ORACLE

Oracle® Fusion Middleware
Language Reference Guide for Oracle Business Rules

11gRelease 1 (11.1.1)
E10227-02

October 2009

Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules, 11g Release 1 (11.1.1)
E10227-02

Copyright © 2005, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Thomas Van Raalte

Contributors: Qun Chen, Ching Chung, David Clay, Kathryn Gruenefeldt, Gary Hallmark, Phil Varner,
Neal Wyse

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PUrOIACE ...t s st vii
NS Lo = VT TSR RSO RRRTRTTN Vii
Documentation AcCeSSIDILItYccciiiiiiiiiiiiiiii s Vii
Related DOCUITIEIESveevieieeiecieeeeeeeetee ettt et e et e e ete e eaaeeaeesaaeeseesseseseesneseseeesesenseensesensseseeans viii
CONMVEIIEIONS ..oitvveiiee ettt ettt e e eeett e e e eeate e e e e e eaaeeeesessaaaseeeesaabaeeeeseaaseeeseessaaeseesssnsssaessessssssseessnssaeeeessns viii

1 Rules Programming Concepts

1.1 Starting the Oracle Business Rules RL Language Command-Linecccccocoeninnnnn. 1-2
1.2 Introducing Rules and Rulesets............ccccciiiiiiiiiiiiiiccceeeeeeeas 1-2
1.2.1 Rule CONAIHIONSovviviiiiiiiiiiicir s 1-3
1.2.2 Rule ACHONS. ..ot 1-3
1.3 Introducing Facts and RL Language Classescocoovreieiireiiiiineiecee s 1-3
1.3.1 What Are FaCtS? ..o 1-4
1.3.2 Adding Facts to Working Memory with Assert...........cccoooiii 1-4
1.3.3 Using RL Language Classes as Factsccccccooceiiiiiiniiiiiiiiiicncc, 1-5
1.3.4 Using Java Classes as FaCES ... 1-5
1.4 Understanding and Controlling Rule Firing...........c.cooiiiiie 1-6
1.4.1 Rule Activation and the Agendaccccccciiiiiiiiiiiiiiccas 1-6
1.4.2 Watching Facts, Rules, and Rule Activations ... 1-7
1.4.3 Ordering Rule Firingcooiiiiiiiiiiiiicci e 1-9
1.5 Using Effective Datesccciiiiiiiiiiiii s 1-11
1.6 Integrating RL Language Programs with Java Programs...........ccccococeeiiiniiiiincne, 1-12
1.6.1 Using Java Beans Asserted as Factscccooeoriiiiiiiiiic 1-12
1.6.2 Using RuleSession Objects in Java Applications........c.cccooceueiviceieinicniiccenen 1-14
1.7 Using Decision TIacingcoveeiiiiiiiiiiniiiiiniieiciini i 1-15
1.7.1 Introduction to Rule Engine Level Decision Tracingc.cccococoeueieioicieinicnicienenc. 1-15
1.7.2 Using Rule Engine Level Decision Tracing...........cccccccceciiieininiiiiiiicniiccricnes 1-16
1.7.3 Decision Trace Samples for Production and Development Level Tracing 1-18
1.8 Building a Coin Counter Rules Program..........c...cocooceiiiiiioiiicieieccce s 1-21

2 Rule Language Reference

RULESELE ..ttt ettt et et eb e b e sbe st e s be st et et e te st eneeseebesneenens 2-2
LY PO s 2-4
TA@NEIIOTS ..ttt ettt st ettt et e e e st eseeseeseesessessessensenseneeseesensensens 2-7
LEOTALS .ttt ettt h e bbb e et et et et e st e st e st eneebe b eten 2-8

