
Start

Oracle® Documaker

Rules Reference
version 11.4

Part number: E14902-01

October 2009

Copyright © 2009, Oracle and/or its affiliates. All rights reserved.
The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as specified by law, is prohibited.
The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.
If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle
USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall
be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.
The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible
for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If
you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is
not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third party.
Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

Notice

THIRD PARTY SOFTWARE NOTICES
This product includes software developed by Apache Software Foundation (http://www.apache.org/).

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright © 2000-2009 The Apache Software Foundation. All rights reserved.

This product includes software distributed via the Berkeley Software Distribution (BSD) and licensed for binary distribution
under the Generic BSD license.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright © 2009, Berkeley Software Distribution (BSD)

This product includes software developed by the JDOM Project (http://www.jdom.org/).

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright (C) 2000-2004 Jason Hunter & Brett McLaughlin. All rights reserved.

This product includes software developed by the Massachusetts Institute of Technology (MIT).

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Copyright © 2009 MIT

This product includes software developed by Jean-loup Gailly and Mark Adler. This software is provided 'as-is', without any
express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.
Copyright (c) 1995-2005 Jean-loup Gailly and Mark Adler

This software is based in part on the work of the Independent JPEG Group (http://www.ijg.org/).

This product includes software developed by the Dojo Foundation (http://dojotoolkit.org).

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright (c) 2005-2009, The Dojo Foundation. All rights reserved.

This product includes software developed by W3C.
Copyright © 2009 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en
Informatique et en Automatique, Keio University). All Rights Reserved. (http://www.w3.org/Consortium/Legal/)

This product includes software developed by Mathew R. Miller (http://www.bluecreststudios.com).
Copyright (c) 1999-2002 ComputerSmarts. All rights reserved.

This product includes software developed by Shaun Wilde and distributed via Code Project Open License (http://
www.codeproject.com).
THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Chris Maunder and distributed via Code Project Open License (http://
www.codeproject.com).
THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by PJ Arends and distributed via Code Project Open License (http://
www.codeproject.com).
THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Erwin Tratar. This source code and all accompanying material is copyright (c) 1998-
1999 Erwin Tratar. All rights reserved.
THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY. USE IT AT YOUR OWN
RISK! THE AUTHOR ACCEPTS NO LIABILITY FOR ANY DAMAGE/LOSS OF BUSINESS THAT THIS PRODUCT MAY
CAUSE.

This product includes software developed by Sam Leffler of Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY
THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE
Copyright (c) 1988-1997 Sam Leffler
Copyright (c) 1991-1997 Silicon Graphics, Inc.

This product includes software developed by Guy Eric Schalnat, Andreas Dilger, Glenn Randers-Pehrson (current maintainer),
and others. (http://www.libpng.org)
The PNG Reference Library is supplied "AS IS". The Contributing Authors and Group 42, Inc. disclaim all warranties, expressed
or implied, including, without limitation, the warranties of merchantability and of fitness for any purpose. The Contributing
Authors and Group 42, Inc. assume no liability for direct, indirect, incidental, special, exemplary, or consequential damages,
which may result from the use of the PNG Reference Library, even if advised of the possibility of such damage.

This product includes software components distributed by the Cryptix Foundation.

THIS SOFTWARE IS PROVIDED BY THE CRYPTIX FOUNDATION LIMITED AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
CRYPTIX FOUNDATION LIMITED OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
Copyright © 1995-2005 The Cryptix Foundation Limited. All rights reserved.

This product includes software components distributed by Sun Microsystems.

This software is provided "AS IS," without a warranty of any kind. ALLEXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANYIMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS
LICENSORS SHALL NOT BELIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE
THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.

This product includes software components distributed by Dennis M. Sosnoski.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2003-2007 Dennis M. Sosnoski. All Rights Reserved

It also includes materials licensed under Apache 1.1 and the following XPP3 license

THIS SOFTWARE IS PROVIDED "AS IS'" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright © 2002 Extreme! Lab, Indiana University. All Rights Reserved

This product includes software components distributed by CodeProject. This software contains material that is © 1994-2005 The
Ultimate Toolbox, all rights reserved.

This product includes software components distributed by Geir Landro.
Copyright © 2001-2003 Geir Landro (drop@destroydrop.com) JavaScript Tree - www.destroydrop.com/hjavascripts/tree/version
0.96

This product includes software components distributed by the Hypersonic SQL Group.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
Copyright © 1995-2000 by the Hypersonic SQL Group. All Rights Reserved

This product includes software components distributed by the International Business Machines Corporation and others.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Copyright (c) 1995-2009 International Business Machines Corporation and others. All rights reserved.

This product includes software components distributed by the University of Coimbra.

University of Coimbra distributes this software in the hope that it will be useful but DISCLAIMS ALL WARRANTIES WITH
REGARD TO IT, including all implied warranties of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. In
no event shall University of Coimbra be liable for any special, indirect or consequential damages (or any damages whatsoever)
resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in
connection with the use or performance of this software.
Copyright (c) 2000 University of Coimbra, Portugal. All Rights Reserved.

This product includes software components distributed by Steve Souza.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS'" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
Copyright © 2002, Steve Souza (admin@jamonapi.com). All Rights Reserved.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/.)"
Copyright © 2001-2004 The OpenSymphony Group. All Rights Reserved.

ix

Contents

Chapter 1, Introduction

2 Rules Overview

3 Types of Rules

Chapter 2, Adding Job and Form Set Rules

6 Using the Job Definition Table

6 Multi-Step Processing

7 Single-Step Processing

9 GenData WIP Transaction Processing

10 Writing Unique Data Into Recipient Batch Records
17 Sample AFGJOB.JDT Files and INI Options

22 Processing Import Files

25 Rules Used in Single-Step Processing

27 Rules Used for 2-up Printing

Chapter 3, Job and Form Set Rules Reference

30 JDT Rules Reference

38 AddLine

39 AddTextLabel

41 AllocDebug

42 AppendGblToExtr

43 Archive

44 AssignBatWithTbl

45 AssignToBatch

47 BatchByPageCount

49 BatchingByPageCountINI

55 BatchingByPageCountPerRecipINI
58 INI File Examples

x

68 BatchingByRecipINI

71 BuildExcludeList

72 BuildFormList

73 BuildMasterFormList

74 CheckZeroFontID

75 ConvertWIP

76 CreateGlbVar

77 CreateRecordList

78 DelExtRecords

79 Dictionary

80 DocumentExport
80 Defining Export Options
80 Defining the Export Record
82 Format Flags
83 Defining the Export Record Header
83 Date Formats
86 Freeform Formats
88 Using Locale Information
88 Format Specification Flags

90 DumpExtList

91 DumpExtractListToFile

92 ErrorHandler

93 Ext2GVM

94 FilterForm

96 FilterRecip

98 ForceNoImages

99 FormDescription

103 GetCo

104 GetLOB

105 GetRCBRec

106 GetRunDate

107 GVM2GVM

108 IfRecipUsed

109 ImageMapImportData

111 ImportExtract

116 ImportFile

121 ImportNAPOLExtract

xi

126 ImportNAPOLFile

130 ImportXMLExtract

134 ImportXMLFile
136 Using the TF Option
136 Using the File Option
137 Using the INI Option
137 Using the SCH Option
138 Using the GVM Option

139 XML File Format

141 InitArchive

142 InitConvertWIP

143 InitMerge

144 InitOvFlw

145 InitPageBatchedJob

146 InitPrint

147 InitSetRecipCache

148 InlineImagesAndBitmaps

149 InsNaHdr

150 InstallCommentLineCallback

151 JobInit1

152 LoadDDTDefs

153 LoadExtractData

154 LoadFormsetFromArchive

156 LoadListFromTable

157 LoadRcpTbl

158 LoadTblFiles

159 LoadTextTbl

160 MergeAFP

161 MergeRecipsFromForm

162 MergeWIP

166 MultipleDataDictionaryFiles

168 NoGenTrnTransactionProc

169 OMRMarks

173 PageBatchStage1InitTerm

174 PaginateAndPropagate

176 ParseComment

xii

177 PostTransDAL

179 PreTransDAL

181 PrintData

182 PrintFormset

184 ProcessQueue

185 ProcessRecord

186 ProcessTriggers

187 PXCandidateList
187 INI Options

189 PXTrigger
191 Input Tables
192 The Policy Xpress FED Processing Flow

194 RegionalDateProcess

197 ReplaceNoOpFunc

198 ResetDocSetNames

199 ResetOvFlw

200 RestartJob rule

201 RULCheckTransaction

203 RULNestedOverFlowProc

207 RULStandardFieldProc

208 RULStandardImageProc

209 RULStandardJobProc

210 RULStandardTransactionProc

211 RULTestTransaction

212 RunSetRcpTbl

213 RunTriggers

214 RunUser

215 ServerFilterFormRecipient

217 ServerJobProc

220 SetErrHdr

221 SetOutputFromExtrFile

224 SetOverflowPaperTray

227 SetOvFlwSym

228 SetRecipCopyCount

229 SetRecipCopyCount2

230 SortBatches

xiii

230 Specifying Key fields
231 Sorting with a Single Key
231 Sorting with Multiple Keys
232 INI Options
233 Replacement Strings

235 StandardFieldProc

236 StandardImageProc

237 TicketJobProc

238 TranslateErrors

239 UpdatePOLFile

240 UseXMLExtract
241 Mapping Fields
242 Overflow in XML

243 WIPFieldProc

244 WIPImageProc

245 WIPTransactions

247 WriteNAFile

248 WriteOutput

249 WriteRCBFiles

250 WriteRCBWithPageCount

252 XMLFileExtract
253 Mapping Fields
254 Overflow in XML

Chapter 4, Adding Section and Field Rules

256 Storing Rule Information

257 Formatting Data

257 Using Pre-defined Date Formats

261 Using Pre-defined Numeric Formats

262 Setting Up Format Arguments

265 Field Format Types (fetypes)

267 Formatting Data with the = Operator

270 Search Criteria

271 Overflow and User Functions

xiv

Chapter 5, Section and Field Rules Reference

274 Section and Field Rules Reference

280 AccumulateVariableTotal

283 AddMultiPageBitmap
286 Using the File Option
287 Using the DAL Option
288 Using the SRCH Option
288 Using the GVM Option
289 Using the Type Option
289 Using the Scale Option
290 Using the Crop Option

292 AddMultiPageTIFF
295 Using the File Option
296 Using the DAL Option
296 Using the SCH Option
297 Using the GVM Option
297 Using the Type Option

301 BldGrpList

304 CanSplitImage

307 CheckImageLoaded

308 CompBin

311 ConCat

312 ConnectFields

315 CreateChartSeries

317 CreateSubExtractList

320 DAL

322 DateDiff

324 DateFmt

327 DeleteDefaultSeriesData

328 DelImageOccur

329 DontPrintAlone

330 EjectPage

331 FfSysDte

333 Field2GVM

335 FieldVarsToChartSeries

337 FmtDate

xv

338 FmtNum

340 GlobalFld

343 GroupBegin
343 Using the Box Function
344 Using the GroupPagination Function
346 Using the List Function
346 Using the StayTogether Function
347 Using the Column Function

355 GroupEnd

356 HardExst

360 If
362 Examples

366 IncOvSym

367 JustFld

372 KickToWip
373 Suppressing Warning Messages

374 LookUp

376 MapFromImportData

379 Master

380 MessageFromExtr
381 Creating Messages
384 Using the Record Dictionary

388 Mk_Hard

390 MNumExt

393 Move_It

399 MoveExt

401 MoveMeToPage

402 MoveNum

411 MoveSum

413 MovTbl

415 NoOpFunc

417 OvActPrint

419 OvPrint

421 PaginateBeforeThisImage

422 PostImageDAL

424 PowType
425 Suppressing Warning Messages

xvi

426 PreImageDAL

428 PrintIf

430 PrtIfNum

433 PurgeChartSeries

434 RemoveWhiteSpace

436 ResetImageDimensions

438 ResetOvSym

439 SetGroupOptions

440 RunDate

443 SAPMove_It

445 SetAddr

448 SetAddr2

451 SetAddr3

454 SetCpyTo

455 SetCustChartAxisLabels

457 SetImageDimensions

458 SetOrigin

462 SetOriginI

464 SetOriginM

466 SetRecipFromImage

468 SetState

470 SpanAndFill

472 StrngFmt

474 SysDate

476 TblLkUp

478 TblText

480 TerSubstitute

483 TextMergeParagraph

484 UnderlineField

485 XDB

488 XDD

Appendix A, Using Condition Tables and the Record Dictionary

492 Using Condition Tables

xvii

492 Setting Up the INI Files

492 Using a Record Dictionary File

493 Creating a Conditions File
494 Occurrence Counting

495 Using the Record Dictionary

495 Setting Up the Record Dictionary
495 Record Dictionary File
497 RPN Function

499 Record Dictionary Rules

499 Base_FromDataDictToGVM
499 FromDataDict
499 FromDataDictToGVM
499 Image_FromDataDictToGVM
500 IncDataDictRecPtr
500 PosDataDictRecPtr
500 PostIncDataDictRecPtr
500 PostPosDataDictRecPtr
500 PreIncDataDictRecPt
501 PrePosDataDictRecPtr
501 ResetDataDictRecPtr

Appendix B, Using Image Editor to Enter Rule Information

504 Storing Rule Information in DDT Files

505 Using the Data Definition Table

507 Setting Up the MASTER.DDT File

509 Using the Master DDT Editor
509 Using the File Menu
511 Using the Edit Menu
513 Using the Move Menu

515 Assigning Rules with the Image Editor

515 Adding Section Rules
517 Changing a Section Rule
517 Deleting a Section Rule

518 Assigning Field Rules
518 Using the Edit DDT Tab
521 Changing a Field Rule

xviii

521 Deleting a Field Rule

522 Using the Edit DDT Window

523 Assigning a Rule

525 Displaying Rule Reports

525 Image Report
525 View Rules Report
526 View Compare Report

529 Index

1

Chapter 1

Introduction

Welcome to the Rules Reference for Oracle Documaker.
This guide serves as a reference to the various rules you
can use to control how the system handles jobs, form
sets, sections (images), and fields.

This chapter discusses the following topics:

• Rules Overview on page 2

• Types of Rules on page 3

Chapter 1
Introduction

2

RULES
OVERVIEW

You can use rules to control how information is merged onto forms, how that
information is then processed, and how the information and those forms are output. This
guide serves as a reference to those rules.

Documaker Server uses resources you create using Documaker Studio or the older tool,
Image Editor, to process information and forms. This processing includes merging
external data onto forms, processing data according to rules you set up, creating print-
ready files, archiving data and forms, and, if applicable, sending incomplete forms to
Documaker Workstation for completion by a user.

Forms can be completed using Documaker Workstation when user input is required or,
if all of your information can be extracted from external data sources, Documaker Server
can be set up to process forms without requiring user input.

Documaker Server can create print-ready files for a variety of printer languages including
AFP, PostScript, PCL, and Xerox Metacode printers. In addition, the system can also
produce output in Adobe Acrobat PDF format.

Types of Rules

3

TYPES OF
RULES

The GenData program processes these types of rules, based on this hierarchy:

• Job level rules (level 1)

These rules define actions the system should perform for each job or work activity,
such as producing a complete form set. Job level rules are global rules used to apply
procedures and rules to all jobs, form sets, and forms. Most of these rules are
designed to initialize, open, and close section (FAP) files, bitmap files, and data files;
however, some specialized functions do exist.

Job level rules are stored in the Job Definition Table (AFGJOB.JDT). For more
information on job level rules, see Adding Job and Form Set Rules on page 5.

• Form set level rules (level 2)

These rules let you construct and manipulate forms into form sets. Form set level
rules affect the form set as a whole, not the individual components which make up
the form set.

Form set level rules are stored in the Job Definition Table (AFGJOB.JDT). For more
information on job level rules, see Adding Job and Form Set Rules on page 5.

• Section level rules (level 3)

These rules define actions to perform on single sections within a form, based on a
specific transaction. Form or section (image) level rules affect the section as a whole,
not the individual fields and objects which make up the section or form.

For more information on job level rules, see Job and Form Set Rules Reference on
page 29.

• Field level rules (level 4)

These rules define actions to perform on the variable fields in a section. Field level
rules provide mapping, masking, and formatting information for each variable field
on a form.

For more information on job level rules, see Job and Form Set Rules Reference on
page 29.

NOTE: Only memory limits the number of rules you can add to a section, however,
having a large number of forms associated with a single section can be difficult
to maintain.

Chapter 1
Introduction

4

5

Chapter 2

Adding Job and Form Set
Rules

Job and form set rules help you control how a
processing job is run and how the system processes the
various form sets.

The rules which apply to the job and form set are stored
in the AFGJOB.JDT file, which is called the job definition
table, or JDT file. You add these rules directly into that
file using a text editor.

In this chapter you will find information about:

• Using the Job Definition Table on page 6

• Multi-Step Processing on page 6

• Single-Step Processing on page 7

• GenData WIP Transaction Processing on page 9

• Processing Import Files on page 22

• Rules Used in Single-Step Processing on page 25

• Rules Used for 2-up Printing on page 27

For reference information on individual rules, see Job
and Form Set Rules Reference on page 29

Chapter 2
Adding Job and Form Set Rules

6

USING THE JOB
DEFINITION

TABLE

The rules which apply to the job and form set are stored in the job definition table, which
is called the AFGJOB.JDT or JDT file. You edit this file using a text editor. When editing
the AFGJOB.JDT file, you can use these types of delimiters:

The base system uses the rules in the JDT file when you run the main batch system
programs (GenTrn, GenData, GenPrint, GenWIP, and GenArc). You can run these
programs several ways:

• Multi-step processing

• Single-step processing

• WIP transaction processing

For multi-step processing, you run each program separately. With single-step processing,
you run the GenData program using rules to perform the tasks handled by the GenTrn
and GenPrint programs. The AFGJOB.JDT files differ for each approach. Examples of
each approach follow.

WIP transaction processing lets you add or merge WIP transactions manually approved
or rejected into a GenData processing run. These transactions can be processed as new
transactions or appended to an master resource library (MRL) already processed by the
GenData program.

MULTI-STEP PROCESSING

Multi-step processing lets you run each batch system program in turn and check the log
and error messages after each step. You can learn more about the system flow and the
input and output files for each processing step in Chapter 2 of the Documaker Server
System Reference.

Multi-step processing
AFGJOB.JDT file

<Base Rules>

 ;RULStandardJobProc;1;Always the first job level rule;

 ;SetErrHdr;;*:;

 ;SetErrHdr;;*:--;

 ;SetErrHdr;;*: FormMaker Data Generation (Base);

 ;SetErrHdr;;*: ;

 ;SetErrHdr;;***: Transaction: ***PolicyNum***;

 ;SetErrHdr;;***: Symbol: ***Symbol***;

 ;SetErrHdr;;***: Module: ***Module***;

 ;SetErrHdr;;***: State: ***State***;

 ;SetErrHdr;;***: Company Name (after INI conversion):
Company;

 ;SetErrHdr;;***: Line of Business (after INI conversion):
Lob;

 ;SetErrHdr;;***: Trans Type: ***TransactionType***;

Use this delimiter… To…

backslash and asterisk (/*) Denote comments

comma (,) Separates the data that comprises a parameter

semi-colon (;) Separates parameters

Using the Job Definition Table

7

 ;SetErrHdr;;***: Run Date: ***RunDate***;

 ;SetErrHdr;;*:--;

 ;CreateGlbVar;;TXTLst,PVOID;

 ;CreateGlbVar;;TblLstH,PVOID;

 ;JobInit1;;;

 ;LoadDDTDefs;;;

 ;InitOvFlw;;;

 ;LoadTextTbl;;;

 ;LoadTblFiles;;;

 ;SetOvFlwSym;;CGDECBDOVF,QGDCBD,1;

 ;BuildMasterFormList;;4;

Every form set in the base system uses these form set level rules:

<Base Form Set Rules>

 ;RULStandardTransactionProc;;Always the first transaction level
rule;

 ;LoadExtractData;;;

 ;GetCo;;11,HEADERREC 35,3;

 ;GetLOB;;11,HEADERREC 40,3;

 ;ResetOvFlw;;;

 ;IfRecipUsed;;BATCH1=INSURED;

 ;IfRecipUsed;;BATCH2=COMPANY;

 ;IfRecipUsed;;BATCH3=AGENT;

 ;BuildFormList;;;

 ;LoadRcpTbl;;;

 ;UpdatePOLFile;;;

 ;RunSetRcpTbl;;;

Every section in the base system uses these section level rules:

<Base Image Rules>

 ;RULStandardImageProc;;Always the first section level rule;

 ;InsNAHdr;;;

Every field in the base system uses this field rule:

<Base Field Rules>

 ;RULStandardFieldProc;;Always the first field level rule;

SINGLE-STEP PROCESSING

To enhance performance, you can combine the execution and functionality of the
GenTrn and GenData steps into a single step. Combining these steps enhances
performance by reducing the number of times files have to be opened and closed during
processing. For more information, see Chapter 2 of the Documaker Server System
Reference.

To combine the GenTrn and GenData steps, you place the NoGenTrnTransactionProc
rule in under the <Base Form Set Rules> header in your AFGJOB.JDT file, along with
several other rules. To then combine the GenData and GenPrint steps, add the following
rule under the <Base Rules> header in your AFGJOB.JDT file:

;InitPrint;;;

and add this rule below the <Base Form Set Rules> header in your AFGJOB.JDT file:

;PrintFormset;;;

Chapter 2
Adding Job and Form Set Rules

8

To use single-step processing, change the TrnFile option in the FSISYS.INI file to NUL,
as shown below:

< Data >

TrnFile = NUL

Once you have added the rules to your AFGJOB.JDT file and FSISYS.INI file, run the
GenData program as you normally would and it will execute the GenTrn and GenPrint
processing steps.

For more information on these rules, see InitPrint on page 146, PrintFormset on page 182, and
NoGenTrnTransactionProc on page 168.

Single-step processing
AFGJOB.JDT file

When you use single-step processing, where the GenData program runs the GenTrn and
GenPrint processes as a single step, you use the following AFGJOB.JDT file. This file is
also called the performance mode JDT file:

<Base Rules>

;RULStandardJobProc;1;Always the first job level rule;

;SetErrHdr;;*:--;

;SetErrHdr;;*: FormMaker Data Generation (Base);

;SetErrHdr;;*: ;

;SetErrHdr;;***: Transaction: ***ACCOUNTNUM***;

;SetErrHdr;;***: Company Name (after ini conversion): ***Company***;

;SetErrHdr;;***: Line of Business (after ini conversion): ***LOB***;

;SetErrHdr;;***: Run Date: ***RunDate***;

;SetErrHdr;;*:--;

;JobInit1;;;

;CreateGlbVar;;TXTLst,PVOID;

;CreateGlbVar;;TblLstH,PVOID;

;InitOvFlw;;;

;SetOvFlwSym;;SUBGROUPOVF,SUBGROUP,5;

;BuildMasterFormList;;4;

;PageBatchStage1InitTerm;;;

;InitSetrecipCache;;;

/* the following is required to run GenData/GenPrint as single
step.*/

;InitPrint;;;

Every form set in the base system uses these form set level rules:

<Base Form Set Rules>

;NoGenTrnTransactionProc;;First transaction level rule when omitting
GenTrn;

;ResetOvFlw;;;

;BuildFormList;;;

;LoadRcpTbl;;;

;RunSetRcpTbl;;;

/* the following is required to run GenData/GenPrint as single
step.*/

;PrintFormset;;;

;WriteOutput;;;

;WriteNaFile;;;

;WriteRCBWithPageCount;;;

;ProcessQueue;;PostPaginationQueue;

;PaginateAndPropagate;;;

;BatchingByRecipINI;;;

Using the Job Definition Table

9

Every section in the base system uses this section level rule:

<Base Image Rules>

;StandardImageProc;;Always the first section level rule;

Every field in the base system uses this field level rule:

<Base Field Rules>

;StandardFieldProc;;Always the first field level rule;

GENDATA WIP TRANSACTION PROCESSING

GenData WIP Transaction Processing lets you process WIP transactions based on their
status code. The transactions are created by one of these processes:

• Executing the GenWIP program after the GenData program to process the
transactions in the manual batch. Then using Documaker Workstation to:

Manually view a transaction and update any required data. Then use the WIP,
Save option to save the transaction with a status code such as: Approved or
Accepted.

Manually view a transaction and then use the WIP, Save option to save the
transaction with a status code of Rejected.

Manually view a transaction, update any required data, and save the transaction
using the File, Complete, Batch Print option. This assigns a Batch Print status
code to the transaction.

• Creating a new transaction using Documaker Workstation and then using the WIP,
Save or File, Complete, Batch Print option to save it with a status code such as
Approved, Accepted, or Rejected.

You can then process these transactions as:

• New transactions

• Transactions appended to an existing MRL recipient batch, NewTrn, NA, and POL
files created by a prior run of the GenData program

GenData WIP Transaction Processing creates new recipient batch, NewTrn, NA, and
POL files which you can print, archive, or both using the GenPrint and/or GenArc
programs.

To do this, you execute the GenData program using a simplified AFGJOB.JDT file that
contains rules to replace the existing form set, section, and field rules. In addition, you
must add two rules.

Here is a list of the rules used for GenData WIP Transaction Processing. All of these rules
are required in the simplified AFGJOB.JDT file.

Chapter 2
Adding Job and Form Set Rules

10

NOTE: All WIP file transactions added to the transaction memory list by the MergeWIP
rule are deleted from the WIP file after processing. You can remove specific
transaction types, such as Rejected, by including the status code in the parameters
for the MergeWIP rule and omitting it in the parameters for the WIPTransactions
rule.

WRITING UNIQUE DATA INTO RECIPIENT BATCH RECORDS

The GenData program lets you add unique data to recipient batch records before they are
written to the recipient batch files. The recipient batch record data and format is defined
by the GVM variable definitions in the RCBDFDFL.DAT file.

You can use this capability if you need to add...

• Address information or other field level information to the batch record, which is
typically unique for each recipient.

• Recipient information that is not handled by normal field mapping from the
transaction DFD to the recipient batch DFD.

• Cumulative or calculated information not available until the document is nearly
completed.

Rule Description

MergeWIP on page
162

This job level rule initializes WIP Transaction Processing and specifies
the status codes for the transactions added or appended to a newly-
created NA and POL list.

WIPTransactions
on page 245

This form set level rule replaces the RULStandardTransactionProc or
NoGenTrnTransactionProc rule in the AFGJOB.JDT file and starts form
set processing.
It also identifies the status codes for transactions to be processed. The
status codes specified in this rule’s parameters can include any or all of the
status codes specified for the MergeWIP rule.

GVM2GVM on
page 107

This form set rule to copies GVM variable data from the WIP.DBF file
into GVM variables needed by the GenData program. Use the
Trigger2WIP control group options to define GVM variable names

WIPImageProc on
page 244

This section level rule replaces the RULStandardImageProc or
StandardImageProc rule in the AFGJOB.JDT file and tells the GenData
program to bypass section data processing.

WIPFieldProc on
page 243

This field level rule replaces the RULStandardFieldProc or
StandardFieldProc rule in the AFGJOB.JDT file and tells the GenData
program to bypass field data processing.

Using the Job Definition Table

11

NOTE: Before the ability to add data to recipient batch records was added in version 10.2,
the recipient batch records were identical except for the recipient code field
which contains a unique identifier assigned to a given recipient. If additional
recipient data was required, you had to write a custom rule.

Use the options in the RecipMap2GVM control group to set up this capability. Data that
can be added to the recipient batch record can be:

• Contents of a variable field on the specified section or form/section

• Constant value

• Data from an existing INI built-in functions, such as ~DALRun

• Data from a custom written INI function

Here is an example of the RecipMap2GVM control group:

< RecipMap2GVM >

Form =

Image =

Req =

Opt =

Suppressing
RCBMapFromINI
function warning

messages

Use the WarnOnLocate option to suppress the following warning message from the
RCBMapFromINI function:

Cannot locate image root named/image

Here is an example:

< RecipMap2GVM >

WarnOnLocate = No

Option Description

Form (Optional) Enter the name of the form.

Image Enter the name of the section. You can also enter a section name root.
A section name root is the first part of a name. For instance, MAILER is the root
name for sections with names such as MAILER A, MAILER_B, or MAILERS.

Req * A semi-colon delimited string that contains one of the following:
- GVM variable name; variable field name; optional formatting information
- GVM variable name; blank character (space); constant value
- GVM variable name; INI built-in function

Opt * A semi-colon delimited string that contains one of the following:
- GVM variable name; variable field name; optional formatting information
- GVM variable name; blank character (space); constant value
- GVM variable name; INI built-in function

* = Repeat for each GVM variable you are setting up.

Chapter 2
Adding Job and Form Set Rules

12

Optional formatting
information

You can add optional formatting information as a parameter of the Opt INI option. This
formatting information is comprised of four items separated by commas.

Here are some formatting examples:

d,”1/4”, d, “4/4”

This converts an input date, mmddyyyy, into month name dd, yyyy, such as February 17,
2009.

n, nCAD, nUSD, “$zzz,zz9.99”

This converts an input numeric value in Canadian French format into a value in United
States format.

Keep in mind...

• For the Req option, if the data is missing an error occurs and the transaction is send
to the error batch.

• For the Opt option, if the data is missing the system stores an empty string in the
GVM variable.

• A RCB GVM variable cannot be restored to its original or default value after it has
been changed using this method.

• Any RCB GVM variable not assigned using this method retains the value originally
set during the transaction processing.

• Some RCB GVM variables should never be changed using this mapping technique.
These include:

TRN_Offset

NA_Offset

Option Description

WarnOnLocate Enter No if you want to suppress this warning message from the
RCBMapFromINI function:

Cannot locate image root named/image

The default is Yes.

Item Description

Input fetypes D or d = date
N or n = number

Input format mask Date - see the FmtDate rule in the Rules Reference.
Number – see the FmtNum rule in the Rules Reference.

Output fetypes D or d = date
N or n = number

Output format mask Date - see the FmtDate rule in the Rules Reference.
Number – see the FmtNum rule in the Rules Reference.

Using the Job Definition Table

13

POL_Offset

• If the section defined in the Image option in the RecipMap2GVM control group
does not name a section, the feature is disabled for all transactions.

• If the section defined in the Image option is missing from the form set being
processed, the GVM data is not changed. Depending on where the GVM data is
mapped, this could mean data from the prior transaction will still be in the GVM
variables.

• If there are multiple sections with the same name in the form set, the form specified
in the Form option is used to identify the section to use. If the Form option is
omitted, the first section found in the current form set is used.

• The system assumes the specified section contains all of the unique data except for a
constant value or data gathered from an INI built-in function.

• If more than one recipient is assigned to the section, all recipient batch records
receive the same added data.

Example This example creates a mailer cover page for each insured, agent, and/or company
recipient per transaction. The cover page is created using banner page processing which
occurs during GenPrint processing. Examples of the three different mailer cover pages
are as follows.

Chapter 2
Adding Job and Form Set Rules

14

This example assumes that the:

• Agent and company recipient batch files are sorted (agent number and company
name, respectively) before the GenPrint program runs. This sorting allows for the
creation of only one mailer cover page per unique agent and company.

• Unique information is contained on the form/image, Dec Page/Q1MDC1.

Jill Smith
11111 Oak Circle
Suite 999
Smryna, FL 12345

Suzy Smith
Morris Fanelli
99934 Oak Circle
Suite 999
Smartburg, WI 99999

Insureds

Jill Smith

Martin Short Agent
963 Atlantic
Boulevard
Suite 1250
Miami, FL 30202

Suzy Smith

David Miller Agent
999 Green Dolphin
Street
Suite 1200
Miami, FL 30202

Suzy Smith

Company

Jill Smith

Awtrey Inc.
316 N.E. 3rd Avenue
Pompano Beach, FL
33333

Agents

Using the Job Definition Table

15

• The FSIUSER.INI file includes these control groups and options:

< RecipMap2GVM >

 Form = Dec Page

 Image = Q1MDC1

 Opt = Name1;Insured Name;

 Opt = Name2;Insured Name2;

 Opt = Address1;Address Line1;

 Opt = Address2;Address Line2;

 Opt = CityCounty;prtvalue;

 Opt = AgentName;Agent Name;

 Opt = AgentID; Agent ID;

 Opt = OfficeAddress;Office Address;

 Opt = TownandState;Town And State;

< Printer >

 PrtType = PCL

 EnableTransBanner = True

 EnableBatchBanner = False

 TransBannerBeginScript= PreTrans

 TransBannerEndScript= PstTrans

 TransBannerBeginForm= ;BANNER;TRANSACTION;TRANS HEADER;

 TransBannerEndForm = ;BANNER;TRANSACTION;TRANS TRAILER;

< DALLibraries >

 LIB = Banner

BANNER.DAL The DefLib directory contains this DAL script:

* This script obtains the required unique data from the recipient

* batch record and stores it on the mailer form.

BeginSub PreTrans

blank_gvm = Pad(" ",41," ")

SetGVM("NameA" ,blank_gvm,,"C",41)

SetGVM("NameB" ,blank_gvm,,"C",41)

SetGVM("AddressA" ,blank_gvm,,"C",41)

SetGVM("AddressB" ,blank_gvm,,"C",41)

SetGVM("CityCounty1" ,blank_gvm,,"C",41)

If Trim(RecipName()) = "INSURED" Then

 SetGVM("NameA" ,GVM("Name1") ,,"C",41)

 SetGVM("NameB" ,GVM("Name2") ,,"C",41)

 SetGVM("AddressA" ,GVM("Address1") ,,"C",41)

 SetGVM("AddressB" ,GVM("Address2") ,,"C",41)

 SetGVM("CityCounty1" ,GVM("CityCounty"),,"C",41)

 GoTo exit:

End

last_agent_id = last_agent_id

If Trim(RecipName()) = "AGENT" Then

 If last_agent_id != Trim(GVM("AgentID")) Then

 last_agent_id = Trim(GVM("AgentID"))

 SetGVM("NameA" ,GVM("AgentName") ,,"C",41)

 SetGVM("NameB" ,GVM("OfficeAddress") ,,"C",41)

 SetGVM("AddressA" ,GVM("TownandState") ,,"C",41)

 GoTo exit:

 Else

Chapter 2
Adding Job and Form Set Rules

16

 SuppressBanner()

 GoTo exit :

 End

End

last_company_name = last_company_name

If Trim(RecipName()) = "COMPANY" Then

 If Trim(GVM("Company")) != last_company_name Then

 last_company_name = Trim(GVM("Company"))

 If Trim(GVM("Company")) = "SAMPCO" Then;

 SetGVM("NameA" ,"Sampco, Inc." ,,"C",41)

 SetGVM("NameB" ,"316 N.E. 3rd Avenue" ,,"C",41)

 SetGVM("AddressA" ,"Pompano Beach, FL 33333" ,,"C",41)

 GoTo exit:

 ElseIf Trim(GVM("Company")) = "FSI"

 SetGVM("NameA" ,"FSI Inc." ,,"C",41)

 SetGVM("NameB" ,"222 Newbury St." ,,"C",41)

 SetGVM("AddressA" ,"Northwest City, FL 99999" ,,"C",41)

 GoTo exit:

 End

 Else

 SuppressBanner()

 GoTo exit:

 End

End

exit:

EndSub

BeginSub PstTrans

EndSub

Using the Job Definition Table

17

The RCBDFDFL.DAT file contains the following GVM variable definitions which are
defined in the RecipMap2GVM control group:

• Name1

• Name2

• Address1

• Address2

• CityCounty

• AgentName

• AgentID

• OfficeAddress

• TownAndState

Here are two recipient batch records from this example:

SAMPCOLB12234567SCOM1FLT1 B2199802232234567890 0 22560
******001 3724 452Jill Smith Morris
11111 Oak Circle Suite 999 Smyrna,
FL 12345 Martin Short Agent 963 Main Street,
Suite 1250 Miami, FL 30202

FSI CPP4234567FSIM1WIT1 B3199802234234567890 0 30360
******001 4667 565Suzy Smith Morris
99934 Oak Circle Suite 999 SmartBurg,
WI 99999 David Miller Agent 999 Main Street,
Suite 1200 Miami, FL 30202

Sample AFGJOB.JDT Files and INI Options
Shown below are examples of simplified AFGJOB.JDT files and the INI options you use
to process WIP transactions for specified recipients using these rules:

• IfRecipUsed on page 108

• BatchingByRecipINI on page 68

• BatchingByPageCountINI on page 49

Assume each example has these INI options:

< Status_CD >

Approved = AP

BatchPrint = BP

Rejected = RJ

Also assume the first two examples have the following INI options defined in the
FSISYS.INI or FSIUSER INI file.

These options define the recipient batch names:

< Print_Batches >

Insured = .\batch\Insured

Agent = .\batch\Agent

Company = .\batch\Company

Chapter 2
Adding Job and Form Set Rules

18

These options define the output printer names:

< PrinterInfo >

Printer = InsuredPrt

Printer = AgentPrt

Printer = CompanyPrt

These options define the output printer names for each recipient batch. You must have a
control group for each recipient batch.

< Insured >

Printer = InsuredPrt

< Agent >

Printer = AgentPrt

< Company >

Printer = CompanyPrt

These options define the print-ready output file name for each recipient name:

< InsuredPrt >

Port = .\Print\Insured.PCL

< AgentPrt >

Port = .\Print\Agent.PCL

< CompanyPrt >

Port = .\Print\Company.PCL

Using the IfRecipUsed
rule

You run the GenData program using a simplified AFGJOB.JDT file which contains an
IfRecipUsed rule for each recipient. This example places print-ready output for each
recipient in the following files:

Transactions with status codes defined in the WIPTransactions rule are appended to an
existing MRL recipient batch, NewTrn, NA, and POL files or are appended to newly-
created recipient batch, NewTrn, NA, and POL files. These files can be printed, archived,
or both using the GenPrint and GenArc programs.

All transactions with a Rejected or an Approved status code are deleted from the WIP file.
Here is an example of the AFGJOB.JDT file. Note that the Rejected status code is
omitted from the WIPTransactions rule.

<Base Rules>

;RulStandardJobProc;;;

;MergeWIP;;Approved,Rejected;

;JobInit1;;;

<Base Form Set Rules>

;WIPTransactions;;Approved;

;GVM2GVM;;Trigger2WIP;

;IfRecipUsed;;Batch1=Insured;

;IfRecipUsed;;Batch2=Company;

;IfRecipUsed;;Batch3=Agent;

Recipient Output file

Insured INSURE.PCL

Agent AGENT.PCL

Company COMPANY.PCL

Using the Job Definition Table

19

;UpdatePOLFile;;;

<Base Image Rules>

;WIPImageProc;;;

<Base Field Rules>

;WIPFieldProc;;;

Using the
BatchingByRecipINI

rule

You run the GenData program using a simplified AFGJOB.JDT file which contains the
BatchingByRecipINI rule. The BatchingByRecip control group contains an option for
each recipient. Define this control group in the FSISYS.INI or FSIUSER.INI file. This
example places print-ready output for each recipient in the following files:

Transactions with status codes defined in the WIPTransactions rule are appended to an
existing MRL recipient batch, NewTrn, NA, and POL files or are appended to newly-
created recipient batch, NewTrn, NA, and POL files. These files can be printed, archived,
or both using the GenPrint and GenArc programs.

All transactions with a Rejected or Batch Print status code are deleted from the WIP file.
Here is an example of the AFGJOB.JDT file. Note that the Rejected status code is
omitted from the WIPTransactions rule.

<Base Rules>

;RULStandardJobProc;1;;;

;JobInit1;;;

;MergeWIP;;BatchPrint,Rejected;

;InitSetrecipCache;;;

<Base Form Set Rules>

;WIPTransactions;;BatchPrint;

;WriteOutput;;;

;WriteNaFile;;;

;BatchingByRecipINI;;;

<Base Image Rules>

;WIPImageProc;;;

<Base Field Rules>

;WIPFieldProc;;;

Using the
BatchingByPageCountI

NI rule

You run the GenData program using a simplified AFGJOB.JDT file which contains the
BatchingByPageCountINI rule. The BatchingByRecip control group contains an option
for each recipient. Define this control group in the FSISYS.INI or FSIUSER.INI file.

This example places print-ready output for each recipient into the following files based
on the number of pages in each transaction processed.

Recipient Output file

Insured INSURE.PCL

Agent AGENT.PCL

Company COMPANY.PCL

Chapter 2
Adding Job and Form Set Rules

20

Transactions with status codes defined in the WIPTransactions rule are appended to an
existing MRL recipient batch, NewTrn, NA, and POL files or are appended to newly-
created recipient batch, NewTrn, NA, and POL files. These files can be printed, archived,
or both using the GenPrint and GenArc programs.

All transactions with a Rejected or Batch Print status code are deleted from the WIP file.
Here is an example of the AFGJOB.JDT file. Note that the Rejected status code is
omitted from the WIPTransactions rule.

<Base Rules>

;RulStandardJobProc;;;

JobInit1;;;

;MergeWIP;;BatchPrint,Rejected;

;InitSetrecipCache;;;

<Base Form Set Rules>

;WIPTransactions;;BatchPrint;

;GVM2GVM;;Trigger2WIP;

;WriteOutput;;;

;WriteNaFile;;;

;BatchingByPageCountINI;;;

;WriteRCBWithPageCount;;;

;ProcessQueue;;PostPaginationQueue;

;PaginateAndPropagate;;;

<Base Image Rules>

;WIPImageProc;;;

<Base Field Rules>

;WIPFieldProc;;;

Here are the INI options used with the BatchingByPageCountINI rule:

< BatchingByRecip >

DefaultBatch = Default

Batch_Recip_Def= True;"InsOver3";Insured

Batch_Recip_Def= True;"InsUndr4";Insured

Batch_Recip_Def= True;"AgiOver3";AddLinsd

Batch_Recip_Def= True;"AgiUndr4";AddLinsd

Batch_Recip_Def= True;"CtrOver3";CertHld

Batch_Recip_Def= True;"CrtUndr4";CertHld

< Print_Batches >

InsOver3 = .\batch\InsOver3

InsUndr4 = .\batch\InsUndr4

File Description

INSOVER3.PCL Insured with more than three pages

INSUNDR4.PCL Insured with less than three pages

AGIOVER3.PCL Agent with more than three pages

AGIUNDR4.PCL Agent with less than three pages

CTROVER3.PCL Company with more than three pages

CTRUNDR3.PCL Company with less than three pages

Using the Job Definition Table

21

AgiOver3 = .\batch\AgiOver3

AgiUndr4 = .\batch\AgiUndr4

CtrOver3 = .\batch\CtrOver3

CtrUndr3 = .\batch\CtrUndr4

Default = .\batch\Default

< PrinterInfo >

Printer = InsOver3Prt

Printer = InsUndr4Prt

Printer = AgiOver3Prt

Printer = AgiUndr4Prt

Printer = CtrOver3Prt

Printer = CrtUndr4Prt

Printer = DefaultPrt

< InsOver3 >

Printer = InsOver3Prt

PageRange = 4,999

 < InsUndr4 >

Printer = InsUndr4Prt

PageRange = 1,3

< AgiOver3 >

Printer = AgiOver3Prt

PageRange = 4,999

< AgiUndr4 >

Printer = AgiUndr4Prt

PageRange = 1,3

< CtrOver3 >

Printer = CtrOver3Prt

PageRange = 4,999

< CrtUndr4 >

Printer = CrtUndr4Prt

PageRange = 1,3

< Default >

Printer = DefaultPrt

< InsOver3Prt >

Port = .\Print\InsOver3.PCL

< InsUndr4Prt >

Port = .\Print\InsUndr4.PCL

< AgiOver3Prt >

Port = .\Print\AgiOver3.PCL

< AgiUndr4Prt >

Port = .\Print\AgiUndr4.PCL

< CtrOver3Prt >

Port = .\Print\CtrOver3.PCL

< CrtUndr4Prt >

Port = .\Print\CrtUndr4.PCL

< DefaultPrt >

Port = .\Print\Default.PCL

Chapter 2
Adding Job and Form Set Rules

22

PROCESSING
IMPORT FILES

The GenData program can import and process these types of export files created by
Documaker Workstation:

• Standard export

• WIP/NA/POL export

• XML export

The transactions exported to a file can be created by:

• Executing the GenWIP program after the GenData program to process any
transactions in the manual batch. You then use Documaker Workstation to view the
transaction and update any required data. Finally, you use the File, Complete, Export
Data option to create the export file.

• Creating a transaction using Documaker Workstation. You then use the File,
Complete, Export Data option to create the export file.

• Creating a transaction using iPPS.

You can then process the export files as a:

• Single transaction using the appropriate import file rule in a simplified
AFGJOB.JDT. For instance, you would use one of these rules:

ImportFile on page 116

ImportNAPOLFile on page 126

ImportXMLFile on page 134

• Multiple transactions (one or more export files appended in a single file) using the
appropriate import extract rule in a simplified AFGJOB.JDT.

ImportExtract on page 111

ImportNAPOLExtract on page 121

ImportXMLExtract on page 130

NOTE: Create a separate AFGJOB.JDT file for this process, instead of updating an
existing one by commenting out rules and adding new one.

Processing Import Files

23

Here are some GenData import file processing scenarios:

Using Documaker
Server

You run the GenData program using an extract file and then execute the GenWIP
program to process any transactions in manual batch. These transactions are then added
to the WIP file.

NOTE: Transactions in the manual batch file were placed there because they were flagged
to go to manual batch, missing required field data, or were flagged as
KickToWIP.

You then open the WIP transactions using Documaker Workstation, make necessary
changes, and use the File, Complete, Export File option to create the export file.

After you finish, you run GenData Import File Processing using simplified AFGJOB.JDT
and INI files. Using the export file as an import file, the GenData program then creates
new recipient batch, NewTrn, NA, and POL files which you can print, archive, or both
using the GenPrint and GenArc programs.

GenData GenWIP

GenData

GenPrint GenArc

Extract
file

 WIP

Export
file

Documaker
Workstation

Chapter 2
Adding Job and Form Set Rules

24

Using Documaker
Workstation

You create new transactions using Documaker Workstation and then use the File,
Complete, Export File option to create the export file.

You then use GenData Import File Processing to create new recipient batch, NewTrn,
NA, and POL files. These files can be printed, archived, or both using the GenPrint and
GenArc programs.

NOTE: For information on setting up Documaker Workstation, see the Documaker
Workstation Supervisor’s Guide.

Using iPPS You create a transaction using iPPS that is then processed by GenData Import File
Processing to produce PDF files. These files can be viewed on-line and printed.

Export
file GenData

GenPrint GenArc

Documaker
Workstation

Export
file GenData

GenPrint GenArc

iPPS

Rules Used in Single-Step Processing

25

RULES USED IN
SINGLE-STEP
PROCESSING

Specific rules are used to combine the execution and functionality of the GenTrn,
GenData, and GenPrint programs into a single step. These rules are listed below, with a
brief description.

NOTE: You can find more information, including a detailed description of how
processing occurs, in Chapter 2 of the Documaker Server System Reference.

Here’s a list of the rules required for single-step processing.

Rule Description

BatchingByRecipINI on
page 68

Use this rule to send transactions to a batch you specify using
INI options.

BatchByPageCount on page
47

Use this rule to send a transaction’s form set to a specified print
batch based on the number of printed pages plus the multi-mail
code defined in the transaction.

BatchingByPageCountINI
on page 49

Use this rule to send a transaction’s form set to a specified batch
based on the number of printed pages created when the system
processes the transaction.

BuildMasterFormList on
page 73

Use this rule to load the FORM.DAT file into an internal linked
list within the GenData program. You must include this rule in
the AFGJOB.JDT file because the RunSetRcpTbl rule is
dependent on the list this rule creates.

InitPrint on page 146 Use this rule to load printer and recipient batch information. This
rule sets up PRTLIB data, initializes print options, and loads a
table which contains page totals for recipient batch files.
Use this rule when you run the GenData program by itself to
execute GenTrn and GenPrint processes. This rule, when
combined with the PrintFormset rule, prints form sets.

InitSetRecipCache on page
147

Use this rule to set the cache the system uses to store recipient
information in memory. With this rule you can tell the system the
amount of memory to set aside and use for storing information
in the Key1 and Key2 fields, often used to store the company and
line of business.

NoGenTrnTransactionProc
on page 168

Use this rule when you use the GenData program by itself to
execute the GenTrn and GenData steps. When combined with
the InitPrint and PrintFormset rules, it creates the output files
created during the GenPrint step.

PageBatchStage1InitTerm
on page 173

Use this rule to create and populate a list of records which
contain page ranges and total page counts for each recipient
batch file.

PaginateAndPropagate on
page 174

Use this rule to paginate the form set and merge in or propagate
field data.

PrintFormset on page 182 Use this rule when you run the GenData program by itself to
execute GenTrn and GenPrint processes. This rule, when
combined with the InitPrint rule, prints form sets.

Chapter 2
Adding Job and Form Set Rules

26

ProcessQueue on page 184 Use this rule to process the queue you specify. This rule loops
through the list of functions for the queue you specify and then
frees the queue when finished.

StandardFieldProc on page
235

This rule tells the system to process each field on all of the
sections triggered by the SETRCPTB.DAT file. If you use the
StandardFieldProc rule is in your JDT, you must also include the
WriteNAFile rule.

StandardImageProc on page
236

This rule tells the system to process each section triggered by the
SETRCPTB.DAT file.

WriteNAFile on page 247 Use this rule to append the NAFILE.DAT file data records for
the current form set into an existing NAFILE.DAT file.

WriteOutput on page 248 Use this rule to create the POLFILE.DAT file.

WriteRCBWithPageCount
on page 250

Use this rule to write page counts for each recipient.

Rule Description

Rules Used for 2-up Printing

27

RULES USED
FOR 2-UP
PRINTING

The following descriptions will help familiarize you with the rules that are required to
perform the 2-up printing process. All of the rules listed in the topic, Rules Used in Single-
Step Processing on page 25 are required for 2-up printing, plus the additional rules listed
below.

NOTE: You can find more information, including a detailed description of how
processing occurs, in Chapter 2 of the Documaker Server System Reference.

Here’s a list of the additional rules you can use for 2-up printing.

Rule Description

AddLine on page 38 (Optional) Use this form set level (level 2) rule to add a line record,
such as for OMR marks, to the AFP record list built by the
MergeAFP rule.

AddTextLabel on page 39 (Optional) Use this form set level (level 2) rule to add a text label
record to the AFP record list built by the MergeAFP rule.

GetRCBRec on page 105 Use this form set (level 2) level rule to set the current recipient batch
file. This rule initializes the current recipient batch file, if necessary.

InitMerge on page 143 Use this job level (level 1) rule to create a list of printers, batches,
and buffers for the comment (RCB) records. This rule also creates
a list to hold AFP records and AFP fonts.

InitPageBatchedJob on
page 145

Use this job level (level 1) rule to open NA and POL files.

MergeAFP on page 160 Use this form set level (level 2) rule to initialize input files. This rule
populates the AFP record list, retrieves comment (RCB) records,
and terminates the input files.

OMRMarks on page 169 (Optional) Use this job level (level 1) rule to generate OMR marks
on 2-up documents printed on any AFP printer that supports 2-up
printing.

ParseComment on page
176

(Optional) Use this form set level (level 2) rule to parse comment
records into the GVM variable.

PrintData on page 181 Use this form set (level 2) rule to print the form set. This rule is used
for handling 2-up printing on AFP and compatible printers.

ProcessRecord on page
185

Use this form set (level 2) rule to switch between print files as
necessary when printing 2-up forms on an AFP printer. This rule
updates the page count for current print file and loads and merges
the form set.

Chapter 2
Adding Job and Form Set Rules

28

29

Chapter 3

Job and Form Set Rules
Reference

Job and form set rules help you control how a
processing job is run and how the system processes the
various form sets.

The rules which apply to the job and form set are stored
in the AFGJOB.JDT file, which is called the job definition
table, or JDT file. You add these rules directly into that
file using a text editor.

NOTE: This chapter serves as a reference to job and
form set rules. For information on the rules
which apply to sections and fields, see Section
and Field Rules Reference on page 274.

This chapter discusses rules included in the base system
and supported by the support group. For information on
custom rules, contact your Professional Services
representative.

In this chapter you will find information about:

• JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

30

JDT RULES
REFERENCE

The following pages list and explain the various job and form set rules you can use. The
rules are discussed in alphabetical order on the pages following this table.

The following table lists the rules by function in the first column. The Level column
indicates whether the rule is a job level rule (1) or a form set level rule (2) in the
AFGJOB.JDT file.

The Overflow column indicates the rules which support the overflow feature. The
overflow features allow extract data to flow onto an additional page if needed.

To… Level Use this rule Overflow

add a form set to a recipient
batch

2 IfRecipUsed on page 108 na

add a line record, such as for
OMR marks, to the AFP record
list

2 AddLine on page 38 na

add a text label record to the
AFP record list

2 AddTextLabel on page 39 na

add data from the extract list
into global variables

2 Ext2GVM on page 93 na

add OMR marks on 1-up or on
2-up documents

1 OMRMarks on page 169 na

append a global variable to an
extract file

2 AppendGblToExtr on page 42 na

append the NAFILE.DAT file
data records for the current
form set into an existing
NAFILE.DAT file

2 WriteNAFile on page 247 na

assign form sets to specific
batches

2 AssignToBatch on page 45 na

assign the recipients from a
specific form to the other forms
in a form set

2 MergeRecipsFromForm on
page 161

na

build a form candidate list 2 PXCandidateList on page 187 na

build a form list by loading the
FORM.DAT file into an
internal linked list within the
GenData program

1 BuildMasterFormList on page
73

na

bypass all section processing 2 ForceNoImages on page 98 na

31

change the printer tray during
processing.

2 SetOverflowPaperTray on page
224

na

check a field’s value against
another value for transactions
currently in the generic linked
list of objects

2 BatchByPageCount on page 47 na

check for zero font IDs 2 CheckZeroFontID on page 74 na

copy NA_Offset and
POL_Offset into GVM
variables

2 CreateRecordList on page 77 na

copy the data from a given
GVM variable into another
GVM variable

2 GVM2GVM on page 107 na

create a global variable 1 CreateGlbVar on page 76 na

create a print file that contains a
set of forms filtered by form
name, form description, or
recipient name

2 ServerFilterFormRecipient on
page 215

na

create a list of printers, batches,
and buffers for the comment
(RCB) records

1 InitMerge on page 143 na

create a POL file when doing 2-
up printing

2 WriteOutput on page 248 na

create and populate a list of
records which contain page
ranges and total page counts for
each recipient batch file

1 PageBatchStage1InitTerm on
page 173

na

create the recipient batches
when running in two-step mode

2 WriteRCBFiles on page 249 na

define an overflow variable 1 SetOvFlwSym on page 227 yes

delete records from an extract
list

2 DelExtRecords on page 78 na

dump an extract list to a file 2 DumpExtList on page 90 na

dump an extract list to a file by
transaction

2 DumpExtractListToFile on
page 91

na

To… Level Use this rule Overflow

Chapter 3
Job and Form Set Rules Reference

32

exclude transactions from being
processed in one- and two-step
mode processing

1 BuildExcludeList on page 71 na

execute a DAL script 2 PostTransDAL on page 177 na

execute a DAL script 2 PreTransDAL on page 179 na

execute a DAL script if certain
conditions are met

2 PXTrigger on page 189 na

execute a user function 1 RunUser on page 214 na

execute specific transactions for
testing purposes

2 RULTestTransaction on page
211

na

execute regional date
processing (RDP) rules on
forms.

2 RegionalDateProcess on page
194

na

extract a form set from a DAP
archive using an extract file.

2 LoadFormsetFromArchive on
page 154

na

get a print batch name from an
extract file

2 SetOutputFromExtrFile on
page 221

na

get memory allocation
information

1, 2 AllocDebug on page 41 na

get the company (Key1 field)
from the extract data

2 GetCo on page 103 na

get the current date and use it as
the run date

2 GetRunDate on page 106 na

get the line of business (Key2
field) from the extract data

2 GetLOB on page 104 na

import a single transaction
from a combined NA/POL file

2 ImportNAPOLFile on page
126

na

import a single transaction
from a standard import file

2 ImportFile on page 116 na

import an extract file 2 ImportExtract on page 111 na

import an XML extract file 2 ImportXMLExtract on page
130

na

To… Level Use this rule Overflow

33

import an XML file 2 ImportXMLFile on page 134 na

import multiple transactions
from a combined NAPOL
extract file

2 ImportNAPOLExtract on
page 121

na

initialize input files for AFP
printers

2 MergeAFP on page 160 na

initialize resources such as input
and output files

1 JobInit1 on page 151 na

initialize the overflow feature 1 InitOvFlw on page 144 yes

initialize the system for using
the ConvertWIP rule

1 InitConvertWIP on page 142 na

load a table into a link list 1 LoadListFromTable on page
156

na

load and initialize all forms 2 BuildFormList on page 72 na

load entries from the
SETRCPTB.DAT file based on
the Key fields and transaction
type

2 LoadRcpTbl on page 157 na

load extract data into memory
for each transaction

2 LoadExtractData on page 153 na

load printer and recipient batch
information

1 InitPrint on page 146 na

load text tables into the text
table list

1 LoadTextTbl on page 159 na

load the field rules from the
MASTER.DDT file into an
internal linked list

2 LoadDDTDefs on page 152 na

load the table files listed in the
tables list file

1 LoadTblFiles on page 158 na

maintain the exact data printed
without LIbrary Manager

2 InlineImagesAndBitmaps on
page 148

na

map data you are importing 2 ImageMapImportData on page
109

na

To… Level Use this rule Overflow

Chapter 3
Job and Form Set Rules Reference

34

nest overflow within overflow 2 RULNestedOverFlowProc on
page 203

yes

open NA and POL files 1 InitPageBatchedJob on page
145

na

paginate the form set and merge
field data, page ranges, and total
pages

2 PaginateAndPropagate on page
174

na

parse comment records into the
GVM variable field data

2 ParseComment on page 176 na

print form sets—for multi-step
processing

2 PrintData on page 181 na

print form sets—for single-step
processing

2 PrintFormset on page 182 na

process a queue 1 ProcessQueue on page 184 na

process each field triggered by
the SETRCPTB.DAT file—for
multi-step processing

1 RULStandardFieldProc on page
207

na

process each field triggered by
the SETRCPTB.DAT file—for
single-step processing

1 StandardFieldProc on page 235 na

process each field triggered by
the SETRCPTB.DAT file—for
WIP Transaction Processing

1 WIPFieldProc on page 243 na

process each section triggered
by the SETRCPTB.DAT file—
for multi-step processing

1 RULStandardImageProc on
page 208

na

process each section triggered
by the SETRCPTB.DAT file—
for single-step processing

1 StandardImageProc on page
236

na

process each section triggered
by the SETRCPTB.DAT file—
for WIP Transaction
Processing

1 WIPImageProc on page 244 na

process each transaction listed
in the extract file

2 RULStandardTransactionProc
on page 210

na

To… Level Use this rule Overflow

35

process the extract file and
create information created in
both the GenTrn and GenData
steps

2 NoGenTrnTransactionProc on
page 168

na

process the groups (Key1, Key2
combinations) that exist in the
form set, as opposed to only a
single set of keys specified in
the TRNFILE.DAT file

2 ProcessTriggers on page 186 na

process WIP transactions
manually approved or rejected
in Documaker Workstation

2 WIPTransactions on page 245 na

register the
MapFromImportData rule
which the system then uses
instead of the NoOpFunc rule

2 ReplaceNoOpFunc on page 197 na

remove forms from form sets 2 FilterForm on page 94 na

remove forms from form sets
based on recipients

2 FilterRecip on page 96 na

replace the LoadRcpTbl and
RunSetRcpTbl rules in
implementations created by
Documaker Studio

2 RunTriggers on page 213 na

replace the
RULStandardBaseProc rule
when you use IDS to run
Documaker

1 ServerJobProc on page 217 na

reset the overflow feature 2 ResetOvFlw on page 199 yes

reset the pRPS structure after
the GVM variables have been
remapped.

2 ResetDocSetNames on page
198

na

restart the GenData program 1 RestartJob rule on page 200 na

restart the GenData program 2 RULCheckTransaction on page
201

na

run a user function 1 RunUser on page 214 yes

run Documaker Server from
another application via an XML
job ticket

1 TicketJobProc on page 237 na

To… Level Use this rule Overflow

Chapter 3
Job and Form Set Rules Reference

36

run specified entries in the set
recipient table

2 RunSetRcpTbl on page 212 na

run the GenArc program as
part of single-step processing

2 Archive on page 43 na

run the GenArc program as
part of single-step processing

1 InitArchive on page 141 na

run the GenWIP process to
transfer transactions into WIP

2 ConvertWIP on page 75 na

send a transaction to a batch
based on the number of pages
the system generates when it
processes the transaction

2 BatchingByPageCountINI on
page 49

na

send transactions to a batch
based on data in the extract file

2 BatchingByRecipINI on page
68

na

send a transaction to a specific
print batch based on the
number of page count for each
recipient of all form sets the
system generates when it
processes the transaction

2 BatchingByPageCountPerRecip
INI on page 55

na

send transactions to the manual
batch when specified field
errors occur

1 ErrorHandler on page 92 na

set the amount of memory you
want the system to use to store
the information in Key fields
(speed processing of complex
forms)

1 InitSetRecipCache on page 147 na

set the copy count for all forms
except those listed

2 SetRecipCopyCount2 on page
229

na

set the copy count for all forms
specified

2 SetRecipCopyCount on page
228

na

set the current recipient batch
file

2 GetRCBRec on page 105 na

sort RCB batches before they
are printed (so you can call a
sort program to rearrange the
order of the RCB files)

1 SortBatches on page 230 na

specify a job definition file 1 StandardFieldProc on page 235 na

To… Level Use this rule Overflow

37

specify a print batch file for all
recipients

2 AssignBatWithTbl on page 44 na

specify multiple XDBs to use
across multiple key
combinations

2 MultipleDataDictionaryFiles on
page 166

na

specify the codes the system
should look for in WIP
Transaction Processing

1 MergeWIP on page 162 na

specify the text in the header of
the error file

1 SetErrHdr on page 220 na

switch between print files when
doing 2-up printing

2 ProcessRecord on page 185 na

terminate an XDB instance and
free memory

1 Dictionary on page 79 na

translate error information 1 TranslateErrors on page 238 na

use an XML extract file 2 UseXMLExtract on page 240 na

use an XML extract file 2 XMLFileExtract on page 252 na

write out forms which contain
descriptions of the other forms
in the form set

2 FormDescription on page 99 na

write transactional information
into each page of the print
stream

1 InstallCommentLineCallback
on page 150

na

write out full NA and POL
information as well as certain
export field information

2 DocumentExport on page 80 na

write the page count for each
recipient when doing 2-up
printing

2 WriteRCBWithPageCount on
page 250

na

write the POL set to the
POLFILE.DAT file

2 UpdatePOLFile on page 239 na

To… Level Use this rule Overflow

Chapter 3
Job and Form Set Rules Reference

38

 AddLine
Use this form set level (level 2) rule to add a line record, such as for OMR marks, to the
AFP record list built by the MergeAFP rule.

Syntax ;AddLine;;Top,Bottom,Left,Right;

NOTE: The parameter values are all in absolute FAP coordinates. No shifting is done,
which lets you place the marks anywhere on the printable area of the paper.

Example ;AddLine;;600,1200,600,1000;

This example tells the system to draw a line ¼ inch from the left edge of the page, down
¼ inch from the top of the page, for a length of ½ inch, with a width of a ¼ inch.

See also MergeAFP on page 160

JDT Rules Reference on page 30

Parameter Description

Top location of the top edge of the line

Bottom location of the bottom edge of the line

Left location of the left edge of the line

Right location of the right edge of the line

AddTextLabel

39

 AddTextLabel
Use this form set level (level 2) rule to add a text label record to the AFP record list built
by the MergeAFP rule. This rule is used in 2-up printing.

Syntax ;AddTextLabel;;Text,XPos,YPos,Orientation,Font;

NOTE: Enter the XPos and YPos values in absolute FAP coordinates. No shifting
occurs, which lets you place the marks anywhere on the printable area of the
paper.

Example ;AddTextLabel;;Preliminary,600,600,90,X0DACOBF;

This example tells the system to write the text, Preliminary, on each page beginning ¼ inch
down from top of page and ¼ inch in from the left page edge. The system rotates the text
90 degrees and uses Courier bold 16 pitch as the font.

Here is another example:

;AddTextLabel;;=DAL("page_1.dal"),5740,4500,0,X0DATIN9;

;AddTextLabel;;=DAL("page_1_barcode"),1800,35200,90,X0BC4N9P;

This example includes this DAL script:

BeginSub Page_1

#page_cnt = #page_cnt

page_number = "*8080000001A00000" & #page_cnt & "S*"

#page_cnt += 1

Return(page_number)

EndSub

These rules tell the system to execute the DAL script named page_1 to get the dynamic
data that will be placed on each page beginning 4500 FAP units down from top of the
page and 5740 FAP units in from the left page edge using the Times Roman 9 pitch font.

Here is another example:

;AddTextLabel;;=DAL("page_1_barcode"),1800,35200,90,X0BC4N9P;

This example includes this DAL script:

Parameter Description

Text The text to be added.

XPos The x coordinate of the text.

YPos The y coordinate of the text.

Orientation The optional text rotation (0, 90, 180, or 270 degrees).

Font The AFP code font file name of the font to be used.
Make sure the font has been defined in the font cross-reference (FXR) file and
the font has already been used in a field, text label, or text area on that form set.
In some situations, you may want to add a hidden field which uses the font you
specify in this parameter of the AddTextLabel rule.

Chapter 3
Job and Form Set Rules Reference

40

BeginSub Page_1_barcode

Return(new_barcode_left)

EndSub

This rule tells the system to execute the DAL script named page_1_barcode to get the data
will be placed on each page beginning 35200 FAP units down from top of the page and
1800 FAP units in from the left page edge rotated down 90 degrees. The dynamic data
will be displayed as a 3x9 barcode.

See also MergeAFP on page 160

Rules Used for 2-up Printing on page 27

JDT Rules Reference on page 30

AllocDebug

41

 AllocDebug
Use this rule to get information on the number of memory bytes allocated and freed each
time there is new maximum value of allocates not being freed. This rule outputs its error
messages to the LOGFILE.DAT file instead of the ERRFILE.DAT file. You can use this
rule to find cumulative memory allocations not reported as leaks.

The AllocDebug rule is unique in that you can use it at any level in the AFGJOB.JDT file
because it is designed to run in all three processing states during rule Pre- and Post-
processing.

You can place this rule in the <Base Rules>, <Base Form Set Rules>, <Base Image
Rules>, and <Base Field Rules> sections in the AFGJOB.JDT file.

Syntax ;AllocDebug;;;

Example ;AllocDebug;;;

See also JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

42

 AppendGblToExtr
Use this form set level rule (level 2) to append a global variable to the extract file. You can
use this rule to place selected fields in the trigger file into an extract file.

Syntax ;MYW32->AppendGblToExtr;2;ExtractFile_Key,GBL_Var GBL_Var
...GBL_Var;

In the data field, enter the name of the key the extract record should append to and the
names of all global variables you want to appended to it.

You define the maximum length of the extract file record using this INI option:

< TRN_File >

MaxExtRecLen =

If you are appending multiple GVM variables and are using an extract file key, the
accumulated length should not exceed the maximum extract record length defined in the
MaxExtRecLen option.

NOTE: If you enter the string NOHEADER as the ExtractFile_Key, the system appends
global variables to the extract list without a header key.

If the accumulated length exceeds MaxExtRecLen, the rule fails and issues the following
error:

Error in AppendGblToExtr(): Global variable <> exceeds maximum
length. Check MaxExtRecLen in INI group <TRN_FILE>

Example ;AppendGblToExtr;;;

See also JDT Rules Reference on page 30

Archive

43

 Archive
Use this form set level rule (level 2), along with the InitArchive rule, to run the GenArc
program as part of single-step processing.

The InitArchive rule checks the INI options in the Trigger2Archive control group,
initializes the database, opens the APPIDX.DFD and CAR files, and perform other steps
to initialize archive.

The Archive rule then unloads the current form set and converts field data for archive
using the INI options in the Trigger2Archive control group.

Syntax ;Archive;2;;

Example Here is an example:

< Base Form Set Rules >

;Archive;2;;

See also InitArchive on page 141

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

44

 AssignBatWithTbl
Use this form set level rule (level 2) to specify the print batch file for all recipients based
on data found in the extract list.

Syntax ;MYW32->AssignBatWithTbl;2;ASSNBTCH.TBL,1,XYZ (D) (I,B,S1,H);;

In the data field, enter the name of the file which contains the batch assignment table.
Entering the full path is optional.

After the file name, specify the search mask which if found tells the system to add the
recipients (D) to the batch. If no record is found that matches the mask, recipients I,B,S1
and H are added to the batch.

The first set of parentheses contains the recipient list of draft recipients, the second set
contains all other recipients the implementation uses.

The syntax for the batch assignment table is as follows. This is a small example with three
entries, you can include more.

;BATCH2;*;;

;BATCH1;1,123;;

;BATCH3;1,456;;

(more lines could follow)

There are three semicolon-delimited fields, the first is a batch name, the second is a search
mask which will be run against the extract data list for a possible match. The search mask
field consists of one or more offset,data pairs. If there is data from different records,
delimit the search masks by entering a pipe symbol (|).

Example ;BATCH1;1,123|1,546,18,XXX;HO,I,B1,B2;

The first record who’s search mask matches a record in the extract data, moving from top
to bottom through the list, will be used to determine the batch name for the processing
of that transaction.

There must always be an entry which has an asterisk (*) as its search mask. This is the
default batch the system uses if no matches are found. You must specify a default batch.

In the third field you can enter a set of recipient codes delimited by commas. If you enter
this information, the system will only print forms for the recipients you specify. Note that
the printed recipients will be a subset of the recipients specified.

NOTE: This rule can produce errors if it is run before the form set is created. You must
place this rule after any rule which is used to build the form set. Normally, you
would use the BuildFormList rule to build the form set.

See also JDT Rules Reference on page 30

AssignToBatch

45

 AssignToBatch
Use this form set level rule (level 2) to identify form sets from a particular source and place
those form sets into a special batch for review purposes. For instance, you can use this
rule to identify policies from a particular agent, operator, or branch and place those
policies into a special batch.

NOTE: You can insert several AssignToBatch rules in the base rules file (AFGJPB.JDT).
All that return true will be placed in the appropriate recipient batch.

Syntax ;AssignToBatch;;(parameters);

This table explains the order in which rules are assigned to recipient batches:

Example Here is an excerpt from an AFGJOB.JDT file:

<Base Rules>

;RULStandardJobProc;;;

…

…

<Base Form Set Rules>

;RulStandardTransactionProc;;;

…

…

;AssignToBatch;;Manual=1,Patch399,31,GVM,190,AssignToBatch;

;IfRecipUsed;2;Batch1=Customer;

…

Parameter Description

Name The recipient batch name to which the transaction should be assigned.

Delimiter An equal sign (=). This is required.

Search mask One or more pairs of offsets and data (search criteria) in a comma delimited list.
Here is an example:

;AssignToBatch;;Manual=1,Patch399,31,AssignToBatch;

This example searches the records of each transaction for the string Patch399 at
offset 1 and the string AssignToBatch at offset 31. If a match is found then this
transaction will be assigned to the Manual batch.

Batch Order of precedence

Error If an error occurs that causes the batch assignment of the transaction.

Manual If the POWType rule exists in any triggered section.

Manual If the KickToWIP rule exists and its condition are met.

xxxxxx AssignToBatch rule assignment if the rule exists and its search criteria is met.

xxxxxx Base form set rules such as: IfRecipUsed, BatchingByPageCountINI,
BatchingByRecipINI, and so on.

Chapter 3
Job and Form Set Rules Reference

46

…

Any transaction that has a record that matches the search criteria (character strings:
'Patch399' at offset 1, 'GVM' at offset 31 and ' AssignToBatch' at offset 190) will be
assigned to the Manual batch.

See also IfRecipUsed on page 108

JDT Rules Reference on page 30

BatchByPageCount

47

 BatchByPageCount
Use this form set level (level 2) rule to check the value of a field supplied for processing
against that for transactions currently in the linked list of objects. These transactions are
populated by the CreateRecordList rule. This rule is also used with multi-mail processing.

If the field has changed, the system writes the records to the recipient batch file, based on
the total page count for all recipients of all form sets in the set of transactions. If you omit
the parameter, the system writes records in the generic linked list of objects to the
appropriate recipient batch files, based on the page count for the individual records.

If you are using multi-mail, the system updates the TotPage field of the recipient batch
record to reflect the total page count for all recipients of all transactions in the multi-mail
transaction set.

NOTE: Keep in mind this rule calculates the page count at the transaction level, not the
recipient level.

Syntax ;BatchByPageCount;;(MMField);

NOTE: If you use this rule, you must also use the PageBatchStage1InitTerm,
CreateRecordList, and WriteRCBWithPageCount rules.

Example ;BatchByPageCount;;MMField=MM_Field;

In this example, the system uses the multi-mail code defined in each transaction for
batching purposes. The system checks the value in each transaction against that for
transactions currently a VMMList, which is populated by CreateRecordList rule.

If the field has changed, the records are written to the recipient batch based on the total
page count for all recipients for all form sets in the entire set of transactions.

NOTE: Because the end of a multi-mail transaction set is not known until after the
following transaction, each multi-mail transaction set (or each transaction, in the
non multi-mail situation) is written out during processing of the following
transaction.

See also Rules Used for 2-up Printing on page 27

BatchingByPageCountINI on page 49

BatchingByPageCountPerRecipINI on page 55

BatchingByRecipINI on page 68

Parameter Description

MMField (Optional) Name of the INI option in the Trn_Fields control group which
defines where the multi-mail code will be found in each transaction.

Chapter 3
Job and Form Set Rules Reference

48

CreateRecordList on page 77

PageBatchStage1InitTerm on page 173

PrintFormset on page 182

WriteRCBWithPageCount on page 250

JDT Rules Reference on page 30

BatchingByPageCountINI

49

 BatchingByPageCountINI
Use this form set level rule (level 2) to send a transaction to a specific print batch based
on the number of pages the system generates when it processes the transaction.

NOTE: The BatchingByPageCountINI rule uses the total page count regardless of
recipient and not a specific recipient page count.

Syntax ;BatchingByPageCountINI;;;

You specify which transactions are assigned to the print batch using INI options in these
control groups:

You must have these control groups in your FSISYS.INI or FSIUSER.INI file.

BatchingByRecip
control group

This control group must contain these INI options:

< BatchingByRecip >

DefaultBatch = DefaultOutput

Batch_Recip_Def =

Use the DefaultBatch option to assign a name to the default batch, such as DefaultOutput.
Do not enclose the name in quotation marks.

Use the Batch_Recip_Def option to define the conditions the system will use to
determine which batch it should choose for each transaction. The syntax for the
Batch_Recip_Def option is shown here:

Condition; ”BatchName”; Recipient

You can define a series of these options to specify all of the conditions necessary to
determine the desired batching for your transactions.

NOTE: For a complete description of error and manual batches, see the Documaker
Server System Reference.

Control Group Description

BatchingByRecip The name is defined by the system, as shown here.

Print_Batches The name is defined by the system, as shown here.

PrinterInfo The name is defined by the system, as shown here.

Batch File Name You define the name of this control group.

Printed Output File You define the name of this control group.

Chapter 3
Job and Form Set Rules Reference

50

The system processes the information in this order:

1 If the conditions are met, the print batch you specified is used as the batch for the
form set, provided the form set’s recipients are specified in the recipient list for the
batch. In addition, the system writes the batch record for the form set to the batches
for the specified recipients.

2 If a transaction does not meet the condition for the first Batch_Recip_Def option,
the system continues through the series of Batch_Recip_Def options until the
condition for a Batch_Recip_Def option is met.

Parameter Description

Condition This lets you specify a condition that must be satisfied before the transaction is
assigned to the print batch and recipients. You can use the True keyword to set
the condition:
True - Enter this keyword to specify that the condition must always be true. This
tells the system to send the form set to the specified print batch if the recipient is
specified in the recipient list for the batch.
You can also use these user-defined options instead of the keyword:
Search mask – the search mask consists of one or more offset, data pairs. See Search
Criteria on page 270.
Error - if the error batch flag is set by another rule, send the form set to the
specified print batch (if the form’s recipient is specified in the recipient list for the
batch). For example, an error occurs if the Host Required field is set on a Move_It
rule and the data is missing.
Manual - if the manual batch flag is set by another rule, send the form set to the
specified print batch (if the recipient is specified in the recipient list for the batch).
You could also use the KickToWip rule.
Condition name - a condition name defined in the condition table. See Using
Condition Tables and the Record Dictionary on page 491.

Batch
Name

You can specify the batch name by specifying the recipient name, the batch name,
or using a batch name defined in the Record Dictionary.
Recipient name - use one of the names contained in the Recip_Names control group
as batch name. Enclose this name in quotes, such as “customer”.
Batch name - a batch name extract from the extract file. The format is a comma-
delimited field: a search mask followed by a blank space and then an offset,
followed by the length of name to use.
Dict() – a batch name defined in the Record Dictionary. Enclose this name in
quotes, such as “batch1”.
Use the pipe symbol (|) to indicate separate items concatenated together, such as
print1|print2.

Recipients You can specify recipients using a keyword (All) or you can list specific recipients.
All - Enter this keyword to tell the system to use all recipients in the Recip_Names
control group.
list - a list of recipient names. If you list the names, separate each recipient with a
comma or space, such as customer,agent.

BatchingByPageCountINI

51

3 If a transaction does not meet any of the Batch_Recip_Def criteria, the transaction
is placed in the batch specified in the DefaultBatch option. If the DefaultBatch
option is not defined, an error occurs. The order in which you list the
Batch_Recip_Def options determines how the system determines recipient batches.
Put the most likely batches first. Use the All keyword rather than listing all recipients
when appropriate.

Print_Batches control
group

This control group must include at least one entry for each unique batch name in the
BatchingByRecip control group.

< Print_Batches >

Batch name = .\batch\page1

PrinterInfo control
group

This control group must include an entry for each unique batch file name listed in the
Print_Batches control group. This control group has the following option:

< PrinterInfo >

Printer = Page1Prt

BatchFileName control
group

You define the name for this control group, such as Page1. You must have a
BatchFileName control group for each batch name option defined in the Print_Batches
control group. This control group must include at least two options. The options are
shown here:

< Page1 >

Printer = (file name)

PageRange = 1,3

PrintedOutputFile
control group

You define the name for this control group, such as Page1Prt. This control group must
include as a minimum one option. There must be a PrintedOutputFile control group for
each printer option defined in each BatchFileName control group, as shown here:

< Page1Prt >

Port = .\print\page1prt.pcl

Option Description

Batch name You define the name and path for each batch file, such as .\batch\page1.

Option Description

Printer You define the name for each batch file listed in the Print_Batches control
group, such as Page1Prt.

Option Description

Printer You define the name for the printed output file, such as Page1Prt.

PageRange The minimum and maximum number of pages, separated by a comma. The
example above show one as the minimum with three as the maximum.

Option Description

Port You define the name and path for the printed output file, such as
print\page1prt.pcl.

Chapter 3
Job and Form Set Rules Reference

52

Example This single-step processing example sends transactions to print batches based on the
number of printed pages the system generated as it processed each transaction. The
following INI settings and JDT rules tell the system to place the transaction form sets it
generates into specific print batches and printed output files based on the page counts.

Here is an example of the AFGJOB.JDT file:

/* JDT Rules showing use of BatchingByPageCountINI rule */

<Base Rules>

;RULStandardJobProc;;Always the first job level rule;

….

…

;InitSetrecipCache;;;

;InitPrint;;; required to execute GenData/GenPrint as single step;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;first transaction level rule when not
using GenTrn;

…

…

;PrintFormset;;; required to execute GenData/GenPrint as single step;

;WriteOutput;;;

;WriteNaFile;;;

;CreateRecordList;;;

;WriteRCBWithPageCount;2;;

;BatchingByPageCountINI;2;;

;ProcessQueue;;PostPaginationQueue;

;PaginateAndPropagate;;;

…

…

Here are examples of the FSISYS.INI file control groups and options:

< BatchingByRecip >

DefaultBatch = DefautOutput

Batch_Recip_Def= True;"Page1";All

Batch_Recip_Def= True;"Pages2";All

Batch_Recip_Def= True;"Pages4";All

< Print_Batches >

DefaultOutput = .\Batch\DefaultOutput

Page1 = .\Batch\Page1

Pages2 = .\Batch\Pages2

Pages4 = .\Batch\Pages4

< PrinterInfo >

Printer = DefaultOutputPrt

If the transaction has... Print_Batches Printed Output File

 1 page .\Batch\Page1 .\Print\Page1Prt.pcl

 2 to 3 pages .\Batch\Pages2 .\Print\Pages2Prt.pcl

 4 to 10 pages .\Batch\Pages4 .\Print\Pages4Prt.pcl

more the 10 pages .\Batch\DefaultOutput .\Print\Default.pcl

BatchingByPageCountINI

53

Printer = Page1Prt

Printer = Pages2Prt

Printer = Pages4Prt

< DefaultOutput >

Printer = DefaultOutputPrt

< Page1 >

Printer = Page1Prt

PageRange = 1,1

< Pages2 >

Printer = Pages2Prt

PageRange = 2,3

< Pages4 >

Printer = Pages4Prt

PageRange = 4,10

< DefaultOutputPrt >

Port = .\Print\DefaultOutputprt.pcl

< Page1Prt >

Port = .\Print\Page1Prt.pcl

< Pages2Prt >

Port = .\Print\Pages2Prt.pcl

< Pages4Prt >

Port = .\Print\Pages4Prt.pcl

In addition to selecting by page count, this rule also has all of the functionality of
BatchingByRecipINI rule. Here is an example of how you set it up:

< BatchingByRecip >

Batch_Recip_Def= 30,5;"BATCH1";ALL

Batch_Recip_Def= 51,1;"BATCH2";ALL

Batch_Recip_Def= 30,2;"BATCH3";ALL

Batch_Recip_Def= True;"BATCH4";ALL

Batch_Recip_Def= True;"BATCH5";ALL

< Batch1 >

Printer = Printer1

PageRange = 1,9999

< Batch2 >

Printer = Printer2

PageRange = 1,9999

< Batch3 >

Printer = Printer3

PageRange = 1,9999

< Batch4 >

Printer = Printer4

PageRange = 1,6

< Batch5 >

Printer = Printer5

PageRange = 7,9999

The first Batch_Recip_Def option tells the system to place into BATCH1 all recipients
which have a 5 at offset 31. If a transaction does not meet the first condition, processing
continues through the INI list. Processing stops once the appropriate batch is found.

Therefore, if no condition is met by the third option, the transaction is assigned to
BATCH4 or BATCH5 based on the page count. If the page count is less than seven, it is
assigned to BATCH4. If the page count is sever or greater, it is assigned to BATCH5.

Chapter 3
Job and Form Set Rules Reference

54

The order in which you list the Batch_Recip_Def options determines how the system
determines recipient batches. Put the most likely batches first. Use All rather listing all
recipients when appropriate.

Keep in mind that when using this rule in this manner you should always include the
PageRange parameter in each group, even if the batch is not associated with page counts.

See also Rules Used for 2-up Printing on page 27

BatchByPageCount on page 47

BatchingByRecipINI on page 68

KickToWip on page 372

Move_It on page 393

WriteRCBWithPageCount on page 250

JDT Rules Reference on page 30

BatchingByPageCountPerRecipINI

55

 BatchingByPageCountPerRecipINI
Use this form set level rule (level 2) to send a transaction to a specific print batch based
on the number of page count for each recipient of all form sets the system generates when
it processes the transaction.

Syntax ;BatchingByPageCountPerRecipINI;;;

You specify which transactions are assigned to the print batch using INI options in these
control groups:

• BatchingByRecip

• Print_Batches

• PrinterInfo

• BatchFileName (You can define the name of this control group.)

• PrintedOutputFile (You can define the name of this control group.)

You must have these control groups in your FSISYS.INI or FSIUSER.INI file.

BatchingByRecip
control group

This control group must contain these INI options:

< BatchingByRecip >

DefaultBatch = DefaultOutput

Batch_Recip_Def=

Use the DefaultBatch option to assign a name to the default batch, such as
DefaultOutput. Do not enclose the name in quotation marks.

Use the Batch_Recip_Def option to define the conditions the system should use to
determine which batch it should choose for each transaction. The syntax for the
Batch_Recip_Def option is shown here:

Condition; "BatchName"; Recipient

You can define a series of these options to specify all of the conditions necessary to
determine the desired batching for your transactions.

Chapter 3
Job and Form Set Rules Reference

56

The system processes the information in this order:

1 If the conditions are met, the print batch you specified is used as the batch for the
form set, provided the form set's recipients are specified in the recipient list for the
batch. In addition, the system writes the batch record for the form set to the batches
for the specified recipients.

Parameter Description

Condition This lets you specify a condition that must be satisfied before the transaction
is assigned to the print batch and recipients. You can use the True keyword to
set the condition:
True - Enter this keyword to specify that the condition must always be true.This
tells the system to send the form set to the specified print batch if the recipient
is specified in the recipient list for the batch.
You can also use these user-defined options instead of the keyword:
Search mask - The search mask consists of one or more offset, data pairs.
Error - If the error batch flag is set by another rule, send the form set to the
specified print batch (if the form's recipient is specified in the recipient list for
the batch). For example, an error occurs if the Host Required field is set on a
Move_It rule and the data is missing.
Manual - If the manual batch flag is set by another rule, send the form set to the
specified print batch (if the recipient is specified in the recipient list for the
batch). You could also use the KickToWIP rule.
Condition name - a condition name defined in the condition table.
?XDB token - a token name that equates to a named item in the XDB.
=GVM (expression) - returns the value of a GVM symbol named in the
expression.
=DAL (expression) - returns the value of a DAL script named in the expression.
=(expression) - returns the value of a DAL symbol represented in the expression.

BatchName You can specify the batch name by specifying the recipient name, the batch
name, or using a batch name defined in the Record Dictionary.
Recipient name - use one of the names contained in the Recip_Names control
group as batch name. Enclose this name in quotes, as shown here:

“customer”

Batch name - a batch name extract from the extract file. The format is a comma-
delimited field: a search mask followed by a blank space and then an offset,
followed by the length of name to use.
Dict() - a batch name defined in the Record Dictionary. Enclose this name in
quotes, as shown here:

“batch1”

Use the pipe symbol (|) to indicate separate items concatenated together, as
shown here:

print1|print2

Recipients You can specify recipients by using a keyword (All) or by listing specific
recipients.
All - Enter this keyword to tell the system to use all recipients in the
Recip_Names control group.
list - a list of recipient names. If you list the names, separate each recipient with
a comma or space, such as customer, agent.

BatchingByPageCountPerRecipINI

57

2 If a transaction does not meet the condition for the first Batch_Recip_Def option,
the system continues through the series of Batch_Recip_Def options until the
condition for a Batch_Recip_Def option is met.

3 If a transaction does not meet any of the Batch_Recip_Def criteria, the transaction
is placed in the batch specified in the DefaultBatch option. If the DefaultBatch
option is not defined, an error occurs. The order in which you list the
Batch_Recip_Def options determines how the system determines recipient batches.
Put the most likely batches first. Use the All keyword rather than listing all recipients
when appropriate.

Print_Batches control
group

This control group must include at least one entry for each unique batch name in the
BatchingByRecip control group.

< Print_Batches >

Batch name = ..\batch\AllOnePageBatch.bch

PrinterInfo control
group

This control group must include an entry for each unique batch file name listed in the
Print_Batches control group.

< PrinterInfo >

Printer = Printer1

BatchFileName control
group

You define the name for this control group, such as AllOnePageBatch. You must have a
BatchFileName control group for each batch name option defined in the Print_Batches
control group. This control group must include at least these two options. The options
are shown here:

< AllOnePageBatch >

Printer = (file name)

PageRange = 1,1

PrintedOutputFile
control group

You define the name for this control group, such as Printer1. This control group must
include as a minimum one option. There must be a PrintedOutputFile control group for
each printer option defined in each BatchFileName control group, as shown here:

< Printer1 >

Port = ..\PrintFiles\AllOnePageBatch.PCL

Option Description

Batch name You define the name and path for each batch file, such as
..\batch\AllOnePageBatch.bch

Option Description

Printer You define the name for each batch file listed in the Print_Batches control group,
such as Printer1.

Option Description

Printer You define the name for the printed output file, such as Printer1.

PageRange Enter the minimum and maximum number of pages, separated by a comma.
The example above shows one as the minimum and the maximum.

