LEVEL>1</MSG_LEVEL>
 <HOST_ID>host</HOST_ID>
 <HOST_NWADDR>10.10.150.35</HOST_NWADDR>
 <MODULE_ID>main</MODULE_ID>
 </HEADER>
 <CORRELATION_DATA>
 <EXEC_CONTEXT_ID>
 <UNIQUE_ID>-</UNIQUE_ID>
 <SEQ>0</SEQ>
 </EXEC_CONTEXT_ID>
 </CORRELATION_DATA>
 <PAYLOAD>

Introduction to Event Logs

Logging 9-7

 <MSG_TEXT>The following Oracle Web Cache internal files are pre-populated to
the cache: [[/host:port/_oracle_http_server_webcache_static_.html]]
</MSG_TEXT>
 </PAYLOAD>
</MESSAGE>

For more information about the ODL format, see:

■ Oracle Fusion Middleware Administrator's Guide for more information about ODL
messages and ODL log files

■ Oracle Fusion Middleware Administrator's Guide for information about configuring
the amount of information written to log files.

9.1.1.2 Oracle Web Cache Classic Format
The Oracle Web Cache log format is intended for customers who prefer the traditional
log format provided by Oracle Web Cache in previous releases.

The format of the Oracle Web Cache format follows:

[TIMESTAMP] [MSG_TYPE MSG_ID] [ECID] MSG_TEXT

Table 9–3 describes the fields for Oracle Web Cache format.

For example:

[04/Nov/2008:06:11:53 -0500] [notification 08513] Cache server process ID 13466is
starting up.
[04/Nov/2008:06:11:53 -0500] [notification 09612] [ecid: -] Oracle Web Cache 11g
(11.1.1)
[04/Nov/2008:06:11:53 -0500] [notification 13002] [ecid: -] Maximum allowed
incoming connections are 700
[04/Nov/2008:06:11:53 -0500] [notification 09446] [ecid: -] Statistics
initialization commencing.
[04/Nov/2008:06:11:53 -0500] [notification 09438] [ecid: -] The statistics
persistent repository is being reset by new configuration
[04/Nov/2008:06:11:53 -0500] [notification 09441] [ecid: -] DMS enabled
[04/Nov/2008:06:11:53 -0500] [notification 09447] [ecid: -] Statistics
initialization complete.

Table 9–3 Oracle Web Cache Message Fields

Fields Description

TIMESTAMP The date and time when the message was generated. Time is
either displayed in local or Greenwich Mean Time.

MSG_TYPE The type of message. Possible values are NOTIFICATION,
WARNING, TRACE, and DEBUG.

MSG_ID The ID that uniquely identifies the message within the
component. The ID consists of a 5-digit number. For
example: 08513.

ECID The Execution Context ID (ECID), which is a global unique
identifier of the execution of a particular request in which
the originating component participates. You can use the
ECID to correlate error messages from different
components.

See Also: Section 9.1.1.4 for more information about the
Oracle-ECID request header

MSG_TEXT The text of the error message.

Introduction to Event Logs

9-8 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

[04/Nov/2008:06:11:54 -0500] [notification 12209] [ecid: -] A 1 node cluster
successfully initialized
[04/Nov/2008:06:11:54 -0500] [notification 09614] [ecid: -] The following Oracle
Web Cache internal files are pre-populated to the cache: [[/host:port/_oracle_
http_server_webcache_static_.html]]

9.1.1.3 Request Details in Message 9720
Oracle Web Cache displays the request detail format in message 09720 when you
enable option Include Request Details in the event log messages. This message is
logged the first time an event is logged for a request with the following additional
request details, including the client IP address, site name of the request and URL of the
request.

Table 9–4 describes the fields for the request detail format.

For example:

[2008-11-20T23:27:32Z] [webcache] [TRACE:1] [WXE-09720] [io] [ecid: 15431471130,0]
[req-info:] [client: 140.87.8.166] [host: -] [url: /images/image1k.bmp]
[2008-11-20T23:27:31Z] [webcache] [TRACE:1] [WXE-11331] [frontend] [ecid:
15431471130,0] Request matches configured site: www.company.com:80
[2008-11-20T23:27:31Z] [webcache] [TRACE:1] [WXE-11414] [population] [ecid:
15431471130,0] Basic cache key is composed with sitename www.company.com:80, URI
/images/image1k.bmp, method GET, post body -.
[2008-11-20T23:27:31Z] [webcache] [TRACE:1] [WXE-11304] [frontend] [ecid:
15431471130,0] Cache miss request.

In addition to the IP address, site name, and URL of the request, the ID and sequence
number of the Oracle-ECID request header is logged. The Oracle-ECID request
header is used to track requests.

9.1.1.4 About the Oracle-ECID Request-Header Field
The Oracle-ECID request header is used to track requests as they move through the
Oracle Fusion Middleware architecture. This information is especially useful for
diagnostic purposes. Because Oracle Web Cache is the initial receiver of client requests,
it sets the request header before forwarding a cache miss to an origin server. The
Oracle-ECID request header takes the following format:

Oracle-ECID: request_id, sequence_number

In the format, request_id is a 64-bit unique integer for the request, and sequence_
number is the hop number of the request as it passes through Oracle Fusion
Middleware. Oracle Web Cache typically assigns an initial sequence number of 0 to a
request. As a request passes from Oracle Web Cache to other Oracle Fusion
Middleware components, the request ID remains constant, but the sequence number
increments with each hop.

Table 9–4 Request Details

Fields Description

[detail] Request detail event

[client: IP_address] IP address of the client that made the request

[host: site] Site name of the request

[url: URL] URL of the request

Introduction to Event Logs

Logging 9-9

You can configure Oracle Web Cache to log the request ID and sequence number from
the Oracle-ECID request header in the event and access logs. To display the
Oracle-ECID request header in the event logs, you enable the Include Request
Details option, and select the x-ecid field for the access logs. The x-ecid field is
provided by default with the Enhanced CLF (ECLF), Enhanced Combined Log Format,
and End-User Performance Monitoring Format. Additionally, you can configure
Oracle HTTP Server to log the Oracle-ECID request header information, enabling
you to correlate events at different Oracle Fusion Middleware stops for the same
request.

Oracle Web Cache also includes Oracle-ECID request header information whenever
you configure to display diagnostic information in the Server response-header field
or the HTML response body.

See Section 8.8 or further information about configuring diagnostic output in the
Server response-header field or the HTTP response message that includes
Oracle-ECID information

9.1.2 Event Log Examples
This section contains the following event log examples:

■ Section 9.1.2.1, "Example: Event Log with Unsuccessful Startup Entries"

■ Section 9.1.2.2, "Example: Event Log with Shutdown Entries"

■ Section 9.1.2.3, "Example: Event Log with Cache Miss and Cache Hit Entries"

■ Section 9.1.2.4, "Example: Event Log with an Invalidation Entry"

■ Section 9.1.2.5, "Example: Analyzing ESI Events"

9.1.2.1 Example: Event Log with Unsuccessful Startup Entries
The following shows an event log excerpt with unsuccessful startup events. Oracle
Web Cache cannot listen on port 7777, because it is in use. These errors can occur if
Oracle Web Cache is running and listening on that port or another application is using
that port.

[2008-11-04T16:37:24-05:00] [webcache] [NOTIFICATION:1] [WXE-08513] [logging]
[ecid:] Cache server process ID 2427 is starting up.
[2008-11-04T16:37:24-05:00] [webcache] [NOTIFICATION:1] [WXE-09612] [main]
[ecid:] Oracle Web Cache 11g (11.1.1)
[2008-11-04T16:37:24-05:00] [webcache] [NOTIFICATION:1] [WXE-13002] [config]
[ecid:] Maximum allowed incoming connections are 700
[2008-11-04T16:37:24-05:00] [webcache] [NOTIFICATION:1] [WXE-09446] [stats]
[ecid:] Statistics initialization commencing.
[2008-11-04T16:37:24-05:00] [webcache] [NOTIFICATION:1] [WXE-09438] [stats]
[ecid:] The statistics persistent repository is being reset by new configuration
[2008-11-04T16:37:24-05:00] [webcache] [NOTIFICATION:1] [WXE-09441] [stats]
[ecid:] DMS enabled
[2008-11-04T16:37:24-05:00] [webcache] [NOTIFICATION:1] [WXE-09447] [stats]
[ecid:] Statistics initialization complete.
[2008-11-04T16:37:25-05:00] [webcache] [TRACE:1] [WXE-11366] [frontend] [ecid:] A
client connection to listening port 7777 is dropped.
[2008-11-04T16:37:25-05:00] [webcache] [TRACE:1] [WXE-11380] [frontend] [ecid:]
Network failure during client listen client listen (details: internal=failure
system=2)
[2008-11-04T16:37:25-05:00] [webcache] [ERROR:1] [WXE-09707] [main] [ecid:]
Failed to start the server.
[2008-11-04T16:37:25-05:00] [webcache] [ERROR:1] [WXE-09609] [main] [ecid:] The
server process could not initialize.

Introduction to Event Logs

9-10 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

[2008-11-04T16:37:25-05:00] [webcache] [NOTIFICATION:1] [WXE-09610] [main]
[ecid:] The server is exiting.
[2008-11-04T16:37:25-05:00] [webcache] [NOTIFICATION:1] [WXE-08514] [logging]
[ecid:] Cache server process ID 2427 is shutting down.

9.1.2.2 Example: Event Log with Shutdown Entries
The following shows an event log excerpt with typical shutdown entries:

[2008-11-04T16:19:58-05:00] [webcache] [NOTIFICATION:1] [WXE-09703] [main]
[ecid:] Stop Issued. The program will shut down after all accepted requests are
served, or a timeout occurs.
[2008-11-04T16:21:29-05:00] [webcache] [NOTIFICATION:1] [WXE-09610] [main]
[ecid:] The server is exiting.

9.1.2.3 Example: Event Log with Cache Miss and Cache Hit Entries
The following shows an event log excerpt containing events for a cache-miss request:

[2008-11-04T15:37:02-05:00] [webcache] [TRACE:1] [WXE-11331] [frontend] [ecid:
5415484202,0] Request matches configured site: www.company.com:80
[2008-11-04T15:37:02-05:00] [webcache] [TRACE:1] [WXE-11414] [population] [ecid:
5415484202,0] Basic cache key is composed with sitename www.company.com:80, URI
/invalidate1/tcal_fct_invalidate_basic_2.html, method GET, post body -.
[2008-11-04T15:37:02-05:00] [webcache] [TRACE:1] [WXE-11304] [frontend] [ecid:
5415484202,0] Cache miss request.
[2008-11-04T15:37:02-05:00] [webcache] [TRACE:1] [WXE-11224] [os] [ecid:
5415484202,0] Site localhost:8888 matches site-to-server mapping
www.company.com:80.
[2008-11-04T15:37:02-05:00] [webcache] [TRACE:1] [WXE-11227] [os] [ecid:
5415484202,0] Initial Request is routed to origin server host-server:8080 using
load balancing.
[2008-11-04T15:37:02-05:00] [webcache] [TRACE:1] [WXE-11403] [population] [ecid:
5415484202,0] begin cacheability decision for url:
www.company.com:80/invalidate1/tcal_fct_invalidate_basic_2.html
[2008-11-04T15:37:02-05:00] [webcache] [TRACE:1] [WXE-11481] [population] [ecid:
5415484202,0] Request/Response matches caching rule with URL expression
"^/invalidate1/.*\.h.*$".
[2008-11-04T15:37:02-05:00] [webcache] [TRACE:1] [WXE-13736] [compression] [ecid:
5415484202,0] Compression is disabled because the browser does not support
compression.
[2008-11-04T15:37:02-05:00] [webcache] [TRACE:1] [WXE-11446] [population] [ecid:
5415484202,0] URL which will be cached is: www.company.com:80/invalidate1/tcal_
fct_invalidate_basic_2.html
[2008-11-04T15:37:02-05:00] [webcache] [TRACE:1] [WXE-11415] [population] [ecid:
5415484202,0] Final cache key is composed sitename www.company.com:80, URI
/invalidate1/tcal_fct_invalidate_basic_2.html, method GET, post body -,
multiversion -, compressed no.
[2008-11-04T15:37:02-05:00] [webcache] [TRACE:1] [WXE-11088] [backend] [ecid:
5415484202,0] Following URL is now in cache: www.company.com:80/invalidate1/tcal_
fct_invalidate_basic_2.html

The following shows an event log excerpt containing events for a subsequent cache-hit
request:

[2008-11-04T15:37:39-05:00] [webcache] [TRACE:1] [WXE-09720] [frontend] [ecid:
417732382502,0] [req-info:] [client: 127.0.0.1] [host: www.company.com:80] [url:
/x-oracle-cache-invalidate]
[2008-11-04T15:37:39-05:00] [webcache] [TRACE:1] [WXE-11331] [frontend] [ecid:
417732382502,0] Request matches configured site: localhost:8888
[2008-11-04T15:37:39-05:00] [webcache] [TRACE:1] [WXE-11414] [population] [ecid:
417732382502,0] Basic cache key is composed with sitename www.company.com:80, URI

Introduction to Event Logs

Logging 9-11

/invalidate1/tcal_fct_invalidate_basic_5.html, method GET, post body -.
[2008-11-04T15:37:39-05:00] [webcache] [NOTIFICATION:1] [WXE-11707] [invalidation]
[ecid: 417732382502,0] Object with URL '/invalidate1/tcal_fct_invalidate_basic_
5.html' is successfully invalidated.
[2008-11-04T15:37:39-05:00] [webcache] [NOTIFICATION:1] [WXE-11748] [invalidation]
[ecid: 417732382502,0] Invalidation with INFO 'about-ttl' has returned with status
'SUCCESS'; number of objects invalidated: '1'.

9.1.2.4 Example: Event Log with an Invalidation Entry
The following shows an event log excerpt with an event associated with an
invalidation request for the removal of object /invalidation1/tcal_fct_
invalidate_basic_5.html.

[2008-11-04T15:37:39-05:00] [webcache] [TRACE:1] [WXE-09720] [frontend] [ecid:
417732382502,0] [req-info:] [client: 10.10.150.35] [host: host:port] [url:
/x-oracle-cache-invalidate]
[2008-11-04T15:37:39-05:00] [webcache] [TRACE:1] [WXE-11331] [frontend] [ecid:
417732382502,0] Request matches configured site: www.company.com:80
[2008-11-04T15:37:39-05:00] [webcache] [TRACE:1] [WXE-11414] [population] [ecid:
417732382502,0] Basic cache key is composed with sitename localhost:8888, URI
/invalidate1/tcal_fct_invalidate_basic_5.html, method GET, post body -.
[2008-11-04T15:37:39-05:00] [webcache] [NOTIFICATION:1] [WXE-11707] [invalidation]
[ecid: 417732382502,0] Object with URL '/invalidate1/tcal_fct_invalidate_basic_
5.html' is successfully invalidated.
[2008-11-04T15:37:39-05:00] [webcache] [NOTIFICATION:1] [WXE-11748] [invalidation]
[ecid: 417732382502,0] Invalidation with INFO 'about-ttl' has returned with status
'SUCCESS'; number of objects invalidated: '1'.

9.1.2.5 Example: Analyzing ESI Events
The following provides an example of the messages in the event log for an ESI
fragment for a cache miss. The messages in the event log report information about:

■ How Oracle Web Cache processes ESI in the template

■ How ESI processing loads an ESI fragment

■ After the fragment is loaded, how the caching decision for an ESI fragment is
formed. It includes information regarding the reason the fragment is cached or not
cached.

In the following examples, TRACE:1 messages are for the verbosity=TRACE level
and TRACE:32 messages are for the verbosity=DEBUG level. Setting verbosity to
DEBUG includes TRACE, NOTIFICATION, WARNING, and ERROR level messages. TRACE
includes NOTIFICATION, WARNING, and ERROR, but not DEBUG.

You do not see the following log messages shown in the following example unless you
have the set the event_log verbosity level to DEBUG:

[2008-11-04T16:29:14-05:00] [webcache] [TRACE:1] [WXE-11952] [esi] [ecid:
211577120190,0] Start processing ESI document
www.company.com:80/cgi-bin/esi-headers.sh?/esi/esi-headers.html&localhost:8888,
nesting level 1 [2008-11-04T16:29:14-05:00] [webcache] [TRACE:1] [WXE-11331]
[frontend] [ecid: 211577120190,0] Request matches configured site:
www.company.com:80
[2008-11-04T16:29:14-05:00] [webcache] [TRACE:1] [WXE-11953] [esi] [ecid:
211577120190,0] In ESI template
www.company.com:80/cgi-bin/esi-headers.sh?/esi/esi-headers.html&localhost:8888,
the fragment's site name and URL has been discovered as www.company.com:80 and
/esi/include0.html [2008-11-04T16:29:14-05:00] [webcache] [TRACE:1] [WXE-11304]
[frontend] [ecid: 211577120190,0] Cache miss request.

Introduction to Access Logs

9-12 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

[2008-11-04T16:29:14-05:00] [webcache] [TRACE:1] [WXE-11224] [os] [ecid:
211577120190,0] Site www.company.com:80 matches site-to-server mapping
www.company.com:80.
[2008-11-04T16:29:14-05:00] [webcache] [TRACE:1] [WXE-11227] [os] [ecid:
211577120190,0] Initial Request is routed to origin server
stadk61.us.oracle.com:8080 using load balancing.
[2008-11-04T16:29:14-05:00] [webcache] [TRACE:1] [WXE-11403] [population] [ecid:
211577120190,0] [[begin cacheability decision for
url: www.company.com:80/esi/include0.html]]
[2008-11-04T16:29:14-05:00] [webcache] [TRACE:1] [WXE-11481] [population] [ecid:
211577120190,0] Request/Response matches caching rule with URL expression "/*".
[2008-11-04T16:29:14-05:00] [webcache] [TRACE:1] [WXE-11446] [population] [ecid:
211577120190,0] [[URL which will be cached is:
www.company.com:80/esi/include0.html]]
[2008-11-04T16:29:14-05:00] [webcache] [TRACE:1] [WXE-11415] [population] [ecid:
211577120190,0] Final cache key is composed sitename www.company.com:80, URI
/esi/include0.html, method GET, post body -, multiversion -, compressed no.
[2008-11-04T16:29:14-05:00] [webcache] [TRACE:1] [WXE-11088] [backend] [ecid:
211577120190,0] [[Following URL is now in cache:
www.company.com:80/esi/include0.html]]

9.2 Introduction to Access Logs
Oracle Web Cache records information about the received HTTP and HTTPS requests
in access logs. Each Web site Web site defined in Oracle Web Cache can have its own
access log. By default, the access log has a file name of access_log and is stored in
the following directories:

(UNIX) ORACLE_INSTANCE/diagnostics/logs/WebCache/<webcache_name>
(Windows) ORACLE_INSTANCE\diagnostics\logs\WebCache\<webcache_name>

This section includes the following topics:

■ Section 9.2.1, "Access Log Formats"

■ Section 9.2.2, "Access Log Fields"

■ Section 9.2.3, "Access Log Examples"

9.2.1 Access Log Formats
You can configure the content of the access log files by defining the fields to appear for
each HTTP request event. These fields are based on the standard Extended LogFile
Format (XLF). By default, Oracle Web Cache provides support for the following access
log formats:

■ Section 9.2.1.1, "Common Log Format (CLF)"

■ Section 9.2.1.2, "Enhanced CLF (ECLF)"

■ Section 9.2.1.3, "Combined Log Format"

■ Section 9.2.1.4, "Enhanced Combined Log Format"

■ Section 9.2.1.5, "End-User Performance Monitoring Format"

9.2.1.1 Common Log Format (CLF)
This format is the default format applied to access logs. This format is appropriate for
most configurations. The CLF format provides support for the following fields:

■ c-ip

Introduction to Access Logs

Logging 9-13

■ x-log-id

■ x-auth-id

■ x-clf-date

■ x-req-line

■ sc-status

■ bytes

9.2.1.2 Enhanced CLF (ECLF)
This format uses many of the CLF fields and includes the x-ecid field for tracking the
request ID and sequence number specified in Oracle-ECID request header:

■ c-ip

■ x-log-id

■ x-auth-id

■ x-clf-date

■ x-req-line

■ sc-status

■ bytes

■ x-ecid

9.2.1.3 Combined Log Format
This format provides support for the CLF fields with the addition of the
cs(Referer) and cs(User-Agent) fields:

■ c-ip

■ x-log-id

■ x-auth-id

■ x-clf-date

■ x-req-line

■ sc-status

■ bytes

■ cs(Referer)

■ cs(User-Agent)

Select this format when you must determine what kind of browser is sending the
request, and where the browser was visiting before the request was forwarded to
Oracle Web Cache.

9.2.1.4 Enhanced Combined Log Format
This format uses many of the Combined Log Format fields and includes the x-ecid
field for tracking the ID of the specified in Oracle-ECID request header:

■ c-ip

■ x-log-id

■ x-auth-id

Introduction to Access Logs

9-14 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

■ x-clf-date

■ x-req-line

■ sc-status

■ bytes

■ cs(Referer)

■ cs(User-Agent)

■ x-ecid

9.2.1.5 End-User Performance Monitoring Format
This format provides support for the following fields intended for end-user
performance monitoring of 10g features:

■ x-req-type

■ x-date-start

■ x-time-start

■ c-ip

■ s-ip

■ x-auth-id

■ cs(Host)

■ cs-method

■ cs-uri

■ x-protocol

■ sc-status

■ bytes

■ cs-bytes

■ x-cache

■ time-taken

■ r-time-taken

■ x-time-delay

■ x-os-timeout

■ x-ecid

■ x-cookie(ORACLE_SMP_CHRONOS_ST)

■ x-cookie(ORACLE_SMP_CHRONOS_LT)

■ x-cookie(ORACLE_SMP_CHRONOS_GL)

■ x-glcookie-set

■ cs(Referer)

■ cs(User-Agent)

■ x-esi-info

■ x-conn-abrt

Introduction to Access Logs

Logging 9-15

■ sc(Content-Type)

9.2.2 Access Log Fields
If the default formats are not suitable for your environment, you can create custom log
formats by specifying the fields that you require. Table 9–5 describes the supported
fields. Fields prefixed with x or r are proprietary to Oracle Web Cache.

Table 9–5 Access Log Fields

Field Description

bytes Content length of the request

c-ip IP address of the client

cached Integer that specifies cache status. Cache status is reported as the following:

■ 0 specifies a cache miss. Equivalent to M, U, G, and N output of x-cache field.

■ 1 specifies a cache hit of a stale object. Equivalent to S output of x-cache
field.

■ 2 specifies a cache hit. Equivalent to H output of x-cache field.

cs(header_name) HTTP request header sent from the client

See Also: "cs(header_name) and sc(header_name) Access Log Fields" on
page 9-20

cs-bytes Bytes received from the client

cs-method Client-to-Oracle Web Cache HTTP request method

cs-uri Client-to-Oracle Web Cache URI

cs-uri-query Client-to-Oracle Web Cache query portion of URI, omitting the stem

cs-uri_stem Client-to-Oracle Web Cache stem portion of URI, omitting the query

date Date the transaction completed, in the following format:

dd/Mon/yyyy

r-ip IP address and port number of origin server. For a cache cluster, this field displays
the IP and port number of a peer cache in the cache cluster. The information is
displayed in the following format:

IP_address:port

r-time-taken Time, in seconds (including microseconds), that Oracle Web Cache spent
communicating with the origin server or peer cache. The time is the duration
between the following two points of time:

■ The time immediately before Oracle Web Cache sent the first byte of the
request to the origin server or peer cache.

■ The time immediately after receiving the last byte of the response from the
origin server or peer cache.

This field is particularly helpful in providing time information for end-user
performance monitoring.

s-ip IP address of Oracle Web Cache computer

sc(header_name) HTTP response header sent from Oracle Web Cache to the client

See Also: "cs(header_name) and sc(header_name) Access Log Fields" on
page 9-20

Introduction to Access Logs

9-16 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

sc-status Oracle Web Cache-to-client HTTP status code:

■ 1xx range messages are informational

■ 2xx range messages indicate success

■ 3xx range messages indicate redirection, that is, further action must be taken
to complete the request

■ 4xx range messages indicate a client error

■ 5xx range messages indicate a Oracle Web Cache error

See Also: http://www.ietf.org/rfc/rfc2616.txt for further information
about HTTP status codes

time Time at which the response from Oracle Web Cache completed. The time is
displayed in the following format:

hh:mm:ss

time-taken Amount of time taken, in seconds (including microseconds), for the transaction to
complete

x-auth-id User name of a basic HTTP authentication request

x-cache Cache status. Cache status is reported as the following:

■ H specifies a cache hit

■ S specifies a cache hit of a stale object

■ U specifies a cache update of a stale object

■ G specifies a cache update of an object that was marked for removal but still
physically resides in the cache

■ M specifies a cacheable cache miss

■ N specifies a non-cacheable cache miss

Table 9–5 (Cont.) Access Log Fields

Field Description

Introduction to Access Logs

Logging 9-17

x-cache-detail Diagnostic information, in the following format:

{ESI_processing_type}{cache_request_type}
[;max-age=expiration_time[+removal_time];age=object_age]

ESI_processing_type is:

■ T specifies that the object is an ESI template

■ F specifies that the object is an ESI fragment

■ Empty specifies that the response does not require ESI processing

cache_request_type is:

■ H specifies a cache hit

■ S specifies a cache hit of a stale object

■ U specifies a cache update of a stale object

■ G specifies a cache update of an object that was marked for removal but still
physically resides in the cache

■ M specifies a cacheable cache miss

■ N specifies a non-cacheable cache miss

max_age specifies the time, in seconds, to expire the object, and optionally, the
time, in seconds, to remove the object from the cache after the expiration time.
max_age does not appear if the cache_request_type is N.

age shows how long, in seconds, the object has been in the cache. age does not
appear if the object is non-cacheable.

Example: H;max-age=60+30;age=50

■ H means that this request resulted in cache hit

■ max-age=60+30 means that the object is to expire in 60 seconds from
population and to be removed from the cache 30 seconds from the expiration.
This provides a total of 90 seconds from population.

■ age=50 means that 50 seconds have passed since population of the cache,
meaning there is 10 seconds to expiration and 40 seconds to removal

x-cache-key Cache key value, in the following format:

"cache_key"

x-clf-date Date that the response from Oracle Web Cache completed, in the following
format:

dd/Mon/yyyy:hh:mm:ss [+GMT]

x-cluster Single character that specifies the status of a cache cluster. The character is
reported as the following:

■ T specifies a request to a cache cluster member

■ F specifies a request from a cache cluster member

■ O specifies a request for owned content

■ D specifies a request for on-demand content

x-cookie(cookie_name) Cookie value from client browser request.

Table 9–5 (Cont.) Access Log Fields

Field Description

Introduction to Access Logs

9-18 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

x-conn-abrt Single character that specifies the whether a connection was terminated before a
response was completed. This field is intended for end-user performance
monitoring.

■ C specifies that the connection was terminated by the client before Oracle
Web Cache could complete a response.

■ O specifies that the connection was terminated by the origin server before it
could complete a response to Oracle Web Cache.

■ N specifies the response was completed without the connection being
terminated.

x-date-start Date before Oracle Web Cache received the first byte of the request, in the
following format:

yyyy-mm-dd

x-date-end Date when Oracle Web Cache sent the last byte of the response, in the following
format:

yyyy-mm-dd

x-ecid ID of the specified in Oracle-ECID request header, in the following format:

"request_ID, sequence_number"

See Also: Section 9.1.1.4 for further information about the Oracle-ECID request
header

x-esi-info ESI fragment log message from the log element of <esi:environment> or
<esi:include> tags. It uses the following format:

"ESI_log_message"

The log message only displays for requested ESI fragments in the access_log_
file.fragment file. When a request ESI fragment is not configured with the
log element, this field displays as a hyphen (-)

x-glcookie-set Boolean character that specifies whether Oracle Web Cache created the ORACLE_
SMP_CHRONOS_GL cookie and sent as a response to the client browser a
Set-Cookie:ORACLE_SMP_CHRONOS_GL response header field. This field is
intended for end-user performance monitoring to track transactions.

■ Y specifies that Oracle Web Cache set the ORACLE_SMP_CHRONOS_GL cookie.
Y also marks the beginning of a transaction for the client. All subsequent
traffic from the browser send a Cookie request-header field set with the
ORACLE_SMP_CHRONOS_GL cookie received in the Oracle Web Cache
response.

■ N specifies that Oracle Web Cache did not create the cookie. This result can
occur because the cookie is already set.

x-log-id Login user name of the client. Oracle Web Cache cannot obtain the value for this
field. Therefore, Oracle Web Cache displays a hyphen (-) in the output when this
field is set.

x-os-name Origin server or cache cluster member that Oracle Web Cache is forwarding the
request, in the following format:

host:port

x-os-timeout Single character that specifies if the origin server timed out on a request. The
character is reported as the following:

■ 0 specifies that the origin server did not timeout

■ 1 specifies that the origin server did timeout. An output of 1 can indicate a
problem with the origin server itself.

x-protocol Protocol and version from client request, in the following format:

protocol/version

Table 9–5 (Cont.) Access Log Fields

Field Description

Introduction to Access Logs

Logging 9-19

x-req-line Request line, in the following format:

"HTTP_request_method URI protocol/version"

Example: "GET /cache.htm HTTP/1.1"

x-req-type Request type. Request type is reported as the following:

■ B specifies that the request is from the browser

■ C specifies that the request is from another cache cluster member

■ H specifies that the request is from another cache cluster or an Oracle Web
Cache that is not a member of the current cache cluster

■ F specifies that the request is for an ESI fragment

x-time-delay Time, in seconds (including microseconds), that Oracle Web Cache spent
communicating with the origin server or peer cache. The time is the duration
between the following two points of time:

■ The time immediately before Oracle Web Cache received the first byte of the
request

■ The time immediately before Oracle Web Cache sent the first byte of the
request to the origin server or peer cache.

This field is particularly helpful in providing time information for End-User
Performance Monitoring.

x-time-end Time that Oracle Web Cache sent the last byte of the response, in the following
format:

hh:mm:ss:ssssss

x-time-handshake The difference between the times the client initiates a new connection and the
time at which Oracle Web Cache receives the first byte of the HTTP request.

Note: Select this field only if instructed by Oracle Support Services.

x-time-reqrecvlatency The difference between the times Oracle Web Cache receives the first and last byte
of the HTTP request. This field indicates the time in reading the browser requests.

Note: Select this field only if instructed by Oracle Support Services.

x-time-reqsendlatency The difference between the times Oracle Web Cache sends the first and last byte
of the HTTP request to the origin server. This field indicates the time taken in
sending the request to the origin server.

Note: Select this field only if instructed by Oracle Support Services.

x-time-resprecvlatency The difference between the times Oracle Web Cache receives the first and last byte
of the HTTP response from the origin server. This field indicates the time taken in
receiving the response from the origin server.

Note: Select this field only if instructed by Oracle Support Services.

x-time-respsendlatency The difference between the times Oracle Web Cache sends the first and last byte
of the HTTP response to the browser. This field indicates the time taken in
sending the response to the client.

Note: Select this field only if instructed by Oracle Support Services.

Table 9–5 (Cont.) Access Log Fields

Field Description

Introduction to Access Logs

9-20 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

9.2.2.1 cs(header_name) and sc(header_name) Access Log Fields
Table 9–6 lists examples of HTTP/1.1 headers that can be used for the cs(header_
name) and sc(header_name) fields. This table lists only some possible headers. It is
not an exhaustive list.

Table 9–7 lists examples of cookie-related headers that can be used for the
cs(header_name) and sc(header_name) fields.

x-time-reqblocked The difference between when a request was blocked and unblocked due to a
cache update. If a request has been sent to the origin server by Oracle Web Cache
to update an existing object, Oracle Web Cache blocks all subsequent requests.

Note: Select this field only if instructed by Oracle Support.

x-time-reqqueued The difference between when a request is queued and dequeued for the origin
server. This field indicates the time a request spends in Oracle Web Cache
back-end queue for an origin server (due to the maximum origin server capacity
being reached) before the request is sent to the origin server for processing.

Note: Select this field only if instructed by Oracle Support.

x-time-start Time before Oracle Web Cache received the first byte of the request, in the
following format:

hh:mm:ss:ssssss

Table 9–6 Examples of HTTP/1.1 Header Fields

cs(header_name) Field sc(header_name) Field

Accept Cache-Control

Authorization Content-Encoding

Connection Content-Language

Date Content-Length

Host Content-Type

Referer Date

Cache-Control ETag

Content-Encoding Expires

Content-Language Last-Modified

Content-Length Pragma

Content-Type Server

If-None-Match Transfer-Encoding

If-Modified-Since Via

Last-Modified

Pragma

Range

TE

User-Agent

Via

Table 9–5 (Cont.) Access Log Fields

Field Description

Introduction to Access Logs

Logging 9-21

Table 9–8 lists examples of Oracle Web Cache headers that can be used for the
cs(header_name) and sc(header_name) fields.

9.2.3 Access Log Examples
The following code shows an excerpt of an access log file:

10.10.150.35 - - [25/Jul/2005:10:27:42 -0500] "GET /~user/personal.htm HTTP/1.1"
200 2438
10.10.150.35 - - [25/Jul/2005:10:27:54 -0500] "GET
/~user/personal.htm?UserName=Bob HTTP/1.1" 200 2438
10.10.150.35 - - [25/Jul/2005:10:47:30 -0500] "GET /~user/count.sh HTTP/1.1" 403
289
10.10.150.35 - - [25/Jul/2005:10:47:34 -0500] "GET /~user/sbin/count.sh HTTP/1.1"
200 321

In the first line of the output, the fields have the following meaning:

■ 10.10.150.35 is the browser's IP address (c-ip)

■ [25/Jul/2005:10:27:42 -0500] is the date ([x-clf-date])

■ "GET /~user/personal.htm HTTP/1.1" is the request line ("x-req-line")

■ 200 is the HTTP status code (sc-status)

■ 2438 is the size of the object sent (bytes)

In addition, this section contains the following access log examples:

■ Section 9.2.3.1, "Example: Access Log with Reload Entries"

■ Section 9.2.3.2, "Example: Access Log with Status Code 404 Entry"

■ Section 9.2.3.3, "Example: Access Log in Combined Format"

■ Section 9.2.3.4, "Example: Access Log with Site Information"

■ Section 9.2.3.5, "Example: Access Log with ESI Diagnostic Information"

■ Section 9.2.3.6, "Example: Access Log with ESI Log Information"

Except where noted otherwise, the access log examples use the CLF format:

c-ip x-log-id x-auth-id x-clf-date x-req-line sc-status bytes

9.2.3.1 Example: Access Log with Reload Entries
The following shows an access log excerpt in which there are two Web browser
reloads, followed by two shift reloads, and two more reloads:

10.10.150.35 - - [25/Jul/2005:11:04:24 -0500] "GET /cache.htm HTTP/1.1" 200 250
10.10.150.35 - - [25/Jul/2005:11:04:26 -0500] "GET /cache.htm HTTP/1.1" 200 250
10.10.150.35 - - [25/Jul/2005:11:29:24 -0500] "GET /cache.htm HTTP/1.1" 304 0
10.10.150.35 - - [25/Jul/2005:11:29:25 -0500] "GET /cache.htm HTTP/1.1" 304 0

Table 9–7 Supported Cookie-Related Header Fields

cs(header_name) Field sc(header_name) Field

Cookie Set-Cookie

Table 9–8 Supported Oracle Web Cache Header Fields

cs(header_name) Field sc(header_name) Field

Surrogate-Capability Surrogate-Control

Introduction to Access Logs

9-22 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

10.10.150.35 - - [25/Jul/2005:11:29:30 -0500] "GET /cache.htm HTTP/1.1" 200 250
10.10.150.35 - - [25/Jul/2005:11:29:35 -0500] "GET /cache.htm HTTP/1.1" 200 250

The third and forth entries return an HTTP status code of 304, indicating that object
has not been modified and does not need to be returned again.

9.2.3.2 Example: Access Log with Status Code 404 Entry
The following shows an access log excerpt in which Oracle Web Cache cannot find any
objects matching the requested URL /ows-img/chalk.jpg. This error is indicated
by HTTP status code 404.