J <Y Vo) s V=R 2-9

Variable Definitions........cccoiiiiiiniiiiiiccccccccececee e 2-10
Rule Definitionsccccoiiiiiiiiiiiiiiiiiiic s 2-12
Class Definitions ... s 2-15
Function Definitions........ccoccciiiiiiiiiccccecccceeeeeeeee s 2-20
Fact Class Declarations............cccciuiiiiiiiiiiiiiiiiiiiici s 2-21
IMport StatemMentceiiiiiiii s 2-25
Include STAtEMENLtc.ciuiuiiiiiiiciccec e 2-26
USING EXPIOSSIONS......cviviiiiiiiieiiicieieiee et 2-27
Boolean EXPIressions...........cociiiiiiiiiiiiieiiiiic s 2-28
NUmeric EXPIeSSIiOoNScccvuiviiiiiiiiiiiiiiiiiiiic s 2-30
StriNG EXPIESSIONS ...vviviiiiiiicitcicitctti e 2-31
ATTay EXPIOSSIONS....cocviviiiiiiiiiieieieieieteiei s 2-32
Fact Set EXPIeSSiONScocciiiiiiiiiiiiiiiicic s 2-33
Comparable EXPressioncccueiiiiiieiiicice e 2-39
Object EXPIeSSIONS........ccuiviiiiiiiiiiiiicieieieiece s 2-40
Primary EXPressions........c.cciiiiiiiiiiiiiiiicccc s 2-41
Actions and Action BIOCKS..........ccccciiiiiiiiiiiiii s 2-45
If Else ACHON BIOCK......c.ceuiiiiiiiiiieieieieieieieieieieie ettt eaenees 2-46
While Action BIOCK ..o 2-47
FOr Action BLOCK.......c.cooiiiiiiiiiic s 2-48
Try Catch Finally Action BlOCK.........coiieiiiiiii 2-49
Synchronized Action BIOCKccccccoiiiiiiiiiiiiiiiiccccceecee s 2-50
MOify ACHON ...t s 2-51
Return ACHON ..o 2-53
TREOW ACHON. ...t 2-54
ASSIZN ACHON ..ottt 2-55
Increment or Decrement EXPreSSionS..........coveueviiieiiieieiniiiecccicc s 2-56
Primary ACHONScocoiviiiiiiiiiicc s 2-57
RULEETOUP ...ttt s 2-58
Built-in FUNCHONS ... 2-60
ASSETL ..ttt 2-61
ASSEITTTOE ..o e 2-63
ASSETEXPath ... 2-64
ClEaTRULE. ..o s 2-65
ClearRulesetStack ..o 2-66

clearWatchRules, clearWatchActivations, clearWatchFacts, clearWatchFocus, clear-
WatchCompilations, clearWatchAll 2-67

COMLAIILS ©.vovvrreietetete e 2-68
getCurrentDate.........ccoiiiiiiiiii s 2-69
getDeCiSIONTTACE.cuiviieiiiii 2-70
getDecisionTraceLevel ... 2-71

getDecisionTraceLimitcccoooveieiiiiiiii 2-72

GEtEIfectiVeDatec.c.cuiiiiii s 2-73
getFactSBYTYPe c.coviiii 2-74
getRUIESEtStACK ... 2-75
GELRULESESSION. ... 2-76
GeESHTAtEZY covoviii 2-77
ALE ettt ettt ettt sese st s enn 2-78
0 ettt ettt h ettt et et ekt e bt b et e bt e b et eneetenesteneas 2-79
ODJECE ..ot 2-80
PINEIN s 2-81
POPRULESEL ... 2-82
PUSNRULESEt ...t s 2-83
TEETACE ... ettt ettt et e bbbt e et e bt be st esbe e st e s bt et e sbeenbenbeeanenaeens 2-84
TESEL .ottt ettt ettt ettt bbbttt b e h bbbttt et ettt e e e bt e bt bt st e eb et enens 2-85
TUTL ottt eet et e bt s et et e e st e e bt e sbbeeab e e s be e e b e e bt e sabe e bt e sat e e mteeae e e beeeabesabeesmbeeaseenaeeeabeenneenanes 2-86
TUNUNETHALE ¢ttt ettt 2-87
SELCUTTENEDIALE ...ttt ettt se e 2-88
SetDeCiSIONTTACELEVEL.....cc.iiiiiiieieeee ettt 2-89
SetDeciSIONTIaCELIMIL....c.ivceiririeieeiereeeseeeeetc ettt 2-90
SEEEECHIVEDIALE ...ttt ettt 2-91
SETRULESEESTACK ...ttt ettt saen 2-92
SEESHTATEZY ..o.ieieceiiecet e 2-93
SNOWACHVATIONS ..ttt sttt sttt sttt 2-94
SNOWFACES ...ttt ettt ettt et e be bt sttt b nnen 2-95
SO et 2-96
watchRules, watchActivations, watchFacts, watchFocus, watchCompilations...... 2-97