Chapter 3
Job and Form Set Rules Reference

58

INI File Examples
Here are examples of the FSISYS.INI file control groups and options for several different
scenarios

Scenario 1 In this scenario, we will be showing how to set up a True condition. This tells the system
to send the form set to the specified print batch if the recipient is specified in the recipient
list for the batch. Here is an example from the FSISYS.INI file:

< BatchingByRecip >

DefaultBatch = Default

Batch_Recip_Def = True;"INSURED1PAGE";INSURED

Batch_Recip_Def = True;"COMPANY1PAGE";COMPANY

Batch_Recip_Def = True;"AGENT1PAGE";AGENT

Batch_Recip_Def = True;"INSUREDMULTIPAGE";INSURED

Batch_Recip_Def = True;"COMPANYMULTIPAGE";COMPANY

Batch_Recip_Def = True;"AGENTMULTIPAGE";AGENT

Batch_Recip_Def = Manual;"MANUAL";ALL

Batch_Recip_Def = Error;"ERROR";ALL

For each recipient, all one-page form sets go into one batch as shown here:

< Insured1Page >

Printer = Printer1

PageRange = 1,1

< Company1Page >

Printer = Printer2

PageRange = 1,1

< Agent1Page >

Printer = Printer3

PageRange = 1,1

All forms sets with two or more pages for each recipient go into a different batch, as
shown here:

< InsuredMultipage >

Printer = Printer4

PageRange = 2,99999

< CompanyMultipage >

Printer = Printer5

PageRange = 2,99999

< AgentMultipage >

Printer = Printer6

PageRange = 2,99999

< Default >

Printer = PDefault

Form sets that need to go into WIP are in the manual batch:

< Manual >

Printer = Printer7

PageRange = 1,99999

Option Description

Port You define the name and path for the printed output file, such as
..\PrintFiles\AllOnePageBatch.PCL

BatchingByPageCountPerRecipINI

59

Form sets with errors go into the error batch:

< Error >

Printer = Printer8

PageRange = 1,99999

This excerpt shows how to set the Print_Batches, PrinterInfo, and PrintedOutputFile
control groups:

< Print_Batches >

Default = default.bch

Insured1Page = insured1page.bch

Company1Page = company1page.bch

Agent1Page = agent1page.bch

InsuredMultipage = insuredmultipage.bch

CompanyMultipage = companymultipage.bch

AgentMultipage = agentmultipage.bch

Manual = manual.bch

Error = error.bch

< Printer1 >

Port = data\insured1page.pcl

< Printer2 >

Port = data\company1page.pcl

< Printer3 >

Port = data\agent1page.pcl

< Printer4 >

Port = data\insuredmultipage.pcl

< Printer5 >

Port = data\companymultipage.pcl

< Printer6 >

Port = data\agentmultipage.pcl

 < Printer7 >

Port = data\manual.pcl

< Printer8 >

Port = data\error.pcl

< PDefault >

Port = data\pdefault

< PrinterInfo >

Printer = Printer1

Printer = Printer2

Printer = Printer3

Printer = Printer4

Printer = Printer5

Printer = Printer6

Printer = Printer7

Printer = Printer8

Printer = PDEFAULT

Chapter 3
Job and Form Set Rules Reference

60

Scenario 2 This scenario defines two simple conditions in a condition table based on information in
the data dictionary. In the condition table two conditions are set which define the two
company types, representing the two different company transactions in the extract file.
Condition 1 (Cond1) searches for an S for Sampco company transactions. Condition 2
(Cond2) searches for an F for FSI company transactions. This scenario creates batches
for recipients by company and page count. The data dictionary and condition table for this
scenario are shown below:

From the data dictionary:

<Records>

Header = Search(11,HEADERREC)

<Variables>

CompanyType = Record(Header) Offset(1) Length(1) Type(Char)

From the condition table:

< Conditions >

Cond1 : CompanyType = "S"

Cond2 : CompanyType = "F"

From the FSISYS.INI file:

< BatchingByRecip >

DefaultBatch = Default

Batch_Recip_Def = COND(Cond1);"SAMPCO1PAGE";INSURED

Batch_Recip_Def = COND(Cond1);"SAMPCOMULTIPAGE";INSURED

Batch_Recip_Def = COND(Cond2);"FSI1PAGE";INSURED

Batch_Recip_Def = COND(Cond2);"FSIMULTIPAGE";INSURED

Batch_Recip_Def = Manual;"MANUAL";ALL

Batch_Recip_Def = Error;"ERROR";ALL

< Default >

Printer = PDefault

For each recipient, all one-page form sets for each company go into a separate batch as
shown here:

< Sampco1Page >

Printer = Printer1

PageRange = 1,1

< FSI1Page >

Printer = Printer3

PageRange = 1,1

For each recipient, all form sets with two or more pages go into a separate batch for each
company as shown here:

< SampcoMultipage >

Printer = Printer2

PageRange = 2,99999

< FSIMultipage >

Printer = Printer4

PageRange = 2,99999

Form sets that go to WIP are put into the manual batch:

< Manual >

Printer = Printer5

PageRange = 1,99999

BatchingByPageCountPerRecipINI

61

Form sets with errors go into the error batch:

< Error >

Printer = Printer6

PageRange = 1,99999

This excerpt shows how to set the Print_Batches, PrinterInfo, and PrintedOutputFile
control groups:

< Print_Batches >

Default = default.bch

Sampco1Page = sampco1page.bch

SampcoMultipage = sampcomultipage.bch

FSI1Page = fsi1page.bch

FSIMultipage = fsimultipage.bch

Manual = manual.bch

Error = error.bch

< Printer1 >

Port = data\sampco1page.pcl

< Printer2 >

Port = data\sampcomultipage.pcl

< Printer3 >

Port = data\fsi1page.pcl

< Printer4 >

Port = data\fsimultipage.pcl

< Printer5 >

Port = data\manual.pcl

< Printer6 >

Port = data\error.pcl

< PDEFAULT >

Port = data\pdefault

< PrinterInfo >

Printer = Printer1

Printer = Printer2

Printer = Printer3

Printer = Printer4

Printer = Printer5

Printer = Printer6

Printer = PDefault

< Tables >

Path = .\tables\

Recipient = reciptbl.dat

Conditions = condition.tbl

< DataDictionary >

Name = datadict.tbl

< SymLookup >

MaxCache = 1000

LeastFrequent = Yes

Chapter 3
Job and Form Set Rules Reference

62

Scenario 3 This scenario looks for a token from the XDB to send form sets to agent batches. Here
is an excerpt from the FSISYS.INI file:

< BatchingByRecip >

DefaultBatch = Default

Batch_Recip_Def = ?AGENT NAME;"AGENTNAME1PAGE";AGENT

Batch_Recip_Def = ?AGENT NAME;"AGENTNAMEMULTIPAGE";AGENT

Batch_Recip_Def = Manual;"MANUAL";ALL

Batch_Recip_Def = Error;"ERROR";ALL

If the token is not found, the system sends form sets to the Default batch:

< Default >

Printer = PDefault

If a token is found, the system sends all one-page transactions to an Agent batch
specifically for one-page form sets:

< AgentName1Page >

Printer = Printer1

PageRange = 1,1

If a token is found, the system sends all transactions that are more than one page to an
Agent batch designed to hold forms sets that consist of two or more pages:

< AgentNameMultipage >

Printer = Printer2

PageRange = 2,99999

Form sets that go to WIP are put into the manual batch:

< Manual >

Printer = Printer3

PageRange = 1,99999

Form sets with errors go into the error batch:

< Error >

Printer = Printer4

PageRange = 1,99999

This excerpt shows how to set the Print_Batches, PrinterInfo, and PrintedOutputFile
control groups:

< Print_Batches >

Default = default.bch

AgentName1Page = agentname1page.bch

AgentNameMultipage = agentnamemultipage.bch

Manual = manual.bch

Error = error.bch

< Printer1 >

Port = data\agentname1page.pcl

< Printer2 >

Port = data\agentnamemultipage.pcl

< Printer3 >

Port = data\manual.pcl

< Printer4 >

Port = data\error.pcl

< PDefault >

Port = data\pdefault

< PrinterInfo >

BatchingByPageCountPerRecipINI

63

Printer = Printer1

Printer = Printer2

Printer = Printer3

Printer = Printer4

Printer = PDefault

Scenario 4 Like the previous scenario, this scenario sends form sets to agent batches depending on
the number of pages. This scenario, however, uses a GVM variable as the condition and
an XML extract file. In the AFGJOB.JDT, you must first create the global variable you
are going to use for the condition. In this scenario, it is called AGT1. To create it, use the
CreateGlbVar rule. Then, use the Ext2GVM rule to map the data to the GVM variable
named AGT1. This rule is placed after the LoadExtractData rule in the AGFJOB.JDT
file. If the GVM variable (AGT1) holds a value, the condition is considered true and the
transaction is written to the appropriate batch by the page count. If the GVM variable
(AGT1) does not hold a value, the condition is considered false and the transaction will
be written to the Default batch. Here is an example:

/* This base (this implementation) uses these rules. */

<Base Rules>

;RULStandardJobProc;1;Always the first job level rule;

;SetErrHdr;1;*:;

;SetErrHdr;1;*:--;

;SetErrHdr;1;*: FormMaker Data Generation (Base);

;SetErrHdr;1;*: ;

;SetErrHdr;1;***: Transaction: ***PolicyNum***;

;SetErrHdr;1;***: Symbol: ***Symbol***;

;SetErrHdr;1;***: Module: ***Module***;

;SetErrHdr;1;***: State: ***State***;

;SetErrHdr;1;***: Company Name (after ini conversion):
Company;

;SetErrHdr;1;***: Line of Business (after ini conversion):
Lob;

;SetErrHdr;1;***: Trans Type: ***TransactionType***;

;SetErrHdr;1;***: Run Date: ***Rundate***;

;SetErrHdr;1;*:--;

;CreateGlbVar;1;TXTLst,PVOID;

;CreateGlbVar;1;TblLstH,PVOID;

;CreateGlbVar;1;AGT1,CHAR_ARRAY,15;

;JobInit1;1;;

;LoadDDTDefs;1;;

;InitOvFlw;1;;

;LoadTextTbl;1;;

;LoadTblFiles;1;;

;SetOvFlwSym;1;CGDECBDOVF,Q1GDBD,5;

;BuildMasterFormList;1;4;

<Base Form Set Rules>

;RULStandardTransactionProc;2;Always the first transaction level
rule;

;LoadExtractData;2;;

;GetCo;2;11,HEADERREC 35,3;

;GetLOB;2;11,HEADERREC 40,3;

;Ext2Gvm;2;!/COMPANY/FORMS/FORM/SECTION/FIELDS/AGENTNAME 1,15,AGT1;

;ResetOvFlw;2;;

;BuildFormList;2;;

;LoadRcpTbl;2;;

;UpdatePOLFile;2;;

Chapter 3
Job and Form Set Rules Reference

64

;RunSetRcpTbl;2;;

;BatchingByPageCountPerRecipINI;;;

Here is an example of the FSISYS.INI file:

< BatchingByRecip >

DefaultBatch = Default

Batch_Recip_Def = =GVM("AGT1"),;"AGENTNAME1PAGE";AGENT

Batch_Recip_Def = =GVM("AGT1"),;"AGENTNAMEMULTIPAGE";AGENT

Batch_Recip_Def = Manual;"MANUAL";ALL

Batch_Recip_Def = Error;"ERROR";ALL

< Default >

Printer = PDefault

If the GVM variable holds a value, the system sends all one-page transactions to an Agent
batch specifically for one-page form sets:

< AgenName1Page >

Printer = Printer1

PageRange = 1,1

If the GVM variable holds a value, the system sends all transactions that are more than
one page to an Agent batch designed to hold form sets that consist of two or more pages:

< AgentNameMultipage >

Printer = Printer2

PageRange = 2,99999

Form sets that go into WIP are put in the manual batch:

< Manual >

Printer = Printer3

PageRange = 1,99999

Form sets with errors go into the error batch:

< Error >

Printer = Printer4

PageRange = 1,99999

This excerpt shows how to set the Print_Batches, PrinterInfo, and PrintedOutputFile
control groups:

< Print_Batches >

Default = default.bch

AgentName1Page = agentname1page.bch

AgentNameMultipage = agentnamemultipage.bch

Manual = manual.bch

Error = error.bch

< Printer1 >

Port = data\agentname1page.pcl

< Printer2 >

Port = data\agentnamemultipage.pcl

< Printer3 >

Port = data\manual.pcl

< Printer4 >

Port = data\error.pcl

< PDefault >

Port = data\pdefault

< PrinterInfo >

Printer = Printer1

BatchingByPageCountPerRecipINI

65

Printer = Printer2

Printer = Printer3

Printer = Printer4

Printer = PDefault

Scenario 5 Like scenario 4, this scenario sends form sets to agent batches depending on the number
of pages. This scenario, however, uses a DAL script called agent.dal to set the condition
along with using an XML extract file. In the AFGJOB.JDT, we must use a PreTransDAL
to call the DAL script to set the condition. In this scenario, it is called AGT1. This rule is
placed after the RunSetRcpTbl rule in the AGFJOB.JDT file. Once the DAL script set a
value to the DAL variable, the condition is considered true and the transaction is written
to the respective batch for the Batch_Recip_Def condition by page count. If the DAL
script does not set a value to the DAL variable, the condition is considered false and the
transaction is written to the Default batch instead. Here is an example:

/* This base (this implementation) uses these rules. */

<Base Rules>

;RULStandardJobProc;1;Always the first job level rule;

;SetErrHdr;1;*:;

;SetErrHdr;1;*:--;

;SetErrHdr;1;*: FormMaker Data Generation (Base);

;SetErrHdr;1;*: ;

;SetErrHdr;1;***: Transaction: ***PolicyNum***;

;SetErrHdr;1;***: Symbol: ***Symbol***;

;SetErrHdr;1;***: Module: ***Module***;

;SetErrHdr;1;***: State: ***State***;

;SetErrHdr;1;***: Company Name (after ini conversion):
Company;

;SetErrHdr;1;***: Line of Business (after ini conversion):
Lob;

;SetErrHdr;1;***: Trans Type: ***TransactionType***;

;SetErrHdr;1;***: Run Date: ***Rundate***;

;SetErrHdr;1;*:--;

;CreateGlbVar;1;TXTLst,PVOID;

;CreateGlbVar;1;TblLstH,PVOID;

;JobInit1;1;;

;LoadDDTDefs;1;;

;InitOvFlw;1;;

;LoadTextTbl;1;;

;LoadTblFiles;1;;

;SetOvFlwSym;1;CGDECBDOVF,Q1GDBD,5;

;BuildMasterFormList;1;4;

<Base Form Set Rules>

;RULStandardTransactionProc;2;Always the first transaction level
rule;

;LoadExtractData;2;;

;GetCo;2;11,HEADERREC 35,3;

;GetLOB;2;11,HEADERREC 40,3;

;ResetOvFlw;2;;

;BuildFormList;2;;

;LoadRcpTbl;2;;

;UpdatePOLFile;2;;

;RunSetRcpTbl;2;;

;PreTransDAL;;Call("agent.dal");

;BatchingByPageCountPerRecipINI;;;

Chapter 3
Job and Form Set Rules Reference

66

Here is an example of the FSISYS.INI file:

< BatchingByRecip >

Batch_Recip_Def = =DAL("AGT1"),;"AGENTNAME1PAGE";AGENT

Batch_Recip_Def = =DAL("AGT1"),;"AGENTNAME1PAGE";AGENT

Batch_Recip_Def = Manual;"MANUAL";ALL

Batch_Recip_Def = Error;"ERROR";ALL

DefaultBatch = Default

If the DAL variable holds a value, the system sends all one-page transactions to an Agent
batch specifically for one-page form sets:

< AgentName1Page >

Printer = Printer1

PageRange = 1,1

If the DAL variable holds a value, the system sends all transactions that are more than one
page to an Agent batch designed to hold form sets that consist of two or more pages:

< AgentNameMultipage >

Printer = Printer2

PageRange = 2,99999

If the DAL variable does NOT hold a value, the condition is considered false and the
transaction is sent to the Default batch.

< Default >

Printer = PDefault

Form sets that go into WIP are put in the manual batch:

< Manual >

Printer = Printer3

PageRange = 1,99999

Form sets with errors go into the error batch:

< Error >

Printer = Printer4

PageRange = 1,99999

This excerpt shows how to set the Print_Batches, PrinterInfo, and PrintedOutputFile
control groups:

< Print_Batches >

Default = default.bch

AgentName1Page = agentname1page.bch

AgentNameMultipage = agentnamemultipage.bch

Manual = manual.bch

Error = error.bch

< Printer1 >

Port = data\agentname1page.pcl

< Printer2 >

Port = data\agentnamemultipage.pcl

< Printer3 >

Port = data\manual.pcl

< Printer4 >

Port = data\error.pcl

< PDefault >

Port = data\pdefault

< PrinterInfo >

BatchingByPageCountPerRecipINI

67

Printer = Printer1

Printer = Printer2

Printer = Printer3

Printer = Printer4

Printer = PDefault

See also JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

68

 BatchingByRecipINI
Use this form set level (level 2) rule to send transactions to a batch you specify based on
data in the extract file and conditions and recipients specified using INI options.

Syntax ;BatchingByRecipINI;;;

You pass parameters for this rule using the BatchingByRecip control group in your
FSISYS.INI or FSIUSER.INI file. Make sure this control group is in the INI file and
includes these options:

• DefaultBatch

• Batch_Recip_Def

The DefaultBatch option has only one parameter, a literal name such as Default. Do not
enclose it in quotation marks.

The syntax for the Batch_Recip_Def option is shown here:

Condition; ”BatchName”; Recipient

Parameter Description

Condition You can use these keywords:
COND
A condition name defined in the condition table.
Error
If the error batch flag is set by another rule, send the form set to the specified
batch (if the form’s recipient is specified in the recipient list for the batch). For
example, an error occurs if the Host Required field is set on a Move_It rule and
the data is missing.
Manual
If the manual batch flag is set by another rule; send the form set to the specified
batch (if the recipient is specified in the recipient list for the batch). An example
of another rule you could use is the KickToWip rule.
True
The condition is always true; send the form set to the specified batch (if the
recipient is specified in the recipient list for the batch).
Search mask
The search mask consists of one or more offset,data pairs.

Batch name Batch name from the extract file. The format is a comma-delimited field: a search
mask followed by a blank space and then an offset, followed by the length of
name to use. Keep in mind the batch name is limited to eight characters. You
can use these keywords:
Recip_Name means to use the names contained in the Recip_Names control
group as batch names
Dict() – The batch name defined in the Record Dictionary. Enclose this name
in quotes, such as “Batch1”.
Use the pipe symbol (|) to indicate separate items concatenated together.

Recipients Enter All for all recipients or list the recipient names. If you list the names,
separate each recipient with a comma or space.

BatchingByRecipINI

69

If the conditions are met, the batch you specified is used as the batch for the form set,
provided the form set’s recipients are specified in the recipient list for the batch. In
addition, the system writes the batch record for the form set to the batches for the
specified recipients.

If a transaction does not meet the first condition, processing continues through the INI
list. Processing stops once the appropriate batch is found.

If a transaction does not meet one of the Batch_Recip_Def criteria, the system places it
in the default batch. If you do not define the DefaultBatch option, an error occurs.

The order in which you list the Batch_Recip_Def options determines how the system
determines recipient batches. Put the most likely batches first. Use All rather than listing
all recipients when appropriate.

Example For this example, assume you have this rule in the AFGJOB.JDT file:

;BatchingByRecipINI;;;

And these INI options:

< BatchingByRecip >

 DefaultBatch = default

 Batch_Recip_Def = 4,1234567;"BATCH1";INSURED

 Batch_Recip_Def = true;"BATCH2";INSURED

 Batch_Recip_Def = true;"BATCH5";COMPANY AGENT

The DefaultBatch option tells the system that any output which has not already been sent
to a batch by one of the Batch_Recip_Def options should be placed in the default batch:

DefaultBatch = default

You must set up the batch name under the Print_Batches control group.

The first Batch_Recip_Def option tells the system to place into BATCH1 any output
which goes to the INSURED recipient and has 1234567 beginning at position 4 in the
extract file:

Batch_Recip_Def = 4,1234567;"BATCH1";INSURED

The next Batch_Recip_Def option tells the system to place all recipients named
INSURED into BATCH2:

Batch_Recip_Def = true;"BATCH2";INSURED

Batch_Recip_Def = 4, 1234567; “BATCH1”; INSURED

You must set up the recipient
under RECIP_NAMES

You must set up the batch name
under Print_Batches

The data in the extract file you want
the system to search for

The position in the extract file at
which the search begins

Chapter 3
Job and Form Set Rules Reference

70

This Batch_Recip_Def option follows the same syntax as the earlier examples, but shows
how you can use the pipe symbol to place two segments on one line:

Batch_Recip_Def = true;”BATCH”|”5”;COMPANY AGENT

The last Batch_Recip_Def option tells the system to place all recipients named
COMPANY and AGENT into the concatenated name BATCH5.

As shown earlier, you have to specify the batch name under Print_Batches and the
recipient name under RECIP_NAMES.

See also BatchByPageCount on page 47

BatchingByPageCountINI on page 49

PrintFormset on page 182

SetOutputFromExtrFile on page 221

Search Criteria on page 270

Using Condition Tables on page 492

Using the Record Dictionary on page 495

JDT Rules Reference on page 30

Batch_Recip_Def = true; “BATCH2”; INSURED

You must set up the recipient under
RECIP_NAMES

You must set up the batch name under
Print_Batches

Put all recipients named INSURED into
BATCH2

BuildExcludeList

71

 BuildExcludeList
Use this job level rule (level 1) to selectively exclude transactions from being processed in
one- and two-step mode processing.

You must include this rule in the AFGJOB.JDT file because neither one- nor two-step
mode executes the GenTran program which processes transactions during multi-step
processing.

NOTE: You must define the transactions to be excluded in a file specified by the Exclude
option in the Data control group. In addition, this rule does not remove excluded
transactions from the extract file as would occur in multi-step processing.

Syntax ;BuildExcludeList;;;

Example Assume your master resource library has the following items defined. Your FSIUSER.INI
file looks like this:

< Data >

Exclude = Exclude.dat

You have a file named JONES.DAT in DefLib. This file contains:

30,Jones

Your AFGJOB.JDT file looks like this:

<Base Rules>

;RulStandardJobProc;;;

;JobInit1;;;

;BuildMasterFormList;;4;

;BuildExcludeList;;;

…

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

…

Your extract file looks like this:

RG1001 HEADER CWNGCIS 030201 Roberts J

…

RG1002 HEADER CWNGCIS 030201 Brown T

…

RG1003 HEADER CWNGCIS 030201 Jones M

…

RG1004 HEADER CWNGCIS 030201 Smiths K

…

RG1005 HEADER CWNGCIS 030201 Jones L

…

In this example the system processes all of the transactions except RG1003 and RG1005.
These transactions are excluded because the search mask criteria (35,Jones) defined in the
EXCLUDE.DAT file was found in both transactions.

See also JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

72

 BuildFormList
Use this form set level rule (level 2) to load and initialize all forms that the processing of
extract data could possibly produce.

NOTE: You can use the LoadFormsetFromArchive rule to replace the BuildFormList,
LoadRcpTbl, and RunSetRcpTbl rules in the AFGJOB.JDT file.

Syntax ;BuildFormList;;;

There are no parameters for this rule.

This rule loads the entire form set into a master form set list and creates the duplicate list
which is altered during processing. The system only creates the master form set list the
first time it executes this rule. Subsequent calls to this rule delete the existing duplicate
form set (in the working form set) and recreate it from the master form set list.

This rule makes sure the extract data exists and resets all form recipient copy counts to
zero (0). It also loads the set recipient table data from file into a list. This file is defined in
the SetRcpTb option in the Data control group.

NOTE: This rule erases the list of data from the SETRCPTB file.

Example ;BuildFormList;;;

See also LoadFormsetFromArchive on page 154

LoadRcpTbl on page 157

RunSetRcpTbl on page 212

JDT Rules Reference on page 30

BuildMasterFormList

73

 BuildMasterFormList
Use this job level rule (level 1) to load the FORM.DAT file into an internal linked list used
by the GenData program.

You must include this rule in the AFGJOB.JDT file because the RunSetRcpTbl rule is
dependent on the list this rule creates.

Syntax ;BuildMasterFormList;;KeyCount;FORM.DAT

Example ;BuildMasterFormList;1;4;

The KeyCount parameter determines the number of items in the FORM.DAT line
considered part of the form set key. The system organizes the form set list based on the
number of items specified by the KeyCount parameter, minus one.

For example, the RPEX1 FORM.DAT file contains as its first two lines:

;SAMPCO;LB1;DEC PAGE;;R;;qsname|...

;SAMPCO;LB1;LETTER;;RD;;qsname|D...

This rule compares the lines to determine if an item is already in the list after finding the
4th (KeyCount) semicolon in each line and comparing up to the lesser position. These
lines would be compared up to the following point:

;SAMPCO;LB1;DEC PAG;

;SAMPCO;LB1;LETTER;

NOTE: The KeyCount parameter should be one more than the number of keys in the
FORM.DAT file to allow for the leading semicolon. Do not change the
KeyCount parameter unless the library uses a different number of keys.

See also RunSetRcpTbl on page 212

JDT Rules Reference on page 30

Parameter Description

KeyCount This is a required integer that must be set to 4.

FORM.DAT List the FORM.DAT files you want the system to load. This lets you load
multiple FORM.DAT files and have them appear in memory as if they came
from one large FORM.DAT file.
If you do not specify the FORM.DAT file name, the system looks for the master
resource library settings to find the correct file to load.

Chapter 3
Job and Form Set Rules Reference

74

 CheckZeroFontID
Use this form set level (level 2) rule to see if the form set has any fields with a zero font
ID. The rule will produce an error or warning for any fields it finds which have font IDs
equal to zero. You can then correct the font ID problems and restart the processing cycle.

Syntax ;;CheckZeroFontID;;Message;

Example This example produces error messages:

;CheckZeroFontID;;E;

This example produces warning messages:

;CheckZeroFontID;;;

The error or warning message includes information about the form, section, and field:

See also JDT Rules Reference on page 30

Parameter Description

Message Enter E if you want to see error messages. Leave this parameter blank if you want
to see warning messages.

Message Description

DM30059 <Error> in CheckZeroFontID: zero font ID: form <PXWORKSHT> image
<PXPOLICY> field <ESTFONTID>

DM30059 <Warning> in CheckZeroFontID: zero font ID: form <PXWORKSHT> image
<PXPOLICY> field <TESTFONTID>

ConvertWIP

75

 ConvertWIP
Use this form set level (level 2) rule to see if the current transaction is assigned to the
MANUAL.BCH file. If it is, the rule adds the record to WIP and unloads the contents of
the POLFILE.DAT and NAFILE.DAT files into new files with unique names.

The system generates unique form set IDs using a globally unique identifier (GUID) for
the new files. This helps to make sure form set IDs created for WIP records do not clash
even if multiple applications are generating WIP records, such as if you had multiple IDS
servers generating WIP.

You can then view these WIP records using Documaker Workstation or Print Preview,
which is part of the Internet Document Server (IDS).

Using this rule eliminates the need to run the separate GenWIP process to transfer
transactions into WIP.

NOTE: You must have separate licenses to run Documaker Workstation and IDS.
Contact your sales representative for more information.

Syntax ;ConvertWIP;;;

Example ;ConvertWIP;2;;

The order in which you place the ConvertWIP rule is important. Place it in front of the
PrintFormset, WriteOutput, and WriteNAFile rules, as shown here:

;NoGenTrnTransactionProc;2;required to combine GenTran/GenData;

;ConvertWIP;2;;

;PrintFormset;2;;

;WriteOutput;2;;

;WriteNAFile;2;;

The PrintFormset rule is required to combine the GenData and GenPrint processes into
a single step.

See also InitConvertWIP on page 142

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

76

 CreateGlbVar
Use this job level rule (level 1) to create a global variable which can be used by all code in
the system. You specify the type and size of the variable. List all instances of this rule at
the beginning of the AFGJOB.JDT file.

Syntax ;CreateGlbVar;;;

NOTE: This rule resets the global variable created during pre-processing.

Example ;CreateGlbVar;;VARIABLENAME, VARTYPE, VARSIZE;

You can create each global variable as shown below. VARIABLENAME is an arbitrary
name of the variable which will be created, VARTYPE is the type of variable to create,
and VARSIZE is an optional size of the variable to create.

The variable types are:

• SHORT

• LONG

• DOUBLE

• FLOAT

• LONG DOUBLE

• CHAR_ARRAY

• PVOID

The following example creates a character array of 20 bytes named MYCHARARRAY.
Remember that the array should be large enough to include the null terminating character
if it contains strings.

;CreateGLBVar;1;MYCHARARRAY,CHAR_ARRAY,20;

The next example creates a variable named MYLONGVAR that is a LONG:

;CreateGlbVar;1;MYLONGVAR,LONG;

Notice that no size was included so the variable size will be a single long value.

See also JDT Rules Reference on page 30

CreateRecordList

77

 CreateRecordList
Use this form set level rule (level 2) to copy the NA_Offset and POL_Offset into global
variables.

This rule calculates page counts for each recipient and sends transactions to error, manual,
and previously assigned (such as Braille) batches, as necessary. This rule also appends
RCB comment records for all other transactions into a generic linked list of objects.

This rule writes out the recipient batch records for error, manual, and previously assigned
batches.

NOTE: If the current record will be appended to the generic linked list of objects, this
rule takes care of filling in a number of fields in the recipient batch record. These
fields would normally be filled in by a call to the RULUpdateRecips function. The
RULUpdateRecips function is inappropriate for page count batching, which is
why the fields are filled in manually.

Syntax ;CreateRecordList;;;

Example ;CreateRecordList;;;

See also JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

78

 DelExtRecords
Use this form set level rule (level 2) to search the extract data list and delete all data records
which match the search mask you specify.

For instance, you can use this rule to remove data records that are confidential, out of
date, or should never be processed on the form.

To use this rule, you must add it to the AFGJOB.JDT file after the extract data is loaded
but before the extract data is used for mapping or other purposes.

Syntax ;DelExtRecords;;;

Example This example deletes all extract records which contain the text RECTYPE1 at offset 1,
and KEY1 at offset 50.

;DelExtRecords;;1,RECTYPE1,50,KEY1;

NOTE: Be sure that the search mask is specific enough to avoid deleting more records
than intended.

See also JDT Rules Reference on page 30

Dictionary

79

 Dictionary
Use this job level rule (level 1) to terminate an XDB instance and free memory. You only
include this rule if you also used the GlobalFld rule.

NOTE: For information on the Dictionary Editor, see the Docucreate User Guide.

Syntax ;Dictionary;;;

Example Here is an example of how you would use this rule:

/* JDT Rules for One Step Batching By Recipient */

/*
*/

<Base Rules>

;RULStandardJobProc;;;

;SetErrHdr;;***:--;

;SetErrHdr;;***: Oracle Insurance

;SetErrHdr;;***: Company Name: ***Company***;

;SetErrHdr;;***: Application: ***Application***;

;SetErrHdr;;***: Account #: ***Account_Number***;

;SetErrHdr;;***:--;

;JobInit1;;;

;CreateGlbVar;;RCBBatchName,CHAR_ARRAY,32;

;InitOvFlw;;;

;SetOvFlwSym;;MTROVF,qaIMTROV,1;

;SetOvFlwSym;;RTEOVF,qaIRTEOV,1;

;Dictionary;;;

;BuildMasterFormList;1;4;

;PageBatchStage1InitTerm;;;

;InitSetrecipCache;;;

;InitPrint;;required to execute gendata/genprint as single step;

See also GlobalFld on page 340

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

80

 DocumentExport
Use this form set (level 2) rule to write full NA and POL information as well as certain
export field information. You can control how the export information the rule generates
is formatted and you can specify which fields should be included.

Syntax ;DocumentExport;;;

Defining Export Options
You use these options in the ImpExpCombined control group to control this rule:

< ImpExpCombined >

File =

Path =

Ext =

AppendedExport =

Defining the Export Record
You must know the format of the record you intend to export. This includes having a list
of all the fields that comprise the record and the lengths and formats of those fields.

If you omit fields from the ImpExpCombined control group, the export record will
contain the information specified for the Trigger2WIP control group in the order it is
listed. The default layout is a fixed record length. If the fields are omitted from both the
ImpExpCombined and Trigger2WIP control groups, an error occurs.

Surround each field element within the export record with field separators. This helps
input systems parse the field information. The default field separators are quotation marks
(“), as shown here:

WIP = “data”“data”“data”

Fixed or variable record
lengths

Fixed length records are always the same. In a fixed length record, all field data has a
known (output) size that must be generated. Adding all the field lengths together,
generally equals the fixed record length. (Remember to add two separator strings for each
field to determine the actual length.)

Option Description

File Enter the name you want to assign to the file. If you omit this name, the
user must specify it.

Path Enter a path to indicate where the file should be written. The default is the
current working directory. If you include the File option and the file name
contains a path, that path overrides this option.

Ext Enter the extension you want to use. The default is DS. If you include the
File option and the file name includes an extension, that extension
overrides this option.

AppendedExport If you enter Yes, the data on the current form set data is appended to the
existing file. The default is No.

DocumentExport

81

Variable record length output typically means that some or all of the data element will not
adhere to a fixed size.

With variable length records, you often need a marker that identifies where each field
element begins and ends. These elements are typically constant —meaning each field
begins and ends with the same value. This is the purpose of the field separator mentioned
previously. The field separator defaults to a quotation mark (“), but you can specify any
string of up to 39 characters.

Delimiting the fields is often necessary because the importing program needs to recognize
where fields begin and end within the variable record. Although a fixed length record may
not always require field separators, there is no harm caused by using them.

Listing the field source,
length, and format

Build a table with this information:

• Each field that will be contained within each record

• Any length requirements of the field data

• Any special formatting requirements for writing the data to the output record.

With a fixed length record layout, each field has a specific length. In variable length
records, a field may have no specific length requirement or may have a minimum or a
maximum length requirement or both. Note the length requirements for each field.

Finally, note any special formatting requirements for each field. When composing this
information, keep in mind that the manner in which the data is formatted within the
export record may be different that the export record requirement. This would include
information such as the following:

• Should the data be left or right justified in the output?

• For date fields, what format should be used (such as Month/Day/Year or Year/
Month/Day)?

• For numeric data, should values include or not include commas, dollar signs, and so
on?

• Should a decimal number be converted to integers (should 41.1 written as 41)?

• Should integers be written as decimals (41 becomes 41.00)?

• Is there constant or filler data that should be written for a given export record field
that will not be derived from a form set field? For example, you might want to write
a given value into all records for a certain field because the importing program
requires such a value.

Defining the export
fields and formats

Once you have identified the fields that comprise the export record, you have to define
these fields and the formats required to build the defined record layout.

The record layout for the record must be defined in the INI file, in this control group:

< ImpExpCombined >

For each field that should be exported to the export record line, you must include a line
in the INI file. You may export as many fields as necessary. Each line must begin with the
FIELD= statement and has the following syntax.

FIELD = GVM Fieldname;formatstring

Chapter 3
Job and Form Set Rules Reference

82

You can omit the GVM Fieldname from any record location that must contain constant
or filler information not derived from the actual export record. See Format Specification
Flags on page 88 for more information.

The formatstring is optional. If you include it, be sure to precede it with a semicolon.
Whatever occurs after the semicolon is used to modify the field data in a specific manner.
You can use format string flags to increase or decrease the data to a predetermined size
or convert the data from one value format to another.

If a named export field is not followed by the format string, the format is derived
internally by querying the GVM definition and will yield a constant string length result.

Specifying the format If the output record area for a definition is a filler area — meaning that the output data is
predetermined and not part of the export data — you can omit the field name. If you omit
the field name in this manner, you must specify a format or nothing is written to the
output record.

Constant data is often used to write header or trailer information to variable length
records to help the importing system recognize where the record begins and ends. Also,
you can use this method to write additional characters or data between fields such as, for
example, if you need to include a comma between each field data element of a variable
length record. Here are some examples:

FIELD = Key1;%-3.3s

FIELD = ;,

FIELD = KeyID;%-10.10s

In the first case, the value from Key1 is formatted as three characters in the output data.
This constant text value of a comma is written next, followed by 10 characters from
KeyID. If you assume Key1 contains BOB and KeyID contains 123456789, the result is
as follows:

WIP = “BOB”“,”“123456789 ”

Notice that each field, whether constant or not, contains field separators. Also notice that
the data for KeyID was padded to 10 characters even though the actual value only
contained nine characters.

Converting dates Date format conversions are specified using the D as the first character. The D is followed
by the input format specifier for the data, a semicolon, and the format specification for
output. Here is an example:

FIELD=CREATETIME;DX;D4

This example names the field CREATETIME. The D following the semicolon tells the
system to retrieve this field and convert it from the format defined as X into the output
format, D4. X represents the hexadecimal character format. D4 is a standard
YYYYMMDD format without separators.

Format Flags
If you are familiar with C programming, the data conversions provided with format flags
will be familiar. Essentially, the printf function format definitions for %s, %f, and %d are
supported with some limitations.

DocumentExport

83

Remember that most export record data and other internal data is usually text. Therefore,
to convert to a numerical format of %f or %d, the form set data must be deformatted
internally and then converted into the required format.

The output written to the exported record is formatted as text. Here are some examples:

FIELD = DESC;%d

FIELD = ORIGUSER;%-32.32s

FIELD = APPDATA;%8.2f

These examples use format flags. The first example retrieves the value of the field DESC
(the description) then converts that value into an integer (losing any decimal portion it
might have had) and outputs it as an integer value. If the data was not a number, the result
is zero (0).

The second example writes exactly 32 characters for the value taken from ORIGUSER.
If the field value does not contain 32 characters, it is padded with spaces. Note also the
use of the dash (-) indicator. This tells the system to left justify the field. If you omit the
dash, the system pads the data with spaces on the left, right justifying it.

The last example demonstrates a floating point output with two decimal places. The field
value is converted into a floating point number. The system then applies the format you
specify and rounds the value if it contained more than two decimal places.

Defining the Export Record Header
The export record header occurs at the beginning of each export record output.

< ImpExpCombined >

WIPHeader = WIP=

Separator = ”

Date Formats

Standard date format You can enter dates in a variety of formats. The date format has three possible
components or characters. The first character specifies the order of the date. The second
character specifies the type of separator character for the date. The third character
specifies the length of the year.

Date order The first character in the date format indicates the order of the date and whether the
month should be numeric or alphabetic. The first character must be a digit from 1 to 9 or
an alphabetic character. The default order is format 1. The following table lists your
options:

Option Description

WIPHeader Enter the text for the header. You can enter as much text as you like, but avoid
exceeding 1024 characters in the entire export record line. The default is WIP.

Separator Enter the text value used to separate fields. The default is a quotation mark (“).
If a variable record layout is being used for WIP information, field separators
are essential. You can enter up to 39 characters. Choose a separator that is not
likely to appear in any of the data you intend to output.

Chapter 3
Job and Form Set Rules Reference

84

Format Date order Description

1 MM/DD/YY Month-Day-Year with leading zeros
(02/17/2009)

2 DD/MM/YY Day-Month-Year with leading zeros
17/02/2009

3 YY/MM/DD Year-Month-Day with leading zeros
2009/02/17

4 Month D, Yr Month name-Day-Year without leading zeros (February 17,
2009)

5 bM/bD/YY Month-Day-Year with leading zeros replaced with spaces
(2/17/2009)

6 bD/bM/YY Day-Month-Year with leading zeros replaced with spaces
(17/ 2/2009)

7 YY/bM/bD Year-Month-Day with leading zeros replaced with spaces
(2009/ 2/17)

8 M/D/YY Month-Day-Year with leading zeros suppressed
(12/8/2009)

9 D/M/YY Day-Month-Year with leading zeros suppressed
(17/2/2009)

A YY/M/D Year-Month-Day with leading zeros suppressed
(2009/8/9)

B MMDDYY Month-Day-Year with no separators
(02172009)

C DDMMYY Day-Month-Year with no separators
(17022009)

D YYMMDD Year-Month-Day with no separators
(20090217)

E MonDDYY Month name abbreviated-Day-Year with leading zeros
(Feb072009)

F DDMonYY Day-Month name abbreviated-Year with leading zeros
(07Feb2009)

G YYMonDD Year-Month name abbreviated-Day with leading zeros
(2009Feb07)

H day/YY Day of year (counting consecutively from January 1)-Year
(48/2009)

I YY/day Year-Day of Year (counting consecutively from January 1)
(often called the Julian date format) (2009/48)

DocumentExport

85

Separators The second character in the date format indicates the separator to use in the date. If you
omit the separator character, the system includes a forward slash (/). You can choose
from these separator characters:

You specify the separator character by including it as the second character in the date
format. For example, if you enter 5-, you specify date format 5 with a dash as a separator
character. The date appears as 02-17-2009. If you enter 5b, you specify date format 5 with
blanks or spaces as a separator. Your date appears as 02 17 2009.

Year length The third character in the date format specifies the year length. The year must appear as
either two or four digits. Enter 2 for a two digit year or 4 for a four digit year.

You can omit the year length character from a date format. If you do not specify the year
length, the system uses the length of the original entry. For example, if you enter a date as
10/30/09 and do not specify a length, the system retains 05. If you enter 10/30/2009, the
system retains 2009.

If you enter 5-2, you specify date format 5, a dash (-) as a separator character and a two-
digit year. Your date appears as _9-11-09. If you enter 5-4, your date appears as _9-11-
2009.

J D, Month Yr Day- Month name-Year without leading zeros (7, February
2009)

K Yr, Month D Year-Month name-Day without leading zeros (2009 January 5)

L Mon-DD-YY Month name abbreviated-Day-Year with leading zeros (Feb-17-
2009)

M DD-Mon-YY Day-Month name abbreviated-Year with leading zeros (02-Feb-
2009)

N YY-Mon-DD Year-Month name abbreviated-Day with leading zeros (2009-
Feb-17)

X XXXXXXXX An eight-character hexadecimal representation

Format Date order Description

Character Example

/ 02/17/2009

- 02-17-2009

. 02.17.2009

, 02,17,2009

b (blank) 02 17 2009

Chapter 3
Job and Form Set Rules Reference

86

NOTE: If you do not enter a separator character the year length specification is the
second digit in the date format. For example, if you enter 54, you specify date
format 5 and a four-digit year. Since the separator character is not specified the
default character (/) applies. Your date appears as _9/11/2009.

Avoid two-digit year representations. For example, if you enter 5/2, you specify
date format 5 and a two-digit year. Your date appears as 9/11/09.

Freeform Formats
The format argument consists of one or more codes; each formatting code is preceded by
a percent sign (%). Characters not prefixed with a percent sign copied unchanged to the
output buffer. Any character following a percent sign is not recognized as a valid format
code is copied unchanged to the destination. Therefore, you can enter %% to include the
percent sign in the resulting output string.

You can use these format codes:

Here are some examples:

Code Description

%d Day of month as decimal number (01 – 31)

%H Hour in 24-hour format (00 – 23)

%I Hour in 12-hour format (01 – 12)

%m Month as decimal number (01 – 12)

%M Minute as decimal number (00 – 59)

%p Current locale's AM/PM indicator for 12-hour clock

%S Second as decimal number (00 – 59)

%y Year without century, as decimal number (00 – 99)

%Y Year with century, as decimal number

%A Weekday name, such as Tuesday

%b Abbreviated month name, such as Mar

%B Full month name, such as March

%j Day of year as decimal number, such as 001–366

%w Weekday as decimal number, such as 1 – 7 with Sunday as 1

%@xxx Specify language locale (Where xxx identifies one of the supported languages. For
example. A format of %@CAD%A might produce mardi, the French word for
Tuesday.)

DocumentExport

87

Additional format
attributes

An octothorp (#) tells the system to suppress leading zeros for the following format
codes. This flag is recognized on these formats and is ignored on all other format codes
not listed here.

%#d, %#H, %#I, %#j, %#m, %#M, %#S, %#w

For example, if %d outputs 01, using %#d the output will become 1.

NOTE: This flag only affects the format code that specifies it. Any subsequent codes that
are numeric are not affected unless they also specify the flag.

Enter a greater than symbol (>) to uppercase the resulting text. This flag is only
recognized on these format codes:

%>p, %>A, %>b, %>B

For example, if %A results in Tuesday, %>A produces TUESDAY.

NOTE: This flag only affects the format code that specifies it. Any subsequent codes that
have text are not affected unless those also specify the flag.

Enter a less than symbol (<) to lowercase the resulting text. This flag is valid for the
following codes and ignored on all others:

%<p, %<A, %<b, %<B

For example, if %b results in Mar, %<b produces mar.

NOTE: This flag only affects the format code that specifies it. Any subsequent codes that
have text are not affected unless they also specify the flag.

Enter <> to capitalize the first letter of the resulting text. This flag is valid for the
following codes and ignored on all others:

%<>p, %<>A, %<>b, %<>B

For example, if %p results in AM, %<>p produces Am.

NOTE: This flag only affects the format code that specifies it. Any subsequent codes that
have text are not affected unless they also specify the flag.

Format Output

%m-%d-%Y 01-01-2009

The year is %Y. The year is 2009.

Born %m/%d/%y at %I:%M %p Born 01/01/09 at 11:57 PM

Chapter 3
Job and Form Set Rules Reference

88

Using Locale Information
When you use the %@xxx in the format string, the xxx represents a code that identifies
one of our supported language locales.

Until a locale format code is encountered in the format string, the default locale (typically
USD which is US English) is in effect. Once a locale format code is found, the locale
specified remains in effect until another locale indicator is encountered.

For example: suppose the input date is 03-01-2009 (USD). This table shows the output
from various formats:

Format Specification Flags
The format specification, which consists of optional and required fields, is shown here:

%[Flags][Width][.Precision]Type

Each field of the format specification is a character or a number which specifies a format
option. The simplest format specification contains only the percent sign and a type
character, such as: %s. If a percent sign is followed by a character that has no meaning as
a format field, that character is simply copied to the output. For example, to print a
percent sign, enter %%.

The optional fields, which appear before the Type character, control other aspects of the
formatting, as follows:

Type Enter s, f, or d for this export function.

Flags Use these flags to control justification of the output and the printing of signs, blanks,
decimal points, and octal and hexadecimal prefixes. More than one flag can appear in a
format specification.

Enter To output

 “ %A, %B %d” “Monday, March 01”.

 “%@CAD%A %@CAD%A, %B %d” “lundi, mars 01”

“%A, %@CAD%B %d” “Monday, mars 01”

“%@CAD%A, %@USD%B %d” “lundi, March 01”

Flag Description Default

– Left aligns the result within the given field width. Right align.

+ Prefixes the output value with a sign (+ or –) if the
output value is of a signed type.

Sign appears only for
negative signed values (–).

0 Adds zeros until the minimum width is reached. If
a zero and a minus appear (-0), the system ignores
the zero. If you include a zero with an integer
format (d), the system ignores the zero flag.

No padding.

DocumentExport

89

Width Here you can control the minimum number of characters printed. If the number of
characters in the output value is less than the width you specify, the system adds blanks
to the left or the right of the values — depending on whether the flag for left alignment
is specified — until the minimum width is reached. If you prefix the width with a zero (0),
the system adds zeros until the minimum width is reached (not useful for left-aligned
numbers).

Your entry for width never causes a value to be truncated. If the number of characters in
the output value is greater than the width you specify, or if you omit the width, all
characters of the value are printed (subject to the .Precision specification).

.Precision This optional number specifies the maximum number of characters printed for all or part
of the output field, or the minimum number of digits printed for integer values.

For format s, the precision specifies the maximum number of characters to print.
Characters in excess of precision are not printed. Characters are printed until a null
character is encountered.

For format f, the precision specifies the number of digits after the decimal point. If a
decimal point appears, at least one digit appears before it. The value is rounded to the
appropriate number of digits. The default precision is six (6); if the precision is zero (0),
or if a period (.) appears without a number following it, no decimal point is printed.

For format d, the precision specifies the minimum number of digits to be printed. If the
number of digits in the argument is less than the precision value, the output value is
padded on the left with zeros. The value is not truncated when the number of digits
exceeds the precision. The default precision is one (1).

See also JDT Rules Reference on page 30

blank (' ') Prefixes the output value with a blank if the output
value is signed and positive; the blank is ignored if
both the blank and + flags appear.

No blank appears.

When used with the f format, the # flag forces the
output value to contain a decimal point in all cases.

Decimal point appears
only if digits follow it.

Flag Description Default

Chapter 3
Job and Form Set Rules Reference

90

 DumpExtList
Use this form set level rule (level 2) to dump the extract list to a file. The result provides
information about the generic linked list of objects, such as its handles and the
information contained in each element.

The file the system creates is a flat text file which shows only text values—binary data is
written as spaces to preserve placement.

Syntax ;DumpExtList;;(Name);

NOTE: Only use this rule for test purposes, so you can inspect the contents of the extract
data list. The use of this rule slows processing in proportion to the size of the
extract data list.

Example ;DumpExtList;;ExtrListDump.txt;

See also JDT Rules Reference on page 30

Parameter Description

Name Name of the file to which the extract records will be written.

DumpExtractListToFile

91

 DumpExtractListToFile
Use this form set level rule (level 2) to dump the extract list to a file. This rule is helpful
if you are debugging and you want to see what is currently in the extract list.

Syntax ;DumpExtractListToFile;;(parameters);

Example ;DumpExtractListToFile;;ExtrDump.txt,Y;

For each transaction in the extract file, the system appends to the EXTRDUMP.TXT file
a transaction header plus the contents of each record in the transaction. Here is an
example of this file:

==> Extract data for:

 TransactionId:<Patch399>

 GroupName1:<CWNG>

 GroupName2:<CIS>

 GroupName3:<>

 External Form Name:<>

 Transaction Type:<>

**

Patch399 HEADER CWNGCIS Patch # …

Patch399 GVM1 Morris Sandra …

…

…

**

==> Extract data for:

 TransactionId:<Patch400>

 GroupName1:<CWNG>

 GroupName2:<CIS>

 GroupName3:<>

 External Form Name:<>

 Transaction Type:<>

**

Patch400 HEADER CWNGCIS Patch # …

Patch400 GVM1 Bob Jane …

…

…

NOTE: The Y option can create a very large file, depending on the size of the extract file.

See also JDT Rules Reference on page 30

Parameter Description

Name Name of the file to which the extract records will be written.

Flag The append flag. Enter Y to append the records for each transaction to the file
plus a header. Enter N to only create a dump file for the last transaction.

Chapter 3
Job and Form Set Rules Reference

92

 ErrorHandler
Use this job level (level 1) rule to send transactions to the manual batch when specified
field errors occur. This lets normal processing continue if errors occur.

Syntax ;ErrorHandler;;;

Use the following INI option to identify the field errors which cause a transaction to be
sent to the manual batch:

< Error2Manual >

(CurrentError) = (NextError1),..,(NextErrorN),(M)

Errors Here is a sample set of error messages which would appear if a field error occurred:

Example Here is an example of the FSISYS.INI file:

< Error2Manual >

10513 = 12051, 12048, 12083, 12074

< GenDataStopOn >

FieldErrors = No

Add this rule to the < Base Rules > section in the AFGJOB.JDT file:

;ErrorHandler;;;

If field error DM10513 occurs, it will cause these errors: DM12051, DM12048, DM1283,
and DM12074. This function sends these transactions to the manual batch for user-entry,
continues processing, and then creates a blank field in the NAFILE.DAT file.

See also JDT Rules Reference on page 30

Parameter Description

CurrentError The error that just occurred.

NextError1 The error caused by the CurrentError failure. This continues through the list of
errors until the last one.

M This tells the system to send the transaction to the manual batch.

Error Description

DM10513 Error in SetAddr(): Empty RuleParms for SetAddr.

DM12051 Error in RPProcessOneField(): Unable to <SETADDR>().

DM12048 Error in RPProcessFields(): Unable to RPProcessOneField(pRPS) <ADDR3>.
Processing will NOT continue for image <q1addr>. See INI group:<
GenDataStopOn > option: FieldErrors.

DM12083 Error in RPProcessOneImage(): Unable to RPProcessFields(pRPS).

DM12074 Error in RPProcessImages(): Unable to RPProcessOneImage(pRPS) <q1addr>.
Skipping the rest of the Images for this form. See INI group:< GenDataStopOn
> option:ImageErrors.

Ext2GVM

93

 Ext2GVM
Use this form set level rule (level 2) to add data from the extract list into previously
defined global variables. To use the rule, you must add it to the AFGJOB.JDT file after
the extract data is loaded.

You can also use this rule to get data into the NEWTRN.DAT file during GenData
processing instead of using Trn_Fields. To do this you define a field for the data to be
mapped in the TRNDFDFL.DFD file and then use the Ext2GVM rule to map the data
from extract file to the NEWTRN.DAT file.

Syntax ;Ext2GVM;;(parameters);

You can use these parameters with this rule:

Example The following example locates the extract record that matches the search mask (1, D1)
and moves the value found at position 21 for a length of 5 to the global variable TestVar.
In addition, it suppresses the error messages if the search mask is not found in the
transaction.

<Base Rules>

... ...

... ...

;CreateGlbVar;;TestVar,CHAR_ARRAY,5;

... ...

<Base Form Set Rules>

... ...

;Ext2GVM;;1,D1 21,5,TestVar,S;

... ...

See also JDT Rules Reference on page 30

NOTE: Refer to the DAL Reference for information on these related DAL functions:
GVM, HaveGVM, and SetGVM.

Parameter Description

SearchMask One or more pairs of offsets and data (search criteria) in a comma-delimited
list.

DataLocation The offset and length of the data in the extract record.

GVMName The name of the GVM variable where the data will be stored.

SuppressFlag Enter S to suppress error messages if the search mask is not found in a
transaction. The default is blank, which tells the system not to suppress error
messages.

Chapter 3
Job and Form Set Rules Reference

94

 FilterForm
Use this form set level (level 2) rule to remove all forms from a form set except those that
match the filter criteria you specify.

See also ;FilterForm;;;

You can use these INI options with this rule:

< FilterForms >

Form =

FilterByForm =

Here is an example of how you can use the Form option:

Form = 1,HEADER 20,8 (Offset,Match Offset,Length)

In the following example, assume you have this INI setting:

< FilterForm >

Form = !/transaction/PrintForm

And this transaction data:

<transaction>

…

<PrintFrom>FormA</PrintForm>

<PrintForm>FormB</PrintForm>

…

</transaction>

Only forms FormA and FormB will remain in the form set after the filtering process is
complete.

Example Here is an example AFGJOB.JDT file:

/* JDT Rules for Single-Step Processing Batching By Recipient. */

<Base Rules>

;RULStandardJobProc;1;Always the first job level rule;

;JobInit1;1;;

;InitPrint;1;required to execute gendata/genprint in single step;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;2;;

;LoadFormsetFromArchive;2;;

;PrintFormset;2;;

;WriteOutput;2;;

Option Description

Form Use this option to specify the search location for form filter criteria. All
occurrences of the data specified in the data are used for filtering. You can
specify the search location as an XML search string or as a flat file search
mask.

FilterByForm (Optional) Use this option to turn the rule on or off by transaction. If you
specify this option, the rule looks for a value of TRUE at that specified search
location. If TRUE is not found, the filter logic is not executed. If you omit this
option, the rule is always executed.

FilterForm

95

;WriteNaFile;2;;

;BatchingByRecipINI;2;;

;FilterForm;2;;

/* Every section in this base uses these rules. */

<Base Image Rules>

;WIPImageProc;;

/* Every field in this base uses these rules. */

<Base Field Rules>

;RULWIPFieldProc;;

See also FilterRecip on page 96

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

96

 FilterRecip
Use this form set level (level 2) rule to remove all forms from a form set except those that
match the recipient filter criteria you specify.

Syntax ;FilterRecip;;;

You can use these INI options with this rule:

< FilterRecip >

Recip =

FilterByRecip =

Here is an example of how you can use the Recip option:

Recip = 1,HEADER 20,8 (Offset,Match Offset,Length)

Filtering is performed using all data that matches the search criteria. Assume you have this
INI setting:

< FilterRecip >

Recip = !/transaction/PrintRecip

And this transaction data:

<transaction>

…

<PrintRecip>Insured</PrintRecip>

<PrintRecip>Agent</PrintRecip>

…

</transaction>

Only recipients Insured and Agent will remain in the form set after the filtering process
is complete.

Example Here is an example AFGJOB.JDT file:

/* JDT Rules for Single-Step Processing Batching By Recipient. */

<Base Rules>

;RULStandardJobProc;1;Always the first job level rule;

;JobInit1;1;;

;InitPrint;1;required to execute gendata/genprint in single step;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;2;;

;LoadFormsetFromArchive;2;;

;PrintFormset;2;;

Option Description

Recip Use this option to specify the search location for the Recip filter criteria. All
occurrences of the data specified in the data are used for filtering. You can
specify the search location as an XML search string or as a flat file search
mask.

FilterByRecip (Optional) Use this option to turn the rule on or off by transaction. If you
include this option, the rule looks for a value of TRUE at the specified search
location. If TRUE is not found, the filter logic is not executed. If you omit this
option, the rule is always executed.

FilterRecip

97

;WriteOutput;2;;

;WriteNaFile;2;;

;BatchingByRecipINI;2;;

;FilterRecip;2;;

/* Every section in this base uses these rules. */

<Base Image Rules>

;WIPImageProc;;

/* Every field in this base uses these rules. */

<Base Field Rules>

;RULWIPFieldProc;;

See also FilterForm on page 94

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

98

 ForceNoImages
Place this rule in your AFGJOB.JDT file to bypass all section processing. This rule
prevents any section level rules from executing.

For instance, you could use this rule if the form set for each transaction is created and
mapped by a higher level rule which removes the necessity for executing section or field
level rules.

You can also use this rule in 2-up printing to return the msgNO_MORE_IMAGES
message.

Syntax ;ForceNoImages()

 There are no parameters for this rule.

This rule prevents errors if you have no section level rules.

Example < Base Image Rules >

;ForceNoImages;;

See also ImportNAPOLExtract on page 121

Rules Used for 2-up Printing on page 27

JDT Rules Reference on page 30

FormDescription

99

 FormDescription
Use this form set level (level 1) rule to write out a form or several forms, which contain
descriptions of the other forms included in the form set. You can also specify a DAL
script you want the system to execute to get the actual descriptions to use.

NOTE: This capability exists in Documaker Workstation. This rule provides the
capability to Documaker Server.

Syntax ;FormDescription;;NoOverflow;

Keep in mind...

• Place this rule after the UpdatePOLFile rule if you are running in multi-step mode.
For single- and two-step mode, place the rule after the PaginateAndPropagate rule.

• The names of Form Description Line variable fields must begin with FORM DESC
LINE. You can include multiple lines of these fields on a form by varying the field’s
name, such as FORM DESC LINE #002, FORM DESC LINE #003, and so on.

• For each form in a form set (and optionally for each Key2 grouping), the system will
assign to a Form Description Line field a text description of that form. Only one text
description is assigned to each From Description Line field.

• Form description lines do not wrap the description to succeeding lines. If a text is
longer than the field’s representation, the text can extend beyond page boundaries or
into undesirable areas. Make sure the Form Description Line fields can contain the
longest description. Smaller fonts generally allow more characters per line.

• Any form can contain Form Description Line fields. You can place form description
lines on separate forms. You can also place forms with these fields among other
fields, graphics, and so on.

• The placement of the form in the FORM.DAT file is important. Only those forms
placed after the first form which contains a FORM DESC LINE field will be
included in the listed forms. Please note the first form, which contains the form
description lines, is not included in the list.

INI options You can use these INI options to tell the system how to represent form group lines on
form description lines.

< FormDescTable >

IncludeKey2 = No

BoldKey2 = No

Key2Prefix =

Key2PostInc = 0

Parameter Description

NoOverflow (Optional) This parameter tells the system not to overflow the form description
line section if there are not enough Form Description Line fields to include the
maximum number of selected forms. Keep in mind that if this parameter is
turned on and there are more forms than there are Form Description Line fields,
some of the descriptive information may be lost. The default is the system will
overflow to accommodate all selected forms.

Chapter 3
Job and Form Set Rules Reference

100

IncludeDuplicateForms = No

IncludeFormName = No

StartFromFirstForm =

ColumnFormat = No

ExludedForm =

IncludeFormDesc =

< FormDescription >

Script =

Option Description

FormDescTable control group

IncludeKey2 Enter Yes to enable Key2 descriptions. By default, the form
description lines only contain descriptions of the forms.
Optionally, you can include descriptions for form groups, such as
lines of business. These form groups are called Key2s.

BoldKey2 Use this option to present Key2 descriptions in a bold font. The
system determines which font to use by querying the font defined
on the field and selecting its bold equivalent. The fonts of normal
Form Description Lines fields (not assigned a Key2 name) are
changed to their non-bold counterparts.

Key2Prefix Enter the text you want to appear before each Key2 description
line. The system automatically adds a single space after the text. By
default, this option is blank and does not affect the description
lines.
For instance, if you enter Form Applicable – the system prefixes all
Key2 descriptions with that text. The output might look like this:

Form Applicable — General Liability Coverage

Key2PostInc Use this option to add blank lines between Key2 descriptions the
form descriptions. For example, if you include Key2 descriptions,
and set this option to one, you out put might look like this:

Form Applicable – General Liability Coverage

Form 1Automobile Coverage

Form 2Homeowner Coverage

IncludeDuplicateForms If you want the system to include duplicate forms, set this option
to Yes. The system excludes the duplicate forms from the form
description lines as a default.

IncludeFormName Enter No if you want to suppress the form name from the form
description lines. By default, the system includes the form names.

StartFromFirstForm Enter Yes if you want the system to include forms starting from the
first form. By default, only forms placed after the first form that
contains a FORM DESC LINE field are included in the list of
forms.
Note that the form that contains the form description lines is not
included in the list unless this option is turned on.

FormDescription

101

ColumnFormat By default, the system writes out the form description lines in a
columnar format with the form name on the left and pads the text
based on the longest form name. To have the system write out the
form description lines in a non-columnar format, set this option to
No. If set to No, the system adds the form description to the end
of the form name, separated by two spaces.

ExcludedForm To exclude a certain form from the form description lines, enter the
name of the form you want to exclude. Here is an example:

ExludedForm = Form Applicable

To exclude multiple forms, include a separate ExcludedForm
option for each form, as shown here:

ExludedForm = Form1

ExludedForm = Form2

ExludedForm = Form3

IncludeFormDesc Set this option to No if you want to suppress the description from
the form description lines. The system includes the form
description by default.
Do not set this option and the IncludeFormName option to No. If
you do, the system writes the form description without the form
name

FormDescription control group

Script The name of DAL script you want the system to execute.

Option Description

Chapter 3
Job and Form Set Rules Reference

102

Example This example shows how you can call a DAL script to customize the description placed
in the Form Description Line fields. To use this functionality, make sure you have the
Script option set up in the FormDescription control group:

< FormDescription >

Script = AddDate.DAL

Now suppose you want to add (11/10) to the end of each description line. You would set
up the Script option to call the DAL script that contains the logic to do so. Here is an
example of the DAL script:

FName = FormName()

FDesc = FormDesc()

return(FName & " " & FDesc & " (11/10)");

Below is an example of the description lines generated without calling DAL script.

DEC Page Common Policy Declarations

END Page Endorsement Page

CG DEC General Liability Declarations

Here is an example of the output when you call the DAL script:

DEC Page Common Policy Declarations (11/10)

END Page Endorsement Page (11/10)

CG DEC General Liability Declarations (11/10)

See also PaginateAndPropagate on page 174

UpdatePOLFile on page 239

JDT Rules Reference on page 30

GetCo

103

 GetCo
Use this form set level rule (level 2) to get the company code (Key1 field) from the extract
data, and get its equivalent value from the INI file for use by the system.

Syntax ;GetCo;;;

This rule gets the company code (Key1 field) from the extract data using the GetRecord
search criteria specified in the data field. This rule also sets the company—stored in the
master transaction set—to the value defined in the INI file. In the INI file, this value is
stored in the Key1Table control group under the option name which equals the value
returned by GetRecord.

Example ;GetCo;;17,PMSP0200 125,3;

In this example, the system searches the extract data for the first record that meets the
GetRecord search criteria of having PMSP0200 at offset 17. From this record, the system
extracts three characters at position 125, and uses those characters to look up the
company in the INI file. It is this equivalent value from the INI file that should be used
in files such as the form set definition file, as well as the set recipient table file.

These files are defined in the Data control group with the names FORMDAT and
SETRCPTB respectively. For example, if the three characters at position 125 were ABC,
the associated line in the Key1Table control group would look something like:

< Key1Table >

ABC = THE ABC FRUIT COMPANY

See also GetLOB on page 104

Search Criteria on page 270

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

104

 GetLOB
Use this form set level rule (level 2) to get the line of business (from the Key2 field) code
from the extract data, and to get its equivalent value from the INI file for use by the
system.

Syntax ;GetLOB;;;

This rule gets the line of business (Key2 field) code from the extract data using the
GetRecord search criteria specified in the data field. This rule also sets the line of
business—stored in the master transaction set—to the value defined in the INI file. In the
INI file, this value is stored in the Key2Table control group under the option name which
equals the value returned by GetRecord.

Example ;GetLOB;;17,PMSP0200 100,3;

In this example the system searches the extract data for the first record which meets the
GetRecord search criteria of having PMSP0200 at offset 17. From this record, the system
extracts three characters at position 100, and uses those characters to look up the line of
business in the INI file. It is this value in the FSISYS.INI file which should be used in files
such as the FORM.DAT file, as well as the set recipient table.

These files are defined in the Data control group with the names FORMDAT and
SETRCPTB respectively. For example, if in the FSISYS.INI file the three characters at
position 100 were CFR, the associated line in the Key2Table control group would look
something like:

< Key2Table >

CFR = COMMERCIAL FIRE

See also GetCo on page 103

Search Criteria on page 270

JDT Rules Reference on page 30

GetRCBRec

105

 GetRCBRec
Use this form set (level 2) level rule to set the current recipient batch file. This rule
initializes the current recipient batch file, if necessary.

This rule also sets the first printer for the current batch to be the current printer and
retrieves the next record from the current recipient batch file.

Syntax ;GetRCBRec;;;

Example ;GetRCBRec;;;

See also Rules Used for 2-up Printing on page 27

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

106

 GetRunDate
Use this form set level (level 2) rule when there is no value in the transaction extract lines
that can be used as the run date. This rule gets the current date and treats it as the run date.
It then reformats the date based on the format you specify in the format mask.

The rule assumes the GVM variable RunDate is the name of the variable where the date is
stored. The RunDate variable is created if it does not exist. GVM variables are
automatically created from the fields defined in your TRNDFDFL.DFD file, or by using
the rule that explicitly creates GVM variables. If you omit the variable from being created
in one of these methods, this rule creates it for you.

Syntax ;GetRunDate;;;

The parameters you can include are the various date formats supported by FmtDate rule.
The default format is D4 (YYYYMMDD).

NOTE: There are two types of format masks, pre-defined types 1-9 and A-Q and user-
defined format arguments. If the pre-defined formats meet your needs, use them,
otherwise, create a user-defined format. For information on using pre-defined
format types, see Using Pre-defined Date Formats on page 257.

User-defined format arguments consist of one or more codes, each preceded by
a percent sign (%). For more information on user-defined format masks, see
Setting Up Format Arguments on page 262.

There is no limit to the length of the mask you create.

On success, msgSUCCESS is returned. If the system encounters a fatal error, msgFAIL
is returned.

Example Here are some examples:

;GetRunDate;;J;

If the system date is 20090217, the date format returned will be 17 February, 2009.

;GetRunDate;;;

If the system date is 20090217, the date format returned will be 20090217.

;GetRunDate;;;

If the system date is 2-17-2009, the date format returned will be 20090217.

;GetRunDate;;J;

If the system date is 2-17-2009, the date format returned will be 17 February, 2009.

See also FmtDate on page 337

JDT Rules Reference on page 30

GVM2GVM

107

 GVM2GVM
Use this form set level (level 2) rule to copy the data from one GVM variable to another
GVM variable. You specify the two variables using INI options, as shown in this example:

Syntax ;GVM2GVM;;ControlGroup;

NOTE: Although this rule was created for use with GenData WIP Transaction
Processing, you can also use it to map a group of GVM variables from one name
to another name.

For GenData WIP Transaction Processing, this rule copies GVM data from the
WIP.DBF file into GVM variables for GenData execution. You define the GVM
variables in the Trigger2WIP control group.

Assume the FSISYS.INI or FSIUSER.INI file has these options:

< Trigger2WIP >

Company = Key1

LOB = Key2

Example Here is an example:

;GVM2GVM;;Trigger2WIP;

This example copies the contents of the Key1 and Key2 GVM variables found in the
WIP.DBF file into the GenData Company and LOB GVM variables.

See also MergeWIP on page 162

WIPFieldProc on page 243

WIPImageProc on page 244

WIPTransactions on page 245

GenData WIP Transaction Processing on page 9

JDT Rules Reference on page 30

The contents of
this variable...

...is copied into
this variable< Trigger2WIP >

Company = Key1

LOB = Key2

Parameter Description

ControlGroup Specify the name of the control group in the INI file that defines the variables.

Chapter 3
Job and Form Set Rules Reference

108

 IfRecipUsed
Use this form set level rule (level 2) to place a form set in a recipient batch if the recipient
name matches the one you specify with this rule. For instance, if the form is triggered and
the recipients are set to receive a copy of those sections, a copy of the sections that make
up the form are copied to the specified batches.

Syntax ;IfRecipUsed;;;

There are no parameters for this rule.

Example ;IfRecipUsed;;BATCH1=INSURED;

If the recipient name placed in the data area (such as INSURED) is used in this form set,
the system assigns this form set to the recipient batch named in the data area (such as
BATCH1).

You can place multiple AssignToBatch rules in the AFGJOB.JDT file. All that return true
will be placed in the appropriate recipient batch. You can assign several recipients to a
single batch. This is useful if the recipients receive very few forms or you only want to
manage a small number of batch files.

You must place this rule in the AFGJOB.JDT file before the BuildFormList rule.

NOTE: Powertyping takes precedence over all AssignToBatch assignments, and errors
take precedence over powertyping.

See also AssignToBatch on page 45

BuildFormList on page 72

SetOutputFromExtrFile on page 221

JDT Rules Reference on page 30

ImageMapImportData

109

 ImageMapImportData
Use this form set level (level 2) rule with the ImportFile or ImportExtract rule to map the
data you are importing. You can also use this rule with any other rule, such as a custom
rule, that fills in field dictionary values (like the standard V2 import methods).

Normally, when you use this type of import, you would replace the NoOpFunc rule to do
mapping via the DDT files, or you would use the MapFromImportData rule on each field
in the DDT file.

If, however, you have two environments — one that does imports and one that does
regular batch processing — you may not want to maintain two sets of DDT files.
Therefore, you could use this rule if you do not plan to execute any field level rules.

Syntax ;ImageMapImportData;;;

This rule loads the section and tries to get the data dictionary value of each field created
during the import. If you do not want the field level rules to execute in the DDT file, use
the JDT rule that skips field processing. Here is an example:

<Base Image Rules>

;StandardImageProc;3;;

;ImageMapImportData;3;;

<Base Field Rules>

;WIPFieldProc;4;No field processing;

NOTE: While the assumption is that you use this rule when you want to skip normal field
processing, there is no requirement that you do so. If you omit the WIPFieldProc
rule, the field level rules will execute. Depending on the rules you have assigned
to your fields, this may cause errors, or may override the data that was actually
imported.

Standard data importing can supply field data at various levels, such as: form set global,
form global, and image local.

Each occurrence of a field with the same name and declared using the form set global
scope will normally have the same value. Form global scope applies to similarly defined
fields only within a given form. Image local scope means the field is specific to that
section.

Import files sometimes specify all field data at the section level and do not separate out
form set or form global data. This rule first tries to get each field's data at the dictionary
scope level defined in the FAP file. If a form set or form global value cannot be found for
a field, a second search is done at the section level.

NOTE: This approach supports both types of import files — those that specify all data
at the section level and those that separate out data at the appropriately defined
scope levels.

See also ImportExtract on page 111

ImportFile on page 116

Chapter 3
Job and Form Set Rules Reference

110

WIPFieldProc on page 243

MapFromImportData on page 376

NoOpFunc on page 415

JDT Rules Reference on page 30

ImportExtract

111

 ImportExtract
Use this form set level rule (level 2) to import an extract file into GenData that is
comprised of:

• Typical transactions in an extract file which have one or more Documaker
Workstation export files embedded in each transaction. This illustration shows
transactions with embedded export files:

• One or more appended Documaker Workstation export files. This illustration shows
an extract file comprised of export files appended to one another:

Syntax ;ImportExtract;;;

Although there are no parameters for this rule. Keep in mind:

• Specify the extract file name to be imported via the Data control group using the
ExtrFile option.

• In the Trn_File control group, set MaxExtRecLen option to the length of the longest
record in extract file.

• Only use the SearchMask option in the ExtractKeyField control group; do not use
the Key option.

Transaction 1
<record1, field1>, <field 2>, <field 3>, <field4>, <field5>

<record2, field1>, <field 2>, <field 3>, <field4>, <field5>

Export file 1 containing data associated with transaction 1.

Transaction 1 (continued
<record3, field1>, <field 2>, <field 3>, <field4>, <field5>

<record4, field1>, <field 2>, <field 3>, <field4>, <field5>

Transaction 2
<record1, field1>, <field 2>, <field 3>, <field4>, <field5>

<record2, field1>, <field 2>, <field 3>, <field4>, <field5>

Export file 2 containing data associated with transaction 2.

Transaction 2 (continued
<record3, field1>, <field 2>, <field 3>, <field4>, <field5>

<record4, field1>, <field 2>, <field 3>, <field4>, <field5>

Export file 2.

Export file 1.

Export file 3.

Export file 4.

Export file 5.

Chapter 3
Job and Form Set Rules Reference

112

• To create minimum information, such as Key1, Key2, Key ID, and so on, in the
TRNFILE.DAT file for each transaction, you must define for each information item,
the field name, offset, and length in the Trn_Fields control group. This definition
associates the option fields in the Trn_Fields control group to the corresponding
entries in the transaction DFD file (TRNDFDFL.DFD).

• For each field that comprises a section (whose data comes from the export data), you
must create or have a DDT record whose field rule is set to one of the following field
rules

MapFromImportData

NoOpFunc

If you use the NoOpFunc rule for any field rule associated with the export data, you
must insert the ReplaceNoOpFunc rule in the <Base Rules> section of the
AFGJOB.JDT file.

• You must place the ImportExtract rule in the <Base Form Set Rules> section of the
AFGJOB.JDT file after the BuildFormList rule or any custom rule that creates a
form set.

• If the import extract file consists of only Documaker Workstation export files; do not
include the LoadRcpTbl and RunSetRcpTbl or GetCo and GetLOB rules in your
AFGJOB.JDT file.

• If the import extract file is comprised of normal transaction data records plus one or
more embedded Documaker Workstation export files; you must include the
LoadRcpTbl and RunSetRcpTbl or GetCo and GetLOB rules in your AFGJOB.JDT
file.

Example Here are some examples which show how this rule works:

Extract file made up of
transactions with

embedded export files

In this example, the extract file is made up of normal transactions with embedded export
files. This example imports information from an extract file named IMPORT.DAT which
is comprised of typical transactions and embedded export files. Using this information,
the system creates GenData files which are input to GenPrint. The GenPrint program
then creates the print output files. Keep in mind:

• The ReplaceNoOpFunc rule is not required in the AFGJOB.JDT file because no
fields in the sample DDT file use the NoOpFunc rule

• The options in the Trn_Fields control group are based on items in the transaction
data

• The LoadRcpTbl and RunSetRcpTbl rules are required to load and run the recipient
table

ImportExtract

113

Here is a sample extract file:

SCO1234567HEADERREC00000030198 SCOM1FP WAT1I1B119990223 804-
345-87…

SCO1234567FRMLSTREC0000010110 SCO FP T1 89999987
041598… SCO1234567PRODNMREC00000David Miller
000666666600000444...

SCO1234567PRODADREC00000100 Main Street, Suite 1200 Miami,
FL 30202…

…

;SAMPCO;LB1;EXPORT FILE # 1;NB;P ;associated w Transaction # 1;

\NA=\;SAMPCO;LB1;LETTER2;

\NA=q1snam\

\NA=q1fl2a\

DATE\October 12, 2000

LESSEE_NAME\Morris Sander

LESSEE_addr\3200 Windy Hill Road

LESSEE_city\Atlanta, GA 30339

\NA=q1b302\

\NA=q1ba36\

\NA=q1ba32\

\NA=q1sal1\

SCO1234567COVERGREC00000SPC 25000 250 Coverage Item 2…

SCO1234567GENRALREC000001 1 3 1 0
Liability1Liability2Liability3Libility4 …

…

;SAMPCO;LB1;EXPORT FILE # 2;NB;P ;associated w Transaction # 1;

\NA=\;SAMPCO;LB1;CHARTS;

\NA=q1cht\

…

SCO999567HEADERREC00000030198 SCOM1FP WAT1I1B119990223 804-
345-87…

SCO9994567FRMLSTREC0000010110 SCO FP T1 89999987
041598…

…

Here is a sample DDT file:

<Image Field Rules Override>

;0;0;Date;0;0;Date;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_Name;0;9;Lessee_Name;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_addr;0;25;Lessee_addr;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_city;0;25;Lessee_city;0;25;; MapFromImportData;;N;N;N;…

Here is a sample AFGJOB.JDT file:

<Base Rules>

…

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportExtract;;;

;LoadRcpTbl;;;

;RunSetRcpTbl;;;

…

Chapter 3
Job and Form Set Rules Reference

114

Here is a sample INI file:

< Data >

ExtrFile = Import.dat

< ExtractKeyField >

SearchMask = 1,SCO

< Trn_Fields >

Key1 = 1,3,N

Key2 = 40,2,N

KeyID = 4,7,N

< Trn_File >

BinaryExt = N

MaxExtRecLen = 120

Extract file made up of
appended export files

In this example, the extract file is made up of one or more appended export files. This
example imports information from an extract file named IMPORT.DAT which is
comprised of one or more appended export files. Using that information, the system then
creates GenData files which are input to GenPrint. The GenPrint program then creates
the print output files. Keep in mind:

• The ReplaceNoOpFunc rule is required in the AFGJOB.JDT file because one of the
fields in the sample DDT uses the NoOpFunc rule

• The options in the Trn_Fields control group are based on items in the export data

• The LoadRcpTbl and RunSetRcpTbl rules not required

Here is a sample extract file:

;CWNG;CIS;1;NB;Export File # 1 ;;

\NA=\;CWNG;CIS;CWFBILL;

\NA=QAIBANCD\

BANNER CODE\001

BANNER CODE TXT\CWNG Company A

\NA=QAIGRAPH\

ACTUAL GJ 1\Nov

\NA=\;CWNG;CIS;CWFCRD3;

\NA=CWFCRD3\

…

;CWNG;CIS;1;NB;Export File # 2 ;;

\NA=\;CWNG;CIS;CWFBILL;

\NA=QAIBANCD\

BANNER CODE\002

BANNER CODE TXT\CWNG Company B

\NA=QAIGRAPH\

ACTUAL GJ 1\Nov

\NA=\;CWNG;CIS;CWFCRD3;

\NA=CWFCRD3\

 …

Here is a sample DDT file:

<Image Field Rules Override>

;0;0;Banner Code;75;3;Banner
Code;0;3;;MapFromImportData;31,ACCTNUM;…

;0;0;Banner Code Txt;0;11;Banner Code Txt;0;11;;noopfunc;31,Banner
Code;…

ImportExtract

115

Here is a sample AFGJOB.JDT file:

<Base Rules>

…

;ReplaceNoOpFunc;;;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportExtract;;;

…

Here is a sample INI file:

< Data >

ExtrFile = Import.dat

< ExtractKeyField >

SearchMask = 2,CWNG

< Trn_Fields >

Key1 = 2,4,N

Key2 = 7,3,N

KeyID = 16,20,N

< Trn_File >

BinaryExt = N

MaxExtRecLen = 120

See also MapFromImportData on page 376

NoOpFunc on page 415

ReplaceNoOpFunc on page 197

ImportFile on page 116

ImportNAPOLExtract on page 121

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

116

 ImportFile
Use this form set level rule (level 2) to import transactions (via a standard export file) from
Documaker Workstation into GenData. This rule outputs the transaction to an
NAFILE.DAT file which can then be used by the GenData program.

NOTE: You can import multiple export files if you use the SCH option.

Syntax ImportFile;;option;

There are several ways to specify the import file in the option parameter:

The INI and FILE options normally import the same file for each transaction. The SCH
and GVM options let you import a different file for each transaction.

Keep in mind:

• For each field that comprises a section (whose data comes from the combined
standard export file), you must create or have a DDT record with the field rule set to
one of these field rules:

MapFromImportData

NoOpFunc

If you use the NoOpFunc rule for any field rule associated with the standard export
file, you must insert the ReplaceNoOpFunc rule in the <Base Rules> section of the
AFGJOB.JDT file.

• Place the ImportFile rule in the <Base Form Set Rules> section of the AFGJOB.JDT
file after the BuildFormList rule or any custom rule that creates a form set.

• Do not include the LoadRcpTbl, RunSetRcpTbl, GetCo, or GetLOB rules in your
AFGJOB.JDT file.

Option Description

FILE = file name Enter the name and path of the import file.

INI = INI control group, option Enter the INI control group and option in which the import
file is defined.

SCH = offsetofmask,
<searchmask> offsetofdata,
lengthofdata

This indicates the file name is contained in a record of the
extract file. The offsetofmask is the offset of the search
mask, offsetofdata is the offset where the file name starts,
and lengthofdata is the length of the file name.

GVM = GlobalVariableName GlobalVariableName defines the GVM that contains the file
name and path information.

ImportFile

117

Assume you have the following items defined in your master resource library. Keep in
mind:

• The ReplaceNoOpFunc rule is required in the AFGJOB.JDT file because one of the
fields in the sample DDT uses the NoOpFunc rule.

• Trn_Fields control group options are based on items in the first record of the
combined WIP/NA/POL Export data file.

• The LoadRcpTbl and RunSetRcpTbl or GetCo and GetLOB rules are not required
if this information was assigned from the imported file. It may, however, be
necessary to use other rules, such as the Field2GVM rule, to move data from the
imported form set fields to relevant GVM variables.

Here is a sample import file named IMPORT.DAT file:

;SAMPCO;LB1;EXPORT FILE # 1;NB;P ;;

\NA=\;SAMPCO;LB1;LETTER2;

\NA=q1snam\

\NA=q1fl2a\

DATE\October 12, 2000

LESSEE_NAME\Morris Sander

LESSEE_addr\3200 Windy Hill Road

LESSEE_city\Atlanta, GA 30339

\NA=q1b302\

\NA=q1ba36\

\NA=q1ba32\

\NA=q1sal1\

Here is a sample DDT file:

;0;0;Date;0;0;Date;0;25;; NoOpFunc;;N;N;N;…

;0;0;Lessee_Name;0;9;Lessee_Name;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_addr;0;25;Lessee_addr;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_city;0;25;Lessee_city;0;25;; MapFromImportData;;N;N;N;…

Here are sample INI settings:

< TRN_Fields >

Key1 = 2,6,N

Key2 = 32,2,N

KeyID = 13,18,N

< TRN_File >

BinaryExt = N

MaxExtRecLen= 120

< ExtractKeyField >

SearchMask = 2,SAMPCO

< Data >

ExtrFile = xxxxx (see the import file example above)

Chapter 3
Job and Form Set Rules Reference

118

Example The following examples illustrate the different ways you can define the import file when
you use this rule.

Using the File option This example imports information from a file named IMPORT.DAT in the \import
directory and uses that information to create the GenData files which the GenPrint
program uses to create the print output files.

Here is an excerpt from a sample AFGJOB.JDT file:

<Base Rules>

…

;ReplaceNoOpFunc;;;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportFile;;File=.\Import\Import.dat;

…

Using the INI option This example imports information based on the Import_File option in the Import_Data
control group. Using this information, the GenData program creates the files the
GenPrint program uses to create the print output files.

Here are the sample INI settings:

< Import_Data >

Import_File = .\Import\Import.dat\

Here is an excerpt from a sample AFGJOB.JDT file:

<Base Rules>

…

;ReplaceNoOpFunc;;;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportFile;;INI=Import_Data,Import_File;

…

ImportFile

119

Using the SCH option This example imports multiple Documaker Workstation export files based on the content
of a line in the extract file. Using this information, the GenData program creates the files
the GenPrint program uses to create the print output files.

Here is an excerpt from a sample extract file named EXTRFILE.DAT:

;CWNG;CIS;1;NB;W ;; TXT .\Import\impt1file.dat

;CWNG;CIS;1;NB;W ;; TXT .\Import\impt2file.dat

…

For this example, use these INI options:

< Data >

ExtrFile= extrfile.dat

< TRN_Fields >

Key1 = 2,4,N

Key2 = 7,3,N

KeyID = 35,22,N

< ExtractKeyField >

SearchMask= 2,CWNG

Here is an excerpt from a sample AFGJOB.JDT file:

<Base Rules>

…

;ReplaceNoOpFunc;;;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportFile;2;SCH=30,TXT 35,21;

…

Chapter 3
Job and Form Set Rules Reference

120

Using the GVM option This example imports data from an import file based on a GVM variable called
Import_File. Using this information, the GenData program creates the files the GenPrint
program uses to create the print output files. Any valid GVM variable can be used no
matter how it is created or assigned.

Here is an excerpt from a sample AFGJOB.JDT file:

<Base Rules>

....

;ReplaceNoOpFunc;;;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportFile;;GVM=Import_File;

…

See also MapFromImportData on page 376

ReplaceNoOpFunc on page 197

RULNestedOverFlowProc on page 203

ImportNAPOLExtract on page 121

ImportNAPOLFile on page 126

ImportExtract on page 111

JDT Rules Reference on page 30

ImportNAPOLExtract

121

 ImportNAPOLExtract
Use this form set level rule (level 2) to import an extract file into the GenData program
that is made up of:

• Typical transactions with one or more combined WIP/NA/POL export files from
Documaker Workstation embedded into each transaction This illustration shows
transactions with embedded WIP/NA/POL export files:

One or more appended WIP/NA/POL export data files from Documaker Workstation.
This illustration shows an extract file comprised of WIP/NA/POL files appended to one
another:

Syntax ;ImportNAPOLExtract;;;

Although there are no parameters for this rule. Keep in mind:

• Specify the extract file name, which contains the import information for each
transaction, in the ExtrFile option of the Data control group. This is the normal way
to define the name of the extract file.

• Only use the SearchMask option in the ExtractKeyField control group; do not use
the Key option.

Transaction 1
<record1, field1>, <field 2>, <field 3>, <field4>, <field5>

<record2, field1>, <field 2>, <field 3>, <field4>, <field5>

WIP/NA/POL export file containing data associated with transaction 1.

Transaction 1 (continued
<record3, field1>, <field 2>, <field 3>, <field4>, <field5>

<record4, field1>, <field 2>, <field 3>, <field4>, <field5>

Transaction 2
<record1, field1>, <field 2>, <field 3>, <field4>, <field5>

<record2, field1>, <field 2>, <field 3>, <field4>, <field5>

WIP/NA/POL export file containing data associated with transaction 2.

Transaction 2 (continued
<record3, field1>, <field 2>, <field 3>, <field4>, <field5>

<record4, field1>, <field 2>, <field 3>, <field4>, <field5>

WIP/NA/POL export file 2

WIP/NA/POL export file 1

WIP/NA/POL export file 3

WIP/NA/POL export file 4

WIP/NA/POL export file 5

Chapter 3
Job and Form Set Rules Reference

122

• For each field that comprises a section (whose data comes from the combined WIP/
NA/POL export data), you must create or have a DDT record whose field rule is set
to one of the following field rules

MapFromImportData

NoOpFunc

If you use the NoOpFunc rule for any field rule associated with the WIP/NA/POL
export data, you must insert the ReplaceNoOpFunc rule in the <Base Rules> section
of the AFGJOB.JDT file.

• You must place the ImportNAPOLExtract rule in the <Base Form Set Rules>
section of the AFGJOB.JDT file after the BuildFormList rule or any custom rule that
creates a form set.

• If the import extract file is comprised of normal transaction data records plus one or
more embedded Documaker Workstation combined WIP/NA/POL export files;
you can include the LoadRcpTbl and RunSetRcpTbl or GetCo and GetLOB rules in
your AFGJOB.JDT file. You may need to use other rules, like Field2GVM, to move
data from the imported form set fields to relevant GVM variables.

• To process without using DDT files, substitute the ForceNoImages rule for the
RULStandardImageProc rule.

Example Here are some examples which show how this rule works:

Extract file made up of
transactions with

embedded WIP/NA/
POL files

In this example, the extract file is made up of normal transactions with embedded WIP/
NA/POL export files. This example imports information from an extract file named
IMPORT.DAT which is comprised of transactions with embedded WIP/NA/POL
export files. Using this information, the system creates standard GenData files which are
input to the GenPrint program. The GenPrint program then creates the print output files.
Keep in mind:

• The ReplaceNoOpFunc rule is not required in the AFGJOB.JDT file because no
fields in the sample DDT file use the NoOpFunc rule

• The options in the Trn_Fields control group are based on items in the first record of
the typical transaction data

• The LoadRcpTbl and RunSetRcpTbl rules are required to load and run the recipient
table

Here is a sample extract file:

SCO1234567HEADERREC00000030198 SCOM1FP WAT1I1B119990223 804-
345-87…

SCO1234567FRMLSTREC0000010110 SCO FP T1 89999987
041598… SCO1234567PRODNMREC00000David Miller
000666666600000444...

SCO1234567PRODADREC00000100 Main Street, Suite 1200 Miami,
FL 30202…

…

WIP="SAMPCO ""LB1 ""NAPOL FILE # 1 ""NB ""P" associated w
Transaction # 1"

;SAMPCO;LB1;LETTER2;Second Letter;RD;;q1snam|D3<Insured>/
q1fl2a|D3S<Insured>/q1b302|D3S<Insured>/q1ba36…;

\ENDDOCSET\

\NA=q1snam,LN=1,DUP=OFF,SIZE=C,TRAY=U,X=0,Y=0,PA=1,OPT=D3\

ImportNAPOLExtract

123

\ENDIMAGE\

\NA=q1fl2a,LN=1,DUP=OFF,SIZE=C,TRAY=U,X=0,Y=3360,PA=1,OPT=D3S\

FDate;235;3913;12012;;;\January 1, 2000

FLessee_NAME;235;4806;12012;G;;\Morris Sander

FLessee_addr;235;5212;12012;G;;\3200 Windy Hill Road

FLessee_city;235;5636;12012;G;;\Atlanta, GA 30339

\ENDIMAGE\

…

\ENDFORM\

\ENDDOCSET\

SCO1234567COVERGREC00000SPC 25000 250 Coverage Item 2…

SCO1234567GENRALREC000001 1 3 1 0
Liability1Liability2Liability3Libility4 …

…

WIP="SAMPCO ""LB1 ""NAPOL FILE # 2 ""NB ""P" associated w
Transaction # 1"

;SAMPCO;LB1;CHARTS;Form q1cht;RD;;q1cht|D5<Insured>;

\ENDDOCSET\

\NA=q1cht,LN=1,DUP=OFF,SIZE=L,TRAY=U,X=0,Y=0,PA=1,OPT=D5\

FFORMSET PAGE NUM;17656;25740;16008;PF;;\

FFORMSET PAGE NUM OF;18408;25740;16008;PF;;\

\ENDFORM\

\ENDDOCSET\

…

SCO999567HEADERREC00000030198 SCOM1FP WAT1I1B119990223 804-
345-87…

SCO9994567FRMLSTREC0000010110 SCO FP T1 89999987
041598…

…

Here is a sample DDT file:

<Image Field Rules Override>

;0;0;Date;0;0;Date;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_Name;0;9;Lessee_Name;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_addr;0;25;Lessee_addr;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_city;0;25;Lessee_city;0;25;; MapFromImportData;;N;N;N;…

Here is a sample AFGJOB.JDT file:

<Base Rules>

…

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportNAPOLExtract;;;

;LoadRcpTbl;;;

;RunSetRcpTbl;;;

…

Here is a sample INI file:

< Data >

ExtrFile = Import.dat

< ExtractKeyField >

SearchMask = 1,SCO

< Trn_Fields >

Chapter 3
Job and Form Set Rules Reference

124

Key1 = 1,3,N

Key2 = 40,2,N

KeyID = 4,7,N

< Trn_File >

BinaryExt = N

MaxExtRecLen= 120

Extract file made up of
appended WIP/NA/POL

files

In this example, the extract file is made up of one or more appended WIP/NA/POL
export files. This example imports information from an extract file named
IMPORT.DAT which is comprised of one or more appended WIP/NA/POL export
data files. Using that information, the system then creates GenData files which are input
to GenPrint. The GenPrint program then creates the print output files. Keep in mind:

• The ReplaceNoOpFunc rule is required in the AFGJOB.JDT file because one of the
fields in the sample DDT file uses the NoOpFunc rule

• The options in the Trn_Fields control group are based on items in the first record of
the WIP/NA/POL export file

• The LoadRcpTbl and RunSetRcpTbl rules not required

Here is a sample extract file:

WIP="SAMPCO ""LB1 ""NAPOL FILE # 1 ""NB ""P"

;SAMPCO;LB1;LETTER2;Second Letter;RD;;q1snam|D3<Insured>/
q1fl2a|D3S<Insured>/q1b302|D3S<Insured>/q1ba36…;

\ENDDOCSET\

\NA=q1snam,LN=1,DUP=OFF,SIZE=C,TRAY=U,X=0,Y=0,PA=1,OPT=D3\

\ENDIMAGE\

\NA=q1fl2a,LN=1,DUP=OFF,SIZE=C,TRAY=U,X=0,Y=3360,PA=1,OPT=D3S\

FDate;235;3913;12012;;;\January 1, 2000

FLessee_NAME;235;4806;12012;G;;\Morris Sander

FLessee_addr;235;5212;12012;G;;\3200 Windy Hill Road

FLessee_city;235;5636;12012;G;;\Atlanta, GA 30339

\ENDIMAGE\

…

\ENDFORM\

\ENDDOCSET\

WIP="SAMPCO ""LB1 ""NAPOL FILE # 2 ""NB ""P"

;SAMPCO;LB1;CHARTS;Form q1cht;RD;;q1cht|D5<Insured>;

\ENDDOCSET\

\NA=q1cht,LN=1,DUP=OFF,SIZE=L,TRAY=U,X=0,Y=0,PA=1,OPT=D5\

FFORMSET PAGE NUM;17656;25740;16008;PF;;\

FFORMSET PAGE NUM OF;18408;25740;16008;PF;;\

\ENDFORM\

\ENDDOCSET\

Here is a sample DDT file:

<Image Field Rules Override>

;0;0;Date;0;0;Date;0;25;; NoOpFunce;;N;N;N;…

;0;0;Lessee_Name;0;9;Lessee_Name;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_addr;0;25;Lessee_addr;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_city;0;25;Lessee_city;0;25;; MapFromImportData;;N;N;N;…

Here is a sample AFGJOB.JDT file:

<Base Rules>

…

ImportNAPOLExtract

125

;ReplaceNoOpFunc;;;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportNAPOLExtract;;;

…

Here is a sample INI file:

< Data >

ExtrFile = Import.dat

< ExtractKeyField >

SearchMask = 1,WIP

< Trn_Fields >

Key1 = 1,3,N

Key2 = 6,6,N

KeyID = 26,20,N

< Trn_File >

BinaryExt = N

MaxExtRecLen= 120

See also MapFromImportData on page 376

NoOpFunc on page 415

ReplaceNoOpFunc on page 197

ImportFile on page 116

ForceNoImages on page 98

RULNestedOverFlowProc on page 203

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

126

 ImportNAPOLFile
Use this form set level rule (level 2) to import a single transaction, stored in a WIP/NA/
POL export file, from Documaker Workstation into the GenData program.

NOTE: If you use the SCH option, you can import multiple Documaker Workstation
WIP/NA/POL export files.

Syntax ;ImportNAPOLFile;;option;

There are several ways to specify the import file in the option parameter:

The INI and FILE options normally import the same file for each transaction. The SCH
and GVM options let you import a different file for each transaction.

Keep in mind:

• For each field that comprises a section (whose data comes from the combined WIP/
NA/POL export data), you must create or have a DDT record with the field rule set
to one of these field rules:

MapFromImportData

NoOpFunc

If you use the NoOpFunc rule for any field rule associated with the combined WIP/
NA/POL export data, you must insert the ReplaceNoOpFunc rule in the <Base
Rules> section of the AFGJOB.JDT file.

• Place the ImportNAPOLFile rule in the <Base Form Set Rules> section of the
AFGJOB.JDT after the BuildFormList rule or any custom rule that creates a form set.

• The LoadRcpTbl and RunSetRcpTbl or GetCo and GetLOB rules are not required
unless you use the SCH option.

Assume you have the following items defined in your master resource library. Keep in
mind:

• The ReplaceNoOpFunc rule is required in the AFGJOB.JDT file because one of the
fields in the sample DDT uses the NoOpFunc rule.

Option Description

FILE = file name Enter the name and path of the import file.

INI = INI control group, option Enter the INI control group and option in which the import
file is defined.

SCH = offsetofmask,
<searchmask> offsetofdata,
lengthofdata

This indicates the file name is contained in a record of the
extract file. The offsetofmask is the offset of the search
mask, offsetofdata is the offset where the file name starts,
and lengthofdata is the length of the file name.

GVM = GlobalVariableName GlobalVariableName defines the GVM that contains the file
name and path information.

ImportNAPOLFile

127

• Trn_Fields control group options are based on items in the first record of the
combined WIP/NA/POL Export data file.

Here is a sample combined WIP/NA/POL import file named IMPORT.DAT:

WIP="SAMPCO ""LB1 ""NAPOL FILE # 1 ""NB ""P"

;SAMPCO;LB1;LETTER2;Second Letter;RD;;q1snam|D3<Insured>/
q1fl2a|D3S<Insured>/q1b302|D3S<Insured>/q1ba36…;

\ENDDOCSET\

\NA=q1snam,LN=1,DUP=OFF,SIZE=C,TRAY=U,X=0,Y=0,PA=1,OPT=D3\

\ENDIMAGE\

\NA=q1fl2a,LN=1,DUP=OFF,SIZE=C,TRAY=U,X=0,Y=3360,PA=1,OPT=D3S\

FDate;235;3913;12012;;;\January 1, 2000

FLessee_NAME;235;4806;12012;G;;\Morris Sander

FLessee_addr;235;5212;12012;G;;\3200 Windy Hill Road

FLessee_city;235;5636;12012;G;;\Atlanta, GA 30339

\ENDIMAGE\

…

\ENDFORM\

\ENDDOCSET\

Here is a sample DDT file:

<Image Field Rules Override>

;0;0;Date;0;0;Date;0;25;; NoOpFunc;;N;N;N;…

;0;0;Lessee_Name;0;9;Lessee_Name;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_addr;0;25;Lessee_addr;0;25;; MapFromImportData;;N;N;N;…

;0;0;Lessee_city;0;25;Lessee_city;0;25;; MapFromImportData;;N;N;N;…

Here are sample INI settings:

< TRN_Fields >

Key1 = 1,3,N

Key2 = 6,6,N

KeyID = 26,20,N

< TRN_File >

BinaryExt = N

MaxExtRecLen= 120

<ExtractKeyField>

SearchMask = 1,WIP=

< Data >

 ExtrFile = xxxxx

Chapter 3
Job and Form Set Rules Reference

128

Example The following examples illustrate the different ways you can define the import file when
you use this rule.

Using the File option This example imports information from the IMPORT1.DAT file in the \import directory
and uses that information to create the GenData files which the GenPrint program uses
to create the print output files.

Here is an excerpt from a sample AFGJOB.JDT file:

<Base Rules>

…

;ReplaceNoOpFunc;;;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportNAPOLFile;;File=.\Import\Import1.dat;

…

Using the INI option This example imports information based on the Import_File option in the Import_Data
control group. Using this information, the GenData program creates the files the
GenPrint program uses to create the print output files.

Here are the sample INI settings:

< Import_Data >

Import_File = .\Import\Import1.dat\

Here is an excerpt from a sample AFGJOB.JDT file:

<Base Rules>

…

;ReplaceNoOpFunc;;;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportNAPOLFile;;INI=Import_Data,Import_File;

…

ImportNAPOLFile

129

Using the SCH option This example imports multiple WIP/NA/POL export files based on the content of a line
in the extract file. Using this information, the GenData program creates the files the
GenPrint program uses to create the print output files.

Here is an excerpt from a sample extract file named EXTRFILE.DAT:

;CWNG;CIS;1;NB;W ;; TXT .\Import\impt1file.dat

;CWNG;CIS;1;NB;W ;; TXT .\Import\impt2file.dat

…

For this example, use these INI options:

< Data >

ExtrFile= extrfile.dat

< TRN_Fields >

Key1 = 2,4,N

Key2 = 7,3,N

KeyID = 35,22,N

< ExtractKeyField >

SearchMask = 2,CWNG

Here is an excerpt from a sample AFGJOB.JDT file:

<Base Rules>

…

;ReplaceNoOpFunc;;;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportNAPOLFile;2;SCH=30,TXT 35,22;

Using the GVM option This example imports data from an import file based on a GVM variable called
Import_File. Using this information, the GenData program creates the files the GenPrint
program uses to create the print output files. Any valid GVM variable can be used no
matter how it is created or assigned. Here is an excerpt from a sample AFGJOB.JDT file:

<Base Rules>

…

;ReplaceNoOpFunc;;;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportNAPOLFile;;GVM=Import_File;

See also ImportFile on page 116

ImportExtract on page 111

ImportNAPOLExtract on page 121

ImportNAPOLFile on page 126

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

130

 ImportXMLExtract
Use this form set rule (level 2) to import a file which consists of one or more XML
transactions into the GenData program for processing. Using this file, the GenData
program creates the recipient batch, NAFile, POLFile, and NewTrn files that you can
print, archive, or both using the GenPrint and GenArc programs.

NOTE: If you are running Documaker from IDS, use the ImportXMLExtract rule to
bring in XML in standard Documaker XML format, such as from Documaker
Workstation or iDocumaker. Use the UseXMLExtract rule to convert a loaded
extract file into an XML tree, which you can then use to query data.

You append multiple export files to create the import XML file. The export files are
created using the Documaker Workstation XML Export option. This illustration shows
an example file comprised of export files appended to one another:

ImportXMLExtract

131

Syntax ImportXMLExtract;;option;

NOTE: You can only use this rule for single-step processing.

Transaction 1
<?xml version="1.0"?>

<Document Type="Oracle Universal" Version="5.0">

<DocSet>

<ArcEffectiveDate></ArcEffectiveDate>

<Library Name="Oracle Insurance"></Library>

<Key1 Name=”Company”>SkyInsur</Key1>

<KeyY2 Name=”Lob”>Package Policy</Key2>

<TransactionID Name="PolicyNum">1010j</TransactionID>

…

…

Transaction 2
<?xml version="1.0"?>

<Document Type="Oracle Universal" Version="5.0">

<DocSet>

<ArcEffectiveDate></ArcEffectiveDate>

<Library Name="Oracle Insurance"></Library>

<Key1 Name=”Company”>SkyInsur</Key1>

<KeyY2 Name=”Lob”>Package Policy</Key2>

<TransactionID Name="PolicyNum">1110j</TransactionID>

…

…

Transaction 3
<?xml version="1.0"?>

<Document Type="Oracle Universal" Version="5.0">

<DocSet>

<ArcEffectiveDate></ArcEffectiveDate>

<Library Name="Oracle Insurance"></Library>

<Key1 Name=”Company”>SkyInsur</Key1>

<KeyY2 Name=”Lob”>Package Policy</Key2>

<TransactionID Name="PolicyNum">1210j</TransactionID>

…

…

Option Description

SP Include the SP option to suppress the pagination portion of the import. This lets you
run rules and other form set manipulations before calling a rule to paginate the form
set, such as the PaginateAndPropogate rule.

