
 1

Oracle® Documaker Connector
Installation, Administration and Customization Guide
Release 1.0.0.0.0 for Windows x86

July 2009

 i

Oracle Documaker Connector Installation, Administration and Customization Guide, Release 1.0.0.0.0 for Windows x86

Copyright © 2009, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Eugene Thompson, Joe Roberts, Steve Saunders
Contributing Authors: Lowell Von Egger, Phil Iorio

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a
license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual
and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation,
please report them to us in writing. This document is not warranted to be error‐free. Except as may be expressly permitted in
your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United
States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are ʺcommercial computer softwareʺ or ʺcommercial technical dataʺ pursuant to the applicable Federal
Acquisition Regulation and agency‐specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in
the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227‐19,
Commercial Computer Software‐‐Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications.
It shall be the licenseeʹs responsibility to take all appropriate fail‐safe, backup, redundancy and other measures to ensure the safe
use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such
use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. Other names
may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not
responsible for the availability of, or any content provided on, third‐party Web sites. You bear all risks associated with the use of
such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and
the third party. Oracle is not responsible for: (a) the quality of third‐party products or services; or (b) fulfilling any of the terms of
the agreement with the third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third
party.

 i

Contents

Preface .. 1
Audience..1
Documentation Accessibility ..1

TTY Access to Oracle Support Services...1
Related Documents ...1
Conventions ...1

Introduction .. 3
Overview..3
Compatibility ..3
Planning ...4

Installation .. 5
Installation..5

Prerequisites..5
Running the Installer..5
Reviewing the Installation..7

Microsoft Windows Installation Files ...7
Required Support Installers ..8
Installer Support ..8
Java Application and Support Files...8

Removing an Installation ...9
Administration.. 11

Basic Configuration..11
Oracle Documaker Configuration ..11

Making Index Data Available in Documaker GVM Variables..12
Generating Database Table Rows and Writing the Document Files ..12
Documaker INI Setup for the Example Database Connection..15

Oracle UCM Configuration ..16
Oracle Documaker Connector Configuration ..18

The Logging Properties File..18
The Engine Properties File ...20
The Documaker Source System Properties File...22

Running the Program...24
Modes of Operation...24

How Oracle DC Determines the Run-Mode..25
Stopping a Server-Mode Instance ..25

Command-line Parameters Detail ...25
Examples ..25

Customization for Developers .. 27
Architecture..27

Class Structure ..27
Source Implementation ...28
The Connector Engine ..28
Client Implementation..28

Functional Breakdown ...28
Configuration ...29

Initializing the Logging Framework ...29
Parsing the Configuration File...29
Command-line Processing..29
Initializing the Connector...29

 ii

Processing...30
The BatchManager..30
The BatchProcessors..30

Shutdown...30
Core Engine Interfaces ..31

The Source System...31
Overview ...31
The Source Interface in Java ..31
The Housekeeping Interface Overview...33
The Housekeeping Interface in Java ..33

The Client System ...33
The ClientAdministration Interface Overview..33
The ClientAdministration Interface in Java ...33
The Client Interface Overview...34
The Client Interface in Java ..34

Other Interfaces...35
The Documaker Source System Implementation ..35

Source-Interface Implementation ..35
configure Method: ...35
getHouseKeeper Method: ...35
getFileBatch Method: ..35
ackProcess Method:..36
isValid Method:..36
setMaxBatchSize Method: ..36
close Method:..36
getTableColumns Method:..36

Housekeeping-Interface Implementation ..36
cleanUp Method: ...36
close Method:..36

Appendix A – Windows Service Application ... 37
dm_ucm_connector.exe Service Application...37

The dmservice.dll ..37
The dm_ucm_connector.properties File..37

Appendix B – Example Files Using TRN_FIELDS INI Options to Map Index Data
in Documaker ... 39

XML Extract Input to Documaker...39
Example TRN_FIELDS INI Setup..42
Example TRNDFDFL.DFD Setup..43
Example RCBDFDFL.DFD Setup..49

Appendix C – Example Documaker DAL Scripts... 51
BatchBannerBeginScript = AOR_PREB ..51
TransBannerBeginScript = AOR_PRET...52
TransBannerEndScript = AOR_POSTT ...52
BatchBannerEndScript = AOR_POSTB...55
Internal Routine: AOR_NEWFILE..55
Internal Routine: AOR_NEWPATH..56
Internal Routine: AOR_EOB..56

Appendix D – Documaker Setup for DAL Output to a Database Table................ 59
DDL for DAL Output Records ..59
Database Table DFD (Data Format Definition) File (AOR.DFD)...60

The AOR.DFD File ..60

 1

Preface

Note: This document is accurate at the time of publication. Oracle will
update the documentation periodically after the software release. You can
access the latest information and additions to this document on the Oracle
Technology Network (OTN) at:

http://www.oracle.com/technology/documentation/

This document contains information necessary for the installation and configuration of Oracle Documaker
Connector (Oracle DC).

This Preface includes the following topics

• Audience
• Documentation Accessibility
• Related Documents
• Conventions

Audience
This document is intended for users who want to install or administer Oracle DC. Experience installing
Oracle Documaker and experience as a system administrator is necessary.

Documentation Accessibility

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United
States of America 24 hours a day, seven days a week. For TTY support, call 800.446.2398.

Related Documents
For more information, refer to the following Oracle resources:

 The Oracle Documaker documentation set, specifically:
- Documaker Server Installation Guide
- DAL Reference

 The Oracle Universal Content Management (UCM) documentation set, specifically:
- Oracle Universal Content Management Product Overview
- Getting Started with Content Server
- Oracle Universal Content Management Content Server Installation Guide for (Platform)
- Managing Repository Content

Conventions
The following text conventions are used in this document:

 2

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables
for which you supply particular values.

monospace
Monospace type indicates commands within a paragraph, URLs,
code in examples, text that appears on the screen, or text that you
enter.

Line contains operating system commands. Do not enter the leading
#.

SQL> Line contains SQL*Plus commands. Do not enter the leading SQL>.

 3

Introduction

Oracle Documaker Connector (Oracle DC) is a Java application that works with Oracle Documaker
scripting to archive Documaker output documents into Oracle Universal Content Management (UCM).
This document describes for administrators the Oracle DC, its installation, configuration and operation.
Once familiar with the material in this guide and other prerequisite background information, an
administrator should be able to plan and execute an implementation of Oracle DC.

In addition to this guide, implementation of Oracle DC requires familiarity with Oracle Documaker
configuration and Document Automation Language (DAL) scripting, as well as configuration of Oracle
Universal Content Manager. This guide is not a substitute for understanding both of these products and
their documentation. You must have the requisite skills in both Oracle Documaker and Oracle Universal
Content Manager (UCM) to configure those products to work with this product which connects the two of
them.

Overview
Oracle Documaker is a publishing engine which is driven by input transactions to produce output
document sets based on the input transaction data, a repository of forms and a powerful rules engine which
selects form information and composes custom documents based on the incoming transaction data. Each
transaction is a set of variable data field values and other form-selection criteria. Oracle Documaker
applies the variable data to fill in fields in the forms, optionally performing formatting and/or calculations
on the data before using it as text on the forms. The data values can also affect which forms are used for the
documents resulting from the input transaction. Because the output documents were originally designed
and composed to be printed, the output documents are sometimes called print streams. Oracle Documaker
DAL (Document Automation Language) scripting is used to place each output document in a file system
directory and write a matching record containing the indexing information (metadata) into a database table.
Oracle DC monitors the database table for new entries and then processes those entries by sending the
document and indexing data into Oracle Universal Content Manager. Oracle DC may be run continuously,
as a system service, or may be run periodically, for example after a batch run of Oracle Documaker.

The Oracle DC is configured with the connection information for the source database table and the
connection information for UCM. The contents of the database table and the coincident configuration of the
UCM metadata will vary with the document data particular to a specific customer implementation. It is this
configuration which requires knowledge of Oracle Documaker on the one hand and UCM administration
on the other. There are also performance and volume-related configuration parameters.

Connectors from Documaker to other repository systems may be created from the core components of the
Oracle Documaker Connector: The client interface to UCM may be replaced with a new client interface to
a different system. The Connector may also be used as a framework for creating new applications which
draw documents from sources other than Documaker. That is, both ends of the Connector application are
completely replaceable and therefore customizable.

Compatibility
Oracle DC is tested with Oracle Documaker version 11.3 and is compatible with Documaker versions 11.2
and newer. The UCM Client interface was implemented and tested with UCM release 10gR3, version
10.1.3. There are additional compatibility requirements for both Oracle Documaker and Oracle Universal
Content Manager. The product documentation for those products, and in particular the specific versions
you plan to be running, should be consulted as a part of your system planning.

 4

Planning
Before implementing the Oracle Documaker Connector, there are a few planning exercises that need to be
completed. You’ll need these answers to configure Documaker, UCM, and the Documaker Connector to all
work together to provide the service you desire.

First, you must decide which of your Documaker-produced documents you want to save in your archive.
You may be publishing several versions of the same basic document (different recipient copies, for
example) and archiving more than one of them would be duplicative and inefficient.

Next, for those documents, you must decide what output format you want to publish to the archive process.
This should be a format which your end-users will be able to retrieve and view easily. A popular choice
here is Adobe Portable Document Format (PDF).

Finally, you must decide how you expect your users to retrieve those documents. That is, what information
will users have in hand to provide to the retrieval interface to search and find the specific documents they
want? This is generally a subset of the variable data published on the documents themselves. Examples
might include customer/account number or ID, customer name, date of issue, telephone number, postal
code, and so on. This data must be saved into a database table which you customize. This is done by a
Documaker Document Automation Language (DAL) script you provide. Each row in the table represents a
document to be archived and the data by which it will be indexed in UCM.

To summarize, before you embark on an implementation, you need to have decided the following:

1. Which documents will be archived?

2. Which output format, such as PDF, will be sent to the archive?

3. What variable fields will be used to organize and retrieve the documents? These fields are called
the metadata to be stored along with the documents.

 5

Installation

Installation of the Oracle DC places the necessary program files on the target system at the requested
location. Following the installation process, the product must be configured to work with your Documaker
implementation, to process the desired documents with the correct indexing fields and to connect and
import into the UCM system. Documaker itself also must be configured and customized to produce the
documents to be archived along with their desired indexing data. This is a separate step that can be done
without installation of the Oracle Documaker Connector. This step requires expertise in Documaker
configuration, Document Automation Language (DAL) scripting for Documaker and some familiarity with
SQL database table definition or modification.

Installation
Oracle DC is installed on all platforms with an installation application. This installer places the program
and supporting files on the target system and performs initial configuration of the target system to run the
Oracle DC. On Microsoft Windows systems, this includes installation of the Oracle DC as a Windows
service and installation of a taskbar notification icon which controls the running of the service.

Prerequisites
1. Platform support of Java 5 (compatible JVM), including JDBC database connectivity.

2. Connections to a SQL database and file system directory which are both also accessible to Oracle
Documaker.

3. Connections to Oracle Universal Content Manager and a file system directory also accessible to
Oracle Universal Content Manager.

Running the Installer
The process of running the installer in a graphical environment is similar across all supported platforms.
These examples are from Microsoft Windows, but should be easily used as a guideline in other
environments.

The installer is a self-contained application file. On Microsoft Windows, the
installer is named oracle_dm_ucm_connector_windows_1_0.exe.

Double-click or otherwise execute the application file. The installer application
launches and displays the welcome screen. Click Next to continue the
installation.

The next screen allows the choice of an installation target directory. On
Windows, the default directory is under the normal Program Files directory and is shown in the figure
below. The directory chosen on this screen is referred to throughout this document as the installation
Target Directory.

 6

Clicking Next > accepts the directory choice and moves to the Select Components screen. There is
only one component in the product so nothing to see here. Move along by clicking Next >.

 7

The next screen, Select Start Menu Folder, lets you setup a Start Menu item which contains a
shortcut to the un-installation program. To skip creating any folder at all in the Start menu, check the box
next to Don’t create a Start Menu folder.

Checking Create shortcuts for all users causes the program to be installed so all users on
the machine will have it in their Start menus as a choice. If this box is not checked, only the user running
the installation will have the Start menu entry created.

Clicking Next > on this screen starts the installation process. The files are moved to the selected location
and other required installations are then run. The installer puts a Java run-time environment (JRE) in a
subdirectory of the target directory called jre. On Microsoft Windows, the installer runs the VC 2005 SP1
redistribution package from Microsoft. This installs the Visual C 2005 run-time if it is not already present
on the machine.

The installer program sets the service.path in the dm_ucm_connector.properties file to the
JRE that was installed.

On Windows, the installer runs the dm_ucm_connector.exe program with an install parameter to
install the Windows service. (Running this program later with a parameter of uninstall will remove the
Windows service.

Reviewing the Installation

Microsoft Windows Installation Files
Although there are slight differences by platform, most of the installed files are the same regardless of the
target system. The figure below is from a Windows-based installation.

 8

Oracle DC as a Windows Service
The dm_ucm_connector.exe application runs Oracle DC as a Windows Service. Details on how it
functions are in Appendix A. There are two batch file scripts which can be used to install and un-install the
Windows service. (The installation runs the...install_service.bat file.) These scripts run the
dm_ucm_connector.exe application. Related files are dmservice.dll,
dm_ucm_connector.properties, dm_ucm_connector_install_service.bat,
dm_ucm_connector_uninstall_service.bat.

The small application, dm_ucm_connector_agent.exe, places an icon in the Windows task bar
notification area. The icon shows the status of the Oracle DC Windows service and right-clicking the icon
allows a user to open the log file and to start and stop the Windows service without opening the Services
Control Panel.

Required Support Installers
Any required support products which have their own installers are placed in the required subdirectory.
On Windows, for example, this folder contains the installer for the Microsoft Visual Studio C 2005 Run-
time libraries.

