

[1] Oracle® JRockit
Command-Line Reference

Release R28

E15062-19

July 2017

Oracle JRockit Command-Line Reference, Release R28

E15062-19

Copyright © 2001, 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: Savija Vijayaraghavan

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... v

Documentation Accessibility ... v
Conventions ... v

1 About the JRockit JVM Command-Line Options

1.1 Standard Command-Line Options ... 1-1
1.2 JRockit JVM-Specific Command-Line Options... 1-2
1.3 About System Properties ... 1-3

2 -X Command-Line Options

3 -XX Command-Line Options

4 Oracle JRockit JVM System Properties

4.1 java.vendor... 4-2
4.2 java.vendor.url .. 4-2
4.3 java.vendor.url.bug... 4-2
4.4 java.version .. 4-2
4.5 java.runtime.version... 4-3
4.6 java.vm.name .. 4-3
4.7 java.vm.vendor.. 4-3
4.8 java.vm.vendor.url.. 4-3
4.9 java.vm.version .. 4-3
4.10 java.vm.specification.version .. 4-4
4.11 java.vm.specification.vendor... 4-4
4.12 java.vm.specification.name ... 4-4
4.13 os.name .. 4-4
4.14 os.arch... 4-4
4.15 os.version ... 4-5

5 Diagnostic Commands

5.1 check_flightrecording... 5-2
5.2 command_line ... 5-2
5.3 dump_flightrecording .. 5-2

iv

5.4 exception_trace_filter ... 5-2
5.5 force_crash ... 5-3
5.6 fork_and_abort .. 5-3
5.7 heap_diagnostics... 5-3
5.8 help.. 5-3
5.9 hprofdump... 5-3
5.10 kill_management_server.. 5-4
5.11 list_vmflags .. 5-4
5.12 lockprofile_print.. 5-4
5.13 lockprofile_reset .. 5-4
5.14 memleakserver .. 5-4
5.15 print_class_summary ... 5-5
5.16 print_exceptions .. 5-5
5.17 print_memusage ... 5-5
5.18 print_object_summary ... 5-6
5.19 print_threads ... 5-6
5.20 print_utf8pool.. 5-6
5.21 print_vm_state... 5-6
5.22 runsystemgc... 5-6
5.23 set_filename ... 5-7
5.24 start_flightrecording... 5-7
5.25 start_management_server.. 5-8
5.26 stop_flightrecording ... 5-8
5.27 stop_management_server.. 5-9
5.28 timestamp... 5-9
5.29 verbosity ... 5-9
5.30 version .. 5-9

A Changes in Command-Line Options

A.1 Command-Line Options Introduced in Oracle JRockit R28.0 ... A-1
A.2 Command-Line Options and Parameters Introduced in Oracle JRockit R28.1 A-2
A.3 Command-Line Options Deprecated and Removed in Oracle JRockit R28.0................... A-2
A.4 Command-Line Options Converted to HotSpot Format in Oracle JRockit R28.0............ A-3

B JMX Agent-Related –D Options

v

Preface

This preface describes the document accessibility features and conventions used in this
guide—Oracle JRockit Command-Line Reference.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

vi

1

About the JRockit JVM Command-Line Options 1-1

1About the JRockit JVM Command-Line Options

[2] This chapter describes the command-line options, also called startup commands or
startup options, available in Oracle JRockit JVM. These options are self-describing tags
that you either enter at the command line or include in startup scripts for applications
running on a JVM. These options are used to override the JVM default settings and
otherwise define to the JVM how you want your application to run. For example, you
can use the command-line option -Xmx to set the maximum heap size.

Command-line options can be either valid for any JVM regardless of the vendor
(standard options) or specific to a JVM (nonstandard).

This chapter contains the following sections:

■ Section 1.1, "Standard Command-Line Options"

■ Section 1.2, "JRockit JVM-Specific Command-Line Options"

■ Section 1.3, "About System Properties"

1.1 Standard Command-Line Options
Table 1–1 lists the standard command-line options that the Oracle JRockit JVM
recognizes.

Table 1–1 Standard Command-Line Options Accepted by the Oracle JRockit JVM

Option (Alternate Usage) Description

-agentlib:agent-lib-name[=options] Loads the specified native agent library

-agentpath:path-to-agent[=options Loads the native agent library that is located at
the specified path

-client Selects the JRockit client JVM

-javaagent Loads a Java programming language agent
(see java.lang.instrument)

-jrockit Selects the JRockit server JVM

This is equivalent to -server and is the
default.

-version Displays version information and then exits
the application

-showversion Displays version information and continues
the application

-verbose:area[,options] Displays specific information about the system

For more information, see -Xverbose.

JRockit JVM-Specific Command-Line Options

1-2 Oracle JRockit Command-Line Reference

For more information about these standard command-line options, see the Java
documentation at the following locations:

■ Java SE 6.0

http://java.sun.com/javase/6/docs/technotes/tools/windows/java.html#sta
ndard

■ J2SE 5.0

http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/java.html#standard

1.2 JRockit JVM-Specific Command-Line Options
The JRockit JVM uses a set of nonstandard command-line options to control JVM
behavior. Because these options are nonstandard, they do not work with other JVMs. If
you use the nonstandard options that are specific to a JVM with other JVMs, the
results can be erroneous or an error condition might occur.

The nonstandard command-line options of JRockit JVM are divided into two groups:

■ -X command-line options, which are the most commonly used nonstandard
options

■ -XX command-line options, which are often experimental options that have
specific system requirements for their implementation

-cp (-classpath) Specifies a list of directories, JAR files, and ZIP
archives to search for class files. Classpath
entries are separated by semicolons (;) in
Windows and colons (:) in Linux and Solaris.
Specifying -classpath or -cp overrides any
setting of the CLASSPATH environment variable.

-ea (-enableassertions) Enables assertions, which are disabled by
default

Depending on the arguments specified, this
option either enables assertions, enables
assertions in the specified package and any
subpackages, enables assertions in the
unnamed package in the current working
directory, or enables assertions in the specified
class.

-da (-disableassertions) Disables assertions

Depending on the arguments specified, this
option either disables assertions, disables
assertions in the specified package and any
subpackages, disables assertions in the
unnamed package in the current working
directory, or disables assertions in the specified
class

-esa (-enablesystemassertions) Enables assertions in all system classes by
setting the default assertion status for system
classes to true

-dsa (-disablesystemassertions) Disables assertions in all system classes

Table 1–1 (Cont.) Standard Command-Line Options Accepted by the Oracle JRockit JVM

Option (Alternate Usage) Description

About System Properties

About the JRockit JVM Command-Line Options 1-3

The nonstandard options described in this document (Chapter 2, "-X Command-Line
Options" and Chapter 3, "-XX Command-Line Options") are subject to change or
deprecation at any time.

1.3 About System Properties
System properties define traits or attributes of the current working environment.
When the Java application starts, the system properties are initialized with information
about the run-time environment, including information about the current user, the
current version of the Java run time, and the product vendor's bug report URL.

For information about the system properties available with the JRockit JVM, see
Chapter 4, "Oracle JRockit JVM System Properties."

Note: Occasionally, you might encounter JRockit JVM internal
properties set with the -D option (for example,
-Djrockit.lockprofiling=true). The -D option sets values for
parameters that are used by Java programs. In the Oracle JRockit JVM,
some of those parameters are read by the JVM and change how the
JVM works. The -D properties are for internal use; so they are not
described in this document.

About System Properties

1-4 Oracle JRockit Command-Line Reference

2

-X Command-Line Options 2-1

2-X Command-Line Options

[3] This chapter is an alphabetically ordered reference for all the -X command-line options
that you can use with the JRockit JVM.

The -X command-line options are exclusive to the Oracle JRockit JVM. You can use the
-X command-line options to change the behavior of the JRockit JVM to suit the needs
of different Java applications. These options do not work on other JVMs (conversely,
the nonstandard options used by other JVMs do not work with the JRockit JVM).

-Xbootclasspath
-Xbootclasspath/a
-Xbootclasspath/p
-Xcheck:jni
-Xdebug
-Xgc
-XgcPrio (deprecated)
-XlargePages
-Xmanagement
-Xms
-Xmx
-XnoClassGC (deprecated)
-XnoOpt
-Xns
-XpauseTarget
-Xrs
-Xss
-XstrictFP
-Xverbose
-Xverbosedecorations
-XverboseLog
-XverboseTimeStamp

Notes:

■ The -X options are subject to change at any time.

■ Command-line options are case sensitive unless explicitly stated.
Most of the commands use the camel notation (for example, -Xgc
and -XlargePages).

■ If you do not add a unit with the values of options that specify
memory size, you get the exact value; for example, 64 is
considered as 64 bytes, not 64 megabytes or 64 kilobytes.

2-2 Oracle JRockit Command-Line Reference

-Xverify

-Xbootclasspath

-X Command-Line Options 2-3

-Xbootclasspath

The -Xbootclasspath option specifies a list of directories, JAR files, and ZIP archives
to search for bootstrap classes and resources. These are used in place of the bootstrap
class files included in the Java SE JDK.

2Format
-Xbootclasspath directories and zips/jars separated by ; (Windows) or : (Linux and
Solaris)

The -Xbootclasspath option name must be entered in lowercase as shown in the
preceding format (not in camel notation).

2Related Options
■ -Xbootclasspath/a

■ -Xbootclasspath/p

Note: Applications that use this option to override a class in the
rt.jar file should not be deployed. It violates the Java SE run-time
environment binary code license.

-Xbootclasspath/a

2-4 Oracle JRockit Command-Line Reference

-Xbootclasspath/a

The -Xbootclasspath/a option is similar to -Xbootclasspath in that it specifies a list of
directories, JAR files, and ZIP archives; however, the list is appended to the default
bootstrap class path.

2Format
-Xbootclasspath/a directories and zips/jars separated by ; (Windows) or : (Linux
and Solaris)

The -Xbootclasspath/a option name must be entered in lowercase as shown in the
preceding format (not in camel notation).

2Related Options
■ -Xbootclasspath

■ -Xbootclasspath/p

-Xbootclasspath/p

-X Command-Line Options 2-5

-Xbootclasspath/p

The -Xbootclasspath/p option is similar to -Xbootclasspath in that it specifies a list of
directories, JAR files, and ZIP archives; however, the list is prepended to the default
bootstrap class path.

2Format
-Xbootclasspath/p directories_and_zips/jars_separated_by ; (Windows) or : (Linux
and Solaris)

The -Xbootclasspath/b option name must be entered in lowercase as shown in the
preceding format (not in camel notation).

2Related Options
■ -Xbootclasspath

■ -Xbootclasspath/a

-Xcheck:jni

2-6 Oracle JRockit Command-Line Reference

-Xcheck:jni

The -Xcheck:jni option enables additional checks for JNI functions.

Note: Oracle recommends that you use -XX:+CheckJNICalls instead
of -Xcheck:jni.

-Xdebug

-X Command-Line Options 2-7

-Xdebug

The -Xdebug option enables debugging capabilities that are used by the JVM Tools
Interface (JVMTI).

For more information about -Xdebug, see the Oracle JRockit R27 documentation at:

http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/jrdocs/refman/optionX.html

Note: Although -Xdebug works in R28, Oracle recommends that you
use -XX:+JavaDebug instead.

Caution: Do not use the -Xdebug option in the production
environment, because, when running with the -Xdebug option, the
JVM does not run at full speed.

-Xgc

2-8 Oracle JRockit Command-Line Reference

-Xgc

The -Xgc option enables you to specify a garbage collection mode.

You can choose a garbage collector that is either generational or single spaced with a
parallel or a concurrent mark and uses either a parallel sweep or a concurrent sweep.

■ Generational Garbage Collection

During a two-generational garbage collection, the heap is divided into two
sections: an old generation and a young generation (nursery). Objects are allocated
in the nursery and when it is full, the JVM stops all Java threads and moves the
live objects from the nursery, young generation, to the old generation.

■ Single-spaced Garbage Collection

The single-spaced option of garbage collection means that all objects live out their
lives in a single space on the heap, regardless of their age. In other words, a
single-spaced garbage collector does not have a nursery.

■ Concurrent Mark and Sweep Algorithm

The concurrent garbage collection algorithm does its marking and sweeping
concurrently with all other processing; that is, it does not stop Java threads to do
the complete garbage collection.

■ Parallel Garbage Collection Mark and Sweep Algorithm

The parallel garbage collection algorithm stops Java threads when the heap is full
and uses every CPU to perform a complete mark and sweep of the entire heap. A
parallel garbage collector can have longer pause times than concurrent garbage
collectors, but it maximizes application throughput. Even on single CPU
machines, this maximized performance makes parallel the recommended garbage
collector, provided that your application can tolerate the longer pause times.

2Format
-Xgc:mode

Table 2–1 lists the garbage collection modes that you can specify with the -Xgc option.

Table 2–1 Valid Garbage Collection Modes for -Xgc

Mode Description

singlecon
Alias:
singleconcon

Single-space (nongenerational), concurrent garbage collection.

In the singlecon garbage collection mode, most of the garbage collection
tasks are performed concurrently with the Java application. All objects are
maintained in a single space, or generation. The singlecon mode reduces
application throughput but keeps pause times to a minimum.

gencon
Alias: genconcon

Generational, concurrent garbage collection.

In the gencon garbage collection mode, objects are allocated in the young
generation (nursery). When the nursery is full, the JRockit JVM stops all the
Java threads and moves the live objects in the young generation to the old
generation. Most of the old collection tasks are performed concurrently
with the Java application.

The gencon mode is better than the singlecon mode for most applications
that allocate numerous small, short-lived objects. The gencon mode
increases heap size and reduces application throughput, but keeps pause
times to a minimum.

-Xgc

-X Command-Line Options 2-9

singlepar
Alias:
singleparpar,
parallel

Single-space, parallel garbage collection.

In this mode, when the heap is full, all the Java threads are stopped and
the JVM uses every CPU to perform a complete garbage collection of the
entire heap.

This mode increases pause times when compared with the concurrent
mode but maximizes throughput. Even on single CPU systems, the
maximized throughput makes parallel garbage collection the
recommended mode, provided the application can tolerate the longer
pause times.

genpar
Alias: genparpar

Generational garbage collection.

In the genpar mode, objects are first allocated in the young generation
(nursery). When the nursery is full, the JRockit JVM stops all the Java
threads and performs a parallel, young collection; that is, it uses all the
available CPU resources and moves the live objects in the young
generation to the old generation. When the heap is full, the JRockit JVM
stops all the Java threads and performs a complete parallel collection. This
collector prioritizes throughput over pause times.

This mode is generally better than the singlepar mode for applications
that allocate numerous short-lived objects. In this mode, a higher number
of garbage collections are performed than in the singlepar mode, but the
individual pause times are shorter, resulting in lower fragmentation in the
old generation space.

genconpar Generational garbage collection.

Sets the garbage collection mode to generational (two-spaced) with a
concurrent mark algorithm and a parallel sweep algorithm.

genparcon Generational garbage collection.

Sets the garbage collection mode to generational (two-spaced) with a
parallel mark algorithm and a concurrent sweep algorithm.

singleconpar Single-space garbage collection.

Sets the garbage collection mode to single-spaced with a concurrent mark
algorithm and a parallel sweep algorithm.

singleparcon Single-space garbage collection.

Sets the garbage collection mode to single-spaced with a parallel mark
and a concurrent sweep algorithm.

throughput The garbage collector is optimized for application throughput. This means
that the garbage collector works as effectively as possible, giving as much
CPU resources to the Java threads as possible. This might, however, cause
nondeterministic pauses when the garbage collector stops all Java threads
for garbage collection.The throughput priority should be used when
non-deterministic pauses do not impact the application's behavior.

pausetime The garbage collector is optimized for short pauses. This means that the
garbage collection works concurrently with the Java application when
necessary, in order to avoid pausing the Java threads. This inflicts a slight
performance overhead to the application, as the concurrent garbage
collector demands more system resources (CPU time and memory) than
the parallel garbage collector that is used for optimal throughput. The
target pause time is by default 500 msec. To change the default pause
target, see -XpauseTarget.

Table 2–1 (Cont.) Valid Garbage Collection Modes for -Xgc

Mode Description

-Xgc

2-10 Oracle JRockit Command-Line Reference

2Default Value
The default garbage collection mode is the throughput mode.

2Related Options
When the -XXsetGC (deprecated) or -XgcPrio (deprecated) options are specified, the
-Xgc option is overridden, and vice versa. The option specified first on the command
line is ignored.

deterministic Optimizes the garbage collector for very short and deterministic pause
times.

The garbage collector tries to keep the garbage collection pauses below a
given pause target. The performance depends on the application and the
hardware.

Running on slower hardware, with a different heap size or with a large
amount of active data can break the deterministic behavior or cause
performance degradation over time; faster hardware or a less amount of
active data might allow you to set a lower pause target.

The pause target for deterministic mode is by default 30 msec, and can be
changed with the command-line option -XpauseTarget.

Table 2–1 (Cont.) Valid Garbage Collection Modes for -Xgc

Mode Description

-XgcPrio (deprecated)

-X Command-Line Options 2-11

-XgcPrio (deprecated)

The -XgcPrio option is deprecated in Oracle JRockit R28. The option works in R28, but
Oracle recommends that you use -Xgc instead. For more information, see -Xgc.

For more information about the format and usage of -XgcPrio, see the R27
documentation at: http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/jrdocs/refman/index.html.

-XlargePages

2-12 Oracle JRockit Command-Line Reference

-XlargePages

The -XlargePages option specifies to use large pages, if they are available, for the Java
heap and other areas in the JVM. Large pages allow your application to more
effectively use the translation look-aside buffer (TLB) in the processor.

2Format
-XlargePages:exitOnFailure=true

Windows, Linux, and Solaris support multiple page sizes on x86 and SPARC
architectures. x86 supports 4 KB and 4 MB (2 KB and 2 MB in PAE mode). SPARC
supports a wider range of different sizes, from 4 KB to 256 MB, depending on the
model.

By default, the JVM continues to run without large pages if large pages cannot be
acquired when the -XlargePages option is enabled. Use the extended option
(-XlargePages:exitOnFailure) to override this behavior and to force the JVM to exit
if enough large pages cannot be acquired.

If the JRockit JVM fails to acquire large pages, it prints a warning as shown in the
following example and continues to work:

[ERROR][osal] Unable to set Lock Page Privilege:
...
[WARN][memory] Could not acquire large pages for Java heap.
[WARN][memory] Falling back to normal page size.

2Default
-XlargePages is disabled by default on Windows and Linux platforms. On Solaris
SPARC, this option is enabled by default.

Note: Oracle recommends that you use the
-XX:+|-UseLargePagesFor[Heap|Code] option for enabling large
pages.

Note: If you use this option, you must configure large pages on your
system by following the procedures specific to your operating system.

For more information about large pages on Linux, read the file
vm/hugetlbpage.txt available in the documentation for the Linux
kernel.

Nothing has to be configured in the Solaris operating system to enable
an application to use large pages.

-Xmanagement

-X Command-Line Options 2-13

-Xmanagement

The -Xmanagement option starts the JRockit JVM concurrently with the management
server and allows you to either enable and configure or explicitly disable features such
as autodiscovery of the JVM instances in a network, SSL encryption, and
authentication.

2Format
-Xmanagement[:parameter1=value[,parameter2=value2]]

Table 2–6 lists the possible values for parametern=valuen pairs.

