

Oracle® Fusion Middleware
Tutorial for Oracle WebCenter Developers

11g Release 1 (11.1.1)

E10273-04

November 2010

Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers, 11g Release 1 (11.1.1)

E10273-04

Copyright © 2007, 2010, Oracle and/or its affiliates. All rights reserved.

Primary Author: Vanessa Wang

Contributor: Robin Fisher, Medini Kakade, Peter Moskovits, Kundan Vyas

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... v

Audience... v
Documentation Accessibility ... v
Related Documents ... vi
Conventions ... vi

1 Introduction to WebCenter Framework and the Tutorial

What is WebCenter Framework? ... 1-1
What Will I Create? .. 1-2

2 Preparing for the Tutorial

Introduction... 2-1
Step 1: Obtain the Software.. 2-1
Step 2: Download the Sample Tutorial Files... 2-2
Step 3: Add the Tutorial Sample Schema to Your Database .. 2-3
Step 4: Install the WebCenter Schema.. 2-6

3 Creating a WebCenter Application with a Customizable Page

Introduction... 3-1
Step 1: Create a Custom WebCenter Application... 3-2
Step 2: Add the Resource Files to the Application .. 3-7
Step 3: Create a Page ... 3-11
Step 4: Add Layout Components to the Page... 3-14
Step 5: Add Oracle Composer to the Page to Enable Customization .. 3-28
Step 6: Customize the Page at Runtime Using Oracle Composer.. 3-35

4 Adding Security to Your Application

Introduction... 4-1
Step 1: Add ADF Security to Your Application .. 4-1
Step 2: Create Users and Roles for the Application... 4-5
Step 3: Add ADF Security Policies to Your Application... 4-8
Step 4: Add a Login/Logout Link to Your Application and Update the Login Page 4-12

iv

5 Adding Oracle WebCenter Services to Your Application

Introduction ... 5-2
Step 1: Add the Search Toolbar Task Flow to the Application .. 5-3
Step 2: Create a Connection for the Documents Service .. 5-6
Step 3: Add the Documents - Document Manager Task Flow to Your Application 5-10
Step 4: Browse Documents at Runtime ... 5-15
Step 5: Create a Database Connection to the WebCenter Schema ... 5-18
Step 6: Add the Tags Service to Your Application .. 5-20
Step 7: Use, Add, and Search Tags in Your Application at Runtime ... 5-22
Step 8: Add the People Connections Service to Your Application .. 5-27
Step 9: Use the People Connections Service in Your Application at Runtime 5-33
Step 10: Use the Links Service in Your Application at Runtime.. 5-40
Step 11: Use the Mail Service with Your Application (Optional) .. 5-43

6 Building Portlets and Wiring Them in Your Application

Introduction ... 6-1
Step 1: Create a Standards-Based Java (JSR 168) Portlet... 6-2
Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information 6-14
Step 3: Create the Business Logic for the Standards-Based Portlet ... 6-22
Step 4: Test and Deploy the Standards-Based Portlet .. 6-30
Step 5: Register the Standards-Based Portlet with Your Application ... 6-38
Step 6: Test the Standards-Based Portlet in Your Application.. 6-40
Step 7: Register the Preconfigured Portlet Producer .. 6-42
Step 8: Add an OmniPortlet to Your Page... 6-46
Step 9: Define OmniPortlet at Runtime .. 6-48
Step 10: Wire the Standards-Based Portlet and OmniPortlet Together 6-54
Step 11: Test the Interaction Between the Portlets .. 6-59

7 Changing the Look and Feel of Your Application

Introduction ... 7-5
Step 1: Change the Application Look and Feel Using a Skin.. 7-6
Step 2: Personalize One User's (Lisa's) Page .. 7-13
Step 3: Personalizing a Second User's (Alex's) Page... 7-19
Step 4: Personalizing a Third User's (Dan's) Page .. 7-23

8 Conclusion

Summary .. 8-1
Moving On... 8-3

Index

v

Preface

This Tutorial introduces you to Oracle WebCenter Framework, a key component of
Oracle WebCenter Suite that enables you to build your own custom WebCenter
applications. As you work through this Tutorial, you'll become familiar with Oracle
JDeveloper and the components that have been added to support the new Oracle
WebCenter Framework functionality. When you're ready to begin building your own
application, you can move on to the Oracle Fusion Middleware Developer's Guide for
Oracle WebCenter for assistance.

If you are looking for a pre-built sample application, you can check out the Fusion
Order Demo for WebCenter, located on the Oracle WebCenter Suite page on the
Oracle Technology Network (OTN) at http://webcenter.oracle.com.

Audience
This document is intended for users wishing to familiarize themselves with Oracle
WebCenter Framework and learn how to develop custom WebCenter applications.

This Tutorial does not assume any prior knowledge of Oracle JDeveloper or Oracle
WebCenter Suite. It does, however, assume that you are already somewhat familiar
with the following:

■ Oracle Application Development Framework (Oracle ADF)

■ Oracle ADF Faces

■ Java

The Tutorial is intended for the developer who wants to build a custom WebCenter
application, or the application developer who wants to use Oracle ADF to build
customization capabilities into their application.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive

Note: For the portable document format (PDF) version of this
manual, when a URL breaks onto two lines, the full URL data is not
sent to the browser when you click it. To get to the correct target of
any URL included in the PDF, copy and paste the URL into your
browser's address field. In the HTML version of this manual, you can
click a link to directly display its target in your browser.

vi

technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents
For more information on Oracle WebCenter Framework, see the following documents,
which are available on the Oracle WebCenter Suite Documentation page on the Oracle
Technology Network (OTN) at
http://www.oracle.com/technology/products/webcenter/documentatio
n.html:

■ Oracle Fusion Middleware Developer's Guide for Oracle WebCenter, which explains
how to use Oracle JDeveloper and Oracle WebCenter Framework to develop
custom WebCenter applications

■ Oracle Fusion Middleware User's Guide for Oracle WebCenter, which explains how to
use custom WebCenter applications at runtime (in a browser)

For more information on Application Development Framework, see the Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction to WebCenter Framework and the Tutorial 1-1

1 Introduction to WebCenter Framework and
the Tutorial

Welcome to Oracle WebCenter Framework! This chapter introduces you to key Oracle
WebCenter Framework concepts, then explains what you will create during the steps
in this Tutorial. The lessons are designed to familiarize you with different aspects of
WebCenter Framework functionality, and to demonstrate enough about each feature
so that you can create your own custom WebCenter applications.

If you need additional information about a feature, you can always refer to the Oracle
Fusion Middleware Developer's Guide for Oracle WebCenter and the Oracle Fusion
Middleware User's Guide for Oracle WebCenter.

What is WebCenter Framework?
Oracle WebCenter Framework is a declarative JavaServer Faces (JSF)-based
framework that enables embedding of AJAX-based components, services, portlets, and
content into context-rich customizable applications. Leveraging a revolutionary
method for layering customizations, these applications and portals store user changes
in Oracle Metadata Services that is used across all of Oracle Fusion Middleware and is
the foundation for Fusion Applications. It insulates users and developers from
patching and upgrades to speed new capabilities to make businesses more agile, and is
delivered as an extension to Oracle JDeveloper to provide an integrated development
environment for composite Java EE applications, business processes, BI applications,
and enterprise portals.

Figure 1–1 provides an overview of the Oracle WebCenter architecture, showing the
major components that make up the product.

Figure 1–1 Overview of the Oracle WebCenter Architecture

What Will I Create?

1-2 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

In Figure 1–1, notice WebCenter Services and Composer (or, Oracle Composer). You
will use both of these components in conjunction with WebCenter Framework in this
Tutorial.

For more information about WebCenter Framework, WebCenter Services, and
Composer, refer to Chapter 1, "Understanding Oracle WebCenter"in the Oracle Fusion
Middleware Developer's Guide for Oracle WebCenter.

What Will I Create?
In this Tutorial, you will use WebCenter Framework to build a custom WebCenter
application that is customizable at runtime, empowering you and your end users to
edit application pages according to personal requirements and directly leveraging
Oracle Metadata Services. You will also use WebCenter Services to integrate content
from a content repository and display it in a user-friendly interface, and enable users
to "tag" and search the content. You will build and consume two types of portlets: a
rich, standards-based portlet and an out-of-the-box PDK-Java portlet that you define
using a wizard. You will enable interaction between the two portlets, so that user
actions performed on one portlet drives the content that displays in the second portlet.
Finally, you will change the look and feel of the application using a skin.

Figure 1–2 shows a partial view of custom WebCenter application you will create in
this Tutorial. To see a quick preview of what you will build at the beginning of each
lesson, refer to the chapters themselves.

Figure 1–2 Partial View of the Application You Will Create

This Tutorial is designed for the chapters to be completed in the same sequence as they
are presented. Due to dependencies, completing them in a different order may result
in missing resources or even errors.

The path through this Tutorial is as follows:

What Will I Create?

Introduction to WebCenter Framework and the Tutorial 1-3

■ Chapter 2, "Preparing for the Tutorial" tells you what you must do before you can
complete the steps in this Tutorial, including installing the resource files for the
sample application you will build. Be sure to complete all the steps described in
this chapter.

■ Chapter 3, "Creating a WebCenter Application with a Customizable Page"
introduces you to creating a custom WebCenter application, adding resources to
your application, creating a JSF page, and enabling runtime customization with
Oracle Composer. You will also use Oracle Composer to customize your
application at runtime.

■ Chapter 4, "Adding Security to Your Application" tells you how to implement
basic ADF security in an application, create users and roles, then assign ADF
Security Policies to a page.

■ Chapter 5, "Adding Oracle WebCenter Services to Your Application" shows you
how to add various services to your application that enable your users to access
content on a file system by using a document library, search for content across the
application, create a social network, add tagging and a tag cloud to your
application, add and use links, and, optionally, integrate email. You will also learn
how to use each of these services at runtime.

■ Chapter 6, "Building Portlets and Wiring Them in Your Application" tells you how
to create two types of portlets: an OmniPortlet and a simple standards-based Java
(JSR 168) portlet. You will also enhance the JSR 168 portlet to embrace more
sophisticated logic. You will then enable these two portlets to communicate with
each other, so that when you select an option in the first (JSR 168) portlet, the
content of the second portlet (OmniPortlet) updates based on that selection.

■ Chapter 7, "Changing the Look and Feel of Your Application" shows you how to
change the look and feel of your application using a skin. You will also learn how
to use Oracle Composer at runtime to personalize the application as different user
types, based on the users created in Chapter 4, "Adding Security to Your
Application."

What Will I Create?

1-4 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

2

Preparing for the Tutorial 2-1

2 Preparing for the Tutorial

This chapter tells you how to obtain the sample files and install the Tutorial and
Oracle WebCenter database schemas required for completing this Tutorial. These files
and database schemas are necessary for building the complete sample application.
You must have administrator's access to the database where you will install the
database schemas.

Introduction
We will set up the environment for the Tutorial by following these steps:

■ Step 1: Obtain the Software

■ Step 2: Download the Sample Tutorial Files

■ Step 3: Add the Tutorial Sample Schema to Your Database

■ Step 4: Install the WebCenter Schema

Step 1: Obtain the Software
Ensure that you have installed Oracle JDeveloper 11g Release 1 (11.1.1) and the Oracle
WebCenter extension (11.1.1). If you are not sure whether you have the WebCenter
extension, you can verify this by opening Oracle JDeveloper, then About from the
Help menu, then click the Extensions tab. At the top of the About dialog, you should
see Oracle JDeveloper 11g Release 1 11.1.1.2.0. On the Extensions list, sort by
Identifier to locate the oracle.webcenter.* components. Figure 2–1 shows the
Oracle WebCenter components listed in JDeveloper.

Step 2: Download the Sample Tutorial Files

2-2 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 2–1 Oracle WebCenter Framework in Oracle JDeveloper

If you do not see these components, you must install the WebCenter extension.

To install the WebCenter extension to Oracle JDeveloper using the Update Center:

1. Launch Oracle JDeveloper.

2. If the Select Default Roles dialog displays, select Default Role to enable all
technologies, and click OK.

3. If a dialog displays asking if you want to migrate settings from an earlier version,
click No.

4. In Oracle JDeveloper, choose Check for Updates from the Help menu.

5. On the Welcome page, click Next.

6. Select Search Update Centers, then click Next.

7. On the Updates page, search for the WebCenter extension, select it, then click
Finish.

8. When prompted, restart JDeveloper.

For more information on obtaining and installing Oracle WebCenter Framework, see
the Oracle WebCenter page on OTN (http://webcenter.oracle.com).

Step 2: Download the Sample Tutorial Files
At various points throughout this Tutorial, you'll be asked to include certain content
and images in your application. This material is contained in a ZIP file, which you can
download by following these instructions:

To download the sample Tutorial files:

1. Open a browser, and in the Address field, enter the URL of the WebCenter
Documentation page on OTN:

http://www.oracle.com/technetwork/middleware/webcenter/documentatio
n/index.html

Step 3: Add the Tutorial Sample Schema to Your Database

Preparing for the Tutorial 2-3

2. In the Introduction to Oracle WebCenter section of Release Notes, next to Oracle
Fusion Middleware Tutorial for WebCenter Developers, click the Supporting Files
link.

3. In the Opening webcentertutorialcontent-11120-128869.zip dialog, click OK.

4. Unzip the file to a local drive, such as C.

Figure 2–2 shows the file unzipped to: C:\TutorialContent.

Figure 2–2 Sample Content ZIP File Unzipped

Step 3: Add the Tutorial Sample Schema to Your Database
Some examples we will use in this Tutorial will access data using SQL. You must add
the schema to your database to complete these lessons. However, if you do not have
access to a database, you can still complete many of the other lessons in this Tutorial.