Installer Support
The installer places its own support files in the .install4j subdirectory. This directory should not be
disturbed, as it contains information used for a subsequent un-installation. Un-installation is done by
running the uninstall.exe application.

Java Application and Support Files
All the Java Jar files for the application and the required support code are installed in the lib subdirectory.
These JAR files must be in the Java classpath for the Oracle DC to run (either from the command line or as
a service). Most of these files are installed as part of the normal installation process, but the list is provided
here for information useful in troubleshooting or customizing the install.

The default logging properties file log4j.xml is installed in the lib folder, with the .jar file listed
below.

 9

Name URL
Core Connector Engine – Required Jar Files
UCMImporter.jar Provided with this application
UCMImporterLib.jar Provided with this application
oracle-ridc-client-11g.jar Provided with this application
commons-codec.jar http://commons.apache.org/codec/
commons-httpclient-3.1.jar http://hc.apache.org/httpclient-3.x/
commons-logging-1.1.1.jar http://commons.apache.org/logging/
Core Connector Engine – Required Jar Files
UCMImporterLib-javadoc.jar Provided with this application
Documaker Source Component – Required Jar Files
DBUtil.jar Provided with this application
DocuCorpUtil.jar Provided with this application
DocumakerSource.jar Provided with this application
commons-beanutils.jar
commons-collections-3.2.jar
commons-dbcp-1.2.2.jar
commons-lang-2.3.jar
commons-logging-1.1.jar
commons-pool-1.3.jar
DdlUtils-1.0.jar
jakarta-oro-2.0.8.jar
log4j-1.2.15.jar
Service Execution Utility
DocucorpStartup.jar Provided with this application

Table 1. Required Java Library Support Files (JARs)

Note: In addition to the files supplied with the application, you must
assure that the appropriate jar files for your database provider are also
included the classpath. These files are not included in the installation of
the Oracle Documaker Connector.

Some examples of the Jar files required for the JDBC connectivity for various database brands:

Oracle ojdbc14.jar

DB2 db2jcc.jar

MySQL mysql-connector-java-5.1.5-bin.jar

MSSQL sqljdbc.jar

Table 2. JDBC Library Support Files (JARs)

Removing an Installation
Before removing the Oracle DC on a Windows system, be sure the application is not running as a Windows
Service. Run the batch file script to remove the registration of the Oracle DC as a Windows Service,
dm_ucm_connector_uninstall_service.bat.

Un-installation is accomplished by running the uninstall.exe application. On a Windows installation,
a shortcut to the un-installation program is normally placed in the Start>All Programs>Oracle Documaker
UCM Connector folder.

 11

Administration

Basic Configuration
Archiving documents into UCM with the Oracle Documaker Connector is a cooperative process involving
Documaker, the Oracle DC application and the UCM system. All three must be properly configured for the
process to work reliably without problems. The most critical aspect of this configuration is the set of
indexing metadata with which the documents are to be archived. As described in the earlier Planning
section, you should already have decided which variable fields will be used as metadata. If you haven’t
completed that step, stop now and get that list together.

The indexing metadata must be supplied for each document by the Documaker process (generally as part of
the incoming extract variable data for each document). Documaker must be configured to pass the desired
data on to the Oracle DC so that it may, in turn, use it to archive each document. Configuring each step in
the process so that they all agree on the indexing data from end to end requires care and planning.

The Oracle DC retrieves records from a database table which represent document copies produced by a
Documaker batch process. You must configure Documaker to properly write these database records and the
copies your documents. These document copies are intended to be imported into UCM. Oracle Documaker
is usually configured using Batch Banner and Transaction Banner DAL scripting to control the output of
the documents and to write the database records into the proper table. You must also configure the target
UCM system with metadata fields appropriate to hold the desired indexing metadata. Lastly, you need to
configure the Oracle DC so it may find the database table produced by the Documaker DAL scripting,
access the documents referenced in the database table, connect to the desired UCM system and write the
documents to that system to be archived.

In addition to these basic connectivity configuration requirements, the Oracle DC has configuration options
for logging its operation and adjusting performance characteristics of the importing process which it
manages. These settings allow the Oracle DC to be scaled from a small proof of concept to a large-scale
production environment.

Oracle Documaker Configuration
Oracle DC reads a configured database table for rows containing processing columns, document metadata
and an operating system path to each document file. It queries a database table using a select for update
locking method for rows that have a status field indicating that the records have not been processed
(STATUSCD column value of 0). It selects these rows with a maximum row count of as many records as it
is configured to consider a maximum size batch and marks them with a status value (STATUSCD column)
of 3 (in progress) and then processes each of those records.

Oracle Documaker must be configured by personnel with the necessary Documaker skill set to properly
generate both the document files and the accompanying database records for the documents to be archived.
The configuration of Documaker follows the configuration of UCM with the desired meta-data elements.
Once this list of data elements is determined, Documaker can be configured to collect these data elements
and store them in the associated Oracle DC table.

Oracle Documaker reads the variable transaction data for each document from a data extract input file. This
file is supplied in either XML or CSV (Comma-Separated Value) format. To use the data elements in
Documaker, the data extract (XML or CSV format) values are copied into Documaker global variables
also known as GVM variables or GVMs using one of two methods: the TRN_FIELDS INI option may be

 12

set or the EXT2GVM rule1 may be used. Once the data are in GVM variables, you use DAL scripting2 to
control a recipient batch’s output print stream name and map the meta-data in the GVM variables to
database table columns. The Batch Banner and Transaction Banner processing DAL scripts insert the
database rows.

Batch and Transaction Banner processing DAL is used since DAL scripts can be triggered for the different
phases of output generation. The output print stream file name and location may be controlled as well as the
post transaction processing step to map the GVM variables and any other static data to database table
columns (using the DBPreVars DAL function) and finally insert database rows (using the DBAdd DAL
function).

By default, UCM metadata maps to the intermediary database table by name but mapping of column names
to UCM metadata can be done otherwise overriding the default name mapping method.

Making Index Data Available in Documaker GVM Variables
You can map Documaker extract input data which are in XML into GVM variables using the
TRN_FIELDS INI option using XPATH notation. This requires setting up the mapping with XPATH
declarations and modifying or creating the associated TRNDFDFL.DFD (Transaction) and
RCBDFDFL.DFD (Recipient Batch) Data Formation Definition files.

DFD files are used by the Documaker data storage abstraction interfaces. The data can be ASCII files,
database, etc. Documaker pulls the data from extract files (XML or ASCII, etc) in batch processes and
pushes them into field names defined in the DFD. This storage is then used as input to other batch
processes down the process chain. Overall, these files control storage and propagation of the data through
the batch system. See the “Documaker Server System Reference” documentation for configuration details.
Full detailed examples of these files using a reference configuration may be found in Appendix B.

You can also use the EXT2GVM rule to map the data. See the Rules Reference for Oracle Documaker for
more information on this rule.

Generating Database Table Rows and Writing the Document Files
You must create a database table and configure Documaker to both create the uniquely named recipient
batch output print streams and to insert a row in the table with the name and location of the each output file.
Each table row also contains the metadata fields needed for UCM ingestion. The Batch Banner and
Transaction Banner processing DAL scripts are used to write the output documents and to insert the
database table rows referencing these documents.

Batch Banner and Transaction Banner DAL processing each have a Begin and End phase. The phases are
run in the following sequence with the actions indicated:

1. BatchBannerBeginScript
Configuration is loaded, a unique Job identifier is established, a related directory under the
configuration-defined root location is created and the database connection is established.

2. TransBannerBeginScript
The batching folder unique name is defined and created and the first print stream name is defined.

3. TransBannerEndScript
The database table row is inserted with the desired metadata and a reference to the document.

4. BatchBannerEndScript
Clean-up is performed.

1 See the “Documaker Server System Reference” documentation for configuration details.
2 See the Documaker “DAL Reference” documentation.

 13

Example INI Configuration
Enabling the Batch and Transaction Banner Scripts is done via the Oracle Documaker configuration INI
file (for example, in FSISYS.INI or FSIUSER.INI). Typically the scripts are enabled for the chosen
Recipient Batch output. In the example/reference implementation Batch6 is the chosen output which is
the FILE recipient’s batch and is associated with Printer6. Here is an example configuration snippet with
the changes and additions highlighted (bold and yellow highlight) to write PDF output for Batch6 and
enable the DAL scripting calls:

< BatchingByRecip >
 Batch_Recip_Def = TRUE;"BATCH1";AGENT
 Batch_Recip_Def = TRUE;"BATCH3";INSURED
 Batch_Recip_Def = TRUE;"BATCH2";INSURED
 Batch_Recip_Def = TRUE;"BATCH4";CLAIMANT
 Batch_Recip_Def = TRUE;"BATCH4";OWNER
 Batch_Recip_Def = TRUE;"BATCH4";LIENHOLDER
 Batch_Recip_Def = TRUE;"BATCH6";FILE
 DefaultBatch = ERROR

< Print_Batches >
 BATCH1 = data\agent.bch
 BATCH2 = data\insflat.bch
 BATCH3 = data\insured.bch
 BATCH4 = data\other.bch
 BATCH5 = data\lienholder.bch
 BATCH6 = data\file.bch

< Printer6 >
 Port = data\file.pdf
 PrtType = PDF
 AORDebug = No
 AORExt = .pdf
 AORFilesPerBatch = 1000
 AORPath = c:\AOR\

; Enable a DAL library of scripts to be pre-loaded
< DalLibraries >
 LIB = aor

; Enable the Banner and Transaction DAL Scripting
< BATCH6 >
 EnableBatchBanner = Yes
 EnableTransBanner = Yes
 BatchBannerBeginScript = AOR_PREB
 BatchBannerEndScript = AOR_POSTB
 TransBannerBeginScript = AOR_PRET
 TransBannerEndScript = AOR_POSTT
 Printer = Printer6

Example DAL Script
As indicated above in the < DalLibraries > section, LIB entry, Documaker is directed to look in an
aor.dal file for the scripts listed under the < Batch6 > section. Aor.dal is a library with the definitions of
the BATCH6 DAL scripts shown in Appendix C:

This DAL scripting requires Oracle Documaker RP to be configured to connect to a database and for the
referenced table to pre-exist in that database. The table schema must agree with what the DAL will insert
into that table. This is done by first creating the database table in the target database, then setting up the
Documaker RP INI configuration for the connection to that database with the table. Finally, the Documaker
DFD (Data Format Definition) must be set up containing all these field values that are to be mapped from
GVM variables to the database table.

 14

Example Database Table Definition
Each row of the table must include a minimum set of columns required by both Documaker and the Oracle
DC to manage the list of output documents and the document output directory. The table schema must also
include additional columns of indexing data used to archive the documents with the desired set of keys and
metadata. The table below indicates the minimum required columns of the table, with their default column
names. These column names are customizable in the Documaker Source configuration file. DDL to create
the table below can be found in Appendix D.

 15

Column Type Description

JOBID VARCHAR(50)

The Documaker globally-unique job identifier which identifies a
grouping of one or more Documaker transactions for a single
import run. Imports (XML, V2) can contain one or more
transactions. This column’s value is also used by default for the
root directory folder of the output print stream.

TRANID VARCHAR(50)

The Documaker transaction identifier for a transaction with one or
more Documaker batches (recipient batches).
This column’s value is also in some implementations to map to
the Document Title in UCM and for searching should identify the
document type and purpose.

BATCHID VARCHAR (50)

The Documaker batch identifier for a document, usually the same
name as the recipient batch plus a counter. For example,
BATCH6x2 where the counter is incremented as the specified
maximum number of files per folder is reached. This columns
value is also used by default to segment the transaction folder into
sub-folders for each group of output files.

DOCID VARCHAR (50) The globally-unique document identifier.
NAME VARCHAR (30) The name of the document.
TYPE VARCHAR (30) The type of document.
TITLE VARCHAR (255) The title for the document.
AUTHOR VARCHAR (50) The author or owner of the document.
SECGROUP VARCHAR (30) The security group assigned to the document.

PFILE VARCHAR (255) A file URL or path to the document so that it can be imported into
UCM.

STATUSCD INTEGER
DEFAULT 0

This column contains the status of a document. The following
values are supported:
0 – Not yet processed by Oracle DC (“new”)
1 – Imported into UCM (“success”)
2 – Import failed (“failure”)
3 – In process by the Oracle DC (“in progress”)

STARTTIME TIMESTAMP A time stamp that indicates at which time the document import
process started. This column is updated by the Oracle DC.

ENDTIME TIMESTAMP A time stamp that indicates at which time the document import
process ended. This column is updated by the Oracle DC.

RESULTDESC VARCHAR
(2000)

A description of the outcome of the import process; updated by
the Oracle DC at the time of import. This column will have a
blank value if the document import process is successful.
Otherwise, it will contain a description of the error.

RETENTION TIMESTAMP

A time stamp that indicates when the document expires and can be
removed from the table. This value is updated by the Oracle DC
upon successful import based on the value of the
platform.retention.time configuration property which
indicates the number of days after import when the document
expires.

Table 3. Minimum DAL Output Database Table

Documaker INI Setup for the Example Database Connection
Oracle Documaker is configured to access a database and a particular table in the Oracle Documaker
configuration INI file (either FSISYS.INI or FSIUSER.INI). Documaker uses the Open DataBase

 16

Connectivity (ODBC) interface API to the database. Examples of the INI file settings for this connection
are shown below. In the example settings, Documaker is configured to connect via ODBC to a database
server called OracleXE10g with an encrypted UserID and password. In this database, Documaker is
configured below to use a table called AOR (as in “Archive of Record”.) Details on ODBC database access
configuration are in the Documaker documentation.