Table 2–2 -Xmanagement Parameters

Parameter Description Default Value

None Enables the JMX local monitoring
through a JMX connector published
on a private interface used by local
JMX clients that use the Attach API.
JMX clients can use this connector if it
is started by the same user who
started the agent. No password or
access files are required for requests
coming through this connector.

true

autodiscovery=true|false Enables or disables autodiscovery for
the remote JMX connector, which
allows Oracle JRockit Mission
Control to automatically discover
running JRockit JVM instances
through the multicast-based JRockit
Discovery Protocol (JDP). The
autodiscovery enables other
machines on the same subnet to
automatically detect a remote
management-enabled JVM.

Note: The JVM Browser in Oracle
JRockit Mission Control
automatically discovers remote JVM
instances only if this option is
enabled.

Related -D option:
-Dcom.oracle.management.autodisco
very

false

autodiscovery_
name=/mycluster/mymachine/Nod
e1

Enables you to specify the path and
name of the cluster and node from
where Oracle JRockit Mission Control
discover information about various
JRockit JVM instances running in a
network.

Note: You can use this option only
when autodiscovery is set to true.

-

-Xmanagement

2-14 Oracle JRockit Command-Line Reference

authenticate=true|false Enables or disables authentication.

When this property is set to false,
JMX does not use passwords or
access files. All users are allowed all
access.

Related -D option:
-Dcom.oracle.management.jmxremot
e.authenticate

true

class=class_name Loads the class and causes its empty
constructor to be called early in JVM
startup. From the constructor, a new
thread is then started, from which
your management client is run.
Further arguments cannot be given to
-Xmanagement after the class
argument.

-

config_file=path Specifies the location of the file from
which additional management
configuration properties are loaded.

Related -D option:
-Dcom.oracle.management.config.file

JRE_
HOME/lib/managem
ent/management.p
roperties

interface=host|ip Specifies the IP address or the host
name of the remote machine.

If this option is set, only then
connections to a specified ip (or host)
are allowed. The JMX agent still
listens to and answer connections on
all interfaces; however, connections to
other addresses than those specified
by this option are discarded.

Related -D option:
-Dcom.oracle.management.jmxremot
e.interface

null

local=true|false Enables or disables the local JMX
connector.

Related -D option:
-Dcom.oracle.management.jmxremot
e

true

port=portNumber Identifies the port that the
management server opens for remote
access.

When you specify a port number, the
JMX remote agent is enabled and it
creates a remote JMX connector to
listen through the specified port. By
default, the SSL, password, and
access file properties are used for this
connector. This option also enables
local monitoring.

Related -D option:
-Dcom.oracle.management.jmxremot
e.port

7091, when you do
not specify a value
for this option.

Table 2–2 (Cont.) -Xmanagement Parameters

Parameter Description Default Value

-Xmanagement

-X Command-Line Options 2-15

2Examples
java -Xmanagement:ssl=false,authenticate=false myApplication

Disables SSL encryption and authentication.

java -Xmanagement:autodiscovery=true myApplication

Enables autodiscovery.

java -Xmanagagement:autodiscovery=true,autodiscovery_
name=/mycluster/mymachine/Node1

The JRockit JVM appears under the JDP/mycluster/mymachine folder with the
connection name as Node1. If you specify a forward slash (/) at the end of the path, the
name of the resulting descriptor is determined by a reverse DNS lookup.

java -Xmanagagement:port=1234 myApplication

Directs the management server to open port 1234.

Due to the security risks and the mission-critical nature of most JRockit JVM
deployments, the new default behavior of the JRockit JVM requires that you either
disable security explicitly or configure and enable security. If you do not take these
steps, the management server does not open a port for remote access and might cause
the JVM startup to halt with an error message concerning the security configuration.

Specifying the -Xmanagement option also enables a local in-memory agent to improve
the user experience from a developer perspective. For example, a developer running a
WebLogic Server instance on JRockit JVM on a machine can specify the -Xmanagement
option to enable the local in-memory agent to connect to it from an Oracle JRockit
Mission Control Client on another machine. On the other hand, the developer would
not have to specify the -Xmanagement option to get local access from Oracle JRockit
Mission Control: the in-memory agent is always accessible locally. If you have a
number of JRockit JVM instances running on your machine and you start a JRockit
Mission Control Client, it automatically discovers and allows access to those JVMs.
Security is enforced by allowing this type of local access only if the JRockit JVM
instance and the JRockit Mission Control Client are being run by the same user.

registry_ssl=true|false Binds the RMI connector stub to an
RMI registry protected by SSL.

Related -D option:
-Dcom.oracle.management.jmxremot
e.registry.ssl

false

remote=true|false Enables or disables the remote JMX
connector.

false

rmiserver_port=portNumber Binds the RMI Server to the specified
port.

Related -D option:
-Dcom.oracle.management.jmxremot
e.rmiserver.port

Bind to the same
port as the RMI
Registry. If the RMI
Server is using SSL
and the registry is
not, a random port
is selected.

ssl=true|false Enables or disables SSL encryption. true

Table 2–2 (Cont.) -Xmanagement Parameters

Parameter Description Default Value

-Xmanagement

2-16 Oracle JRockit Command-Line Reference

To enable the management agent without security you must now specify that SSL and
authentication should be disabled.

For maximum usability, enable the autodiscovery mechanism, which allows JRockit
Mission Control to automatically discover the running JRockit JVM instances through
the multicast-based JRockit Discovery Protocol. Note that this typically works only on
the local subnet.

2Default Values
The default behavior is as follows:

■ Local agent is enabled.

■ Remote management agent is enabled with security, if SSL encryption,
authentication, and networking are configured. If SSL and authentication are not
configured, remote management agent is enabled with security explicitly disabled.

-Xms

-X Command-Line Options 2-17

-Xms

The -Xms option sets the initial and minimum Java heap size. The Java heap (the heap)
is the part of the memory where blocks of memory are allocated to objects and freed
during garbage collection.

2Format
-Xms:size[g|G|m|M|k|K]

Combine -Xms with a memory value and add a unit.

2Example
java -Xms:64m myApp

This command sets the initial and minimum java heap to 64 MB.

If you do not add a unit, you get the exact value; for example, 64 is interpreted as 64
bytes, not 64 megabytes or 64 kilobytes.

For good performance, set the -Xms option to the same size as the maximum heap size,
for example:

java -Xmx:64m -Xms:64m myApp

2Default Values
If you do not set this option, the minimum Java heap size defaults to the following
(depending on which mode you are running):

■ -server mode: 25% of the amount of free physical memory in the system, up to 64
MB and at least 8 MB.

■ -client mode: 25% of the amount of free physical memory in the system, up to 16
MB and at least 8 MB.

■ If the nursery size is set with the -Xns option, the default initial heap size is scaled
up to at least twice the nursery size.

2Exceptions and Recommendations
The initial Java heap cannot be set to a smaller value than 8 MB, which is the minimum
Java heap size. If you set this option to a smaller value than 8 MB, JRockit JVM prints
an error message and terminates.

The -Xms value cannot exceed the value set for -Xmx (the maximum Java heap size).

Note: The -Xms option does not limit the total amount of memory
that the JVM can use.

-Xmx

2-18 Oracle JRockit Command-Line Reference

-Xmx

The -Xmx option sets the maximum Java heap size. The Java heap is the part of the
memory where blocks of memory are allocated to objects and freed during garbage
collection. Depending upon the kind of operating system you are running, the
maximum value you can set for the Java heap can vary.

2Format
-Xmx:size[g|G|m|M|k|K]

Combine the -Xmx option with a memory value.

2Example
java -Xmx:1g myApp

This command sets the maximum Java heap to 1 Gigabyte.

If you do not add a unit, you get the exact value; for example, 64 is interpreted as 64
bytes, not 64 megabytes or 64 kilobytes.

The -Xmx and -Xms options, in combination, are used to limit the Java heap size. The
Java heap can never grow larger than -Xmx. The -Xms value can also be used as the
minimum heap size to set a fixed heap size by setting -Xms = -Xmx when, for example,
you want to run benchmark tests.

2Default Values
If you do not set this option, the maximum Java heap size depends on the platform
and the amount of memory in the system as described in Table 2–3.

2Exceptions
When using -Xmx, be aware of the following exceptions:

■ If both -Xmx and -Xms are specified the value of -Xmx must be larger than or equal
to that of -Xms.

■ If both -Xmx and -Xns are specified the value of -Xmx must be larger than or equal
to that of -Xns.

■ The minimum value for -Xmx is 16 MB.

Note: The -Xmx option does not limit the total amount of memory that
the JVM can use.

Table 2–3 Default Maximum Heap Sizes

Platform Default Maximum Heap Size

Windows on a 64 bit platform 75% of total physical memory up to 3 GB

Linux or Solaris on a 64 bit platform 75% of physical memory up to 3 GB

Windows on a 32 bit platform 75% of total physical memory up to 1 GB

Linux or Solaris on a 32 bit platform 75% of physical memory up to 1 GB

-XnoClassGC (deprecated)

-X Command-Line Options 2-19

-XnoClassGC (deprecated)

The -XnoClassGC option is deprecated in Oracle JRockit R28. The option works in R28,
but Oracle recommends that you use -XX:-UseClassGC instead. For more information,
see -XX:+|-UseClassGC.

For more information about the format and usage of -XnoClassGC, see the R27
documentation at: http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/jrdocs/refman/index.html.

-XnoOpt

2-20 Oracle JRockit Command-Line Reference

-XnoOpt

The -XnoOpt option turns off adaptive optimization.

Optimized code generally runs faster than code that has not been optimized, but
occasionally, the time required to optimize code results in undesirable delays in
processing. -XnoOpt avoids these delays by turning off optimization. This option is
also helpful when you suspect that a JVM or application problem, such as a system
crash or poor startup performance, might be related to optimization. You can turn
optimization off and retry your application. If it then runs successfully, you can safely
assume that the problem lies with code optimization.

If -XnoOpt is not set, the JVM optimizes code as usual.

2Format
-XnoOpt

or

-XnoOpt:delay_time_in_seconds

The optional argument delay_time_in_seconds allows users to delay the disabling of
optimization until a certain amount of time has passed since the JVM startup.

If you specify -XnoOpt:600, optimization will not be disabled until the JVM has been
running for 10 minutes. Specifying the delay time with -XnoOpt is often a very good
compromise between completely disabling all optimization from the beginning and
leaving optimization enabled for the entire run. Setting an appropriate value for
-XnoOpt will allow most performance-critical methods to still get optimized during
warm-up, but once the application reaches a steady state, the behavior becomes more
deterministic because additional optimizations do not take place.

-Xns

-X Command-Line Options 2-21

-Xns

The -Xns option sets the nursery size. The JRockit JVM uses a nursery when a
generational garbage collector is being used.

2Format
-Xns:size[g|G|m|M|k|K]

Combine -Xns with a memory value.

The nursery size value cannot exceed the maximum value set for the heap.

2Example
java -Xns:10m myApp

Sets the nursery to 10 MB of the heap.

2Default Value
The default value depends on the garbage collection mode, as described in Table 2–4.

2Exceptions
The -Xns option is valid only when a generational garbage collector is used.

Table 2–4 Default Nursery Sizes

Options used Default value

-server (default) 50% of free heap

-client None; nursery does not exist

-Xgc:gencon, -Xgc:pausetime 10 MB per logical processor
(maximum 80 MB)

-Xgc:genpar, -Xgc:throughput 50% of free heap

-XpauseTarget

2-22 Oracle JRockit Command-Line Reference

-XpauseTarget

The -XpauseTarget option sets a pause target for the garbage collection mode
optimizing for short pauses (-Xgc:pausetime) and the garbage collection mode
optimizing for deterministic pauses (-Xgc:deterministic). The target value is used as a
pause time goal. The target helps the garbage collector to more precisely configure
itself to keep pauses near the target value. Using this option allows you to specify the
pause target to be between 1 millisecond and 5 seconds. If you are using the
deterministic garbage collector, you can set values below 200 milliseconds.

2Format
-XpauseTarget=value

The value set by this option is considered a soft goal; that is, if specifying the target to
100 msec, the garbage collector tries to tune itself towards a configuration that makes
the pauses become as near 100 msec as possible. However, if you have an application
and heap configuration that does not meet this target even after the garbage collector
is tuned, the target is missed. This option specifies only the desired pause times, not
the maximum allowed pause time.

When you use this option properly, it improves pause times. Otherwise, it might stress
the garbage collector and affect performance.

2Default Values
If you are using -XpauseTarget with -Xgc:pausetime, the default setting for the target
is 500 msec. If you are using -Xgc:deterministic, the default value is 30 msec.

2Related Options
Normally, this option requires that you use it with a pause optimizing garbage
collection mode (-Xgc:pausetime or -Xgc:deterministic). If you do not specify a
garbage collector, this option changes from the default garbage collector to the pause
time optimizing garbage collector (the same collector used when specifying
-Xgc:pausetime).

If you are using Oracle JRockit Real Time, set -XgcPauseTarget less than 200 msec, and
do not specify a garbage collector. The garbage collector is set to -Xgc:deterministic.

2Exceptions
When using -XpauseTarget, note the following exceptions:

■ Setting -XpauseTarget has not effect if you are running the garbage collector in
throughput mode.

■ If you are using the deterministic garbage collector, you can specify pause targets
below 200 msec as well.

-Xrs

-X Command-Line Options 2-23

-Xrs

-Xrs reduces usage of operating-system signals by the JVM. If the JVM is run as a
service (for example, the servlet engine for a web server), it can receive CTRL_LOGOFF_
EVENT but should not initiate shutdown since the operating system does not actually
terminate the process. To avoid possible interference such as this, the -Xrs
command-line option does not install a console control handler, implying that it does
not watch for or process CTRL_C_EVENT, CTRL_CLOSE_EVENT, CTRL_LOGOFF_EVENT, or
CTRL_SHUTDOWN_EVENT.

2Format
-Xrs

If you are running JRockit JVM as a service (for example, the servlet engine for a web
server), enter the command at startup to prevent the JVM from watching for or
processing CTRL_LOGOFF_EVENT or SIGHUP events.

2Exceptions
The following are exceptions when you use this option:

■ Pressing Ctrl-Break to create a thread dump does not work.

■ User code is responsible for causing shutdown hooks to run.

Note: -Xrs is a non-standard option in HotSpot JVM. JRockit JVM
continues to support this option; however, the JRockit JVM
nonstandard options -Xnohup and -XX:+|-ReduceSignalUsage
provide the same functionality.

-Xss

2-24 Oracle JRockit Command-Line Reference

-Xss

The -Xss option sets the thread stack size. Thread stacks are memory areas allocated
for each Java thread for their internal use. This is where the thread stores its local
execution state.

2Format
-Xss:size[g|G|m|M|k|K]

Combine -Xss with a memory value.

2Example
java -Xss:512k myApp

Sets the default stack size to 512 kilobytes.

2Default Values
-Xss default values are specific to the JVM binary, as defined in Table 2–5.

Note: JRockit does not support stack sizes above 128 MB.

Table 2–5 -Xss Default Values

Platform Default

Windows IA32 64 KB

Windows x86_64 128 KB

Linux IA32 128 KB

Linux x86_64 256 KB

Solaris SPARC 512 KB

-XstrictFP

-X Command-Line Options 2-25

-XstrictFP

Oracle recommends that you use -XX:+StrictFP instead of -XstrictFP.

For more information about -XstrictFP, see the R27 documentation at
http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/jrdocs/refman/index.html.

-Xverbose

2-26 Oracle JRockit Command-Line Reference

-Xverbose

The -Xverbose option provides specific information about the system. The output is,
by default, printed to the standard output for error messages (stderr) but you can
redirect it to a file by using the -XverboseLog command-line option. The information
displayed depends on the parameter specified with the option; for example, specifying
the parameter cpuinfo displays information about your CPU and indicates whether or
not the JVM can determine if hyperthreading is enabled.

2Format
-Xverbose:parameter[=log_level]

Table 2–6 lists the parameters, and Table 2–7 lists the log levels.

Note: To use more than one parameter, separate them with a comma
(for example, -Xverbose:gc,opt).

Table 2–6 -Xverbose Parameters

Parameter Prints to the screen

alloc Information regarding allocations and out of memory.

class The names of classes loaded; sample output might look like this:

[INFO][class] created: # 0 java/lang/Object (c:\jrockits\R28.0.0_
R28.0.0-617_1.6.0\jre\lib\rt.jar)
[INFO][class] 0 java/lang/Object success (0.60 ms)
[INFO][class] created: # 2 java/io/Serializable (c:\jrockits\R28.0.0_
R28.0.0-617_1.6.0\jre\lib\rt.jar)
[INFO][class] 2 java/io/Serializable success (0.32 ms)

codegen The names of each method that is being compiled. Verbose output for codegen might look
like this:

[INFO][codegen][00004] #240 (Normal)
java/lang/AbstractStringBuilder.<init>(I)V
[INFO][codegen][00004] #240 0.315-0.316
0x0000000100019FA0-0x0000000100019FD2 0.38 ms 128KB 31618 bc/s (138.48 ms
60442 bc/s)
[INFO][codegen][00004] #241 (Normal)
java/lang/StringBuilder.append(Ljava/lang/String;)Ljava/lang/StringBuilder;
[INFO][codegen][00004] #241 0.316-0.316
0x0000000100019FE0-0x0000000100019FF5 0.37 ms 128KB 21503 bc/s (138.85 ms
60338 bc/s)
[INFO][codegen][00004] #242 (Normal)
java/lang/AbstractStringBuilder.append(Ljava/lang/String;)Ljava/lang/Abstract
StringBuilder;
[INFO][codegen][00004] #242 0.317-0.317
0x000000010001A000-0x000000010001A07E 0.53 ms 128KB 113605 bc/s (139.38 ms
60539 bc/s)
[INFO][codegen][00004] #243 (Normal)
java/lang/StringBuilder.append(C)Ljava/lang/StringBuilder;
[INFO][codegen][00004] #243 0.318-0.318
0x000000010001A080-0x000000010001A09C 0.37 ms 128KB 21747 bc/s (139.75 ms
60437 bc/s)

-Xverbose

-X Command-Line Options 2-27

compaction Information related to the compaction. This information varies for different garbage
collection types and also depends on the result of the compaction. Verbose output for
compaction might look like this:

[INFO][compact] [OC#2] Compacting 8 of 128 parts at index 0. Compaction type
is internal. Exceptional: No.
[INFO][compact] [OC#2] Compaction area start: 0x2043000, end:
0x263a800.Timeout: 100.000 ms.
[INFO][compact] [OC#2] Compactset limit (per thread): 37487 (dynamic), not
using matrixes.
[INFO][compact] [OC#2] Adjusted compaction area to start at 0x2043000 and
end at 0x263a8d8.
[DEBUG][compact] [OC#2] Internal compaction added 0x25f24f8 - 0x263a8d8 to
the freelist, size: 289KB.
[INFO][compact] [OC#2] Internal compaction found 5698 objects and moved 5681
objects.
[INFO][compact] [OC#2] Compaction overhead increased to: 3.000.
[INFO][compact] [OC#2] Compaction pause: 3.677 ms (target 50.000 ms), update
ref pause: 119.897 ms (target 50.000 ms).
[INFO][compact] [OC#2] Updated 518 references. Internal: 6125 External:
518.
[DEBUG][compact] [OC#2] Compaction ended at index 5, object end address was
0x263a8d8.
[INFO][compact] [OC#2] Average compact time ratio: 0.022901.
[INFO][compact] [OC#2] Too few references, doubling compact ratio.