You can either install the Tutorial schema using SQL*Plus or by using Oracle
JDeveloper. This section shows you how to create the database connection for the
database where you will install the Tutorial schema, then add the schema to the
database, all within JDeveloper.

To complete the steps in this section, you will need the connection information (such
as the location and port number) for your database containing the schema. Take note
of this information for use later in the Tutorial.

Step 3: Add the Tutorial Sample Schema to Your Database

2-4 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

To add the sample schema to your database:

1. In Oracle JDeveloper, from the Tools menu, choose Database, then choose SQL
Worksheet.

2. In the Create Database Connection dialog, enter connection information for the
system administrator of your database (Figure 2–3):

■ Connection Name: TutorialSchema

■ Connection Type: Oracle (JDBC)

■ User name: <your system administrator user ID>

■ Password: <your system administrator password>

■ Role: Choose the appropriate role from the Role list (for example, SYSDBA or
SYSOPER; if using the SYSTEM user or a user that does not need the SYSDBA
or SYSOPER role, then leave this field blank)

■ Host: <host name of your database> (for example, localhost)

■ JDBC Port: <port> (for example, 1521)

■ SID: <system identifier for the database with the same JDBC
port> (for example, ORCL)

Note: If you see an error that says:

DROP USER FOD CASCADE

*

ERROR at line 1:

ORA-01918: user 'FOD' does not exist,

you can ignore this message, as it means that the schema does not yet
exist.

Step 3: Add the Tutorial Sample Schema to Your Database

Preparing for the Tutorial 2-5

Figure 2–3 Database Connection for the Tutorial Schema

3. Click OK to close the Create Database Connection dialog, then click OK again to
close the Select Connection dialog. The SQL Worksheet should display. Otherwise,
choose SQL Worksheet from the Tools menu, then select the newly created
connection and click OK.

4. In the SQL Worksheet panel, create the schema by entering the following
command (at the bottom of the page that displays, you will see that the tab is
called "SQL Worksheet"):

create user fod identified by fusion;

5. Ensure your cursor is in the SQL statement you just entered, then click the Execute
Statement icon at the top of the panel.

6. In the SQL Worksheet panel, enter the following command:

grant connect, resource to fod identified by fusion;

In doing so, you enable the credentials in the script we provided to access the
schema in your database.

7. Click the Execute Statement icon (the green arrow) at the top of the panel.

Figure 2–4 Execute Statement Icon

8. From the Tools menu, choose Database, then choose SQL Worksheet.

9. In the Select Connection dialog, click the pencil icon to edit the connection.

Step 4: Install the WebCenter Schema

2-6 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

10. Modify the connection to use the new credentials. Change the Username to fod
and the Password to fusion, then click OK to close the Edit Database Connection
dialog.

11. Click OK to close the Select Connection dialog.

12. Close the SQL Worksheet panel.

13. Start a new SQL Worksheet using the new connection. Choose SQL Worksheet
from the Tools menu again.

14. Create the schema objects by executing the buildFromJDev.sql script that is
located in the Scripts folder (c:\TutorialContent\Scripts):

@@<path>/buildFromJDev.sql

You can ignore the warnings in the Log window:

WARNING:
java.io.PipedInputStream.checkStateForReceive(PipedInputStream.java:244)
java.io.IOException: Pipe closed

Step 4: Install the WebCenter Schema
To use the Tag, Links, and People Connections services, you must have the WebCenter
schema installed in your database. You can do this by using the built-in SQL
Worksheet utility that you used in the previous step.

To install the WebCenter schema:

1. From the Tools menu, select SQL Worksheet.

2. In the Select Connection dialog, click the pencil icon to edit the connection.

3. Modify the connection to use an administrator username and password, such as
SYS (using the SYSDBA role) then click OK.

4. Click OK to close the Select Connection dialog.

5. From the Tools menu, choose SQL Worksheet.

6. Enter the following SQL statement in the SQL Worksheet panel:

@@JDEV_HOME/jdeveloper/jdev/extensions/oracle.webcenter.install/sql/oracle/wc_
schema.sql

where JDEV_HOME is the location where JDeveloper is installed on your machine.

7. Click the Execute Statement icon, or press F9, to run the script.

8. At the prompt, enter webcenter as the name for the schema and a password for
the schema, such as welcome1. The name of the schema must be webcenter.

9. If prompted for the Default Tablespace and Temporary Tablespaces, re-enter the
default values users and temp, then accept them.

Now that you have set up the files and the database for your environment, you are
ready to begin!

Note: You can also manually install the schema using SQL*Plus by
using the provided script,
c:\TutorialContent\Scripts\build.sql.

3

Creating a WebCenter Application with a Customizable Page 3-1

3 Creating a WebCenter Application with a
Customizable Page

In this lesson, you will create a basic custom WebCenter application, then create a
page within the application where you will later add services, content, and portlets.
You will update your application with existing resources (like images and a CSS file)
that we have provided so that you can use them with your application. You will also
add layout components and Oracle Composer to the page, so that you (and your
users) can customize the page at runtime. At the end of the lesson, we will experiment
with customizing our page at runtime using Oracle Composer.

Figure 3–1 shows the page you will create in this lesson.

Figure 3–1 MyPage.jspx at the End of this Lesson

Introduction
This lesson contains the following steps:

■ Step 1: Create a Custom WebCenter Application

■ Step 2: Add the Resource Files to the Application

■ Step 3: Create a Page

■ Step 4: Add Layout Components to the Page

■ Step 5: Add Oracle Composer to the Page to Enable Customization

■ Step 6: Customize the Page at Runtime Using Oracle Composer

Before you begin the steps in this lesson, ensure you have followed the steps up to this
point in the Tutorial.

Step 1: Create a Custom WebCenter Application

3-2 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Step 1: Create a Custom WebCenter Application
Let's begin by building a simple custom WebCenter application. You will then create a
page for this application that will serve as the interface for the application. This step
introduces you to the WebCenter application template, as well as the Application
Navigator, which helps you view various parts of your application.

To create a custom WebCenter application:

1. In Oracle JDeveloper, from the File menu, choose New.

2. In the New Gallery, on the Current Project Technologies tab, you should see the
General category highlighted. Under General, click Applications.

3. In the Items list, scroll down and select WebCenter Application, then click OK
(Figure 3–2).

Figure 3–2 Create New WebCenter Application

4. On the Application Name tab, in the Application Name field, enter
MyTutorialApplication and leave the other default values as they are, as
shown in Figure 3–3. In this example, the JDEV_USER_HOME is d:\jdev_
system. However, your directory may be different.

Step 1: Create a Custom WebCenter Application

Creating a WebCenter Application with a Customizable Page 3-3

Figure 3–3 Name a New WebCenter Application

5. Click Finish. Oracle JDeveloper generates the base files, including two projects, for
your application, which you can see in the Application Navigator (Figure 3–4):

■ Model, in which you define the JavaBeans and other data controls you need if
the application is to perform any back-end logic.

■ ViewController, in which you create the JavaServer Faces (JSF) page that will
consume WebCenter services and portlets.

Step 1: Create a Custom WebCenter Application

3-4 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–4 Generated Application Project Files in the Application Navigator

6. Let us make a few adjustments for the purposes of testing our application.
Right-click the ViewController project, then choose Project Properties
(Figure 3–5).

Step 1: Create a Custom WebCenter Application

Creating a WebCenter Application with a Customizable Page 3-5

Figure 3–5 Editing the Project Properties

7. In the Project Properties dialog, in the left column, choose Java EE Application
(Figure 3–6).

Step 1: Create a Custom WebCenter Application

3-6 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–6 Project Properties: Java EE Application

8. Here, we will change the context root of the application to make it easier for us to
reference the application resources that we will use throughout this Tutorial. In
the Java EE Web Application Name field, enter:

MyTutorialApplication

9. In the Java EE Web Context Root field, enter the same value:

MyTutorialApplication

The Project Properties dialog should now look like Figure 3–7:

Step 2: Add the Resource Files to the Application

Creating a WebCenter Application with a Customizable Page 3-7

Figure 3–7 Project Properties with the Modified Context Root Values

10. Click OK to accept your changes.

11. Save your application by clicking the Save All icon in the toolbar.

For more information on creating an application based on the WebCenter template,
see Chapter 3, "Preparing Your Development Environment" in Oracle Fusion
Middleware Developer's Guide for Oracle WebCenter.

Now that you have created a basic custom WebCenter application, you can create a
page. Before we create the page, though, we must add the resource files to our
application so that we can use them with our page.

Step 2: Add the Resource Files to the Application
Now that you have created the application, you can add the resource files that you
will need to complete the steps in the Tutorial. Here, you will add the image files, the
CSS file, and the login page that you downloaded in Chapter 2, "Preparing for the
Tutorial." This step shows you how you can take existing files (for example, your own
organization's logo images) and incorporate them into a WebCenter application.

To add the resource files to the application:

1. Ensure that you have followed the steps in Chapter 2, "Preparing for the Tutorial,"
which includes the step for obtaining the Tutorial sample files you will add.

2. In your file system directory (for example, Windows Explorer), navigate to the
location where you installed Oracle JDeveloper (JDev_Home) and locate the
following directory:

JDEV_USER_HOME\mywork\MyTutorialApplication\ViewController\public_html

JDEV_USER_HOME refers to the default directory where JDeveloper stores your
projects, and depends on how the JDEV_USER_HOME environment variable is set.
This could be, for example, your C:\ drive, or it could be

Step 2: Add the Resource Files to the Application

3-8 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

D:\Oracle\Middleware\, and so on. You should examine your file system to
find out where this directory is set.

Figure 3–8 shows an example of where the images folder will be located where the
JDEV_USER_HOME is set to d:\jdev_system.

Figure 3–8 Example of the Images folder in the JDEV_USER_HOME

The MyTutorialApplication subdirectory was automatically generated when
you created the application.

3. Locate the Tutorial sample files you downloaded and extracted in Chapter 2,
"Preparing for the Tutorial," and copy the C:\TutorialContent\images folder
to your JDEV_USER_
HOME\mywork\MyTutorialApplication\ViewController\public_html
directory.

4. Return to Oracle JDeveloper and click the Refresh icon next to the Projects list in
the Application Navigator. You should now see the images folder in the
Application Navigator (Figure 3–9).

Step 2: Add the Resource Files to the Application

Creating a WebCenter Application with a Customizable Page 3-9

Figure 3–9 Images in the Application Navigator

You can now use these images with your application.

While you are here, also add the CSS skin and its associated images that you will
apply to the application in Chapter 7, "Step 1: Change the Application Look and
Feel Using a Skin". You will not do anything with this skin just yet.

5. Return to your file system.

6. In your file system explorer, copy the C:\TutorialContent\css folder to your
JDEV_USER_
HOME\mywork\MyTutorialApplication\ViewController\public_html
directory (Figure 3–10).

Note: Notice that the image names are enumerated: 1.jpg, 2.jpg,
and so on. These image names match the product ID of the items we
will retrieve when we create our portlets in Chapter 6, "Building
Portlets and Wiring Them in Your Application." If you change the
names of these image files, the statement may not return the correct
results.

Step 2: Add the Resource Files to the Application

3-10 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–10 CSS Directory with the TutorialSkin.CSS file in the JDEV_USER_HOME

7. Return to JDeveloper and refresh the Application Navigator to see the css
directory and its contents (TutorialSkin.css), as shown in Figure 3–11.

Figure 3–11 CSS File in the Application Navigator

8. Next, add the new mylogin.html page that you will use in Chapter 4, "Adding
Security to Your Application." In the files that you downloaded,
C:\TutorialContent, locate mylogin.html.

9. Copy and paste this file to the public_html folder.

10. Return to JDeveloper and refresh the Application Navigator. You should see the
mylogin.html file in the Web Content directory, as shown in Figure 3–12.

Figure 3–12 Mylogin.html Page in the Web Content Directory

Step 3: Create a Page

Creating a WebCenter Application with a Customizable Page 3-11

You now have all the resource files you need to complete the steps in this Tutorial.

Step 3: Create a Page
In this step, you will learn how to create a simple JSF page for your application, which
will contain the services and portlets that you will configure and add in the
subsequent steps of this Tutorial. You will use one of Oracle WebCenter Framework's
pre-built "quick start" layouts as a starting point. This step introduces you to the
Create JSF Page dialog and the Visual Editor, as well as the Structure window.

To create a page:

1. In the Application Navigator for MyTutorialApplication, right-click the
ViewController project, then choose New.

2. In the New Gallery, under Web Tier, choose JSF.

3. Under Items, choose JSF Page, then click OK (Figure 3–13).

Figure 3–13 Choosing JSF Page from the New Gallery

4. In the Create JSF Page dialog, in the Name field, enter MyPage.

5. Select the Create as XML Document (*.jspx) checkbox.

6. Set up an initial layout for our page. WebCenter Framework includes a few "quick
start" layouts that help you get started with creating a page layout. You can use
these layouts when you begin creating your own applications, or create your own
layout from the beginning. In this Tutorial, you will use a quick start layout.

Under Initial Page Layout and Content, select Quick Start Layout, then click
Browse (Figure 3–14).

Step 3: Create a Page

3-12 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–14 Create JSF Page Dialog

7. Under Categories, select One Column.

8. Under Types, select the second type.

9. Under Layouts, select the second layout. The Component Gallery should look like
Figure 3–15.

Figure 3–15 Selecting an Initial Layout

10. Click OK, then click OK again.

JDeveloper finishes the wizard and displays your page in the Application
Navigator (Figure 3–16).

Step 3: Create a Page

Creating a WebCenter Application with a Customizable Page 3-13

Figure 3–16 MyPage in the Application Navigator

11. To the right of the Application Navigator, notice that your page displays in the
Visual Editor (the large area between the Application Navigator and the
Component and Resource Palettes) in the Design view (notice the Design tab is
highlighted at the bottom of the view), as shown in Figure 3–17.