; Database connection info
< DBHandler:ODBC >
 Class = ODBC
 Server = OracleXE10g
 ;SubClass = ORA
 CreateTable = No
 CreateIndex = No
 ;Debug = Yes
 UserID = ~ENCRYPTED 1-S6rx_NR_wt2hsjXScy0
 PassWd = ~ENCRYPTED 1-S6rx_NR_wt2hsjXScy0

; Database Table reference, this case a table named AOR
< DBTable:AOR >
 DBHandler = ODBC

Oracle UCM Configuration
This section is not a substitute for the UCM documentation or familiarity with the UCM configuration
requirements, procedures and user interfaces. The information here is primarily focused on explaining the
minimum required UCM set up through once set of interfaces and to provide some example information to
assure a knowledgeable UCM administrator has a few reference points to understand the requirements in
this document.

A minimal UCM system for use with the Oracle DC starts with installation of the Oracle Content Server.
Development of the Oracle DC used Oracle Content Server 10gR3.

The metadata and documents you capture in Documaker and pass through the Oracle DC must have homes
in your UCM system. You must set up your UCM system with the fields needed to hold your incoming
metadata. You must also make sure there is plenty of space to store the documents you are sending in via
Oracle DC. UCM allows metadata fields to be either required or optional. The Oracle DC pre-flights the
fields provided in the database records to assure at least the fields required in your UCM configuration are
present. If the table is missing a required field definition, the Oracle DC will log this information and refuse
to finish starting up.

By default, the names of the columns in the incoming table from Documaker are used to match the data to
UCM property (field) names. Not all the table column names need be used in UCM. Many of the table
columns are used internally by Documaker and the Documaker Source modules to manage the table itself,
remove old records which have been processed and to keep track of incoming documents before they are
processed into UCM.

Within UCM, use the Configuration Manager interface to establish the UCM Information Fields
for the incoming table columns you want to capture. In the example below, Information Fields have been
established for these example fields coming in from Documaker: AGENCYID, BATCHID, CUSTID,
EFFDATE, EXPDATE, INDEX01, INDEX02, ..., INDEX12, INSADD1, INSADD2, INSCITY, INSDOB,
INSFNAME, INSLNAME, INSPHONE, INSSTATE, INSZIP, JOBID, KEY1, KEY2, KEYID, POLNUM,
RUNDATE, TRANCODE, TRANID

Of the columns shown above in Table 3, these columns are mapped by their default names to the indicated
UCM metadata fields: JOBID, TRANID, and BATCHID. These fields are shown in the figure below.

 17

 18

Oracle Documaker Connector Configuration
Oracle DC is configured using the command line parameters and these configuration files:

 The logging properties file
 The engine properties file
 The source system properties file

You can enter the names of these properties files on the command line.

The Logging Properties File
This properties file is specified by the -loginfo command line parameter. If the parameter is not
specified on the command line, the log messages are written to the console (standard out) in the following
default format:

<number of milliseconds since program start> [<current thread name>] <message priority>
<message category> <any nested diagnostic context> - <the log message>

The Connector uses the Log4J logging framework and will accept a properties-file containing configuration
values appropriate to Log4J. This section provides information on configuration values defined by the
Oracle Documaker Connector. However, it is not an exhaustive reference on the Log4J capability or
configuration options. Please see the Log4J documentation for more details.

At startup, the code queries the –Dlog4j.configuration property which should point to a valid log4j
XML configuration file. If this parameter does not exist, then the default configuration is applied (as
defined by the BasicConfigurator).

Here is an example of a command line property:

-Dlog4j.configuration=log4j.xml

Here is an example of a configuration file, such as the file referenced above, log4j.xml:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">
<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/" debug="false">

<appender name="roll-stderr" class="org.apache.log4j.RollingFileAppender">
 <param name="File" value="ucmimporter-stderr.txt"/>
 <param name="Encoding" value="ISO-8859-1"/>
 <param name="maxFileSize" value="100KB" />
 <param name="maxBackupIndex" value="5" />
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="rse %d{ISO8601} %-5p [%t] - %c-%m\r\n"/>
 </layout>
</appender>

<appender name="roll-stdout" class="org.apache.log4j.RollingFileAppender">
 <param name="File" value="ucmimporter-stdout.txt"/>
 <param name="Encoding" value="ISO-8859-1"/>
 <param name="maxFileSize" value="100KB" />
 <param name="maxBackupIndex" value="5" />
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="rso %d{ISO8601} %-5p [%t] - %c-%m\r\n"/>
 </layout>
</appender>

 19

<category name="com.oracle.documaker.ucmimporterlib.source.DocumakerSource"
additivity="false">

 <priority value="error"/>
 <appender-ref ref="roll-stderr"/>
</category>

<category name="com.oracle.documaker.ucmimporterlib.db.DBUtil" additivity="false">
 <priority value="error"/>
 <appender-ref ref="roll-stderr"/>
</category>

<category name="org.apache.ddlutils.util" additivity="false">
 <priority value="error"/>
 <appender-ref ref="roll-stderr"/>
</category>

<category name="com.oracle.documaker.ucmimporterlib.housekeeping.HouseKeeperSingleton"
additivity="false">

 <priority value="error"/>
 <appender-ref ref="roll-stderr"/>
</category>

<category name="com.oracle.documaker.ucmimporter.config" additivity="false">
 <priority value="error"/>
 <appender-ref ref="roll-stderr"/>
</category>

<category name="com.oracle.documaker.ucmimporter" additivity="false">
 <priority value="error"/>
 <appender-ref ref="roll-stderr"/>
</category>

<category name="oracle.stellent.ridc.protocol.intradoc" additivity="false">
 <priority value="info"/>
 <appender-ref ref="roll-stderr"/>
</category>

<root>
 <priority value="debug"/>
 <appender-ref ref="roll-stderr"/>
</root>

</log4j:configuration>

Examining this example file, we see that it contains seven categories. Categories are used to enable and/or
disable logging at the class (or component) level. For example, the
com.oracle.documaker.ucmimporterlib.source.DocumakerSource category is used to
enable or disable logging for the DocumakerSource class. Changing the priority value to debug
instead of error will enable logging of debug and error statements, while leaving the value set to error
will only log errors.

There are several priority values available in log4j, sorted in the table below from most restricted (least
logging overhead) to least restrictive (most logging overhead):

 20

Logging Priority Value Description
Fatal Logs Fatal statements.
Error Logs Error and Fatal statements.
Warn Logs Warn, Error and Fatal statements.
Info Logs Info, Warn, Error and Fatal statements.
Debug Logs Debug, Info, Warn, Error and Fatal statements.

Table 4. log4j Logging Priorities

Category definitions also reference one or more appenders. These appenders are defined earlier in the
property file. In this example file, two appenders are defined: roll-stderr and roll-stdout.
Category com.oracle.documaker.ucmimporterlib.source.DocumakerSource, for
example, references the appender (appender-ref) named roll-stderr.

 Each appender defines a component that will append a new log record to the end of a given log destination,
in a particular way. For example, the first appender element named roll-stderr will direct the log
record output to a file named ucmimporter-stderr.txt. The other parameters for the appender
define exactly how the appender translates and formats the log data before writing it to the destination. In
the case of this file, a parameter (maxFileSize) also places a maximum size on the destination file beyond
which it will be closed, renamed and a new file of the same name started.

You can use these categories to debug the DocumakerSource implementation:

 com.oracle.documaker.ucmimporterlib.source.DocumakerSource

 com.oracle.documaker.ucmimporterlib.db.DBUtil

 org.apache.ddlutils.util

The following categories can be used to debug the HouseKeeperSingleton implementation:

 com.oracle.documaker.ucmimporterlib.housekeeping.HouseKeeperSingleton

 com.oracle.documaker.ucmimporterlib.db.DBUtil

 org.apache.ddlutils.util

The following categories can be used to debug the Connector:

 com.oracle.documaker.ucmimporter.config

 com.oracle.documaker.ucmimporter

 oracle.stellent.ridc.protocol.intradoc

Log4j is very configurable and flexible. Please refer to the Apache documentation for the Log4J project to
learn more.

The Engine Properties File
This properties file is specified by the -config command line parameter and contains the configuration
properties for the Connector’s engine. Of special interest, this properties file also contains the credentials

 21

used to connect to UCM. This file can contain any configuration data except the configuration file path (the
path to itself) and the log configuration file path.

All of these properties can also be overridden by command line parameters of the same name (simply
prepend a dash-character (-) to the name in the table below). There is therefore an order to the sources of
these parameters: default values (if any) are overridden by the contents of the properties file. If the property
is also specified on the command line, that value takes the highest precedence, overriding both the default
and file contents values for the property.

Also in this file are source and client class names, various timeouts, and a number of other flags and/or
commands.

UCM Credential & Connection (Repository) Properties
Property Name Description Default

ucmpassword The password for connections to the content management
system.

ucmuser The user name for connections to the content management
system (UCM in this case).

connectionstring_#
Possible connection strings used by the Client implementation.
Each of these has a number appended to it signifying its priority
(‘0’ being the highest).

General Configuration Properties
Property Name Description Default

batchmode This flag tells the Connector to run in batch mode (see “Modes
of Operation”). false

config Name of the core Connector application configuration file. This
is the file in which these properties (in this table) may be used. null

deletefiles If true, Oracle DC will delete content files after they are
successfully imported. false

loginfo Name of the log4j properties file with the logging configuration. null

sourceconfig Name of the properties file holding the configuration of the
Documaker Source. null

Performance Tuning Properties
Property Name Description Default

housekeepingwait The wait time between calls to the source system’s cleanup
functionality. 60

maxrecords Maximum number of records that should be retrieved from the
document source for processing before processing them. 10

sourcecount Specifies the number of concurrent connections to the document
source system. 1

sourcewait Number of seconds a processing thread pauses when no new
documents are available from the source system. 2

threadcount Number of processing threads within the engine that will import
documents into the repository.

Server / Command Mode Configuration Properties
Property Name Description Default

hostName
When running in client mode (see “Modes of Operation”), this
property specifies the Connector instance to which commands
are sent.

null

port
The command channel port number which a server instance of
the Connector opens for listening and to which a client instance
will connect and send commands.

23232

password Guards access to the command channel in a server instance. The

 22

password specified to the server instance must be provided by a
client during each command request.

shutdown
If present, the Oracle DC instance runs in command mode and
sends a shutdown command to another Oracle DC instance
running in server mode.

Product Development Customization Properties (Should usually not be changed)
Property Name Description Default

clientadminname

The Java class name of the ClientAdministration
implementation the Connector will use to communicate with the
document repository for non-import specific functions. Oracle
DC installs and uses the UCM client admin interface.

clientname

The Java class name of the ClientInterface implementation the
Connector will use to communicate with the document
repository. Oracle DC installs and uses the UCM client
interface.

source
The name of the Source interface implementation that the
Connector will use to communicate with the document provider.
Oracle DC installs and uses the Documaker Source.

Table 5. Engine Properties

The Documaker Source System Properties File
This properties file is specified by the -sourceconfig command line parameter. Each of these
properties is passed to the Documaker Source component. The configuration properties listed in the table
below are supported. Every property name begins with the prefix platform.. For the sake of brevity, this
prefix is not repeated in the table below.

This property file is shared between the two principal programming interfaces. This table is referenced in
the later section for developers and the distinction is important there. Not all the properties apply to both
interfaces, but many of them do. In the table below, the properties that apply to both interfaces are not
colored. Those that apply only to the Source implementation are in green and those applying only to the
Housekeeping interface are in blue.

Property Name
(without ‘platform.’
prefix)

Description

Basic Configuration Properties (Required)

check.length

Set value: true or false. The default value is false.
Configures whether or not the Oracle DC should validate the length of
the data retrieved for each column before passing that data back on to
UCM. When enabled via a value of true or yes, the length of the data
retrieved is checked against the length of the UCM metadata for that
column and if the length of the data exceeds the length of the UCM
metadata, a LengthCheckException is thrown.

retention.time
Indicates how long records should remain in the table once their
STATUSCD is set to the imported/success value of 1. The default value
is 7 (days).

security.group Configures the default security group for a UCM FileData object.
Database Connection Properties (Required)
table Sets the JDBC database table name.
timeout.seconds Configures the timeout in seconds for JDBC connections. The default

 23

value is 15 (seconds).

fetch.size Configures how many records are read and processed at one time. The
default is 10.

url The JDBC database URL.
driver The JDBC driver name to use.
principal The JDBC account name used for authentication to the database.
credentials The JDBC password used for authentication to the database.
schema The table schema. (Oracle databases only.)

version The Database version. (Oracle databases only.) Acceptable values are
Oracle8, Oracle9, Oracle10, or Oracle11.

catalog The table catalog. (Oracle databases only.)
Database Table Customization Properties (Optional)

system.fields

Maps the default system field names to other table column names. The
default system field names are: BATCHID, DOCID, NAME, TYPE,
TITLE, AUTHOR, SECGROUP, PFILE, STARTTIME, ENDTIME,
RESULTDESC, STATUSCD, and RETENTION. The format of the
value for this property is a comma-separated list of name-value pairs:
systemfieldname=tablecolumnname,....
Here is an example:
DOCID=FID,NAME=DOCNAME,BATCHID=TRANID
Some of these fields may also be mapped to new names with other
specific properties described in this table.

filter Maps the STATUSCD system field to a different table column name.

filter.value
Maps the filter value of the STATUSCD system field to a value other
than the default value of 0.

filter.update.value
Maps the filter update value of the STATUSCD system field to a value
other than the default value of 3.

retention.filter Maps the RETENTION system field to a different table column name.
Database Connection Maintenance Properties (Should usually not be changed)
max.active.connections Maximum active connections in the connection pool The default is 50.
max.idle.connections Maximum idle connections in the connection pool. The default is 25.
min.idle.connections Minimum idle connections in the connection pool. The default is 15.

max.wait.time.seconds Maximum number of seconds to wait for a connection from the
connection pool. The default is 30.

pool.initial.size Initial connection pool size. The default is 25.
max.open.prepared.

statements
Maximum number of opened prepared statements to keep for the
connection pool. The default is 15.

test.while.idle Whether to test connection objects while idle. The default is true.

test.on.borrow Whether to test connection objects when obtaining a connection. The
default is true.

test.query.string
The query string to use for testing connections. The default is 'select
1 from tableName'. (See table above.)

min.eviction.idle.
time.millis

How long connections should be idle before they are cleaned up. The
default is 600000 or 10 minutes.

time.between.eviction.
runs.millis

How often should cleanup of idle connections be performed? The
default is 300000 or 5 minutes.