10.10.150.35 - - [25/Jul/2005:10:49:44 -0500] "GET /pls/coe/find_via_post
HTTP/1.1" 200 1119
10.10.150.35 - - [25/Jul/2005:10:49:44 -0500] "GET /ows-img/chalk.jpg HTTP/1.1"
404 284

9.2.3.3 Example: Access Log in Combined Format
The following shows an access log excerpt in which the combined format is specified:

c-ip x-log-id x-auth-id x-clf-date x-req-line sc-status bytes cs(Referer)
cs(User-Agent)

10.10.150.35 - - [25/Jul/2005:20:09:47 +0000] "GET /manual/sections.html HTTP/1.1"
200 -1 "http://www.company.com:80/manual/mod/directive-dict.html#Syntax"
"Mozilla/4.78 [ja] (Win98; U)"
10.10.150.35 - - [25/Jul/2005:20:09:50 +0000] "GET /manual/mod/core.html HTTP/1.1"
200 -1 "http://www.company.com:80/manual/sections.html" "Mozilla/4.78 [ja] (Win98;
U)"
10.10.150.35 - - [25/Jul/2005:20:10:06 +0000] "GET / HTTP/1.1" 200 -1 -
"Mozilla/4.78 [ja] (Win98; U)"
10.10.150.35 - - [25/Jul/2005:20:10:14 +0000] "GET /manual/LICENSE HTTP/1.1" 200
-1 "http://www.company.com:80/manual/index.html" "Mozilla/4.78 [ja] (Win98; U)"

9.2.3.4 Example: Access Log with Site Information
The following shows an access log excerpt in which the following fields are specified:

c-ip x-auth-id x-clf-date cs(Host) x-req-line sc-status bytes

cs(Host) displays the output of Host request-header field, which specifies the site
information. In this example, requests are sent to Oracle Web Cache for site
www.company.com:80.

10.10.150.35 - [25/Jul/2005:20:05:51 +0000] "www.company.com:80" "GET / HTTP/1.1"
200 -1
10.10.150.35 - [25/Jul/2005:20:05:56 +0000] "www.company.com:80" "GET
/manual/index.html HTTP/1.1" 200 -1
10.10.150.35 - [25/Jul/2005:20:05:59 +0000] "www.company.com:80" "GET
/manual/upgrading_to_1_3.html HTTP/1.1" 200 -1
10.10.150.35 - [25/Jul/2005:20:06:02 +0000] "www.company2.com:80" "GET
/manual/mod/mod_dir.html HTTP/1.1" 200 -1
10.10.150.35 - [25/Jul/2005:20:06:05 +0000] "www.company2.com:80" "GET
/manual/mod/directive-dict.html HTTP/1.1" 200 -1

9.2.3.5 Example: Access Log with ESI Diagnostic Information
The following shows an access log excerpt in which the following fields are specified:

c-ip x-clf-date x-req-line sc-status bytes x-cache-detail

Configuring Event Logs

Logging 9-23

x-cache-detail displays diagnostic information. In the following example:

■ T means that this request is for an ESI template

■ H means that this request resulted in cache hit

■ max-age=10+15 means that the object is to expire in 10 seconds from population
and to be removed from the cache 15 seconds from the expiration. This provides a
total of 25 seconds from population.

■ age=0 means that 0 seconds have passed since population of the cache, meaning
there is 10 seconds to expiration and 15 seconds to removal

[25/Jul/2005:02:35:37 +0000] "GET /cgi-bin/esi-headers.sh?err1.htm HTTP/1.0" 200
42 TM;max-age=10+15;age=0

9.2.3.6 Example: Access Log with ESI Log Information
The following shows an access log excerpt in which the following fields are specified:

c-ip x-clf-date x-req-line sc-status bytes x-esi-info

x-esi-info displays log information from the log element of
<esi:environment> or <esi:include> tags.

[25/Jul/2005:03:03:35 +0000] "GET /b.html HTTP/1.0" 200 4 "This is a sample
fragment."

9.3 Configuring Event Logs
To configure event log settings:

1. From Oracle Web Cache Manager, in the navigator frame, select Logging and
Diagnostics > Event Logs. See Section 2.7.2.

The Event Logs page appears.

2. Specify cache-specific event log settings:

a. From the Cache-Specific Event Log Configuration table, select a cache, and
then click Edit Selected.

The Edit Cache-Specific Event Log Configuration dialog box appears.

b. In the Directory field, enter the directory in which to write event logs.

By default, the event log is stored in the following directories:

(UNIX) ORACLE_INSTANCE/diagnostics/logs/WebCache/<webcache_name>
(Windows) ORACLE_INSTANCE\diagnostics\logs\WebCache\<webcache_name>

c. In the Buffering field, select Enabled to enable buffered logging or Disabled
to disable buffered logging.

With buffered logging, Oracle Web Cache stores log messages in memory.
Oracle Web Cache writes them out in bulk to the event log when the buffer
size or the flush interval is reached. Buffered logging increases performance by
reducing the number of disk I/O operations.

If the Oracle Web Cache server shuts down unexpectedly, buffered log
messages may be lost.

Oracle recommends disabling buffering to see the event log results
immediately.

Configuring Event Logs

9-24 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

d. If buffering is enabled, in the Flush Interval field, enter the interval, in
seconds, when Oracle Web Cache writes contents of the buffer to the event log
file.

The default is 10 seconds. When the interval is reached, Oracle Web Cache
writes buffered information to the event log file. Even if the buffer is not full,
Oracle Web Cache updates the event log. Oracle recommends not changing
the default, unless you want to lower the interval to see results more
frequently.

A value of 0 specifies that Oracle Web Cache will only flush the buffered event
log when the specified buffer size has been exceeded.

e. If buffering is enabled, in the Buffer Size field, enter the size of the buffer,
expressed in characters.

The default is 2048 characters. You can specify a maximum value of 32,768
characters.

f. From the Verbosity list, select the needed level of detail for the event log. The
levels are described in Table 9–9.

g. Click Submit.

3. Set the global event log settings:

a. From the Global Event Log Configuration table, click Edit.

The Edit Global Event Log Configuration dialog box appears.

b. In the File Name field, enter a name for the event log file.

The default file name is event_log.

c. From the File Format list, select the log format.

See Section 9.1.1 for further information about the formats.

d. From the Time Style list, select either Local or GMT (Greenwich Mean Time)
to modify the format of the time stamp style associated with entries in the
event log file.

Table 9–9 Verbosity Levels

Level Description

WARNING Provides abnormal-operation events.

NOTIFICATION Provides normal-operation events, such as startup and shutdown. This is
the default.

TRACE Provides events for debugging configuration.

■ Site resolution

■ Site-to-server mappings route to the correct origin servers

■ Compression

■ Session binding

■ Caching rules

■ ESI processing

DEBUG Provides detailed events for troubleshooting. This level is intended for
Oracle Support Services.

Configuring Event Logs

Logging 9-25

e. In the Request Based Logging field, select Enabled to enable request-based
logging.

With request-based logging, Oracle Web Cache collects all event log messages
associated with each request in memory. If the most severe message in the
request is at or above the selected verbosity level, Oracle Web Cache writes all
the messages related to the request to the event log at once. Oracle Web Cache
groups the messages for the request together in the log file for easier
diagnosis. For example, if verbosity is set to NOTIFICATION, and Oracle Web
Cache encounters an error at the TRACE or DEBUG level, Oracle Web Cache
writes all of the event log messages for the request to the event log.

Select Disabled to view results as they happen, especially when the verbosity
is set to a level higher than NOTIFICATION.

f. In Include Request Details, select Yes to enable Oracle Web Cache to write the
information from the Oracle-ECID request header, or select No to not write
request information to the event log. See Section 9.1.1.2 for further information
about how request details are logged.

Select No if either of the following conditions apply:

– You are concerned about the performance impact of event log entries for
request details.

– Oracle Web Cache is running in a standalone environment without Oracle
HTTP Server.

g. From the Rollover by Time list, select Never, Hourly, Daily, or Weekly to
specify how often you want Oracle Web Cache to save current log information
to event_log_file.yyyymmddhhmm and write future log information to a
new log file with the configured log file name.

For Hourly, Daily, and Weekly, you enter a new time in the left-hand side
fields and menus and add it to the schedule by clicking Add. Table 9–10
describes specific configuration instructions for Hourly, Daily, and Weekly.

Note: Oracle recommends using GMT whenever possible. Local can
be CPU-intensive, because of the conversion process from GMT to
Local time. This conversion process is supplied by the operating
system. As such, Oracle Web Cache has no mechanism to improve the
performance of the conversion process.

Table 9–10 Configuring Rollover By Time

Policy To configure:

Hourly 1. Add a time by entering a value in the Minutes after the hour field.

2. Click Add.

3. From the Time Style list, select either Local or GMT (Greenwich Mean
Time).

Daily 1. Add a time by entering a value in the hours and minutes fields.

2. Click Add.

3. From the Time Style list, select either Local or GMT.

Configuring Access Logs

9-26 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

If you have a high-volume site, create a daily or hourly policy.

To remove a time from the schedule list, select the time, and then click
Remove. The value moves to the left list, where you can modify it.

See Section 9.8 for instructions on immediately rolling over log files.

h. In the Rollover by Size field, enter the maximum size of the log file size at
which rollover occurs. Specify 0 for unlimited size.

i. In the Retention by Time field, specify how long to keep log files before
purging the oldest ones.

In the Every field, enter the quantity and from the list of Hours, Days, Weeks,
Months, Years, select the duration. A quantity of 0 means unlimited time,
which means Oracle Web Cache does not retain files based on time.

j. In the Retention by Size field, enter the total size of all log files before purging
oldest ones. Specify 0 for unlimited size.

This value must be larger than the value you specify for the Rollover Size
field.

If neither Retention by Time or Retention by Size is set, then log files can
grow without limits. The log files could end up consuming all available space
on the disk where this file is located.

k. Click Submit.

4. Apply changes and restart Oracle Web Cache. See Section 2.13.

9.4 Configuring Access Logs
1. From Oracle Web Cache Manager, in the navigator frame, select Logging and

Diagnostics > Access Logs. See Section 2.7.2.

The Access Logs page appears.

2. Specify cache-specific access log settings:

a. From the Cache-Specific Access Log Configuration table, select a cache, and
then click Edit Selected.

The Edit Cache-Specific Access Log Configuration dialog box appears.

b. In the Directory field, enter the directory in which to write access logs.

By default, the event log is stored in the following directories:

(UNIX) ORACLE_INSTANCE/diagnostics/logs/WebCache/<webcache_name>
(Windows) ORACLE_INSTANCE\diagnostics\logs\WebCache\<webcache_name>

c. In the Enabled field, select Yes to enable logging, or No to disable logging.

Weekly 1. Add a time by selecting a day of the week, entering a value in the hours and
minutes fields.

2. Click Add.

3. From the Time Style list, select either Local or GMT (Greenwich Mean
Time).

Table 9–10 (Cont.) Configuring Rollover By Time

Policy To configure:

Configuring Access Logs

Logging 9-27

d. In the Buffering field, select Enabled to enable buffered logging or Disabled
to disable buffered logging.

With buffered logging, Oracle Web Cache stores log messages in memory.
Oracle Web Cache writes them out in bulk to the access log when the buffer
size or the flush interval is reached. The buffer size is set to 2048 bytes.
Buffered logging increases performance by reducing the number of disk I/O
operations.

If the Oracle Web Cache server shuts down unexpectedly, buffered log
messages may be lost.

Oracle recommends disabling buffering to view access log results
immediately.

e. If buffering is enabled, in the Flush Interval field, enter the interval, in
seconds, when Oracle Web Cache writes contents of the buffer to the access log
file.

The default is 10 seconds. When the interval is reached, Oracle Web Cache
writes buffered information to the access log file. Even if the buffer is not full,
Oracle Web Cache updates the access log. Oracle recommends not changing
the default, unless you want to lower the interval to see results more
frequently.

A value of 0 specifies that Oracle Web Cache will only flush the buffered
access log when the specified buffer size has been exceeded.

f. Click Submit.

3. Specify site-specific log settings:

a. From the Site-Specific Access Log Configuration table, click Add.

The Edit/Add Site Specific Access Log Configuration dialog box appears.

b. From the For Site list, select the Web site for which to specify access log
settings.

c. In the File Name field, enter a name for the access log file.

The default file name is access_log.

d. In the Enabled field, select Yes to enable logging for the site or No to disable
logging for the site.

Site-specific logging only takes effect if logging is enabled for the cache. If you
select Yes, ensure that Yes is also selected for the cache in Step 2c.

e. In the ESI Fragment Requests field, select Log to log the ESI fragment log
messages from the log element of <esi:environment> or
<esi:include> in the access_log_file.fragment file.

If the x-esi-info field is selected, select Log to log the events to the
access_log_file.fragment file. The x-esi-info field is automatically
selected if the Format Style is End-User Performance Monitoring Format. If
the x-esi-info field is not selected, select Don't Log.

f. From the Format Style list, select an access log format.

See Section 9.2.1 for a description of the default formats and Section 9.5 to
create a customized style for your environment.

g. From the Rollover Policy list, select a rollover policy to specify how often you
want to change the frequency at which Oracle Web Cache saves current log

Creating a Customized Access Log Format

9-28 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

information to access_log_file.yyyymmddhhmm and writes future log
information to a new log file with the configured log file name.

For high-volume sites, select a policy with a high frequency.

See Section 9.6 to modify an existing policy or create a new rollover policy.

h. Click Submit.

4. Apply changes and restart Oracle Web Cache. See Section 2.13.

9.5 Creating a Customized Access Log Format
If the default formats described in Section 9.2.1 are not suitable for your environment,
create a new log format:

1. From Oracle Web Cache Manager, in the navigator frame, select Logging and
Diagnostics > Access Logs. See Section 2.7.2.

The Access Logs page appears.

2. From the User-Defined Log Formats table, click Add.

The Edit/Add User-Defined Access Log Format dialog box displays.

3. In the Format Name field, enter a unique name for the format, keeping the
following restrictions in mind:

■ The format name cannot contain any spaces or special characters other than
underscore (_).

■ The name must be unique among other format names, rollover policy names,
and session names.

4. From the Separator list, select the separator to use for separating access log fields.

5. In Print XLF Directive field, select Yes to include XLF directive information at the
top of the access log or No to not include directive information in the access log.

Directive information typically consists of version, date, and field information. For
example:

#Version: 1.0
#Date: 12-Jul-2008 00:00:00
#Fields: c-ip x-auth-id x-clf-date cs(Host x-req-line sc-status bytes

See http://www.w3.org/TR/WD-logfile.html for further information about
XLF directives.

6. In the XLF Fields section, select an access log field name from the Field name list.

See Table 9–5 for a listing of the supported access logs fields

7. If you selected field cs(header_name), sc(header_name), or
x-cookie(cookie_name), then enter the header or cookie name in the
Header/Cookie name field.

See Table 9–6, Table 9–7, and Table 9–8 for a description of the headers allowed for
cs(header_name) and sc(header_name)

8. Click Add.

9. Perform Steps 6 and 8 for each format you want in the access log, and then use the
Move Up and Move Down buttons to order the fields. The order in which fields
are entered determines the order in which the fields are logged.

Creating a Customized Access Log Rollover Policy

Logging 9-29

10. Click Submit.

9.6 Creating a Customized Access Log Rollover Policy
To modify an existing rollover policy or creating a new rollover policy:

1. From Oracle Web Cache Manager, in the navigator frame, select Logging and
Diagnostics > Access Logs. See Section 2.7.2.

The Access Logs page appears.

2. From the User-Defined Log Rollover Policies table, select an existing policy and
click Edit Selected to modify an existing rollover policy, or click Add to create a
policy.

The Edit/Add Access Log Rollover Policy dialog box appears.

3. In the Policy Name field, enter a unique name for the rollover policy, keeping the
following restrictions in mind:

■ The policy name cannot contain any spaces or special characters other than
underscore (_).

■ The name must be unique among other policy names, log format style names,
and session names.

4. In the Rollover by Time section, select Never, Hourly, Daily, Weekly to specify
how often you want Oracle Web Cache to save current log information to
access_log_file.yyyymmddhhmm and write future log information to a new
log file with the configured log file name.

For Hourly, Daily, and Weekly, you enter a new time in the left-hand side fields
and menus and add it to the schedule by clicking Add. Table 9–11 describes
specific configuration instructions for Hourly, Daily, and Weekly.

If you have a high-volume site, create a daily or hourly policy.

To remove a time from the schedule list, select the time, and then click Remove.
The value moves to the left list, where you can modify it.

See Section 9.8 for instructions on immediately rolling over log files.

Table 9–11 Configuring Rollover By Time

Policy To configure:

Hourly 1. Add a time by entering a value in the Minutes after the hour field.

2. Click Add.

3. From the Time Style list, select either Local or GMT (Greenwich Mean
Time).

Daily 1. Add a time by entering a value in the hours and minutes fields.

2. Click Add.

3. From the Time Style list, select either Local or GMT.

Weekly 1. Add a time by selecting a day of the week, entering a value in the hours and
minutes fields.

2. Click Add.

3. From the Time Style list, select either Local or GMT (Greenwich Mean
Time).

Viewing Event Logs and Access Logs

9-30 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

5. In the Rollover by Size field, enter the maximum size of the log file size at which
rollover occurs. Specify 0 for unlimited size.

6. In the Retention by Time field, specify how long to keep log files before purging
the oldest ones.

In the Every field, enter the quantity and from the list of Hours, Days, Weeks,
Months, Years, select the duration. A quantity of 0 means unlimited time, which
means Oracle Web Cache does not retain files based on time.

7. In the Retention by Size field, enter the total size of all log files before purging
oldest ones. Specify 0 for unlimited size.

This value must be larger than the value you specify for the Rollover Size field.

If neither Retention by Time or Retention by Size is set, then log files can grow
without limits. The log files could end up consuming all available space on the
disk where this file is located.

8. Click Submit.

9.7 Viewing Event Logs and Access Logs
To view events logs you can use either the Fusion Middleware Control or the WLST
listLogs command. See the Oracle Fusion Middleware Administrator's Guide for details
on the various tools for viewing event logs.

To view access logs, use any text editor.

9.8 Rolling Over Event and Access Logs
In addition to configuring event and access log rollover frequency, you can
immediately roll over event and access logs. During the rollover process, Oracle Web
Cache saves current information to lot file and writes future log information to a new
log file with the configured log file name.

To immediately roll over log files:

1. Navigate to the Web Cache Home page. See Section 2.6.2.

2. From the Web Cache menu, select Operations and then On Demand Rollover.

9.9 Using Audit Logs
Oracle Web Cache supports the Common Audit Framework for providing a uniform
system for administering audits across Oracle Fusion Middleware components. The
audit log files generated by Oracle Web Cache processes provide important
information that can help you identify and diagnose potential security performance
and configuration issues.

Oracle Web Cache records the following events in the audit log:

■ Startup and shutdown events

■ Inter-cache communication events, such as:

– Authentication or challenge events

– Subscriber cache insertion to subscriber list (success or failure)

– Invalid address information from subscriber

– Remote or subscriber cache authentication event

Using Audit Logs

Logging 9-31

– Addition or removal of cluster cache member

■ Request authentication events, such as:

– Login to Oracle Web Cache ports

– Denied request due to access control settings or request-filtering rules

– Identity denied to access cached objects

– Invalidation in response containing wrong Web site information

– Client certificate failed

– SSL connection denied because no client certificate was provided

– SSL connection denied because client certificate presented was on the CRL

■ Configuration services, such as:

– Dynamic configuration changes applied

– SSL handshake failed with the origin server

– Authentication with the proxy server failed

For more information, see Oracle Fusion Middleware Security Guide for further
information about using audit logs.

Using Audit Logs

9-32 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

10

Configuring Common Deployment Scenarios 10-1

10 Configuring Common Deployment
Scenarios

This chapter describes how to configure common deployment scenarios using Oracle
Web Cache. It includes the following topics:

■ Section 10.1, "Using Oracle Web Cache In a Common Deployment"

■ Section 10.2, "Using a Cache Hierarchy for a Global Intranet Application"

■ Section 10.3, "Using Oracle Web Cache for High Availability Without a Hardware
Load Balancer"

10.1 Using Oracle Web Cache In a Common Deployment
Figure 10–1 shows Oracle Web Cache in a common Oracle Application Server
configuration. A tier of Oracle Web Cache servers cache content for a tier of
application Web servers. The application Web servers app1-host1 and app1-host2
provide content for site www.app1.company.com, and app2-host provides content
for www.app2.company.com. The two Oracle Web Cache servers reside on
dedicated, fast one or two-CPU computers. To increase the availability and capacity of
a Web site, these servers are configured as either a cache cluster or a failover pair.

Oracle recommends a hardware load balancer to ping each Oracle Web Cache server
on a periodic basis to check the status of the cache.

As a cache cluster, the two Oracle Web Cache servers provide failure detection and
failover. If an Oracle Web Cache server fails, other members of the cache cluster detect
the failure and take over ownership of the cached content of the failed cluster member
and masks any cache failure. Oracle Web Cache maintains a virtual single cache of
content despite a cache failure. The load balancer distributes the incoming requests
among cache cluster members. The cache cluster members process the incoming
requests. For requests that are not stored in the cache, Oracle Web Cache distributes
the requests to an application Web server respective to the site.

As a failover pair, both Oracle Web Cache servers are configured to cache the same
content. When both Oracle Web Cache servers are running, a load balancer distributes
the load among both servers. If one server fails, the other server receives and processes
all incoming requests.

Using Oracle Web Cache In a Common Deployment

10-2 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Figure 10–1 Deploying Oracle Web Cache In a Common Configuration

To configure this topology:

1. Register the IP address of the load balancer with www.app1.company.com and
www.app2.company.com.

2. Configure the load balancer with Oracle Web Cache server host names
webche1-host and webche2-host and configure it to ping each cache server
periodically to check the status of the cache.

3. Configure the load balancer with to ping each Oracle Web Cache server on a
periodic basis with URL /_oracle_http_server_webcache_static_.html,
which is stored in the cache.

4. If configuring a cache cluster, specify webche1-host and webche2-host as
cluster members.

See Section 3.6 for more information on configuring a cache cluster.

Application Servers

webche1-host

Oracle Web Cache Servers
Sites:
www.appl.company.com
www.app2.company.com

webche2-host

appl-host1 appl-host2

Application Servers

app2-host

Network

www.appl.company.com
www.app2.company.comLoad Balancer

HTTP and HTTPS

HTTP and HTTPS Requests for
www.app1.company.com and
www.app2.company.com

HTTP and HTTPS

Database

Using a Cache Hierarchy for a Global Intranet Application

Configuring Common Deployment Scenarios 10-3

5. Configure the Oracle Web Cache servers with the following:

■ Receive HTTP and HTTPS requests on designated listening ports

■ Send HTTP and HTTPS requests to application Web servers app1-host1,
app1-host2, and app2-host on designated listening ports

■ Site definition for www.app1.company.com mapped to app1-host1 and
app1-host2

■ Site definition for www.app2.company.com mapped to app2-host

For more information, see:

■ Section 2.11.1 for instructions about configuring listening ports

■ Section 2.11.2 for instructions about configuring origin server settings

■ Section 2.11.3 for instructions on creating site definitions and site-to-server
mappings

10.2 Using a Cache Hierarchy for a Global Intranet Application
Many Web sites have several data centers. For networks with a distributed topology,
you can deploy Oracle Web Cache at each of the data centers in a distributed cache
hierarchy. Figure 10–2 on page 10-4 shows a distributed topology in which Oracle Web
Cache servers are distributed in offices in the United States and Japan. The application
Web servers are located in the United States office, centralizing the data source to one
geographic location. The central caches in the United States cache content for
application Web servers app1-host1, app2-host2, and app2-host, and the remote
cache in Japan caches content from the central caches.

Clients make requests to local DNS servers to resolve www.app1.company.com and
www.app2.company.com. The local DNS servers are routed to the authoritative DNS
server for the respective sites. The authoritative DNS server uses the IP address of the
client to pick the closest Oracle Web Cache server to satisfy the request. Then, it
returns the IP address of the appropriate Oracle Web Cache server to the client.

Using a Cache Hierarchy for a Global Intranet Application

10-4 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Figure 10–2 Deploying an Oracle Web Cache Hierarchy

To configure this topology:

1. Register the IP address of the load balancer with www.app1.company.com and
www.app2.company.com.

2. Configure the load balancer with Oracle Web Cache server host names
us.webche1-host and us.webche2-host and configure it to ping each cache
server periodically to check the status of the cache.

3. Configure Oracle Web Cache servers us.webche1-host and
us.webche1-host with the following:

■ Receive HTTP and HTTPS requests on designated listening ports

■ Send HTTP and HTTPS requests to application Web servers app1-host1,
app1-host2, and app2-host on designated listening ports

Application Servers

us.webche1-host

Central Oracle Web Cache Servers
Sites:
www.appl.company.com
www.app2.company.com

us.webche2-host

appl-host1 appl-host2

Application Servers

app2-host

Remote Oracle Web
Cache Server

jp.webche-host Network

www.appl.company.com
www.app2.company.comLoad Balancer

HTTP and HTTPS

HTTP and HTTPS Requests for
www.app1.company.com and
www.app2.company.com

HTTP and HTTPS

Database

Using a Cache Hierarchy for a Global Intranet Application

Configuring Common Deployment Scenarios 10-5

■ Site definition for www.app1.company.com mapped to app1-host1 and
app1-host2

■ Site definition for www.app2.company.com mapped to app2-host

4. Configure Oracle Web Cache server jp.webche-host with the following:

■ Receive HTTP and HTTPS requests on designated listening ports

■ Send HTTP and HTTPS requests to application Web servers
us.webche1-host and us.webche2-host on designated listening ports

■ Site definition for www.app1.company.com mapped to app1-host1 and
app1-host2

■ Site definition for www.app2.company.com mapped to app2-host

5. Enable propagation of invalidation messages for each of the caches in the cache
hierarchy:

1. Use a text editor to open webcache.xml, located in:

(UNIX) ORACLE_INSTANCE/<instance_name>/config/WebCache/<webcache_name>
(Windows) ORACLE_INSTANCE\<instance_name>\config\WebCache\<webcache_name>

2. Locate the <INTERCACHE> element, a sub-element of the <SECURITY>
element.

3. Modify the ENABLEINBOUNDICC and ENABLEOUTBOUNDICC attributes to
YES. For example:

<?xml version="1.0" encoding='ISO-8859-1'?>
<CALYPSO ... >
 <VERSION DTD_VERSION="11.1.1.0.0"/>
 <GENERAL>
 <CLUSTER NAME="WebCacheCluster" ... />
 <SECURITY SSLSESSIONTIMEOUT="3600" ... >
 <USER TYPE="INVALIDATION" ... />
 <USER TYPE="MONITORING" ... />
 <SECURESUBNET ALLOW="ALL"/>
 <DEBUGINFO HEADER="YES" ... />
 <HTTPREQUEST MAXTOTALHEADERSIZE="819000" ... />
 <INTERCACHE ENABLEINBOUNDICC="YES" ENABLEOUTBOUNDICC="YES"/>
 </SECURITY>
...

4. Save webcache.xml.

6. Restart the caches in the hierarchy with the following command:

opmnctl restartproc ias-component=component_name

This executable is found in the following directory:

(UNIX) ORACLE_INSTANCE/bin
(Windows) ORACLE_INSTANCE\bin

For more information, see:

■ Section 2.11.1 for instructions about configuring listening ports

■ Section 2.11.2 for instructions about configuring origin server settings

■ Section 2.11.3 for instructions on creating site definitions and site-to-server
mappings

Using Oracle Web Cache for High Availability Without a Hardware Load Balancer

10-6 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

■ Section 7.10.2.2 to understand how invalidation in a hierarchy works

10.3 Using Oracle Web Cache for High Availability Without a Hardware
Load Balancer

You can make Oracle Web Cache highly available without a hardware load balancer by
configuring:

■ Oracle Web Cache solely as a software load balancer of HTTP traffic or reverse
proxy to origin servers

With this option, you configure one or more caches solely to provide load
balancing or reverse proxy support.

■ Operating system load balancing capabilities

With this option, you configure the operating system to load-balance incoming
requests across multiple caches. When the operating system detects a failure of
one caches, automatic IP takeover is used to distribute the load to the remaining
caches in the cluster configuration. This feature is supported on many operating
systems, including Linux, Windows 2000 Advanced Server, Windows 2000
Datacenter Server, and Windows 2003 (all editions).

For more information, see Section 3.8 and Section 3.9 for configuration details.

Part III
Part III Advanced Administration

This part presents information about performing advanced administration tasks for
Oracle Web Cache. It contains the following chapters:

■ Chapter 11, "Caching Dynamic Content with ESI Language Tags"

■ Chapter 12, "Caching with Third-Party Application Servers"

11

Caching Dynamic Content with ESI Language Tags 11-1

11 Caching Dynamic Content with ESI
Language Tags

This chapter describes the Edge Side Includes (ESI) tags provided for content
assembly of dynamic fragments.

ESI is an open specification co-authored by Oracle. Its purpose is to develop a uniform
programming model to assemble dynamic pages in a dynamic content cache deployed
as a surrogate or proxy between clients and origin servers.

ESI is an XML-like markup language that enables dynamic content assembly of
fragments by Oracle Web Cache. A template page is configured with ESI markup tags
that fetch and include dynamic HTML fragments. The fragments themselves can also
contain ESI markup. You can assign caching rules to the template page and HTML
fragments. By enabling page assembly in Oracle Web Cache rather than in the origin
server, you can increase cache hit rates and improve performance.

This chapter includes the following topics:

■ Section 11.1, "Introduction to ESI for Partial Page Caching"

■ Section 11.2, "Enabling Dynamic Assembly of Content and Partial Page Caching"

■ Section 11.3, "Using Inline Invalidation in HTTP Responses"

■ Section 11.4, "ESI Tag Descriptions"

See http://www.esi.org for the ESI language release 1.0 specification.

11.1 Introduction to ESI for Partial Page Caching
Oracle Web Cache provides dynamic assembly of Web pages with both cacheable and
non-cacheable page fragments. It provides for assembly by enabling Web pages to be
divided into fragments of differing caching profiles. These fragments are maintained
as separate elements in the cache. The fragments are assembled into HTML pages as
appropriate when requested by end users.

By enabling dynamic assembly of Web pages on Oracle Web Cache rather than on the
origin servers, you can choose to cache some fragments of assembled pages. With
partial page caching, much more HTML content can be cached, and then assembled
and delivered by Oracle Web Cache when requested. Furthermore, page assembly can
be conditional, based on information provided in HTTP request headers or end-user
cookies.

The basic structure that an application developer uses to create content for
partial-page caching is a template page containing fragments. As depicted in
Figure 11–1, the template consists of common elements, such as a logo, navigation

Introduction to ESI for Partial Page Caching

11-2 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

bars, framework, and other "look and feel" elements of the page. The fragments
represent dynamic subsections of the page.

Figure 11–1 Template Page

The template page is associated with the URL that end users request. To include the
fragments, the template page is configured with ESI markup tags that instruct Oracle
Web Cache to fetch and include the HTML fragments. The fragments themselves are
HTML files containing discrete text or other objects.

Each included fragment is a separate object with its own caching policy. Content
providers may want to cache the template for several days, but only cache a particular
fragment, such as an advertisement or stock quote, for a matter of seconds or minutes.
Other fragments (such as a user's bank account total) may be declared non-cacheable.

Table 11–1 provides a summary of the main ESI tags.

Table 11–1 Summary of ESI Tags

Tag Description

<esi:choose> Performs conditional processing based on Boolean expressions

<esi:comment> Specifies comments not be included in the output

<esi:environment> Allows variable access from an HTTP response

<esi:include> Includes an HTML fragment

<esi:inline> Marks a fragment as a separately cacheable fragment, embedded in
the HTTP response of another object

<esi:invalidate> Specifies an invalidation request within the response of a browser
page

<esi:remove> Specifies non-ESI markup if ESI processing is not enabled

Introduction to ESI for Partial Page Caching

Caching Dynamic Content with ESI Language Tags 11-3

Example 11–1 shows the ESI markup language for the template page shown in
Figure 11–1.

Example 11–1 ESI Markup

<HTML>
<HEAD>
<TITLE>
Company.com
</TITLE>
</HEAD>
<BODY>
...
<!-- The following <esi:comment> tags are removed if this page is processed by an
ESI processor. -->

<!--esi

 <esi:comment text="This is the HTML source when ESI is enabled." />

 <esi:comment text="Start: The quick link section. You cannot use the standard
 HTML comments because the end of that comment tag would disrupt the HTML comment
tag with 'esi' following the two '-'." />

 <esi:comment text="The URI query string parameter 'sessionID' is used to carry
session identifiers, The session ID is encoded in all links." />

 <esi:comment text="'Profile' refers to environment variables stored in
 GetProfile.jsp. GetProfile.jsp enables access to 'PersonalInterest.' 'zipcode,'
 'tickers,' and 'address' environment variables." />

 <esi:environment src="/GetProfile.jsp?sessionID=$(QUERY_STRING{sessionID})"
name="Profile" />

<esi:vars>

 </esi:vars>

<esi:try> Specifies alternate processing when a request fails because the origin
server is not accessible

<esi:vars> Permits variable substitution for environment variables

Table 11–1 (Cont.) Summary of ESI Tags

Tag Description

Introduction to ESI for Partial Page Caching

11-4 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

 <esi:comment text="End: The quick link section" />
...
 <H3>Local Weather</H3>
 <esi:include src="/weather.jsp?sessionID=$(QUERY_
STRING{sessionID})&zipcode=$(Profile{zipcode})" />
...

 <H3>Stock Quotes</H3>
 <esi:try>
 <esi:attempt>
 <esi:include src="/CompanyStock.jsp?sessionID=$(QUERY_
STRING{sessionID})&tickers=$(Profiles{tickers})" />
 </esi:attempt>
 <esi:except>
 The company stock quote is temporarily unavailable.
 </esi:except>
 </esi:try>
...
 <H3>What's New at Company</H3>
 <!-- This section is a static file that does not carry session information -->
 <esi:include src="/whatisnew.html" />

...

 <H3>Today's News</h3>
 <esi:choose>

 <esi:when test="$(Profile{PersonalInterests}) == 'Sports'">
 <H4>Sport News</H4>
 <esi:include src="/SportNews.jsp?sessionID=$(QUERY_STRING{sessionID})" />
 </esi:when>

 <esi:when test="$(Profile{PersonalInterests}) == 'Career'">
 <H4>Financial News</H4>
 <esi:include src="/FinancialNews.jsp?sessionID=$(QUERY_STRING{sessionID})" />
 </esi:when>

 <esi:otherwise>
 <H4>General News</H4>
 <esi:include src="/DefaultNews.jsp?sessionID=$(QUERY_STRING{sessionID})" />
 </esi:otherwise>

 </esi:choose>

...

-->

<!-- This is the HTML source when ESI is disabled. -->
<esi:remove>
Alternative HTML source that does not use ESI goes here. This tag enables you
to disable ESI on the fly without redeveloping or redeploying a different version
 of the page.
</esi:remove>
...
</BODY>
</HTML>

Example 11–2 shows the XML response of GetProfile.jsp, which provides access
to profile environment variables.

Introduction to ESI for Partial Page Caching

Caching Dynamic Content with ESI Language Tags 11-5

Example 11–2 GetProfile.jsp XML Response

<?xml version=1.0?>
<esi:environment esiversion="ORAESI/9.0.4">
 <PersonalInterests>Sports</PersonalInterests>
 <zipcode>94065</zipcode>
 <tickers>ORCL,YHOO</tickers>
 <address>500 Oracle Parkway, Redwood Shores, CA 94065</address>
</esi:environment>

11.1.1 ESI Features
ESI can be used with HTML, XML, JSP, ASP, and any Web programming technology.
The ESI language includes the following features:

■ Inclusion

An ESI processor assembles HTTP or HTTPS fragments of dynamic content,
retrieved from the network, into aggregate pages to output to the user. Each
fragment can have its own caching rules.

■ Support of variables

ESI supports the use of variables based on HTTP request attributes, as well as
custom variables from included HTML fragments. Variables can be used by ESI
statements during processing or can be output directly into the processed markup.

■ Conditional processing

ESI allows use of Boolean comparisons for conditional logic in determining how
pages are processed.

■ Error handling and alternative processing

Some ESI tags support specification of a default resource or an alternative
resource, such as an alternate Web page, if the primary resource cannot be found.
Further, it provides an explicit exception-handling statement block.