Using the Command-line Interface

3.1
3.2
3.3
3.3.1
3.3.2

Starting and Using the Command-Line Interfacecccccoocceeiiiiciiciicccnccceenns 3-1
RL Command-Line OPtionscccceeeiiiiiiiiiiiiiiiiiieee e 3-3
RL Command-Line Built-in Commandscccceeueiirrieiinnieicinineccneeereeeseeeneeeenens 3-3
Clear COMMANG ..o 3-3
Exit Command ..o 3-4

Using a RuleSession

41
4.2
4.3
4.4
4.5
4.6
4.7
4.71

RuleSession Constructor Properties............covciieiiiiiiiiiniiiiiicccceeeces 4-2
RuleSession Methods............cccviiiiiiiiiiiiiiiii e 4-2
RL to Java Type CONVEISION......ccccciiiiiiiiiiiiiniicicicc s s 4-2
Error HandINg ... e 4-3
RL Class RefleCtioncccccccuiiiiiiiiiiiiiiiiiiiiiccccsse e 4-3
XML NaVigation......ccociiiiiiiiiiiiiiiiic s 4-3
Obtaining Results from a Rule Enabled Program...........cccccoiiiiiiiiiiniincccee 4-4

Overview of Results EXamPplescccoeoioiiiiniiiiiiicce e 4-4

4.7.2 Using External Resources to Obtain Results...........cccooiieiiiniiiiiiiiiiicis 4-5

4.8 Debugging an RL Stacktrace ..ot e 4-5
4.9 Using RuleSession POOLNG ... 4-7
4.91 How to Create a RuleSession Pool ..o 4-7
492 How to Use a RuleSession Pool...........ccccccviiiiniiiiiiiiiiiiins 4-8
4.10 Using RuleSession OPtioNnsS ... 4-8
4.101 Using the CFG_LOGGING System Propertyccccoooereieiiiicieiciiceeiccee, 4-8
4.10.2 Using the CFG_DECISION_TRACE_LEVEL Option.......cccccecvviinnniiiniinininn, 4-9
4.10.3 Using the CFG_DECISION_TRACE_LIMIT Option ..o 4-9
A Summary of Java and RL Differences
A1 RL Differences from JAVA ...cccceceeieiecieieieisiiesieieteteeetesestesas e ssessessessessessessessessssassessessenses A-1
Index

vi

Audience

Preface

This Preface contains these topics:
= Audience

= Documentation Accessibility
= Related Documents

s Conventions

Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules is
intended for application developers and Oracle Application Server administrators
who perform the following tasks:

= Develop rule enabled applications
= Debug rule enabled applications
= Deploy and Administer rule enabled applications.

= Develop rulesets for those who prefer a technical language environment instead of
the Oracle Business Rules Rule Author graphical environment for rule authoring.

= Need to use Oracle Business Rules RL Language advanced features that are not
available in the Oracle Business Rules Rule Author environment.

To use this document, you need to be familiar with the Java programming language.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http: //www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an

vii

otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services

To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http: //www. fcc.gov/cgb/dro/trsphonebk.html.

Related Documents
Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/index.html

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/index.html

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

s Conventions in Text

= RL Language Backus-Naur Form Grammar Rules

Conventions in Text

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

viii

RL Language Backus-Naur Form Grammar Rules

Each RL Language command in the guide is shown in a format description that
consists of a variant of Backus-Naur Form (BNF) that includes the symbols and
conventions in the following table.

Symbol or

Convention Meaning

[] Brackets enclose optional items.