 24

tests.per.eviction.run How many connections to test each run. The default is 25.
Database Connection Maintenance Properties (Should usually not be changed)

housekeeping.root
A comma-separated list of top-level file system directories that should
be cleaned. All directories within each of these directories will be
scanned by the housekeeping process.

housekeeping.transact.
file

The name of a file which if present in a directory indicates the
processing of the directory contents is complete and it is therefore
ready for clean-up. The default name is transact.dat.

Table 6. Documaker Source Properties

Running the Program
The Oracle DC can be run from the command line or as a Windows service. Command line execution is
generally done with a script, since the Java command line is so complex. The basic command line format
is:

java –cp classpath mainclass parameters

The classpath is installation dependent. Generally, it will be something like

log4j-1.2.8.jar:/Users/gene/Development/Java/Tools/oracle-ridc-client-
11g.jar:/Users/gene/Development/Java/Tools/commons-codec/commons-
codec.jar:/Users/gene/Development/Java/Tools/commons-httpclient-3.1/commons-
httpclient-3.1.jar:/Users/gene/Development/Java/Tools/commons-logging-
1.1.1/commons-logging-
1.1.1.jar:target/UCMImporter.jar:../ucmimporterlib/target/UCMImporterLib.jar

mainclass is always com.oracle.documaker.ucmimporter.Driver

The command-line parameters might be something like this (see below for detail):

-loginfo log4j.properties -config ucmimporter.properties -sourceconfig dmkrsrc.properties

Together, the overall command-line to run the program might look like this:

java -cp log4j-1.2.8.jar:/Users/gene/Development/Java/Tools/oracle-ridc-client-
11g.jar:/Users/gene/Development/Java/Tools/commons-codec/commons-
codec.jar:/Users/gene/Development/Java/Tools/commons-httpclient-3.1/commons-
httpclient-3.1.jar:/Users/gene/Development/Java/Tools/commons-logging-
1.1.1/commons-logging-
1.1.1.jar:target/UCMImporter.jar:../ucmimporterlib/target/UCMImporterLib.jar
com.oracle.documaker.ucmimporter.Driver -loginfo log4j.properties -config
ucmimporter.properties -sourceconfig filesource.properties

Running the Oracle DC as a Windows service is accomplished via the Windows Service Control Manager.

Modes of Operation
The Oracle DC has three modes of operation. The mode is selected based on the command-line and
configuration file option settings:

1. Server or Normal continuous mode – Oracle DC runs until it receives a shutdown command,
polling the Source instances for documents to process. To receive control commands, Oracle DC
opens a TCP/IP socket and listens for incoming messages. The port number may be controlled by
a configuration parameter and a password may be established which must be supplied along with
any commands.

 25

2. Batch or One-Shot mode – In this mode, Oracle DC creates the configured number of
Documaker Source instances, calls each one once to fetch and process a single batch of
transactions (if any are available) and then terminates. No socket is opened for commands and
there is no subsequent polling of the Documaker Source instances. In the case of the Oracle DC,
this would allow a single pass through any records in the database table for each configured
Source instance.

This is expected to be used primarily for a non-persistent, static document source, rather than with
the Oracle Documaker Connector. An example of such a source would be one which read a named
input text file. Such a source has no means to continually receive new documents, so once the
configured source of documents (such as the single named input file) is exhausted, there is no
purpose in having the Connector application continue to run. This would function similarly to the
UCM BatchLoader application.

3. Command mode – Oracle DC may also be run solely to send a command to another copy of
Oracle DC running in server mode (above). If a command is specified as a configuration option
(normally on the command line, but could be in the configuration file), then Oracle DC runs in this
mode, sends the command to the designated hostname and port with the supplied password, if any,
and immediately terminates.

How Oracle DC Determines the Run-Mode
When first run, Oracle DC processes the configuration file and the command line and then examines the
batchmode parameter value. If set true, Oracle DC operates for the current run in batch mode. If
batchmode is not specified or false, Oracle DC looks for a command keyword in the parameters. The
only valid command keyword is shutdown. If present, this run will be in command mode and will send a
shutdown command to the copy of Oracle DC defined by the parameters:

Stopping a Server-Mode Instance
If an Oracle DC is running in Server mode on the local machine with the default port number and a
configured password of boogie, then it may be stopped by running the Oracle DC again with this
command line:

java -cp log4j-1.2.8.jar:/Users/gene/Development/Java/Tools/oracle-
ridc-client-11g.jar:/Users/gene/Development/Java/Tools/commons-
codec/commons-codec.jar:/Users/gene/Development/Java/Tools/commons-
httpclient-3.1/commons-httpclient-
3.1.jar:/Users/gene/Development/Java/Tools/commons-logging-
1.1.1/commons-logging-
1.1.1.jar:target/UCMImporter.jar:../ucmimporterlib/target/UCMImporterLi
b.jar com.oracle.documaker.ucmimporter.Driver -loginfo log4j.properties
-shutdown -password boogie

Command-line Parameters Detail
The Oracle DC command-line parameters are given in the following format:

-property [value] –property [value]...

That is, properties to be set on the command line are listed separated by spaces and each property name is
prefaced with a dash (or hyphen character.) If the property requires a value to be set, the value is placed
immediately after the property name and a space. The only property not requiring a value is the command
property, shutdown.

Examples
Some examples of command-line parameters portions:

 26

-loginfo log4j.properties -config odc.properties -sourceconfig odm.properties

This example would be used to run Oracle DC in normal mode, with log settings coming from the file
log4j.properties, the Connector settings coming from the file odc.properties and the Documaker
Source configuration coming from the file odm.properties. The program would open a socket on the
default port and accept any shutdown command set to it.

-loginfo log4j.properties -password boogie

This example would be used to run Oracle DC in normal mode, with log settings coming from the file
log4j.properties. The program would open a socket on the default port, but would only accept
shutdown commands sent to it with the proper password of boogie.

-loginfo log4j.properties –password boogie -shutdown

This example would run Oracle DC in command mode, with log settings coming from the file
log4j.properties. The program would connect to another Oracle DC instance running on the same
computer via a socket on the default port and would then send the shutdown command with the password
boogie.

 27

Customization for Developers

The Oracle Documaker Connector is built on a generic framework for building document archiving or
transmission services. The core of the Connector is a multi-threaded Java application that is highly
configurable and customizable (via new implementations of the source and client interfaces). This
section is written for programmers who which to utilize the Connector framework and create a new
application which can either draw documents from a source other than Oracle Documaker and/or send
those documents to a repository interface other than UCM. This section, therefore gets under the covers
of the Oracle DC, describes how it is implemented and discusses the Oracle DC as a tool framework.

Architecture
When the core Connector Java application is run, it dynamically loads Java classes which provide the
interfaces to both the Source of incoming documents or files as well as the Client code which submits
these files for forwarding or storage into a repository system such as Oracle UCM.

The main application thread runs in the core Connector application and that code drives both the
dynamically-loaded classes by calling out to them for services. The application polls the Source for
incoming documents (on threads which may block until a document is available) and then pushes each
document to the Client side when it is available. Status is relayed by the Connector between Client-side
and Source-side so that appropriate chain-of-custody tracking can be implemented.

The Source class and the Client class must each be configured by name to the core Connector
application. There can be only one of each (named) class, so if multiple, different sources are to be polled
for incoming documents, multiple instances of the Connector application must be configured and run
separately. However, within each Connector application instance, many instances of each class may be
instantiated by the Connector application and run on separate threads to provide scalability and better
performance.

The Connector application makes available both configuration file and logging services to the source and
client class implementations, however these classes (and their supporting classes) are free to do what
they like with respect to configuration and logging.

One of the core Connector configurations is the number of concurrent processing threads to use so the
burden of starting and managing multiple processing threads which call both the Source and Client code
is shouldered by the core Connector application. The configured Source and Client should not start
additional threads for this purpose.

Class Structure
The Connector is made up of three parts: the source implementation, the engine, and the client adapter
implementation. The Connector defines the engine functionality and the interfaces to both the source
and client implementation classes. Consequently, the Connector provides the translation layer between
independent implementations of document or file sources and client system adapters.

 28

Figure 1 – The Connector Structure

Source Implementation
This component provides the specific functionality for interacting with the document source by
implementing the Source interface. It is responsible for all communication between the Connector and
the document source, for validating the document meta-data information, and for any housekeeping
functionality needed to manage the document source.

The Connector Engine calls the Source for two primary purposes. First, the Source provides a
housekeeping class that is called with a periodic heartbeat thread. This processing should not block for
long periods of time. Second, the Source is called for document processing on a configurable number of
threads, each of which may block while waiting for incoming documents.

The Connector Engine
The Connector Engine is the primary controller for the service, contains the main application thread and
starts all the additional housekeeping and payload work threads. It creates instances of the Source and
Client implementations (based on configuration data) and drives the Source-to-Client process.

Client Implementation
This component provides the specific functionality for interacting with the document repository (or other
configured service). This includes managing connections, sending requests and processing results/errors.

The Client is called, as is the Source, for both periodic housekeeping functions and on a variable number
of payload threads that are actually performing document transfer operations.

Functional Breakdown
The following sections describe the three principal areas of application functionality as implemented by
the Connector:

1. configuration

2. processing

3. shutdown

So
ur

ce
 Im

pl
em

en
ta

tio
n

The
Connector

Engine
C

lient Im
plem

entation

 29

Configuration
This functionality is executed both when the application begins and when a change is detected in the
specified configuration file (by monitoring its last modified date). It consists of:

1. initializing the logging framework,

2. parsing the configuration file,

3. processing any additional command-line arguments, and

4. (re-)initializing the connector.

Initializing the Logging Framework
The Connector uses the Log4j logging library. At startup, it queries the command-line for the
-loginfo parameter that specifies the library’s configuration properties. If this parameter does not
exist, then the default configuration is applied (as defined by the BasicConfigurator).

Parsing the Configuration File
The order of precedence (highest to lowest) for configuration data is command-line, configuration file,
and default values. The configuration file (as specified by the -config command-line parameter) is
parsed and the values found are stored for later usage. This file can contain any configuration data except
the configuration file path and the log configuration file path.

Command-line Processing
The last step of determining the configuration data is to process the remaining elements of the command-
line. These values overwrite any defaults or those found in the configuration file.

Initializing the Connector
The actions that occur, in order, during the initialization of the Connector:

 The configuration watch thread is created. Every 15 seconds, this thread looks for a change in
the configuration file. If it finds one, it sends a reset message to the Connector’s engine. This
message doesn’t interrupt any ongoing processing. It is held until the Connector is otherwise
idle. Processing this message sends the Connector back through this initialization process.

 The command channel and thread is initialized. This thread monitors the command socket for
shutdown requests that may or may not be password protected.

 The client service is checked for availability. A client implementation is instantiated and a ping
request is issued every second until a valid response is returned. Until this is so, no further
initialization will occur, as a valid document repository is necessary for the Connector to
function properly.

 The source pool is created and initialized. This pool contains the configured count of the
configured source objects.

 A single housekeeping thread is created with a housekeeping object acquired from a source
object. This thread calls the housekeeping object’s cleanUp method once every configurable
number of seconds to allow the source system to be correctly maintained. This housekeeping
functionality is source system dependent. The client-side object(s) have no analogous
functionality, as those systems should maintain their own states. Note also that this object is
optional; a source that returns no housekeeping object will cause this initialization step to be
skipped.

 30

 The batch management thread is started. This process along with its child threads and
functionality are the engine of the Connector. This thread receives its termination notice from
the main application thread.

 Finally, the main application thread begins waiting for the command channel thread to terminate
signaling either the reset or termination of the application.

At this point, the Connector simply waits for notification from the command channel that a shutdown
request has been received.

Processing
The engine component provides the Documaker Connector processing functionality. This component is
centered on the BatchManager and BatchProcessor objects.

The BatchManager
The BatchManager controls the lifecycles of the configured number of BatchProcessor threads. On
startup, it creates and initializes each of these threads. Then, while waiting for the shutdown command,
every 10 seconds it directs the source pool to revalidate any failed source objects. Upon receiving a
shutdown command, the BatchManager messages each of its BatchProcessor threads with a shutdown
command. When all of these child threads have terminated, the BatchManager thread itself terminates
allowing the main application thread to continue its cleanup.

The BatchProcessors
These threads/objects are responsible for the actual importing of documents into the document repository
(UCM). The steps they follow to achieve this are:

 Acquire a source object from the source pool. This will be maintained until the end of the
import attempt.

 Acquire a file data batch from the source object. This is a two-step process. First, a source
object is acquired from the source pool. The BatchProcessor requests a source object and, if one
is available, uses that for step two. If one is not available, the BatchProcessor waits 250
milliseconds and asks again. In step two, the BatchProcessor queries the source object for a file
data batch. It is up to the implementation of the source object as to whether it blocks or not, but
the recommended action is to either return an empty list or null if no file data objects are
available. In this case, the BatchProcessor will wait the configured number of seconds, and ask
again. During both step one and two, if a shutdown message is received, the BatchProcessor
terminates without making additional requests.

 For each file data object in the batch, call the client implementation’s importFile method,
and (upon successful completion) if the deletefiles configuration value is set, delete the
source file.

 Call the ackProcess function on the source object so that it may update the source system
with the results of the import attempts. This method processes the entire batch at once and need
not be called for each document.

 Return the source to the pool.

These steps are repeated until the BatchProcessor receives a shutdown message.