■ Character set conversion

ESI fragments in different character sets are converted to one character set. This
way, all partial pages are assembled in a fixed character set. Character set
conversion works in the following manner:

1. Oracle Web Cache receives a request for a template page.

2. Oracle Web Cache fetches the fragments, and converts all of the fragments to
the template's character set. The default character set is ISO-8859-1.

Oracle Web Cache does not perform character set conversion for non-ESI pages.

■ XML conversion to HTML

Oracle Web Cache uses XSL Transformations (XSLT) to transform XML fragments
into HTML.

11.1.1.1 ESI for Java (JESI)
Oracle Web Cache provides the JESI tag library as a convenient interface to ESI tags
and functionality. In addition, you can deploy the JESI tag library on Oracle WebLogic
Server. Developers have the option of using ESI tags directly in any Web application,
but JESI tags provide additional convenience in a JSP environment.

Because ESI and JESI are open standards, you can use the JESI tag library in any
standard JSP environment if an ESI processor, such as Oracle Web Cache, is available.

Introduction to ESI for Partial Page Caching

11-6 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Even though JSP developers can always use ESI, JESI provides an even easier way for
JSP developers to express the modularity of pages and the cacheability of those
modules, without requiring developers to learn a new syntax.

For further information about using JESI with Oracle WebLogic Server, see:

http://www.oracle.com/technology/sample_
code/tech/java/codesnippet/webcache/index.html

11.1.2 ESI Language Elements in the Surrogate-Control Response Header
Oracle Web Cache supports the ESI language tags, elements, and attributes listed in
Table 11–2. The rightmost column specifies, for each ESI tag, attribute, or element, all
the feature sets that support it. For example, the <esi:invalidate> tag is only
supported by the "ESI-INV/1.0" feature set. To enable the correct processing in
Oracle Web Cache, specify all the feature sets that an ESI template uses in the
content control directive of the Surrogate-Control response header. However,
you do have to specify features sets used within an ESI fragment directly or indirectly
included in the template. For example, if an ESI template uses an
<esi:invalidate> and an <esi:environment> tag with an <esi:log> element,
the content control directive must include "ESI-INV/1.0" and "ORAESI/9.0.4",
as follows:

Surrogate-Control: content="ESI-INV/1.0 ORAESI/9.0.4"

See Section 6.10 for further information about configuring the Surrogate-Control
response header.

Table 11–2 ESI Language Features

ESI Language Feature See Also

content="value" Control Directive in
Surrogate-Control Response Header
Supporting Feature

<esi:choose> | <esi:when> |
<esi:otherwise> tags

Section 11.4.1 "ORAESI/9.0.4"

"ORAESI/9.0.2"

"ESI/1.0"

<esi:comment> tag Section 11.4.2 "ORAESI/9.0.4"

"ORAESI/9.0.2"

"ESI/1.0"

<esi:environment> tag Section 11.4.3 "ORAESI/9.0.4"

"ORAESI/9.0.2"

<esi:include> tag Section 11.4.4 "ORAESI/9.0.4"

"ORAESI/9.0.2"

"ESI/1.0"

<esi:environment> tag and
<esi:include> tag attributes and
elements

alt attribute Section 11.4.4 "ORAESI/9.0.4"

"ESI/1.0"

max-age attribute Section 11.4.4

Section 11.4.3

"ORAESI/9.0.4"

"ORAESI/9.0.2"

onerror attribute Section 11.4.4 "ORAESI/9.0.4"

"ORAESI/9.0.2"

"ESI/1.0"

Introduction to ESI for Partial Page Caching

Caching Dynamic Content with ESI Language Tags 11-7

See http://www.esi.org/spec.html for the ESI Language Specification 1.0 and the
Edge Architecture Specification.

src attribute Section 11.4.4 "ORAESI/9.0.4"

"ORAESI/9.0.2"

"ESI/1.0"

timeout attribute Section 11.4.4

Section 11.4.3

"ORAESI/9.0.4"

"ORAESI/9.0.2"

<esi:log> element Section 11.4.4

Section 11.4.3

"ORAESI/9.0.4"

<esi:request_header> element Section 11.4.4

Section 11.4.3

"ORAESI/9.0.4"

"ORAESI/9.0.2"

<esi:request_body> element Section 11.4.4

Section 11.4.3

"ORAESI/9.0.4"

"ORAESI/9.0.2"

<esi:inline> tag Section 11.4.5 "ORAESI/9.0.4"

"ORAESI/9.0.2"

"ESI-Inline/1.0"

"ESI/1.0"

name attribute Section 11.4.5 "ORAESI/9.0.4"

"ORAESI/9.0.2"

"ESI-Inline/1.0"

"ESI/1.0"

fetchable attribute Section 11.4.5 "ORAESI/9.0.4"

"ORAESI/9.0.2"

"ESI-Inline/1.0"

"ESI/1.0"

max-age attribute "ESI inline Tag" on page 11-44 "ORAESI/9.0.4"

"ORAESI/9.0.2"

timeout attribute "ESI include Tag" on page 11-40

"ESI environment Tag" on page 11-37

"ORAESI/9.0.4"

"ORAESI/9.0.2"

<esi:invalidate> tag "ESI invalidate Tag" on page 11-45 "ESI-INV/1.0"

<esi:remove> tag "ESI remove Tag" on page 11-46 "ORAESI/9.0.4"

"ORAESI/9.0.2"

"ESI/1.0"

<esi:try> | <esi:attempt> |
<esi:except> tags

"ESI try | attempt | except Tags" on
page 11-46

"ORAESI/9.0.4"

"ORAESI/9.0.2"

"ESI/1.0"

<esi:vars> tag "ESI vars Tag" on page 11-49 "ORAESI/9.0.4"

"ORAESI/9.0.2"

"ESI/1.0"

<!--esi...---> tag "ESI <!--esi-->Tag" on page 11-51 "ORAESI/9.0.4"

"ORAESI/9.0.2"

"ESI/1.0"

Table 11–2 (Cont.) ESI Language Features

ESI Language Feature See Also

content="value" Control Directive in
Surrogate-Control Response Header
Supporting Feature

Introduction to ESI for Partial Page Caching

11-8 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

11.1.3 About the Surrogate-Control Response Header and Surrogate-Capability
Request Header for Cached Objects

To enable Oracle Web Cache to process ESI tags, you set an HTTP
Surrogate-Control response-header field in the HTTP response message of the
pages that use ESI tags.

Surrogate-Control: content="ESI-INV/1.0 ORAESI/9.0.4"

For each requested object from the cache, Oracle Web Cache appends a
Surrogate-Capability request-header field to an object's HTTP request message.
The Surrogate-Capability request-header serves the following purposes:

■ Enables applications to detect Oracle Web Cache

■ Identifies the types of ESI operations that Oracle Web Cache can perform

The Surrogate-Capability request-header enables Oracle Web Cache to identify
the operations it can perform to origin servers acting as caches. The
Surrogate-Capability request-header field supports the following syntax:

Surrogate-Capability: orcl="operation_value operation_value ..."

where "operation_value" is one or more of the following:

■ "ORAESI/9.0.4" to process ESI tags with Oracle-proprietary additions for
content assembly and partial page caching. "ORAESI/9.0.4" supports all the ESI
tags provided by Oracle Web Cache in 10g (9.0.4) and later releases.

■ "ORAESI/9.0.2" to process ESI tags with Oracle proprietary additions for
content assembly and partial page caching. "ORAESI/9.0.2" supports all the ESI
tags provided by Oracle Web Cache in Release 2 (9.0.2 and 9.0.3).

■ "ESI/1.0" to process standard ESI tags for content assembly and partial page
caching

■ "ESI-Inline/1.0" to process <esi:inline> tags

■ "ESI-INV/1.0" to process <esi:invalidate> tags

■ "webcache/1.0" to process the <!-- WEBCACHETAG--> and
<!-- WEBCACHEEND--> tags for personalized attributes

The values "ORAESI/9.0.2", "ESI/1.0", and "ESI-Inline/1.0" are subsets of
"ORAESI/9.0.4". For this release, you specify only "ORAESI/9.0.4" for ESI
assembly, "ESI-INV/1.0" for inline invalidation, or "webcache/1.0" for
personalized attributes.

See Table 11–3 or further information about the ESI tags supported for each
operation_value.

11.1.4 Syntax Rules
ESI elements and attributes adhere to XML syntax but can be embedded in other
objects, such as HTML or XML objects. When Oracle Web Cache processes the page,
the ESI elements themselves are stripped from the output.

ESI syntax generally adheres to XML syntax rules. Keep the following in mind when
using the tags:

■ ESI tags and attributes are case sensitive.

They are generally lowercase.

Introduction to ESI for Partial Page Caching

Caching Dynamic Content with ESI Language Tags 11-9

■ Supported CGI environment variables are case sensitive.

They are generally uppercase.

■ ESI does not support the use of whitespace next to the equal sign (=) or between
the "<" and "esi:"

The following shows an invalid construction:

<esi:include src = "www.foo.com"/>

The following shows the correct form:

<esi:include src="www.foo.com"/>

11.1.5 Nesting Elements
As shown in Example 11–3, an ESI tag can contain nested ESI elements and other
HTML markup.

Example 11–3 Nested ESI Elements

<esi:choose>
 <esi:when test="$(HTTP_HOST) == 'www.company.com'">
 <esi:include src="/company.html" />
 <h4>Another</h4>
 <esi:include src="/another.html" />
 </esi:when>
 <esi:when test="$(HTTP_COOKIE{fragment) == 'First Fragment'">
 <esi:try>
 <esi:attempt>
 <esi:include src="/fragment1.html" />
 </esi:attempt>
 <esi:except>
 <esi:choose>
 <esi:when test="$(HTTP_COOKIE{otherchoice}) == 'image'" >

 </esi:when>
 <esi:otherwise>
 The fragment is unavailable.
 </esi:otherwise>
 </esi:choose>
 </esi:except>
 </esi:try>
 </esi:when>
 <esi:otherwise>
 The default selection.
 </esi:otherwise>
</esi:choose>

11.1.6 Variable Expressions
ESI supports the HTTP request variables and environment variables used with the
<esi:environment> tag.

This section contains the following topics:

■ Section 11.1.6.1, "Variable Usage"

■ Section 11.1.6.2, "Variable Default Values"

■ Section 11.1.6.3, "HTTP Request Variables"

Introduction to ESI for Partial Page Caching

11-10 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

See Section 11.4.3 for instructions on including custom variables

11.1.6.1 Variable Usage
To refer to a variable, prefix it with a dollar sign and surround the variable name with
parentheses:

$(VARIABLE_NAME)

For example:

$(HTTP_HOST)

Variables are accessed by a key as follows:

$(VARIABLE_NAME{key})

To access a variable's substructure, append the variable name with braces containing
the key which is being accessed. For example:

$(HTTP_COOKIE{username})

The key is case sensitive and optional. If a key is not specified, the environment
variable returns the whole content of the environment fragment. Oracle advises
specifying an environment variable without a key only for testing whether the
environment is empty. In the following ESI markup, $(logindata) is a variable that
is evaluated against a null value:

<esi:environment src="/getlogindata" name="logindata"/>
<esi:include src="/login/$(logindata{account})"/">
<esi:choose>
 <esi:when test="$(logindata) != null">
 <esi:include src="/login/$(logindata{account})"/>
 </esi:when>
 <esi:otherwise>
 <esi:include src="/login/guest.html"/>
 <esi:otherwise>
</esi:choose>

11.1.6.2 Variable Default Values
You can use the logical OR (|) operator to specify a default value in the following
form:

$(VARIABLE|default)

A variable takes the default value only when the variable or its key does not exist. If it
evaluates to an empty string, the empty string is returned, not the default value.

The following example results in Oracle Web Cache fetching
http://example.com/default.html if the cookie id is not in the request:

<esi:include src="http://example.com/$(HTTP_COOKIE{id}|default).html"/>

As with other literals, if whitespace must be specified, the default value must be
single-quoted. For example:

$(HTTP_COOKIE{first_name}|'new user')

Note: HTTP_HOST and HTTP_REFERER do not support default
values.

Introduction to ESI for Partial Page Caching

Caching Dynamic Content with ESI Language Tags 11-11

11.1.6.3 HTTP Request Variables
Table 11–3 on page 11-11 lists the HTTP request variables supported by ESI. Note the
following:

■ Except for QUERY_STRING, the values for the variables are taken from HTTP
request-header fields. In the case of QUERY_STRING, the value is taken from either
the HTTP request body or the URL.

■ Variables are only interpreted when enclosed within ESI tags.

■ Variables with a substructure type of List or Dictionary are accessed by a key.

■ Variables identified with a substructure type of Dictionary make access to strings
available through their appropriate keys.

■ Dictionary keys are case sensitive.

■ Variables identified with a substructure type of List return a Boolean value
depending on whether the requested value is present.

Table 11–3 HTTP Request Variables Supported by ESI

Variable Name HTTP Header Field

Substructure
Type/Variable
Type Description Example

$(HTTP_ACCEPT_
LANGUAGE{language})

Accept-Language
request-header field

Specifies the set of
languages that are preferred
as a response. The language
is used as the key.

List/Boolean Specifies the
language to use as
the key and
evaluates to the
language specified
in the HTTP request
header

Variable Setting:

$(HTTP_LANGUAGE{en-gb})

HTTP Request Header
Contains:

Accept_Language:en-gb

Result: Returns en-gb.

$(HTTP_
COOKIE{cookie})

Set-Cookie
response-header field or
Cookie request-header
field

Specifies cookie name and
value pairs. A cookie name
is used as the key.

If the Cookie
request-header and
Set-Cookie
response-header have
different values for the
same cookie name, the
name value pair from the
Set-Cookie response
header is used.

Dictionary/
String

Specifies the cookie
name to use as the
key and returns that
cookie's value

Variable Setting:

$(HTTP_COOKIE{visits})

HTTP Request Header
Contains:

Cookie:visits=42

Result: Returns 42.

$HTTP_
HEADER{header})

Any HTTP request header Dictionary/
String

Specifies an HTTP
request header
name to use as the
key and returns that
header's value

Variable Setting:

$(HTTP_HEADER{Referer})

HTTP Request Header
Contains:

Referer:
http://www.company.com:
80

Result: Returns

http://www.company.com:
80

Introduction to ESI for Partial Page Caching

11-12 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

$HTTP_HOST Host request-header field

Specifies the host name and
port number of the
resource. Port 80 is the
default port number.

Not
Applicable/
String

Returns the value of
the HOST header

Variable Setting:

$(HTTP_HOST)

HTTP Request Header
Contains:

Host:http://www.company
.com:80

Result: Returns

http://www.company.com:
80

$HTTP_REFERER Referer request-header
field

Specifies the URL of the
reference resource

Not
Applicable/
String

Returns the value of
the REFERER
header

Variable Setting:

$(HTTP_REFERER)

HTTP Request Header
Contains:

Referer:
http://www.company.com:
80

Result: Returns

http://www.company.com:
80

$(HTTP_USER_
AGENT{browser})

$HTTP_USER_
AGENT{version})

$HTTP_USER_
AGENT{os})

User-Agent
request-header field

Specifies the Web browser
type, browser version, or
operating system that
initiated the request.

Dictionary/
String

Specifies one of
three keys:
browser for
browser type,
version for
browser version,
and os for
operating system

Variable Setting:

$(HTTP_USER_
AGENT{browser})

HTTP Request Header
Contains:

User-Agent:Mozilla/4.0
(compatible, MSIE 5.5,
Windows)

Result: Returns MSIE

$(HTTP_USER_
AGENT{version})

Result: Returns 4.0.

$(HTTP_USER_AGENT{os})

Result: Returns Windows

$(QUERY_
STRING{parameter})

Not Applicable Dictionary/
String

Given a parameter
name in a query
string, returns the
value of the
parameter without
URL encoding. The
query string can be
in an URL or a
request body.

See Also:
http://www.rfc-
editor.org/ for
further information
about URL
encoding.

Variable Setting:

$(QUERY_STRING{CEO})

Query Request Contains:

CEO=Jane%20Doe&CFO=John
%20Doe

Result: Returns the value of
fullname decoded. In this
example, CEO returns a value of
Jane Doe.

Table 11–3 (Cont.) HTTP Request Variables Supported by ESI

Variable Name HTTP Header Field

Substructure
Type/Variable
Type Description Example

Introduction to ESI for Partial Page Caching

Caching Dynamic Content with ESI Language Tags 11-13

11.1.7 Exceptions and Errors
ESI uses several mechanisms to handle exceptions encountered during an ESI
fragment request. In a given situation, you can make use of all mechanisms
simultaneously, or use one at a time, depending on the business logic you are
developing.

The first mechanism is found in the ESI language, which provides three specific
elements for fine-grain control over content assembly in error scenarios:

■ The alt attribute of the <esi:include> tag

■ The onerror attribute of the <esi:include> tag

■ The try |attempt |except block

■ Default page for the fragment

When the fragment specified for the src attribute of the <esi:include> tag cannot
be fetched, the fragment specified with the alt attribute is used as an alternative. If

$(QUERY_STRING) Not Applicable Not
Applicable/
String

Specifies to return
the entire query
string encoded

Variable Setting:

$(QUERY_STRING)

Query Request Contains:

CEO=Jane%20Doe&CFO=John
%20Doe

Result: Returns the entire query
string encoded:

CEO=Jane%20Doe&CFO=John
%20Doe

$(QUERY_STRING_
ENCODED{parameter})

Not Applicable Dictionary/
String

Given a parameter
name in a query
string, returns the
value of the
parameter with
URL encoding. The
query string can be
in an URL or a
request body.

Variable Setting:

$(QUERY_
STRING{fullname})

Query Request Contains:

fullname=Jane%20Doe

Result: Returns the value of
fullname encoded:

Jane%20Doe

$(QUERY_STRING_
ENCODED)

Not Applicable Not
Applicable/
String

The same as
$(QUERY_STRING)

Variable Setting:

$(QUERY_STRING_ENCODED)

Query Request Contains:

fullname=Jane%20Doe

Result: Returns the entire query
string encoded:

fullname=Jane%20Doe

$(QUERY_STRING_
DECODED{parameter})

Not Applicable Dictionary/
String

The same as
$(QUERY_
STRING{paramete
r})

Variable Setting:

$(QUERY_STRING_
DECODED{CEO})

Query Request Contains:

fullname=Jane%20Doe

Result: Returns the value of
fullname decoded. In this
example, fullname returns a
value of Jane Doe.

Table 11–3 (Cont.) HTTP Request Variables Supported by ESI

Variable Name HTTP Header Field

Substructure
Type/Variable
Type Description Example

Introduction to ESI for Partial Page Caching

11-14 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

the alt attribute is not used or the fragment cannot be fetched, the onerror attribute
is used. The onerror attribute is used before the try |attempt |except block. If
the try |attempt |except block does not exist, the exception handling is
propagated to the parent or template page. If all the ESI language controls fail, Oracle
Web Cache displays a default page for the fragment.

See the following sections:

■ Section 11.4.4, "ESI include Tag"

■ Section 11.4.8, "ESI try | attempt | except Tags"

■ Section 2.11.6, "Task 6: Configure Error Pages"

11.1.8 About Fragmentation with the Inline and Include Tags
The <esi:inline> and <esi:include> tags enable applications to adopt ESI page
fragmentation and assembly. The following sections describe the tags and explain
when the tags are appropriate to use.

■ Section 11.1.8.1, "Using Inline for Non-Fetchable Fragmentation"

■ Section 11.1.8.2, "Using Inline for Fetchable Fragmentation"

■ Section 11.1.8.3, "Using Include for Fragmentation"

■ Section 11.1.8.4, "Selecting the Fragmentation Mechanism for Your Application"

11.1.8.1 Using Inline for Non-Fetchable Fragmentation
Most existing applications are only designed to output an entire Web page to HTTP
requests. These fragments and templates are non-fetchable, meaning they are not to be
fetched independently from the origin server. If a cache needs any of these fragments
or templates, the corresponding full Web page must be requested. To use ESI page
assembly for non-fetchable fragments, an application can output the full page
response just as it does normally, with the exception that at the beginning and the end
of each fragment, an <esi:inline> tag is inserted with a fragment name to
demarcate the fragment. Oracle Web Cache stores the enclosed portions as separate
fragments and the original page as a page template without the enclosed fragments.
Fragments are shared among templates if their names are identical and they are from
the same site.

Example 11–4 shows a simple <esi:inline> example. The HTML table enclosed by
the <esi:inline> tag is the fragment content. The area preceding <esi:inline
name="/news101"> and the area following </esi:inline> form the page
template. If another page contains an <esi:inline> tag with the same name
"/news101", the two fragments logically share the same content.

Example 11–4 Inline Non-Fetchable Example

<HTML>
...
<esi:inline name="/news101">
<TABLE>
...
</TABLE>
</esi:inline>
...
</HTML>

Introduction to ESI for Partial Page Caching

Caching Dynamic Content with ESI Language Tags 11-15

When an application uses non-fetchable <esi:inline> fragments, the full page must
be requested for every cache miss. At first, it can appear that there is no apparent cache
benefit for cache misses. However, non-fetchable <esi:inline> fragments improves
overall caching by:

■ Increasing the cache hit ratio

Because shared fragments can be extracted into separate fragments, the size of the
dynamic portion is reduced. A reduced space requirement results in a higher cache
hit ratio than full page caching.

■ Reducing cache update frequency

Dynamic shared fragments require only one update. For example, a shared stock
market fragment may expire much more frequently than any other parts of the
page. With <esi:inline> fragmentation, only one cache update of any full page
containing this fragment is enough to bring all full pages sharing this fragment
current. Therefore, even non-fetchable <esi:inline> fragments can significantly
reduce cache update frequency. The cost reduction is proportional to the degree of
sharing.

To invalidate non-fetchable fragments, you must invalidate both the template object
and the non-fetchable fragments to ensure the fragments are invalidated.

11.1.8.2 Using Inline for Fetchable Fragmentation
<esi:inline> fragments are by default non-fetchable. If an application supports
independently fetchable fragments, it is possible to use the <esi:inline> for
fetchable fragments by setting the fetchable attribute to yes.

Example 11–5 shows an <esi:inline> example with a fetchable fragment named
/news101. A request for the page returns the template page and the fetchable
fragment.

Example 11–5 Inline Fetchable Example

<HTML>
...
<esi:inline name="/news101" fetchable="yes">
<TABLE>
...
</TABLE>
</esi:inline>
...
</HTML>

See Section 11.1.8.2 for further information about the fetchable attribute.

11.1.8.3 Using Include for Fragmentation
The <esi:include> tag is another way to define fragments and templates in an
HTTP output for dynamic content caching and assembly. It is in many ways similar to
the <esi:inline> tag. It defines a name for the defined fragment. The page
including an <esi:include> tag is a template that references the defined fragment.
However, it also has some key differences which make its applicable scenarios very
different from those of <esi:inline>:

■ An <esi:include> tag in a template only defines the reference to a fragment.

Introduction to ESI for Partial Page Caching

11-16 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

It does not enclose an embedded fragment directly in the template. As a result, a
template with <esi:include> tags can be applied to multiple users. In contrast,
a template with embedded <esi:inline> tags must be unique to each user.

■ A fragment referenced by an <esi:include> tag must always be independently
fetchable by HTTP or HTTPS.

The requested URL equals the fragment name. In contrast, an <esi:inline>
tag's name only identifies the uniqueness of the fragment and is not used to fetch
the actual content. The attribute defining the fragment name in <esi:include>
fragment is src instead of name.

There are at least two scenarios where using <esi:include> tags is beneficial:

■ Some applications, such as a Web portal, naturally assemble content from external
sources. The application only provides a template that is used to fetch various
fragments from third-party sources. In this case, the <esi:include> tags fetch
and assemble directly, reducing one layer of redundancy.

■ Some applications offer faster responses for template-only requests than full-page
requests that use <esi:inline> tags. If <esi:include> is used for page
fragmentation and assembly, Oracle Web Cache can miss only on the templates
when most or all fragments are already cached, saving effective cache miss cost. In
many cases, it is also valuable to cache the personalized templates because these seldom
change.

Example 11–1 on page 11-3 shows ESI markup with <esi:include> tags.

11.1.8.4 Selecting the Fragmentation Mechanism for Your Application
Although both <esi:include> and <esi:inline> enable Oracle Web Cache to
fetch fragments for the client browser, <esi:include> is more robust for performing
this task and provides an easy way in which to manage fragments. Because
<esi:include> affects the application flow, it is best to incorporate
<esi:include> early in the design phase of an application. For an existing
application, <esi:inline> is better mechanism because it requires minimal change
to your application.

11.1.9 Referer Request-Header Field
When Oracle Web Cache receives a client request for a template page with a Referer
request-header field, it forwards the request with the Referer request header to the
origin server. In turn, the origin server returns fragments to Oracle Web Cache with
the URL of the template as the value for the Referer header. This functionality
associates the fragment request with the template request.

11.1.10 Cookie Management for Template Pages and Fragments
Session cookie establishment for ESI templates and fragments works much the same
way as typical Oracle Web Cache objects with the following additional features:

■ Cookie request-header field inheritance

When a client requests an ESI template page that includes fragments, requests for
fragment pages are generated in Oracle Web Cache. A fragment request inherits
the Cookie request-header field from the template request if the value of the
Host request-header field matches the value of Host request-header field in the
template request.

■ Set-Cookie response-header field accumulation

Enabling Dynamic Assembly of Content and Partial Page Caching

Caching Dynamic Content with ESI Language Tags 11-17

When assembly of fragments is complete, Oracle Web Cache includes a
Set-Cookie response-header field in the response with the cookie information
from the template. For those fragments with a Host request-header field that
matches the Host request-header field in the template, Oracle Web Cache also
accumulates the Set-Cookie response-header fields with that of the template.
For those fragments with a Host request-header field that does not match the
Host request-header field in the template, Oracle Web Cache does not accumulate
the Set-Cookie response-header field with that of the template and other
matching fragments.

See Section 11.1.6 for a description of how you can use the HTTP_COOKIE variable in
ESI markup.

11.2 Enabling Dynamic Assembly of Content and Partial Page Caching
For an overview of partial page caching, see Section 11.1.

This section describes how to enable dynamic assembly of Web pages with fragments
and how to create rules for the cacheable and non-cacheable page fragments. It
contains the following topics:

■ Section 11.2.1, "Enabling Partial Page Caching"

■ Section 11.2.2, "Using ESI for Simple Personalization"

■ Section 11.2.3, "Examples of ESI Usage"

11.2.1 Enabling Partial Page Caching
To enable partial page caching:

1. Configure the template page as follows:

a. Use ESI markup tags in the template to fetch and include the fragments.

b. In the template page, configure the HTTP response with the
Surrogate-Control response-header field. For example:

Surrogate-Control: max-age=30+60, content="ORAESI/9.0.4"

c. If the Surrogate-Control response-header field does not include all the
caching attributes required for the template page, create a caching rule for the
page.

2. Configure the fetchable fragments:

■ Use a Surrogate-Control response-header field in the HTTP response
message.

■ If the Surrogate-Control response-header field does not include all the
caching attributes required for the fragment, create a caching rule for the
fragment.

For more information, see:

Important: ESI tags cannot be used on a page that contains <!--
WEBCACHETAG--> and <!-- WEBCACHEEND--> tags. If you require
simple personalization and are using ESI, see Section 11.2.2, "Using
ESI for Simple Personalization".

Enabling Dynamic Assembly of Content and Partial Page Caching

11-18 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

■ Section 11.4 for further information about ESI markup tags

■ Section 6.10 for further information about configuring the Surrogate-Control
response-header field

■ Section 6.8 for further information about configuring caching rules

11.2.2 Using ESI for Simple Personalization
You can use variable expressions for simple personalization.

For example, the following HTML substitutes a user's name based on the value the
client browser passes with username cookie. In addition, the session information
contained within the sessionID cookie is used to replace session information for one
user with another user.

The same effect is achieved with the following ESI markup:

<esi:vars>
 Welcome $(HTTP_COOKIE{'username'})!
 Here is a <A HREF="/jsp/myPage.jsp?sessionID=$(QUERY_
STRING{'sessionid'})">link.
</esi:vars>

The <esi:vars> tag enables you to use an ESI environment variable outside of an
ESI tag. You can also use variables with other ESI tags.

See the following sections:

■ Section 11.1.6, "Variable Expressions"

■ Section 11.4.9, "ESI vars Tag"

11.2.3 Examples of ESI Usage
This section provides examples of ESI usage in the following topics:

■ Section 11.2.3.1, "Example of a Portal Site Implementation"

■ Section 11.2.3.2, "Example of Simple Personalization with Variable Expressions"

11.2.3.1 Example of a Portal Site Implementation
Figure 11–2 shows a portal site response page,
http://www.company.com/servlet/oportal?username=Mark, for a registered
user named Mark.

Enabling Dynamic Assembly of Content and Partial Page Caching

Caching Dynamic Content with ESI Language Tags 11-19

Figure 11–2 Portal Site Page

This page is assembled by Oracle Web Cache. A template page configured with ESI
markup tags for a personalized greeting, weather, stocks, promotional advertisement,
news, and sports fragments is assembled based on Mark's preferences. For example,
because Mark chose San Francisco weather, the application looks up San Francisco
weather information and puts it into the final full HTML page output. Because of its
dynamic content, this page would not be cacheable. On the other hand, with ESI
markup tags, Oracle Web Cache assembles and caches most of the content.

The following sections describe how the template page and its fragments are
implemented using <esi:inline> and <esi:include> tags:

■ Section 11.2.3.1.1, "Portal Example Using inline Tags"

■ Section 11.2.3.1.2, "Portal Example Using Include Tags"

11.2.3.1.1 Portal Example Using inline Tags

This section describes how <esi:inline> tag fragmentation and assembly can
drastically increase the value of dynamic content caching for pages that do not contain
real-time elements. It shows how to apply the <esi:inline> tag for an existing
application that supports non-fetchable fragments. The <esi:inline> tag helps
reduce space consumption and improves cache hit ratios by isolating the dynamic
content.

Note: If an application supports independently fetchable fragments,
it is possible to use the <esi:inline> for fetchable fragments by
setting the fetchable attribute to yes. See Section 11.4.5 for further
information about the fetchable attribute.

Enabling Dynamic Assembly of Content and Partial Page Caching

11-20 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

To use the <esi:inline> tag, the logical fragments in portal.esi are marked with
the <esi:inline> tags. The personalized greeting, Weather Forecast, My Stocks,
Promotion campaign, Latest News, and Latest Sports News naturally become
fragments because they have individual caching properties and can be shared. The My
Stock fragment is further broken down into five sub-fragments, one for each stock
quote. In addition, to achieve the maximum fragment sharing, the common HTML
code sections between each two personalized fragments are also enclosed as ESI
fragments and are given constant names, so that the varying template contains as little
common data as possible.

Example 11–6 shows portal.esi with <esi:inline> tags.

Example 11–6 portal.esi with inline Tags

<esi:inline name="/Common_Fragment_1" >
<!-- First common fragment -->
<HTML>
...
<!-- Personalized Greeting With ESI variable -->
 Welcome, $(QUERY_STRING{username})!
</esi:inline>

<esi:inline name="/Weathers_San_Francisco" >
...
<!-- Personalized Weather Forecast -->
Weather Forecast for San Francisco
<TABLE>
 <TR>
 <TD>
 Currently: 50F
 </TD>
 </TR>
</TABLE>
</esi:inline>

<esi:inline name="/Common_Fragment_2" >
<!-- Second common fragment -->
...
</esi:inline>

<esi:inline name="/Stocks_$(QUERY_STRING{username})" >
<!-- Personalized Stock Quote Selections -->
<TABLE>
 <TR>
 <TD>
 <esi:inline name="/ticker_IBM">
 IBM 84.99
 </esi:inline>

 <esi:inline name="/ticker_ORCL">
 ORCL 13.379
 </esi:inline>

 <esi:inline name="/ticker_YHOO">
 YHOO 27.15
 </esi:inline>
 <TD>
 </TR>
</TABLE>
</esi:inline>

Enabling Dynamic Assembly of Content and Partial Page Caching

Caching Dynamic Content with ESI Language Tags 11-21

<esi:inline name="/Common_Fragment_3">
<!-- Third common fragment -->
...
</esi:inline>

<esi:inline name="/ExternalAdvertisement">
<!-- External Advertisement -->
<TABLE>
 <TR>
 <TD>

 </TD>
 </TR>
</TABLE>
</esi:inline>

<esi:inline name="/Common_Fragment_4">
<!-- Fourth common fragment -->
...
</esi:inline>

<esi:inline name="/Top_News_Finance">
<!-- Personalized Top News -->
Latest News for finance
<TABLE>
 <TR>
 Tech Spending Growth Indexes Little Changes
 Home Sales Hit Record High
 Gas Prices Dip Again
 </TR>
</TABLE>
</esi:inline>

<esi:inline name="/Sports_News_Soccer" >
<!-- Personalized Sports News -->
Latest Sports News for Soccer

<TABLE>
 <TR>
 Preparation for World Cup
 Youth Cup game on a Sunday
 Latest Scores
 </TR>
</TABLE>
</esi:inline>

<esi:inline name="/Common_Fragment_5" >
...
</esi:inline>

Example 11–7 shows the markup for the personalized greeting. The fragment is
common to all personalized pages belonging to different users. Because the
<esi:inline> tag assigns this fragment a constant name, a different user, such as
John, would have the same fragment in his template with the same fragment name.
Two fragments are shared if and only if their names are identical. This way, the same
shared fragment in all templates only need a single update when it expires or is
invalidated. $(QUERY_STRING{username}) is an ESI environment variable that

Enabling Dynamic Assembly of Content and Partial Page Caching

11-22 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

provide access to value of the username. This variable is used here because this
application uses the username query string parameter to pass along the user's name.
By using this variable, the first fragment becomes common to all users.

Example 11–7 portal.esi Example with inline Tags: Personalized Greeting

<esi:inline name="/Common_Fragment_1" >
<!-- First common fragment -->
<HTML>
...
<!-- Personalized Greeting With ESI variable -->
 Welcome, $(QUERY_STRING{username})!
</esi:inline>

Example 11–8 shows the markup for Weather Forecast. The fragment is unique to each
city. Every template selecting the same city would share this fragment with Mark's
page due to the fragment naming.

Example 11–8 portal.esi Example with inline Tags: Weather Forecast

<esi:inline name="/Weathers_San_Francisco" >
<!-- Personalized Weather Forecast -->
Weather Forecast for San Francisco
<TABLE>
 <TR>
 <TD>
 Currently: 50F
 </TD>
 </TR>
</TABLE>
</esi:inline>

Example 11–9 shows the markup for My Stocks. The stock quotes fragment encloses all
stock picks in Mark's page. It is further divided into five sub-fragments, one for each
stock pick, using nested <esi:inline> tags. Thus, Mark's ESI template references his
stock selection fragment, which in turn references five particular stock pick fragments.
While the stock picks are shared by many user's stock selection fragment, the stock
selection fragment itself is also a template uniquely owned by Mark. This markup
separates the unique information from the shared information, maximizing the
reduction of cache updates and space consumption of personal stock selection.

Example 11–9 portal.esi Example: My Stocks Fragment

<esi:inline name="/Stocks_$(QUERY_STRING{username})" >
<!-- Personalized Stock Quote Selections -->
<TABLE>
 <TR>
 <TD>
 <esi:inline name="/ticker_IBM">
 IBM 84.99
 </esi:inline>

 <esi:inline name="/ticker_ORCL">
 ORCL 13.379
 </esi:inline>

 <esi:inline name="/ticker_YHOO">
 YHOO 27.15
 </esi:inline>
 <TD>

Enabling Dynamic Assembly of Content and Partial Page Caching

Caching Dynamic Content with ESI Language Tags 11-23

 </TR>
</TABLE>
</esi:inline>

Example 11–10 shows the markup for referencing an advertisement in the Promotion
section. promotionID is the based on the user's identification.

Example 11–10 portal.esi Example with inline Tags: Promotion

<esi:inline name="/ExternalAdvertisement">
<!-- External Advertisement -->
<TABLE>
 <TR>
 <TD>

 </TD>
 </TR>
</TABLE>
</esi:inline>

Rotating advertisements that change in every response is an example of real- time
content that renders little value in non-fetchable ESI <esi:inline> caching. Even the
smallest portion of real-time content embedded as a non-fetchable ESI inline fragment
would require the entire response to be regenerated and fetched, effectively creating
cache misses all the time. To use ESI and dynamic content caching for these real-time
fragments, use the <esi:include> tag.