{} Braces enclose items only one of which is required.

| A vertical bar separates alternatives within brackets or braces.

* A star indicates that an element can be repeated.

delimiters Delimiters other than brackets, braces, vertical bars, stars, and ellipses
must be entered as shown.

boldface Words appearing in boldface are keywords. They must be typed as
shown.
(Keywords are case-sensitive in some, but not all, operating systems.)
Words that are not in boldface are placeholders for which you must
substitute a name or value

underline When on the left side of a production (: : =) indicates a definition for a
non-terminal symbol.

underline When found on the right side of a production, ::= ,alink, whichisa

italic text

non-terminal symbol, links to the definition for the non-terminal
symbol.

Semantic information about non-terminals, such as the required data
type for an expression or a descriptive tag used in following discussion,
is in italics.

1

Rules Programming Concepts

This chapter introduces Oracle Business Rules RL Language (RL Language) concepts.
This chapter includes the following sections:

= Section 1.1, "Starting the Oracle Business Rules RL Language Command-Line"
» Section 1.2, "Introducing Rules and Rulesets"

= Section 1.3, "Introducing Facts and RL Language Classes"

= Section 1.4, "Understanding and Controlling Rule Firing"

= Section 1.5, "Using Effective Dates"

= Section 1.6, "Integrating RL Language Programs with Java Programs"

= Section 1.7, "Using Decision Tracing"

= Section 1.8, "Building a Coin Counter Rules Program"

Rules Programming Concepts 1-1

Starting the Oracle Business Rules RL Language Command-Line

1.1 Starting the Oracle Business Rules RL Language Command-Line

The Oracle Business Rules environment is implemented in a JVM or in a J2EE
container by the classes supplied with r1. jar. Start the RL Language command-line
interface using the following command:

java -jar SORACLE_HOME/soa/modules/oracle.rules_11.1.1/rl.jar -p "RL> "

Where ORACLE_HOME is where SOA modules are installed (for example,
c:/Oracle/Middleware). The —p option specifies the prompt.

The RL Language command-line interface provides access to an Oracle Business Rules
RuleSession. The RuleSession is the API that allows Java programmers to access the RL
Language in a Java application (the command-line interface uses a RuleSession
internally).

You can run the program in Example 1-1 using the command-line interface by
entering the text shown at the RL> prompt.

Example 1-1 Using the Command-Line Interface

RL> println(l + 2);

3

RL> final int low = -10;

RL> final int high = 10;

RL> println(low + high * high);
90

RL> exit;

See Also:

s Chapter 3, "Using the Command-line Interface" for more details
and for a list of command-line options

s Chapter 4, "Using a RuleSession" for details on Oracle Business
Rules RuleSession API

1.2 Introducing Rules and Rulesets

An RL Language ruleset provides a namespace, similar to a Java package, for RL
classes, functions, and rules. In addition, you can use rulesets to partially order rule
firing. A ruleset may contain executable actions, may include or contain other rulesets,
and may import Java classes and packages.

An RL Language rule consists of rule conditions, also called fact-set-conditions, and an
action-block or list of actions. Rules follow an if-then structure with rule conditions
followed by rule actions.

Example 1-2 shows a program that prints, "Hello World." This example demonstrates
a program that contains a single top-level action in the default ruleset (named main).
Example 1-2 contains only an action, and does not define a rule, so the action executes
immediately at the command-line.

Example 1-2 Hello World Programming Example

RL> println("Hello World");
Hello World
RL>

1-2 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Introducing Facts and RL Language Classes

See Also: Understanding and Controlling Rule Firing on page 1-6
for details on rule firing

1.2.1 Rule Conditions

A rule condition is a component of a rule that is composed of conditional expressions
that refer to facts.

In the following example the conditional expression refers to a fact (Driver instance
d1), followed by a test that the fact's data member, age, is less than 16.

if (fact Driver dl && dl.age < 16)

Example 1-3 shows the complete rule, written in RL Language (the rule includes a rule
condition and a rule action).