Table 2–6 (Cont.) -Xverbose Parameters

Parameter Prints to the screen

-Xverbose

2-28 Oracle JRockit Command-Line Reference

cpuinfo Technical information about your CPUs. Verbose output for cpuinfo might look like this:

[INFO][cpuinfo] HT is: not supported by the CPU, not enabled by the OS, not
enabled in JRockit.
[INFO][cpuinfo] CPU: Intel Pentium M model D SSE SSE2
[INFO][cpuinfo] Vendor: GenuineIntel
[INFO][cpuinfo] Family: Pentium M model D
[INFO][cpuinfo] Model: Pentium M model D
[INFO][cpuinfo] Name: Intel(R) Pentium(R) M processor 2.00GHz
[INFO][cpuinfo] Sockets: 1
[INFO][cpuinfo] Cores: 1
[INFO][cpuinfo] HWThreads: 1
[INFO][cpuinfo] Supports: On-Chip FPU
[INFO][cpuinfo] Supports: Virtual Mode Extensions
[INFO][cpuinfo] Supports: Debugging Extensions
[INFO][cpuinfo] Supports: Page Size Extensions
[INFO][cpuinfo] Supports: Time Stamp Counter
[INFO][cpuinfo] Supports: Model Specific Registers
[INFO][cpuinfo] Supports: Machine Check Exceptions
[INFO][cpuinfo] Supports: CMPXCHG8B Instruction
[INFO][cpuinfo] Supports: Fast System Call
[INFO][cpuinfo] Supports: Memory Type Range Registers
[INFO][cpuinfo] Supports: Page Global Enable
[INFO][cpuinfo] Supports: Machine Check Architecture
[INFO][cpuinfo] Supports: Conditional Mov Instruction
[INFO][cpuinfo] Supports: Page Attribute Table
[INFO][cpuinfo] Supports: the CLFLUSH Instruction
[INFO][cpuinfo] Supports: the Debug Trace Store feature
[INFO][cpuinfo] Supports: ACPI registers in MSR space
[INFO][cpuinfo] Supports: Intel Architecture MMX Technology
[INFO][cpuinfo] Supports: Fast Float Point Save and Restore
[INFO][cpuinfo] Supports: Streaming SIMD extensions
[INFO][cpuinfo] Supports: Streaming SIMD extensions 2
[INFO][cpuinfo] Supports: Self-Snoop
[INFO][cpuinfo] Supports: Thermal Monitor

exceptions Displays exception types and messages (excluding the common types of exceptions).
Verbose output for exceptions might look like this:

[excepti][00002] java/lang/NumberFormatException: null

Table 2–6 (Cont.) -Xverbose Parameters

Parameter Prints to the screen

-Xverbose

-X Command-Line Options 2-29

exceptions=debug Displays exception types and messages (excluding the common types of exceptions). It
also displays stacktraces; Verbose output for exceptions=debug might look like this:

[excepti][00002] java/lang/NumberFormatException: null
 at java/lang/Integer.parseInt(Ljava/lang/String;I)I(Integer.
 java:415)
 at java/lang/Integer.<init>(Ljava/lang/String;)V(Integer.
 java:620)
 at sun/net/InetAddressCachePolicy.<clinit>()V
 (InetAddressCachePolicy.java:77)
 at jrockit/vm/RNI.c2java(IIII)V(Native Method)
 at jrockit/vm/RNI.generateFixedCode(I)I(Native Method)
 at java/net/InetAddress.<clinit>()V(InetAddress.java:640)
 at jrockit/vm/RNI.c2java(IIII)V(Native Method)
 at jrockit/vm/RNI.generateFixedCode(I)I(Native Method)
 at java/net/InetSocketAddress.<init>(Ljava/lang/String;I)V
 (InetSocketAddress.java:124)
 at java/net/Socket.<init>(Ljava/lang/String;I)V
 (Socket.java:178)
 at Ex.main([Ljava/lang/String;)V(Ex.java:5)
 at jrockit/vm/RNI.c2java(IIII)V(Native Method)
 --- End of stack trace

exceptions=trace The same information as debug, but includes the common types of exceptions. Verbose
output for exceptions=trace looks the same as -Xverbose:exceptions=debug but also
prints exceptions of types:

■ java.util.EmptyStackException

■ java.lang.ClassNotFoundException

■ java.security.PrivilegedActionException

gc Displays information about the memory system in the following format:

 [INFO][memory] <start>-<end>: <type> <before>KB-><after>KB (<heap>KB),
<time> ms, sum of pauses <pause> ms.
 [INFO][memory] <start> - start time of collection (seconds since jvm
start).
 [INFO][memory] <type> - OC (old collection) or YC (young collection).
 [INFO][memory] <end> - end time of collection (seconds since jvm
start).
 [INFO][memory] <before> - memory used by objects before collection (KB).
 [INFO][memory] <after> - memory used by objects after collection (KB).
 [INFO][memory] <heap> - size of heap after collection (KB).
 [INFO][memory] <time> - total time of collection (milliseconds).
 [INFO][memory] <pause> - total sum of pauses during collection
(milliseconds).

For example:

 [INFO][memory] [YC#1] 0.749-0.992: YC 32768KB->32770KB (65536KB), 0.242
s, sum of pauses 242.279 ms, longest pause 242.279 ms.
 [INFO][memory] [YC#2] 1.029-1.221: YC 57344KB->65536KB (65536KB), 0.191
s, sum of pauses 191.391 ms, longest pause 191.391 ms.
 [INFO][memory] [OC#1] 1.221-1.305: OC 65536KB->57169KB (102512KB), 0.085
s, sum of pauses 83.469 ms, longest pause 83.469 ms.
 [INFO][memory] [YC#3] 1.334-1.343: YC 65118KB->60949KB (102512KB), 0.009
s, sum of pauses 8.534 ms, longest pause 8.534 ms.

Table 2–6 (Cont.) -Xverbose Parameters

Parameter Prints to the screen

-Xverbose

2-30 Oracle JRockit Command-Line Reference

gcheuristic Information about the decisions that the garbage collection heuristics make and also the
heap size changes.

gcpause Prints the pause times caused by the garbage collector during a run. The pause times are
shown during run time on your screen during the running of the application. Use this
option at startup. As pauses are encountered, a report is printed.

Output from -Xverbose:gcpause used with -Xgc:gencon:

[INFO][gcpause] [YC#92] [---] 4.145 ms (26.121000-26.125000) YC
[INFO][gcpause] [YC#92] [con] 0.003 ms (26.121000-26.121000) YC:PreGC
[INFO][gcpause] [YC#92] [pau] 4.095 ms (26.121000-26.125000) YC:Main
[INFO][gcpause] [YC#92] [con] 0.008 ms (26.125000-26.125000) YC:PostGC
[INFO][gcpause] [YC#93] [---] 4.710 ms (26.352000-26.356000) YC
[INFO][gcpause] [YC#93] [con] 0.002 ms (26.352000-26.352000) YC:PreGC
[INFO][gcpause] [YC#93] [pau] 4.644 ms (26.352000-26.356000) YC:Main
[INFO][gcpause] [YC#93] [con] 0.009 ms (26.356000-26.356000) YC:PostGC
[INFO][gcpause] [OC#1] [---] 63.312 ms (26.362000-26.425000) OC
[INFO][gcpause] [OC#1] [con] 0.006 ms (26.362000-26.362000) OC:PreGC
[INFO][gcpause] [OC#1] [pau] 4.979 ms (26.362000-26.367000) OC:Initial
[INFO][gcpause] [OC#1] [con] 50.462 ms (26.367000-26.417000)
OC:ConcurrentMark
[INFO][gcpause] [OC#1] [pau] 4.427 ms (26.417000-26.422000) OC:Main
[INFO][gcpause] [OC#1] [con] 0.829 ms (26.422000-26.422000)
OC:ConcurrentSweep1
[INFO][gcpause] [OC#1] [pau] 0.011 ms (26.422000-26.422000) OC:SweepSwitch
[INFO][gcpause] [OC#1] [con] 1.137 ms (26.422000-26.424000)
OC:ConcurrentSweep2
[INFO][gcpause] [OC#1] [pau] 0.224 ms (26.424000-26.424000) OC:Cleanup
[INFO][gcpause] [OC#1] [con] 0.982 ms (26.424000-26.425000) OC:PostGC
[INFO][gcpause] [YC#94] [---] 4.738 ms (26.720000-26.725000) YC
[INFO][gcpause] [YC#94] [con] 0.003 ms (26.720000-26.720000) YC:PreGC
[INFO][gcpause] [YC#94] [pau] 4.692 ms (26.720000-26.725000) YC:Main
[INFO][gcpause] [YC#94] [con] 0.007 ms (26.725000-26.725000) YC:PostGC

gcpausetree Prints the same information as gcpause, but with indentation instead of full level
information, therefore makes the output more readable. But this output is less parsable.

Table 2–6 (Cont.) -Xverbose Parameters

Parameter Prints to the screen

-Xverbose

-X Command-Line Options 2-31

gcreport Generates a report that shows garbage collection statistics for your application. You can
use this report to determine if you are using the most effective garbage collector. The
report divides the statistics into young collections and old collections, and for each type
the following information gathered during the run time is displayed

■ Number of collections: The total number of garbage collections of this type.

■ Total promoted: The total number of objects and bytes promoted from young space to
old space by this type of garbage collections.

■ Max promoted: The maximum number of objects and bytes promoted by any single
garbage collection of this type.

■ Total GC time: The total time spent in this type of garbage collections. For concurrent
garbage collections, the total garbage collection time and the total garbage collection
pause time differs.

■ Mean GC time: The average time spent in a single garbage collection of this type. For
concurrent garbage collections, the garbage collection time and the garbage collection
pause time differs.

■ Maximum GC pauses: The three longest garbage collection pauses caused by this
type of garbage collection.

Output from -Xverbose:gcreport used with -Xgcprio:pausetime:

[INFO][gcrepor]
[INFO][gcrepor] Memory usage report:
[INFO][gcrepor]
[INFO][gcrepor] Young Collections:
[INFO][gcrepor] number of collections = 1674.
[INFO][gcrepor] total promoted = 125334074 (size 4556008384).
[INFO][gcrepor] max promoted = 672140 (size 29971808).
[INFO][gcrepor] total YC time = 12.959 s (total paused 12.810 s).
[INFO][gcrepor] mean YC time = 7.741 ms (mean total paused 7.652 ms).
[INFO][gcrepor] maximum YC Pauses = 38.941 , 40.473, 63.004 ms.
[INFO][gcrepor]
[INFO][gcrepor] Old Collections:
[INFO][gcrepor] number of collections = 828.
[INFO][gcrepor] total promoted = 37563437 (size 1393626896).
[INFO][gcrepor] max promoted = 328350 (size 14209984).
[INFO][gcrepor] total OC time = 349.090 s (total paused 83.380 s).
[INFO][gcrepor] mean OC time = 421.606 ms (mean total paused 100.701 ms).
[INFO][gcrepor] maximum OC Pauses = 445.945 , 446.394, 3096.186 ms.
[INFO][gcrepor]
[INFO][gcrepor] number of emergency parallel sweeps = 361.
[INFO][gcrepor]
[INFO][gcrepor] number of internal compactions = 582.
[INFO][gcrepor] number of internal compactions skipped because pointer
storage overflowed = 8.
[INFO][gcrepor] number of external compactions = 234.
[INFO][gcrepor] 177 of these were aborted because they timed out.
[INFO][gcrepor] number of external compactions skipped because pointer
storage overflowed = 4.
[INFO][gcrepor]

Table 2–6 (Cont.) -Xverbose Parameters

Parameter Prints to the screen

-Xverbose

2-32 Oracle JRockit Command-Line Reference

load The name of each loaded Java or native library:

[INFO][load] opened zip c:\jrockits\R28.0.0_R28.0.0-617_
1.6.0\jre\lib\rt.jar
[INFO][load] opened zip c:\jrockits\R28.0.0_R28.0.0-617_
1.6.0\jre\lib\resources.jar
[INFO][load] opened zip c:\jrockits\R28.0.0_R28.0.0-617_
1.6.0\jre\lib\jsse.jar
[INFO][load] opened zip c:\jrockits\R28.0.0_R28.0.0-617_
1.6.0\jre\lib\jce.jar
[INFO][load] opened zip c:\jrockits\R28.0.0_R28.0.0-617_
1.6.0\jre\lib\charsets.jar

memory Prints information about the memory management system, including:

■ Start time of collection (seconds since JVM start)

■ End time of collection (seconds since JVM start)

■ Memory used by objects before collection (KB)

■ Memory used by objects after collection (KB)

■ Size of heap after collection (KB)

■ Total time of collection (seconds or milliseconds)

■ Total pause time during collection (milliseconds)

The information printed by -Xverbose:memory varies depending on the type of garbage
collector you are using.

Table 2–6 (Cont.) -Xverbose Parameters

Parameter Prints to the screen

-Xverbose

-X Command-Line Options 2-33

memdbg Enables debug level for verbose modules that are useful when you debug memory-related
issues. Verbose output for memdbg might look like this:

[DEBUG][memory] [YC#3526] GC reason: Allocation request failed.
[DEBUG][memory] [YC#3526] 455.018: YC started.
[INFO][alloc] [YC#3526] Pending requests at 'Before YC' - Total: 8, TLAs: 8
(approx 262144 bytes), objects: 0 (0 bytes). Max age: 0.
[INFO][nursery] [YC#3526] Young collection 3526 started. This YC is running
while the OC is in phase: not running.
[DEBUG][memory] [YC#3526] Promotion failed: not enough free memory for
java/lang/String, 32 B.
[DEBUG][memory] [YC#3526] Returning duplicate cardTablePart entry 2895
(0x00000000155EDE00-0x000000001562DE00)
[DEBUG][memory] [YC#3526] Returning duplicate cardTablePart entry 2895
(0x00000000155EDE00-0x000000001562DE00)
[DEBUG][memory] [YC#3526] SemiRef phase Finalizers run in single threaded
mode.
[DEBUG][memory] [YC#3526] SemiRef phase WeakJNIHandles run in single
threaded mode.
[DEBUG][memory] [YC#3526] SemiRef phase ClassConstraints run in single
threaded mode.
[INFO][nursery] [YC#3526] Setting forbidden area for keeparea:
0x00000000133479A0-0x000000001386DE20.
[INFO][nursery] [YC#3526] Next keeparea will start at 0x0000000012F34E48 and
end at 0x00000000133479A0.
[INFO][alloc] [YC#3526] Pending requests at 'After YC' - Total: 8, TLAs: 8
(approx 262144 bytes), objects: 0 (0 bytes). Max age: 0.
[DEBUG][memory] [YC#3526] YC promoted 10964 objects (384KB).
[DEBUG][memory] [YC#3526] Page faults before YC: 283554, page faults after
YC: 283554, pages in heap: 65536.
[DEBUG][memory] [YC#3526] Nursery size after YC: 0KB. (Free: 0KB Parts: 0)
[INFO][memory] [YC#3526] 455.018-455.033: YC 261708KB->262144KB (262144KB),
0.015 s, sum of pauses 14.090 ms, longest pause 14.090 ms.

opt Information about all methods that get optimized. Verbose output for opt might look like
this:

[INFO][opt][00036] #1 (Opt) ObjAlloc.main([Ljava/lang/String;)V
[INFO][opt][00036] #1 3.756-3.758 0x0000000100060000-0x000000010006004E
2.10 ms 128KB 7633 bc/s (2.10 ms 7633 bc/s)

refobj Information on reference objects and handles at each garbage collection. The output is a
summary of reference objects of different types and how many of them are activated. A
reference object is activated when the requirements for the reference object type are
fulfilled. Upon activation, the memory management system can clear the reference,
enqueue it in a reference queue or enqueue it for finalization, depending on the type of
reference.

The performance overhead of this log module is low on info level. On debug level, the
performance overhead is high.

Table 2–6 (Cont.) -Xverbose Parameters

Parameter Prints to the screen

-Xverbose

2-34 Oracle JRockit Command-Line Reference

starttime The values of System.currentTimeMillis() and System.nanoTime() at the time JRockit
JVM started. These can be used to correlate log output between different processes.
Verbose output for starttime might look like this:

[INFO][startti] VM start time: 1260962573921 millis 6922526 nanos
18442244770397334 ticks

Where:

■ millis is the number of milliseconds elapsed since midnight, January 1, 1970 UTC.
This is same value that System.currentTimeMills() would render.

■ nanos measures time to the resolution of one-billionth of a second (a nanosecond);
however, the time from which nanoTime() is measured (the start time) is unspecified
so that the most efficient method of measurement for different operating systems can
be used. It is the same value that System.nanoTime() would render.

shutdown Information about any event that has triggered a normal shutdown of the JVM (not
guaranteed to work under all platforms or conditions). This parameter is available since
R28.3.2:

The following output is an example of a verbose shutdown report when a Signal 15
(SIGTERM) is received on a Solaris system:

[INFO][shutdow] JVM_Halt() called in response to:
[INFO][shutdow] Signal 15 received from PID:21152 UID:142

systemgc Notifies of garbage collections started by a call to System.gc() and -Xverbose:memdbg
outputs, for example a call to a JMAPI function that implicitly starts a garbage collection
or to the diagnostics command runsystemgc.

A garbage collection started by a direct call to System.gc() results in a verbose output
similar to:

[INFO][sysgc] GC requested by thread 1

The thread number in this output is the thread ID of the thread that requests the garbage
collection.

The output for a garbage collection started by other means display the reason for the
garbage collection, for example:

[INFO][sysgc] GC triggered for reason: Set Nursery Size

timing The timer resolution and the method used to get a time value. This is the resolution of the
timer used by the System.nanoTime() method.

The following output is an example of a verbose timing report on Windows:

[INFO][timing] Fast time frequency is 1995000000hz
[INFO][timing] Drift is 0.00000021 = per day 0.018secs (max 300.000)
[INFO][timing] Hardware fast time enabled
[INFO][timing] Counter timer using resolution of 1995MHz

Table 2–7 -Xverbose Log Levels

Log Level Description

quiet No logging. No messages or errors are generated.

error Only error messages are logged.

warn Warning messages are logged along with errors. Still a low logging level, warn is
usually used to warn about events that could possibly lead to an error later on.

info At the info level, not only are errors and warnings logged, but also informational
messages about the current state of JRockit JVM and various JVM events. This is
the default logging level if -Xverbose is used without arguments.

Table 2–6 (Cont.) -Xverbose Parameters

Parameter Prints to the screen

-Xverbose

-X Command-Line Options 2-35

2Example
java -Xverbose:gcpause=debug myClass

Enables pause time sampling and information during a run and logs messages with
detailed information of the JRockit JVM.

2Related Options
-Xverbose must be set for the following options to work:

■ -Xverbosedecorations

■ -XverboseLog

■ -XverboseTimeStamp

debug debug logs messages with detailed information of JRockit JVM's behavior.
Usually, debug provides too much information for day to day logging, but useful
for debugging.

trace trace provides very verbose logging. This level is used by modules where even
the debug level would be cluttered by the amount of information generated.
Typically, trace is used when up to ten or one hundred pages of text per minute
needs to be logged.

Table 2–7 (Cont.) -Xverbose Log Levels

Log Level Description

-Xverbosedecorations

2-36 Oracle JRockit Command-Line Reference

-Xverbosedecorations

Decorations are additional information, usually system-related, that are used to
enhance the meaningfulness of verbose output; for example, the name of the module
in which the message originated or number of milliseconds elapsed since the current
JRockit JVM session started. The -Xverbosedecorations option adds this information
to the verbose output.

2Format
-Xverbosedecorations=decoration names

Table 2–8 lists the possible decorations.

2Example
java -Xverbose:gcpause -Xverbosedecorations=timestamp,module myApp

The output includes the following decorations:

■ A readable timestamp.

■ The name of the module in which the message originated.

Note: You can also use the diagnostic command verbosity with the
argument decorations.