Figure 3–17 Design tab

12. Below the Application Navigator, notice the Structure window for your page. This
view shows all the elements of your page in a hierarchical view. Just below that
Structure tab, notice the pushpin icon (Figure 3–18).

Figure 3–18 Pushpin in the Structure Window

Clicking this icon toggles the behavior of the Structure window -- if it is pressed,
then the Structure window displays the current view no matter where you click in
Oracle JDeveloper. If it is not pressed, the Structure window updates according to
where you click in JDeveloper.

You can expand the nodes in this view to see the various components that were
automatically added to your page, since you chose to use the Quick Start Layout.
Notice the Panel Splitter and Panel Splitter facets under f:view, for example
(Figure 3–19).

Step 4: Add Layout Components to the Page

3-14 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–19 Structure Window for MyPage.jspx

For more information on creating pages using Oracle WebCenter Framework, see
Chapter 3, "Preparing Your Development Environment" in Oracle Fusion Middleware
Developer's Guide for Oracle WebCenter.

Now that we have created our application and a JSF page, we can adjust the layout of
our page and add Oracle Composer to our page to enable users to customize the page
at runtime.

Step 4: Add Layout Components to the Page
Selecting the Quick Start Layout when we created the page gave us a few "starter"
layout components, specifically the Panel Splitter, which provides the basic
framework of your page. In this step, you will enhance the layout and create a
structure for the header section where you can add content, such as a corporate logo.
You will learn about using the Structure window to tightly control the layout
components on your page, as well as using components on the Component Palette.

To add layout components to the page:

1. In the Structure window, select the Panel Splitter, which is listed as
af:panelSplitter - vertical. You'll notice that the Property Inspector for
this component displays to the right and below the Component Palette
(Figure 3–20). The contents of the Property Inspector update depending on your
focus in Oracle JDeveloper. Similar to the Structure window, you can use the
pushpin icon in the Property Inspector to freeze the view according to the
currently selected component.

Note: You can alternatively change to the Source view of the page.
For the purposes of the Tutorial, using the Structure window enables
you to see clearly where you've added a new component.

Note: You can always view the Property Inspector for a component
by right-clicking the component, then choosing Go To Properties
from the context menu.

Step 4: Add Layout Components to the Page

Creating a WebCenter Application with a Customizable Page 3-15

Figure 3–20 Property Inspector for the Panel Splitter

2. In the Property Inspector, under Common, locate the SplitterPosition property,
and change the value from 50 to 85 (Figure 3–21). Clicking elsewhere in
JDeveloper sets the property.

Step 4: Add Layout Components to the Page

3-16 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–21 Setting the SplitterPosition Property

3. In the Structure window, expand the Panel Splitter. Notice that it contains two
facets. In the next step, we will drop an ADF Faces component onto the first
facet.

4. Add an ADF Faces layout component to our page to control how the content will
display.

In the Component Palette, choose ADF Faces from the list. If the Component
Palette is not currently displaying, you can show it by choosing Component
Palette from the View menu.

5. Under Layout, scroll down to Panel Stretch Layout, select it (Figure 3–22), and
drag and drop it onto the first facet in the Structure window.

Note: The Component Palette is context sensitive. That is, the
contents of the Component Palette update according to the focus of
your view in Oracle JDeveloper. As you're going through this
Tutorial, if you suddenly "lose" components in the Component Palette
or do not see the components described, try ensuring that you have
the correct page or panel selected.

Step 4: Add Layout Components to the Page

Creating a WebCenter Application with a Customizable Page 3-17

Figure 3–22 Panel Stretch Layout in the Component Palette

Figure 3–23 shows the Panel Stretch Layout in the Structure window.

Figure 3–23 Panel Stretch Layout in the Structure Window

6. When you drop the Panel Stretch Layout component, you'll notice that the
Property Inspector now displays the properties for this component(Figure 3–24).

Step 4: Add Layout Components to the Page

3-18 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–24 Properties of the Panel Stretch Layout

7. Set the following properties in the Property Inspector, as shown in Figure 3–25:

■ StartWidth: 300px

■ EndWidth: 400px

■ TopHeight: 0px

■ Bottomheight: 0px

Step 4: Add Layout Components to the Page

Creating a WebCenter Application with a Customizable Page 3-19

Figure 3–25 Property Inspector for the Panel Stretch Layout with Updated Values

8. Next, add a logo to the header of the page, in the start facet of the Panel Stretch
Layout. In the Structure window, expand the Panel Stretch Layout you just added
so that you can see the different facets (Figure 3–26), then select the start facet.

Step 4: Add Layout Components to the Page

3-20 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–26 Panel Stretch Layout Facets

Notice how the corresponding facet is highlighted in the Design view
(Figure 3–27). This is where we will add the logo image.

Step 4: Add Layout Components to the Page

Creating a WebCenter Application with a Customizable Page 3-21

Figure 3–27 Start Facet in the Design View

9. The logo we will add is an image file we added to our application in Step 2: Add
the Resource Files to the Application. In the Application Navigator, under
ViewController, then Web Content, open the images folder.

10. Locate the logo.png file.

11. Drag and drop logo.png onto the start facet in the Design view of your page.
When you drop the image, choose ADF Faces Image from the context menu
(Figure 3–28).

Step 4: Add Layout Components to the Page

3-22 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–28 Choosing ADF Faces Image from the Context Menu

The logo displays on your page, as shown in Figure 3–29.

Step 4: Add Layout Components to the Page

Creating a WebCenter Application with a Customizable Page 3-23

Figure 3–29 Logo Image on Page in the Start Facet

Also notice that the image now displays in the Structure window, as shown in
Figure 3–30.

Step 4: Add Layout Components to the Page

3-24 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–30 Logo Image in the Structure Window

12. Now, you can finish the layout of the header. In the Design view, notice the end
facet (Figure 3–31) that displays to the right of the logo.

Figure 3–31 End Facet in the Design View

From the Component Palette, drag and drop the Panel Group Layout ADF Faces
component onto this facet. You can see this now either in the Design view or, more
easily in the Structure window (Figure 3–32).

Step 4: Add Layout Components to the Page

Creating a WebCenter Application with a Customizable Page 3-25

Figure 3–32 Panel Group Layout in the End Facet

13. While the Panel Group Layout is selected, in the Property Inspector, under
Appearance, change the Halign property to end. This changes the alignment of
the components you will add to this layout component.

14. Change the Layout property to vertical (Figure 3–33).

Step 4: Add Layout Components to the Page

3-26 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–33 Changing the Properties of the Panel Group Layout

15. For the purposes of this Tutorial, let's add a Status Indicator. The Status Indicator
keeps us informed of the application's activity during runtime. For example, if you
click a link, the Status Indicator will let you know the application is accessing the
target of that link.

Ensure that the MyPage.jspx tab is displaying in the Design view.

16. In the Component Palette, choose ADF Faces from the list to display the ADF
Faces components.

17. Under Common Components, scroll down the list and locate Status Indicator,
then select it (Figure 3–34).

Step 4: Add Layout Components to the Page

Creating a WebCenter Application with a Customizable Page 3-27

Figure 3–34 Status Indicator in the Component Palette

18. Drag and drop the Status Indicator onto the Panel Group Layout in the end facet,
as shown in Figure 3–35.

Figure 3–35 Status Indicator on the Panel Group Layout

19. Let us examine how the page looks at runtime. Right-click the page in the Design
view, then choose Run. The page containing the logo and status indicator displays
in your browser, as you can see in Figure 3–36.

Step 5: Add Oracle Composer to the Page to Enable Customization

3-28 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–36 MyPage with Logo and Status Indicator at Runtime

20. Return to JDeveloper.

Now that we have set up the initial header for our page, we will add Oracle
Composer so that we can customize our page at runtime.

Step 5: Add Oracle Composer to the Page to Enable Customization
In traditional Java EE applications, if you wanted to edit pages (for example, add
content, edit security definitions, and so on), you had to make these changes in Oracle
JDeveloper, which is the application design time, and then redeploy the updated
application to the production environment. With Oracle Composer, you and your
application users can now edit your pages at runtime and see the results of your
modifications immediately. Using Oracle Composer, you can give users the ability to
move objects around on their page, hide or show content, as well add new content to
the page.

In this step, we will add a few features that Oracle Composer offers. For a more
in-depth description of Oracle Composer, however, see the chapters in Part II, "Using,
Extending, and Customizing Your Application with Oracle Composer" in Oracle Fusion
Middleware Developer's Guide for Oracle WebCenter.

To add Oracle Composer to the page:

1. First, add a Change Mode Link to the page. This link will enable runtime users of
your application to switch between viewing the page and editing it using Oracle
Composer.

In the Component Palette, choose Oracle Composer from the list at the top. In the
previous step, you chose ADF Faces from this list, but let's switch views so we can
see Oracle Composer's components.

2. Under Common Components, drag and drop the Change Mode Link component
onto the Panel Group Layout in the Structure window. Adding this component
will let you switch back and forth between the Edit mode and the View mode of
your page at runtime. Figure 3–37 shows the Change Mode Link in the
Component Palette.

Note: You can adjust the display of the Component Palette to see all
of the options. You can do so by clicking and dragging the bars (such
as the Layout bar) up and down to view the component names.

Step 5: Add Oracle Composer to the Page to Enable Customization

Creating a WebCenter Application with a Customizable Page 3-29

Figure 3–37 Change Mode Link in the Component Palette

3. If necessary, you can move the link above the Status Indicator by dragging it in the
Structure window (Figure 3–38).

Figure 3–38 Change Mode Link in the Structure Window

4. When you add security to your application, as you will in the subsequent
Chapter 4, "Adding Security to Your Application,"you can determine which users
can edit this page, thus disabling the Change Mode Link you just added. You can
adjust the attributes of this link to hide Change Mode Link from users who do not
have privileges to edit the page.

To hide the Change Mode Link from users without Edit privileges, select the link
in the Structure Window, then find the Rendered property in the Property
Inspector under the Common category, as shown in Figure 3–39.

Step 5: Add Oracle Composer to the Page to Enable Customization

3-30 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–39 Rendered Property in the Change Mode Link Property Inspector

5. You can use the Expression Builder to specify how you want components to
display in your application. Alternatively, if you are more comfortable coding, you
can go to the Source view of the page, then manually enter the code.

To the right of the Rendered property, click the down arrow, then choose
Expression Builder from the context menu.

6. In the Expression Builder, navigate to JSF Managed Beans, composerContext,
inEditMode, securityContext, then click editAuthorized. You'll notice that doing
so updates the Expression field at the top of the dialog (Figure 3–40). Example 3–1
shows the code you just created, which you can alternatively copy and paste into
the Expression field.

Example 3–1

#{composerContext.securityContext.editAuthorized}

Step 5: Add Oracle Composer to the Page to Enable Customization

Creating a WebCenter Application with a Customizable Page 3-31

Figure 3–40 Expression Builder with the Values Filled In

7. Click OK to accept the expression for the Rendered property. Until you implement
security in your application, the value of this property does not affect the display
of the Change Mode Link.

8. Add a Spacer component between the Change Mode Link and Status Indicator
components. From the Component Palette, under ADF Faces, expand Layout.

9. Drag and drop a Spacer component onto the Structure window between the
Change Mode Link and Status Indicator, as shown in Figure 3–41.

Figure 3–41 Adding a Spacer Component

10. Add a Page Customizable component to the layout. The Page Customizable,
which is an Oracle Composer component, adds the runtime customization
capabilities to the page.

In the Component Palette, choose Oracle Composer from the list.

11. Under Common Components, drag and drop Page Customizable (Figure 3–42)
onto the second facet in the Structure window (Figure 3–43).

Step 5: Add Oracle Composer to the Page to Enable Customization

3-32 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–42 Page Customizable in the Component Palette

Figure 3–43 Page Customizable in the Second Facet

12. In the Structure window, expand the Page Customizable, then delete the Panel
Customizable since we do not need it (Figure 3–44). You can delete it by selecting
it, then pressing your Delete key.

Step 5: Add Oracle Composer to the Page to Enable Customization

Creating a WebCenter Application with a Customizable Page 3-33

Figure 3–44 Deleting the Panel Customizable

13. Expand the Page Customizable facets node to view the list of components you
added. One of these components is a status indicator. This status indicator only
displays once you are in Composer at runtime. As you will see in the next step,
"Step 6: Customize the Page at Runtime Using Oracle Composer", you will see two
status indicators: one that you added earlier in this chapter, and another that
displays only once you enter Edit mode at runtime in your application.

To remove this new status indicator, select the Page Customizable in the Structure
Window.

14. In the Property Inspector for the Page Customizable, expand the Other node, then
set the ToolbarLayout property to the following:

message stretch menu button

Figure 3–45 Removing the Second Status Indicator from the Page Customizable

15. Let's continue to add layout components to the page. In the Component Palette,
from the ADF Faces list, drag and drop a Panel Group Layout component onto
the Page Customizable component, then set the Layout property to scroll. Doing
so enables a scrollbar in this area of the layout.

Figure 3–46 Panel Group Layout

16. Now, we will add a Layout Customizable to our page to create a layout for this
region. In the subsequent chapters, we will add services and portlets to this area.
From the Component Palette, under Oracle Composer, drag and drop a Layout
Customizable onto the Panel Group Layout in the Structure window
(Figure 3–47).

Step 5: Add Oracle Composer to the Page to Enable Customization

3-34 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–47 Layout Customizable in the Page Customizable

17. While the Layout Customizable is selected, in the Property Inspector, under
Common, set the Type property to twoColumnTop (Figure 3–48).

Figure 3–48 Setting the Layout Customizable Properties

18. Now that you have added a few Oracle Composer components to our page, run
the page and check out some of its features at runtime.

Right-click MyPage in the Design view, then choose Run from the context menu
to view your page at runtime (Figure 3–49).