See Section 11.2.3.1.2 for an example of using <esi:include> tag for real-time
advertisements

The Latest News and Latest Sports News fragments are similar to the weather
fragment. All the common areas are also defined as fragments. Although it is possible
to leave them as part of the template, that would consume unnecessary storage space.
Example 11–11 shows the markup.

Example 11–11 portal.esi Example with inline Tags: Latest News and Latest Sports
News

<esi:inline name="/Top_News_Finance">
<!-- Personalized Top News -->
Latest News for finance
<TABLE>
 <TR>
 Tech Spending Growth Indexes Little Changes
 Home Sales Hit Record High
 Gas Prices Dip Again
 </TR>
</TABLE>
</esi:inline>

<esi:inline name="/Sports_News_Soccer" >
<!-- Personalized Sports News -->
Latest Sports News for Soccer
<TABLE>
 <TR>
 Preparation for World Cup
 Youth Cup game on a Sunday

Enabling Dynamic Assembly of Content and Partial Page Caching

11-24 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

 Latest Scores
 </TR>
</TABLE>
</esi:inline>

11.2.3.1.2 Portal Example Using Include Tags

This section shows how the <esi:include> tag can be used for fragmentation and
assembly of fetchable fragments whose content are not embedded in the template.

Example 11–12 shows portal.esi with <esi:include> tags.

Example 11–12 portal.esi with include Tags

<HTML>
...
<!-- Personal Profile -->
<esi:comment text="Profile refers to environment variables stored in
/servlet/GetProfile. GetProfile servlet enables access to a set of environment
variables with personal profile information."/>
<esi:environment src="/servlet/GetProfile?username=$(QUERY_STRING{username})"
name="Profile"/>
...

<!-- Personalized Greeting With ESI variable -->
<esi:vars>Welcome, $(QUERY_STRING{username})!</esi:vars>
...

<!-- Personalized Weather Forecast -->
<TABLE>
 <TR>
 <TD>
 <esi:include
src="/servlet/Weather?city=$(Profile{city})&state=$(Profile{state})"/>
 </TD>
 </TR>
</TABLE>
...

<!-- Personalized Stock Quote Selections -->
<TABLE>
 <TR>
 <TD>
 <esi:include src="/servlet/PersonalizedStockSelection?username=$(QUERY_
STRING{username})"/>
 </TD>
 </TR>
</TABLE>
...

<!-- External Advertisement -->
<TABLE>
 <TR>
 <TD>
 <esi:try>
 <esi:attempt>
 <esi:comment text="Include an ad"/>
 <esi:include src="/servlet/Advert"/>
 </esi:attempt>
 <esi:except>

Enabling Dynamic Assembly of Content and Partial Page Caching

Caching Dynamic Content with ESI Language Tags 11-25

 <esi:comment text="Just write an HTML link instead"/>
 http://www.oracle.com
 </esi:except>
 </esi:try>
 </TD>
 </TR>
</TABLE>
...

<!-- Personalized Top News -->
Latest News for <esi:vars>$(Profile{news})</esi:vars>
<TABLE>
 <TR>
 <TD>
 <esi:choose>
 <esi:when test="$(Profile{news}) == 'Internet'">
 <esi:include src="/servlet/News?type=Top&topic=internet"/>
 </esi:when>
 <esi:when test="$(Profile{news}) == 'finance'">
 <esi:include src="/servlet/News?type=Top&topic=business"/>
 </esi:when>
 <esi:otherwise>
 <esi:include src="/servlet/News?type=Top&topic=technology"/>
 </esi:otherwise>
 </esi:choose>
 </TD>
 </TR>
</TABLE>
...

<!-- Personalized Sports News -->
Latest Sports News for <esi:vars>$(Profile{sport})</esi:vars>
<TABLE>
 <TR>
 <TD>
 <esi:choose>
 <esi:when test="$(Profile{sport}) == 'golf'">
 <esi:include src="/servlet/News?type=Sports&topic=golf"/>
 </esi:when>
 <esi:when test="$(Profile{sport}) == 'soccer'">
 <esi:include src="/servlet/News?type=Sports&topic=soccer"/>
 </esi:when>
 <esi:when test="$(Profile{sport}) == 'basketball'">
 <esi:include src="/servlet/News?type=Sports&topic=basketball"/>
 </esi:when>
 <esi:when test="$(Profile{sport}) == 'baseball'">
 <esi:include src="/servlet/News?type=Sports&topic=baseball"/>
 </esi:when>
 <esi:otherwise>
 <esi:include src="/servlet/News?type=Sports&topic=soccer"/>
 </esi:otherwise>
 </esi:choose>
 </TD>
 </TR>
</TABLE>

Example 11–13 specifies Profile to refer to the environment variables stored in
GetProfile. GetProfile enables access to user profile variables, which are used as
parameters in the included fragments:

Enabling Dynamic Assembly of Content and Partial Page Caching

11-26 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Example 11–13 portal.esi Example: Custom Profile Environment Variable Setting

<!-- Personal Profile -->
<esi:comment text="Profile refers to environment variables stored in
/servlet/GetProfile. GetProfile servlet enables access to a set of environment
variables with personal profile information."/>

<esi:environment src="/servlet/GetProfile?username=$(QUERY_STRING{username})"
name="Profile"/>

Example 11–14 shows GetProfile, which provides access to the city, state, news,
and sports environment variables.

Example 11–14 portal.esi Example: GetProfile File with Environment Variables

<?xml version="1.0"?>
<esi-environment esiversion="ORAESI/9.0.4">
 <city>San_Francisco</city>
 <state>CA</state>
 <news>finance</news>
 <sports>soccer</sports>
</esi-environment>

Example 11–15 shows the markup for the personalized greeting Welcome, Mark!.
The personalized greeting is achieved by the <esi:vars> tag, which bases the
greeting on the username parameter embedded in the URL. The parameter
username is the registered user's name. This markup enables the personalized
greeting to be included in the cacheable template page.

Example 11–15 portal.esi Example with vars tag: Personalized Greeting

<esi:vars>Welcome, $(QUERY_STRING{username})!</esi:vars>

Example 11–16 shows the markup for Weather Forecast. Weather Forecast includes a
servlet fragment name Weather, which uses the value of the user's city and state
environment variables in GetProfile to display the correct weather forecast for the
user. Because GetProfile has a value of San Francisco for the city environment
variable and California for the state environment variable, the weather forecast is
for San Francisco, California.

Example 11–16 portal.esi Example with include Tags: Weather Forecast

<TABLE>
 <TR>
 <TD>
 <esi:include
src="/servlet/Weather?city=$(Profile{city})&state=$(Profile{state})"/>
 </TD>
 </TR>
</TABLE>

The markup for My Stocks is depicted in Example 11–17. My Stocks includes a servlet
fragment named PersonalizedStockSelection. The displayed stocks are based
on the userID parameter encoded in the URL. userID is the registered user's unique
ID.

Example 11–17 portal.esi Example with include Tags: My Stocks Fragment

<TABLE>
 <TR>

Enabling Dynamic Assembly of Content and Partial Page Caching

Caching Dynamic Content with ESI Language Tags 11-27

 <TD>
 <esi:include src="/servlet/PersonalizedStockSelection?username=$(QUERY_
STRING{username})"/>
 </TD>
 </TR>
</TABLE>

The markup for the included fragment PersonalizedStockSelection is depicted
in Example 11–18. It includes fragments for three stock quotes: IBM, ORCL, and
YHOO.

Example 11–18 portal.esi Example: PersonalizedStockSelection Fragment for Mark

<TABLE>
 <TR>
 <TD>

 <esi:include src="Quote?symbol=IBM"/>

 <esi:include src="Quote?symbol=ORCL"/>

 <esi:include src="Quote?symbol=YHOO"/>

 </TD>
 </TR>
</TABLE>

Because the output is different for each user, the PersonalizedStockSelection
fragment is not cacheable. However, the response to each of the included quotes is
cacheable, enabling stock quotes to be shared by multiple users. Even when many
users share quotes, only one browser reload is needed when the quotes are updated.
For example, the PersonalizedStockSelection fragment for another user named
Scott is depicted in Example 11–19. It includes fragments for three stock quotes: IBM,
ORCL, and SCO. As described, IBM and ORCL are also shared by Mark. If Mark
reloads the page first and caches the quotes, then the IBM and ORCL quotes for Scott
are automatically refreshed.

Example 11–19 portal.esi Example: PersonalizedStockSelection Fragment for Scott

<TABLE>
 <TR>
 <TD>

 <esi:include src="Quote?symbol=IBM"/>

 <esi:include src="Quote?symbol=ORCL"/>

 <esi:include src="Quote?symbol=SCO"/>

 </TD>
 </TR>
</TABLE>

Example 11–20 shows the markup for rotating advertisements in the Promotion
section. The advertisements rotates in the sense that the advertisement changes for
each response. By separating the generation of the included image fragment response
from the template page, Oracle Web Cache can cache the template and integrate the
dynamic advertisement into the template.

Enabling Dynamic Assembly of Content and Partial Page Caching

11-28 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Example 11–20 portal.esi Example with include Tags: Promotion

<TABLE>
 <TR>
 <TD>
 <esi:try>
 <esi:attempt>
 <esi:comment text="Include an ad"/>
 <esi:include src="/servlet/Advert"/>
 </esi:attempt>
 <esi:except>
 <esi:comment text="Just write an HTML link instead"/>
 www.oracle.com
 </esi:except>
 </esi:try>
 </TD>
 </TR>
</TABLE>

As shown in Example 11–21, the response to the included image fragment for the
banner is not cacheable. When a user requests this page, Oracle Web Cache sends the
request to the application Web server to generate the banner. From the application Web
server, Advert generates the banner for the request.

Example 11–21 portal.esi Example: Rotating Banner Output

<TABLE>
 <TR>
 <TD>

 </TD>
 </TR>
</TABLE>

As shown in Example 11–22, the next time the user reloads the page, Advert
generates another banner for the request.

Example 11–22 portal.esi Example: Rotating Banner Reload

<TABLE>
 <TR>
 <TD>

 </TD>
 </TR>
</TABLE>

The banner relies on alternate processing with the <esi:try> tag. If the servlet
cannot run Advert, a link to www.oracle.com appears in the banner's place.

Example 11–23 shows the markup for Latest News and Latest Sports News:

■ Latest News displays the news headlines based on the user's news category,
internet, finance, or technology, by using conditional processing with the
<esi:choose> tag. Because GetProfile has a value of finance for the news
environment variable, the headlines displayed relate to finance,
/servlet/News?type=Top&topic=business.

Enabling Dynamic Assembly of Content and Partial Page Caching

Caching Dynamic Content with ESI Language Tags 11-29

■ Similarly, Latest Sports News displays the sports headlines based on the user's
sports category, golf, soccer, basketball, baseball, or soccer, by using
conditional processing. Because GetProfile has a value of soccer for the
sports environment variable, the output includes headlines relating to soccer,
/servlet/News?type=Sports&topic=soccer.

Example 11–23 portal.esi Example with include Tags: Latest News and Sports Sections

Latest News for <esi:vars>$(Profile{news})</esi:vars>
<TABLE>
 <TR>
 <TD>
 <esi:choose>
 <esi:when test="$(Profile{news}) == 'internet'">
 <esi:include src="/servlet/News?type=Top&topic=internet"/>
 </esi:when>
 <esi:when test="$(Profile{news}) == 'finance'">
 <esi:include src="/servlet/News?type=Top&topic=business"/>
 </esi:when>
 <esi:otherwise>
 <esi:include src="/servlet/News?type=Top&topic=technology"/>
 </esi:otherwise>
 </esi:choose>
 </TD>
 </TR>
</TABLE>
...
<!-- Personalized Sports News -->
Latest Sports News for <esi:vars>$(Profile{sport})</esi:vars>

<TABLE>
 <TR>
 <TD>
 <esi:choose>
 <esi:when test="$(Profile{sport}) == 'golf'">
 <esi:include src="/servlet/News?type=Sports&topic=golf"/>
 </esi:when>
 <esi:when test="$(Profile{sport}) == 'soccer'">
 <esi:include src="/servlet/News?type=Sports&topic=soccer"/>
 </esi:when>
 <esi:when test="$(Profile{sport}) == 'basketball'">
 <esi:include src="/servlet/News?type=Sports&topic=basketball"/>
 </esi:when>
 <esi:when test="$(Profile{sport}) == 'baseball'">
 <esi:include src="/servlet/News?type=Sports&topic=baseball"/>
 </esi:when>
 <esi:otherwise>
 <esi:include src="/servlet/News?type=Sports&topic=soccer"/>
 </esi:otherwise>
 </esi:choose>
 </TD>
 </TR>
</TABLE>

11.2.3.2 Example of Simple Personalization with Variable Expressions
ESI variables can be used within an HTML tag. For example, consider Example 11–24.
Its HTML code uses PL/SQL for an HTML form with a text box in it.

Using Inline Invalidation in HTTP Responses

11-30 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Example 11–24 PL/SQL Code without Personalization

htp.p('<form action="test" method="GET">');
htp.p('<table border="0" >
 <tr>
 <td><input type="text" name="p_name" size="8" value="'||p_name||'"></td>
 </tr>
 <tr>
 <td><input type="submit" value="Search"></td>
 </tr>
</table>');

Example 11–25 shows how the $HTTP_COOKIE variable is used with the <esi:vars>
tag to replace the value of p_name with the user's name.

Example 11–25 PL/SQL Code with Personalization through ESI

htp.p('<form action="test" method="GET">');
htp.p('<table border="0" >
 <tr><esi:vars>
 <td><input type="text" name="p_name" size="8"
 value="$(HTTP_COOKIE{'p_name'}"></td>
 </tr></esi:vars>
 <tr>
 <td><input type="submit" value="Search"></td>
 </tr>
 </table>');

11.3 Using Inline Invalidation in HTTP Responses
Inline invalidation is implemented as part of Edge Side Includes (ESI) and provides a
useful way for origin servers to "piggyback" invalidation messages on transactional
responses sent to Web Cache. For instance, when a customer purchases a vegetarian
cookbook on an e-commerce site, the confirmation response could contain instructions
for invalidating all catalog pages related to the book, its author and vegetables. The
ability to send invalidation message inline reduces the connection overhead associated
with sending out-of-band invalidations and is a useful tool for ESI developers.

To configure inline invalidation:

1. In the template page, configure the HTTP response with the
Surrogate-Control response-header field that includes
content="ESI-INV/1.0":

Surrogate-Control: content="ESI-INV/1.0"

2. In the body of the same response, use the <esi:invalidate> tag to insert either
a basic or advanced inline invalidation request.

You can insert an inline invalidation request anywhere in the ESI template. You
can insert multiple requests, but only the first one processes. The execution of the
inline invalidation is blocking. That is, if the ESI template contains other ESI
features, inline invalidation is executed first.

Basic invalidation syntax:

<esi:invalidate [output="yes"]>
 <?xml version="1.0"?>
 <!DOCTYPE INVALIDATION SYSTEM "internal:///WCSinvalidation.dtd">
 <INVALIDATION VERSION="WCS-1.1">
 <SYSTEM>

Using Inline Invalidation in HTTP Responses

Caching Dynamic Content with ESI Language Tags 11-31

 <SYSTEMINFO NAME="name" VALUE="value"/>
 </SYSTEM>
 <OBJECT>
 <BASICSELECTOR URI="URL"/>
 <ACTION REMOVALTTL="TTL"/>
 <INFO VALUE="value"/>
 </OBJECT>
 </INVALIDATION>
</esi:invalidate>

Advanced invalidation syntax:

<esi:invalidate [output="yes"]>
 <?xml version="1.0"?>
 <!DOCTYPE INVALIDATION SYSTEM "internal:///WCSinvalidation.dtd">
 <INVALIDATION VERSION="WCS-1.1">
 <SYSTEM>
 <SYSTEMINFO NAME="name" VALUE="value"/>
 </SYSTEM>
 <OBJECT>
 <ADVANCEDSELECTOR URIPREFIX="prefix"
 URIEXP="URL_expression"
 HOST="host_name:port"
 METHOD="HTTP_request_method"
 BODYEXP="HTTP_body"/>
 <COOKIE NAME="cookie_name" VALUE="value"/>
 <HEADER NAME="HTTP_request_header" VALUE="value"/>
 <OTHER NAME="URI|BODY|QUERYSTRING_PARAMETER|SEARCHKEY"
 TYPE="SUBSTRING|REGEX"
 VALUE="value"/>
 </ADVANCEDSELECTOR>
 </OBJECT>
 </INVALIDATION>
</esi:invalidate>

For more information, see:

■ Section 7.5.1 for invalidation request syntax

■ Section 11.4.6 for a description of the <esi:invalidate> tag

11.3.1 Example: Using Inline Invalidation
Following is an example about an online bike shop using inline invalidation in their
simple Web application. It has two CGI scripts written in Perl. show_bike.pl
displays how many bikes of a certain model are in stock. Since it involves database
query and its result remains the same until a purchase occurs, show_bike.pl is
cached. buy_bike.pl is used by customers to buy a bike. When this page is
requested, show_bike.pl is no longer valid—an invalidation is needed.

Example 11–26 shows the code for show_bike.pl.

Example 11–26 show_bike.pl Code

#!/usr/local/bin/perl

first, retrieve how many bikes are in stock
and assign it to $nBikes (omitted!)

print <<END;
Content-Type: text/html

Using Inline Invalidation in HTTP Responses

11-32 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Cache-Control: private
Surrogate-Control: max-age=3600

<html>
<body>
<h1>Bike: model 2005</h1>

<p>There are $nBikes bike(s) in stock for purchase!</p>
<p>Click here to purchase a bike.</p>

</body>
</html>
END

Note that max-age=3600 informs Oracle Web Cache to only cache this page for up to
an hour.

Example 11–27 shows the code for buy_bike.pl with an inline invalidation request.

Example 11–27 buy_bike.pl Code with an Inline Invalidation Request

#!/usr/local/bin/perl

print <<END;
Content-Type: text/html
Cache-Control: private
Surrogate-Control: content="ESI/1.0 ESI-INV/1.0"

<html>
<body>
<h1>Thank you for purchasing bike model 2000.</h1>

<p>Click here to read more
about this model.</p>

<esi:invalidate>
 <?xml version="1.0"?>
 <!DOCTYPE INVALIDATION SYSTEM "internal:///WCSinvalidation.dtd">
 <INVALIDATION VERSION="WCS-1.1">
 <OBJECT>
 <BASICSELECTOR URI="/cgi/show_bike.pl"/>
 <ACTION REMOVALTTL="0"/>
 </OBJECT>
 </INVALIDATION>
</esi:invalidate>

<p>Thanks again!</p>
</body>
</html>
END

The ESI-INV/1.0 token in Surrogate-Control instructs Oracle Web Cache to
process the <esi:invalidate> tag.

Example 11–28 shows the browser response for buy_bike.pl. Because Oracle Web
Cache has already processed the inline invalidation request, the inline invalidation is
not present in the response.

Example 11–28 Browser Response of buy_bike.pl

Content-Type: text/html

Using Inline Invalidation in HTTP Responses

Caching Dynamic Content with ESI Language Tags 11-33

Cache-Control: private
Surrogate-Control: content="ESI/1.0 ESI-INV/1.0"

<html>
<body>
<h1>Thank you for purchasing bike model 2000.</h1>

<p>Click here to read more
about this model.</p>

<p>Thanks again!</p>
</body>
</html>

Debugging Tips
To facilitate debugging, the application developer can perform the following:

■ Add the Surrogate-Capability request header that includes
"ESI-INV/1.0":

Surrogate-Capability: content="ESI-INV/1.0"

When the Surrogate-Capability request header is added for inline
invalidation, Oracle Web Cache includes the invalidation request in the response.

■ Enable the output attribute of the <esi:invalidate> tag.

When the output attribute is enabled, Oracle Web Cache includes the
invalidation result in the response enclosed within comments <!--result-->.

Example 11–29 shows the browser response of buy_bike.pl when both the
Surrogate-Capability request header is enabled for the inline invalidation and
the output attribute of the <esi:invalidate> tag is enabled.

Example 11–29 Browser Response of show_bike.pl with Diagnostic Inline Invalidation
Information

Content-Type: text/html
Cache-Control: private
Surrogate-Control: content="ESI/1.0 ESI-INV/1.0"

<html>
<body>
<h1>Thank you for purchasing bike model 2000.</h1>

<p>Click here to read more
about this model.</p>

<esi:invalidate output="yes">
 <?xml version="1.0"?>
 <!DOCTYPE INVALIDATION SYSTEM "internal:///WCSinvalidation.dtd">
 <INVALIDATION VERSION="WCS-1.1">
 <OBJECT>
 <BASICSELECTOR URI="/cgi/show_bike.pl"/>
 <ACTION REMOVALTTL="0"/>
 </OBJECT>
 </INVALIDATION>
</esi:invalidate>

<!--
<?xml version="1.0"?>

ESI Tag Descriptions

11-34 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

<!DOCTYPE INVALIDATIONRESULT SYSTEM "internal:///WCSinvalidation.dtd">
<INVALIDATIONRESULT VERSION="WCS-1.1">
 <OBJECTRESULT>
 <BASICSELECTOR URI="/cgi/show_bike.pl/>
 <RESULT ID="1" STATUS="SUCCESS" NUMINV="1"/>
 </OBJECTRESULT>
</INVALIDATIONRESULT>
-->

<p>Thanks again!</p>
</body>
</html>

11.4 ESI Tag Descriptions
This section describes the following ESI tags, which are used for partial page caching
operations:

■ Section 11.4.1, "ESI choose | when | otherwise Tags"

■ Section 11.4.2, "ESI comment Tag"

■ Section 11.4.3, "ESI environment Tag"

■ Section 11.4.4, "ESI include Tag"

■ Section 11.4.5, "ESI inline Tag"

■ Section 11.4.6, "ESI invalidate Tag"

■ Section 11.4.7, "ESI remove Tag"

■ Section 11.4.8, "ESI try | attempt | except Tags"

■ Section 11.4.9, "ESI vars Tag"

■ Section 11.4.10, "ESI <!--esi-->Tag"

11.4.1 ESI choose | when | otherwise Tags
The <esi:choose>, <esi:when>, and <esi:otherwise> conditional tags provide
the ability to perform logic based on Boolean expressions.

11.4.1.1 Syntax
<esi:choose>
 <esi:when test="BOOLEAN_expression">
 Perform this action
 </esi:when>
 <esi:when test="BOOLEAN_expression">
 Perform this action
 </esi:when>
 <esi:otherwise>
 Perform this other action
 </esi:otherwise>
</esi:choose>

11.4.1.2 Attributes
test—Specifies the Boolean operation

ESI Tag Descriptions

Caching Dynamic Content with ESI Language Tags 11-35

11.4.1.3 Usage
■ Each <esi:choose> tag must have a least one <esi:when> tag, and may

optionally contain exactly one <esi:otherwise> tag.

■ Oracle Web Cache executes the first <esi:when> tag whose test attribute
evaluates truthfully, and then exit the <esi:choose> tag. If no <esi:when> tag
evaluates to true and an <esi:otherwise> tag is present, that element's content
executes.

■ Other HTML or ESI element can be included inside <esi:when> or
<esi:otherwise> elements.

11.4.1.4 Boolean Expressions
The test attribute uses Boolean expressions to determine how to evaluate true or
false logic. ESI supports the following Boolean operators:

■ == (equal to)

■ != (not equal to)

■ > (greater than)

■ < (less than)

■ >= (greater than or equal to)

■ <= (less than or equal to)

■ & (and)

■ | (or)

■ ! (not)

Note the following about the use of Boolean expressions:

■ Operands associate from left to right.

Sub-expressions can be grouped with parentheses to explicitly specify association.

■ If both operands are numeric, then the expression is evaluated numerically.

■ If either operand is non-numeric, then both operands are evaluated as strings. For
example, 'a'==3 evaluates to 'a'=='3', where 3 is evaluated as a string.

■ The comparison of two Boolean expressions results in an undefined operation.

■ If an operand is empty or undefined, then the expression always evaluates to false.

■ The logical operators (&, !, and|) are used to qualify expressions, but cannot
be used to make comparisons.

■ Use single quotes (') for constant strings. For example, the following string is a
valid construction:

$(HTTP_COOKIE{name})=='typical'

■ Escaped single quotes (\') are not permitted. For example, the following is not
supported:

$(HTTP_COOKIE{'user\'s name'})=='typical'

■ Arithmetic operations and assignments are not permitted.

■ A null value evaluates whether a variable is empty.

ESI Tag Descriptions

11-36 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

When a number is compared with null, that number is converted into an
equivalent string and compared against an empty string. In the following ESI
markup, $(logindata{name}) is a variable that provides access to the value of
the name. If name is empty and evaluates to null, then the expression evaluates to
true; if name is not empty and does not evaluate to null, then the expression
evaluates to false.

<esi:choose>
 <esi:when test="$(logindata{name}) == null">
 <esi:include src=/login/$(logindata{name})"/>
 </esi:when>
 <esi:otherwise>
 <esi:include src=/login/guest.html"/>
 <esi:otherwise>
</esi:choose>

The following expressions show correct usage of Boolean operators:

!(1==1)
!('a'<='c')
(1==1)|('abc'=='def')
(4!=5)&(4==5)

The following expressions show incorrect usage of Boolean operators:

(1 & 4)
("abc" | "edf")

11.4.1.5 Statements
Statements must be placed inside a <esi:when> or <esi:otherwise> subtag.
Statements outside the subtags cannot be evaluated as conditions. Example 11–30
shows invalid placement of statements.

Example 11–30 Statement Placement

<esi:choose>
 This markup is invalid because any characters other than whitespace
 are not allowed in this area.
 <esi:when test="$(HTTP_HOST) == 'www.company.com'">
 <esi:include src="/company.html" />
 </esi:when>
 This markup is invalid because any characters other than whitespace
 are not allowed in this area.
 <esi:when test="$(HTTP_COOKIE{fragment) == 'First Fragment'">

 </esi:when>
 This markup is invalid because any characters other than whitespace
 are not allowed in this area.
 <esi:otherwise>
 The default selection.
 </esi:otherwise>
 This markup is invalid because any characters other than whitespace
 are not allowed in this area.
</esi:choose>

Note: If a variable exists but evaluates to an empty string, then the
value is not considered null.

ESI Tag Descriptions

Caching Dynamic Content with ESI Language Tags 11-37

11.4.1.6 Example
The following ESI markup includes advanced.html for requests that use the cookie
Advanced and basic.html for requests that use the cookie Basic:

<esi:choose>
 <esi:when test="$(HTTP_COOKIE{group})=='Advanced'">
 <esi:include src="http://www.company.com/advanced.html"/>
 </esi:when>
 <esi:when test="$(HTTP_COOKIE{group})=='Basic User'">
 <esi:include src="http://www.company.com/basic.html"/>
 </esi:when>
 <esi:otherwise>
 <esi:include src="http://www.company.com/new_user.html"/>
 </esi:otherwise>
</esi:choose>

11.4.2 ESI comment Tag
The <esi:comment> tag enables you to comment ESI instructions, without making
the comments available in the output.

11.4.2.1 Syntax
<esi:comment text="text commentary"/>

<esi:comment> is an empty element, and does not have an end tag.

11.4.2.2 Usage
The <esi:comment> tag is not evaluated by Oracle Web Cache. If comments must be
visible in the HTML output, use standard XML/HTML comment tags.

11.4.2.3 Example
The following ESI markup provides a comment for an included GIF file:

<esi:comment text="the following animation will have a 24 hour TTL"/>
<esi:include src="http://www.company.com/logo.gif" onerror="continue" />

11.4.3 ESI environment Tag
The <esi:environment> tag enables you to include custom environment variables
from included fragments. When included, these variables can then be used with the
other ESI tags.

11.4.3.1 Syntax
There are two forms of this tag. In the first form, <esi:environment> does not have
a closing </esi:environment> tag:

<esi:environment src="environment_URL" name="environment_name"
[max-age="expiration_time [+ removal_time]]" [method="GET|POST"]
[onerror="continue"] [timeout="fetch_time"]/>

In the second form with elements, <esi:environment> has a closing
</esi:environment> tag:

<esi:environment src="environment_URL" name="environment_name"
 [max-age="expiration_time [+ removal_time]"] [method="GET|POST"]
 [onerror="continue"] [timeout="fetch_time"]>

ESI Tag Descriptions

11-38 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

 [<esi:request_header name="request_header" value="value"/>]
 [<esi:request_body value="value"/>]
 [<esi:log>log_message</esi:log>]
</esi:environment>

11.4.3.2 Attributes
■ src—Specifies the URL from which to obtain environment variables and their

values.

The URL can be either an absolute or relative URL. When specifying an absolute
URL, use the following formats:

■ "http://host_name:port/path/filename"

■ "https://host_name:port/path/filename"

If you specify the host name for an absolute URL, you must prefix it with
http:// or https://. An HTML parser treats the host:80 in the following
URL as a folder name rather than a host name:

src="host:80/index.htm"

To make this URL valid, you specify the following:

src="http://host:80/index.htm"

Relative URLs are resolved relative to the template page. The result sets the ESI
environment for the current template.

The source code of the URL requires the following XML format:

<?xml version="1.0"?>
<esi:environment esiversion="ORAESI/9.0.4">
 <variable_name>variable_value</variable_name>
 <variable_name>variable_value</variable_name>
</esi:environment>

■ name—Specifies the name to use to refer to the environment variable.

■ method—Specifies the HTTP request method of the environment fragment. Valid
values are GET or POST.

■ max-age—Specifies the time, in seconds, to expire the XML file, and optionally,
specifies the time, in seconds, to remove the XML file after the expiration time.

■ timeout—Specifies the time, in seconds, for the fragment to be fetched. If the
fragment has not been fetched within the time interval, the fetch is aborted.

■ onerror—Specifies that if the fetch failed on the src object, to ignore the ESI tag
and serve the page.

11.4.3.3 Elements
■ request_body—Specifies the HTTP request body of the fragment.

■ request_header—Specifies an HTTP request header field and value for Oracle
Web Cache to use.

■ log—Specifies a log message of the fragment to be included in the access_log_
file.fragment file when the x-esi-info log field is set. You can provide a
descriptive text string that identifies the fragment and the application that
generated the fragment. By providing descriptive text, you can easily identify the

ESI Tag Descriptions

Caching Dynamic Content with ESI Language Tags 11-39

fragment in the log file, enabling you to determine how often the fragment is
requested.

See Table 9–5 on page 9-15 for further information about the x-esi-info log field.

11.4.3.4 Syntax Usage
■ Specify only one <esi:environment> tag for each template page, before other

ESI tags.

■ The attributes do not have to be in a particular order.

■ Do not specify multiple request_body elements.

■ You can have zero or more request_header elements.

Use multiple request_header elements to specify multiple HTTP request
header fields:

<esi:environment src="environment_URL"
 [max-age="expiration_time [+ removal_time]"][method="GET|POST"]
 [onerror="continue"] [timeout="fetch_time"]>
 <esi:request_header name="request_header" value="value"/>
 <esi:request_header name="request_header" value="value"/>
</esi:environment>

■ If no request_header elements are specified, Oracle Web Cache uses other
request headers from the parent page.

■ Do not specify multiple log elements.

For more information, see:

■ Section 11.1.6 for usage instructions for variables

■ Section 11.4.4 for usage notes on max-age, method, onerror, request_body,
and request_header

■ Section 11.1.7 for usage notes on onerror

11.4.3.5 Example
The following ESI output specifies logindata to refer to the environment variables
stored in catalog.xml. The file catalog.xml enables access to the value of the
vendorID environment variable, which is used as a parameter in the included URL:

<esi:environment src="/catalog.xml" name="logindata"/>
<esi:include
src="http://provider.com/intranetprovider?vendorID=$(logindata{vendorID})"/>

The file catalog.xml has the following content:

<?xml version="1.0"?>
<esi:environment esiversion="ORAESI/9.0.4">
 <product_description>stereo</product_description>
 <vendorID>3278</vendorID>
 <partner1>E-Electronics</partner1>
 <partner2>E-City</partner2>
</esi:environment>

The following ESI output specifies logindata to refer to the environment variables
stored in env.dat. The file env.dat enables access to the value of the env
environment variable, which is used as a parameter in the included log message for
dir1.txt. The log messages for dir1.txt and esi-log2.html are written to the

ESI Tag Descriptions

11-40 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

access_log.fragment file when the x-esi-info log field is set and the fragments
are requested.

<esi:environment src="/esi/env.dat" name="env">
 <esi:log>Used environment /esi/env.dat</esi:log>
</esi:environment>

<esi:include src="/cached/dir1.txt">
 <esi:log>Fragment:/cache/dir1.txt is included, by $(env{xl_name})</esi:log>
</esi:include>

Including /cgi-bin/esi-fetch.sh?/esi/esi-log2.html in
esi-log1.html
<esi:include src="/cgi-bin/esi-fetch.sh?/esi/esi-log2.html">
 <esi:log>Fragment: /cgi-bin/esi-fetch.sh?/esi/esi-log2.html is included
 </esi:log>

11.4.4 ESI include Tag
The <esi:include> tag provides syntax for including fragments.

See Section 11.1.8 for a comparison of <esi:inline> and <esi:include> usage.

11.4.4.1 Syntax
There are two forms of this tag. In the first form, <esi:include> does not have a
closing </esi:include> tag:

<esi:include src="URL_fragment" [alt="URL_fragment"]
[max-age="expiration_time [+removal_time]]" [method="GET|POST"]
[onerror="continue"] [redirect=yes|no] [timeout="fetch_time"]/>

In the second form, with elements, <esi:include> has a closing </esi:include>
tag:

<esi:include src="URL_fragment" [alt="URL_fragment"]
 [max-age="expiration_time[+removal_time]"] [method="GET|POST"]
 [onerror="continue"] [redirect=yes|no] [timeout="fetch_time"]>
 [<esi:request_header name="request_header" value="value"/>]
 [<esi:request_body value="value"/>]
 [<esi:log>log_message</esi:log>]
</esi:include>

11.4.4.2 Attributes
■ src—Specifies the URL of the fragment to fetch. The URL can be a literal string or

it can include variables.

The URL can either be an absolute or relative URL. When specifying an absolute
URL, use the following formats:

■ "http://host_name:port/path/filename"

■ "https://host_name:port/path/filename"

If you specify the host name for an absolute URL, you must prefix it with
http:// or https://. An HTML parser treats the host:80 in the following
URL as a folder name rather than a host name:

src="host:80/index.htm"

To make this URL valid, you specify the following:

ESI Tag Descriptions

Caching Dynamic Content with ESI Language Tags 11-41

src="http://host:80/index.htm"

Relative URLs are resolved relative to the template page. The included result
replaces the element in the markup served to the browser.

You can specify an XML fragment if the XML file fragment is valid XML. For
example, the following specifies that Oracle Web Cache use XSL Transformations
(XSLT) to transform the XML into HTML using a style sheet. The style sheet maps
XML formats to HTML formats:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xml" href="stylesheet.xsl"?>

Ensure that both the XML fragment and the XSL style sheet response pages are
configured with a Content-Type response-header field that includes text and
XML media types. For example:

Content-Type: text/xml

See http://www.xslt.com/ for complete information about XSLT.

■ alt—Specifies an alternative resource if the src is not found. The requirements
for the value are the same as those for src.

■ max-age—Specifies the time, in seconds, to expire the fragment, and optionally,
specifies the time, in seconds, to remove the fragment after expiration time. Use
this attribute if the template page has a higher tolerance for stale fragments than
specified by the time-to-live parameters in fragment responses.

■ method—Specifies the HTTP request method of the fragment. Valid values are
GET or POST.

■ onerror—Specifies that if the fetch failed on the src object to ignore the ESI tag
and serve the page.

■ redirect—Specifies how to serve the fragment when the src fragment resides
temporarily under a different URL. yes specifies that the URL be redirected and
displayed; no specifies that the fragment URL not be redirected and an HTTP 302
Found status code be served for the fragment. yes is the default.

■ timeout—Specifies the time, in seconds, for the fragment to be fetched. If the
fragment has not been fetched within the time interval, the fetch is aborted.

See Section 11.1.7 for usage notes on alt and onerror.

11.4.4.3 Elements
■ request_body—Specifies the HTTP request body of the fragment.

■ request_header—Specifies an HTTP request header field and value for Oracle
Web Cache to use. You can specify multiple HTTP request headers. When this
attribute is specified, all request headers from the parent fragment or template
page are ignored.