Table 2–8 Verbose Output Decorations

Decoration Description

level Prints the logging level for the message.

millis Prints the number of milliseconds elapsed since midnight, January 1, 1970
UTC. This is same value that would be generated by
System.currentTimeMills().

millisstart Prints the number of milliseconds elapsed since JRockit JVM started.

module Prints the module in which the message originated, same as the arguments to
-Xverbose.

nanos Prints the same value that System.nanoTime() would render. "nanoTime"
measures time to the resolution of one-billionth of a second (a nanosecond);
however, the time from which nanoTime() is measured (the start time) is
unspecified so that the most efficient method of measurement for different
operating systems can be used.

nanosstart Prints the number of nanoseconds since JRockit JVM started.

pid Prints the process ID.

threadid Prints the index of the thread. This is the same value provided by idx in
thread dumps.

timestamp Prints a human readable timestamp. This is the same value you would receive
if you used the -XverboseTimeStamp option.

-Xverbosedecorations

-X Command-Line Options 2-37

2Default Values
If you use -XverboseDecorations without specifying a decoration, the verbose output
displays the module, timestamp, and pid (in that order); for example:

D:\jrockits\R28.0.0-617_1.6.0\bin>java -Xverbose:load -Xverbosedecorations -cp
L:\src\ HelloWorld
[load][Wed Sep 13 19:43:14 2006][00728] opened zip D:\jrockits\R28.0.0-617_
1.6.0\jre\lib\rt.jar

2Related Options
-Xverbosedecorations can be used only if -Xverbose is also set.

-XverboseLog

2-38 Oracle JRockit Command-Line Reference

-XverboseLog

The -XverboseLog option sends messages (such as verbose output and error messages)
from the Oracle JRockit JVM to the specified file instead of stderr.

2Format
-Xverboselog:myFile.txt

When this command is used with a filename and extension (for example, myFile.txt),
the JVM writes any logging information to the specified file.

2Example
java -Xverbose:gcpause -Xverboselog:verboseText.txt myApp

Writes verbose logging information for the application with the main class myApp to a
file named verboseText.txt.

2Related Options
The -XverboseLog option works only when -Xverbose is set.

2Exceptions
The -XverboseLog option does not print to the screen.

-XverboseTimeStamp

-X Command-Line Options 2-39

-XverboseTimeStamp

The -XverboseTimeStamp option adds a timestamp to the verbose printout, which can
be useful when logging events.

2Format
-XverboseTimeStamp

You can force a timestamp to print out with other information generated by -Xverbose
if you combine it with the command -XverboseTimeStamp.

2Example
java -Xverbose -XverboseTimeStamp myApp

The printout generated by -XverboseTimeStamp precedes the information printed by
-Xverbose, as follows:

L:\src>D:\jrockits\R28.0.0-617_1.6.0\bin\java -Xverbose
-XverboseTimeStamp HelloWorld
[load][Mon Sep 25 09:57:56 2006][00624] opened zip
D:\jrockits\R28.0.0-617_1.6.0\jre\lib\rt.jar

2Related Options
The -XverboseTimeStamp option is only effective if verbose logging is enabled either
by using -Xverbose or by enabling it at run time.

-Xverify

2-40 Oracle JRockit Command-Line Reference

-Xverify

The -Xverify option sets the mode of the bytecode verifier. Bytecode verification
ensures that class files are properly formed and meet the constraints listed in
Verification of class Files in the The Java Virtual Machine Specification. Do not turn off
verification as this reduces the protection provided by Java and could cause problems
due to ill-formed class files.

2Format
-Xverify:parameter

Combine this option with one of the parameters described in Table 2–9.

2Default Value
If you do not use -Xverify, by default, the JVM verifies only those classes that are not
loaded by the bootstrap class loader (-Xverify:remote).

2Related Options
-XX:+|-FailOverToOldVerifier

Table 2–9 -Xverify Parameters

Parameter Description

none Does not verify the bytecode.

Note: Use of -Xverify:none is not supported.

remote Verifies those classes that are not loaded by the bootstrap class loader. This is the
default behavior if you do not specify the -Xverify option.

all Verifies all classes.

3

-XX Command-Line Options 3-1

3-XX Command-Line Options

[4] This chapter describes the -XX command-line options of Oracle JRockit JVM; these
options are all prefixed by -XX.

To implement some of the options, specific system requirements must be met,
otherwise, the particular option does not work. Oracle recommends that you use these
options only if you have a thorough understanding of your system. Improper usage of
these options can affect the stability or performance of your system.

In this chapter, all the -XX command-line options that you can use with the JRockit
JVM are listed in the alphabetical order.

-XXaggressive

-XX:AllocChunkSize

-XX:+|-CheckJNICalls

-XX:+|-CheckStacks

-XXcompaction

-XXcompactRatio (deprecated)

-XXcompactSetLimit (deprecated)

-XXcompactSetLimitPerObject (deprecated)

-XXcompressedRefs

Note: The -XX options are subject to change at any time.

Notes:

■ Command-line options are case sensitive unless explicitly stated.
Most of the commands use the camel notation (for example,
-XXgcThreads and -XXcompaction).

■ Some command-line options use the HotSpot implementation
format; that is, you must place the colon (:) between the -XX and
the option name followed by a the necessary operator to indicate
enabling (+) or disabling (-) the new hash function.

■ If you do not add a unit with the values of options that specify
memory size, you get the exact value; for example, 64 is
considered as 64 bytes, not 64 megabytes or 64 kilobytes.

3-2 Oracle JRockit Command-Line Reference

-XX:+|-CrashOnOutOfMemoryError

-XX:+|-DisableAttachMechanism

-XXdumpFullState

-XXdumpSize

-XX:ExceptionTraceFilter

-XX:+|-ExitOnOutOfMemoryError

-XX:ExitOnOutOfMemoryErrorExitCode

-XXexternalCompactRatio (deprecated)

-XX:+|-FailOverToOldVerifier

-XX:+|-FlightRecorder

-XX:FlightRecorderOptions

-XX:+|-FlightRecordingDumpOnUnhandledException

-XX:FlightRecordingDumpPath

-XXfullSystemGC

-XXgcThreads

-XX:GCTimeRatio

-XX:GCTimePercentage

-XXgcTrigger

-XX:+|-HeapDiagnosticsOnOutOfMemoryError

-XX:HeapDiagnosticsPath

-XX:+|-HeapDumpOnCtrlBreak

-XX:+|-HeapDumpOnOutOfMemoryError

-XX:HeapDumpPath

-XX:HeapDumpSegmentSize

-XXheapParts (deprecated)

-XXinternalCompactRatio (deprecated)

-XX:+|-JavaDebug

-XXkeepAreaRatio

-XXlargeObjectLimit (deprecated)

-XX:MaxCodeMemory

-XX:MaxDirectMemorySize

-XX:MaximumNurseryPercentage

-XX:MaxLargePageSize

-XX:MaxRecvBufferSize

-XXminBlockSize (deprecated)

-XXnoSystemGC

-XX:OptThreads

-XX Command-Line Options 3-3

-XX:+|-RedoAllocPrefetch

-XX:+|-ReserveCodeMemory

-XX:SegmentedHeapDumpThreshold

-XXsetGC (deprecated)

-XX:StartFlightRecording

-XX:+|-StrictFP

-XXtlaSize

-XX:TreeMapNodeSize

-XX:+|-UseAdaptiveFatSpin

-XX:+|-UseAllocPrefetch

-XX:+|-UseCallProfiling

-XX:+|-UseCfsAdaptedYield

-XX:+|-UseClassGC

-XX:+|-UseCPoolGC

-XX:+|-UseFastTime

-XX:+|-UseFatSpin

-XX:+|-UseLargePagesFor[Heap|Code]

-XX:+|-UseLazyUnlocking

-XX:+|-UseLockProfiling

-XX:+|-UseLowAddressForHeap

-XX:+|-UseNewHashFunction

-XX:+|-UseThreadPriorities

-XXaggressive

3-4 Oracle JRockit Command-Line Reference

-XXaggressive

The -XXaggressive option is a collection of configurations that make the JVM perform
at a high speed and reach a stable state as soon as possible. To achieve this goal, the
JVM uses more internal resources at startup; however, it requires less adaptive
optimization once the goal is reached.

What this option configures is subject to change between releases.

3Format
-XXaggressive

3Example
java -XXaggressive myApp

3Related Options
The -XXaggressive option sets several things, which can be reset or changed by
adding the explicit options on the command line after the -XXaggressive option.

-XX:AllocChunkSize

-XX Command-Line Options 3-5

-XX:AllocChunkSize

When you combine this option with -XX:+UseAllocPrefetch, the
-XX:AllocChunkSize option sets the size of the chunks to be cleared.

3Format
-XX:+UseAllocPrefetch -XX:AllocChunkSize=size[k|K][m|M][g|G]

3Example
java -XX:+UseAllocPrefetch -XX:AllocChunkSize=1K myApp

3Default Value
The default value varies depending on the platform.

3Related Options
-XX:+|-UseAllocPrefetch

-XX:+|-CheckJNICalls

3-6 Oracle JRockit Command-Line Reference

-XX:+|-CheckJNICalls

If you enable this option at startup, the JRockit JVM verifies all arguments to JNI calls,
and when it detects an illegal JNI call, the JVM terminates with an error message
describing the transgression.

3Format
-XX:+|-CheckJNICalls

3Example
java -XX:+CheckJNICalls myApp

3Default
Disabled

3Related Options
-XX:+CheckJNICalls is equivalent to -Xcheck:jni.

-XX:+|-CheckStacks

-XX Command-Line Options 3-7

-XX:+|-CheckStacks

This option specifies whether the JVM should explicitly check for stack overflows on a
JNI method entry.

3Format
-XX:+|-CheckStacks

3Example
java -XX:+CheckStacks myApp

3Default
In JRockit versions R28.0.0 to R28.3.1, this option is disabled by default.

In JRockit R28.3.2 and later versions, this option is enabled by default.

-XXcompaction

3-8 Oracle JRockit Command-Line Reference

-XXcompaction

Compaction moves live objects closer together in the Java heap to create larger,
contiguous free areas that can be used for allocation of large objects. When the JVM
compacts the heap, all threads should be paused because the objects are being moved
around. To reduce pause time, only a part of the heap is compacted.

3Format
-XXcompaction:parameter1=value1[,parameter2=value2]

Table 3–1 lists the parameters that you can specify for the -XXcompaction option.

Table 3–1 Parameters for -XXcompaction

Parameter Description Default Value

abortable Specifies that the compactions are possible to
abort.

If the garbage collection
type is deterministic or
pausetime, the default
value is true.
Otherwise, the default
value is false.

Note: You cannot set
this option to false.

enable Enables compaction.

When set to false, this option disables
compaction during garbage collection.
Disabling compaction can reduce garbage
collection pause times, but might also lead to
fragmentation in the Java heap and lower
the application throughput or cause an
out-of-memory error.

During every garbage collection, at least a
partial compaction is done.

If you prefer no compaction, you must use
this command at startup to disable
compaction, but compaction still occurs in
the following cases:

■ If you shrink the heap, compaction is
performed to move objects that reside
on the top of the heap.

■ When object allocations fail several
times due to fragmentation, compaction
occurs.

■ During a full garbage collection
triggered by an external API (such as
SystemGC, a diagnostic command, and
jrockit.vm.GC.runFullGc), compaction
occurs.

true

Note: The valid value
for this option is true.
When this option is set
to false, a warning is
printed.

externalPercentage Sets the percent of the heap to compact
during external compaction.

Note: The -XXcompaction:percentage
option sets values for both
-XXcompcation:internalPercentage and
-XXcompaction:externalPercentage.

If the compaction is
abortable, the default
value is 0.78 percent of
the heap. Otherwise, the
default value is 6.25
percent of the heap.

-XXcompaction

-XX Command-Line Options 3-9

full Causes full compaction at all times,
compacting the entire heap at each old
collection. Full compaction can increase the
application throughput by minimizing the
fragmentation of the heap but can also cause
extremely long garbage collection pauses
during the compaction.

Example:

java -XXcompaction:full myApp

Enter this command at startup to force full
compaction. This is the only way to ensure
that full compaction occurs.

false

heapParts Sets the number of heap parts for
compaction.

4096

initialPercentage Sets the percent of the heap to compact
during internal compaction.

If the compaction is
abortable, the default
value is 0.78 percent of
the heap. Otherwise, the
default value is 6.25
percent of the heap.

internalPercentage Sets the number of heap parts to compact
during internal compaction.

Note: The -XXcompaction:percentage
option sets values for both
-XXcompcation:internalPercentage and
-XXcompaction:externalPercentage.

If the compaction is
abortable, the default
value is 0.78 percent of
the heap. Otherwise, the
default value is 6.25
percent of the heap.

maxReferences Sets the maximum number of references to
objects in the compaction area. The JRockit
JVM compacts a small part of the Java heap
at each garbage collection. The references to
the objects in the compacted area are stored
in a compact set. When running
non-deterministic garbage collection, the
number of references to the compaction area
affects the compaction pause. This option
can be used to limit the compaction pauses.

Example:

java -XXcompaction:maxReferences=10000
myApp

This command sets the compaction limit to
10,000 references to objects in the
compaction area.

If the garbage collection
type is pausetime or
deterministic, the
default value is 10200.
Otherwise, the value is
299900.

Table 3–1 (Cont.) Parameters for -XXcompaction

Parameter Description Default Value

-XXcompaction

3-10 Oracle JRockit Command-Line Reference

3Example
java -XXcompaction:heapParts=8000,internalPercentage=0.5 myApp

When you set this option on a 2 GB heap, it compacts 10 MB of the heap at each
internal compaction.

3Default
Enabled

maxReferencesPerOb
ject

Sets the maximum number of references to
any single object in the compaction area. If
the number of references to an object exceeds
this value, the object is not moved during the
compaction.

When an object is moved during
compaction, the references to that object
must be updated. Moving an object with a
lot of references to it is more costly than
moving an object with only a few references
to it.

Example:

java
-XXcompaction:maxReferencesPerObject=5
00 myApp

This command sets the compaction limit per
object to 500 references.

100

percentage Specifies the percent of the heap that the
garbage collector compacts at each garbage
collection.

While the JVM is compacting the heap, all
threads that want to access objects need to
wait because the JVM is moving the objects
around. Consequently, only a part of the
heap is compacted to reduce pause time.

In some cases, when the garbage collection
time is too long, consider reducing the
compaction area to reduce the pause times.
In some other cases, especially when you are
allocating very large arrays, consider
increasing the compaction area to reduce the
fragmentation on the heap and make the
allocation faster.

Example:

java -XXcompaction:percentage=10 myApp

When this command is set in a 500 MB heap,
the garbage collector compacts 50 MB of the
heap at each old collection.

Note: The -XXcompaction:percentage
options sets values for both
-XXcompcation:internalPercentage and
-XXcompaction:externalPercentage.

If the compaction is
abortable, the default
value is 0.78 percent of
the heap. Otherwise, the
default value is 6.25
percent of the heap.

Table 3–1 (Cont.) Parameters for -XXcompaction

Parameter Description Default Value

-XXcompaction

-XX Command-Line Options 3-11

3Exceptions
When using the -XXcompaction option, consider the following:

■ Do not use parameters that conflict each other in the same -XXcompaction option:

– The percentage parameter conflicts with the internalPercentage and
externalPercentage parameters.

– The full parameter conflicts with other percentage parameters such as
percentage, initialPercentage, internalPercentage, and
externalPercentage

– You cannot set the abortable parameter to false.

– When you set the enable parameter to false, a warning is printed

■ Parameters that are specified later in the command line override parameters
specified earlier.

-XXcompactRatio (deprecated)

3-12 Oracle JRockit Command-Line Reference

-XXcompactRatio (deprecated)

The -XXcompactRatio option is deprecated in Oracle JRockit R28. The option works in
R28, but Oracle recommends that you use -XXcompaction:percentage instead. For
more information, see -XXcompaction.

For more information about the format and usage of -XXcompactRatio, see the R27
documentation at: http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/jrdocs/refman/index.html.

-XXcompactSetLimit (deprecated)

-XX Command-Line Options 3-13

-XXcompactSetLimit (deprecated)

The -XXcompactSetLimit option is deprecated in Oracle JRockit R28. The option works
in R28, but Oracle recommends that you use -XXcompaction:maxReferences instead.
For more information, see -XXcompaction.

For more information about the format and usage of -XXcompactSetLimit, see the R27
documentation at: http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/jrdocs/refman/index.html.

-XXcompactSetLimitPerObject (deprecated)

3-14 Oracle JRockit Command-Line Reference

-XXcompactSetLimitPerObject (deprecated)

The -XXcompactSetLimitPerObject option is deprecated in Oracle JRockit R28. The
option works in R28, but Oracle recommends that you use
-XXcompaction:maxReferencesPerObject instead. For more information, see
-XXcompaction.

For more information about the format and usage of -XXcompactSetLimitPerObject,
see the R27 documentation at: http://download.oracle.com/docs/cd/E13150_
01/jrockit_jvm/jrockit/jrdocs/refman/index.html.

-XXcompressedRefs

-XX Command-Line Options 3-15

-XXcompressedRefs

The -XXcompressedRefs option governs the use of compressed references, limiting all
pointers stored on the heap to 32 bits. Compressed references use fewer Java heap
resources and transport less data on the memory bus and improves the performance.
This option also frees space on the heap.

3Format
-XXcompressedRefs:parameter=value

Use the command with one of the parameters listed in Table 3–2 to specify the
behavior of compressed references.

3Examples
java -Xgc:pausetime -XXcompressedRefs:enable=true myApp

java -Xgc:pausetime -XXcompressedRefs:size=32GB myApp

3Default Values
If -XXcompressedRefs is not specified, compressed references are enabled on all 64-bit
machines as long as the heap size is less than 4 GB. When you use the -Xmx option, the
default values vary on the heap size as listed in Table 3–3.

3Related Options
Other command-line options are affected by -XXcompressedRefs as described here:

■ If you use this option with an initial heap size (-Xmx) that is too large, execution
will stop and an error message are generated.

■ If you do not specify compressed references explicitly by using the
-XXcompressedRefs option and you specify either an initial heap (-Xms) or a
maximum heap (-Xmx) that is too large (more than 64 GB) for compressed
references, compressed references will not be used. The JVM will not stop; it will
run normally.

Note: -XXcompressedRefs is equivalent to -XX:CompressedRefs.

Table 3–2 Parameters for -XXcompressedRefs

Parameter Description

enable=true|false Enables or disables compressed references.

size=4GB|32GB|64GB Specifies the size of compressed references. The default size varies
for different heap sizes as listed in Table 3–3.

Table 3–3 Default Size of Compressed References

Heap Size
Default Size of
Compressed References

-Xmx:3g or lower 4 GB

-Xmx:25g or lower 32 GB

-Xmx:57g or lower 64 GB

-XXcompressedRefs

3-16 Oracle JRockit Command-Line Reference

3Exceptions
If compressed references are not available on a given hardware platform or operating
system, a warning is printed and execution stops.

-XX:+|-CrashOnOutOfMemoryError

-XX Command-Line Options 3-17

-XX:+|-CrashOnOutOfMemoryError

If this option is enabled, when an out-of-memory error occurs, the JRockit JVM crashes
and produces text and binary crash files.

Note that generation of crash files when the JVM crashes is enabled by default. For
more information, see "About Crash Files" in the Oracle JRockit Diagnostics and
Troubleshooting Guide.

3Format
-XX:+|-CrashOnOutOfMemoryError

3Example
java -XX:+CrashOnOutOfMemoryError

3Default
Disabled

3Related Options
-XX:+ExitOnOutOfMemoryError takes precedence over this option.

Note: This option is new in R28.1. It does not work in R28.0.