Step 6: Customize the Page at Runtime Using Oracle Composer

Creating a WebCenter Application with a Customizable Page 3-35

Figure 3–49 MyPage at Runtime with the Change Mode (Edit) Link

For more information on adding Oracle Composer to your application, see the
chapters in Part II, "Using, Extending, and Customizing Your Application with
Oracle Composer" in Oracle Fusion Middleware Developer's Guide for Oracle
WebCenter.

We will use Oracle Composer in the application at runtime in the next step.

Step 6: Customize the Page at Runtime Using Oracle Composer
After you add Oracle Composer to a page at design time (in JDeveloper), you can run
your page and customize the page at runtime (in a web browser). Your application
users can also customize their pages at runtime -- this way, you do not have to go back
to JDeveloper every time you want to modify the appearance of your application.

In this step, we will test a few features that Oracle Composer offers. Later in the
Tutorial, after you implement security and add a few features to your application, you
will test the application at runtime again for a more in-depth look at personalizing
your application.

1. While MyPage displays in your browser, you'll notice an Edit link above the Status
Indicator. Click Edit to see how the page looks in Edit mode (Figure 3–50).

Figure 3–50 Edit Mode of MyPage

2. Take a quick look at what you can do in Edit mode.

Step 6: Customize the Page at Runtime Using Oracle Composer

3-36 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

In the top left horizontal region, click Add Content to view the runtime catalog.
Here, you can click ADF Faces Components to see the different ADF Faces
Components you can add at runtime (Figure 3–51).

Figure 3–51 Adding Content at Runtime

3. Add a Text object to see how it looks. In the Catalog, next to Text, click Add, then
click Close. A text box now displays in the region, as shown in Figure 3–52.

Step 6: Customize the Page at Runtime Using Oracle Composer

Creating a WebCenter Application with a Customizable Page 3-37

Figure 3–52 Text Box in the Edit Mode at Runtime

4. In the upper right corner of the region, click Edit Text to switch to the Rich Text
Editor.

5. Place your cursor in the text box and enter some sample text. You can play around
with the different functions in the toolbar, as well, such as changing the text to
bold or switching the font, as shown in Figure 3–53.

Figure 3–53 Entering and Modifying Text in the Rich Text Editor at Runtime

6. When you are finished, click Done Editing.

7. You can change the overall layout of your page by clicking Change Layout, then
choosing a layout option (Figure 3–54).

Step 6: Customize the Page at Runtime Using Oracle Composer

3-38 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–54 Changing the Layout at Runtime

8. Try selecting a layout option, such as the three column layout. The page
automatically refreshes with your changes, as you can see in Figure 3–55.

Figure 3–55 MyPage in a Three Column Layout at Runtime

9. You can also change the layout of each of the component boxes by clicking the
pencil icon in the upper right corner of the box (Figure 3–56).

Step 6: Customize the Page at Runtime Using Oracle Composer

Creating a WebCenter Application with a Customizable Page 3-39

Figure 3–56 Component Properties: Box

In the Component Properties for the layout box, you can change the layout of the
box, the background color, and so on. Click Cancel to exit the Properties panel.

10. You can perform several other tasks at runtime, as well. For example:

■ Drag and drop components from one region to another. Hover your mouse
over the text box, and while you see the crosshairs, click and drag the text box
from one region to another on the page.

■ Delete components. In the upper right corner of the box, click the X to delete
the component.

11. Return to Oracle JDeveloper.

Notice that the changes you made, for example the sample text, does not display
in your Design view. Modifications that you or your application users make at
runtime in Oracle Composer are stored behind the scenes, which means that the
changes you make do not affect the source of your application.

12. Although your application view is not affected by runtime modifications, the
customizations made at runtime are stored in the MDS (Metadata Services). So,
while you are developing an application, it is good practice to clear out these
changes.

In the Application Navigator, next to MyTutorialApplication (in the list), click the
Application Menu icon.

Step 6: Customize the Page at Runtime Using Oracle Composer

3-40 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 3–57 Application Menu

13. From the context menu, choose Application Properties....

14. In the Application Properties dialog, expand the Run node in the left pane, then
select MDS.

15. In the right pane, under Run: MDS, select Delete customizations before each run
(Figure 3–58). Doing so clears the changes you made when you entered Edit mode
at runtime the next time you run the application. Other changes you make at
runtime (for example, in the services you add in Chapter 5, "Adding Oracle
WebCenter Services to Your Application") are not stored in the MDS, and thus this
option does not clear those change every time you run the application.

Figure 3–58 Application Properties Dialog

16. Click OK.

You can learn more about Oracle Composer and Oracle Metadata Services in Oracle
Fusion Middleware Developer's Guide for Oracle WebCenter.

Now that we've created a custom WebCenter application added the resource files to
your application, built a customizable JSF page, and taken a quick tour of Oracle
Composer at runtime, you can add security to your application in Chapter 4, "Adding
Security to Your Application."

4

Adding Security to Your Application 4-1

4 Adding Security to Your Application

In this lesson, you will add basic security to your custom WebCenter application, then
create three different sample users who can log into the application. You will also add
elements to the header of MyPage, so that users can click a login link to access your
application, as well as a login page that displays the username and password fields.

By enabling security in the development environment of your application, you can test
security-based features, such as logging in as a particular user to check email, or
logging in as the administrator to make a change to the overall application. This
chapter shows you how to set up security; in the next chapter, you will see how you
can leverage WebCenter services that rely on security.

At the end of this lesson, the page you created in Chapter 3, "Creating a WebCenter
Application with a Customizable Page" will look like Figure 4–1.

Figure 4–1 MyPage.jspx in the Browser

Introduction
This lesson contains the following steps:

■ Step 1: Add ADF Security to Your Application

■ Step 2: Create Users and Roles for the Application

■ Step 3: Add ADF Security Policies to Your Application

■ Step 4: Add a Login/Logout Link to Your Application and Update the Login Page

Before you begin the steps in this lesson, ensure you have followed the steps up to this
point in the Tutorial.

Step 1: Add ADF Security to Your Application
Oracle JDeveloper includes an ADF Security wizard that enables you to add basic
security to your application. In this step, we use this wizard to add security to our
existing application.

Step 1: Add ADF Security to Your Application

4-2 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

To add ADF security:

1. In JDeveloper, while the application is open, choose Application from the main
menu, then select Secure, and Configure ADF Security to display the Configure
ADF Security wizard.

Figure 4–2 Configure ADF Security Menu Option

2. On the Enable ADF Security page, ensure ADF Authentication and Authorization
is selected. Choose this option when securing any ADF web application, such as a
custom WebCenter application (Figure 4–3).

Step 1: Add ADF Security to Your Application

Adding Security to Your Application 4-3

Figure 4–3 Configure ADF Security - Step 1 of 5

3. Click Next.

4. On the Select authentication type page, ensure Form-Based Authentication is
selected. Choosing this option generates a login page where users can enter their
username and password for the application.

5. Select Generate Default Pages, and leave the default page names: /login.html
and /error.html (Figure 4–4).

Click Next.

Step 1: Add ADF Security to Your Application

4-4 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 4–4 Configure ADF Security - Step 2 of 5

6. Click Next.

7. On the Enable automatic policy grants page, ensure Grant to All Objects is
selected. Doing so enables the test-all role in your application View access to
any pages you create in the application (Figure 4–5).

Figure 4–5 Configure ADF Security - Step 3 of 5

8. Click Next.

Step 2: Create Users and Roles for the Application

Adding Security to Your Application 4-5

9. On the Specify authenticated welcome page, click Next. You can learn more about
this option in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

10. On the Summary page, notice the files that the wizard will create or modify based
on your selections, then click Finish. If a dialog displays, click OK.

In the Application Navigator notice that two new pages display in the
ViewController project, under WebContent: error.html and login.html.

Figure 4–6 Security Files in the Application Navigator

For more information about testing security during development and WebCenter
application security, see Chapter 3, "Securing Your WebCenter Application" in Oracle
Fusion Middleware Developer's Guide for Oracle WebCenter.

Now that you have set up basic ADF security for the application, you can create the
users and roles.

Step 2: Create Users and Roles for the Application
Now that we have added basic ADF security to our application, we can create sample
users to test the authentication. In this section, you will create three users: a user with
administrative privileges who can make changes to the entire application, a user who
can only make modifications to his own view of the application, and a user who can
make some modifications to the application in addition to his own view. This step
introduces you to the jazn-data.xml file, which contains the security information
for your application.

To create users for the application:

1. From the Application menu, choose Secure, then Users to display the
jazn-data.xml file.

Step 2: Create Users and Roles for the Application

4-6 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 4–7 Creating Users

2. In the jazn-data.xml file, ensure that the Users tab is selected.

3. In the Users list, click the New User icon (Figure 4–8) to add a user temporarily
named "NewUser" to the Users list.

Figure 4–8 New Users Icon

4. While NewUser is selected, notice that the right pane updates so that you can
modify the properties of the user (Figure 4–9).

Figure 4–9 NewUser Properties

In the Name field, enter Lisa.

5. In the password field, enter welcome1 then click on the Display Name field to
make sure the password is accepted. Leave the rest of the fields blank for now.

Step 2: Create Users and Roles for the Application

Adding Security to Your Application 4-7

6. Create two more users by following steps 3 through 5:

■ User: Dan, Password: welcome1

■ User: Alex, Password: welcome1

Figure 4–10 New Users in the jazn-data.xml File

7. Now that we have created our sample users, we can create roles for the
application, then assign the users to the roles. In the left pane, click the
Application Roles tab (Figure 4–11). Notice that a role is already listed, called
test-all. This role is automatically generated by the Configure ADF Security
wizard. You can use this role for testing purposes, but you will create your own
roles for this application.

Figure 4–11 Application Roles Tab

8. In the Roles list, click the New Application Role icon.

9. While NewApplicationRole is selected, in the Name field to the right, enter
admin-role.

10. In the Display Name field, enter Administrators.

11. Click the Members tab, then click the Add User or Role icon, then select Add User
from the menu.

12. In the Select Users dialog, click Lisa, then click OK.

Figure 4–12 Select Users Dialog

The new role displays with the user Lisa listed.

Step 3: Add ADF Security Policies to Your Application

4-8 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 4–13 Admin-Role

13. Create another role called user-role and set the Display Name to Users.

14. Add the users Dan and Alex to this role.

15. Save all your files.

For more information about users and roles, see Oracle Fusion Middleware Developer's
Guide for Oracle WebCenter and Chapter 3, "Securing Your WebCenter Application" in
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Step 3: Add ADF Security Policies to Your Application
Once you set up ADF security for your application using the Configure ADF Security
wizard and set up your users, you must create the ADF security policies for your
application. When you add ADF security policies to your application, you apply them
to the page that requires authentication. The ADF security policies indicate the
permissions for the application roles you set in the previous step. That is, the security
policies define the actions that different users can perform on various objects in the
application, such as pages and task flows. For example, you can set MyPage to be
viewable by any user who is a member of the user-role and customizable by any
user who is a member of the admin-users role.

To add ADF security policies to your application:

1. Before we can add ADF security policies to the application, we must first create a
page definition for MyPage. Then, we will add the application roles and set their
permissions on that page.

While MyPage is displaying in the Design view (you may need to click its tab to
bring it into focus), right-click the page, then choose Go to Page Definition.

2. If the Confirm Create New Page Definition dialog displays, click Yes. The page
definition file, called MyPagePageDef.xml displays. You can close this tab for
now.

3. Click the MyPage.jspx tab to bring it into focus.

4. From the Application menu, choose Secure, then ADF Policies to display the ADF
Security Policies section of the jazn-data.xml file, as shown in Figure 4–14.

Step 3: Add ADF Security Policies to Your Application

Adding Security to Your Application 4-9

Figure 4–14 ADF Security Policies

5. Before adding the ADF security policies to our application, take a quick look at the
Task Flows you currently have in the application. Select the Show task flows
imported from ADF libraries checkbox.

Figure 4–15 ADF Security Policies for Task Flows

These task flows are generated by default for your application. Once you start
adding task flows in Chapter 5, "Adding Oracle WebCenter Services to Your
Application," this list will automatically be updated with the new task flows.

6. Next, add the necessary ADF Security Policies to the application. At the top of the
section, click the Web Pages tab.

7. In the Page Definition list, click MyPage (Figure 4–16).

Figure 4–16 MyPage on the ADF Security Policies Section

Step 3: Add ADF Security Policies to Your Application

4-10 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

8. Next to the Granted To Roles column, click the Add Application Role icon.

9. In the Select Roles dialog, select admin-role, authenticated-role, and user-role,
then click OK (Figure 4–17).

Figure 4–17 Select Roles Dialog

The three roles now display on the Web Pages tab of the ADF Security Policies
page (Figure 4–18).

Figure 4–18 MyPage ADF Security Policies

10. Next, assign the permissions each role has for MyPage. While admin-role is
selected, under Actions, select View and Customize, as shown in Figure 4–19.

Step 3: Add ADF Security Policies to Your Application

Adding Security to Your Application 4-11

Figure 4–19 Assigning the View and Customize Actions to the admin-role

Doing so allows any user with the admin-role (in our example, Lisa) to view the
page and customize it. Any customizations that Lisa makes will proliferate to the
views of all users. Customizations are different from personalizations; the latter can
only be viewed by the currently authenticated user.

11. Select the authenticated-role and ensure the role has View permissions for
MyPage.

12. Select the user-role and select the View and Personalize actions.

13. Finally, we must make one change to the adf-config.xml file to set any
customizations that the user makes to the user level and not the site or application
level.