The Oracle Rules Engine activates a rule whenever there is a combination of facts that
makes the rule’s conditional expression true. In some respects, a rule condition is like a
query over the available facts in the Oracle Rules Engine, and for every row that
returns from the query, the rule activates.

Note: Rule activation is different from rule firing. For more
information, see Section 1.4, "Understanding and Controlling Rule
Firing".

Example 1-3 Defining a Driver Age Rule

RL> rule driverAge({
if (fact Driver dl && dl.age < 16)
{
println("Invalid Driver");

}

1.2.2 Rule Actions

A rule action is activated if all of the rule conditions are satisfied. There are several
kinds of actions that a rule’s action-block might perform. For example, an action in the
rule’s action-block can add new facts by calling the assert function or remove facts by
calling the retract function. An action can also execute a Java method or perform an RL
Language function (Example 1-3 uses the print1n function). Using actions, you can
call functions that perform a desired task associated with a pattern match.

1.3 Introducing Facts and RL Language Classes
This section describes Oracle Business Rules facts and includes the following sections:
= What Are Facts?
= Adding Facts to Working Memory with Assert
s Using RL Language Classes as Facts

= Using Java Classes as Facts

Rules Programming Concepts 1-3

Introducing Facts and RL Language Classes

1.3.1 What Are Facts?

Oracle Business Rules facts are asserted objects. For Java objects, a fact is a shallow
copy of the object, meaning that each property is cloned, if possible, and if not, then
the fact is a copy of the Java object reference.

In RL Language, a Java object is an instance of a Java class and an RL Object is an
instance of an RL Language class. You can use Java classes in the classpath or you can
define and use RL Language classes in a ruleset. You can also declare additional
properties that are associated with the existing properties or methods of a Java class
using a fact class declaration. You can hide properties of a Java class that are not
needed in facts using a fact class declaration.

An RL Language class is similar to a Java Bean without methods. An RL class contains
set of named properties. Each property has a type that is either an RL class, a Java
object, or a primitive type.

Using Oracle Business Rules, you typically use Java classes, including JAXB generated
classes that support the use of XML, to create rules that examine the business objects in
a rule enabled application, or to return results to the application. You typically use RL
classes to create intermediate facts that can trigger other rules in the Oracle Rules
Engine.

1.3.2 Adding Facts to Working Memory with Assert

Oracle Business Rules uses working memory to contain facts (facts do not exist outside
of working memory). A RuleSession contains the working memory.

A fact in RL Language is an asserted instance of a class. Example 1-4 shows the assert
function that adds an instance of the RL class enterRoom as a fact to working
memory. A class that is the basis for asserted facts may be defined in Java or in RL
Language.

In Example 14 the sayHello rule matches facts of type enterRoom, and for each
such fact, prints a message. The action new, shown in the assert function, creates an
instance of the enterRoom class.

In Example 14 the run function fires the sayHello rule.

Note: The RL Language new keyword extends the Java new
functionality with the capability to specify initial values for properties.

Example 1-4 Matching a Fact Defined by an RL Language Class

RL> class enterRoom { String who; }
RL> assert(new enterRoom(who: "Bob"));
RL> rule sayHello {
if (fact enterRoom) {
println("Hello " + enterRoom.who) ;
}
}
RL> run();
Hello Bob
RL>

See Also: "Understanding and Controlling Rule Firing" on page 1-6

1-4 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Introducing Facts and RL Language Classes

1.3.3 Using RL Language Classes as Facts

You can use RL Language classes in a rules program to supplement a Java
application's object model, without having to change the application code for the Java
application that supplies Java Objects.

Example 1-5 shows the goldCust rule uses a Java class containing customer data,
cust; the rule’s action asserts an instance of the GoldCustomer RL class,
representing a customer that spends more than 500 dollars in a three month period.
The Java Customer class includes a method SpentInLastMonths that is supplied
an integer representing a number of months of customer data to add.

Example 1-5 goldCust Rule

rule goldCust {
if (fact Customer cust && cust.SpentInLastMonths(3) > 500){
assert (new GoldCustomer (cust: cust))

i

}
}

Example 1-6 shows the goldDiscount rule uses the RL fact GoldCustomer to infer
that if a customer spent $500 within the past 3 months, then the customer is eligible for
a 10% discount.