Chapter 3
Job and Form Set Rules Reference

132

Keep in mind...

• Create a simplified AFGJOB.JDT file when you use this rule and omit these rules:

LoadRcpTbl

LoadExtractData

RunSetRcpTbl

CreateGlbVar

LoadDDTDefs

InitOvFlw

SetOvFlwSym

ResetOvFlw

• Use the NoGenTrnTransactionProc rule because the XML file has no transaction
information on the first line.

• Place the ImportXMLExtract rule in the <Base Form Set Rules> section of the
AFGJOB.JDT file after the BuildFormList rule or any rule that creates a form set.

• In the TRN_File control group, set MaxExtRecLen option to the length of the
longest record in the import file.

• In the TRN_Fields control group, include only the Key1, Key2, and KeyID options.
Set these options to dummy data, because the GVM variables are set to the data
values in the XMLTags2GVM control group during processing.

• If you load an XML or a V2 import file as the extract file, it must conform to the
extract file rules. This means that you must set the MaxExtRecLen and BinaryExt
INI options appropriately.

• Define the XMLTags2GVM control group in your FSISYS.INI file as shown here:

< XMLTags2GVM >

GVM = XMLTag, (Req/Opt)

Where GVM is the name of the GVM variable and XMLTag is the tag name in the
XML file. Include Req or Opt to specify whether it is required or optional. If it is
required and is omitted from the XML file, processing stops. Here is an example:

< XMLTags2GVM >

Key1 = Key1, Req

Key2 = Key2, Req

KeyID = TransactionID, Opt

Example Assume you have the following items defined in your master resource library. See XML
File Format on page 139 for an example of an import file in the standard XML file format.

Here is an example of the INI options you need in your FSISYS.INI file:

< Data >

AFGJOBFile = .\deflib\afgjob.jdt

ExtrFile = .\extract\extrfile.xml

< ExtractKeyField >

SearchMask = 1,<?xml

ImportXMLExtract

133

< Key1Table >

XML = XML

< Key2Table >

XML = XML

< KeyIDTable >

XML = XML

< Trigger2Archive >

Key1 = Key1

Key2 = Key2

KeyID = KeyID

RunDate = RunDate

< TRN_Fields >

Key1 = 3,3,N

Key2 = 3,3,N

KeyID = 3,3,N

< TRN_File >

BinaryExt = N

MaxExtRecLen= 175

< XMLTags2GVM >

Key1 = Key1,Req

Key2 = Key2,Req

KeyID = TransactionID,Opt

Here is an excerpt from a sample AFGJOB.JDT file:

< Base Rules >

;RULStandardJobProc;;;

…

< Base Form Set Rules >

;NoGenTrnTransactionProc;;;

;BuildFormList;;;

;ImportXMLExtract;;;

…

…

See also ImportXMLFile on page 134

PaginateAndPropagate on page 174

Processing Import Files on page 22

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

134

 ImportXMLFile
Use this form set rule (level 2) to import an XML file into GenData for processing. Using
this file, the GenData program creates recipient batch, NAFile, POLFile, and NewTrn
files that you can print, archive, or both using the GenPrint and GenArc programs.

The export file to be used as import was created using the Documaker Workstation XML
Export function that produces a file in the Documaker Standard XML format.

Syntax ;ImportXMLFile;;option;

Keep in mind:

• Create a simplified AFGJOB.JDT file when you use this rule. For instance, omit
these rules:

LoadRcpTbl

LoadExtractData

RunSetRcpTbl

CreateGlbVar

LoadDDTDefs

InitOvFlw

Option Description

SP Include the SP option to suppress the pagination portion of the import. This lets you
run rules and other form set manipulations before calling a rule to paginate the form
set, such as the PaginateAndPropogate rule.
You must place this option before the FILE option. Here is an example:

;ImportXMLFile;;SP,SCH=11,FILENAME 20,20;

This example suppresses the pagination of the import of the file designated by this
search mask.

TF Enter TF to truncate fields to the field length defined by the FAP file. Make sure you
specify this parameter before FILE option.

FILE Enter the name and path of the import file.

INI Enter the INI control group and option in which the import file is defined. Separate
the control group and option with a comma.

SCH Enter the search criteria and the file name data, separated by a space.
The name of the file, including its path, that you want to import should be contained
in the record in the file indicated by the ExtrFile option in the Data control group.
The search criteria are one or more comma delimited data pairs, offsets and character
string, used as the search mask for finding the record in the specified file.
The file name data is a comma delimited data pair that defines the offset and length
of the file name in the record defined by the search criteria parameter.

GVM Enter the global variable name (GVM) that contains the file name and path
information.

ImportXMLFile

135

SetOvFlwSym

ResetOvFlw

• Use the NoGenTrnTransactionProc rule because the XML file has no transaction
information on the first line.

• Place the ImportXMLExtract rule in the <Base Form Set Rules> section of the
AFGJOB.JDT file after the BuildFormList rule or any custom rule that creates a
form set.

• In the TRN_File control group, set MaxExtRecLen option to the length of the
longest record in the import file.

• In the TRN_Fields control group, include only the Key1, Key2, and KeyID options.
Set these options to dummy data, because the GVM variables are set to the data
values in the XMLTags2GVM control group during processing.

• If you load an XML or a V2 import file as the extract file, it must conform to the
extract file rules. This means that you must set the MaxExtRecLen and BinaryExt
INI options appropriately.

• Define the XMLTags2GVM control group in your FSISYS.INI file as shown here:

< XMLTags2GVM >

GVM = XMLTag, (Req/Opt)

Where GVM is the name of the GVM variable and XMLTag is the tag name in the
XML file. Include Req or Opt to specify whether it is required or optional. If it is
required and is not present in the XML file, processing will terminate. Here is an
example:

< XMLTags2GVM >

Key1 = Key1, Req

Key2 = Key2, Req

KeyID = TransactionID, Opt

Example These examples show the different ways you can define the import file when you use this
rule. Assume you have the following items defined in your master resource library. For an
example of the standard XML file format, see XML File Format on page 139.

Here are sample INI settings in your FSISYS.INI file:

< Data >

 AFGJOBFile = .\deflib\afgjob.jdt

 ExtrFile = .\extract\dummy.dat

< ExtractKeyField >

 SearchMask = 1,XML_FILE_NAME

< Key1Table >

 XML = xml

< Key2Table >

 XML = xml

< KeyIDTable >

 XML = xml

< Trigger2Archive >

 Key1 = Key1

 Key2 = Key2

 KeyID = KeyID

 RunDate = RunDate

Chapter 3
Job and Form Set Rules Reference

136

< TRN_Fields >

 Key1 = 1,3,N

 Key2 = 5,5,N

 KeyID = 10,4,N

< TRN_File >

 BinaryExt = N

 MaxExtRecLen = 175

< XMLTags2GVM >

 Key1 = Key1,Req

 Key2 = Key2,Req

 KeyID = TransactionID,Opt

Here is a sample of the DUMMY.DAT file, pointed to by the ExtrFile option in the Data
control group in your FSISYS.INI file.

0 1

1 5

XML_FILE_NAME This is a dummy extract file.

Using the TF Option
Use the TF (Truncate Field) option to truncate fields to their FAP defined field length.
Make sure you specify this parameter before FILE option. Here are some examples:

This example will truncate the fields lengths:

;ImportXMLFile;;TF,SCH=1,XML_FILE_NAME 15,55;

These examples truncate fields and suppress pagination:

;ImportXMLFile;;SP,TF,SCH=1,XML_FILE_NAME 15,55;

;ImportXMLFile;;TF,SP,SCH=1,XML_FILE_NAME 15,55;

This example does not truncate fields or suppress pagination:

;ImportXMLFile;;SP

NOTE: No formatting is allowed on the multi-line text field when you include the TF
option.

Using the File Option
This example imports the F_FILE.XML file from the \export directory. Using this file,
the GenData program creates the recipient batch, NA, POL, and NewTrn files needed
for GenPrint and GenArc processing.

Here is an excerpt from a sample AFGJOB.JDT file using the File option:

< Base Rules >

;RULStandardJobProc;;;

…

< Base Form Set Rules >

;NoGenTrnTransactionProc;;;

;BuildFormList;;;

;ImportXMLFile;;File=.\Export\F_File.xml;

…

ImportXMLFile

137

Using the INI Option
This example imports the F_INI.XML file from the \export directory. Using this file, the
GenData program creates the recipient batch, NA, POL, and NewTrn files needed for
GenPrint and GenArc processing.

In addition to the INI options defined previously, you must also include the this option:

< Import_Data >

Import_File = .\Export\F_File.xml\

Here is an excerpt from a sample AFGJOB.JDT file:

< Base Rules >

;RULStandardJobProc;;;

…

< Base Form Set Rules >

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;ImportNAPOLFile;;INI=Import_Data,Import_File;

…

Using the SCH Option
This example imports XML files (F_SCH1.XML, F_SCH2.XML, and F_SCH3.XML)
based on the content of a line in the file pointed to by the ExtrFile option in the Data
control group. Using these files, the GenData program creates the recipient batch, NA,
POL, and NewTrn files needed for GenPrint and GenArc processing.

This INI option differs from the one defined in the assumed MRL definition:

< Data >

ExtrFile = .\extract\F_Sch.DAT

Here is an excerpt from the F_SCH.DAT file in the \extract directory which contains an
entry (path and file name) for each XML file to import:

XML_FILE_NAME .\export\F_SCH1.xml

XML_FILE_NAME .\export\F_SCH2.xml

XML_FILE_NAME .\export\F_SCH3.xml

…

NOTE: This option lets you import and process multiple XML files because of the way
the file name and path are specified—one file per entry in the file specified in the
ExtrFile option in the Data control group.

Here is an excerpt from a sample AFGJOB.JDT file:

< Base Rules >

;RULStandardJobProc;;;

…

< Base Form Set Rules >

;NoGenTrnTransactionProc;;;

;BuildFormList;;;

;ImportXMLFile;2;SCH=1,XML_FILE_Name 15,19

…

Chapter 3
Job and Form Set Rules Reference

138

Using the GVM Option
This example imports data from a XML file based on file name contained in the GVM
variable called Import_File. Using this file, the GenData program creates the recipient
batch, NA, POL, and NewTrn files needed for GenPrint and GenArc processing.

Any valid GVM variable can be used no matter how it is created or assigned.

This example creates the GVM variable, ImportXMLFile_GVM, by including this INI
option and adding its definition to the TRNDFDFL.DFD file:

< GentrnDummyFields >

ImportXMLFile_GVM = .\export\F_GVM.xml

Here is an excerpt from a sample AFGJOB.JDT file:

< Base Rules >

;RULStandardJobProc;;;

…

< Base Form Set Rules >

;NoGenTrnTransactionProc;;;

;BuildFormList;;;

;ImportXMLFile;;GVM=ImportXMLFile_GVM;

ImportXMLFile

139

XML FILE FORMAT

Here is an example of the format of the XML file the system creates:

Form set
global data

Group

Form

Multi-page section

Multi-line field

Form global
fields

Recipient
information

Page

Multi-page form

Section local
fields

<?xml version="1.0" encoding="UTF-8"?>
<DOCUMENT TYPE="RPWIP" VERSION="10.2">

<DOCSET NAME="">
<FIELD NAME="POLICY NBR">P1234-1</FIELD>
<FIELD NAME="RENEWAL NBR">1234-2</FIELD>
<FIELD NAME="AGENT'S NBR">6789</FIELD>
<FIELD NAME="EFFECT DATE">10/1/02</FIELD>
<FIELD NAME="EXPIRE DATE">10/1/03</FIELD>
<FIELD NAME="INSURED NAME">John A. Doe</FIELD>
<FIELD NAME="ADDR1">2345 Anystreet</FIELD>
<FIELD NAME="CITY">Anytown</FIELD>
<FIELD NAME="STATE">GA</FIELD>
<FIELD NAME="ZIP CODE">30339</FIELD>
<FIELD NAME="BUSINESS DESC1">Business</FIELD>
<FIELD NAME="BUSINESS DESC2">Personal</FIELD>
<FIELD NAME="BUSINESS DESC3">Property</FIELD>
<FIELD NAME="DATE">09/27/02</FIELD>
<GROUP NAME="" NAME1="DOCUCORP PACKAGE"
NAME2="PROFESSIONAL INSURANCE">
<FORM NAME="Professional Dec">
<DESCRIPTION>Professional Declarations
</DESCRIPTION>

<FIELD NAME="FORM LINE1">Form Letter</FIELD>
<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>
<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1"/>
<RECIPIENT NAME="INSURED" COPYCOUNT="1"/>
<SHEET>
<PAGE>
<SECTION NAME="profdec"/>

</PAGE>
</SHEET>

</FORM>
<FORM NAME="Form Letter">
<DESCRIPTION>Form Letter</DESCRIPTION>
<RECIPIENT NAME="AGENT" COPYCOUNT="1"/>
<RECIPIENT NAME="HOME OFFICE" COPYCOUNT="1"/>
<RECIPIENT NAME="INSURED" COPYCOUNT="1"/>
<SHEET>
<PAGE>
<SECTION NAME="let~tbl">
<FIELD NAME="Coverage">Automobile</FIELD>
<FIELD NAME="Extra">
<P><FONT SIZE="12"
FACE="Univers ATT" COLOR="#FF0000">Text in
multiline variable field.
</P>

</FIELD>
</SECTION>

</PAGE>
<PAGE>
<SECTION NAME="let~tbl">
<DAPINSTANCE VALUE="2"/>
<DAPOPTIONS VALUE="M"/>

</SECTION>
</PAGE>

</SHEET>
</FORM>

</GROUP>
</DOCSET>

</DOCUMENT>

Indicates a
second page

Chapter 3
Job and Form Set Rules Reference

140

Keep in mind...

• DAPOPTIONS should have a value of M for multi-page sections (FAP files). There
are other section options, but only M is applicable in XML.

Use DAPINSTANCE to provide a page number for multi-page sections. If the
section does not span multiple pages, omit the DAPINSTANCE value.

• When you have multiple XML transactions within a single file, separate each
transaction with a line feed. This is a requirement of Documaker software, not the
XML parser.

• Although you do not have to include line feeds inside the XML for a transaction, we
suggest you add a line feed after each element tag. This makes it easier to read the file
and helps in debugging your XML. A message like

Line 255, column 8, syntax is incorrect

is easier to diagnose than

Line 1, column 156780, syntax is incorrect.

See also ImportXMLExtract on page 130

PaginateAndPropagate on page 174

Processing Import Files on page 22

JDT Rules Reference on page 30

InitArchive

141

 InitArchive
Use this job level rule (level 1), along with the Archive rule, to run the GenArc program
as part of single-step processing.

The InitArchive rule checks the INI options in the Trigger2Archive control group,
initializes the database, opens the APPIDX.DFD and CAR files, and perform other steps
to initialize archive.

The Archive rule then unloads the current form set and converts field data for archive
using the INI options in the Trigger2Archive control group.

Syntax ;InitArchive;2;;

Example Here is an example:

< Base Rules >

;InitArchive;1;;

See also Archive on page 43

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

142

 InitConvertWIP
Use this job level (level 1) rule to perform the initialization necessary for the ConvertWIP
rule. You use this rule when you want to include the GenWIP process in single-step mode.

Syntax ;InitConvertWIP;;;;

Example ;InitConvertWIP;1;;

See also ConvertWIP on page 75

JDT Rules Reference on page 30

InitMerge

143

 InitMerge
Use this job level (level 1) rule to create a list of printers, batches, and buffers for the RCB
comment records. This rule also creates a list to hold AFP records and AFP fonts. After
the system finishes running the rule, it deletes everything the rule created.

Syntax ;InitMerge;;;

NOTE: The recipient batch files are not used at this stage. The batch list must be created
beforehand so the system will know which print files belong together. The
skipping batch message is an artifact of the batch file loading process.

Example ;InitMerge;;;

See also Rules Used for 2-up Printing on page 27

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

144

 InitOvFlw
Use this job level rule (level 1) to initialize the overflow feature. Overflow symbols are
created to keep track of the number of records processed. The overflow symbol is one of
the parameters that would be initialized.

Syntax ;InitOvFlw;;;

When processing an overflow form, the overflow count must be reset back to zero, if not
the processing will start with the second record in the extract.

When finished, this rule turns off the system’s overflow feature which frees resources
used when using the overflow feature and overflow variables.

Example ;InitOvFlw;;;

See also WriteOutput on page 248

ResetOvFlw on page 199

SetOvFlwSym on page 227

IncOvSym on page 366

OvActPrint on page 417

OvPrint on page 419

JDT Rules Reference on page 30

InitPageBatchedJob

145

 InitPageBatchedJob
Use this job level (level 1) rule to open NA and POL files. This rule installs the section
level callback function for inserting recipient batch records into the AFP print stream as
AFP comment records.

When finished, this rule restores the original callback function and closes the
NAFILE.DAT and POLFILE.DAT files.

Syntax ;InitPageBatchedJob;;;

Example ;InitPageBatchedJob;;;

See also Rules Used for 2-up Printing on page 27

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

146

 InitPrint
Use this job level (level 1) rule to load printer and recipient batch information. This rule
sets up PRTLIB data, initializes print options, and loads a table which contains page totals
for recipient batch files.

This rule also places a structure containing all of the above information into the GVM
variable RULPRT.

Syntax ;InitPrint;;;

When finished, this rule closes any open print files.

Example ;InitPrint;;;

See also PrintFormset on page 182

NoGenTrnTransactionProc on page 168

Rules Used for 2-up Printing on page 27

Rules Used in Single-Step Processing on page 25

JDT Rules Reference on page 30

InitSetRecipCache

147

 InitSetRecipCache
Use this job level rule (level 1) to set the cache the system will use to store recipient
information in memory. With this rule you can tell the system the amount of memory to
set aside and use for storing information in the Key1 and Key2 fields, often used to store
the company and line of business.

You can use this rule to improve processing performance for complex forms. This rule
has no affect on the processing speed for static forms.

This rule is also used in multi-step processing to enhance performance.

NOTE: If you omit this rule, the system does not set aside memory for the Key1 and
Key2 fields. If this rule causes any problems with your implementation, you can
remove it from the AFGJOB.JDT file.

Syntax ;InitSetRecipCache;;Key1,Key2;

Example ;InitSetRecipCache;;10,15;

This example sets the cache for the Key1 field to 10 and sets the cache for the Key2 field
to 15.

See also JDT Rules Reference on page 30

Parameter Description

Key1
Key2

For Key1 and Key2, enter the amount of memory you want to set aside for storing
the information contained in those fields. These fields are typically used to store
information such as the company name and line of business.
You can enter any number from one (1) to 500. The default is five (5).
If you enter a zero (0), a negative number, or a number greater than 500, the
system ignores your entry and defaults to five.

Chapter 3
Job and Form Set Rules Reference

148

 InlineImagesAndBitmaps
Use this form set level (level 2) rule if you do not want to use Library Manager to maintain
forms and graphics but still need to retrieve the exact data that was printed. This rule lets
you inline all FAP files and embed graphics into the NA file.

NOTE: Keep in mind the size of the NA file and archive will grow significantly if you use
this rule. Furthermore, the performance of the GenData, GenPrint, and GenArc
programs will degrade significantly if you use this rule.

Syntax ;InlineImagesAndBitmaps;;;

Use this rule only when necessary and when performance and the size of the output are
not issues.

This rule loads all sections and graphics and ignores the LoadFAPBitmap and
LoadCordFAP INI options. There are no parameters for this rule.

The return values are: msgSUCCESS or msgFAIL.

Example Here is an example:

;InlineImagesAndBitmaps;;;

This rule must be placed (run) before the NAFILE.DAT and POLFILE.DAT files are
unloaded and after the pagination rules. Here are some examples of how you would set
up your AFGJOB.JDT file:

For single-step
execution

<Base Form Set Rules>

;NoGenTrnTransactionProc;;;

;ResetOvFlw;;;

;BuildFormList;;;

;LoadRcpTbl;;;

;RunSetRcpTbl;;;

;PrintFormset;;;

;WriteOutput;;;

;WriteNaFile;;;

;InlineImagesAndBitmaps;;;

;BatchingByRecipINI;;;

;PaginateAndPropagate;;;

For multi-step
execution

<Base Form Set Rules>

;RULStandardTransactionProc;;;

;LoadExtractData;;;

;ResetOvFlw;2;;

;IfRecipUsed;;BATCH1=INSURED;

;BuildFormList;;;

;LoadRcpTbl;;;

;RunSetRcpTbl;;;

;UpdatePOLFile;;;

;InlineImagesAndBitmaps;;;

See also JDT Rules Reference on page 30

InsNaHdr

149

 InsNaHdr
The InsNAHdr rule is a legacy rule that few installations would ever need to use. This rule
has no affect unless you also include this INI option:

 < RunMode >

NAUnload = No

NOTE: Do not set the NAUnload option to No unless you are specifically directed to do
so by Oracle Insurance services or support personnel.

The InsNaHdr rule and this option tells the system the NAFILE.DAT file will not be
unloaded in a single process. Instead, it will be unloaded a piece at a time. Specifically, the
system unloads the section header into the NAFILE.DAT file before the remainder of
the section is processed.

Using this rule implies that you will create the NAFILE.DAT file as the form set is being
processed, instead of waiting until after the process has completed and creating the
NAFILE.DAT file in one step.

Syntax InsNaHdr()

There are no parameters for this rule. This rule builds the NA header and appends it to
NAFILE.DAT file.

Example ;InsNaHdr;3;;

See also JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

150

 InstallCommentLineCallback
Use this job level (level 1) rule during the AFP printing process to write transactional
information into each page of the print stream. The information is written using AFP
comment records and contains the recipient batch record information — the same
information written into recipient batch files for each transaction.

Before adding the recipient batch record information as a comment record on each page,
this rule also calculates and updates several GVM variables and structures that can be used
by other rules which are executed during the print process. The values updated include
the number of pages in each batch and the current page within the print stream.

The CurPage and TotPage GVM variables must be declared within the recipient batch
record definition. Here is an example:

< FIELD:CurPage >

INT_TYPE = LONG

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 10

< FIELD:TotPage >

INT_TYPE = LONG

EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

EXT_LENGTH = 10

Normally, the CurPage variable reflects the current page number within the print stream.
This is not necessarily the same as the page number that might actually print on the
document. The TotPage variable reflects the total number of pages within a given
transaction. Depending the other rules in use during the process, the value or meaning of
these GVM variables can vary.

The comment information written into the print stream can serve multiple purposes, such
as to later facilitate 2-up printing. During a 2-up printing process, you sometimes need to
know whether the page on the left and the page on the right are from the same or different
transactions. By having the recipient batch record information written into each page, it
is possible to query that information and make the appropriate determination. You can
use the ParseComment rule during the 2-up printing process to reconstruct the associated
GVM variables in memory from the recipient batch record information stored in these
comment records.

Syntax ; InstallCommentLineCallback;1; ;

This rule has no parameters.

Example ; InstallCommentLineCallback;1; ;

See also ParseComment on page 176

JDT Rules Reference on page 30

JobInit1

151

 JobInit1
Use this job level rule (level 1) to initialize resources such as input files, output files, and
tables.

Syntax ;JobInit1;;;

This rule opens the log file, opens the extract file, creates the NA and POL files, opens
forms set file, and opens and initializes recipient batch files. When finished, this rule closes
the files it opened during the pre-processing stage.

Example ;JobInit1;;;

See also JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

152

 LoadDDTDefs
Use this job level rule (level 1) to load the field rules from the MASTER.DDT file into an
internal linked list. You must include this rule in the AFGJDT.JDT file if your field level
rules are defined in the MASTER.DDT file.

This rule is used with the Master field level rule.

Syntax ;LoadDDTDefs;;;

If you have variable fields that you use on most of your forms, such as Name and Address
fields, you can use the MASTER.DDT file to store these variable field mappings.

If you use the MASTER.DDT file, add the Master rule to all variable fields on the section.
The Master rule tells the system to look in the MASTER.DDT file for mapping
information for those variable fields.

Using the MASTER.DDT file is helpful if you need to make a change to the variable field
mapping because you only have to make changes once in the MASTER.DDT file. It’s also
helpful when you are setting up complicated rules since you only have to map the fields
once. Test your mappings in the MASTER.DDT file before you copy them to other
variable field mappings.

Example ;LoadDDTDefs;;;

See also Master on page 379

Setting Up the MASTER.DDT File on page 507

JDT Rules Reference on page 30

LoadExtractData

153

 LoadExtractData
Use this form set level (level 2) rule to load extract data into memory for each transaction.
You must include this rule if any subsequent rules will search for or use extract data.

You must include this rule if:

• You are executing the GenTrn, GenData, and GenPrint programs as separate
processes (multi-step processing), and

• Subsequent rules will search for or use extract data

If you omit this rule from the AFGJOB.JDT for multi-step processing, you will receive
these error messages:

DM10702: Warning in BuildFormList(): No extract records.

VMMCountList(pRPS->ExtractListH) = 0. Processing will continue.

DM12018: Error in RPDoBaseFormsetRulesForward(): Unable to
<BUILDFORMLIST>().

NOTE: Do not include this rule if you are using the NoGenTrnTransactionProc rule.
Doing so will cause the GenData program to go into a processing loop.

Syntax ;LoadExtractData;;;

Example <Base Form Set Rules>

;RULStandardTransactionProc;;;

;LoadExtractData;;;

;ResetOvFlw;;;

;IfRecipUsed;;BATCH1=INSURED;

;IfRecipUsed;;BATCH2=COMPANY;

;IfRecipUsed;;BATCH3=AGENT;

;BuildFormList;;;

;LoadRcpTbl;;;

;UpdatePOLFile;;;

;RunSetRcpTbl;;;

;ProcessQueue;;PostPaginationQueue

See also NoGenTrnTransactionProc on page 168

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

154

 LoadFormsetFromArchive
Use this form set level (level 2) rule to extract a form set from a DAP archive based on
archive keys stored in a standard extract file.

NOTE: You can use the LoadFormsetFromArchive rule to replace the BuildFormList,
LoadRcpTbl, and RunSetRcpTbl rules in the AFGJOB.JDT file.

Because the LoadFormsetFromArchive rule loads a complete form set, it is usually not
necessary to execute the section and field level rules. To skip section and field rule
processing it is necessary to specify the appropriate rules in the AFGJOB,JDT file. See
the example below. If required, the loaded form set can be modified using other
transaction level rules or DAL scripts.

Syntax ;LoadFormsetFromArchive;;;

There are no parameters for this rule, but you can use these INI options:

< LoadFormsetFromArchive >

Key =

DisplayFields =

TempFile =

Debug =

Option Description

Key Use this option to build the search request for the APPIDX. You can specify
multiple Key options if necessary. The first transaction that matches the values
for the fields is extracted from archive.
You can specify the Key search value as an XML or standard flat file search
mask, such as (1, HEADER). Here is another example:

Field(UNIQUEID) Search(!/Form/UNIQUEID) OFFSET(1)
Length(40)

If the keys are not unique, the extracted matching transaction can be arbitrary.

DisplayFields (Optional) Use this option to specify a list of archive index fields you want
printed to the log file and console as the system processes the transaction.

TempFile (Optional) Use this option for debugging purposes. If you include this option,
the system writes the NA and POL files to the temp file model name you
specify.
For example, if you specify TEMP.TXT, the NA and POL files are written to
TEMPNA.TXT and TEMPPOL.TXT, respectively.

Debug (Optional) Enter Yes to have the system write debug information into the log
file.

LoadFormsetFromArchive

155

Example Here is an example AFGJOB.JDT file:

/* JDT Rules for Single-Step Processing Batching By Recipient. */

<Base Rules>

;RULStandardJobProc;1;Always the first job level rule;

;JobInit1;1;;

;InitPrint;1;required to execute gendata/genprint in single step;

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;2;;

;LoadFormsetFromArchive;2;;

;PrintFormset;2;;

;WriteOutput;2;;

;WriteNaFile;2;;

;BatchingByRecipINI;2;;

/* Every section in this base uses these rules. */

<Base Image Rules>

;WIPImageProc;;

/* Every field in this base uses these rules. */

<Base Field Rules>

;RULWIPFieldProc;;

See also BuildFormList on page 72

LoadRcpTbl on page 157

RunSetRcpTbl on page 212

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

156

 LoadListFromTable
Use this job level rule (level 1) to load a table specified in your FSISYS.INI file’s Data
control group into a link list and place the handle of the list into the GVM variable you
specify.

Syntax ;LoadListFromTable;;;

This rule has these parameters:

Example ;LoadListFromTable;;POLTYPES FORM_SCHED_POL_TYPE *;

If your FSISYS.INI file has these settings:

< Data >

TablesPath = ..\MSTRRES\TABLES\

Form_Sched_POL_Type= POLTYPE.TBL

The LoadListFromTable rule loads the POLTYPE.TBL file into a list whose handle is
stored in a GVM variable named POLTYPES. Any line in the file that starts with an
asterisk (*) is omitted from the list.

See also JDT Rules Reference on page 30

Parameter Description

GVM_LISTNAME The name of the GVM variable in which the handle of the list
should be stored.

INI_TABLE_OPTION The name of the option in the Data control group in the INI
file you want the system to load. This option should specify the
name of the table.

COMMENT_CHARACTER A single character which indicates the comment character.
Lines beginning with this character are not loaded into the link
list.

LoadRcpTbl

157

 LoadRcpTbl
Use this form set level (level 2) rule to load entries from the SETRCPTB.DAT file based
upon the current Key1 field (such as company), Key2 field (such as line of business), and
the transaction type.

NOTE: You can use the LoadFormsetFromArchive rule to replace the BuildFormList,
LoadRcpTbl, and RunSetRcpTbl rules in the AFGJOB.JDT file.

Only those entries in the SETRECPTB.DAT file that match the Key1, Key2, and
transaction type will be loaded and processed. By loading only those that match, the
processing becomes more efficient.

Syntax ;LoadRcpTbl;;;

Example ;LoadRcpTbl;;;

See also BuildFormList on page 72

LoadFormsetFromArchive on page 154

RunSetRcpTbl on page 212

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

158

 LoadTblFiles
Use this job level rule (level 1) to load one or more text tables listed in the tables list file,
which is defined in the FSISYS.INI file’s Data control group, in the TblFile option.

This rule lets you make available many table files for use by Documaker Server. These
table files can contain lists of codes, abbreviations, and addresses which might be hard to
maintain in a large extract file.

Syntax ;LoadTblFiles;;;

This rule frees memory resources used to store the tables. Here is an example of the
TblFile option:

< Data >

TblFile = .\deflib\TblFile.Dat

Example ;LoadTblFiles;;;

This example loads all the tables listed in the tables list file defined in the INI file. The
table data can then be accessed using the MovTbl rule.

See also MovTbl on page 413

JDT Rules Reference on page 30

LoadTextTbl

159

 LoadTextTbl
Use this job level rule (level 1) to load all specified text tables into the text table list for use
by field level rules. All text tables should be listed in the text table listing file, which is
defined in the FSISYS.INI file’s Data control group, in the TextTbl option.

This rule loads all defined tables and makes them available for use by Documaker Server.
These text files can contain paragraphs and messages which might be hard to maintain in
a large extract file.

Syntax ;LoadTextTbl;;;

When finished, this rule erases the text table list. Here is an example of the TextTbl
option:

< Data >

TextTbl = TextTbl.Dat

Example ;LoadTextTbl;;;

See also JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

160

 MergeAFP
Use this form set level (level 2) rule to initialize input files. This rule populates the AFP
record list, retrieves RCB comment records, and terminates the input files.

This rule also initializes output files, and writes out the AFP record list, adding end page
and end document records as necessary. The rule then terminates these output files.

Syntax ;MergeAFP;;;

Example ;MergeAFP;;;

See also Rules Used for 2-up Printing on page 27

JDT Rules Reference on page 30

MergeRecipsFromForm

161

 MergeRecipsFromForm
Use this form set level (level 2) rule to assign the recipients from a specific form to the
other forms in a form set. This lets you reduce the number of recipient triggers when all
recipients receive the majority of the forms in the form set.

Syntax ;MergeRecipsFromForm;;FormName, Z flag;

Example ;MergeRecipsFromForm;;Mailer Form;

Assume that before processing, the recipients for this form set are set up as follows:

• Standard Form A - RECIPS=(Home Office)

• Standard Form B - RECIPS=(Home Office)

• Mailer Form - RECIPS=(Home Office, Agent 1)

After using this rule to process the form set, the recipients for each form are now set to:

• Standard Form A - RECIPS=(Home Office, Agent 1)

• Standard Form B - RECIPS=(Home Office, Agent 1)

• Mailer Form - RECIPS=(Home Office, Agent 1)

NOTE: If you want the system to copy recipients with a zero copy count, use the Z flag
(it’s not case sensitive). Here is an example:

;MergeRecipsFromForm;2;FormName,Z;.

The system ignores that recipient and does not copy it to the other forms in the
form set if the copy count is set to zero for a recipient and the Z flag is omitted.

See also JDT Rules Reference on page 30

Parameter Description

FormName The name of the form from which the recipient names are copied. The other
forms in that form set are assigned these recipients, if they're not already there.
The form name you specify can occur multiple times in the form set and the
unique recipient names from all copies are assigned to the remaining forms in
the form set.

Z flag If you want the system to copy recipients with a zero copy count, enter the
character Z (or z). The default is blank.

Chapter 3
Job and Form Set Rules Reference

162

 MergeWIP
Use this job level (level 2) rule to initialize GenData WIP Transaction Processing. This
rule creates a transaction memory list to which it adds transactions from the WIP file that
have status codes which match those in the rule’s parameters.

The status codes identified by this rule do not have to be identified by the
WIPTransactions rule. You can include status codes for transactions that you want to
delete from the WIP file. Transactions with status codes not including in this rule’s
parameters remain in the WIP file when processing finishes.

These other rules are also used when you run WIP Transaction Processing:

• WIPTransactions – This rule replaces the RULStandardTransactionProc or
NoGenTrnTransactionProc rules in the AFGJOB.JDT file. This rule starts GenData
WIP Transaction Processing at the form set level. It also identifies the status codes
for the transactions in the WIP file that are processed. The status codes can be a
subset or all of the status codes identified on the MergeWIP rule or none.

• GVM2GVM - This rule copies GenData execution data from the Trigger2WIP INI
control group.

• WIPImageProc – This rule replaces the RULStandardImageProc or
StandardImageProc rule.

• WIPFieldProc – This rule replaces the RULStandardFieldProc or StandardFieldProc
rule.

Using these rules in a simplified AFGJOB.JDT file and with appropriate INI files,
GenData WIP Transaction Processing adds the transactions from a WIP file to a
transaction memory list. It then processes the transactions from the memory list,
appending the data from the WIP file to the MRL recipient batch, NewTrn, NA, and POL
files. If these files do no exist, it creates them. Each transaction in the memory list is
deleted from the WIP file after it is processed.

NOTE: If you are using the MergeWIP rule with the BatchingByRecipINI rule, be sure
to use the =DAL and =GVM operators. For more information, see Formatting
Data with the = Operator on page 267. The MergeWIP rule gets all of its data
from WIP, not an extract file.

Syntax ;MergeWIP;;StatusCode1,StatusCode2,...;

Parameter Description

StatusCode Use the StatusCode parameters to define the status codes of the transactions
in the WIP file you want to add to the memory list. Identify the status codes
you want to included in the Status_CD control group. Here is an example:

< Status_CD >

Accepted = AC

Approved = AP

BatchPrint = BP

Rejected = RJ

MergeWIP

163

WIP selection
performance during

batch processing

The system automatically limits the result sets queried from DBMS systems by the
MergeWIP rule to the rule's parameters for the STATUSCODEs to significantly improve
query speeds when this rule is run against large WIP index tables.

When the WIP index table is in a DBMS, the appropriate WHERE clause for the
STATUSCODE is added to the query automatically. A separate query for each
STATUSCODE provided to the MergeWIP rule is used to retrieve the WIP list.

To improve performance on very large WIP tables, add an index on the DBMS WIP index
table on the STATUSCODE column to avoid full table scans. An index on the WIP index
table on the CURRUSER and STATUSCODE columns can also improve the
performance of other queries to the WIP index table when the query to build a WIP list
for a specific user is performed.

Using dates to select
transactions

The MergeWIP rule can check a date field in the WIP index to determine whether to
insert the WIP record into the batch. By default the field name is ScheduleDate. You can
use this INI option to change the name of the field that is used:

< MergeWIP >

ScheduleDateFieldName = ScheduleDate

If the data in the field is eight bytes, the system assumes the date is in YYYYMMDDD
format. If the data in the field is 14 bytes, the system assumes a YYYYMMDDhhmmss
format. You can change the format the MergeWIP rule expects for the date using this INI
option:

< MergeWIP >

ScheduleDateFieldFormat = D4%1

You can combine date and time formats into one string separated by percent signs (%).
This table shows the date formats:

Enter For this format

1 MM/DD/YY 99/99/99 (default)

2 DD/MM/YY 99/99/99

3 YY/MM/DD 99/99/99

4 Month DD, YY Month DD, YYYY

5 MM/DD/YY ZZ/ZZ/ZZ

6 DD/MM/YY ZZ/ZZ/ZZ

7 YY/MM/DD ZZ/ZZ/ZZ

8 MM/DD/YY LZ/LZ/LZ

9 DD/MM/YY LZ/LZ/LZ

A YY/MM/DD LZ/LZ/LZ

B MMDDYY ZZZZZZ

C DDMMYY ZZZZZZ

Chapter 3
Job and Form Set Rules Reference

164

This table shows the time formats:

Returning a warning
message

Instead of returning an error if it comes across an empty WIP list when merging WIP, the
system can issue a warning. To have the system issue a warning instead of an error, set the
WIPWarnOnEmpty option to Yes, as shown here:

< RunMode >

WIPWarnOnEmpty = Yes

D YYMMDD ZZZZZZ

E MonDDYY MonZZZZ

F DDMonYY ZZMonZZ

G YYMonDD ZZMonZZ

H DOY/YY ZZZ/ZZ

I YY/DOY ZZ/ZZZ

J DD Month, YY DD Month, YYYY

K YY, Month DD YYYY, Month DD

L Mon-DD-YY Mon-ZZ-ZZ

M DD-Mon-YY ZZ-Mon-ZZ

N YY-Mon-DD ZZ-Mon-ZZ

O Mon DD, YY Mon DD, YYYY

P DD Mon, YY DD Mon, YYYY

Q YY, Mon DD YYYY, Mon DD

R Month Month

Enter For this format

1 HH:MM:SS 99:99:99(default)(24 hour)

2 HH:MM:SS XM 99:99:99 XM (12 hour)

3 HH:MM 99:99 (24 hour)

4 HH:MM XM 99:99 (12 hour)

Enter For this format

MergeWIP

165

Changing the WIP
Status

You can tell the system not to delete WIP records and files during the MergeWIP/
WIPTransactions process if an error occurs, but instead change the WIP status to
something you define.

This way, if an error occurs during batch processing, the WIP will still exist in its normal
place. But since its status has changed, the system will not include it in the next batch run.
You can then examine the transaction to determine what caused the error.

Use the following INI option to set up the transaction error code you want to use:

< Status_CD >

TransErrCode = E

Example Here is an example:

;MergeWIP;; Approved, Accepted, Rejected;

This example adds to the memory list the transactions in the WIP file which have these
status codes: Approved, Accepted, and Rejected. Those codes must be specified in the
Status_CD control group.

See also GVM2GVM on page 107

WIPFieldProc on page 243

WIPImageProc on page 244

WIPTransactions on page 245

GenData WIP Transaction Processing on page 9

JDT Rules Reference on page 30

Option Description

TransErrCode You can enter up to two characters, numbers or both for the transaction error
code.

Chapter 3
Job and Form Set Rules Reference

166

 MultipleDataDictionaryFiles
Use this form set level (level 2) rule to specify multiple data dictionaries (XDBs) to use
across multiple Key1/Key2 combinations. You can specify which item (Key1, Key2) or
combination of items determines the switch. If the database is not found in the list of
possibilities, the system loads the default XDB, as specified by the original INI option.

Syntax ;MultipleDataDictionaryFiles;2;parameters;

You specify the parameters based on which key tells the system when to switch from one
data dictionary to another. You can use the keys individually or in any combination.

Example Here are some examples:

You specify XDB files using the MultiDataDict control group. For each XDB file, use an
INI option similar to the one shown here:

< MultiDataDict >

File = FileName;IDFormat

Based on the first example, assume Key2 has these possible values:

CAR, BOAT, and MISC

with corresponding XDBs of:

CARXDB.DBF, BOATXDB.DBF, and MISCXDB.DBF

The AFGJOB.DAT file would contain:

;MultipleDataDictionaryFiles;2;Key2;

The INI file would contain:

< MultiDataDict >

File = CARXDB.DBF;CAR

File = BOATXDB.DBF;BOAT

File = MISCXDB.DBF;MISC

Thus whenever the Key2 ID changed to one of these values, the appropriate XDB would
be loaded.

Based on the second example, assume Key1 has these possible values:

LIFE and VEHICLE

Example This tells the system to switch XDBs

;MultipleDataDictionaryFiles;2;Key2; Based on the Key2 field

;MultipleDataDictionaryFiles;2;Key1,Key2; Based on the Key1, Key2 combination

Option Description

File For FileName, include the full file name and path followed by a semicolon. The
IDFormat is based on the parameters you supplied to the rule.
Note: In the first example below, the IDFormat would be Key2Value, for the second
example, it would be Key1Value;Key2Value.

MultipleDataDictionaryFiles

167

Assume Key2 has these possible values:

The AFGJOB.DAT file would contain:

;MultipleDataDictionaryFiles;2;Key1,Key2;

The INI file would contain:

< MultiDataDict >

File = CARXDB.DBF;VEHICLE;CAR

File = BOATXDB.DBF;VEHICLE;BOAT

File = MISCXDB.DBF;VEHICLE;MISC

File = SINGXDB.DBF;LIFE;SINGLE

File = MARRXDB.DBF;LIFE;MARRIED

Whenever the Key1 and Key2 combination changed to one of these values, the system
would load the appropriate XDB.

See also JDT Rules Reference on page 30

Under the VEHICLE Key1 CAR, BOAT, MISC

Under the LIFE Key1 SINGLE, MARRIED

Chapter 3
Job and Form Set Rules Reference

168

 NoGenTrnTransactionProc
Use this form set level (level 2) rule when you use the GenData program by itself to
execute the GenTrn and GenData steps. In that processing environment, this rule,
processes the extract file and creates the information normally created in both the
GenTrn and GenData steps.

When combined with the InitPrint and PrintFormset rules, it creates the output files
created during the GenPrint step.

NOTE: Do not use this rule if you are running the GenTrn, GenData, and GenPrint
programs as separate processes. Do not use this rule with the LoadExtractData
rule. Doing so will cause the GenData program to go into a processing loop.

This rule replaces the RULStandardTransactionProc rule in the performance mode JDT.

Syntax ;NoGenTrnTransactionProc;;;

This rule loads extract file records for the current transaction into memory. To use this
rule, you must add the following options in your FSISYS.INI or FSIUSER.INI file:

< Data >

TrnFile = <CONFIG:~Platform > TrnFile

< CONFIG:PC >

TrnFile = NUL

...or else include a TRNFILE.DAT file, which you can leave empty.

Example ;NoGenTrnTransactionProc;;;

See also RULStandardTransactionProc on page 210

InitPrint on page 146

PrintFormset on page 182

LoadExtractData on page 153

StandardFieldProc on page 235

StandardImageProc on page 236

Rules Used in Single-Step Processing on page 25

JDT Rules Reference on page 30

OMRMarks

169

 OMRMarks
Use this job level (level 1) rule to generate OMR marks on 1-up documents printed on
any supported base system printer or on 2-up documents printed on any AFP printer that
supports 2-up printing.

OMR marks are used to indicate ZIP code change, demand feed, inserts and so on. OMR
marks are solid boxes placed on a page.

The rule loops through the pages of the form set and creates special sections for each page
with the required OMR marks. The OMR marks are based on special settings in your
FSISYS.INI or FSIUSER.INI file. The INI file settings use special global variable names,
rule names, and conditions to trigger specific OMR marks.

Syntax ;OMRMarks;;Cond(LetterOMR);

Place this rule after the WriteNAFile rule in the AFGJOB.JDT file.

NOTE: Keep in mind the OMRMarks rule is a post process rule. This means that
pagination and propagation takes place before the rule is called. So, this rule goes
back through the form set after the forms have been created and places a mark
on each page.

You must include the PaginateAndPropagate rule after the OMRMarks rule
because, during post processing, the system executes the rules in the JDT file
from bottom to top.

Example Here is an example from the Condition table (CONDTBL):

< Conditions >

LetterOMR: LetterCode = "0006" or LetterCode = "0039" or

 LetterCode = "0040"

Here is an example from the record dictionary definition:

< Variables >

LetterCode = GVM(CD-LTR-TYPE) Length(4) Type(Char)

LetterCode is a global variable with the name, CD-LTR-TYPE. This variable has a type of
Char (character) and a length of four. In this example, any time the condition is true, the
system prints OMR marks on the page created for the transaction it is processing.

You must update your FSISYS.INI or FSIUSER INI files as follows.

Parameter Description

Cond (Optional) Indicates special conditions exist for printing OMR marks.

LetterOMR (Optional) Refers to the data in the Condition table (CONDTBL). The true or
false for this condition triggers the printing of the set of OMR marks for
particular transaction.

Chapter 3
Job and Form Set Rules Reference

170

Enter the path for your table files in the MasterResource control group. Use the
TablePath option to define the table file’s path.

< MasterResource >

TablePath = \deflib\

Enter the file name of your Condition table in the Tables control group. Use the
Conditions option to define the Condition table’s file name.

< Tables >

Conditions = CondTbl

Create the OMR_Params control group with all necessary options in your FSISYS.INI or
FSIUSER INI file.

Here is an example of INI settings for 1-up printing:

< OMR_Params >

Mark = Cord(2100, 2140, 300, 1000), RuleParms(INSERT2),

 Rule(FlagFromGVM), When(All)

Mark = Cord(4200, 4240, 300, 1000), Rule(Always), When(All)

Mark = Cord(2100, 2140, 700, 1300), Rule(Always), When(All)

Mark = Cord(6300, 6340, 700, 1300), RuleParms(A-AND-C),

 Rule(Always), When(All), Cond(ac)

Here is an example of INI settings for 2-up printing:

< OMR_Params >

Mark =
Cord(Left(2100,2140,300,1000),Right(2100,2140,32500,33200)),

 RuleParms(Insert2),Rule(FlagFromGVM),Page(B), When(All)

Mark = Cord(Left(4200,4240,300,1000),

 Right(4200,4240,32500,33200)), Rule(Always),Page(B), When(All)

Mark = Cord(Left(2100, 2140, 700, 1300), Right(2100, 2140, 32500,

 33200)), Rule(Always),Page(B), When(All)

Parameter Description

Mark Definition for each OMR mark. You need a definition for each OMR mark
that can be generated on a page. For instance if eight is the maximum
number of OMR marks per page, you need eight mark definitions in this
control group.

Cord(t,b,l,r) Top, bottom, left, and right coordinates for the page in FAP units (1 inch
= 2400 FAP units) for 1-up printing.

Cord(Left(t,b,l,r),
Right(t,b,l,r))

Top, bottom, left, and right coordinates for the page in FAP units (1 inch
= 2400 FAP units) for 2-up printing. Left is for the left side and right is for
the right side of the 2-up paper.

Page() Indicates which sides to print: Both or B = both left and right; Left or L =
left side only; Right or R = right side only.

Rule() The name of the OMR rule to execute.

RuleParms() The Input parameter to the rule, as specified in the Rule() parameter.

OMRMarks

171

The OMR rules are:

< TwoUp >

CounterTbl = Counter.tbl

LMargin = 0

LShift = -240

RShift = 16560

DivertOpt = No

DivertOMR = OMR20

PageSize = 40800

OMR marks are not supported in these situations:

• In 1-up printing when you have multiple copies of the same form

• In 2-up printing when you are printing duplex

See also PaginateAndPropagate on page 174

Rules Used in Single-Step Processing on page 25

Rules Used for 2-up Printing on page 27

When(All) When to print on pages:
All - print on all pages of the transaction output.
FirstOnly – only print on the first page of transaction output.
LastOnly – only print on the last page of the transaction output.
ExceptFirst - print on all pages except the first page.
ExceptLast - print on all pages except the last page.

Cond() Condition, if true, then print OMR mark.

Rule Description

Always Always generate the OMR mark.

Cond() You can use condition logic for one OMR mark or for the whole set. Here
is an example: Cond(ac)

DivertPage Generates the OMR mark only for a special divert page. This only applies to
2-up printing. If you use this rule, you must also define the DivertOpt and
DivertOMR options in the TwoUp control group.

FlagFromGVM Generates the OMR mark if the GVM variable defined in the RuleParms is
set to zero (0) or one (1).
You control generation based on data in an extract record (using the
Ext2GVM or Field2GVM rules) or based on a DAL script which uses the
SetGVM function.
The GVM variable must be in the RCBDFDFL and TRNDDFDFL files.

ZipCodeChange Generates the OMR mark only when the ZIP code has changed. You must
define the parameter associated with this rule as a global variable or else
define it in the RCBDFDFL.DAT file.

Parameter Description

Chapter 3
Job and Form Set Rules Reference

172

JDT Rules Reference on page 30

Using Condition Tables on page 492

PageBatchStage1InitTerm

173

 PageBatchStage1InitTerm
Use this job level rule (level 1) to create and populate a list of records which contain page
ranges and total page counts for each recipient batch file.

This rule is typically used for handling 2-up printing for AFP and compatible printers.
This rule is also used with multi-mail processing.

This rule creates a list (populated in another rule) to contain the recipient batch records
for a multi-mail transaction set. The rule then writes out the recipient records for the final
multi-mail transaction set and writes out the total page counts for each recipient batch.

• Fields must be added to the RCBDFDFL.DFD file for the file containing the total
page counts for the recipient batches. Do not remove or change the BatchName and
RecordCount fields.

• The name of the file containing page counts should be specified in the CounterTbl
option of the TwoUp control group.

• Because the end of a multi-mail set is not signaled until the following transaction, you
must write out the recipient records for the final transaction set at the job level.

Syntax ;PageBatchStage1InitTerm;;(MMField);

NOTE: If you use this rule, you must also use the BatchByPageCount and
WriteRCBWithPageCount rules.

Example If you omit the MMField parameter, the system uses standard batching by page count, as
shown below:

;PageBatchStage1InitTerm;;;

If you include the MMField parameter, the system uses batching by multi-mail processing,
as shown below:

;PageBatchStage1InitTerm;;MMField=MM_Field

See also Rules Used for 2-up Printing on page 27

BatchByPageCount on page 47

WriteRCBWithPageCount on page 250

JDT Rules Reference on page 30

Parameter Description

MMField (Optional) Name of the INI option in the Trn_Fields control group which
defines where the multi-mail code will be found in each transaction.

Chapter 3
Job and Form Set Rules Reference

174

 PaginateAndPropagate
Use this form set level (level 2) rule to paginate the form set and merge in or propagate
field data.

Syntax ;PaginateAndPropagate;Debug FooterMode;

Normally this rule is placed in the Base Form Set Rules section of the AFGJOB.JDT file
at or near the end of the rule list. This location is important because you want the rule to
execute as one of the first steps of transaction post-processing. Place this rule after the
PrintFormset rule in the Base Form Set Rules section of the AFGJOB.JDT file when
running in single-step mode.

This rule is a post-process rule, meaning that initial pagination and propagation takes
place before the rule is called. This rule then goes back through the form set.

Example Here are some examples:

;PaginateAndPropagate;;

;PaginateAndPropagate;2,Debug FooterMode(2);

;PaginateAndPropagate;2,FooterMode(1);

NOTE: The PaginateAndPropagate rule looks for the CanSplitImage indicator. If
missing, sections are paginated in the standard method.

Footer modes 1 and 2 search the logical page for footers marked as copy-on-overflow and
then determine the upper limit of those footers. That point becomes the lower limit of
the body sections.

As the system checks the body sections to determine if they exceed the lower limit, it
raises the lower limit if there is another footer with a higher limit. This prevents the a large
footer at the bottom of a long logical page from affecting pages on which it does not
appear.

Modes 1 and 2 differ in how they handle an overlap when a footer is encountered that
raises the lower limit above a body section that is already determined to fit on the page.

With mode 1, the system increases the limit and reevaluates the section on that page. It
also lets the second from the last page have a large area reserved with nothing printed.

With mode 2, the system moves the footer to the next page so the footer can appear on
a page by itself.

Parameter Description

Debug If you include this parameter, the system writes debug information about
pagination to the log file.
For performance reasons, you would not typically use this option unless
directed by support.

FooterMode This parameter controls how the footers are treated in regards to pagination.
You can enter 0, 1, or 2. The default is zero (0) which is the standard way the
rule handles footers.

PaginateAndPropagate

175

With mode zero (0), the default, the system searches the logical page for all footers and
determines the upper limits of the footers. That becomes the lower limit of the body
sections. When a body section exceeds this lower limit, the system splits the logical page
into two pages.

The section that exceeds the limit and all following sections are moved up and to the
second page. Sections on the first page marked as copy-on-overflow are copied to the
second page. Sections on the second page marked as copy-on-overflow are copied back
to the first page. The system then searches the second page for all footers, determines the
upper limit of that footer, and continues the process.

NOTE: Previously, this rule was known as the PaginateAndPropogate rule. You can use
either spelling.

See also CanSplitImage on page 304

Rules Used for 2-up Printing on page 27

Rules Used in Single-Step Processing on page 25

PrintFormset on page 182

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

176

 ParseComment
Use this form set level (level 2) rule when merging two AFP print streams in a 2-up
printing process. This rule parses the recipient batch record information written as an
AFP comment into each printed page back into the GVM variables associated with the
recipient batch DFD. You would do this, for example, if you need to know whether the
page on the left and right side (as accomplished through 2-up printing) are from the same
transaction.

For this rule to be useful, the appropriate comment records, matching the recipient batch
record DFD, must have been added to the print streams that are being merged in the 2-
up printing process. A rule such as InstallCommentLineCallback is used during the
original print step is an example.

Syntax ParseComment; ;Side;

Example This example shows how to use this rule to access the specific occurrences of RCB
comment records retrieved from AFP files.

;ParseComment;;Left;

;PreTransDal;;MyScript;

;ParseComment;;Right;

;PreTransDAL;;MyScript;

If you include the Side parameter, be sure to finish using the values from one record
before parsing the other record, because this method replaces the primary instance of the
GVM variable data. This example also shows that you can use a DAL script to manipulate
the parsed GVM variables.

If you want to use a DAL script and get data from both sides (omitting the Side
parameter), you would specify two (2) as the optional second parameter to the GVM
function to access the second (right side) set of data.

LeftData = GVM(name)

RightData = GVM(name, 2)

See also InstallCommentLineCallback on page 150

JDT Rules Reference on page 30

Parameter Description

Side You can enter Left or Right or omit this parameter.
Including Left or Right specifies that you want the system to parse the comment
record from either the left or right side. The system parses the data from the
comment record into the first (primary) instance of the associated GVM
variables.
If you omit this parameter, the associated variables from both sides are parsed
and stored. The left side comment data is parsed into the first (primary) instance
of the associated GVM variables. The right side comment data is parsed into the
second instance of the associated GVM variables.

PostTransDAL

177

 PostTransDAL
Use this form set level rule (level 2) in the AFGJOB.JDT file to execute a DAL script on
the POST_PROC_A message. The PostTransDAL rule executes after other form set
rules and section level rules.

You can use this rule to handle follow up tasks after form set rules and section rules are
executed. For example, you can use this rule to clear or change GVM and internal DAL
variables.

Syntax ;PostTransDAL;;string;

Although you can use DAL to access almost any form set or section field, keep in mind
those fields may not exist, depending on where you place this rule in the transaction job
rule list. And, unlike the DAL or IF rules, there is no return value from the execution of
a transaction level DAL script.

Use this form to get extract data if the script is contained in the rule data. You cannot use
this form in external script files.

A = {1,MIS257 138,1}

Where A is a DAL variable you wish to assign. The bracketed {} item can be almost any
standard search mask supported by the Get Record infrastructure. In this case, 1,MIS257
is the search criteria. If the record is found, the system takes the data from position 138,
length 1 as indicated by 138,1.

This method also lets you specify an occurrence of the record by including a hyphen with
a numeric value, such as -n, after the data length. Here is an example:

A = {1,MIS257 138,1-5}

Here the function searches for the 5th occurrence of the 1,MIS257 record. If you omit
the occurrence, the system returns the first one found. If it cannot find the requested
record, the system assigns the variable an empty “” value.

NOTE: To specify multiple DAL statements in the rule data area, separate the DAL
statements using two colons (::). Normally, semicolons separate DAL statements,
but this character is illegal in the rule data area.

Example ;PostTransDAL;;Call("posttran.dal");

This example executes the Call DAL function which executes the DAL script contained
in the POSTTRAN.DAL file in the DefLib directory specified in your MRL.

;PostTransDAL;;If HaveGVM("main_address") Then
SetGVM("main_address", "25 Brown St.", , “C”, 20)::End;

In this example, the system checks to see if the GVM variable (main_address) exists. If not,
it creates a character array GVM variable (main_address) 20 characters is length and stores
the character string (25 Brown Street) in the array.

Parameter Description

String A character string that contains a DAL function or DAL script.

Chapter 3
Job and Form Set Rules Reference

178

Here is another example:

Suppose you want any transaction that contains the following XML tag with a value of N
to be processed and printed, but not archived:

INVOICE/DOCUMENT_ID/ARCHIVE

To accomplish this, add the following to the AFGJOB.JDT file:

;PostTransDAL;;a = {!/INVOICE/DOCUMENT_ID/ARCHIVE 1,1}::If a="N"
Then a="Y":: Else a="N":: End::SetGVM("SentToManualBatch", a, ,"C",
2);

See also PostImageDAL on page 422

PreImageDAL on page 426

PreTransDAL on page 179

JDT Rules Reference on page 30

PreTransDAL

179

 PreTransDAL
Use this form set level rule (level 2) in the AFGJOB.JDT file to execute a DAL script on
the PRE_PROC_A message. The PreTransDAL rule executes before other form set rules
and before section rules.

You can use this rule to handle setup tasks which should occur before form set rules and
section rules are executed. For example, you can use this rule to initialize GVM and
internal DAL variables.

Syntax ;PreTransDAL;;string;

Although you can use DAL to access almost any form set or section field, keep in mind
those fields may not exist, depending on where you place this rule in the transaction job
rule list. And, unlike the DAL or IF rules, there is no return value from the execution of
a transaction level DAL script.

Use this form to get extract data if the script is contained in the rule data. You cannot use
this form in external script files.

A = {1,MIS257 138,1}

Where A is a DAL variable you wish to assign. The bracketed {} item can be almost any
standard search mask supported by the Get Record infrastructure. In this case, 1,MIS257
is the search criteria. If the record is found, the system takes the data from position 138,
length 1 as indicated by 138,1.

This method also lets you specify an occurrence of the record by including a hyphen with
a numeric value, such as -n, after the data length. Here is an example:

A = {1,MIS257 138,1-5}

Here the function searches for the 5th occurrence of the 1,MIS257 record. If you omit
the occurrence, the system returns the first one found. If it cannot find the requested
record, the system assigns the variable an empty “” value.

NOTE: To specify multiple DAL statements in the rule data area, separate the DAL
statements using two colons (::). Normally, semicolons separate DAL statements,
but this character is illegal in the rule data area.

Example ;PreTransDAL;; trans_id={1,PrePost 1,8}::Chain("pretrans.dal");

This example sets the internal DAL variable, trans_ID, to the first eight-characters from
the transaction record that matches the search mask: 1,PrePost. Then the Chain DAL
function executes the DAL script in the PRETRANS.DAL file in the DefLib directory
specified in your MRL.

;PreTransDAL;;If (HaveGVM("main")) Then SetGVM("main_address", "25
Brown St.", , “C”, 20)::End;

Parameter Description

String A character string that contains a DAL function or script.

Chapter 3
Job and Form Set Rules Reference

180

In this example, DAL checks to see if the GVM variable (main_address) exists. If not, it
creates a character array GVM variable (main_address) 20 characters in length and stores
the character string (25 Brown Street) in the array.

See also PostImageDAL on page 422

PostTransDAL on page 177

PreImageDAL on page 426

JDT Rules Reference on page 30

PrintData

181

 PrintData
Use this form set level (level 2) rule to print the form set. This rule is used for handling 2-
up printing on AFP and compatible printers.

Syntax ;PrintData;;;

NOTE: The section handler installed by the InitPageBatchedJob rule is called during the
printing stage. If you want to make any modifications to the recipient batch
record, you must do so before this point.

Example ;PrintData;;;

See also Rules Used for 2-up Printing on page 27

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

182

 PrintFormset
Use this form set level (level 2) rule when you use the GenData program by itself to
execute GenTrn and GenPrint processes (single-step processing). In that processing
environment, this rule, when combined with the InitPrint rule, prints form sets.

NOTE: Do not use this rule if you are running the GenTrn, GenData, and GenPrint
programs as separate processes.

Syntax ;PrintFormset;;;

This rule checks the recipients for the form set and then identifies the print batch in which
this form set should be included. It then prints the form set.

This rule has no parameters.

When you use this rule, you must also include a BatchByPageCount or
BatchingByRecipINI rule to produce print batches and the final print stream. If you omit
either of these rules, you’ll get the following error message:

Unable to <PRINTFORMSET>()

NOTE: You must define the BatchingByRecip control group to pass parameters to this
rule. Use this control group to specify the batch names and search criteria
(conditions) for the batches. If you receive this error message, also check the
condition.

Example Here is an example:

;PrintFormset;;;

You can also use the PrintFormset rule to create multiple print files when you run the
GenData program in single-step mode to produce PDF or RTF output with multiple
transactions. This capability is related to running Documaker under IDS (see the Internet
Document Server Guide for more information). To do this, add the PrintFormset control
group and these options to your INI file:

< PrintFormset >

MultiFilePrint = Yes

LogFileType = XML

LogFile = (log file name and path)

Option Description

MultiFilePrint Set this option to Yes to allow multiple file print.
The MultiFilePrint option should only be used with the PDF, RTF, HTML,
and XML print drivers.

LogFileType Specifies the type of the log file. Enter XML for an XML file. Any other entry
results in a text file.

PrintFormset

183

NOTE: You must place this rule before the PaginateAndPropagate rule in the Base Form
Set Rules section of the AFGJOB.JDT file when running in single-step mode.
When running in multi-step mode, use the MultFilePrint callback functionality.

The log file that is created is either a semicolon-delimited text file, formatted like the file
created by the MultiFilePrint callback function or an XML file. Here is an example of the
layout of the XML file:

 <?xml version="1.0" encoding="UTF-8" ?>

- <LOGFILE>

- <TRANSACTION INSTANCE="1">

 <BATCH NAME="Logical Batch Name">.\data\BATCH1.BCH</BATCH>

 <GROUP1 NAME="Company">SAMPCO</GROUP1>

 <GROUP2 NAME="Lob">LB1</GROUP2>

 <TRANSACTIONID NAME="PolicyNum">1234567</TRANSACTIONID>

 <TRANSACTIONTYPE NAME="TransactionType">T1</TRANSACTIONTYPE>

 <RECIPIENT NAME="INSURED">INSUREDS COPY</RECIPIENT>

 <FILE>DATA\0rDcP7WxytE8ECp5jexhWXVqkV840Vw_F-GykT_VMfd.PDF</FILE>

 </TRANSACTION>

- <TRANSACTION INSTANCE="2">

 <BATCH NAME="Logical Batch Name">.\data\BATCH2.BCH</BATCH>

 <GROUP1 NAME="Company">SAMPCO</GROUP1>

 <GROUP2 NAME="Lob">LB1</GROUP2>

 <TRANSACTIONID NAME="PolicyNum">1234567</TRANSACTIONID>

 <TRANSACTIONTYPE NAME="TransactionType">T1</TRANSACTIONTYPE>

 <RECIPIENT NAME="COMPANY">COMPANY COPY</RECIPIENT>

 <FILE>DATA\0v3l7pBdVqHceoRL5hf2xqjJ7WMxiRVO9U70iFiIcne.PDF</FILE>

 </TRANSACTION>

</LOGFILE>

Use the options in the DocSetNames control group to determine which XML elements
are created. The values in this control group are the same as those written to a recipient
batch or TRN file.

See also BatchByPageCount on page 47

BatchingByRecipINI on page 68

InitPrint on page 146

Single-Step Processing on page 7

JDT Rules Reference on page 30

PaginateAndPropagate on page 174

LogFile Specifies the name of the log file. Include the full path. If you omit the path,
the system uses DATAPATH. If you omit this option, the system creates a
file named TMP.LOG.
If you enter XML in the LogFileType option and a different extension here,
the system uses XML.

Option Description

Chapter 3
Job and Form Set Rules Reference

184

 ProcessQueue
Use this job level (level 1) rule to process the queue you specify.

Syntax ;ProcessQueue;;(Queue);

This rule loops through the list of functions for the queue you specify and then frees the
queue when finished.

Example ;ProcessQueue;;PostPaginationQueue;

This example tells the system to process the PostPaginationQueue.

See also Single-Step Processing on page 7

Rules Used for 2-up Printing on page 27

JDT Rules Reference on page 30

Parameter Description

Queue The name of the queue you want to process.

ProcessRecord

185

 ProcessRecord
Use this form set (level 2) rule to switch between print files as necessary when printing 2-
up forms on an AFP printer. This rule updates the page count for current print file and
loads and merges the form set.

Syntax ;ProcessRecord;;;

Example ;ProcessRecord;;;

See also Rules Used for 2-up Printing on page 27

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

186

 ProcessTriggers
Use this form set level (level 2) rule to process the groups (Key1, Key2 combinations) that
exist in the form set, as opposed to only a single set of keys specified in the
TRNFILE.DAT file.

NOTE: This rule replaces the LoadRcpTbl and RunSetRcpTbl rules. You can replace
those two rules with this one even if you are not using multiple lines of business
(Key2s) in your document.

Syntax ;ProcessTriggers;;;

There are no parameters for this rule.

Place this rule after the BuildFormList rule in your AFGJOB.JDT file. Insert this rule after
any import rule that might be used to create the starter document. For instance, insert the
BuildFormList rule first, followed by your import rule, and then include the
ProcessTriggers rule to add additional forms or assign recipient counts to the forms
included via the import.

This rule does not trigger the Key2 (lines of business), however, if there are multiple lines
of business defined at the point where triggering begins, this rule processes the triggers in
each group. One way to define multiple groups is via an import file.

NOTE: The ProcessTriggers rule was added to support multiple lines of business during
the triggering process. Normally, the RunSetRcpTbl file only supports the main
(Key1+Key2) setting identified with the transaction. The ProcessTriggers rule,
however, will process all defined lines of business (each Key1+Key2
combination) at trigger time. This means if you use an import rule to create the
transaction, you can have multiple lines of business in batch processing and
trigger additional forms and sections. You can use the ProcessTriggers rule with
both Documaker Studio and the legacy tools.

If you are only using the Studio implementation model, you may want to use the
RunTriggers rule.

See also BuildFormList on page 72

LoadRcpTbl on page 157

RunSetRcpTbl on page 212

RunTriggers on page 213

JDT Rules Reference on page 30

PXCandidateList

187

 PXCandidateList
Use this transaction-level rule (level 2) to build the form candidate list, based on the Form
Candidate List DAL Trigger, and determine if the requested DAL script in the
AFGJOB.JDT file should be evaluated.

The PXCandidateList rule acts as a functional equivalent for the PreTransDAL rule. The
PXCandidateList rule executes the DAL script specified in the calling AFGJOB entry.

The DAL script then builds the State Loc table and returns control to the
PXCandidateList rule. This rule next processes each of the State Loc table records against
the FED table to build a Form Candidate list and a Consolidated Form State Loc table.

NOTE: The PXCandidateList and PXTrigger rules support Policy Xpress FED
processing. These rules act as replacements for the PreTransDAL and
DALTrigger rules when you are doing Policy Xpress FED-specific processing.

Syntax PXCandidateList

Example In this example, the rule calls a DAL script named Xpress_create():

;PXCandidateList;;Xpress_create();

The called DAL script then builds the State Loc and Form tables. Using these tables, the
rule then builds a list of all possible forms for a given transaction. This form list is used
by the PXTrigger rule to determine if the requested DAL trigger should be executed.

INI Options
You can use these INI options with this rule:

Option Description

StateLocTable (Optional) Enter the name of the state location table. The default is
T_St_Loc.

FormLocTable (Optional) Enter the name of the form location table. The default is
T_FM_Loc.

FedTable (Optional) Enter the name of the FED table. The default is T_F_List.

FedTable (Optional) Enter the name of the FED table. The default is pxfed.

StatLocTableDFD (Optional) Enter the name of the state location table DFD file. If you
omit the path, the file is written to the deflib directory. The default is
T_St_Loc.dfd.

FormTableDFD (Optional) Enter the name of the form table DFD file. If you omit the
path, the file is written to the deflib directory. The default is T_F_List.

FedTableDFD (Optional) Enter the name of the FED table DFD file. If you omit the
path, the file is written to the deflib directory. The default is pxfed.dfd.

CLDebug (Optional) This option turns on debugging. The default is No.

Chapter 3
Job and Form Set Rules Reference

188

Form_List Use this control group to enable form list processing.

XPTranslateLOB The LOB (GROUP NAME 2) determines the type (Commercial Auto, Property Lines,
Personal Lines) of FED processing. If you are using a non-standard LOB, use the
XPTranslateLOB control group to translate the LOB to a standard LOB code. Here are
the standard LOB codes:

See also PXTrigger on page 189

Input Tables on page 191

The Policy Xpress FED Processing Flow on page 192

CLDebugFile (Optional) Enter the name of the debug file. If you omit the path, the file
is written to the data directory. The default is cldebug.dat.

DumpCandList (Optional) Enter Yes to have the system write the form candidate list
details into the debug file. The default is No.
To enable this option, you must also set the CLDebug option to Yes.

DumpFrmStTable (Optional) Enter Yes to tell the system to write the Form-State Loc table
records to the debug file. The default is No.
To enable this option, you must also set the CLDebug option to Yes.

DumpFrmStLocEnt (Optional) This tells the system to write the unloaded (by the PXTrigger
rule) State Loc entries for the form. The default is No.
To enable this option, set the CLDebug option to Yes.

DBTable:”Table” (Optional) Enter the name of the table handler. The default table handler
for all tables is MEM.

Fed_Processing (Optional) Enter No to bypass FED processing. The default is Yes.

Option Description

Option Description

Form_List (Optional) Enter Yes to enable form list processing. The default is No.

Line of Business Code

Commercial Auto CA, CU, GL, CRIM, PR, BM, INMARC

Property Lines BP, CP, CM

Personal Lines HO, PP, DFire, DL, UMBRP, INMRP, PM

PXTrigger

189

 PXTrigger
Use this transaction-level (level 2) rule to execute a DAL script if certain conditions are
met. The PXTrigger rule replaces the DALTrigger rule. This rule is executed as part of
RunSetRcpTable processing.

NOTE: The PXCandidateList and PXTrigger rules support Policy Xpress FED
processing. These rules act as replacements for the PreTransDAL and
DALTrigger rules when you are doing Policy Xpress FED-specific processing.

This rule does not call the requested DAL script unless the requested form is in the form
candidate list. The rule performs a look up using the requested SetRecip entry form name
against the Form Candidate List table.

If the form is not found, the requested DAL script is not executed and the rule returns a
trigger count of zero (0).

If the form is found, the rule unloads from the Consolidate Form State Loc table the
StateLoc records into the FormStateLoc memory table based on the SetRecip entry form
name.

Once the records are unloaded, the PXTrigger rule executes the requested DAL script. If
the appropriate debug options are set, the FormStateLoc table and FormsList are
unloaded to flat files.

Syntax ;DOCU;CA;CAINIT;;NBS;INSURED(1);;0;0;0;1;;PXTrigger;CAINIT;

Chapter 3
Job and Form Set Rules Reference

190

PXTrigger

Form
Candidate List

Consolidated
Form State
Loc Table

Request DAL
Script

PXTrigger

Returns Trigger Count
(0 for not triggered)

Form State
Loc Table

RunSetRcpTbl

PXTrigger

191

Input Tables

State loc table Here are the required fields for the state location table.

FED table Here are the required fields for the FED table.

Field Type Length Notes

Form Char 36

State Char 8

PolicyEffectiveDate Char 10 CCYY-MM-DD

PolicyWrittenDate Char 10 CCYY-MM-DD

ControllingState Char 2

Location Char 8

SubLocation Char 8

LocationAddrDate Char 10 CCYY-MM-DD

TransactionEffectiveDate Char 10 CCYY-MM-DD

ProgramCd Char 6

Field Type Length Notes

FormNumber Char 36

FormProcessingType Char 1

EffectiveDateSourceCD Char 2 “PE” or “PW”

EffectiveDate Char 10 CCYY-MM-DD

WithdrawalDate Char 10 CCYY-MM-DD

Chapter 3
Job and Form Set Rules Reference

192

The Policy Xpress FED Processing Flow

FED processing For each State Loc Record, a query is executed against the FED table using the LOB,
State, and, if populated, the ProgramCd. Each of the returned FED records are then
evaluated to determine if they are valid for the current State Loc table row.

FED record validation For form list processing, the FED record must have a FormProcessingType of R.

The FED record validation date compares are based on the LOB groups defined above.
If a LOB is not found in the standard groups (and is not translated to a standard LOB)
the Commercial Auto compare is executed by default. The specific date validation/
compares are explained below.

Rules Processor
AFGJOB

Xpress_create()

Execute DAL
Script

State Loc
Table

PXCandidateList

PXCandidateList FED Table

Consolidated
Form State
Loc Table

Form
Candidate List

Return Control

PXTrigger

193

For each FED record that passes validation, its FormNumber is added to the form
candidate list (if the form does not already exist) and a row is inserted into the Form State
Loc table (FormNumber plus the current State Loc Record).

See also PXCandidateList on page 187

Validation Description

Commercial
auto validation

If the Transaction Type is PCH, the date evaluation is executed using the
State Loc record's TransactionEffectiveDate.If the Transaction Type is not
equal to PCH, the date evaluation is based on the FED records
EffectiveDateSourceCd value.
If the EffectiveDate SourceCd is PE, the date evaluation is executed using
the State Loc record's PolicyEffectiveDate. Otherwise, the date evaluation is
executed using the State Loc Record's PolicyWrittenDate.

Personal lines
validation

If the EffectiveDate SourceCd is PE, the date evaluation is executed using
the State Loc record's PolicyEffectiveDate. Otherwise, the date evaluation is
executed using the State Loc Record's PolicyWrittenDate.

Property lines
validation

If the Transaction Type is PCH, the date evaluation is executed using the
State Loc record's LocationAddrDate. If the transaction type is not equal to
PCH, the date evaluation is based on the FED records
EffectiveDateSourceCd value.
If the EffectiveDate SourceCd is PE, the date evaluation is executed using the
State Loc record's PolicyEffectiveDate. Otherwise, the date evaluation is
executed using the State Loc Record's PolicyWrittenDate.

Date
validation/
compare

The passed date is subjected to a trivial date validation.
The date must be in a CCYY-MM-DD format. The day can not be zero (0)
or greater than 31. The month can not be zero (0) or greater than 12. The year
can not be zero (0).
If the passed date passes validation, the system compares it to the Fed Entries
Withdrawal Date and the Effective Date. If the passed date is falls before the
Withdrawal Date and after the Effective Date, the date compare is passed.

Chapter 3
Job and Form Set Rules Reference

194

 RegionalDateProcess
Use this job-level (level 2) rule to execute regional date processing (RDP) rules on forms.
You create the RDP rules via Documaker Studio.

NOTE: See the Documaker Studio User Guide for more information on creating RDP
rules.

In the U.S. insurance industry, certain forms must comply with a regional authority
(usually a state) to be approved for use within that area. The process of getting approval
to use forms in each location is often referred to as submitting for state compliance.

Because of the various jurisdictions involved, you may have a form which is accepted by
some states, but not by others. Alternatively, the form might be accepted by multiple
states, but as of different dates. And to add another layer of complexity, states specify
which document date must be used when activating this form.

To understand this last point, consider that almost all insurance policies have a date when
coverage becomes effective – typically referred to as the policy effective date. Likewise, a policy
usually has a written date that identifies when the document was actually drawn up. It is not
unusual for the written date to be different from the policy effective date. For instance,
you might buy your hurricane insurance today (the written date), but the policy does not
become effective for 30 (or more) days. Each regional authority specifies which date
determines the compliance of a given form.

This necessity to only activate the use of a form in a given region after a specific date
complicates the creation of trigger conditions. Not only do you have to consider the
typical transaction information that would cause you to include the form, you also have
to calculate the various details to comply with the regional authorities described above.

To help you more easily manage this process, Studio lets you define regional date
processing (RDP) rules that you can assign to each form. Part of the support is
accomplished in Studio by defining the appropriate regional tests for each form. The
remaining part occurs during the batch transactional process via the RegionalDateProcess
rule.

Syntax RegionalDateProcess;;;

There are no parameters for this rule.

Place this rule before any rule that calls the base triggering functionality, such as the
RunSetRcpTbl rule. RDP rules operate as a filter that aids the normal triggering process
by eliminating forms which do not meet the necessary criteria.

RDP rules are defined in group form files and assigned to individual forms. RDP rules are
optional and only those forms containing one or more such rules are subject to this
filtering process.

RegionalDateProcess

195

If a form has one or more RDP rules defined, these are evaluated during execution of this
rule. The execution proceeds like this:

First, the system locates and evaluates the date search token associated with the rule.
The resulting date value obtained from the transaction data is compared against the
date range provided in the rule. If the date value is out of range, the form is flagged
for possible elimination and execution moves to the next RDP rule.

If the date value is within the valid range, the next step is to iterate through the region
search tokens associated with the rule and evaluate each. Each region search token
might yield multiple hits. The system cross-references this list of values against the
inclusion and exclusion list provided in the rule. If there is an intersection between
the two lists, the rule is considered satisfied and the system moves to the next RPD
rule. If the search token results in no matches for the list, then the system continues
with the next search token until all search tokens are exhausted.

If the rule completes execution of the regional search tokens without finding any
matches for the defined set, the form is flagged for possible elimination.

Each RDP rule executes in this manner which means that at the point where one rule
considers the form eligible, no further RDP rules are execute on that form. Instead, RDP
processing will immediately move to the next form.

If all RDP rules for a given form consider the form ineligible, then the form remains
flagged with this state and is skipped during the subsequent triggering job rule process.

INI options You can enter Yes for the RegionalDateProcess option to turn on debugging if you run
into problems. Here is an example:

< Debug_Switches >

RegionalDateProcess = Yes

Here's an example trace file produced by setting the RegionalDateProcess option to Yes:

1. Thu Sep 11 14:38:14.678 2008 pid=00029776 RDP Form <PREMIUM

CONFIRMATION> IS excluded.

2. Thu Sep 11 14:38:14.678 2008 pid=00029776 RDP Form <PREMIUM

CONFIRMATION 06152008> IS excluded.

3. Thu Sep 11 14:38:14.866 2008 pid=00029776 RDP Form <PREMIUM

CONFIRMATION> IS excluded.

4. Thu Sep 11 14:38:14.866 2008 pid=00029776 RDP Form <PREMIUM

CONFIRMATION 06152008> IS excluded.

5. Thu Sep 11 14:38:14.975 2008 pid=00029776 RDP Form <PREMIUM

CONFIRMATION> IS excluded.

6. Thu Sep 11 14:38:14.975 2008 pid=00029776 RDP Form <PREMIUM

CONFIRMATION 06152008> IS excluded.

7. Thu Sep 11 14:38:14.991 2008 pid=00029776 RDP Form <MEDICAL

HISTORY USING MEDBODY1> IS excluded.

Chapter 3
Job and Form Set Rules Reference

196

Example Here is an example of how you would use this rule:

<Base Form Set Rules>

;NoGenTrnTransactionProc;2; single step;

;ResetOvFlw;2;;

;BuildFormList;2;;

;RegionalDateProcess;2;;

;RunSetRcpTbl;2;;

;WriteOutput;2;;

;WriteNaFile;2;;

;BatchingByRecipINI;2;;

;PaginateAndPropagate;2;;

See also Documaker Studio User Guide

ReplaceNoOpFunc

197

 ReplaceNoOpFunc
Use this job level rule (level 1) to register the MapFromImportData rule which the system
will then use in place of the NoOpFunc rule.

Syntax ;ReplaceNoOpFunc;;;

There are no parameters for this rule. You typically use this rule with the following import
rules:

• ImportFile

• ImportExtract

• ImportNAPOLFile

• ImportNAPOLExtract

NOTE: Use this rule if any of the DDT files for your sections are set to use the
NoOpFunc rule. If you use the MapFromImportData rule instead of the
NoOpFunc rule, you do not have to use this rule.

See also MapFromImportData on page 376

NoOpFunc on page 415

ImportFile on page 116

ImportExtract on page 111

RULNestedOverFlowProc on page 203

ImportNAPOLExtract on page 121

ImportNAPOLFile on page 126

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

198

 ResetDocSetNames
Use this form set level (level 2) rule to reset the pRPS structure after the GVM variables
have been remapped.

Syntax ;ResetDocSetNames;;;

Normally, after it loads the transaction, the system uses the options in the DocSetNames
and Trn_Fields control groups to map GVM variables into the pRPS structure for
GroupName1, GroupName2, and TransactionID. There are other fields, but
GroupName1, GroupName2, and TransactionID are the primary ones.

When you use the MergeWIP rule, or an rule that imports the document field information
normally mapped by the transaction rule, you may need to use the GVM2GVM rule to
map the options in the Trigger2WIP control group back to GVM variables. Because the
names of the Key1 and Group1 fields sometimes differ, this means the mapping occurs
too late to also be mapped to the pRPS structure member. Therefore, you must use the
ResetDocSetNames rule to reset the pRPS structure after the GVM variables have been
remapped.

When you use the EXT2GVM rule to get the values for GroupName1, GroupName2,
and GroupName3, especially in an XML implementation, be sure to include the
MapBeforeReset parameter to re-map the RPS structures. With the parameter, this rule
gets the GroupName values from global memory and converts them into the long values
using the Key1Table andKey2Table control groups. This is typically used to convert
company codes to company names and so on.

Here is an example:

;UseXMLExtract;;;

;Ext2GVM;;!/Forms/Key1 1,10,Company;

;Ext2GVM;;!/Forms/Key2 1,15,LOB;

;ResetDocSetNames;;ConvertBeforeReset;

To avoid using this rule, make sure the primary keys are defined the same way in these
DFD files:

• TRNDFDFL.DFD

• RCBDFDFL.DFD

• WIP.DFD

Example Here is an example:

< Base Form Set Rules >

;WIPTransactions;;BATCHPRINT;

;GVM2GVM;;Trigger2Wip;

;ResetDocSetNames;;;

See also Ext2GVM on page 93

GVM2GVM on page 107

MergeWIP on page 162

JDT Rules Reference on page 30

ResetOvFlw

199

 ResetOvFlw
Use this form set level rule (level 2) to reset the overflow feature.

Syntax ;ResetOvFlw;;;

This rule resets or reinitializes all of the overflow variables. In general, the overflow
symbol will keep track of record counts as the extract is processed. When an overflow
variable is defined, the system adds it to an overflow symbols list. This list contains several
attributes for each symbol. This rule resets those attributes to the default values assigned
when you initially defined the overflow symbol.

Example ;ResetOvFlw;;;

See also InitOvFlw on page 144

IncOvSym on page 366

OvActPrint on page 417

OvPrint on page 419

WriteOutput on page 248

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

200

 RestartJob rule
Use this job level (level 1) rule to open the restart file (RSTFILE) and reset the
EXTRFILE, TRNFILE, NEWTRN, NAFILE, POLFILE, and batch files at the broken
transaction. The RestartJob should be first base rule.

NOTE: If the restart file does not exist, the system skips this rule.

Syntax ;RestartJob;;;

You can set up the GenData program to restart itself at a particular transaction if it
encounters a failure. To accomplish this, the system uses a restart file. You use INI
options to set up the restart file.

NOTE: This rule does not apply if you are using single-step processing.

The restart file stores checkpoint information at specified intervals. If an error is
encountered, the program resets itself and then checks each transaction until it isolates the
transaction causing the error.

The restart file is removed at the end of a successful run. If the file exists at the start of a
GenData run, the system assumes a restart is necessary and will open and read the file.
The checkpoint information lets the system set internal pointers and output files in such
a way that it can begin at that transaction.

You also use the RULCheckTransaction rule to restart the GenData program.

To use the restart feature, you should also set the following INI options:

< GenDataStopOn >

BaseErrors = Yes

TransactionErrors = Yes

ImageErrors = Yes

FieldErrors = Yes

Example Here is an example:

;RestartJob;1;Always the first base rule;

See also RULCheckTransaction on page 201

JDT Rules Reference on page 30

RULCheckTransaction

201

 RULCheckTransaction
Use this form set level (level 2) rule to save the files necessary for restarting the GenData
program. This rule should be the first base form set rule.

Syntax ;RULCheckTransaction;;;

The rule saves the EXTRFILE offset, TRNFILE offset, NEWTRN offset, NAFILE
offset, POLFILE offset, and batch file offsets into a restart (RSTFILE) file. You can set
up the GenData program to restart at a particular transaction if it encounters a failure. To
accomplish this, the system uses a restart file. Use INI options to set up the restart file.

NOTE: This rule does not apply if you are using single-step processing.

The restart file stores checkpoint information at specified intervals. If an error is
encountered, the program resets itself and then checks each transaction until it isolates the
transaction causing the error.

The restart file is removed at the end of a successful run. If the file exists at the start of a
GenData run, the system assumes a restart is necessary and will open and read the file.
The checkpoint information lets the system set internal pointers and output files in such
a way that it can begin at that transaction. You also use the RestartJob rule to restart the
GenData program.

INI options These offsets are updated in the post process after a specific number of transactions. You
specify the number of transactions using the CheckCount option. You define the Restart
file and the and check count in the Restart control group:

< Restart >

RstFile =

CheckCount =

Example Here is an example:

;RULCheckTransaction;2;Always the first form set rule;

See also RestartJob rule on page 200

Option Description

RstFile Enter the name of the restart file. If you omit this option, the system uses
RSTFILE.RST (DD:RSTFILE for z/OS) as the file name.
The system uses the DataPath option in the Data control group to determine
where to create the restart file. The default location is the current working
directory.

CheckCount Enter a number to specify the number of transactions to process before
updating the offsets. For instance, if you specify two hundred (200), the system
processes two hundred transactions, updates the offsets, processes two hundred
more transactions, and so on. The default is 100.
You can also use the /cnt command line option with the GenData program to
override the CheckCount option. Here is an example:

gendaw32 /cnt=10

Chapter 3
Job and Form Set Rules Reference

202

JDT Rules Reference on page 30

RULNestedOverFlowProc

203

 RULNestedOverFlowProc
Use this form level rule (level 2) to nest overflow within overflow. The nested overflow
can occur on as many levels as necessary. This lets you use the system as a reporting tool.
The only requirement is that the data occur in order.

This rule lets you create groups that contain group headers (lead sections), subordinate
sections (list sections), and group footers (following sections).

Syntax ;RULNestedOverFlowProc;;;

Insert this rule in the AFGJOB.JDT file just after the RunSetRcpTbl rule.

To specify how the nesting occurs, you must create a file named OVERFLOW.DAT.
You can create this file using any ASCII editor. By default, the system looks for this file
in the DefLib directory, however, you can specify a different path and file name as the
second parameter. Here is an example:

;RULNestedOverFlowProc;;c:\fap\dll\newfile.dat;

OVERFLOW.DAT file
format

The file format for the OVERFLOW.DAT file is as follows:

;LeadIMG;LeadMask;ListIMGInfo;ListMask;FollIMGInfo;

Parameter Description

LeadIMG The group header inserted by normal triggering rules or by a previous call to the
NestedOverflowProc rule. The group header is the section name without the
extension of the lead section.

LeadMask The search mask that originally triggered the lead section, in this syntax:

Offset,Record

Offset is the offset into the extract file. Record is the specific search key.

ListIMGInfo Information about the subordinate section that overflows beneath the group
header section. The format is the same as is in the FORM.DAT file:

SecName|SecAtts<Recip1(CpyCnt),Recip2(CpyCnt),…>

SecName is the name of the section without the extension.
SecAtts are the attributes of the section (using the flags used in the FORM.DAT
file such as D=data entry and print, S=same page, W=can grow, and so on.
RECIP1 is the recipient name.
CPYCNT is the recipient copy count.
Normally, you should set the attributes to DS. (D=data entry and print and
S=same page). This information should not exceed 255 characters.

ListMask (Optional) The search mask which triggers occurrences of the subordinate
section beneath the group header section. Use this syntax:

Offset, Record

Where...
Offset is the offset into the extract file.
Record is the specific search key.
If you omit this parameter, only one section is inserted.

Chapter 3
Job and Form Set Rules Reference

204

Before this rule is called, the lead section should already be in the form set—either
through normal section triggering or by placing another call to this rule on a previous line.

The system begins by reading the OVERFLOW.DAT file line by line. The system finds
the first occurrence of the lead section in the form set and then finds the first occurrence
of the lead mask in the extract file.

It then counts the number of list masks between the first and second lead mask. Next, the
system inserts the number of list sections after the first lead section and then inserts the
follow section.

The system continues going through the form set inserting the number of list sections in
between the nth and (n+1)th lead sections, according to the number of list masks in the
extract file in between the (n)th and (n+1)th lead masks.

When it reaches the last lead section, the system counts the remaining list section masks
after the last lead mask and inserts the appropriate number of list sections. Lastly, it inserts
the following section, if specified.

NOTE: The following section and the list masks are optional. If there is no list mask, only one
list section will be inserted.

Example This example shows how to generate list sections subordinate to lead sections. In this
example Record1 is the lead mask, and Record2 is the list mask.

LeadImage is the lead section and ListImage is the list section. The rule would count three
Record2s between the two Record1s. If Record1 is actually the fifth Record1 in the extract file
for the current transaction, the system would find the fifth LeadImage in the form set and
insert three ListImages after this LeadImage.

Also, there is only one recipient, Recip1.

.

.

.

000000001RECORD1 data1

000000001RECORD2 data2

000000001RECORD2 data3

000000001RECORD3 data4

FollIMGInfo (Optional) Information about the group footer section which, if specified, is
inserted after the last subordinate section for the current group. The format is
the same as is in the FORM.DAT file:

SecName|SecAtts<Recip1(CpyCnt),Recip2(CpyCnt),…>

SecName is the name of the section without the extension.
SecAtts are the attributes of the section (using the flags used in the FORM.DAT
file such as D=data entry and print, S=same page, W=can grow, and so on.
RECIP1 is the recipient name.
CPYCNT is the recipient copy count.
Normally, you should set the attributes to DS. (D=data entry and print and
S=same page). This information should not exceed 255 characters.

Parameter Description

RULNestedOverFlowProc

205

000000001RECORD4 data5

000000001RECORD4 data6

000000001RECORD2 data7

000000001RECORD1 data8

. . . .

. . . .

. . . .

The example below shows the line in the overflow file. In the first example, the
corresponding line in the overflow file for the previous example would appear as shown
here:

;LEADIMAGE;10,RECORD1;LISTIMAGE|DS<RECIP1(1)>;10,RECORD2;;

The next example shows how to add a following section. If a following section was
needed, the line from the file would look as shown here. Assume the following section is
named FOLLOWIMAGE:

;LEADIMAGE;10,RECORD1;LISTIMAGE|DS<RECIP1(1)>;10,RECORD2;FOLLOWIMAG
E|DS<RECIP1(1)>;

This following example shows how to add another recipient. If a second recipient (with
copy count of 3) was specified for the list section but not for the following section, the
line would appear as shown here. Assume the second recipient is Recip2:

;LEADIMAGE;10,RECORD1;LISTIMAGE|DS<RECIP1(1),RECIP2(3)>;10,RECORD2;
FOLLOWIMAGE|DS<RECIP1(1)>;

This example shows how to change the section attributes. So far the section attributes
were set as DS—data entry and print and same page. If the list section was dynamic, you must
add the W (can grow) attribute. The line would now look as shown here:

;LEADIMAGE;10,RECORD1;LISTIMAGE|DSW<RECIP1(1),RECIP(2)>;10,RECORD2;
FOLLOWIMAGE|DS<RECIP1(1)>;

The example also shows nested/recursive functionality by iteration because this rule
builds upon previous lines. This lets you have unlimited amounts of overflow within
overflow.

Here are some points to consider concerning insertion logic:

• Reverse insertion logic when inserting different list sections after the same lead
section.

Because of the nature of insertions, if two lines in the overflow file use the same lead
section, the list section in the second line is inserted before the list section on the first
line. This requires a sort of reverse logic when creating the overflow.

• In order insertion below the lead section.

Consider two different sections triggered by two different masks that occur in the
extract file and the overflow file in the following manner:

(extract file)

000000001LEADREC

000000001LISTREC1

000000001LISTREC2

000000001LISTREC1

(overflow file: note reverse insertion logic)

;LEADIMAGE;10,LEADREC;LISTIMAGE2|DSW<RECIP(1);;

;LEADIMAGE;10,LEADREC;LISTIMAGE1|DSW<RECIP(1);;

Chapter 3
Job and Form Set Rules Reference

206

The sections would be inserted after LEADIMAGE in the following order:

LISTIMAGE2…LISTIMAGE1…LISTIMAGE1

However the POLFILE.DAT file would look as follows:

…/LEADIMAGE|DSW<RECIP>/LISTIMAGE1|DSW<RECIP>/LISTIMAGE1|DSW

<RECIP>/LISTIMAGE2|DSW<RECIP>/...

This excerpt demonstrates that the sections are not inserted in the order of list search
masks in the extract file but in the reverse order of the occurrence of list sections in
the overflow file.

NOTE: If while processing the rule the system encounters invalid lines in the overflow
file, it ignores those lines and adds log entries into the log file. The system then
continues processing.

See also RunSetRcpTbl on page 212

JDT Rules Reference on page 30

RULStandardFieldProc

207

 RULStandardFieldProc
You must include this form set level rule (level 2) in the AFGJOB.JDT file as the first field
rule. This rule tells the system to process each field on all of the sections triggered by the
SETRCPTB.DAT file.

NOTE: This rule is used in multi-step processing. The StandardFieldProc rule is used in
single-step processing.

Syntax ;RULStandardFieldProc;;;

There are no parameters for this rule.

Example ;RULStandardFieldProc;;;

See also Using the Job Definition Table on page 6

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

208

 RULStandardImageProc
You must include this form set level rule (level 2) in the AFGJOB.JDT file as the first
section rule. This rule tells the system to process each section triggered by the
SETRCPTB.DAT file.

NOTE: This rule is used in multi-step processing. The StandardImageProc rule is used in
single-step processing.

Syntax ;RULStandardImageProc;;;

There are no parameters for this rule.

Example ;RULStandardImageProc;;;

See also Using the Job Definition Table on page 6

JDT Rules Reference on page 30

RULStandardJobProc

209

 RULStandardJobProc
You must include this rule as the first job level rule (level 1) in the AFGJOB.JDT file.

Syntax ;RULStandardJobProc;;;

There are no parameters for this rule.

Example ;RULStandardJobProc;;;

See also ServerJobProc on page 217

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

210

 RULStandardTransactionProc
You must include this form set level rule (level 2) in the AFGJOB.JDT file as the first
transaction level rule. This rule tells the system to process each transaction listed in the
extract file.

NOTE: Do not use this rule if you are using single-step processing. You only use this rule
if you are not using the NoGenTrnTransactionProc rule.

Syntax ;RULStandardTransactionProc;;;

There are no parameters for this rule.

Example ;RULStandardTransactionProc;;;

See also Single-Step Processing on page 7

NoGenTrnTransactionProc on page 168

JDT Rules Reference on page 30

RULTestTransaction

211

 RULTestTransaction
Use this form set debugging rule (level 2) before the RULStandardTransactionProc rule
to have the system look for an INI group like the one shown below and execute only the
transactions specified there.

Syntax ;RULTestTransaction;;;

The numbers shown below are sequence numbers, not transaction IDs. If you define the
Test control group, the system will skip any transaction number not specified in the
control group.