14. In the Application Navigator, in the Application Resources panel, expand
Descriptors, then ADF META-INF.

Figure 4–20 adf-config.xml File in the Application Resources Panel

15. Open the adf-config.xml file, and switch to the Source view by clicking the
Source tab at the bottom of the page.

16. Locate the following code snippet (as shown in Figure 4–21), which only displays
if you have added customizable components from Oracle Composer to your page,
as you did in Chapter 3, "Creating a WebCenter Application with a Customizable
Page":

 <cust-config>
 <match>
 <customization-class name="oracle.adf.share.config.SiteCC"/>
 </match>
 </cust-config>

Step 4: Add a Login/Logout Link to Your Application and Update the Login Page

4-12 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 4–21 Section to Overwrite in the adf-config.xml File

17. Replace the code snippet with the following code snippet:

 <cust-config>
 <match>
 <customization-class name="oracle.adf.share.config.UserCC"/>
 </match>
 </cust-config>

18. Save all your files.

For more information about ADF Security Policies, see Oracle Fusion Middleware
Developer's Guide for Oracle WebCenter.

Now that you have set up security for your application, you can enable users to log in
and out of the application by adding a link to MyPage.

Step 4: Add a Login/Logout Link to Your Application and Update the
Login Page

To enable your users to log in and out of the application, in this step, you will add a
Login/Logout link to the upper right corner of the header that toggles depending on
whether the user is authenticated.

Figure 4–22 Logout Link in the Header

To add a login/logout link:

Step 4: Add a Login/Logout Link to Your Application and Update the Login Page

Adding Security to Your Application 4-13

1. In Oracle JDeveloper, bring MyPage.jspx into focus.

2. In the Structure window for MyPage.jspx, navigate to the Panel Splitter, then
open the first facet. Remember that you can use the pushpin in the Structure
window to freeze the current view. For this step, you click MyPage in the Design
view, then ensure the pushpin is in the "freeze" position (pressed).

3. Under the first facet, expand af:panelStretchLayout, open the Panel Stretch
Layout facets folder, then open the end folder.

4. First, organize the components you already have into a layout so that we can add
the login/logout link. Place a Panel Group Layout onto the existing vertical Panel
Group Layout that contains the Change Mode Link you added in "Step 5: Add
Oracle Composer to the Page to Enable Customization" in Chapter 3, "Creating a
WebCenter Application with a Customizable Page."

To do so, in the Component Palette, select ADF Faces from the list.

5. Under Layout, drag and drop Panel Group Layout onto the
af:panelGroupLayout-vertical, and set the Layout property to horizontal.

Figure 4–23 New Panel Group Layout with Horizontal Layout

6. Drag and drop the Change Mode Link, Spacer, and Status Indicator into the new
horizontal Panel Group Layout.

Figure 4–24 Horizontal Panel Group Layout with the Components

7. Drag and drop another Panel Group Layout onto the vertical Panel Group Layout
and set its Layout property to horizontal.

8. Move the new Panel Group Layout above the existing horizontal Panel Group
Layout that contains the Change Mode Link, Spacer, and Status Indicator
(Figure 4–25).

Step 4: Add a Login/Logout Link to Your Application and Update the Login Page

4-14 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 4–25 Second Horizontal Panel Group Layout

9. To lay out the components in the header, add a Spacer component between the
two Panel Group Layout components. From the Component Palette, under ADF
Faces, expand Layout.

10. Drag and drop a Spacer component onto the Structure window between the two
horizontal Panel Group Layout components (Figure 4–26).

Figure 4–26 Spacer Component in the Structure Window

11. Add a Welcome message that displays the name of the currently authenticated
user.

Drag and drop an Output Text (Active) component from the Component Palette
(under ADF Faces, Common Components) onto the first
af:panelGroupLayout-horizontal.

12. In the Property Inspector for the Output Text, in the Value field, enter the
following code snippet, as shown in Figure 4–27:

#{'Welcome '}#{securityContext.userName}

Step 4: Add a Login/Logout Link to Your Application and Update the Login Page

Adding Security to Your Application 4-15

Figure 4–27 Output Text Value

13. Add a spacer after the Welcome text. From the Component Palette, under ADF
Faces, drag and drop the Spacer component onto the Structure window.

14. Next, add a Logout link. From the Component Palette, under ADF Faces, drag and
drop a Go Link component just below the Spacer component in the Structure
window, and set the Text property to Logout.

Figure 4–28 Go Link

15. Set the Destination property to the following, as shown in Figure 4–28:

#{'/adfAuthentication?logout=true&end_url=/faces/MyPage.jspx'}

Figure 4–29 Destination Property for the Go Link Component

16. Save the page. The structure for the first facet should look like:

Step 4: Add a Login/Logout Link to Your Application and Update the Login Page

4-16 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 4–30 Structure WIndow with the Output Text and Logout Link

17. When you implemented security using the ADF Security Wizard in "Step 1: Add
ADF Security to Your Application", you generated two pages: error.html and
login.html. The error.html file displays a message if a user tried to log into
the application, but is unsuccessful. The login.html file displays a username
and password field where the user can authenticate with the application.

In JDeveloper, in the ViewController project, open the Web Content folder. You
should see the login.html page display just above MyPage.jspx.

18. Open the login.html file (Figure 4–31). This login page should display when you
run MyPage.jspx to your browser.

Figure 4–31 Default Login.html Page

19. Instead of using this default page, you can use the login page you added to your
application resources in Chapter 3, "Creating a WebCenter Application with a
Customizable Page."

20. In the Application Navigator, under ViewController, expand the WEB-INF folder.

21. Open the web.xml file.

22. While viewing the Overview of this file, click the Security tab on the left side.

Step 4: Add a Login/Logout Link to Your Application and Update the Login Page

Adding Security to Your Application 4-17

Figure 4–32 Security Tab of the web.xml File

23. Under Login Authentication, ensure Form-Based Authentication is selected.

24. Next to the Login Page field, click the Browse... icon.

25. Navigate to the public_html folder containing mylogin.html and select the file.

26. Click OK. The Security page updates to use the new mylogin.html file.

Figure 4–33 Security Tab of the web.xml File Showing the New Login Page

27. Take a look at security at runtime. Run MyPage.jspx to your browser.

28. In your browser, in the Username field, enter Lisa with the password welcome1
(Figure 4–34) and click Submit.

Step 4: Add a Login/Logout Link to Your Application and Update the Login Page

4-18 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 4–34 Logging into Your Application

The page displays in your browser (Figure 4–35):

Figure 4–35 MyPage.jspx in the Browser

Now that you have implemented security on the application, you can add content to
the page in Chapter 5, "Adding Oracle WebCenter Services to Your Application."

5

Adding Oracle WebCenter Services to Your Application 5-1

5Adding Oracle WebCenter Services to Your
Application

Oracle WebCenter Framework includes Oracle WebCenter Services, which enable you
to enhance your application with Web 2.0 features, such as secure information sharing
and online collaboration. In this chapter, we will explore a few of the features you can
use to add these capabilities to your application.

In this lesson, you will add a search toolbar and a document library to your
application. With the document library, or the Documents service, you can enable
your users to share and manage content like Word documents or PDFs in an
easy-to-navigate environment, right in the application. Additionally, you will take
advantage of the People Connections service to examine how users can create a social
network and keep up to date with each other by viewing recent activities and
messages posted by the users.

You will also add the Tags service, which enables you and your users to add
keywords to documents, files, and other items in your application to make it easier to
search and organize content. This service also includes a "tag cloud" task flow where
you can visualize the mapping of the keywords to your application contents right on
your page. Then, you will add the Links service, which enables you to create
relationships between items in your application, as well as relationships between
items in your application and other items, like external URLs.

Optionally, if you have access to an email server, you can add the Mail service to the
sample application to see how users can email each other within the application at
runtime.

These services are just a few examples of the myriad services Oracle WebCenter Suite
offers. You will see how easy it is to use services to make your application dynamic
and provide frequently-used communication options to your users. To learn more
about WebCenter Services, refer to the Oracle Fusion Middleware Developer's Guide for
Oracle WebCenter.

Figure 5–1 shows the Search toolbar, document library, and Tag Cloud that you will
create in this lesson. Figure 5–2 shows the People Connections service on MyPage in
the application.

Introduction

5-2 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–1 Top Portion of MyPage.jspx at the End of this Lesson

Figure 5–2 People Connections Section of MyPage at the End of this Lesson (Logged in
as Alex)

Introduction
This lesson contains the following steps:

■ Step 1: Add the Search Toolbar Task Flow to the Application

Step 1: Add the Search Toolbar Task Flow to the Application

Adding Oracle WebCenter Services to Your Application 5-3

■ Step 2: Create a Connection for the Documents Service

■ Step 3: Add the Documents - Document Manager Task Flow to Your Application

■ Step 4: Browse Documents at Runtime

■ Step 5: Create a Database Connection to the WebCenter Schema

■ Step 8: Add the People Connections Service to Your Application

■ Step 9: Use the People Connections Service in Your Application at Runtime

■ Step 6: Add the Tags Service to Your Application

■ Step 7: Use, Add, and Search Tags in Your Application at Runtime

■ Step 10: Use the Links Service in Your Application at Runtime

■ Step 11: Use the Mail Service with Your Application (Optional)

Before you begin the steps in this lesson, ensure you have followed the steps up to this
point in the Tutorial.

Step 1: Add the Search Toolbar Task Flow to the Application
With Oracle WebCenter Framework, you can allow your users to search through
information within the services. For example, you may want to add a Search field so
that users can search for a particular file in your document library. Figure 5–3 shows a
sample of the search results you can retrieve in your application.

Figure 5–3 Sample Search Results

To add the Search service to your application:

1. In Oracle JDeveloper, ensure MyTutorialApplication is open and that your page,
MyPage.jspx, is open and visible.

2. In the Structure window, locate the second horizontal Panel Group Layout (in the
end facet) that you added in Chapter 4, "Adding Security to Your Application."
Figure 5–4 shows the Panel Group Layout selected. You will add the Search
Toolbar task flow here.

Step 1: Add the Search Toolbar Task Flow to the Application

5-4 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–4 Panel Group Layout in the end Facet

3. As we mentioned in Chapter 3, "Creating a WebCenter Application with a
Customizable Page," you can use the pushpin in the Structure window to freeze
the current view. For this step, you click MyPage in the Design view, then ensure
the pushpin is in the "freeze" position (pressed). This way, when you click the
Search Toolbar task flow in the ensuing steps, the Structure window does not
contextually refresh.

4. Before you add the Search Toolbar task flow, add a Spacer component to create
the layout. From the Component Palette, under ADF Faces, under Layout, drag
and drop a Spacer component onto the Structure window just above the Change
Mode Link (Figure 5–5).

Figure 5–5 Spacer Component above the Change Mode Link

5. In the Resource Palette, in the WebCenter Services Catalog, open the Task Flows
node. If you do not see the Resource Palette in Oracle JDeveloper (it usually
displays as a tab next to the Component Palette), choose Resource Palette from the
View menu.

Step 1: Add the Search Toolbar Task Flow to the Application

Adding Oracle WebCenter Services to Your Application 5-5

6. Under My Catalogs, open the WebCenter Services Catalog, then expand Task
Flows.

7. Locate the Search Toolbar task flow (Figure 5–6).

Figure 5–6 Search Toolbar Task Flow in the WebCenter Services Catalog

Drag and drop this task flow onto the Panel Group Layout then choose Region
from the context menu. If you are prompted to add the appropriate libraries,
choose Add Libraries.

8. In the Structure window, move the Search Toolbar task flow (af:region -
#{bindings.sarchtoolbar1.regionModel}) above the Spacer component
you just added (Figure 5–7).

Note: As previously mentioned, you can use the pushpin in the
Structure window to freeze the current view. For this step, you should
click MyPage in the Design view, then ensure the pushpin is in the
"freeze" position (pressed).

Step 2: Create a Connection for the Documents Service

5-6 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–7 Search Toolbar in the Structure Window

9. Run the page to your browser and log in as user Lisa/welcome1 to see how it
looks at runtime. Figure 5–8 shows the Search toolbar next to the Edit (Change
Mode) link. You can test the Search toolbar later in the chapter, after you add
content on which you can perform a search.

Figure 5–8 Search Toolbar on MyPage at Runtime

10. Return to JDeveloper.

For more information about the Search service, including other Search task flows you
can use, see Chapter 24, "Integrating the Search Service" in Oracle Fusion Middleware
Developer's Guide for Oracle WebCenter.

Now that you have added a Search toolbar to our application, continue to the next step
to add the Documents service.

Step 2: Create a Connection for the Documents Service
With most services in the WebCenter Framework, you perform a few basic steps:
configure the service with our application, add the service task flow to our page, then
run the page and customize or use the service at runtime.

Before we can take advantage of the Documents service, which enables us to browse,
manage, and create documents at runtime, we must first create a connection to our
content repository. In this Tutorial, our content repository will be the directory we
created in Chapter 2, "Preparing for the Tutorial."

To create a connection to our content repository:

1. In Oracle JDeveloper, in the Application Navigator, locate the Application
Resources node for MyTutorialApplication and expand it. Notice the Connections
folder here (Figure 5–9).

Step 2: Create a Connection for the Documents Service

Adding Oracle WebCenter Services to Your Application 5-7

Figure 5–9 Connections Folder in the Application Resources Panel

2. Ensure the ViewController project is highlighted.

3. Under Application Resources, right-click the Connections folder, then choose
New Connection, then choose Content Repository... (Figure 5–10).

Figure 5–10 Choosing the New Content Repository Connection Menu Option

4. In the Create Content Repository Connection dialog that displays, notice the first
option: you can choose to either limit the usage of this connection to the current
application by choosing Application Resources, or enable all applications created
using your instance of Oracle JDeveloper to use this connection by choosing IDE
Connections.

Select Application Resources.

Step 2: Create a Connection for the Documents Service

5-8 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

5. In the Connection Name field, enter MyTutorialContent.

6. From the Repository Type list, choose File System.

7. Select Set as primary connection for Documents service to set this connection as
the active connection any time you add the Documents service to your application.