-XX:+|-DisableAttachMechanism

3-18 Oracle JRockit Command-Line Reference

-XX:+|-DisableAttachMechanism

This option specifies whether tools (such as jrcmd and jconsole) are allowed to attach
to the JRockit JVM.

3Format
-XX:+|-DisableAttachMechanism

3Example
java -XX:+DisableAttachMechanism

3Default
Enabled

-XXdumpFullState

-XX Command-Line Options 3-19

-XXdumpFullState

Usually when the JRockit JVM crashes, it saves out the state of the process (called a
core dump). When you use -XXdumpFullState, the JVM saves all the process state
including the heap. More disk space is used, but it makes much easier for you to use
the core dump to find out what the problem was that caused the crash. This option
saves a significant amount of information to disk.

3Format
-XXdumpFullState

3Related Options
-XXdumpFullState is equivalent to -XXdumpsize:large. For more information, see
-XXdumpSize.

-XXdumpSize

3-20 Oracle JRockit Command-Line Reference

-XXdumpSize

The -XXdumpSize option causes a dump file to be generated and allows you to specify
the relative size of that file.

3Format
-XXdumpsize:size

Use the command with one of the parameters listed in Table 3–4 to specify the relative
size of the dump file.

Table 3–4 Parameters for -XXdumpsize

FIle Size Description

none Does not generate a dump file.

small On Windows, a small dump file is generated (on Linux a full core dump is
generated). A small dump only include the thread stacks including their traces
and very little else.).

normal Causes a normal dump to be generated on all platforms. This dump file includes
all memory except the java heap.

large Includes everything that is in memory, including the Java heap. This option
makes -XXdumpSize equivalent to -XXdumpFullState.

-XX:ExceptionTraceFilter

-XX Command-Line Options 3-21

-XX:ExceptionTraceFilter

Specify this option at startup to filter exception logging. JRockit JVM logs only those
exceptions that match a type specified by this option.

3Format
-XX:ExceptionTraceFilter=java.lang.Exception

Enter this command at startup to log exceptions of type java.lang.Exception class.

3Default Values
Disabled

3Related Options
None

-XX:+|-ExitOnOutOfMemoryError

3-22 Oracle JRockit Command-Line Reference

-XX:+|-ExitOnOutOfMemoryError

When you enable this option, JRockit JVM exits on the first occurrence of an
out-of-memory error. It can be used if you prefer restarting an instance of JRockit JVM
rather than handling out of memory errors.

3Format
-XX:+|-ExitOnOutOfMemoryError

Enter this command at startup to force JRockit JVM to exit on the first occurrence of an
out of memory error.

3Default Values
Disabled

3Related Options
-XX:ExitOnOutOfMemoryErrorExitCode

-XX:ExitOnOutOfMemoryErrorExitCode

-XX Command-Line Options 3-23

-XX:ExitOnOutOfMemoryErrorExitCode

This option specifies the exit code for termination of the JVM process when an
out-of-memory error occurs.

3Format
-XX:ExitOnOutOfMemoryErrorExitCode=value

3Default Value
51

3Related Options
This option works with the -XX:+|-ExitOnOutOfMemoryError option

-XXexternalCompactRatio (deprecated)

3-24 Oracle JRockit Command-Line Reference

-XXexternalCompactRatio (deprecated)

The -XXexternalCompactRatio option is deprecated in Oracle JRockit R28. The option
works in R28, but Oracle recommends that you use
-XXcompaction:externalPercentage instead. For more information, see
-XXcompaction.

For more information about the format and usage of -XXexternalCompactRatio, see
the R27 documentation at: http://download.oracle.com/docs/cd/E13150_
01/jrockit_jvm/jrockit/jrdocs/refman/index.html.

-XX:+|-FailOverToOldVerifier

-XX Command-Line Options 3-25

-XX:+|-FailOverToOldVerifier

This option specifies whether a failover happens to the old verifier when the new type
checker fails.

3Format
-XX:+|-FailOverToOldVerifier

3Default
Enabled

-XX:+|-FlightRecorder

3-26 Oracle JRockit Command-Line Reference

-XX:+|-FlightRecorder

This option enables or disables the JRockit Flight Recorder. If JRockit Flight Recorder
was disabled at application startup, you cannot enable it at run time.

3Format
-XX:-FlightRecorder

3Default
This option is enabled, but there are no recordings running by default. Use the
-XX:FlightRecorderOptions to specify options and to start a recording.

-XX:FlightRecorderOptions

-XX Command-Line Options 3-27

-XX:FlightRecorderOptions

This option enables or disables the JRockit Flight Recorder arguments. It is used only
when the JRockit Flight Recorder is enabled.

3Format
-XX:FlightRecorderOptions=parameter1=value[,parameter2=value]

Table 3–5 lists the parameters for -XX:FlightRecorderOptions.

Table 3–5 Parameters for -XX:FlightRecorderOptions

Parameter Description Default Value

defaultrecording=true|false Specifies whether the background
recording is enabled or disabled.

false

disk=true|false Specifies whether JRockit Flight
Recorder should write the continuous
recording to a disk.

false

dumponexit=true|false This parameter is new in R28.1. It does
not work in R28.0.

Specifies whether a dump of Flight
Recording data should be generated
when the JVM terminates in a controlled
manner.

The dump file is written to the location
defined by the dumponexitpath
parameter.

false

dumponexitpath=path This parameter is new in R28.1. It does
not work in R28.0.

Specifies the path and name of the dump
file (containing Flight Recorder data),
which is created (if dumponexit=true)
when the JVM exits in a controlled
manner.

If the specified path is a directory, the
JVM assigns a filename that shows the
creation date and time. If the specified
path includes a filename and if that file
that already exists, the JVM creates a
new file by appending the date- and
time-stamp to the specified filename.

globalbuffersize=size Specifies the total amount of primary
memory used for data retention.

10 MB

maxage=time Specifies the maximum age of disk data
for default recording.

This option is valid only when the
parameter disk is set as true.

15 minutes

maxchunksize=size Specifies the maximum size, in
megabytes, of the data chunks in a
recording.

12 MB

-XX:FlightRecorderOptions

3-28 Oracle JRockit Command-Line Reference

3Example
java -XX:+FlightRecorder -XX:FlightRecorderOptions=disk=true,maxchunksize=10M
MyApp

3Related Options
This option works only when the -XX:+|-FlightRecorder option is enabled.

maxsize=size Specifies the maximum size of disk data
for default recording.

This option is valid only when the
parameter disk is set as true.

Unbound

repository=file_location Specifies the repository (a directory) for
temporary disk storage.

The default
location is the
system temporary
directory.

settings=file_location Specifies the name and location for the
event settings (.jfs) file. You can set this
option multiple times.

For more information about the event
settings file, see "Events" in Oracle JRockit
Flight Recorder Run Time Guide.

jre/lib/jfr/defa
ult.jfs

threadbuffersize=size Specifies the per-thread local buffer size.
Higher values for this parameter allow
more data gathering without contention
to flush it to the global storage. It can
increase application footprint in a
thread-rich environment.

For more information about buffers, see
"JFR Buffers" in Oracle JRockit Flight
Recorder Run Time Guide.

5 KB

Table 3–5 (Cont.) Parameters for -XX:FlightRecorderOptions

Parameter Description Default Value

-XX:+|-FlightRecordingDumpOnUnhandledException

-XX Command-Line Options 3-29

-XX:+|-FlightRecordingDumpOnUnhandledException

This option, when enabled, generates a Flight Recording dump when a thread is
terminated due to an unhandled exception. The dump file is written to the location
defined by the -XX:FlightRecordingDumpPath option.

3Format
-XX:+|-FlightRecordingDumpOnUnhandledException

3Example
java -XX:+FlightRecordingDumpOnUnhandledException myApp

3Default
Disabled

3Related Option
-XX:FlightRecordingDumpPath

-XX:FlightRecordingDumpPath

3-30 Oracle JRockit Command-Line Reference

-XX:FlightRecordingDumpPath

This option specifies the path and name of the dump file (containing Flight Recorder
data), which is created (if the -XX:+|-FlightRecordingDumpOnUnhandledException is
enabled) when a thread is terminated due to an unhandled exception.

3Format
-XX:FlightRecordingDumpPath=path

3Example
java -XX:+FlightRecordingDumpOnUnhandledException
-XX:FlightRecordingDumpPath=D:\myapp\jfr

3Default Value
The default Flight Recording dump file is present in the working directory as jrockit_
pid_thread_id.jfr (where pid represents the JRockit process identifier and thread_
id represents the thread for which the unhandled exception is thrown).

3Related Options
-XX:+|-FlightRecordingDumpOnUnhandledException

-XXfullSystemGC

-XX Command-Line Options 3-31

-XXfullSystemGC

The -XXfullSystemGC option causes the garbage collector to do a full garbage
collection every time System.gc() is called. Full garbage collection includes old space
collection and the elimination of soft references. Use this option when you want the
garbage collector to do maximum garbage collecting every time you explicitly invoke
a garbage collection from Java.

This option is useful when the default garbage collector does not free enough memory;
however, using it can cause longer garbage collection pauses.

3Format
-XXfullSystemGC

When you use this option, if an old space collection is already running when
System.gc() is called, it will first wait for it to finish and then trigger a new old space
collection. The -XXfullSystemGC option frees all softly referenced objects.

3Exceptions
You cannot use -XXfullSystemGC together with -XXnoSystemGC.

-XXgcThreads

3-32 Oracle JRockit Command-Line Reference

-XXgcThreads

This option specifies how many garbage collection threads the garbage collector will
use. This applies both to parallel nursery and parallel old space collectors as well as
the concurrent and deterministic collector.

3Format
-XXgcthreads:parameter1=value1,parameter2=value2,...

Use the command with one of the parameters listed in Table 3–6 to specify the number
of threads used by the garbage collector.

3Example
java -XXgcThreads:yc=4,con=2,par=4

3Default Values
By default, these values are based on the number of cores and hardware threads on the
machine.

Note: If you specify a number instead of the parameter, that number
determines the number of garbage collection threads used for garbage
collection during parallel phases. This is equivalent to using the
parameter all=number.

Example:

java -XXgcThreads:4 myApp

Table 3–6 Parameters for -XXgcThreads

Parameter Description

all=number of threads Specifies the same number of garbage collection threads for all
garbage collectors (young, concurrent, and parallel).

yc=number of threads Specifies the number of garbage collection threads that the young
collector uses in parallel.

con=number of threads Specifies the number of garbage collection threads that the old
collector uses in parallel during concurrent phases.

par=number of threads Specifies the number of garbage collection threads that the old
collector uses in parallel during the stopped (paused) phases.

-XX:GCTimePercentage

-XX Command-Line Options 3-33

-XX:GCTimePercentage

The -XX:GCTimePercentage option determines the percent of time spent in garbage
collection of total run time.

3Format
-XX:GCTimePercentage=nn

nn is the time spent in garbage collection.

-XX:GCTimePercentage can be used as an alternative to -XX:GCTimeRatio.

3Example
java -XX:GCTimePercentage=5 myApp

When you set -XX:GCTimePercentage to 5, five percent of the total time is spent in
garbage collection; it is equivalent to -XX:GCTimeRatio=19.

3Default Value
5 percent

3Related Options
-XX:GCTimeRatio

-XX:GCTimeRatio

3-34 Oracle JRockit Command-Line Reference

-XX:GCTimeRatio

The -XX:GCTimeRatio option specifies the ratio of the time spent outside the garbage
collection (for example, the time spent for application execution) to the time spent in
the garbage collection.

3Format
-XX:GCTimeRatio=nn

nn is a number that specifies the ratio of the time spent (as number of times).

3Example
java -XX:GCTimeRatio=50 myApp

3Default Value
The default value is 19, which means that the time outside the garbage collection is 19
times the time spent in garbage collection.

3Related Options
-XX:GCTimePercentage

-XXgcTrigger

-XX Command-Line Options 3-35

-XXgcTrigger

This option determines how much free memory should remain on the heap when a
concurrent garbage collection starts. If the heap becomes full during the concurrent
garbage collection, the Java application cannot allocate more memory until the
garbage collection frees some heap space, which might cause the application to pause.
While the trigger value will tune itself in run time to prevent the heap from becoming
too full, this automatic tuning might take too long. Instead, you can use -XXgcTrigger
to set from the start a garbage collection trigger value more appropriate to your
application.

If the heap becomes full during the concurrent mark phase, the sweep phase will
revert to parallel sweep. If this happens frequently and the garbage collection trigger
does not increase automatically to prevent this, use -XXgcTrigger to manually increase
the garbage collection trigger.

3Format
-XXgcTrigger=nn

where nn is the amount of free heap, as a percent of the heap, available when a garbage
collections triggered. Note that the young space is not considered as part of the free
heap.

3Example
java -XXgcTrigger=50 myApp

With this option set, JRockit JVM will trigger a garbage collection when 50% of the
heap. For example, about 512 MB on a 1 GB heap or less remains free. The current
value of the garbage collection trigger will appear in the -Xverbose:memdbg outputs
whenever the trigger changes.

3Default Values
If -XXgcTrigger is not specified, the system tries to automatically find a good
percentage value. If -XXgcTrigger=nn is specified, it is used instead and no automatic
process is involved.

3Exceptions
The garbage collector ignores the -XXgcTrigger value when it runs both parallel mark
and parallel sweep, for example if you specify -Xgc:singlepar or -Xgc:genpar on the
command line.

-XX:+|-HeapDiagnosticsOnOutOfMemoryError

3-36 Oracle JRockit Command-Line Reference

-XX:+|-HeapDiagnosticsOnOutOfMemoryError

This option specifies whether the JVM should print Java heap diagnostics when an
out-of-memory error occurs. The dump file is written to the location defined by the
-XX:HeapDumpPath option.

3Format
-XX:+|-HeapDiagnosticsOnOutOfMemoryError

3Example
java -XX:+HeapDiagnosticsOnOutOfMemoryError -XX:HeapDiagnosticsPath=D:\myapp\diag_
dumps myApp

-XX:HeapDiagnosticsPath

-XX Command-Line Options 3-37

-XX:HeapDiagnosticsPath

This option specifies the path and file name of the dump file if you have enabled the
-XX:+|-HeapDiagnosticsOnOutOfMemoryError option.

3Format
-XX:HeapDiagnosticsPath=path

3Example
java -XX:+HeapDiagnosticsOnOutOfMemoryError -XX:HeapDumpPath=D:\myApp\diag_dumps
myApp

3Default Value
The default name of the dump file is jrockit_pid.oomdiag, and the default path is the
working directory.

3Related Options
This option works with the -XX:+|-HeapDiagnosticsOnOutOfMemoryError option.

-XX:+|-HeapDumpOnCtrlBreak

3-38 Oracle JRockit Command-Line Reference

-XX:+|-HeapDumpOnCtrlBreak

The -XX:HeapDumpOnCtrlBreak option adds the hprofdump diagnostic command to the
list of commands that run automatically when the Ctrl-break keys are pressed
(similar to the print_threads diagnostic command). The HPROF dump file is written
to the location defined by the -XX:HeapDumpPath option.

3Format
-XX:+HeapDumpOnCtrlBreak

3Example
java -XX:+HeapDumpOnCtrlBreak myApp

-XX:+|-HeapDumpOnOutOfMemoryError

-XX Command-Line Options 3-39

-XX:+|-HeapDumpOnOutOfMemoryError

If you enable the -XX:+|-HeapDumpOnOutOfMemoryError option, the JRockit JVM
dumps the Java heap in HPROF binary format (.hprof file) when an out-of-memory
error occurs.

3Format
-XX+|-HeapDumpOnOutOfMemoryError

3Example
java -XX:+HeapDumpOnOutOfMemoryError myApp

3Default
Disabled

3Related Options
-XX:HeapDumpPath

-XX:HeapDumpPath

3-40 Oracle JRockit Command-Line Reference

-XX:HeapDumpPath

The -XX:HeapDumpPath option specifies the path and file name of the HPROF dump
file if you have used -XX:+HeapDumpOnOutOfMemoryError option.

3Format
-XX:HeapDumpPath=path_of_the_dump_file

3Example
java -XX:+HeapDumpOnOutOfMemory -XX:HeapDumpPath=D:\myApp\hprof-dumps myApp

3Default Value
The default name of the binary dump file is jrockit_pid.hprof, where pid represents
the JRockit process identifier, and the default path is the working directory.

3Related Options
This option works with the -XX:+|-HeapDumpOnOutOfMemoryError and
-XX:+|-HeapDumpOnCtrlBreak options.

-XX:HeapDumpSegmentSize

-XX Command-Line Options 3-41

-XX:HeapDumpSegmentSize

The -XX:HeapDumpSegmentSize option specifies an appropriate segment size when
generating a segmented HPROF heap dump.

3Format
-XX:HeapDumpSegmentSize=size[k|K][m|M][g|G]

3Example
java -XX:+HeapDumpOnOutOfMemory -XX:HeapDumpSegmentSize=512M myApp

3Default Values
1 GB

3Related Options
No segments are generated unless heap size is larger than the value specified by the
-XX:SegmentedHeapDumpThreshold option.

-XXheapParts (deprecated)

3-42 Oracle JRockit Command-Line Reference

-XXheapParts (deprecated)

The -XXheapParts option is deprecated in Oracle JRockit R28. The option works in
R28, but Oracle recommends that you use -XXcompaction:heapParts instead. For
more information, see -XXcompaction.

For more information about the format and usage of -XXheapParts, see the R27
documentation at: http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/jrdocs/refman/index.html.

-XXinternalCompactRatio (deprecated)

-XX Command-Line Options 3-43

-XXinternalCompactRatio (deprecated)

The -XXinternalCompactRatio option is deprecated in Oracle JRockit R28. The option
works in R28, but Oracle recommends that you use
-XXcompaction:internalPercentage instead. For more information, see
-XXcompaction.

For more information about the format and usage of -XXinternalCompactRatio, see
the R27 documentation at: http://download.oracle.com/docs/cd/E13150_
01/jrockit_jvm/jrockit/jrdocs/refman/index.html.

-XX:+|-JavaDebug

3-44 Oracle JRockit Command-Line Reference

-XX:+|-JavaDebug

The -XX:+|-JavaDebug option enables or disables the debugging capabilities that the
JVM Tools Interface (JVMTI) uses. JVMTI is a low-level debugging interface used by
debuggers and profiling tools, to inspect the state and control the execution of
applications running in the JVM.

Note that the subset of JVMTI that is most typically used by profilers is always
enabled. However, the functionality used by debuggers to be able to step through the
code and set break points has some overhead associated with it and is not always
enabled. To enable this functionality, use the -XX:+JavaDebug option.

3Format
-XX:+|-JavaDebug

3Example
java -XX:+JavaDebug -agentlib:jdwp=transport=dt_socket,server=y,suspend=n myApp

For more information about the -agentlib option, see the Java documentation at the
following locations:

■ Java SE 6.0

http://java.sun.com/javase/6/docs/technotes/guides/jpda/conninv.html#In
vocation

■ J2SE 5.0

http://java.sun.com/j2se/1.5.0/docs/guide/jpda/conninv.html#Invocation

3Default
Disabled

3Related Options
This option is equivalent to the -Xdebug option.

Caution: Do not use the -XX:+JavaDebug option in the production
environment, because, when running with the -XX:+JavaDebug
option, the JVM does not run at full speed.

-XXkeepAreaRatio

-XX Command-Line Options 3-45

-XXkeepAreaRatio

The -XXkeepAreaRatio option sets the size of the keep area within the nursery as a
percent of the nursery. The keep area prevents newly allocated objects from being
promoted to old space too early.

3Format
-XXkeepAreaRatio:<percentage>

3Example
java -XXkeepAreaRatio:10 myApp

Sets the keep area size to 10% of the nursery size.