< Test >

TransactionRecordNumber = 1 ; do transaction 1

TransactionRecordNumber = 5 ; and transaction 5

Example ;RULTestTransaction;;;

See also RULStandardTransactionProc on page 210

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

212

 RunSetRcpTbl
Use this form set level rule (level 2) to run all entries in the set recipient table which pertain
to the current GroupName1, GroupName2, and TransactionType to generate the form
set for the current transaction.

NOTE: You can use the LoadFormsetFromArchive rule to replace the BuildFormList,
LoadRcpTbl, and RunSetRcpTbl rules in the AFGJOB.JDT file.

For more information on setting recipients and copy counts, see the Documaker Server
System Reference.

Syntax ;RunSetRcpTbl;;;

Place this rule in the AFGJOB.JDT file, after the BuildFormList rule.

Example ;BuildFormList;;;

;RunSetRcpTbl;;;

This example tells the system to process the SETRCPTB.DAT file to determine which
forms and sections it should include in the POLFILE.DAT file for each recipient.

See also BuildFormList on page 72

LoadFormsetFromArchive on page 154

LoadRcpTbl on page 157

Using the Job Definition Table on page 6

JDT Rules Reference on page 30

RunTriggers

213

 RunTriggers
Use this form set level (level 2) rule to replace the LoadRcpTbl and RunSetRcpTbl rules
in implementations created by Documaker Studio.

Syntax ;RunTriggers;;;

There are no parameters for this rule.

NOTE: This rule is only available if you are running Documaker Studio. If you do not use
Documaker Studio, see the discussion of the ProcessTriggers rule.

The RunTriggers rule represents an improved triggering process tailored for the file
structure implemented with Documaker Studio. This process removes some of the
complexity and improves performance.

For instance, in the old triggering process, if your form trigger asked for three copies of a
form and then you processed the section triggers, only the last copy of the form was
affected by the section triggers. The first two copies, would have been static based upon
the default section configuration in the FORM.DAT file. Using the RunTriggers rule,
each copy of the form will process section triggers. This means each form can differ from
the prior one — assuming your section triggers check unique information to achieve that
goal.

See also LoadRcpTbl on page 157

RunSetRcpTbl on page 212

ProcessTriggers on page 186

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

214

 RunUser
Use this job level (level 1) rule to execute a user function. You can use this rule to run a
user function such as GetRecsUsed, IncRecsUsed, or ResetRecsUsed, to manipulate an
overflow variable. This rule lets you manipulate an overflow variable without immediately
making use of it in a field mapping.

Syntax ;RunUser;;;

Example Overflow variables are variables you can use when a DDT rule is searching an extract
record using a search mask. You can use the overflow variable to vary the occurrence of
the record you are searching for.

Typically, the AFGJOB.JDT file contains this rule:

;ResetOvFlw;;;

which resets all overflow variables to zero at the beginning of each transaction. The
RunUser rule lets you reset to zero at any time during field processing by running the
ResetRecsUsed user function via the RunUser rule.

See also ResetOvFlw on page 199

JDT Rules Reference on page 30

ServerFilterFormRecipient

215

 ServerFilterFormRecipient
Use this form set (level 2) rule with the DPSPrint object in IDS to generate a print file
that contains a set of forms which will be filtered by

• Form name

• Form description

• Recipient name

Syntax ;ServerFilterFormRecipient;;;

The following attachment variables are created if these properties of the DPSPrint object
are not null, in other words...

• DPSPrint.Forms creates DPRFORMNAME

• DPSPrint.FormDescription creates DPRFORMDESCRIPTION

• DPSPrint.Recipients creates DPRRECIPIENTNAME

The input can be a list, with items separated by commas. Here are the search conditions
you can use:

• End with * , STARTS WITH

• Start with *, CONTAINS

• Text alone, EQUALS

While executing the DPSPRT request from the DPSPrint object, the RPDCreateJob rule
creates the DPRFORMNAME, DPRFORMDESCRIPTION, and DPRRECIPIENT
tags in the job ticket.

< ReqType:DPSPRT >

function = atcw32->ATCLogTransaction

function = atcw32->ATCLoadAttachment

function = atcw32->ATCUnloadAttachment

function = dprw32->DPRSetConfig

function = dsijrule->JavaRunRule,;com/docucorp/ids/rules/
dps;DPS;global;duplicateAttach;,RV,CUSTOMERBATCH,
O,PRINTOUTPUTFILE,O

function = rpdw32->RPDCheckRPRun

function = rpdw32->RPDCreateJob

function = rpdw32->RPDProcessJob

Once job ticket is created, Documaker processes the job. Documaker reads the job ticket
and creates a GVM variable with this name:

DPRFORMNAME, DPRFORMDESCRIPTION, and DPRRECIPIENTNAME.

The ServerFilterFormRecipient rule looks for the GVM name DPRFORMNAME,
DPRFORMDESCRIPTION, and DPRRECIPIENTNAME and filters out the
mismatch condition.

Here is an example in Visual Basic:

Private Sub CmdPrint_Click()

Dim oDPSVar As New DPSPrint

Dim oDPSIDS As New DPSIDS

Chapter 3
Job and Form Set Rules Reference

216

oDPSVar.inputFile = FldInputFile.Text

oDPSVar.configurationName = FldConfig.Text

oDPSVar.outputFile = FldOutputFile.Text

oDPSVar.outputPath = FldOutputPath.Text

oDPSVar.printerType = FldPrinterType.Text

oDPSVar.Forms = "ABC,DEF*,*XYZ"

oDPSIDS.send oDPSVar

FinalOutput.Text = oDPSVar.outputPath + oDPSVar.outputFile

End Sub

All form names that equal ABC or start with DEF or contain XYZ are included in the
final print file.

If all inputs (DPRFORMNAME, DPRFORMDESCRIPTION and
DPRRECIPIENTNAME) exist, the recipient name is evaluated first and the form name
and form description are evaluated later.

NOTE: Include this rule in the AFGJOB.JDT file after the LoadRcpTbl rule.

Here is an excerpt from the AFGJOB.JDT file:

/* Every form set in this base uses these rules. */

<Base Form Set Rules>

;NoGenTrnTransactionProc;;required to combine gentrn/gendata into
single step;

;BuildFormList;;;

;LoadRcpTbl;;;

;ServerFilterFormRecipient;;;

;RunSetRcpTbl;;;

;PrintFormset;;required to combine gendata/genprint into single
step;

;WriteOutput;;;required to combine gentrn/gendata into single step;

;WriteNaFile;;;required to combine gentrn/gendata into single step;

;BatchingByPageCountINI;;;

;ProcessQueue;;PostPaginationQueue;

;PaginateAndPropagate;;FooterMode(2) Debug;

Example ;ServerFilterFormRecipient;;;

See also JDT Rules Reference on page 30

ServerJobProc

217

 ServerJobProc
Use this job level rule (level 1) when you use the Internet Document Server (IDS) to run
Documaker. This rule replaces the RULStandardJobProc rule.

NOTE: You must have a license to both IDS and Documaker to use this rule. For more
information on setting up IDS and Documaker, see the Internet Document
Server Guide.

Syntax ;ServerJobProc;;;

Insert this rule in the AFGJOB.JDT file as the first rule.

This rule looks for a job ticket file in the current working directory and loads it as an XML
file. All of the values on the XML tree are added to or updated in the INI options. After
Documaker finishes processing, the rule checks the status. If there are errors, it returns a
no more bases return code on the next iteration. This terminates Documaker.

This rule uses a polling technique—sleep a while and check for the file existence— which
you can configure using INI options. The rule loads the job ticket and sets INI options
used when running subsequent rules. On the post message, this rule creates a job log XML
tree and writes it to disk. If any necessary values are missing from the XML job ticket,
these values are generated and changed (or appended) in the INI context.

On RP_PRE_PROC_B, this rule creates a semaphore (gendata), which makes it possible
for the IDS RPDCheckRPRun rule to detect the status of Documaker when the next
processing job starts.

This rule stays in waiting status and checks for the existence of job ticket file
(JOBTICKET.XML) and the rpdrunrp semaphore. As soon as the job ticket file is
detected, this rule loads it onto the XML tree and uses the contents of the XML tree to
update INI options in memory.

If the rule does not detect the rpdrunrp semaphore, the rule terminates Documaker by
returning a msgNO_MORE_BASES return code. It also creates a GVM variable
(DSISERV) so the CUSInitPrint rule can re-initialize printers after the job process is
complete. This GVM variable can be used by any of the Documaker rules to detect if the
Documaker is running under IDS, if different logic is needed.

On RP_POST_PROC_B, the rule writes out the job log file and removes the job ticket
file. If the RULServerJobPRoc option is set to Yes, a copy of the file will be obtained for
debugging purposes.

INI options < Data >

DataPath =

ExtrFile =

MsgFile =

ErrFile =

LogFile =

DBLogFile =

NAFile =

POLFile =

NewTrn =

Chapter 3
Job and Form Set Rules Reference

218

< PrinterInfo >

Printer =

< Printer >

Port =

< Print_Batches >

Batch1 = batch1.bch

< IDSServer >

SleepingTime =

GENSemaphoreName =

RPDSemaphoreName =

< Debug >

RULServerJobProc =

< PrintFormSet >

MultiFilePrint =

LogFileType =

LogFile =

Option Description

Data control group

DataPath Used as the default path if you omit PrintPath.

ExtrFile Enter the name and path of the extract file.

MsgFile Enter the name and path of the message file.

ErrFile Enter the name and path of the error file.

LogFile Enter the name and path of the log file.

DBLogFile Enter the name and path of the DB log file.

NAFile Enter the name and path of the NA file.

POLFile Enter the name and path of the POL file.

NewTrn Enter the name and path of the NewTrn file.

PrinterInfo control group

Printer Enter the designated printers for print batches.

Printer control group

Port Enter the name of the print batch file for each designated printer.
Note the group name is defined by the printer option in the
PrinterInfo control group.

Print_Batches control group

Batch1 Then name of the batch file.

IDSServer control group

SleepingTime Enter the amount of time in milliseconds you want the system to wait
before it checks for a job ticket. The default is 1000 (1 second).

ServerJobProc

219

Input file JOBTICKET.XML

Output file JOBLOG.XML

See also RULStandardJobProc on page 209

JDT Rules Reference on page 30

GENSemaphoreName Enter the name of the semaphore. The default is gendata.

RPDSemaphoreName Enter the name of the semaphore. The default is rpdrunrp.

Debug control group

RULServerJobProc Enter Yes to get a copy of the job ticket file before the system
removes it.

PrintFormSet control group

MultiFilePrint Enter Yes to generate multiple print files which use 46-byte unique
names.
To identify which recipients are in which print batch, enter No or
omit this option.This causes the PrintFormSet rule to save the printer
for the print batch along with its recipient information. The
ServerJobProc rule then adds three new tags for each print batch file
and adds them to the JOBLOG.XML file.
For example, for the print batch file on PRINTER1, the system
creates these new tags:

<PRINTER1RECIP>Insured</PRINTER1RECIP>

<PRINTER1CODE>001</PRINTER1CODE>

<PRINTER1DESC>Insured Copy</PRINTER1DESC>

The MultiFilePrint option should only be used with the PDF, RTF,
HTML, and XML print drivers.

LogFileType Specify the type of print log file, such as XML or TEXT.

LogFile Enter the name and path of the print log file. If you omit the
extension, the system uses the LogFileType option to determine the
extension.

Option Description

Chapter 3
Job and Form Set Rules Reference

220

 SetErrHdr
Use this job level rule (level 1) to define the header information used in the error file if an
error occurs during the processing of a transaction. You can use any global variable
(GVM) in the text defined to the system.

Syntax ;SetErrHdr;;Token:Text;

NOTE: Use a colon (:) to separate the token from the text. You must use a token even if
there are no embedded global variables in the text string.

Example ;SetErrHdr;;***: Transaction: ***PolicyNum***;

;SetErrHdr;;***:Company Name: ***Company***;

This example substitutes the global variables, PolicyNum and Company, into the error file
header information. If the global variable PolicyNum was equal to MVF10002 and Company
was equal to ABC Insurance Company, the text output to the error file would be:

Transaction: MVF10002

Company Name: ABC Insurance Company

To add lines to the header, use the rule multiple times. Each time you use the rule, the
system adds a line to the header, which you will see in the error file (ERRFILE.DAT).

NOTE: The global variable names must be spelled exactly as they are defined to the
system.

See also JDT Rules Reference on page 30

Parameter Description

Token A string of characters used to denote the beginning and end of a global variable
name. Use a colon (:) to terminate the token string of characters. To substitute a
global variable into the text, surround the name of the global variable with the
token string. Be sure to use a string of unique characters for the token that are
not defined in the text. For example, you could use '***'. You cannot use a colon
(:) in the TOKEN string.

Text A text string. The text string may include embedded tokens and global variables.
Do not start the text string with a colon (:).

SetOutputFromExtrFile

221

 SetOutputFromExtrFile
Use this form set level (level 2) rule to extract a print batch name from an extract file for
each transaction. This capability is typically used with the MultiFilePrint callback function
so you can get a print batch name from the extract file for one or more recipients per
transaction.

Syntax ;SetOutputFromExtrFile;;RecordMask PrintBatchName;

You must include the BatchingByRecipINI or the IfRecipUsed rule before this rule in the
AFGJOB.JDT file. If you include the BatchingByRecipINI rule, also include these
options:

< BatchingByRecip >

Batch_Recip_Name = 39,FILENAME001;"Batch1";INVESTOR

Batch_Recip_Name = 39,FILENAME002;"Batch2";COMPANY

Batch_Recip_Name = 39,FILENAME003;"Batch3";AGENT

Make sure that FILENAME001,FILENAME002 and FILENAME003 exist at offset=39
in the records. You can see that the mask FILENAME001 is composed of FILENAME
and Recipient code 001. So make sure INI control group is set.

To use multiple recipients, each transaction records should contain print multiple print
batch names. Here is an example:

FUND/INVESTOR/TEMPLATE/TEMPLATE_LEVEL/INVESTOR_ID\JPMP0355 98PL X

FUND/INVESTOR/TEMPLATE/TEMPLATE_LEVEL/
FILENAME001\JPMP0355\JPMP035598PRP031501.pdf

FUND/INVESTOR/TEMPLATE/TEMPLATE_LEVEL/
FILENAME002\JPMP0356\JPMP035598PRP031502.pdf

FUND/INVESTOR/TEMPLATE/TEMPLATE_LEVEL/
FILENAME003\JPMP0357\JPMP035598PRP031503.pdf

The record mask should match the parameters for the SetOutputFromExtrFile rule and
the INI options. The setup for this rule varies, depending on the mode you are running in.

3-step (GenTran,
GenData, and

GenPrint)

When processing using the GenTran, GenData, and GenPrint programs, you must set the
INI options for the GenPrint program as shown here:

< Print >

RCBDFDField = PDFNAME

CallBackFunc = MultiFilePrint

MultiFileLog = ..\data\MFP.LOG

You can use the CUSMultiFilePrint function instead of the MultiFilePrint function, if you
want to control the file name.

The CUSMultiFilePrint function is a print callback function that creates a new output file
for each recipient and creates a log record of each. This is similar to the MultiFilePrint
callback function in GenPrint except it gives you more control over the name of the file
and supports long file names.

Parameter Description

RecordMask This tells the system to locate a specific record line.

PrintBatchName This tells the system to get the print batch name that begins in a specific
location and save it to a global variable.

Chapter 3
Job and Form Set Rules Reference

222

The system assumes you will use a built-in INI function to create a unique file name each
time. This is important because the callback function cannot assign the first file name.
You can use a DAL function to assign the first file name. Here is an example of the INI
options:

< Printer1 >

Port = ~DALRUN Batch1Files.dal

< Print >

CallbackFunc = CUSMultiFilePrint

Here is an example of a DAL script:

#counter = #counter

file_name = "cusmultifileprint" & #counter & ".pdf"

#counter = #counter+1

return (file_name)

Please note that this function is used for multi-step processing only.

2-step (Single-step
processing without the

PrinfFormset rule and
with GenPrint)

When you use single-step processing but omit the PrintFormset rule and instead use the
GenPrint program, you must include the Print control group options:

< Print >

RCBDFDField = PDFNAME

CallBackFunc = MultiFilePrint

MultiFileLog = ..\data\MFP.LOG

Here is an example of the AFGJOB.JDT file you would use:

;NoGenTrnTransactionProc;2;required to combine GenTran/GenData;

;WriteRCBFiles;2;;

;ResetOvFlw;2;;

;BuildFormList;2;;

;LoadRcpTbl;2;;

;RunSetRcpTbl;2;;

;BatchingByRecipINI;2;;;

;SetOutputFromExtrFile;2;35,FILENAME 47,128,PDFNAME;

;WriteOutput;2;;

;WriteNaFile;2;;

;ProcessQueue;2;PostPaginationQueue;

;PaginateAndPropagate;2;;

Be sure to include the WriteOutput, WriteNAFile, and WriteRCBFiles rules.

SetOutputFromExtrFile

223

Single-step (GenData
only)

When you use single-step processing, the system does not use a callback function. Instead,
it uses the MultiFilePrint INI option in the PrintFormset control group.

In single-step mode, you must have these INI options:

< PrintFormset >

RCBDFDField = PDFNAME

MultiFilePrint = Yes

LogFileType = Text (or XML)

LogFile = mfp.log

NOTE: The MultiFilePrint option should only be used with the PDF, RTF, HTML, and
XML print drivers.

Here is an example of the AFGJOB.JDT file you would use:

;NoGenTrnTransactionProc;2;required to combine GenTran/GenData;

;ResetOvFlw;2;;

;BuildFormList;2;;

;LoadRcpTbl;2;;

;RunSetRcpTbl;2;;

;SetOutputFromExtrFile;2;35,FILENAME 47,128,PDFNAME;

;WriteOutput;2;;

;WriteNaFile;2;;

;BatchingByRecipINI;2;;

;PrintFormset

Example ;SetOutputFromExtrFile;2;39,FILENAME 51,128,PDFNAME;

In this example, 39,FILENAME is a record mask which tells the system to locate the
record line that includes string FILENAME at offset 39. The text, 51,128,PDFNAME
tells the system to get the print batch file name at offset 51 in maximum length of 128 and
save it to a global variable named PDFNAME. Note that PDFNAME must be defined
in the RCBDFDFL.DFD file as a field.

See also JDT Rules Reference on page 30

Single-Step Processing on page 7

BatchingByRecipINI on page 68

IfRecipUsed on page 108

WriteNAFile on page 247

WriteOutput on page 248

WriteRCBFiles on page 249

WriteRCBWithPageCount on page 250

Chapter 3
Job and Form Set Rules Reference

224

 SetOverflowPaperTray
Use this form set level rule (level 2), with the required INI option to change the printer
tray selection during transaction processing.

This rule lets you print the first page of a form set on a special paper and the rest on
different stock. For example, the first page of a utility bill is typically printed on perforated
stock while the rest of the bill is printed on non-perforated stock.

Syntax ;SetOverflowPaperTray;;

There are no parameters for this rule.

The FormName option is required:

< OverflowPaperTray >

FormName = Tray#

Here is an example:

< OverflowPaperTray >

Gas Bills = Tray4

Water Bills = Tray4

Elec Bills = Tray4

Keep in mind...

• You must include the PaginateAndPropagate rule in your AFGJOB.JDT file for the
SetOverflowPaperTray rule to work correctly.

• When running in single- or two-step mode, place these rules in this order after the
WriteOutput and WriteNAFile rules:.

; SetOverflowPaperTray;;

;PaginateAndPropagate;;

When running multi-step mode, although UpdatePOLFile rule does pagination, you
must still include the PaginateAndPropagate rule in your AFGJOB.JDT file, as
pagination is needed before the SetOverflowPaperTray rule executes and before the
NA and POL files are updated. Here is how the rules should be placed:

;UpdatePolfile;;

;SetOverflowPaperTray;;

;PaginateAndPropagate;;

• In duplex printing mode, the first page prints on stock from the original specified
paper tray (for instance, containing perforated paper). If an overflow condition
occurs and additional pages are printed; because you are duplexing, the first overflow
page will print on the backside of the first page (on the perforated paper). The system
redirects any additional overflow pages (pages 3, 4, and so on) to the paper tray you
specify using the OverflowPaperTray control group.

Option Description

FormName Enter the name of the form on the left and the tray you want used for the
subsequent pages on the right. To specify the tray, you can only enter trays 1-9.
See the example below.

SetOverflowPaperTray

225

• In simplex printing mode, the first page prints on stock from the original specified
paper tray (for instance, pre-printed color letter head). If an overflow condition
occurs, additional pages are printed on stock from the redirected paper tray you
specify using the OverflowPaperTray control group.

• This rule will not work when printing in duplex mode and the first page is set as a back
page.

Example Let’s assume your FORM.DAT file specifies duplex printing, tray 2 for all sections, and
this INI option:

< OverflowPaperTray >

UtilBill = tray4

This tells the system to use stock from tray 2 to print the first two pages (duplex) and stock
from tray 4 for the subsequent pages 3 and 4 (duplex). Here are examples of the
FORM.DAT and POLFILE.DAT files:

FORM.DAT file:

;RP10;CIS;UtilBill;Utility;N;;\

 billhdrp|FDLONX <Customer(1)>/\

 billsum |RDLS <Customer(1)>/\

 billftr |RDLS <Customer(1)>/\

 billrwtr|RDLS <Customer(1)>/\

 billsere|RDLS <Customer(1)>/\

 billstbr|RDLS <Customer(1)>/\

 billrswr|RDLS <Customer(1)>/\

 billcwt3|RDLS <Customer(1)>/\

 blchart |RDLS <Customer(1)>;

POLFILE.DAT file:

;RP10;CIS;UtilBill;Utility;R;;\

 billhdrp|FDLONX <Customer>/\ page 1 - from Lower/tray 2 (L)

 billsum |RDLSN <Customer>/\

 billftr |RDLSN <Customer>/\

 billhdrp|RDLONX <Customer>/\ page 2 - from Lower/tray 2 (L)

 billrwtr|RDLSN <Customer>/\

 billsere|RDLS <Customer>/\

 billstbr|RDLSN <Customer>/\

 billhdrp|RD4ONX <Customer>/\ page 3 - from tray 4 (4)

 billrswr|RDLSN <Customer>/\

 billcwt3|RDLSN <Customer>/\

 billhdrp|RD4ONX <Customer>/\ page 4 - from tray 4 (4)

 blchart |RDLS <Customer>;

\ENDDOCSET\ BillHead

Here is a simplex printing example:

Assume your FORM.DAT file specifies simplex printing, lower/tray 2 for all sections,
and this INI control group:

< OverflowPaperTray >

InsurBill = tray4

This tells the system to use the stock from tray 2 to print the first page and stock in tray
4 for the subsequent pages 2 and 3. Here are examples of the FORM.DAT and
POLFILE.DAT files:

Chapter 3
Job and Form Set Rules Reference

226

FORM.DAT file:

;RP10;CIS;InsurBill;NW Company;N;;\

 insuhdr |DLONX <Customer(1)>/\

 insuintr|DLS <Customer(1)>/\

 insurate|DLOS <Customer(1)>/\

 insusign|DLS <Customer(1)>;

POLFILE.DAT file:

;RP10;CIS;InsurBill;NW Company;R;;\

 insuhdr |FDLONX <Customer>/\ page 1 - from Lower/tray 2 (L)

 insuintr|DLS <Customer>/\

 insurate|DLOS <Customer>/\

 insuhdr |FD4ONX <Customer>/\ page 2 - from tray 4 (4)

 insurate|DLOS <Customer>/\

 insuhdr |FD4ONX <Customer>/\ page 3 - from tray 4 (4)

 insusign|DLS <Customer>/\

\ENDDOCSET\ InsurHead

See also PaginateAndPropagate on page 174

WriteNAFile on page 247

WriteOutput on page 248

JDT Rules Reference on page 30

SetOvFlwSym

227

 SetOvFlwSym
Use this job level rule (level 1) to define an overflow variable for the overflow feature for
use by the various field level rules using overflow. This rule adds the specified overflow
variable to the overflow symbols list. You must use the InitOvFlw rule before you use this
rule.

Syntax ;SetOvFlwSym;;OverflowSymbol, SectionName, MaxRecords;

Example ;SetOvFlwSym;;Symbol,SectionName,10;

This example tells the system to define an overflow variable named Symbol for use with
the section named SectionName, which has a maximum records per page of 10.

Another example of this rule is:

;SetOvFlwSym;;CGDECBDOVF,Q1GDBD,5;

This example tells the system to define an overflow variable named CGDECBDOVF for
use with the form Q1GDBD, which has the maximum records per section set to five.

See also WriteOutput on page 248

InitOvFlw on page 144

ResetOvFlw on page 199

IncOvSym on page 366

OvActPrint on page 417

OvPrint on page 419

SetOvFlwSym on page 227

JDT Rules Reference on page 30

Parameter Description

OverflowSymbol Name of the overflow symbol defined in the SetOvFlwSym rule.

SectionName Name of the section that contains the fields on which overflow processing
will occur.

MaxRecords Defines the maximum number of overflow records to be processed for the
section per page of output.

Chapter 3
Job and Form Set Rules Reference

228

 SetRecipCopyCount
Use this form set level rule (level 2) in the AFGJOB.JDT file to set the number of copies
for a particular recipient for all forms except those specified.

Syntax ;SetRecipCopyCount;;;

This rule includes these parameters:

;RULE;LEVEL;RECIPIENT,COPYCOUNT,FORM1,FORM2,...FORMn;

Where FORM1, FORM2, and FORMn are the names of the forms to exclude from the
copy count you specify using this rule.

NOTE: This rule tests to see if the parameter value is a constant number. If not, it
assumes the parameter names a GVM variable. It then uses the GVM variable to
get the copy count.

Example ;SetRecipCopyCount;;IO,,DOC016,DOC018;

;SetRecipCopyCount;;I,3,DOCERR;

See also SetRecipCopyCount2 on page 229

JDT Rules Reference on page 30

SetRecipCopyCount2

229

 SetRecipCopyCount2
Use this form set level rule (level 2) in the AFGJOB.JDT file to set the copy count for a
particular recipient for all forms specified.

NOTE: Version 10.1, Patch 109 changes the way the SetRecipCopyCount2 rule handles
copy counts. Before this patch, the rule excluded the forms specified in the rule's
parameters. With this patch and in subsequent versions, this rule includes those
forms and changes the forms' copy counts.

Syntax: ;SetRecipCopyCount2;;(parameters);

You must place this rule after the BuildFormList rule in the AFGJOB.JDT file.

NOTE: This rule tests to see if the parameter value is a constant number. If not, it
assumes the parameter names a GVM variable. It then uses the GVM variable to
get the copy count.

Example ;SetRecipCopyCount2;;Customer,2,QADesc1,QADesc2,QADesc3;

The copy count for recipient, Customer, is set to two (2) for forms: QADesc1, QADesc2,
and QADesc3.

< Base Rules >

;RULStandardJobProc;;;

…

…

<Base Form Set Rules>

;RulStandardTransactionProc;;;

…

…

;BuildFormList;;;

;SetRecipCopyCount2;;CUSTOMER,2,Patch399;

…

…

See also SetRecipCopyCount on page 228

JDT Rules Reference on page 30

Parameter Description

Recipient Enter the name of the recipient for whom the copy count will be set.

Number Enter the number you want to set the copy count to.

Name Enter the name of the forms for which the copy count should be set. If you have
multiple forms, separate each name with a comma.

Chapter 3
Job and Form Set Rules Reference

230

 SortBatches
Use this job level (level 1) rule to sort RCB batches before they are printed. This rule
provides a way for you to call an external sort program to rearrange the order of the
recipient batch files (RCB files).

NOTE: The SortBatches rule is not available for z/OS implementations.

Syntax ;SortBatches;;;

The SortBatches rule provides two ways to sort batches:

• Single key

This is the default sort for running under Windows. This sort command uses the
Windows command line sort and builds an RCB file with a prepended sort key. Use
this method if the external sort program uses a single sort field.

• Multiple keys

Use this method when you need to create a sort command with a repeating pattern
for each sort field.

Depending on the size of the recipient batch file, performance can be affected. The larger
the input file, the slower the performance.

The SortBatches rule performs the required initial logic before the main job execution and
executes the external sort program after execution. Place this rule immediately before the
JobInit1 rule in your AFGJOB.JDT file, as shown here:

;RULStandardJobProc;;Always the first job level rule;

;SetErrHdr;;***:--;

...

;SortBatches;;;

;JobInit1;;;

Specifying Key fields
Define the key fields for the sort in SortBatches control group. Any field defined in the
RCB DFD file can be used as a sort field. Each batch can have its own sort fields defined.
You can also define a default sort (“SortDefault)”. If you do not define a default sort, you
must define a sort for each batch file written.

Here is the format of a SortBatches INI entry:

Batch Abbreviation = Field Name (A or D; Ascending or Descending)

Separate field references with semi-colons (;).

Here is an example:

< SortBatches >

SortDefault = ACCOUNT_NUMBER(A);COMPANY(A);FEAT_DESCR (A)

RegPrt = FEAT_DESCR(A);ACCOUNT_NUMBER(A)

SortBatches

231

In this example, the batch RegPrt will be sorted by CUSTOMER_NAME,
FEAT_DESCR and ACCOUNT_NUMBER. All other batches will be sorted by
COMPANY, FEAT_DESCR and ACCOUNT_NUMBER.

Sorting with a Single Key
To make it easier to set up and to support external sorts with only one key, a sort file with
the with single key prepended is written and sorted by the external sort program when you
use the BuildSortKey option. The batch file is written in the specified order without the
prepended keys. The descending option (d) does not work with an external sort that does
not support binary sorting.

Here is an example of how to set up your INI options for a single key sort. You specify
the format of the external sort command using the options in the SortBatchOptions
control group. This example calls the Windows command line sort:

< SortBatchOptions >

BuildSortKey = Yes

SortCommand = SORT **SourceFile** /t **WorkPath** /o
TargetFile

NOTE: The default for the BuildSortKey option is Yes on Windows and No on other
platforms.

This is the default sort for running under Windows. “**SourceFile** /t **WorkPath** /
o **TargetFile**” are replacement strings that are replaced with the appropriate values
when the command line string is created. See Replacement Strings on page 233 for a
complete list of available replacement strings.

These SortBatchOptions would produce the following sort command:

SORT .\data\REGPRT.tmp /t .\data\ /o .\data\REGPRT.wrk

Sorting with Multiple Keys
When you sort with multiple keys, the system does not use an interim file with a
prepended key. Instead it writes a temporary batch file for input into the external sort. The
SortCommand specified here calls a GNU Sort:

< SortBatchOptions >

BuildSortKey = No

SortCommand = sort -o **TargetFile** *{[[]] -k **FieldOffset**,
FieldLength }* **SourceFile**

The data between the “*{“ and “}*” (in bold) is replicated for each sort field specified in
the sort batches entry. The data between the “[[“ and “]]” is used as a field separators.

SortCommand = sort -o **TargetFile** *{[[]] -k **FieldOffset**,
FieldLength }* **SourceFile**

FieldOffset and **FieldLength** are replacement strings you can use inside a
repeating section. See Replacement Strings on page 233 for a complete list of available
replacement strings.

Given the sample INI values defined above and the sample RCB DFD file definition, the
generated sort command would appear as follows:

Chapter 3
Job and Form Set Rules Reference

232

sort -o .\data\AGENT.wrk -k 1,22 -k 23,4 -k 27,45 .\data\AGENT.tmp

Sorting with an
OptTech Sort

OTSort by OptTech is a third-party sort utility. Here is an example of how you could set
the SortCommand options to execute OTSort with the SortBatches rule:

< SortBatchOptions >

BuildSortKey = No

SortCommand = OTSW32D **SourceFile** **TargetFile** /
S(*{[[,]]**FieldOffset**,**FieldLength**,**FieldType**,**SortType**
}*)

INI Options
You can use these INI options with this rule:

< SortBatches >

BatchFileName =

SortDefault =

< SortBatchesOptions >

BuildSortKey =

SortCommand =

LogSortCommand =

KeepOrgFile =

ZeroBasedOffsets =

< SortBatchSortTypes >

a =

b =

< SortBatchFieldTypes >

Long =

Char_Array =

Defining the sort Use the options in the SortBatches control group to specify the name of the batch file and the
fields you want to sort by.

Sorting options You specify all processing options for the SortBatches rule in the SortBatchOptions
control group.

< SortBatchOptions >

BuildSortKey =

LogSortCommand =

KeepOrgFile =

ZeroBasedOffsets =

Option Description

BatchFileName Enter the name of the batch file.

SortDefault Enter the fields you want to sort by plus A for an ascending sort or D for
a descending sort. The default is:

ACCOUNT_NUMBER(A);COMPANY(A);FEAT_DESCR (A)

Option Description

BuildSortKey Enter Yes to specify single key processing. The default on Windows is
Yes. The default on UNIX is No.

SortBatches

233

Overriding the sort
type

By default, the field-level sort type is written as a for ascending and d for descending. You
can override these default values using the SortBatchSortTypes control group:

< SortBatchSortTypes >

a = Replacement_Ascending_Type

d = Replacement_Descending_Type

Overriding the field
type

Field types are based on the internal field type defined in the RCB DFD (INT_TYPE).
By default their types are set to c for character fields or n for numeric fields, but you can
override these values. In the example below, fields defined as LONG have a field type of
“num” and fields defined as CHAR_ARRAY have a field type of “char”.

< SortBatchFieldTypes >

Long = num

Char_Array = char

Replacement Strings
Here is a list of the non-repeating section replacement strings:

Here is a list of the repeating section replacement strings:

LogSortCommand Enter Yes to send a copy of the sort command and associated sort options
to the trace log file. The default is No.

KeepOrgFile Enter Yes to write the original batch files in an unmodified format. The
sorted batch files are written with an SRT extension. The default is No.

ZeroBasedOffsets Enter Yes to use zero based offsets. The default is No.

Option Description

Replacement string Description

TargetFile The sort target file.

SourceFile The source file name.

Key Length The sort field length.

BeginOffset The sort field begin offset.

EndOffset The sort field end offset.

WorkPath The location for temporary file (uses DataPath).

Replacement string Description

FieldOffset The field offset in the RCB file.

FieldLength The field length.

FieldType The field type (c or n based on INT_TYPE, values can be overridden).

SortType The Sort type (a or d, values can be overridden).

Chapter 3
Job and Form Set Rules Reference

234

RCB file layout Here is the RCB file layout used in these examples:

< FIELDS >

 FIELDNAME = ACCOUNT_NUMBER

 FIELDNAME = FEAT_DESCR

 FIELDNAME = COMPANY

 FIELDNAME = APPLICATION

 FIELDNAME = CUSTOMER_NAME

 FIELDNAME = TRN_Offset

 FIELDNAME = X_Offset

 FIELDNAME = NA_Offset

 FIELDNAME = POL_Offset

 ...

< FIELD:COMPANY >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 5

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 4

 KEY = Y

 REQUIRED = Y

< FIELD:APPLICATION >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 4

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 3

 KEY = Y

 REQUIRED = Y

< FIELD:ACCOUNT_NUMBER >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 23

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 22

 KEY = Y

 REQUIRED = Y

< FIELD:FEAT_DESCR >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 46

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 45

 KEY = N

 REQUIRED = N

< FIELD:CUSTOMER_NAME >

 INT_TYPE = CHAR_ARRAY

 INT_LENGTH = 37

 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM

 EXT_LENGTH = 36

 KEY = N

 REQUIRED = N

...

See also JDT Rules Reference on page 30

StandardFieldProc

235

 StandardFieldProc
You must include this form set level rule (level 2) in the AFGJOB.JDT file if you are using
the performance mode JDT. The StandardFieldProc rule should be the first field level rule
in your AFGJOB.JDT file.

This rule tells the system to process each field on all of the sections triggered by the
SETRCPTB.DAT file.

NOTE: If you use StandardFieldProc in your AFGJOB.JDT file, you must also include
the WriteNAFile rule.

This rule is used in single-step processing. The RULStandardFieldProc rule is
used in multi-step processing.

Syntax ;StandardFieldProc;;;

There are no parameters for this rule.

If the field has not yet been loaded, this rule loads it and then determines what type of
field it is. If the field is not a text area, this rule sets the field data. If field is not a bar code
or a text area, the rule sets field text.

If the field is a bar code, this rule validates and stores the bar code data. If there is an error
with the data, the system writes a warning message to the error file, sends the transaction
to the manual batch and continues the processing run.

Example ;StandardFieldProc;;;

See also Single-Step Processing on page 7

WriteNAFile on page 247

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

236

 StandardImageProc
This rule is a form set level rule (level 2) which you must include in the AFGJOB.JDT file.
This rule is used when you are using the performance mode JDT and should be the first
section level rule.

This rule tells the system to process each section triggered by the SETRCPTB.DAT file.

NOTE: This rule is used in single-step processing. The RULStandardImageProc rule is
used in multi-step processing.

Syntax ;StandardImageProc;;;

There are no parameters for this rule.

This rule sets the next section. If there are no more sections, the system returns the
message; msgNO_MORE_IMAGES.

If an error occurs, the system writes the following message in the error file and returns an
error code:

Error in StandardImageProc(): Unable to SetNextImage(pRPS).

If it finds another section, the rule checks to see if the section has a corresponding DDT
file and, if so, loads into memory the section and field rules included in that file.

Example ;StandardImageProc;;;

See also Single-Step Processing on page 7

JDT Rules Reference on page 30

TicketJobProc

237

 TicketJobProc
Use this job level (level 1) rule to run Documaker Server from another application by
providing an XML job ticket. The results are returned in an XML job log file. The layout
of these XML files is the same as those used by Docupresentment to run Documaker.

Specify the name of the job ticket to the GenData program on the command line using
this parameter:

/jticket=

The default is JOBTICKET.XML. To prevent the job ticket file from being removed
once the system finishes processing, include this INI option:

< Debug >

TicketJobProc = Yes

Specify the name of the resulting job log file using this command line parameter:

/jlog=

The default is JOBLOG.XML.

Syntax ;TicketJobProc;;;

There are no parameters for this rule. You must include this rule as the first job level rule
in the AFGJOB.JDT file. This rule replaces the RULStandardJobProc rule.

NOTE: Documaker must be set up in single step mode. Only the GenData program is
executed.

For a single-transaction job process, you receive recipient information if you have this
option set:

< PrintFormset >

MultiFilePrint = No

Example ;TicketJobProc;;;

See also RULStandardJobProc on page 209

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

238

 TranslateErrors
Use this rule to extract error information from the message file and translate it into an
error file using the message INI file, named TRANSLAT.INI, with group standard as the
translation key. The system reads errors from the MSGFILE.DAT file, translates them,
and places the translated error messages in the ERRFILE.DAT file.

NOTE: Using this rule can slow processing by creating additional tasks for the system to
perform at the end of the processing cycle.

Syntax ;TranslateErrors;;;

Example ;TranslateErrors;;;

See also JDT Rules Reference on page 30

UpdatePOLFile

239

 UpdatePOLFile
Use this form set level rule (level 2) to write the names of the forms to the
POLFILE.DAT file. This list of forms, and the sections that comprise those forms, is
sometimes called the POL set.

NOTE: Do not use this rule when you are doing 2-up printing on AFP printers. In that
situation, you use the PaginateAndPropagate and WriteOutput rules instead.

Do not use this rule when you use the GenData program by itself to execute the
GenTrn, GenData, and GenPrint steps.

Syntax ;UpdatePOLFile;;;

This rule writes the POL set to the POLFILE.DAT file, deletes the duplicate form set,
updates the TRN file, and updates the recipients.

Example ;UpdatePOLFile;;;

See also Rules Used for 2-up Printing on page 27

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

240

 UseXMLExtract
Use this form set level (level 2) rule when the extract list loaded by the transaction is also
the source of the XML tree.

NOTE: The extract list and the XML tree are separate items. Even if you are only using
an XML file as the source of the transaction, there will be two copies of the
information in memory — one as the extract list and one as the XML tree.

If you are running Documaker from IDS, use the ImportXMLExtract rule to
bring in XML in standard Documaker XML format, such as from Documaker
workstation or iDocumaker. Use the UseXMLExtract rule to convert a loaded
extract file into an XML tree, which you can then use to query data.

Syntax ;UseXMLExtract;;

Each XML transaction must begin with the XML declaration. The system assumes each
transaction is a separate entity and requires that each transaction begin with an XML
declaration.

Keep in mind that you will not be able to load this appended file as one large XML file. The
system does not load the entire file before it processes the first transaction. Instead, it
loads one transaction and then processes that transaction. Make sure there are line feeds
between transactions. The line feed requirement is not an XML issue, but rather tells the
system where one transaction ends and the next begins.

You place the rule in different locations in the AFGJOB.JDT file, depending on the mode
in which you are running. For multi-step mode, place the XMLFileExtract rule after the
LoadExtractData rule, as shown here:

;LoadExtractData;;

;UseXMLExtract;;;

For single or two-step mode, place the XMLFileExtract rule after the
NoGenTrnTransactionProc rule, as shown here:

;NoGenTrnTransactionProc;;

;UseXMLExtract;;;

Remember that the system decides whether to search the extract list or the XML tree by
checking to see if the search mask starts with an exclamation mark (!). The exclamation
mark indicates that this is an XML path string. The system ignores the exclamation mark
when it performs the XML path search.

To preserve the space when mapping data, use two exclamation marks (!!). Otherwise, the
system assumes it should remove the leading white space.

Use these INI options with this rule:

• In the TRN_File control group, set the MaxExRecLen option to the optimal read
size for your system. If you set this too large, it will consume too many resources. If
you set it too small, it will perform too many reads. Check with your system
administrator for guidance on setting this option.

< TRN_File >

MaxExRecLen =

UseXMLExtract

241

• In the Data control group, make sure the ExtrFile option points to the location of
your XML file. Here is an example:

< Data >

ExtrFile = .\extract\Sample.xml

• In the ExtractKeyField control group, set the SearchMask option as shown here:

< ExtractKeyField >

SearchMask = 1,<?xml

• In the RunMode control group, include the XMLExtract option as shown here:

< RunMode >

XMLExtract = Yes

• When running NoGenTrnTransactionProc (single or two-step mode) and the INI
option is set to load the XML file, so there is no need to place XMLFileExtract rule
in the AFGJOB.JDT file. Doing so makes the system load the XML file twice.

Mapping Fields
You can map TRN_Fields fields using the Ext2GVM rule or by using XPath.

Using Ext2GVM When you use the Ext2GVM rule to get key information, make sure you only include the
Key1, Key2, and KeyID options it the TRN_Fields control group. Set these options to
dummy data, because the GVM variables are set to the data values during GenData
processing.

To re-map these values from the global variables you get using Ext2GVM rule to the RPS
structures (GroupName1, GroupName2, and GroupName3), include this rule in the
AFGJOB.JDT file:

ResetDocsetNames;;ConvertBeforeReset;

The ConvertBeforeReset parameter gets the GroupName values from global memory
and converts them to the long values using the Key1Table and Key2Table control groups.

Here is an example of the INI options:

< TRN_File >

Company = 3,3,N

LOB = 3,3,N

PolicyNum = 3,3,N

Here is an excerpt from the AFGJOB.JDT file:

;Ext2GVM;;!/Forms/Key1 1,10,Company;

;Ext2GVM;;!/Forms/Key2 1,15,LOB;

;Ext2GVM;;!/Forms/PolicyNum 1,12,PolicyNum;

;ResetDocsetNames;;ConvertBeforeReset ;

Using XPath When you use XPath to map to the fields in the TRN_Fields control group, be sure to
place an exclamation mark (!) in front of the XPath. Here is example:

< TRN_Fields >

Company = !/Forms/Key1

LOB = !/Forms/Key2

PolicyNum = !/Forms/PolicyNum

RunDate = !/Forms/RunDate;DM-4;D4

Chapter 3
Job and Form Set Rules Reference

242

The format for the options in the TRN_Fields control group is:

(Field in the transaction DFD file) = XPath;Field Format

Although the exclamation mark (!) is not part of the actual search routine, the XML path
search must begin with an exclamation mark. Do not specify whether a field is a key. The
system does not support a multiple (search) keys with the XML implementation.

To selectively exclude transactions, place the XPath with a leading exclamation mark of
what you want to exclude in your exclude file. Here is an example:

!/Forms[PolicyType="OLD"]

Overflow in XML
Here is how overflow works in XML. First, the system scans the search text to see if a
replacement is needed for the overflow value. Here is one approach:

@GETRECSUSED,IMAGE1,STARS/!/Forms/Form/Car[****]/Driver

The system inserts the current overflow value, then performs the actual XML search for
the requested XPath.

With the following approach, you can omit the use of @GETRECSUSED to declare
which overflow variable to use and instead include the overflow name directly into the
XPath, as shown here:

!/Forms/Form/Car[**INDEX**]/Driver

This method lets you support overflow within overflow.

Be aware that with either method, you still have to declare and use the overflow variables.
The difference is that for the second method [**OverFlowSymbol**], the form name has
to be XML, while for the first example [****], the form name is the actual name of the
section for which you created the overflow symbol.

Also, remember to include the IncOvSym rules at the section level to increment the values
to the next index. When doing overflow within overflow, you may also have to include an
additional dummy section to do the IncOvSym for the symbol that represents the outer-
most loop index.

See also Ext2GVM on page 93

LoadExtractData on page 153

IncOvSym on page 366

XMLFileExtract on page 252

JDT Rules Reference on page 30

WIPFieldProc

243

 WIPFieldProc
Use this form set level rule (level 2) in place of the RULStandardFieldProc or
StandardFieldProc rule in the AFGJOB.JDT file when you are using GenData WIP
Transactions Processing. Using this rule tells the GenData program to bypass normal field
processing.

NOTE: You cannot include in the AFGJOB.JDT file this rule and the
RULStandardFieldProc or StandardFieldProc rule.

These other rules are also used when you run WIP Transaction Processing:

• WIPTransactions – This rule replaces the RULStandardTransactionProc or
NoGenTrnTransactionProc rules in the AFGJOB.JDT file. This rule starts GenData
WIP Transaction Processing at the form set level. It also identifies the status codes
for the transactions in the WIP file that are processed. The status codes can be a
subset or all of the status codes identified on the MergeWIP rule or none.

• GVM2GVM - This rule copies GenData execution data from the Trigger2WIP INI
control group.

• WIPImageProc – This rule replaces the RULStandardImageProc or
StandardImageProc rule.

• MergeWIP - This rule initializes GenData execution of WIP Transaction Processing
at the job level. It creates a memory list and adds the transactions from the WIP file
that match the status codes in its parameters.

Using these rules in a simplified AFGJOB.JDT file and with appropriate INI files,
GenData WIP transaction processing adds the transactions from a WIP file to a
transaction memory list. It then processes the transactions from the memory list,
appending the data from the WIP file to the MRL recipient batch, NewTrn, NA, and POL
files. If these files do no exist, it creates them. Each transaction in the memory list is
deleted from the WIP file after it is processed.

Syntax ;WIPFieldProc;;;

There are no parameters for this rule.

Example ;WIPFieldProc;;;

See also GVM2GVM on page 107

MergeWIP on page 162

WIPImageProc on page 244

WIPTransactions on page 245

GenData WIP Transaction Processing on page 9

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

244

 WIPImageProc
Use this form set level rule (level 2) in place of the RULStandardImageProc or
StandardImageProc rule in the AFGJOB.JDT file when you are using GenData WIP
transactions processing. Using this rule tells the GenData program to bypass normal
section processing.

NOTE: You cannot include in the AFGJOB.JDT file this rule and the
RULStandardImageProc or StandardImageProc rule.

These other rules are also used when you run WIP Transaction Processing:

• WIPTransactions – This rule replaces the RULStandardTransactionProc or
NoGenTrnTransactionProc rules in the AFGJOB.JDT file. This rule starts GenData
WIP Transaction Processing at the form set level. It also identifies the status codes
for the transactions in the WIP file that are processed. The status codes can be a
subset or all of the status codes identified on the MergeWIP rule or none.

• GVM2GVM - This rule copies GenData execution data from the Trigger2WIP INI
control group.

• MergeWIP - This rule initializes GenData execution of WIP Transaction Processing
at the job level. It creates a memory list and adds the transactions from the WIP file
that match the status codes in its parameters.

• WIPFieldProc – This rule replaces the RULStandardFieldProc or StandardFieldProc
rule.

Using these rules in a simplified AFGJOB.JDT file and with appropriate INI files,
GenData WIP Transaction Processing adds the transactions from a WIP file to a
transaction memory list. It then processes the transactions from the memory list,
appending the data from the WIP file to the MRL recipient batch, NewTrn, NA, and POL
files. If these files do no exist, it creates them. Each transaction in the memory list is
deleted from the WIP file after it is processed.

Syntax ;WIPImageProc;;;

There are no parameters for this rule.

Example ;WIPImageProc;;;

See also GVM2GVM on page 107

MergeWIP on page 162

WIPFieldProc on page 243

WIPTransactions on page 245

GenData WIP Transaction Processing on page 9

JDT Rules Reference on page 30

WIPTransactions

245

 WIPTransactions
Use this form set level (level 2) rule to process WIP transactions (manually approved or
rejected in Documaker Workstation) in place of the RULStandardTransactionProc or
NoGenTrnTransactionProc rules.

This rule processes WIP transactions and places them into batch files for GenPrint and
GenArc processing. To specify which transactions, you use codes which you define in the
Status_CD control group. If a WIP transaction has a status code that is not among the list
of codes to be processed, the system deletes the transaction and WIP file.

The parameters for this rule are the status codes for which the user needs to process WIP
transactions. The codes are located in the Status_CD control group. If you are using more
than one status code, separate the codes with commas, as shown here:

Approved,Accepted

NOTE: Do not use this rule with the RULStandardTransactionProc or
NoGenTrnTransactionProc rule.

The following rules are also used with this rule:

• MergeWIP - specifies the codes to look for

• GVM2GVM - copies the data from one GVM variable to another

• WIPImageProc - used in place of RULStandardImageProc or StandardImageProc

• WIPFieldProc - used in place of RULStandardFieldProc or StandardFieldProc

Using these rules in a simplified AFGJOB.JDT file and with INI options, you can input
or merge WIP transactions (manually approved or rejected in Documaker Workstation)
into a GenData processing run as new data or data appended to an existing GenData
processed MRL (one that already has NEWTRN.DAT, NAFILE.DAT, and
POLFILE.DAT files). These new or merged transactions can then be printed, archived,
or both.

For instance, a typical use of these rules would is to take the results of a GenData run
(NEWTRN.DAT, NAFILE.DAT, POLFILE.DAT, and print batch files) and process
those files using the GenWIP program. You then open in the Documaker Workstation
transactions sent to WIP and manually approve or reject them. Next, you run those WIP
transactions (form sets) through the GenData process. The result is files ready for the
GenPrint and GenArc programs.

Syntax ;WIPTransactions;;StatusCode1,StatusCode2,...;

Use the StatusCode parameters to define the status codes you want the system to use as it
selects the WIP transactions to process.

After a transaction is processed, the system deletes it from the WIP list.

If you include a slash (/) before the StatusCode parameter, it tells the system not to delete
the transactions with that status after it processes then, but instead assign them a new
status. Here is an example:

;WIPTransactions;;APPROVED,FINAL,/PRINTED;

Chapter 3
Job and Form Set Rules Reference

246

In this example, the slash (/) tells the system to process WIP transactions with an
APPROVED or FINAL status and then change their status to PRINTED. The WIP
transactions are not deleted.

Example ;WIPTransactions;;Approved;

Here is an example of how to define the codes in the Status_CD control group:

< Status_CD >

Approved = AP

Rejected = RJ

If the batch system does not need to process transactions with a certain code, such as
Rejected, omit that code from the parameter list for this rule. When the system encounters
a code not on the list, it deletes that transaction.

See also GVM2GVM on page 107

MergeWIP on page 162

WIPFieldProc on page 243

WIPImageProc on page 244

GenData WIP Transaction Processing on page 9

Changing the WIP Status on page 165

JDT Rules Reference on page 30

WriteNAFile

247

 WriteNAFile
Use this form set level rule (level 2) to append the NAFILE.DAT file data records for the
current form set into an existing NAFILE.DAT file.

When you use the NoGenTrnTransactionProc rule, which replaces the
RULStandardProc rule in the performance JDT, you must include the WriteNAFile rule
to write the data (records) to the NAFILE during the GenData step.

In addition, you must also include the WriteOutput rule to write the data (records) to the
POLFILE.DAT and NEWTRN.DAT files during the GenData step.

Syntax ;WriteNAFile;;;

There are no parameters for this rule.

Example ;WriteNAFile;;;

If an error occurs, the system returns this message:

Error in WriteNaFile: Unable to PurgeOutput(pRPS).

See also WriteOutput on page 248

SetOutputFromExtrFile on page 221

NoGenTrnTransactionProc on page 168

Single-Step Processing on page 7

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

248

 WriteOutput
Use this form set level (level 2) rule to create the POL file when executing single and two-
step processing.

You also use this rule when you are using the GenData program by itself to execute the
GenTrn, GenData, and GenPrint processing steps.

Syntax ;WriteOutput;;;

NOTE: If you use this rule, do not use the UpdatePOLFile rule.

Example ;WriteOutput;;;

See also Rules Used for 2-up Printing on page 27

UpdatePOLFile on page 239

SetOutputFromExtrFile on page 221

Single-Step Processing on page 7

JDT Rules Reference on page 30

WriteRCBFiles

249

 WriteRCBFiles
Use this form set level (level 2) rule to create the recipient batches when running in two-
step mode. This mode is similar to single-step processing but omits the PrintFormset rule
and instead uses the GenPrint program.

NOTE: Studio includes the WriteRCBFiles rule in the default AFGJOB.JDT file that Test
manager produces.

Syntax ;WriteRCBFiles;;;

There are no parameters for this rule.

Example ;WriteRCBFiles;;;

Here is an example of a AFGJOB.JDT file you could use:

;NoGenTrnTransactionProc;2;required to combine GenTran/GenData;

;WriteRCBFiles;2;;

;ResetOvFlw;2;;

;BuildFormList;2;;

;LoadRcpTbl;2;;

;RunSetRcpTbl;2;;

;BatchingByRecipINI;2;;;

;SetOutputFromExtrFile;2;35,FILENAME 47,128,PDFNAME;

;WriteOutput;2;;

;WriteNaFile;2;;

;ProcessQueue;2;PostPaginationQueue;

;PaginateAndPropagate;2;;

Be sure to include the WriteOutput and WriteNAFile rules.

See also SetOutputFromExtrFile on page 221

WriteNAFile on page 247

WriteOutput on page 248

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

250

 WriteRCBWithPageCount
Use this form set level rule (level 2) to write the page count for each recipient. This rule
is typically use for handling 2-up printing on AFP and compatible printers. This rule is
also used for multi-mail processing.

Syntax ;WriteRCBWithPageCount;;;

There are no parameters for this rule.

You must include the following data in your RCBDFDFL.DFD file when you use this
rule:

< Fields >

....

....

FieldName = CurPage

FieldName = TotPage

FieldName = AccumPage

......

......

< FIELD:CurPage >

INT_Type = LONG

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 10

Key = N

Required = N

< FIELD:TotPage >

INT_Type = LONG

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 10

Key = N

Required = N

< FIELD:AccumPage >

INT_Type = LONG

EXT_Type = CHAR_ARRAY_NO_NULL_TERM

EXT_Length = 10

Key = N

Required = N

Example ;WriteRCBWithPageCount;;;

This rule gets a pointer to the global variable NA_Offset. If the pointer is NULL, the
system returns this message to the error file:

Error in WriteRCBWithPageCount: RCB field NA_Offset not found.

The rule then assigns the pointer it retrieved to the pRPS->POL_Offset and gets a handle
to the print batch list. It then loops through this list to free the contents of the
corresponding PRINT_BATCH structure if that print batch has been assigned a
recipient.

The rule then checks the handle to the counter list. This handle is a global handle created
by the PageBatchStage1InitTerm rule. If the handle is equal to VMMNULLHANDLE,
the system returns this message to the error file:

Error in WriteRCBWithPageCount: PageBatchStage1InitTerm has not been
called

WriteRCBWithPageCount

251

The rule then checks the handle to the list of transaction records for the current batch.
This handle is a global handle also created by the PageBatchStage1InitTerm rule. If this
handle is equal to VMMNULLHANDLE, the system returns this message to the error
file:

Error in WriteRCBWithPageCount: PageBatchStage1InitTerm has not been
called

The rule then sets recipient page counts. If an error occurs, the system returns this
message to the error file:

Error in WriteRCBWithPageCount:Failed to set recipient page counts

Next, the rule gets the handle of the global recipient list for the current form set and loops
through the recipient list to add page counts to the GVM. The rule also gets the pointer
to global variable TotPage. If this pointer is NULL, the system returns this message to the
error file:

Error in WriteRCBWithPageCount: RCB field TotPage not found

Then rule then gets the handle to the print batch and recipient lists and loops through
these lists. Finally, the rule loops through the list of page counts. If it cannot get the handle
to the given page count, the system returns this message to the error file:

Error in WriteRCBWithPageCount: Cannot locate batch <Batch Name>.

See also Rules Used for 2-up Printing on page 27

BatchByPageCount on page 47

BatchingByPageCountINI on page 49

PageBatchStage1InitTerm on page 173

SetOutputFromExtrFile on page 221

JDT Rules Reference on page 30

Chapter 3
Job and Form Set Rules Reference

252

 XMLFileExtract
Use this form set level (level 2) rule when the extract list loaded by the transaction
contains the name of an external file source for the XML tree.

NOTE: The extract list and the XML tree are separate items. Even if you are only using
an XML file as the source of the transaction, there will be two copies of the
information in memory — one as the extract list and one as the XML tree.

Syntax ;XMLFileExtract;;parameter;

For the parameter, you can use one of the following:

• FILE=<filename>

Where filename is the name of the XML file, including path information.

• INI=group,option

Where group and option are defined in the INI files

• SCH=offsetofmask,<searchmask> offsetofdata,lengthofdata

• GVM=<globalvariablename>

Where globalvariablename is the name of a GVM that contains the file name.

Here are examples of how you can use this rule:

;XMLFileExtract;2;FILE=SAMPCO.XML;

;XMLFileExtract;2;INI=Group,Option;

;XMLFileExtract;2;SCH=11,FILENAME 20,20;

;XMLFileExtract;2;GVM=FileNameVar;

Keep in mind...

• Begin each XML transaction with the XML declaration.

• In the RunMode control group, set the XMLExtract option as shown here:

< RunMode >

XMLExtract = Yes

• You place the rule in different locations in the AFGJOB.JDT file, depending on the
mode in which you are running. For multi-step mode, place the XMLFileExtract rule
after the LoadExtractData rule, as shown here:

;LoadExtractData;;

;XMLFileExtract;2;FILE=SAMPCO.XML;

Parameter Description

offsetofmask the offset of the search mask

offsetofdata the offset where the path and the file name start

lengthofdata the length of the file name

XMLFileExtract

253

For single or two-step mode, place the XMLFileExtract rule after the
NoGenTrnTransactionProc rule, as shown here:

;NoGenTrnTransactionProc;;

;XMLFileExtract;2;FILE=SAMPCO.XML;

• Remember that the system decides whether to search the extract list or the XML tree
by checking to see if the search mask starts with an exclamation mark (!). The
exclamation mark indicates that this is an XML path string. The system ignores the
exclamation mark when it performs the XML path search.

To preserve the space when mapping data, use two exclamation marks (!!).
Otherwise, the system assumes it should remove the leading white space.

• When running NoGenTrnTransactionProc (single or two-step mode) and the INI
option is set to load the XML file, so there is no need to place XMLFileExtract rule
in the AFGJOB.JDT file. Doing so makes the system load the XML file twice.

Mapping Fields
You can map the fields listed in the TRN_Fields control group using either offset/length,
XPath, or a combination of both methods. In the RunMode control group, be sure to set
these INI options:

Here is an example:

< RunMode >

XMLExtract = Yes

XMLFileExtract = Yes

XMLFileExtractName = SCH=1,XML 20,60

Also set the TRN_Fields options as shown in this example:

< TRN_Fields >

Company = !/Forms/Key1

PolicyNum = !/Forms/PolicyNum

RunDate = !/Forms/RunDate;DM-4;D4

LOB = 30,15,N

Cust_Name = 46,30,N

The format for the options IN the TRN_Fields control group is:

(Field in the transaction DFD file) = XPath;Field Format

(Field in the transaction DFD file) = offset, length, Key;Field Format

Option Description

XMLExtract Enter Yes to tell the system you are using the XML file.

XMLFileExtract Enter Yes to tell the system your extract file contains a list of pointers
pointing to the XML file to be processed.

XMLFileExtractName Use this option to tell the system how to find your XML file. Enter
the method you use to point to your XML file. This should be exactly
the same as how you would set up the rule parameter for the
XMLFileExtract rule in your AFGJOB.JDTfile.

Chapter 3
Job and Form Set Rules Reference

254

An XML path search must begin with an exclamation mark (!). The exclamation mark is
not part of the actual search routine. Do not specify whether a field is a key. The system
does not support a multiple (search) keys with the XML implementation.

To selectively exclude transactions, use either an offset/SearchMask, the XPath, or a
combination of the two in your exclude file. Here is an example:

!/Forms[PolicyType="OLD"]

20,ABC

Overflow in XML
Here is how overflow works in XML. First, the system scans the search text to see if a
replacement is needed for the overflow value. Here is one approach:

@GETRECSUSED,IMAGE1,STARS/!/Forms/Form/Car[****]/Driver

The system inserts the current overflow value, then performs the actual XML search for
the requested XPath.

With the following approach, you can omit the use of @GETRECSUSED to declare
which overflow variable to use and instead include the overflow name directly into the
XPath, as shown here:

!/Forms/Form/Car[**INDEX**]/Driver

This method lets you support overflow within overflow.

Be aware that with either method, you still have to declare and use the overflow variables.
The difference is that for the second method [**OverFlowSymbol**], the form name has
to be XML, while for the first example [****], the form name is the actual name of the
section for which you created the overflow symbol.

Also, remember to include the IncOvSym rules at the section level to increment the values
to the next index. When doing overflow within overflow, you may also have to include an
additional dummy section to do the IncOvSym for the symbol that represents the outer-
most loop index.

See also LoadExtractData on page 153

IncOvSym on page 366

UseXMLExtract on page 240

JDT Rules Reference on page 30

255

Chapter 4

Adding Section and Field
Rules

This chapter discusses adding section and field level
rules. These rules link the section's variable fields to
external data.

NOTE: You create variable fields using Documaker
Studio or the Image Editor. For more
information, see the Documaker Studio User
Guide or the Docucreate User Guide.

The section and field level rules are executed during data
generation and merger procedures. This occurs in
Documaker Server.

In this chapter you will find information about:

• Storing Rule Information on page 256

• Formatting Data on page 257

• Search Criteria on page 270

• Overflow and User Functions on page 271

For reference information on individual rules, see
Chapter 5, Section and Field Rules Reference on page
274.

Chapter 4
Adding Section and Field Rules

256

STORING RULE
INFORMATION

Documaker Studio stores sections (images) in a FAP file, along with the section and field
rule assignments you assign to it. This differs from the way rule information is stored
when using the older document creation tool. Image Editor.

Image Editor stores sections in a FAP file which only contain the section’s objects and
object attributes. The Image Editor stores section and field rule assignments in a separate
file, called a data definition table (DDT) file. While DDT files originally offered high
performance, advanced formatting needs made it necessary for the FAP files to be
available at runtime to handle dynamic composition. This made the DDT file approach
less of an advantage, and even a stumbling block within some implementations.

With the release of version 11.0 and the introduction of Documaker Studio’s FOR file,
section and field-level rules previously stored in the DDT file are, in Studio
implementations, either unnecessary or are stored in the FAP file. Having section level
rules (such as SetOrigin) in the FOR file makes it easier to do visual form design. Having
field level rules in the FAP file eliminates synchronization worries.

NOTE: For more information on Image Editor, see Using Image Editor to Enter Rule
Information on page 503.

Formatting Data

257

FORMATTING
DATA

The system provides several ways to format dates and numbers using the FmtDate,
RunDate, SysDate, DateFmt, and FmtNum rules. The system includes several pre-
defined formats from which you can choose and you can set up format arguments to handle
any special needs.

The following topics explain your options.

NOTE: The DateFmt rule accepts a mask which includes an input and an output format.
See DateFmt on page 324, for more information.

USING PRE-DEFINED DATE FORMATS

In this example...

d,"1/4",

…the d indicates it is a date format, as opposed to a number format (n). The first digit (1)
indicates the date format (MM/DD/YY). The forward slash (/) indicates the separator
character (/) and the third digit (4) indicates the number of digits in the year. See DateFmt
on page 324 for the complete list of date formats.

NOTE: Because of year 2000 considerations, use four-digit years.

In cases where you do not need a separator, such as format 4 or B, you can specify the
date as “4/2” for format 4 with a two-digit year. The system ignores the slash (/).

NOTE: This example shows the date format as it looks in the FAP file. The easiest way
to enter date formats is through the Image Editor, on the Attributes tab of the
variable field’s Properties window. The Image Editor will then create the date
format in the FAP file for you. The following discussion is based on using the
Image Editor to select the date format.

Chapter 4
Adding Section and Field Rules

258

When you choose Date Format as the type, you can choose from this list of date formats
in the Image Editor on the Attributes tab of the field’s Properties window. The table also
shows the corresponding date format code the Image Editor creates in the FAP file:

In the Format field,
select this format

To see this code
in the FAP file

To get dates formatted as shown below
(all examples are for January 2, 2013)

MM/DD/YY 1 01/02/13 (default)

DD/MM/YY 2 02/01/13

YY/MM/DD 3 13/01/02

Month D, Yr 4 January 2, 2013

M/D/YY 5 1/2/13

D/M/YY 6 2/1/13

YY/M/D 7 13/1/2

bM/bD/YY 8 1/ 2/13 (space before 1/ and 2/)

bD/bM/YY 9 2/ 1/13 (space before 2/ and 1/)

YY/bM/bD A 13/ 1/ 2

MMDDYY B 010213

DDMMYY C 020113

YYMMDD D 130102

MonDDYY E Jan0213

DDMonYY F 02Jan13

YYMonDD G 13Jan02

DAY/YY H 002/13

YY/DAY I 13/002

D Month, Yr J 02 January, 2013

Yr, Month D K 2013, January 02

Mon-DD-YYYY L Jan-02-2013

DD-Mon-YYYY M 02-Jan-2013

Formatting Data

259

Here is a list of the separators you can choose from in the Separators field on the
Attributes tab of the variable field’s Properties window.

In the Year Size field on the Attributes tab of the variable field’s Properties window, you
can choose from these options...

YYYY-Mon-DD N 2013-Jan-02

Mon DD, YYYY O Jan 02, 2013

DD Mon, YYYY P 02 Jan, 2013

YYYY, Mon DD Q 2013, Jan 02

(hexadecimal) X Eight-character hexadecimal representation
of the system date. Valid dates range from
12/31/1969 to 01/18/2038. Valid dates may
differ depending on the type of machine (PC
or host) and the type of CPU chip.

These date formats affect processing in Documaker Workstation, not Documaker Server.

In the Separator field, choose... To use this character as the separator...

00/00/00 (default) / (a slash appears in the FAP file)

00-00-00 - (a dash appears in the FAP file)

00.00.00 . (a period appears in the FAP file)

00,00,00 , (a comma appears in the FAP file)

00 00 00 blank (a “b” appears in the FAP file)

To use... Select...

a two-digit year such as 01/01/13
(use only if the year is in current
century)

2 (a “2” appears in the FAP file)

only a two-digit year such as 01/01/
13 (if you enter anything other than
a two-digit year, you will receive an
error)

3 (a “3” appears in the FAP file)

a four-digit year such as 01/01/2013 4 (a “4” appears in the FAP file)

In the Format field,
select this format

To see this code
in the FAP file

To get dates formatted as shown below
(all examples are for January 2, 2013)

Chapter 4
Adding Section and Field Rules

260

NOTE: You can force 2-digit years when you use the FmtDate rule, even if doing so
means the date may not be interpreted correctly when it is compared to the
century cut-off date. To force a 2-digit year, you must specify the output format
as “1/3” instead of “1/2”. Here is an example:

;0;0;DRVR-BIRTH-DT;1022;8;DRVR-BIRTH-DT;0;8;d,"B4",d,"1/3";
FmtDate;5,DRVRREC01,;N;N;N;N;3367;3600;11011;

The 3 is a format mask (normally used for input) which means 2-digits and only
2-digits.

NOTE: The century cut-off date is used to determine the century for 2-digit years. This
date defaults to 50, but you can change it using this INI option:

< Control >

DateFMT2To4Year =

Anything less than or equal to the cut-off year is considered to fall in the current
century. For instance using the default of 50, 13 would be interpreted as 2013.
Anything greater than the cut-off year is considered to fall in the previous
century. For instance, again using the default of 50, 88 would be interpreted as
1988.

This is important when you have to determine the years or days between two
dates.

There is a scenario where the system overrides a 2-digit year output. This only
happens when the input has 4-digits and the output has 2-digits and the resulting
2-digit output does not yield the same results when read in again.

For instance, suppose your input is 01/01/1927 and the cutoff year is 50.
Normally any 2-digit year with a value less than 50 is considered part of the
current century. So if the system outputs the data as 01/01/27 and then tries to
read this date back in, you would get 01/01/2025 and not 01/01/1927.

The system changes its normal behavior because it is designed to be able to read
its own output and come up with the result originally provided in the original
input.

If, however, you specifically tell the system you only want two digits, you will get
that output, but the system may not be able to read it back in and get the same
results.

only a four-digit year such as 01/01/
2013 (if you enter anything other
than a four-digit year, you will
receive an error)

5 (a “5” appears in the FAP file)

The year as entered without
changing it

Default (a blank space appears in the FAP file)

Formatting Data

261

USING PRE-DEFINED NUMERIC FORMATS

For numbers, you can use these format masks:

You determine whether the minus (-) or plus (+) signs appear before or after the amount
when you choose the field's format on the Attributes tab of the Properties window in the
Image Editor.

When you choose the format in the Image Editor, the system lets you choose from a list
of examples, such as:

+$ZZZZZZZZZ9.99

$$ZZ,ZZZ,ZZZ,ZZZ

$ZZZZZZZZZ9.99CR

$*ZZZZZZZZZZZ.ZZ

Suppressing Decimals
with the FmtNum Rule

The FmtNum rule can use a pre-defined numeric format to suppress decimals. The
format is 0 (zero). You can only use this format after the decimal and at the end of the
value. You cannot place format code 9 or Z after you specify the zero (0) format code.

Here are some examples of how the Z format and the zero (0) format work together.

To... Use...

place a number in that space (0-9) 9

place any number except a zero Z

indicate the number is an amount $

place a currency symbol to the right of the amount (the second
$indicates which symbol)

$$

place a minus sign (-) beside the amount if it is negative -

place a minus (-) or plus (+) sign beside the amount +

indicate a credit (accounting format) CR

indicate a debit (accounting format) DB

indicate a debit (accounting format) ()

include an asterisk ($*999) *

place a percent sign (%) after the number %

Format Z,ZZZ.0Z Format: Z,ZZZ.00 Format Z,ZZZ.Z0

Input = 9999.00 Input = 9999.00 Input = 9999.00

Output = 9,999 Output = 9,999 Output = 9,999

Chapter 4
Adding Section and Field Rules

262

If you have decimals and you want to see two decimal places, you should use the first
format style shown (ZZZ.0Z). With this format style, an input value of 1.1 will yield 1.10.

If you use ZZZ.00 and input 1.1, you will get 1.1. In most cases, the values using format
Z will be displayed. However, if you are using Z,ZZZ.0Z format, Z will be suppressed if
the Z value contains zero and if the value next to the decimal is suppressed.

The values using the zero (0) format will be displayed unless it is zero. However, the zero
will be displayed if it is followed by another decimal position with a format of Z. If there
is another decimal position that follows and it has a format of zero (0) and the value is
also zero, both zeros will be suppressed along with the decimal. Lastly, if the input value
contains more decimal places than the output value, the number will be truncated.

Using the ZeroText
Option with the

FmtNum Rule

Use the ZeroText option to insert text you define instead of the zero value, if the result
is zero. Here is an excerpt from a DDT file:

;0;0;FmtNum Field;10;12;FmtNum
Field;1;20;n,n,"$zz,zzz,zzz,zzz,zz9.99";fmtnum;1,ABC
ZeroText("INCL");N;N;N;N;7399;2675;11010;

Add the ZeroText option after the search mask. It should be preceded by a space. Place
the text you want to print inside quotation marks and parentheses, as shown in the
excerpt.

SETTING UP FORMAT ARGUMENTS

The FmtDate, RunDate, and SysDate rules let you design the format of the output. You
tell the system how to format the output using format arguments. Format arguments
consists of one or more codes, separated by a percent sign (%).

Characters that do not begin with a percent sign are copied unchanged to the output
buffer. This lets you include static text. Any character following a percent sign that is not
a format code is copied unchanged to the destination. For example, to include a percent
sign in the output, add two percent signs (%%).

You can enter up to 80 characters in the mask and you can use these format codes:

Input = 9999.90 Input = 9999.90 Input = 9999.9

Output = 9,999.90 Output = 9,999.9 Output = 9,999.9

Input = 9999.09 Input = 9999.09 Input = 9999.09

Output = 9,999.09 Output = 9,999.09 Output = 9,999.09

Format Z,ZZZ.0Z Format: Z,ZZZ.00 Format Z,ZZZ.Z0

Code Description

%A Name of the weekday, such as Tuesday

%w Number of the weekday, (Sunday is 1, Saturday is 7)

%b Month abbreviation, such as Mar

Formatting Data

263

%m Month number, (January is 1, December is 12)

%B Month name, such as November

%d Number of the day of the month (01 – 31)

%j Number of the day of the year (001 – 366)

%Y Year with the century, such as 2013

%y Year without the century, such as 13

%H Hour in 24-hour format (00 – 23)

%I Hour in 12-hour format (01 – 12)

%M Minute (00 – 59)

%S Second (00 – 59)

%p Current locale's AM/PM indicator for 12-hour clock

%@xxx xxx identifies the locale. For example, %@CAD%A might produce mardi, the
Canadian French word for Tuesday. The default locale is USD, which is US
English. Once it finds a local format, the system uses that locale until it finds
another locale indicator.

Suppress leading zeros for the following format codes. The system recognizes
this flag only with these formats:
%#d, %#H, %#I, %#j, %#m, %#M, %#S, %#w

> Uppercase the resulting text. The system recognizes this flag only with these
formats:
%>p, %>A, %>b, %>B

< Lowercase the resulting text. The system recognizes this flag only with these
formats:
%<p, %<A, %<b, %<B

<> Capitalize the first letter of the resulting text. The system recognizes this flag only
with these formats:
%<>p, %<>A, %<>b, %<>B

* - This flag only affects the format code that specifies it. Any subsequent codes that have text
are not affected unless they also include the flag.

Code Description

Chapter 4
Adding Section and Field Rules

264

NOTE: Keep in mind the system can only work with the information it receives as input.

The formats for week, hour, minute, AM, and PM (%A,%w,%H,%I,%M,%S,
%p) are useful with the SysDate rule, but do not make sense for RunDate and
FmtDate rules since those rules seldom see week or time information as an input.

Furthermore, you would not want to use the zero suppress format option (#) on
input—especially if there are no separators in the data. For instance, the date
indicated by 010109 or 1/1/09 is clear, but 1109 could indicate several things.

For example, assume the date is 03-01-2009, which was a Monday, and the time is 11:57
am. This table shows you results using various formats.

Example Output

%m-%d-%Y 03-01-2009

The year is %Y. The year is 2009.

Born %m/%d/%y at %I:%M %p Born 03/01/09 at 11:57 AM

%d 01

%#d 1

%A Monday

%>A MONDAY

%b Mar

%<b mar

%p AM

%<>p Am

 %A, %B %d Monday, March 01

%@CAD%A %@CAD%A, %B %d lundi, mars 01

%A, %@CAD%B %d Monday, mars 01

%@CAD%A, %@USD%B %d lundi, March 01

Formatting Data

265

FIELD FORMAT TYPES (FETYPES)
An fetype defines the field format type. You can have an input and an output fetype. For
example, an input fetype with the FmtNum rule tells the system where the decimal goes
in the number. The output fetype tells the system how to format the output amount. An
fetype can consist of either one or four characters.

NOTE: In Image Editor, you can display the Properties window for a variable field and
then click the Attributes tab to enter this information in the Locale field. For the
Locale field, you pick from a list of countries/languages, instead of entering one
of the codes shown in the following table. The Locale field only appears if you
chose Date Format, Numeric, or (Y)es or (N)o format in the Type field.

The first character of an fetype defines the field format type. There are several types
defined in the system such as a d for dates and an n for numbers. You can add three
additional characters to override the default locale, which is the United States (English).
Here is a list of the currently supported localities:

For this country And this language Use this code in the FAP file:

Argentina Spanish ARS

Australia English AUD

Austria German ATS

Belgium Dutch BED

Belgium French BEF

Bolivia Spanish BOB

Brazil Portuguese BRC

Canada English CAN

Canada French CAD

Chile Spanish CLP

Columbia Spanish COP

Denmark Danish DKK

Ecuador Spanish ECS

European Union English EUR

France French FRF

Chapter 4
Adding Section and Field Rules

266

Finland Finnish FIM

Germany German DEM

Guatemala Spanish GTQ

Iceland Icelandic ISK

Indonesia Indonesian IDR

Italy Italian ITL

Ireland English IEP

Liechtenstein German CHL

Luxembourg French FLX

Luxembourg German LUF

Mexico Spanish MXN

The Netherlands Dutch NLG

New Zealand English NZD

Norway Norwegian NOK

Panama Spanish PAB

Paraguay Spanish PYG

Peru Spanish PES

Portugal Portuguese PTE

South Africa English ZAR

Spain Spanish ESP

Sweden Swedish SEK

Switzerland German CHF

Switzerland French CHH

Switzerland Italian CHI

United Kingdom English GBP

For this country And this language Use this code in the FAP file:

Formatting Data

267

FORMATTING DATA WITH THE = OPERATOR

You can include an equals sign (=) in the data area of field-level rules, such as Move_It
and MoveNum, so those rules can format data returned by the = operation.

NOTE: The system lets you use the = operator to reference GVM and DAL expressions
before it rebuilds XPath search masks.The format is as follows:

=XXX(expression)

where XXX is one of the supported ways of finding data from a symbol, such as
DAL or GVM.

This table shows your options:

United States English USD

Uruguay Spanish UYU

Venezuela Spanish VEB

This usage Tells the system to

=() Return the contents of the DAL variable named the same as the root
name of the current source name of the current DDT field-level rule.

=("constant") Return the value of the DAL variable that is named by the string
constant.

=GVM(variable) Return the value of the DAL variable whose name is stored in the
specified DAL variable.

=(expression) Resolve the DAL expression and use the result as the name of a DAL
variable to access and return the value

=GVM() Return the value of the GVM variable named the same as the root name
of the current source name of the current DDT field-level rule.

=GVM("constant") Return the value of the DAL variable that is named by the string
constant.

=(variable) Return the value of the GVM variable specified by the contents of the
named DAL variable.

=GVM(expression) Resolve the DAL expression and then use the result as the name of a
GVM variable to access and return the value.

=DAL() Execute a DAL script named the same as the root name of the current
source name of the current DDT field-level rule and return the results.

For this country And this language Use this code in the FAP file:

Chapter 4
Adding Section and Field Rules

268

Here are some examples:

=(....)

Retrieves the value of a DAL variable specified by a DAL expression

=("ABC")

Returns the contents of the DAL variable ABC.

=(ABC)

Returns the contents of some other DAL variable that is specified by the contents of the
DAL variable ABC.

=("A" & "B" & "C")

Returns the same result as the ABC example — the contents of the DAL variable ABC.

=()

This retrieves the contents of a DAL variable that is, by default, the root name of the
source name of the current DDT field. For example, assume, the current DDT field has
destination name MYFIELD #003 and the source name MYFIELD #003, then...

=()

Means to return the contents of the DAL variable MYFIELD. This is useful because it
lets you write general purpose XDB rules.

=DAL(...)

Returns the results returned by DAL script named by the expression. For example,
assume a DAL script named ABC.DAL contains:

MYVARIABLE = 100

RETURN(MYVARIABLE)

Then, =DAL(“ABC”) returns 100.

Formatting imported
data

The system lets you load data from a standard import file in XML, V2, or DS format.
During this process, the system creates a form set and loads the imported data onto the
fields on the appropriate forms.

To be able to use the various formatting rules when you have no extract file, include the
following rule mask symbolic lookup operators. These operators, which begin with an
equals sign (=), provide a way to access the contents of a variable field as if it were found
in an extract file. For instance...

=DAL("constant") Execute the DAL script named by the string constant and return the
results.

=DAL(variable) Execute the DAL script named by the contents of the specified DAL
variable and then return the results.

=DAL(expression) Resolve the DAL expression and use the results as the name of a DAL
script to execute, and then return the results in XPATH.

This usage Tells the system to

Formatting Data

269

NOTE: For more information, see also information about the @ function in the DAL
Reference.

This operator Tells the system to

=@() Return the contents of the variable field that is the same as the current
source field name.

=@(expression) Evaluate the DAL expression to get the name of the variable field and
then get its contents.

Chapter 4
Adding Section and Field Rules

270

SEARCH
CRITERIA

The GetRecord function lets the system get data records from an extract list. It searches
the extract list for particular records based on search criteria formatted as shown here:

offset,data offset,data (and so on)

The search criteria is defined by one or more pairs of offsets and data. The number of
pairs is limited by the size of the data field in a MEM_DDT_REC. All offsets are based
on the first character in a record being character 1 (base 1)—not character zero (0).

It is not necessary for offsets to increase from left to right, but it makes for better
readability. It is necessary, however, to specify your search string in the correct case.
Searches are performed in a case-sensitive manner.

Because many of the section and field rules use calls to GetRecord, search criteria is often
needed wholly or as part of the data field in the DDT file.

Here are some examples:

This search criteria Finds the record...

20,HeaderRec with the text HeaderRec starting at offset 20.

10,ABC 50,XYZ with ABC at offset 10 and XYZ at offset 50.

11,~ABC 25,Header that has a string starting at offset 11 which is not equal (~) to ABC and
is equal to Header at offset 25

11,(Electric,Pwr) that has a string starting at offset 11 which is equal to Electric or Pwr.

Overflow and User Functions

271

OVERFLOW AND
USER

FUNCTIONS

Many of the rules support the use of overflow symbols and user functions which work
together. An overflow symbol can be thought of as a block of memory that holds a
counter. This counter, or overflow variable, tracks the number of records processed
which helps the system determine which record to start with after it handles an overflow
situation.

To use overflow, you must include specific data in the DDT file. This overflow data
consists of the…

• @GetRecsUsed function

• Name of the form

• Overflow symbol

The @GetRecsUsed function is a function the rule runs to access information about a
pre-defined overflow symbol. The overflow symbol is stored in the DDT file with the
field level rules. You must define all overflow symbols using the SetOvFlwSym rule,
which is a job level rule (level 1) stored in the AFGJOB.JDT file.

The second part is the name of a form, which is retrieved from the form definition file
(FORM.DAT) specified in the INI file.

The third part is the overflow symbol itself.

The format of these data items in the DDT data field are as follows:

;@GETRECSUSED,FORMNAME,SYMBOL/ADDITIONAL_DATA;

NOTE: The first three data items are separated by commas. These items are separated
from the rest of the data that the rule requires by a forward slash (/).

Here is an example:

@GETRECSUSED,DETAILS,Symbolnm/11,DETAILREC;N;N;N;

Chapter 4
Adding Section and Field Rules

272

273

Chapter 5

Section and Field Rules
Reference

Section (image) and field rules help you control how data
is processed and generated to fill a field on a form.

NOTE: This chapter serves as a reference to the section
and field rules. For information on the rules
which apply to jobs and form sets, see Adding
Job and Form Set Rules on page 5.

This chapter discusses rules included in the base system
and supported by the Oracle Documaker support staff.
For information on custom rules, contact your Services
representative.

For a summary of these rules, see Section and Field
Rules Reference on page 274.

Chapter 5
Section and Field Rules Reference

274

SECTION AND
FIELD RULES
REFERENCE

The following pages list and explain the various section and field rules you can use. The
rules are discussed in alphabetical order on the pages following this table.

NOTE: You can also see information about the section and field rules while using Studio
when you select the rule on the Rule Properties window.

If you are using Image Editor, select the Help, Explain Rule option.

When you select a rule,
information about that
rule appears here:

Section and Field Rules Reference

275

The following table lists the rules discussed in this chapter by type (section or field) and
purpose.

The Level column indicates whether the rule is a section level rule (3) or a field level rule
(4). The Overflow column indicates the rules which support the overflow feature. The
overflow features allow extract data to flow onto an additional page if needed.

To… Level Use this rule Overflow

add a page break before the system
begins processing the current
section

3 PaginateBeforeThisImage
on page 421

na

add sections to the current form set
based on conditions in the
SETRCPTB.DAT file

3 SetRecipFromImage on
page 466

na

add TIFF images contained in a
single TIFF file in a form set

3 AddMultiPageTIFF on page
292

na

allow a chart’s series data to be
retrieved via reference to variable
fields defined on the same section

3 FieldVarsToChartSeries on
page 335

na

check to see if the FAP file is
loaded, and if not, load the FAP file

3 CheckImageLoaded on
page 307

na

create a temporary extract list which
contains similar records in a
transaction

3 CreateSubExtractList on
page 317

na

create a GVM variable from fields in
a section

3 Field2GVM on page 333 na

create custom axis labels for a chart 3 SetCustChartAxisLabels on
page 455

na

define the first section in a group of
sections

3 GroupBegin on page 343 yes

define the last section in a group of
sections

3 GroupEnd on page 355 yes

delete a page from a form set 3 DontPrintAlone on page
329

na

delete a specific occurrence of a
section

3 DelImageOccur on page
328

na

draw an underline beneath a variable
field

3 UnderlineField on page 484 na

execute a DAL script 3 PostImageDAL on page
422

na

Chapter 5
Section and Field Rules Reference

276

execute a DAL script 3 PreImageDAL on page
426

na

get data from extract records and
include it as series data in a chart

3 CreateChartSeries on page
315

na

import PDF or TIFF files as bitmap
images.

3 AddMultiPageBitmap on
page 283

na

increment an overflow variable 3 IncOvSym on page 366 yes

map fields in the XDB database 4 XDB on page 485 na

map fields in the XDD database 4 XDD on page 488 na

merge data for embedded variable
fields in a text area with text

3 TextMergeParagraph on
page 483

na

move and align field text so the data
elements are connected.

3 ConnectFields on page 312 na

move sections from the current
page to a page you specify

3 MoveMeToPage on page
401

na

remove a series from a chart if the
series contains no data

3 PurgeChartSeries on page
433

na

remove series data from the series
you specify

3 DeleteDefaultSeriesData on
page 327

na

remove the white space from
between fields.

3 RemoveWhiteSpace on
page 434

na

reset an overflow variable 3 ResetOvSym on page 438 yes

reset section dimensions 3 ResetImageDimensions on
page 436

na

set group options 3 SetGroupOptions on
page 439

yes

set the dimensions of a section 3 SetImageDimensions on
page 457

na

set the section overlay/page
segment X and Y coordinates using
FAP units

3 SetOrigin on page 458 na

set the section overlay/page
segment X and Y coordinates using
inches

3 SetOriginI on page 462 na

To… Level Use this rule Overflow

Section and Field Rules Reference

277

set the section overlay/page
segment X and Y coordinates using
millimeters

3 SetOriginM on page 464 na

set the send copy to variable 3 SetCpyTo on page 454 na

span a field’s width between two
other fields, filling in with a fill
character

3 SpanAndFill on page 470 na

Field Level Rules

add a placeholder which causes no
operation to occur (used in testing)

4 NoOpFunc on page 415 na

add a variable from more than one
occurrence of a particular record
type

4 AccumulateVariableTotal
on page 280

na

add two fields and insert the result
into a new field

4 MoveSum on page 411 na

call a DAL function 4 If on page 360 na

concatenate strings and place the
result in the field you specify

4 ConCat on page 311 yes

copy alphanumeric data from a table
using the source record field as a key

4 TblLkUp on page 476 yes

copy and format numeric data in an
extract record

4 MoveNum on page 402 yes

copy data from an external record
into the output buffer

4 Move_It on page 393 yes

copy data from an SAP Raw Data
Interface (RDI) extract file

4 SAPMove_It on page 443 yes

copy data from the table list of
records into the output buffer

4 MovTbl on page 413 na

copy data if a source record exists 4 MoveExt on page 399 yes

count the total number of overflow
records that could be processed per
transaction

4 OvPrint on page 419 yes

create lists of data for populating
section lists or columns

4 BldGrpList on page 301 na

To… Level Use this rule Overflow

Chapter 5
Section and Field Rules Reference

278

display the difference between two
dates

4 DateDiff on page 322 na

emulate TerSub entry functionality 4 TerSubstitute on page 480 yes

execute the MoveNum rule if an
external record is found

4 MNumExt on page 390 yes

force a transaction to manual batch
(WIP)

4 KickToWip on page 372 na

force a transaction to manual batch
(WIP)

4 PowType on page 424 na

format a date 4 DateFmt on page 324 yes

format a date (for international
localities)

4 FmtDate on page 337 yes

format a number 4 FmtNum on page 338 yes

format the system date 4 SysDate on page 474 yes

get a text table item based on a key
built from the source field name
concatenated with the data retrieved
from the source record

4 TblText on page 478 yes

get data from an extract record, look
up the data in a table, and copy the
table data to the destination field

4 LookUp on page 374 na

get information from an extract file
based on conditions you specify

4 If on page 360 yes

get information from an extract file
based on conditions you specify

4 DAL on page 320 yes

get the current system date 4 FfSysDte on page 331 yes

get the run date from the
TRNFILE.DAT file and format it
using the mask you specify

4 RunDate on page 440 na

insert a specific value 4 Mk_Hard on page 388 na

insert a value in a field only if a
record is found in the extract data
using the search criteria you specify

4 HardExst on page 356 yes

justify a field (right, left, or center) 4 JustFld on page 367 na

To… Level Use this rule Overflow

Section and Field Rules Reference

279

print information in a field if the
data matches the numeric value you
specify

4 PrtIfNum on page 430 na

print information in a field if the
data matches the string you specify

4 PrintIf on page 428 yes

process multi-page sections 4 EjectPage on page 330 na

replace the NoOpFunc rule 4 MapFromImportData
on page 376

na

report the actual number of overflow
records that could be processed per
transaction

4 OvActPrint on page 417 yes

retrieve a message from an extract
file

4 MessageFromExtr on page
380

yes

retrieve and format a string 4 StrngFmt on page 472 yes

select the largest value of multiple
packed decimal fields located on the
same record to populate a variable
field

4 CompBin on page 308 na

speed the processing of fields used
repeatedly throughout a form set

4 GlobalFld on page 340 na

store and retrieve subsequent lines
of a multiple line address

4 SetAddr on page 445 yes

store and retrieve subsequent lines
of a multiple line address

4 SetAddr2 on page 448 yes

store and retrieve subsequent lines
of a multiple line address

4 SetAddr3 on page 451 yes

tell the system the field has been
mapped to the master DDT file

4 Master on page 379 na

translate a numeric ISO state code
into the actual state name

4 SetState on page 468 yes

To… Level Use this rule Overflow

Chapter 5
Section and Field Rules Reference

280

 AccumulateVariableTotal
Use this field level rule (level 4) when you need to sum a variable from more than one
occurrence of a particular record type. This rule only works with the Record Dictionary.

Syntax output format;AccumulateVariableTotal;Record() Variable () Cond (
);;

To format the output, you can also include any of the following format options in the
Mask field on the Field Options window in Studio or in the Mask field on the Edit DDT
tab of the field’s Properties window in Image Editor. Separate each option with a comma.

Parameter Description

Record Name of the record pointer defined in the Records group of the Record
Dictionary file (entitled DataDict). This record pointer defines the column to
search, the text to look for in the starting column, and option flags.

Variable Name of the variable pointer defined in the Variables group of the Record
Dictionary. This variable pointer defines offset into the record where the data to
be accumulated is located, the length and type of the data, and formatting flags.

Cond (Optional) Name of the condition defined in the Conditions group of the
Condition table. The condition consist of combinations of comparisons,
parenthesis, ANDs, and ORs to verify the correct results.

Option Description

- (one
dash)

If the number is negative, this option places a minus sign (-) in the left most
position. For example, if the format mask is (9.2,12.2,C,$,-), the result is: “-
$2,100.00”.

-- (two
dashes)

If the number is negative, this option places a minus sign (-) immediately before the
amount. For example, if the format equal is (9.2,12.2,C,$,--), the result is “ -
$2,100.00”, with a full length of 12.

+ Tells the system to always include a sign with all numbers.

% Appends a percent sign (%) at the end of the number.

$ Adds a dollar sign. Cannot be the first character in the format mask. This limitation
arises from the Move_It format option, where a dollar sign ($) in the first character
of the mask means to perform a sprintf.

C Adds commas.

C** Adds commas if in US English format or spaces if in Canadian French format.

CR Appends CR to the end of the number.

CS1
CS2
CS731

Enter one of these options to indicate the checksum method.
The system appends a check digit (mod 10) of 0 through 9 to the end of the number.
This is typically used in accounting to make sure a number, such as an account
number, is correct by performing a formula on each digit. For details, see the
discussion on page 406.

AccumulateVariableTotal

281

Image Editor example Assume the content of the Record Dictionary is as follows:

<Records>

Detail = Search(61,18) Repeating

TotalDtl = Search(61,18,96,~00625,101,(01,02)) Repeating

Usage = Search(61,08) Repeating

RTP = Search(61,21) Repeating

D Dollars (a combination of B, C, and $. You must modify
GEN_FMT_FmtMaskSaysBinary to recognize this format.)

E Stops a calculation if the search condition is false. The Move_It rule may return a
null output buffer if:
- no record was found; a record was found, but the search mask contained a pairing
(offset,data) which extended past the end of the record
- a record was found, but the mapped data was blank.

F Adds a dollar sign ($) and places it in the first position. If the value is negative, it
moves the minus sign (-) to the last position.

L Left justifies the number.

-L (or --) Tells the system to use a floating negative sign on negative values.

+L
(or++)

Tells the system to use a floating sign and to always show that sign.

Lang Selects a language for spelling out the number. This flag is used with the V flag and
mask parameters. Here is an example: US, CFR.

M Money (This format is a combination of formats C and $.)

N Leaves the output buffer blank if the number is zero or negative.

NM Adds a minus sign (-) to the number.

P Print leading zeros. You cannot use this format with $, -, C, and F.

P** Prints leading zeros if used without character or symbol enclosed with single quote.

SLZ Suppresses leading zeros. For example, 00.25 becomes .25.

T Used with the NegText, Text, and ZeroText data options. Adds text before or after
a number. Use the less than (<) symbol for inserting before, the greater than (>)
symbol for inserting after. Use the comma as a separator. You can also use this
option to place currency symbols before or after amounts. For instance, T>£ places
the British pound sterling symbol (ALT+0163) before an amount.

V Spells out the numeric value in US English.

X Adds an x before the number.

Z Prints a number even if it is zero.

Z2 Prints two zeros.

Option Description

Chapter 5
Section and Field Rules Reference

282

<Variables>

DTAT = Record(Detail) Offset(163) Length(10) Type(Zone)
Format(14.2,C,Z) Precision(2)

DTAT$ = Record(Detail) Offset(163) Length(10) Type(Zone)
Format(14.2,C,Z,$) Precision(2)

And you add this rule to the DDT file:

;0;0;DetailTotal;0;15;DetailTotal;0;15;10.2,14.2,C,Z,$;AccumulateVa
riableTotal;Record(Detail) Variable(DTAT$)
Cond(Type);N;N;N;N;25947;15921;16006;

Each time this rule encounters a record which matches the search criteria (18 starting in
column 61), it accumulates a total for the variable DTAT$ (the data found at offset 163
for a length of 10 formatted to the specification stated in the variable description).

The conditional parameter (Cond(Type)) is an optional parameter defined in the
Condition Table. This parameter is used to limit your search criteria.

See also Section and Field Rules Reference on page 274

Using Condition Tables on page 492

Using the Record Dictionary on page 495

AddMultiPageBitmap

283

 AddMultiPageBitmap
Use this section level (level 3) rule to import PDF or TIFF files as bitmap images. If the
file consists of multiple pages, the system inserts the first page on the triggering form or
section. For each subsequent page in the file, the system generates additional pages and
appends them to the form after the triggering section.