If you did not choose this option and created a connection to another content
repository, Oracle WebCenter Framework would automatically set the first
connection you created as the active connection.

8. Under Configuration Parameters, let's set the Base Path to the location where you
downloaded the Tutorial sample files on your C drive (in Chapter 2, "Preparing
for the Tutorial"), by entering c:\TutorialContent.

9. Click Test Connection. You should see a Success! message in the Status field, as
shown in Figure 5–11.

Note: Creating a connection here enables you to reuse the same
connection throughout your application. If you chose IDE
Connections, you could reuse the connection in any application you
create using your instance of Oracle WebCenter Framework. The
connection name would display in the Resource Palette under IDE
Connections.

Step 2: Create a Connection for the Documents Service

Adding Oracle WebCenter Services to Your Application 5-9

Figure 5–11 Create Content Repository Connection

10. Click OK.

11. In the Application Navigator, in the Application Resources panel, you will see
your new connection, as shown in Figure 5–12.

Step 3: Add the Documents - Document Manager Task Flow to Your Application

5-10 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–12 New Connection in the Application Resources Panel

For more information about creating a connection for the Documents service, see
Chapter 14, "Integrating the Documents Service" in Oracle Fusion Middleware
Developer's Guide for Oracle WebCenter.

Step 3: Add the Documents - Document Manager Task Flow to Your
Application

Oracle WebCenter Framework enables content integration by:

■ Content Repository data controls: enable read-only access to a content repository,
and maintain tight control over the way the content displays in the application.

■ Documents service: enable users to view and manage documents in your
organization's content repositories.

Both methods of integration use content repository connections, which you created in
the previous step. In this Tutorial, we will use the Documents service to integrate
content (the sample content on our file system that we downloaded in Chapter 2,
"Preparing for the Tutorial") into our application.

Using the Documents service, users can view, upload, and collaborate around
documents. In this Tutorial, you will use a file system connection that will let you view
documents and enable your application users to share them, but not upload them.
Using a content repository such as Oracle Content Server or Oracle Content Database,
you can take advantage of all the features of this service. To learn more about using
different content repositories and more details about the various Documents service
task flows, refer to Chapter 14, "Integrating the Documents Service" in the Oracle
Fusion Middleware Developer's Guide for Oracle WebCenter.

In this step, you will add the task flow provided by the service to your application.
The Documents service provides several task flows, one of which is the Documents -
Document Manager task flow. This task flow, when used with a file system content
repository, enables your users to view folders and files within the application much as
they would on their own file system in a read- and write-only format (Figure 5–13).

Step 3: Add the Documents - Document Manager Task Flow to Your Application

Adding Oracle WebCenter Services to Your Application 5-11

Figure 5–13 Document Manager View of Sample Folders at Runtime

To add the Documents - Document Manager task flow to your application at design
time in Oracle JDeveloper:

1. In Oracle JDeveloper, ensure MyTutorialApplication is open and that you have
configured your application for services and set up a connection to the content
repository, as described in "Step 2: Create a Connection for the Documents
Service".

2. Let's add the Documents - Document Manager task flow to the page. Ensure that
MyPage.jspx is open.

3. In the Structure window, locate where we are going to add the task flow
(Figure 5–14). Under the second facet navigate to pe:pageCustomizable then
af:panelGroupLayout - scroll, Layout Customizable facets, then contentA. Here,
you will see the Panel Customizable where we will add the task flow.

Figure 5–14 Location Where We Will Add the Documents - Document Manager Task
Flow

4. While the Panel Customizable is selected, set the Layout property to stretch.

Note: As previously mentioned, you can use the pushpin in the
Structure window to freeze the current view. For this step, you should
click MyPage in the Design view, then ensure the pushpin is in the
"freeze" position (pressed).

Step 3: Add the Documents - Document Manager Task Flow to Your Application

5-12 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

5. Add a chrome, so that at runtime, the layout shows a frame around the list of
documents.

In the Component Palette, choose Oracle Composer from the list.

6. Under Layout, drag and drop Show Detail Frame onto the
cust:panelCustomizable that you selected (as shown in Figure 5–14).

7. While the Show Detail Frame is selected, in the Property Inspector, under
Common, change the Text property to My Documents, as shown in Figure 5–15.
Notice also that the frame is also selected in the Design view of your page.

Figure 5–15 Changing the Title of the Show Detail Frame

8. You can add the Documents - Document Manager task flow to your application in
one of two ways: either by dragging and dropping the connection you created in
"Step 2: Create a Connection for the Documents Service", called
MyTutorialContent, onto the Show Detail Frame, then choosing Document -
Document Manager from the context menu, or by using the Resource Palette. For
the purposes of this Tutorial, you can use the Resource Palette.

In the Resource Palette, under WebCenter Services Catalog, open the Task Flows
folder and locate Documents - Document Manager. Figure 5–16 shows the task
flow in the WebCenter Services Catalog.

Step 3: Add the Documents - Document Manager Task Flow to Your Application

Adding Oracle WebCenter Services to Your Application 5-13

Figure 5–16 Documents - Document Manager Task Flow in the Resource Palette

9. Drag and drop the Documents - Document Manager task flow onto the Show
Detail Frame. You can do this either by dragging it onto the Show Detail Frame in
the Structure window or in the Design view of the page.

10. In the context menu that displays, click Create Region, as shown in Figure 5–17.

Step 3: Add the Documents - Document Manager Task Flow to Your Application

5-14 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–17 Dropping the Documents - Document Manager Task Flow onto the Page in
the Design View

11. If the Confirm Add ADF Library dialog displays, click Add Library.

12. The Edit Task Flow Binding dialog displays. In this dialog, you can set up the
connection parameter for the task flow.

Click the connectionName parameter and enter ${'MyTutorialContent'} to
tell the Document Library task flow to use this connection.

13. Since the connection points to the root folder of our Tutorial sample files, let's
update the startFolderPath parameter to the folder containing the product
manuals.

Click the startFolderPath parameter and enter ${'/Manuals'} next to it, then
click OK. Figure 5–18 displays the Edit Task Flow Binding dialog with the
appropriate values.

Figure 5–18 Edit Task Flow Binding Dialog

The Structure window shows the new task flow with the af:region tag, as
shown in Figure 5–19.

Note: If you do not enter a connection name here, the content
repository connection where you selected Set as primary connection
for Documents service is the active connection.

Step 4: Browse Documents at Runtime

Adding Oracle WebCenter Services to Your Application 5-15

Figure 5–19 Documents - Document Manager Task Flow in the Structure Window

14. In the Application Navigator, right-click MyPage.jspx and choose Run.

15. Log in as user Lisa with the password welcome1. Because the content repository
used with the Documents - Document Manager task flow is local, this user has
access to the content. However, if you used a secure content repository, such as
Oracle Content Database or Oracle Content Server, you would need to ensure that
the user credentials for your WebCenter application match those of a user on the
secure content repository.

For more information about the Documents - Document Manager task flow, as well as
other Documents service task flows, see Chapter 14, "Integrating the Documents
Service" in the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.

In the next step, we will examine the Documents - Document Manager task flow at
runtime.

Step 4: Browse Documents at Runtime
Now that you've added the task flow to your application, you can see the documents
in your content repository, or "document library."

This step covers just a few of the basic tasks you can perform with the Documents
service at runtime. For more information on using the Documents service, see Chapter
15, "Working with the Documents Service" in Oracle Fusion Middleware User's Guide for
Oracle WebCenter.

To browse your documents at runtime:

1. After you run your application to your browser and log into the application, a list
of your files display (Figure 5–20). The Documents service's Document Manager
view shows a document library based on the file system content repository you
created on your local drive. The difference between this view and other views
(such as the Content Presenter or List views) provided by the Documents service
is that you can delete, modify, and edit your files (that is, manage files) in the
document library as you would on your file system.

Step 4: Browse Documents at Runtime

5-16 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–20 Documents - Document Manager View at Runtime

Let's examine this view. As you can see, the service shows by default the names of
the folders: prodA, prodB, prodC. This information all comes from your file
system and let's you quickly show your content without much coding.

Also notice the Search field within the My Documents frame. This search feature is
limited to just the files in the document library. The search toolbar you added in
"Step 1: Add the Search Toolbar Task Flow to the Application" searches across any
page and service you add to your application.

2. Click the folder prodA. Notice how the folder opens within the context of the
view. You can use the breadcrumbs to navigate throughout your document
library. You can also view the various attributes about the documents (for
example, Size, Last Modified).

Figure 5–21 Documents - Document Manager Task Flow Showing the Contents of a
Folder

3. Click the Create New Folder icon in the toolbar (Figure 5–22).

Figure 5–22 Create New Folder Icon in the Toolbar

4. In the Create Folder dialog, enter a folder name, such as prodA_details
(Figure 5–23).

Step 4: Browse Documents at Runtime

Adding Oracle WebCenter Services to Your Application 5-17

Figure 5–23 Documents - Document Manager Task Flow with the Create Folder Dialog

5. Click Create. Figure 5–24 shows the new folder in your browser.

Figure 5–24 prodA_details Folder in the Documents - Document Manager View at
Runtime

6. Since you are using your own file system as your content repository, any actions
you perform at runtime also affect the content repository itself. Take a look at the
content repository, in this case on your file system.

Notice the prodA_details folder also exists in your
C:\TutorialContent\Manuals\prodA directory (Figure 5–25).

Step 5: Create a Database Connection to the WebCenter Schema

5-18 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–25 New Folder in the File System

7. Return to your browser to view the Document Library at runtime.

8. Click the file productmanual_prodA.txt. Notice that a new browser tab or
window displays with the contents of the text file (Figure 5–26).

Figure 5–26 Text File in a Browser Window

You can easily navigate from the parent folder to the text file by switching your
browser window. Document Library displays the content of text and image files in
the browser.

9. Return to Oracle JDeveloper.

As you can see, the Documents service provides a quick and easy way for you to
display content in a meaningful way and with functionality. You can learn more about
the Documents service task flows in Chapter 14, "Integrating the Documents Service"
in Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.

To exercise more direct control over the behavior, look, and feel of your content, you
can use the JCR data control, which you can learn about in Chapter 13 "Integrating
Content" in Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.

Step 5: Create a Database Connection to the WebCenter Schema
Next, we will add the Tags, People Connections, and Links services. To use these three
services, you must have access to the WebCenter schema. You installed this schema in
Chapter 2, "Preparing for the Tutorial." In this section, you will create a connection to
the database containing this schema, so that these three services can use this schema
within the application. The schema will be used to store information about the
services.

Step 5: Create a Database Connection to the WebCenter Schema

Adding Oracle WebCenter Services to Your Application 5-19

To learn more about setting up your application for consuming services, see Chapter 4,
"Preparing Your Application for Oracle WebCenter Services" in the Oracle Fusion
Middleware Developer's Guide for Oracle WebCenter.

To create the database connection to the WebCenter schema:

1. In the Application Navigator, expand the Application Resources panel.

2. Right-click Connections, choose New Connection, then choose Database.

3. Enter the following information for your database connection (Figure 5–27). Note
that the Connection Name must be WebCenter.

■ Connection Name: WebCenter

■ Connection Type: Oracle (JDBC)

■ User name: username (for example, webcenter)

■ Password: password (for example, welcome1)

■ Host: <host where you installed the WebCenter schema> (for
example, localhost)

■ JDBC Port: <port> (for example, 1521)

■ SID: <system identifier for the database with the same JDBC
port> (for example, ORCL)

Figure 5–27 Database Connection

4. Click Test Connection to test your database connection. If you do not see a
Success! message, check to make sure you entered the correct information for the
WebCenter schema (see Chapter 2, "Preparing for the Tutorial" if you are not sure
what you entered when you installed it).

5. Click OK.

Step 6: Add the Tags Service to Your Application

5-20 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Now that you have created the database connection, you can add the Tags, People
Connections, and Links services to the application.

Step 6: Add the Tags Service to Your Application
Tags enable you and your application users to apply your own meaningful terms to
items in your application, making those items more easily discoverable in search
results. Because your application users can create tags for their own content or content
they've searched for, the tags are much more powerful and usable than search
keywords created by application developers who may not be as familiar with the
user-created content. This user-powered keyword creation makes the content in your
application highly searchable and discoverable.

A "tag cloud" is a visual illustration of all the tags for the application, making it easy
for you and your users to identify the tags used in the application. You can then search
for a tag in your application to locate any item that has been associated with that tag.

In this section, you will add the Tags service to our application and display it on your
page. You will add a Tag Cloud so that you can visualize the tags and enable you and
your users to add new tags to the application.

To add the Tags service:

1. In the Structure window for MyPage, navigate to the Panel Customizable within
the facet contentB of the Layout Customizable (Figure 5–28).

Figure 5–28 Panel Customizable in contentB

2. Set the Layout property for the Panel Customizable to stretch.

3. In the Component Palette, choose Oracle Composer from the list.

Note: As previously mentioned, you can use the pushpin in the
Structure window to freeze the current view. For this step, you should
click MyPage in the Design view, then ensure the pushpin is in the
"freeze" position (pressed).

Step 6: Add the Tags Service to Your Application

Adding Oracle WebCenter Services to Your Application 5-21

4. Under Layout, drag and drop a Show Detail Frame onto the Panel Customizable,
as shown in Figure 5–29.

Figure 5–29 Second Show Detail Frame

5. While the Show Detail Frame is selected, in the Property Inspector, under
Common, change the Text property to Tag Cloud.

6. In the Resource Palette, under WebCenter Service Catalog, open the Task Flows
folder and locate the Tagging - Tag Cloud task flow, then drag and drop it onto
the Tag Cloud Show Detail Frame.

7. In the Create Region context menu, choose Create Region. The Tagging - Tag
Cloud task flow displays in the Structure window, as shown in Figure 5–30.