3Default Value
By default, the keep area is 25% of the nursery size. The keep area should not exceed
50% of the nursery size.

3Exceptions
The keep area ratio is only valid when the garbage collector is generational.

-XXlargeObjectLimit (deprecated)

3-46 Oracle JRockit Command-Line Reference

-XXlargeObjectLimit (deprecated)

The -XXlargeObjectLimit option is deprecated in Oracle JRockit R28. The option
works in R28, but Oracle recommends that you use -XXtlaSize:wasteLimit instead.
For more information, see -XXtlaSize.

For more information about the format and usage of -XXlargeObjectLimit, see the
R27 documentation at: http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/jrdocs/refman/index.html.

-XX:MaxCodeMemory

-XX Command-Line Options 3-47

-XX:MaxCodeMemory

The -XX:MaxCodeMemory option specifies the maximum memory used for generated
code.

3Format
-XX:MaxCodeMemory=size[g|G|m|M|k|K]

3Example
java -XX:MaxCodeMemory=2g myApp

3Default Values
On Windows IA32, Linux IA32, Windows x86_64, and Linux x86_64, the default value
is unbounded. If the -XX:+ReserveCodeMemory option is specified on these platforms,
the default maximum code memory is as follows:

■ When you use -XX:+UseLargePagesForCode: 64 MB

■ When you use -XX:-UseLargePagesForCode: 1024 MB

On Solaris SPARC the default maximum code memory is 256 MB.

3Related Options
-XX:+|-ReserveCodeMemory

-XX:+|-UseLargePagesFor[Heap|Code]

-XX:MaxDirectMemorySize

3-48 Oracle JRockit Command-Line Reference

-XX:MaxDirectMemorySize

This option specifies the maximum total size of java.nio (New I/O package) direct
buffer allocations.

3Format
-XX:MaxDirectMemorySize=size[g|G|m|M|k|K]

3Example
java -XX:MaxDirectMemorySize=2g myApp

3Default Value
The default value is zero, which means the maximum direct memory is unbounded.

-XX:MaximumNurseryPercentage

-XX Command-Line Options 3-49

-XX:MaximumNurseryPercentage

The -XX:MaximumNurseryPercentage option allows you to set an upper nursery size
limit that is relative to the free heap space available after the latest old collection. You
must specify the limit as a percentage value of the available free heap size.

3Format
-XX:MaximumNurseryPercentage=<value> [1-95]

If you try to set the upper nursery size limit to a value lower than 1 or higher than 95,
an error message is displayed.

3Example
java -XX:MaximumNurseryPercentage=80 myApp

3Default Value
95 percent

3Exceptions
This option has no effect unless a generational garbage collector is being used.

-XX:MaxLargePageSize

3-50 Oracle JRockit Command-Line Reference

-XX:MaxLargePageSize

This option specifies the maximum size for large pages.

3Format
-XX:MaxLargePageSize=size[g|G|m|M|k|K]

3Example
java -XX:MaxLargePageSize=2g myApp

3Default Value
The default value is zero in JRockit versions R28.0.0 to R28.2.2. This means that this
value is specified by the operating system.

For JRockit versions R28.2.3 and later, the default value is 256 MB.

3Related Options
The option is valid only if -XlargePages or -XX:+|-UseLargePagesFor[Heap|Code] is
specified.

-XX:MaxRecvBufferSize

-XX Command-Line Options 3-51

-XX:MaxRecvBufferSize

This option specifies the maximum size of the receive buffer when reading from
network sockets.

This option is applicable only to Windows.

3Format
-XX:MaxRecvBufferSize=size[g|G|m|M|k|K]

3Example
java -XX:MaxRecvBufferSize=32k myApp

3Default Value
64k

Note: This option is new in R28.1. It does not work in R28.0.

If you set this option to 0, the receive buffer size is unlimited, which is
the behavior in R28.0.

-XXminBlockSize (deprecated)

3-52 Oracle JRockit Command-Line Reference

-XXminBlockSize (deprecated)

The -XXminBlockSize option is deprecated in Oracle JRockit R28. The option works in
R28, but Oracle recommends that you use -XXtlaSize:min instead. For more
information, see -XXtlaSize.

For more information about the format and usage of -XXminBlockSize, see the R27
documentation at: http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/jrdocs/refman/index.html.

-XXnoSystemGC

-XX Command-Line Options 3-53

-XXnoSystemGC

The -XXnoSystemGC option prevents a call to the System.gc() method from starting a
garbage collection. For more information about the System.gc() method, see the
specification for the java.lang.System at the following locations:

■ Java SE 6.0

http://java.sun.com/javase/6/docs/api/java/lang/System.html

■ J2SE 5.0

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/System.html

If your application uses System.gc() and you want to the garbage collector itself to
decide when to run the collection, you should use this option. This option is useful in
some debugging situations and can also enhance performance as it prevents
unnecessary garbage collection from happening.

3Format
-XXnoSystemGC

Enter the command in the above format at startup. This option can cause longer
garbage collection pauses in some cases, but generally, it makes the application
perform better.

3Exceptions
You cannot use -XXnoSystemGC together with -XXfullSystemGC.

-XX:OptThreads

3-54 Oracle JRockit Command-Line Reference

-XX:OptThreads

The -XX:OptThreads option specifies the number of threads the JVM uses for the
optimization of Java methods. The optimization of Java methods runs in the
background.

3Format
-XX:OptThreads=nn

3Example
java -Xgc:pausetime -XX:OptThreads=3 myApp

Directs the compiler to use three threads for optimization tasks.

3Default Value
By default, one thread is used for the optimization of Java methods.

-XX:+|-RedoAllocPrefetch

-XX Command-Line Options 3-55

-XX:+|-RedoAllocPrefetch

With this option, an additional chunk (that is, two chunks subsequent) is fetched
whenever a new chunk is used.

3Format
-XX:+RedoAllocPrefetch

3Example
java -XX:+UseAllocPrefetch -XX:+RedoAllocPrefetch myApp

3Default
Enabled

3Exceptions
This option will not work unless -XX:+|-UseAllocPrefetch is set.

Note: To get the full benefit from this feature on Intel Xeon servers,
Oracle recommends that you disable hardware prefetching in the
BIOS of the computer.

-XX:+|-ReserveCodeMemory

3-56 Oracle JRockit Command-Line Reference

-XX:+|-ReserveCodeMemory

When this option is enabled, the JVM reserves the memory for generated code at
startup.

3Format
-XX:+ReserveCodeMemory

3Example
java -XX:+ReserveCodeMemory myApp

3Default
This option is enabled by default on Solaris SPARC, Windows x86_64, and Linux x86_
64 platforms. The default value depends on the -XX:+|-UseLargePagesForCode option
as follows:

■ When you use -XX:+UseLargePagesForCode: 64 MB

■ When you use -XX:-UseLargePagesForCode: 1024 MB

On Solaris SPARC the default code memory is 256 MB.

3Related Option
-XX:+|-UseLargePagesFor[Heap|Code]

-XX:SegmentedHeapDumpThreshold

-XX Command-Line Options 3-57

-XX:SegmentedHeapDumpThreshold

The -XX:SegmentedHeapDumpThreshold option generates a segmented heap dump
(.hprof file, 1.0.2 format) when the heap usage is larger than the specified size.

The segmented hprof dump format is required to correctly generate heap dumps
containing more than 4 GB of data. If the value of -XX:SegmentedHeapDumpThreshold
option is set more than 4 GB, heap dumps may not be generated correctly.

3Format
-XX:SegmentedHeapDumpThreshold=size

3Example
java -XX:SegmentedHeapDumpThreshold=512M myApp

3Default Value
2 GB

3Related Options
This option can be used with -XX:+|-HeapDumpOnOutOfMemoryError.

-XXsetGC (deprecated)

3-58 Oracle JRockit Command-Line Reference

-XXsetGC (deprecated)

The -XXsetGC option is deprecated in Oracle JRockit R28. The option works in R28, but
Oracle recommends that you use -Xgc instead. For more information, see -Xgc.

For more information about the format and usage of -XXsetGC, see the R27 release
documentation at: http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/jrdocs/refman/index.html.

-XX:+|-StrictFP

-XX Command-Line Options 3-59

-XX:+|-StrictFP

When you enable this option, JRockit JVM enables strict floating point arithmetics
globally for all methods in all classes. The JVM also calculates with more precision,
and with a greater range of values than the Java specification requires. When you use
this option, the compiler generates code that adheres strictly to the Java specification
to ensure identical results on all platforms. When you do not use this option, the JVM
does not enforce floating point values.

This option is similar to the Java keyword strictfp; however, that keyword applies at
the class level whereas -XX:+|-StrictFP applies globally. For more details about the
strictfp keyword, see the Java Language Specification at:

 http://java.sun.com/docs/books/jls/

3Format
-XX:+StrictFP

3Default Values
Disabled

3Related Options
This option is equivalent to -XstrictFP.

-XX:StartFlightRecording

3-60 Oracle JRockit Command-Line Reference

-XX:StartFlightRecording

Specify this option at startup to start a Flight Recorder recording for an application
that runs on JRockit JVM. This option is equivalent to the start_flightrecording
diagnostic command that starts the Flight Recorder at run time. For more information,
see Oracle JRockit JDK Tools.

3Format
-XX:StartFlightRecording=parameter1=value1[,parameter2=value2]

Use -XX:StartFlightRecording with the parameters listed in Table 3–7.

3Example
java -XX:+FlightRecorder -XX:FlightRecorderOptions=disk=true,maxchunksize=10M
-XX:StartFlightRecording=filename=test.jfr myApp

Table 3–7 Parameters for -XX:StartFlightRecording

Parameter Description Default Value

compress=true|false Specifies whether to compress the Flight
Recorder recording log file (the .jfr file)
on the disk using the gzip file
compression utility. This parameter is
valid only if the filename option is
specified.

false

defaultrecording=true|f
alse

Specifies whether the recording is
continuous or it runs for a limited time.

false

delay=time Specifies the time to elapse during run
time before starting the recording.

0

duration=time Specifies the time for the recording. Unlimited

filename=name Specifies the name of the Flight Recorder
recording log file (the .jfr file).

None

name=identifier Specifies an identifier for the Flight
Recorder recording.

Recording x (for
example, Recording 1,
Recording 2)

maxage=time Specifies the maximum age of disk data
for default recording.

15 minutes

maxsize=size Specifies the maximum disk space for a
recording. This parameter is valid only
for the size-bound recordings.

Unbound

settings=eventfile Specifies the event setting file to use for
the recording. You can use this
parameter multiple times in one
command.

jre/lib/jfr/default
.jfs

-XXtlaSize

-XX Command-Line Options 3-61

-XXtlaSize

The -XXtlaSize option sets the thread-local area size.

To increase performance JRockit JVM uses thread-local areas (TLA) for object
allocation. This option can be used to tune the size of the thread-local areas, which can
affect performance.

3Format
-XXtlaSize:parameter=size[k|K][m|M][g|G]

Table 3–8 lists the parameters.

There are no upper or lower limits to -XXtlaSize.

Use this option with caution, as changing the thread-local area size can have severe
impact on the performance.

Specify size in bytes, using the normal k,M,G suffixes.

3Example
-XXtlasize:min=2k,preferred=16k

3Default Value
The default value for both the minimum size and the waste limit is 2 KB. The waste
limit cannot be set to a larger value than the minimum size.

The default value for the preferred size depends on the heap size or the nursery size
and the garbage collector selected at startup.Table 3–9 lists the default sizes for the
different configurations.

Table 3–8 -XXtlaSize Parameters

Parameter Description

min=size Sets the minimum size of a TLA.

preferred=size Sets the preferred size of a TLA. The system will try to get TLAs of
this size if possible, but will accept TLAs down to the minimum size,
if that's what's available. Occasionally, a TLA can get larger than the
preferred size, too. The preferred size must not be lower than the
minimum size.

wasteLimit=size Sets the waste limit for TLAs. This is the maximum amount of free
memory that a TLA is allowed to have when a thread requires a new
TLA.

Note: The old style for setting TLA size (that is, -XXtlasize=256k) is
supported but has been deprecated. If you use the old style, JRockit
JVM interprets the option as if the preferred parameter was used; so
-XXtlasize=256k would be interpreted as
-XXtlasize:preferred=256k.

-XXtlaSize

3-62 Oracle JRockit Command-Line Reference

3Related Options
The following relation is true for the TLA size parameters:

-XXtlaSize:wasteLimit <= -XXtlaSize:min <= -XXtlaSize:preferred

If you set two or more of the options, then you must make sure that the values you use
fulfil these criteria. By default, the waste limit is set to whichever is the lower value of
the minimum TLA size and the preferred TLA size divided by 2.

Table 3–9 Default Preferred TLA Sizes

Garbage Collectors Default Preferred TLA Size

-Xgc:deterministic,
-Xgc:singlecon

16 KB

-Xgc:pausetime, -Xgc:gencon 16 KB - 256 KB depending on the nursery size

-Xgc:throughput, -Xgc:genpar 16 KB - 64 KB depending on the heap size

-Xgc:parallel 16 KB - 256 KB depending on the heap size

Nursery size set with -Xns 16 KB - 256 KB depending on the nursery size

-XX:TreeMapNodeSize

-XX Command-Line Options 3-63

-XX:TreeMapNodeSize

This option specifies the size of the entry array in each java.util.TreeMap node. This
option affects the JVM performance and the default value is appropriate for most of
the applications.

3Format
-XX:TreeMapNodeSize=array_size

3Example
java -XX:TreeMapNodeSize=128 myApp

3Default Value
The default size of the key-value array in each TreeMap node is 64 entries.

-XX:+|-UseAdaptiveFatSpin

3-64 Oracle JRockit Command-Line Reference

-XX:+|-UseAdaptiveFatSpin

This option specifies whether threads should spin against a fat lock or not (and
directly go to sleep state when failed to acquire the fat lock).

3Format
-XX:+|-UseAdaptiveFatSpin

3Default Value
By default, adaptive spinning against fat locks is disabled. This behavior cannot be
changed during run time.

-XX:+|-UseAllocPrefetch

-XX Command-Line Options 3-65

-XX:+|-UseAllocPrefetch

With this option a Thread Local Area is split into chunks and, when a new chunk is
reached, the subsequent chunk is prefetched.

3Format
-XX:+|-UseAllocPrefetch

3Example
java -Xgc:pausetime -XX:+UseAllocPrefetch myApp

3Default
Enabled

3Related Options
This option must be set if you want to use -XX:+|-RedoAllocPrefetch. This option is
also used with the -XX:AllocChunkSize option.

Note: To fully benefit from this feature on Intel Xeon servers, it is
recommended that you disable hardware prefetching in the BIOS of
the computer.

-XX:+|-UseCallProfiling

3-66 Oracle JRockit Command-Line Reference

-XX:+|-UseCallProfiling

This option enables the use of call profiling for code optimizations. Profiling records
useful run-time statistics specific to the application and can increase performance
because the JVM can then act on those statistics.

3Format
-XX:+|-UseCallProfiling

3Example
java -XX:+UseCallProfiling myApp

3Default
Disabled

-XX:+|-UseCfsAdaptedYield

-XX Command-Line Options 3-67

-XX:+|-UseCfsAdaptedYield

When enabled, this option uses a version of yield adapted for the Completely Fair
Scheduler (CFS). This option should be used only on CFS and only if you are
experiencing performance issues with the JVM.

3Format
-XX:+|-UseCfsAdaptedYield

3Example
java -XX:+UseCfsAdaptedYield myApp

3Default
Disabled

Note: This option is available only on Linux.

-XX:+|-UseClassGC

3-68 Oracle JRockit Command-Line Reference

-XX:+|-UseClassGC

This option enables or disables garbage collection of classes.

When you disable garbage collection of classes, you can save some garbage collection
time, which minimizes interruptions during the application run. Disabling garbage
collection of classes can result in more memory being permanently occupied; so if the
option is not used carefully, the JVM throws out-of-memory error.

3Format
-XX:-UseClassGC

3Example
java -XX:-UseClassGC myApp

The class objects in the application specified by myApp are left untouched during
garbage collection and are always considered active.

Note: Oracle recommends that you do not disable this option unless
required because it can lead to memory leak when the application is
running.

-XX:+|-UseCPoolGC

-XX Command-Line Options 3-69

-XX:+|-UseCPoolGC

This option enables or disables garbage collection of constant pool strings.

When you disable garbage collection of constant pool strings, you may be able to
reduce some garbage collection overhead associated with removal of strings from the
runtime shared pool. Disabling garbage collection of constant pool strings can result in
more memory being permanently occupied. Therefore, if the option is not used
carefully, the JVM may throw an out-of-memory error.

Even with constant pool garbage collection disabled, there are still cases where the
JVM can determine that certain strings are no longer needed and are removed from the
constant pool without the help of the garbage collection system.

3Format
-XX:+|-UseCPoolGC

3Example
java -XX:-UseCPoolGC myApp

The constant pool strings in the application specified by myApp are left untouched
during garbage collection and may never be removed.

3Default
This option is enabled by default.

3Since
JRockit version R28.3.2.

Note: This option is available since JRockit R28.3.2.

Oracle strongly recommends that you do not disable this option
unless requested by Oracle Support because it can lead to a memory
leak when the application is running.

-XX:+|-UseFastTime

3-70 Oracle JRockit Command-Line Reference

-XX:+|-UseFastTime

This option specifies the use of hardware support for low-latency timestamps.

3Format
-XX:+|-UseFastTime

3Default
This option is enabled by default on latest AMD and Intel XEON platforms.

Note: If you enable this option on a platform that does not support
hardware timestamps, it might cause JRockit JVM to use invalid
timestamps and it can result in fatal errors.

-XX:+|-UseFatSpin

-XX Command-Line Options 3-71

-XX:+|-UseFatSpin

The -XX:-UseFatSpin option disables the fat lock spin code in Java, allowing threads
that block trying to acquire a fat lock go to sleep directly.

Objects in Java become a lock as soon as any thread enters a synchronized block on
that object. All locks are held (that is, stay locked) until released by the locking thread.
If the lock is not going to be released very fast, it can be inflated to a fat lock. Spinning
occurs when a thread that wants a specific lock continuously checks that lock to see if
it is still taken, spinning in a tight loop as it makes the check. Spinning against a fat
lock is generally beneficial although, in some instances, it can be expensive and might
affect performance. The -XX:-UseFatSpin allows you to turn off spinning against a fat
lock and eliminate the potential performance hit.

3Format
-XX:+|-UseFatSpin

3Default
Enabled

-XX:+|-UseLargePagesFor[Heap|Code]

3-72 Oracle JRockit Command-Line Reference

-XX:+|-UseLargePagesFor[Heap|Code]

This option enables the use of large pages, if they are available, for the Java heap and
code in the JVM. Large pages allow your application to more effectively use the
translation look-aside buffer (TLB) in the processor.

3Format
-XX:+|-UseLargePagesFor[Heap|Code]

3Example
-XX:+UseLargePagesForHeap

Enables the use of large pages for the Java heap.

Note: This option duplicates the functionality of the -XlargePages
option. Oracle recommends that you use the
-XX:+|-UseLargePagesFor[Heap|Code] option instead of using the
-XlargePages option.

Use the extended option (-XX:+ForceLargePagesForHeap) to force the
JVM to exit if enough large pages cannot be acquired and you have
used the -XX:+UseLargePagesForHeap option.

-XX:+|-UseLazyUnlocking

-XX Command-Line Options 3-73

-XX:+|-UseLazyUnlocking

When -XX:+|-UseLazyUnlocking is enabled, locks are not released when a critical
section is exited. Instead, once a lock is acquired, the next thread that tries to acquire
such a lock will have to ensure that the lock is or can be released. It does this by
determining if the initial thread still uses the lock. A truly shared lock is eventually
converted to a normal lock and this improves the performance of locking operations
on shared locks.