See Using the Type Option on page 289 for information on importing specific file types.

NOTE: When you use this rule with TIFF files, it performs the same task and works just
like the AddMultiPageTIFF rule. The first TIFF in the file is inserted on the
triggering form/section. Subsequent TIFF images trigger additional pages which
are appended to the form after the page which contains the first TIFF image.

Syntax ;AddMultiPageBitmap;Options;;

For the Options parameter, this table describes your choices:

Option Description

Opt (Optional) Enter Yes to indicates this rule is optional and you do not want
error messages generated if the file naming parameters fail to produce a valid
name. The default is No.
This option lets you use multiple named parameters. The first parameter that
provides a usable file name is used.
Make this option the first rule parameter.

Use one of the following options (DAL, File, GVM, or SRCH) to specify the file name.

File(file name) Enter the name and path of the file you want to import.
See Using the File Option on page 286 for more information.

DAL(script
name)

Enter the name of the DAL script you want to execute to return the name of
the file you want to import. You must enter the name of a script file or DAL
library routine. Do not include DAL statements.
See Using the DAL Option on page 287 for more information.

SRCH(search
criteria name
data)

The name and path of the file you want to import is contained in a record in
the file specified by the ExtrFile option in the Data control group.
The search criteria are one or more comma-delimited data pairs, offsets, and
character strings, used to as the search mask to find the record in the file you
specified.
The name data is a comma-delimited data pair that defines the offset and
length of the file name in the record defined by the search criteria.
Separate the search criteria and name data by a space.
See Using the SRCH Option on page 288 for more information.

GVM(variable
name)

Enter the GVM variable name that contains the name and path of the file you
want to import. The GVM variable data is mapped by some other means
before this rule is executed.
See Using the GVM Option on page 288 for more information.

Chapter 5
Section and Field Rules Reference

284

Embed (Optional) Include Embed to add the image data into the NA file. This is
necessary when the file that contains the scanned images is temporary and
you need to archive the NA/POL information. Upon retrieval, if you have
not embedded the bitmap information directly into the form set, you will not
be able to view or reprint the original images. The default is No.
Keep in mind that embedding bitmap data can make the resulting NA file
much larger and also affects the size of the archives generated.

Only (Odd or
Even)

(Optional) By default, all images in the file are included. Only include this
option to specify that you want only the odd or even numbered images. You
can use this option to reduce the size of the output when you know blank
pages are included in the scanned images on every other page.
Choose Odd when you know that the first image is not blank. This includes
images 1, 3, 5, and so on.
Choose Even to start with the second image. This includes images 2, 4, 6, and
so on.
If you include both Only (Odd) and Only (Even), you exclude all images.

IN(top,left) (Optional) Specifies the coordinate for the top-left corner of the bitmaps, in
inches.
The default is position 0,0 within the image.

MM(top,left) (Optional) Specifies the coordinate for the top-left corner of the bitmaps, in
millimeters.
The default is position 0,0 within the image.

Top(top,left) (Optional) Specifies the coordinate for the top-left corner of the bitmaps, in
FAP units (2400 per inch).
The default is position 0,0 within the image.

Type (Optional) Enter T (TIFF) or P (PDF). If you omit this option, the system
first looks for TIFF files. If it cannot find a TIFF file, it looks for a PDF file.
Including this option will speed processing.
You can also include this option if the target directory contains both TIFF
and PDF files. For instance, if the directory contains import1.tif and
import1.pdf, the TIFF file is included by default. If you want to include the
PDF file, use the Type option.
See Using the Type Option on page 289 for more information.

Scale(height[in|
mm],width[in|
mm])

(Optional) Use this option to resize the loaded graphics while maintaining the
aspect ratio (height to width), so the graphic fits within the provided height
and width dimensions.
If you only provide the height or width, the system sizes the graphic to fit that
dimension and automatically calculates the other dimension to preserve the
aspect ratio.
See Using the Scale Option on page 289 for more information.

Crop(height[in|
mm],width[in|
mm])

(Optional) Use this option to remove all parts of the graphic that extend
beyond the specified distances from the top left corner. If you omit one of
the arguments, the graphic is not modified in that dimension.
See Using the Crop Option on page 290 for more information.

Option Description

AddMultiPageBitmap

285

Keep in mind:

• In z/OS environments, you can import TIFF files or import only the bitmap data
contained in PDF files. Under z/OS, this rule imports the bitmaps contained in the
PDF file, puts them at the position you specified with the position options (IN, MM,
or TOP) and scales them to fit the page.

Importing bitmap data from inside PDF files is useful because some fax drivers take
TIFF data and place it inside a PDF file. Therefore, by reading the bitmap data from
the PDF file, you are importing all the valuable information in that file.

• You can specify several AddMultiPageBitmap rules, as shown here, but realize that
each subsequent rule reuses the document pages added by previous rules.

<Image Rules>

…

;AddMultiPageBitmap;DAL(TIF_DAL.dal),Only(ODD);

;AddMultiPageBitmap;DAL(TIF_DAL.dal),Only(ODD);

…

For instance, suppose you have declared two rules. The first has a 4-page file. The
second has a 5-page file.

After executing the two rules, there will be five pages in the form. The first four pages
will have two images each (one from the first rule and one from the second) and the
final page will contain the last image from the 5-page file.

Be aware that the placement of those bitmap images on the page can make them
overlap.

NOTE: This rule supports long file names on 32-bit Windows operating systems.

• The system supports these types of TIFF images:

• When importing TIFF or PDF files, keep in mind you can only include one of the
image positioning parameters, Top, In, or MM. The value specified is relative to the
FAP file's origin as specified by a SetOrigin rule. If there are more than one
positioning parameters, subsequent definitions override prior ones.

Type Description

Type 1 uncompressed

Type 2 Huffman

Type 3 CCITT group 3 FAX

Type 4 CCITT group 4 FAX

Type 5 LZW

Type 32773 Packbits

Chapter 5
Section and Field Rules Reference

286

If you omit the positioning parameters, the default top/left coordinate is taken from
the margin defined for the FAP file. If the FAP file is not loaded and the margins are
unknown, the default is 0,0 (aligned with the top of the image).

• For TIFF and PDF files, if either the LoadFAPBitmap option or the Embed
parameter are set to Yes, the bitmap is loaded into memory. If neither are enabled,
the system opens the file to get the bitmap size, resolution, and number or pages, but
the bitmap data is not loaded. The system then assumes all of the bitmap images are
the same size as the first image in the file.

For single step mode, set LoadFAPBitmap option to Yes.

• You can use the PDFImportDPI option to set the resolution at which PDF files are
imported.

< BitmapLoaders >

PDFImportDPI =

Example These examples show how you can define the file to import when you use this rule.
Assume that your MRL has these sub-directories which contain these PDF files:

Using the File Option
This example imports the A_FILE.PDF file from the PDF_File directory. Using this file,
the GenData program adds the PDF images contained in the single PDF file to the form
set. Each image in the PDF file causes a duplicate of the original FAP image to be
appended to the form. This duplicate contains the bitmap image.

Here is an excerpt from a sample DDT file using the File option:

/* This section uses these rules */

<Image Rules>

;SetImageDimensions;0,0,26400,20400,0,0,0,0;

;AddMultiPageBitmap;Opt(Y), File(.\PDF_FILE\A_File.pdf);;

…

Option Description

PDFImportDPI Enter the resolution in dots per inch (DPI) at which you want to
import PDF files. The default is 100 DPI. A higher DPI gives you
better fidelity, but the import process will take longer and the output
files will be larger.

Directory File name

PDF_DAL A_DAL.PDF

PDF_File A_FILE.PDF

PDF_GVM A_GVM.PDF

PDF_SRCH A_SRCH.PDF

AddMultiPageBitmap

287

NOTE: Keep in mind that if the OPT option is set to No, which is the default, the system
expects you to provide a file name, otherwise you get an error.

If you set the OPT option to Yes, this tells the system that if the data for the file
name is not provided it should skip to the next rule without creating an error
message. Setting OPT to Yes simply tells the system that if no file name is
provided, regardless of the mapping method you are using, it should not be
considered an error. Here is an example:

;AddMultiPageBitmap;OPT(Y), SRCH(1,PDF 10,25);

You get no error if the PDF record does not exist in the extract file or if there is
PDF record but as offset 10 for 25 bytes, there is nothing but spaces. If the
OPT(Y) option is omitted, you get one of these messages, depending on your
situation:

SRCH() A record matching the search mask <1,PDFF> could not be

 located.

SRCH() Filename location within search record <1,PDF> is blank.

 Offset <10,> Length <25>.

Here is another example:

;AddMultiPageBitmap;OPT(Y), GVM(PDF_GVM);

If PDF_GVM contains no data and the OPT(Y) option is specified, you get no
error. If the OPT(Y) option is omitted, the system generates an error similar to
this one:

 GVM(<PDF_GVM>) Global variable does not exist or is empty.

Here is another example:

;AddMultiPageBitmap;OPT(Y), DAL(AddPDF.dal);

If processing the AddPDF.dal script results in an empty string and the OPT(Y)
option is specified, you get no error. If the OPT(Y) option is omitted, the system
generates an error similar to this one:

DAL(<AddPDF.dal>) script returned no result or result was blank.

The thing to remember is that if no data exists and the OPT option is set to Yes,
no error message appears.

Using the DAL Option
This example executes the PDF_NAME.DAL DAL script which returns the file name,
F_DAL.PDF. Using this file name, the GenData program adds the images contained in
the single PDF file to the form set. Each image in the PDF file causes a duplicate of the
original FAP file to be appended to the form. This duplicate contains the bitmap image.
Only the odd images in the PDF file are included because the Only option is set to Odd.

Here is an excerpt from a sample DDT file:

/* This section uses these rules */

Image Rules>

;SetImageDimensions;0,0,26400,20400,0,0,0,0;

Chapter 5
Section and Field Rules Reference

288

;AddMultiPageBitmap;DAL(PDF_DAL.dal),Only(ODD);;

…

Using the SRCH Option
This example imports PDF files (F_SCH1.PDF, F_SCH2.PDF, and F_SCH3.PDF) based
on the content of lines in the file designated by the ExtrFile option in the Data control
group. Using this file, the GenData program adds the images contained in the three PDF
files to the form set. Each image in the PDF file causes a duplicate of the original FAP
file to be appended to the form. This duplicate contains the bitmap image. The bitmap
images are embedded in the NA file because the Embed option is set to Yes.

Here is an example of the extract file records pointed to by the ExtrFile option:

0 1

1 1

SCOxxxxxxxHEADERREC

…

…

PDF_File_Name .\PDF\F_SCH1.PDF

…

…

NOTE: This option lets you import and process multiple PDF files because of the way
the file name and path are specified — one file per entry in the file pointed to by
the ExtrFile option.

Here is an excerpt from a sample DDT file:

/* This section uses these rules */

<Image Rules>

;SetImageDimensions;0,0,26400,20400,0,0,0,0;

;AddMultiPageBitmap;SRCH(1,PDF_File_Name 15,17),Embed(Y);;

Using the GVM Option
This example imports a PDF file based on file name contained in the GVM variable called
PDF_File_GVM. Using the PDF file name and path in the GVM variable, the GenData
program adds the PDF images contained in the single PDF file to the form set. Each
image in the PDF file causes a duplicate of the original FAP file to be appended to the
form. This duplicate contains the bitmap image.

NOTE: Keep in mind you can use any valid GVM variable, no matter how it is created or
assigned.

To create the PDF_File_GVM variable, you would include the following INI option in
your FSISYS.INI file and add its definition in the TRNDFDFL.DFD file.

< GenTrnDummyFields >

PDF_File_GVM = .\PDF_gvm\A_GVM

Here is an excerpt from a sample DDT file:

AddMultiPageBitmap

289

/* This section uses these rules */

<Image Rules>

;SetImageDimensions;0,0,26400,20400,0,0,0,0;

;AddMultiPageBitmap;GVM(PDF_File_GVM);;

Using the Type Option
You can use the Type option to specify the type of file you want to import to speed
processing. Enter T (TIFF) or P (PDF). If you omit this option, the system first looks for
TIFF files. If it cannot find a TIFF file, it looks for a PDF file. Keep in mind:

• Pages imported from a PDF file are placed at coordinates (0,0) in the output by
default. You can use the position options (IN, MM, or TOP) to specify another
position.

• You can specify several AddMultiPageBitmap rules, as shown here, but realize that
each subsequent rule reuses the document pages added by previous rules. Here is an
example:

<Image Rules>

…

;AddMultiPageBitmap;DAL(PDF_DAL.dal),Only(ODD),TYPE(P);

;AddMultiPageBitmap;DAL(PDF_DAL.dal),Only(ODD),TYPE(P);

…

Assume the first PDF file contains four pages and the second PDF file contains five
pages.

After executing the two rules, there will be five pages in the form. The first four pages
will have two images each (one from the first rule and one from the second) and the
final page will contain the last image from the 5-image PDF file.

Be aware that the placement of those bitmap images on the page can make them
overlap.

NOTE: This rule supports long file names on 32-bit Windows operating systems.

Using the Scale Option
The Scale option resizes the loaded graphics, maintaining the aspect ratio (height to
width), so the graphic fits within the provided height and width dimensions. If you only
provide the height or width, the system sizes the graphic to fit that dimension and
automatically calculates the other dimension to preserve the aspect ratio. For example
(assuming the imported graphic is originally 8 ½” x 11”), this rule.

;AddMultiPageBitmap;SRCH(1,AddMultiPageBitmap,40,.\tif_srch 40,19),
SCALE(4in);;

tells the system to scale the graphic so that it is 4 inches high and 3.09 inches wide.

This rule....

;AddMultiPageBitmap;SRCH(1,AddMultiPageBitmap,40,.\tif_srch
40,19),SCALE(4in,3in);;

Chapter 5
Section and Field Rules Reference

290

tells the system to scale the graphic to 3.88 inches tall and 3 inches wide, because if it
scaled the height to be 4 inches, while maintaining the aspect ratio, the width would
exceed the specified 3 inches.

This rule.

;AddMultiPageBitmap;SRCH(1,AddMultiPageBitmap,40,.\tif_srch
40,19),SCALE(,5in);;

tells the system to scale the graphic to 6.47 inches tall and 5 inches wide.

Keep in mind...

• If you omit the height, you must include a comma (,) as a placeholder.

• If no units, such as inches (in) or millimeters (mm), are provided, the system assumes
your entry is in FAP units (2400 per inch).

• Do not include both the Scale and Crop options. If you include both options, the
system ignores the Crop option and only uses the Scale option.

• Only the PDF Print Driver supports the Scale option.

Using the Crop Option
The Crop option removes all parts of the graphic that extend beyond the specified
distances from the top left corner. If you omit one of the arguments, the graphic is not
modified in that dimension. For example, this rule...

;AddMultiPageBitmap;SRCH(1,AddMultiPageBitmap,40,.\tif_srch
40,19),CROP(100mm,80mm);;

tells the system to only include in the print stream an area of the graphic that is 100 mm
tall by 80 mm wide, beginning in the top, left corner.

This rule...

;AddMultiPageBitmap;SRCH(1,AddMultiPageBitmap,40,.\tif_srch
40,19),CROP(12000);;

tells the system to only include the top five inches (12000 FAP units) of the full-width
graphic in the print stream.

— 80mm —

|
100mm

|

AddMultiPageBitmap

291

Keep in mind...

• If no units, such as inches (in) or millimeters (mm), are provided, the system assumes
your entry is in FAP units (2400 per inch).

• Do not include both the Scale and Crop options. If you include both options, the
system ignores the Crop option and only uses the Scale option.

• Only the PDF Print Driver supports the Crop option.

See also Section and Field Rules Reference on page 274

|
5 inches

|

Chapter 5
Section and Field Rules Reference

292

 AddMultiPageTIFF

NOTE: Beginning with version 11.3, the AddMultiPageTIFF rule was replaced by the
AddMultiPageBitmap rule. If the system comes across the AddMultiPageTIFF
rule, it auto ma ti ally runs the AddMultiPageBitmap rule.

See AddMultiPageBitmap on page 283 for more information.

Use this section level (level 3) rule to include multiple TIFF images contained in a single
TIFF file in a form set. The first TIFF in the file is inserted on the triggering form/section.
Subsequent TIFF images trigger additional pages which are appended to the form after
the page which contains the first TIFF image.

This rule can also extract TIFF, JPEG, or bitmap images from PDF files. For instance, if
you have a PDF file that includes scanned images, typically in TIFF format, you can use
this rule to extract those images from the PDF file.

NOTE: For more information on using this rule to extract TIFF, JPEG, or bitmaps
images from PDF files, see Using the Type Option on page 297.

Syntax ;AddMultiPageTIFF;Options;;

For the Options parameter, you have these options:

Option Description

Opt (Optional) Enter Yes to indicates this rule is optional and you do not want
error messages generated if the file naming parameters fail to produce a valid
name. The default is No.
This option lets you use multiple named parameters. The first parameter that
provides a TIFF file name is used, but if the name of the TIFF file returned
by the search criteria is blank, the system ignores it and does not generate an
error.
Make this option the first rule parameter.

DAL(script
name)

Enter the name of the DAL script you want to execute to return the name of
the TIFF file you want to import. You must enter the name of a script file or
DAL library routine. Do not include DAL statements.

File(file name) Enter the name and path of the TIFF file to import.

GVM(variable
name)

Enter the GVM variable name that contains the name and path of the TIFF
file. The GVM variable data is mapped by some other means before this rule
is executed.

AddMultiPageTIFF

293

Keep in mind:

• The system supports these types of TIFF images:

SRCH(search
criteria name
data)

The name and path of the TIFF file is contained in a record in the file
specified by the ExtrFile option in the Data control group.
The search criteria are one or more comma-delimited data pairs, offsets, and
character strings, used to as the search mask to find the record in the file you
specified.
The name data is a comma-delimited data pair that defines the offset and
length of the file name in the record defined by the search criteria.
Separate the search criteria and name data by a space.

Embed (Optional) Include Embed to add the image data in the NA file. This is
necessary when the file that contains the scanned images is temporary and
you need to archive the NA/POL information. Upon retrieval, if you have
not embedded the bitmap information directly into the form set, you will not
be able to view or reprint the original images. The default is No.
Keep in mind that embedding bitmap data can make the resulting NA file
much larger and also affects the size of the archives generated.

Only (Odd or
Even)

By default, all images in the multi-page TIFF file are included. Only include
this option to specify that you want only the odd or even numbered images.
You can use this option to reduce the size of the output when you know
blank pages are included in the scanned images on every other page.
Choose Odd when you know that the first image is not blank. This includes
images 1, 3, 5, and so on.
Choose Even to start with the second image. This includes images 2, 4, 6, and
so on.
If you include both Only (Odd) and Only (Even), you exclude all images.

IN(top,left) (Optional) Specifies the coordinate for the top-left corner of the bitmaps, in
inches.

MM(top,left) (Optional) Specifies the coordinate for the top-left corner of the bitmaps, in
millimeters.

Top(top,left) (Optional) Specifies the coordinate for the top-left corner of the bitmaps, in
FAP units (2400 per inch).

Type (Optional) Enter T (TIFF) or P (PDF). If you omit this option, the system
first looks for TIFF files. If it cannot find a TIFF file, it looks for a PDF file.
Including this option will speed processing. You can also include this option
if the target directory contains both TIFF and PDF files.

Type Description

Type 1 uncompressed

Type 2 Huffman

Type 3 CCITT group 3 FAX

Option Description

Chapter 5
Section and Field Rules Reference

294

• You can only include one of the section positioning parameters, Top, In, or MM. The
value specified is relative to the FAP file's origin as specified by a SetOrigin. If there
are more than one positioning parameters, subsequent definitions override prior
ones.

If you omit the positioning parameters, the default top/left coordinate is taken from
the margin defined for the FAP file. If the FAP file is not loaded and the margins are
unknown, the default is 0,0 (aligned with the top of the section).

• If either the LoadFAPBitmap option or the Embed parameter are set to Yes, the
bitmap is loaded into memory. If neither are enabled, the system opens the TIFF file
to get the bitmap size, resolution, and number or pages, but the bitmap data is not
loaded. The system then assumes all of the bitmap images will be the same size as the
first image in the file.

For single step mode, set LoadFAPBitmap option to Yes.

• If you include several options that serve similar purposes, the last one to provide a
result is used.

• You can specify several AddMultiPageTIFF rules, as shown here, but realize that
each subsequent rule reuses the document pages added by previous rules.

<Image Rules>

…

;AddMultiPageTIFF;DAL(TIF_DAL.dal),Only(ODD);

;AddMultiPageTIFF;DAL(TIF_DAL.dal),Only(ODD);

…

For instance, suppose you have declared two rules. The first has a 4-page TIFF. The
second has a 5-page TIFF.

After executing the two rules, there will be five pages in the form. The first four pages
will have two images each (one from the first rule and one from the second) and the
final page will contain the last image from the 5-page TIFF.

Be aware that the placement of those bitmap images on the page can make them
overlap.

NOTE: This rule supports long file names on 32-bit Windows operating systems.

Image Editor example These examples show how you can define the TIFF file to import when you use this rule.
Assume that your MRL has these sub-directories which contain these TIFF files:

Type 4 CCITT group 4 FAX

Type 5 LZW

Type 32773 Packbits

Type Description

AddMultiPageTIFF

295

Using the File Option
This example imports the T_FILE.TIF file from the TIF_File directory. Using this file,
the GenData program adds the TIFF images contained in the single TIFF file to the form
set. Each image in the TIFF file causes a duplicate of the original FAP file to be appended
to the form. This duplicate contains the bitmap image.

Here is an excerpt from a sample DDT file using the File option:

/* This section uses these rules */

<Image Rules>

;SetImageDimensions;0,0,26400,20400,0,0,0,0;

;AddMultiPageTiff;Opt(Y), File(.\TIF_FILE\T_File.tif);;

…

NOTE: Keep in mind that if the OPT option is set to No, which is the default, the system
expects you to provide a file name, otherwise you get an error.

If you set the OPT option to Yes, this tells the system that if the data for the file
name is not provided it should skip to the next rule without creating an error
message. Setting OPT to Yes simply tells the system that if no file name is
provided, regardless of the mapping method you are using, it should not be
considered an error. Here is an example:

;AddMultiPageTiff;OPT(Y), SRCH(1,TIFF 10,25);

You get no error if the TIFF record does not exist in the extract file or if there is
TIFF record but as offset 10 for 25 bytes, there is nothing but spaces. If the
OPT(Y) option is omitted, you get one of these messages, depending on your
situation:

SRCH() A record matching the search mask <1,TIFF> could not be
 located.

Directory File name

TIF_DAL T_DAL.TIF

TIF_File T_FILE.TIF

TIF_GVM T_GVM.TIF

TIF_SRCH T_SRCH.TIF

Chapter 5
Section and Field Rules Reference

296

SRCH() Filename location within search record <1,TIFF> is blank.
 Offset <10,> Length <25>.

Here is another example:

;AddMultiPageTiff;OPT(Y), GVM(TIFF_GVM);

If TIFF_GVM contains no data and the OPT(Y) option is specified, you get no
error. If the OPT(Y) option is omitted, the system generates an error similar to
this one:

 GVM(<TIFF_GVM>) Global variable does not exist or is empty.

Here is another example:

;AddMultiPageTiff;OPT(Y), DAL(AddTiff.dal);

If processing the AddTiff.dal script results in an empty string and the OPT(Y)
option is specified, you get no error. If the OPT(Y) option is omitted, the system
generates an error similar to this one:

DAL(<AddTiff.dal>) script returned no result or result was blank.

The thing to remember is that if no data exists and the OPT option is set to Yes,
no error message appears.

Using the DAL Option
This example executes the TIF_NAME.DAL DAL script which returns the file name,
F_DAL.TIF. Using this file name, the GenData program adds the TIFF images contained
in the single TIFF file to the form set. Each image in the TIFF file causes a duplicate of
the original FAP file to be appended to the form. This duplicate contains the bitmap
image. Only the odd images in the TIFF file are included because the Only option is set
to Odd.

Here is an excerpt from a sample DDT file:

/* This section uses these rules */

Image Rules>

;SetImageDimensions;0,0,26400,20400,0,0,0,0;

;AddMultiPageTIFF;DAL(TIF_DAL.dal),Only(ODD);;

…

Using the SCH Option
This example imports TIFF files (F_SCH1.TIF, F_SCH2.TIF, and F_SCH3.TIF) based
on the content of lines in the file designated by the ExtrFile option in the Data control
group. Using this file, the GenData program adds the TIFF images contained in the three
TIFF files to the form set. Each image in the TIFF file causes a duplicate of the original
FAP file to be appended to the form. This duplicate contains the bitmap image. The
bitmap images are embedded in the NA file because the Embed option is set to Yes.

Here is an example of the extract file records pointed to by the ExtrFile option:

0 1

1 1

SCOxxxxxxxHEADERREC

…

AddMultiPageTIFF

297

…

TIF_File_Name .\tiff\F_SCH1.tif

…

…

NOTE: This option lets you import and process multiple TIFF files because of the way
the file name and path are specified—one file per entry in the file pointed to by
the ExtrFile option.

Here is an excerpt from a sample DDT file:

/* This section uses these rules */

<Image Rules>

;SetImageDimensions;0,0,26400,20400,0,0,0,0;

;AddMultiPageTIFF;SRCH(1,TIF_File_Name 15,17),Embed(Y);;

Using the GVM Option
This example imports a TIFF file based on file name contained in the GVM variable
called TIFF_File_GVM. Using the TIFF file name and path in the GVM variable, the
GenData program adds the TIFF images contained in the single TIFF file to the form set.
Each image in the TIFF file causes a duplicate of the original FAP image to be appended
to the form. This duplicate contains the bitmap image. Note the Top option is set to
0,400. This sets the top/left coordinate for each bitmap to 0,400 FAP units.

NOTE: Keep in mind you can use any valid GVM variable, no matter how it is created or
assigned.

To create the TIFF_File_GVM variable, you would include the following INI option in
your FSISYS.INI and add its definition in the TRNDFDFL.DFD file.

< GenTrnDummyFields >

TIFF_File_GVM = .\tif_gvm\T_GVM

Here is an excerpt from a sample DDT file:

/* This section uses these rules */

<Image Rules>

;SetImageDimensions;0,0,26400,20400,0,0,0,0;

;AddMultiPageTIFF;GVM(TIFF_File_GVM),Top(0,400);;

Using the Type Option
Use the Type option to tell the AddMultiPageTIFF rule that the target image is a PDF file
which contains TIFF, JPEG, or bitmap images. The first image found in the PDF file is
inserted on the triggering form or image. Subsequent images in the PDF file trigger
additional pages which are appended in the order in which they appear in the PDF file.

NOTE: If the PDF file contains anything else, such as text, those items will be discarded.
Only TIFF, JPEG, and bitmap images are added.

Chapter 5
Section and Field Rules Reference

298

Keep in mind...

• The images in the PDF file are sized to fit the defined page dimensions for the form,
beginning at coordinates 0,0 in the output.

• If you include several options that serve similar purposes, the last one to provide a
result is used.

• You can specify several AddMultiPageTIFF rules, as shown here, but realize that
each subsequent rule reuses the document pages added by previous rules. Here is an
example:

<Image Rules>

…

;AddMultiPageTIFF;DAL(PDF_DAL.dal),Only(ODD),TYPE(P);

;AddMultiPageTIFF;DAL(PDF_DAL.dal),Only(ODD),TYPE(P);

…

Assume the first PDF file contains four TIFF images. The second PDF file contains
five TIFF images.

After executing the two rules, there will be five pages in the form. The first four pages
will have two TIFF images each (one from the first rule and one from the second)
and the final page will contain the last TIFF image from the 5-image PDF file.

Be aware that the placement of the images on the page can make them overlap.

NOTE: This rule supports long file names on 32-bit Windows operating systems.

Image Editor example These examples show how you can define the PDF file to import when you use this rule.
Assume that your MRL has these sub-directories which contain these PDF files:

Using the File option
with the Type option

This example imports the T_FILE.PDF file from the PDF_File directory. Using this file,
the GenData program adds the images in the PDF file to the form set. Each image in the
PDF file causes a duplicate of the original FAP file to be appended to the form. This
duplicate contains the image from the PDF file. If the T_FILE.PDF file does not exist,
no error messages appear because the OPT option is set to Yes.

Here is an excerpt from a sample DDT file using the File option:

/* This section uses these rules */

<Image Rules>

;SetImageDimensions;0,0,26400,20400,0,0,0,0;

;AddMultiPageTIFF;File(.\PDF_File\T_File.PDF),Opt(Y,P),TYPE(P);;

…

Directory File name

PDF_DAL T_DAL.PDF

PDF_File T_FILE.PDF

PDF_GVM T_GVM.PDF

PDF_SRCH T_SRCH.PDF

AddMultiPageTIFF

299

Using the DAL option
with the Type option

This example executes the PDF_NAME.DAL DAL script which returns the file name,
F_DAL.PDF. Using this file name, the GenData program adds the images contained in
the PDF file to the form set. Each image in the PDF file causes a duplicate of the original
FAP file to be appended to the form. This duplicate contains the image from the PDF
file. Only the odd-numbered images in the PDF file are included because the Only option
is set to Odd.

Here is an excerpt from a sample DDT file:

/* This section uses these rules */

Image Rules>

;SetImageDimensions;0,0,26400,20400,0,0,0,0;

;AddMultiPageTIFF;DAL(PDF_DAL.dal),Only(ODD),TYPE(P);;

…

Using the SCH option
with the Type option

This example imports PDF files (F_SCH1.PDF, F_SCH2.PDF, and F_SCH3.PDF) based
on the content of lines in the file designated by the ExtrFile option in the Data control
group. Using this file, the GenData program adds the images contained in the three PDF
files to the form set. Each image in each PDF file causes a duplicate of the original FAP
file to be appended to the form. This duplicate contains the image from the PDF file. The
images from the PDF files are embedded in the NA file because the Embed option is set
to Yes.

Here is an example of the extract file records pointed to by the ExtrFile option:

0 1

1 1

SCOxxxxxxxHEADERREC

…

…

PDF_File_Name .\PDF\F_SCH1.PDF

…

…

NOTE: This option lets you import and process multiple PDF files because of the way
the file name and path are specified—one file per entry in the file pointed to by
the ExtrFile option.

Here is an excerpt from a sample DDT file:

/* This section uses these rules */

<Image Rules>

;SetImageDimensions;0,0,26400,20400,0,0,0,0;

;AddMultiPageTIFF;SRCH(1,PDF_File_Name 15,17),Embed(Y),TYPE(P);;

Using the GVM option
with the Type option

This example imports a PDF file based on file name contained in the GVM variable called
PDF_File_GVM. Using the PDF file name and path in the GVM variable, the GenData
program adds the images contained in the PDF file to the form set. Each image in the
PDF file causes a duplicate of the original FAP file to be appended to the form. This
duplicate contains the image from the PDF file.

Chapter 5
Section and Field Rules Reference

300

NOTE: Keep in mind you can use any valid GVM variable, no matter how it is created or
assigned.

To create the PDF_File_GVM variable, you would include the following INI option in
your FSISYS.INI and add its definition in the TRNDFDFL.DFD file.

< GenTrnDummyFields >

PDF_File_GVM = .\PDF_gvm\T_GVM

Here is an excerpt from a sample DDT file:

/* This section uses these rules */

<Image Rules>

;SetImageDimensions;0,0,26400,20400,0,0,0,0;

;AddMultiPageTIFF;GVM(PDF_File_GVM),TYPE(P);;

See also AddMultiPageBitmap on page 283

Section and Field Rules Reference on page 274

BldGrpList

301

 BldGrpList
Use this field level rule (level 4) to build lists of data you can use to populate section lists
or columns during GroupEnd processing for each transition. This rule lets you specify
which data will be collected in the list for GroupEnd processing.

Syntax BldGrpList; ListFunction (ListParameter (ListSubParameter)) Rule
(FieldRule) Data (FieldRuleParameters);

This rule lets you use one of these list functions:

• Array

• MultiArray

• MultiOccur

For each list function you can specify the Rule() and Data(). These parameters let you
specify any standard field level rule that can be used to format the data gathered with this
rule, such as the MoveNum and Move_It rules.

NOTE: You must include the following rule in the AFGJOB.JDT file to clear the queues
created by the BldGrpList after it processes each transaction:

;ProcessQueue;;PostPaginationQueue;

For more information, see ProcessQueue on page 184.

Using the Array
function

This list function retrieves data from the first extract record encountered that meets the
search mask criteria in a transaction. The data defined as an array in the record is used to
populate fields on the section. The sub parameters for this function are:

Here is an example of the Array function:

BldGrpList; Array (Search (31, CWIARRAY), Count (39, 2), Entry (41,
5)) Rule (MoveNum) Data ();

Parameter Description

Search Search masks used to locate the extract record which contains the array of data.

Count The offset and length of the field which contains the number of entries in the
array.

Entry The offset for the start of the array data and length of each data entry in the
array.

Parameter Description

BldGrpList; Array Calls the BldGrpList rule using the Array function.

Search(31, 68, 14, 2) Searches for an extract record with 68 in offset 31 and 2 in offset 14.

Count(39, 2) The field at offset 39 for a length of 2 in the extract record contains
the number of entries in the array.

Chapter 5
Section and Field Rules Reference

302

Here is an example of a record from a transaction:

31 39 41

RG00000028030219281501 CWIARRAY0400.0011.1122.2233.3344.44

Using the MultiArray
function

Use this function to retrieve data from multiple extract records that meet the search mask
criteria. The multiple records define the array data that is used to populate fields on the
section. The MultiArray sub parameters are:

Here is an example of the MultiArray function:

BldGrpList; MultiArray (Search (1, CWIARRAY, 14, ~90), Count (38, 1),
Entry (41, 11)) Rule (MoveNum) Data ();

Here is an example of a record from a transaction:

31 39 41

RG00000028030219281501 CWIARRAY0400.0011.1122.2233.3344.44

RG00000028030219281501 CWIARRAY0499.9688.4534.2176.4504.05

Entry(41, 11) The array starts in offset 41 in the extract record and each entry is
11 characters long.

Rule(MoveNum) Data() The MoveNum rule is called using the parameters defined by Data
(). If there are no Data parameters, you do not have to define a Data
sub parameter.

Parameter Description

Parameter Description

Search Search masks used to locate the extract records which contain the array of data.

Count The offset and length of the field which contains the number of entries in the
array.

Entry The offset for the start of the array data and length of each data entry in the
array.

Parameter Description

BldGrpList;MultiArray Calls the BldGrpList rule using the MultiArray function.

Search(1, CWIARRAY, 14, ~90) Searches the extract records for each transaction with
CWIARRAY in offset 1 and which is not equal to (~) 90 in
offset 14.

Count(38, 1) The field at offset 38 for a length of 1 in the extract record
contains the number of entries in the array

Entry(41, 11) The array starts in offset 41 in the extract record and each
entry is 11 characters long.

Rule (MoveNum) Data () Calls the MoveNum rule using the sub parameters defined
by Data (). If there are no Data parameters, you do not have
to define a Data sub parameter.

BldGrpList

303

Using the MultiOccur
function

Use this function to retrieve data from multiple extract records that meet the search
criteria for each transition, which is used to populate the fields on the section. The
MultiOccur sub parameters are:

Here is an example of the MultiOccur function:

BldGrpList;
MultiOccur(Search(31,CWICURR,39,~90,39,~95,39,~99),Field(41,38))Rul
e(Move_It)

Here is an example of records from a transaction:

31 39 41

RG00000022030219281501 CWICURR 02 ENERGY CHARGE 4.93

RG00000023030219281501 CWICURR 03 FIXED CHARGE 14.00

RG00000024030219281501 CWICURR 04 REVENUE FEE 2.10

RG00000025030219281501 CWICURR 90 21.03

RG00000026030219281501 CWICURR 95 1.47

RG00000027030219281501 CWICURR 99 22.50

See also GroupBegin on page 343

GroupEnd on page 355

Move_It on page 393

MoveNum on page 402

ProcessQueue on page 184

Section and Field Rules Reference on page 274

Parameter Description

Search Search masks used to locate the extract records that contain the data to populate
the field.

Field The offset and length of the data in the extract record.

Parameter Description

BldGrpList;MultiOccur Calls BldGrpList rule using the MultiOccur function.

(Search(31,CWICURR,39,~
90,39,~95,39,~99)

Searches the extract records for CWICURR at offset 31 and
offset 39 which is not equal to 90, 95, or 99 for each transaction.

Field(41, 38) Collects data from extract record starting at offset 41 for 38
positions.

Rule(Move_It) Calls the Move_It rule to collect the data.

Chapter 5
Section and Field Rules Reference

304

 CanSplitImage
Use this section level rule (level 3) to identify the segments of sections (images) that can
be dynamically split.

Syntax ;CanSplitImage;Debug;

Keep in mind:

• You must include the PaginateAndPropagate rule in the AFGJOB.JDT file. The
PaginateAndPropagate rule looks for the CanSplitImage indicator. Without this rule,
sections are paginated normally.

• If the print driver produces output for a non-edge printer, such as PCL, you must
have a header and footer that are copied on overflow. Otherwise, the data that falls
into the non-print area is lost.

• Text area objects must be flagged as Can span pages or the section is not split.

• Text area sections that are greater 26,400 FAP units must be defined as Custom in the
Paper Type field on the Page Properties tab. To add information to one of these
sections, increase the paper height on the Page Properties tab to accommodate the
increased size before you add the new information. Otherwise, the system may create
a multi-page section, which is not supported.

• Text areas that are multi-page sections are not supported.

• This rule cannot split a section that includes a text area with an inserted file object.

• This rule is not supported when you are using a group rule. The group pagination
logic does not check for split sections, nor does it call the section split logic.

This table shows how each type of object is handled within a text area:

Parameter Description

Debug Optional. Include this parameter to tell the system to include debug information
about when and how the section is split in the LOG.DAT file.

Object Supported

Different fonts Yes

Borders Yes.

Background shading Yes

Bullets or numbers No

Columns Yes

Boxes Yes *

Fields Yes

Files No

CanSplitImage

305

Here is how the system splits the section:

1 The system loads the section and flags it as inline.

2 The system duplicates the section. The new section follows the original section.

3 The system moves up the bottom of the original section to just above the footer.

4 The system moves the objects from the original section to the new section if the
bottom of the object extends beyond the bottom of the original section.

5 If the object is a text area and is defined as Can Span, the system splits the text area,
as described here:

The system makes sure the original section is not set to Can Grow.

The system creates the new text area in the new section and copies the object
from the original text area into the new text area.

The system creates a list of the text areas to divide and repositions all objects
moved to the new section. All objects are moved up as much as possible but
maintain their relative positions.

The system then moves the section down as far as the objects are moved up.
This preserves the relative position of the objects.

The system turns on the Can grow and shrink attribute and turns off the Can span
pages attributes in the text areas earlier saved in the list. It then resizes the new
section to its minimum size and turns the Can Span attribute back on. Pagination
continues as usual with two sections, instead of one.

Here are some examples that show what happens when a text area with a border is split:

Graphics (LOG, BMP, TIF, and PNG files) Yes *

Charts Yes *

Vectors Yes *

Shaded areas Yes

Bar codes Yes *

Lines Yes *

Boxes Yes *

* If the object falls on the page to be split, the system moves it to the next page.

Object Supported

Chapter 5
Section and Field Rules Reference

306

 Shaded areas are split in a similar manner:

See also PaginateAndPropagate on page 174

Section and Field Rules Reference on page 274

Line 1 - This text
area has a border

Footer

Line 1 - This text
area has a border

Header

Page 1

Page 2

Line 1 - This text
area has a border

Footer

Line 1 - This text
area has a border

Header

Page 1

Page 2

CheckImageLoaded

307

 CheckImageLoaded
Use this section level rule (level 3) to see if the FAP file is loaded, and if not, load the FAP
file. You would typically use this rule if there is information needed in the FAP file that is
not present in the DDT file, such as bar code information, or variable field rotation
information.

By default, the GenData program loads FAP files. If the LoadCordFAP option is turned
on, the GenData program loads all FAP files. Avoid turning on this INI option as it slows
performance. For example, make sure this option is set in the FSISYS.INI file as follows:

< RunMode >

LoadCordFAP = No

The GenData program should only write information about dynamic data, such as
variables, into the NAFILE.DAT file from the DDT files. You can do this more
efficiently by loading the DDT files instead of the FAP files.

There are, however, situations which require you to load FAP files. This rule and the
TextMergeParagraph rule handle these situations. These rules let you load data for a single
FAP file. Keep in mind that the TextMergeParagraph rule affects a single FAP file while
the LoadCordFAP option affects all FAP files.

Since, in some cases, you must load FAP files, the system includes utilities which let you
pre-compile FAP files and FXR files. By pre-compiling these files into CFA (FAP) and
CFX (FXR) files, you can speed performance by eliminating parsing operations. The
system is set up to use pre-compiled FAP and FXR files. You can see this setting in the
FSISYS.INI file:

< RunMode >

CompiledFAP = Yes

To turn off this setting, change the Yes to No. For best results leave it set to Yes.

NOTE: Using this rule slows performance. Use only as necessary.

Syntax ;CheckImageLoaded;;;

The CheckImageLoaded rule checks to see if the FAP file associated with the DDT file
has already been loaded into memory. If the FAP file has not been loaded, the
CheckImageLoaded rule loads it.

Image Editor example ;CheckImageLoaded;;;

Rotated fields If you have a section (FAP file) which contains four variable fields, each with a different
rotation and the fields are not rotated when you run the GenPrint program, make sure
you include the CheckImageLoaded rule. This rule is required in this situation.

Bar code variables If you are using the EAN (European Article Numbering) system to represent bar code
variables and you are using the Move_It rule to map the bar code variable field to your
data, include the CheckImageLoaded rule if your LoadCordFAP option is set to No.

See also TextMergeParagraph on page 483

Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

308

 CompBin
Use this field level rule (level 4) to select the largest value of multiple packed decimal fields
located on the same record to populate a variable field.

For each given offset in the data section, the source offset is set and the MoveNum rule
is called. The highest value is kept in a buffer. After comparing all numbers, the system
copies the highest number into the variable field. There are two optional parameters:

• Compare the largest value with the given value. If it is larger, return it. If smaller, use
option two.

• Take the field with the index specified in the next parameter. If the second parameter
is not specified, return a SKIP message.

NOTE: The system ignores the fields of the DDT entry which usually contain the source
offset and the source length. Instead, the system uses the offset and length
specified in the data section. The search criteria and the extract field descriptors
must be delimited by a single space. No other spaces are allowed.

Studio example You could make the following entries in Studio in the Rule section of the Field Options
panel:

In this field... Enter...

Rule CompBin

Destination offset 1

Source name REC-MAXFINE

Source offset 45

File *

Length 6

Record *

Required *

Overflow Multiplier *

Overflow *

Mask 11.0,18.0,B

Data 100,XYZ 45,4,67,4

* no entry required for this field in this example

CompBin

309

The rule compares the packed decimals on the locations 45-4 bytes and 67-4 bytes in the
record identified by a XYZ at location 100 and returns the highest value.

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In the DDT file, this information looks like this:

;0;0;REC-MAXFINE;45;4;MAXFINE;1;6;11.0,18.0,B;CompBin;100,XYZ
45,4,67,4;;;;;

The rule compares the packed decimals on the locations 45-4 bytes and 67-4 bytes in the
record identified by a XYZ at location 100 and returns the highest value.

Here's another example:

In this field... Enter...

Destination name MAXFINE

Offset 1

Length 6

Source name REC-MAXFINE

Offset 45

Length 4

File *

Record *

Required *

Rule CompBin

Mask 11.0,18.0,B

Data 100,XYZ 45,4,67,4

* no entry required for this field in this example

In this field... Enter...

Destination name MAXFINE

Offset 1

Length 6

Source name REC-MAXFINE

Offset 45

Length 4

Chapter 5
Section and Field Rules Reference

310

In the DDT file, this information looks like this:

;0;0;REC-MAXFINE;45;4;MAXFINE;1;6;11.0,18.0,B,CompBin;100,XYZ
45,4,67,4 500,1;;;;;

The example compares the packed decimals on the locations 45-4 bytes and 67-4 bytes in
the record identified by a XYZ at location 100 and returns the highest value if it is larger
than 500. If it is not larger, the system returns the data from the first offset/length pair
(45,4).

See also Section and Field Rules Reference on page 274

File *

Record *

Required *

Rule CompBin

Mask 11.0,18.0,B

Data 100,XYZ 45,4,67,4 500,1

* no entry required for this field in this example

ConCat

311

 ConCat
Use this field level rule (level 4) to concatenate two or more text strings contained in an
extract record and place the result in a field you specify. This rule supports overflow.

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In the DDT file, this information looks like this:

;;;REC-POL NUMBER;30;12;POL NUMBER;1;15;;ConCat;17,PMSP0200
30,3,33,7,40,2;;;;;

This rule tells the system to get the first occurrence of a record matching the search
criteria of PMSP0200 at offset 17. The output consists of 12 characters retrieved from
three locations. The 14 character output consists of three characters from offset 30, seven
characters from offset 33, and two more characters from offset 40, as well as a single space
between the first and second and the second and third fields.

The mask is used for character compression of concatenated fields. The default is one
space. You can enter zero (0) or any positive value—just make sure the destination length
can accommodate the spacing of the fields.

See also Section and Field Rules Reference on page 274

In this field... Enter...

Destination name POL NUMBER

Offset 1

Length 15

Source name REC-POL NUMBER

Offset 30

Length 12

File *

Record *

Required *

Rule ConCat

Mask *

Data 17,PMSP0200 30,3,33,7,40,2

* no entry required for this field in this example

Chapter 5
Section and Field Rules Reference

312

 ConnectFields
Use this section level rule (level 3) to move and align field text so the data elements appear
to be connected.

NOTE: Previously, this rule was known as the ConcatFields rule. You can use either
spelling.

Syntax ConnectFields F=FixedField L=LeftField R=RightField;;

You must enter a fixed field and at least one field to move to the left or right side of the
fixed field. By default, the system places the other fields one space character from the
fixed field, unless you indicate that you do not want spacing between the fields.

NOTE: Include the word No after the movement parameters (L or R) to tell the system
not to add spacing between the two fields. For example,

F=FIELD1,RNO=FIELD2

tells the system to place the contents of FIELD2 immediately after to the end of
FIELD1 with no intervening spaces.

As the system places another field next to the fixed field, the fixed rectangle grows. This lets
you define additional fields based upon where the last field was added.

Keep in mind...

• This rule does not move fields vertically. Fields are only moved horizontally.

• This rule loads the section (FAP or compiled FAP) if it is not already loaded.

• If you use the Move_It rule, or other rules that support right justification by padding
the data with spaces, your results will be incorrect. This rule calculates the width of a
field based upon its entire contents and does not remove any white space in the field.

• If you specify a field which does not contain data or is invalid, then no space, or space
holder, is included.

• Do not try to move the same field multiple times. The final location of a given field's
data is determined by the last movement of that field.

• The field you specify as the fixed field, cannot be included as one of the fields to be
moved.

Parameter Description

F Enter the name of the field you want used as the fixed field. The system will move
the other fields in relation to this field. The system does not move the fixed field.
The first field you list in the rule’s parameters is always considered the fixed field.

L Enter the names of the fields you want moved to the left of the fixed field.

R Enter the names of the fields you want moved to the right of the fixed field.

ConnectFields

313

• This rule does not work with barcode or multi-line text fields. If you try to name such
a field, you will get an error. This rule does not handle rotated fields.

Image Editor example For these examples assume FIELD1 contains ABC, FIELD2 contains DEF, and
FIELD3 contains XYZ. With this rule in the DDT file:

;ConnectFields;F=FIELD1,R=FIELD2;;

The result is:

ABC DEF

With this rule in the DDT file:

;ConnectFields;F=FIELD1,L=FIELD2,R=FIELD3;;

The result is:

DEF ABC XYZ

Here, the rule appended FIELD2 to the left side of FIELD1 and appended FIELD3 to
the right of FIELD1. Note, that in this example, it is difficult to see that the fixed field,
FIELD1, did not move. FIELD2 and FIELD3 moved to align with FIELD1. During this
operation, FIELD1 did not move at all.

With this rule in the DDT file:

;ConnectFields;FIELD1,LNO=FIELD2,RNO=FIELD3;;

The result is:

DEFABCXYZ

This rule is defined similar to the last one but uses the No space parameter.

With this rule in the DDT file:

;ConnectFields;F=FIELD1,R=FIELD2,R=FIELD3;;

The result is:

ABC DEF XYZ

Notice there are two fields appended to the right of the fixed field. The first one appended
expanded the rectangle which allows the next one to append after the last.

With this rule in the DDT file:

;ConnectFields;F=FIELD1,R=FIELD2,F=FIELD2,R=FIELD3;;

The result is:

ABC DEF XYZ

Notice that the result of this rule is the same as the previous example. In this case, the
fixed field was changed to FIELD2 after FIELD2 had been moved adjacent to FIELD1.
Then FIELD3 was moved adjacent to FIELD2 in its new location.

Chapter 5
Section and Field Rules Reference

314

With this rule in the DDT file:

;ConnectFields;F=FIELD1,R=FIELD2,R=FIELD2;;

The result is:

ABC DEF

This example illustrates one of the earlier cautions. In this case, FIELD2 is defined to
move twice. Since the operations are sequential, the field is first moved adjacent to
FIELD1. This movement expands the fixed rectangle used by subsequent movements.
When the field is named again, it moves relative to the current rectangle, making the field
appear farther to the right a distance equal to the size of the text in the field plus the width
of two spaces.

See also Move_It on page 393

SpanAndFill on page 470

Section and Field Rules Reference on page 274

CreateChartSeries

315

 CreateChartSeries
Use this section level rule (level 3) to get data from extract records and include it as series
data in a chart. The system uses the data exactly as it exists in the extract record. There is
a syntax you can use to create a search mask which will search for and get an extract
record. You can also specify where in that record the data resides. Additionally, you must
specify the chart and series to which the data will be added.

Typically, you will use the DeleteDefaultSeriesData rule, on page 327 before you use this
rule. You should always use the PurgeChartSeries rule, on page 433 after you use this rule.

Syntax CreateChartSeries (Chart)(Series)(SearchMask)(DataDefinitions)

Image Editor example <Image Rules>

;CreateChartSeries;{VBarChart}{Ser1}{11,TESTXXREC,25,2}{30,10 40,10
50,10 60,10};

;CreateChartSeries;{VBarChart}{Ser2}{11,TESTXXREC,25,3}{30,10 40,10
50,10 60,10};

;CreateChartSeries;{VBarChart}{Ser3}{11,TESTXXREC,25,4}{30,10 40,10
50,10 60,10};

;PurgeChartSeries;;

This example gets data for three different chart series in the same chart. The chart name
is VBarChart and the three data series are Ser1, Ser2, and Ser3.

The series data for series Ser1 is retrieved from the record found with search mask
11,TESTXXREC,25,2. There are four series data values which are added to this series,
each one 10 characters in length. These are found at offsets 30, 40, 50 and 60 in the extract
record.

Parameter Description

Chart The name of the chart (as defined in the FAP file) to which the series data
will be added.

Series The name of the series that data is to be added to. If the series is not defined
in the FAP, a default series is created.

SearchMask The search mask to be used to find the extract record from which data is
retrieved. The search mask should contain one or more offset,data pairings.
For example, if you want to find the extract record with the text
HEADERREC at offset 20 (base 1), the search mask would be
20,HEADERREC. Additional offset length pairings can be appended. For
example:

20,HEADERREC,50,XYZ

means find the record with HEADERREC at offset 20 and XYZ at offset
50. See the topic Search Criteria on page 270 for more information.

DataDefinitions One or more offset,length pairings used to obtain data values from the extract
record defined by the search mask. For example, if five data values existed at
offsets 110, 120, 130, 140 and 150 each one 10 characters in length, the
DataDefinitions field would look like this:

110,10 120,10 130,10 140,10 150,10.

There is a space between each offset,length pair, unlike the SearchMask which
has all its offset,data pairs separated by a comma (,).

Chapter 5
Section and Field Rules Reference

316

The series data values are added to the series, one after another, in the order that they are
listed in this rule. Series data for series Ser2 and Ser3 are created in similar manner, but
get data from other extract data records.

If multiple data items are contained in a single record, it is best to use the rule as described
above where the extract data record is searched for only once.

In the following example, we see the extract data records searched individually. If each
series data value is contained in a unique extract data record then there is no choice but
to search for each individually. Here is an example:

;CreateChartSeries;{VBarChart}{Ser1}{11,TESTAAREC,25,2}{30,10};

;CreateChartSeries;{VBarChart}{Ser1}{11,TESTBBREC,25,2}{40,10};

;CreateChartSeries;{VBarChart}{Ser1}{11,TESTCCREC,25,2}{50,10};

;CreateChartSeries;{VBarChart}{Ser1}{11,TESTDDREC,25,2}{60,10};

;CreateChartSeries;{VBarChart}{Ser2}{11,TESTEEREC,25,3}{30,10};

;CreateChartSeries;{VBarChart}{Ser2}{11,TESTFFREC,25,3}{40,10};

;CreateChartSeries;{VBarChart}{Ser2}{11,TESTGGREC,25,3}{50,10};

;CreateChartSeries;{VBarChart}{Ser2}{11,TESTHHREC,25,3}{60,10};

;CreateChartSeries;{VBarChart}{Ser3}{11,TESTIIREC,25,4}{30,10};

;CreateChartSeries;{VBarChart}{Ser3}{11,TESTJJREC,25,4}{40,10};

;CreateChartSeries;{VBarChart}{Ser3}{11,TESTKKREC,25,4}{50,10};

;CreateChartSeries;{VBarChart}{Ser3}{11,TESTLLREC,25,4}{60,10};

See also FieldVarsToChartSeries on page 335

Search Criteria on page 270

Section and Field Rules Reference on page 274

CreateSubExtractList

317

 CreateSubExtractList
Use this section level rule (level 3) to process multiple items of the same type within a
single transaction. This rule produces a temporary extract list which contains each record
of the same type within a transaction.

The temporary extract list is based on the search mask and key you define. The system
can then populate variable fields using the data in the temporary extract list.

NOTE: The CreateSubExtractList rule is used with the SetRecipFromImage rule.

Syntax ;CreateSubExtractList; Search() Keys();;
;CreateSubExtractList; From() To ();;
;CreateSubExtractList; Drop;;
;CreateSubExtractList; Append;;

Image Editor example In the following example, the CRTSUB section triggers the CreateSubExtracList rule.
Here is an excerpt from the CRTSUB.DDT file:

<Image Rules>

;CreateSubExtractList;Search(1,18) Keys((24,10));

The first line creates a list based on the defined search criteria. The Keys variable defines
the scope of the search. In this example, Keys=Service Number. Each time the service
number changes, the system begins a new grouping.

Once a list of records has been grouped by this rule, a second form (sub-form) is called
and processed against that group of data. A unique key, such as a LOB key, must define
each sub-form called by this rule.

The second line in the DDT file defines the key for the sub-form it will call. Key2 triggers
the appropriate sub-form. In this example, CRTSUB calls on LOB2. Therefore, each sub-
group of data created by CRTSUB will be used to process all of the sections in LOB2.
And, unless otherwise specified, the LevelCheck value should always be set to zero.

Parameter Description

Search Defines a search criteria; see Search Criteria on page 270.

Keys This variable defines the scope of the search:

Keys((offset1,length1),(offset2,length2),….(offsetN,
lengthN))

From() To () The From(mask) includes the record specified in the from mask. The To(mask)
indicates where to stop. The To(mask) does not include the record specified in
the To(mask).

Drop This parameter drops the temporary sub-extract list that was created and
removes the records from the cached extract records for that transaction. You
will no longer have access to these records.

Append This parameter adds the temporary sub-extract list that was created to the end
of the extract list.

Chapter 5
Section and Field Rules Reference

318

Here is an example of a FORM.DAT file:

;Company;LOB;TEST;;N;;CRTSUB|DS<CUSTOMER(0)>

 /IMAGE1|DS<CUSTOMER(0)>;

;Company;LOB2;TEST;;N;;IMAGE2|DS<CUSTOMER(0)>

 /IMAGE3|DS<CUSTOMER(0)>

 /IMAGE4|DS<CUSTOMER(0)>

 /IMAGE5|DS<CUSTOMER(0);

Like all forms under a separate line of business in a form set, a sub-form called by the
CreateSubExtracList must have a trigger in the SETRCPTB.DAT file. You have to make
sure you have a unique trigger for the section that calls the CreateSubExtractList rule.
Otherwise, you will end up with a repeating group of data (see the sample extract file
below.) Here is an example:

;COMPANY;LOB;TEST;;;;;0;0;0;0;;

;COMPANY;LOB;TEST;CRTSUB;;CUSTOMER;1,18,9,HEADER,16,ELEC11;1;1;0;1;
;

;COMPANY;LOB;TEST;IMAGE1;;CUSTOMER;;0;0;0;1;1,18,16,ELEC11;

;COMPANY;LOB2;TEST;;;CUSTOMER;;0;0;0;0;;

;COMPANY;LOB2;TEST;IMAGE2;;CUSTOMER;;0;0;0;1;1,18,16,ELEC11;

;COMPANY;LOB2;TEST;IMAGE3;;CUSTOMER;1,18,16,ELEC11;1;1;0;1;;

;COMPANY;LOB2;TEST;IMAGE4T;;CUSTOMER;;0;0;0;1;1,18,16,ELEC11;

;COMPANY;LOB2;TEST;ENDSUB3;;CUSTOMER;;0;0;0;1;1,18,16,ELEC11;

NOTE: You must set up the calling section for overflow so the CreateSubExtractList rule
is recalled and can group the next set of records. If you do not set up overflow,
the system processes only the first group of records for the first key field. Also
note the form name TEST does not change.

Here is an excerpt of the extract file:

01SAMPCO STARTR ELEC01

18SAMPCO HEADER ELEC11 1111111111

18SAMPCO DETAIL ELEC11 1111111111

18SAMPCO DETAIL ELEC11 1111111111

18SAMPCO DETAIL ELEC11 1111111111

18SAMPCO HEADER ELEC11 2222222222

18SAMPCO DETAIL ELEC11 2222222222

18SAMPCO DETAIL ELEC11 2222222222

02SAMPCO END ELEC02

The DDT file corresponding to the last section in the sub-form called by this rule must
contain either Drop or Append. In this example the last section is IMAGE5.FAP. This lets
the rule knows that it has reached the end of the form. Here is an excerpt from the
IMAGE5.DDT file:

<Image Rules>

;CreateSubExtractList;DROP;

See also SetRecipFromImage on page 466

Section Overflow Sub-form called

CRTSUB.FAP Yes LOB2;TEST

CreateSubExtractList

319

Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

320

 DAL
Use this field level (level 4) rule to get information from an extract file if certain conditions
are met. In addition, this rule lets you call most of the DAL functions.

NOTE: Version 11.4 changed the way entries that specify a DAL rule are processed in the
Extract Dictionary (XDD).

Normally, the ancestry Data fields are appended together to form a complete data
representation for a field. When using the DAL rule, this behavior was often
undesired. Now, the system assumes that the entry specifying the DAL rule
contains all the data information required to resolve the necessary field value and
ignores any values specified by an ancestor.

The DAL rule is similar to the IF rule except it returns only data, not another rule. For
more information, see If on page 360.

When you use this rule in a DDT statement, end every statement with two colons (::).
Instead of writing the statement to the DDT file, you can specify a DAL script name by
adding Call ("scriptname") in the Data field. In the DDT file, it would look like this:

;0;0;DALTEST;0;18;DALTEST;0;18;;DAL;Call ("script.dal");N;N;N;N;

It is also possible to specify the rule data for the DAL rule in an external file. Name the
file to include with a leading ampersand (&) in the data area, as shown here:

;0;0;DALTEST;0;18;DALTEST;0;18;;DAL;&data.inc;N;N;N;N;

This loads the file, data.inc, from the current directory and inserts its contents into the
rule’s data area. Note that the file should contain a single line, just as it would appear if
you had typed the data directly into the rule data parameter. Also, if the include file is not
in the current directory, the name must specify the correct path to locate the file.

NOTE: If the include file is in DefLib, then change &data.inc to &deflib\data.inc.

If you encounter this error message:

DM10558: Error in GetFieldRuleData(): Condition exceeds buffer length

This means the content of your include file is too large to fit into the rule data area. To
resolve this problem, place the data in a DAL script file and use the CALL or CHAIN
command to execute the DAL script.

Image Editor example Here is an example:

;0;0;AUTONUREC-TOT;90;9;TOTAL PREMIUM;0;10;;dal;

$A = {11,AUTONUREC 25,9}::

$B = {11,AUTONUREC 35,9}::

$C = {11,AUTONUREC 45,9}::

$D = {11,AUTONUREC 55,9}::

$E = {11,AUTONUREC 65,9}::

$F = {11,AUTONUREC 75,9}::

$DENOM = 100.00::

$RESULT1 = ($A + $B + $C + $D + $E + $F)::

DAL

321

$RESULT2 = ($RESULT1 / $DENOM)::

if ($RESULT2=0)::

RETURN("0.0")::

ELSE::

RETURN($RESULT2)::

END::

;N;N;N;N;15373;16426;12012;

NOTE: You can use curly braces { } to tell the system to apply a search mask before
executing the DAL script. Here is an example:

$A = {11,AUTONUREC 25,9}::

The use of curly braces is not part of DAL syntax, but rather is a Documaker
Server notation that is preprocessed before the DAL script is executed.

Please note that you can only use curly braces in this manner if the DAL script is
written into the rule data area. External DAL script files cannot contain such
syntax. To retrieve extract data within an external DAL script file, you have to
use the GETDATA function.

See also If on page 360

Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

322

 DateDiff
This field level rule (level 4) lets you display the difference between two dates. The dates
do not have to be in the same format in the extract file, but the format of each must be
supported. (The valid formats 1,7,10,11 will be described later.)

The dates and their formats are separated by a comma (,) and are defined in the Data field
of the rule. For formats supporting a two-digit year, the 20th century (19xx) is assumed
for date difference calculations. Date differences as a result of using this rule are not true
in the sense that they are calculated under the following guidelines. These are sometimes
referred to as bankers dates.

• Month =30 days

• Year = 360 days

You must also specify the output format and output format data in the format mask of
the rule. (The only valid format and data currently supported is 1 3 / 3.)

Syntax FORMATMASK;rule;RULEDATA;...

The FormatMask must be in the form of:

OUTPUTFORMAT OUTPUTFORMATDATA

where OUTPUTFORMATDATA varies, depending on the output format. You must
separate these parameters with a space.

OUTPUTFORMAT. Shows the difference between the two dates, in months and days. The
only output format is 1. You must separate these parameters with a space.

OUTPUTFORMATDATA. The OutputFormatData must be in the form of:

MONTHLENGTH SEPARATORSTRING DAYLENGTH

For example, if you enter 3 / 3 and there are 365 days difference, the output would be
012/005. Here is an example:

1 3 / 3 (1 is OUTPUTFORMAT)

The RULEDATA consists of two groups of search criteria and extract field descriptors
for the two dates. These two groups of data are separated by a colon (:). Within each
group, search criteria and extract field descriptors are separated by a single space. Within
search criteria, offset and length are separated by a comma (,). Extract field descriptors are
also separated by a comma (,).

The RULEDATA must be in this form:

RECOFFSET1,RECDATA1 OFFSET1,LENGTH1,DATEFORMAT1:RECOFFSET2,RECDATA2
OFFSET2,LENGTH2,DATEFORMAT2

Parameter Description

RECOFFSET1 The record offset of first date.

RECDATA1 The search data for record of first date.

0FFSET1 The offset of first date in record.

LENGTH1 The length of first date in record.

DateDiff

323

You can use these formats:

NOTE: The data for the two dates is separated by a colon (:). Here is a RULEDATA
example: 1,TRANS 73,10,7:1,TRANS 83,10,7

Image Editor example ;1 3 / 3;DateDiff;1,TRANS 73,10,7:1,TRANS 83,10,7;...

NOTE: :The input to the DateDiff rule can be any of the supported date formats. The
system converts each format to the Julian_AD date and then returns the
difference.

Julian_AD dates are simply the number of days since 1 AD. 1 AD is presumed
to be 01/01/0001 because there was no year 0000. That’s why the millennium
does not actually start until 2001. For example, 730179 is Julian_AD for 02/29/
2000.

See also Section and Field Rules Reference on page 274

*DATEFORMAT1 The format of first date.

RECOFFSET2 The record offset of second date

RECDATA2 The search data for record of second date

OFFSET2 The offset of second date in record

LENGTH2 The length of second date in record

*DATEFORMAT2 The format of second date

* The format you specify here must be supported.

Enter For this format:

1 MM/DD/YY

7 YYYY-MM-DD

8 Julian_AD date 1 through 1000034 (01/01/0001 – 12/31/2738)

10 Month Date, Year (such as February 17, 2002)

11 MMDDYYYY

Parameter Description

Chapter 5
Section and Field Rules Reference

324

 DateFmt

NOTE: You should use the FmtDate rule, on page 337, instead of this rule. This rule is
included in this version of the system only for legacy system support.

Use this field level rule (level 4) to format a date retrieved from an extract record based
on the mask you select. A list of date masks appears below. This rule supports overflow.

Date masks
ID Source Destination Also supported by FmtDate

1 YYMMDD MMDDYY yes

2 YYYYMMDD MMDDYYYY yes

3 YYYYMMDD MMDDYY yes

4 YYMMDD MM-DD-YY yes

5 YYMMDD MM/DD/YY yes

6 YYYYMMDD MM-DD-YY yes

7 YYYYMMDD MM/DD/YY yes

8 MMDDYY MM-DD-YY yes

9 MMDDYY MM/DD/YY yes

10 YYYMMDD MM/DD/YY yes

11 MMDDYYYY Month D, YYYY yes

12 MMDDYYYY Mon D, YYYY no

13 MMDDYYYY MONTH D, YYYY no

14 YYYY-MM-DD Month D, YYYY yes

15 YYYY-MM-DD Mon D, YYYY no

16 YYYY-MM-DD MM/DD/YY yes

17 DD/MM/YY Mon D, YYYY no

18 DD/MM/YY Month D, YYYY yes

19 DD/MM/YY MM/DD/YY yes

21 YYYY-MM-DD Month DD, YYYY no

DateFmt

325

Destination formats with a single letter, such as D, indicate that the system will omit
leading zeros or spaces. Also, please note that Month indicates both upper- and lowercase
letters will be used while MONTH indicates only uppercase letters will be used. Mon
indicates the month will be abbreviated, in upper- and lowercase letters.

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In the DDT file, this information looks like this:

22 DD/MM/YY Month DD, YYYY no

23 MM/DD/YY Month DD, YYYY no

24 YYMM MM/YY no

25 MM/DDYY Month DD, YYYY no

26 DD/MM/YY Mon DD, YYYY yes

27 YYYY-MM-DD MM/DD/YYYY yes

ID Source Destination Also supported by FmtDate

In this field... Enter...

Destination name EFFECTIVEDATE

Offset 1

Length 10

Source name REC-EFFECTIVEDATE

Offset 75

Length 6

File *

Record 2

Required *

Rule DateFmt

Mask 4

Data 17,PMSP0200

* no entry required for this field in this example

Chapter 5
Section and Field Rules Reference

326

;;2;REC-
EFFECTIVEDATE;75;6;EFFECTIVEDATE;1;10;4;DateFmt;17,PMSP0200;;;;;

This rule gets the second occurrence of a record in the extract list which has PMSP0200
starting at its 17th character. It then takes the six characters starting at location 75 (which
should be of the format YYMMDD since we are using format mask 4). The DateFmt rule
will reformat the date to be MM-DD-YY before placing the date in the output buffer.

This example shows the use of a user function and overflow symbol:

In the DDT file, this information looks like this:

;;2;REC-EFFECTIVEDATE;75;6;EFFECTIVEDATE;1;10;4;DateFmt;
@GETRECSUSED,FORMABC,OVSYM/17,PMSP0200;;;;;

See also FmtDate on page 337

Formatting Data on page 257

Section and Field Rules Reference on page 274

In this field... Enter...

Destination name EFFECTIVEDATE

Offset 1

Length 10

Source name REC-EFFECTIVEDATE

Offset 75

Length 6

File *

Record 2

Required *

Rule DateFmt

Mask 4

Data @GETRECSUSED,FORMABC,OVSYM/17,PMSP0200

* no entry required for this field in this example

DeleteDefaultSeriesData

327

 DeleteDefaultSeriesData
This section level rule (level 3) removes all unnamed series data from the specified set of
series in a chart. If there are no series specified, this rule removes all series for the chart.

This rule is designed for the special circumstance where unnamed series data may have
been defined for the chart during composition, but this series data is not used in every
production. In other words, the series data is dynamically created as the result of running
rules such as the CreateChartSeries or FieldVarsToChartSeries rules.

Syntax ;DeleteDefaultSeriesData;chart,series,...;;

The first semicolon-delimited field contains the rule name. The second semicolon-
delimited field should contain one or more comma-delimited items. The first item must
always be a chart name. Any successive items must be series names that belong to that
chart.

Image Editor example If you had a chart named MYCHART which contained three different series named
SERIES1, SERIES2, and SERIES3, all the following would be valid uses of this rule:

Delete all series data (either method will work)

;DeleteDefaultSeriesData;MYCHART;

;DeleteDefaultSeriesData;MYCHART,SERIES1,SERIES2,SERIES3;

Delete series data for SERIES1

;DeleteDefaultSeriesData;MYCHART,SERIES1;

Delete series data for SERIES1 and SERIES3

;DeleteDefaultSeriesData;MYCHART,SERIES1,SERIES3;

See also CreateChartSeries on page 315

FieldVarsToChartSeries on page 335

Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

328

 DelImageOccur
Use this section level rule (level 3) to delete a specific occurrence of a section on a form.

Syntax ;DelImageOccur;Occurrence,Form,KillSpace;;

To use this rule, you must also add the following rule to the AFGJOB.JDT file:

;ProcessQueue;;PostPaginationQueue;

Add this rule after the RunSetRcpTbl rule. You can omit the rule level number.

Image Editor example ;DelImageOccur;3,form1,form2;;

This example removes the third occurrence of the current section on form1 and form2.

;DelImageOccur;-2;;

This example removes the second-to-last occurrences of the current section for all forms.

See also ProcessQueue on page 184

RunSetRcpTbl on page 212

Section and Field Rules Reference on page 274

Parameter Description

Occurrence The section occurrence to delete. Positive numbers indicate the count is from
the beginning. Negative numbers indicate the count is from the end.

Form The form name. If there are multiple sections, separate the section names with
commas, such as

form1,form2,form3,

If you specify a form name, the rule only works on those forms. If you omit the
form names, the rule affects all forms that include the section.

KillSpace (Optional) If you include this parameter, the system removes the space after the
specified occurrence of the section.
If you include this parameter, you must include it before the form name. Here
is an example:

;DelImageOccur;1,KillSpace;;

;DelImageOccur;1,KillSpace, Form1;;

Any form specified before the KillSpace parameter is not affected by this
parameter. Consider this example:

;DelImageOccur;1,Form1,KillSpace,Form2,Form3

The first occurrence of the current section in Form1 is removed but the space
where this section was placed is not removed. However, the first occurrence of
the current section is removed from From2 and From3. Furthermore, the
system also removes the space after the specified occurrence of the section.

DontPrintAlone

329

 DontPrintAlone
Use this section level rule (level 3) if you need to delete a page from a form set and there
is only one section on that page.

Syntax DontPrintAlone()

If, when the system determines pagination, it determines the section is the only section
on the page, the system omits the page from the printed output.

Image Editor example Here is an example from the DDT file for the QAIMSGOP.FAP file:

/* This section uses these rules */

<Image Rules>

;SetImageDimensions;98,0,298,15965,0,600,0,480;;

;SetOrigin;REL+0,MAX+0;;

;PaginateBeforeThisImage;;;

;ResetImageDimensions;MinHeight;;

;DontPrintAlone;;;

This example will not include the section QAIMSGOP in the printed output if it is the
only section on a page.

See also PaginateBeforeThisImage on page 421

Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

330

 EjectPage
Use this field level (4) rule to process multi-page FAP files (sections). With multi-page
sections, when the section is added to the form set only one section object is created.
When the section gets loaded, the system creates the other sections.

Syntax EjectPage()

This rule makes sure the pre- and post-section level processing is run for each section of
the multi-page FAP file, not just the pre-processing on the first section and the post-
processing on the last.

When you run the FAP2MET utility on a multi-page FAP file, the utility creates a FAP
file for each page. In the DDT file, you should then make an entry for the FAP file and
add an EjectPage rule for each additional page that makes up the form. The system knows
by the EjectPage rules to look for additional FAP files for this form.

Image Editor example Here is an example of the rule as it would appear in a DDT file:

;0;0;zip;75;5;zip;0;5;;move_it;11,ProdARec;N;N;N;N;16168;5070;11010
;

;;;;;;;;;;EjectPage;;;;;;;;;

;0;0;f p num;0;2;f p num;0;2;;mk_hard;X;N;N;N;N;13925;25842;11006;

Image Editor automatically inserts this rule into the DDT file for a multiple page FAP file.

See also Section and Field Rules Reference on page 274

FfSysDte

331

 FfSysDte
Use this field level rule (level 4) to get the current date from the system and place that date
in the destination field. This rule supports overflow.

There are several output formats you can specify by entering a format ID in the DDT data
field. Here's a list of the format IDs you can use:

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

ID Output Format

M month only, output formatted as MM

D day only, output formatted as DD

Y year only, output formatted as YY

MS month spelled out

MS1 month spelled out, followed by the two-digit year. (24 June 02)

MS2 month spelled out, followed by the date and a four-digit year (February 17, 2002)

Default no option specified in the data field, will use the format MM/DD/YY

In this field... Enter...

Destination name DATE

Offset 1

length 20

Source name REC-DATE

Offset *

Length *

File *

Record *

Required *

Rule FfSysDte

Mask *

Data *

Chapter 5
Section and Field Rules Reference

332

In the DDT file, this information looks like this:

;0;0;REC-DATE;;;DATE;1;20;;FfSysDte;;;;;;

This example places the current system time stamp in the destination field, according to
the default format of MM/DD/YY.

NOTE: Place the format ID immediately after the rule. This differs from other rule masks.

See also SysDate on page 474

Formatting Data on page 257

Section and Field Rules Reference on page 274

* no entry required for this field in this example

Field2GVM

333

 Field2GVM
Use this section level rule (level 3) to create a GVM variable from the fields in the current
section. For instance, you can use this rule to store the system date for later use.

Syntax Field2GVM; FieldName, GVMName

You can use this rule to output data into one of the batches or the NEWTRN.DAT file
if the GVM variable name matches the field name in the DFD file.

GVM variables are essential part of Documaker Server. For example, the fields in the
NEWTRAN.DAT file, or in recipient batch records are all GVM variables during
runtime. This rule lets you take data from a field and place the data into a GVM variable.
If that GVM variable happened to be one of the fields in a recipient batch record, it would
be written out to the RCB file.

You can also use the \O parameter to identify fields the system should consider as
optional.To flag a field as optional, include \O at the end of the field name. Here is an
example:

;Field2GVM;Date\O,CurrentDate,DTE_CLOSED,DTEACCTCLSD;

This example will not generate an error if Date cannot be located on the section. An error
will be generated if DTE_CLOSED is missing.

If the system cannot find a field marked as optional, it will not change the destination
GVM variable. This behavior supports situations where you map any of several fields that
could be generated to the same GVM variable.

Note, that this rule creates a GVM variable if necessary. Therefore, be sure to check the
spelling of the GVM variable name if you intend to use one created by a prior process.
Otherwise, a new variable is created.

Keep in mind...

• If the GVM variable you specify does not exist, it will be created. This differs from
other rules which expect you to have defined the GVM variable by some other
means. This means that if you misspell the variable name, you will not get an error
because a GVM variable will be created for that name.

• Designating a field as optional does not change the value of the GVM variable if the
field is missing. The system does not clear the GVM variable of data just because a
field is missing.

Image Editor example Here is an example from a DDT file:

;Field2GVM;BANNER TEXT #002,DATAOUT;;

The data contained in the BANNER Text #002 field is retrieved and stored in the GVM
variable called DATAOUT.

Parameter Description

FieldName Name of the field on the current section from which the data is retrieved.

GVM name Name of the GVM variable in which the retrieved data will be stored.

Chapter 5
Section and Field Rules Reference

334

You can also use this rule to place the system date in the NEWTRN.DAT file. To do this,
in the FAP file you create a field, such as System_Date, which will always be triggered.
You then add a field name, such as SystemDate in the TRNDFDFL.DFD file. Next,
add...

Field2GVM,System_Date,SystemDate

in the DDT file and use the SysDate rule to place system date in the System_Date field.
This will place the system date in the NEWTRN.DAT file.

If you then want to place the system date into archive, define a field, such as DAPDate,
in the APPIDX.DFD file and add...

< Trigger2Archive >

dapdat = systemdate

Once the system date is in APPIDX.DBF file, you can display it by adding...

< AfeArchiveDisplay >

Field = dapdata,DD%m/%d/%Y

See also Section and Field Rules Reference on page 274

FieldVarsToChartSeries

335

 FieldVarsToChartSeries
Use this section level rule (level 3) to allow a chart's series data to be retrieved via
references to the section’s variable fields. Since Documaker Server does no field
propagation, as would an entry system, you must handle field propagation.

You can assign a name for the series data in the FAP file definition. You can then use the
series data name to associate the series with a variable field with the same name. This rule
propagates data mapped to a variable field into series data with the same name. What this
rule does that the CreateChartSeries rule cannot is manipulate extract data before it is
assigned to a series.

Syntax FieldVarsToChartSeries()

Typically, you will need to use the DeleteDefaultSeriesData rule before you use this rule.
Always use the PurgeChartSeries rule after you use this rule, as a means of cleanup. If you
find incorrect data in a chart, you may be missing one of these rules.

NOTE: Use Studio or Image Editor to select the fields the system will then use to assign
the minimum, maximum, increment/label, and tick mark values. See the
Documaker Studio User Guide or the Docucreate User Guide for more
information.

Image Editor example This example uses the Move_It rule, which does not manipulate the extract data. You can
also use other rules, such as the MoveNum rule, to scale the data mathematically. For
example, if a chart has four series, each with four series data values, you could build it as
shown below with data gathered by field level rules. You can then use the mapped variable
field data to populate the chart series data fields listed in the FAP file.

Here is how it would look in the DDT file:

<Image Rules>

;FieldVarsToChartSeries;;;

<Image Fields>

<Image Field Rules Override>

;0;0;FIELD10;30;10;FIELD10;0;10;;Move_It;11,TESTXXREC,25,1;N;N;N;N;

;0;0;FIELD11;40;10;FIELD11;0;10;;Move_It;11,TESTXXREC,25,1;N;N;N;N;

;0;0;FIELD12;50;10;FIELD12;0;10;;Move_It;11,TESTXXREC,25,1;N;N;N;N;

;0;0;FIELD13;60;10;FIELD13;0;10;;Move_It;11,TESTXXREC,25,1;N;N;N;N;

;0;0;FIELD20;30;10;FIELD20;0;10;;Move_It;11,TESTXXREC,25,2;N;N;N;N;

;0;0;FIELD21;40;10;FIELD21;0;10;;Move_It;11,TESTXXREC,25,2;N;N;N;N;

;0;0;FIELD22;50;10;FIELD22;0;10;;Move_It;11,TESTXXREC,25,2;N;N;N;N;

;0;0;FIELD23;60;10;FIELD23;0;10;;Move_It;11,TESTXXREC,25,2;N;N;N;N;

;0;0;FIELD30;30;10;FIELD30;0;10;;Move_It;11,TESTXXREC,25,3;N;N;N;N;

;0;0;FIELD31;40;10;FIELD31;0;10;;Move_It;11,TESTXXREC,25,3;N;N;N;N;

;0;0;FIELD32;50;10;FIELD32;0;10;;Move_It;11,TESTXXREC,25,3;N;N;N;N;

;0;0;FIELD33;60;10;FIELD33;0;10;;Move_It;11,TESTXXREC,25,3;N;N;N;N;

;0;0;FIELD40;30;10;FIELD40;0;10;;Move_It;11,TESTXXREC,25,4;N;N;N;N;

;0;0;FIELD41;40;10;FIELD41;0;10;;Move_It;11,TESTXXREC,25,4;N;N;N;N;

;0;0;FIELD42;50;10;FIELD42;0;10;;Move_It;11,TESTXXREC,25,4;N;N;N;N;

Chapter 5
Section and Field Rules Reference

336

;0;0;FIELD43;60;10;FIELD43;0;10;;Move_It;11,TESTXXREC,25,4;N;N;N;N;

See also CreateChartSeries on page 315

DeleteDefaultSeriesData on page 327

PurgeChartSeries on page 433

Move_It on page 393

MoveNum on page 402

Section and Field Rules Reference on page 274

FmtDate

337

 FmtDate
Use this field level rule (level 4) to format dates. Using this rule you can format dates for
different localities. This rule supports overflow.

The DDT mask for the FmtDate rule takes these values:

• input fetype

• input format mask

• output fetype

• output format mask

NOTE: There are two types of format masks, pre-defined types 1-9 and A-Q and user-
defined format arguments. If the pre-defined formats meet your needs, use them,
otherwise, create a user-defined format. For information on using pre-defined
format types, see Using Pre-defined Date Formats on page 257.

User-defined format arguments consist of one or more codes, each preceded by
a percent sign (%). For more information on user-defined format masks, see the
Setting Up Format Arguments on page 262.

You can enter up to 80 characters in the mask.

Image Editor example Assume the data in extract file is 04/01/2001 (which is fixed type 1 – MM/DD/YYYY)
and you want to convert it to April 1, 2001 (which is Mon D, Yr), use this DDT format
mask:

d,”1/4”,d,”4/4”

To produce a Canadian French date, add the CAD locality code, as shown here:

d,”1/4”,dCAD,”4/4”

To produce a date such as Apr 1, 2001 (format -- Mon D, Yr which does not fall into any
fixed type), use the following DDT format mask.

d,”1/4”,d,”%b %#d, %Y”

Here is another example:

;0;0;datefield1;80;6;datefield1;0;12;d,”B”,d,”4/
4”;FmtDate;11,HEADERREC;N;N;N;;;;;

See also DateFmt on page 324

Formatting Data on page 257

Field Format Types (fetypes) on page 265

Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

338

 FmtNum
Use this field level rule (level 4) to format numbers. Using this rule you can format
amounts for different localities. This rule supports overflow.

The DDT mask area takes these values:

• input fetype

• output fetype

• output format mask

An fetype defines the field format type. You can have an input and an output fetype. For
example, an input fetype with the FmtNum rule tells the system where the decimal goes
in the number. The output fetype tells the system how to format the output amount. An
fetype can consist of either one or four characters.

The first character of an fetype defines the field format type. There are several types
defined in the system such as a d for dates and an n for numbers. You can add three
additional characters to override the default locale, which is USD (United States, English).
Please see Field Format Types (fetypes) on page 265 for a list of the supported localities.
If your defined fetype is not one that is supported, the system uses USD.

Image Editor example For example, if you have this DDT format mask...

n,nCAD,"$ZZZ,ZZ9.99"

...and the extract data has an amount such as 123,456.78, the system uses this rule to read
the amount and then create 123456.78. The system then formats this number (123456.78)
to produce the result, 123 456,78$.

Here is another example. If you use this DDT format mask...

nCAD,nUSD,"$ZZZ,ZZ9.99"

...and the extract data has a Canadian French amount such as 123 456.78$, the system uses
this rule to read the number and then create 123456.78. The system then formats this
number (123456.78) to produce the result in US dollars, $123,456.78.

Left justifying numbers You can include the L parameter to left justify numbers after they have been formatted.
This parameter is the fourth optional flag in the DDT mask area. For example, if you have
this DDT format mask

n,n,"z,zzz,zzz,zzz,zz9.99",L

and the extract data has an amount such as 123456.99, the system uses this rule to read
the amount and formats this number to produce the result, 123,459.99. The rule will then
left justify the field. Below is an example of the result with and without the L parameter.

Without the L parameter:

n,n,"z,zzz,zzz,zzz,zz9.99"

 123,456.99

With the L parameter:

n,n,"z,zzz,zzz,zzz,zz9.99",l

123,456.99

FmtNum

339

Like the Move_It and MoveNum rules, this type of left justification simply removes
leading spaces. It does not provide a positional justification as is provided by the JustFld
rule.

See also Using Pre-defined Numeric Formats on page 261

Section and Field Rules Reference on page 274

Suppressing Decimals with the FmtNum Rule on page 261

Using the ZeroText Option with the FmtNum Rule on page 262

JustFld on page 367

Chapter 5
Section and Field Rules Reference

340

 GlobalFld
Use this field level rule (level 4) to speed the processing of fields used repeatedly
throughout a form set.

Frequently a field rule is called to retrieve the same record over and over, which slows
batch processing. Using this rule helps you avoid unnecessary repetition and therefore
speeds processing.

NOTE: The name of the field in the FAP file (the field name in the XDB file) and the
source name of the field in the DDT file (the source name in the XDB file) must
be identical for this rule to work correctly.

Syntax GlobalFld()

To use this rule, you must have an XDB.DBF file, which is similar to a data definition
table (DDT) file. You set up the XDB and DDT files as shown in the examples below.

The Record field column in an XDB record can be just about anything. If you are
importing the fields from a DDT file, the system defaults the record field to the name of
the DDT file you are importing.

If you import the fields from a COBOL Copybook, the record column field is assigned
the name of the higher level group that owns the field.

Keep in mind that you cannot use the GlobalFld rule if the field data is not going to be
global in scope. For instance, overflow and sub-extract situations where you expect the
next occurrence of the field to get a different result are not candidates for the GlobalFld
rule.

The SourceFile record member is not used in looking up XDB records. XDB records are
looked up by the destination field name alone.

NOTE: When using the GlobalFld Rule, the XDB record replaces the entire DDT
record. Remember, it is a global field, therefore the assumption is that all DDT
references to the field are identical.

If you want to make common rule definitions, but override certain members in
individual DDT files, use the Master DDT Editor instead of the GlobalFld rule.

GlobalFld

341

Image Editor example Assume the InsuredName field is used many times throughout the form set and the name
of the form set is QMDC1. Make these entries in the XDB.DBF file:

And make these entries in the QMDC1.DDT file, using the Edit DDT tab of the field’s
Properties window in Image Editor:

Field Enter

Source Name InsuredName

Source File QMDCL.DDT

Record QMDCL

Offset 25

Length 30

Field Name InsuredName

Required Not

Rule Move_It

Mask

Data 11,INSNAMREC

Field Enter

Destination Name InsuredName

OffSet 0

Length 30

SourceName InsuredName

OffSet 0

Length 0

File 0

Record 0

Required Not

Rule GlobalFld

Mask

Data

Chapter 5
Section and Field Rules Reference

342

When the system executes this rule, it first checks the Dictionary rule by the field name
key. If the record exists, it returns the value—here InsuredName. If not, it looks into
XDB and gets the original field rule, such as Move_It.

Then the system executes the field rule to get the value and returns it. Finally, it stores the
record in the dictionary. The next time that record is required, the system gets the value
from the dictionary.

NOTE: After you run the GlobalFld rule, you must run the Dictionary rule to terminate
the XDB and free memory.

See also Dictionary on page 79

Section and Field Rules Reference on page 274

GroupBegin

343

 GroupBegin
Use this section level rule (level 3) to define the first section in a group of sections. A group
is a set of sections delimited by a begin section and an end section that is processed as a single
unit.

Using this rule, you specify which sections are grouped on the printed pages. Each
GroupBegin rule must have a corresponding GroupEnd rule. With these rules you can:

• Expand boxes to surround a section group with user-defined margins

• Keep a group of sections together on a page

• Paginate vertically with headers, footers, and overflow sections at the group level

• Paginate horizontally with left and right margins that can contain lists

• Format fields with currently used rules

• Create nested groups

• Vary row heights by the tallest field size or set a standard height for all rows

• Pre-define the spacing between rows

• Set a minimum number of lines to be left on the first or last page

• Create a columnar layout

Syntax GroupBegin;GroupFunction(parameters(sub parameters))

The group functions include:

• Box

• GroupPagination

• List

• StayTogether

• Column

Using the Box Function
Use this function to expand the first box defined in the group to fit around all sections in
the group. The Margin parameter lets you define the extra space to be added between the
edge of the section and the box edges. The Margin sub parameters are:

Parameter Description

Left Left margin size in FAP units

Top Top margin size in FAP units

Right Right margin size in FAP units

Bottom Bottom margin size in FAP units

Chapter 5
Section and Field Rules Reference

344

Here is an example:

;GroupBegin; Box(Margin(20,20,20,20));;

The section would look like this:

The section must include a box that will be expanded by the GroupBegin rule’s Box
function around the text, as shown below:

This example expands the box around a section group and sets the margin to 20 FAP units
between the outer edge of the section and the outer edge of the box. There are 2400 FAP
units per inch.

Using the GroupPagination Function
Use this group function to define the requirements for keeping certain sections (groups)
together on pagination. The GroupPagination parameters are:

GroupBegin

345

The following example requires that a minimum of two sections appear on the current
page, and a minimum of three sections appear on any subsequent pages. This example
also requires that the next page be checked to confirm that the entire group cannot fit on
the next page before splitting can occur. In addition, the second section is defined as the
header for the group and is to be copied on overflow. Plus the fourth section is defined
as the footer for this group.

Here’s an excerpt from the DDT file for the first section:

/* This section uses these rules */

<Image Rules>

;SetImageDimensions;98,0,936,19718,0,0,0,0;

;SetOrigin;Rel+0,Max+100;

;GroupBegin;GroupPagination(MinImagesOnCurrent(2),MinImagesOnNext(3
));

… … …

Here’s an excerpt from the DDT file for the second section:

/* This section uses these rules */

<Image Rules>

;SetImageDimensions;98,0,1142,19718,0,0,0,0;

;SetOrigin;Rel+0,Max+100;

;SetGroupOptions;header,copyonoverflow;

Here’s an excerpt from the DDT file for the third section:

/* This section uses these rules */

<Image Rules>

;SetImageDimensions;98,0,357,19699,0,0,0,0;

;SetOrigin;Rel+0,Max+100;

… … … …

Here’s an excerpt from the DDT file for the fourth section:

/* This section uses these rules */

<Image Rules>

Parameter Description

MinImagesOnCurrent Defines the minimum number of sections required on the current
page. The default is zero (0).
This rule counts all sections triggered in the group, even if a section
has no size. It totals the section sizes to determine the minimum
number of sections which can be placed in the remaining space on the
page.
If a section has no size or is flagged as view only, the section is placed
on the page.

MinImagesOnNext Defines the minimum number of sections required for new and next
page. The default is one (1).

NeverSplit Requires that all sections within the group must remain together on
same page—pagination can never occur within the group. The default
is No.

CheckNextPage Requires that the next page be checked to confirm that the entire
group cannot fit on the next page before splitting can occur. The
default is No.

Chapter 5
Section and Field Rules Reference

346

;SetImageDimensions;98,0,621,6124,0,0,0,0;

;SetOrigin;Rel+0,Max+100;

…. … … …

;SetGroupOptions;footer;

;GroupEnd;;

Using the List Function
A list is a column of data on a section that is defined as a single field in the data definition
table (DDT) and is populated by the BldGrpList rule.

The List function works with the BldGrpList rule to print sections containing lists, or
columns, side by side in rows. The tallest field in the row and the GroupBegin:List
parameters, MinSpacing and AddSpacing, determine the row height. The List sub
parameters are:

Here is an example:

GroupBegin;List (MinSpacing(800) AddSpacing(200) MinLines(12)
MinLinesCont(5));;

; GroupBegin;List(AddSpacing(65));;

This example causes 65 FAP units to be inserted between the groups of sections.

Using the StayTogether Function
Use this function if you do not want the group of sections to be split between pages and
overflow onto a new page if there is room on the current page for the entire group. The
dimensions of the group of sections cannot be larger than the dimensions of the page.

NOTE: Also keep in mind that you cannot nest a StayTogether with a column to keep the
column section together. If you try to use a StayTogether over all the sections you
want to organize into columns, the results will not be what you expect.

Here is an example:

;GroupBegin;StayTogether;;

Parameter Description

AddSpacing Adds additional spacing in FAP units between rows of data. There are 2400
FAP units per inch.

MinSpacing Defines the minimum size in FAP units for each row of data.

MinLines Defines the minimum number of lines to be printed on the first page of a
section. When pagination occurs, if the number of lines printed on the first
page is less than the MinLines amount, the entire section is moved to the
second page.

MinLinesCont Defines the minimum number of lines to be printed on the last page of a
section. When pagination occurs, if the number of lines printed on the last
page is less than the MinLinesCont amount, lines are taken from the preceding
page to meet the minimum.

GroupBegin

347

This example keeps a group of sections together when overflow forces them onto a new
page.

Using the Column Function
Use the Column group function to create wrapping or and straight columns.

Creating wrapping
columns

Use the Wrap parameter to create newspaper style columns where the column contents
flow from the top of a column to the bottom and then to the top of the next column. All
columns have the same width and the same amount of space between them. There are a
fixed number of columns on the page.

Creating straight
columns

Use the Straight parameter to create columns whose contents do not flow from one
column to the next. Instead, these columns are not connected and run parallel to one
another. Straight columns are paginated independently. If the contents of one column
exceed the page, the remaining contents appear in that same column on a second page.
All the usual overflow, header, and footer considerations still apply.

The contents of this
column flows into the next
column as necessary.
These columns are
sometimes called

newspaper columns. You
can see examples of these
columns in newspapers or
magazines.

Chapter 5
Section and Field Rules Reference

348

Column function
parameters

Here is a list of the parameters you can use with the Column function.

The contents of this
column never flow into the
next column.

When you fill all of the
space available to this
column on a page,

These two columns run
parallel to one another.

They are sometimes called

any remaining content
flows to the next page.

parallel columns or side-by
side columns.

Page 1

Page 2

Parameter Description

Wrap Indicates the text in the columns will wrap. No other parameters are
required. Wrapping is done by default, unless you use the Multiple or
Straight parameter.

Straight Indicates the text will not be wrapped from one column to the next. No
other parameters are required.
The section definition controls the width and separation of the columns.
When you use straight columns, you define the starting columns with a
GroupBegin and the ending column with an GroupEnd.

GroupBegin

349

Keep in mind that...

• Wrap and Straight are mutually exclusive.

• Multiple and Single are mutually exclusive.

• Straight is mutually exclusive with Balanced, ColCount, ColWidth, and
ColSeparation.

• Multiple is mutually exclusive with Wrap, Straight, Balanced, ColCount, ColWidth,
and ColSeparation.

• You cannot nest a Wrap within a Wrap, Straight, or Multiple.

• You cannot nest a Straight within a Wrap or Straight.

• You cannot nest a Straight within a Multiple.

• You cannot nest a Multiple within a Multiple.

Balanced() The balanced sub-parameters determine how sections are processed if there
is less than a full page of sections. The default is Left.
Left
Use this sub-parameter to equally divide the sections between the columns
on the page. If there is a remainder, the left most column will be the longest
column.
Unbalanced
Use this sub-parameter to add sections to a column until there is no more
room in that column on that page. The system then places remaining
sections in the second column of that same page. The system repeats this
process until all columns on the page are filled. The system then places any
remaining sections in the first column of the next page and continues filling
the columns in this manner.

ColCount() Defines how many columns will be on a page. You must enter a positive
number.

ColSeparation() Defines, in FAP units, how much space is between columns. You must
enter a positive number. The default is zero. There are 2400 FAP units per
inch.

ColWidth() Defines, in FAP units, the width of each column. If you omit the width, the
system uses the width of the widest section in the group. You cannot enter
a negative number. There are 2400 FAP units per inch.

Single Indicated there will be a single straight column on the page. Single is the
default unless you specify Multiple.

Multiple Indicates there will be multiple straight columns on the page. You must
embed the straight groups within a group. You do this using the Multiple
group parameter.

Debug Use this parameter to write column-processing information into the log file
for debugging purposes.

Parameter Description

Chapter 5
Section and Field Rules Reference

350

Example 1: Wrapped
balanced columns

Assume you have a long list of narrow sections which you want to flow down the page
until they reach the bottom of the page. The next section should appear at the top of the
second column on that page.

In addition, you want the sections to move over to the right so they do not overlap the
sections in the first column and you want to repeat this layout until there are three
columns of sections.