Example 1-6 goldDiscount Rule

rule goldDiscount {
if (fact Order ord & fact GoldCustomer (cust: ord.customer))
{
ord.discount = 0.1;
assert (ord) ;

}

Example 1-7 shows the declaration for the GoldCustomer RL class (this assumes that
you also have the Customer class available in the classpath).

Example 1-7 Declaring an RL Language Class

class GoldCustomer {
Customer cust;

}

See Also: "Adding Facts to Working Memory with Assert" on
page 1-4

1.3.4 Using Java Classes as Facts

You can use asserted Java objects as facts in an RL Language program. You are not
required to explicitly define or declare the Java classes. However, you must include the
Java classes in the classpath when you run the program. This lets you use the Java
classes in rules, and allows a rules program to access and use the public attributes,
public methods, and bean properties defined in the Java class (bean properties are
preferable for some applications because the Oracle Rules Engine can detect that a Java
object supports PropertyChangeListener; in this case it uses that mechanism to be
notified when the object changes).

In addition, Fact class declarations can fine tune the properties available to use in an
RL program, and may be required for certain multiple inheritance situations.

Rules Programming Concepts 1-5

Understanding and Controlling Rule Firing

When you work with Java classes, using the import statement lets you omit the
package name (see Example 1-8).

Example 1-8 Sample Java Fact with Import

ruleset main
{
import example.Person;
import java.util.*;
rule hasNickNames
{
if (fact Person p && ! p.nicknames.isEmpty ())
{
// accessing properties as fields:
println(p.firstName + " " + p.lastName + " has nicknames:");
Iterator i = p.nicknames.iterator();
while (i.hasNext())
{
println(i.next());

}

See Also:
s "Fact Class Declarations" on page 2-21

s "Import Statement" on page 2-25

1.4 Understanding and Controlling Rule Firing
This section covers the following topics:
= Rule Activation and the Agenda
= Watching Facts, Rules, and Rule Activations

s Ordering Rule Firing

1.4.1 Rule Activation and the Agenda

The Oracle Rules Engine matches facts against the rule conditions (fact-set-conditions)
of all rules as the state of working memory changes. The Oracle Rules Engine only
checks for matches when the state of working memory changes, typically when a fact
is asserted or retracted. A group of facts that makes a given rule condition true is
called a fact set row. A fact set is a collection of all the fact set rows for a given rule. Thus
a fact set consists of the facts that match the rule conditions for a rule. For each fact set
row in a fact set, an activation, consisting of a fact set row and a reference to the rule is
added to the agenda (the agenda contains the complete list of activations).

Figure 1-1 shows a RuleSession with an agenda containing activations in working
memory.

1-6 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Understanding and Controlling Rule Firing

Figure 1-1 RuleSession with Working Memory and the Agenda Containing Activations

JVm
RuleSession
Java Working Memory
Objects
Agenda
J J Activation
J Facts Activation
J F 3 Activation
3 Activation
F Activation
b
I Activation
Assert

The run, runUntilHalt, and step functions execute the activations on the agenda, that
is, these commands fire the rules (use the step command to fire a specified number of
activations).

Rules fire when the Oracle Rules Engine removes activations, by popping the
activations off the agenda and performing the rule's actions.

The Oracle Rules Engine may remove activations without firing a rule if the rule
conditions are no longer satisfied. For example, if the facts change or the rule is cleared
then activations may be removed without firing. Further, the Oracle Rules Engine
removes activations from the agenda when the facts referenced in a fact set row are
modified or the facts are retracted, such that they no longer match a rule condition
(and this can also happen in cases where new facts are asserted, when the ! operator

applies).
Note the following concerning rule activations:

1. Activations are created, and thus rules fire only when facts are asserted, modified,
or retracted (otherwise, the rules would fire continuously).