Step 7: Use, Add, and Search Tags in Your Application at Runtime

5-22 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–30 Tagging - Tag Cloud Task Flow in the Tag Cloud Show Detail Frame

8. Right click MyPage in the Design view and choose Run, then log into the
application with the username Lisa and password welcome1.

For more information about the Tag Cloud and the Tags Service, refer to Chapter 23,
"Integrating the Tags Service" in the Oracle Fusion Middleware Developer's Guide for
Oracle WebCenter.

We will examine the Tags service at runtime in the next step.

Step 7: Use, Add, and Search Tags in Your Application at Runtime
After you add the Tagging - Tag Cloud task flow to your page, the Tag Cloud
automatically populates with the tags in the WebCenter schema. If you installed the
WebCenter schema for the purposes of this Tutorial, you will not see any tags in the
Tag Cloud. This step shows you the Tag Cloud at runtime, as well as a few basic steps
you can perform with the Tags Service. You can learn more about using the Tags
Service at runtime in Chapter 26, "Working with the Tags Service" in Oracle Fusion
Middleware User's Guide for Oracle WebCenter.

To use the Tags service at runtime:

1. In your browser, you should now see the Tag Cloud displaying below the
Connections view. In our example, we have a few sample tags that exist in our
WebCenter schema. If a tag cloud exists in your WebCenter schema, the contents
of your tag cloud may appear slightly different. If you do not have any tags, you
will not see any tags in the Tag Cloud.

Figure 5–31 shows how MyPage looks at runtime.

Step 7: Use, Add, and Search Tags in Your Application at Runtime

Adding Oracle WebCenter Services to Your Application 5-23

Figure 5–31 Tag Cloud at Runtime

2. Once you add the Tags service to your application, you can use it with the
Document Library service. Let's see how we can add tags to a document in our
document library.

In the Document Library, open a folder, such as prodB, and select the row
containing a document name, such as productmanual_prodB.txt. Be sure to click
the row and not the link for the filename, otherwise you will just display the text
file in a new browser window as you did in "Step 4: Browse Documents at
Runtime".

3. In the Documents menu, choose Tags... from the File menu. (Figure 5–32).

Figure 5–32 Choosing the Tags Menu Option in the Documents - Document Manager
View

4. The Tag this Document dialog displays. Add a few tags, such as (Figure 5–33):

productb guide prodb

Step 7: Use, Add, and Search Tags in Your Application at Runtime

5-24 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–33 Adding New Tags to a Document

5. Click Save, then create another tag on another document. For example, open the
prodA folder, then add a few tags to productmanual_prodA.txt.

6. In the Tag this Document dialog, enter a few tags, then save your changes:

producta guide proda

7. Click the Refresh icon to the right of the Tag Cloud title bar (Figure 5–34).

Figure 5–34 Refresh Tag Cloud Icon

Notice that the Tag Cloud now displays your new tags, for example producta,
productb, guide, and prodb as shown in Figure 5–35.

Figure 5–35 New Tags in the Tag Cloud

8. Check out how tags help you locate items in your application. In the Search
toolbar at the top of the page, enter productb, then click the arrow icon. You will
see the Search Results return the tag for productb (Figure 5–36).

Step 7: Use, Add, and Search Tags in Your Application at Runtime

Adding Oracle WebCenter Services to Your Application 5-25

Figure 5–36 productb Tag in the Search Results

9. In the Search Results window, click the productb tag. The Tag Center displays in a
pop-up window (Figure 5–37).

Figure 5–37 Tag Center

The Tag Center displays the Tag Cloud, all the results from your search that are
associated with the tag productb, including other advanced search options. You
can close this window after you are done viewing the different options and return
to your application.

10. If you are interested, add a few more tags to see how the Tag Cloud changes.
Otherwise, you can move on to the next step, "Step 8: Add the People Connections
Service to Your Application".

Step 7: Use, Add, and Search Tags in Your Application at Runtime

5-26 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

11. Let's examine the Search toolbar again. You can also search for any keyword to
view items that contain the keyword. The keyword does not necessarily have to be
a tag.

For example, in the Search toolbar, enter the keyword product, then click the
arrow. The search returns all documents and tags that contain the word "product,"
as shown in Figure 5–38.

Figure 5–38 Search Results for product

Note that the search results in our example may not exactly reflect what you see in
your application, as the results depend on the items you tagged.

12. When you search for a tag, the search returns a partial match -- that is, because we
searched for product, we saw in our Search Results tags and documents that
contain the word product. But, because no item was specifically tagged with
"product," the search did not return any tagged items.

Search for a specific tag and see what happens. In the Search toolbar, enter
producta, then click the arrow icon.

Figure 5–39 shows the search results. Notice that the tagged item,
productmanual_prodA.txt displays. Because the item was tagged with
"producta," our search returned the specific item.

Figure 5–39 Search Results for producta

Now that you have added the Search toolbar, Documents - Document Manager view,
and the Tag Cloud to your application, you can see how tagging and search work
together to enable you to easily locate files in a content repository or document library.

Next, let's see how we can add a social networking feature to the application.

Step 8: Add the People Connections Service to Your Application

Adding Oracle WebCenter Services to Your Application 5-27

Step 8: Add the People Connections Service to Your Application
The People Connections service provides social networking tools for creating,
interacting with, and tracking the activities of one's enterprise connections. Its features
enable users to manage their personal profiles, access the profiles of other users,
provide ad hoc feedback, post messages, track activities, and connect with others. This
step introduces you to using the task flows associated with the People Connections
service.

In this Tutorial, you will take advantage of four People Connections task flows:

■ the Connections task flow, which enables you to invite and accept invitations from
other application users to become part of your social network

■ the Activity Stream task flow, which displays recent activities within services
across your application -- in this case, Documents and People Connections

■ the Message Board task flow, which displays messages from the integrated message
board

■ the Profile task flow, which provides users with a variety of views into their own
and other users' personal profile information, such as their email address, phone
number, and so on.

After you add these task flows, you can see how they work at runtime in the next step.

To add the People Connections service:

1. Ensure that you have created the database connection to the WebCenter schema
per "Step 5: Create a Database Connection to the WebCenter Schema".

2. In the Structure window for MyPage, navigate to the second facet, where you
added the Documents and Tags task flows, then find the Layout Customizable,
and the first Panel Customizable, as shown in Figure 5–40.

Figure 5–40 First Panel Customizable in the Layout Customizable

3. In the Component Palette, choose Oracle Composer from the list.

Note: As previously mentioned, you can use the pushpin in the
Structure window to freeze the current view. For this step, you should
click MyPage in the Design view, then ensure the pushpin is in the
"freeze" position (pressed).

Step 8: Add the People Connections Service to Your Application

5-28 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

4. Under Layout, drag and drop a Show Detail Frame onto the Panel Customizable,
as shown in Figure 5–41.

Figure 5–41 Panel Customizable Containing the Show Detail Frame

5. While the Show Detail Frame is selected, in the Property Inspector, under
Common, change the Text property to People Connections.

6. In the Resource Palette, under WebCenter Services Catalog, open the Task Flows
folder and locate the Connections task flow, then drag and drop it onto the Show
Detail Frame you just added.

7. In the Create Region context menu, choose Create Region.

8. In the Edit Task Flow Binding dialog, set the resourceId parameter to the
following value (Figure 5–42):

#{securityContext.userName}

Figure 5–42 Edit Task Flow Binding Dialog - Connections

This expression tells the Connections task flow to display all the connections of the
currently logged in user. You can alternatively use the Expression Builder to set
this value. To do so, click the down arrow next to the field, then choose
Expression Builder. In the Expression Builder dialog, expand ADF Bindings and
securityContext. select userName, then click OK.

9. Click OK. The Connections task flow displays in the Structure window, as shown
in Figure 5–43.

Step 8: Add the People Connections Service to Your Application

Adding Oracle WebCenter Services to Your Application 5-29

Figure 5–43 Connections Task Flow in the Structure Window

10. From the Component Palette, drag and drop a Panel Group Layout ADF Faces
component onto the Panel Customizable containing the People Connections Show
Detail Frame, as shown in Figure 5–44.

Figure 5–44 New Panel Group Layout

11. In the Property Inspector for the Panel Group Layout, under Common, set the
Layout property to horizontal.

12. Under Style and Theme, set the Style Class property to AFStretchWidth.
Figure 5–45 shows the Property Inspector with the two properties updated.

Step 8: Add the People Connections Service to Your Application

5-30 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–45 Properties for the Panel Group Layout

13. Drag and drop a Show Detail Frame (Oracle Composer component) onto the
Panel Group Layout.

14. While the Show Detail Frame is selected, in the Property Inspector, under
Common, change the Text property to Activity Stream. Figure 5–46 shows
the new Show Detail Frame in the Structure window.

Figure 5–46 Activity Stream Show Detail Frame

15. In the Resource Palette, under WebCenter Services Catalog, open the Task Flows
folder and locate the Activity Stream task flow, then drag and drop it onto the
Show Detail Frame you just added.

16. In the Edit Task Flow Binding dialog, set the resourceId parameter to the
following value (Figure 5–42):

#{securityContext.userName}

Step 8: Add the People Connections Service to Your Application

Adding Oracle WebCenter Services to Your Application 5-31

Figure 5–47 Edit Task Flow Binding Dialog - Activity Stream

This expression tells the Activity Stream task flow to display all the recent
activities of the currently logged in user. You can alternatively use the Expression
Builder to set this value. To do so, click the down arrow next to the field, then
choose Expression Builder. In the Expression Builder dialog, expand ADF
Bindings and securityContext. select userName, then click OK.

17. Add another Show Detail Frame directly below the one containing the Activity
Stream task flow. You can do this by dropping the Show Detail Frame onto the
af:panelGroupLayout - horizontal containing the Activity Stream Show
Detail Frame.

18. While the Show Detail Frame is selected, in the Property Inspector, under
Common, change the Text property to Messages.

19. From the Resource Palette, drag and drop the Message Board task flow onto the
page. This task flow provides users with the main view of Message Board
messages and a means of adding, viewing, and managing Message Board
messages.

20. In the Create Region context menu, choose Create Region.

21. In the Edit Task Flow Binding dialog, set the resourceId parameter to the
following (Figure 5–48):

#{securityContext.userName}

Figure 5–48 Edit Task Flow Binding Dialog - Message Board

Step 8: Add the People Connections Service to Your Application

5-32 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

22. Click OK.

23. Drop a Show Detail Frame onto the Panel Customizable containing the People
Connections Show Detail Frame and set the Text property to My Profile. This
Show Detail Frame should be at the same level in the structure as the horizontal
Panel Group Layout containing the Activity Stream and Message Board Show
Detail Frame components.

24. From the Resource Palette, drag and drop the Profile task flow onto the My Profile
Show Detail Frame.

25. In the Edit Task Flow Binding dialog, set the resourceId parameter to the
following (Figure 5–49):

#{securityContext.userName}

Figure 5–49 Edit Task Flow Binding Dialog - Profile

26. Click OK. The structure should now look like Figure 5–50.

Figure 5–50 People Connections, Activity Stream, Message Board, and Profile Task
Flows in the Structure Window

27. Since you already have security configured, the task flows you just added by
default have security enabled on them for the authenticated-role.

Right click MyPage in the Design view and choose Run, then log in as user Lisa
with the password welcome1.

Step 9: Use the People Connections Service in Your Application at Runtime

Adding Oracle WebCenter Services to Your Application 5-33

For more information about the People Connections service, see Chapter 20,
"Integrating the People Connections Service" in the Oracle Fusion Middleware
Developer's Guide for Oracle WebCenter.

We will examine the People Connections service at runtime in the next step.

Step 9: Use the People Connections Service in Your Application at
Runtime

In this step, you will use the three users you created in Chapter 4, "Adding Security to
Your Application" to test how the service would work in a production environment.
Instead of three different people adding each other to one another's networks, you will
log in as the three different test users (Alex, Dan, and Lisa) to see how the People
Connections service works at runtime.

While this step shows you a few of the basic tasks you can perform using these task
flows, you can learn more about using the service at runtime in Chapter 22, "Working
with the People Connections Service" in the Oracle Fusion Middleware User's Guide for
Oracle WebCenter.

To use the People Connections service in your application:

1. After you run the page and log into the application as user Lisa, you should now
see the Activity Stream view, the Connections view and the Message Board view
in your application.

Figure 5–51 People Connections Service on MyPage

2. Notice that the Activity Stream and Message Board task flows currently display no
updates. As you update the application either by adding a connection or updating

Step 9: Use the People Connections Service in Your Application at Runtime

5-34 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

a document in the Documents - Document Manager view, notice how the
information in these two views update.

3. Let's update Lisa's profile by uploading an image. In the My Profile Show Detail
Frame, scroll down below the blank profile image to find the Upload link, as
shown in Figure 5–52.

Figure 5–52 Upload Link in My Profile

4. Click Upload.

5. In the Upload Photo dialog, click Browse, then navigate to the directory
containing your application images (for example, JDEV_USER_
HOME/mywork/MyTutorialApplication/ViewController/public_
html/images).

6. Locate the image lisa.PNG, then select it and click Open. The image path should
display in the Upload Photo dialog, as shown in Figure 5–53.

Figure 5–53 Lisa.PNG in the Upload Photo Dialog

7. Click OK. Lisa's profile image displays in the Profile view (Figure 5–54). Notice
that the image also updates in the Connections view.

Step 9: Use the People Connections Service in Your Application at Runtime

Adding Oracle WebCenter Services to Your Application 5-35

Figure 5–54 Lisa's Profile Image in the Profile View

8. Try adding another user to your online network using the People Connections
service. In the Connections view, under Invitations, click Find and Invite People
(Figure 5–55).