3Format
-XX:+|-UseLazyUnlocking

3Example
java -XX:-UseLazyUnlocking myApp

Disables lazy unlocking.

3Default
Lazy unlocking is enabled by default on all platforms except when the -Xdebug option
is used.

3Exceptions
This option is intended for applications with many unshared locks. This option can
introduce performance penalties with applications that have many short-lived but
shared locks.

-XX:+|-UseLockProfiling

3-74 Oracle JRockit Command-Line Reference

-XX:+|-UseLockProfiling

The -XX:+|-UseLockProfiling option enables or disables profiling of Java locks in
JRockit Flight Recorder.

To get the Java lock profiling data, the lock events in the JRockit Flight Recorder must
also be enabled. For more information, see Oracle JRockit Flight Recorder Run Time
Guide.

3Format
-XX:+|-UseLockProfiling

3Example
java -XX:+UseLockProfiling myApp

Enables Java lock profiling.

3Default
Disabled

-XX:+|-UseLowAddressForHeap

-XX Command-Line Options 3-75

-XX:+|-UseLowAddressForHeap

This option directs the JVM to use the low 4 GB address space for Java heap, if
available.

3Format
-X:+|-UseLowAddressForHeap

3Example
-XX:+UseLowAddressForHeap

Enables use of the low address space for the Java heap.

3Default
Enabled

-XX:+|-UseNewHashFunction

3-76 Oracle JRockit Command-Line Reference

-XX:+|-UseNewHashFunction

This option specifies whether a new, faster hash function is enabled for
java.util.HashMap. This hash function can improve performance through improved
hash spread, but changes the order in which elements are stored in the HashMap.

3Format
-X:+|-UseNewHashFunction

3Example
-XX:+UseNewHashFunction

Enables the new hash function.

3Default
The new hash function is disabled by default in the JRockit JVM that bundles J2SE 5.0.

3Related Options
-XXaggressive enables use of the new hash function unless it is explicitly disabled
using -XX:-UseNewHashFunction.

-XX:+|-UseThreadPriorities

-XX Command-Line Options 3-77

-XX:+|-UseThreadPriorities

This option enables you to control the priority of Java threads using
java.lang.Thread.setPriority() and related APIs. If this feature is disabled, using
these APIs has no effect.

3Format
-XX:+|-UseThreadPriorities

3Example
-XX:+UseThreadPriorities

Enables use of the java.lang.Thread.setPriority() and related APIs.

3Default
Disabled

3Exceptions
Availability of this option is determined by the platform.

■ Windows: Available.

■ Linux: Available; you must have root privileges to use thread priorities on most
Linux versions.

■ Solaris: Not available.

Caution: This feature is experimental and not supported by Oracle at
this time. Improper use can cause serious performance issues.

-XX:+|-UseThreadPriorities

3-78 Oracle JRockit Command-Line Reference

4

Oracle JRockit JVM System Properties 4-1

4Oracle JRockit JVM System Properties

[5] This chapter describes the key system properties available with the Oracle JRockit
JVM.

The System class maintains properties (key and value pairs) that define traits or
attributes of the current working environment. When the Java application starts, the
system properties are initialized with information about the run-time environment,
including information about the current user, the current version of the Java run time,
and so on.

This chapter describes the following properties:

■ java.vendor

■ java.vendor.url

■ java.vendor.url.bug

■ java.version

■ java.runtime.version

■ java.vm.name

■ java.vm.vendor

■ java.vendor.url

■ java.vm.version

■ java.vm.specification.version

■ java.vm.specification.vendor

■ java.vm.specification.name

■ os.name

■ os.arch

■ os.version

System properties are part of the java.lang.System class as defined by the Java
specifications. For more information, see the specification for the java.lang.System
class at the following locations:

■ Java SE 6.0

http://java.sun.com/javase/6/docs/api/java/lang/System.html

■ J2SE 5.0

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/System.html

java.vendor

4-2 Oracle JRockit Command-Line Reference

You can obtain the properties in a Java class by calling the getProperty() method as
shown in Example 4–1.

Example 4–1 Obtaining System Properties

String os_name = System.getProperty("os.name");
String os_arch = System.getProperty("os.arch");
String java_home = System.getProperty("java.home");
String java_vm_name = System.getProperty("java.vm.name");

4.1 java.vendor
The java.vendor property identifies the JDK/JRE vendor.

4.2 java.vendor.url
The java.vendor.url property identifies the URL of the JDK/JRE vendor.

■ HotSpot: http://java.sun.com/

■ JRockit: http://www.oracle.com/

4.3 java.vendor.url.bug
The java.vendor.url.bug property identifies the bug report URL of the JDK or JRE
vendor.

■ HotSpot: http://java.sun.com/cgi-bin/bugreport.cgi

■ JRockit: http://download.oracle.com/docs/cd/E15289_
01/go2troubleshooting.html

4.4 java.version
The java.version property identifies the version of the JDK or JRE that you are
running.

The value of the property is common to the HotSpot JRE and the JRockit JRE. It is
displayed on the first line of the output of the java -version command in the
following format:

major_version.minor_version.micro_version[_update_version][-milestone]

The following example shows the output of the java -version command. The
java.version information is highlighted.

java version "1.6.0_17"
Java(TM) SE Runtime Environment (build 1.6.0_17-b04)
Oracle JRockit(R) (build R28.0.0-617-125986-1.6.0_17-20091215-2120-windows-x86_64,
compiled mode)

For more information about the java.version property, see the J2SE SDK/JRE Version
String Naming Convention at:

http://java.sun.com/j2se/versioning_naming.html

java.vm.version

Oracle JRockit JVM System Properties 4-3

4.5 java.runtime.version
The java.runtime.version property identifies the Java SE JDK/JRE version and
build.

The value of the property is common to the HotSpot JRE and the JRockit JRE. It is
displayed on the second line of the output of the java -version command in the
following format:

major_version.minor_version.micro_version[_update_version][-milestone]-build

The following example shows the output of the java -version command. The
java.runtime.version information is highlighted.

java version "1.6.0_17"
Java(TM) SE Runtime Environment (build 1.6.0_17-b04)
Oracle JRockit(R) (build R28.0.0-617-125986-1.6.0_17-20091215-2120-windows-x86_64,
compiled mode)

For more information about the java.runtime.version property, see the J2SE
SDK/JRE Version String Naming Convention at:

http://java.sun.com/j2se/versioning_naming.html

4.6 java.vm.name
The java.vm.name property identifies the JVM implementation. The value depends on
the JVM you use:

■ HotSpot: Java HotSpot(TM) Client VM or Java HotSpot(TM) Server VM

■ JRockit: Oracle JRockit(R)

The java.vm.name information is displayed on the third line of the output of the java
-version command as highlighted in the following example:

java version "1.6.0_17"
Java(TM) SE Runtime Environment (build 1.6.0_17-b04)
Oracle JRockit(R) (build R28.0.0-617-125986-1.6.0_17-20091215-2120-windows-x86_64,
compiled mode)

4.7 java.vm.vendor
The java.vm.vendor property identifies the JVM implementation vendor.

4.8 java.vm.vendor.url
The java.vm.vendor.url property identifies the URL of the JVM implementation
vendor.

■ HotSpot: http://java.sun.com/

■ JRockit: http://www.oracle.com/

4.9 java.vm.version
The java.vm.version property identifies the JVM implementation version. The
version is displayed on the third line of the output of the java -version command.

The java.vm.version information is displayed on the third line of the output of the
java -version command, as highlighted in the following example:

java.vm.specification.version

4-4 Oracle JRockit Command-Line Reference

java version "1.6.0_17"
Java(TM) SE Runtime Environment (build 1.6.0_17-b08)
Oracle JRockit(R) (build R28.0.0-617-125986-1.6.0_17-20091215-2120-windows-x86_64,
compiled mode)

The java.vm.version property is the main means to distinguish between JRockit JVM
releases. The following are examples of JVM implementation versions from a few
different JRockit JVM releases:

■ R24.5.0: ari-49095-20050826-1856-win-ia32

■ 5.0 SP2: dra-45238-20050523-2021-win-ia32

■ R26.4.0: R26.4.0-63-63688-1.5.0_06-20060626-2259-win-ia32

■ R27.3.1: R27.3.1-1-85830-1.6.0_01-20070716-1248-windows-ia32

■ R28.0.0: R28.0.0-615-125739-1.6.0_17-20091210-2122-windows-ia32

4.10 java.vm.specification.version
The java.vm.specification.version property identifies the version of the JVM
specification on which the JRockit JVM instance is based (example: 1.0).

4.11 java.vm.specification.vendor
The java.vm.specification.vendor property identifies the vendor of the JVM
specification on which the JRockit JVM instance is based.

4.12 java.vm.specification.name
The java.vm.specification.name property identifies the name of the specification on
which the JRockit JVM instance is based (example: Java Virtual Machine
Specifications).

4.13 os.name
The os.name property identifies the operating system. For the JRockit JVM, this
includes Windows, Linux, and Solaris versions (example: Windows XP).

For information about supported hardware and software configurations, see the Oracle
JRockit JDK Supported Configurations at
http://www.oracle.com/technology/software/products/ias/files/fusion_
certification.html.

4.14 os.arch
The os.arch property identifies the operating system architecture. For the JRockit
JVM, this includes the following:

■ x86 on IA32 systems

■ amd64 on x86_64 systems

■ sparcv9 on SPARC systems

For more information, see Oracle JRockit JDK Supported Configurations on the Oracle
Technology Network (OTN).

os.version

Oracle JRockit JVM System Properties 4-5

4.15 os.version
The os.version property identifies the operating system version.

For more information about operating system support, see Oracle JRockit JDK Supported
Configurations on the Oracle Technology Network (OTN).

os.version

4-6 Oracle JRockit Command-Line Reference

5

Diagnostic Commands 5-1

5Diagnostic Commands

[6] This chapter is an alphabetically ordered reference for all the diagnostic commands
that you can send to a running Oracle JRockit JVM process.

For more information about sending diagnostic commands to a JVM process, see
"Running Diagnostic Commands" in Oracle JRockit JDK Tools Guide.

This chapter describes the following diagnostic commands and their attributes:

■ check_flightrecording

■ command_line

■ dump_flightrecording

■ exception_trace_filter

■ force_crash

■ fork_and_abort

■ heap_diagnostics

■ help

■ hprofdump

■ kill_management_server

■ list_vmflags

■ lockprofile_print

■ lockprofile_reset

■ memleakserver

■ print_class_summary

■ print_exceptions

■ print_memusage

■ print_object_summary

■ print_threads

■ print_utf8pool

■ print_vm_state

■ runsystemgc

■ set_filename

■ start_flightrecording

check_flightrecording

5-2 Oracle JRockit Command-Line Reference

■ start_management_server

■ start_management_server

■ stop_flightrecording

■ stop_management_server

■ timestamp

■ verbosity

■ version

5.1 check_flightrecording
This command is associated with Oracle JRockit Flight Recorder. It prints information
about the status of Flight Recording. This command accepts the following arguments:

5.2 command_line
This command prints the command-line options used to start the JRockit JVM.

5.3 dump_flightrecording
This command is associated with Oracle JRockit Flight Recorder. It dumps the running
Flight Recorder recordings. This command accepts the following arguments:

5.4 exception_trace_filter
This command filters exception logging and JRockit Flight Recorder exception events
based on the exception type specified. This command accepts the following argument:

Argument Description

name The recording identifier as a string. If you use this parameter,
you do not have to specify a value for recording.

recording The recording identifier as a number. If you use this parameter,
you do not have to specify a value for name.

verbose Specifies whether or not to enable verbose output.

The default value is false.

Argument Description

name The recording identifier as a string. If you use this parameter,
you do not have to specify a value for recording.

recording The recording identifier as a number. If you use this parameter,
you do not have to specify a value for name.

copy_to_file Specify the name of the file to which you want the recording data
to be copied.

compress_copy Compress the file at the copy_to_file location using GZip. The
default value is false.

hprofdump

Diagnostic Commands 5-3

5.5 force_crash
Forces the Oracle JRockit JVM to execute code that will make the process fail and
create a core file.

This command is not enabled by default because of the serious implications of using it.
Use this command only for diagnosing problems that require getting the full state of
the JVM. To be able to run the command, start JRockit with
-Djrockit.ctrlbreak.enableforce_crash=true.

5.6 fork_and_abort
This command causes JRockit to fork a child process that will immediately abort. If the
environment has been properly configured to generate a core file when a process
crashes, a core file will be created. This command is intended for generating a core file
when tools such as gdb or gcore cannot be used. Since the core file generated using
this command will not include context information for each thread, generating a core
file using gdb or gcore is always preferred when possible.

5.7 heap_diagnostics
This command causes a heap diagnostic report to be printed (also, see
-XX:HeapDiagnosticsOnOutOfMemoryError in the Oracle JRockit Command Line
Reference). This command sends output to the Ctrl-Break Handler output stream and
not to the path specified by the -XX:HeapDiagnosticsPath option.

5.8 help
This command displays additional information about a specific command or all
commands. This command accepts the following arguments:

5.9 hprofdump
This command generates an HPROF format dump of the Java heap.

Argument Description

pattern Specify the exception type as a string. For example:

jrcmd <pid> exception_trace_filter
pattern=java.lang.Exception

Note: This command is available since R28.3.9. This command is not
available on Windows environments.

Argument Description

all Shows help for all commands. The default is false; this argument
is optional.

command Shows help for the specified command. This argument is
optional. If you omit it, the command will show a list of available
commands.

kill_management_server

5-4 Oracle JRockit Command-Line Reference

Format:
hprofdump [filename=<file>] [segment_threshold] [segment_size]

This command accepts the following arguments:

5.10 kill_management_server
This command stops the management server by shutting down the listening socket.
The managementserver.jar has to be in the boot classpath for this command to work.

5.11 list_vmflags
This command lists the flag options in the Oracle JRockit JVM and their current values:

■ flag: Lists only this flag.

■ describe: Shows the description for flags.

■ alias: Prints the flag alias if one is available.

■ setonly: Lists only flags that are explicitly or implicitly set.

5.12 lockprofile_print
This command prints the current values of the lock profile counters. You can enable
lock profiling by using the -XX+UseLockProfiling option.

5.13 lockprofile_reset
This command resets the current values of the lock profile counters. You can enable
lock profiling by using the -XX+UseLockProfiling option.

5.14 memleakserver
This command starts or shuts down the memory leak server. This command accepts
the following arguments:

Argument Description

filename Sets the name of the file to which the dump should be written. If
you do not specify a filename, the command will use the value
specified with the -XX:HeapDumpPath command-line option.

segment_threshold Sets the amount of heap usage above which the JVM should
generate a segmented heap dump (JAVA PROFILE 1.0.2 format). If
you do not specify a segment threshold, the command will use the
default value of -XX:SegmentedHeapDumpThreshold, as described
in the Oracle JRockit Command-Line Reference.

segment_size Sets the approximate segment size to which a generated
segmented heap dump should be limited. If you do not specify
segment_size, this command uses the default value set for
-XX:HeapDumpSegmentSize, as described in the Oracle JRockit
Command-Line Reference.

Argument Description

port Identifies the port to which to bind. The default value is 7095.

print_memusage

Diagnostic Commands 5-5

5.15 print_class_summary
This command prints all loaded classes.

5.16 print_exceptions
This command enables or disables the printing of exceptions (see -Xverbose in the
Oracle JRockit Command-Line Reference).

Format:
print_exceptions stacktraces= all|true|false][exceptions= all|true|false]

5.17 print_memusage
This command prints all memory used by the JRockit JVM process, per OS data, plus
any memory usage perceived by each subsystem.

To get the most detailed information out of this command, set USE_OS_MALLOC to 0 in
your environment variables. Also, if you enable the variable TRACE_ALLOC_SITES (that
is, set it to 1) to enable allocation site tracking by default, you might add some
overhead, but you will also receive information about the location of every allocation.

Format:
print_memusage [baseline] [test] [level=<1 | 2 | 3>] [reset] [displayMap]

Use print_memusage with any of the following arguments:

version Identifies the required protocol version. The default value is 3.

action Starts or stops the server. The default is to toggle state.

force Forces an action. The default value is false.

Note: To turn exception printing off completely, set
exceptions=false even if it was turned on by stacktraces=true.

Argument Description

baseline Stores a snapshot of the memory usage.

test Prints the difference between this stored baseline and the
previously stored baseline.

level Specifies the level of detail to be printed. Level 1 gives memory
usage for the source files; level 2 gives more detail, providing
memory usage for the function name; level 3 provides the most
detail, providing memory usage statistics at the source code level.

reset Prints the memory usage statistics and removes the stored
baseline. Further print_memusage results will not show any
difference until a new baseline is set.

displayMap Sets the memory usage baseline on the virtual memory.

Argument Description

print_object_summary

5-6 Oracle JRockit Command-Line Reference

5.18 print_object_summary
See the Memory Leak Detector online help that ships with Oracle JRockit Mission
Control.

5.19 print_threads
Prints a normal thread dump.

Format:
print_threads [nativestack= true] [jvmmonitors=true]

This command accepts these arguments:

5.20 print_utf8pool
This command prints all UTF8 strings.

5.21 print_vm_state
This command prints information about the internal state of the JVM. This information
can be used for troubleshooting by Oracle support and is the same information that is
included in Oracle JRockit failure reports.

5.22 runsystemgc
This command calls the java.lang.System.gc() method and runs the garbage
collector.

Format:
runsystemgc [full=false] [fullcompact=true]

The command accepts these arguments:

Argument Description

compact Prints all threads with the same stacktrace together (will not print
nativestack or monitors). The default value is false.

concurrentlocks Prints java.util.concurrent locks. The default value is false.

internal Prints Oracle JRockit internal threads. The default value is true.

javastack Prints Java stack frames. The default value is false.

jvmmonitors: true Prints the JRockit JVM's internal native locks (those that are
registered): status and wait queue, and, with
XX:+UseNativeLockProfiling, their profile statistics
(acquired/contended/tryfailed).

monitors Prints lock information. The default value is true.

nativestack: true Includes native frames in the stack trace. The default value is
false.

start_flightrecording

Diagnostic Commands 5-7

5.23 set_filename
This command sets the file that all commands following this command will use for
printing. You can have several set_filename commands in a file. By default, for
SIGQUIT or ctrl+break invocations, the commands print to the stderr output stream
of the JVM. For jrcmd invocations, the print goes to the stdout output stream of the
jrcmd process by default. The append argument defaults to overwrite.

Format:
set_filename [filename=<file>] [append=true]

5.24 start_flightrecording
Starts a flight recording. This command accepts the following arguments:

Argument Description

full Does a full garbage collection.

It inherits the system default value (see -XXfullSystemGC).

fullcompact Forces full compaction for each full garbage collection event. The
default value is true.

Argument Description

filename (Optional) Specifies the name of the file for printing. If not
specified, JVM will reset to the default behavior.

append (Optional) Specifies whether you want to append to the file or
overwrite it.

Argument Description

compress: true Directs the Flight Recorder to gzip the .jfr file on the disk.The
default value is false.

defaultrecording: true Enables a default recording. The default value is false.

delay Sets the amount of time to elapse during run time before starting
the recording.

duration Sets the amount of time for the recording to run.

filename Sets the name of the flight recording log file. This file will have
the extension .jfr.

maxage For time-bound recordings, sets the maximum amount of time a
recording can last before that recording is flushed from the thread
buffer to the global buffer.

maxsize For size-bound recordings, sets the maximum size of a recording
before that recording is flushed from the thread buffer to the
global buffer.

name Sets a recording identifier.

settings Identifies the event settings file to use for the recording.

start_management_server

5-8 Oracle JRockit Command-Line Reference

5.25 start_management_server
This command starts the management server by starting the listening socket that, in
turn, starts servers whenever a connection is established. This command accepts these
arguments:

This command serves the same purpose as the -Xmanagement command-line option.
For more information, see the entry for -Xmanagement in the Oracle JRockit Command
Line Reference.