The columns should be 6000 FAP units wide, balanced as much as possible, and separated
by 1/4 inch (600 FAP units) gap. Each section is 1800 x 5200 FAP units. Section margins
are 600 FAP units for the top, bottom, left, and right. The text area is 4000 FAP units in
width and can grow and shrink. Up to two hundred characters of data can be moved into
each text area.

Based on this criteria, here is an excerpt from the DDT file for the first section:

/* This section uses these rules */

<Image Rules>

;SetImageDimensions;…

;SetOrigin;Rel+0,Max+0

;GroupBegin;Column(Wrap Balanced(Left) ColCount(3) ColWidth(6000)
ColSeparation(600));

…

Here are excerpts from the DDT file for the second section:

/* This section uses these rules */

<Image Rules>

;SetImageDimensions;…

;SetOrigin;Rel+0,Max+0;

;IncOvSym;QAICOL2ASYM,QAICOL2A;

;TextMergeParagraph;;

….

/* The following fields override the lower level definitions for this
section only.*/

<Image Field Rules Override>

;0;1;Column Input Area A;40;200;Column Input Area A; 0;200;;Move_It;
@GETRECSUSED,QAICOL2A,QAICOL2ASYM/
31,MOVEITA;N;N;N;N;650;1020;12110;

After the last section, the column ends with:

/* This section uses these rules */

<Image Rules>

;SetImageDimensions;…

;SetOrigin;Rel+0,Max+0;;

;GroupEnd;;;

This is how the section should look:

GroupBegin

351

Example: 2 - Multiple
straight columns

Assume you have three columns of sections which you want to output as straight
columns. When either of the columns runs into a page footer or off the bottom of the
page, you want the sections continued on the next page.

The data in the extract file is contained in three separate groups of continuous overflow
records, which may have up to two hundred characters of information.

Based on this criteria, here is a sample solution:

/* Excerpt from the DDT file for the first column anchor point. */

<Image Rules>

;SetImageDimensions;98,0,2098,6600,600,600,600,600;

;SetOrigin;Abs+0,Abs+0,,Store(VAR1);

;GroupBegin;Column(Debug Multiple);

;GroupBegin;Column(Straight);

/* Excerpt from the DDT file for the second column anchor point. */

<Image Rules>

;SetImageDimensions;98,0,2098,6600,600,600,600,600;

;SetOrigin;VAR1.right+600,VAR1.top+0,,Store(VAR2);;

;GroupBegin;Column(Straight);

/* Excerpt from the DDT file for the third column anchor point. */

<Image Rules>

;SetImageDimensions;98,0,2098,6600,600,600,600,600;

;SetOrigin;VAR2.right+600,VAR2.top+0;;

;GroupBegin;Column(Straight);

Column anchor point

Record 1, column 3

Record 2, Column 3

Record 3, column 3

Record 4, column 3

Record 5, column 3

End of column 3

Column anchor point

Record 1, column 1

Record 2, Column 1

Record 3, column 1

Record 4, column 1

Record 5, column 1

End of column 1

Column anchor point

Record 1, column 2

Record 2, Column 2

Record 3, column 2

Record 4, column 2

Record 5, column 2

End of column 2

Chapter 5
Section and Field Rules Reference

352

/* Excerpt from the DDT file for the first column section*/

<Image Rules>

;SetImageDimensions;98,0,1749,6634,600,600,600,600;

;SetOrigin;Abs+0,Max+0;

;IncOvSym;QAICOL2C11SYM,QAICL2C1;

;TextMergeParagraph;;;

<Image Fields>

<Image Field Rules Override>

;0;1;Column Input Area C1;40;200;Column Input Area
C1;0;200;;Move_It;@GETRECSUSED,QAICL2C1,QAICOL2C11SYM/
31,MOVEITC1;N;N;N;N;733;917;16010;

/* Excerpt from the DDT file for the second column section */

<Image Rules>

;SetImageDimensions;98,0,1749,6634,600,600,600,600;

;SetOrigin;VAR1.right+600,Max+0;;

;IncOvSym;QAICOL2C21SYM,QAICL2C2;

;TextMergeParagraph;;;

<Image Fields>

<Image Field Rules Override>

;0;1;Column Input Area C2;40;200;Column Input Area
C2;0;200;;Move_It;@GETRECSUSED,QAICL2C2,QAICOL2C21SYM/
31,MOVEITC2;N;N;N;N;733;917;16010;

/* Excerpt from the DDT file for the third column section */

<Image Rules>

;SetImageDimensions;98,0,1749,6634,600,600,600,600;

;SetOrigin;VAR2.right+600,Max+0;;

;IncOvSym;QAICOL2C31SYM,QAICL2C3;

;TextMergeParagraph;;

<Image Fields>

<Image Field Rules Override>

;0;1;Column Input Area C3;40;200;Column Input Area
C3;0;200;;Move_It;@GETRECSUSED,QAICL2C3,QAICOL2C31SYM/
31,MOVEITC3;N;N;N;N;733;917;16010;

/* Excerpt from the DDT file for the End of the first column. */

<Image Rules>

;SetImageDimensions;98,0,1749,6634,600,600,600,600;

;SetOrigin;Abs+0,Max+1200;

;GroupEnd;;

/* Excerpt from the DDT file for the End of the second column. */

<Image Rules>

GroupBegin

353

;SetImageDimensions;98,0,1749,6634,600,600,600,600;

;SetOrigin;VAR1.right+600,Max+1200;;

;GroupEnd;;

/* Excerpt from the DDT file for the End of the third column. */

<Image Rules>

;SetImageDimensions;98,0,1749,6634,600,600,600,600;

;SetOrigin;VAR2.right+600,Max+1200;;

;GroupEnd;;;

;GroupEnd;;;

Here is an excerpt from the FORM.DAT file:

;CWNG;CIS;QaiColD;Testing
StraightColumns;N;;QAICLST1|DS<Customer(1)> /
QAICL2C1|DSW<Customer(1)>/EndCol1|DSW<Customer(1)>/QAICLST2|DS
<Customer(1)>/QAICL2C2|DSW<Customer(1)>/EndCol2|DSW<Customer(1)> /
QAICLST3|DS<Customer(1)>/QAICL2C3|DSW<Customer(1)>/EndCol3|DSW
<Customer(1)>;

Here is an excerpt from the SETRCPTB.DAT file:

;CWNG;CIS;QaiColD;;;Customer;;0;0;0;0;11,HEADER,31,030167994401;

;CWNG;CIS;QaiColD;QAICLST1;;Customer;;0;0;0;1;31,MOVEITMC1;

;CWNG;CIS;QaiColD;QAICL2C1;;Customer;31,MOVEITC1;1;0;0;1;;

;CWNG;CIS;QaiColD;EndCol1;;Customer;;0;0;0;1;31,MOVEITMEND;

;CWNG;CIS;QaiColD;QAICLST2;;Customer;;0;0;0;1;31,MOVEITMC2;

;CWNG;CIS;QaiColD;QAICL2C2;;Customer;31,MOVEITC2;1;0;0;1;;

;CWNG;CIS;QaiColD;EndCol2;;Customer;;0;0;0;1;31,MOVEITMEND;

;CWNG;CIS;QaiColD;QAICLST3;;Customer;;0;0;0;1;31,MOVEITMC3;

;CWNG;CIS;QaiColD;QAICL2C3;;Customer;31,MOVEITC3;1;0;0;1;;

;CWNG;CIS;QaiColD;EndCol3;;Customer;;0;0;0;1;31,MOVEITMEND;

Keep in mind these requirements and restrictions when defining groups:

• Each GroupBegin section must have a corresponding GroupEnd section. Either of
these sections can be a blank section.

• If you are using conditional sections, make sure the triggers in the SETRCPTB.DAT
file for the GroupBegin and GroupEnd sections are the same.

• Group footers do not have to be defined as the first section as form footers in the
form definition file (FORM.DAT).

• Do not use an absolute Y coordinate for a group header or group footer.

• When a section contains both a GroupBegin rule and a SetGroupOptions rule, the
GroupBegin rule must come first.

• When a section contains both a GroupEnd rule and a SetGroupOptions rule, the
SetGroupOptions rule must come first.

• Variable field data inside overflow group header sections will propagate to the new
page during group pagination if the field scope is set to Form.

You must set all group pagination section options (footer, header, and copyonoverflow)
using the SetGroupOptions rule.

See also GroupEnd on page 355

Chapter 5
Section and Field Rules Reference

354

BldGrpList on page 301

SetGroupOptions on page 439

Section and Field Rules Reference on page 274

GroupEnd

355

 GroupEnd
Use this section level rule (level 3) to define the last section in a group of sections. This
rule triggers the formatting of gathered data into section lists, or columns. Vertical
pagination occurs while the system processes this rule.

Syntax GroupEnd()

There are no parameters for this rule.

Image Editor example ;GroupEnd;;

This example causes the group of sections defined with a GroupBegin rule to be ended
and triggers the formatting for those sections.

See also GroupBegin on page 343

SetGroupOptions on page 439

Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

356

 HardExst
Use this field level rule (level 4) to place a value into a field only if a record is found in the
extract data using the search criteria you specify in the data field. This rule supports
overflow.

Syntax HardExst ()

For instance, you could use this rule to see if there is a record in an extract file that
corresponds to a field designating whether or not the applicant is a home owner. If the
data exists in the extract record, the rule could then place an X in the Home Owner field.

You can use these format flags:

The system justifies the data by adding spaces in front of the text. If you are using a
proportional font, do not use these flags to align the data. Use the JustFld rule for that.

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

Flag Description

C Center

R Right justify

In this field... Enter...

Destination name CHECK BOX

Offset *

Length 1

Source name REC-CHECK BOX

Offset *

Length *

File *

Record *

Required *

Rule HardExst

Mask *

Data 17, PMSP0200 X

* no entry required for this field in this example

HardExst

357

In the DDT file, this information looks like this:

;;;REC-CHECK BOX;;;CHECK BOX;;1;;HardExst;17,PMSP0200 X;;;;;

This example puts an X into the destination buffer for the field named CHECK BOX if
a record is found in the extract list using the search criteria of 17,PMSP0200.

NOTE: Source offset and length do not apply to this rule.

Keep in mind that the HardExst rule, when working with overflow, does not return data in
the same order the search criteria appears in the extract file.

For example, suppose you want to return the value X in a variable field called CHECKBX
based on the search criteria:

11,AUTOREC,40,CHECKBX

The variable field is set up for overflow.

;0;1;CHECKBX;0;0;CHECKBX;0;0;;hardexst;@GETRECSUSED,OVFSYM1,MYIMAGE
/11,AUTOREC,40,CHECKBX X;;;;

In the extract file, there are five occurrences of 11,AUTOREC. The first, third, and fifth
occurrence of 11,AUTOREC does not have the value CHECKBX at offset 40 but
the second and fourth occurrences of 11,AUTOREC do have CHECKBX at offset 40.

SCO12345678AUTOREC

SCO12345678AUTOREC CHECKBX

SCO12345678AUTOREC

SCO12345678AUTOREC CHECKBX

SCO12345678AUTOREC

The system does not leave the first, third, and fifth occurrences of the variable field blank
and populate the second and fourth occurrence.

The system finds the two occurrences of 11,AUTOREC,40,CHECKBX, populates the
first two occurrences of the variable field with the value X, and leaves the last three
occurrences of the field blank.

Search masks and
overflow

Before version 10.1, the HardExst rule did not support overflow. Overflow affects how
the search mask is used. Keep in mind that the rule uses the entire search mask, not just
part of it. In this way, the HardExst rule differs from the PrintIf rule.

For example, if you specify a search mask like

11,DETAILREC,28,Y

it appears that the system checks to see if the record contains a Y in the 28th position.
Instead, this mask really tells the system to find a row with DETAILREC at offset 11 and
with a Y in the 28th position. This may sound like the same thing, but it is not.

Before the rule supported overflow, the answer could only be Yes or No—either you have
such a record in your extract file or you don’t. For example, suppose you have these rows
in an extract file:

HEADERREC0

DETAILREC0Y

And, suppose you specify the HardExst rule without overflow and with this search mask

Chapter 5
Section and Field Rules Reference

358

1,DETAILREC,11,Y

In this case, the answer would be Yes—you do have such a record.

Now suppose you have these rows in your extract file and you are still not using overflow
with the rule:

HEADERREC0

DETAILREC0N

DETAILREC0Y

The HardExst rule, even without overflow, will find the record that matches the search
mask. Therefore, the answer is still Yes—you do have a row with DETAILREC at offset
1 and a Y in offset 11.

If you introduce overflow the result does not change. There is still only one record that
has DETAILREC at offset 1 and a Y in offset 11. The first overflow variable will have
the value you assign, while all the rest will not.

Although it may seem like you are searching for DETAILREC and you want to know if
there is a Y in the 11th position, this is not what you are specifying. You are specifying
that a row must have both criteria to match.

That is the difference between the PrintIf rule (which also now supports overflow) and
the HardExst rule. For the PrintIf rule, you would use a less specific search mask of
1,DETAILREC and then use the if part of the rule to determine if the row contains the
value you want. There are two records that match the less specific search mask of
1,DETAILREC. The first does not have a Y in the designated position, but the second
does.

What you have to note is that the HardExst rule, like any other rule, uses the entire search
mask to find matching rows—not just part of the mask. Therefore, only use the HardExst
rule in overflow conditions to determine how many matching rows are found—rather
than to try to find out if a row does or does not match the criteria.

How data is returned The HardExst rule with overflow does not return data in the same order that the search
criteria appears in the extract file. For example, suppose you would like to return the value
X in a variable field named CHECKBX based on this search criteria:

11,AUTOREC,40,CHECKBX

The variable field is set up for overflow.

;0;1;CHECKBX;0;0;CHECKBX;0;0;;hardexst;@GETRECSUSED,OVFSYM1,MYIMAGE
/11,AUTOREC,40,CHECKBX X;;;;

In the extract file, assume there are five occurrences of 11,AUTOREC. The first, third,
and fifth occurrence of 11,AUTOREC does not have CHECKBX in offset 40 but the
second and fourth occurrence of 11,AUTOREC does have CHECKBX at offset 40.

SCO12345678AUTOREC

SCO12345678AUTOREC CHECKBX

SCO12345678AUTOREC

SCO12345678AUTOREC CHECKBX

SCO12345678AUTOREC

The system does not leave the first, third, and fifth occurrences of the variable field blank
and populate the second and fourth occurrence. The system finds the two occurrences of
11,AUTOREC,40,CHECKBX, populates the first two occurrences of the variable field
with X, and leaves the last three occurrences of the field blank.

HardExst

359

See also JustFld on page 367

Mk_Hard on page 388

Search Criteria on page 270

Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

360

 If
Use this field level (level 4) rule to get information from an extract file if certain conditions
are met. In addition, the IF rule lets you call most of the DAL functions. For more
information, see the FieldRule function in the DAL Reference.

When you use this rule in a DDT statement, end every statement with two colons (::).
Instead of writing the statement to the DDT file, you can specify a file name by adding
&filename in the Data field. In the DDT file, it would look like this:

;&filename;

The IF rule supports the FieldRule function to call every field rule in the IF rule. The
FieldRule function requires as many parameters as are required for a field level rule. Not
all fields must contain data, but you must include the correct number of delimiters.

Here is a list of field rule parameters. An asterisk indicates the parameter is generally
required, depending on the rule you are using. If you leave a parameter blank, be sure to
include two colons as delimiters (::) to indicate the parameter is blank.

Parameter Description

File number (required by TblLkUp)

Record number (required for overflow)

Source field name (required by TblText)

Source field offset *

Source field length *

Destination field name *

Destination field offset

Destination field length *

Format mask *

Field rule name *

Rule parameters * (also called “data”)

Flag1 (also called “not required”)

Flag2 (also called “host required”)

Flag3 (also called “operator required”)

Flag4 (also called “either required”)

X position

If

361

The IF rule and
overflow

You can use overflow variables if the field-level rule you used supports overflow.
Generally, the IF rule does not support overflow—it can only be supported through the
use of the FieldRule function. Here is an example. Suppose you want to move multiple
lines of text from N number of specific external extract records to the output buffer when
the HEADERREC record (at offset 11) contains an F in position 1.

For this scenario, you could use the FieldRule function to call the MoveExt rule and use
the standard IF rule to do the rest. The DAL script for this example would look like this:

CON={11,HEADERREC 1,1}:: A=FIELDRULE("::0::1::E::45::4::PREM/OPS
RATE1::0::4::::moveext::@GETRECSUSED,QCPVR5,OVSYM1/
11,CLSSCDREC::N::N::N::N::::::::")::if(CON='F')::return("^" & A &
"^")::end ;N;N;Y;N;12461;2119;16010

Overflow variables used in the search mask have a syntax which looks like this:

@GETRECSUSED,CPDEC1,CPDEC1OVF/11,CLSSCDREC

Writing DAL scripts Keep in mind that writing DAL scripts is like coding rules. You must write the script using
the correct syntax and make sure you correctly handle the variables you use. This table
shows the different types of variables:

In an IF condition, the data type of the variable on the left side of the operator determines
the data type used during the comparison. This means the variable/number/string on the
right is converted to the data type of the variable/number/string on the left. After this
conversion occurs, the comparison is performed.

If you encounter this error message:

DM10558: Error in GetFieldRuleData(): Condition exceeds buffer length

Use this statement:

CALL("logo.dal")

Y position

Font ID

Parameter Description

Type Description

A String variable. Use quotation marks for comparisons with this variable.

$A Numeric variable with decimal places. Omit the quotation marks and include only
numbers.

#A Numeric variable without decimal places. Omit the quotation marks and include only
numbers.

Chapter 5
Section and Field Rules Reference

362

NOTE: You can use curly braces { } to tell the system to apply a search mask before
executing the DAL script. Here is an example:

$A = {11,AUTONUREC 25,9}::

The use of curly braces is not part of DAL syntax, but rather is a Documaker
Server notation that is preprocessed before the DAL script is executed.

Please note that you can only use curly braces in this manner if the DAL script is
written into the rule data area. External DAL script files cannot contain such
syntax. To retrieve extract data within an external DAL script file, you have to
use the GETDATA function.

For more detailed information on writing DAL scripts and using DAL functions,
see the DAL Reference.

Examples
Here are some examples which will help you understand how you can use the IF rule.
While the IF rule can be very useful, its use affects performance. For production
purposes, you may want to use other rules and triggers to perform the same tasks.

Image Editor example 1 Suppose you want to print the town and state information on the form only if a record
PRODADREC at offset 11 contains a string of four characters of 0000 starting at
position 20. The town and state information is stored in the extract file record
PRODADREC starting at position 65 for 25 characters. You want to trim off any trailing
spaces or characters for the town and state information.

You can define a variable to be used in the IF rule with the following syntax:

{search criteria variable attribute}

The search criteria and the variable attributes are separated by one space. The search
criteria is a series of offset and data pairs. You can have as many pairs as you want to
define, as long as they refer to the same record.

The variable attributes are offset and length for the variable you want to define. The offset
of the variable must be for the same record as the search criteria.

The return statement does not support the DAL function. Therefore, the variable must
be trimmed first, before it can be used in the return statement. For this example, we will
define two variables, A and B:

A={11,PRODADREC 20,4} and B={11,PRODADREC 65,25}

The complete script for the IF rule in the semicolon-delimited field would look like this:

::A={11,PRODADREC 20,4}::B={11,PRODADREC 65,25}::
if(A='0000')::B=TRIM(B)::RETURN("^" & B & "^")::END::

Image Editor example 2 Suppose you want the transaction sent to WIP when the record PRODAREC, at offset
11, contains a string of four characters (0000) starting at position 20. And, you always
want the system to get 25characters of data from PRODAREC, starting at position 65.
Furthermore, you want the system to remove any trailing spaces.

If

363

For this scenario, you would use the FieldRule DAL function to call the KickToWIP rule
and use the standard IF rule to do the rest. The script for this example would look like this:

::A={11,PRODAREC 20,4}::B={11,PRODAREC 65,25}:: if(A='0000')::

FIELDRULE("::0::1::TOWN_STATE::55:9:REC-TOWN_STATE::0::25::::

KICKTOWIP::::N::N::Y::N::3001::5602::11010::")::END::B=TRIM(B)::

RETURN("^" & B & "^")::END::

Image Editor example 3 For a record where there SUN at offset 23; if 00308 is found in this record at offset 54
and LIFE at offset 80, then put Indiana into the variable named StateCode, else put
OutOfState into the variable.

The DDT file should look like this:

;0;0;StateCode;;;StateCode;;10;;if;A={23,SUN 54,5}::B={23,SUN
80,4}::if((A='00308') AND
(B='LIFE'))::RETURN("^Indiana^")::ELSE::RETURN("^OutOfS
tate^")::END::;;;;;2128;11592;5;

(Syntax for A or B in this example is “offset,data offset,length”)

Image Editor example 4 For a record with SUN at offset 23; if 00308 is found in this record at offset 54, then put
Indiana into the variable named StateCode, else if 00400 is found, then put Georgia into it,
else put OutOfState into it.

The DDT file should look like this:

;0;0;StateCode;;;StateCode;;10;;IF;A={23,SUN
54,5}::IF(A='00308')::RETURN("^Indiana^")::
elseif(A='00400')::RETURN("^Georgia^"):ELSE::RETURN("^OutOfState^")
::END ::;;;;;2128;11592;5;

Image Editor example 5 For a record where there is a SUN at offset 23; if 00308 is found in this record at offset
54 and LIFE at offset 80, then put the data from the offset 63 for 8 bytes in the record
where MOON is found at offset 23 into the variable called StateCode.

The DDT file should look like this:

;0;0;StateCode;;;StateCode;;10;;IF;A={23,SUN 54,5}::B={23,SUN
80,4}::IF((A='00308') AND (B='LIFE'))::RETURN("^{23,MOON
63,8}^")::END::;;;;;2128;11592;5;

Image Editor example 6 This example shows how to specify the occurrence of a record.

In every place where you want to use variable data from the extract file, specify a string
like the one shown here:

{1,MIS257 138,10-5}

In this string, 1,MIS257 is the search mask. If the record is found, the function takes ten
characters starting from position 138. The -5 tells the function to search for the fifth
occurrence of the 1,MIS257 record. If you omit the -5, the function searches for the first
occurrence.

Image Editor example 7 This example shows you how to use the Trim function with the IF rule:

;0;0;TOWN AND STATE;65;25;TOWN AND STATE;0;40;;IF;A={11,PRODADREC
20,4}::B={11,PRODADREC 65,25}::IF(A='0000')::B=TRIM(B)::RETURN("^"
& B & "^")::END::;N;N;N;N;

Chapter 5
Section and Field Rules Reference

364

Note that the Trim function does not work in the Return statement. Also, make sure you
define a variable first, and then trim the variable after the IF statement and before the
Return statement. This is the only way it works.

NOTE: Similarly, the JCenter function works the same way.

Image Editor example 8 If you are using the Trim function in an IF rule and you can get either the first or second
portions of the Return statement, but not both, this example may help you understand
how the system works.

For instance, the following statement…

Y={1,MODELDES 94,45}::if((A='ACV') AND B='1'))::Y=TRIM(Y)::return

("{1,VUNITNBR 112,20} + {1,VUNITNBR 81,10}")::elseif((A='APV') AND
(C='1')) or ((A='APA') AND (C='1'))::return("^"&Y&"^ + {1,MODELDES
49,45}")::end;N;N;N;N;2719;9699;16008

…returns the value of Y only.

There are two types of errors in this DDT file example. One was a logic error in the IF
rule. The Y was trimmed in the IF branch where Y was never used. The elseif branch used
Y, but the Y was not trimmed there.

The other errors were syntax errors. The correct syntax is as follows:

Y={1,MODELDES 94,45}::if((A='ACV') AND (B='1'))::X={1,VUNITNBR
112,20}::Z={1,VUNITNBR 81,10}::return("^" & X & "" & Z &
"^")::elseif((A='APV') AND (C='1')) or ((A='APA') AND
(C='1'))::Y=TRIM(Y)::return("^" & Y & "^+{1,MODELDES
49,45}")::end::;N;N;N;N;2719;9699;16008

This example tells the system that…

• if you have a variable A=ACV and a variable B=1, then trim the data from the record,
where there is VUNITNBR at position 1, for 20 bytes starting at position 112 and
the data from the same record for 10 bytes starting at position 81.

• if (variable A=APV and variable B=1) or (variable A=APA and variable C=1), then
trim the data from the record, where there is MODELDES at position 1, for 45 bytes
starting at position 94, and combine this data with the data from the same record for
45 characters starting at position 49.

The system does not allow (“{offset,data offset,length} + {offset,data offset,length}”) in
one Return statement. You must define the variables first and use the variables in the
Return statement, as shown above.

Image Editor example 9 This example shows you how to format a date from YYYYMMDD to MM/DD format.
To do this, you would need to include the IF rule in your DDT file. The syntax is shown
here:

;IF;A={11,POLICYREC 21,8}::B=(sub(date2date(A, "D4"), 1,
5))::return("^" & B & "^")::end::;

A={11,POLICYREC 21,8} is just an example. The syntax is…

Variable Name = {offset,data offset,length}

If

365

In this example, it means that variable A is equal to 8-byte characters starting at position
21 for a record in the extract which meets the search criteria of the string of POLICYREC,
which is found at position 11.

Image Editor example
10

If, in the extract file, you have a date in this format…

YYYYMMDD

…and would like to reformat it as…

MM/DD/YYYY

…here is how to do it:

NOTE: Format options 1 through 27 provide many format choices you can use, but these
options truncate the year into a two-digit year, such as MM/DD/YY.

No format in the DateFmt rule handles this task, but you can use the IF rule to reformat
the date. Assuming that the date in the EXTRFILE.DAT file is located at offset 77 in a
record with FMMDECREC at offset 11, here is the syntax for the IF rule:

 IF;A={11,FMMDECREC 77,8}::B=(sub(date2date(A

,"D4"),1,10))::return("^" & B & "^")::END::;

Image Editor example
11

To format a salutation so you can have the text Dear, a space, and then a variable field
followed by a comma, use this syntax:

If; A={1,Criteria 10,5}::RETURN(“^”&TRIM(A)&”,”&”^”)

The result is something similar to:

Dear XXXX,

Image Editor example
12

This example shows how the IF rule can support overflow by using the FieldRule within
the IF rule. In this case, the FmtNum rule is used to get the locale and Trim is used to
left-justify the text.

NOTE: In this example the locale is the Netherlands, so the text is in Dutch.

Since the FmtNum rule uses double quotes “-ZZZ,ZZZ,ZZZ.ZZ”, the FieldRule must
use single quotes (' ') to avoid parsing errors. Note the semicolons (;) within the FieldRule
are replaced with double colons (::).

Assume the section name is IMGNAME and overflow symbol is OVFSYM:

;0;0;KORTOT-Totaalkorting-Bed;92;10;KORTOT-Totaalkorting-
Bed;0;0;;if;val=fieldrule('::0::0::KORTOT-Totaalkorting-
Bed::92::10::KORTOT-Totaalkorting-Bed::0::0::n,nNLG,"-
ZZZ,ZZZ,ZZZ.ZZ"::fmtnum::@GETRECUSED,IMGNAME,OVFSYM/
18,KORTOT::N::N::N::N::0::0::0')::return("^"&TRIM(val)&"^");N;N;N;N
;0;0;0;

See also DAL on page 320

Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

366

 IncOvSym
Use this section level rule (level 3) to increment an overflow variable. The overflow
variable is a counter that tracks of the number of overflow values processed for a section.
This overflow variable is incremented as records are processed and as the overflow
increases.

This rule increments the overflow symbol you specify in the data field. Use the
ResetOvSym rule to reset the variable for the next transaction that might overflow.

Syntax ;IncOvSym;OVERFLOWVAR,IMAGENAME,X;;

Use the X parameter to limit the IncOvSym rule to a single execution and also determine
when the rule is executed. You control the execution of the rule by including the X
parameter, as shown here:

If the requesting section is not a multi-page section, the system ignores this parameter. If
you enter a character other than F, L, or 0-9, an error message appears. If you enter zero
(0), nothing happens because there is never a page zero.

NOTE: Be sure to thoroughly test your environment when you use this parameter.
Different results are created depending on the number of pages in the FAP file,
the type of overflow, when pagination occurs, and type of data fields on the
different pages in the FAP file.

Image Editor example ;IncOvSym;OVERFLOWVAR,IMAGENAME;;

This rule increments the overflow variable OVERFLOWVAR by 1 for the form called
IMAGENAME.

See also Overflow and User Functions on page 271

PurgeChartSeries on page 433

SetImageDimensions on page 457

ResetOvSym on page 438

Section and Field Rules Reference on page 274

Parameter Description

X (Optional) Here you specify when the system should execute the IncOvSym rule
by choosing one of these options:
F - Tells the system to execute the IncOvSym rule after the first page.
L - Tells the system to execute the IncOvSym rule after the last page.
1-9 - Tells the system to execute the IncOvSym rule after the corresponding page.
For instance, enter 3 to tell the system to execute the rule after the third page.
Keep in mind you can enter only one option. If you enter more than one
character, the system evaluates the first character and ignores the rest.

JustFld

367

 JustFld
Use this field level rule (level 4) to justify (left, right, or center) a variable field by
modifying its field coordinates.

Syntax JustFld (Mode,Cord,XPos,Achr,Rota,Font,NoClip,Rule)

This rule calls either the Move_It, MoveNum, FmtDate, FfSysDte, MoveSum, ConCat,
TblLkUp, SAPMove_It, MoveExt, FmtNum, TblText, Mk_Hard, StrngFmt rules, or
other similar rules.

The first parameter used by the JustFld rule must be the Mode parameter. Here is a
discussion of the parameters:

Parameter Description

Mode Enter L (left), R (right), or C (center). If you omit this parameter, this rule will
call the Move_It rule and generate an error message.
You must also include the Cord or Xpos parameter. The other parameters are
optional.
The mode parameters (left, right, and center) tell the system to remove leading
and trailing blanks before it justifies the data. Use the NoClip parameter if you
do not want the system to do this.

Cord Enter the top, bottom, left, and right coordinates to define where the field
appears on the page.
In Studio, you specify a field’s coordinates on the Field Properties window.
In Image Editor, you use the General tab of the Properties window. The
coordinates are specified as shown here:

• The top coordinate is specified in the Y field. The bottom coordinate is
the entry in the Y field, plus the entry in the Height field.

• The left coordinate is specified in the X field. The right coordinate is the
entry in the X field, plus the entry in the Width field.

In the DDT file, each coordinate must be in FAP units (2400 per inch) and
separated by commas. Here is an example:

CORD=113,441,5714,9314

XPos Enter the X coordinate used to align the field. If Mode=R this will be the right
most position of the field, likewise if Mode=C this will be the center of the
field. Here is an example:

MODE=R,XPOS=5000

If the data is 12345, character 5 will be at position 5000.

Achr Enter a string of characters found in the data and used to align the field. When
you use this parameter, you must define the XPos parameter, otherwise the
system ignores the Achr parameter. With the correct setup, the rule aligns the
field so the characters you specify in this parameter overlay the XPos. You can
include up to 10 characters in the string. Here is an example:

MODE=R, XPOS=5000, ACHR=.

If the data is 123.45, the decimal will be at position 5000.

Chapter 5
Section and Field Rules Reference

368

Be sure to separate the parameters in the data area with commas.

Essentially, you first define the necessary information as though you were not using the
JustFld rule, but were going to use the underlying rule to get the data. Then, at the end of
the list of parameters, add the Mode parameter and follow with any other JustFld rule
parameters you need—including the Rule parameter if you want to use a rule other than
Move_It.

Errors If the call to the rule fails, this rule returns an error. If you omit the Mode parameter, this
rule calls the Move_It rule and generates an error. The Mode parameter separates the
portion of the data parameter passed to the specified rule.

Using the
LoadCordFAP option

Use of the LoadCordFAP option also affects the JustFld rule. The following table shows
how this INI option affects this rule:

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

Rota Specifies the field rotation. Enter 0,90,180, or 270. For example:

ROTA=270

This tells the system to rotate the field 270 degrees.

Font Specifies the font ID. Here is an example:

FONT=11010

NoClip Tells the system not to remove trailing spaces from the field.

Rule Enter the name of the rule you want to use to load the data from the extract
file. If you omit this parameter, the system uses the Move_It rule.
You can choose from any of the date function rules, such as FmtDate,
FfSysDte, MoveSum, ConCat, TblLkUp, SAPMove_It, MoveExt, FmtNum,
TblText, Mk_Hard, StrngFmt, and so on.
For instance, enter MoveNum to have the JustFld rule call the MoveNum
rule. This lets you use the formatting capabilities of the MoveNum rule. Here
is an example:

MODE=R,XPOS=5000,RULE=MoveNum,FONT=11010

Parameter Description

If set to... Then...

Yes The system gets the coordinates (Cord), font (Font), and rotation (Rota) from the
FAP file.

No You must define the coordinates, font, and rotation using the Cord, Font, and Rota
parameters. Otherwise the field will not be positioned properly.

In this field... Enter...

Destination name qaij10ab

Offset 0

JustFld

369

In the DDT file, this information looks like this:

;0;0;qaij10;21;15;qaij10ab;0;15;;JustFld;11,JUSTRIGHTA,MODE=R,CORD=
12800,13288,5000,10760,FONT=11016,ROTA=0,CLIP,XPOS=5000,ACHR=.;N;N;
N;N;5000;13288;11016;

This example shows all possible parameters, as they would appear in the DDT file.

Here are some other examples of how to use the JustFld rule:

This example shows how the DDT file would look if you enter a mask and data value for
the MoveNum rule:

'12.2,12.2,M,S,R,Z,SLZ,T'

'43,Gval NegText("" R"),mode=L,FONT=16116, ROTA=0, Rule=MoveNum'.

;0;0;k1;53;12;k1;0;15;12.2,12.2,M,S,R,Z,SLZ,T;JustFld;43,Gval
NegText("" CR"), mode=L,FONT=16116,ROTA=0,RULE=MoveNum;
N;N;N;N;4999;2500;16116;

NOTE: The data value for the MoveNum rule must follow the search mask for the
JustFld rule. Include a space to separate the parameters.

Here is an example of how you would use a DDT line to map a field using the Move_It
rule:

;0;0;FIELD;30;10;FIELD;0;10;;move_it;11,TVBR2DREC,25,1;N;N;N;N;1977
;3763;11006;

If the then decided to right-justify the data using the JustFld rule. Simply change the DDT
line as shown here:

;0;0;FIELD;30;10;FIELD;0;10;;JustFld;11,TVBR2DREC,25,1,MODE=R,XPOS=
5000;N;N;N;N;1977;3763;11006;

Length 15

Source name qaij10

Offset 21

Length 15

File *

Record *

Required *

Rule JustFld

Mask Optional, see the discussion of the rule you specified.

Data 11,JUSTRIGHTA,MODE=R,CORD=12800,13288,5000,10760,FON
T=11016,ROTA=0,CLIP,XPOS=5000,ACHR=.

* no entry required for this field in this example

In this field... Enter...

Chapter 5
Section and Field Rules Reference

370

Notice that most of the line did not change. You simply changed the rule name from
Move_It to JustFld and appended the JustFld parameters, starting with the Mode
parameter. In this example, the Rule parameter was omitted because the default rule used
by JustFld is Move_It.

Now assume you are using the DDT line to map a numeric field using the MoveNum rule:

;0;1;PRM;25;9;PRM;0;;12;9.2,12.2,C;movenum;11,AREC;N;N;N;N;13082;34
72;12012;

If you decide that you want the result of this to be right-justified, you could change the
line as shown here:

;0;1;PRM;25;9;PRM;0;;12;9.2,12.2,C;JustFld;11,AREC,MODE=R,RULE=Move
Num,XPOS=14500;N;N;N;N;13082;3472;12012;

Again notice that most of the line did not change. You simply changed the rule from
MoveNum to JustFld and then included the Rule=MoveNum parameter after the
Mode=R parameter.

If you want the number to be decimal-aligned over the X position instead of right-
justified, include the ACHR parameter.

Here is an example of using a rule other than the Move_It and MoveNum rules:

;1;0;TBL;0;48;TBL;0;48;;TblLkUp;11,HDRREC 53,1 1,CLCODE,12
20,11;N;N;N;N;7831;24236;12012;

Although the TblLkUp rule has more information in the rule parameter area than the
typical Move_It or MoveNum rule might have, the same approach is used to convert to
using the JustFld rule:

;1;0;TBL;0;48;TBL;0;48;;JustFld;11,HDRREC 53,1 1,CLCODE,12
20,11,Mode=R,Rule=TblLkUp,XPOS=11000 ;N;N;N;N;7831;24236;12012;

The JustFLd parameters are appended to the end of the existing rule parameters, starting
with Mode. Then the Rule parameter names the original rule (TblLkUp) and the other
JustFld rule parameters further control the resulting output.

This example demonstrates how to use the JustFld rule in an overflow situation using the
@GetRecsUsed function.

<Image Rules>

 ...

;IncOvSym;JOVF,QAIJUST1;

 ...

 ...

<Image Field Rules Override>

;0;1;qaij1;53;15;qaij1;0;15;;JustFld;@GETRECSUSED,QAIJUST1,JOVF/
43,JUSTRIGHT,MODE=R,FONT=16116,ROTA=0,CLIP,XPOS=5000,ACHR=.;N;N;N;N
;724;727;16114;

See also ConCat on page 311

FfSysDte on page 331

FmtDate on page 337

FmtNum on page 338

Mk_Hard on page 388

Move_It on page 393

JustFld

371

MoveExt on page 399

MoveNum on page 402

MoveSum on page 411

SAPMove_It on page 443

StrngFmt on page 472

TblLkUp on page 476

TblText on page 478

Overflow and User Functions on page 271

Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

372

 KickToWip
Use this field level rule (level 4) to force a transaction to manual batch (WIP). You can
use the KickToWIP rule for situations when data is not available in the extract file or the
data changes, requiring entry by a data entry operator. This rule makes those fields
available for entry.

Syntax KickToWip()

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In the DDT file, this information looks like this:

;0;0;INSNAMEREC-
INSNAME1;0;0;ADDR1;0;0;;KickToWip;;N;N;Y;N;87;1406;12010

The KickToWip rule tells the system to set the manual batch flag to true. Also, to edit the
field associated with the KickToWip rule in the Entry module of Documaker, you must
set the Required field to Operator.

In this example, the operator required flag for the field INSNAMEREC-INSNAME1
must be set if this field is to be editable in the entry system when retrieved from manual
batch.

In this field... Enter...

Destination name ADDR1

Offset *

Length *

Source name INSNAMEREC-INSNAME1

Offset *

Length *

File *

Record *

Required Operator

Rule KickToWip

Mask *

Data *

* no entry required for this field in this example

KickToWip

373

Suppressing Warning Messages
Use the ShowWIPWarning option to suppress the Sent to Manual Batch warning
messages:

< RunMode >

ShowWIPWarning = No

See also Section and Field Rules Reference on page 274

Option Description

ShowWIPWarning Enter No to suppress warning messages included the error logs when
using the KickToWIP or POWType rules, or the KickToWIP DAL
function.
The default is Yes, which tells the system to include the messages in the
error logs.

Chapter 5
Section and Field Rules Reference

374

 LookUp
Use this field level rule (level 4) to take data from an extract record. Next, use the data as
a key name to look up the key data in a table. Then, copy the table data to the destination
field. You must specify the offset of the key name in the data field, as well as the offset
and length of the key data in the data field. This rule uses the same table as the MovTbl
rule.

Syntax LookUp()

You can use one or more files to keep the tables used by this rule. You must list each table
(file) in the TABLEFILE.DAT file. The table list file must be in the following format:

TABLEFILENAME1.EXT <crlf>

TABLEFILENAME2.EXT <crlf>

where each table is listed on a single line followed by a carriage return/line feed.

The format of the tables is key name followed by key data. The key need not be a specific
length. The data can also be any length, which allows a single table or group of table files
to contain table entries of varying lengths.

You specify the table list file using the TblFile option under the Data control group in the
FSISYS.INI file.

For example, suppose a form contains the names and numbers of agents for calling
purposes, but these names and numbers change on a regular basis. For this situation you
could create a text table called AGENTS.TBL which contains entries such as...

AGENT001 JOE MILLER <crlf>

and another table, called AGENTPHO.TBL, with phone number entries such as...

AGENT001PHONE404 111-2222 <crlf>

You could then make these tables available to Documaker Server by including them in the
files specified in the Data control group of the FSISYS.INI file, as shown here:

< Data >

TblFile=.\deflib\TblFile.Dat

You must load the tables into memory before the system can use them. To do this, include
these rules in the AFGJOB.JDT file:

;CreateGlbVar;1;TblLstH,PVOID;

;LoadTblFiles;1;;

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In this field... Enter...

Destination name TEXT01

Offset 1

Length 80

Source name REC-TEXT01

LookUp

375

In the DDT file, this information looks like this:

;0;2;REC-TEXT01;100;5;TEXT01;1;80;;LookUp;17,PMSP0200 1 14,80;;;;;

This example searches for the second extract record matching the search criteria of
17,PMSP0200. It then takes the five characters at offset 100 in the extract record and uses
them as a key name into the table data.

The table data is searched for a match with the five characters from the extract record
starting at offset 1, the first character of each table entry. If a match is found, the key data
of 80 characters starting at offset 14 are copied into the destination field.

See also MovTbl on page 413

TblLkUp on page 476

Section and Field Rules Reference on page 274

Offset 100

Length 5

File *

Record 2

Required *

Rule LookUp

Mask *

Data 17,PMSP0200 1 14,80

* no entry required for this field in this example

In this field... Enter...

Chapter 5
Section and Field Rules Reference

376

 MapFromImportData
Use this field level (level 4) rule to map imported data from an internal dictionary to a
field, as opposed to mapping from an extract file. Normally, you use this rule with either
the ImportFile or ImportExtract rules, however, you can use this rule with any preceding
rule that fills in field dictionary values.

By default, this rule checks for a dictionary value starting with the section dictionary, then
the form dictionary, and finally the form set (global) dictionary. The search ends as soon
as the rule finds a value for the field.

If no dictionary entry is found for the field, the field remains blank. Use the Required flags
in the rule definition to control whether an empty field is considered an error.

NOTE: For some legacy implementations, this rule was registered under the name
NoOpImp.

If you do not use this rule, you must use the ReplaceNoOpFunc rule and make sure that
all of the fields for each DDT file are set to NoOpFunc.

Syntax MapFromImportData()

You can use the optional INDEX parameter to specify a particular dictionary instance of
the field to use. This is only useful if you use the ImportFile or ImportExtract rules to
import form set data.

For the ImportFile rule, to support field instances you must include this INI option:

< ImportFile >

IndexDuplicateFields = Yes

For the ImportExtract rule, to support field instances you must include this INI option:

< ImportExtract >

IndexDuplicateFields = Yes

Normally, duplicate field entries found in the import file are ignored. If, however, you
enter Yes, each instance is stored in a separate dictionary entry.

NOTE: Field instance (indexing) only applies to field data stored in the form set (global)
dictionary.

The parameter value to specify indexing has this syntax:

INDEX(option,...)

Where option is a keyword that indicates how to calculate the dictionary instance to use or
a constant value to use as the index.

MapFromImportData

377

Here is a list of the keywords you can use:

A successful return does not indicate whether the field was assigned a value.

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

Keyword Description

FORM Use the occurrence of this form as the instance index. For example, if this field is
contained on the second copy of this form, then get the second instance of field
data.

IMG Use the occurrence of this section within the current form as the instance index.
For example, if this field is contained on the third copy of section on the current
form, then get the third instance of field data.

IMGFSET Use the occurrence of this section within the entire form set as the instance
index. For example, if this is the fifth occurrence of this section within the form
set (without considering what forms contain the other copies of this section),
then get the fifth instance of field data.

FLD Use the occurrence of this field within the current form as the instance index. For
example, if this field is the third occurrence within the same form, then get the
third instance of field data.

FLDFSET Use the occurrence of this field within the entire form set as the instance index.
For example, if this is the tenth occurrence of this field within the entire form set
(without considering what forms and sections contain the other copies of this
field), then get the tenth instance of field data.

In this field... Enter...

Destination name Issue

Offset 0

Length 8

Source name Issue

Offset 0

Length 8

File *

Record *

Required flags *

Rule MapFromImportData

Mask *

* no entry required for this field in this example

Chapter 5
Section and Field Rules Reference

378

In the DDT file, this information looks like this:

;0;0;ISSUE;0;0;ISSUE;0;8;;MapFromImportData;;N;N;N;N;1167;652;1201;

The above example would try to map the field by querying the section dictionary first;
then the form dictionary, and finally the global dictionary.

Suppose you had this line in the DDT file:

;0;0;ISSUE;0;0;ISSUE;0;8;;noopimp;INDEX(IMG);N;N;N;N;1167;652;1201;

This example would use the occurrence number of this section on the form to index the
global dictionary for this field.

See also NoOpFunc on page 415

ReplaceNoOpFunc on page 197

ImportExtract on page 111

ImportFile on page 116

Section and Field Rules Reference on page 274

Data Keywords if desired

In this field... Enter...

* no entry required for this field in this example

Master

379

 Master
Use this field level rule (level 4) to tell the system the field has been mapped in the
MASTER.DDT (data definition table) file. Use this rule when you have variable fields
which are used on multiple sections.

Instead of mapping these identical variable fields, like Name and Address, each time they
are used, you can map them once in the MASTER.DDT file and then map the individual
fields to the Master rule. This tells the system to look in the MASTER.DDT file for the
complete mapping information for those variable fields.

Syntax Master()

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In the DDT file, this information looks like this:

;0;0;REC-NAME;;;NAME;;;MASTER;;;;;;15960;4000;17200;

In the AFGJOB.JDT file, you must use this rule:

;LoadDDTDefs;1;;

See also Setting Up the MASTER.DDT File on page 507

Section and Field Rules Reference on page 274

In this field... Enter...

Destination name NAME

Offset *

Length *

Source name REC-NAME

Offset *

Length *

File *

Record *

Required *

Rule Master

Mask *

Data *

* no entry required for this field in this example

Chapter 5
Section and Field Rules Reference

380

 MessageFromExtr
Use this field level rule (level 4) to retrieve a message from an extract file and place the
message into a field on the form. Default formatting information comes from the
definition of the field which you set up using Studio or Image Editor. Specific formatting
information is embedded within the message using tags. This rule can also contain
variable blocks of text.

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In the DDT file, this information could look like this:

<Image Field Rules Override>

;0;0;ExplChrg;323;38;
ExplChrg;0;0;;MessageFromExtr;Detail;N;N;N;N;338;18551;16008;

;0;0;Mess;238;93;Mess;0;0;MsgLinePriority;MessageFromExtr;Message;N
;N;N;N;338;25975;16112;

For this rule, the main components are the message, the message tags, the Record Definition
Dictionary, and the INI options. These components are discussed in the following topics.

In this field... Enter...

Destination name The field name

Offset The offset within a record where the key can be found

Length The length of the key

Source name *

Offset *

Length *

File *

Record *

Required *

Rule MessageFromExtr

Mask The field, defined in the Record Dictionary, contains the grouping
code. For more information about the Record Dictionary, see Using
the Record Dictionary on page 495.

Data The record, defined in the Record Dictionary, contains the message
key.

* no entry required for this field in this example

MessageFromExtr

381

Creating Messages
The message is the text retrieved from the extract file. This text can contain message tags
which control how the text is formatted. The tags control the justification, spacing, font,
variable insertion and other functions. All formatting information is contained in the tags,
which serve as a mark-up language. The message itself is straight text. The message is a
single line or record with a maximum length of 2000 bytes.

Setting up the field You attach this rule to a field in the section’s DDT file. You can do this by editing the
DDT file in a text editor or by using Image Editor. In the section (FAP file), you define
the field to which the message is attached as a multi-line text field.

If you also select the Can Grow option for the field, the system combines all messages
with the same group code in this field, letting the field grow to accommodate the entire
message. If you do not select the Can Grow option, the system only includes the messages
that fit within the defined area for the field. Messages that would not fit are ignored.

Adding messages The system adds messages in the order they appear in the extract file or database. It tests
every message to see if the message fits in the available space. All the messages of a group
must fit in the available space or none of the messages appear.

Grouping messages You can group and format messages as a single message by including a group code. You
define grouping codes in the Record Dictionary. For more information about the Record
Dictionary, see Using the Record Dictionary on page 495. All the messages in a group are
treated as a single message. Group codes cannot be blank. All messages comprising a
group must be located together in the extract list.

Formatting messages The formatting information you select for the field serves as the default formatting
information for all messages, so make sure you set up the field in the section (FAP file) to
use the default font you want for all messages.

Message tags override the default formatting you set up for the field and let you control
the appearance of the message text. You can add tags to the text of the message to
describe and control the justification, spacing, fonts and other formatting information.
The tags affect all text which follows the tag. You can also use message tags to insert
variable data fields.

NOTE: Place the variable (VAR) tag within the text where you want the system to insert
the variable.

Tags are enclosed within brackets (< >). The text between the brackets describes the
formatting action or the reference to the variable name referenced in the Record
Dictionary. The tag itself does not appear in the formatted text.

Chapter 5
Section and Field Rules Reference

382

The following table describes the tags you can use:

Tag Description

<Justify:value> You can enter Left, Right, or Center to have the system left, right, or center-
justify the text. If you omit the value, the system uses the previously
defined justification. You can abbreviated tags if the line size is limited.
For example, <J:L> or <Justify:L> provides left justification and <J:C> or
<Justify:C> provides center justification.
Note: If the justification tag is in the message—not the first entry on the
line—then you must insert the carriage return tag before the justification
tag. For example, this message places the word, age, to the right of the
second line:

<CR><Justify:Right>Age

<Font:value> You can enter any valid font ID (00000-99999) or Default. The value is a
numeric reference to the font cross reference file (FXR) font ID. If the
value is left blank, the system uses the previously defined font ID.
For example, <Font:16210> changes the text to the font identified with
font ID 16210 in the FXR file while changes the font back to the
default font as font defined in the FAP file.
You cannot abbreviate this tag.

<Var:var-name> var-name refers to a variable name defined in a Record Dictionary. The
Definition Dictionary describes the variable data. The description defines
each record and the fields within each record, such as the record name,
offset, length, format, and so on. It does not include formatting
information, such as the font ID.
You can abbreviate this tag as <V:var-name>.
For example, <V:DTAT> references the variable DTAT as defined in the
Record Dictionary and <VAR:DTV1> references the variable DTV1 as
defined in the Record Dictionary

<Spacing:value> You can enter Single, Double, or a numeric value in FAP units (2400 per
inch in place of value). Single indicates the following text should be single-
spaced. Double indicates the following text should be double-spaced. A
numeric value tells the system the number of FAP units to use for spacing.
If you omit the value, the system returns to the previously defined spacing.
You cannot abbreviate this tag.
The spacing option you choose applies to the entire message grouping.
You cannot change spacing within a grouping (a single message).
For example, <Spacing:Double> tells the system to double space the
message lines within the message or message group while <Spacing>
returns the spacing to the default format.
Note: If you change spacing in the text of a message—not the first items
in the message—you must insert a carriage return tag before the spacing
tag. For example, this changes spacing to double lines:

<CR><Spacing:Double>

MessageFromExtr

383

Here are some examples using the Tab tag…

<CR><T:9600,Left,nolead>Tabbing in 4 inches with no leader.

<CR><T:9600,Left,dash>Tabbing in 4 inches with dashes.

<CR><T:9600,Left,period>Tabbing in 4 inches with periods.

<CR><T:9600,Left,underline>Tabbing in 4 inches with underline.

0 1 2 3 4 5 6 7 8

 Tabbing in 4 inches with no leader.

-----------------Tabbing in 4 inches with dashes.

……………………………………………Tabbing in 4 inches with periods.

_________________Tabbing in 4 inches with underline.

<CR><T:9600,C,D>4"dashes & text centered.

<CR><T:9600,R,P>4"periods & text right.

0 1 2 3 4 5 6 7 8

----------------4" dashes & text centered.

.…………………………………….4" periods & text right.

Here is another example. The following tags...

<Justifiy:Center><Font:23712>Example<CR><Justify>This is a
sample message.<CR>Name<Justify:Right>Age

... produce this message:

<Tab> Use the Tab tag to have the system indent the text from the left margin by
a specified number of FAP units. You can abbreviate the tag to <T> if the
line size is limited.
You can justify the text relative to the tabbed position by specifying Left,
Center, or Right. You can abbreviate the tags by using the first character
(L, C, or R) if the line size is limited. The default is to left justify the text.
You can also use different types of fill (leader) characters if the text does
not fill the entire space. You can use these leader characters: no leader
(spaces), dashes (---), periods (…), or underlines (___). Except for no
leader, you can abbreviate the tags using the first character if the line size
is limited. For no leader, you must use the word nolead for spaces. Spaces
are the default fill characters.

<CR> This tag tells the system to insert a hard return (carriage return), or forced
line break. For example, Residential <CR> rate will look like this:
Residential
rate
You cannot abbreviate this tag.

Example

This is a sample message.
Name Age

Tag Description

Chapter 5
Section and Field Rules Reference

384

Using the Record Dictionary
The Record Dictionary provides the information for identifying and locating records and
fields within records. The Record Dictionary is an ASCII file you can create using any
ASCII editor. Used with the Condition table, any variable in the Record Dictionary can
be used in a conditional evaluation. For more information about the Condition table, see
Using Condition Tables on page 492.

Record Dictionary information is divided into two sections:

• the Record section, which describes the records

• the Variable Definition section which describes the fields contained within the
records

For more information about the Record Dictionary, see Using the Record Dictionary on
page 495.

Record definition
syntax

Record Name = Search(Column, Search Mask) {Repeating}

Here are some examples:

< Records >

Message = Search(61,01) Repeating

Account = Search(61,02)

Parameter Description

Record Name The name the record will use in the future. A record name begins with an
alpha character and can have a maximum of 30 characters. You can have only
one description for a given record name. Record names are not case
sensitive—you cannot define both BASE and Base.

Search Keyword

Column Starting column number to search.

Search Mask Text to search for in the record columns.

Repeating (Optional) Keyword used to indicate there may be multiple records of that
type in a transaction.

MessageFromExtr

385

Variable definition
syntax

Variable = Record(name) Offset(n) Length(n) Type(x)

Variable = GVM(name) Offset(n) Length(n) Type(x)

Variable = Record(name) Offset(n) Length(n) Type(x) Rule(name)
Format(flags)

Variable = Record(name) Offset(n) Length(n) Type(x) Format(flags)
Precision(n)

Here are some examples:

< Variables >

MSGTYPE = Record(Message)Offset(41) Length(1) Type(Char)

MSGGID = Record(Message)Offset(37) Length(2) Type(Zone)

GRPHID = Record(Graph) Offset(31) Length(8) Type(Packed)

PRTCOND1 = Record(Graph1) Offset(31) Length(8) Type(Num) Format(C)

PRTCOND2 = Record(Graph2) Offset(31)Length(8)Type(Num)Precision(5)

Total = Record(Address)Offset(50)Length(50)Rule(SetAddr2)

* OMR

RCBBATCH = GVM(RCBBatchName)Length(32)Type(Char)

INI options This INI option is required. Place the Record Dictionary file in your DEFLIB directory.

Parameter Description

Variable The name future references to this variable will use. A variable name begins
with an alpha character and can have a maximum of thirty (30) characters.

Record(name) (Optional) Identifies the record in which this variable will be found. This
parameter is mutually exclusive when using GVM.

GVM(name) (Optional) The name of the global variable to use. This parameter is mutually
exclusive when using Record. Also keep in mind a rule is not necessary with
the global variable.

Offset The offset into the record where the data is located.

Length The length of the data.

Type(x) (Optional) May be either Char, Num, Zone, or Packed.
Char is character data. Can be any string of alphanumeric characters and
symbols.
Num is numeric data. Can have a sign in front and a decimal place.
Zone is zoned decimal. Looks like a numeric value except the sign is added to
the last digit.
Packed is packed decimal. A binary format used mainly on z/OS systems.

Format(flags) (Optional) Similar to the flags used with the MoveNum rule except the input
flags (such as input length and precision, S, and B) are not needed.

Rule(name) (Optional) You can include any field rule such as DateFmt or SetAddr2. The
Move_It and MoveNum rules are inherent to the Record Dictionary, so you
do not need to call them. If you omit a rule, the Move_It rule functionality is
the default.

Precision(n) (Optional) The number of decimal places for a numeric variable.

Chapter 5
Section and Field Rules Reference

386

< DataDictionary >

Name = (file name of the Record Dictionary)

Sample Record
Dictionary

Here is a sample Record Dictionary definition:

*

* This is the Record Dictionary

*

* These are the Records

* The only parameter is the record search mask. This can only be

* used for non-repeating records.

<Records>

Message = Search(61,01) Repeating

Account = Search(61,02)

MeterRead = Search(61,03) Repeating

Detail = Search(61,18) Repeating

*

*

* These are the variable definitions

* The required fields:

* Record name defined in the above section

* Offset into the record where the data begins

* Length of the data

* Optional fields:

* Formatting routine (data as is will be the default)

* Type or input format (not currently used)

<Variables>

***** The following are examples. All white space is ignored. ****

*

* AcctNum = Record(Header) Offset(4) Length(15) Type(Char)

* MessageText = Record(Message) Offset(53) Length(38) Type(Char)

* CompanyCode = Record(Header) Offset(24) Length(2) Type(Char)

* CustomerName = Record(Client) Offset(22) Length(21) Type(Char)

* NoticeDate = Record(Client) Offset(79) Length(8) Type(Num)
Rule(Date) Format()

* CashReceived = Record(Client) Offset(313) Length (10) Type(Zone)
Rule(MoveNum) Format(10.2,13.2,$,S-)

*

ACSA = Record(Account) Offset(487) Length(10) Type(Zone)
Rule(MoveNum) Format(10.2,14.2,S-,C)

ACSC = Record(Account) Offset(497) Length(10) Type(Zone)
Rule(MoveNum) Format(10.2,14.2,S-,C)

ACBB = Record(Account) Offset(436) Length(10) Type(Zone)
Rule(MoveNum) Format(10.2,14.2,S-,C)

BMV1 = Record(Message) Offset(159) Length(15) Type(Char)

BMV2 = Record(Message) Offset(174) Length(15) Type(Char)

BMV3 = Record(Message) Offset(189) Length(15) Type(Char)

BMV4 = Record(Message) Offset(204) Length(15) Type(Char)

BMV5 = Record(Message) Offset(219) Length(15) Type(Char)

DTAT = Record(Detail) Offset(163) Length(10) Type(Zone)
Rule(MoveNum) Format(10.2,14.2,S-,C)

DTV1 = Record(Detail) Offset(181) Length(18) Type(Zone)
Rule(MoveNum) Format(18.8,18.2,S-,C)

DTV2 = Record(Detail) Offset(199) Length(18) Type(Zone)
Rule(MoveNum) Format(18.8,18.2,S-,C)

DTV3 = Record(Detail) Offset(217) Length(18) Type(Zone)
Rule(MoveNum) Format(18.8,18.2,S-,C)

MessageFromExtr

387

DTV4 = Record(Detail) Offset(235) Length(18) Type(Zone)
Rule(MoveNum) Format(18.8,18.2,S-,C)

DTV5 = Record(Detail) Offset(253) Length(18) Type(Zone)
Rule(MoveNum) Format(18.8,18.2,S-,C)

DTVM1 = Record(Detail) Offset(271) Length(15) Type(Char)

DTVM2 = Record(Detail) Offset(286) Length(15) Type(Char)

DTVM3 = Record(Detail) Offset(301) Length(15) Type(Char)

*

***The following is the grouping that is defined for messaging*

*

MsgLinePriority = Record(Message) Offset(96) Length(5) Type(Zone)

*

*

==

See also Section and Field Rules Reference on page 274

Using Condition Tables on page 492

Using the Record Dictionary on page 495

Chapter 5
Section and Field Rules Reference

388

 Mk_Hard
Use this field level rule (level 4) to insert or hard code a value into a variable field. For
instance, you can use this rule to place an X in a check box or to insert the text Same as
above in a field on a form.

Syntax Mk_Hard()

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In the DDT file, this information looks like this:

;;;REC-CHECK BOX;;;CHECK BOX;;1;;Mk_Hard;X;;;;;

This example puts an uppercase X into the destination buffer for the field named
CHECK BOX. This field has a destination length of one character, and begins at offset
1 by default (since none was specified).

NOTE: Source offset and length have no significance to this rule since the source text is
coming from the Data field in the mapping.

See also HardExst on page 356

In this field... Enter...

Destination name CHECK BOX

Offset *

Length 1

Source name REC-CHECK BOX

Offset *

Length *

File *

Record *

Required *

Rule Mk_Hard

Mask *

Data X

* no entry required for this field in this example

Mk_Hard

389

SetCpyTo on page 454

Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

390

 MNumExt
Use this field level rule (level 4) to perform the function of the MoveNum rule if an
external record is found. Enter the external record search criteria after the MoveNum
search criteria in the Data field. You can also enter a calculation after the external search
criteria. This rule supports overflow.

The format mask must contain the input numeric format, followed by the output numeric
format. These formats are in the form of X.Y, where X is the size of the number,
including any commas, currency symbols, and decimal points, and Y represents the
number of digits after the decimal point, such as:

10.2,12.2

The first pairing of X.Y describes the input. The second pairing describes the output. In
this example, 10.2 is the description of the data in the extract record and the output for
this would be 12 digits before and two digits after the decimal.

The format mask can contain any of these formats after the output numeric format:

NOTE: You cannot use the dollar sign ($) as the first character in the format mask because
this conflicts with the use of this character in the Move_It rule.

The data may contain a calculation to be performed upon the number obtained from the
extract record. The calculation must be separated from the search criteria by a space,
enclosed in parentheses, and contain spaces to separate each element (including
parentheses) in the equation string.

An X in the calculation is replaced by the value moved from the extract file. You must
place parentheses around each operator and its accompanying operands.

NOTE: This rule does not support an OR condition in the search mask. You can,
however, run multiple searches.

Format Description

L Left justify the number

C Add commas

B Translate BCD number to decimal

Z Print number even if it equals zero (0)

$ Add a dollar sign ($)

MNumExt

391

Image Editor example 1 If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In the DDT file, this information looks like this:

;0;0;REC-1PAYAMT;64;6;1PAYAMT;;18;6.0,11.2,B;mnumext;17,PMSPAR01
17,PMSP0200,99,0 ((X * 50) + 2.50);N;N;N;N;

The move occurs only if the record defined by the external search criteria is found. If not
found, zero is used in place of X.

If the external extract record matching the search format 17,PMSP0200 and 99,0 is found,
the current record defined by the search format 17,PMSPAR01 is searched to get the
numeric data from offset 64 for length 6.

The six-character BCD value located at offset 64 is then multiplied by 50. The system adds
2.50, as specified by the operation ((X * 50) + 2.50), before copying the result to the
destination field. The destination field can contain up to 11 characters, including the
decimal point and two characters after.

In this field... Enter...

Destination name 1PAYAMT

Offset *

Length 18

Source name REC-1PAYAMT

Offset 64

Length 6

File *

Record *

Required *

Rule MNumExt

Mask 6.0, 11. 2, B

Data 17,PMSPAR01 17,PMSP0200,99,0 ((X * 50) + 2.50)

* no entry required for this field in this example

Chapter 5
Section and Field Rules Reference

392

Image Editor example 2 This example shows the use of a user function and overflow symbol. If you make the
following entries on the Edit DDT tab of the field’s Properties window in Image Editor:

In the DDT file, this information looks like this:

;0;1;TOTAL PREM;87;6;TOTAL PREM;;12;7.2,11.0,$,L;MNumExt;
@GETRECSUSED,FORMABC,OVSYM/17,PMSPAR01 17,PMSP0200,99,0 ((X * 50)
+ 2.5);N;N;N;N;

See also MoveNum on page 402

Using Pre-defined Numeric Formats on page 261

Section and Field Rules Reference on page 274

In this field... Enter...

Destination name TOTAL PREM

Offset *

Length 12

Source name TOTAL PREM

Offset 87

Length 6

File *

Record 1

Required *

Rule MNumExt

Mask 11.0,7.2,$,L

Data @GETRECSUSED,FORMABC,OVSYM/17,PMSPAR01
17,PMSP0200,99,0 ((X * 50) + 2.5)

* no entry required for this field in this example

Move_It

393

 Move_It
Use this field level rule (level 4) to move text from an extract record to the output buffer.
This rule supports overflow.

The format mask can contain these options:

Format Description

B Used when mapping XML extract data. Here is an example:

;0;0;FIELD;0;1024;FIELD;0;1024;B;move_it;!/
descendant::My_Extract_Data/
FIELD.xml();N;N;N;N;3715;2899;11010;

C Centers the data.

D Converts the data returned by the rule into lowercase.

F Converts to sentence style where the first character is capitalized and the remaining
characters are lowercased.

G If you include this flag, the system always returns the data at the source length and
ignores the destination length.
If you omit the G flag, the Move_It rule returns data truncated to either the source
or destination length, whichever is shorter.
For instance, if you use the Move_It rule with a source length of 20 and a destination
length of 19, including the G flag returns 20 characters. Omitting the G flag returns
19 characters.
If you include the ChkDestLenExceeded option in the RunMode control group and
set the option to Yes, the system reports any occurrence where the destination length
is less than the source length.

L Left justifies the data.

K Removes leading and tailing spaces.

N Searches for the next record in the transaction list instead of starting with the first
record. For example, assume the current transaction has five records (A, B, C, D, and
E) and the last record processed is C. If the next rule is Move_It and it has the N flag
set, the D record will be searched instead of starting at the top (record A). When you
include the Move_It rule and you are using overflow (@UserFuncName options) do
not use the N flag.

R Right justifies the data (for non-proportional fonts only).

SR Same record flag. This flag is similar to the N (next record) flag except it assumes the
data is in the record returned by the previous Move_it rule.
Note that SR only applies to the prior execution of a Move_It rule. You must have at
least one Move_It rule without the SR flag before you can add a Move_It rule which
uses this flag.

T Include this flag to format the text in title case. This flag tells the system to capitalize
the first letter in each word in the string and lowercase the rest of the letters in each
word. See the example on page 397 for more information

U Converts the data returned by the rule into uppercase.

Chapter 5
Section and Field Rules Reference

394

NOTE: Before version 10.0, this rule did not permit multiple flags. Beginning with
version 10.0, flags are executed in sequence, thus the particular order may cause
a difference in the formatted string output. When you use multiple format mask
flags, use a comma as a separator.

Do not use C, R, or L with K. The system intentionally skips K after C, R, or L is
mapped. If K occurs before C, R, or L, it will not affect C, R, or L mapping.

For example, if a K flag occurs first, the system clips the heading and tailing spaces and
then formats the string. If a K flag occurs second in the format string, the system formats
the string and then clips the heading and trailing spaces.

You can do some interesting things by handling the flags in sequence, you can clip (K) the
input data, format ($) the string, right justify (R) the result, and format ($) it again.

On the other hand, you can do some things that don't make sense, like center justify (C)
the data and then clip (K) the result. This sequence negates the center justification. The
same applies to right (R) and left justification (L) if you put a K in the format afterwards.

Furthermore, what order would you expect R, C, and L applied especially when mixed
with the format ($)? Just like the clip flag (K), if you right justify (R) first and then format
($), you will likely get different results than if you format ($) first and then right justify (R).

NOTE: If you apply this rule to a multi-line variable field, make sure destination length is
greater than one (1). Otherwise, no data will be mapped. This happens because
when you create a multi-line variable field, its length is zero (0) and its destination
length in the DDT file is also set to zero. While some rules, such as the Mk_Hard
rule, map data even if the destination length is zero, the Move_It rule will not.

Handling currency
symbols

Let’s assume you have variable fields that represent amounts. The extract data is pre-
formatted as character text (left justified), which represents the correct currency format.
Unfortunately, the extract data does not include the currency symbol. You have to add
the currency symbol.

Depending on the nationality, the currency symbol can appear at the beginning of the
amount, like the dollar sign, or it can appear at the end of the amount, such as FF for
French Francs.

Beginning with version 10.0, you can use a format of K,$%sFF to add the currency
symbol.

$ A string proceeded by a dollar sign ($) is used as a sprintf format for the output data.

8 Indicates the extract data for this field is stored in UTF-8 format. UTF-8 (Unicode
Transformation Format, 8-bit encoding form) is a format for writing Unicode data in
text files. See Using Unicode Support for more information.

Blank Default, trims trailing spaces.

Format Description

Move_It

395

The K would come first to indicate the space before and after the input data should be
removed, then FF would be appended.

So K,$%sFF is not the same as $%sFF,K. The former clips the input data before the format
is applied. The latter clips the data after the format has been applied.

For currency symbols that appear at the beginning of the data, such as British pound
sterling, you could use the Move_It rule with a format mask of $£%s. This works because
trailing spaces are trimmed. For currency symbols at the end of the data, this will not
work.

User functions The Move_It rule supports the use of @UserFuncName functions. User functions let you
move data from the source record to the output buffer based on the outcome of a user-
defined function. User functions and their parameters are specified in the data field before
the search criteria.

Image Editor example In this example, the user function name is GetRecsUsed and has two parameters. FORM
NAME and VAR; / denote the end of the parameter list and the start of the search
criteria.

;Move_It;@GETRECSUSED,FORM NAME,VAR/17,00,15,B;;;;;

If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In this field... Enter...

Destination name POLNUMBER

Offset 1**

Length 10

Source name REC-POLNUMBER

Offset 50

Length 10

File *

Record * (generally not required unless you are also using overflow)

Required *

Rule Move_It

Mask *

Data 17,PMSP0200

* no entry required for this field in this example
**if you set the offset field to zero (0), the system automatically defaults to 1.

Chapter 5
Section and Field Rules Reference

396

In the DDT file, this information looks like this:

;;;REC-POLNUMBER;50;10;POLNUMBER;1;10;;Move_It;17,PMSP0200;;;;;

This rule gets the first occurrence of a record matching the search criteria of PMSP0200
at offset 17. From the extract record, ten characters from offset 50 are moved to the
output buffer (which also happens to be 10 characters in length).

This example shows the use of a user function and overflow symbol:

In the DDT file, this information looks like this:

;;1;REC-
POLNUMBER;50;10;POLNUMBER;1;10;;Move_It;@GETRECSUSED,FORMABC,OVSYM/
17,PMSP0200;;;;;

In this field... Enter...

Destination name POLNUMBER

Offset 1

Length 10

Source name REC-POLNUMBER

Offset 50

Length 10

File *

Record 1 (required with overflow)

Required *

Rule Move_It

Mask *

Data @GETRECSUSED,FORMABC,OVSYM/17,PMSP0200

* no entry required for this field in this example

Move_It

397

Studio example Here is an example of how you can specify the T (title case) format flag in an extract
dictionary definition:

You can also specify this format flag in the field's rule mapping in the Section manager.

NOTE: The Section manager example shows the T format flag used with the XDD rule.
The presumption is that when the dictionary element is found, the resulting rule
will be the Move_It rule. Adding the T format flag here overrides any mask
defined in the XDD definition.

Here are some examples of what happens when you include the T format flag:

Add the T format flag in the
Mask field.

Be sure to separate multiple
format flags with commas.

Add the T format flag in the
Mask field.

This text Is changed to

11 paces ferry road 11 Paces Ferry Road

SAM DOE Sam Doe

Chapter 5
Section and Field Rules Reference

398

Keep in mind:

• In some cases, the use of this formatting flag can result in unwanted changes.

• The T format flag will work on Unicode text that has upper and lower equivalents.
If the text characters are for a language that does not have such distinctions, like
certain Asian character sets, then those Unicode characters will not be modified.

• You can enter several format flags in the Mask field of the Move_It rule. If you
include conflicting format flags, the last one determines the results. For instance, if
you specify both this flag and the Uppercase format flag (T,U) in that order, the result
is upper cased, because the U is the last flag specified.

See also MoveExt on page 399

Extracting data on page 409

Search Criteria on page 270

Section and Field Rules Reference on page 274

Marquis de Lafayette Marquis De Lafayette

George O’Brien George O’brien

This is the Title Case Option This Is The Title Case Option

This text Is changed to

MoveExt

399

 MoveExt
Use this field level rule (level 4) to move text from a specific external extract record to the
output buffer if a specific external record is found. This rule calls the Move_It rule if the
specified extract record is found. This rule supports overflow.

A string in the format mask that is preceded by a dollar sign ($) is used as a sprintf format
for output data. You cannot use this feature with a format mask ID.

User functions let data move from the source record to the output buffer based on the
outcome of a user-defined function. User functions and their parameters are specified in
the data field before the search criteria, and follow the syntax described below.

In this example the user function name is GetRecsUsed. It has two parameters FORM
NAME, and VAR. The slash (/) denotes the end of the parameter list and the start of the
search criteria.

;MoveExt;@GETRECSUSED,FORM NAME,VAR/17,00,15,B;;;;;

Image Editor examples If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In the DDT file, this information looks like this:

;;;REC-POLNUMBER;50;10;POLNUMBER;1;10;;MoveExt;17,PMSP0200
17,IPMSR01,99,T1;;;;;

In this field... Enter...

Destination name POLNUMBER

Offset 1

Length 10

Source name REC-POLNUMBER

Offset 50

Length 10

File *

Record *

Required *

Rule MoveExt

Mask *

Data 17,PMSP0200 17,IPMSR01,99,T1

* no entry required for this field in this example

Chapter 5
Section and Field Rules Reference

400

The move only occurs if the record defined by the external search criteria is found. If the
extract record matching the search format 17,IPMSR01,99,T1 is found, the record
defined by the search format 17,PMSP0200 is searched to get the text from offset 50 for
the length of 10 characters.

This example shows the use of a user function and overflow symbol:

In the DDT file, this information looks like this:

;;1;REC-
POLNUMBER;50;10;POLNUMBER;1;10;;MoveExt;@GETRECSUSED,FORMABC,OVSYM/
17, PMSP0200 17,IPMSR01,99,T1;;;;;

See also Move_It on page 393

Search Criteria on page 270

Section and Field Rules Reference on page 274

In this field... Enter...

Destination name POLNUMBER

Offset 1

Length 10

Source name REC-POLNUMBER

Offset 50

Length 10

File *

Record 1

Required *

Rule MoveExt

Mask *

Data @GETRECSUSED,FORMABC,OVSYM/17,PMSP0200
17,IPMSR01,99,T1

* no entry required for this field in this example

MoveMeToPage

401

 MoveMeToPage
Use this section level rule (level 3) to move the entire page the section resides on to a
designated page.

Syntax ;MoveMeToPage;;PageNumber;

If you use the rule, you must have the following set in the AFGJOB.JDT:

;ProcessQueue;;PaginationQueue;

This rule only works with forms that have multiple pages.

Image Editor example ;MoveMeToPage;;3;

This example moves the section to the third page of the form set.

;MoveMeToPage;;0;

This example moves the section to the last page of the form set.

See also Section and Field Rules Reference on page 274

Parameter Description

PageNumber Page number to which the sections will be moved. To move sections to the
last page, enter zero (0).

Chapter 5
Section and Field Rules Reference

402

 MoveNum
Use this field level rule (level 4) to move numeric data from an extract record to the output
field and, if necessary, reformat the data. This rule supports overflow.

NOTE: The numeric data this rule handles is limited to 15 significant digits. This is a total
of all the digits, both to the right and left of the decimal. Here are some examples:

999,999,999,999,999.

.999,999,999,999,999

999,999,999.999,999

The system tries to honor almost any format you supply, but when a conversion
has to occur, it can only guarantee 15 significant digits in the result.

The first part of the format mask must contain the input numeric format (X.Y) followed
by the output numeric format (X.Y), where X is the size of the number, including any
commas, currency symbols, and decimal places, and Y is the number of digits after the
decimal. For example, a simple format mask can look like this:

10.2,15.2

This tells the system the input string consists of ten characters and the last two characters
are decimals, such as 1234567890. The output string should consist of 15 characters,
including two decimals.

To format the output, you can also include any of the following format options after the
output numeric format (separate each option with a comma).

Format mask
Mask Description

- (one dash) If the number is negative, this option places a minus sign (-) in the left
most position. For example, if the format mask is (9.2,12.2,C,$,-), the result is: “-
$2,100.00”.

-- (two dashes) If the number is negative, this option places a minus sign (-)
immediately before the amount. For example, if the format is (9.2,12.2,C,$,--), the
result is “ -$2,100.00”, with a full length of 12.

+ Tells the system to always include a sign with all numbers.

% Appends a percent sign (%) at the end of the number.

$ Adds a dollar sign. The dollar sign cannot be the first character in the format
mask. This limitation arises from the Move_It format option, where a dollar sign
($) in the first character of the mask means to perform a sprintf.

A Removes the trailing spaces after an extract value if the input data type is neither
BCD nor Packed Decimal. For example, assume the data value is “100000 “ (a
one followed by five zeros and two spaces).
If you omit this flag and select a 12.2 output format with commas, the value
generated will be “ 100,000.00”. If you include this flag, the result will be “
1,000.00”.

MoveNum

403

B Translates a BCD number into a decimal. If the data is in EBCDIC format, use
this flag instead of the BA flag.

BA Translates a BCD number into a decimal. Use this flag for ASCII signed
numbers.

C Adds commas to the output.

C** Adds commas if the data is in US English format or spaces if the date is in
Canadian French format.

CR Appends CR (credit) to the end of the number.

CS1
CS2
CS731

Enter one of these options to indicate the checksum method.
The system appends a check digit (mod 10) of 0 through 9 to the end of the
number. This is typically used in accounting to make sure a number, such as an
account number is correct by performing a formula on each digit. For details, see
the discussion on page 406.

D Dollars (a combination of B, C, and $). You must modify
GEN_FMT_FmtMaskSaysBinary to recognize this format.

E Stops a calculation if the search condition is false. The Move_It rule may return
a null output buffer if: no record was found; a record was found, but the search
mask contained a pairing (offset,data) which extended past the end of the record;
or a record was found, but the mapped data was blank.

F Add a dollar sign ($) and place it in the first position. If the value is negative,
move the minus sign (-) to the last position.

G Tells the MoveNum rule not to use the Move_It rule to get the data from the
extract file. See Extracting data on page 409 for more information.

L Left justifies the number in the variable field.

-L (or --) Tells the system to use a floating negative sign on negative values.

+L (or
++)

Tells the system to use a floating sign and to always show that sign.

Lang Selects a language for spelling out the number. This flag is used with the V flag
and mask parameters. Here is an example: US, CFR.

M Money (This format is a combination of formats C and $.)

N Leave the output buffer blank if the number is zero or negative.

NM Adds a minus sign (-) to the number.

Mask Description

Chapter 5
Section and Field Rules Reference

404

-O Places a negative sign outside the right side of the field definition. This allows
positive and negative numbers to right align on the page if you use a fixed font.
Here is an example using this input format: 10.2,10.2,-O:

input data: 0000009.99

 -000012.25

output: 12345678901234567890

 9.99

 12.25-

On Sets the output field size to n and overrides the output size of the field. Here is
an example using this input format: 10.2,10.2,O8:

input data: 0000009.99

 -000012.25

 output: 12345678901234567890

 9.99

 -12.25

input format: 10.2,10.2,O12

input data: 0000009.99

 -000012.25

 output: 12345678901234567890

 9.99

 -12.25

P Print leading zeros. You cannot use this format with $, -, C, and F.

Pn Pads the output zeroes to n total width. This parameter only works with whole
numbers, not decimals. Here is an example using this input format: 10.0,10.0,P4:

input data: 0000000001

 0000000025

 0000012345

output: 12345678901234567890

 0001

 0025

 12345

P** Prints leading zeros if used without character or symbol enclosed with single
quote.

R Tells the system to retain the minus sign (-) if the result is less than zero. Use with
signed numbers.

Mask Description

MoveNum

405

For example…

…tells the system to take a ten-character input string with two decimals (10.2) and output
it as a 15-character string with two decimals (15.2), commas (C), a dollar sign ($), and left-
justified (L).

This rule respects the number of decimals in the source. For instance, if you have the
number “ 1.2" defined as using a mask of 6.2, the system outputs 1.20 instead of 0.12.

-R Places a negative sign on the right side of the field (within the field). Here is an
example using this input format: 10.2,10.2,-R:

input data: 0000009.99

 -000012.25

output: 12345678901234567890

 9.99

 12.25-

R** Retains the sign when translating a signed data value into decimal. Use with the
S flag.

S Translates signed data to a decimal.

SLZ Suppress leading zeros. For example, 00.25 becomes .25.

T Adds text before or after a number. Use the less than (<) symbol for inserting
before, the greater than (>) symbol for inserting after. Use the comma as a
separator.
Use with the NegText, Text, and ZeroText data options.
You can also use this option to place currency symbols before or after amounts.
For instance, T>£ places the British pound sterling symbol (ALT+0163) before
an amount.

TA Same as T>

TB Same as T<

SP Same as E

V Spells out the numeric value in US English.

X Adds X to the front of the number.

Z Print a number even if it is zero.

Z2 Prints two zeros.

Input string Format mask Output string

1234567890 10.2,15.2,C,$,L $12,345,678.90

Mask Description

Chapter 5
Section and Field Rules Reference

406

NOTE: :The MoveNum and AccumulateVariableTotal rules support three checksum
methods. These methods only work on the integer portion of a number. The
system ignores the decimal portion of the number.

CS1 works from right to left. CS2 works from left to right. These two algorithms
are exactly the same except for the direction in which they work. The calculation
works like this:

The odd number digits are multiplied by 2. If that result is greater than 9, then 9
is subtracted from the value. The result is added to the sum. The even number
digits are simply added to the sum.

Once all the digits values have been summed, the total is divided by 10. The
remainder of this division is subtracted from 10 and that becomes the check-digit.
If the resulting value is 10, then zero (0) will be the check-digit.

Here are some examples. In all cases, assume the value is 346,100.99. The CS1
calculation works like this: (notice the digits are addressed backwards)

(0 x 2) + 0 + (1 x 2) + 6 + (4 x 2) + 3

0 + 0 + 2 + 6 + 8 + 3 = 19

(19 mod 10) = 9

10 - 9 = 1

The resulting number will be 346,100.991.

The CS2 calculation works like this:

(3 x 2) + 4 + ((6 x 2)-9) + 1 + (0 x 2) + 0

6 + 4 + 3 + 1 + 0 = 14

(14 mod 10) = 4

10 - 4 = 6

The resulting number will be 346,100.996

Note that in the CS1 example, the third digit—an odd number digit—is
multiplied by 2 and exceeds 9. Therefore 9 is subtracted from that result before
proceeding to the next number).

CS731 is the other checksum method. This method works from left to right.
Unlike the other two methods which use an even/odd multiplier, this method has
three multipliers. The first digit is multiplied by 7, the next by 3, and the next by
1. This process is repeated until all digits have been multiplied. Unlike the other
methods, it does not matter if a the result of a digit multiplication exceeds 9.

CS731 calculation works like this:

(3 x 7) + (4 x 3) + (6 x 1) + (1 x 7) + (0 x 3) + (0 x 1)

21 + 12 + 6 + 7 + 0 + 0 = 46

(46 mod 10) = 6

10 - 6 = 4

The resulting number will be 346,100.994

MoveNum

407

Data The data can contain a calculation to be performed on the number in the extract record.
Separate the calculation from the search criteria with a space, enclosed in parentheses. Use
spaces to separate each element (including parentheses) in the equation string.

An X in the calculation is replaced by the value moved from the extract record. You must
place parentheses around each operator and its accompanying operands.

NOTE: If you have zeros in your extract file, the MoveNum rule converts these zeros into
blanks unless you include the Z option.

Image Editor example This example...

;0;0;AMOUNT;75;10;AMOUNT;0;10;10.2,10.2,T;MoveNum;11 HEADERREC
Text("French $" "FF");N;N;N;N;

...produces: French $ 123FF.

This example...

;0;0;AMOUNT;75;10;AMOUNT;0;10;10.2,10.2,T;MoveNum;11 HEADERREC
NegText("" "CR");N;N;N;N;

...produces: 123 CR.

This example...

;0;0;AMOUNT;75;10;AMOUNT;0;10;10.2,10.2;MoveNum;11 HEADERREC
ZeroText("ZERO");N;N;N;N;

...produces ZERO if the number is 0 (zero).

This example...

;0;0;AMOUNT;75;10;AMOUNT;0;10;10.2,10.2;MoveNum;11 HEADERREC RPN(X X
+ 2 /) "FF");N;N;N;N;

...produces the number if it is a positive number.

If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

Option Description

NegText If the value is negative, this option lets you insert user-defined text before and/or
after the negative value.

RPN (x) Allows a calculation to be performed using reverse Polish notation.

Text Lets you print text before and after the number.

X Adds X to the front of the number.

ZeroText If the result is zero, this option lets you insert user-defined text instead of the zero
value.

In this field... Enter...

Destination name TOTALPREM

Chapter 5
Section and Field Rules Reference

408

In the DDT file, this information looks like this:

;0;0;REC-
TOTALPREM;87;6;TOTALPREM;;12;7.2,11.0,$,L;MoveNum;17,PMSP0200 ((X
* .50) + 2.50);N;N;N;N;

This example takes the numeric value represented by the six characters at offset 87 in the
record found using the search criteria of 17,PMSP0200. That value is then multiplied by
.50.

Then the system adds 2.50, left justifies the output, and adds a leading dollar sign ($). The
numeric output can contain up to 11 characters before the decimal point, and zero (0)
after.

This example shows the use of a user function and overflow symbol:

Offset *

Length 12

Source name REC-TOTALPREM

Offset 87

Length 6

File *

Record *

Required *

Rule MoveNum

Mask 11.0,7.2,$,L

Data 17,PMSP0200 ((X * .50) + 2.50)

* no entry required for this field in this example

In this field... Enter...

Destination name TOTALPREM

Offset *

Length 12

Source name REC-TOTALPREM

Offset 87

In this field... Enter...

MoveNum

409

Extracting data Typically, the MoveNum rule uses the Move_It rule to get numeric data from the extract
record before formatting the numeric data. The Move_It rule only copies the least
number of characters possible. If the destination length is shorter than the source length,
this means that the destination length is used instead of the source.

Normally, this is fine with numeric processing because extract files typically contain
unformatted data. For example, you might pick up 123456 and turn it into $$$$$1,234.56
or some other valid format. In these cases, the destination is almost always longer than
the source length.

There are cases, however, where the extract data is already formatted in some fashion
that’s longer than the expected destination. For example 00000001234 might appear in the
extract and yet the desired format expected for output is known to never exceed 6.2, such
as 9999.99.

In this case, if you use the Move_It rule to get the data the result would be 0000000
because the destination length is only seven characters—shorter than the 11 character
source length.

The G flag tells the MoveNum rule not to call the Move_It rule and instead use an alternate
function that retrieves the entire source length before it formats the data for the
destination length.

In the DDT file, this information looks like this:

;0;1;REC-TOTALPREM;87;6;TOTALPREM;;12;7.2,11.0,$,L;MoveNum;
@GETRECSUSED,FORMABC,OVSYM/17,PMSP0200 ((X * .50) + 2.50)
;N;N;N;N;

The system substitutes zero (0) for X and calculates the format when the search condition
is not met.

NOTE: You can use format E to stop the calculation when the search condition is false.

See also MNumExt on page 390

Length 6

File *

Record 1

Required *

Rule MoveNum

Mask 11.0,7.2,$,L

Data @GETRECSUSED,FORMABC,OVSYM/17,PMSP0200 ((X * .50
) + 2.50)

* no entry required for this field in this example

Chapter 5
Section and Field Rules Reference

410

Search Criteria on page 270

Section and Field Rules Reference on page 274

MoveSum

411

 MoveSum
Use this field level rule (level 4) to add two fields and insert the result into a new field.

This rule uses the Record Dictionary table to get the search criteria, offset, length and type
for the variables specified in the Data field. It then performs an addition on the
information retrieved from extract file. The output sum is formatted according to the
format specified in the format mask in the DDT file.

To apply this rule, you must define the record, offset, length, and type for the variables in
the Record Dictionary table. For more information about the Record Dictionary, see
Using the Record Dictionary on page 495. An example of the Record Dictionary table is
as follows:

* This is the Record Dictionary table

<Records>

Account= Search(PMSP0200,17)

<Variables>

TBAL = Record(Account) Offset(18) Length(12) Type(Zone) Precision(2)

TBAL2 = Record(Account) Offset(38) Length(8) Type(Zone) Precision(2)

The name of the data dictionary file must be defined in the DataDictionary control group
as shown here:

< DataDictionary >

Name = DataDict.Tbl

The path for the table files must also be defined in the MasterResource control group as
shown here:

< MasterResource >

TablePath = .\MstrRes\TblLib\

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In this field... Enter...

Destination name NEW_BAL

Offset 0

Length 15

Source name NEW_BAL

Offset 0

Length 0

File 0

Record 0

Required *

Rule MoveSum

Chapter 5
Section and Field Rules Reference

412

In the DDT file, this information looks like this:

;0;0; NEW_BAL;0;0;NEW_BAL;0;15;15.2;MoveSum;TBAL,TBAL2;N;N;N;N;

This rule tells the system to look up the variable TBAL in the Record Dictionary table
named DATADICT.TBL located in the TblLib directory. Then the system gets from the
EXTRFILE.DAT file the first occurrence of a record matching the search criteria of
PMSP0200 at offset 17 as defined in Account under < Records >.

The output consists of 12 characters from offset 18. It is a zoned decimal with two
position precision. The same procedure is applied to the second variable TBAL2. The
system gets from the EXTRFILE.DAT the first occurrence of a record matching the
search criteria of PMSP0200 at offset 17 as defined in Account under < Records >.

The output consists of eight characters from offset 38. It is a zoned decimal with two
position precision. Finally, these two numbers are added and the result is stored in the
variable NEW_BAL. The length of the sum number is 15 and the precision is two
decimals.

See also Section and Field Rules Reference on page 274

Mask 15.2

Data TBAL,TBAL2

* no entry required for this field in this example

In this field... Enter...

MovTbl

413

 MovTbl
This field level rule (level 4) works similarly to the Move_It rule, except records are taken
from the table list of records stored in memory instead of the extract records list from
which many of the other rules get data.

One or more files may be used to keep tables used by this rule. Each table (file) must be
listed in the table list file specified in the Data control group with the name TBLFILE.
This table file list file must be in the following format:

TABLEFILENAME1.EXT <crlf>

TABLEFILENAME2.EXT <crlf>

Each table file name is listed on a single line followed by a carriage return/line feed. The
format of the table itself is a key name followed by key data. The key need not be a specific
length nor the data, which allows for a single table or group of table files to contain table
entries of varying lengths.

For example, suppose a form contains the names and numbers of agents for calling
purposes, but these names and numbers change on a regular basis, this situation lends
itself to the use of text tables. A table might be created called AGENTS.TBL that contains
table entries such as the following:

AGENT001 JOE MILLER <crlf>

and another table called agentpho.tbl with phone number entries such as:

AGENT001PHONE404 111-2222 <crlf>

You could then make these tables available to Documaker Server by including them in the
file specified by the TblFile setting in the FSISYS.INI file.

You specify the table file name in the Data control group of the FSISYS.INI file as
follows:

< Data >

TblFile = .\deflib\TblFile.Dat

These tables must first be loaded into memory before the system can use them. To do so,
the following rules must be in the AFGJOB.JDT file:

;CreateGlbVar;1;TblLstH,PVOID;

;LoadTblFiles;1;;

Chapter 5
Section and Field Rules Reference

414

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In the DDT file, this information looks like this:

;0;0;REC-AGENTNAME1;10;20;AGENTNAME1;1;30;;MovTbl;1,AGENT001;;;;;

Here, the system will find a maximum of 20 characters at offset 10 in the first record in
the table with a key value of AGENT001 at offset 1. It then moves the information to the
destination field.

See also Move_It on page 393

LookUp on page 374

TblLkUp on page 476

Section and Field Rules Reference on page 274

In this field... Enter...

Destination name AGENTNAME1

Offset 1

Length 30

Source name REC-AGENTNAME1

Offset 10

Length 20

File *

Record *

Required *

Rule MovTbl

Mask *

Data 1,AGENT001

* no entry required for this field in this example

NoOpFunc

415

 NoOpFunc
This field level rule (level 4) is useful when you are developing new forms because it lets
you map all fields and systematically test each field by replacing the NoOpFunc rule with
the actual rule you want to use.

If a particular DDT rule keeps failing, you can use NoOpFunc to temporarily replace the
original rule and process the form without error until you can evaluate and solve the
problem.

NOTE: The field on the form will be blank after processing with this rule.

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In the DDT file, this information looks like this:

;;;SRCNAME;;;DESTNAME;;;;NoOpFunc;;;;;;

In this field... Enter...

Destination name DESTNAME

Offset *

Length *

Source name SRCNAME

Offset *

Length *

File *

Record *

Required *

Rule NoOpFunc

Mask *

Data *

* no entry required for this field in this example

Chapter 5
Section and Field Rules Reference

416

NOTE: When you use the NoOpFunc rule, many of the fields which would otherwise be
required for processing are not needed. If, however, any of the other fields
contain data, this will not affect the operation of the NoOpFunc rule. The system
lets the NoOpFunc rule replace any rule on an existing line in a DDT file.

See also Section and Field Rules Reference on page 274

OvActPrint

417

 OvActPrint
Use this field level (level 4) rule to report the actual number of overflow records that could
be processed per transaction for the overflow section.

Syntax OvActPrint (Section, OvSymbol)

For instance, assume an overflow section can handle five overflow records before being
forced to another page and a transaction contains seven overflow records. This rule would
state the output as 7—five for the first page, plus two for the second page.

This rule supports only automatic overflow.

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

Parameter Description

Section Name of the overflow section

OvSymbol Name of the overflow symbol defined by the SetOvFlwSym rule

In this field... Enter...

Destination name INC

Offset *

Length 15

Source name REC-INC

Offset *

Length *

File *

Record *

Required *

Rule OvActPrint

Mask *

Data FORMABC,ITEMSYM **

* no entry required for this field in this example
** The data field contains a form name and overflow symbol, separated by a comma.

Chapter 5
Section and Field Rules Reference

418

The information in the DDT file will look like this:

;0;0;REC-INC;0;0;INC;0;15;;OvActPrint;FORMABC,ITEMSYM;;;;;

This example outputs to a destination field the actual number of overflow records
processed for the form/overflow symbol combination of FORMABC, ITEMSYM.

See also Overflow and User Functions on page 271

PurgeChartSeries on page 433

SetImageDimensions on page 457

Section and Field Rules Reference on page 274

OvPrint

419

 OvPrint
Use this field level (level 4) rule to report the maximum number of overflow records that
could be processed per transaction for the overflow section.

Syntax OvPrint (Section, OvSymbol)

For instance, assume an overflow section can handle five overflow records before being
forced to another page and a transaction contains seven overflow records. This rule would
state the output as 10—five for the first page, plus five for the second page.

This rule works with the IncOvSym rule.

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

Parameter Description

Section Name of the overflow section

OvSymbol Name of the overflow symbol defined by the SetOvFlwSym rule

In this field... Enter...

Destination name INC

Offset *

Length 15

Source name REC-INC

Offset *

Length *

File *

Record *

Required *

Rule OvPrint

Mask *

Data FORMABC,ITEMSYM**

* no entry required for this field in this example
**The data field contains a form name and overflow symbol, separated by a comma.

Chapter 5
Section and Field Rules Reference

420

In the DDT file, this information looks like this:

;0;0;REC-INC;0;0;INC;0;15;;ovprint;FORMABC,ITEMSYM;;;;;

This example counts the maximum number for the overflow records used for the form,
overflow symbol combination of FORMABC, ITEMSYM.

See also IncOvSym on page 366

SetImageDimensions on page 457

Section and Field Rules Reference on page 274

PaginateBeforeThisImage

421

 PaginateBeforeThisImage
Use this section level rule (level 3) to force the system to perform a pagination before it
processes this section. Normally, pagination does not occur until the system has finished
processing the entire form set - meaning that all data is complete.

If pagination occurs because an earlier section exceeded a page boundary, the internal
references for page coordinates are reset for the page that now contains this section.

This rule makes it possible for a section or field rule that occurs later to know what page
the section (or field) occupies. You can also use this rule if you want to know how much
of the page is occupied so you can conditionally include or exclude data. If you waited
until normal pagination would occur, it would be after all normal section and field level
rules had been executed and it would be too late.