Shutdown
This is the simplest part of the application. The Connector sends shutdown messages to all the worker
threads and waits for them to terminate before exiting.

 31

Core Engine Interfaces
The Connector Engine manages two systems: the Source system and the Client system. Each of these
defines the interfaces necessary to administrate and use the particular system.

The Source System
The two main interfaces of the Source System are the Source interface that allows the engine to
communicate with the document source (like Documaker) and the Housekeeping interface for the
management/maintenance of the document source.

Overview
Implementations of this interface provide access to the document source. The interface’s methods are
broken up into three types: configuration and maintenance, main functionality, and interface health.

Since the engine cannot know a priori the specific configuration and management functions needed for
each possible source, this interface provides entry points for an implementation’s version of each of
these. The configure and getHouseKeeper functions are the first to be called
(getHouseKeeper is only called on one instance) supplying any source specific setup data needed and
to retrieve the maintenance interface. Additionally, the setMaxBatchSize method is called to limit
the number of records returned from the source. This helps balance the document load over the available
processing threads.

The functional entry points are getFileBatch, which returns a list of FileData objects describing
the documents to be imported, and ackProcess which accepts a list of FileData objects that contain
the results of their import attempts.

The isValid entry point allows the engine to monitor the health of a particular instance. If a Source
instance generates an error during normal processing, it is marked invalid and set aside. Once every 10
seconds, the Connector calls the isValid method on these instanced giving them a chance to recover
from their previous error state. If they return true, they are re-added to the available pool and may be
used by subsequent batch processor requests.

The Source Interface in Java

package com.oracle.documaker.ucmimporterlib;

import java.util.List;
import java.util.Properties;

import com.oracle.documaker.ucmimporterlib.exceptions.SourceException;

/**
 * Source is the interface that must be implemented by any class provided in the -
input parameter of the ucmimporter application.

 *
 * @since 1.0
 *
 */
public interface Source {
 /**
 * Configures the file data source with the provided properties. These will be
specific to the source type and will have no pre-processing done before

 * this call is made.
 *
 * @param configData The configuration data needed by this source type
 * @param customProperties The list of custom properties that may be associated

 32

with each file
 * @param securityGroups The list of possible security groups that may be
assigned to each file upon import

 * @throws SourceException If a configuration error occurs during the
initialization of this file data source

 * @see MetaDataDefinition
 */
 public void configure(Properties configData, List<MetaDataDefinition>
customProperties, List<String> securityGroups) throws SourceException;

 /**
 * Returns the Housekeeping interface to the object that is to maintain the file
data source.

 *
 * @return The Housekeeping implementation or null if no housekeeping is necessary.
 */
 public Housekeeping getHousekeeper();

 /**
 * Returns a list of FileData objects that will be processed by the ucmimporter.
Each FileData object contains the necessary data for import

 * into the Oracle Universal Content Manager.
 *
 * @return A List of FileData objects or null if none or available
 * @throws SourceException If the file data source cannot generate a list (i.e. it
has been closed)

 * @see FileData
 */
 public List<FileData> getFileBatch() throws SourceException;

 /**
 * Processes the FileData list results. This may update/delete rows in a database
table and/or retry failures.

 *
 * @param fileData A list of FileData objects that has been processed by the
ucmimporter application

 * @throws SourceException If an error occurs during processing that invalidated
this instance.

 * @see FileData
 */
 public void ackProcess(List<FileData> fileData) throws SourceException;

 /**
 * Determines if the current source object is valid and able to process requests
 *
 * @return True if the current source can process requests, false otherwise
 */
 public boolean isValid();

 /**
 * Sets the maximum size of the list FileData objects that can be returned by the
getFileBatch method. Unless specified by the ucmimporter

 * application, this value is implementation specific. Note that this field can
change during runtime (possibly due to performance issues).

 *
 * @param maxBatchSize the maximum number of FileData objects returnable from
getFileBatch

 */
 public void setMaxBatchSize(int maxBatchSize);

 /**
 * Closes the current Source object and cancels any getFileBatch or ackProcess
calls in process.

 33

 */
 public void close();
}

The Housekeeping Interface Overview
The Housekeeping interface has just two entry points: cleanup, called periodically to give the
document generation service a chance to do any maintenance, and close, called when the Connector is
shutting down.

The Housekeeping Interface in Java

package com.oracle.documaker.ucmimporterlib;

import com.oracle.documaker.ucmimporterlib.exceptions.HousekeepingException;

/**
 * Housekeeping is the interface that must be implemented by any class that will

provide Source housekeeping functionality. This class will
 * be returned by the getHousekeeper method of the Source interface.
 *
 * @since 1.0
 *
 */
public interface Housekeeping {
 /**
 * Executes any cleanup processing necessary for the maintenance of the Source

implementation.
 *
 * @throws HousekeepingException If a fatal error occurs during the housekeeping

process
 */
 public void cleanUp() throws HousekeepingException;

 /**
 * Closes the current Housekeeping object and cancels any cleanUp calls in

process.
 */
 public void close();
}

The Client System
The two main interfaces of the Client System are the ClientAdministration interface that handles non-
import specific client functions, and the Client interface that allows the engine to communicate with the
document repository, such as UCM.

The ClientAdministration Interface Overview
Ensuring the client system, usually a document repository, is active and acquiring a list of the expected
meta-data to be provided during each document input are the main functions of this interface.

The ClientAdministration Interface in Java

package com.oracle.documaker.ucmimporter.client;

import java.util.List;

 34

import com.oracle.documaker.ucmimporter.exceptions.ClientException;
import com.oracle.documaker.ucmimporterlib.MetaDataDefinition;

public interface ClientAdministration {
 /**
 * Returns the meta-data information each file needs to provide for import

functionality.
 *
 * @return The collection of MetaDataDefinition objects representing import

information
 * @throws ClientException if a content management system error occurs
 */
 public List<MetaDataDefinition> getMetaDataInfo() throws ClientException;

 /**
 * Pings the content management server to see if it is alive.
 *
 * @return True if the server responds, False otherwise
 * @throws ClientException if a content management system error occurs
 */
 public boolean ping() throws ClientException;
}

The Client Interface Overview
The Client interface provides the communication channel between the Connector’s engine and the
document repository (UCM). It consists of three entry points: beginImport called before any files are
imported, importFile called to import a specific file, and endImport called after all file import
attempts have been made.

The Client Interface in Java

package com.oracle.documaker.ucmimporter.client;

import com.oracle.documaker.ucmimporter.exceptions.ClientException;
import com.oracle.documaker.ucmimporterlib.FileData;

/**
 * ClientInterface describes the functionality that must be implemented by each

client class.
 *
 * @since 1.0
 *
 */
public interface ClientInterface {
 /**
 * Initializes the import of a batch of files.
 *
 * @throws ClientException If the batch import initialization fails
 */
 public void beginImport() throws ClientException;

 /**
 * Imports a single file into the content management system.
 *
 * @param fileData The meta-data associated with the file being imported.
 * @throws ClientException If a non-import related error occurs during

processing. Import errors will be denoted in the
 * fileData object's resultCode field.
 */
 public void importFile(FileData fileData) throws ClientException;

 35

 /**
 * Finalizes the import of a batch of files.
 *
 * @throws ClientException If the batch import finalization fails
 */
 public void endImport() throws ClientException;
}

Other Interfaces
There are a number of other interfaces that source and client implementations must provide, but these are
minor and have to do mainly with supporting classes. See the javadocs for information about these.

The Documaker Source System Implementation
The Source System interfaces described above are implemented to create the Source for Oracle
Documaker. This section is notes on the specifics of the Documaker Source implementation. Since the
Source and Client systems must cooperate to make the Connector implementation a success, these notes
would be useful to someone implementing a different Client system to be used with the Documaker
Source.

Source-Interface Implementation

configure Method:
The Documaker source class has many flexible configuration options which are provided via a Properties
object argument to the configure method. The configure method is used to configure a Documaker
source instance prior to retrieving records / documents.

The configure method also takes as argument a list of MetaDataDefinition objects that define the column
names, types and sizes expected by UCM. This list is used by the Documaker source to make sure any
UCM requirements are met prior to returning a batch of documents for import.

Logging Conflict
The core Connector and Documaker source both use the Log4j logging library. At startup, the
code queries the –Dlog4j.configuration property which should point to a valid log4j XML
configuration file. If this parameter does not exist, then the default configuration is applied (as
defined by the BasicConfigurator). Today, this second set of configuration data overrides the
configuration described in the document.

Here is an example of a command line property:

-Dlog4j.configuration=log4j.xml

getHouseKeeper Method:
The getHouseKeeper method returns an instance of the HouseKeeperSingleton Class which implements
the Housekeeping interface. This class is responsible for performing the cleanup of disk and table
resources. It removes the left over empty directories produced by the Documaker Batch process once
their documents have been imported into UCM and removed from disk by the Documaker Connector.
Table records are only removed when the current date time stamp exceeds the RETENTION date time
stamp and their STATUSCD value is equal to 1.

getFileBatch Method:
Once configured, the Documaker Source returns documents ready for import into UCM via calls to its
getFileBatch method. The getFileBatch method also sets the STATUSCD column value equal to 3 for
the records that represent the documents returned so that other Documaker source instances know not to

 36

process those records again. It also sets the STARTTIME time stamp value to indicate at which time the
import process began.

ackProcess Method:
The Documaker source updates the STATUSCD column for each record that represents a document once
that import process takes place. It does this via the ackProcess method which takes as argument a batch
of documents that were processed by UCM. The ackProcess method sets the value equal to 1 for
successful imports and 2 for failed imports. In addition, ackProcess also updates the ENDTIME time
stamp to indicate when the import process ended. It then calculates the RETENTION time stamp value
based on the value provided by the platform.retention.time configuration option and updates the column
with the expiration date. During failed imports, ackProcess also updates the RESULTDESC column.

isValid Method:
Validates the DocumakerSource instance.

setMaxBatchSize Method:
Sets the number of records getFileBatch method should return.

close Method:
Cleans up resources and JDBC connections when the DocumakerSource instance is no longer needed.

getTableColumns Method:
(Extension to base interface) Returns a List of ColumnMetadata objects representing the table metadata.

Housekeeping-Interface Implementation
The Housekeeping interface is implemented for Documaker in the HouseKeeperSingleton Class. This
section is notes on the method implementations in that class.

cleanUp Method:
Performs cleanup of disk and table resources. Call this method periodically to perform cleanup of disk
and table resources. Disk resources are only cleaned if there is one or more roots specified in the
platform.housekeeping.root property passed into the getInstance method. Folders under each root are
only cleaned if they contain the file specified by platform.housekeeping.transact.file property, which
signifies they are ready for cleanup. Table resources (records) are only cleaned (removed) if the current
date exceeds their RETENTION value.

close Method:
Cleans up resources and JDBC connections when the HouseKeeperSingleton instance is no longer
needed.

 37

Appendix A – Windows Service Application

dm_ucm_connector.exe Service Application
This application is a launcher/wrapper for the Oracle DC Connector. It loads and calls the more generic
dmservice.dll with parameters specific to the Oracle DC. This application is set up to be run as the
Windows service. It can perform this setup itself or undo this setting by being run from the command
line. If run from the command line, there must be a parameter of either:

install Installs the Windows service and terminates.

uninstall Removes the Windows service and terminates.

Example: dm_ucm_connector.exe install

If the program is run without any parameter, it expects to be running as a Windows service. It loads the
dmservice.dll, redirects both standard out and standard error output to files and attempts to
register with the Windows Service Manager. If the application is not running as a service, these calls will
fail and the application terminates. Therefore, this application should not be run from the command line.

The dmservice.dll
The dmservice.dll is a generic tool for running a Java application as a Windows Service. The DLL
is loaded and called by the dm_ucm_connector.exe application. It is parameterized by a parameter
file named after the application, in this case dm_ucm_connector.properties. The DLL is
therefore reusable for other Java applications by writing a wrapper application with a different name.
Oracle DC only uses it from the dm_ucm_connector.exe application.

The dm_ucm_connector.properties File
When called to run a Java application, dmservice.dll looks for a name.properties file and uses the
contents to load and run a java application as a service. The name portion of the properties file name is
derived from the name of the calling application, so in the case of the Oracle DC, the service
configuration is read from the file:

 dm_ucm_connector.properties

The properties in this file and the default values provided in the case of the Oracle DC are given in the
table below.

Oracle DC Service Wrapper Properties
Oracle DC Default Value Property Name Description
0

service.debugging Set to 1 to enable debug-level logging to the file
dm_ucm_connector-service.log.

service.jvm.args.length 2

 38

Count of service.jvm.args.# arguments.
The properties starting with the service.jvm prefix define the
parameters that are passed to the JVM when it is created. These are not
the parameters that will be passed to the main() function in Java (see the
service.main prefix items below).
-Djava.class.path\=lib/DocucorpStartup.jar

service.jvm.args.1
1st argument to the JVM
-Dlog4j.configuration\=log4j.xml

service.jvm.args.2
2nd argument to the JVM
com/docucorp/startup/Startup

service.startup.class Path to the Java class which contains the main() function called to start
the Java application.
C\:\\Program
Files\\oracle_dm_ucm_connector\\jre\\bin;C\:\\Program
Files\\oracle_dm_ucm_connector\\jre\\bin\\client; service.path
Directories pre-pended to the PATH for the service session. The main
use of this is to define the JVM to be used to run the program.
5

service.main.args.length Count of service.main.args.# arguments below. The properties
starting with the service.main prefix define the parameters that are
passed to the Java main function.
com.oracle.documaker.ucmimporter.Driver

service.main.args.1
1st argument to the main Java class above.
-config

service.main.args.2
2nd argument...
ucm_connector.properties

service.main.args.3
3rd argument...
-sourceconfig

service.main.args.4
4th argument...
documaker_db.properties

service.main.args.5
5th argument...