■ log—Specifies a log message of the fragment to be included in the access_
log.fragment file when the x-esi-info log field is set. You can provide a
descriptive text string that identifies the fragment and the application that
generated the fragment. By providing descriptive text, you can easily identify the
fragment in the log file, enabling you to determine how often the fragment is
requested.

See Table 9–5 for further information about the x-esi-info log field.

ESI Tag Descriptions

11-42 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

11.4.4.4 Syntax Usage
■ <esi:include> supports up to three levels of nesting.

■ <esi:include> does not support escaped double quotes (\"). For example, the
following is not supported:

<esi:include src="file\"user.htm"/>

■ The attributes do not have to be in a particular order.

■ The src attribute supports both HTTP and HTTPS. Oracle Web Cache permits the
template and fragments to use different protocols. Note the following:

■ If the src attribute specifies a fragment's relative path, such as
src="/PersonalizedGreeting", the template's protocol is used.

■ If the protocol used in the src attribute does not match the protocol specified
in the Site-to-Server Mapping page (Origin Servers, Sites, and Load
Balancing > Site-to-Server Mapping) of Oracle Web Cache Manager, then
Oracle Web Cache uses the protocol configured for the origin server in the
Site-to-Server Mapping page. Oracle Web Cache also reports the following
warning message to the event log:

[Date] [warning 11250] [ecid: request_id, serial_number]
ESI include fragment protocol does not match origin server protocol:
Origin Server Protocol=protocol URL=URL

For example, if the template page is configured with <esi:include>
src="https://www.company.com:80/gifs/frag1.gif"/> and the
site-to-server mapping specifies HTTP for the origin server, then
http://www.company.com:80/gifs/frag1.gif is used and the
following message appears in the event log:

[03/Feb/2005:23:16:46 +0000] [warning 11250] [ecid: 90125204378,0]
ESI include fragment protocol does not match origin server protocol:
Origin Server Protocol=http URL=https://www.company.com:80/gifs/frag1.gif

■ Do not specify multiple request_body elements.

■ You can have zero or more request_header elements.

■ Use multiple request_header elements to specify multiple HTTP request
header fields:

<esi:include src="URL_fragment"
 [max-age="expiration_time[+removal_time]"] [method="GET|POST"]
 [onerror="continue"] [timeout="fetch_time"]>
 <esi:request_header name="request_header" value="value"/>
 <esi:request_header name="request_header" value="value"/>
</esi:include>

■ Do not specify multiple log elements.

11.4.4.5 Usage
The <esi:include> tag instructs Oracle Web Cache to fetch the fragment specified
by the src attribute.

If the include is successful, the contents of the fetched src URL are displayed. The
included object is included exactly at the point of the include tag. For example, if the
include tag is in a table cell, the fetched object is displayed in the table cell.

ESI Tag Descriptions

Caching Dynamic Content with ESI Language Tags 11-43

The max-age control directive in the Surrogate-Control response-header field
applies to the response; the max-age attribute applies only to that particular usage of
the fragment response through the <esi:include> tag. If both the max-age control
directive in the Surrogate-Control response-header field and the max-age
attribute are set, then the effective expiration and removal time-to-live for this
particular inclusion are the longest maximum age of the expiration and the removal
time-to-live, respectively. If a particular page has a greater tolerance for staleness of a
fragment, then set the max-age attribute to a longer time than the max-age control
directive. Use the max-age attribute to increase cache hits by serving fragments stale
until the removal time. max-age=infinity specifies that the object never expires.

If method is not set, then GET is assumed. However, if the request_body element is
set, then POST is assumed.

Oracle Web Cache generates the following HTTP request headers for all fragment
requests:

■ Host

■ Content-Length

■ Surrogate-Capability

■ Connection

The request_header element enables you to control HTTP headers other than these.
Do not specify these HTTP request headers as request_header attributes, as a
conflict can affect the operation of Oracle Web Cache.

If no request_header elements are specified, Oracle Web Cache uses other request
headers from the parent page.

See Section 11.1.8 for a comparison of <esi:inline> and <esi:include> usage.

11.4.4.6 Examples
The following ESI markup includes a file named frag1.htm. The fragment must be
fetched within 60 seconds. If the fetch fails, Oracle Web Cache ignores the includes and
serves the page. If the fetch succeeds, Oracle Web Cache includes the fragment. Oracle
Web Cache expires the fragment after five minutes, and removes it after another eight
minutes.

<esi:include src="/frag1.htm" timeout="60" maxage="300+480" onerror="continue"/>

The following ESI output includes the result of a dynamic query:

<esi:include src="/search?query=$QUERY_STRING(query)"/>

The following ESI output includes a personalized greeting, a Cookie HTTP request
header, and an HTTP request body that includes the date. Log message "Fragment:
/Personalized Greeting is included" writes to the access_log.fragment
file when the x-esi-info log field is set and the fragment is requested.

<esi:include src="/PersonalGreeting">
 <esi:request_header name="Cookie" value="pname=Scott Tiger"/>
 <esi:request_body value="day=05, month=10, year=2001"/>
 <esi:log>Fragment: /Personalized Greeting is included</esi:log>
</esi:include>

For more information, see Section 11.2.3.1 for an extended example of
<esi:include> usage.

ESI Tag Descriptions

11-44 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

11.4.5 ESI inline Tag
The <esi:inline> tag marks a fragment as a separately cacheable fragment,
embedded in the HTTP response of another object. Oracle Web Cache stores and
assembles these fragments independently as <esi:include> fragments.

See Section 11.1.8 on page 11-14 for a comparison of <esi:inline> and
<esi:include> usage.

11.4.5.1 Syntax
<esi:inline name="URL" fetchable="yes|no"
 [max-age="expiration_time [+ removal_time]"] [timeout="fetch_time"]
 Embedded HTML code
</esi:inline>

11.4.5.2 Attributes
■ name—Specifies a unique name for the fragment in URL format.

■ fetchable—yes instructs Oracle Web Cache to fetch a fragment from the origin
server when it expires. The template for the fragment is not included during this
fetching process. no instructs Oracle Web Cache to fetch the entire template from
the origin server when there is a cache miss, and then try to extract all the
fragments from the template.

■ max-age—Specifies the time, in seconds, to expire the fragment, and optionally,
specifies the time, in seconds, to remove the fragment after the expiration time.
Use this attribute if the template page has a higher tolerance for stale fragments
than specified by the time-to-live parameters in fragment responses.

■ timeout—Specifies the time, in seconds, for the fragment to be fetched. If the
fragment has not been fetched within the time interval, the fetch is aborted.

11.4.5.3 Usage
Some inline fragments are only delivered as part of an HTTP response for another
object. These are not independently fetchable by Oracle Web Cache the way
<esi:include> fragments are. When a non-fetchable fragment is needed by Oracle
Web Cache, it must request the object from which the inline fragment was extracted.

When a non-fetchable <esi:inline> fragment is not found in the cache, Oracle Web
Cache re-fetches the fragment's parent template. This behavior implies that the parent
cannot be another non-fetchable <esi:inline> fragment. If the parent is an
<esi:inline> non-fetchable fragment, the response returned to the browser is
undefined.

For more information, see:

■ Section 11.1.8.1

■ Section 11.1.8.2

■ Section 11.4.4

11.4.5.4 Example
The following ESI output embeds financial headlines:

<esi:inline name="/Top_News_Finance">
Latest News for Finance
<TABLE>
 <TR>

ESI Tag Descriptions

Caching Dynamic Content with ESI Language Tags 11-45

 Blue-Chip Stocks Cut Losses; Nasdaq Up MO
 French rig factory with explosives New York Times
 Volkswagen faces Brazil strike CNN Europe
 Airbuss reliability record BBC
 </TR>
</TABLE>
</esi:inline>

See Section 11.2.3.1 for an extended example of <esi:inline> usage.

11.4.6 ESI invalidate Tag
The <esi:invalidate> tag enables you to configure an invalidation request within
the response of a browser page.

11.4.6.1 Syntax
Basic invalidation syntax:

<esi:invalidate [output="yes"]>
 <?xml version="1.0"?>
 <!DOCTYPE INVALIDATION SYSTEM "internal:///WCSinvalidation.dtd">
 <INVALIDATION VERSION="WCS-1.1">
 <SYSTEM>
 <SYSTEMINFO NAME="name" VALUE="value"/>
 </SYSTEM>
 <OBJECT>
 <BASICSELECTOR URI="URL"/>
 <ACTION REMOVALTTL="TTL"/>
 <INFO VALUE="value"/>
 </OBJECT>
 </INVALIDATION>
</esi:invalidate>

Advanced invalidation syntax:

<esi:invalidate [output="yes"]>
 <?xml version="1.0"?>
 <!DOCTYPE INVALIDATION SYSTEM "internal:///WCSinvalidation.dtd">
 <INVALIDATION VERSION="WCS-1.1">
 <SYSTEM>
 <SYSTEMINFO NAME="name" VALUE="value"/>
 </SYSTEM>
 <OBJECT>
 <ADVANCEDSELECTOR URIPREFIX="prefix"
 URIEXP="URL_expression"
 HOST="host_name:port"
 METHOD="HTTP_request_method"
 BODYEXP="HTTP_body"/>
 <COOKIE NAME="cookie_name" VALUE="value"/>
 <HEADER NAME="HTTP_request_header" VALUE="value"/>
 <OTHER NAME="URI|BODY|QUERYSTRING_PARAMETER|SEARCHKEY"
 TYPE="SUBSTRING|REGEX"
 VALUE="value"/>
 </ADVANCEDSELECTOR>
 <ACTION REMOVALTTL="TTL"/>
 <INFO VALUE="value"/>
 </OBJECT>
 </INVALIDATION>
</esi:invalidate>

ESI Tag Descriptions

11-46 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

11.4.6.2 Attributes
■ output—yes specifies that the invalidation result be included in the browser

response, enclosed within comments <!--result-->. no specifies that the
invalidation result not be displayed in the output. Specify a value of yes for a test
environment; specify a value of no for a production environment.

11.4.6.3 Usage
See Section 11.3.

11.4.6.4 Example
See Section 11.3.1.

11.4.7 ESI remove Tag
The <esi:remove> tag allows for specification of non-ESI markup output if ESI
processing is not enabled with the Surrogate-Control header or there is not an
ESI-enabled cache.

11.4.7.1 Syntax
<esi:remove> HTML output...</esi:remove>

11.4.7.2 Usage
Any HTML or ESI elements can be included within this tag, except other
<esi:remove> tags. Note that nested ESI tags are not processed.

11.4.7.3 Example
The following ESI markup includes http://www.company.com if the
<esi:include> content cannot be included:

<esi:include src="http://www.company.com/ad.html"/>
<esi:remove>
 www.company.com
</esi:remove>

Normally, when Oracle Web Cache processes this example block, it fetches the
ad.html file and includes it into the template page while silently discarding the
<esi:remove> tag and its contents. If ESI processing is not enabled, all of the
elements are passed through to the browser, which ignores ESI markup. However, the
browser displays the HTML link.

11.4.8 ESI try | attempt | except Tags
The <esi:try> tag provides for exception handling. The <esi:try> tag must
contain exactly one instance of an <esi:attempt> tag and one or more
<esi:except> tags. See Section 11.1.7 for usage notes on alt and onerror.

11.4.8.1 Syntax
In the following form, only one <esi:except> tag is supported:

<esi:try>
 <esi:attempt>
 Try this...
 </esi:attempt>
 <esi:except>

ESI Tag Descriptions

Caching Dynamic Content with ESI Language Tags 11-47

 If the attempt fails, then perform this action...
 </esi:except>
</esi:try>

In the following form, multiple <esi:except> tags with different types are
supported:

<esi:try>
 <esi:attempt>
 Try this...
 </esi:attempt>
 <esi:except [type="type"]>
 If the attempt fails, then perform this action...
 </esi:except>
 <esi:except [type="type"]>
 Perform this action...
 </esi:except>
 <esi:except>
 If the attempt fails, then perform this action...
 </esi:except>
</esi:try>

11.4.8.2 Usage
Oracle Web Cache first processes the contents of <esi:attempt>. A failed
<esi:attempt> triggers an error and causes Oracle Web Cache to process the
contents of the <esi:except> tag.

Specify an <esi:except> tag without a type for general errors; specify an
<esi:except> tag with a type for specific errors. The <esi:except> tag accepts the
following case-insensitive types:

■ nestingtoodeep: An error occurs because the fragment include depth has
exceeded the maximum include depth.

■ originserverbusy: An error occurs because the origin server for this fragment
is busy and cannot accept new requests now. This is caused by Oracle Web
Cache-to-origin server request queue limit being reached.

■ noconnection: An error occurs because the cache cannot connect to the origin
server serving this fragment.

■ networktimeout: An error occurs because a fragment request to the origin
server has timed out in the network connection.

■ httpclienterror: An error occurs because the origin server returns an HTTP
4xx status code, a client error, such as a malformed HTTP request or an
unauthorized access.

■ httpservererror: An error occurs because the origin server returns an HTTP
5xx status code, a server error.

■ incompatiblefragmentversion: An error occurs because a fragment's
processing requirement is not supported or not compatible with the template.
<!-- WEBCACHETAG--> and <!-- WEBCACHEEND--> processing in an ESI
fragment is not compatible with ESI processing. A fragment may be plain data that
does not need any processing in the cache, or it may be an ESI template itself that
requires processing of ESI features supported in this release. The ESI features in
use are specified by the Surrogate-Control content control directive.

■ incorrectresponseheader: An error occurs because the response headers for
a fragment causes the error.

ESI Tag Descriptions

11-48 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

■ incorrectesifragment: An error occurs when Oracle Web Cache tries to parse
or process the ESI fragment response body due to errors in the body.

■ incorrectxmlfragment: An error occurs because there is an error in XSLT
retrieval, parsing, or processing by Oracle Web Cache.

11.4.8.3 Example
The following ESI markup attempts to fetch an advertisement. If the advertisement
cannot be included, Oracle Web Cache includes a static link instead.

<esi:try>
 <esi:attempt>
 <esi:comment text="Include an ad"/>
 <esi:include src="http://www.company.com/ad1.htm"/>
 </esi:attempt>
 <esi:except>
 <esi:comment text="Just write some HTML instead"/>
 www.company.com
 </esi:except>
</esi:try>

The following ESI markup attempts to fetch a fragment. If the fragment cannot be
included because of httpclienterror, then Oracle Web Cache includes
/cgi-bin/esi-fetch?/esi/tryNestL1.html instead.

<esi:try>
 <esi:attempt>
 <esi:include src="/frag.html"/>
 </esi:attempt>
 <esi:except type="httpclienterror">
 <esi:include src="/cgi-bin/esi-fetch?/esi/tryNestL1.html"/>
 </esi:except>
</esi:try>

The following <esi:try> attempts to include the fragment
http://server.portal.com/pls/ppcdemo/!PCDEMO.wwpro_app_
provider.execute_portlet/513104940/26 containing several HTTP request
headers. If the fragment cannot be included because of various type errors, Oracle
Web Cache returns an Unknown ESI Exception error.

<esi:try>
 <esi:attempt>
 <esi:include src="http://server.portal.com/pls/ppcdemo/!PCDEMO.wwpro_app_
provider.execute_portlet/513104940/26" timeout="15000" >
 <esi:request_header name="X-Oracle-Device.MaxDocSize" value="0"/>
 <esi:request_header name="Accept"
 value="text/html,text/xml,text/vnd.oracle.mobilexml"/>
 <esi:request_header name="User-Agent"
 value="Mozilla/4.0 (compatible; MSIE 5.5; Windows; YComp 5.0.0.0)
 RPT-HTTPClient/0.3-3"/>
 <esi:request_header name="Device.Orientation" value="landscape"/>
 <esi:request_header name="Device.Class" value="pcbrowser"/>
 <esi:request_header name="PORTAL-SUBSCRIBER" value="us"/>
 <esi:request_header name="Device.Secure" value="false"/>
 <esi:request_header name="PORTAL-SUBSCRIBER-DN"
 value="dc=us,dc=oracle,dc=com"/>
 <esi:request_header name="PORTAL-SUBSCRIBER-GUID"
 value="A5EE385440E6252BE0340800208A8B00"/>
 <esi:request_header name="Accept-Language" value="en-us"/>
 <esi:request_header name="PORTAL-USER-DN"

ESI Tag Descriptions

Caching Dynamic Content with ESI Language Tags 11-49

 value="cn=public,cn=users,dc=us,dc=oracle,dc=com"/>
 <esi:request_header name="PORTAL-USER-GUID"
 value="A5EE55B396E22651E0340800208A8B00"/>
 <esi:request_header name="Content-Type"
 value="application/x-www-form-urlencoded"/>
 </esi:include>
 </esi:attempt>
 <esi:except type="incompatiblefragmentversion" >
 This happens when a fragment's processing requirement is not supported
 or not compatible with the template.
 </esi:except>
 <esi:except type="noconnection" >
 The cache is unable to connect to the origin server serving this fragment.
 </esi:except>
 <esi:except type="nestingtoodeep" >
 The fragment include depth has exceeded the maximum include depth. The
 default value defined in Web Cache is 3.
 </esi:except>
 <esi:except type="httpservererror" >
 The origin server returns an HTTP 5xx status code, a server error.
 </esi:except>
 <esi:except type="httpclienterror" >
 The origin server returns an HTTP 4xx status code, a client error, such as
 a malformed HTTP request or an unauthorized access.
 </esi:except>
 <esi:except type="incorrectresponseheader" >
 This happens when the response headers for a fragment cause the error.
 </esi:except>
 <esi:except type="incorrectxmlfragment" >
 This happens when there is any kind of error in Oracle Web Cache XSLT
 retrieval, parsing, or processing.
 </esi:except>
 <esi:except type="originserverbusy" >
 The origin server for this fragment is busy and cannot accept new requests
 now. This is caused by Oracle Web Cache-to-origin server request queue
 limit.
 </esi:except>
 <esi:except type="networktimeout" >
 This is thrown by a fragment whose request to the origin server has timed
 out in the network connection.
 </esi:except>
 <esi:except type="incorrectesifragment" >
 An error is encountered when Oracle Web Cache tries to parse or process
 the ESI fragment response body due to errors in the body.
 </esi:except>
 <esi:except>
 Unknown ESI Exception
 </esi:except>
</esi:try>

11.4.9 ESI vars Tag
The <esi:vars> tag enables you to use variables outside of ESI tags. For example,
instead of specifying a variable inside a <esi:include> or <esi:choose> block,
you can use the <esi:vars> tag to specify a variable inside HTML code.

11.4.9.1 Syntax
<esi:vars>Optional HTML code $(VARIABLE_NAME{key}) Optional HTML code</esi:vars>

ESI Tag Descriptions

11-50 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

11.4.9.2 Syntax Usage
■ If the variable does not use the complete $(VARIABLE_NAME{key}) format,

Oracle Web Cache reports the following error message to the event log:

[Date] [error 12086] [ecid: request_id, serial_number]
ESI syntax error. Unrecognized keyword keyword is at line line.

■ Do not nest the <esi:vars> tag within an HTML code line. The following is an
example of incorrect syntax:

HTML code <esi:vars>$(VARIABLE_NAME{key})</esi:vars>HTML code

For example, the following is invalid:

<IMG SRC="http://www.example.com/<esi:vars>$(HTTP_
COOKIE{type})</esi:vars>/hello.gif"/>

11.4.9.3 Usage
Section 11.1.6 and Section 11.4.3 for usage of HTTP request variables and custom
variables

11.4.9.4 Example
The following ESI markup includes the cookie type and its value as part of the
included URL:

<esi:vars>

</esi:vars>

The following ESI output refers to logindata as part of the link for
the Welcome page. logindata refers to an XML file that contains custom
environment variables. The output also includes the user's sessionID and category
type cookie values as part of the other links.

<esi:vars>

 <A HREF="/shopping.jsp?sessionID=$(QUERY_STRING{sessionID})&type=$(QUERY_
STRING{type})">

 <A HREF="/news.jsp?sessionID=$(QUERY_STRING{sessionID})&type=$(QUERY_
STRING{type})">

 <A HREF="/sports.jsp?sessionID=$(QUERY_STRING{sessionID})&type=$(QUERY_
STRING{type})">

 <A HREF="/fun.jsp?sessionID=$(QUERY_STRING{sessionID})&type=$(QUERY_
STRING{type})">

 <A HREF="/about.jsp?sessionID=$(QUERY_STRING{sessionID})&type=$(QUERY_
STRING{type})">

 </esi:vars>

ESI Tag Descriptions

Caching Dynamic Content with ESI Language Tags 11-51

11.4.10 ESI <!--esi-->Tag
The <!--esi...---> tag enables HTML marked up with ESI tags to display to the
browser without processing the ESI tags. When a page is processed with this tag,
Oracle Web Cache removes the starting <!--esi and ending --> elements, while still
processing the contents of the page. When the markup cannot be processed, this tag
assures that the ESI markup does not interfere with the final HTML output.

11.4.10.1 Syntax
<!--esi
 ESI elements
-->

11.4.10.2 Usage
Any ESI or HTML elements can be included within this tag, except other
<!--esi...--> tags.

11.4.10.3 Example
In the following ESI markup, the <!--esi and --> are removed in the final
output. The output displays the content generated by
<p><esi:vars>Hello, $(HTTP_COOKIE{name})!</esi:vars></p>,
plus any surrounding text.

<!--esi
 <p><esi:vars>Hello, $(HTTP_COOKIE{name})!</esi:vars></p>
-->

If the ESI markup cannot be processed, then the <p><esi:vars>Hello, $(HTTP_
COOKIE{name})!</esi:vars></p> is displayed in the HTML output.

ESI Tag Descriptions

11-52 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

12

Caching with Third-Party Application Servers 12-1

12 Caching with Third-Party Application
Servers

This chapter discusses how to configure Oracle Web Cache with third-party
application Web servers.

This chapter includes the following topics:

■ Section 12.1, "Introduction to Third-Party Application Servers"

■ Section 12.2, "IBM WebSphere"

■ Section 12.3, "Apache Tomcat"

■ Section 12.4, "Microsoft IIS"

12.1 Introduction to Third-Party Application Servers
Because Oracle Web Cache is transparent to the application Web server, the application
Web server treats HTTP requests from Oracle Web Cache as any other HTTP request
coming directly from the browser. In turn, the application Web server generates the
response and sends it back to Oracle Web Cache as an HTTP message.

Because Oracle Web Cache fully supports HTTP, it can work with any
HTTP-compliant application Web server. How the application Web servers choose to
generate HTTP responses is irrelevant to Oracle Web Cache.

The type of application Web server that a site uses depends mainly on the types of
applications that site is running. For example, if customers want to run Active Server
Pages (ASP), then they may prefer to use Microsoft Internet Information Server (IIS) as
the application Web server.

■ Section 12.1.1, "Web Site Configuration"

■ Section 12.1.2, "Caching Rules and Expiration Rules"

Notes:

■ While this chapter describes how Oracle Web Cache works with
three specific kinds of servers, Oracle Web Cache works with any
HTTP-compliant application Web server.

■ The application examples used in the discussions of these
third-party servers are relatively simple. Running with production
applications requires more extensive configuration of Oracle Web
Cache. Refer to the third-party application Web server
documentation for information about designing applications.

IBM WebSphere

12-2 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

12.1.1 Web Site Configuration
You configure Oracle Web Cache to communicate with a third-party application Web
server the same way you do with Oracle HTTP Server, by providing the host name
and the listening port number. Table 12–1 shows the default values for the listening
ports for the products discussed in this appendix.

To configure Oracle Web Cache to communicate with a third-party application Web
server, perform the following tasks:

1. See Section 2.11.1 to change Oracle Web Cache port settings

2. See Section 2.11.2 configure application Web server settings

3. See Section 2.11.3 and Section 2.11.4 configure Web site settings

12.1.2 Caching Rules and Expiration Rules
You assign caching rules and expiration rules when using third-party application Web
servers in the same way as when using Oracle HTTP Server. You can choose to cache
or not to cache content for the following:

■ Static objects

■ Multiple-version objects for the same URL

■ Pages supporting a session cookie or embedded URL parameter

■ Pages containing simple personalization

■ Dynamic assembly of Edge Side Includes (ESI) fragments

You can also assign an expiration time limit to objects or invalidate objects at any time.
See Chapter 6, "Caching and Compressing Content," and Chapter 7, "Invalidating
Content."

12.2 IBM WebSphere
When Oracle Web Cache fetches static content from IBM Websphere Application
server, the IBM Websphere Application Server sends a content="ESI/1.0+"
directive in the Surrogate-Control response header in the response to the Oracle
Web Cache Surrogate-Capability: orcl="ESI/1.0" request. Oracle Web
Cache ignores the ESI/1.0+ features to get rid of page rendering issues and errors. If
Oracle Web Cache is deployed as a caching solution, this difference in the control
directive value may result in undefined Web application behavior.

Follow these steps to force IBM Websphere Application Server to send ESI/1.0 instead
of ESI/1.0 or later:

1. In the WebSphere Application Server administrative console, navigate to Servers >
Application servers.

The Application servers page appears.

Table 12–1 Third-Party Application Web Server Default Listening Ports

Application Web Server Port

IBM WebSphere Application Server, Version 6.0 80

Apache Tomcat, Version 4.1 8080

Microsoft IIS 6.0 80

IBM WebSphere

Caching with Third-Party Application Servers 12-3

2. In the Application servers page appears, select the server1 application server.

server1 is the server name when IBM Websphere Application Server is installed
with default options. If you specified a different name, select that name instead.

3. In the Server Infrastructure section of the Configuration tab, select Java and
Process Management, and then Process Definition.

4. In the Additional Properties section, select Java Virtual Machine, and then
Custom Properties.

5. Click New to create an entry.

6. In the Name field, enter com.ibm.servlet.file.esi.control.

7. In the Value field, enter max-age=300, cacheid="URL",
content="ESI/1.0".

8. Click Apply, then save and restart WebSphere Application Server.

The WebSphere Application Server installation includes several JSP, Java servlets, and
EJB examples. This section explains how to configure Oracle Web Cache to cache the
following content:

■ Section 12.2.1, "WebSphere Snoop Servlet"

■ Section 12.2.2, "WebSphere Calendar Creator JSP"

12.2.1 WebSphere Snoop Servlet
The snoop servlet shows getting and using request information, headers, and
parameters sent by the browser. Use it to demonstrate how Oracle Web Cache caches
full-page dynamic content.

To cache the snoop servlet:

1. Ensure that Oracle Web Cache has been configured to communicate with the
WebSphere Application Server, as described in Section 12.1.1.

2. Start the WebSphere Application Server, and then access the following URL:

http://hostname/snoop

Notice that request information, headers, and parameters sent by your browser
display.

3. Create a caching rule for the snoop output, as described in Section 6.8.

When creating the caching rule for the snoop output, ensure you configure the
following in the Create Caching Rule page:

■ Click the Cache check box.

■ In the Match URL By section, select Path Prefix and enter /snoop.

■ In the HTTP Methods section, click GET.

4. Point the browser to Oracle Web Cache with following URL:

http://web_cache_hostname:admin_port/snoop

See Section 2.11.1.1 to determine the port.

The output is the same when you accessed snoop directly from the WebSphere
Application Server. This time, Oracle Web Cache caches the snoop output and
serves the response to the browser.

IBM WebSphere

12-4 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

5. View the contents of the cache, as described in Section 8.6, to ensure that snoop is
cached.

When you reload the page, you should notice that the cached response appears
faster than when you access the WebSphere Application Server directly.

12.2.2 WebSphere Calendar Creator JSP
The Calendar JSP generates a calendar based on user input. The example is not a
pre-deployed WebSphere example like the snoop servlet. To find this example, install
Technology Samples, as mentioned in the documentation under IBM WebSphere
Application Server samples gallery. Use this JSP to demonstrate how Oracle Web
Cache caches pages with session cookies.

To cache SimpleTag.jsp for session-encoded URLs:

1. Start the WebSphere Application Server, set the browser to accept cookies, and
then access the following URL:

http://hostname/TechnologySamples/Calendar

Notice that the page displays a form asking for inputs on month, year, and other
preferences to create a calendar. To use the application:

a. Enter some values, and then click Continue.

b. Enter some values in the Day and Memo fields, and then click Add Memo.

c. Click Generate Calendar.

2. Create an expiration rule, as described in Section 6.7.

In the Create Expiration Policy dialog box, perform the following steps:

a. In the Objects Expire section, select After Cache Entry and enter 60 seconds
in the Time Limit field.

b. In the Action On Expired Objects section, select Remove Immediately.

3. Create a session caching rule, as described in Section 6.8.6.

When configuring a session caching rule, perform the following steps:

a. When creating a session definition in the Session Definitions section of the
Session Configuration page:

* In the Session Name field, enter IBMSession.

* In the Cookie Name field, enter JSESSIONID.

* In the URL Post Body Parameters field, enter jsessionid.

b. In the Session Policy Configuration section of the Session Configuration
page, create two policies named IBMSession:

* In the Cache column for the first IBMSession policy, select the With
Session option.

* In the Cache column for the second IBMSession policy, select the Without
Session option.

* Do not select the Substitute Default Value check box.

c. Create a new caching rule for Calendar.

When creating the caching rule for the Calendar output, configure the
following in the General tab of the Create Caching Rule page:

Apache Tomcat

Caching with Third-Party Application Servers 12-5

* Click the Cache check box.

* From the Expiration list, select Expire 60 seconds after cache entry and
remove immediately.

* In the Match URL By section, select Path Prefix and enter
/TechnologySamples/Calendar.

* In the HTTP Methods section, click GET.

In the Sessions tab of Create Caching Rule page, select both the IBMSession
sessions, one using setting Without Session and the other using setting With
Session.

4. Point the browser to Oracle Web Cache with the following URL:

http://web_cache_hostname:WebCache-admin_port/TechnologySamples/Calendar

See Section 2.11.1.1 to determine the port.

The output is the same when you accessed Calendar directly from WebSphere
Application Server. This time, Oracle Web Cache caches the Calendar output.

5. View the contents of the cache, as described in Section 8.6, to ensure that
Calendar is cached.

When you reload the page, notice that the cached response appears faster than
when you access the WebSphere server directly.

Because the expiration rule for this URL is set to 60 seconds, Oracle Web Cache
expires the cached content after 60 seconds and reflects the content the next time
the user requests the page.

After deploying Oracle Web Cache, if the browser displays a HTTP 404 Page not
found error, perform the following steps:

1. In the WebSphere Server WAS_home/config/cells/plugin-cfg.xml file, add
<VirtualHost Name="*:WebCache-admin_port"/>.

2. In the WebSphere Application Server administrative console, navigate to
Environment > Virtual Hosts.

3. Follow the prompts to add a new virtual host.

12.3 Apache Tomcat
Apache Tomcat, Version 4.1 is a servlet container. It is included with the Apache
Jakarta Project. The Apache Tomcat installation includes several JSP and Java servlet
examples. This section explains how to configure Oracle Web Cache to cache the
following content:

■ Section 12.3.1, "Apache Tomcat Snoop JSP"

■ Section 12.3.2, "Apache Tomcat Session Servlet"

Follow the instructions enclosed within the Apache Tomcat binary for installation.
Apache Tomcat requires the Java Development Kit (JDK).

For more information, see:

■ http://jakarta.apache.org/tomcat/ for further information about
Apache Tomcat

■ http://java.sun.com for further information about downloading and
installing JDK

Apache Tomcat

12-6 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

12.3.1 Apache Tomcat Snoop JSP
snoop.jsp shows getting and using request information, headers, and parameters
sent by the browser. Use it to demonstrate how Oracle Web Cache caches full-page
dynamic content.

To start, perform the following steps:

1. Ensure that Oracle Web Cache has been configured to communicate with the
Apache Tomcat server, as described in Section 12.1.1.

2. Start the Apache Tomcat server, and then access the following URL:

http://web_cache_hostname:WebCache-admin_port/examples/jsp/snp/snoop.jsp

Notice that request information, headers, and parameters sent by your browser
display.

To cache this content:

1. Create a caching rule for the snoop output, as described in Section 6.8.

When creating the caching rule for the snoop output, ensure you configure the
following in the Create Caching Rule page:

■ Click the Cache check box.

■ In the Match URL By section, select Path Prefix and enter
/examples/jsp/snp/snoop.jsp.

■ In the HTTP Methods section, click GET.

2. Point the browser to the Oracle Web Cache with following URL:

http://web_cache_hostname:admin_port/eexamples/jsp/snp/snoop.jsp

See Section 2.11.1.1 to determine the port.

The output is the same when you accessed snoop directly from Apache Tomcat.
This time, Oracle Web Cache caches the snoop output and serves the response to
the browser.

3. View the contents of the cache, as described in Section 8.6, to ensure that snoop is
cached.

When you reload the page, you should notice that the cached response appears
faster than when you access Apache Tomcat directly.

12.3.2 Apache Tomcat Session Servlet
The SessionServlet provides a simple example of an HTTP servlet that uses the
HttpSession class to track the number of times that a browser has visited the servlet.
Use it to demonstrate how Oracle Web Cache caches pages with session-encoded
URLs.

This servlet may not be included in the Apache Tomcat binary. You can find this
example on the Web, or you can use code for the servlet from Example 12–1.

Example 12–1 Apache Tomcat Binary

/*
 * @(#)SessionServlet.java 1.5 1.5
 *
 * Copyright (c) 1996-1998 Sun Microsystems, Inc. All Rights Reserved.
 *

Apache Tomcat

Caching with Third-Party Application Servers 12-7

 * This software is the confidential and proprietary information of Sun
 * Microsystems, Inc. ("Confidential Information"). You shall not
 * disclose such Confidential Information and shall use it only in
 * accordance with the terms of the license agreement you entered into
 * with Sun.
 *
 * SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE
 * SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
 * PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES
 * SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING
 * THIS SOFTWARE OR ITS DERIVATIVES.
 *
 * CopyrightVersion 1.0
 */

package sunexamples;

import java.io.*;
import java.util.Enumeration;

import javax.servlet.*;
import javax.servlet.http.*;

/**
 * This is a simple example of an HTTP Servlet that uses the HttpSession
 * class
 *
 * Note that in order to guarantee that session response headers are
 * set correctly, the session must be retrieved before any output is
 * sent to the client.
 */
public class SessionServlet extends HttpServlet {

 public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {

 //Get the session object
 HttpSession session = req.getSession(true);

 //Get the output stream
 ServletOutputStream out = res.getOutputStream();

 res.setContentType("text/html");

 out.println("<HEAD><TITLE> SessionServlet Output " +
 "</TITLE></HEAD><BODY>");
 out.println("<h1> SessionServlet Output </h1>");

 //Here's the meat
 Integer ival = (Integer) session.getValue("sessiontest.counter");
 if (ival==null) ival = new Integer(1);
 else ival = new Integer(ival.intValue() + 1);
 session.putValue("sessiontest.counter", ival);

 out.println("You have hit this page " + ival + " times.<p>");

 // encodeURL Encodes the specified URL by including the session ID in it

Apache Tomcat

12-8 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

 // if cookies are not turned on or not supported by the browser
 out.println("Click <a href=" + res.encodeURL("/session.html") +
 ">here");
 out.println(" to ensure that session tracking is working even if" +
 " cookies aren't supported.
");
 out.println(" Note that by default URL rewriting is not enabled due" +
 " to it's expensive overhead.");
 out.println("<p>");

 out.println("<h3>Request and Session Data:</h3>");
 out.println("Session ID in Request: " + req.getRequestedSessionId());
 out.println("
Session ID in Request from Cookie: " +
 req.isRequestedSessionIdFromCookie());
 out.println("
Session ID in Request from URL: " +
 req.isRequestedSessionIdFromURL());
 out.println("
Valid Session ID: " +
 req.isRequestedSessionIdValid());
 out.println("<h3>Session Data:</h3>");
 out.println("New Session: " + session.isNew());
 out.println("
Session ID: " + session.getId());
 out.println("
Creation Time: " + session.getCreationTime());
 out.println("
Last Accessed Time: " +
 session.getLastAccessedTime());
 out.println("
Up");
 out.println("</BODY>");
 out.close();
 }

 public String getServletInfo() {
 return "A simple session servlet";
 }
}

To start, perform the following steps:

1. Compile the SessionServlet.java file in the Apache Tomcat environment.

2. Copy the SessionServlet.class to the /examples/servlets/ directory
where other servlet examples may reside.

3. Ensure that Oracle Web Cache has been configured to communicate with the
Apache Tomcat, as described in Section 12.1.1.