Syntax PaginateBeforeThisImage ()

There are no parameters for this rule. This rule is sometimes used with the
ResetImageDimensions and DontPrintAlone rules.

Image Editor example ;PaginateBeforeThisImage;;;

See also ResetImageDimensions on page 436

DontPrintAlone on page 329

Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

422

 PostImageDAL
Use this section level rule (level 3) in the DDT file to execute a DAL script on the
POST_PROC_B message. The PostImageDAL rule executes after all field level rules are
run.

You can use this rule to handle follow-up tasks after the section and field level rules are
executed.

Syntax ; PostImageDAL;string;

Although you can use DAL to access almost any form set or section field, keep in mind
those fields may not exist, depending on where you place this rule in the transaction job
rule list. And, unlike the DAL or IF rules, there is no return value from the execution of
a section level DAL script.

Use this form to get extract data if the script is contained in the rule data. You cannot use
this form in external script files.

A = {1,MIS257 138,1}

Where A is a DAL variable you wish to assign. The bracketed {} item can be almost any
standard search mask supported by the Get Record infrastructure. In this case, 1,MIS257
is the search criteria. If the record is found, the system takes the data from position 138,
length 1 as indicated by 138,1.

This method also lets you specify an occurrence of the record by including a hyphen with
a numeric value, such as -n, after the data length. Here is an example:

A = {1,MIS257 138,1-5}

Here the function searches for the 5th occurrence of the 1,MIS257 record. If you omit
the occurrence, the system returns the first one found. If it cannot find the requested
record, the system assigns the variable an empty “” value.

NOTE: To specify multiple DAL statements in the rule data area, separate the DAL
statements using two colons (::). Normally, semicolons separate DAL statements,
but this character is illegal in the rule data area.

Image Editor example ; PostImageDAL;;Chain("posttran.dal");

This example executes the Chain DAL function which then executes the DAL script
contained in the POSTTRAN.DAL file in the DefLib directory specified in your MRL.

; PostImageDAL;;If HaveGVM("main_address") Then
SetGVM("main_address", "25 Brown St.", , “C”, 20)::End;

In this example, the system checks to see if the GVM variable (main_address) exists. If not,
it creates a character array GVM variable (main_address) 20 characters in length and stores
the character string (25 Brown Street) in the array.

Parameter Description

String A character string that contains a DAL function or DAL script.

PostImageDAL

423

See also PreImageDAL on page 426

PostTransDAL on page 177

PreTransDAL on page 179

Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

424

 PowType
Use this field level rule (level 4) to force a transaction to manual batch (WIP). The
PowType rule sets the manual batch flag to true. To edit the field associated with the
PowType rule in the Entry system, you must set the required flag to operator for the field.

Syntax PowType ()

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In the DDT file, this information looks like this:

;0;0;INSNAMEREC-
INSNAME1;0;0;ADDR1;0;40;;PowType;;N;N;Y;N;87;1406;12010

In this example, the operator required flag for the INSNAMEREC-INSNAME1 field
must be set if you want this field to be editable in the entry system when it is retrieved
from manual batch (WIP).

In this field... Enter...

Destination name ADDR1

Offset *

Length 40

Source name INSNAMEREC-INSNAME1

Offset *

Length *

File *

Record *

Required Operator

Rule PowType

Mask *

Data *

* no entry required for this field in this example

PowType

425

Suppressing Warning Messages
Use the ShowWIPWarning option to suppress the Sent to Manual Batch warning
messages:

< RunMode >

ShowWIPWarning = No

See also Section and Field Rules Reference on page 274

Option Description

ShowWIPWarning Enter No to suppress warning messages included the error logs when
using the KickToWIP or POWType rules, or the KickToWIP DAL
function.
The default is Yes, which tells the system to include the messages in the
error logs.

Chapter 5
Section and Field Rules Reference

426

 PreImageDAL
Use this section level rule (level 3) in the DDT file to execute a DAL script on the
PRE_PROC_B message. The PreImageDAL rule executes before section or field level
rules.

You can use this rule to handle setup tasks which should occur before image and field
level rules are executed.

Syntax ; PreImageDAL;string;

Although you can use DAL to access almost any form set or section field, keep in mind
those fields may not exist, depending on where you place this rule in the transaction job
rule list. And, unlike the DAL or IF rules, there is no return value from the execution of
a section level DAL script.

Use this form to get extract data if the script is contained in the rule data. You cannot use
this form in external script files.

A = {1,MIS257 138,1}

Where A is a DAL variable you wish to assign. The bracketed {} item can be almost any
standard search mask supported by the Get Record infrastructure. In this case, 1,MIS257
is the search criteria. If the record is found, the system takes the data from position 138,
length 1 as indicated by 138,1.

This method also lets you specify an occurrence of the record by including a hyphen with
a numeric value, such as -n, after the data length. Here is an example:

A = {1,MIS257 138,1-5}

Here the function searches for the 5th occurrence of the 1,MIS257 record. If you omit
the occurrence, the system returns the first one found. If it cannot find the requested
record, the system assigns the variable an empty “” value.

NOTE: To specify multiple DAL statements in the rule data area, separate the DAL
statements using two colons (::). Normally, semicolons separate DAL statements,
but this character is illegal in the rule data area.

Image Editor example ; PreImageDAL;; service_id={1,PrePost,22,Elect
1,8}::Call("postimage.dal");

This example executes the Call DAL function which executes the DAL script contained
in the POSTIMAGE.DAL file in the DefLib directory in your MRL.

This example sets the internal DAL variable, service _id, to the first eight-characters in the
transaction record that match the search mask:

1,PrePost,22,Elect

Then the Call DAL function executes the DAL script in the POSTIMAGE.DAL file,
which resides in the DefLib sub-directory in your MRL.

Parameter Description

String A character string that contains a DAL function or DAL script.

PreImageDAL

427

; PreImageDAL;;If (HaveGVM("main")) Then SetGVM("main_address", "25
Brown St.", , “C”, 20)::End;

In this example, the system checks to see if the GVM variable (main_address) exists. If not,
it creates a character array GVM variable (main_address) 20 characters in length and stores
the character string (25 Brown Street) in the array.

See also PostImageDAL on page 422

PostTransDAL on page 177

PreTransDAL on page 179

Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

428

 PrintIf
Use this field level rule (level 4) to determine what text should be placed into the output
buffer. The PrintIf rule compares a character string from the extract record to the
character string specified in the user-defined condition contained in the data field.

This rule does not support comparison of data strings that contain all numeric characters.
This rule does supports overflow.

NOTE: The PrtIfNum rule does support comparison of data strings that contain all
numeric characters.

The user-defined condition is comprised of one or more user-defined definitions
separated by a colon (:). A user-defined definition is comprised of two parameters
separated by an equal sign (=). User-defined definition parameters contains the...

• Character string to be compared against

• Character string to be placed in the output buffer, if the comparison is true

Here are some examples:

Inc=Extra premium due to age is included.

Exc=Age premium has been excluded.

Y=Age premium is not applicable.

Inc=Age premium is included.:Exc=Age premium excluded.:Y=N/A

You can use these format flags:

The system justifies the data by adding spaces in front of the text. If you are using a
proportional font, do not use these flags to align the data. Use the JustFld rule for that.

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

Flag Description

C Center

R Right justify

In this field... Enter...

Destination name PREMB1

Offset *

Length 4

Source name REC-PREMB1

Offset 285

PrintIf

429

In the DDT file, this information looks like this:

;0;0;REC-PREMB1;285;1;PREMB1;;4;;PrintIf;17,ASBLCPL1
Y=INCL:N=EXCL;N;N;N;N;

This will put INCL into the field if record ASBLCPL1 offset 285 length 1 = “Y”, or
EXCL if record ASBLCPL1 offset 285 length 1 = “N”.

NOTE: Separate the record search criteria and the user-defined condition criteria using a
blank space in the data field of the rule.

See also JustFld on page 367

PrtIfNum on page 430

Section and Field Rules Reference on page 274

Length 1

File *

Record *

Required *

Rule printif

Mask *

Data 17,ASBLCPL1 Y=INCL:N=EXCL

* no entry required for this field in this example

In this field... Enter...

Chapter 5
Section and Field Rules Reference

430

 PrtIfNum
This field level rule (level 4) is similar to the PrintIf rule. The difference is the PrtIfNum
rule compares the data to a number while PrintIf compares data to a character string.

A MoveNum action is performed on the value from the extract record and the resulting
value is compared to the value in the user-defined conditions to determine what text
should be placed in the output buffer. This rule supports overflow processing.

A user-defined condition is comprised of one or more user-defined definitions separated by
a colon (:). A user-defined definition is comprised of these two items separated by an equal
sign (=):

• This item is comprised of a logical operator and numeric value to be used in the
comparison. The logical operators supported are:

• Character string (inside quotation marks) to be placed in the output buffer if the
comparison is true.

Here are some examples of user-defined conditions:

=40="He is forty years old."

The logical operator is equal to, the numeric value is 40, and the character string if the
comparison is true is He is forty years old.

>50="He is greater than 50 years old."

The logical operator is greater than, the numeric value is 50, and the character string if the
comparison is true is He is greater than 50 years old.

<30="He is less than 30 years old."

The logical operator is less than, the numeric value is 30, and the character string if the
comparison is true is He is less than 30 years old.

<>20="He is not 20 years old."

The logical operator is not equal to, the numeric value is 20 and the character string if the
comparison is true is He is not 20 years old.

=40.0="Forty years old.":>50="Greater than 50":<30="Less than

30.":<>20.00="Is not 20.":29="29 years old."

This user-defined condition is comprised of five user-defined definitions.

• If the value from the extract record is equals to 40.0, the string Forty years old. is moved
to the output buffer.

Operator Description

= equal to

> greater than

< less than

<> not equal to

Blank (default) No comparison occurs, text is moved to output buffer

PrtIfNum

431

• If the value from the extract record is greater than 50, the string Greater than 50 is
moved to the output buffer.

• If the value from the extract record is less than 30.0, the string Less than 30 is moved
to the output buffer.

• If the value from the extract record is not equal to 20.00, the string Is not 20 is moved
to the output buffer.

• In this definition, the logical operator does not exist so no comparison is made. If
one of the other four user-defined condition is not true, the string 29 years old. is
moved to the output buffer.

NOTE: You must define the MoveNum parameters (format mask) in the PrtIfNum rule
mask field. As a minimum, you must define the MoveNum input numeric format
(X.Y) followed by the output numeric format (X.Y).

If data (offset, length) does not exist for the search mask, the value returned to
PrtIfNum for the comparison is zero (0). Therefore, you may want to include a
zero compare in the user-defined conditions.

For example, suppose you left the No check box blank if the data is three and an
X if the data is a one, two, or four. These user-defined conditions...

 =3=” “: <>3=”X”

would not produce the desired results if the data was missing (blank). These
conditions...

 =0=” “:=3=” “: <>3=”X”

 would insert a blank if the data was missing.

Image Editor example If you want a six-character packed decimal located at offset 200 in a record identified by
an XYZ at location 100, and base it on the numeric value, you would do the following:

• If it equals 40, print MIDDLE AGE

• If less than 40, print YOUNGSTER

• Otherwise (default) print SENIOR

Your entries on the Edit DDT tab on the field’s Properties window would look similar to
the following:

In this field... Enter...

Destination name AGEDESC

Offset 1

Length 18

Source name REC-AGEDESC

Chapter 5
Section and Field Rules Reference

432

In the DDT file, this information looks like this:

;0;0;REC-AGEDESC;200;6;AGEDESC;1;18;11.0,18.0,B;PrtIfNum;100,XYZ
=40="MIDDLE AGE":<40="YOUNGSTER":"SENIOR";;;;;

NOTE: A space separates the record search mask “100,XYZ” and the following logic.

See also MoveNum on page 402

PrintIf on page 428

Section and Field Rules Reference on page 274

Offset 200

Length 6

File *

Record *

Required *

Rule prtifnum

Mask 11.0, 18.0, B

Data 100,XYZ =40=”MIDDLE
AGE”:<40=”YOUNGSTER”:”SENIOR”

* no entry required for this field in this example

In this field... Enter...

PurgeChartSeries

433

 PurgeChartSeries
Use this section level rule (level 3) to remove a series from a chart which contains no series
data. The cleanup performed by this rule affects all charts on the section. If a series is
defined for a chart, but there is no data to fill that series, in most cases you would not want
to include the empty series in the chart.

A series may exist but contain no series data because you may need to add series data on
an as provided basis. For instance, the customer extract data may contain a variable number
of records containing data that goes into a chart. Each of these records may contain data
for a single series.

The FAP file would be designed to accommodate the maximum number of series that
could be included. If the extract data does not contain records to build the maximum
number of series the chart can accommodate, you may want to exclude those series from
the chart. This eliminates white space on the chart.

Syntax ;PurgeChartSeries;;;

You typically use this rule with the CreateChartSeries or FieldVarsToChartSeries rules.
Always place this rule after any rule which gathers chart data.

NOTE: If you are using Image Editor, add this rule under the Image Rules section in the
DDT file.

See also CreateChartSeries on page 315

FieldVarsToChartSeries on page 335

Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

434

 RemoveWhiteSpace
Use this section level rule (level 3) to remove the white space from between fields. This
rule works similarly to the SetAddr rules, but is not address specific.

Syntax ;RemoveWhiteSpace;FIELD1,FIELD2,FIELD3;.../NoWarning

The parameters to this rule will include a list of fields that should exist on the section.
Because fields are typically not created when no data maps, you must load the section to
make sure the empty fields exist.

Separate the fields in the list with commas. Each subsequent field with data will be
mapped into the earliest named prior field that did not contain data.

This rule moves field data from one field to a prior named field to compress out the space
between the fields. Typically, you would use this rule to compress the vertical space, as in
address lines, but the rule does not really care whether the space is vertical or horizontal.

Unlike the SetAddr type rules, this rule does not actually map the original data. You must
use field mapping rules, like Move_It, to do that. Also note that only the data moves
between the fields. The location of each physical field remains the same.

Also, unlike the SetAddr rules, you do not have to compress the space up. If you specify
the fields in the reverse vertical order, you can compress the space down.

Using the NoWarning
parameter

If the system cannot locate the field, you get a warning. If you include the NoWarning
parameter, however, you can suppress the warning. Add this parameter after the last field
in the list. Use a forward slash (/) to separate it from the previous parameter and end it
with a semicolon (;). This parameter is optional. Here is an example:

;RemoveWhiteSpace;PAGE1_FIELD1, PAGE1_FIELD2, PAGE1_FIELD3,
PAGE1_FIELD4/NoWarning;

The warning message includes addition information to help you resolve the problem:

DM10190: Warning in <REMOVEWHITESPACE>: Unable to locate field
<FieldName> in image <ImageName>.

This rule does not work with bar code fields or multi-line text fields.

If the system cannot locate the listed field and the section is a multi-page section and you
omitted the NoWarning parameter, you get message DM10189. If you included the
NoWarning parameter, you get message DM10190. Here are some examples:

DM10189: Warning in <REMOVEWHITESPACE>: Unable to locate field
<FieldName> on page <PageNo> of a multi-page image <ImageName>.

DM10190: Warning in <REMOVEWHITESPACE>: Unable to locate field
<FieldName> in image <ImageName>.

NOTE: Naming the same field to move more than once in the parameters may cause
unreliable results. The final location of a field's data is determined by the last
movement of that field.

Also, this rule does not work with barcode type fields or multi-line text fields.

RemoveWhiteSpace

435

Image Editor example Here is an example. Suppose you have these fields and data:

FIELD_A = ABCDEFG

FIELD_B =

FIELD_C =

FIELD_D = TUVWXYZ

Further suppose you name the fields in this order,

;RemoveWhiteSpace;FIELD_A,FIELD_B,FIELD_C,FIELD_D;

FIELD_A does not move because there is no earlier named field. FIELD_B and
FIELD_C are empty. The data from FIELD_D will move to FIELD_B — the earliest
field that is still empty. The result is:

FIELD_A = ABCDEFG

FIELD_B = TUVWXYZ

FIELD_C =

FIELD_D =

Now suppose you specify the field parameters like this:

;RemoveWhiteSpace;FIELD_D,FIELD_C,FIELD_B,FIELD_A;

The result is:

FIELD_A =

FIELD_B =

FIELD_C = ABCDEFG

FIELD_D = TUVWXYZ

See also Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

436

 ResetImageDimensions
Use this section level rule (level 3) to reset the top or bottom dimensions of the current
section based on the parameters you specify. This rule makes the objects on the section
fit under the bottom of the header, over the top of the footer, or compresses the section
to the smallest height possible, including all of its objects.

Syntax ;ResetImageDimensions;NewSize;;

The parameters are not case sensitive.

In legacy implementations, where only DDT files were loaded and not FAP files, fields
are the only objects on a section the ResetImageDimension rule recognizes. That meant
section bottoms were most likely being assigned at the last mapped field. In subsequent
releases and because of new features and the new Studio model of development, FAP files
are loaded during batch runs. Therefore, to get behavior similar to what you had in legacy
implementations, you must either change the ResetImageDimension rules to use the
LastField parameter, or use the RID_LastMapField INI option to change the behavior of
the MinHeight parameter.

When you use the LastField option, the bottom of the section is moved to a position
below the lowest mapped field on the section. This is what you want in situations where
the next section should be placed immediately below where the last field was mapped. For
instance, assume you have a small section used for addresses. It can contain up to eight
lines, but depending upon the address only two or three lines might be used and you
would like to set the bottom of the section below where the last field was mapped. Here
is an example:

<Image Rules>

;ResetImageDimension;LastField;

NOTE: Depending upon your print or display method, changing the bottom of the
section with this parameter could mean that any objects below this point will not
be visible and may not print. Or it could mean those objects will simply overprint
the next section in sequence on the same page.

You can also use the RID_LastMapField INI option to change the MinHeight parameter
to work like the new LastField option described above.

Parameter Description

NewSize Choose one of these options:
FooterTop - Makes the objects on the section fit over the top of the footer by
resetting the bottom dimensions.
HeaderBottom - Makes the objects on the section fit under the bottom of the
header by resetting the top dimensions.
MinHeight - Resizes the section to occupy the least amount of space. No objects
are omitted or resized, but unused space is removed.
LastField - Resizes the section to occupy the least amount of space. Only the
fields with data are examined when the system looks for the lowest point on the
section. Use this option on sections that have only fields or no objects lower than
the last few fields you expect to map

ResetImageDimensions

437

< RunMode >

RID_LastMapField = Yes

(RID is an abbreviation for ResetImageDimension.)

The default is No. Enter Yes if you want to modify the behavior of the MinHeight
parameter on all sections that would use the ResetImageDimension rule.

NOTE: Depending upon your print or display method, changing the bottom of the
section with this option could mean that any objects below this point will not be
visible and may not print. Or it could mean those objects will simply overprint
the next section in sequence on the same page.

Also note that the term last field refers to the lowest field mapped on a section and not the
physical sequence in which the fields are mapped. The lowest field is the one that is the
greatest distance from the top of the section.

Image Editor example This example shows a DDT file excerpt:

/* This section uses these rules */

<Image Rules>

;SetImageDimensions;98,0,298,15965,0,600,0,480;

;SetOrigin;REL+0,MAX+0;

;PaginateBeforeThisImage;;

;ResetImageDimensions;MinHeight;

;DontPrintAlone;;

This example resets the section dimensions to occupy the least amount of space.

See also SetImageDimensions on page 457

PaginateBeforeThisImage on page 421

Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

438

 ResetOvSym
Use this section level rule (level 3) to reset an overflow variable during the processing of
a document set. Use this rule on the section level if you can not wait until the job level
rule, ResetOvFlw, resets the entire set of overflow variables.

Syntax ;ResetOvSym;OverflowSymbol, SectionName;;

Image Editor example ;ResetOvSym;;Symbol_A,Section_AA;

This example tells the system to reset the overflow variable named Symbol_A which is
used in the section named Section_AA.

See also PurgeChartSeries on page 433

IncOvSym on page 366

OvActPrint on page 417

OvPrint on page 419

SetImageDimensions on page 457

Section and Field Rules Reference on page 274

Parameter Description

OverflowSymbol The name of the overflow symbol defined in the SetOvFlwSym rule.

SectionName The name of the section that contains the fields on which overflow
processing will occur.

SetGroupOptions

439

 SetGroupOptions
Use this section level rule (level 3) to set group options similar to forms. This rule lets you
define the section as a header or footer and lets you specify whether or not the section
should be copied onto the overflow section if overflow occurs.

Syntax SetGroupOptions; (Header or Footer), CopyOnOverFlow;;

NOTE: The header and footer parameters are mutually exclusive.

Keep in mind...

• When a section contains both a GroupBegin rule and a SetGroupOptions rule, the
GroupBegin rule must come first.

• When a section contains both a GroupEnd rule and a SetGroupOptions rule, the
SetGroupOptions rule must come first.

• You must set all group pagination section options (footer, header, and
CopyOnOverflow) using the SetGroupOptions rule.

Image Editor example This DDT file excerpt defines this section as the header which should be copied to the
new pages if the group pagination splits the group because of overflow.

/* This section uses these rules */

<Image Rules>

;SetImageDimensions;98,0,1142,19718,0,0,0,0;

;SetOrigin;Rel+0,Max+100;

;GroupBegin;GroupPagination();;

;SetGroupOptions;header,copyonoverflow;

This DDT file excerpt defines this section as the footer which should be copied to the
new pages if the group pagination splits the group because of overflow.

/* This section uses these rules */

<Image Rules>

;SetImageDimensions;98,0,1142,19718,0,0,0,0;

;SetOrigin;Rel+0,Max+100;

;GroupBegin;GroupPagination();;

;SetGroupOptions;footer,copyonoverflow;

See also GroupBegin on page 343

GroupEnd on page 355

Section and Field Rules Reference on page 274

Parameter Description

Header Defines the sections that appear before the group.

Footer Defines the sections that appear after the group.

CopyOnOverflow Defines the sections that are copied to the new page if group pagination
splits the group.

Chapter 5
Section and Field Rules Reference

440

 RunDate
Use this field level rule (level 4) to get the run date from the transaction data
(TRNFILE.DAT file) and format that date using the mask you specify.

The mask on the RunDate rule supports the following syntax:

A number (between 1 and 10 for compatibility with prior releases) and this format:
DinFmt:outFmt

The D indicates a date conversion using the new method. Here is a list of the date formats
you can choose:

For compatibility with prior releases, masks (1 through 10) and the destination formats
with a single letter, such as D, indicate the system will omit leading zeros or spaces. Also,
please note that Month indicates both upper- and lowercase letters are used while MONTH
indicates only uppercase letters are used. Mon indicates the month will be abbreviated in
upper- and lowercase letters.

Using locales If you use one of the standard formats, use the @XXX (without the percent). For
example, D44@CAD is the standard format for Month DD, YYYY in Canadian French.
If you are creating your own format, use %@???. For instance, D%@CAD%B %#d, %Y
yields the same result as the standard format D44@CAD.

Keep in mind that the run date is typically stored in YYYYMMDD format and therefore
does not require any locale information on the input format.

Enter To take a date in this format... And output it in this format...

1 YYMMDD MMDDYY

2 YYYYMMDD MMDDYYYY

3 YYYYMMDD MMDDYY

4 YYMMDD MM-DD-YY

5 YYMMDD MM/DD/YY

6 YYYYMMDD MM-DD-YY

7 YYYYMMDD MM/DD/YY

8 MMDDYY MM-DD-YY

9 MMDDYY MM/DD/YY

10 YYYMMDD MM/DD/YY

D inFmt is one of the standard date
formats which consists of a format
character, optional date separator, and
an optional year size (2 or 4).

outFmt is also a standard date format for the
destination field and is separated from the
inFmt by a colon (:).

RunDate

441

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In the DDT file, this information looks like this:

;0;0;REC-Date;0;0;Date;0;10;DM-4:44;RunDate;;N;N;N;N;

So, if your RunDate extract (Input) field is in the format DD-Mon-YYYY and you want a
form (output) field to have the format Month D, YYYY, you would define the mask like
this:

DM-4:44

The D tells the system what conversion method to use. M-4 indicates the input format is
DD-Mon-YYYY. And 44 indicates the output format is Month D, YYYY.

Or, if you have used the new TRN_FIELDS conversion support to have the GenTrn
program change the RunDate to YYYYMMDD, you can use this mask definition:

DD4:44

Here everything is the same except the input format of D4, which indicates
YYYYMMDD as the format of RunDate.

In this field... Enter...

Destination name Date

Offset *

Length 10

Source name REC-Date

Offset *

Length *

File *

Record *

Required *

Rule RunDate

Mask DM-4:44

Data *

* no entry required for this field in this example

Chapter 5
Section and Field Rules Reference

442

Here is another example:

If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In the DDT file, this information looks like this:

;0;0;REC-DATE;0;0;DATE;0;8;6;RunDate;;N;N;N;N;

See also Formatting Data on page 257

Section and Field Rules Reference on page 274

In this field... Enter...

Destination name DATE

Offset *

Length 8

Source name REC-DATE

Offset *

Length *

File *

Record *

Required *

Rule RunDate

Mask 6

Data *

* no entry required for this field in this example

SAPMove_It

443

 SAPMove_It
Use this field level rule (level 4) for a Move_It type of operation on an SAP Raw Data
Interface (RDI) extract file. This rule supports overflow.

Format mask The format mask can consist of these options:

C Center the text

R Right justify the text (for non-proportional fonts only)

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In the DDT file, this information looks like this:

;;;Caufvd_P-Matnr;173;3;Caufvd_P-Matnr;0;10;;SAPMove_It;42,
Caufvd_P-Matnr;;;;;

In this example, the rule gets the first occurrence in the extract file of a record matching
the search criteria of CAUFVD_P-MATNR at offset 173. From the extract record, 3
characters (which contains the length of the data that will follow it) are moved to the
output buffer.

The rule then reads the extract record again, this time from offset 176, and copies x
characters (where x is the 3-byte length that was just read) from the extract record to the
output buffer (which in this case is defined to be 10 characters in length).

In this field... Enter...

Destination name CAUFVD_P-MATNR

Offset 0

Length 10

Source name CAUFVD_P-MATNR

Offset 173

Length 3

File *1

Record 1 (generally not required unless you are also using overflow)

Required *1

Rule SAPMove_It

Mask *1

Data 42,CAUFVD_P-MATNR

*1 means that no entry is required for this example

Chapter 5
Section and Field Rules Reference

444

This example shows the use of a user function and overflow symbol:

In the DDT file, this information looks like this:

;;1;Caufvd_P-Matnr;173;3;Caufvd_P-Matnr;0;10;;SAPMove_It;
@GetRecsUsed,S4Top,S4TopOvf/42,Caufvd_P-Matnr;;;;;

See also Move_It on page 393

Section and Field Rules Reference on page 274

In this field... Enter...

Destination name CAUFVD_P-MATNR

Offset 0

Length 10

Source name CAUFVD_P-MATNR

Offset 173

Length 3

File *1

Record 1 (required for overflow)

Required *1

Rule SAPMove_It

Mask *1

Data @GETRECSUSED,S4TOP,S4TOPOVF/42,CAUFVD_P-MATNR

*1 means that no entry is required for this example

SetAddr

445

 SetAddr
Use this field level rule (level 4) to store and retrieve subsequent lines of a multiple line
address. This rule is useful if you are setting up an address which may have three or four
lines of information. For instance, some addresses include a suite or apartment number.
If one of the middle address lines is missing, the SetAddr rule will format the address to
omit any white space or blank lines. This rule supports overflow.

The first time the rule is called, the format mask field must contain an F. This initializes
the function and loads the address lines into an array. The system then returns the first
line of the address data. Subsequent address variable fields should contain an N in the
format mask field and return the next available non blank address line from the array.

The data element of the DDT structure should contain the parameters necessary to obtain
the multiple lines that make up the entire address record. Use of overflow with this rule
only pertains to calls which have the format mask field set to F.

The data field of the DDT has two parts, the first is the search criteria to get the extract
record which contains the address information. The second part, separated from the first
by a space, consists of offset,length pairs of address information.

When the address table is built, if one of the address lines consists of all blanks no entry
is made in the address table. This lets you remove blank lines in an address.

Here are the optional format mask parameters you can use:

Image Editor example For example, if an address record contained four fields such as name, P.O. Box, city &
state, and ZIP code and these four data items were loaded into the table, if P.O. Box was
empty, only the other three items would be loaded into the table.

NOTE: An address line cannot exceed 256 characters.

When the address table items are retrieved, the first three contain data and the fourth
returns nothing. This lets you print the address on successive lines without having a blank
line in the middle where the P.O. Box would be.

If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

Parameter Description

C Converts to sentence style where the first character is capitalized and the
remaining characters are lowercased.

S Suppresses the state from the last address line.

U Converts the data returned by the rule into uppercase.

In this field... Enter for field 1... Enter for field 2... Enter for field 3...

Destination name ADDRESS1 ADDRESS2 ADDRESS3

Chapter 5
Section and Field Rules Reference

446

In the DDT file, this information looks like this for the first variable field:

;0;0;REC-ADDRESS1;;;ADDRESS1;1;50;F;SetAddr;17,ADDRECORD
35,40,75,40,115,40;;;;;

The example above fills the address table and copies the first address line to the
destination field. The first record matching the search criteria of 17,ADDRECORD is
obtained and from it three separate entries are made into the address table. The first is the
40 characters starting at offset 35 of the record, the second for 40 characters starting at
offset 75, and the last for 40 characters starting at offset 115.

To get the second and third address lines from the table, subsequent calls to the SetAddr
rule must be made using format mask N, with nothing in the data field:

;0;0;ADDRESS2;;;ADDRESS2;1;50;N;SetAddr;;;;;;

;0;0;ADDRESS3;;;ADDRESS3;1;50;N;SetAddr;;;;;;

NOTE: In this example, the city, state, and ZIP code are together in the extract file and
would be found by the entry for field 3. If the city, state, and ZIP are not
formatted, see the SetAddr2 rule.

This example shows the use of a user function and overflow symbol:

Offset 1 1 1

Length 50 50 50

Source name REC-ADDRESS1 * *

Offset * * *

Length * * *

File * * *

Record * * *

Required * * *

Rule SetAddr SetAddr SetAddr

Mask F N N

Data 17,ADDRECORD
35,40,75,40,115,40

* *

* no entry required for this field in this example

In this field... Enter for field 1... Enter for field 2... Enter for field 3...

SetAddr

447

In the DDT file, this information looks like this:

;0;1;REC-ADDRESS1;;;ADDRESS1;1;50;F;SetAddr;@GETRECSUSED,
FORMABC,OVSYM/17,ADDRECORD 35,40,75,40,115,40;;;;;

See also SetAddr2 on page 448

SetAddr3 on page 451

Section and Field Rules Reference on page 274

In this field... Enter...

Destination name ADDRESS1

Offset 1

Length 50

Source name REC-ADDRESS1

Offset *

Length *

File *

Record 1

Required *

Rule SetAddr

Mask F

Data @GETRECSUSED,FORMABC,OVSYM/17,ADDRECORD
35,40,75,40,115,40

* no entry required for this field in this example

Chapter 5
Section and Field Rules Reference

448

 SetAddr2
Use this field level rule (level 4) to store and retrieve subsequent lines of a multiple line
address. This rule is similar to the SetAddr rule in that it also omits blank lines from an
address. The SetAddr2 rule, however, also formats the city, state, and postal code and
adds a dash if you have a 10-digit ZIP code (ZIP+4). For instance, this rule automatically
formats the city, state, and ZIP code as follows:

AtlantaGA 30333 (one space between state and ZIP code)

You can also specify additional formatting. For instance '^,','^' in the Data field (where ^
represents a space) tells the system to format the text as shown here:

Atlanta, GA 30333 (one space between the comma and the state, two spaces between
the state and ZIP code)

In addition, you can also specify an S flag in the Data field to tell the system to suppress
the state from the last address line. If you include this flag, the text is formatted as shown
here:

Atlanta, 30333 (state code is suppressed)

The first time you call this rule, the format mask field must contain an F. This initializes
the function and loads the lines of the address into an array. The system then returns the
first line of the address data. Subsequent address variable fields should contain an N in
the format mask field and return the next available non blank address line from the array.

The data element of the DDT structure contains the parameters necessary to get the
address record. The last three fields (city, state, postal code) are stored in one field. The
various address data element mapping comes from the first DDT record's data element
(after the record mapping). This rule supports overflow.

NOTE: An address line cannot exceed 256 characters.

Here are the optional format mask parameters you can use:

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

Parameter Description

C Converts to sentence style where the first character is capitalized and the
remaining characters are lowercased.

D Converts the data returned by the rule into lowercase.

U Converts the data returned by the rule into uppercase.

In this field… Enter for field 1… Enter for field 2… Enter for field 3…

Destination name ADDRESS1 ADDRESS2 ADDRESS3

SetAddr2

449

In the DDT file, this information looks like this for the three variable fields:

;0;0;REC-ADDRESS1;45;20;ADDRESS1;0;30;F;SetAddr2;11,INSADRREC
25,20,45,20,65,9,75,3,78,10 ',',5,’-';;;;;

;0;0;REC-ADDRESS2;65;20;ADDRESS2;0;30;N;SetAddr2;;;;;

;0;0;REC-ADDRESS3;0;0;ADDRESS3;0;25;N;SetAddr2;;;;;

The first set of offsets (25,20) is for address line 1. The second set of offsets (45,20) is for
address line 2. The third set of offsets (65,9,75,3,78,10) is for address line 3, which is
normally used for the city (65,9), state or province (75,3), and postal code (78,10).

NOTE: Use a single space to separate the offsets from the format parameters (‘,’,5,’-’).

For the third line of address data, this example uses “11,INSADRREC” as the search
criteria and “65,9,75,3,78,10”as the data mapping parameters. These parameters are used
to format the city, state or province, and postal code: ', ',5,'-'. The comma (,) is placed
between city and state or province. The dash (-) is placed after the 5th position in the
postal code.

If the mapping parameters are: ',','5','-' or ',','5',' ' and the input data from the extract data
contains a ZIP code of nine digits with a dash, then:

Offset 0 0 0

Length 30 30 25

Source name REC-ADDRESS1 REC-ADDRESS2 REC-ADDRESS3

Offset 45 65 0

Length 20 20 0

File * * *

Record * * *

Required * * *

Rule SetAddr2 SetAddr2 SetAddr2

Mask F N N

Data 11,INSADRREC
25,20,45,
20,65,9,75,3,78,10
',',5,’-'

* *

* no entry required for this field in this example

In this field… Enter for field 1… Enter for field 2… Enter for field 3…

Chapter 5
Section and Field Rules Reference

450

If the mapping parameters are: ',','5','-' or ',','5',' ' and the input data from the extract data
contains a ZIP code of nine digits without a dash, then:

See also SetAddr on page 445

SetAddr3 on page 451

Section and Field Rules Reference on page 274

Input Output

12345-6789 12345-6789

12345-0000 12345 (without the dash)

12345-(four spaces) 12345 (without the dash)

Input Output

123456789 12345-6789

123450000 12345 (without the dash)

12345 12345 (without the dash)

SetAddr3

451

 SetAddr3
Use this field-level (level 4) rule to handle a three-line address with six components, as
shown here:

• Address1 (placed on line 1)

• Address2 (placed on line 2)

• Address3 (placed on line 2)

• City (placed on line 3)

• State (placed on line 3)

• ZIP (placed on line 3)

Address1 is required. Address1 is handled using the Move_It rule.

Address2 and Address3 are placed on line 2. The components of line 2 can vary. If both
Address2 and Address3 exist, both are placed on line 2 with the delimiter passed in by the
rule. If only one exists, no delimiter is used. If neither Address2 or Address3 exists, the
line 3 (City, State and ZIP) is moved up to line 2.

Line 3 contains the City, State and ZIP code with a comma placed between the city and
state, and a space added after the state and before the ZIP code. The ZIP code is
formatted based on the format flag.

This rule is similar to the SetAddr2 rule. If Address2 or Address3 are not applicable, the
remaining lines move up into their places. The City, State, and ZIP always remain on the
same line.

NOTE: An address line cannot exceed 256 characters.

The format mask must contain one of these options:

The various address data element mappings come from the first field rule record's Data
element (after the record mapping).

The rule expects five fields to be mapped. If one is missing you will receive an error. This
rule also assumes all address components are in the same record.

Option Description

F Initializes the function, fills the addr_ln array with the address components, builds the
address lines, and returns the first line from the addr_ln array. The first time you call
this rule the format mask field must contain an F.

N Returns the next available non-blank address line from the addr_ln array. This mask
is required for all subsequent SetAddr3 calls.

Chapter 5
Section and Field Rules Reference

452

Here are the format parameters you can use:

Image Editor example Here are some examples based on this sample data:

If all fields have data, the layout looks like this:

Oracle Insurance
3353 Peachtree Road
Atlanta, GA 30326

If Address3 does not print, the layout should look like this:

Oracle Insurance
3353 Peachtree Road
Atlanta, GA 30326

If Address2 does not print, the layout should look like this:

Oracle Insurance
Suite II - 900
Atlanta, GA 30326

If Address2 and Address3 do not print, the layout should look like this:

Oracle Insurance
Atlanta, GA 30326

Here are the DDT file entries for a SetAddr3 rule that has record address elements in the
following locations:

Parameter Description

C Converts to sentence style where the first character is capitalized and the
remaining characters are lowercased.

D Converts the data returned by the rule into lowercase.

U Converts the data returned by the rule into uppercase.

Component Text

Address1 Oracle Insurance

Address2 3353 Peachtree Road

Address3 Suite II - 900

City Atlanta

State GA

ZIP 30326

Element Description

100,30 The field offset and length for the addr2 field

SetAddr3

453

NOTE: The Mask field in the first SetAddr3 rule would contain the character F. The Data
field for this rule would contain the following:

100,30,130,30,160,18,178,3,181,9 ', 'Y

The Mask field for the second and third SetAddr3 rules would contain the
character N and the Data field would be blank.

Here is how it looks in the DDT file:

;0;0;ADDRESS LINE1;70;30;ADDRESS

LINE1;0;30;;Move_It;1,001;N;N;N;N;2412;2147;11011;

;0;0;ADDRESS LINE2;0;0;ADDRESS LINE2;0;30;F;SetAddr3;

100,30,130,30,160,18,178,3,181,9 ', 'Y;N;N;N;N;2400;2566;11011;

;0;0;ADDRESS LINE3;0;0;ADDRESS

LINE3;0;30;N;SetAddr3;;N;N;N;N;10488;2566;11011;

See also SetAddr on page 445

SetAddr2 on page 448

Section and Field Rules Reference on page 274

130,30 The field offset and length for the addr3 field

160,18 The field offset and length for the city field

178,3 The field offset and length for the state field

181,9 The field offset and length for the ZIP field

', ' The format used between the city and state and between addr2 and addr3

Y The ZIP format flag. If Y and the ZIP field is 9 positions, a dash appears after the
fifth position. If N or the field is not 9 positions, it is mapped as is.

Element Description

Chapter 5
Section and Field Rules Reference

454

 SetCpyTo
Use the section level rule (level 3) to set the value of the SendCopyTo variable to a field
name in the DDT file that definitely contains data.

Syntax SetCpyTo (FieldName)

If the SendCopyTo variable contains a value, the GenPrint program will print at the
bottom of a form the following text:

Send copy to ######

where ###### is the current recipient name.

Since the field you specify for this rule must contain data for the system to print the text
Send copy to on the form, you will typically map the field with the Mk_Hard rule in the DDT
file.

Image Editor example ;SetCpyTo;ExampleField;;

In this example, if ExampleField contains data, the system will print the text Send copy to on
the form.

See also Mk_Hard on page 388

Section and Field Rules Reference on page 274

SetCustChartAxisLabels

455

 SetCustChartAxisLabels
Use this section level rule (level 3) to take data values that have been mapped to variable
fields and use them as custom axis labels on a chart.

Syntax ;SetCustChartAxisLabels;ChartName,FieldNames;;

This rule tells you if there are discrepancies in the number of axis labels you create using
this rule and the number the system would create on its own.

NOTE: The system creates place holder labels if you do not specify enough labels and
ignores others if you specify to many.

Image Editor example Here is an example, shown in a DDT file excerpt:

/* This section uses these rules */

<Image Rules>

;SetImageDimensions;98,0,6960,7029,0,600,0,0;

;SetOrigin;ABS+0,MAX+0;

;CusSetDynamicScaleAxis;Chart(CHART1), Search(51,GRFMTHYR),
Min(82,6), Max(88,6), Increment (94,6);

;SetCustChartAxisLabels;CHART1,Axis1,Axis2,Axis3,Axis4,Axis5,Axis6,
Axis7,Axis8,Axis9,Axis10,Axis11,Axis12,Axis13;

;FieldVarsToChartSeries;;

/* These fields override the lower level definitions for this */

/* section only. */

<Image Field Rules Override>

;0;0;Axis1;61;1;Axis1;0;1;;Move_It;51,GRFMTHYR;N;N;N;N;6367;4958;16
006;

;0;0;Axis2;62;1;Axis2;0;1;;Move_It;51,GRFMTHYR;N;N;N;N;6427;4564;16
006;

;0;0;Axis3;63;1;Axis3;0;1;;Move_It;51,GRFMTHYR;N;N;N;N;2884;4324;16
006;

;0;0;Axis4;64;1;Axis4;0;1;;Move_It;51,GRFMTHYR;N;N;N;N;2884;4324;16
006;

;0;0;Axis5;65;1;Axis5;0;1;;Move_It;51,GRFMTHYR;N;N;N;N;2886;4326;16
006;

;0;0;Axis6;66;1;Axis6;0;1;;Move_It;51,GRFMTHYR;N;N;N;N;2886;4326;16
006;

;0;0;Axis7;67;1;Axis7;0;1;;Move_It;51,GRFMTHYR;N;N;N;N;2886;4326;16
006;

;0;0;Axis8;68;1;Axis8;0;1;;Move_It;51,GRFMTHYR;N;N;N;N;2886;4326;16
006;

;0;0;Axis9;69;1;Axis9;0;1;;Move_It;51,GRFMTHYR;N;N;N;N;2886;4326;16
006;

;0;0;Axis10;70;1;Axis10;0;1;;Move_It;51,GRFMTHYR;N;N;N;N;2886;4351;
16006;

Parameter Description

ChartName Name of the chart

FieldNames Names of the variable fields you want to use as custom axis labels

Chapter 5
Section and Field Rules Reference

456

;0;0;Axis11;71;1;Axis11;0;1;;Move_It;51,GRFMTHYR;N;N;N;N;2886;4326;
16006;

;0;0;Axis12;72;1;Axis12;0;1;;Move_It;51,GRFMTHYR;N;N;N;N;2886;4326;
16006;

;0;0;Axis13;73;1;Axis13;0;1;;Move_It;51,GRFMTHYR;N;N;N;N;2886;4326;
16006;

See also Section and Field Rules Reference on page 274

SetImageDimensions

457

 SetImageDimensions
Use this section level rule (level 3) on forms which are made up of floating sections.

NOTE: The system automatically inserts this rule for you if you save your DDT file in
Image Editor. If you later resize the section, go to Image Editor and save the
DDT file again to have the system update the section dimensions.

If you used the SetOrigin rule, the system automatically includes this rule in the section
level rules section of your DDT file.

NOTE: Always let the system take care of this rule for you.

Image Editor example This example shows an excerpt from a DDT file:

/*This section uses these rules */

<Image Rules>

;SetImageDimensions;98,0,298,15965,0,600,0,480;

;SetOrigin;REL+0,MAX+0;

;PaginateBeforeThisImage;;

;ResetImageDimensions;;

;DontPrintAlone;;

See also SetOrigin on page 458

ResetImageDimensions on page 436

Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

458

 SetOrigin
Use this section level rule (level 3) to set the section overlay/page segment X and Y
coordinates. Using this rule, you specify where the page segment will be placed on the
printed page.

NOTE: You can also use the SetOriginI and SetOriginM rules. SetOriginI works just like
SetOrigin except you enter X and Y coordinate information in inches, instead of
FAP units. There are 2400 FAP units per inch.

SetOriginM works just like SetOrigin except you enter X and Y coordinate
information in millimeters. There are approximately 98 FAP units per millimeter.

Use the SetOrigin rule if you prefer to enter these coordinates in FAP units.

Syntax ;SetOrigin;Fixed,X,Y,Form,Store(),ImageName;;

The X and Y coordinates are specified using a combination of the following parameter
prefixes plus the addition or subtraction of FAP units. There are 2400 FAP units per inch.
Here are the prefixes you can use:

Parameter Description

FIXED (Optional) Anchors the section at the specified X and Y coordinates. This must
be the first parameter listed. See Fixing a section’s position on page 461 for more
information.

X Sets the X coordinate for a section. This determines the section’s horizontal
position.

Y Sets the Y coordinate for a section. This determines the section’s vertical
position.

Form (Optional) The form name on which the section exists. This parameter lets you
define more than one SetOrigin rule for a section and specify which one applies
based on the name of the form.

Store() (Optional) This parameter lets you store the current section coordinates in
prefix-name variables for later use. The syntax is:

Store(prefix-name variable)

For Windows, the coordinates are stored in:

prefix-name.left, prefix-name.right, prefix-name.top,
and prefix-name.bottom

The stored coordinates can be referenced by any subsequent SetOrigin rule used
to place a section on the same form.

Prefix Description

Abs Absolute page position based on 2400 units per inch. (supports overflow)

Rel Relative to the last section’s top left coordinate. (supports overflow)

SetOrigin

459

Image Editor example ;SetOrigin;Abs+0,Abs+1200;;

This example sets the origin for the section to the X, Y values of 0, 1200.

NOTE: There are no spaces between Abs+0,Abs+1200.

;SetOrigin;Rel+0,Max+0;;

This example shows you how to set up a section, which will print after the section, which
precedes it. You define the order of the sections which make up a form in the
FORM.DAT file using the Form Set Manager. The GenData program reads this
information as it builds the print batches.

For instance, suppose IMAGE_A appears on two separate forms in the form set:
FORM_1 and FORM_2.

;SetOrigin;ABS+0,ABS+0,FORM_1

;SetOrigin;ABS+0,ABS+2400,FORM_2

This example places the section at coordinate 0,0 when it appears on FORM_1 and an
inch (0,2400) down the page when it appears on FORM_2.

Here is another example:

;SetOrigin;Abs+0,Abs+12000,Image1,Store(var1);;

This example sets the origin for Image1 to zero (0) FAP units for the X value (from the
edge of form) and 12000 FAP units for the Y value (5 inches down form the top of the
form). Plus, it stores the section coordinates into the prefix-name variable VAR1.

Max Relative to the last section’s maximum edge. For example, Rel+0,Max+600 would
position the current section ¼ inch below the last section. (supports overflow)

Mpg Relative to any section at the maximum edge. For example, Abs+0,Mpg+600 places
the current section ¼ inch below the lowest object currently on the page. (does not
support overflow)

T2T Top edge is placed relative to the last section’s top edge. (Similar to Rel)

T2B Top edge is placed relative to the last section’s bottom edge. (Similar to Max+)

B2T Bottom edge is placed relative to the last section’s top edge. (Similar to Max-)

 B2B Bottom edge is placed relative to the last section’s bottom edge.

L2L Left edge is placed relative to the last section’s left edge. (Similar to Rel)

L2R Left edge is placed relative to the last section’s right edge. (Similar to Max+)

R2L Right edge is placed relative to the last section’s left edge. (Similar to Max-)

R2R Right edge is placed relative to the last section right edge.

Ctr X/Y dimensions are centered on the last section’s X/Y dimensions.

Prefix Description

Chapter 5
Section and Field Rules Reference

460

Here is another example:

;SetOrigin;Rel+0,VAR1.bottom+600;;

In this example, the current section would be positioned such that its left edge would be
at the same x coordinate of the previous section's left edge but the top of the section
would be 1/2 inch below the saved coordinates of a previous section—its coordinates
were saved in the variable VAR1 using this rule:

 ;SetOrigin;x+n,y+n,external form name,Store(var1);;

Here is another example:

;SetOrigin;Img1.right+600,Img1.bottom-1200;;

This example places the current section’s top left corner ¼ inch to the right and ½ inch
up from Img1’s bottom right corner.

Here is another example:

 ;SetOrigin;Rel+0,Max+300;; (same as L2L+0,T2B+300)

In this example the current section is placed 1/4 inch below the previous section. The
sections are aligned with their left edges.

Here is another example:

;SetOrigin;Rel+0(IMG1),Max+300;; (same as L2L+0(IMG1),T2B+300)

In this example the current section is placed 1/4 inch below the previous section. The left
edge of the current section is aligned with the left edge of section IMG1.

Here is another example:

;SetOrigin;Max+600,Rel+0;; (same as L2R+600,T2T+0)

The current section is placed 1/2 inch to the right of the previous section. The sections
are aligned with their top edges.

Here is another example:

;SetOrigin;Abs+0,Mpg+600;;

The current section is placed 1/4 inch below the lowest object currently positioned on the
page. The current section is aligned with the left edge of the page.

Here is another example:

;SetOrigin;Ctr+0,Max+0;; (same as Ctr+0,T2B+0)

The current section is centered immediately below the previous section.

Here is another example:

 ;SetOrigin;Ctr+0,Ctr+0;;

The current section is centered above the previous section.

Here is another example:

;SetOrigin;Ctr+0(IMG1),Ctr+0(IMG1);;

The current section is centered above IMG1.

Here is another example:

;SetOrigin;FIXED,ABS+2400,ABS+9731;

SetOrigin

461

This fixes the current section at the coordinates 2400, 9731. Even if it is the last section
triggered, the system will fix the section at those coordinates.

Fixing a section’s
position

The SetOrigin rule lets you designate a section as a fixed section. Fixed sections cannot be
moved from their set position.

You declare a section to be fixed by including FIXED as the first parameter of the
section's SetOrigin rule. Regardless of when the section is triggered, it will keep the
coordinates assigned to it throughout pagination.

Fixed sections can also be designated as CopyOnOverflow sections. This will cause the
fixed section to be copied onto subsequent pages at the same coordinates as those used
for the first page.

The SetOrigin rule should always define the X,Y coordinates as an absolute position or a
position relative to a section that will always be on the page. Do not anchor the fixed
section relative to a section that can overflow onto a new page. If you do, the fixed section
will never move to the second page. Instead, it will always appear on the first page with
coordinates that place it below the bottom of the page.

Here is an example of how you would use the FIXED parameter:

;SetOrigin;Fixed,X,Y,Form,Store(),ImageName;;

NOTE: You must use the SetImageDimensions rule when you use this rule.

See also SetOriginI on page 462

SetOriginM on page 464

SetImageDimensions on page 457

Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

462

 SetOriginI
Use this section level rule (level 3) to set the section overlay/page segment X and Y
coordinates. Using this rule, you specify where the page segment will be placed on the
printed page.

NOTE: You can also use the SetOrigin and SetOriginM rules. SetOrigin works just like
this rule except you enter X and Y coordinates in FAP units, instead of inches.
There are 2400 FAP units per inch.

SetOriginM works just like this rule except you enter X and Y coordinates in
millimeters. There are approximately 25.4 millimeters per inch.

Syntax ;SetOriginI;Fixed,X,Y,Form,Store(),ImageName;;

Specify the X and Y coordinates using a combination of the following parameter prefixes
plus the addition or subtraction of measurements you specify in inches. Here are the
prefixes you can use:

Parameter Description

FIXED (Optional) Anchors the section at the specified X and Y coordinates. This must
be the first parameter listed. See Fixing a section’s position on page 461 for more
information.

X Sets the X coordinate for a section. This determines the section’s horizontal
position.

Y Sets the Y coordinate for a section. This determines the section’s vertical
position.

Form (Optional) The form name on which the section exists. This parameter lets you
define more than one SetOrigin rule for a section and specify which one applies
based on the name of the form.

Store() (Optional) This parameter lets you store the current section coordinates in
prefix-name variables for later use. The syntax is:

Store(prefix-name variable)

For Windows, the coordinates are stored in:

prefix-name.left, prefix-name.right, prefix-name.top,
and prefix-name.bottom

The stored coordinates can be referenced from any page in the form set.

Prefix Description

Abs Absolute page position based on inches. (supports overflow)

Rel Relative to the last section’s top left coordinate. (supports overflow)

Max Relative to the last section’s maximum edge. For example, Rel+0,Max+.25 would
position the current section ¼ inch below the last section. (supports overflow)

SetOriginI

463

Image Editor example ;SetOrigin;Abs+1,Abs+1;;

This example sets the origin for the section to the X, Y values of 1 inch, 1 inch. Keep in
mind there are no spaces between Abs+1,Abs+1.

NOTE: For additional example, see the examples for the SetOrigin rule on page 459. The
only difference between this rule and the SetOrigin rule is that you use inches
instead of FAP units.

See also SetOrigin on page 458

SetOriginM on page 464

SetImageDimensions on page 457

Section and Field Rules Reference on page 274

Mpg Relative to any section at the maximum edge. For example, Abs+0,Mpg+.25 places
the current section ¼ inch below the lowest object currently on the page. (does not
support overflow)

T2T Top edge is placed relative to the last section’s top edge. (Similar to Rel)

T2B Top edge is placed relative to the last section’s bottom edge. (Similar to Max+)

B2T Bottom edge is placed relative to the last section’s top edge. (Similar to Max-)

 B2B Bottom edge is placed relative to the last section’s bottom edge.

L2L Left edge is placed relative to the last section’s left edge. (Similar to Rel)

L2R Left edge is placed relative to the last section’s right edge. (Similar to Max+)

R2L Right edge is placed relative to the last section’s left edge. (Similar to Max-)

R2R Right edge is placed relative to the last section right edge.

Ctr X/Y dimensions are centered on the last section’s X/Y dimensions.

Prefix Description

Chapter 5
Section and Field Rules Reference

464

 SetOriginM
Use this section level rule (level 3) to set the section overlay/page segment X and Y
coordinates. Using this rule, you specify where the page segment will be placed on the
printed page.

NOTE: You can also use the SetOrigin and SetOriginI rules. SetOrigin works just like this
rule except you enter X and Y coordinates in FAP units, instead of millimeters.
There are approximately 98 FAP units per millimeter.

SetOriginI works just like this rule except you enter X and Y coordinates in
inches. There are approximately 25.4 millimeters per inch.

Syntax ;SetOriginM;Fixed,X,Y,Form,Store(),ImageName;;

Specify the X and Y coordinates using a combination of the following parameter prefixes
plus the addition or subtraction of measurements you specify in millimeters. Here are the
prefixes you can use:

Parameter Description

FIXED (Optional) Anchors the section at the specified X and Y coordinates. This must
be the first parameter listed. See Fixing a section’s position on page 461 for more
information.

X Sets the X coordinate for a section. This determines the section’s horizontal
position.

Y Sets the Y coordinate for a section. This determines the section’s vertical
position.

Form (Optional) The form name on which the section exists. This parameter lets you
define more than one SetOrigin rule for a section and specify which one applies
based on the name of the form.

Store() (Optional) This parameter lets you store the current section coordinates in
prefix-name variables for later use. The syntax is:

Store(prefix-name variable)

For Windows, the coordinates are stored in:

prefix-name.left, prefix-name.right, prefix-name.top,
and prefix-name.bottom

The stored coordinates can be referenced from any page in the form set.

Prefix Description

Abs Absolute page position based on millimeters. (supports overflow)

Rel Relative to the last section’s top left coordinate. (supports overflow)

Max Relative to the last section’s maximum edge. For example, Rel+0,Max+1 would
position the current section 1 millimeter below the last section. (supports overflow)

SetOriginM

465

Image Editor example ;SetOrigin;Abs+1,Abs+1;;

This example sets the origin for the section to the X, Y values of 1 millimeter, 1 millimeter.
Keep in mind there are no spaces between Abs+1,Abs+1.

NOTE: For additional example, see the examples for the SetOrigin rule on page 459. The
only difference between this rule and the SetOrigin rule is that you use
millimeters instead of FAP units.

See also SetOrigin on page 458

SetOriginI on page 462

SetImageDimensions on page 457

Section and Field Rules Reference on page 274

Mpg Relative to any section at the maximum edge. For example, Abs+0,Mpg+1 places the
current section 1 millimeter below the lowest object currently on the page. (does not
support overflow)

T2T Top edge is placed relative to the last section’s top edge. (Similar to Rel)

T2B Top edge is placed relative to the last section’s bottom edge. (Similar to Max+)

B2T Bottom edge is placed relative to the last section’s top edge. (Similar to Max-)

 B2B Bottom edge is placed relative to the last section’s bottom edge.

L2L Left edge is placed relative to the last section’s left edge. (Similar to Rel)

L2R Left edge is placed relative to the last section’s right edge. (Similar to Max+)

R2L Right edge is placed relative to the last section’s left edge. (Similar to Max-)

R2R Right edge is placed relative to the last section right edge.

Ctr X/Y dimensions are centered on the last section’s X/Y dimensions.

Prefix Description

Chapter 5
Section and Field Rules Reference

466

 SetRecipFromImage
Use this section level rule (level 3) to conditionally add sections to the current form set
based on conditions in the SETRCPTB.DAT file. You set up parameters which instruct
the rule to generate a new set of keys (Key1, Key2, and TranID).

A new set of items from the current SETRCPTB.DAT file is generated and those items
are run through the RunSetRcp feature to generate a temporary form set. This temporary
form set is merged with the current form set to create the final form set.

NOTE: With version 11.3, Documaker Studio lets you create subforms. Using subforms
you can include forms within forms which eliminates the need to use the
SetRecipFromImage rule. This simplifies triggering and populating data on
sections (images) when you are processing repeating patterns of hierarchical or
nested data. Previously, you had to use the SetRecipFromImage rule, the sub
extract rules, and overflow symbols to achieve the same result.

Syntax ;SetRecipFromImage (Key1) (Key2) (TranID) (AtEnd);;

The string $(Key1) within value equals the current transaction’s Key1 value. $(Key2) equals
the current transaction’s Key2 value. $(TranID) equals the current transaction ID.

Image Editor example ;SetRecipFromImage;Key1=JNLCS1 Key2=VARA1;

;SetRecipFromImage;Key1=$(Key1)1 Key2=$(KEY2)1;

The result from the second line is the same as the result from the first line if the current
transaction’s value for Key1 and Key2 are JNLCS and VARA.

Here is an example that shows the AtEnd parameter. Assume the CALLIMAGE.DDT
contains this rule:

;SetRecipFromImage;Key1=SMPCOM1 Key2=SMPLOB1;

And this is the excerpt from the FORM.DAT file:

;SAMPCO;LOB;GAS BILLS;Gas Light;N;;CALLIMAGE|D(48)<CUSTOMER(0)>;

;SAMPCO;LOB;GAS BILLS2;Gas Bills2 Desc;N;;GASBILLS2|D<CUSTOMER(0)>;

;SMPCOM1;SMPLOB1;FORM1;FORM1 Desc;N;;FORM1a|D(48)<CUSTOMER(0)>/
FORM1b|D(48)<CUSTOMER(0)>;

;SMPCOM1;SMPLOB1;FORM2;FORM2 Desc;N;;FORM2a|D(48)<CUSTOMER(0)>/
FORM2b|D(48)<CUSTOMER(0)>;

;SMPCOM1;SMPLOB1;FORM3;FORM3 Desc;N;;FORM3a|D(48)<CUSTOMER(0)>/
FORM3b|D(48)<CUSTOMER(0)>;

Parameter Description

Key1 Value

Key2 Value

TranID Value to set new key values

AtEnd If you set this parameter to True, the system adds the forms in the order you listed
in your FORM.DAT file. The default is False, which tells the system to load the
form backwards from the way it is referenced in the FORM.DAT file.

SetRecipFromImage

467

Within the new Key1/Key2 combination, to which the SetRecipFromImage rule will
jump, three forms are listed: FORM1, FORM2 and FORM3. By omitting the AtEnd
parameter, these forms are added, assuming all forms/images are triggered, backwards
from the way they are referenced in the FORM.DAT file. Therefore, the POLFILE.DAT
will look like this:

;SAMPCO;LOB;GAS BILLS;Gas Light;R;;\

FORM3A|D48<CUSTOMER>/\

FORM3B|D48<CUSTOMER>/\

FORM2A|D48<CUSTOMER>/\

FORM2B|D48<CUSTOMER>/\

FORM1A|D48<CUSTOMER>/\

FORM1B|D48<CUSTOMER>;

;SAMPCO;LOB;GAS BILLS2;Gas Bills2 Desc;R;;\

GASBILLS2|D<CUSTOMER>;

\ENDDOCSET\ 11111-11111-1-11111

If you include the AtEnd parameter and set it to True, as shown here:

;SetRecipFromImage;Key1=SMPCOM1 Key2=SMPLOB1 AtEnd=True;

The POLFILE.DAT will look like this:

;SAMPCO;LOB;GAS BILLS;Gas Light;R;;\

FORM1A|D48<CUSTOMER>/\

FORM1B|D48<CUSTOMER>/\

FORM2A|D48<CUSTOMER>/\

FORM2B|D48<CUSTOMER>/\

FORM3A|D48<CUSTOMER>/\

FORM3B|D48<CUSTOMER>;

;SAMPCO;LOB;GAS BILLS2;Gas Bills2 Desc;R;;\

GASBILLS2|D<CUSTOMER>;

\ENDDOCSET\ 11111-11111-1-11111

See also CreateSubExtractList on page 317

Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

468

 SetState
Use this field level rule (level 4) to translate a numeric ISO code retrieved from an extract
record into its equivalent state text. This rule supports overflow.

State table
Code State Code State Code State

01 Alabama 54 Alaska 02 Arizona

03 Arkansas 04 California 05 Colorado

06 Connecticut 07 Delaware 08 District of Columbia

09 Florida 10 Georgia 52 Hawaii

11 Idaho 12 Illinois 13 Indiana

14 Iowa 15 Kansas 16 Kentucky

17 Louisiana 18 Maine 19 Maryland

20 Massachusetts 21 Michigan 22 Minnesota

23 Mississippi 24 Missouri 25 Montana

90 Nationwide 26 Nebraska 27 Nevada

28 New Hampshire 29 New Jersey 30 New Mexico

31 New York 32 North Carolina 33 North Dakota

34 Ohio 35 Oklahoma 36 Oregon

37 Pennsylvania 58 Puerto Rico 38 Rhode Island

39 South Carolina 40 South Dakota 41 Tennessee

42 Texas 43 Utah 44 Vermont

45 Virginia 46 Washington 47 West Virginia

48 Wisconsin 49 Wyoming

SetState

469

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In the DDT file, this information looks like this:

;;;REC-STATE;30;2;STATE;1;30;;SetState;17,PMSP0200;;;;;

This example gets the two characters at offset 30 from the record obtained using the
search criteria specified in the data field. The rule then looks in the table and returns the
associated state text in the output buffer.

See also Section and Field Rules Reference on page 274

In this field... Enter...

Destination name STATE

Offset 1

Length 30

Source name REC-STATE

Offset 30

Length 2

File *

Record *

Required *

Rule SetState

Mask *

Data 17,PMSP0200

* no entry required for this field in this example

Chapter 5
Section and Field Rules Reference

470

 SpanAndFill
Use this section level rule (level 3) to take a field and span its width between two other
fields, filling the field with a fill character.

Syntax ;SpanAndFill SpanField, LeftField, RightField;;

NOTE: This rule does not move the field vertically. Only the width and horizontal
location are changed.

The filler character is used to span the width between the end of the text in the left field
and the beginning of the text in the right field. If either field is empty, the left coordinate
of the field is used.

You can use any rule to map the fill character into the SpanField. For example, you can
use the HardExst rule to map a character such as a period or asterisk. Only the first
character of the mapped data is used as the filler character. If no data is found in the
SpanField, the system uses periods (.) as the fill character.

NOTE: You may want to use the JustFld rule on your right-most field to make sure the
field is right justified.

Keep in mind...

• If you use the Move_It rule, or other rules that support right justification by padding
the data with spaces, your results will be incorrect. This rule calculates the width of a
field based upon the entire contents and will not remove space from the fields.

• This rule loads the section (FAP or compiled FAP) if it is not already loaded.

• The font ID assigned to the SpanField is used for calculating the number of
characters required to fill the width of the field.

• If there is fractional space remaining, the system place the extra white space to the
left of the SpanField.

Parameters Description

SpanField Enter the name of the field you want to span. This field must be the first
parameter.

LeftField Enter the field you want to be on the left.

RightField Enter the field you want to be on the right.

SpanAndFill

471

Image Editor example Assume that...

And your DDT file contains...

;SpanAndFill; SPANFIELD, LEFTFIELD, RIGHTFIELD;;

The result will be...

 ABCDEFG...........$123.45

Remember the horizontal location of the SpanField is moved to fill the gap between the
left and right fields. The section designer handles the vertical alignment of fields.

See also ConnectFields on page 312

Section and Field Rules Reference on page 274

For this parameter You have this entry

LeftField “ABCDEFG”

RightField “$123.45”

SpanField “.”

Chapter 5
Section and Field Rules Reference

472

 StrngFmt
Use this field level rule (level 4) to format a string retrieved from an extract record, based
on a given format string. The StrngFmt rule is useful for formatting Social Security
numbers and phone numbers. This rule supports overflow.

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In the DDT file, this information looks like this:

;;;REC-NUMBER;30;9;NUMBER;1;15;3,-,3,**;StrngFmt;17,PMSP0200;;;;;

This example gets the nine characters at offset 30 from the record selected using the
search criteria you specified in the data field. The format mask is interpreted in pairs of
offset and insert data. In this example, insert a dash (-) after the 3rd character and insert
two asterisks (**) after the 3rd character from the previous insertion point.

The offset numbers that refer to insertion points always pertain to those points in the
source data relative to the previous insertion.

For example, if the nine characters from the extract record were 123456789, the output
buffer would contain 123-456**789. The format can be read as:

 skip 3, insert “-”, skip 3, insert “**”

In this field... Enter...

Destination name NUMBER

Offset 1

Length 15

Source name REC-NUMBER

Offset 30

Length 9

File *

Record *

Required *

Rule StrngFmt

Mask 3,-,3,**

Data 17,PMSP0200

* no entry required for this field in this example

StrngFmt

473

This example shows the use of a user function and overflow symbol.

In the DDT file, this information looks like this:

;;1;REC-NUMBER;30;9;NUMBER;1;15;3,-
,3,**;StrngFmt;@GETRECSUSED,FORMABC,OVSYM/17,PMSP0200;;;;;

See also Section and Field Rules Reference on page 274

In this field... Enter...

Destination name NUMBER

Offset 1

Length 15

Source name REC-NUMBER

Offset 30

Length 9

File *

Record 1

Required *

Rule StrngFmt

Mask 3,-,3,**

Data @GETRECSUSED,FORMABC,OVSYM/17,PMSP0200

* no entry required for this field in this example

Chapter 5
Section and Field Rules Reference

474

 SysDate
Use this field level rule (level 4) to format the system date. Using this rule you can format
the system date for different localities. This rule supports overflow.

The DDT mask area for the SysDate rule takes these values:

• output fetype

• output format mask

NOTE: There are two types of format mask, pre-defined types 1-9 and A-Q and user-
defined format arguments. If the pre-defined formats meet your needs, use them,
otherwise, create a user-defined format. For information on using pre-defined
format types, see Using Pre-defined Date Formats on page 257.

User- defined format arguments consist of one or more codes, each preceded by
a percent sign (%). For more information on user-defined format masks, see the
Setting Up Format Arguments on page 262.

Image Editor example Assume the system date is 03-01-2009, which is a Monday, and the time is 11:57 am.

The DDT format mask of:

d, “4/4

formats the system date using format 4, with month spelled out, such as March 1, 2009.

To produce a Canadian French date, such as mars 1, 2009, use the following DDT format
mask:

DCAD, “4/4

The following format, which uses format arguments, will produce the same output:

dCAD, “%B %#d, %Y

Format arguments let you include the day of the week, hour, minute, second, and so on.
This table shows you the results using various formats:

Format Result

%m-%d-%Y 03-01-2009

The year is %Y. The year is 2009.

Born %m/%d/%y at %I:%M %p Born 03/01/09 at 11:57 am

%d 01

%#d 1

%A Monday

%>A MONDAY

%b Mar

SysDate

475

See also FfSysDte on page 331

Field Format Types (fetypes) on page 265

Formatting Data on page 257

Section and Field Rules Reference on page 274

%<b mar

%p AM

%<>p Am

 %A, %B %d Monday, March 01

%@CAD%A %@CAD%A, %B
%d

lundi, mars 01

%A, %@CAD%B %d Monday, mars 01

%@CAD%A, %@USD%B %d lundi, March 01

Format Result

Chapter 5
Section and Field Rules Reference

476

 TblLkUp
Use this field level rule (level 4) to find the record in a table that matches the first
specification. After the system finds that record, it uses the offset you specify to get a key.
The key is used to look up a final record and return the result.

NOTE: The size of a table row is set in the MaxExtRecLen option in the Trn_File control
group. The maximum size is 1024 characters.

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In this field... Enter...

Destination name CMP.NAME

Offset *

Length 9

Source name CO.NAME

Offset *

Length *

File 1

Record *

Required *

Rule TblLkUp

Mask *

Data 1,POLDTL 61,2 1,CO,7 11,9

* no entry required for this field in this example

TblLkUp

477

NOTE: For this rule, the Mask field specifies a default look up value. It is not a standard
mask like that used in the Move_It rule.

If you want the system to use the table files to look up a final record and return
the result, specify a source file equal to any number except zero (0). If you leave
the Source File field equal to zero (0), the system uses the extract file as your table.

Keep in mind that all tables you specify in your Tblfile are loaded into memory
sequentially. This table is then used to search for the final record. If your search
mask and key are not unique, you may end up with an incorrect result.

In the DDT file, this information looks like this:

;1;0;CO.NAME;;;CMP.NAME;;9;;TblLkUp;1,POLDTL 61,2 1,CO,7
11,9;;;;;6888;6208;7112

The rule does a search in the extract data for a record that matches the search mask
1,POLDTL. The 61,2 gets the two characters at offset 61 from the record found with the
1,POLDTL search mask.

Assume these characters turned out to be XY. The tables are then searched for a match
on the search mask 1,CO,7,XY. If a matching record is found, the system maps the nine
characters starting at offset 11.

You specify the table file in the Data control group in the FSISYS.INI file as follows:

TblFile=.\deflib\TBLFILE.DAT

In the TBLFILE.DAT file you would see a list of the fields in which the rule will search
to find a match:

.\DEFLIB\AGENCY.TBL

.\DEFLIB\COMPCODE.TBL

To use this rule, the following rules must be in the AFGJOB.JDT file:

;CreateGlbVar;1;TblLstH,PVOID;

;LoadTblFiles;1;;

See also MovTbl on page 413

LookUp on page 374

Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

478

 TblText
Use this field level rule (level 4) to get a text table item based on a key built from the source
field name concatenated with the data retrieved from the source record. This rule
supports overflow. Keep in mind these considerations, which pertain to the external
ASCII text table referenced by this rule.

• Keys can be up to 12 characters in length.

• The key begins in position 1 in the text file.

• The returned text begins in position 14 in the text file.

• Only the first occurrence of the match is returned to the caller.

Each data line in the text table file must follow the following format:

KEY;ENTRY

where KEY is a value of up to 12 characters, padded right with spaces. ENTRY is the text
data associated with the key entry.

NOTE: All support for this rule resides in a single table file. You specify the name of this
file in the FSISYS.INI file in the TEXTTBL option in the Data control group.

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In this field... Enter...

Destination name TYPE OF POLICY

Offset 0

Length 20

Source name TRANTYPE

Offset 16

Length 1

File *

Record 1

Required *

Rule TblText

Mask *

Data 17,00,15,A

TblText

479

In the DDT file, this information looks like this:

;;1;TRANTYPE;16;1;TYPE OF POLICY;0;20;;TblText;17,00,15,A;;;;;

In this example, a key into the table is formed by concatenating the source field name,
TRANTYPE, with the first character found at offset 16 from the record retrieved using
the search criteria of 17,00,15,A. The source field name comes first in the key. The table
is searched for a key match and the data associated with that key is written to the
destination field TYPE OF POLICY for up to 20 characters.

This example shows the use of a user function and overflow symbol.

In the DDT file, this information looks like this:

;;1;TRANTYPE;16;1;TYPE OF POLICY;0;20;;TblText;
@GETRECSUSED,FORMABC,OVSYM/17,00,15,A;;;;;

In the AFGJOB.JDT file, you must use the following:

;CreateGlbVar;1;TXTLst,PVOID;

:LoadTextTbl;1;;

See also Section and Field Rules Reference on page 274

* no entry required for this field in this example

In this field... Enter...

Destination name TYPE OF POLICY

Offset 0

Length 20

Source name TRANTYPE

Offset 16

Length 1

File *

Record 1

Required *

Rule TblText

Mask *

Data @GETRECSUSED,FORMABC,OVSYM/17,00,15,A

* no entry required for this field in this example

Chapter 5
Section and Field Rules Reference

480

 TerSubstitute
Use this field level (level 4) rule to emulate TerSub entry functionality. You add this rule
to a multi-line text field that has been designated as one which can grow.

Syntax TerSubstitute; Key1 Key2 FormName Recipient

NOTE: For all parameters, you can use the names of GVM variables instead of actual
values.

The text to include in TerSubstitution is stored in the text areas of the sections. The
sections are listed in the FORM.DAT file under a dummy Key1, Key2, and FormName.
The rule finds the entry in the FORM.DAT file for the Key1,Key2,FormName
parameters and uses the text from any sections with the supplied recipient.

Image Editor example Assume you have the following data defined in your master resource library.

• Here is the FORM.DAT file:

;TerSub;Data;Form1;;N;;image1|D<CLIENT(0)>/

image2|D<CUSTOMER(0)>/image3.|D<CLIENT(0),CUSTOMER(0)>/

image4|D<CUSTOMER(0)>/image5|D<CLIENT(0),CUSTOMER(0)>/

image6|D<CUSTOMER(0)>/image7|D<CLIENT(0)>;

;TerSubA;DataA;FormA;;N;;image1|D<CLIENT(0)>/

image2|D<CUSTOMER(0)>/image3.|D<CLIENT(0),CUSTOMER(0)>/

image4|D<CUSTOMER(0)>/image5|D<CLIENT(0),CUSTOMER(0)>/

image6|D<CUSTOMER(0)>/image7|D<CLIENT(0)>;

;TerSubB;DataB;FormB;;N;;imagea|D<CLIENT(0)>/

imageb|D<CUSTOMER(0)>/imagec.|D<CLIENT(0),CUSTOMER(0)>/

imaged|D<CUSTOMER(0)>/imagez|D<CLIENT(0),CUSTOMER(0)>/

imagef|D<CUSTOMER(0)>/imageg|D<CLIENT(0),<AGENT(0)>;

• Here is an AFGJOB.JDT file which includes the Ext2GVM rule:

;CreateGlbVar;;Key1GVM,CHAR_ARRAY,10;
;CreateGlbVar;;Key2GVM,CHAR_ARRAY,10;
;CreateGlbVar;;RecipGVM,CHAR_ARRAY,10;
;CreateGlbVar;;FormGVM,CHAR_ARRAY,10;
;Ext2GVM;;11,GVMREC 20,10,Key1GVM;
;Ext2GVM;;11,GVMREC 30,10,Key2GVM;
;Ext2GVM;;11,GVMREC 40,10,RecipGVM;
;Ext2GVM;;11,GVMREC 50,10,FormGVM;

Parameter Description

Key1 Enter the name of Key1, such as Key1=AccountNo.

Key2 Enter the name of Key2, such as Key2=Name.

FormName Enter the name of the form, such as FormName=XYZ.fap

Recipient Enter the name of the recipient, such as Recipient=Agent.

TerSubstitute

481

• You also have extract file transactions with a record which has a search mask equal
to 11,GVMREC and data at the following offsets and length.

• Each transaction could have different data in the specified record that would cause
each transaction to have different sections in the multi-line text area.

Offset,Length

20,10= TerSubA

30,10= DataA

40,10= Customer

50,10= FormA

• A field prior to the multi-line text area that calls an external DAL script
(SELIMAGE.DAL) plus a record (11,FlagRec) in each transaction that has a 1, 2, or
3 at offset 40. Here is an example of the SELIMAGE.DAL script:

flag = (11,FlagRec 40,1);

If flag = 1 Then;

SetGVM(Key1GVM, "TerSub");

SetGVM(Key2GVM, "Data");

SetGVM(FormGVM, "Form1");

SetGVM(RecipGVM, "CLIENT");

 ElseIf flag = 2;

SetGVM(Key1GVM, "TerSubA");

SetGVM(Key2GVM, "DataA");

SetGVM(FormGVM, "FormA");

SetGVM(RecipGVM, "CUSTOMER");

 ElseIf flag = 3;

SetGVM(Key1GVM, "TerSubB");

SetGVM(Key2GVM, "DataB");

SetGVM(FormGVM, "FormB");

SetGVM(RecipGVM, "AGENT");

End;

Chapter 5
Section and Field Rules Reference

482

Based on these assumptions, here are some examples:

• If your DDT file contains...

;0;0;SETFIELDTEST;0;0;SETFIELDTEST;0;0;;TerSubstitute;Key1=TerSub

Key2=Data Recipient=CLIENT FormName=Form1;N;N;N;N;4513;2194;11010;

only the sections (image1, image3, image5, and image7) are placed in the multi-line
text field.

• If your DDT file contains the following and your AFGJOB.JDT file includes the
above rules...

;0;0;SETFIELDTEST;0;0;SETFIELDTEST;0;0;;TerSubstitute;Key1=Key1GVM

Key2=Key2GVM Recipient=RecipGVM
FormName=FormGVM;N;N;N;N;4513;2194;11010;

only the sections (image2, image3, image4, image5, and image6) are included in the
multi-line text field.

• If your DDT file contains the following, has a record (11,FlagRec) which has a 3 at
offset 40, and the external DAL script (SELIMAGE.DAL) is in the DefLib
directory...

;0;0;SETFIELDTEST;0;0;SETFIELDTEST;0;0;;TerSubstitute;Call("SELIMAG
E.DAL");N;N;N;N;4513;2194;11010;

only the section named imagez is included in the multi-line text field.

See also Section and Field Rules Reference on page 274

TextMergeParagraph

483

 TextMergeParagraph
Use this section level rule (level 3) to merge data for embedded variable fields in a text
area with text. The Move_It or MoveNum rules are most often used with this rule to
move data from the extract file into embedded variable fields. The system then rewraps
the text area.

The system writes the FAP information into the NAFILE.DAT file, which is used by the
GenPrint program. If a section includes this rule, the Can Grow attribute setting in the
section’s FORM.DAT file must match the text area’s Can Grow attribute in the FAP file.

NOTE: If you include the Can Grow attribute for a multi-line text field, be aware the field
can both grow and shrink, depending on the data. If you do not want the text area
to change sizes, turn off the Can Grow attribute.

Using this rule can slow performance, so use it only as necessary. If you must use this rule,
it is better not to mix other objects with the text area in this FAP file. The more objects
are mixed, the worse your performance, because all of the information about these objects
will be written to NAFILE.DAT file also. If these objects are separated into another FAP
file, they can be part of the compiled overlay and need not be loaded into the
NAFILE.DAT file.

Performance is affected even more if you include graphics in the FAP file and you are
sending the data stream to an AFP printer. This is because the LoadFAPBitmap option
in the RunMode control group is set to Yes and is needed to print the graphics. This INI
option also affects performance. Avoid it as much as possible.

NOTE: System variables, such as Send Copy To:, cannot be used as an embedded variable
field text area.

Syntax TextMergeParagraph()

No parameters are necessary. Only include this rule if your section has embedded variable
fields in a text area.

Image Editor example ;TextMergeParagraph;;;

Keep in mind that if you use this rule and the MoveNum rule, you should left-justify the
data to avoid leading spaces.

See also Move_It on page 393

MoveNum on page 402

Section and Field Rules Reference on page 274

Chapter 5
Section and Field Rules Reference

484

 UnderlineField
Use this section level rule (level 3) to draw an underline beneath a variable field.

The system does not store the line in the NAFILE.DAT file. Instead, it turns on the
underline attribute (U) in the option field of the NAFILE record. You will not see the
underline in the NAFILE.DAT file.

Syntax ;UnderlineField;field name;

To underline multiple variable fields, you must make an entry for each field.

NOTE: This rule does not work with sections which have the copy on overflow attribute
enabled.

Image Editor example /* This section uses these rules */

<Image Rules>

;SetImageDimensions;98,0,3000,20400,0,0,0,0;

;SetOrigin;Rel+0,Max+0;

;IncOvSym;OVSYM3,QCPV5;

;UnderlineField;CLASSIFICATN 1;

/* By default, this section contains the following fields */

<Image Fields>

/* The following fields override the lower level definitions for */
/* this section only. */

<Image Field Rules Override>

;0;1;CLCODE;25;6;CLASSIFICATN
1;0;30;;Move_It;@GETRECSUSED,QCPV5,OVSYM3/11,CLSSCDREC;...

;0;1;CLSSCDREC-CODE;25;6;CODE NO.
1;0;6;;Move_It;@GETRECSUSED,QCPV5,OVSYM3/11,CLSSCDREC;...

See also Section and Field Rules Reference on page 274

XDB

485

 XDB
Use this field level rule (level 4) to tell the system the field has been mapped in the XDB
database. Use this rule when you have variable fields which are used on multiple sections.

NOTE: You should use the XDD rule, on page 488, instead of this rule. This rule is
included in this version of the system only for legacy system support.

Syntax XDB

Instead of mapping these identical variable fields, like Name and Address, each time they
are used, you can map them once in the XDB database and then map the individual fields
to the XDB rule. This tells the system to look in the XDB database for the complete
mapping information for those variable fields.

Keep in mind, however, that these fields do not exist in the dictionary:

• SrcFile (source file)

• SrcRec (source record number)

In the DDT mapping, the SrcFile is saved as a number — not an actual file name. It is
used in the TblLkup rule and becomes the index to use to find the table you want to look
into for this rule.

So, if you want to use the TblLkup rule, you must define this source file variable within
the field map definition.

Similarly, to reference a specific source record, you must define SrcRec in the field’s
mapping. For example, you may have an overflow detail record which is identified by
1,Detail. For a certain field, however, you want the data from the second detail record to
be mapped. In this case, the DDT for this particular field must contain a SrcRec.
Otherwise, the data from the first record will be used.

Mapping You can include an asterisk (*) to tell the system to add a space before it concatenates the
search masks. This makes the XDB and token lookup more flexible and lets you use XML
for parent/child mapping.

The child can also be another search mask or XPath, instead of just being the rule
parameter. To maintain the same search mask for the Child as that shown in the above
example, however, you must add an asterisk (*) in front of the Child's data if it was used
as a rule parameter.

You must also set up a correct search mask (XPath) syntax if a child's parent references
another parent.

NOTE: The use of an asterisk was added in version 11.0 and patched back to version
10.3. Prior to this change, the system automatically added a comma for you. To
make this work for all implementations, the system cannot assume a comma is
always needed. For example, an XML implementation would not want a comma
added before the two XPaths are appended together.

Chapter 5
Section and Field Rules Reference

486

Child1 - 1,HEADREC,20,ABC A=Accident:C=Casualty

Because there is no asterisk in Child2's data, the complete search mask for Child2
becomes:

1,HEADREC,35,ZZZ.

Here is an example for the XML implementation:

In this example, the mapping for Child1 becomes:

!/ABC/DEF A=Accident:C=Casualty

The mapping for Child2 becomes:

!/ABC/JHI

In addition, you can name a parent within each child. The set up is similar to that used for
token lookup. When using token lookup, the data's portion in the DDT line contains the
set up for this. Here is an example:

?Child/Parent

For the XDB rule, the source field name would contain this set up without a question
mark. Here is an example:

;0;0;Child/Parent1;0;0;Child;0;20;;XDB;;N;N;N;N;7577;2273;11114;

The mapping for Child/Parent1 is:

Name Parent Rule Data

Child1 Parent2 PrintIf *A=Accident:C=Casualty

Child2 Parent1 Move_It ,35,ZZZ

Parent2 Parent1 ,20,ABC

Parent1 1,HEADREC

Name Parent Rule Data

Child1 Parent2 PrintIf *A=Accident:C=Casualty

Child2 Parent1 Move_It /JHI

Parent1 !/ABC

Parent2 Parent1 /DEF

Name Parent Rule Data

Child Parent1 PrintIf *A=Accident:C=Casualty

Child Parent2 Move_It /JHI

Parent1 !/ABC

Parent2 !/ABC/DEF

XDB

487

!ABC A=Accident:C=Casualty

The mapping for Child/Parent2 is:

!/ABC/DEF/JHI

Image Editor example If you make the following entries on the Edit DDT tab of the field’s Properties window
in Image Editor:

In the DDT file, this information looks like this:

;0;0;Name;;;Name;;;XDB;;;;;;15960;4000;17200;

See also Formatting Data with the = Operator on page 267

TblLkUp on page 476

XDD on page 488

Section and Field Rules Reference on page 274

In this field... Enter...

Destination name Name

Offset *

Length 32

Source name Name

Offset *

Length *

File *

Record *

Required *

Rule XDB

Mask *

Data *

* no entry required for this field in this example

Chapter 5
Section and Field Rules Reference

488

 XDD
Use this field level rule (level 4) to tell the system the field has been mapped in the XDD
database. Use this rule when you have variable fields which are used on multiple sections.

NOTE: . The XDD and XDB rules are synonymous. When encountered in a Studio
MRL, the XDD is used from the library. If these rules are used in a MRL that is
legacy-based, the XDB database is used.

Syntax XDD

Instead of mapping these identical variable fields, like Name and Address, each time they
are used, you can map them once in the XDD database and then map the individual fields
to the XDD rule. This tells the system to look in the XDD database for the complete
mapping information for those variable fields.

In the DDT mapping, the SrcFile is saved as a number — not an actual file name. It is
used in the TblLkup rule and becomes the index to use to find the table you want to look
into for this rule.

So, if you want to use the TblLkup rule, you must define this source file variable within
the field map definition.

Similarly, to reference a specific source record, you must define SrcRec in the field’s
mapping. For example, you may have an overflow detail record which is identified by
1,Detail. For a certain field, however, you want the data from the second detail record to
be mapped. In this case, the DDT for this particular field must contain a SrcRec.
Otherwise, the data from the first record will be used.

NOTE: SrcRec is only necessary if you know the specific instance of the data that you
wish to use. Typical overflow can be mapped in the XDD and does not involve
the SrcRec mapped at the field level.

Mapping You can include an asterisk (*) to tell the system to add a space before it concatenates the
search masks. This makes the XDD rule and the token lookup more flexible and lets you
use parent/child mapping.

The child can also be another search mask or XPath, instead of just being the rule
parameter. To maintain the same search mask for the Child as that shown in the above
example, however, you must add an asterisk (*) in front of the Child's data if it was used
as a rule parameter.

You must also set up a correct search mask (XPath) syntax if a child's parent references
another parent.

XDD

489

NOTE: The use of an asterisk was added in version 11.0 and patched back to version
10.3. Prior to this change, the system automatically added a comma for you. To
make this work for all implementations, the system cannot assume a comma is
always needed. For example, you would not want a comma added before the two
XPaths are appended together.

Child1 - 1,HEADREC,20,ABC A=Accident:C=Casualty

Because there is no asterisk in Child2's data, the complete search mask for Child2
becomes:

1,HEADREC,35,ZZZ.

Here is an example:

In this example, the mapping for Child1 becomes:

!/ABC/DEF A=Accident:C=Casualty

The mapping for Child2 becomes:

!/ABC/JHI

In addition, you can name a parent within each child. The set up is similar to that used for
token lookup. When using token lookup, the data's portion contains the set up for this.
Here is an example:

?Child/Parent

For the XDD rule, the source field name would contain this set up without a question
mark.

Name Parent Rule Data

Child1 Parent2 PrintIf *A=Accident:C=Casualty

Child2 Parent1 Move_It ,35,ZZZ

Parent2 Parent1 ,20,ABC

Parent1 1,HEADREC

Name Parent Rule Data

Child1 Parent2 PrintIf *A=Accident:C=Casualty

Child2 Parent1 Move_It /JHI

Parent1 !/ABC

Parent2 Parent1 /DEF

Name Parent Rule Data

Child Parent1 PrintIf *A=Accident:C=Casualty

Chapter 5
Section and Field Rules Reference

490

The mapping for Child/Parent1 is:

!ABC A=Accident:C=Casualty

The mapping for Child/Parent2 is:

!/ABC/DEF/JHI

Studio example You could make the following entries in Studio in the Rule section of the Field Options
panel:

See also Formatting Data with the = Operator on page 267

TblLkUp on page 476

Section and Field Rules Reference on page 274

Child Parent2 Move_It /JHI

Parent1 !/ABC

Parent2 !/ABC/DEF

Name Parent Rule Data

In this field... Enter...

Rule XDD

Destination offset *

Source name Name

Source offset *

File *

Length *

Record *

Required *

Overflow Multiplier *

Overflow *

Mask *

Data *

* No entry is required unless you intend to override the setting that will be inherited when the
source field is found in the XDD.

491

Appendix A

Using Condition Tables
and the Record Dictionary

In this appendix you will find information about...

• Using Condition Tables on page 492

• Using the Record Dictionary on page 495

• Record Dictionary Rules on page 499

Appendix A
Using Condition Tables and the Record Dictionary

492

USING
CONDITION

TABLES

Condition tables provide a simple and efficient way to set conditions. The system reads
the conditions from an input file and then uses those conditions to trigger sections. When
the system receives a file of conditions which are used by the rules, it then...

• Compiles the conditions for evaluation

• Evaluates the conditions for each transaction

SETTING UP THE INI FILES

To use the Condition tables, you must make these changes to your FSISYS.INI file.

• Enter the path for your table files in the MasterResource control group. Use the
TablePath option to define your table files path:

< MasterResource >

TablePath = \T4\UtilTest\MstrRes\TblLib\

• Enter the name of your Condition table file in the Tables control group. Use the
Conditions option to define the Condition table’s file name:

< Tables >

Conditions = CondTbl.tbl

USING A RECORD DICTIONARY FILE

Condition tables use the Record Dictionary to resolve variables. See the Using the Record
Dictionary on page 495 for more information.

Here is an example from the Record Dictionary:

* These are the Record definitions

<Records>

Account = Search(61,02)

MeterRead = Search(61,03) Repeating

Detail = Search(61,18) Repeating

* These are the variable definitions

<Variables>

ACSA = Record(Account) Offset(487) Length(10) Type(Zone)
Format(14.2,C)

BMV1 = Record(Message) Offset(159) Length(15) Type(Char)

DTV1 = Record(Detail) Offset(181) Length(18) Type(Zone)
Format(18.2,C)

CustomerType = Record(Detail) Offset(100) Length(1) Type(Char)

BIGTEST = Record(Detail) Offset(253) Length(18) Type(Zone)
Format(18.2,C)

 RPN(BIGTEST 5 * 30.55 + DTV3 + DTV5 -)

Using Condition Tables

493

CREATING A CONDITIONS FILE

Conditions consist of combinations of comparisons, parentheses, and ANDs, and ORs
to verify the correct results. Conditions are stated in this format:

ConditionName : {valid conditions}

Conditions can use the following:

• Variable names from the Record Dictionary

• Quoted strings

• Numeric constants

• Comparison operators, such as <, >, =, <=, >=, <>, !=, !<, and !>

• ANDs

• ORs

• Parentheses ()

• Reserved words, such as ZERO and SPACES

Here are some examples:

Cond1 : ACSA > 9900 OR (ACSC = 4173 AND DTAT = ZERO)

Cond2 : (DTV1 = 3936.50 OR DTAT > 1) AND (DTV1 > -2 OR DTAT = 0)

Cond3 : (BMV1 <> SPACES AND (DTVM1 = "CREDIT" OR DTAT > 0 AND BMV1
= "PAYMENT"

Cond4 : CustomerType = "A"

NOTE: The variables used above are defined in the Record Dictionary example.

Appendix A
Using Condition Tables and the Record Dictionary

494

Occurrence Counting
Occurrence counting uses the following format:

OccurName : OCCURRENCE(RecordName,ConditionName) MAX(Count)

Here is an example:

Occur1 : OCCURRENCE(Detail,Cond4)

The record Detail and the condition Cond4 are used above as defined in the previous
examples. The occurrence condition Occur1 is driven by the record named Detail. The
record must be of Repeating type.

The condition Cond4 references the variable CustomerType. CustomerType is defined on the
Detail record. There must be a connection between the record and a variable in the
condition for the occurrence count to work correctly.

<Conditions>

MSG1 : LNPRTY < 10000

MSG2 : LNPRTY >= 10000

MSGTRGR1 : Occurrence(Message, MSG1)

totcurrchrg: DTLSECTION = "01" and LNPRIORITY != 00625

totamtdb : TOTAL >= 0 AND BBFLAG = "N"

env : EDIVERT ="0"

emitgrapha : GRAPHTRUE = "28" AND SCALETRUE = "29" AND BUDBLTRUE =
"N"

*Triggers grouping for Tariff, Rider and Detail records

IAMBDTLA : DTLKeyProd = TARKeyProd and DTLTarSeqNo = TARTarSeqNo

REMAINDER : USAGEREM != 0

REGTARIFF : Occurrence(Tariff, REGBUS)

REGBUS : CDBUS != "0700" and CDBUS != "0100"

Setting a maximum
count to return

Include the MAX parameter if you want to set a maximum count to be returned. Here is
an example of the format for occurrence counting. Here is an example:

Occur1 : OCCURRENCE(Detail,Cond4) MAX(5)

Assume Cond4 is defined as shown here:

Cond4 : CustomerType = "A"

The occurrence condition Occur1 is driven by the record named Detail. The record must
be of Repeating type.

Condition tables and
the RecipCondition rule

One example of using Condition tables is to call the RecipCondition rule. In the
SETRCPTB.DAT file, call the rule, as shown here:

;ORACLE;REGION2;REG;;01;;;M0;0;0;0;;RecipCondition;Cond1;

;ORACLE;REGION2;REG;;01;;;M0;0;0;0;;RecipCondition;Occur1;

Using the Record Dictionary

495

USING THE
RECORD

DICTIONARY

The Record Dictionary lets you define and access variables easily and efficiently. Variables
are loaded from the extract file according to their definitions in the Record Dictionary file.
You can use the Record Dictionary any time you need data from the extract list. The data
can be in a numeric, character, or date format.

The Record Dictionary definitions are loaded from a text file. The variables can be
referenced by name once the dictionary file has been loaded. For instance, used with
Condition tables, any variable in the Record Dictionary can be used in a conditional
evaluation.

SETTING UP THE RECORD DICTIONARY

Enter the path for your table files under the MasterResource control group in the
FSISYS.INI file. Use the TablePath option to define your table files path:

< MasterResource >

TablePath = \T4\UtilTest\MstrRes\TblLib\

Enter the name of your Record Dictionary file in the DataDictionary control group. Use
the Name option to define the Record Dictionary file name:

< DataDictionary >

Name = DataDict.Tbl

Record Dictionary File
The Record Dictionary must be populated with the variables you want to use. The file
consists of two parts:

• <Records> section

• <Variables> section

Records The record parameters are defined in the format:

RecordName = SEARCH(Column,SearchMask) {Repeating}

Parameter Description

RecordName The name that future references to this record will use.

Column The column number that will be searched.

SearchMask The text to look for in the column.

Repeating (Optional) Can be set for any record that is of repeating type. You must set
this flag when you are using the pointer to reference multiple records.

Appendix A
Using Condition Tables and the Record Dictionary

496

Variables The variable parameters are defined using this format:

VariableName = Record(RecordName) GVM(GVM_Variable) Offset(Offset)
Length(Length) Type(TypeVariable) Format(FormatFlags)
Rule(RuleName) Data(RuleData) Precision(Precision)
RPN(RPN Equation)

NOTE: Include a single space between variable parameters. A carriage return indicates
the end of the variable definition. If you omit the length of a GVM-based Record
Dictionary variable in the Record Dictionary entry, the system uses the length of
the source GVM variable.

Parameter Description

VariableName The name future references to this variable will use. A variable name begins
with an alpha character and can consist of up to 30 characters.

RecordName The previously defined record (from the Record section) on which this
variable will be found.

GVM_Variable The name of the global variable to use.

The RecordName and GVM_Variable parameters are mutually exclusive.

Offset The offset into the record where the data is located.

Length The length of the data.