 39

Appendix B – Example Files Using TRN_FIELDS
INI Options to Map Index Data in Documaker

XML Extract Input to Documaker
This file is the inbound variable data to Documaker. This example contains two transactions, each of
which will generate one or more output documents. Each transaction is an XML document and each
starts with the <?xml...> header record indicated in bold. The XML is concatenated into a stream into
Documaker. In this example text, the bold blue text is mapped data which will be used as metadata in
UCM.

<?xml version="1.0" encoding="UTF-8"?>
<InterfaceRequest>
 <Header>
 <Key1>DOCCDEMO</Key1>
 <Key2>LIFE</Key2>
 <KeyID>67-875747</KeyID>
 <Run_Date>01-OCT-2008 04:12:58 PM</Run_Date>
 <TRANCODE>NB</TRANCODE>
 <DOCTYPE>LIFE</DOCTYPE>
 <PRODUCT>Foundation Life</PRODUCT>
 <SECGROUP>Archived</SECGROUP>
 <AUTHOR>Steven Saunders</AUTHOR>
 <CABINET>CAB1</CABINET>
 </Header>
 <SystemRequest>
 <MessageID>1236474</MessageID>
 <Target>EPOLICY</Target>
 <Target>
 <GO>35235</GO>
 <mode>print</mode>
 </Target>
 <CMD>Print</CMD>
 </SystemRequest>
 <Data>
 <POLICY_NUMBER>67-875747</POLICY_NUMBER>
 <POLICY_ISSUE_DATE>01-OCT-2008 04:12:58 PM</POLICY_ISSUE_DATE>
 <EFFDATE>01-NOV-2008 12:00:00.00 AM</EFFDATE>
 <EXPDATE>01-NOV-2009 12:00:00.00 AM</EXPDATE>
 <CLASS_OF_RISK>A</CLASS_OF_RISK>
 <STATE_CODE>TX</STATE_CODE>
 <PAYEE>Carl Roberts</PAYEE>
 <CUSTID>cjr01</CUSTID>
 <INSURED>
 <PREFIX>Mr.</PREFIX>
 <FNAME>Carl</FNAME>
 <MNAME></MNAME>
 <LNAME>Roberts</LNAME>
 <SEX>M</SEX>
 <ADDRESS1>2727 Paces Ferry Road</ADDRESS1>
 <ADDRESS2>Suite II-900</ADDRESS2>
 <CITY>Atlanta</CITY>
 <STATE>GA</STATE>
 <ZIP>30339</ZIP>
 <BIRTHDATE>15-JUL-1980</BIRTHDATE>
 <INSSSAN>123456789</INSSSAN>

 40

 <DAYPHONE>2148762789778</DAYPHONE>
 <NIGHTPHONE>2148974464</NIGHTPHONE>
 <BIRTHCITY>Anaheim</BIRTHCITY>
 <BIRTHSTATE>CA</BIRTHSTATE>
 <DRIVERSTATE>FL</DRIVERSTATE>
 <DRIVERLICENSE>987987YIU</DRIVERLICENSE>
 </INSURED>
 <AGENT>
 <PREFIX>Mr.</PREFIX>
 <FNAME>John</FNAME>
 <LNAME>Doe</LNAME>
 <ADDRESS1>2727 Paces Ferry Road</ADDRESS1>
 <CITY>Atlanta</CITY>
 <STATE>GA</STATE>
 <ZIP>30339</ZIP>
 <EMAIL>jdoe@amergen.com</EMAIL>
 <PHONE>2148582200</PHONE>
 <AgentNo>R98798</AgentNo>
 <CustServPhone>8882637436</CustServPhone>
 <CustServOpenTime>8:00</CustServOpenTime>
 <CustServCloseTime>5:00</CustServCloseTime>
 <CustServTimeZone>eastern</CustServTimeZone>
 </AGENT>
 <POLICY_DATA>
 <PolicyValue>10000000</PolicyValue>
 <PolicyIssueDate>01032005</PolicyIssueDate>
 <PolicyEndDate>01032025</PolicyEndDate>
 <IssueState>GA</IssueState>
 <CostofInsurance>99200</CostofInsurance>
 <CostofInsuranceRate>992</CostofInsuranceRate>
 <CostofInsurance_Option>Level</CostofInsurance_Option>
 <Smoker>N</Smoker>
 <DeathBenefitType>Increasing</DeathBenefitType>
 <AnnualPremium>101900</AnnualPremium>
 <PremiumFrequency>Monthly</PremiumFrequency>
 <PremiumAmount>8492</PremiumAmount>
 <FlatExtra>0</FlatExtra>
 <AdminCharges>2700</AdminCharges>
 <MultipleExtra>0</MultipleExtra>
 </POLICY_DATA>
 <BENEFICIARY>
 <Name>Mary Smith</Name>
 <Relationship>Wife</Relationship>
 </BENEFICIARY>
 <BENEFICIARY>
 <Name>Holy Anna Smith</Name>
 <Relationship>Daughter</Relationship>
 </BENEFICIARY>
 </Data>
</InterfaceRequest>
<?xml version="1.0" encoding="UTF-8"?>
<InterfaceRequest>
 <Header>
 <Key1>DOCCDEMO</Key1>
 <Key2>LIFE</Key2>
 <KeyID>99-456789</KeyID>
 <Run_Date>12-OCT-2008 10:31:12.01 AM</Run_Date>
 <TRANCODE>NB</TRANCODE>
 <DOCTYPE>LIFE</DOCTYPE>
 <PRODUCT>Foundation Life</PRODUCT>
 <SECGROUP>Archived</SECGROUP>
 <AUTHOR>Carl Roberts</AUTHOR>
 <CABINET>CAB1</CABINET>

 41

 </Header>
 <SystemRequest>
 <MessageID>1236474</MessageID>
 <Target>EPOLICY</Target>
 <Target>
 <GO>35235</GO>
 <mode>print</mode>
 </Target>
 <CMD>Print</CMD>
 </SystemRequest>
 <Data>
 <POLICY_NUMBER>99-456789</POLICY_NUMBER>
 <POLICY_ISSUE_DATE>10-OCT-2008 10:31:12.01 AM</POLICY_ISSUE_DATE>
 <EFFDATE>01-NOV-2008 12:00:00.01 AM</EFFDATE>
 <EXPDATE>01-NOV-2009 12:00:00.01 AM</EXPDATE>
 <CLASS_OF_RISK>A</CLASS_OF_RISK>
 <STATE_CODE>GA</STATE_CODE>
 <PAYEE>Steven Saunders</PAYEE>
 <CUSTID>ssaunder</CUSTID>
 <INSURED>
 <PREFIX>Mr.</PREFIX>
 <FNAME>Steven</FNAME>
 <MNAME>J</MNAME>
 <LNAME>Saunders</LNAME>
 <SEX>M</SEX>
 <ADDRESS1>2727 Paces Ferry Road</ADDRESS1>
 <ADDRESS2>Suite II-900</ADDRESS2>
 <CITY>Atlanta</CITY>
 <STATE>GA</STATE>
 <ZIP>30339</ZIP>
 <BIRTHDATE>14-FEB-1970</BIRTHDATE>
 <INSSSAN>012345678</INSSSAN>
 <DAYPHONE>2148762789778</DAYPHONE>
 <NIGHTPHONE>2148974464</NIGHTPHONE>
 <BIRTHCITY>Pittsburg</BIRTHCITY>
 <BIRTHSTATE>PN</BIRTHSTATE>
 <DRIVERSTATE>GA</DRIVERSTATE>
 <DRIVERLICENSE>987987YIU</DRIVERLICENSE>
 </INSURED>
 <AGENT>
 <PREFIX>Mr.</PREFIX>
 <FNAME>John</FNAME>
 <LNAME>Doe</LNAME>
 <ADDRESS1>2727 Paces Ferry Road</ADDRESS1>
 <CITY>Atlanta</CITY>
 <STATE>GA</STATE>
 <ZIP>30339</ZIP>
 <EMAIL>jdoe@amergen.com</EMAIL>
 <PHONE>2148582200</PHONE>
 <AgentNo>R98798</AgentNo>
 <CustServPhone>8882637436</CustServPhone>
 <CustServOpenTime>8:00</CustServOpenTime>
 <CustServCloseTime>5:00</CustServCloseTime>
 <CustServTimeZone>eastern</CustServTimeZone>
 </AGENT>
 <POLICY_DATA>
 <PolicyValue>10000000</PolicyValue>
 <PolicyIssueDate>01032005</PolicyIssueDate>
 <PolicyEndDate>01032025</PolicyEndDate>
 <IssueState>GA</IssueState>
 <CostofInsurance>99200</CostofInsurance>
 <CostofInsuranceRate>992</CostofInsuranceRate>
 <CostofInsurance_Option>Level</CostofInsurance_Option>

 42

 <Smoker>N</Smoker>
 <DeathBenefitType>Increasing</DeathBenefitType>
 <AnnualPremium>101900</AnnualPremium>
 <PremiumFrequency>Monthly</PremiumFrequency>
 <PremiumAmount>8492</PremiumAmount>
 <FlatExtra>0</FlatExtra>
 <AdminCharges>2700</AdminCharges>
 <MultipleExtra>0</MultipleExtra>
 </POLICY_DATA>
 <BENEFICIARY>
 <Name>Mary Saunders</Name>
 <Relationship>Wife</Relationship>
 </BENEFICIARY>
 <BENEFICIARY>
 <Name>Holy Anna Saunders</Name>
 <Relationship>Daughter</Relationship>
 </BENEFICIARY>
 </Data>
</InterfaceRequest>

Example TRN_FIELDS INI Setup
This section of the Documaker configuration INI file (either FSISYS.INI or FSIUSER.INI) defines
new GVM variable names for the subset of data fields in the above XML input that we want to reference
and use for UCM metadata. That is, this file creates new simple names for the fields above that are
highlighted in bold blue.

; XPATH to data elements in XML import file listed above,
; stores data in named GVMs
;
; GVM Name = XPATH to XML input file field for value
; ----------- ---
< TRN_FIELDS >
 KEY1 = !/InterfaceRequest/Header/Key1
 KEY2 = !/InterfaceRequest/Header/Key2
 KEYID = !/InterfaceRequest/Header/KeyID
 TRANCODE = !/InterfaceRequest/Header/TRANCODE
 RUNDATE = !/InterfaceRequest/Header/Run_Date
 PRODUCT = !/InterfaceRequest/Header/PRODUCT
 SECGROUP = !/InterfaceRequest/Header/SECGROUP
 DOCTYPE = !/InterfaceRequest/Header/DOCTYPE
 CABINET = !/InterfaceRequest/Header/CABINET
 AUTHOR = !/InterfaceRequest/Header/AUTHOR
 CURRUSER = !/InterfaceRequest/Header/CURRUSER
 CUSTID = !/InterfaceRequest/Header/CUSTID
 POLNUM = !/InterfaceRequest/Data/POLICY_NUMBER
 INSFNAME = !/InterfaceRequest/Data/INSURED/FNAME
 INSLNAME = !/InterfaceRequest/Data/INSURED/LNAME
 INSADD1 = !/InterfaceRequest/Data/INSURED/ADDRESS1
 INSADD2 = !/InterfaceRequest/Data/INSURED/ADDRESS2
 INSCITY = !/InterfaceRequest/Data/INSURED/CITY
 INSSTATE = !/InterfaceRequest/Data/INSURED/STATE
 INSZIP = !/InterfaceRequest/Data/INSURED/ZIP
 INSPHONE = !/InterfaceRequest/Data/INSURED/DAYPHONE
 INSDOB = !/InterfaceRequest/Data/INSURED/BIRTHDATE
 WIPREASON = !/InterfaceRequest/Data/WIPREASON
 INDEX01 = !/InterfaceRequest/Data/AGENT/AgentNo
 INDEX02 = !/InterfaceRequest/Data/EFFDATE
 INDEX03 = !/InterfaceRequest/Data/EXPDATE
 INDEX04 = !/InterfaceRequest/Data/AGENT/AgentNo
 INDEX05 = !/InterfaceRequest/Data/EFFDATE

 43

 INDEX06 = !/InterfaceRequest/Data/EXPDATE
 INDEX07 = !/InterfaceRequest/Data/AGENT/AgentNo
 INDEX08 = !/InterfaceRequest/Data/EFFDATE
 INDEX09 = !/InterfaceRequest/Data/EXPDATE
 INDEX10 = !/InterfaceRequest/Data/AGENT/AgentNo
 INDEX11 = !/InterfaceRequest/Data/EFFDATE
 INDEX12 = !/InterfaceRequest/Data/EXPDATE
 AGENCYID = !/InterfaceRequest/Data/AGENT/AgentNo
 EFFDATE = !/InterfaceRequest/Data/EFFDATE
 EXPDATE = !/InterfaceRequest/Data/EXPDATE

Example TRNDFDFL.DFD Setup
With the fields mapped into GVM variables, the attributes of each new GVM variable have to be
described to Documaker. The GVM variables defined above are highlighted below in bold blue text.