2. If arule asserts a fact that is mentioned in the rule condition, and the rule
condition is still true, then a new activation is added back to the agenda and the
rule fires again (in this case the rule would fire continuously). This behavior is
often a bug.

3. The actions associated with a rule firing can change the set of activations on the
agenda, by modifying facts, asserting facts, or retracting facts, and this can change
the next rule to fire.

4. Rules fire sequentially, not in parallel.

See Also: Ordering Rule Firing on page 1-9

1.4.2 Watching Facts, Rules, and Rule Activations

You can use the functions watchActivations, watchFacts, watchRules, and
showFacts to help write and debug RL Language programs.

This section covers the following topics:
= Watching and Showing Facts in Working Memory
= Watching Activations and Rule Firing

Rules Programming Concepts 1-7

Understanding and Controlling Rule Firing

1.4.2.1 Watching and Showing Facts in Working Memory

Example 1-9 shows the watchFacts function that prints information about facts
entering and leaving working memory.

As shown in Example 1-9, the watchFacts function prints ==> when a fact is
asserted. Each fact is assigned a short identifier, beginning with £-, so that the fact
may be referenced. For example, activations include a reference to the facts that are

passed to the rule actions.

In Example 1-9, notice that the program uses the default ruleset main. This ruleset

contains the enterRoom class.

Example 1-9 Using watchFacts with enterRoom Facts

RL> watchFacts();
RL>
RL> assert (new enterRoom(who:

==> f-1 main.enterRoom(who :
RL> assert(new enterRoom(who:

==> f-2 main.enterRoom(who :
RL> assert (new enterRoom(who:

==> f-3 main.enterRoom(who :
RL>

class enterRoom {String who;}

"Rahul"));
"Rahul")
"Kathy"));
"Kathy")
)
)

)

n Tom n) ;
"Tom"

You can use showFacts to show the current facts in working memory. Example 1-10
shows that the Oracle Rules Engine asserts the initial-fact, £-0 (the Oracle Rules
Engine uses this fact internally).

Example 1-10 Show Facts in Working Memory

RL> showFacts() ;

-0 initial-fact()
£f-1 main.enterRoom(who : "Rahul")
f-2 main.enterRoom(who : "Kathy")
f-3 main.enterRoom(who : "Tom")

t

For a total of 4 facts.

Use retract to remove facts from working memory, as shown in Example 1-11. When
watchFacts is enabled, the Oracle Rules Engine prints <== when a fact is retracted.

Example 1-11 Retracting Facts from Working Memory

RL> watchFacts();
RL> retract (object(2));

<== f-2 main.enterRoom(who : "Kathy")
RL> showFacts() ;

£-0 initial-fact ()

f-1 main.enterRoom(who : "Rahul")
f£-3 main.enterRoom(who : "Tom")

For a total of 3 facts.

1.4.2.2 Watching Activations and Rule Firing

The watchActivations function monitors the Oracle Rules Engine and prints
information about rule activations entering and leaving the agenda. The watchRules
function prints information about rules firing.

Example 1-12 shows how run causes the activations to fire. Notice that Rahul is
greeted last even though he entered the room first (this is due to the firing order).

1-8 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Understanding and Controlling Rule Firing

Note: Activations may be removed from the agenda before they are
fired if their associated facts no longer make the condition true.

Example 1-12 Using WatchActivations and WatchRules

RL> clear;
RL> class enterRoom {String who;}
RL> assert (new enterRoom(who: "Rahul"));
RL> assert (new enterRoom(who: "Kathy"));
RL> assert(new enterRoom(who: "Tom"));
RL> watchActivations();
RL> rule sayHello {
if (fact enterRoom) {

println("Hello " + enterRoom.who) ;

}

==> Activation: main.sayHello :
==> Activation: main.sayHello :
==> Activation: main.sayHello :
RL> watchRules();

RL> run();

Fire 1 main.sayHello f-3

Hello Tom

Fire 2 main.sayHello f-2

Hello Kathy

Fire 3 main.sayHello f-1

Hello Rahul

RL>

H Hh Fh
I
w N -

1.4.3 Ordering Rule Firing

To understand the ordering algorithm for firing rule activations on the agenda, we
introduce the ruleset stack. Each RuleSession includes one ruleset stack. The
RuleSession’s ruleset stack contains the top of the stack, called the focus ruleset, and
any non focus rulesets that are also on the ruleset stack. You place additional rulesets
on the ruleset stack using either the pushRuleset or setRulesetStack built-in functions.
You can manage the rulesets on the ruleset stack with the clearRulesetStack,
popRuleset, and setRulesetStack functions. In this case, the focus of the ruleset stack is
the current top ruleset in the ruleset stack (see Example 1-13).