4. Configure the browser not to accept cookies.

This is required to use session-encoded URLs in this example.

5. Start Apache Tomcat and access the following URL:

http://hostname/examples/servlets/SessionServlet

Notice that the page displays how many times a browser has visited it. When you
click the link labeled here, notice that the session ID is encoded in the URL. Every
time you refresh or reload the page, the counter increases by one.

To cache the content:

1. Create an expiration rule, as described in Section 6.7.

In the Create Expiration Policy dialog, perform the following steps:

a. In the Objects Expire section, select After Cache Entry and enter 60 in the
Time Limit field.

Apache Tomcat

Caching with Third-Party Application Servers 12-9

b. In the Action on Expired Objects section, select Remove Immediately.

2. Create a session caching rule, as described in Section 6.8.6.

When configuring a session caching rule, perform the following steps:

a. When creating a session definition in the Session Definitions section of the
Session Configuration page:

* In the Session Name field, enter ApacheSession.

* In the Cookie Name field, enter JSESSION.

* In the URL Post Body Parameters field, enter jsessionid.

b. In the Session Policy Configuration section of the Session Configuration
page, create two policies named ApacheSession:

* In the Cache column for the first ApacheSession policy, select the With
Session option.

* In the Cache column for the second ApacheSession policy, select the
Without Session option.

* Do not select the Substitute Default Value check box.

c. Create a new caching rule for Session.

When creating the caching rule for the SessionServlet servlet output,
configure the following in the General tab of the Create Caching Rule page:

* Click the Cache check box.

* From the Expiration list, select Expire 60 seconds after cache entry and
remove immediately.

* In the Match URL By section, select Path Prefix and enter
/examples/servlets/SessionServlet.

* In the HTTP Methods section, click GET.

In the Sessions tab of Create Caching Rule page, select both the
ApacheSession sessions, one using setting Without Session and the other
using setting With Session.

3. Create a session caching rule as described in Section 6.8.6.

4. Point the browser to Oracle Web Cache with the following URL:

http://web_cache_hostname:WebCache-admin/examples/servlets/SessionServlet

See Section 2.11.1.1 to determine the port.

The output is the same when you accessed Session servlet directly from Apache
Tomcat. This time Oracle Web Cache caches the Session servlet output. When the
page is refreshed or reloaded, notice that the counter does not increment by one.
This is because Oracle Web Cache serves the content, and the request never goes to
the Apache Tomcat.

5. View the contents of the cache, as described in Section 8.6, to ensure that Session
servlet is cached.

When you reload the page, notice that the cached response appears faster than
when you access the Apache Tomcat server directly.

Microsoft IIS

12-10 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

Because the expiration rule for this URL is set to 60 seconds, Oracle Web Cache
expires the cached content after 60 seconds and reflects the content the next time
the user requests the page.

12.4 Microsoft IIS
The Microsoft IIS installation includes several ASP examples. This section explains
how to configure Oracle Web Cache to cache the following content:

■ Section 12.4.1, "ServerVariables_Jscript ASP"

■ Section 12.4.2, "Cookie_Jscript ASP"

12.4.1 ServerVariables_Jscript ASP
ServerVariables_JScript.asp demonstrates techniques you can use to access
server variable information from an ASP script. Use it to demonstrate how Oracle Web
Cache caches full-page dynamic content.

To start, perform the following steps:

1. Ensure that Oracle Web Cache has been configured to communicate with IIS, as
described Section 12.1.1.

2. Start IIS, and then access the following URL:

http://hostname/IISSamples/sdk/asp/interaction/ServerVariables_JScript.asp

Notice that request information, headers, and parameters sent by the browser
display.

To cache this content:

1. Create a caching rule for the ServerVariables_JScript.asp, as described in
Section 6.8, using the following information:, configure the following in the Create
Caching Rule page:

When creating the caching rule for the ServerVariables_JScript.asp output,
configure the following in the Create Caching Rule page:

■ In the Match URL By section, enter:

/IISSamples/sdk/asp/interaction/ServerVariables_JScript.asp

■ In the HTTP Methods section, click GET.

■ In the Caching Response section, click Cache.

2. Point the browser to Oracle Web Cache with following URL:

http://web_cache_hostname:WebCache-admin_
port/eIISSamples/sdk/asp/interaction/ServerVariables_JScript.asp

See Section 2.11.1.1 to determine the port.

The output is the same when you accessed ServerVariables_JScript.asp
directly from IIS. This time, Oracle Web Cache caches the ServerVariables_
JScript.asp output and serves the request to the browser.

3. View the contents of the cache, as described in Section 8.6, to ensure that
ServerVariables_JScript.asp is cached.

When you reload the page, you should notice that the cached response appears
faster than when you access IIS directly.

Microsoft IIS

Caching with Third-Party Application Servers 12-11

12.4.2 Cookie_Jscript ASP
Cookie_JScript.asp illustrates how your script can set and read cookies by using
the Response.Cookies collection. Use it to demonstrate how Oracle Web Cache
caches pages with session cookies.

To start, perform the following steps:

1. Ensure that Oracle Web Cache has been configured to communicate with IIS, as
described in Section 12.1.1.

2. Start IIS, verify that your browser is set to accept cookies, and then access the
following URL:

http://hostname/IISSamples/sdk/asp/interaction/Cookie_JScript.asp

When you access the URL, notice that the page displays the date and time you last
visited this page. When you click "Revisit this page," the date and time is updated.

To cache this content:

1. Create an expiration rule, as described in Section 6.7.

In the Create Expiration Policy dialog, perform the following steps:

a. In the Objects Expire section, select After Cache Entry and enter 60 in the
Time Limit field.

b. In the Action on Expired Objects section, select Remove Immediately.

2. Create a session caching rule, as described in Section 6.8.6.

When configuring a session caching rule, perform the following steps:

a. When creating a session definition in the Session Definitions section of the
Session Configuration page:

* In the Session Name field, enter MSSession.

* In the Cookie Name field, enter CookieJSCript.

* In the URL Post Body Parameters field, enter jsessionid.

b. In the Session Policy Configuration section of the Session Configuration
page, create two policies named MSSession:

* In the Cache column for the first MSSession policy, select the With
Session option.

* In the Cache column for the second MSSession policy, select the Without
Session option.

* Do not select the Substitute Default Value check box.

c. Create a new caching rule for Cookie_JScript.asp.

When creating the caching rule for the Cookie_JScript.asp output,
configure the following in the General tab of the Create Caching Rule page:

* Click the Cache check box.

* From the Expiration list, select Expire 60 seconds after cache entry and
remove immediately.

* In the Match URL By section, enter
/IISSamples/sdk/asp/interaction/Cookie_JScript.asp.

* In the HTTP Methods section, click GET.

Microsoft IIS

12-12 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

In the Sessions tab of Create Caching Rule page, select both the MSSSession
sessions, one using setting Without Session and the other using setting With
Session.

3. Point the browser to Oracle Web Cache with the following URL:

http://web_cache_hostname:WebCache-admin_
port/eIISSamples/sdk/asp/interaction/Cookie_JScript.asp

See Section 2.11.1.1 to determine the port.

The output is the same when you accessed Cookie_JScript.asp directly from
IIS. This time, Oracle Web Cache caches the Cookie_JScript.asp output. To
verify that the cache serves the content, click "Revisit this page." Notice that the
date and time are not updated. This is because Oracle Web Cache serves the
cached content, and the request never goes to IIS.

4. View the contents of the cache, as described in Section 8.6, to ensure that Cookie_
JScript.asp is cached.

When you reload the page, notice that the cached response appears faster than
when you access IIS server directly.

Because the expiration rule for this URL is set to 60 seconds, Oracle Web Cache
expires the cached content after 60 seconds and reflects the content the next time
the user requests the page.

A

Troubleshooting Oracle Web Cache A-1

A

Troubleshooting Oracle Web Cache

This appendix describes common problems that you might encounter when using
Oracle Web Cache and explains how to solve them. It contains the following topics:

■ Section A.1, "Problems and Solutions"

■ Section A.2, "Common Configuration Mistakes"

■ Section A.3, "Diagnosing Cache Content Results"

■ Section A.4, "Diagnosing Common Edge Side Includes (ESI) Syntax Errors"

■ Section A.5, "Impact of HTTP Traffic Changes"

■ Section A.6, "Need More Help?"

A.1 Problems and Solutions
This section describes common problems and solutions. It contains the following
topics:

■ Section A.1.1, "No Response from Application Web Server Error"

■ Section A.1.2, "Load Issues on Oracle Web Cache Computer"

■ Section A.1.3, "Performance Degradation and Memory"

■ Section A.1.4, "Invalidation Timeouts in a Cache Cluster"

■ Section A.1.5, "Capacity Issues on Origin Server"

■ Section A.1.6, "Browsers Not Receiving Complete Responses"

■ Section A.1.7, "Browser Presenting a Page Not Displayed Error"

■ Section A.1.8, "ESI Errors with IBM Websphere Application Server"

■ Section A.1.9, "XML Parsing Errors of webcache.xml Appears in Event Viewer"

A.1.1 No Response from Application Web Server Error

Problem
If an 11g Release 1 (11.1.1) Oracle Web Cache is reverse proxying 10g components, such
as Oracle Portal, Oracle Forms Services, or Oracle Business Intelligence Discoverer,
and SSL is enabled, the following browser error may return:

No response from Application Web Server

In addition, messages similar to the following appear in the event log:

Problems and Solutions

A-2 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

[2009-02-11T03:44:55-08:00] [webcache] [ERROR:32] [WXE-11904] [security]
[ecid:] SSL handshake fails NZE-29024
[2009-02-11T03:44:55-08:00] [webcache] [WARNING:1] [WXE-11905] [security]
[ecid:] SSL additional information: The certificate sent by the other side could
not be validated. This may occur if the certificate has expired, has been revoked,
or is invalid for another reason.
[2009-02-11T03:44:55-08:00] [webcache] [WARNING:1] [WXE-11905] [security]
[ecid:] SSL additional information: Remote IP [140.87.11.159]:9002
[2009-02-11T03:44:55-08:00] [webcache] [WARNING:1] [WXE-11905] [security]
[ecid:] SSL additional information: Local IP 152.68.64.152:2832
[2009-02-11T03:44:55-08:00] [webcache] [WARNING:1] [WXE-11906] [security]
[ecid:] SSL details: SSL error during handshake (details: internal=The
certificate sent by the other side could not be validated. This may occur if the
certificate has expired, has been revoked, or is invalid for another reason.
system=Success)

This error indicates that the wallet you selected for Oracle Web Cache contains a
certificate that does not match the wallet used by the 10g components.

Solution
To resolve this problem, modify the wallet you specify for Oracle Web Cache to use the
wallet you are using for the 10g components. See Section 5.4.3.

A.1.2 Load Issues on Oracle Web Cache Computer
On UNIX operating systems, the top and uptime utilities report a higher than
expected average load when the Oracle Web Cache computer is idle.

Problem
This effect occurs because Oracle Web Cache performs light maintenance work, even
when it is idle. One operation Oracle Web Cache performs is garbage collection.
During idle mode, the following effect occurs:

■ The uptime load—the average kernel scheduler queue length—is going to be
longer. Oracle Web Cache increases the average queue length (uptime output) by
approximately one.

■ The CPU load is still low because the work Oracle Web Cache performs is
minimal.

A.1.3 Performance Degradation and Memory
Because Oracle Web Cache is an in-memory cache, it is best to deploy Oracle Web
Cache on a dedicated computer to minimize paging. Unless the computer is dedicated
to run Oracle Web Cache, ensure the maximum cache size does not exceed 20 percent
of the total memory.

This section describes workarounds to invalidation timeouts:

■ Problem 1: Paging

■ Problem 2: Oracle Web Cache Using Memory than the Maximum Cache Size

Problem 1: Paging
If the time taken to cache or invalidate objects increases, the computer may be paging.
Paging can severely degrade performance.

Problems and Solutions

Troubleshooting Oracle Web Cache A-3

Solution 1
To configure Oracle Web Cache to work efficiently on a computer with paging, either
deploy Oracle Web Cache on a dedicated computer or reduce the maximum cache size
and maximum cached object size. See Section 2.11.5 to configure these settings.

Problem 2: Oracle Web Cache Using Memory than the Maximum Cache Size
If Oracle Web Cache uses more memory than the maximum cache size, the increase
may be caused by numerous simultaneous requests for objects that are larger than the
maximum cached object size. In this situation, because the objects are not cached,
Oracle Web Cache uses more memory processing the requests and forwarding them to
the origin server than it would to cache the objects.

Solution 2
Review access logs to determine if many simultaneous requests for large objects have
been made and adjust the size of the maximum cached object size so that those objects
are cached. In addition, check that a caching rule or response header specifies that the
objects are to be cached.

To modify the maximum cache size or the maximum cached object size, set new limits.
See Section 2.11.5 to configure these settings.

A.1.4 Invalidation Timeouts in a Cache Cluster
Invalidation has a default timeout of 300 seconds for the propagation of invalidation
requests in the cache hierarchy or cache cluster deployments. See Section 7.10.2 for an
overview of invalidation propagation.

Problem
When the timeout is exceeded in a cache cluster, a message similar to the following is
displayed in the response to the invalidation request:

Can’t connect to the web cache’s invalidation listening port.

Solution
To resolve this error:

1. On cache cluster members, use a text editor to open the webcache.xml file.

2. Locate the CALYPSONETINFO element:

<CALYPSONETINFO...INV_PEER_TIMEOUT="300"
 INV_GLOBAL_TIMEOUT="300".../>

3. Modify the value of INV_PEER_TIMEOUT attribute.

In a cache cluster, it is likely that cache cluster members run in a LAN
environment. Therefore, decreasing the value of INV_PEER_TIMEOUT typically
improves efficiency.

4. Save webcache.xml.

5. Restart Oracle Web Cache with the following command:

opmnctl restartproc ias-component=component_name

This executable is found in the following directory:

(UNIX) ORACLE_INSTANCE/bin
(Windows) ORACLE_INSTANCE\bin

Problems and Solutions

A-4 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

6. Synchronize configuration changes to all cache cluster members and restart the
other cache cluster members. See Section 3.6.5 to perform this task in Fusion
Middleware Control and Section 3.7.4 to perform this task in Oracle Web Cache
Manager.

A.1.5 Capacity Issues on Origin Server

Problem
If an application Web server has reached capacity, the following error message appears
when accessing pages of a Web site:

The application Web server is busy. Possible reach capacity.

In addition, messages similar to the following appear in the event log:

[2009-04-16T11:56:23-04:00] [webcache] [WARNING:1] [WXE-14021] [backend] [ecid:
453611135182,0] Capacity, as set by Web Cache, is exceeded for all origin servers
that are available for processing this request.
[2009-04-16T11:56:23-04:00] [webcache] [ERROR:32] [WXE-11365] [frontend] [ecid:
453611135182,0] Server busy response is returned.

These errors indicate that the application Web server has exceeded the maximum
number of concurrent connections.

Solution
To resolve this problem, you can either:

■ Increase capacity. See Section 2.11.2.

■ Evaluate the caching rules to determine if additional content can be cached. See
Section A.3.

A.1.6 Browsers Not Receiving Complete Responses
The client browser is not receiving the complete response.

Problem
If the actual length of a page is less than value of the Content-Length
response-header field set by the origin server and sent to a client browser by Oracle
Web Cache, the browser expects more data to arrive and the connection does
eventually time out. If the actual length of the page is greater than the
Content-Length, the browser does not receive the complete page. This problem
does not occur for cache hits because Oracle Web Cache correctly calculates the content
length itself for pages stored in the cache.

Messages similar to the following appear in the event log:

[2009-04-16T13:23:32-04:00] [webcache] [WARNING:1] [WXE-11093] [backend] [ecid:
268932876536,0] Content-Length value 7755 sent by
origin server does not match number of bytes received, that is 454 bytes for
localhost:7785/cgi-bin/test-cgi.

Solution
For cache misses, there are two workarounds for the improper content-length problem:

■ Fix your application to ensure that the value of the Content-Length
response-header field is correct.

Problems and Solutions

Troubleshooting Oracle Web Cache A-5

■ Configure the browser or client emulator to send HTTP/1.0 requests without the
Connection: keep-alive request-header field.

A.1.7 Browser Presenting a Page Not Displayed Error
Client browsers return an error saying that a page cannot be displayed.

Problem
Microsoft Internet Explorer has known issues with trying to reuse SSL connections
after they have timed out. Due to this limitation, users connecting to a Web site using
Internet Explorer 5.5 or later release with the following Oracle Web Cache
configuration conditions, may receive an error saying that the page cannot be
displayed:

■ Oracle Web Cache has at least one listener port to set to accept HTTPS client
requests

■ The network connection keep-alive timeout is set a value more than 0.

Please see the following related sections:

■ Section 5.4 for further information about configuring Oracle Web Cache to accept
HTTPS requests

■ Section 2.11.5 for further information about configuring the keep-alive timeout

■ Section 5.4.4.1 for further information about configuring the Oracle HTTP Server
to maintain keep-alive connections from Oracle Web Cache for Internet Explorer
browsers

When Oracle Web Cache is configured with these settings, Internet Explorer may send
HTTPS requests after Oracle Web Cache has already tried to close the connection.
Then, the browser returns an error saying that the page cannot be displayed.

Solution
To correct his problem, you can upgrade all clients to use the correct Microsoft patches.
For information about the Internet Explorer problem, its workarounds, and links to
updates to Internet Explorer, see the following:

■ Internet Explorer 5.5:
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q3052
17

■ Internet Explorer 6:
http://support.microsoft.com/default.aspx?kbid=831167

In configurations with public Web sites, this option may not feasible. For these
configurations, the Web site administrator can either enable or disable keep-alive
timeouts on HTTPS connections from Internet Explorer in the webcache.xml file. By
default, Oracle Web Cache disables keep-alive for HTTPS connections from Internet
Explorer.

To re-enable keep-alive connection for HTTPS requests from Internet Explorer,
perform the following steps. In a cache cluster, you must perform this procedure for
each cluster member:

1. Use a text editor to open the webcache.xml file.

2. Locate the CALYPSONETINFO element:

<CALYPSONETINFO...KEEPALIVE4MSIE_SSL="NO".../>

Problems and Solutions

A-6 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

3. Modify the value of KEEPALIVE4MSIE_SSL attribute to YES.

4. Save webcache.xml.

5. Restart Oracle Web Cache with the following command:

opmnctl restartproc ias-component=component_name

This executable is found in the following directory:

(UNIX) ORACLE_INSTANCE/bin
(Windows) ORACLE_INSTANCE\bin

A.1.8 ESI Errors with IBM Websphere Application Server
Due to an incompatibility with the ESI capability token between IBM Websphere
Application server and Oracle Web Cache, you may see errors.

Problem
If Oracle Web Cache is deployed to cache content for an IBM Websphere Application
server, the following errors may result:

■ Error page with text "Some ESI Features in this page are not supported"

■ Images do not render

Solution
To resolve this issue

1. In the WebSphere Application Server administrative console, navigate to Servers >
Application Servers.

2. In the Application servers page, select the server1 application server.

server1 is the server name when IBM Websphere Application Server is installed
with default options. If you specified a different name, select that name instead.

3. In the Server Infrastructure section of the Configuration tab, select Java and
Process Management, and then Process Definition.

4. In the Additional Properties section, select Java Virtual Machine, and then
Custom Properties.

5. Click New to create an entry.

6. In the Name field, enter com.ibm.servlet.file.esi.control.

7. In the Value field, enter the following string:

max-age=300, cacheid="URL",content="ESI/1.0".

8. Click Apply to save the settings.

9. Restart IBM Websphere Application Server.

A.1.9 XML Parsing Errors of webcache.xml Appears in Event Viewer
XML parsing errors related to not being able to read the webcache.xml file are
displayed to the Event Viewer rather than to the screen on Windows.

Diagnosing Cache Content Results

Troubleshooting Oracle Web Cache A-7

A.2 Common Configuration Mistakes
Common configuration mistakes include:

■ Not mapping sites correctly to origin servers.

When sites are not mapped, Oracle Web Cache directs requests to the default
Oracle HTTP Server. Browsers may receive an HTTP 500 error code.

Other site configuration errors include:

■ Not specifying all the site aliases

■ Misuse of the wildcard character *

■ Creating multiple site-to-server mappings for a site with multiple origin
servers

See Section 2.11.3 for further information about configuring sites.

■ Ping URL

When configuring the ping URL, how you enter the URL depends on the origin
server. For an application Web Server, enter either a relative or fully qualified URL
that includes the domain name, or site name, representing the virtual host of the
application Web server. For a proxy server, enter a fully qualified URL that
includes the domain name, or site name, representing the virtual host of the origin
server behind the proxy server. Ensure the URL is cached.

See Section 2.11.2 for further information about configuring origin servers.

■ Running Oracle Web Cache with root privilege

On UNIX, you must configure Oracle Web Cache to run with root privilege in the
following cases:

■ Privileged port numbers less than 1024 are being used for Oracle Web Cache
listening ports.

■ There are more than 1,024 file descriptors being used for connections to Oracle
Web Cache.

■ The current opmnctl user does not match the configured process identity
user.

See Section 5.9 for further information about configuring origin servers.

The TRACE verbosity event-logging level can help you validate Oracle Web Cache
configuration settings, such as:

■ Site resolution

■ Site-to-server mappings route to the correct origin servers

■ Compression

■ Session binding

■ Caching rules

■ ESI processing

See Section 9.3 to configure TRACE verbosity in the event logs.

A.3 Diagnosing Cache Content Results
To diagnose if caching rules are set up to serve wrong or outdated content:

Diagnosing Common Edge Side Includes (ESI) Syntax Errors

A-8 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

1. Determine the contents of the cache by:

■ Listing the most popular requests, either cached or not cached requests, along
with the caching rules associated with cached objects. See Section 8.6.

■ Listing the contents of the cache. See Section 8.6.

■ Previewing invalidation without invalidating actual content. See Section 7.7.2
to use the Preview list of objects that match invalidation criteria option.

2. Enable event logging with a logging level of TRACE. Then, resubmit the request.

Trace level logging shows whether an object is cached and which caching rule it
matches.

See Section 9.3 for further information about enabling event logging.

3. Compare the contents of the cache to the caching rules to determine discrepancies
or syntax errors.

Adjust caching rules by adding or removing rules, adjusting expression type
syntax, or changing the precedence of rules.

See Section 6.6 for further information about configuring caching rules.

4. Enable access logging. Then, send an explicit request for the object.

By analyzing the access log determine, you can determine if Oracle Web Cache is
serving the object from its cache or is forwarding the request to the origin server.

See Section 9.4 for further information about enabling access logging.

A.4 Diagnosing Common Edge Side Includes (ESI) Syntax Errors
The majority of ESI errors are the result of syntax errors in either the template or
fragment pages. By analyzing the ESI output in the event log, you can easily diagnose
most ESI syntax errors. To avoid unnecessary reporting in the event log, use a
verbosity level of WARNING, as described in Section 9.3. It is also useful to display the
diagnostic information and event log information in the HTML response body, as
described in Section 8.3.

The following topics describe using the event log and HTML response body to
diagnose template and fragment syntax errors:

■ Section A.4.1, "Template Syntax Error Example"

■ Section A.4.2, "Fragment Syntax Error Example"

■ Section A.4.3, "Fragment Syntax Error with Exception Handling Example"

A.4.1 Template Syntax Error Example
Consider a template named exlusion.html that contains syntax for a nonexistent
ESI tag named <esi:exclude>:

<html><body>
Simple inclusion test.
<esi:exclude src="/cgi-bin/esi-headers.sh?/esi/fragment1.html"/>
</body></html>

The response returned to the browser follows:

<HTML><HEAD><TITLE>Unsupported ESI feature</TITLE></HEAD>
<BODY>Some ESI features on this page are not supported.
</BODY></HTML>

Diagnosing Common Edge Side Includes (ESI) Syntax Errors

Troubleshooting Oracle Web Cache A-9

The following shows an event log excerpt that indicates a problem with the
<esi:exlude> keyword:

[24/Jul/2005:16:02:12 -0500] [detail] [ecid: 25732665668,0] [client: 127.0.0.1]
[host: www.company.com:80] [url: /cgi-bin/esi-headers.sh?/esi/exclusion.html]
[24/Jul/2005:16:02:12 -0500] [error 12086] [ecid: 25732665668,0] ESI syntax error.
Unrecognized keyword exclude is at line 2.
[24/Jul/2005:16:02:12 -0500] [warning 11064] [ecid: 25732665668,0] ESI object
 www.company.com:80/cgi-bin/esi-headers.sh?/esi/exclusion.html parsing error

A.4.2 Fragment Syntax Error Example
Consider a template named inclusion_exclusion.html that contains the
following syntax for including fragment exlusion1.html. Notice that HTML does
not contain any ESI exception handling tags or attributes.

<html><body>
Simple inclusion test.
<esi:include src="/cgi-bin/esi-headers.sh?/esi/frag_exclusion.html"/>
</body></html>

Fragment frag_exclusion.html contains syntax for a nonexistent ESI tag named
<esi:exclude>:

<esi:exclude src="/cgi-bin/esi-headers.sh?/esi/fragment1.html"/>

The response returned to the browser follows:

<HTML><HEAD><TITLE>ESI Processing Exception</TITLE></HEAD>
<BODY>The page caused an ESI processing exception.
</BODY></HTML>

The following shows an event log excerpt that indicates a problem with the
<esi:exlude> keyword. As a result of this error and the fact that the ESI in the
template does not specify any alternative fragment to serve, the browser is served an
ESI exception.

[24/Jul/2005:16:10:40 -0500] [detail] [ecid: 25733186204,0] [client: 127.0.0.1]
[host: www.company.com:80] [url: /cgi-bin/esi-headers.sh?/esi/inclusion_
exclusion.html]
[24/Jul/2005:16:10:40 -0500] [error 12086] [ecid: 25733186204,0] ESI syntax error.
Unrecognized keyword exclude is at line 2.
[24/Jul/2005:16:10:40 -0500] [warning 11064] [ecid: 25733186204,0] ESI object
www.company.com:80/cgi-bin/esi-headers.sh?/esi/frag_exclusion.html parsing error
[24/Jul/2005:16:10:40 -0500] [warning 12009] [ecid: 25733186204,0] Incorrect ESI
fragment exception in ESI template
www.company.com:80/cgi-bin/esi-headers.sh?/esi/inclusion_exclusion.html, fragment
www.company.com:80/cgi-bin/esi-headers.sh?/esi/frag_exclusion.html
[24/Jul/2005:16:10:40 -0500] [error 12012] [ecid: 25733186204,0] No exception
handler is defined in template
www.company.com:80/cgi-bin/esi-headers.sh?/esi/inclusion_exclusion.html:.
[24/Jul/2005:16:10:40 -0500] [error 11368] [ecid: 25733186204,0] ESI exception
error response is returned.

A.4.3 Fragment Syntax Error with Exception Handling Example
Consider the same inclusion_exclusion.html template that contains the
following syntax for including fragment frag_exclusion.html or alternative
fragment fragment1.html. When the exlusion1.html fragment specified cannot

Diagnosing Common Edge Side Includes (ESI) Syntax Errors

A-10 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

be fetched, the fragment1.html fragment specified with the alt attribute is served
in its place.

<html><body>
Simple inclusion test.
<esi:include src="/cgi-bin/esi-headers.sh?/esi/frag_exclusion.html"
alt="/esi/fragment1.html"/>
</body></html>

Fragment frag_exclusion.html contains syntax for a nonexistent ESI tag named
<esi:exclude>:

Simple inclusion succeeded.
<esi:exclude src="/cgi-bin/esi-headers.sh?/esi/fragment1.html"/>

Therefore, fragment fragment1.html is used instead of frag_exclusion.html as
the fragment:

Simple inclusion succeeded.

The response returned to the browser follows:

<html><body>
Simple inclusion test. Simple inclusion succeeded.
</body></html>

The following shows an event log excerpt that indicates a problem with the
<esi:exlude> keyword. Because of the exception handling, the browser is served
the alternative fragment instead of an ESI exception.

[24/Jul/2005:16:14:41 -0500] [detail] [ecid: 25733432444,0] [client: 127.0.0.1]
 [host: www.company.com:80] [url: /cgi-bin/esi-headers.sh?/esi/inclusion_
exclusion.html]
[24/Jul/2005:16:14:41 -0500] [error 12086] [ecid: 25733432444,0] ESI syntax error.
Unrecognized keyword exclude is at line 2.
[24/Jul/2005:16:14:41 -0500] [warning 11064] [ecid: 25733432444,0] ESI object
www.company.com:80/cgi-bin/esi-headers.sh?/esi/frag_exclusion.html parsing error
[24/Jul/2005:16:14:41 -0500] [warning 12009] [ecid: 25733432444,0] Incorrect ESI
 fragment exception in ESI template www.company.com:80/cgi-bin/esi-headers.sh?/
esi/inclusion_exclusion.html, fragment
www.company.com:80/cgi-bin/esi-headers.sh?/esi/frag_exclusion.html

In addition to analyzing the event log for the sequence of events, you can also view the
diagnostic and event log results in the HTML response. The following shows the
HTML response when the string +wcdebug is appended is the URL. The template
diagnostic information, TU;max-age=30+60;age=0, means the following:

■ T means this page is composed an ESI template.

■ U means this request resulted in an update of stale object.

■ max-age=30+60 means that the object is to expire in 30 seconds from population
and to be removed from the cache 60 seconds from the expiration. This provides a
total of 90 seconds from population.

■ age=0 in age means that 0 seconds have passed since population of the cache,
meaning there are 30 seconds to expiration and 60 seconds to removal.

The fragment diagnostic information, FM;max-age=30+0;age=0, means the
following:

■ F means this page is an ESI fragment.

Impact of HTTP Traffic Changes

Troubleshooting Oracle Web Cache A-11

■ U means this request resulted in a cache miss.

■ max-age=30+0 means that the object is to expire in 30 seconds from population
and to be removed from the cache 0 seconds from the expiration. This provides a
total of 30 seconds from population.

■ age=0 in age means that 0 seconds have passed since population of the cache,
meaning there are 30 seconds to expiration and removal.

Web Cache Debug Info: Web Cache Debug Info: TU;max-age=30+60;age=0
Simple inclusion test: Web Cache Debug Info: Web Cache Debug Info:
TU;max-age=30+60;age=0
Web Cache Debug Info: FM;max-age=30+0;age=0

[EVENTLOG]
[24/Jul/2005:16:17:23 -0500] [detail] [ecid: 25733598670,0] [client: 127.0.0.1]
[host: www.company.com:80] [url: /cgi-bin/esi-headers.sh?/esi/inclusion_
exclusion.html]
[24/Jul/2005:16:17:23 -0500] [error 12086] [ecid: 25733598670,0] ESI syntax error.
Unrecognized keyword exclude is at line 2.
[24/Jul/2005:16:17:23 -0500] [warning 11064] [ecid: 25733598670,0] ESI object
www.company.com:80/cgi-bin/esi-headers.sh?/esi/frag_exclusion.html parsing error
[24/Jul/2005:16:17:23 -0500] [warning 12009] [ecid: 25733598670,0] Incorrect ESI
 fragment exception in ESI template www.company.com:80/cgi-bin/esi-headers.sh?/
esi/inclusion_exclusion.html, fragment
www.company.com:80/cgi-bin/esi-headers.sh?/esi/frag_exclusion.html
Simple inclusion succeeded.

A.5 Impact of HTTP Traffic Changes
When Oracle Web Cache is added to an existing application Web server environment,
HTTP traffic changes effect the following aspects of the application:

■ Protocol/Hostname/Port Mapping

To ensure traffic is directed through Oracle Web Cache, configure all absolute
URLs to use the protocol, host name, and port number of Oracle Web Cache. Also,
ensure the Port directive in the Oracle HTTP Server httpd.conf file specifies
the Oracle Web Cache listening port.

■ SSL Processing

Add certificate management to Oracle Web Cache, if the connection between the
client and Oracle Web Cache is HTTPS, but the connection between Oracle Web
Cache and the origin server is HTTP.

■ Page Delivery Timing

For compressed pages or pages that requires processing, Oracle Web Cache waits
for an entire page from the origin server before it sends it to the browser.

■ HTTP Protocol

Oracle Web Cache transparently performs the following:

■ Oracle Web Cache upgrades and downgrades the protocol version between
the origin server and client.

■ For cacheable objects, Oracle Web Cache sends content to clients with the
Content-Length response header instead of chunked encoding for the
initial request.

Need More Help?

A-12 Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

■ For cache hits, Oracle Web Cache overwrites the Content-Length
response-header field whenever it is different from what the origin server sent.
This feature ensures browsers receive full page content.

A.6 Need More Help?
You can find more solutions at the following locations:

■ Oracle MetaLink, http://metalink.oracle.com. If you do not find a solution
for your problem, log a service request.

■ Oracle Web Cache Forum:

http://forums.oracle.com/forums/forum.jspa?forumID=8

Glossary-1

Glossary

access log

A log file that contains information about the HTTP requests sent to Oracle Web Cache
for a Web site. The access log has a file name of access_log and is stored by default
in the following directories:

(UNIX) ORACLE_INSTANCE/diagnostics/logs/WebCache/<webcache_name>
(Windows) ORACLE_INSTANCE\diagnostics\logs\WebCache\<webcache_name>

admin server process

An Oracle Web Cache process that provides administration, configuration, and
monitoring capabilities.

application Web server

An origin server that manages data for a Web site, controls access to that data, and
responds to clients requests. The application on the Web server interfaces with the
database and performs the job requested by the Web server.

cache cluster

A loosely coupled collection of cooperating Oracle Web Cache cache instances to
provide a single logical cache. Cache clusters provide failure detection and failover of
caches, increasing the availability of your Web site.

cache cluster member

An instance of Oracle Web Cache configured with other instances of Oracle Web Cache
to operate as one logical cache. The cache cluster members communicate with one
another to request cacheable content that is cached by another cache cluster member
and to detect when a cache cluster member fails.

cache hierarchy

A deployment in which an Oracle Web Cache caches content from another Oracle Web
Cache to a local market. Oracle Web Cache provides support for a distributed cache
hierarchy in a distributed network and an ESI cache hierarchy in an ESI provider site
configuration.

cache hit

An HTTP or HTTPS request that can be served from objects stored in the Oracle Web
Cache cache without going to the origin server.

cache miss

An HTTP or HTTPS request that cannot be served from the cache and must be
forwarded to an origin server.

cache server process

Glossary-2

cache server process

An Oracle Web Cache process that manages the cache by providing connection
management and request processing.

capacity

For origin servers, the maximum number of concurrent connections that the origin
server can accept.

For cache clusters, the absolute capacity for the number of concurrent incoming
connections to this cache cluster member from all other cache cluster members, and
the relative capacity of the cache cluster member.

category cookie

A cookie that enables the multiple version of the same page to served to different
categories of users.

central cache

In a distributed cache hierarchy, an Oracle Web Cache server that acts as an origin
server to at least one remote cache. When content becomes invalid, the central cache
propagates the invalidation request to the remote caches to ensure consistency.

CLF

See Common Log Format (CLF).

Common Log Format (CLF)

An industry-standard format for Web transaction log files.

cookie

A packet of state information sent by an origin server to a Web browser during an
HTTP request. During subsequent HTTP requests, the cookie is passed back to the
origin server, enabling the origin server to remember the state of the last transaction.

distributed cache hierarchy

A cache hierarchy in which a central cache acts as an origin server to a remote cache.

DMZ

A demilitarized zone (DMZ) or perimeter network is a network area (a subnetwork)
that sits between an organization's internal network and an external network, usually
the Internet. The point of a DMZ is that connections from the internal and the external
network to the DMZ are permitted, whereas connections from the DMZ are only
permitted to the external network; hosts in the DMZ may not connect to the internal
network. This allows the DMZ's hosts to provide services to both the internal and
external network while protecting the internal network in case intruders compromise a
host in the DMZ.

DNS

See Domain Name System (DNS).

Domain Name System (DNS)

A system for naming computers and network services that is organized into a
hierarchy of domains. DNS is used in TCP/IP networks to locate computers through
user-friendly names. DNS resolves a friendly name into an IP address, which is
understood by computers.

failover

Glossary-3

Document Type Definition (DTD)

Markup declarations that provide a grammar for a class of objects.