5.26 stop_flightrecording
This command stops an in-process flight recording. This command accepts the
following arguments:

Format:
stop_flightrecording [name=<string>][recording=<s8>] [discard=<true | false>]
[copy_to_file=<string>] [compress_copy=<true | false>]

Argument Description

none Enables the JMX local monitoring through a JMX connector
published on a private interface used by local JMX clients that
use the Attach API.

autodiscovery Enables or disables autodiscovery for the remote JMX connector,
which enables Oracle JRockit Mission Control to automatically
discover running JRockit JVM instances through the
multicast-based JRockit Discovery Protocol (JDP).

autodiscovery_name Enables you to specify the path and name of the cluster and node
from where Oracle JRockit Mission Control discover information
about various JRockit JVM instances running in a network.

authenticate Enables or disables authentication. When this property is set to
false, JMX does not use passwords or access files. All users are
allowed all access.

class Loads the class and causes its empty constructor to be called
early in the JVM startup. From the constructor, a new thread is
then started, from which your management client is run. Further
arguments cannot be given to -Xmanagement after the class
argument.

config_file Specifies the location of the file from which additional
management configuration properties are loaded.

interface Specifies the local address (on the management server side) on
which to listen for connections. This applies to machines with
several addresses (network cards).

local Enables or disables the local JMX connector.

port Identifies the port that the management server opens for remote
access.

registry_ssl Binds the RMI connector stub to an RMI registry protected by
SSL.

remote Enables or disables the remote JMX connector.

rmiserver_port Binds the RMI server to the specified port.

ssl Enables or disables SSL encryption.

version

Diagnostic Commands 5-9

5.27 stop_management_server
This command stops the management server.

5.28 timestamp
This command prints a timestamp, including the uptime of the queried JVM..

5.29 verbosity
This command changes the verbosity level usually specified with -Xverbose.

Format:
verbosity [args=<components>] [filename=<file>]

5.30 version
This command prints the JRockit JVM version.

Argument Description

name Recording identifier as a string.

recording Recording identifier as a number.

discard Discards the recording; the default is false.

copy_to_file Transfers the recording to a .jfr file.

compress_copy Gzip the .jfr file on disk.

version

5-10 Oracle JRockit Command-Line Reference

A

Changes in Command-Line Options A-1

AChanges in Command-Line Options

[7] This appendix lists the commands that are introduced or deprecated in Oracle JRockit
R28.x releases.

This appendix includes the following sections:

■ Command-Line Options Introduced in Oracle JRockit R28.0

■ Command-Line Options and Parameters Introduced in Oracle JRockit R28.1

■ Command-Line Options Deprecated and Removed in Oracle JRockit R28.0

■ Command-Line Options Converted to HotSpot Format in Oracle JRockit R28.0

A.1 Command-Line Options Introduced in Oracle JRockit R28.0
The following are the command-line options introduced in Oracle JRockit R28.0:

■ -XX:+|-CheckStacks

■ -XXcompaction

■ -XX:+|-DisableAttachMechanism

■ -XX:ExitOnOutOfMemoryErrorExitCode

■ -XX:+|-FailOverToOldVerifier

■ -XX:+|-FlightRecorder

■ -XX:FlightRecorderOptions

■ -XX:+|-FlightRecordingDumpOnUnhandledException

■ -XX:FlightRecordingDumpPath

■ -XX:GCTimeRatio

■ -XX:GCTimePercentage

■ -XX:+|-HeapDumpOnCtrlBreak

■ -XX:+|-HeapDumpOnOutOfMemoryError

■ -XX:HeapDumpPath

■ -XX:HeapDumpSegmentSize

■ -XX:MaxCodeMemory

■ -XX:MaxLargePageSize

■ -XX:MaximumNurseryPercentage

Command-Line Options and Parameters Introduced in Oracle JRockit R28.1

A-2 Oracle JRockit Command-Line Reference

■ -XX:SegmentedHeapDumpThreshold

■ -XX:StartFlightRecording

■ -XX:+|-JavaDebug

■ -XX:+|-UseCfsAdaptedYield

■ -XX:+|-UseClassGC

■ -XX:+|-UseLockProfiling

■ -XX:+|-UseLowAddressForHeap

A.2 Command-Line Options and Parameters Introduced in Oracle JRockit
R28.1

The following are the command-line options and parameters introduced in Oracle
JRockit R28.1:

Command-Line Options Introduced in Oracle JRockit R28.1
■ -XX:+|-CrashOnOutOfMemoryError

■ -XX:MaxRecvBufferSize

Command-Line-Option Parameters Introduced in Oracle JRockit R28.1
The following new parameters are available in R28.1 for the
-XX:FlightRecorderOptions option:

■ dumponexit

■ dumponexitpath

A.3 Command-Line Options Deprecated and Removed in Oracle JRockit
R28.0

The deprecated options continue to work in Oracle JRockit R28, but Oracle does not
support any of these options. Options that are removed do not work in JRockit R28.
Oracle recommends that you use the alternate options provided for each deprecated or
removed option as listed below:

■ -XclearType (removed)

■ -XgcPause (removed, use -Xverbose:gcpause instead)

■ -XgcPrio (use -Xgc instead)

■ -XgcReport (removed, use -Xverbose:gcreport instead)

■ -XnoClassGC (use -XX:+|-UseClassGC instead)

■ -XXcompactRatio (use -XXcompaction:percentage instead)

■ -XXcompactSetLimit (use -XXcompaction:maxReferences instead)

■ -XXcompactSetLimitPerObject (use -XXcompaction:maxReferencesPerObject
instead)

■ -XXdisableGCHeuristics

Note: These options and parameters do not work in R28.0.

Command-Line Options Converted to HotSpot Format in Oracle JRockit R28.0

Changes in Command-Line Options A-3

■ -XXexternalCompactRatio (use -XXcompaction:externalPercentage instead)

■ -XXfullCompaction (use -XXcompaction:full instead)

■ -XXheapParts (use -XXcompaction:heapParts instead)

■ -XXhpm (removed)

■ -XXinitialPointerVectorSize (removed)

■ -XXinternalCompactRatio (use -XXcompaction:internalPercentage instead)

■ -XXjra (removed)

■ -XXlargeObjectLimit

■ -XXmaxPooledPointerVectorSize (removed)

■ -XXminBlockSize (use -XXtlaSize:min instead)

■ -XXmme (removed)

■ -XXnoCompaction (use -XXcompaction:enable=false instead)

■ -XXnoJITInline (removed)

■ -XXpointerMatrixLinearSeekDistance (removed)

■ -XXprintSystemGC (removed, use -Xverbose:systemgc instead)

■ -XXsetGC (use -Xgc instead)

■ -XXstaticCompaction (removed)

■ -XXthroughputCompaction (removed)

■ -XXtsf (removed)

■ -XXusePointerMatrix (removed, use -XXcompaction:abortable instead)

For more information about the deprecated and removed options in Oracle JRockit
R28.0, see the R27 command-line reference guide at:

http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/jrdocs/refman/index.html.

A.4 Command-Line Options Converted to HotSpot Format in Oracle
JRockit R28.0

In Oracle JRockit R28.0, the format of several command-line options has been changed
to the HotSpot format as listed in Table A–1.

Table A–1 Command-Line Options Converted to the HotSpot Format

Old Option New Format

-Xcheck:jni -XX:+|-CheckJNICalls

-XXallocClearChunkSize -XX:AllocChunkSize

-XXallocPrefetch -XX:+|-UseAllocPrefetch

-XXallocRedoPrefetch -XX:+|-RedoAllocPrefetch

-XXcallProfiling -XX:+|-UseCallProfiling

-XXdisableFatSpin -XX:+|-UseFatSpin

-XXexitOnOutOfMemory -XX:+|-ExitOnOutOfMemoryError

Command-Line Options Converted to HotSpot Format in Oracle JRockit R28.0

A-4 Oracle JRockit Command-Line Reference

-XXoptThreads -XX:OptThreads

-XXlargePages -XX:+|-UseLargePagesFor[Heap|Code]

-XXlazyUnlocking -XX:+|-UseLazyUnlocking

-XXoptThreads -XX:OptThreads

-XXMaxDirectMemorySize -XX:MaxDirectMemorySize

-XXuseAdaptiveFatSpin -XX:+|-UseAdaptiveFatSpin

Table A–1 (Cont.) Command-Line Options Converted to the HotSpot Format

Old Option New Format

B

JMX Agent-Related –D Options B-1

BJMX Agent-Related –D Options

Table B–1 lists the -D options that enable you to access remote JRockit JVM instances in
Oracle JRockit Mission Control using a Java Management Extensions (JMX) connector.

Note: Unless explicitly stated, the options listed in Table B–1 are also
available in the com.sun.management namespace.

Oracle recommends that you use the equivalent -Xmanagement
command-line options for -D options (if available).

Table B–1 JMX Agent-Related -D Options in R28

-D Option Description Default Value

-Dcom.oracle.management.jmxremote See -Xmanagement. true

When you set this
option to false, no
local connector is
started even if you
specify a port
number for
jmxremote.port.

-Dcom.oracle.management.jmxremote.port See -Xmanagement:port 7091

-Dcom.oracle.management.jmxremote.interface See -Xmanagement:interface null

-Dcom.oracle.management.jmxremote.rmiserver.port See -Xmanagement:rmiserver_port None

-Dcom.oracle.management.jmxremote.registry.ssl See -Xmanagement:registry_ssl false

-Dcom.oracle.management.jmxremote.ssl See -Xmanagement:ssl true

-Dcom.oracle.management.jmxremote.ssl.enabled.pr
otocols

A comma-delimited list of SSL or
TLS Protocol versions to be enabled.
This option is used with
com.oracle.management.jmxremote.s
sl.

Default SSL or TLS
Protocol

B-2 Oracle JRockit Command-Line Reference

-Dcom.oracle.management.jmxremote.ssl.enabled.ci
pher.suites

A comma-delimited list of SSL or
TLS cipher suites to be enabled. This
option is used with
com.oracle.management.jmxremote.s
sl.

Default SSL or TLS
cipher suites

-Dcom.oracle.management.jmxremote.ssl.need.client
.auth

When this property is set to true and
the property
com.oracle.management.jmxremote.s
sl is also true, the client
authentication is performed.

false

-Dcom.oracle.management.jmxremote.authenticate See -Xmanagement:authenticate true

-Dcom.oracle.management.jmxremote.password.file Specifies the location for the
password file. If the
com.oracle.management.jmxremote.a
uthenticate property is false then this
property and the password and
access files are ignored. Otherwise,
the password file must exist and it
should be in the valid format. If the
password file is empty or does not
exist, you cannot access the remote
JVM.

JRE_
HOME/lib/managemen
t/jmxremote.passwo
rd

-Dcom.oracle.management.jmxremote.access.file Specifies the location for the access
file. If the
com.oracle.management.jmxremote.a
uthenticate property is false then
this property, the password file, and
access file are ignored. Otherwise,
the access file must exist and it
should be in the valid format. If the
access file is empty or does not exist,
you cannot access the remote JVM.

JRE_
HOME/lib/managemen
t/jmxremote.access

Table B–1 (Cont.) JMX Agent-Related -D Options in R28

-D Option Description Default Value

JMX Agent-Related –D Options B-3

-Dcom.oracle.management.jmxremote.login.config Specifies the name of a Java
Authentication and Authorization
Service (JAAS) login configuration
entry to use when the JMX agent
authenticates users. When using this
property to override the default login
configuration, the named
configuration entry must be in a file
that is loaded by JAAS. In addition,
the login modules specified in the
configuration should use the name
and password callbacks to acquire
the user credentials. For more
information, see the API
documentation for
javax.security.auth.callback.NameCal
lback and
javax.security.auth.callback.Passwor
dCallback.

Default login
configuration is a
file-based password
authentication.

-Dcom.oracle.management.config.file See -Xmanagement:config.file JRE_
HOME/lib/managemen
t/management.prope
rties

-Dcom.oracle.management.snmp.port Enables the SNMP agent on a
specified port.

None

-Dcom.oracle.management.snmp.trap Specifies the remote port to which
the SNMP agent sends traps.

162

-Dcom.oracle.management.snmp.acl Enables Access Control List for the
SNMP agent.

true

-Dcom.oracle.management.snmp.acl.file Specifies the location of valid ACL
file. Once the SNMP agent is started,
you cannot modify the ACL file.

JRE_
HOME/lib/managemen
t/snmp.acl

-Dcom.oracle.management.snmp.interface Specifies the local host InetAddress.
The SNMP agent will then bind to
the specified InetAddress. This is
used when you have multihome
hosts and you want the port to listen
only to a specific subnet.

This property is optional.

None

-Dcom.oracle.management.autodiscovery See -Xmanagement:autodiscovery false

-Dcom.oracle.management.autodiscovery.period
(not available in the com.sun.management
namespace)

Specifies the time interval between
the broadcast messages during
autodicovery in milliseconds.

5000 milliseconds

Table B–1 (Cont.) JMX Agent-Related -D Options in R28

-D Option Description Default Value

B-4 Oracle JRockit Command-Line Reference

-Dcom.oracle.management.autodiscovery.ttl
(not available in the com.sun.management
namespace)

Time-to-live for autodiscovery
packets.

1

-Dcom.oracle.management.autodiscovery.address
(not available in the com.sun.management
namespace)

Multicast address to send
autodiscovery packets.

232.192.1.212

-Dcom.oracle.management.autodiscovery.port
(not available in the com.sun.management
namespace)

Multicast port to send autodiscovery
packets

7095

-Dcom.oracle.management.autodiscovery.name
(not available in the com.sun.management
namespace)

Broadcast name of the JVM

-Dcom.oracle.management.autodiscovery.property.p
refix
(not available in the com.sun.management
namespace)

Copies all system properties starting
with a specified prefix to the
autodiscovery packets and make
them available to remote agent.

Table B–1 (Cont.) JMX Agent-Related -D Options in R28

-D Option Description Default Value

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 About the JRockit JVM Command-Line Options
	1.1 Standard Command-Line Options
	1.2 JRockit JVM-Specific Command-Line Options
	1.3 About System Properties

	2 -X Command-Line Options
	-Xbootclasspath
	-Xbootclasspath/a
	-Xbootclasspath/p
	-Xcheck:jni
	-Xdebug
	-Xgc
	-XgcPrio (deprecated)
	-XlargePages
	-Xmanagement
	-Xms
	-Xmx
	-XnoClassGC (deprecated)
	-XnoOpt
	-Xns
	-XpauseTarget
	-Xrs
	-Xss
	-XstrictFP
	-Xverbose
	-Xverbosedecorations
	-XverboseLog
	-XverboseTimeStamp
	-Xverify

	3 -XX Command-Line Options
	-XXaggressive
	-XX:AllocChunkSize
	-XX:+|-CheckJNICalls
	-XX:+|-CheckStacks
	-XXcompaction
	-XXcompactRatio (deprecated)
	-XXcompactSetLimit (deprecated)
	-XXcompactSetLimitPerObject (deprecated)
	-XXcompressedRefs
	-XX:+|-CrashOnOutOfMemoryError
	-XX:+|-DisableAttachMechanism
	-XXdumpFullState
	-XXdumpSize
	-XX:ExceptionTraceFilter
	-XX:+|-ExitOnOutOfMemoryError
	-XX:ExitOnOutOfMemoryErrorExitCode
	-XXexternalCompactRatio (deprecated)
	-XX:+|-FailOverToOldVerifier
	-XX:+|-FlightRecorder
	-XX:FlightRecorderOptions
	-XX:+|-FlightRecordingDumpOnUnhandledException
	-XX:FlightRecordingDumpPath
	-XXfullSystemGC
	-XXgcThreads
	-XX:GCTimePercentage
	-XX:GCTimeRatio
	-XXgcTrigger
	-XX:+|-HeapDiagnosticsOnOutOfMemoryError
	-XX:HeapDiagnosticsPath
	-XX:+|-HeapDumpOnCtrlBreak
	-XX:+|-HeapDumpOnOutOfMemoryError
	-XX:HeapDumpPath
	-XX:HeapDumpSegmentSize
	-XXheapParts (deprecated)
	-XXinternalCompactRatio (deprecated)
	-XX:+|-JavaDebug
	-XXkeepAreaRatio
	-XXlargeObjectLimit (deprecated)
	-XX:MaxCodeMemory
	-XX:MaxDirectMemorySize
	-XX:MaximumNurseryPercentage
	-XX:MaxLargePageSize
	-XX:MaxRecvBufferSize
	-XXminBlockSize (deprecated)
	-XXnoSystemGC
	-XX:OptThreads
	-XX:+|-RedoAllocPrefetch
	-XX:+|-ReserveCodeMemory
	-XX:SegmentedHeapDumpThreshold
	-XXsetGC (deprecated)
	-XX:+|-StrictFP
	-XX:StartFlightRecording
	-XXtlaSize
	-XX:TreeMapNodeSize
	-XX:+|-UseAdaptiveFatSpin
	-XX:+|-UseAllocPrefetch
	-XX:+|-UseCallProfiling
	-XX:+|-UseCfsAdaptedYield
	-XX:+|-UseClassGC
	-XX:+|-UseCPoolGC
	-XX:+|-UseFastTime
	-XX:+|-UseFatSpin
	-XX:+|-UseLargePagesFor[Heap|Code]
	-XX:+|-UseLazyUnlocking
	-XX:+|-UseLockProfiling
	-XX:+|-UseLowAddressForHeap
	-XX:+|-UseNewHashFunction
	-XX:+|-UseThreadPriorities

	4 Oracle JRockit JVM System Properties
	4.1 java.vendor
	4.2 java.vendor.url
	4.3 java.vendor.url.bug
	4.4 java.version
	4.5 java.runtime.version
	4.6 java.vm.name
	4.7 java.vm.vendor
	4.8 java.vm.vendor.url
	4.9 java.vm.version
	4.10 java.vm.specification.version
	4.11 java.vm.specification.vendor
	4.12 java.vm.specification.name
	4.13 os.name
	4.14 os.arch
	4.15 os.version

	5 Diagnostic Commands
	5.1 check_flightrecording
	5.2 command_line
	5.3 dump_flightrecording
	5.4 exception_trace_filter
	5.5 force_crash
	5.6 fork_and_abort
	5.7 heap_diagnostics
	5.8 help
	5.9 hprofdump
	5.10 kill_management_server
	5.11 list_vmflags
	5.12 lockprofile_print
	5.13 lockprofile_reset
	5.14 memleakserver
	5.15 print_class_summary
	5.16 print_exceptions
	5.17 print_memusage
	5.18 print_object_summary
	5.19 print_threads
	5.20 print_utf8pool
	5.21 print_vm_state
	5.22 runsystemgc
	5.23 set_filename
	5.24 start_flightrecording
	5.25 start_management_server
	5.26 stop_flightrecording
	5.27 stop_management_server
	5.28 timestamp
	5.29 verbosity
	5.30 version
	A.1 Command-Line Options Introduced in Oracle JRockit R28.0
	A.2 Command-Line Options and Parameters Introduced in Oracle JRockit R28.1
	A.3 Command-Line Options Deprecated and Removed in Oracle JRockit R28.0
	A.4 Command-Line Options Converted to HotSpot Format in Oracle JRockit R28.0