TypeVariable (Optional) Char, Num, Zone, or Packed.
Char is character data. Character data can be any string of alphanumeric
characters and symbols.
Num is numeric data. Numeric data can have a sign in front and a decimal
place.
Zone is zoned decimal. Zoned decimal looks like a numeric value except the
sign is added to the last digit.
Packed is packed decimal. Packed decimal is a binary format used mainly on
z/OS systems.

FormatFlags (Optional) Similar to the flags used with MoveNum rule except the input
flags, such as input length and precision, S, and B, are not needed.

RuleName (Optional) You can include any field rule such as DateFmt or SetAddr2. The
Move_It and MoveNum rules are inherent to the Record Dictionary, so you
do not need to specify them. If you omit the rule, the Move_It rule
functionality is the default.

RuleData (Optional) Any required rule data for the RuleName entry.

Precision (Optional) The number of decimal places for a numeric variable.

RPN Equation Reverse Polish Notation function. See the RPN Function section below.

Using the Record Dictionary

497

RPN Function
The RPN (Reverse Polish Notation) function handles mathematical operations in the
Record Dictionary. The RPN function is used as a parameter of a variable in the Record
Dictionary. Use Reverse Polish Notation to express your equation. Any variables that are
referenced must be previously defined in the Record Dictionary.

• Compile the RPN equation into a linked list.

• Retrieve information from Record Dictionary for each variable.

• Evaluate the equation and return the resulting value.

Use the format:

RPN(valid RPN equation)

A valid RPN equation can include: variables, numeric constants, arithmetic operators
(+,-,*,/,%), and several functions (MOD, ABS, DUP, SWAP, POW, SQRT, CEIL,
FLOOR). When using a function, place a ‘#’ sign before the function name (example:
#MOD). This distinguishes a function name from a variable name.

RPN can also be used with date format variables. This can be useful when adding to a date
or calculating an age. Here are some examples:

• BIGTEST = Record(Detail) Offset(253) Length(18) Type(Zone) Format(18.2,C)
RPN(BIGTEST 5 * 30.55 + DTV3 + DTV5 -)

• LittleTEST = Type(NUM) RPN(BIGTEST 5 *) Format(18.2,C)

• SumTest = Type(num) RPN(BigTest LittleTest + #ABS)

RPN or Reverse Polish Notation is an arithmetic method that performs calculations from
left to right. A stack is created to hold numeric values until an operation is performed. For
instance, a simple equation such as “ 1 + 2 ” would be represented as “ 1 2 + ”. During
computation, the stack would first hold “1”, then it would be given “2”. When the “+” is
reached, the “1” and “2” are taken off the stack and added together. A slightly more
complicated equation such as “ (1 + 2) * 5 “ would be represented as “ 1 2 + 5 * ”.

NOTE: No parentheses are needed in RPN logic.

Appendix A
Using Condition Tables and the Record Dictionary

498

Available RPN
functions

These are the available functions in RPN. When using them, remember to place a “#”
sign in front of the function name. This distinguishes a function name from a variable
name.

Function Description

ABS References the most recent value and returns the absolute value of that number.

CEIL Returns the next largest integer value of a number (round up).

DUP Creates a duplicate of the top value in the stack.

FLOOR Returns the next smallest integer value of a number (round down).

MAX Compares the top two values on the stack and returns the larger.

MIN Compares the top two values on the stack and returns the smaller.

MOD Performs a division with the top two values on the stack and returns the remainder.

POW Removes the top two values in the stack. Calculates the first to the power of the
second.

SQRT Returns the square root of the number.

SWAP Removes the top two values in the stack and replaces them in reverse order.

Record Dictionary Rules

499

RECORD
DICTIONARY

RULES

You can use the following rules to reference the Record Dictionary and its contents. The
system loads variables from the extract file based on the variable definitions in the Record
Dictionary file.

You can use the Record Dictionary any time you need data from the extract list. The data
can be in a numeric, character, or date format.

Base_FromDataDictToGVM
Use this rule to copy a Record Dictionary value into a global variable. Place this rule in
the AFGJOB.JDT file.

Syntax ;Base_FromDataDictToGVM;; GVM(GlobalVariableName)
DATA(DataDictVariableName);

Example ;Base_FromDataDictToGVM;;GVM(STATION1) DATA(OMR1);

FromDataDict
Use this rule to get data from variable fields from the Record Dictionary. Place this rule
in the DDT file.

Syntax ;FromDataDict;DataDictVariableName {MoreOptionalVariables};;

Example ;0;0;KWH-ON-COM;0;0;KWH-ON-COM;0;10;;FromDataDict;ComkWh "and "
ComkWh2;N;N;N;N;2446;1218;16229;

FromDataDictToGVM
Use this rule to copy a Record Dictionary value into a global variable. Place this rule in
the DDT or JDT file.

Syntax ;Base_FromDataDictToGVM;; GVM(GlobalVariableName)
DATA(DataDictVariableName);

Example ;Base_FromDataDictToGVM;;GVM(STATION1) DATA(OMR1);

Image_FromDataDictToGVM
Use this section level rule to copy a Record Dictionary value into a global variable. Place
this rule in the DDT file.

Syntax ;Base_FromDataDictToGVM;;
GVM(GlobalVariableName)DATA(DataDictVariableName);;

Example ;Base_FromDataDictToGVM;;GVM(STATION1)DATA(OMR1);;

Appendix A
Using Condition Tables and the Record Dictionary

500

IncDataDictRecPtr
Use this section level rule to increment to the next occurrence of a Record Dictionary
record. Place this rule in the DDT file.

Syntax ;IncDataDictRecPtr;RecordName {,MoreOptionalRecords};;

Example ;IncDataDictRecPtr;Tariff , Tarriff2;;

PosDataDictRecPtr
Use this section level rule to advance the record pointer until the condition is true. Place
this rule in the DDT file.

Syntax ;PosDataDictRecPtr;Record(RecordName) Cond(ConditionName);;

Example ;PosDataDictRecPtr;Record(Meter) Cond(CompareMeterTariff);;

PostIncDataDictRecPtr
Use this section level rule to increment to the next occurrence of a Record Dictionary
record. Place this rule in the DDT file.

Syntax ;PostIncDataDictRecPtr;RecordName {,MoreOptionalRecords};;

Example ;PostIncDataDictRecPtr;Tariff , Tarriff2;;

PostPosDataDictRecPtr
Use this section level rule to advance the record pointer until the condition is true. Place
this rule in the DDT file.

Syntax ;PosDataDictRecPtr;Record(RecordName) Cond(ConditionName);;

Example ;PostPosDataDictRecPtr;Record(Meter) Cond(CompareMetrTarif);;

PreIncDataDictRecPt
Use this section level rule to increment to the next occurrence of a Record Dictionary
record. Place this rule in the DDT file.

Syntax ;PreIncDataDictRecPtr;RecordName {,MoreOptionalRecords};;

Example ;PreIncDataDictRecPtr;Tariff , Tarriff2;;

Record Dictionary Rules

501

PrePosDataDictRecPtr
Use this section level rule to advance the record pointer until the condition is true. Place
this rule in the DDT file.

Syntax ;PosDataDictRecPtr;Record(RecordName) Cond(ConditionName);;

Example ;PrePosDataDictRecPtr;Record(Meter)Cond(CompareMeterTariff);;

ResetDataDictRecPtr
Use this rule to reset the pointer of a Record Dictionary record. Place this rule in the DDT
file.

Syntax ;ResetDataDictRecPtr;RecordName;;

Example ;ResetDataDictRecPtr;Meter;;

Appendix A
Using Condition Tables and the Record Dictionary

502

503

Appendix B

Using Image Editor to
Enter Rule Information

This appendix explains how to add, remove, and edit
rule assignments using Image Editor. It also explains
how to generate information reports. You should only
set up rules if you fully understand mapping procedures,
rules, and if you are using Documaker Server.

In this appendix you will find information about:

• Storing Rule Information in DDT Files on page 504

• Using the Data Definition Table on page 505

• Setting Up the MASTER.DDT File on page 507

• Assigning Rules with the Image Editor on page 515

• Displaying Rule Reports on page 525

For reference information on individual rules, see
Chapter 5, Section and Field Rules Reference on page
274.

Appendix B
Using Image Editor to Enter Rule Information

504

STORING RULE
INFORMATION IN

DDT FILES

The Image Editor stores sections (formerly known as images) in a FAP file. FAP files
created with Image Editor only contain the section’s objects and object attributes. The
Image Editor stores section and field rule assignments in a separate file, called a data
definition table (DDT) file.

Remember, as you assign rules with the Image Editor you affect the DDT file, not the FAP
file.

NOTE: Documaker Studio stores sections (images) in a FAP file, along with the section
and field rule assignments you assign to it. This differs from the way rule
information is stored in Image Editor.

With the release of version 11.0 and the introduction of Documaker Studio’s
FOR file, section and field-level rules previously stored in the DDT file are, in
Studio implementations, either unnecessary or are stored in the FAP file. Having
section level rules (such as SetOrigin) in the FOR file makes it easier to do visual
form design. Having field level rules in the FAP file eliminates synchronization
worries.

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxx

xxxx xxxx

One Section Two Files

Section 1

xxxxxxxxxxxxxxxxx

contains section objects
and attributes

contains rule
assignments

FAP file

DDT file

Using the Data Definition Table

505

USING THE
DATA

DEFINITION
TABLE

When you use Image Editor, the system stores your section and field level rule
assignments in a separate, semi-colon delimited file called a data definition table (DDT).
This file contains all the rule assignments that apply to a specific section. The system
creates the DDT file and stores it in the master resource library.

NOTE: The Image Editor stores the section in a FAP file and it stores the section rule
assignments in a DDT file. The file names correspond, but the extensions differ,
for example, IMAGE.FAP and IMAGE.DDT. Storing information separately
makes it easier to apply and modify rules. This also helps the system process your
information faster.

You can set up section and field rules directly in the DDT file using any ASCII text editor
or you can use the Image Editor to make the same assignments. For information on using
the Image Editor, see Assigning Rules with the Image Editor on page 515.

In the DDT file examples below, each semicolon delimited field represents a distinct piece
of variable field formatting, mapping, or data information. There are several levels of
rules:

• Field Rules - Field rules affect individual fields on a section. These rules are stored in
the DDT file, along with the section rules. You run field level rules by including the
rule in a section's DDT file under the <Image Field Rules Override> section.

• Section Rules - Section rules are stored in the DDT file. These rules affect specific
sections. Section rules associate the rule name with the data required by the rule. You
run section level rules by including the rule in a section's DDT file under the <Image
Rules> section.

Here is an example of the DDT file format:

<Image Rules>

;IMAGERULE;IMAGERULEDATA;

;IMAGERULE;IMAGERULEDATA;

<Image Field Rules Override>

;#1;#2;#3;#4;#5;#6;#7;#8;#9;#10;#11;#12;#13;#14;#15;#16;#17;#18

Where:

In the <Image Rules> section:

IMAGE the section rule name

IMAGERULEDATA the data required by the section rule

Appendix B
Using Image Editor to Enter Rule Information

506

In the <Image Field Rules Override> section:

#1 the source file number

#2 the source record index number in the record section

#3 the source field name

#4 the source field offset

#5 the source field length

#6 the destination field name

#7 the destination field offset

#8 the destination field length

#9 the field format mask

#10 the field rule name (DDT rule)

#11 the data for the field rule

#12 flag 1 (not required)

#13 flag 2 (host required)

#14 flag 3 (operator required)

#15 flag 4 (either required)

#16 x offset

#17 y offset

#18 font

Line #11 contains the data for the field rule. This data varies, depending on the rule. The
data can consist of the following, in the order shown below:

Search Criteria, Extract Field Descriptors, Additional Parameters

For some rules, the data field (#11) is empty, such as for the Master and KickToWip rules.
For other rules, the data field can consist of only search criteria, such as for the SetState
or Move_It rules (when used without overflow data).

Each item must be separated by a single space—no other spaces are allowed. If the rule
supports overflow, you should place the overflow data before the search criteria.

NOTE: For details about overflow, see Overflow and User Functions on page 271. For
more information about search criteria, see Search Criteria on page 270.

The way the delimiters are used in rules is almost the same. There are four types of
delimiters, as shown here:

Delimiter Description

space A single space separates different groups of data as mentioned above.

backslash (/) A backslash separates overflow data and other data.

colon (:) A colon separates conditions in rules such as PrintIf and PrtIfNum. It is also
used to separate two dates in the rule, such as in the DateDiff rule.

comma (,) A comma is used in search criteria to delimit offset and data. It is also used to
separate extract field descriptors, such as offset and length.

Setting Up the MASTER.DDT File

507

SETTING UP THE
MASTER.DDT

FILE

The MASTER.DDT file helps you save time by letting you set up common fields used on
many forms. For instance, if you have a field called Name which appears on many forms,
you can use the MASTER.DDT file to set it up once and then use that information as
necessary.

For instance, suppose you have a section named MYIMAGE.FAP, which has a
corresponding DDT file named MYIMAGE.DDT.

In MYIMAGE.DDT you have a field called Name. For the Name field, you select the
rule, Master. This tells the system to look in the MASTER.DDT file for a field called
Name and use the settings for length, rule, mask, data, and so on, stored there.

To use this capability, follow these steps:

1 Select the Edit, Master DDT option in Docucreate to open the MASTER.DDT file
and map the extract data to the variable fields in the MASTER.DDT file.

2 In the individual DDT files, enter either blank or master in the Rule field. The variable
name must be the same in the master and subordinate DDT files.

3 In the AFGJOB.JDT file, add this rule:

;LoadDDTDefs;;;

Taking precedence If a field in the FAP file is specified in the master DDT, the system uses the information
in the master DDT.

When using the master DDT during rules processing, every field defined in a DDT file
will fill in any blank item (or zero in the case of numeric items) from the matching master
template for that field. So any field rule component that you leave blank, or zero, will be
filled in from the master DDT if that field is declared within the master DDT.

Image DDT lines that specify Master as the rule or have no rule specified also accept the
rule from the master DDT. But like all other DDT rules, if a rule name other than Master
is specified in the DDT, it will be used. Here are some examples.

Suppose the master DDT contains these lines:

Now suppose the section DDT contains these lines.

After the master template is applied, the section DDT rules would look like this:

Note the items in bold.

;0;0;NAME;25;50;NAME;0;50;;move_it;11,INSNAMREC;N;N;N;N;0;0;15412

;0;0;PRICE;15;10;FINAL

;0;0;NAME;0;0;;0;0;;master;;;;;;12400;2340;0

;0;0;PRICE;0;0;PRICE;0;10;;movenum;;N;N;N;N;13330;1900;12310

;0;0;LOCATION;75;50;LOCATION;0;50;;move_it;;N;N;N;N;14100;2100;0

;0;0;STATE;0;0;;0;0;;;;;;;;0;0;0

;0;0;NAME;25;50;NAME;0;50;;move_it;11,INSNAMREC;N;N;N;N;12400;2340;15
412

;0;0;PRICE;15;10;PRICE;0;10;C,10.2;movenum;11,INSNAMREC;N;N;N;N;13330
;1900;12310

Appendix B
Using Image Editor to Enter Rule Information

508

The rule line for field NAME was basically blank in the DDT and specified Master as the
rule. Therefore, any item left blank, or zero, was filled in from the matching NAME field
in the master DDT. In addition, the rule name of Master was replaced with the rule name
from the template.

The rule line for field PRICE does not specify the Master rule. Note, however, that the
zero and blank items were still filled in from the master template. In this example, that
included the source offset and length, the field rule flags, and the search mask data.

Also look at the required flags. In the master DDT for this field, these items are specified
as ;N;Y;N;N; but because the section DDT was not left blank for those items
(;N;N;N;N;), they did not get copied and were left intact. Also note that the Source Field
name FINAL PRICE was not copied into the section DDT line, because data PRICE
already occupied that space on the section DDT line.

For the field LOCATION, nothing about the section DDT line changed because the field
does not occur in the master DDT.

For the field STATE, nothing on the DDT line changes because it does not appear in the
master DDT. But unlike the field LOCATION, because the rule name was specifically
declared as Master, it was expected to be found in the Master. This will cause an error
indicating that the field was missing in the master DDT.

Setting Up the MASTER.DDT File

509

USING THE MASTER DDT EDITOR

You can use the Master DDT Editor to work with your master DDT file. This tool only
edits the Master DDT file. You cannot use it to edit other DDT files.

The Master DDT Editor presents the information stored in the Master DDT file in a
spreadsheet-like format, as shown below. You can use the various menu options to view
a report, save your work, make changes, move assignments up or down, and perform
other tasks.

The following topics discuss the tasks you can perform using the menu option for the
Master DDT Editor.

Using the File Menu
The File menu options let you save your changes, generate a report that documents all
field rule assignments in the master DDT file, or exit the Master DDT Editor. To display
the File menu, choose File. The File menu appears.

Saving your work The system saves your work as you move through the rows displayed on screen. You can
also use the Save option to save all of the additions, changes and deletions you make to
rule assignments in the Master DDT file.

To save rule assignments, choose File, Save.

Viewing the Rules
Report

The View Rules Report option shows you a listing of all fields in the DDT file and
pertinent information about each field. The listing shows the information in a tabular
fashion. The variable fields' offsets, lengths, assigned rules, and data requirements appear.

Appendix B
Using Image Editor to Enter Rule Information

510

The system creates this report from data stored in memory when you open the Master
DDT Editor. To view the Rules Report, choose File, View Rules Report. The Rules
Report appears.

After you finish viewing the rules report information, you can close the report by double
clicking on the icon in the top left corner of the window.

Exiting the Master DDT
Editor

To exit the Master DDT Editor, choose File, Exit.

Section name

Variable fields

Offsets and lengths Rules

To close
the report,
click here.

Setting Up the MASTER.DDT File

511

Using the Edit Menu
The Edit menu options let you change, insert, copy, or delete rows, and retrieve rule
assignments. To display the Edit menu, choose Edit. The Edit menu appears.

Changing rule
assignment settings

Use the Edit, Change option to display the Change window. From this window you can
quickly change all of the information for a rule.

You can also access the Change window by double clicking on the row number to the left
of the destination name. This window contains the same fields you see on the editor
window—it's just another way to make changes to an existing rule.

From this window, you can use the Next and Prev buttons to move from row to row.

Appendix B
Using Image Editor to Enter Rule Information

512

You can also click Reset to return the various properties back to the original settings. This
however does not revert back to changes made before the file was saved. The Cancel
button also resets the properties, but exits the window too.

Click Ok to save your changes and exit the window.

Inserting a row The Insert Row option lets you insert a blank rule assignment record at the end of the list.
Use Insert Row if you have deleted a rule assignment and you want to add it back to the
rule assignment list or if you want to add more rule assignments.

In very unique situations you can use this option to execute a variable field level rule
without attaching the rule to a field in the section. If you need to execute a rule without
attaching it to a section field, consult your system administrator.

To insert a rule assignment, choose Edit, Insert Row. The Master DDT Editor adds a
blank rule assignment record to the end of the list. The record appears in red. For each
assignment, you must make entries in the Destination Name and Rule fields.

Coping a row The Copy Row option lets you copy an existing rule assignment record to the end of the
list. Use Copy Row if you want to base a new rule assignment on an existing rule
assignment.

To copy a rule assignment, click the variable field row that you want to copy. Choose Edit,
Copy Row. The Master DDT Editor copies the highlighted row and adds it to the end of
the list.

Deleting a row The Delete Row option lets you remove a rule assigned to a field. You remove the field
and its assigned rule from the DDT file not from the FAP file.

1 To delete a rule assignment, click the variable field for which you want to delete a
rule. Choose Edit, Delete Row. The Confirm Delete message appears.

2 Click Yes or No to confirm or cancel the delete.

Retrieving information
from the data

dictionary

The Retrieve option lets you retrieve a record from the data dictionary for use in a rule
assignment. When you choose this option the system creates a list of all the source name
entries in the data dictionary.

After selecting the Retrieve option, you can copy source information from the data
dictionary into your rule assignment. The Master DDT Editor places the information
from the Source Name, Source Offset, Source Length, Record, Required, Rule, Mask, and
Data fields into the current row. The destination name, destination length, and destination
offset information are not copied.

Setting Up the MASTER.DDT File

513

1 To retrieve source information, click within the row assignment where you want to
place source information. Choose Edit, Retrieve. The Retrieve from Dictionary
window appears.

2 Click the source record that you want to retrieve as a rule assignment.

3 Click Ok. The Master DDT Editor places the information from the source record
into the rule assignment.

Using the Move Menu
The Move menu lets you change the sequence of rule assignments. The row number for
the variable field indicates its sequence number. The sequence number defines the order
that the system processes the rule.

To display the Move menu, choose Move. The Move menu appears.

Appendix B
Using Image Editor to Enter Rule Information

514

Using the Up option The Up option lets you move a rule assignment up one sequence number at a time. Use
Up when you want to alter the order in which a rule is executed during processing.

To move a rule assignment up, click the variable field rule assignment you want to move
up. Choose Move, Up. The rule assignment moves up one sequence number.

Using the Down option The Down option lets you move a rule assignment down one sequence number at a time.
Use Down when you want to alter the order in which a rule is executed during processing.

To move a rule assignment down, click the variable field rule assignment you want to
move down. Choose Move, Down. The rule assignment moves down one sequence
number.

Assigning Rules with the Image Editor

515

ASSIGNING
RULES WITH

THE IMAGE
EDITOR

Although you can enter rules directly into the DDT file, you will probably find it easier to
set up your section and field level rules as you create the section.

You set up section level rules using the Image Properties window. Similarly, you set up
field level rules using the field’s Properties window.

ADDING SECTION RULES

To insert section rules, follow these steps:

1 With the section open, select the Format, Image Properties option. The Image
Properties window appears.

If you have no rules for the section and the option to automatically update the DDT
file is turned off, the system shows the Load DDT button. This lets you create a
DDT file for the section, into which you can add rules.

Also, if you have rules for the section and the option to automatically update the
DDT files is turned off, the system shows the Load DDT button.

NOTE: To turn on or off the option to automatically update the DDT file, choose
Options, Editor Properties while in the Image Editor. Then select the Save tab.

No DDT file has been created
for this section or the option to
automatically update the DDT
file is turned off.
Click here to create or load a
DDT file.

Appendix B
Using Image Editor to Enter Rule Information

516

If you have already created and opened a DDT file for the section or the option to
automatically update the DDT file is turned on, the Load DDT button is unavailable
and you see an additional tab named Image Rules, as shown on the following
window.

2 Either click the Load DDT button to create or load a DDT file or click the Image
Rules tab. The Image Rules tab appears.

3 On the Image Rules tab, the system automatically assigns the next available sequence
number for you. You can change the sequence number if necessary. Use the
following fields to set up the rule’s parameters.

A DDT file exists and has
been opened for this
section or the option to
automatically update the
DDT file is turned on.
Click here to add, change,
or delete section rules.

The system assigns a default
sequence number for you.
You can change this number to
change the order in which the
rule appears in the DDT file
and is executed by the system.

Field Description

Sequence The number you enter in this field determines where the rule is placed in the
DDT file and the order in which it is processed.

Rule Use this field to select the section rule you want to insert.

Data Enter data necessary to process the rule. Refer to the rule descriptions for
more information about the data necessary for individual rules.

Assigning Rules with the Image Editor

517

4 Once you set up the information for the rule, click Insert to add the rule to the DDT
file.

Changing a Section Rule
The Change button on the Image Rules tab lets you change a rule and its information. For
instance, you can use this button to make changes to the data required for the rule.

1 To make changes to a section rule, select the Image Rules tab. A window similar to
the one shown below appears.

2 Click the rule you want to change.

To change the sequence of the rule, enter a new number in the Sequence field.

To assign a different rule, select a rule in the Rule field.

To change the data for a rule, click in the Data field and enter the new data.

3 Click Change to record your changes. Click Reset to cancel your changes. Click
Cancel to cancel your changes and return to the Image Editor.

Deleting a Section Rule
Use the Delete button to remove a section level rule assignment. The system removes the
rule from the DDT file. The FAP file is not affected.

1 Select the Image Rules tab and then click the rule you want to delete.

2 Click Delete and then click Yes or No to confirm or cancel the delete.

NOTE: Once you click Delete, you cannot click Reset to cancel the deletion.

Here you can see the data for
the SetOrigin rule.All of the section rules for the

section are shown here.
Click a rule to substitute
another rule or make changes
to a rule’s sequence or data.

Appendix B
Using Image Editor to Enter Rule Information

518

ASSIGNING FIELD RULES

You can assign rules to fields two ways:

• Using the Edit DDT tab on the field’s Properties window.

• Using the Edit DDT window.

Using the Edit DDT tab lets you work with a single field, while the Edit DDT window
lets you work with all of the fields on the section at the same time. Choose the approach
that best fits your working habits.

Using the Edit DDT Tab
To insert field rules using the Edit DDT tab, follow these steps:

1 With the section open, double click on the variable field or click once and select the
Format, Object Properties option from the main menu.

NOTE: As with any object. you can also click on the variable field to select it and then
right click to choose the Object Properties option from a pop-up menu.

The field’s Properties window appears.

If you have no rules for the section and the option to automatically update the DDT
file is turned off, the system shows the Load DDT button. This lets you create a
DDT file for the section, into which you can add rules.

NOTE: To turn on or off the option to automatically update the DDT file, choose
Options, Editor Properties while in the Image Editor. Then select the Save tab.

No DDT file has been
created and opened for this
section or the option to
automatically update the
DDT file is turned off.
Click here to create or load a
DDT file.

Assigning Rules with the Image Editor

519

If you have already created a DDT file for the section or the option to automatically
update the DDT file is turned on, the Load DDT button is unavailable and you see
an additional tab named Edit DDT, as shown on the following window.

2 Either click the Load DDT button to create or load a DDT file or click the Edit DDT
tab. The Edit DDT tab appears.

3 On the Edit DDT tab, use the following fields to supply information about the
destination field.

4 On the Edit DDT tab, use the following fields to define the source field.

A DDT file exists and has
been opened for this
section or the option to
automatically update the
DDT file is turned on.
Click here to add, change,
or delete a field rule.

The name of the Destination
field is set on the General tab.
This name serves as the default
for the name of the source
field.

You can enter data for the rule
in this field or you can click
here to enter the data in a larger
window.

Click the Edit DDT button to
work with a spreadsheet-like
list of all the field rules for this
section.

Click the Explain Rule button
to see a description of the rule
selected in the Rule field.

Field Description

Offset Indicates the position in which the data begins in the destination field. This
field is not a required field.

Length Required. Indicates the number of characters in the destination field. The
system automatically fills this field based on the length of the variable field.

Appendix B
Using Image Editor to Enter Rule Information

520

5 When you finish entering the information for the field, click Update FDB to update
the field database with any applicable information. Click Ok to finish and close the
Properties window. Click Reset to cancel your entries. The system saves your entries
when you save the section.

Field Description

 Name Name of the source field. You can enter the source name by entering the
name or by clicking the Name button. This button lets you retrieve and insert
source names and associated source information from the data dictionary file.
Assigning a source name to specific source information gives you a shortcut
retrieval method and eliminates having to re-enter source information.
Use the Same Field Name button to make the name you enter here apply to
the destination field. If you changed the name on the Edit DDT window, you
can click this button to tell the system to change that name to the one you
entered on this tab.
This is not a required field.

Offset Required. Indicates the position in which the source field data begins.

Length Required. Number of characters in the source field.

File Number of the source file. Specify the number of the table file in the
TBLFILE.DAT file you want to use as the data source.

Record Number of the source record. This number tells the system which record to
retrieve from the source file.

Required Select one of the following options. These options control whether data must
merge in the section's variable field during the merge procedure.
Not required at processing time. Missing data does not result in an error
message.
Host Required from a source data file during a batch run. Missing data results
in an error message and the system places the form set in the error batch.
Print the error batch to review and correct any errors.
Operator Required as a manual entry in the WIP. Missing data results in a
warning message and the document is kicked to WIP.
Either Required as a manual entry in WIP. Missing data results in a warning
message and the document is kicked to WIP.

Rule Select the name of the rule to execute. This is a required field. See Section
and Field Rules Reference on page 274 for a list and brief description of
the rules from which you can choose.

Mask If required, enter the mask necessary to execute the rule.

Data Enter the data required to execute the rule. Click Edit Data to enter the data
in the Edit DDT Data window. This gives you a larger window in which to
make your entries.

Assigning Rules with the Image Editor

521

NOTE: The Field Database Editor lets you store and retrieve variable field information
to make setting up and creating sections faster and more consistent. The field
database contains a record for each unique variable field. Each record contains
information such as the field name, font, type, and so on. No DDT information
is stored in the field database.

Changing a Field Rule
To make changes to a field rule, simply double-click the field and select the Edit DDT
tab. Then change the various fields as necessary.

Click Ok to finish and close the Properties window, Reset to cancel your changes, or
Update FDB to update the field database with any applicable information.

If you need to make changes to several field rules, there are two ways to do this.

• You can double click one of the fields, select the Edit DDT tab, make your changes,
and then use the Next and Prev(ious) buttons to move to the next variable field
which requires changes.

• You can click the Edit DDT button on the Edit DDT tab and make all of your
changes from the Edit DDT window.

NOTE: If you are making changes to several fields and using the Next and Prev buttons
to move from field to field, be aware that Next and Prev save your changes to a
field. If you click Reset, the system only cancels your changes for the current field.

Deleting a Field Rule
You delete field rules from the Edit DDT window. To display this window, double click
on any field other than the one you want to delete and select the Edit DDT tab from the
Properties window. Then click the Edit DDT button. The Edit DDT window appears.

This is the assignment for the
current field. On most screens, it
appears in green. You cannot
delete the assignment for a field if
it’s the field you are working with.

To delete a rule assignment for
another field, click the row and
then click Delete.

Appendix B
Using Image Editor to Enter Rule Information

522

Click the row you want to delete and then click Delete. The system removes the rule
assignment from the DDT file and the field from the FAP file to make sure both files are
in sync.

NOTE: The Automatically Update DDT option does not affect deletions.

USING THE EDIT DDT WINDOW

You can enter field rule information for a specific field on the Edit DDT tab or you can
use the Edit DDT window to work with all the fields on a section at once. To display this
window, double click a variable field, select the Edit DDT tab, and then click the Edit
DDT button. The Edit DDT window appears.

NOTE: The columns on this window were resized to show all of the fields. You can resize
any column in the window.

The first column lists the fields that exist on the section, or FAP file. This column always
remains visible on the window. Use the scroll bar at the bottom of the window to scroll
left or right and display other columns.

With the exception of the
Destination Length, the
columns on this window
correspond to the fields on the
Edit DDT tab—it’s just a
different way to present the
information.

Click on these buttons to select
a field. For example, click here
to select FIELD #10.

These drop downs let you
select from a list. For
example, click here to
retrieve source field
information from the data

Assigning Rules with the Image Editor

523

ASSIGNING A RULE

The Edit DDT window lets you quickly and easily assign rules to the variable fields. You
simply move from column to column and row to row to make your rule assignments. You
can also change destination names.

When you select a new row, any changes you made to a previous row are saved in memory
but not written to the DDT file. The information is saved when you save the section.

1 To assign a rule, highlight the variable field you want to assign a rule to by clicking
on it. The field name automatically defaults for you in the Destination Name field.
This is the section field that receives data during processing. Do not change this
name.

2 Enter the offset for the destination field in the Offset field. This field indicates the
beginning position of a piece of data in a variable field. For example, if you need the
data to be indented or offset in the variable field once processing has occurred, you
would enter that offset in this field.

3 Enter the length for the destination field in the Length field. The system defaults to
the variable field’s length.

4 Enter the name of the source field in the Source Name field or click the drop down
arrow to retrieve source field information from the data dictionary. Assigning a
source name to specific source information eliminates having to re-enter source
information.

5 Enter the offset for the source field in the Offset field. This indicates the first
position of the data in the extract file.

6 Enter the length for the source field in the Length field. This indicates the length of
the data in the extract file.

7 If you are using the TblLkUp rule, specify the number of the table file in the File field.
Table file information is stored in the TBLFILE.DAT file. This file tells the system
where to find individual table (TBL) files. Here is an example:

.\DEFLIB\AGENCY.TBL

.\DEFLIB\COMPCODE.TBL

This information is used by the TblLkUp rule. The system looks at the number in the
File field to determine which TBL file to use. Based on the search mask information,
the system then looks in that TBL file for the text.

NOTE: If you are not using the TblLkUp rule, no entry is required in this field.

8 Enter the record number in the Record field. The record number tells the system
which record to retrieve from the source file—a one (1) means the first record found,
a two (2) means the second record, and so on.

9 Select one of these options in the Required field. Data requirements control whether
data must merge into the field during the merge procedure.

Appendix B
Using Image Editor to Enter Rule Information

524

NOTE: By customizing your INI file settings, you can have the system send all
transactions it could not process to a specific file, commonly called the error
batch (ERROR.BAT). You can print the error batch after Documaker Server
finishes. Transactions listed in this file are not sent to WIP or archived. These
transactions must first be corrected before they can be sent to WIP or archive.
For information about error batches, refer to the Documaker Server System
Reference.

10 Select a rule from the list in the Rule field. See Section and Field Rules Reference on
page 274 for a list and brief description of the rules from which you can choose.

11 If a mask is required during the processing of the rule, enter the mask in the Mask
field.

12 Enter the data in the Data field. The data string is the information that points to the
record location that identifies the record in the extract file.

After you make all the rule assignments, click OK to return to the Properties window.
Click Reset to undo your changes and display the Properties window. Click Cancel to
undo your changes and close the Properties window.

Option Description

Not Not required at print time. Missing data does not result in an error message.

Host Required from a source data file during a batch run. Missing data results in an
error message and the document kicks to the error batch.

Operator Required as a manual entry in the WIP module. Missing data results in a
warning message and the document is kicked to WIP.

Either Required as manual entry in the WIP module. The system first tries to fill the
field with data from the extract file. If the data is missing, the system kicks the
document to WIP and creates a warning message.

Displaying Rule Reports

525

DISPLAYING
RULE REPORTS

You can generate a report that documents all field rule assignments in the current DDT
file. You can also generate a report that compares all fields in the section's DDT file to all
fields in the section's FAP file.

To view these reports, first select the Reports option from the Image Editor’s Tools
menu. This option shows you the available reports.

NOTE: These reports are only available if the DDT file has been loaded. If the section
has no DDT file or if the DDT file has not been loaded, these reports are
unavailable.

Image Report
The Image Report option lets you view a listing of fonts used, section dimensions,
variable field information, and so on. This report does not include information about
rules.

View Rules Report
The View Rules Report option lets you view a listing of all fields in the DDT file and
pertinent information about each field. The Image Editor shows the information in a
tabular fashion. The variable fields' offsets, lengths, assigned rules and data requirements
appear.

The system creates this report from data stored in memory when you open the Image
Editor. The system creates the report as a text file and then displays it using your default
text editor, such as Notepad.

Appendix B
Using Image Editor to Enter Rule Information

526

After you finish viewing the rules report information, you can use Notepad to save, print,
edit, or perform other tasks. For instance, you can...

• Save the report by choosing File, Save.

• Print the report by choosing File, Print.

• Close the report by double clicking on the icon in the top left corner of the window.

View Compare Report
The View Compare Report option lets you view and compare a listing of all the fields
stored in the section's FAP file with all the fields in the section's DDT file. Differences
between the two files appear in the report.

The system displays a message stating that the rules (DDT) file will be saved before
running the report. Click Ok to save the DDT file and create the report. Click Cancel to
return to the Image Editor.

The system creates the report as a text file and then displays it using your default text
editor, such as Notepad.

The report provides the names of variable fields found in the section (FAP) file but not
found in the DDT file. The fields' offsets, lengths, rules, and data flags also appear.

Offsets and lengths Rules

Name of the
section

Variable fields

Displaying Rule Reports

527

You can use this report to locate fields that need to be mapped or to make sure variable
field lengths are long enough to contain the data described by the destination length in the
DDT file.

After you finish viewing the compare report information, you can use Notepad to save,
print, edit, or perform other tasks. For instance, you can...

• Save the report by choosing File, Save.

• Print the report by choosing File, Print.

Close the report by double clicking on the icon in the top left corner of the window.

Name of the section

Appendix B
Using Image Editor to Enter Rule Information

528

529

Index

- (minus signs) 402

Symbols

(octothorp) and the RPN function 498
: (colons) 360
= (equals sign) 267
@GetRecsUsed function 271
£ (British pound sterling) 395, 405

Numerics

2-up printing
BatchByPageCount rule 47
ForceNoImages rule 98
InstallCommentLineCallback rule 150
OMR marks 27, 169
ParseComment rule 176
rules used for 27

A

ABS
and the Record Dictionary 498

AccumulateVariableTotal rule
checksum methods 406
defined 38, 280

Index

530

adding
job and form set rules 5
MoveSum rule 411
section and field rules 255

AddLine rule
defined 38

AddMultiPageBitmap rule
defined 283

AddMultiPageTIFF rule
defined 292

addresses
formatting 445, 448, 451

AddTextLabel rule
defined 39

Adobe Acrobat 2
AFGJOB.JDT files

ImportExtract rule 112
ImportNAPOLExtract rule 122
MergeWIP rule 162
WIP transaction processing 9
WIPFieldProc rule 243
WIPImageProc rule 244

AFP
comment records 145
OMR marks 27, 169
record list and the AddTextLabel rule 27

AllocDebug rule
defined 41

AppendedExport option
DocumentExport rule 80

AppendGblToExtr rule
defined 42

Archive rule
defined 43

archives
extracting a form set 154

Array function
BldGrpList rule 301
example 301

AssignBatWithTbl rule
defined 44

assigning
rules 523

AssignToBatch rule
defined 45

axis labels
SetCustChartAxisLabels rule 455

B

bankers dates 322
bar code information 307
Base_FromDataDictToGVM rule 499
BaseErrors option 200
Batch name option 51
Batch_Recip_Def option 49, 50, 69
BatchByPageCount rule

defined 47
PrintFormset rule 182

BatchFileName control group 51
BatchingByPageCountINI rule

BatchingByRecipINI rule 53
defined 49
example 52

BatchingByPageCountPerRecipINI rule
defined 55

BatchingByRecip control group 19
and the BatchingByRecipINI rule 19
BatchingByPageCountINI rule 49, 51
PrintFormset rule 182

BatchingByRecipINI rule
defined 68
MergeWIP rule 162
PrintFormset rule 182
SetOutputFromExtrFile rule 221

BCD numbers 403
BldGrpList rule

defined 301
List function 346

BoldKey2 option 100
bottom dimensions

ResetImageDimensions rule 436

531

Box function
GroupBegin rule 343

boxes
expanding 343
GroupBegin rule 343

braces
use of 321, 362

British pound sterling 395, 405
BuildExcludeList rule

defined 71
BuildFormList rule

defined 72
ImportExtract rule 112
ImportNAPOLExtract rule 122
ImportXMLFile rule 135

BuildFormList rule rule
defined 72

BuildMasterFormList rule
defined 73

C

CallBackFunc option 221
CallbackFunc option 222
Can Grow attribute 483
Can Grow option 381
CanSplitImage indicator 174
CanSplitImage rule

defined 304
CEIL

and the Record Dictionary 498
century

cut-off 260
charts

removing a series 433
SetCustChartAxisLabels rule 455

CheckCount option 201
check-digits 406
CheckImageLoaded rule

defined 307

checksum methods
defined 406

CheckZeroFontID rule 74
defined 74

ChkDestLenExceeded option 393
COBOL copybooks 340
colons

IF rule 360
ColumnFormat option 101
columns

populating 301
CompBin rule

defined 308
CompiledFAP option 307
compiling

FAP and FXR files 307
ConCat rule

defined 311
ConcatFields rule

defined 312
condition tables

creating a conditions file 492
FSISYS.INI changes 492
OMR marks 169
overview 492

Conditions group 280
Conditions option

Conditions table 492
OMR marks 170

ConnectFields rule
defined 312

ConvertWIP rule
defined 75
InitConvertWIP rule 142

coordinates
SetOrigin rule 458
SetOriginI rule 462
SetOriginM rule 464

Copy Row option
Master DDT Editor 512

CreateChartSeries rule
defined 315

Index

532

CreateGlbVar rule
defined 76

CreateRecordList rule
defined 77

CreateSubExtractList rule
defined 317

currency symbols
MNumExt rule 390
Move_It rule 394
MoveNum rule 402, 405

CUSMultiFilePrint function 221

D

DAL expressions= operator 267
DAL rule

defined 320
DAL scripts

braces 321, 362
date order 83
FormDescription rule 99
PostImageDAL rule 422
PostTransDAL rule 177
PreImageDAL rule 426
PreTransDAL rule 179
PXTrigger rule 189
PXXCandidateList rule 187
separators 85
TerSubstitute rule 481
writing 361
year length 85

DALRun function 11
DALTrigger rule

and the PXTrigger rule 189
DAPINSTANCE 140
DAPOPTIONS 140
data

formatting 257

Data control group 374, 478
GetCo rule 103
GetLOB rule 104
ImportExtract rule 111
ImportNAPOLExtract rule 121

data definition table
defined 505

data dictionaries
MultipleDataDictionaryFiles rule 166

DataDict file 280
DataDictionary control group

and the Record Dictionary 495
MoveSum rule 411

DataPath option 217
Date Order 83
DateDiff rule

defined 322
DateFmt rule

defined 324
IF rule 365

DateFMT2To4Year option 260
dates

century cut-off 260
formatting 337
formatting with the IF rule 365

DBLogFile option 217
DDT files

ForceNoImages rule 122
format of 505
SetImageDimensions rule 457

debugging
RULTestTransaction rule 211

decimals
suppressing 261

DefaultBatch option 49, 51
Delete Row option

Master DDT Editor 512
DeleteDefaultSeriesData rule

defined 327
deleting

a page 329

533

DelExtRecords rule
defined 78

DelImageOccur rule
defined 328

demand feed
OMR marks 169

destination length
Move_It rule 393

Dictionary rule
defined 79
GlobalFld rule 342

digits
MoveNum rule 402

dimensions
ResetImageDimensions rule 436

DivertOMR option 171
DivertOpt option 171
DocSetNames control group

ResetDocSetNames rule 198
Documaker Workstation

ConvertWIP rule 75
export files 111
ImportNAPOLExtract rule 121
WIP transaction processing 9

DocumentExport rule
defined 80

Docupresentment
TicketJobProc rule 237

dollar signs 390, 394, 402, 403, 405
DontPrintAlone rule

defined 329
DumpExtList rule

defined 90
DumpExtractListToFile rule

defined 91
DUP

and the Record Dictionary 498
duplex printing

OMR marks 171

E

EBCDIC format 403
Edit menu

Master DDT Editor 511
EjectPage rule

defined 330
equals sign 267
ErrFile option 217
ERRFILE.DAT file

AllocDebug rule 41
Error2Manual control group 92
ErrorHandler rule

defined 92
errors

unable to print form set message 182
European Union 265
ExcludeForm option 101
Exit option

Master DDT Editor 510
export files 130
export information

DocumentExport rule 80
Ext option

DocumentExport rule 80
Ext2GVM rule

defined 93
ResetDocSetNames rule 198
UseXMLExtract rule 241

extract files
Ext2GVM rule 93
formatting numeric data 402
ImportExtract rule 111
ImportNAPOLExtract rule 121
maximum record length 42
MoveSum rule 411
retrieving messages 380

extract lists
CreateSubExtractList rule 317

Index

534

extract records
Array function 301
MultiArray function 302

ExtractKeyField control group
ImportExtract rule 111
ImportNAPOLExtract rule 121

ExtrFile option 217
ImportExtract rule 111
ImportNAPOLExtract rule 121
ImportNAPOLFile rule 127, 129
ImportXMLFile rule 137
UseXMLExtract rule 241

F

FAP files
and DDT files 256

FED table 191
fetypes 265
FfSysDte rule

defined 331
field format types (fetypes) 265
field level rules 3
field rules

defined 505
reference 274

Field2GVM rule
defined 333

FieldErrors option 200
FieldRule function 363

IF rule 361
fields

formatting 343
JustFld rule 367
mapping 485, 488
processing fields used repeatedly 340
removing white space 434
rotating 307
UnderlineField rule 484

FieldVarsToChartSeries rule
defined 335

File menu
Master DDT Editor 509

File option
DocumentExport rule 80

FilterForm rule
defined 94

FilterRecip rule
defined 96

floating images 457
FLOOR

and the Record Dictionary 498
FmtDate rule

2-digit years 260
defined 337

FmtNum Rule
using the ZeroText option 262

FmtNum rule
defined 338
suppressing decimals 261

following images 203
following sections 205
font IDs

checking 74
fonts

AddTextLabel rule 39
MessageFromExtr rule 381

footers
group 203
ResetImageDimensions rule 436
SetGroupOptions rule 439

ForceNoImages rule
defined 98, 339
ImportNAPOLExtract rule 122

form candidate list 187
Form Description Line fields 99
Form option 11
form set level rules 3
form sets

extracting from archive 154
loading 72
PrintFormset rule 25
removing forms 94, 96

535

FORM.DAT file
TerSubstitute rule 480

FORM.DAT files
BuildMasterFormList rule 73
RULNestedOverFlowProc rule 203
single-step processing 25

Form_Sched_POL_Type field 156
format

data 257
DDT file 505

format arguments
FmtDate rule 337, 474

format masks
MoveNum rule 402

formatting
dates with the If rule 364
salutations 365

FormDescription rule
defined 99

FormDescTable control group 99
FormName option

SetOverflowPaperTray rule 224
forms

assigning recipients 161
French Francs 394
FromDataDict rule 499
FromDataDictToGVM rule 499
FSISYS.INI file

and Condition tables 492
and the Record Dictionary 495
OMR marks 169
WIP transaction processing 17

FSIUSER.INI file
OMR marks 169
WIP transaction processing 17

G

GenArc program
Archive rule 43
InitArchive rule 141

GenData program
GVM2GVM rule 107
hierarchy of rules 3
MergeWIP rule 162
restarting 200, 201
WIP transaction processing 9
WIPFieldProc rule 243
WIPImageProc rule 244

GenDataStopOn control group
ErrorHandler rule 92
RestartJob rule 200

GENSemaphoreName option 218
GenWIP program

WIP transaction processing 9
GetCo rule

defined 103
ImportExtract rule 112
ImportNAPOLExtract rule 122

GetLOB rule
defined 104
ImportExtract rule 112
ImportNAPOLExtract rule 122

GetRCBRec rule
defined 105

GetRecord function 270
GetRecord search criteria

GetCo rule 103
GetRunDate

defined 106
GlobalFld rule

defined 340
Dictionary rule 79

graphics
InlineImagesAndBitmaps rule 148

GroupBegin rule
defined 343
GroupEnd rule 355

GroupEnd rule
defined 355
GroupBegin rule 343

GroupPagination function
GroupBegin rule 344

Index

536

groups
codes (MessageFromExtr rule) 381
creating nested 343
defining the first image in a group 343
footers 203
headers 203
setting options 439

GVM function
ParseComment rule 176

GVM option 132
GVM variable= operator 267
GVM variables

defined 333
Field2GVM rule 333
GVM2GVM rule 107
InstallCommentLineCallback rule 150
ParseComment rule 176
ResetDocSetNames rule 198
WIP transaction processing 10

GVM2GVM rule
defined 107
ResetDocSetNames rule 198

H

HardExst rule
defined 356
returning data 358
SpanAndFill rule 470

headers
group 203
ResetImageDimensions rule 436
SetGroupOptions rule 439

hexadecimal values
date formats 259

I

IF rule
defined 360
FieldRule function 363
handling salutations 365
overflow 361, 365
Trim function 363, 364
use of colons 360

IfRecipUsed rule
defined 108
SetOutputFromExtrFile rule 221

Image Editor
and rules 505
assigning rules 523
View Compare Report option 526
View Rules Report option 525

Image option 11
image rules

defined 505
overview 3
reference 274

Image_FromDataDictToGVM rule 499
ImageErrors option 200
ImageMapImportData rule

defined 109
ImpExpCombined control group 80
Import_File option

ImportFile rule 118
ImportNAPOLFile rule 128
ImportXMLFile rule 137

ImportExtract rule
defined 111
ImageMapImportData rule 109

ImportFile rule
defined 116
ImageMapImportData rule 109

ImportNAPOLExtract rule
defined 121

ImportNAPOLFile rule
defined 126

537

ImportXMLExtract rule
defined 131

ImportXMLFile rule
defined 134

ImportXMLFile_GVM option 138
in order insertion 205
IncDataDictRecPtr rule 500
inches

SetOriginI rule 462, 464
IncludeDuplicateForms option 100
IncludeFormDesc option 101
IncludeFormName option 100
IncludeKey2 option 100
IncOvSym rule

defined 366
OvPrint rule 419
UseXMLExtract rule 242
XMLFileExtract rule 254

InitArchive rule
defined 141

InitConvertWIP rule
defined 142

InitMerge rule
defined 143

InitOvFlw rule
defined 144

InitPageBatchedJob rule
defined 145

InitPrint rule
and the NoGenTranTransactionProc rule 25
defined 146

InitSetRecipCache rule
defined 147

inline images 305
InlineImagesAndBitmaps rule

defined 148
Insert Row option

Master DDT Editor 512
InsNaHdr rule

defined 149
InstallCommentLineCallback rule

defined 150

Internet Document Server
PrintFormset rule 182
ServerJobProc rule 217

Introduction 1

J

job level rules 3
JobInit1 rule

defined 151
Julian dates 323
JustFld rule

defined 367
SpanAndFill rule 470

K

key fields
SetRecipFromImage rule 466

Key option
ImportExtract rule 111
ImportNAPOLExtract rule 121

Key1Table control group 103
Key2PostInc option 100
Key2Prefix option 100
Key2Table control group 104
KickToWIP rule

defined 372
IF rule 363
WIP transaction processing 23

KickToWip rule
defined 372

L

labels
SetCustChartAxisLabels rule 455

Index

538

languages
spelling out numbers 403

lead images 203
leading

spaces 483
zeros 404

leaks
AllocDebug rule 41

Library Manager
InlineImagesAndBitmaps rule 148

lines
setting a minimum number 343

List function
GroupBegin rule 346

list sections 203
LoadCordFAP option

CheckImageLoaded rule 307
InlineImagesAndBitmaps rule 148
JustFld rule 368

LoadDDTDefs rule
defined 152

LoadExtractData rule
defined 153

LoadFAPBitmap option
AddMultiPageBitmap rule 286
AddMultiPageTIFF rule 294
InlineImagesAndBitmaps rule 148
TextMergeParagraph rule 483

LoadFormsetFromArchive rule
defined 154

LoadListFromTable rule
defined 156

LoadRcpTbl rule
defined 157
ImportExtract rule 112
ImportFile rule 116
ImportNAPOLExtract rule 122

LoadTblFiles rule
defined 158

LoadTextTbl rule
defined 159

locales
DocumentExport rule 88
RunDate rule 440
SysDate rule 474

LogFile option 182, 217, 218, 223
LOGFILE.DAT file

AllocDebug rule 41
LogFileType option 182, 218, 223
LookUp rule

defined 374

M

manual batch
ErrorHandler rule 92

MapBeforeReset parameter 198
MapFromImportData rule

defined 376
ImageMapImportData rule 109
ImportFile rule 116
ImportNAPOLExtract rule 122
ImportNAPOLFile rule 126
ReplaceNoOpFunc rule 197

mapping fields
XDB rule 485
XDD rule 488

Margin parameter 343
Mask field

AccumulateVariableTotals rule 280
masks

formatting dates 337, 474

539

Master DDT Editor 340
copying a row 512
deleting a row 512
Edit menu 511
Exit option 510
File menu 509
inserting a row 512
Move menu 513
Retrieve option 512
Save option 509
View Rules Report 509

Master rule
defined 379
taking precedence 507

MasterResource control group
and Condition tables 492
and the Record Dictionary 495
MoveSum rule 411
OMR marks 170

MAX
and the Record Dictionary 498

MaxExtRecLen option
AppendGblToExtr rule 42
ImportExtract rule 111
ImportNAPOLFile rule 127
ImportXMLExtract rule 132
ImportXMLFile rule 135
TblLkUp rule 476

memory
AllocDebug rule 41
freeing 79

MergeAFP rule
AddTextLabel rule 39
defined 160

MergeRecipsFromForm rule
defined 161

MergeWIP rule
checking dates 163
defined 162
ResetDocSetNames rule 198

message tags
MessageFromExtr rule 381

MessageFromExtr rule
defined 380

MIN
and the Record Dictionary 498

minus signs 402, 403
Mk_Hard rule

defined 388
SetCpyTo rule 454

MNumExt rule
defined 390

MOD
and the Record Dictionary 498

MODE parameter
errors 368
order of 367

Move menu
Master DDT Editor 513

Move_It rule
= operator 267
BldGrpList rule 301
ConcatFields rule 312
defined 393
JustFld rule 367
MoveNum rule 403, 409
SpanAndFill rule 470
TextMergeParagraph rule 483

MoveExt rule
defined 399
FieldRule function 361

MoveIt rule
defined 393

MoveMeToPage rule
defined 401

MoveNum rule
= operator 267
BldGrpList rule 301
checksum methods 406
defined 402
JustFld rule 367
TextMergeParagraph rule 483

MoveSum rule
defined 411

Index

540

MovTbl rule
defined 413

MsgFile option 217
MultFilePrint callback functionality 183
MultiArray function

BldGrpList rule 302
example 302

MultiDataDict control group 166
MultiFileLog option 221
MultiFilePrint

callback function 221
MultiFilePrint function 221
MultiFilePrint option 182, 218, 223, 237
multi-line text fields

MessageFromExtr rule 381
TerSubstitute rule 480

multi-mail processing
BatchByPageCount 173
BatchByPageCount rule 47
PageBatchState1InitTerm rule 173
WriteRCBWithPageCount rule 250

MultiOccur function
BldGrpList rule 303

multi-page FAP files
EjectPage rule 330

MultipleDataDictionaryFiles rule
defined 166

N

NAFILE.DAT file
DocumentExport rule 80
InsNaHdr rule 149
WriteNAFile rule 26, 247

Name option
and the Record Dictionary 495

NAUnload option 149
negative amounts

MoveNum rule 402
nesting information 203

NoGenTrnTransactionProc rule
defined 168
ImportXMLExtract rule 132
ImportXMLFile rule 135
WIP transaction processing 10

NoOpFunc rule
defined 415
ImageMapImportData rule 109
ImportExtract rule 112
ImportFile rule 116
ImportNAPOLExtract rule 122
ImportNAPOLFile rule 126
ReplaceNoOpFunc rule 197

NoOpImp rule
defined 376

NoWarning parameter 434
numeric data

formatting 402

O

offsets and data
GetRecord search criteria 270

OMR marks
AddLine rule 27
defined 169

OMR_Params control group 170
OMRMarks rule

defined 169
Opt option 11
OvActPrint rule

defined 417
overflow

HardExst rule 357
keeping images together 346
nesting 203
ResetOvSym rule 438
user functions 271

OVERFLOW.DAT file
file format 203
use of 204

541

OvPrint rule
defined 419

P

page count
BatchingByPageCountPerRecipINI rule 55

page segments
positioning 458, 462, 464

PageBatchStage1InitTerm rule
defined 173

PageRange option 51
pages

DontPrintAlone rule 329
position of images 458, 462, 464

PaginateAndPropagate rule
CanSplitImage rule 304
defined 174
FormDescription rule 99
OMRMarks rule 169
SetOverflowPaperTray rule 224
UpdatePOLFile rule 239

PaginateBeforeThisImage rule
defined 421

pagination
SetGroupOptions rule 439

parent//child mapping 488
ParseComment rule

defined 176
Path option

DocumentExport rule 80
PDF files

PrintFormset rule 182
PDF format 2
PDFImportDPI option 286
percent signs 402
performance

compiling FAP and FXR files 307
InlineImagesAndBitmaps rule 148
TextMergeParagraph rule 483

performance mode JDT file 8

phone numbers 472
POLFILE.DAT file

DocumentExport rule 80
RULNestedOverFlowProc rule 206
UpdatePOLFile rule 239
WriteOutput rule 26, 248

Port option 51, 222
PosDataDictRecPtr rule 500
PostImageDAL rule

defined 422
PostIncDataDictRecPtr rule 500
PostPosDataDictRecPtr rule 500
PostTransDAL rule

defined 177
POW

and the Record Dictionary 498
PowType rule

defined 424
PreImageDAL rule

defined 426
PreIncDataDictRecPt rule 500
PrePosDataDictRecPtr rule 501
PreTransDAL rule

defined 179
print batch names

SetOutputFromExtrFile rule 221
Print Preview

ConvertWIP rule 75
Print_Batches control group 51
PrintData rule

defined 181
PrintedOutputFile control group 51
Printer option 51
printer trays

changing 224
PrinterInfo control group 51
PrintFormset control group 182
PrintFormset rule

defined 182
NoGenTranTransactionProc rule 25

Index

542

PrintIf rule
defined 428
HardExst rule 357, 358

printing
InitPrint rule 146
PrintFormset rule 25
unable to print form set message 182

processing rules
adding 5, 29
adding image and field rules 255

ProcessQueue rule
defined 184
DelImageOccur rule 328

ProcessRecord rule
defined 185

ProcessTriggers rule 186
pRPS structure 198
PrtIfNum rule

defined 430
PRTLIB data 25
PurgeChartSeries rule

defined 433
PXCandidateList rule

defined 187
PXTrigger rule

defined 189

Q

queues
ProcessQueue rule 26, 184

R

RCB comment records
Create RecordList rule 77
InitMerge rule 143
MergeAFP rule 160
ParseComment rule 176

RCBDFDField option 221, 223
RCBDFDFL.DAT file 10

OMR marks 171
RCBMapFromINI function 11
RDI extract files 443
RecipCondition rule

and Condition tables 494
recipient batch records 10
recipients

adding 205
batching by 68
BatchingByPageCountPerRecipINI rule 55
IfRecipUsed rule 108
MergeRecipsFromForm rule 161
page count for all recipients 47
removing forms by recipient 96
send copy to 454
specifying a print batch file 44

RecipMap2GVM control group 11
Record Dictionary

and Condition tables 492
file 280
file format 495
MessageFromExtr rule 381, 384
MoveSum rule 411
overview 495
rules 499
sample 386

regional date processing 194
RegionalDateProcess option 195
RegionalDateProcess rule 194
RemoveWhiteSpace rule

defined 434
ReplaceNoOpFunc rule

defined 197
ImportExtract rule 112
ImportFile rule 116, 117
ImportNAPOLExtract rule 122
ImportNAPOLFile rule 126

reporting tool
RULNestedOverFlowProc rule 203

Req option 11

543

ResetDataDictRecPtr rule 501
ResetDocSetNames rule

defined 198
ResetImageDimensions rule

defined 436
ResetOvFlw rule

defined 199
ResetOvSym rule 438

ResetOvSym rule
defined 438

Restart control group 201
restarting GenData 201
RestartJob rule

defined 200
Retrieve option

Master DDT Editor 512
reverse insertion logic 205
Reverse Polish Notation

and the Record Dictionary 497
RID_LastMapField option 436
row heights

adjusting 343
RPDSemaphoreName option 218
RstFile option 201
RTF files

PrintFormset rule 182
RULCheckTransaction rule

defined 201

rules
assigning rules with the Image Editor 523
copying a rule assignment record 512
data definition table 505
deleting a rule assignment record 512
FAP and DDT files 256
field level rules 3
field rules 505
for 2-up printing 27
for single-step processing 25
form set level rules 3
hierarchy 3
image and field rules reference 273, 274
image level rules 3
image rules 505
inserting a rule assignment record 512
JDT rules reference 30
job level rules 3
moving a rule assignment 513
retrieving a record from the Data Dictionary 512
save rule assignments 509
View Compare Report option 526
view rules report 509
View Rules Report option 525

RULNestedOverFlowProc rule
defined 203

RULServerJobProc option 218
RULStandardFieldProc rule

defined 207
WIP transaction processing 10
WIPFieldProc rule 243

RULStandardImageProc rule
DDT files 122
defined 208
WIP transaction processing 10
WIPImageProc rule 244

RULStandardJobProc rule
defined 209
TicketJobProc 237

RULStandardTransactionProc rule
defined 210
WIP transaction processing 10

Index

544

RULTestTransaction rule
defined 211

run date
GetRunDate rule 106

RunDate rule
defined 440

RunMode control group 393, 483
RunSetRcpTbl rule 212

BuildMasterFormList rule 25
defined 212
DelImageOccur rule 328
ImportExtract rule 112
ImportNAPOLExtract rule 122
RULNestedOverFlowProc rule 203

RunTriggers rule 213
RunUser rule

defined 214

S

salutations 365
SAPMove_It rule

defined 443
Save option

Master DDT Editor 509
ScheduleDate field 163
Script option 101
search criteria

GetRecord search criteria 270
PrintFormset rule 182

search masks
HardExst rule 357
in the OVERFLOW.DAT file 203

SearchMask option
ImportExtract rule 111
ImportNAPOLExtract rule 121
ImportNAPOLFile rule 127, 129
UseXMLExtract rule 241

sections
changing attributes 203, 205
defining the first in a group 343
defining the last in a group 355
DelImageOccur rule 328
DontPrintAlone rule 329
following 203
ForceNoImages rule 98
group 203
keeping together 343, 346
multi-page 330
populating lists 301
positioning 458, 462, 464
SetRecipFromImage rule 466
subordinate 203
WIPImageProc rule 244

sectionss
SetRecipFromImage rule 466

Separator option
DocumentExport rule 83

separators 85
series data

removing 433
ServerFilterFormRecipient rule 215
ServerJobProc rule

defined 217
SetAddr rule

defined 445
SetAddr2 rule

defined 448
SetAddr3 rule

defined 451
SetCpyTo rule

defined 454
SetCustChartAxisLabels rule

defined 455
SetErrHdr rule

defined 220
SetGroupOptions rule

defined 439

545

SetImageDimensions rule
defined 457
SetOrigin rule 461

SetOrigin rule
defined 458

SetOriginI rule
defined 462

SetOriginM rule
defined 464

SetOutputFromExtrFile rule
defined 221

SetOverflowPaperTray rule
defined 224

SetOvFlwSym rule
defined 227
overflow and user functions 271

SETRCPTB.DAT file
and Condition tables 494
loading entries 157
SetRecipFromImage rule 466
StandardFieldProc rule 26
StandardImageProc rule 26

SetRecipCopyCount rule
defined 228

SetRecipCopyCount2 rule
defined 229

SetRecipFromImage rule
CreateSubExtractList rule 317
defined 466

SetState rule
defined 468

ShowWIPWarning option 373, 425
significant digits 402
single-step processing

WriteOutput rule 26, 248
WriteRCBFiles rule 249

SleepingTime option 218
Social Security numbers 472
SortBatches rule

defined 230
source length

Move_It rule 393

spacing
pre-defining 343

SpanAndFill rule
defined 470

SQRT
and the Record Dictionary 498

StandardFieldProc rule
defined 235
WIP transaction processing 10
WIPFieldProc rule 243
WriteNAFile rule 26

StandardImageProc rule
defined 236
WIP transaction processing 10
WIPImageProc rule 244

StartFromFirstForm option 100
state compliance 194
state location table 191
status codes

MergeWIP rule 162
WIP transaction processing 9

StayTogether function 346
StrngFmt rule

defined 472
subordinate images 203
sum

variables 280
suppressing

decimals 261
SWAP

and the Record Dictionary 498
symbolic lookup operators 268
SysDate rule

defined 474
system date 474

T

table row sizes 476

Index

546

TablePath option
and Condition tables 492
and the Record Dictionary 495
MoveSum rule 411
OMR marks 170

Tables control group
and Condition tables 492
OMR marks 170

TablesPath field 156
TblFile option 158, 374
TblLkUp rule

defined 476
XDD rule 485, 488

TblText rule
defined 478

temporary extract lists
CreateSubExtractList rule 317

TerSubstitute rule
defined 480

Test control group 211
testing

RULTestTransaction rule 211
text tables 374
TextMergeParagraph rule

CheckImageLoaded rule 307
defined 483

TEXTTBL option 478
TextTbl option 159
TicketJobProc option 237
TicketJobProc rule

defined 237
TIFF files

AddMultiPageTIFF rule 292
token lookup 488
top dimensions

ResetImageDimensions rule 436
trailing spaces

MoveNum rule 402
TransactionErrors option 200
TransErrCode option 165
TranslateErrors rule

defined 238

tray selection
SetOverflowPaperTray rule 224

Trigger2Archive control group
Archive rule 43
InitArchive rule 141

Trigger2WIP control group 10
DocumentExport rule 80
GVM2GVM rule 107
ResetDocSetNames rule 198

triggers
assigning recipients 161

Trim function 363, 364
Trn_Fields control group

ImportExtract rule 112
ImportNAPOLExtract rule 122
ResetDocSetNames rule 198

Trn_File control group
ImportExtract rule 111

TrnFile option 168
TRNFILE.DAT file

Ext2GVM rule 93
ImportExtract rule 112

TwoUp control group
OMR marks 171

U

unable to print form set message 182
UnderlineField rule

defined 484
Unicode

Move_It rule 394
UpdatePOLFile rule

defined 239
FormDescription rule 99
WriteOutput rule 248

user functions
and overflow 271

UseXMLExtract rule
defined 240

547

V

VAR tag 381
variable fields

assigning rules 523
UnderlineField rule 484

Variables group 280
View Compare Report option

Image Editor 526
View Rules Report option

Image Editor 525
Master DDT Editor 509

W

warning messages
suppressing 434

WarnOnLocate option 11
white space

removing 434
widows and orphans 343, 346
WIP

changing the status 165
WIP transaction processing

GVM2GVM rule 107
MergeWIP rule 162
overview 6, 9
WIPFieldProc rule 243
WIPImageProc rule 244

WIP/NA/POL export data
ImportNAPOLExtract rule 121

WIPFieldProc rule
defined 243
ImageMapImportData rule 109

WIPHeader option
DocumentExport rule 83

WIPImageProc rule
defined 244

WIPTransactions rule
defined 245

WIPWarnOnEmpty option 164
WriteNAFile rule

defined 247
SetOutputFromExtrFile rule 222
StandardFieldProc rule 26
WriteRCBFiles rule 249

WriteOutput rule
defined 248
SetOutputFromExtrFile rule 222
UpdatePOLFile rule 239
WriteRCBFiles rule 249

WriteRCBFiles rule
defined 249
SetOutputFromExtrFile rule 222

WriteRCBWithPageCount rule
defined 250

X

XDB files
GlobalFld rule 340
MultipleDataDictionaryFiles rule 166
records 340

XDB rule
defined 485

XDD rule
defined 488

XML files
importing 134
importing transactions 130
PostTransDAL rule 178
UseXMLExtract rule 240
XMLFileExtract rule 252

XMLExtract option
UseXMLExtract rule 241
XMLFileExtract rule 252, 253

XMLFileExtract option
XMLFileExtract rule 253

XMLFileExtract rule
defined 252

Index

548

XMLFileExtractName option
XMLFileExtract rule 253

XMLTags2GVM control group 132, 135
XPath

UseXMLExtract rule 241
XMLFileExtract rule 253

Y

years
forcing 2-digit 260
length 85

Z

zero format 261
ZeroText option 262
ZIP codes

OMR marks 169

	Start
	Notice
	Contents
	Introduction
	2 Rules Overview
	3 Types of Rules

	Adding Job and Form Set Rules
	6 Using the Job Definition Table
	6 Multi-Step Processing
	7 Single-Step Processing
	9 GenData WIP Transaction Processing
	10 Writing Unique Data Into Recipient Batch Records
	17 Sample AFGJOB.JDT Files and INI Options

	22 Processing Import Files
	25 Rules Used in Single-Step Processing
	27 Rules Used for 2-up Printing

	Job and Form Set Rules Reference
	30 JDT Rules Reference
	58 INI File Examples
	80 Defining Export Options
	80 Defining the Export Record
	82 Format Flags
	83 Defining the Export Record Header
	83 Date Formats
	86 Freeform Formats
	88 Using Locale Information
	88 Format Specification Flags
	136 Using the TF Option
	136 Using the File Option
	137 Using the INI Option
	137 Using the SCH Option
	138 Using the GVM Option
	139 XML File Format
	187 INI Options
	191 Input Tables
	192 The Policy Xpress FED Processing Flow
	230 Specifying Key fields
	231 Sorting with a Single Key
	231 Sorting with Multiple Keys
	232 INI Options
	233 Replacement Strings
	241 Mapping Fields
	242 Overflow in XML
	253 Mapping Fields
	254 Overflow in XML

	Adding Section and Field Rules
	256 Storing Rule Information
	257 Formatting Data
	257 Using Pre-defined Date Formats
	261 Using Pre-defined Numeric Formats
	262 Setting Up Format Arguments
	265 Field Format Types (fetypes)
	267 Formatting Data with the = Operator

	270 Search Criteria
	271 Overflow and User Functions

	Section and Field Rules Reference
	274 Section and Field Rules Reference
	286 Using the File Option
	287 Using the DAL Option
	288 Using the SRCH Option
	288 Using the GVM Option
	289 Using the Type Option
	289 Using the Scale Option
	290 Using the Crop Option
	295 Using the File Option
	296 Using the DAL Option
	296 Using the SCH Option
	297 Using the GVM Option
	297 Using the Type Option
	343 Using the Box Function
	344 Using the GroupPagination Function
	346 Using the List Function
	346 Using the StayTogether Function
	347 Using the Column Function
	362 Examples
	373 Suppressing Warning Messages
	381 Creating Messages
	384 Using the Record Dictionary
	425 Suppressing Warning Messages

	Using Condition Tables and the Record Dictionary
	492 Using Condition Tables
	492 Setting Up the INI Files
	492 Using a Record Dictionary File
	493 Creating a Conditions File
	494 Occurrence Counting

	495 Using the Record Dictionary
	495 Setting Up the Record Dictionary
	495 Record Dictionary File
	497 RPN Function

	499 Record Dictionary Rules
	499 Base_FromDataDictToGVM
	499 FromDataDict
	499 FromDataDictToGVM
	499 Image_FromDataDictToGVM
	500 IncDataDictRecPtr
	500 PosDataDictRecPtr
	500 PostIncDataDictRecPtr
	500 PostPosDataDictRecPtr
	500 PreIncDataDictRecPt
	501 PrePosDataDictRecPtr
	501 ResetDataDictRecPtr

	Using Image Editor to Enter Rule Information
	504 Storing Rule Information in DDT Files
	505 Using the Data Definition Table
	507 Setting Up the MASTER.DDT File
	509 Using the Master DDT Editor
	509 Using the File Menu
	511 Using the Edit Menu
	513 Using the Move Menu

	515 Assigning Rules with the Image Editor
	515 Adding Section Rules
	517 Changing a Section Rule
	517 Deleting a Section Rule

	518 Assigning Field Rules
	518 Using the Edit DDT Tab
	521 Changing a Field Rule
	521 Deleting a Field Rule

	522 Using the Edit DDT Window
	523 Assigning a Rule

	525 Displaying Rule Reports
	525 Image Report
	525 View Rules Report
	526 View Compare Report

	Introduction
	Rules Overview
	Types of Rules

	Adding Job and Form Set Rules
	Using the Job Definition Table
	Multi-Step Processing
	Multi-step processing AFGJOB.JDT file

	Single-Step Processing
	Single-step processing AFGJOB.JDT file

	GenData WIP Transaction Processing
	Writing Unique Data Into Recipient Batch Records
	Suppressing RCBMapFromINI function warning messages
	Optional formatting information
	BANNER.DAL
	Sample AFGJOB.JDT Files and INI Options
	Using the IfRecipUsed rule
	Using the BatchingByRecipINI rule
	Using the BatchingByPageCountI NI rule

	Processing Import Files
	Using Documaker Server
	Using Documaker Workstation
	Using iPPS

	Rules Used in Single-Step Processing
	Rules Used for 2-up Printing

	Job and Form Set Rules Reference
	JDT Rules Reference
	AddLine
	AddTextLabel
	AllocDebug
	AppendGblToExtr
	Archive
	AssignBatWithTbl
	AssignToBatch
	BatchByPageCount
	BatchingByPageCountINI
	BatchingByRecip control group
	Print_Batches control group
	PrinterInfo control group
	BatchFileName control group
	PrintedOutputFile control group

	BatchingByPageCountPerRecipINI
	BatchingByRecip control group
	Print_Batches control group
	PrinterInfo control group
	BatchFileName control group
	PrintedOutputFile control group
	INI File Examples
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4
	Scenario 5

	BatchingByRecipINI
	BuildExcludeList
	BuildFormList
	BuildMasterFormList
	CheckZeroFontID
	ConvertWIP
	CreateGlbVar
	CreateRecordList
	DelExtRecords
	Dictionary
	DocumentExport
	Defining Export Options
	Defining the Export Record
	Fixed or variable record lengths
	Listing the field source, length, and format
	Defining the export fields and formats
	Specifying the format
	Converting dates

	Format Flags
	Defining the Export Record Header
	Date Formats
	Standard date format
	Date order
	Separators
	Year length

	Freeform Formats
	Additional format attributes

	Using Locale Information
	Format Specification Flags
	Type
	Flags
	Width
	.Precision

	DumpExtList
	DumpExtractListToFile
	ErrorHandler
	Errors

	Ext2GVM
	FilterForm
	FilterRecip
	ForceNoImages
	FormDescription
	INI options

	GetCo
	GetLOB
	GetRCBRec
	GetRunDate
	GVM2GVM
	IfRecipUsed
	ImageMapImportData
	ImportExtract
	Extract file made up of transactions with embedded export files
	Extract file made up of appended export files

	ImportFile
	Using the File option
	Using the INI option
	Using the SCH option
	Using the GVM option

	ImportNAPOLExtract
	Extract file made up of transactions with embedded WIP/NA/ POL files
	Extract file made up of appended WIP/NA/POL files

	ImportNAPOLFile
	Using the File option
	Using the INI option
	Using the SCH option
	Using the GVM option

	ImportXMLExtract
	ImportXMLFile
	Using the TF Option
	Using the File Option
	Using the INI Option
	Using the SCH Option
	Using the GVM Option
	XML File Format

	InitArchive
	InitConvertWIP
	InitMerge
	InitOvFlw
	InitPageBatchedJob
	InitPrint
	InitSetRecipCache
	InlineImagesAndBitmaps
	For single-step execution
	For multi-step execution

	InsNaHdr
	InstallCommentLineCallback
	JobInit1
	LoadDDTDefs
	LoadExtractData
	LoadFormsetFromArchive
	LoadListFromTable
	LoadRcpTbl
	LoadTblFiles
	LoadTextTbl
	MergeAFP
	MergeRecipsFromForm
	MergeWIP
	WIP selection performance during batch processing
	Using dates to select transactions
	Returning a warning message
	Changing the WIP Status

	MultipleDataDictionaryFiles
	NoGenTrnTransactionProc
	OMRMarks
	PageBatchStage1InitTerm
	PaginateAndPropagate
	ParseComment
	PostTransDAL
	PreTransDAL
	PrintData
	PrintFormset
	ProcessQueue
	ProcessRecord
	ProcessTriggers
	PXCandidateList
	INI Options
	Form_List
	XPTranslateLOB

	PXTrigger
	Input Tables
	State loc table
	FED table

	The Policy Xpress FED Processing Flow
	FED processing
	FED record validation

	RegionalDateProcess
	INI options

	ReplaceNoOpFunc
	ResetDocSetNames
	ResetOvFlw
	RestartJob rule
	RULCheckTransaction
	INI options

	RULNestedOverFlowProc
	OVERFLOW.DAT file format

	RULStandardFieldProc
	RULStandardImageProc
	RULStandardJobProc
	RULStandardTransactionProc
	RULTestTransaction
	RunSetRcpTbl
	RunTriggers
	RunUser
	ServerFilterFormRecipient
	ServerJobProc
	INI options
	Input file
	Output file

	SetErrHdr
	SetOutputFromExtrFile
	3-step (GenTran, GenData, and GenPrint)
	2-step (Single-step processing without the PrinfFormset rule and with GenPrint)
	Single-step (GenData only)

	SetOverflowPaperTray
	SetOvFlwSym
	SetRecipCopyCount
	SetRecipCopyCount2
	SortBatches
	Specifying Key fields
	Sorting with a Single Key
	Sorting with Multiple Keys
	Sorting with an OptTech Sort

	INI Options
	Defining the sort
	Sorting options
	Overriding the sort type
	Overriding the field type

	Replacement Strings
	RCB file layout

	StandardFieldProc
	StandardImageProc
	TicketJobProc
	TranslateErrors
	UpdatePOLFile
	UseXMLExtract
	Mapping Fields
	Using Ext2GVM
	Using XPath

	Overflow in XML

	WIPFieldProc
	WIPImageProc
	WIPTransactions
	WriteNAFile
	WriteOutput
	WriteRCBFiles
	WriteRCBWithPageCount
	XMLFileExtract
	Mapping Fields
	Overflow in XML

	Adding Section and Field Rules
	Storing Rule Information
	Formatting Data
	Using Pre-defined Date Formats
	Using Pre-defined Numeric Formats
	Suppressing Decimals with the FmtNum Rule
	Using the ZeroText Option with the FmtNum Rule

	Setting Up Format Arguments
	Field Format Types (fetypes)
	Formatting Data with the = Operator
	Formatting imported data

	Search Criteria
	Overflow and User Functions

	Section and Field Rules Reference
	Section and Field Rules Reference
	AccumulateVariableTotal
	AddMultiPageBitmap
	Using the File Option
	Using the DAL Option
	Using the SRCH Option
	Using the GVM Option
	Using the Type Option
	Using the Scale Option
	Using the Crop Option

	AddMultiPageTIFF
	Using the File Option
	Using the DAL Option
	Using the SCH Option
	Using the GVM Option
	Using the Type Option
	Using the File option with the Type option
	Using the DAL option with the Type option
	Using the SCH option with the Type option
	Using the GVM option with the Type option

	BldGrpList
	Using the Array function
	Using the MultiArray function
	Using the MultiOccur function

	CanSplitImage
	CheckImageLoaded
	Rotated fields
	Bar code variables

	CompBin
	ConCat
	ConnectFields
	CreateChartSeries
	CreateSubExtractList
	DAL
	DateDiff
	DateFmt
	Date masks

	DeleteDefaultSeriesData
	DelImageOccur
	DontPrintAlone
	EjectPage
	FfSysDte
	Field2GVM
	FieldVarsToChartSeries
	FmtDate
	FmtNum
	Left justifying numbers

	GlobalFld
	GroupBegin
	Using the Box Function
	Using the GroupPagination Function
	Using the List Function
	Using the StayTogether Function
	Using the Column Function
	Creating wrapping columns
	Creating straight columns
	Column function parameters
	Example 1: Wrapped balanced columns
	Example: 2 - Multiple straight columns

	GroupEnd
	HardExst
	Search masks and overflow
	How data is returned

	If
	The IF rule and overflow
	Writing DAL scripts
	Examples

	IncOvSym
	JustFld
	Errors
	Using the LoadCordFAP option

	KickToWip
	Suppressing Warning Messages

	LookUp
	MapFromImportData
	Master
	MessageFromExtr
	Creating Messages
	Setting up the field
	Adding messages
	Grouping messages
	Formatting messages

	Using the Record Dictionary
	Record definition syntax
	Variable definition syntax
	INI options
	Sample Record Dictionary

	Mk_Hard
	MNumExt
	Move_It
	Handling currency symbols
	User functions

	MoveExt
	MoveMeToPage
	MoveNum
	Format mask
	Data
	Extracting data

	MoveSum
	MovTbl
	NoOpFunc
	OvActPrint
	OvPrint
	PaginateBeforeThisImage
	PostImageDAL
	PowType
	Suppressing Warning Messages

	PreImageDAL
	PrintIf
	PrtIfNum
	PurgeChartSeries
	RemoveWhiteSpace
	Using the NoWarning parameter

	ResetImageDimensions
	ResetOvSym
	SetGroupOptions
	RunDate
	Using locales

	SAPMove_It
	Format mask

	SetAddr
	SetAddr2
	SetAddr3
	SetCpyTo
	SetCustChartAxisLabels
	SetImageDimensions
	SetOrigin
	Fixing a section’s position

	SetOriginI
	SetOriginM
	SetRecipFromImage
	SetState
	State table

	SpanAndFill
	StrngFmt
	SysDate
	TblLkUp
	TblText
	TerSubstitute
	TextMergeParagraph
	UnderlineField
	XDB
	Mapping

	XDD
	Mapping

	Appendix A

	Using Condition Tables and the Record Dictionary
	Using Condition Tables
	Setting Up the INI Files
	Using a Record Dictionary File
	Creating a Conditions File
	Occurrence Counting
	Setting a maximum count to return
	Condition tables and the RecipCondition rule

	Using the Record Dictionary
	Setting Up the Record Dictionary
	Record Dictionary File
	Records
	Variables

	RPN Function
	Available RPN functions

	Record Dictionary Rules
	Base_FromDataDictToGVM
	FromDataDict
	FromDataDictToGVM
	Image_FromDataDictToGVM
	IncDataDictRecPtr
	PosDataDictRecPtr
	PostIncDataDictRecPtr
	PostPosDataDictRecPtr
	PreIncDataDictRecPt
	PrePosDataDictRecPtr
	ResetDataDictRecPtr

	Appendix B

	Using Image Editor to Enter Rule Information
	Storing Rule Information in DDT Files
	Using the Data Definition Table
	Setting Up the MASTER.DDT File
	Taking precedence
	Using the Master DDT Editor
	Using the File Menu
	Saving your work
	Viewing the Rules Report
	Exiting the Master DDT Editor

	Using the Edit Menu
	Changing rule assignment settings
	Inserting a row
	Coping a row
	Deleting a row
	Retrieving information from the data dictionary

	Using the Move Menu
	Using the Up option
	Using the Down option

	Assigning Rules with the Image Editor
	Adding Section Rules
	Changing a Section Rule
	Deleting a Section Rule

	Assigning Field Rules
	Using the Edit DDT Tab
	Changing a Field Rule
	Deleting a Field Rule

	Using the Edit DDT Window
	Assigning a Rule

	Displaying Rule Reports
	Image Report
	View Rules Report
	View Compare Report

	Index
	- (minus signs) 402
	Symbols
	# (octothorp) and the RPN function 498
	: (colons) 360
	= (equals sign) 267
	@GetRecsUsed function 271
	£ (British pound sterling) 395, 405

	Numerics
	2-up printing

	A
	ABS
	AccumulateVariableTotal rule
	adding
	AddLine rule
	AddMultiPageBitmap rule
	AddMultiPageTIFF rule
	addresses
	AddTextLabel rule
	Adobe Acrobat 2
	AFGJOB.JDT files
	AFP
	AllocDebug rule
	AppendedExport option
	AppendGblToExtr rule
	Archive rule
	archives
	Array function
	AssignBatWithTbl rule
	assigning
	AssignToBatch rule
	axis labels

	B
	bankers dates 322
	bar code information 307
	Base_FromDataDictToGVM rule 499
	BaseErrors option 200
	Batch name option 51
	Batch_Recip_Def option 49, 50, 69
	BatchByPageCount rule
	BatchFileName control group 51
	BatchingByPageCountINI rule
	BatchingByPageCountPerRecipINI rule
	BatchingByRecip control group 19
	BatchingByRecipINI rule
	BCD numbers 403
	BldGrpList rule
	BoldKey2 option 100
	bottom dimensions
	Box function
	boxes
	braces
	British pound sterling 395, 405
	BuildExcludeList rule
	BuildFormList rule
	BuildFormList rule rule
	BuildMasterFormList rule

	C
	CallBackFunc option 221
	CallbackFunc option 222
	Can Grow attribute 483
	Can Grow option 381
	CanSplitImage indicator 174
	CanSplitImage rule
	CEIL
	century
	charts
	CheckCount option 201
	check-digits 406
	CheckImageLoaded rule
	checksum methods
	CheckZeroFontID rule 74
	ChkDestLenExceeded option 393
	COBOL copybooks 340
	colons
	ColumnFormat option 101
	columns
	CompBin rule
	CompiledFAP option 307
	compiling
	ConCat rule
	ConcatFields rule
	condition tables
	Conditions group 280
	Conditions option
	ConnectFields rule
	ConvertWIP rule
	coordinates
	Copy Row option
	CreateChartSeries rule
	CreateGlbVar rule
	CreateRecordList rule
	CreateSubExtractList rule
	currency symbols
	CUSMultiFilePrint function 221

	D
	DAL expressions= operator 267
	DAL rule
	DAL scripts
	DALRun function 11
	DALTrigger rule
	DAPINSTANCE 140
	DAPOPTIONS 140
	data
	Data control group 374, 478
	data definition table
	data dictionaries
	DataDict file 280
	DataDictionary control group
	DataPath option 217
	Date Order 83
	DateDiff rule
	DateFmt rule
	DateFMT2To4Year option 260
	dates
	DBLogFile option 217
	DDT files
	debugging
	decimals
	DefaultBatch option 49, 51
	Delete Row option
	DeleteDefaultSeriesData rule
	deleting
	DelExtRecords rule
	DelImageOccur rule
	demand feed
	destination length
	Dictionary rule
	digits
	dimensions
	DivertOMR option 171
	DivertOpt option 171
	DocSetNames control group
	Documaker Workstation
	DocumentExport rule
	Docupresentment
	dollar signs 390, 394, 402, 403, 405
	DontPrintAlone rule
	DumpExtList rule
	DumpExtractListToFile rule
	DUP
	duplex printing

	E
	EBCDIC format 403
	Edit menu
	EjectPage rule
	equals sign 267
	ErrFile option 217
	ERRFILE.DAT file
	Error2Manual control group 92
	ErrorHandler rule
	errors
	European Union 265
	ExcludeForm option 101
	Exit option
	export files 130
	export information
	Ext option
	Ext2GVM rule
	extract files
	extract lists
	extract records
	ExtractKeyField control group
	ExtrFile option 217

	F
	FAP files
	FED table 191
	fetypes 265
	FfSysDte rule
	field format types (fetypes) 265
	field level rules 3
	field rules
	Field2GVM rule
	FieldErrors option 200
	FieldRule function 363
	fields
	FieldVarsToChartSeries rule
	File menu
	File option
	FilterForm rule
	FilterRecip rule
	floating images 457
	FLOOR
	FmtDate rule
	FmtNum Rule
	FmtNum rule
	following images 203
	following sections 205
	font IDs
	fonts
	footers
	ForceNoImages rule
	form candidate list 187
	Form Description Line fields 99
	Form option 11
	form set level rules 3
	form sets
	FORM.DAT file
	FORM.DAT files
	Form_Sched_POL_Type field 156
	format
	format arguments
	format masks
	formatting
	FormDescription rule
	FormDescTable control group 99
	FormName option
	forms
	French Francs 394
	FromDataDict rule 499
	FromDataDictToGVM rule 499
	FSISYS.INI file
	FSIUSER.INI file

	G
	GenArc program
	GenData program
	GenDataStopOn control group
	GENSemaphoreName option 218
	GenWIP program
	GetCo rule
	GetLOB rule
	GetRCBRec rule
	GetRecord function 270
	GetRecord search criteria
	GetRunDate
	GlobalFld rule
	graphics
	GroupBegin rule
	GroupEnd rule
	GroupPagination function
	groups
	GVM function
	GVM option 132
	GVM variable= operator 267
	GVM variables
	GVM2GVM rule

	H
	HardExst rule
	headers
	hexadecimal values

	I
	IF rule
	IfRecipUsed rule
	Image Editor
	Image option 11
	image rules
	Image_FromDataDictToGVM rule 499
	ImageErrors option 200
	ImageMapImportData rule
	ImpExpCombined control group 80
	Import_File option
	ImportExtract rule
	ImportFile rule
	ImportNAPOLExtract rule
	ImportNAPOLFile rule
	ImportXMLExtract rule
	ImportXMLFile rule
	ImportXMLFile_GVM option 138
	in order insertion 205
	IncDataDictRecPtr rule 500
	inches
	IncludeDuplicateForms option 100
	IncludeFormDesc option 101
	IncludeFormName option 100
	IncludeKey2 option 100
	IncOvSym rule
	InitArchive rule
	InitConvertWIP rule
	InitMerge rule
	InitOvFlw rule
	InitPageBatchedJob rule
	InitPrint rule
	InitSetRecipCache rule
	inline images 305
	InlineImagesAndBitmaps rule
	Insert Row option
	InsNaHdr rule
	InstallCommentLineCallback rule
	Internet Document Server
	Introduction 1

	J
	job level rules 3
	JobInit1 rule
	Julian dates 323
	JustFld rule

	K
	key fields
	Key option
	Key1Table control group 103
	Key2PostInc option 100
	Key2Prefix option 100
	Key2Table control group 104
	KickToWIP rule
	KickToWip rule

	L
	labels
	languages
	lead images 203
	leading
	leaks
	Library Manager
	lines
	List function
	list sections 203
	LoadCordFAP option
	LoadDDTDefs rule
	LoadExtractData rule
	LoadFAPBitmap option
	LoadFormsetFromArchive rule
	LoadListFromTable rule
	LoadRcpTbl rule
	LoadTblFiles rule
	LoadTextTbl rule
	locales
	LogFile option 182, 217, 218, 223
	LOGFILE.DAT file
	LogFileType option 182, 218, 223
	LookUp rule

	M
	manual batch
	MapBeforeReset parameter 198
	MapFromImportData rule
	mapping fields
	Margin parameter 343
	Mask field
	masks
	Master DDT Editor 340
	Master rule
	MasterResource control group
	MAX
	MaxExtRecLen option
	memory
	MergeAFP rule
	MergeRecipsFromForm rule
	MergeWIP rule
	message tags
	MessageFromExtr rule
	MIN
	minus signs 402, 403
	Mk_Hard rule
	MNumExt rule
	MOD
	MODE parameter
	Move menu
	Move_It rule
	MoveExt rule
	MoveIt rule
	MoveMeToPage rule
	MoveNum rule
	MoveSum rule
	MovTbl rule
	MsgFile option 217
	MultFilePrint callback functionality 183
	MultiArray function
	MultiDataDict control group 166
	MultiFileLog option 221
	MultiFilePrint
	MultiFilePrint function 221
	MultiFilePrint option 182, 218, 223, 237
	multi-line text fields
	multi-mail processing
	MultiOccur function
	multi-page FAP files
	MultipleDataDictionaryFiles rule

	N
	NAFILE.DAT file
	Name option
	NAUnload option 149
	negative amounts
	nesting information 203
	NoGenTrnTransactionProc rule
	NoOpFunc rule
	NoOpImp rule
	NoWarning parameter 434
	numeric data

	O
	offsets and data
	OMR marks
	OMR_Params control group 170
	OMRMarks rule
	Opt option 11
	OvActPrint rule
	overflow
	OVERFLOW.DAT file
	OvPrint rule

	P
	page count
	page segments
	PageBatchStage1InitTerm rule
	PageRange option 51
	pages
	PaginateAndPropagate rule
	PaginateBeforeThisImage rule
	pagination
	parent//child mapping 488
	ParseComment rule
	Path option
	PDF files
	PDF format 2
	PDFImportDPI option 286
	percent signs 402
	performance
	performance mode JDT file 8
	phone numbers 472
	POLFILE.DAT file
	Port option 51, 222
	PosDataDictRecPtr rule 500
	PostImageDAL rule
	PostIncDataDictRecPtr rule 500
	PostPosDataDictRecPtr rule 500
	PostTransDAL rule
	POW
	PowType rule
	PreImageDAL rule
	PreIncDataDictRecPt rule 500
	PrePosDataDictRecPtr rule 501
	PreTransDAL rule
	print batch names
	Print Preview
	Print_Batches control group 51
	PrintData rule
	PrintedOutputFile control group 51
	Printer option 51
	printer trays
	PrinterInfo control group 51
	PrintFormset control group 182
	PrintFormset rule
	PrintIf rule
	printing
	processing rules
	ProcessQueue rule
	ProcessRecord rule
	ProcessTriggers rule 186
	pRPS structure 198
	PrtIfNum rule
	PRTLIB data 25
	PurgeChartSeries rule
	PXCandidateList rule
	PXTrigger rule

	Q
	queues

	R
	RCB comment records
	RCBDFDField option 221, 223
	RCBDFDFL.DAT file 10
	RCBMapFromINI function 11
	RDI extract files 443
	RecipCondition rule
	recipient batch records 10
	recipients
	RecipMap2GVM control group 11
	Record Dictionary
	regional date processing 194
	RegionalDateProcess option 195
	RegionalDateProcess rule 194
	RemoveWhiteSpace rule
	ReplaceNoOpFunc rule
	reporting tool
	Req option 11
	ResetDataDictRecPtr rule 501
	ResetDocSetNames rule
	ResetImageDimensions rule
	ResetOvFlw rule
	ResetOvSym rule
	Restart control group 201
	restarting GenData 201
	RestartJob rule
	Retrieve option
	reverse insertion logic 205
	Reverse Polish Notation
	RID_LastMapField option 436
	row heights
	RPDSemaphoreName option 218
	RstFile option 201
	RTF files
	RULCheckTransaction rule
	rules
	RULNestedOverFlowProc rule
	RULServerJobProc option 218
	RULStandardFieldProc rule
	RULStandardImageProc rule
	RULStandardJobProc rule
	RULStandardTransactionProc rule
	RULTestTransaction rule
	run date
	RunDate rule
	RunMode control group 393, 483
	RunSetRcpTbl rule 212
	RunTriggers rule 213
	RunUser rule

	S
	salutations 365
	SAPMove_It rule
	Save option
	ScheduleDate field 163
	Script option 101
	search criteria
	search masks
	SearchMask option
	sections
	sectionss
	Separator option
	separators 85
	series data
	ServerFilterFormRecipient rule 215
	ServerJobProc rule
	SetAddr rule
	SetAddr2 rule
	SetAddr3 rule
	SetCpyTo rule
	SetCustChartAxisLabels rule
	SetErrHdr rule
	SetGroupOptions rule
	SetImageDimensions rule
	SetOrigin rule
	SetOriginI rule
	SetOriginM rule
	SetOutputFromExtrFile rule
	SetOverflowPaperTray rule
	SetOvFlwSym rule
	SETRCPTB.DAT file
	SetRecipCopyCount rule
	SetRecipCopyCount2 rule
	SetRecipFromImage rule
	SetState rule
	ShowWIPWarning option 373, 425
	significant digits 402
	single-step processing
	SleepingTime option 218
	Social Security numbers 472
	SortBatches rule
	source length
	spacing
	SpanAndFill rule
	SQRT
	StandardFieldProc rule
	StandardImageProc rule
	StartFromFirstForm option 100
	state compliance 194
	state location table 191
	status codes
	StayTogether function 346
	StrngFmt rule
	subordinate images 203
	sum
	suppressing
	SWAP
	symbolic lookup operators 268
	SysDate rule
	system date 474

	T
	table row sizes 476
	TablePath option
	Tables control group
	TablesPath field 156
	TblFile option 158, 374
	TblLkUp rule
	TblText rule
	temporary extract lists
	TerSubstitute rule
	Test control group 211
	testing
	text tables 374
	TextMergeParagraph rule
	TEXTTBL option 478
	TextTbl option 159
	TicketJobProc option 237
	TicketJobProc rule
	TIFF files
	token lookup 488
	top dimensions
	trailing spaces
	TransactionErrors option 200
	TransErrCode option 165
	TranslateErrors rule
	tray selection
	Trigger2Archive control group
	Trigger2WIP control group 10
	triggers
	Trim function 363, 364
	Trn_Fields control group
	Trn_File control group
	TrnFile option 168
	TRNFILE.DAT file
	TwoUp control group

	U
	unable to print form set message 182
	UnderlineField rule
	Unicode
	UpdatePOLFile rule
	user functions
	UseXMLExtract rule

	V
	VAR tag 381
	variable fields
	Variables group 280
	View Compare Report option
	View Rules Report option

	W
	warning messages
	WarnOnLocate option 11
	white space
	widows and orphans 343, 346
	WIP
	WIP transaction processing
	WIP/NA/POL export data
	WIPFieldProc rule
	WIPHeader option
	WIPImageProc rule
	WIPTransactions rule
	WIPWarnOnEmpty option 164
	WriteNAFile rule
	WriteOutput rule
	WriteRCBFiles rule
	WriteRCBWithPageCount rule

	X
	XDB files
	XDB rule
	XDD rule
	XML files
	XMLExtract option
	XMLFileExtract option
	XMLFileExtract rule
	XMLFileExtractName option
	XMLTags2GVM control group 132, 135
	XPath

	Y
	years

	Z
	zero format 261
	ZeroText option 262
	ZIP codes

	Go to Oracle Insurance

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