Edge Side Includes (ESI)

A markup language to enable partial page caching of HTML fragments.

embedded URL parameter

Parameter information embedded in the URL of objects. Oracle Web Cache accepts
requests that use the following characters as delimiters: question mark (?), ampersand
(&), dollar sign ($), or semicolon (;).

ESI

See Edge Side Includes (ESI).

ESI cache hierarchy

A cache hierarchy in which a provider cache acts as an origin server to a subscriber
cache.

ESI provider site

A site that Oracle Web Cache contacts for Edge Side Includes (ESI) assembly only.
Browsers are not allowed to request content from these sites.

event log

A log file that contains Oracle Web Cache event and error information. The event log
has a file name of event_log and is stored in the following directories:

(UNIX) ORACLE_INSTANCE/diagnostics/logs/WebCache/<webcache_name>
(Windows) ORACLE_INSTANCE\diagnostics\logs\WebCache\<webcache_name>

expiration

A function that marks objects as invalid after a certain amount of time in the cache.
When objects are marked as invalid and a client requests them, they are either
immediately removed and refreshed or refreshed based on when the origin server can
refresh them.

Extended Log Format (XLF)

An improved format for HTTP server logins since it is extensible, permitting a wider
range of data to be captured. XLF enables you to configure the logger to generate
different statistics of HTTP requests such as the IP address of clients, methods of the
HTTP requests and response headers such as user agent and accept.

Extensible Markup Language (XML)

A language that offers a flexible way to create common information formats. XML is
used for invalidation messages and responses.

farm

A collection of components managed by Fusion Middleware Control. It can contain
zero or one managed server domains and the Oracle Fusion Middleware system
components that are installed, configured, and running on the domain.

failover

When an origin server fails, Oracle Web Cache automatically distributes the load over
the remaining origin servers and polls the failed origin server for its current up/down
status until it is back online. In a cache cluster environment, Oracle Web Cache

failure detection

Glossary-4

transfers ownership of the content of the failing member to the remaining cluster
members.

failure detection

In a cache cluster environment, Oracle Web Cache detects when a cache cluster
member is unavailable.

GET method

An HTTP request method used for simple requests for Web pages. A GET method is
made up of a URL. Requests for pages that use the GET method are typically cached.

GET method with query string

An HTTP request method made up of a URL and a query string containing
parameters and values. An example of an HTTP GET with query string follows.

http://www.myserver.com/setup/config/navframe?frame=default

This request executes a script named navframe in the /setup/config directory of
the www.myserver.com server and passes the script a value of default for the
frame variable.

garbage collection

An Oracle Web Cache process that removes stale objects based on popularity and
validity.

HTTP protocol

Hypertext Transfer Protocol. A protocol that provides the language that enables
browsers and the origin server to communicate.

HTTP request header

A header that enables Web browsers to pass additional information about the request
and about itself to the origin server.

HTTP request method

A method included in the HTTP request that specifies the purpose of the client's
request. HTTP supports many methods, but the ones that concern caching are GET,
GET with query string, and POST methods.

HTTPS protocol

Secure Hypertext Transfer Protocol. A protocol that uses the Secure Sockets Layer
(SSL) to encrypt and decrypt user page requests as well as the pages that are returned
by the origin server.

invalidation

An Oracle Web Cache function that marks objects as invalid. When objects are marked
as invalid and a client requests them, they are removed and then refreshed with new
content from the origin server. Invalidation keeps the Oracle Web Cache cache
consistent with the content on the origin servers.

Note: You should not cache pages with GET with query strings forms
that make changes to the origin server or database. You should only
cache pages that use GET with query strings if they are used in
searches.

Open Systems Interconnection (OSI)

Glossary-5

invalidation coordinator

In a cache cluster environment, Oracle Web Cache propagates invalidation messages to
other cache cluster members. It sends the invalidation messages to one cache cluster
member who acts as the coordinator. The coordinator propagates the invalidation
messages to the other cluster members.

IP address

Used to identify a node on a network. Each computer on the network is assigned a
unique IP address, which is made up of the network ID, and a unique host ID. This
address is typically represented in dotted-decimal notation, with the decimal value of
each octet separated by a period, for example 144.45.9.22.

latency

Networking round-trip time.

load balancing

A feature in which HTTP requests are distributed among origin servers so that no
single server is overloaded.

Layer 7 (L7) switch

A networking switch that provides load balancing functionality at Layer 7 of the Open
Systems Interconnection (OSI) model—the Application layer. L7 switches base their
load balancing decisions on URL content.

load balancer

A mechanism for balancing the load of incoming requests. This mechanism is typically
a hardware load balancer in the form of a network switch, such asLayer 7 (L7) switch.
A hardware load balancer is typically positioned in front of the Oracle Web Cache
server. Oracle Web Cache can act as a software load balancer for environments where a
hardware load balancer is not available.

on-demand content

In a cache cluster environment, on-demand content consists of popular objects that are
stored in the cache of each cluster member.

Open Systems Interconnection (OSI)

A model of network architecture developed by ISO as a framework for international
standards in heterogeneous computer network architecture.

The OSI architecture is split among seven layers, from lowest to highest:

1. Physical layer

2. Data link layer

3. Network layer

4. Transport layer

5. Session layer

6. Presentation layer

7. Application layer

Each layer uses the layer immediately following it and provides a service to the
preceding layer.

Oracle Enterprise Manager

Glossary-6

Oracle Enterprise Manager

A tool for administering Oracle Application Server. It is a complete management
solution for administering, configuring, and monitoring the application server and its
components. Using it, you can:

■ View the overall status of Oracle Web Cache

■ View performance metrics

Oracle Web Cache Manager

A tool that combines configuration abilities with component control to provide an
integrated environment for configuring and managing Oracle Web Cache.

origin server

A server that is either an application Web server for internal sites or a proxy server for
external sites outside a firewall.

OSI

See Open Systems Interconnection (OSI).

owned content

In a cache cluster environment, content that is owned by a particular cache cluster
member. Oracle Web Cache distributes the cached content among the cache cluster
members. In effect, it assigns content to be owned by a particular cache cluster
member.

partial page caching

A feature that enables Oracle Web Cache to independently cache and manage
fragments of HTML objects. A template page is configured with Edge Side Includes
(ESI) markup tags that tell Oracle Web Cache to fetch and include the HTML
fragments. The fragments themselves are HTML files containing discrete text or other
objects.

performance assurance heuristics

Heuristics that enable Oracle Web Cache to assign a queue order to objects. These
heuristics determine which objects can be served stale and which objects must be
retrieve immediately. While objects with a higher priority are retrieved first, objects
with a lower priority are retrieved at a later time.

The queue order of objects is based on the popularity of objects and the validity of
objects assigned during invalidation. If the current load and capacity of the origin
server is not exceeded, then the most popular and least valid objects are refreshed first.

personalized attribute

Pages that contain personalized attributes, such as personalized greetings like "Hello,
Name," icons, addresses, or shopping cart snippets, on an otherwise generic page. You
can configure Oracle Web Cache to substitute values for personalized attributes based
on the information contained within a cookie or an embedded URL parameter.

popularity

The number of requests for an object since entering the cache and the number of recent
requests for the object.

POST body parameter

Parameter information embedded in the POST body of objects.

round robin

Glossary-7

POST method

An HTTP request method used for requests that modify the contents of the data store
on the origin server, such as posting a message to a mailing list, submitting forms for
registration purposes, or adding entries to the database.

proxy server

An origin server that substitutes for the real server, forwarding client connection
requests to the real server or to other proxy servers. Proxy servers provide access
control, data and system security, monitoring, and caching.

provider

Set of content—content areas, pages, applications, even data from outside
sources—brought in one central location and accessed through a common interface,
called a page.

provider cache

In an ESI cache hierarchy, an Oracle Web Cache server that locally caches content for a
provider site. A subscriber cache then contacts the provider caches for assembly of
HTML fragments. When content becomes invalid, the provider cache propagates the
invalidation request to the subscriber cache to ensure consistency.

provider site

A site that provides a source of content for a provider cache and a subscriber cache.

regular expression

Oracle Web Cache supports the POSIX 1003 extended regular expressions for URLs, as
supported by Netscape Proxy Server 2.5.

See http://www.cs.utah.edu/dept/old/texinfo/regex/regex_toc.html
for regular expression syntax

remote cache

In a distributed cache hierarchy, an Oracle Web Cache server that caches content from
a central cache to serve local requests. When an invalidation request is sent to the
central cache, the central cache propagates the request to the remote cache, ensuring
consistent content.

reverse proxy

A server that appears to be the content server to clients but internally retrieves its
objects from other back-end origin servers as a proxy. A reverse proxy acts a gateway
to the origin servers. It relays requests from outside the firewall to origin servers
behind the firewall, and delivers retrieved content back to the client.

round robin

A method of managing server congestion by distributing connection loads across
multiple servers. Round robin works on a rotating basis in that the first origin server in
the list of configured servers receives the request, then the second origin server
receives the second request, and so on.

Note: You should not cache pages with POST forms that make
changes to the origin server or database. You should only cache pages
that use POST forms if they are used in searches.

Secure Sockets Layer (SSL)

Glossary-8

Secure Sockets Layer (SSL)

A protocol developed by Netscape Corporation. SSL is an industry-accepted standard
for network transport layer security. SSL provides authentication, encryption, and data
integrity, in a public key infrastructure (PKI). By supporting SSL, Oracle Web Cache
can cache pages for HTTPS protocol requests.

selectors

Oracle Web Cache uses selectors to filter through the caching rules to locate the
appropriate rule for the request. Cacheability can be evaluated against the following
selectors:

■ Expression type

■ URL expression

■ HTTP request method of objects

■ Embedded URL and POST body parameters

■ Body of an HTTP POST method

session binding

The process of binding a user session to a given origin server to maintain state for a
period.

session cookie

A cookie that enables a Web site to keep track of user sessions.

session-encoded URLs

HTML hyperlink tags, such as , that contain embedded session
information to distinguish users. You can configure Oracle Web Cache to substitute the
values of session parameters in HTML hyperlink tags with the session information
contained within a session cookie or an embedded URL parameter.

subscriber cache

In an ESI cache hierarchy, an Oracle Web Cache server that assembles ESI content by
contacting a provider cache for the template's HTML fragments. The HTML fragments
are then assembled. When provider site content becomes invalid, the provider site
propagates the invalidation request to the subscriber cache to ensure consistency.

Uniform Resource Identifier (URI)

The address syntax that is used to create a URL.

Uniform Resource Locator (URL)

A standard for specifying the location and route to a file on the Internet. URLs are
used by browsers to navigate the World Wide Web and consist of a protocol, domain
name, directory path, and the file name. For example,
http://www.oracle.com/technology/index.html specifies the location and
path a browser travels to find the main page of the Oracle Technology Network site on
the World Wide Web.

URI

See Uniform Resource Identifier (URI).

URL

See Uniform Resource Locator (URL).

XML

Glossary-9

validity

Expiration time, invalidation time, and removal time of an object.

virtual host site

A site hosted by Oracle Web Cache. Browsers can request cached content from these
sites through Oracle Web Cache. In addition to caching content, Oracle Web Cache can
also assemble ESI fragments from these sites.

wallet

A transparent database used to manage authentication data such as keys, certificates,
and trusted certificates needed by SSL. A wallet has an X.509 version 3 certificate,
private key, and list of trusted certificates.

weighted available capacity

The percentage of the available capacity that the origin server can accept.

webcachectl utility

A utility used to start, stop, and restart the admin server process, the cache server
process, and the auto-restart process, if Oracle Web Cache is running in a standalone
environment (that is, you installed Oracle Web Cache from a kit that included only this
product; you did not install Oracle Web Cache as part of an Oracle Application Server
installation).

XLF

See Extended Log Format (XLF).

XML

See Extensible Markup Language (XML).

XML

Glossary-10

Index-1

Index

Symbols
" (double quotes) symbol

regular expression, 7-7, 7-22, 7-23
$ (dollar sign) symbol

path prefix expression, 6-14, 7-5, 7-23
regular expression, 7-24

& (ampersand) symbol
regular expression, 7-7, 7-22, 7-23

* (asterisk) symbol
path prefix expression, 6-14, 7-5, 7-23
regular expression, 7-24

. (period) symbol
path prefix expression, 6-14, 7-5, 7-23
regular expression, 7-24

+wcdebug string, 8-8
<!--esi--> tag, Edge Side Includes (ESI), 11-51
> (greater than sign) symbol

regular expression, 7-7, 7-22, 7-23
? (question mark) symbol

path prefix expression, 6-14, 7-5, 7-23
regular expression, 7-24

[] (brackets) symbol
path prefix expression, 6-14, 7-5, 7-23
regular expression, 7-24

\ (backslash) symbol
path prefix expression, 6-14, 7-5, 7-23
regular expression, 7-24

^ (caret) symbol
path prefix expression, 6-14, 7-5, 7-23
regular expression, 7-24

{ } (braces) symbol
path prefix expression, 6-14, 7-5, 7-23
regular expression, 7-24

’ (single quotes) symbol
regular expression, 7-7

Numerics
1024 port, 2-22, 5-9, 5-12, 5-18
80 port, 12-2

A
Accept request-header field, 6-7, 9-20
Accept-Charset request-header field, 6-7

Accept-Encoding request-header field, 6-7
Accept-Language request-header field, 6-7
access control, 5-7
access log fields

bytes, 9-15
c-ip, 9-15
cs, 9-15
cs-bytes, 9-15
cs-method, 9-15
cs-uri, 9-15
cs-uri_stem, 9-15
cs-uri-query, 9-15
date, 9-15
r-time-taken, 9-15
sc, 9-15
sc-status, 9-16
s-ip, 9-15
time, 9-16
time-taken, 9-16
x-auth-id, 9-16
x-cache, 9-16
x-cache-detail, 9-17
x-clf-date, 9-17
x-cluster, 9-17
x-conn-abrt, 9-18
x-cookie, 9-17
x-date-end, 9-18
x-date-start, 9-18
x-ecid, 9-18
x-esi-info, 9-18
x-glcookie-set, 9-18
x-log-id, 9-18
x-os-name, 9-18
x-os-timeout, 9-18
x-protocol, 9-18
x-req-line, 9-19
x-req-type, 9-19
x-time-delay, 9-19
x-time-end, 9-19
x-time-handshake, 9-19
x-time-reqblocked, 9-20
x-time-reqqueued, 9-20
x-time-reqrecvlatency, 9-19
x-time-reqsendlatency, 9-19
x-time-resprecvlatency, 9-19
x-time-respsendlatency, 9-19

Index-2

x-time-start, 9-20
access logs

configuring, 9-26
customized log format, 9-28
customized rollover policy, 9-29
examples, 9-21 to 9-23
formats, 9-12

Combined Log Format, 9-13
Common Log Format (CLF), 9-12
End-User Performance Monitoring

Format, 9-14
Enhanced CLF (ECLF), 9-13
Enhanced Combined Log Format, 9-13

rolling over, 9-30
viewing, 9-30

access logs fields
described, 9-15

Access Logs menu option in Oracle Web Cache
Manager, 2-16

access_log.fragment file, 9-18, 9-27
access_log.yyyymmddhhmm file, 9-28, 9-29
ACTION element

in invalidation message, 7-7
admin server process

described, 2-17, 2-32
webcachea executable, 2-32

Administration menu in Fusion Middleware
Control, 2-10

administration-only clusters, 3-18, 3-22
Advanced Content Invalidation menu option in

Oracle Web Cache Manager, 2-16
ADVANCEDSELECTOR element

in invalidation message, 7-5
aliases, 2-2
Apache Tomcat, 12-5
APIs

jawc.jar, 7-26
wxvappl.sql, 7-26
wxvutil.sql, 7-26

attempt tag, Edge Side Includes (ESI), 11-46
audit logs, 9-30
Audit Policy menu option in Fusion Middleware

Control, 2-11
authorization, 5-6
Authorization request-header field, 6-3, 9-20

B
backend failover, 3-4
Basic Content Invalidation menu option in Oracle

Web Cache Manager, 2-16
BASICSELECTOR element

in invalidation message, 7-5
binding sessions, 1-7
BODYEXP attribute

in invalidation message, 7-6
busy_error.html file, 2-30

C
cache cluster members, 3-7
cache clusters

adding cache members
with Oracle Web Cache Manager, 3-20

adding cache members to
with Fusion Middleware Control, 3-16

adding caches to, 3-20
adding members, 3-20, 3-22
administration-only, 3-18, 3-22
authentication, 3-8
benefits of, 3-9
cache cluster settings

with Fusion Middleware Control, 3-16
with Oracle Web Cache Manager, 3-19

client-side certificates and, 5-13, 5-14
deploying, 10-1
failover

failover threshold, 3-16, 3-19
ping URL, 3-16, 3-19
polling interval, 3-16, 3-19

invalidation and, 3-9, 7-23, 7-34
invalidation-only, 3-18, 3-22
name, 3-19
on-demand content and, 3-8
overview, 3-7
owned content and, 3-8
removing cache members

with Fusion Middleware Control, 3-17
with Oracle Web Cache Manager, 3-21

session binding
with Fusion Middleware Control, 3-16
with Oracle Web Cache Manager, 3-20

synchronizing configuration
with Fusion Middleware Control, 3-17, 3-21

synchronizing invalidation messages
with Fusion Middleware Control, 3-18, 3-22

cache contents
generating list of, 8-1
writing list to file, 8-7

CACHE element in webcache.xml file, 3-23
cache hierarchies

deploying, 10-3
cache hits

described, 1-2, 6-1
cache memory

configuring, 2-29
described, 2-3

cache misses
described, 1-2, 6-1

Cache Operations menu option in Oracle Web Cache
Manager, 2-16

cache population, 6-1
cache server process

described, 2-17, 2-32
webcached executable, 2-32

cache size
configuring, 2-29
maximum, 2-3

Cache-Control request-header field, 9-20

Index-3

Cache-Control response-header field, 6-3, 9-20
cached objects

maximum size, 2-6
caching rules

configuring, 6-12 to 6-22
general rules, 6-12
HTTP error responses, 6-19
ignoring the value of parameters, 6-17
MIME-type based, 6-13
multiple versions of the same object, 6-16
popular pages, 6-21
session caching rules, 6-20, 6-21
URL based, 6-13

for multiple versions of the same object, 6-18
overview, 6-2
priority, 6-4
secure, 5-17
summary statistics, 6-22
troubleshooting, A-7

Caching Rules menu option in Fusion Middleware
Control, 2-10

CALYPSONETINFO element in webcache.xml
file, 6-19, A-3, A-5

capacity
of cluster members, 3-19
origin server, 2-24
troubleshooting, A-4

cascading style sheets, compression, 1-7
category cookies

described, 6-6
request and response value comparison, 6-6

certificate authority (CA), 5-2
certificate revocation lists, 5-4
certificates

client-side, 5-3, 5-13
configuring for, 5-13

server-side, 5-3
choose tag, Edge Side Includes (ESI), 11-34
client IP request filter

configuring, 4-6
described, 4-3

ClientIP request headers
forwarding, 5-17

client-side certificates, 5-3, 5-13
clusters and, 5-13
configuring, 5-13

cache clusters and, 5-14
distributed cache hierarchy and, 5-4
for site, 5-14
sites and, 5-3, 5-4

Cluster menu option in Fusion Middleware
Control, 2-10

clusters
adding cache members

with Oracle Web Cache Manager, 3-20
adding cache members to

with Fusion Middleware Control, 3-16
adding caches to, 3-20
adding members, 3-20, 3-22
administration-only, 3-18, 3-22

authentication, 3-8
benefits of, 3-9
cache cluster settings

with Fusion Middleware Control, 3-16
with Oracle Web Cache Manager, 3-19

client-side certificates, 5-13, 5-14
deploying, 10-1
failover

failover threshold, 3-16, 3-19
ping URL, 3-16, 3-19
polling interval, 3-16, 3-19

invalidation and, 3-9, 7-23, 7-34
invalidation-only, 3-18, 3-22
on-demand content and, 3-8
overview, 3-7
owned content and, 3-8
removing cache members

with Fusion Middleware Control, 3-17
with Oracle Web Cache Manager, 3-21

synchronizing configuration
with Fusion Middleware Control, 3-17, 3-21

synchronizing invalidation messages
with Fusion Middleware Control, 3-18, 3-22

Combined Log Format, 9-13
comment tag, Edge Side Includes (ESI), 11-37
Common Log Format (CLF), 9-12
compression

cascading style sheets, 1-7
configuring

for caching rules, 6-14
for sites, 2-27
with compress directive in Surrogate-Control

response-header field, 6-24
described, 1-7
disabling for all requests, 2-27
GIF files, 1-7
GZIP utility, 1-7
HTML files, 1-7
Javascript files, 1-7
JPEG files, 1-7
PNG files, 1-7
WinZip utility, 1-7

configuring
access control, 5-7
access logs, 9-26
cache memory, 2-29
cache size, 2-29
caching rules

partial page caching, 11-17
compression

for caching rules, 6-14
for sites, 2-27
with compress directive in Surrogate-Control

response-header field, 6-24
Edge Side Includes (ESI), 11-17
event logs, 9-23
expiration, 6-11
failover

cache clusters, 3-16, 3-19
origin servers, 2-24

Index-4

HTTPS requests, 5-8 to 5-14
load balancers

hardware, 10-1
Microsoft Network Load Balancing, 3-24
Oracle Web Cache software, 3-23

load balancing of origin servers, 2-24
partial page caching, 11-17
passwords, 5-7
reverse proxy without caching, 3-23
session binding to origin server, 3-5
site settings, 2-26 to 2-29
software load balancing without caching, 3-23

connection limit
cache cluster communication, 3-19
configuring, 2-29
described, 2-4
on UNIX, 2-5
on Windows, 2-6

Connection request-header field, 9-20
Content-Encoding request-header field, 9-20
Content-Encoding response-header field, 1-7, 9-20
Content-Language request-header field, 9-20
Content-Language response-header field, 9-20
Content-Length request-header field, 9-20, A-4
Content-Length response-header field, 9-20
Content-Type request-header field, 9-20
Content-Type response-header field, 9-20
COOKIE element

in invalidation message, 7-6
Cookie request-header field, 6-3, 9-21

category cookies, 6-6
with Edge Side Includes (ESI), 11-16

cookies
category cookies for multiple versions of the same

URL, 6-6
session cookies

caching rules, 6-9, 6-20
session binding, 1-7
session-encoded URLs, 6-9

D
data consistency

with clusters, 3-10
with invalidation, expiration, and validation, 6-1

Date request-header field, 9-20
Date response-header field, 9-20
deleting cache members, 3-17, 3-21
deploying Oracle Web Cache

cache clusters, 10-1
cache hierarchies, 10-3
common configuration, 10-1
load balancers

hardware, 10-1
network, 10-6
software, 10-6

reverse proxy without caching, 10-6
diagnostic information

displaying in HTML response body, 8-2
displaying in Server-response header field, 8-2

Diagnostics menu option in Oracle Web Cache
Manager, 2-16

DNS server, 1-2
Document Type Definitions (DTDs)

WCSinvalidation.dtd, 7-4

E
ECID, 9-8
Edge Side Includes (ESI)

<!--esi--> tag, 11-51
attempt tag, 11-46
choose tag, 11-34
comment tag, 11-37
Cookie request-header field, 11-16
environment tag, 11-37
ESI for Java (JESI), 11-5
examples

personalized greeting, 11-29
portal site, 11-18
Surrogate-Control response-header field, 6-25,

7-20
except tag, 11-46
exception and error handling, 11-13
HTTP_ACCEPT_LANGUAGE variable, 11-11
HTTP_COOKIE variable, 11-11
HTTP_HEADER variable, 11-11
HTTP_HOST variable, 11-12
HTTP_REFERER variable, 11-12
HTTP_USER_AGENT variable, 11-12
include tag, 11-24, 11-26, 11-40
inline tag, 11-19, 11-21, 11-23, 11-30, 11-44
invalidate tag, 11-45
otherwise tag, 11-34
personalized greetings, 11-18
QUERY_STRING_DECODED variable, 11-13
remove tag, 11-46
Set-Cookie response-header field, 11-16
Surrogate-Capability request-header field, 11-8
Surrogate-Control response-header field, 6-23,

11-30
tags, 11-1
try tag, 11-46
vars tag, 11-26, 11-49
when tag, 11-34

embedded URL parameters
caching rules, 6-9, 6-20
ignoring the value of parameters, 6-8, 6-17
session binding, 1-7
session-encoded URLs, 6-9

EncodeBase64.java file, 7-21
End-User Performance Monitoring Format, 9-14
Enhanced CLF format (ECLF), 9-13
Enhanced Combined Log Format, 9-13
environment tag, Edge Side Includes (ESI), 11-37
error pages

configuring for Edge Side Includes (ESI) include
errors, 11-13

default, 2-30
busy_error.html, 2-30

Index-5

esi_fragment_error.txt, 2-30
network_error.html, 2-30

ESI for Java (JESI), 11-5
ESI. See Edge Side Includes (ESI)
esi_fragment_error.txt file, 2-30
ETag response-header field, 9-20
event log information

displaying in HTML response body, 8-2
displaying in Server-response header field, 8-2

event logs
configuring, 9-23
examples of, 9-9 to 9-11
formats, 9-1

Oracle Diagnostic Logging (ODL), 9-2
Oracle Web Cache, 9-7

rolling over, 9-30
viewing, 9-30

Event Logs menu option in Oracle Web Cache
Manager, 2-16

event_log.yyyymmddhhmm file, 9-25
except tag, Edge Side Includes (ESI), 11-46
expiration

concepts of, 6-2
configuring, 6-11

Expiration menu option in Fusion Middleware
Control, 2-10

Expires response-header field, 6-3, 9-20
exporting list of contents, 8-7

F
failover

configuring
cache clusters, 3-16, 3-19
origin servers, 2-25

failover threshold
cache clusters, 3-16, 3-19
origin servers, 2-25

overview
origin servers, 3-4

ping URL
cache cluster members, 3-16, 3-19
origin servers, 2-25

polling interval
cluster members, 3-16, 3-19
origin servers, 2-25

file descriptors
privileges and, 5-18

file extension
caching rules and, 6-14

Filtering menu in Oracle Web Cache Manager, 2-16
firewalls and Oracle Web Cache deployment, 1-5
format request filter

configuring, 4-15
described, 4-4

Fusion Middleware Control
navigating, 2-9
Oracle Web Cache

Administration menu, 2-10
Audit Policy menu option, 2-11

Caching Rules menu option, 2-10
Cluster menu option, 2-10
Expiration menu option, 2-10
General Information menu, 2-11
Multi-Version menu option, 2-10
Origin Servers menu option, 2-10
Passwords menu option, 2-10
Ports Configuration menu option, 2-10
Request Filters menu option, 2-10
Security menu, 2-11
Session Configuration menu option, 2-10
Sites menu option, 2-10
SSL Configuration menu option, 2-11
Wallets menu option, 2-11

URL for, 2-8

G
garbage collection, 2-3
General Information menu in Fusion Middleware

Control, 2-11
GIF files, compression, 1-7
GLOBALCACHINGRULES element in webcache.xml

file, 6-18, 6-19
group ID for Oracle Web Cache administration, 5-18
GZIP utility, compression, 1-7

H
hardware load balancers, 10-1, 10-2

configuring, 10-1
configuring same ping URL as auto-restart

mechanism, 10-2
HEADER element

in invalidation message, 7-7
header request filter

configuring, 4-11
described, 4-3

hierarchies. See cache hierarchies
high availability

with clusters, 3-9
hits

described, 1-2
HOST attribute

in invalidation message, 7-6
Host request-header field, 9-20
HTML files, compression, 1-7
HTTP request header size, 5-16
HTTP request-header fields

Accept, 6-7, 9-20
Accept-Charset, 6-7
Accept-Encoding, 6-7
Accept-Language, 6-7
Authorization, 6-3, 9-20
Cache-Control, 9-20
ClientIP, 5-17
Connection, 9-20
Content-Encoding, 9-20
Content-Language, 9-20
Content-Length, 9-20, A-4

Index-6

Content-Type, 9-20
Cookie, 6-3, 9-21

category cookies, 6-6
Date, 9-20
described, 6-6
Host, 9-20
If-Modified-Since, 6-2, 9-20
If-None-Match, 6-2, 9-20
Keep-Alive, 2-29
Last-Modified, 9-20
Pragma, 9-20
Proxy-Authorization, 6-3
Range, 9-20
Referer, 9-20
SSL-Client-Cert, 5-3, 5-13
Surrogate-Capability, 9-21, 11-8
Surrogate-Control, 11-8
TE, 9-20
User-Agent, 6-8, 9-20
Via, 9-20

HTTP response-header fields
Cache-Control, 6-3, 9-20
Content-Encoding, 9-20
Content-Language, 9-20
Content-Length, 9-20
Content-Type, 9-20
Date, 9-20
ETag, 9-20
Expires, 6-3, 9-20
Last-Modified, 9-20
Pragma, 6-3, 9-20
Server, 8-2, 9-20
Set-Cookie, 6-3, 9-21

category cookies, 6-6
Surrogate-Control, 6-3, 6-23, 9-21
Surrogate-Key, 7-19, 7-32
Transfer-Encoding, 9-20
Via, 9-20
Warning, 6-3

HTTP_ACCEPT_LANGUAGE variable, 11-11
HTTP_COOKIE variable, 11-11
HTTP_HEADER variable, 11-11
HTTP_HOST variable, 11-12
HTTP_REFERER variable, 11-12
HTTP_USER_AGENT variable, 11-12
httpd.conf file, A-11
HTTPS requests

configuring, 5-8 to 5-14
listening port, 5-9
Secure Sockets Layer (SSL) protocol, 5-2

I
IBM Websphere Application Server, 12-2
ID attribute

in invalidation response, 7-9
If-Modified-Since request-header field, 6-2, 9-20
If-None-Match request-header field, 6-2, 9-20
include tag, Edge Side Includes (ESI), 11-24, 11-26,

11-40

INFO element
in invalidation message, 7-7
in invalidation response, 7-9

inline invalidation
configuring, 11-30
described, 7-2

inline tag, Edge Side Includes (ESI), 11-19, 11-21,
11-23, 11-30, 11-44

INTERCACHE element in webcache.xml file, 10-5
INV_PEER_TIMEOUT attribute in webcache.xml

file, A-3
invalidate tag, Edge Side Includes (ESI), 11-45
invalidation

advanced, 7-23
basics, 7-21
concepts of, 6-2

for clusters, 3-9, 7-34
mechanisms

APIs, 7-25
database triggers, 7-26
HTTP POST messages, 7-20
inline, 7-2
Oracle Web Cache Manager, 7-21
response-header, 7-3
scripts, 7-26

previewing list, 7-9, 7-22, 7-25
propagating messages, 3-10

cache cluster, 3-19, 3-22, 7-23, 7-34
cache hierarchy, 7-34

Surrogate-Key response-header field, 7-19
synchronizing messages

cache cluster, 3-18
invalidation coordinator, 3-9, 7-34
invalidation messages

ACTION element, 7-7
ADVANCEDSELECTOR element, 7-5
BASICSELECTOR element, 7-5
BODYEXP attribute, 7-6
compatibility with release 1.0, 7-8
COOKIE element, 7-6
HEADER element, 7-7
HOST attribute, 7-6
INFO element, 7-7
METHOD attribute, 7-6
NAME attribute, 7-6, 7-7
OBJECT element, 7-5
path prefix expression

. (period), 6-14, 7-5, 7-23
$ (dollar sign) symbol, 6-14, 7-5, 7-23
* (asterisk), 6-14, 7-5, 7-23
? (question mark) symbol, 6-14, 7-5, 7-23
[] (brackets) symbol, 6-14, 7-5, 7-23
\ (backslash) symbol, 6-14, 7-5, 7-23
^ (caret) symbol, 6-14, 7-5, 7-23
{ } (braces) symbol, 6-14, 7-5, 7-23

regular expression, 7-23
. (period) symbol, 7-24
" (double quotes) symbol, 7-7, 7-22
$ (dollar sign) symbol, 7-24
& (ampersand) symbol, 7-7, 7-22, 7-23

Index-7

* (asterisk) symbol, 7-24
> (greater than sign) symbol, 7-7, 7-22, 7-23
? (question mark) symbol, 7-24
[] (brackets) symbol, 7-24
\ (backslash) symbol, 7-24
^ (caret) symbol, 7-24
{ } (braces) symbol, 7-24
’ (single quotes) symbol, 7-7

REMOVALTTL attribute, 7-7
SYSTEM element, 7-5
SYSTEMINFO element, 7-5
TYPE attribute, 7-7
URI attribute, 7-5
URIEXP attribute, 7-6
URIPREFIX attribute, 7-5
VALUE attribute, 7-6, 7-7
VERSION attribute, 7-5, 7-9

invalidation preview messages
MAXNUM attribute, 7-10
STARTNUM attribute, 7-10
VERSION attribute, 7-10

invalidation preview responses
NUMURLS attribute, 7-11
SELECTEDURL element, 7-11
STARTNUM attribute, 7-11
STATUS attribute, 7-11
syntax of, 7-10
TOTALNUMURLS attribute, 7-11
VERSION attribute, 7-11

invalidation responses, 7-9
ID attribute, 7-9
INFO element, 7-9
NUMINV attribute, 7-9
RESULT element, 7-9
STATUS attribute, 7-9
syntax of, 7-7, 7-10
SYSTEM element, 7-9
SYSTEMINFO element, 7-9

invalidation-only clusters, 3-18, 3-22
IP addresses

verifying, 5-17
IP version 4 addresses, 2-7
IP version 6 addresses, 2-7

J
Javascript files, compression, 1-7
jawc.jar file, 7-26
JESI, 11-5
JPEG files, compression, 1-7

K
Keep-Alive request-header field

configuring for, 2-29
KEEPALIVE4MSIE_SSL attribute in webcache.xml

file, A-6

L
Last-Modified request-header field, 9-20

Last-Modified response-header field, 9-20
learned rules in request filters, 4-4

configuring, 4-17
limits.conf file, 2-5
listening ports

HTTP, 2-21
HTTPS, 5-9

listLogs command, 9-30
load balancers

hardware, 10-1
Microsoft Network Load Balancing, 3-24
Oracle Web Cache software, 3-23

load balancing
configuring

hardware load balancer by registering IP
address, 10-2

Microsoft Network Load Balancing, 3-24
Oracle Web Cache as a software load

balancer, 3-23
origin servers by setting capacity, 2-24

described, 3-2
Local timestamp conversion issue, 9-25
Logging and Diagnostics menu in Oracle Web Cache

Manager, 2-16

M
MAPPEDUSERAGENT subelement of

GLOBALCACHINGRULES element, 6-19
MAPTYPE subelement of GLOBALCACHINGRULES

element, 6-19
MATCHSTRING subelement of

GLOBALCACHINGRULES element, 6-19
Max_File_Desc setting, 2-5
maximum cache size

configuring, 2-3
maximum cached object size, 2-6
MAXNUM attribute

in invalidation preview message, 7-10
memory

configuring, 2-3
METHOD attribute

in invalidation message, 7-6
method request filter

configuring, 4-7
described, 4-3

Microsoft IIS, 12-10
MIME type caching, 6-13
misses

described, 1-2
mod_osso protected pages, 5-6
Monitor Only option, 4-4
multiple versions of the same object

configuring rules for, 6-16, 6-19
cookie values, 6-6
HTTP request headers, 6-6, 6-18

Multi-Version menu option in Fusion Middleware
Control, 2-10

Index-8

N
NAME attribute

in invalidation message, 7-6, 7-7
netstat -a command, 2-5
network connections

on UNIX, 2-5
on Windows, 2-6

network load balancers, 3-24
network throughput in clusters, 3-9
Network Timeout menu option in Oracle Web Cache

Manager, 2-16
network_error.html file, 2-30
NUMINV attribute

in invalidation response, 7-9
NUMURLS attribute

in invalidation preview response, 7-11

O
OBJECT element

in invalidation message, 7-5
on-demand content, 3-8
On-Demand Log File Rollover menu option in Oracle

Web Cache Manager, 2-16
OpenSSL certificate revocation lists, 5-4
operating system load balancers, 3-24
operation ports