< FIELDS >
 FIELDNAME = PKG_Offset
 FIELDNAME = TRN_Offset
 FIELDNAME = X_Offset
 FIELDNAME = NA_Offset
 FIELDNAME = POL_Offset
 FIELDNAME = SentToManualBatch
 FIELDNAME = KEY1
 FIELDNAME = KEY2
 FIELDNAME = KEYID
 FIELDNAME = TRANCODE
 FIELDNAME = RUNDATE
 FIELDNAME = CURRUSER
 FIELDNAME = AGENCYID
 FIELDNAME = EFFDATE
 FIELDNAME = EXPDATE
 FIELDNAME = PRODUCT
 FIELDNAME = SECGROUP
 FIELDNAME = AUTHOR
 FIELDNAME = CABINET
 FIELDNAME = DOCTYPE
 FIELDNAME = ONE
 FIELDNAME = TWO
 FIELDNAME = CUSTID
 FIELDNAME = POLNUM
 FIELDNAME = INSFNAME
 FIELDNAME = INSLNAME
 FIELDNAME = INSADD1
 FIELDNAME = INSADD2
 FIELDNAME = INSCITY
 FIELDNAME = INSSTATE
 FIELDNAME = INSZIP
 FIELDNAME = INSPHONE
 FIELDNAME = INSDOB
 FIELDNAME = WIPREASON
 FIELDNAME = INDEX01
 FIELDNAME = INDEX02
 FIELDNAME = INDEX03
 FIELDNAME = INDEX04
 FIELDNAME = INDEX05
 FIELDNAME = INDEX06
 FIELDNAME = INDEX07
 FIELDNAME = INDEX08
 FIELDNAME = INDEX09

 44

 FIELDNAME = INDEX10
 FIELDNAME = INDEX11
 FIELDNAME = INDEX12

< FIELD:PKG_Offset >
 INT_TYPE = LONG
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 10
 KEY = N
 REQUIRED = N
< FIELD:TRN_Offset >
 INT_TYPE = LONG
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 10
 KEY = N
 REQUIRED = N
< FIELD:X_Offset >
 INT_TYPE = LONG
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 10
 KEY = N
 REQUIRED = N
< FIELD:NA_Offset >
 INT_TYPE = LONG
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 10
 KEY = N
 REQUIRED = N
< FIELD:POL_Offset >
 INT_TYPE = LONG
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 10
 KEY = N
 REQUIRED = N
< FIELD:SentToManualBatch >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 3
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 2
 KEY = N
 REQUIRED = N
< FIELD:KEY1 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 101
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 100
 KEY = Y
 REQUIRED = Y
< FIELD:KEY2 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 101
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 100
 KEY = Y
 REQUIRED = Y
< FIELD:KEYID >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 101
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 100
 KEY = N
 REQUIRED = N
< FIELD:TRANCODE >

 45

 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:RUNDATE >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:CURRUSER >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 101
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 100
 KEY = N
 REQUIRED = N
< FIELD:AGENCYID >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:EFFDATE >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:EXPDATE >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:PRODUCT >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:SECGROUP >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:AUTHOR >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:CABINET >

 46

 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:DOCTYPE >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:ONE >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 11
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 10
 KEY = Y
 REQUIRED = Y
< FIELD:TWO >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 11
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 10
 KEY = Y
 REQUIRED = Y
< FIELD:CUSTID >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:POLNUM >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 101
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 100
 KEY = N
 REQUIRED = N
< FIELD:INSFNAME >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:INSLNAME >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:INSADD1 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 101
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 100
 KEY = N
 REQUIRED = N
< FIELD:INSADD2 >

 47

 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 101
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 100
 KEY = N
 REQUIRED = N
< FIELD:INSCITY >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:INSSTATE >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 4
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 3
 KEY = N
 REQUIRED = N
< FIELD:INSZIP >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 12
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 11
 KEY = N
 REQUIRED = N
< FIELD:INSPHONE >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:INSDOB >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:WIPREASON >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 26
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 25
 KEY = N
 REQUIRED = N
< FIELD:INDEX01 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:INDEX02 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:INDEX03 >

 48

 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:INDEX04 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:INDEX05 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:INDEX06 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:INDEX07 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:INDEX08 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:INDEX09 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:INDEX10 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:INDEX11 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:INDEX12 >

 49

 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 31
 EXT_TYPE = CHAR_ARRAY_NO_NULL_TERM
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

Example RCBDFDFL.DFD Setup
For this example, the RCBDFDFL.DFD file is identical to the TRNDFDFL.DFD file.

 51

Appendix C – Example Documaker DAL Scripts

These scripts are referenced in the DAL configuration of the Oracle Documaker INI file. This
configuration was described earlier, but is presented here for easy reference:

; Enable the Banner and Transaction DAL Scripting
< BATCH6 >
 EnableBatchBanner = Yes
 EnableTransBanner = Yes
 BatchBannerBeginScript = AOR_PREB
 BatchBannerEndScript = AOR_POSTB
 TransBannerBeginScript = AOR_PRET
 TransBannerEndScript = AOR_POSTT
 Printer = Printer6

In the example presented earlier in the text, they are called during processing of the Batch6 grouping.
The code for the routines is presented below, with the main entry points listed above shown below in the
order they are called. The TransBanner... routines are called repeatedly for each transaction that is
part of the batch, before the final call to BatchBannerEndScript.

BatchBannerBeginScript = AOR_PREB

TransBannerBeginScript = AOR_PRET

TransBannerEndScript = AOR_POSTT

BatchBannerEndScript = AOR_POSTB

BatchBannerBeginScript = AOR_PREB
BEGINSUB AOR_PREB
* --
* Begin batch
* Clear variables once per Recip Batch
* --
 #AOR_Debug=GETINIBOOL(,PRINTERID(),"AORDebug")

 IF #AOR_Debug
 RPLogMsg(NL() & " ** AOR_PREB:" & NL())
 END
 AOR_RecipBatch = AOR_RecipBatch
 #AOR_BatchCount = #AOR_BatchCount
 #AOR_Processed = #AOR_Processed
 #AOR_Count = #AOR_Count
 AOR_TableName = AOR_TableName
 #AOR_Init = #AOR_Init
 IF AOR_RecipBatch != RECIPBATCH()
 PUTINIBOOL(,"RunMode","CheckNextRecip",0)
 #AOR_PerBatch = GETINISTRING(,PRINTERID(),"AORFilesPerBatch","999")
 AOR_RecipBATCH = RECIPBATCH()
 #AOR_SubBatch = 0
 #AOR_Count = 0
 #AOR_BatchCount = 0
 END
 AOR_BatchID = RECIPBATCH()
 IF #AOR_Init = 0
 AOR_JobID = UNIQUESTRING()

 52

 AOR_TableName = GETINISTRING(,PRINTERID(),"AORTable","AOR")
 DBOPEN(AOR_TableName,"ODBC",".\deflib\aor.dfd", "READ&WRITE&CREATE_IF_NEW")
 DBPREPVARS(AOR_TableName,"AORTABLERecord")
 END
 #AOR_Init = 1
 #AOR_DoEOB = 1
ENDSUB

TransBannerBeginScript = AOR_PRET
BEGINSUB AOR_PRET
* --
* Begin Transaction
* Setup new filename for recipient batch output file

* --
IF #AOR_Debug

 RPLogMsg(NL() & " ** AOR_PRET:" & NL())
 END
 AOR_BatchID = AOR_BatchID
 AOR_BatchDir = AOR_BatchDir
 #AOR_Batch = #AOR_Batch
 #AOR_Count = #AOR_Count
 #AOR_PerBatch = #AOR_PerBatch
 #AOR_Processed = #AOR_Processed
 AOR_TransID = GVM("KEY1") & "-" & GVM("KEY2") & "-" & \
 GVM("KEYID") & "-" & GVM("TRANCODE")
 #AOR_Count += 1
 IF (#AOR_Count > #AOR_PerBatch)
 #AOR_Count -=1
 CALL("AOR_EOB")
 #AOR_Count = 1
 END
 TranFile = CALL("AOR_NEWFILE")
 #AOR_Exists = PATHEXIST(AOR_BatchDir)
 IF #AOR_Exists = 0
 PATHCREATE(AOR_BatchDir)
 #AOR_Exists = PATHEXIST(AOR_BatchDir)
 IF #AOR_Exists = 0
 RPErrorMsg(NL() & "** AOR batch directory " & \
 AOR_Batchdir & "does not exist!")
 END
 END
 #AOR_DoEOB = 0
 SETDEVICENAME(TranFile)
 BREAKBATCH()
ENDSUB

TransBannerEndScript = AOR_POSTT
BEGINSUB AOR_POSTT
* --
* End Transaction
* Insert new table row with metadata for UCM
* from GVM variables and reference to uniquely named
* recipient print stream output.
* --

 IF #AOR_Debug
 RPLogMsg(NL() & " ** AOR_POSTT:" & NL())
 END
 #AOR_PerBatch = #AOR_PerBatch
 AOR_BatchDir = AOR_BatchDir

 53

 #AOR_Count = #AOR_Count
 #AOR_Debug = GETINIBOOL(,PRINTERID(),"AORDebug")
 AOR_TableName = AOR_TableName
 AOR_BatchID = AOR_BatchID
 AOR_TransID = AOR_TransID
 AOR_JobID = AOR_JobID
*
* Change to match variables defined in "rcbdfdfl.dfd"
* as needed for the implementation
*

* Documaker UCMImporter job processing fields
 AORTABLERecord.JOBID = AOR_JobID
 AORTABLERecord.BATCHID = AOR_BatchID
 AORTABLERecord.TRANID = AOR_TransID
 AORTABLERecord.DOCID = AOR_FName
* TITLE required field by UCM 30 characters max, shows up in search results
 AORTABLERecord.TITLE = AOR_TransID
* ContentID/Name assigment
 AORTABLERecord.STATUSCD = 0
* Documaker UCMImporter required field for specifying full name of
* file to import
 AORTABLERecord.PFILE = DEVICENAME()
* UCM required field has to exist in UCM pick list for types or
* will fail to import
 IF HAVEGVM("DOCTYPE")
 AORTABLERecord.TYPE = GVM("DOCTYPE")
 END
* UCM required field
 IF HAVEGVM("AUTHOR")
 AORTABLERecord.AUTHOR = GVM("AUTHOR")
 END
* UCM required field has to exist in UCM pick list for security groups or will
* fail to import
 IF HAVEGVM("SECGROUP")
 AORTABLERecord.SECGROUP = GVM("SECGROUP")
 END
* UCM mapped custom meta-data, if doesn't exist as same exact name in UCM custom
* fields it will not map but will not error. If UCM custom field was set as
* required and no data is mapped UCM will fail transaction.
* Truncates by default to the max
* length of UCM data type.
 IF HAVEGVM("CABINET")
 AORTABLERecord.CABINET = GVM("CABINET")
 END
 IF HAVEGVM("KEY1")
 AORTABLERecord.KEY1 = GVM("KEY1")
 END
 IF HAVEGVM("KEY2")
 AORTABLERecord.KEY2 = GVM("KEY2")
 END
 IF HAVEGVM("KEYID")
 AORTABLERecord.KEYID = GVM("KEYID")
 END
 IF HAVEGVM("TRANCODE")
 AORTABLERecord.TRANCODE = GVM("TRANCODE")
 END
 IF HAVEGVM("RUNDATE")
 AORTABLERecord.RUNDATE = GVM("RUNDATE")
 END
 IF HAVEGVM("CURRUSER")
 AORTABLERecord.CURRUSER = GVM("CURRUSER")
 END

 54

 IF HAVEGVM("AGENCYID")
 AORTABLERecord.AGENCYID = GVM("AGENCYID")
 END
 IF HAVEGVM("EFFDATE")
 AORTABLERecord.EFFDATE = GVM("EFFDATE")
 AORTABLERecord.TITLE = AOR_TransID & "-" & GVM("EFFDATE")
 END
 IF HAVEGVM("EXPDATE")
 AORTABLERecord.EXPDATE = GVM("EXPDATE")
 END
 IF HAVEGVM("CUSTID")
 AORTABLERecord.CUSTID = GVM("CUSTID")
 END
 IF HAVEGVM("POLNUM")
 AORTABLERecord.POLNUM = GVM("POLNUM")
 END
 IF HAVEGVM("INSFNAME")
 AORTABLERecord.INSFNAME = GVM("INSFNAME")
 END
 IF HAVEGVM("INSLNAME")
 AORTABLERecord.INSLNAME = GVM("INSLNAME")
 END
 IF HAVEGVM("INSADD1")
 AORTABLERecord.INSADD1 = GVM("INSADD1")
 END
 IF HAVEGVM("INSADD2")
 AORTABLERecord.INSADD2 = GVM("INSADD2")
 END
 IF HAVEGVM("INSCITY")
 AORTABLERecord.INSCITY = GVM("INSCITY")
 END
 IF HAVEGVM("INSSTATE")
 AORTABLERecord.INSSTATE = GVM("INSSTATE")
 END
 IF HAVEGVM("INSZIP")
 AORTABLERecord.INSZIP = GVM("INSZIP")
 END
 IF HAVEGVM("INSPHONE")
 AORTABLERecord.INSPHONE = GVM("INSPHONE")
 END
 IF HAVEGVM("INSDOB")
 AORTABLERecord.INSDOB = GVM("INSDOB")
 END
 IF HAVEGVM("INDEX01")
 AORTABLERecord.INDEX01 = GVM("INDEX01")
 END
 IF HAVEGVM("INDEX02")
 AORTABLERecord.INDEX02 = GVM("INDEX02")
 END
 IF HAVEGVM("INDEX03")
 AORTABLERecord.INDEX03 = GVM("INDEX03")
 END
 IF HAVEGVM("INDEX04")
 AORTABLERecord.INDEX04 = GVM("INDEX04")
 END
 IF HAVEGVM("INDEX05")
 AORTABLERecord.INDEX05 = GVM("INDEX05")
 END
 IF HAVEGVM("INDEX06")
 AORTABLERecord.INDEX06 = GVM("INDEX06")
 END
 IF HAVEGVM("INDEX07")
 AORTABLERecord.INDEX07 = GVM("INDEX07")

 55

 END
 IF HAVEGVM("INDEX08")
 AORTABLERecord.INDEX08 = GVM("INDEX08")
 END
 IF HAVEGVM("INDEX09")
 AORTABLERecord.INDEX09 = GVM("INDEX09")
 END
 IF HAVEGVM("INDEX10")
 AORTABLERecord.INDEX10 = GVM("INDEX10")
 END
 IF HAVEGVM("INDEX11")
 AORTABLERecord.INDEX11 = GVM("INDEX11")
 END
 IF HAVEGVM("INDEX12")
 AORTABLERecord.INDEX12 = GVM("INDEX12")
 END
 #Rtn = DBADD(AOR_TableName,"AORTABLERecord")
ENDSUB