Example 1-13 Ruleset Stack - Picture
RuleSet Stack

Focus Ruleset --> Top_Ruleset
Next_down_Ruleset
Lower_Ruleset
Bottom_Ruleset

When activations are on the agenda, the Oracle Rules Engine fires rules when run,
runUntilHalt, or step executes. The Oracle Rules Engine sequentially selects a rule
activation from all of the activations on the agenda, using the following ordering
algorithm:

1. The Oracle Rules Engine selects all the rule activations for the focus ruleset, that is
the ruleset at the top of the ruleset stack (see the pushRuleset and setRulesetStack
built-in functions).

Rules Programming Concepts 1-9

Understanding and Controlling Rule Firing

2. Within the set of activations associated with the focus ruleset, rule priority
specifies the firing order, with the higher priority rule activations selected to be
fired ahead of lower priority rule activations (the default priority level is 0).

3. Within the set of rule activations of the same priority, within the focus ruleset, the
most recently added rule activation is the next rule to fire. However, note that in
some cases multiple activations may be added to the agenda at the same time, the
ordering for such activations is not defined.

4. When all of the rule activations in the current focus fire, the Oracle Rules Engine
pops the ruleset stack, and the process returns to Step 1, with the current focus.

If a set of rules named R1 must all fire before any rule in a second set of rules named
R2, then you have two choices:

= Use a single ruleset and set the priority of the rules in R1 higher than the priority
of rules in R2.

= Use two rulesets R1 and R2, and push R2 and then R1 on the ruleset stack.

Generally, using two rulesets with the ruleset stack is more flexible than using a single
ruleset and setting the priority to control when rules fire. For example if some rule R in
R1 must trigger a rule in R2 before all rules in R1 fire, a return in R pops the ruleset
stack and allows rules in R2 to fire.

If execution must alternate between two sets of rules, for example, rules to produce
facts and rules to consume facts, it is easier to alternate flow with different rulesets
than by using different priorities.

Example 1-14 shows that the priority of the keepGaryOut rule is set to high, this is
higher than the priority of the sayHello rule (the default priority is 0). If the
activations of both rules are on the agenda, the higher priority rule fires first. Notice
that just before calling run, sayHello has two activations on the agenda. Because
keepGaryOut fires first, it retracts the enterRoom (who: "Gary") fact, which
removes the corresponding sayHello activation, resulting in only one sayHello
firing.

The rule shown in Example 1-14 illustrates two additional RL Language features.

1. The fact operator, also known as a fact set pattern, uses the optional var
keyword to define a variable, in this case the variable g, that is bound to the
matching facts.

2. You can remove facts in working memory using the retract function.

Example 1-14 Using Rule Priority with keepGaryOut Rule

RL> final int low = -10;
RL> final int high = 10;
RL> rule keepGaryOut {
priority = high;
if (fact enterRoom(who: "Gary") var g) {
retract (g) ;

RL> assert (new enterRoom(who: "Gary"));
==> f-4 main.enterRoom(who: "Gary")
==> Activation: main.sayHello : f-4
==> Activation: main.keepGaryOut : f-4
RL> assert(new enterRoom(who: "Mary"));
==> f-5 main.enterRoom(who: "Mary")
==> Activation: main.sayHello : f-5

1-10 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Using Effective Dates

RL> run();

Fire 1 main.keepGaryOut f-4

<== f-4 main.enterRoom(who: "Gary")
<== Activation: main.sayHello : f-4
Fire 2 main.sayHe