HTTP, 2-22
HTTPS, 5-12

Operations menu in Oracle Web Cache
Manager, 2-16

operations ports
HTTPS, 5-12

OPMN. See Oracle Process and Notification
opmnctl utility

parameters, 2-18
restartproc command, 2-17, 2-33
startall command, 2-17
startproc command, 2-17, 2-33
status command, 2-18
stopall command, 2-17
stopproc command, 2-17, 2-33

Oracle BI Discoverer, 1-8
Oracle Diagnostic Logging (ODL), 9-2
Oracle Forms Services, 1-8
Oracle Fusion Middleware

with Oracle Web Cache, 1-1
Oracle Portal, 1-8
Oracle Process Manager and Notification

commands for Oracle Web Cache, 2-17
described, 2-17
port configuration, 2-21
starting, stopping, restarting, 2-33

Oracle Single Sign-On
caching content from servers, 5-6
partner applications, 5-6

Oracle Single Sign-On caching, 5-17
Oracle Single-Sign

caching, 5-17
Oracle Web Cache

adding to an environment, 2-19
admin server process, 2-17, 2-32
cache server process, 2-17, 2-32
compatibility

Oracle BI Discoverer, 1-8
Oracle Forms Services, 1-8
Oracle Portal, 1-8

deploying
as a reverse proxy server without

caching, 10-6
as a software load balancer without

caching, 10-6
cache clusters, 10-1
cache hierarchies, 10-3
common configuration, 10-1
with a hardware load balancer, 10-1
with a network load balancer, 10-6

features
backend failover, 3-4
caching, 1-5, 1-6
compression, 1-7
load balancing, 3-1, 3-2
origin server load balancing and failover, 1-5
restricted administration, 5-2
reverse proxying, 1-2
Secure Sockets Layer (SSL), 5-2
security, 5-1
session binding, 1-7
SSL acceleration hardware solutions, 5-5
surge protection, 3-1

logging formaT, 9-7
Oracle Single Sign-On caching, 5-17
Oracle Single Sign-On servers, 5-6
Oracle Web Tier, 1-1
population of the cache, 6-1
restarting

Fusion Middleware Control, 2-33
opmnctl restartproc command, 2-17, 2-33
Oracle Process Manager and Notification

Server, 2-33
Oracle Web Cache Manager, 2-34

retrieving status
opmnctl status command, 2-18

starting
Fusion Middleware Control, 2-33
opmnctl restartproc command, 2-17, 2-33
opmnctl startall command, 2-17
opmnctl startproc command, 2-17, 2-33
Oracle Process Manager and Notification

Server, 2-33
Oracle Web Cache Manager, 2-34

stopping
Fusion Middleware Control, 2-33
opmnctl stopall command, 2-17
opmnctl stopproc command, 2-17, 2-33
Oracle Process Manager and Notification

Server, 2-33
Oracle Web Cache Manager, 2-34

with Oracle HTTP Server, 1-1
with Oracle WebLogic Server, 1-1

Index-9

Oracle Web Cache Manager
Access Logs menu option, 2-16
Advanced Content Invalidation menu

option, 2-16
Basic Content Invalidation menu option, 2-16
Cache Operations menu option, 2-16
cluster configuration, 3-19
described, 2-14
Diagnostics menu option, 2-16
Event Logs menu option, 2-16
Filtering menu, 2-16
invalidating content, 7-21
layout, 2-14
Logging and Diagnostics menu, 2-16
Network Timeouts menu option, 2-16
On-Demand Log File Rollover menu option, 2-16
Operations menu, 2-16
Properties menu, 2-16
Request Filters menu option, 2-16
Resource Limits menu option, 2-16
Security menu option, 2-16
starting, 2-14

Oracle Web Cache operation
HTTP, 2-22

Oracle Web Tier
described, 1-1
Oracle HTTP Server, 1-1
Oracle Web Cache, 1-1

Oracle-ECID request header, 9-8
origin servers

capacity, 2-24
failover

failover threshold, 2-25
ping URL, 2-25
polling interval, 2-25

load balancing
capacity, 2-24
configuring, 2-24
described, 3-1, 3-2

session binding
described, 1-7

Origin Servers menu option in Fusion Middleware
Control, 2-10

otherwise tag, Edge Side Includes (ESI), 11-34
owned content, 3-8

P
partial page caching

caching rules, 11-17
configuring, 11-17
described, 11-1
examples

personalized greetings, 11-29
portal site, 11-18
Surrogate-Control response-header field, 6-25,

7-20
Surrogate-Control response-header field, 6-23

passwords, 5-7
Passwords menu option in Fusion Middleware

Control, 2-10
path prefix

caching rules and, 6-14
path prefix expression

. (period) symbol, 6-14, 7-5, 7-23
$ (dollar sign) symbol, 6-14, 7-5, 7-23
* (asterisk) symbol, 6-14, 7-5, 7-23
? (question mark) symbol, 6-14, 7-5, 7-23
[] (brackets) symbol, 6-14, 7-5, 7-23
\ (backslash) symbol, 6-14, 7-5, 7-23
^ (caret) symbol, 6-14, 7-5, 7-23
{ } (braces) symbol, 6-14, 7-5, 7-23

performance
metrics

Performance Summary page, 8-4
request filtering, 4-17
Web Cache Home page, 2-11 to 2-13

settings for Oracle Web Cache
configuring, 2-29
described, 2-3 to 2-7

troubleshooting degradation, A-2
personalized attributes

Edge Side Includes (ESI), 11-18, 11-21
WEBCACHEEND tag, 11-47
WEBCACHETAG tag, 11-47

ping URL
cache clusters, 3-16, 3-19
hardware load balancers, 10-2
origin servers, 2-25

PKI, 5-2
PNG files, compression, 1-7
popular requests

listing, 8-1
populating the cache, 6-1
ports

1024, 2-22, 5-9, 5-12, 5-18
80, 12-2
8080, 12-2
described, 2-7
Oracle Web Cache listening

HTTP, 2-21
HTTPS, 5-9

Oracle Web Cache operation
HTTPS, 5-12

third-party application servers, 12-2
used by Oracle Web Cache

Fusion Middleware Control, 2-20
Oracle Process Manager and Notification, 2-21

Ports Configuration menu option in Fusion
Middleware Control, 2-10

POST body parameters
caching rules, 6-20
ignoring the value of parameters, 6-8, 6-17

Pragma request-header field, 9-20
Pragma response-header field, 6-3, 9-20
preview invalidation, 7-9, 7-22, 7-25
privileged IP request filter

configuring, 4-5
described, 4-3

process identity, 5-5

Index-10

root privilege and, 5-19
propagating invalidation messages

cache cluster, 3-19, 3-22, 7-23
cache hierarchy, 7-34

Properties menu in Oracle Web Cache
Manager, 2-16

Proxy-Authorization request-header field, 6-3
public key infrastructure (PKI), 5-2

Q
query string request filter

configuring, 4-13
described, 4-4

QUERY_STRING_DECODED variable, 11-13

R
Range request-header field, 9-20
readme.toolkit.html file, 7-26
Referer request-header field, 9-20
regular expression

. (period) symbol, 7-24
" (double quotes) symbol, 7-7, 7-22, 7-23
$ (dollar sign) symbol, 7-24
& (ampersand) symbol, 7-7, 7-22, 7-23
* (asterisk) symbol, 7-24
> (greater than sign) symbol, 7-7, 7-22, 7-23
? (question mark) symbol, 7-24
[] (brackets) symbol, 7-24
\ (backslash) symbol, 7-24
^ (caret) symbol, 7-24
{ } (braces) symbol, 7-24
’ (single quotes) symbol, 7-7

REMOVALTTL attribute
in invalidation message, 7-7

remove tag, Edge Side Includes (ESI), 11-46
removing cache members, 3-17, 3-21
request filters, 4-4

client IP, 4-3
copying rules, 4-18
deleting rules, 4-16
format, 4-4
header, 4-3
learned rules, 4-4

configuring, 4-17
method, 4-3
privileged IP, 4-3
query string, 4-4
reverting configuration settings, 4-19
statistic monitoring, 4-16
statistics, 4-16
URL, 4-3

Request Filters menu option in Fusion Middleware
Control, 2-10

Request Filters menu option in Oracle Web Cache
Manager, 2-16

Resource Limits menu option in Oracle Web Cache
Manager, 2-16

response-header invalidation

described, 7-3
enabling, 7-26

restarting Oracle Web Cache
after configuration changes, 2-31
Fusion Middleware Control, 2-33
opmnctl restartproc command, 2-17, 2-33
Oracle Process Manager and Notification

Server, 2-33
Oracle Web Cache Manager, 2-34

restricted administration, 5-2
RESULT element

in invalidation response, 7-9
reverse proxy server with caching

Oracle Web Cache as a, 1-1
reverse proxy server without caching

Oracle Web Cache as a, 3-10
configuring, 3-23
feature limitations, 3-10

rlim_fd_max parameter, 2-5
rolling over logs, 9-30
rollover policies, 9-29
root privilege

webcached and, 5-18
round robin, 3-2
routing requests

to origin servers, 2-24
ROUTINGONLY attribute in webcache.xml

file, 3-23
rules for creating caching rules, 6-2

S
scalability

with cache clusters, 3-9
search keys for invalidation, 7-19
secure caching, 5-17
Secure Sockets Layer (SSL), 5-2

troubleshooting, A-1
security

HTTPS requests, 5-8 to 5-14
security features

access control, 5-7
authorization and access enforcement, 5-6
HTTP request header size, 5-16
HTTPS requests, 5-2
passwords, 5-7
protected resources, 5-5
restricted administration, 5-2
running webcached with root privilege, 5-18
secure caching, 5-17
SSL acceleration hardware solutions, 5-5
valid ClientIP headers, 5-17

Security menu in Fusion Middleware Control, 2-11
Security menu option in Oracle Web Cache

Manager, 2-16
SELECTEDURL element

in invalidation preview response, 7-11
Server response-header field, 8-2

access logs, 9-20
diagnostic information, 8-2

Index-11

server-side certificates, 5-3
session binding

concepts of, 3-5
configuring, 3-11

cache clusters, 3-16, 3-20
described, 1-7

Session Configuration menu option in Fusion
Middleware Control, 2-10

session cookies
caching rules, 6-9, 6-20
session binding, 1-7
session-encoded URLs, 6-9

session-encoded URLs
configuring, 6-21
described, 6-9

sessions
binding to an origin server, 3-5, 3-11
caching rules, 6-9, 6-20
serving popular pages from the cache, 6-21

Set-Cookie response-header field, 6-3, 9-21
category cookies, 6-6
with Edge Side Includes (ESI), 11-16

site definitions
creating, 2-26
default site, 2-2
described, 2-2
named sites, 2-2
undefined sites, 2-2

sites, 2-28
aliases, 2-2
client-side certificate and, 5-14
configuring, 2-26 to 2-29
default, 2-2
definitions for

creating, 2-26
described, 2-2

named, 2-2
undefined, 2-2

Sites menu option in Fusion Middleware
Control, 2-10

site-to-server mappings
creating, 2-28
described, 2-2

software load balancing without caching
configuring, 3-23
feature limitations, 3-10

SSL acceleration hardware, 5-5
SSL Configuration menu option in Fusion

Middleware Control, 2-11
SSL See Secure Sockets Layer (SSL)
SSL-Client-Cert headers, 5-3
ssl.conf file, 5-11
starting OPMN processes, 2-17
starting Oracle Web Cache, 2-32

Fusion Middleware Control, 2-33
opmnctl restartproc command, 2-17, 2-33
opmnctl startall command, 2-17
opmnctl startproc command, 2-17, 2-33
Oracle Process Manager and Notification

Server, 2-33

Oracle Web Cache Manager, 2-34
STARTNUM attribute

in invalidation preview message, 7-10
in invalidation preview response, 7-11

stateful load balancing. See session binding
stateless load balancing. See load balancing
statistics monitoring requests

port number, using to obtain statistics, 8-4
STATUS attribute

in invalidation preview response, 7-11
in invalidation response, 7-9

stopping OPMN processes, 2-17
stopping Oracle Web Cache, 2-32

Fusion Middleware Control, 2-33
opmnctl stopall command, 2-17
opmnctl stopproc command, 2-17, 2-33
Oracle Process Manager and Notification

Server, 2-33
Oracle Web Cache Manager, 2-34

surge protection, 3-1
Surrogate-Capability request-header field, 9-21, 11-8

orcl="ESI/1.0" operation value, 11-8
orcl="ESI-Inline/1.0" operation value, 11-8
orcl="ESI-INV/1.0" operation value, 11-8
orcl="ORAESI/9.0.2" operation value, 11-8
orcl="ORAESI/9.0.4" operation value, 11-8
orcl="webcache/1.0" operation value, 11-8

Surrogate-Control response-header field, 6-3, 6-23,
9-21, 11-30

compress control directive, 6-24
content="ESI/1.0" control directive, 6-24, 11-8
content="ESI-Inline/1.0" control directive, 6-24
content="ESI-INV/1.0" control directive, 6-24,

11-30
content="ORAESI/9.0.2" control directive, 6-24,

11-8
content="ORAESI/9.0.4" control directive, 6-24
content="webcache/1.0" control directive, 6-24,

11-8
max-age control directive, 6-24
no-store control directive, 6-24
vary control directive, 6-24

Surrogate-Key response-header field, 7-19, 7-32
synchronizing configuration to cluster, 3-17, 3-21
synchronizing invalidation messages

cache cluster, 3-18
SYSTEM element

in invalidation message, 7-5
in invalidation response, 7-9

SYSTEMINFO element
in invalidation message, 7-5
in invalidation response, 7-9

T
TE request-header field, 9-20
third-party application servers

Apache Tomcat, 12-5
IBM Websphere Application Server, 12-2
Microsoft IIS, 12-10

Index-12

top utility, A-2
TOTALNUMURLS attribute

in invalidation preview response, 7-11
Transfer-Encoding response-header field, 9-20
troubleshooting

browsers displaying a page not displayed
error, A-5

browsers not receiving complete responses, A-4
caching rules, A-7
common configuration mistakes

ping URL, A-7
running webcached with root privilege, A-7
site configuration, A-7

Edge Side Includes (ESI) errors, A-8
GMT to local timestamp, 9-25
invalidation timeouts

cache clusters, A-3
load issues, A-2
no response from application Web server, A-1
origin server capacity, A-4
performance degradation

over maximum cache size limit, A-3
paging, A-2

XML parsing errors in the Event Viewer, A-6
try tag, Edge Side Includes (ESI), 11-46
ttcp utility, 2-5
TYPE attribute

in invalidation message, 7-7

U
uptime utility, A-2
URI attribute

in invalidation message, 7-5
URIEXP attribute

in invalidation message, 7-6
URIPREFIX attribute

in invalidation message, 7-5
URL caching, 6-13
URL request filter

configuring, 4-9
described, 4-3

user ID for Oracle Web Cache administration, 5-18
User-Agent request-header field, 6-8, 9-20

multiple-version objects and, 6-18
UTL_TCP Oracle supplied package, 7-26

V
VALUE attribute

in invalidation message, 7-6, 7-7
vars tag

Edge Side Includes (ESI), 11-26
vars tag, Edge Side Includes (ESI), 11-49
VERSION attribute

in invalidation preview message, 7-10
in invalidation preview response, 7-11
in invalidation response, 7-9

VERSION element
in invalidation message, 7-5

Via request-header field, 9-20
Via response-header field, 9-20

W
wallets

creating, 5-8
default, 5-4
described, 5-4

Wallets menu option in Fusion Middleware
Control, 2-11

Warning response-header field, 6-3
WCSinvalidation.dtd file, 7-4
Web tier

described, 1-1
Oracle HTTP Server, 1-1
Oracle Web Cache, 1-1

webcache_contents.txt file, 8-8
webcache_setuser.sh script, 5-19, 5-20

command format, 5-20
revert command, 5-21
setidentity command, 5-21
setroot command, 5-20

webcachea executable, 2-32
webcached executable, 2-32

privileges and, 2-22, 5-9, 5-12
running with root privilege, 5-18

WEBCACHEEND tag for personalized
attributes, 11-47

WEBCACHETAG tag for personalized
attributes, 11-47

webcache.xml file
CACHE element, 3-23
CALYPSONETINFO element, 6-19, A-3, A-5
GLOBALCACHINGRULES element, 6-18, 6-19
INTERCACHE element, 10-5
INV_PEER_TIMEOUT attribute, A-3
KEEPALIVE4MSIE_SSL attribute, A-6
ROUTINGONLY attribute, 3-23

when tag, Edge Side Includes (ESI), 11-34
WinZip utility, compression, 1-7
wxvappl.sql script, 7-26
wxvutil.sql script, 7-26

X
x-ecid field, 9-9

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide?
	New Features for Release 11g

	Part I Understanding Secure Proxy Caching and Load Balancing
	1 Understanding Reverse Proxying
	1.1 About the Web Tier
	1.1.1 Reverse Proxying

	1.2 Request Flow in Web Tier
	1.2.1 HTTP Traffic Management
	1.2.2 Request Filtering and Routing
	1.2.3 Origin Server Load Balancing and Failover
	1.2.4 Caching
	1.2.5 Compression
	1.2.6 Session Binding

	1.3 Compatibility with Oracle Fusion Middleware Components

	Part II Basic Administration
	2 Getting Started with Administering Oracle Web Cache
	2.1 About Oracle Web Cache Management Tools
	2.2 About Site Configuration
	2.3 About Resource Limits in Oracle Web Cache Management
	2.3.1 Cache Memory Limit
	2.3.2 Maximum Incoming Connections
	2.3.3 Maximum Size of Single Cached Object
	2.3.4 Network Timeouts

	2.4 About Oracle Web Cache Ports
	2.5 About IP Addresses
	2.6 Getting Started with Managing Oracle Web Cache with Oracle Enterprise Manager Fusion Middleware Control Console
	2.6.1 Logging into Fusion Middleware Control
	2.6.2 Navigating to Oracle Web Cache Administration Pages
	2.6.3 Understanding Statistics on the Web Cache Home Page
	2.6.4 Using the Fusion Middleware Control Help

	2.7 Getting Started with Managing Oracle Web Cache with Oracle Web Cache Manager
	2.7.1 Starting Oracle Web Cache Manager
	2.7.2 Navigating Oracle Web Cache Manager
	2.7.3 Understanding the Cache Operations Page

	2.8 Getting Started with Managing Oracle Web Cache with Oracle Process Manager and Notification (OPMN)
	2.9 Basic Tasks for Configuring and Managing Oracle Web Cache
	2.10 Adding an Oracle Web Cache System Component to an Environment
	2.11 Specifying Properties for an Oracle Web Cache System Component
	2.11.1 Task 1: Configure Port Configuration for Oracle Web Cache
	2.11.1.1 Verifying Port Configuration for Oracle Web Cache with Fusion Middleware Control
	2.11.1.2 Verifying Port Configuration for Oracle Web Cache with OPMN
	2.11.1.3 Adding an Oracle Web Cache Listening Port
	2.11.1.4 Modifying Oracle Web Cache Operation Ports

	2.11.2 Task 2: Specify Origin Server Settings
	2.11.3 Task 3: Specify Site Definitions
	2.11.3.1 Disabling Compression for All Responses

	2.11.4 Task 4: Map Site Definitions to Origin Servers
	2.11.5 Task 5: Set Resource Limits and Network Thresholds
	2.11.6 Task 6: Configure Error Pages
	2.11.7 Task 7: Restart Oracle Web Cache

	2.12 Creating Session Definitions
	2.13 Starting and Stopping Oracle Web Cache
	2.13.1 Starting and Stopping Using opmnctl
	2.13.2 Starting and Stopping Using the Fusion Middleware Control
	2.13.3 Starting and Stopping Using Oracle Web Cache Manager

	3 Configuring High Availability Solutions
	3.1 Overview of Origin Server Load Balancing and Failover
	3.1.1 Surge Protection
	3.1.2 Stateless Load Balancing
	3.1.3 Backend Failover

	3.2 Overview of Session Binding
	3.3 Overview of Cache Clusters
	3.4 Overview of High Availability without a Hardware Load Balancer
	3.4.1 Oracle Web Cache Solely as a Software Load Balancer or Reverse Proxy
	3.4.2 Operating System Load Balancing Support

	3.5 Configuring Session Binding
	3.6 Configuring a Cache Cluster for Caches Using the Same Oracle WebLogic Server
	3.6.1 Configuration Prerequisites
	3.6.2 Understanding Failover Threshold and Capacity Settings
	3.6.2.1 Failover Threshold for the Cache Cluster
	3.6.2.2 Capacity for Cache Cluster Members

	3.6.3 Task 1: Add Caches to the Cluster and Configure Properties
	3.6.4 Task 2: Enable Tracking of Session Binding
	3.6.5 Task 3: Synchronize the Configuration to Cluster Members
	3.6.6 Removing a Cache Member from a Cluster
	3.6.7 Configuring Administration and Invalidation-Only Clusters

	3.7 Configuring a Cache Cluster for Unassociated Caches or Caches Using Different Oracle WebLogic Servers
	3.7.1 Task 1: Configure Cache Cluster Settings
	3.7.2 Task 2: Add Caches to the Cluster
	3.7.3 Task 3: Enable Tracking of Session Binding
	3.7.4 Task 4: Synchronize the Configuration to Cluster Members
	3.7.5 Removing Caches from a Cluster
	3.7.6 Configuring Administration and Invalidation-Only Clusters

	3.8 Configuring Oracle Web Cache as a Software Load Balancer
	3.9 Configuring Microsoft Windows Network Load Balancing

	4 Configuring Request Filtering
	4.1 Introduction to Request Filtering
	4.2 Types of Request Filters
	4.3 About Learned Rules
	4.4 About the Monitor Only Mode
	4.5 Configuring Rules for the Privileged IP Filter
	4.6 Configuring Rules for the Client IP Request Filter
	4.7 Configuring Rules for the Method Request Filter
	4.8 Configuring Rules for the URL Request Filter
	4.9 Configuring Rules for the Header Request Filter
	4.10 Configuring Rules for the Query String Request Filter
	4.11 Configuring Rules for the Format Request Filter
	4.12 Deleting Rules for a Request Filter
	4.13 Monitoring Statistics for Request Filter Types and Rules
	4.14 Reducing Time to Configure Request Filters
	4.14.1 Activating Learned Rules for the Method and URL Request Filters
	4.14.2 Copying Rules from a Source Site to a Target Site
	4.14.3 Reverting Configuration Settings

	5 Configuring Security
	5.1 Introduction to Security in Oracle Web Cache
	5.1.1 Oracle Web Cache Security Model
	5.1.1.1 Restricted Administration
	5.1.1.2 Secure Sockets Layer (SSL)
	5.1.1.2.1 Certificate Authority
	5.1.1.2.2 Certificate
	5.1.1.2.3 Wallet
	5.1.1.2.4 How SSL Works

	5.1.1.3 SSL Acceleration

	5.1.2 Resources Protected
	5.1.3 Authorization and Access Enforcement
	5.1.4 Leveraging Oracle Identity Management Infrastructure
	5.1.4.1 About Caching Content from Oracle Single Sign-On Servers
	5.1.4.2 About Caching Oracle Single Sign-On Partner Applications (mod_osso)
	5.1.4.3 About Authentication through Oracle Single Sign-On

	5.2 Configuring Password Security
	5.3 Configuring Access Control
	5.4 Configuring Oracle Web Cache for HTTPS Requests
	5.4.1 Task 1: Create Wallets
	5.4.2 Task 2: Configure an HTTPS Listening Port
	5.4.3 Task 3: Configure SSL Settings for Oracle Web Cache Connections to Origin Servers
	5.4.4 Task 4: Configure a Site to Require HTTPS Requests
	5.4.4.1 Modify ssl.conf for Keep-Alive Connections

	5.4.5 Task 5: Restart Oracle Web Cache

	5.5 Additional HTTPS Configuration
	5.5.1 Configuring HTTPS Operation Ports
	5.5.2 Requiring Client-Side Certificates
	5.5.2.1 Configuring Client-Side Certificate Settings for the HTTPS Listening Ports
	5.5.2.2 Configuring Client-Side Certificate Settings for Cache Clusters
	5.5.2.3 Configuring Client-Side Certificate Settings for a Site

	5.5.3 Configuring Certificate Revocation Lists (CRLs)

	5.6 Configuring HTTP Request Header Size
	5.7 Ensuring That ClientIP Headers Are Valid
	5.8 Configuring Support for Caching Secured Content
	5.9 Running webcached with Root Privilege
	5.9.1 Configuring Process Identity
	5.9.2 Configuring Root Privilege for Privileged Ports and More than 1,024 File Descriptors
	5.9.3 Configuring Root Privilege for the Current User
	5.9.4 Reverting Permissions Back to Installation State

	5.10 Script for Setting File Permissions on UNIX

	6 Caching and Compressing Content
	6.1 About Cache Population
	6.2 About Cache Consistency
	6.2.1 Expiration
	6.2.2 HTTP Cache Validation
	6.2.3 Invalidation

	6.3 About Caching Decisions
	6.4 Introduction to Creating Caching Rules
	6.5 Introduction to Configuring Advanced Settings
	6.5.1 Caching for Objects with Multiple Versions
	6.5.2 Caching for Objects with Embedded URL and POST Body Parameters
	6.5.3 Caching Error Responses
	6.5.4 Caching for Objects with Sessions
	6.5.5 Caching for Objects with Session-Encoded URLs

	6.6 Basic Tasks for Configuring and Monitoring Caching Rules
	6.7 Configuring Expiration Policies
	6.8 Configuring and Monitoring Caching Rules
	6.8.1 Configuring General Rule Settings
	6.8.1.1 Regular Expression Parameters

	6.8.2 Configuring Settings for Rules with Multiple Versions of the Same Object
	6.8.3 Excluding the Value of Embedded URL or POST Body Parameters
	6.8.4 Recognizing Similar Browser Types for Multiple-Version Objects Containing HTTP Request Headers
	6.8.5 Configuring Error Responses for Rules
	6.8.6 Configuring Session Caching Rules
	6.8.7 Configuring Support for Session-Encoded URLs
	6.8.8 Configuring Rules for Popular Pages with Session Establishment

	6.9 Monitoring Summary Settings for Caching Rules
	6.10 Using the Surrogate-Control Response Header as an Alternative to Caching Rules
	6.10.1 Surrogate-Control Response-Header Field

	7 Invalidating Content
	7.1 Overview of Invalidation
	7.2 About Out-of-Band Invalidations
	7.3 About ESI Inline Invalidations
	7.4 About Response Header Invalidations
	7.5 Format of Invalidation Requests for Out-of-Band and ESI Inline Mechanisms
	7.5.1 Invalidation Request Syntax
	7.5.2 Invalidation Response Syntax
	7.5.3 Invalidation Preview Request Syntax
	7.5.4 Invalidation Preview Response Syntax
	7.5.5 Invalidation Examples
	7.5.5.1 Example: Invalidating One Object
	7.5.5.2 Example: Invalidating Multiple Objects
	7.5.5.3 Example: Invalidating a Subtree of Objects
	7.5.5.4 Example: Invalidating All Objects for a Web Site
	7.5.5.5 Example: Invalidating Objects Using Prefix Matching
	7.5.5.6 Example: Invalidating Objects Using Substring and Query String Matching
	7.5.5.7 Example: Invalidating Objects Using Search Key Matching
	7.5.5.8 Example: Propagating Invalidation Requests Throughout a Cache Cluster
	7.5.5.9 Example: Previewing Invalidation

	7.6 About Search Keys in Invalidations
	7.7 Initiating Out-of-Band Invalidations
	7.7.1 Using Telnet to Send Invalidation Requests
	7.7.2 Using Oracle Web Cache Manager to Send Invalidation Requests
	7.7.2.1 Submitting Basic Invalidation Requests
	7.7.2.2 Submitting Advanced Invalidation Requests

	7.7.3 Using Application Program Interfaces (APIs) for Automated Invalidation Requests
	7.7.4 Using Database Triggers for Automated Invalidation Requests
	7.7.5 Using Scripts for Automated Invalidations

	7.8 Enabling Response-Header Invalidation
	7.8.1 Example Usage
	7.8.1.1 Basic URI Invalidation
	7.8.1.2 Directory URI Invalidation
	7.8.1.3 Asychronous Invalidation
	7.8.1.4 Search Key Invalidation with Explicit URI
	7.8.1.5 Search Key Invalidation with Implicit URI
	7.8.1.6 Multiple Invalidation Directives
	7.8.1.7 Mixing Commas and Semicolons
	7.8.1.8 Multiple Invalidation Response Headers

	7.9 Enabling Search Keys for Invalidations
	7.10 Security Considerations
	7.10.1 About the invalidator account
	7.10.2 Propagation of Invalidation Messages
	7.10.2.1 Invalidation in Cache Clusters
	7.10.2.2 Invalidation in Hierarchies

	8 Using Diagnostic Features
	8.1 Introduction to Diagnostic Solutions
	8.2 Introduction to Listing Popular Requests and Cache Contents
	8.3 Introduction to Displaying Diagnostic and Event Log Information in the HTML Body or Server Response-Header Field
	8.4 Viewing General and Detailed Statistics
	8.5 Viewing Configuration Statistics
	8.6 Listing Popular Requests
	8.7 Listing Cache Contents to a File
	8.8 Configuring Where to Display Diagnostic Information

	9 Logging
	9.1 Introduction to Event Logs
	9.1.1 Event Logging Formats
	9.1.1.1 Oracle Diagnostics Logging Text and XML Formats
	9.1.1.2 Oracle Web Cache Classic Format
	9.1.1.3 Request Details in Message 9720
	9.1.1.4 About the Oracle-ECID Request-Header Field

	9.1.2 Event Log Examples
	9.1.2.1 Example: Event Log with Unsuccessful Startup Entries
	9.1.2.2 Example: Event Log with Shutdown Entries
	9.1.2.3 Example: Event Log with Cache Miss and Cache Hit Entries
	9.1.2.4 Example: Event Log with an Invalidation Entry
	9.1.2.5 Example: Analyzing ESI Events

	9.2 Introduction to Access Logs
	9.2.1 Access Log Formats
	9.2.1.1 Common Log Format (CLF)
	9.2.1.2 Enhanced CLF (ECLF)
	9.2.1.3 Combined Log Format
	9.2.1.4 Enhanced Combined Log Format
	9.2.1.5 End-User Performance Monitoring Format

	9.2.2 Access Log Fields
	9.2.2.1 cs(header_name) and sc(header_name) Access Log Fields

	9.2.3 Access Log Examples
	9.2.3.1 Example: Access Log with Reload Entries
	9.2.3.2 Example: Access Log with Status Code 404 Entry
	9.2.3.3 Example: Access Log in Combined Format
	9.2.3.4 Example: Access Log with Site Information
	9.2.3.5 Example: Access Log with ESI Diagnostic Information
	9.2.3.6 Example: Access Log with ESI Log Information

	9.3 Configuring Event Logs
	9.4 Configuring Access Logs
	9.5 Creating a Customized Access Log Format
	9.6 Creating a Customized Access Log Rollover Policy
	9.7 Viewing Event Logs and Access Logs
	9.8 Rolling Over Event and Access Logs
	9.9 Using Audit Logs

	10 Configuring Common Deployment Scenarios
	10.1 Using Oracle Web Cache In a Common Deployment
	10.2 Using a Cache Hierarchy for a Global Intranet Application
	10.3 Using Oracle Web Cache for High Availability Without a Hardware Load Balancer

	Part III Advanced Administration
	11 Caching Dynamic Content with ESI Language Tags
	11.1 Introduction to ESI for Partial Page Caching
	11.1.1 ESI Features
	11.1.1.1 ESI for Java (JESI)

	11.1.2 ESI Language Elements in the Surrogate-Control Response Header
	11.1.3 About the Surrogate-Control Response Header and Surrogate-Capability Request Header for Cached Objects
	11.1.4 Syntax Rules
	11.1.5 Nesting Elements
	11.1.6 Variable Expressions
	11.1.6.1 Variable Usage
	11.1.6.2 Variable Default Values
	11.1.6.3 HTTP Request Variables

	11.1.7 Exceptions and Errors
	11.1.8 About Fragmentation with the Inline and Include Tags
	11.1.8.1 Using Inline for Non-Fetchable Fragmentation
	11.1.8.2 Using Inline for Fetchable Fragmentation
	11.1.8.3 Using Include for Fragmentation
	11.1.8.4 Selecting the Fragmentation Mechanism for Your Application

	11.1.9 Referer Request-Header Field
	11.1.10 Cookie Management for Template Pages and Fragments

	11.2 Enabling Dynamic Assembly of Content and Partial Page Caching
	11.2.1 Enabling Partial Page Caching
	11.2.2 Using ESI for Simple Personalization
	11.2.3 Examples of ESI Usage
	11.2.3.1 Example of a Portal Site Implementation
	11.2.3.1.1 Portal Example Using inline Tags
	11.2.3.1.2 Portal Example Using Include Tags

	11.2.3.2 Example of Simple Personalization with Variable Expressions

	11.3 Using Inline Invalidation in HTTP Responses
	11.3.1 Example: Using Inline Invalidation

	11.4 ESI Tag Descriptions
	11.4.1 ESI choose | when | otherwise Tags
	11.4.1.1 Syntax
	11.4.1.2 Attributes
	11.4.1.3 Usage
	11.4.1.4 Boolean Expressions
	11.4.1.5 Statements
	11.4.1.6 Example

	11.4.2 ESI comment Tag
	11.4.2.1 Syntax
	11.4.2.2 Usage
	11.4.2.3 Example

	11.4.3 ESI environment Tag
	11.4.3.1 Syntax
	11.4.3.2 Attributes
	11.4.3.3 Elements
	11.4.3.4 Syntax Usage
	11.4.3.5 Example

	11.4.4 ESI include Tag
	11.4.4.1 Syntax
	11.4.4.2 Attributes
	11.4.4.3 Elements
	11.4.4.4 Syntax Usage
	11.4.4.5 Usage
	11.4.4.6 Examples

	11.4.5 ESI inline Tag
	11.4.5.1 Syntax
	11.4.5.2 Attributes
	11.4.5.3 Usage
	11.4.5.4 Example

	11.4.6 ESI invalidate Tag
	11.4.6.1 Syntax
	11.4.6.2 Attributes
	11.4.6.3 Usage
	11.4.6.4 Example

	11.4.7 ESI remove Tag
	11.4.7.1 Syntax
	11.4.7.2 Usage
	11.4.7.3 Example

	11.4.8 ESI try | attempt | except Tags
	11.4.8.1 Syntax
	11.4.8.2 Usage
	11.4.8.3 Example

	11.4.9 ESI vars Tag
	11.4.9.1 Syntax
	11.4.9.2 Syntax Usage
	11.4.9.3 Usage
	11.4.9.4 Example

	11.4.10 ESI <!--esi-->Tag
	11.4.10.1 Syntax
	11.4.10.2 Usage
	11.4.10.3 Example

	12 Caching with Third-Party Application Servers
	12.1 Introduction to Third-Party Application Servers
	12.1.1 Web Site Configuration
	12.1.2 Caching Rules and Expiration Rules

	12.2 IBM WebSphere
	12.2.1 WebSphere Snoop Servlet
	12.2.2 WebSphere Calendar Creator JSP

	12.3 Apache Tomcat
	12.3.1 Apache Tomcat Snoop JSP
	12.3.2 Apache Tomcat Session Servlet

	12.4 Microsoft IIS
	12.4.1 ServerVariables_Jscript ASP
	12.4.2 Cookie_Jscript ASP

	A Troubleshooting Oracle Web Cache
	A.1 Problems and Solutions
	A.1.1 No Response from Application Web Server Error
	A.1.2 Load Issues on Oracle Web Cache Computer
	A.1.3 Performance Degradation and Memory
	A.1.4 Invalidation Timeouts in a Cache Cluster
	A.1.5 Capacity Issues on Origin Server
	A.1.6 Browsers Not Receiving Complete Responses
	A.1.7 Browser Presenting a Page Not Displayed Error
	A.1.8 ESI Errors with IBM Websphere Application Server
	A.1.9 XML Parsing Errors of webcache.xml Appears in Event Viewer

	A.2 Common Configuration Mistakes
	A.3 Diagnosing Cache Content Results
	A.4 Diagnosing Common Edge Side Includes (ESI) Syntax Errors
	A.4.1 Template Syntax Error Example
	A.4.2 Fragment Syntax Error Example
	A.4.3 Fragment Syntax Error with Exception Handling Example

	A.5 Impact of HTTP Traffic Changes
	A.6 Need More Help?

	Glossary

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