BatchBannerEndScript = AOR_POSTB
BEGINSUB AOR_POSTB
* --
* End Batch
* Any necessary clean-up.
* --

 IF #AOR_Debug
 RPLogMsg(NL() & " ** AOR_POSTB:" & NL())
 END

 #AOR_Debug = GETINIBOOL(,PRINTERID(),"AORDebug")
 #AOR_Processed = #AOR_Processed
 #AOR_Count = #AOR_Count
 #AOR_PerBatch = #AOR_PerBatch
 AOR_BatchDir = AOR_BatchDir
 AOR_TableName = AOR_TableName

 IF (#AOR_DoEOB = 1 AND #AOR_Count > 0)
 DBCLOSE(AOR_TableName)
 CALL("AOR_EOB")
 #AOR_Count = 0
 END
ENDSUB

Internal Routine: AOR_NEWFILE
BEGINSUB AOR_NEWFILE
* --
* Create a new output file name.
* Called by Pre-Transaction DAL script.
* --
 IF #AOR_Debug
 RPLogMsg(NL() & " ** AOR_NEWFILE:" & NL())
 END
 AOR_Ext = GETINISTRING(,PRINTERID(), "AORExt", ".pdf")
 AOR_BatchDir = AOR_BatchDir
 CALL("AOR_NEWPATH")
 AOR_Drive = FILEDRIVE(AOR_BatchDir)
 AOR_Path = FILEPATH(AOR_BatchDir)
 AOR_Last = FILENAME(AOR_BatchDir)
 AOR_FName = UNIQUESTRING()

 56

 AOR_NewFName=FULLFILENAME(AOR_Drive,AOR_Path & AOR_Last,AOR_FName,AOR_Ext)
 RETURN(AOR_NewFName)
ENDSUB

Internal Routine: AOR_NEWPATH
BEGINSUB AOR_NEWPATH
* --
* Create a new output folder.
* Called by AOR_NEWFILE DAL script.
* --
 IF #AOR_Debug
 RPLogMsg(NL() & " ** AOR_NEWPATH:" & NL())
 END
 #AOR_BatchCount = #AOR_BatchCount
 AOR_BatchID = AOR_BatchID
 AOR_BatchDir = AOR_BatchDir
 #AOR_Count = #AOR_Count
 AORPath = GETINISTRING(,PRINTERID(),"AORPath")
 AOR_Drive = FILEDRIVE(AORPath)
 AOR_Path = FILEPATH(AORPath)
 AOR_Last = FILENAME(AORPath)
 AOR_Rootdir = FULLFILENAME(AOR_Drive, AOR_Path, AOR_Last, "")
 IF #AOR_Count = 1
 #AOR_BatchCount += 1
 AOR_Drive = FILEDRIVE(AOR_RootDir)
 AOR_Path = FILEPATH(AOR_RootDir)
 AOR_Last = FILENAME(AOR_RootDir)
 AOR_BatchDir = FULLFILENAME(AOR_Drive,AOR_Path & AOR_Last,AOR_JobID,"")
 AOR_Drive = FILEDRIVE(AOR_BatchDir)
 AOR_Path = FILEPATH(AOR_BatchDir)
 AOR_Last = FILENAME(AOR_BatchDir)
 AOR_BatchDir =
FULLFILENAME(AOR_Drive,AOR_Path&AOR_Last,AOR_BatchID&"x"&#AOR_BatchCount,"")
 END
ENDSUB

Internal Routine: AOR_EOB
BEGINSUB AOR_EOB
* --
* Create transact.dat file listing the contents of
* each batch folder created with count of output files,
* maximum output files per batch folder, statistical
* information. Existence of this file is indicates a
* batch folder has been completed and is used by the
* Documaker DC source for housekeeping functions.
* Called by Post Batch DAL script.
* --
 IF #AOR_Debug
 RPLogMsg(NL() & " ** AOR_EOB:" & NL())
 END
 #AOR_PerBatch = #AOR_PerBatch
 #AOR_Count = #AOR_Count
 AOR_BatchDir = AOR_BatchDir
 AORRootDir = AORRootDir
 IF #AOR_DoEOB = 1
 AOR_LogFile = FULLFILENAME(,AOR_BatchDir,"transact",".dat")
 DBOPEN(AOR_LogFile,"ASCII",".\deflib\aort.dfd", \
 "READ&WRITE&TRUNCATE&CREATE_IF_NEW")
 DBPREPVARS(AOR_LogFile,"AOREOTRecord")

 57

 AOREOTRecord.Record = FILENAME(AOR_BatchDir) & " " & \
 #AOR_PerBatch & " " & \
 #AOR_Count
 DBADD(AOR_LogFile,"AOREOTRecord")
 DBCLOSE(AOR_LogFile)
 END
ENDSUB

 59

Appendix D – Documaker Setup for DAL Output
to a Database Table

DDL for DAL Output Records
This is an example of DDL statements to create a minimally acceptable database table for use by
Documaker and the Oracle Documaker Connector. Documaker DAL writes this table and the Oracle DC
reads the records for incoming documents to process.

CREATE TABLE "ORACLE"."AOR" (
 "JOBID" VARCHAR2(50) NOT NULL,
 "TRANID" VARCHAR2(50) NOT NULL,
 "BATCHID" VARCHAR2(50) NOT NULL,
 "DOCID" VARCHAR2(50) NOT NULL,
 "NAME" VARCHAR2(30),
 "TYPE" VARCHAR2(30),
 "TITLE" VARCHAR2(255),
 "AUTHOR" VARCHAR2(50),
 "SECGROUP" VARCHAR2(30),
 "CABINET" VARCHAR2(30),
 "PFILE" VARCHAR2(255),
 "STATUSCD" INTEGER DEFAULT 0 NOT NULL,
 "STARTTIME" TIMESTAMP,
 "ENDTIME" TIMESTAMP,
 "RESULTDESC" VARCHAR2(2000),
 "RETENTION" TIMESTAMP,
 "CATEGORY" VARCHAR2(30),
 "KEY1" VARCHAR2(100),
 "KEY2" VARCHAR2(100),
 "KEYID" VARCHAR2(100),
 "TRANCODE" VARCHAR2(30),
 "RUNDATE" TIMESTAMP,
 "CURRUSER" VARCHAR2(30),
 "AGENCYID" VARCHAR2(30),
 "EFFDATE" TIMESTAMP,
 "EXPDATE" TIMESTAMP,
 "CUSTID" VARCHAR2(30),
 "POLNUM" VARCHAR2(100),
 "INSFNAME" VARCHAR2(30),
 "INSLNAME" VARCHAR2(30),
 "INSADD1" VARCHAR2(30),
 "INSADD2" VARCHAR2(30),
 "INSCITY" VARCHAR2(30),
 "INSSTATE" VARCHAR2(5),
 "INSZIP" VARCHAR2(30),
 "INSPHONE" VARCHAR2(30),
 "INSDOB" DATE,
 "INDEX01" VARCHAR2(30), "INDEX02" VARCHAR2(30), "INDEX03" VARCHAR2(30),
 "INDEX04" VARCHAR2(30), "INDEX05" VARCHAR2(30), "INDEX06" VARCHAR2(30),
 "INDEX07" VARCHAR2(30), "INDEX08" VARCHAR2(30), "INDEX09" VARCHAR2(30),
 "INDEX10" VARCHAR2(30), "INDEX11" VARCHAR2(30), "INDEX12" VARCHAR2(30),
 PRIMARY KEY ("JOBID", "TRANID", "BATCHID", "DOCID") VALIDATE
);

CREATE INDEX "ORACLE"."AORIDX1" ON "ORACLE"."AOR" ("DOCID");

 60

Database Table DFD (Data Format Definition) File (AOR.DFD)
This DFD file describes the database table schema to Documaker. In this example, with a database table
called AOR, this file is called AOR.DFD.and is used to define the interface between Oracle Documaker
and the data table AOR in the Oracle database used for storage of the extract data. The DFD file is used in
the DAL script where you will see references to AOR in the DBAdd(), DBOpen() and DBPrepare()
calls. This file is loaded in the DBOpen() so Documaker knows what columns it has available and uses
that information to insert the row in the AOR table. In the example, this file is in the deflib
subdirectory per the call in the DAL script:

DBOPEN(AOR_TableName, "ODBC", ".\deflib\aor.dfd", "READ&WRITE&CREATE_IF_NEW")

The AOR.DFD File
< FIELDS >
 FIELDNAME = JOBID
 FIELDNAME = TRANID
 FIELDNAME = BATCHID
 FIELDNAME = DOCID
 FIELDNAME = NAME
 FIELDNAME = TYPE
 FIELDNAME = TITLE
 FIELDNAME = AUTHOR
 FIELDNAME = SECGROUP
 FIELDNAME = PFILE
 FIELDNAME = CATEGORY
 FIELDNAME = CABINET
 FIELDNAME = STATUSCD
 FIELDNAME = KEY1
 FIELDNAME = KEY2
 FIELDNAME = KEYID
 FIELDNAME = TRANCODE
 FIELDNAME = RUNDATE
 FIELDNAME = CURRUSER
 FIELDNAME = AGENCYID
 FIELDNAME = EFFDATE
 FIELDNAME = EXPDATE
 FIELDNAME = INSFNAME
 FIELDNAME = INSLNAME
 FIELDNAME = INSADD1
 FIELDNAME = INSADD2
 FIELDNAME = INSCITY
 FIELDNAME = INSSTATE
 FIELDNAME = INSZIP
 FIELDNAME = INSPHONE
 FIELDNAME = INSDOB
 FIELDNAME = INDEX01
 FIELDNAME = INDEX02
 FIELDNAME = INDEX03
 FIELDNAME = INDEX04
 FIELDNAME = INDEX05
 FIELDNAME = INDEX06
 FIELDNAME = INDEX07
 FIELDNAME = INDEX08
 FIELDNAME = INDEX09
 FIELDNAME = INDEX10
 FIELDNAME = INDEX11
 FIELDNAME = INDEX12

< FIELD:JOBID >
 INT_TYPE = CHAR_ARRAY

 61

 INT_LENGTH = 47
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 47
 KEY = Y
 REQUIRED = Y

< FIELD:TRANID >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 47
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 47
 KEY = Y
 REQUIRED = Y

< FIELD:BATCHID >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 47
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 47
 KEY = Y
 REQUIRED = Y

< FIELD:DOCID >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 47
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 47
 KEY = Y
 REQUIRED = Y

< FIELD:NAME >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 47
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 47
 KEY = N
 REQUIRED = Y

< FIELD:TYPE >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 10
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 10
 KEY = N
 REQUIRED = Y

< FIELD:TITLE >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = Y

< FIELD:AUTHOR >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = Y

< FIELD:SECGROUP >

 62

 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = Y

< FIELD:PFILE >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 255
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 255
 KEY = N
 REQUIRED = Y

< FIELD:CATEGORY >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

< FIELD:CABINET >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

< FIELD:STATUSCD >
 INT_TYPE = LONG
 INT_LENGTH = 1
 EXT_TYPE = LONG
 EXT_LENGTH = 1
 KEY = N
 REQUIRED = Y

< FIELD:KEY1 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 100
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 100
 KEY = N
 REQUIRED = N

< FIELD:KEY2 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 100
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 100
 KEY = N
 REQUIRED = N

< FIELD:KEYID >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 100
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 100
 KEY = N
 REQUIRED = N

 63

< FIELD:TRANCODE >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

< FIELD:RUNDATE >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

< FIELD:CURRUSER >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 100
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 100
 KEY = N
 REQUIRED = N

< FIELD:AGENCYID>
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

< FIELD:EFFDATE >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

< FIELD:EXPDATE >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N

< FIELD:CUSTID >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

< FIELD:POLNUM >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 100
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 100
 KEY = N
 REQUIRED = N

 64

< FIELD:INSFNAME >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

< FIELD:INSLNAME >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

< FIELD:INSADD1 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 100
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 100
 KEY = N
 REQUIRED = N

< FIELD:INSADD2 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 100
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 100
 KEY = N
 REQUIRED = N

< FIELD:INSCITY >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

< FIELD:INSSTATE >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 3
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 3
 KEY = N
 REQUIRED = N

< FIELD:INSZIP >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 11
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 11
 KEY = N
 REQUIRED = N

< FIELD:INSPHONE >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

 65

< FIELD:INSDOB >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

< FIELD:WIPREASON >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

< FIELD:INDEX01 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

< FIELD:INDEX02 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

< FIELD:INDEX03 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N
< FIELD:INDEX04 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

< FIELD:INDEX05 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

< FIELD:INDEX06 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

 66

< FIELD:INDEX07 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

< FIELD:INDEX08 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

< FIELD:INDEX09 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

< FIELD:INDEX10 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

< FIELD:INDEX11 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N

< FIELD:INDEX12 >
 INT_TYPE = CHAR_ARRAY
 INT_LENGTH = 30
 EXT_TYPE = CHAR_ARRAY
 EXT_LENGTH = 30
 KEY = N
 REQUIRED = N REQUIRED = N

< KEYS >
 KEYNAME = BATCH
 KEYNAME = DOCID

< KEY:BATCH >
 EXPRESSION = JOBID+TRANID+BATCHID
 FIELDLIST = JOBID,TRANID,BATCHID

< KEY:DOCID >
 EXPRESSION = DOCID
 FIELDLIST = DOCID

 68

Oracle Documaker Connector Installation, Administration and Customization Guide
July 24, 2009
Primary Authors: Eugene Thompson , Joe Roberts, Steve Saunders
Contributing Authors: Lowell Von Egger, Phil Iorio

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2009, Oracle and/or its affiliates. All rights reserved.
This document is provided for information purposes only and the
contents hereof are subject to change without notice.
This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied
in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