Figure 5–55 Invitations Section of the Connections View

9. In the Find User field, enter the username Alex, then click the arrow icon next to
the field. The user Alex displays, as shown in Figure 5–56.

Figure 5–56 User Alex in Lisa's Connections View

10. Next to Alex's profile, click Invite.

11. In the Invitation Message dialog, personalize your invitation, as shown in
Figure 5–57.

Step 9: Use the People Connections Service in Your Application at Runtime

5-36 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–57 Invitation Message Dialog

12. Click Invite. Notice that next to Alex's profile, an invitation is now pending
(Figure 5–58).

Figure 5–58 Invitation Pending in the Connections View

Also, the Sent folder under Invitations is updated. If you click Sent(1), you can
view and remove your invitation to Alex (Figure 5–59). Let's leave this alone for
now.

Figure 5–59 Viewing an Invitation in the Connections View

13. Now, log out of the application as Lisa, then log in as Alex so that you can accept
Lisa's invitation. Click Logout in the upper right corner of the page, then log in as
the user Alex, using the password welcome1.

14. In the Connections Main View, under Invitations, notice that Alex's Received
messages are updated. Click Received(1), as shown in Figure 5–60.

Step 9: Use the People Connections Service in Your Application at Runtime

Adding Oracle WebCenter Services to Your Application 5-37

Figure 5–60 Alex's Connection View - Received(1) Link

 You should see the invitation from Lisa.

Figure 5–61 Alex's Connection View Showing Lisa's Invitation to Join Her Network

15. Click Accept.

16. Under Connection Lists, click All Connections to display your new connection
with Lisa (Figure 5–62).

Figure 5–62 Alex's Connection with Lisa

Notice now that the Activity Stream (Figure 5–63) shows Lisa's invitation to Alex.

Step 9: Use the People Connections Service in Your Application at Runtime

5-38 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–63 Activity Stream

17. Optionally, you can upload Alex's image (alex.png) to his profile so that
everyone can see it.

18. Let's log out as Alex and log back in as Lisa. Click Logout, then log in as
Lisa/welcome1.

19. On Lisa's page, you should now see Alex as a connection in the Connection view,
and a few updates to the Activity Stream showing the invitation, the connection,
and Alex's photo update (if you performed this last step), as shown in Figure 5–64.

Figure 5–64 Lisa's Updated View

20. Next, check out the Message Board. The Message Board enables people connected
to you (in this case, Lisa) to share information with each other. For example, as the
application administrator, Lisa may want to let the Alex know about the new
Message Board feature.

In the Connections view, click Alex (Figure 5–65).

Step 9: Use the People Connections Service in Your Application at Runtime

Adding Oracle WebCenter Services to Your Application 5-39

Figure 5–65 Messages View with the Add Message Icon

21. A new pop-up window displays called the Profile Gallery (Figure 5–66). Here, you
can see information about Alex, such as his Activity Stream and Profile. You will
also notice the Message Board. This is Alex's Message Board, where you (as Lisa)
can leave messages for him.

Figure 5–66 Profile Gallery

22. Under Message Board, click Add Message.

23. In the Add Message dialog, enter a message, such as This new Message Board
is a great feature! Figure 5–67 shows the updated dialog.

Step 10: Use the Links Service in Your Application at Runtime

5-40 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–67 Add Message Dialog

24. Click Add. The message displays on Alex's Message Board (Figure 5–68) in the
Profile Gallery from Lisa's perspective.

Figure 5–68 New Message on Alex's Message Board

25. Now, let's see whether Alex can view the new message. Close the Profile Gallery
window, then log out as Lisa and log back into the application as
Alex/welcome1. You will see Lisa's message on Alex's message board.

Figure 5–69 Lisa's Message on Alex's Message Board from Alex's Perspective

These are just a few features that the People Connections service provides. For more
information on using the service, see Chapter 22, "Working with the People
Connections Service" in Oracle Fusion Middleware User's Guide for Oracle WebCenter.

Now, let's check out how to use the Links service with the application.

Step 10: Use the Links Service in Your Application at Runtime
The Links service provides a way to view, access, and associate related information.
For example, in a list of project assignments, you can link to the specifications relevant

Step 10: Use the Links Service in Your Application at Runtime

Adding Oracle WebCenter Services to Your Application 5-41

to each assignment. In a discussion thread about a problem with a particular task, you
can link to a document that provides a detailed description of how to perform that
task.

Once you connected to a database containing the WebCenter schema (in "Step 5:
Create a Database Connection to the WebCenter Schema"), Oracle WebCenter
Framework automatically enabled the Links service in your application. You can see
the icon in the Documents - Document Manager view, for example, in Figure 5–70, to
the right of a listed document.

Figure 5–70 Links Service Icon in the Documents - Document Manager View

In this section, you will use the Links service to create a relationship between two
documents currently listed in the Documents - Document Manager view. By following
these steps, you will see how you can create relationships between objects within your
application and from within your application to an external resource or URL.

To use the Links service at runtime:

1. Ensure that MyPage.jspx is still running in your browser.

2. In the Documents - Document Manager view, navigate to the Manuals folder,
then open the prodA folder so that you see the two files: productmanual_
prodA.txt and usersguide_prodA.txt listed (Figure 5–71).

Figure 5–71 Links Service Icon in the Documents - Document Manager View

3. Let's create a relationship between the first file, productmanual_prodA.txt,
and an external URL. To the right of the file, productmanual_prodA.txt, click
the Find or create Links: productmanual_prodA.txt icon to display the Links
dialog, as shown in Figure 5–72. The Links dialog displays options for linking the
current document to a new document or URL or to an existing document. If links
exist for the object already, they would also display in this dialog.

Step 10: Use the Links Service in Your Application at Runtime

5-42 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 5–72 Links Dialog

4. Since the file we want to link to already exists, click Link to New, then click URL
(Figure 5–73). If you choose to link to a new document, a dialog displays where you
can upload a new document to the content repository and link to it.

Notice that you can also choose Link to Existing and select a document that
already exists within the application.

Figure 5–73 Link to New URL Menu Option

5. In the Link to New URL dialog, in the Name field, enter Oracle's
information on Product A, then enter http://webcenter.oracle.com
for the address (Figure 5–74).

Figure 5–74 Linking to a New URL

6. Click Create. The new link displays in the Links dialog, as shown in Figure 5–75.

Step 11: Use the Mail Service with Your Application (Optional)

Adding Oracle WebCenter Services to Your Application 5-43

Figure 5–75 New URL in the Links Dialog

7. Click the new link to view the related URL Now, if you or other users wants to
find related information on Product A, you can click the icon to view the
associated links.

For more information about the Links service, see Chapter 22, "Integrating the Links
Service" in Oracle Fusion Middleware Developer's Guide for Oracle WebCenter and Chapter
18, "Working with the Links Service" in Oracle Fusion Middleware User's Guide for Oracle
WebCenter.

Step 11: Use the Mail Service with Your Application (Optional)
If you have access to an email server (such as the one you use with your own personal
email), you can easily configure your application to use the Mail service. The Mail
service enables you to read, send, and organize your email directly within a custom
WebCenter application. You can find detailed instructions for using the Mail service in
the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.

To add the Mail service to your application:

1. Follow the steps in "Step 2: Create Users and Roles for the Application" to create a
user that exists on your mail server (for example, your own user name and
password). The application must have a user associated with it that also exists on
the mail server.

2. Follow the instructions in Chapter 17, "Integrating the Mail Service" in the Oracle
Fusion Middleware Developer's Guide for Oracle WebCenter to create a connection to
your mail server and add the Mail task flow to your application.

3. Run MyPage to your browser and log in with your user name and password.

You can click the dropdown list in the upper right corner to sort the view of your
inbox by time range, as shown in Figure 5–76.

Figure 5–76 Mail Task Flow at Runtime

Step 11: Use the Mail Service with Your Application (Optional)

5-44 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

You can also click the plus sign to display the New Message dialog, as shown in
Figure 5–77.

Figure 5–77 Mail Task Flow with New Message Dialog at Runtime

For more information on using the Mail service, see Chapter 20, "Working with the
Mail Service" in Oracle Fusion Middleware User's Guide for Oracle WebCenter.

You can learn more about adding the Search, Documents, Tags, Links, People
Connections, and Mail services to a custom WebCenter application in the Oracle Fusion
Middleware Developer's Guide for Oracle WebCenter. You can learn more about using
these services at runtime (in your browser) in the Oracle Fusion Middleware User's Guide
for Oracle WebCenter.

Now that you have added a few services to our application, you can learn how to
build and add portlets to your application in Chapter 6, "Building Portlets and Wiring
Them in Your Application."

6

Building Portlets and Wiring Them in Your Application 6-1

6 Building Portlets and Wiring Them in Your
Application

In this lesson, you will learn how to build two types of portlets: a standards-based Java
(JSR 168) portlet, which you will build using a wizard in Oracle JDeveloper, and an
OmniPortlet, using a step-by-step wizard at runtime.

After you create the portlets, you will add them to the page, then connect the two
portlets. By the end of this lesson, you should have a good handle on what's involved
with building and testing a standards-based Java (JSR 168) portlet and a PDK-Java
portlet (OmniPortlet). You will also be able to "wire" the two portlets so that when you
click a link in one portlet, the content in the second portlet is dynamically updated.

Figure 6–1 shows how the portlets section of your page will look.

Figure 6–1 Portlets Section of MyPage.jspx

Introduction
This lesson contains the following steps:

■ Step 1: Create a Standards-Based Java (JSR 168) Portlet

■ Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information

■ Step 3: Create the Business Logic for the Standards-Based Portlet

■ Step 4: Test and Deploy the Standards-Based Portlet

■ Step 5: Register the Standards-Based Portlet with Your Application

■ Step 6: Test the Standards-Based Portlet in Your Application

■ Step 7: Register the Preconfigured Portlet Producer

Step 1: Create a Standards-Based Java (JSR 168) Portlet

6-2 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

■ Step 8: Add an OmniPortlet to Your Page

■ Step 9: Define OmniPortlet at Runtime

■ Step 10: Wire the Standards-Based Portlet and OmniPortlet Together

■ Step 11: Test the Interaction Between the Portlets

Both of these portlets use the Tutorial schema that we installed in Chapter 2,
"Preparing for the Tutorial," and require that you have a database connection. We
created the database connection when we added the Tags service in Chapter 5,
"Adding Oracle WebCenter Services to Your Application," so if you did not complete
the steps in that chapter, you must follow the steps in "Step 5: Create a Database
Connection to the WebCenter Schema" in that chapter before you build the portlets.

Step 1: Create a Standards-Based Java (JSR 168) Portlet
Oracle WebCenter Framework enables you to quickly and easily build a
standards-based portlet that you can use with a portal or application, such as the one
you're currently creating.

In this step, you will create an application based on the Portlet Producer template,
then build a standards-based portlet. Afterward, you will consume the portlet into our
Tutorial application. Figure 6–2 shows the portlet at runtime in
MyTutorialApplication.

Figure 6–2 Standards-Based Portlet (JSR 168) at Runtime in MyTutorialApplication

1. In Oracle JDeveloper, create a new application based on the Portlet Producer
Application template (Figure 6–3), then click OK. To do so, choose New from the
File menu to display the New Gallery.

2. In the New Gallery, choose Applications from the Categories list, then choose
Portlet Producer Application.

Note: The steps to build this portlet rely on the naming convention
we've used, so follow the steps carefully. If you do not use the names
we've provided, you may not achieve the same results.

Step 1: Create a Standards-Based Java (JSR 168) Portlet

Building Portlets and Wiring Them in Your Application 6-3

Figure 6–3 Creating a New Portlet Producer Application

3. In the Create Portlet Producer Application wizard, in the Application Name field,
enter MyTutorialPortlet.

4. By default, the Directory field should contain the directory where the application
will reside (Figure 6–4). You can change the directory location, if you like, but let's
leave it as it is for the purposes of the Tutorial.

Figure 6–4 Creating a Portlet Producer Application - Step 1

5. Click Next.

Step 1: Create a Standards-Based Java (JSR 168) Portlet

6-4 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

6. On the Project Name page of the wizard (Figure 6–5), let's leave the default name:
Portlets, and click Next.

Figure 6–5 Creating a Portlet Producer Application - Step 2

7. On the last page of the wizard, you can configure the Java settings. You can see
that the default package contained in the portlet producer application is portlet
(Figure 6–6). For the purposes of this Tutorial, let's leave the default options and
click Finish.

Figure 6–6 Creating a Portlet Producer Application - Step 3

Step 1: Create a Standards-Based Java (JSR 168) Portlet

Building Portlets and Wiring Them in Your Application 6-5

8. In the Application Navigator, under your new MyTutorialPortlet application,
right-click Portlets, and select New (Figure 6–7).

Figure 6–7 Selecting New from the Context Menu

9. Click the Current Project Technologies tab.

10. In the Categories list as shown in Figure 6–8, expand the Web Tier category, and
select Portlets.

Step 1: Create a Standards-Based Java (JSR 168) Portlet

6-6 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 6–8 Creating a New Portlet Producer Application

Notice there are two kinds of portlets you can create:

■ An Oracle PDK-Java portlet. PDK-Java portlets can be consumed by
WebCenter applications, Oracle Portal, or some other type of Oracle-specific
solution. You build an Oracle PDK-Java portlet using the APIs provided by
the PDK. Note that the OmniPortlet producer you will register in Step 7:
Register the Preconfigured Portlet Producer is a type of Oracle PDK-Java
Portlet

■ A standards-based Java (JSR 168) Java portlet. Java portlets can be consumed
by portals from any vendor that supports the portlet standards. In this
Tutorial, we're going to build a standards-based (JSR 168) Java portlet.

11. Select Standards-based Java Portlet (JSR 168), and click OK.

The JSR 168 Java Portlet wizard displays, which generates a skeleton for the
portlet. We will later add our own logic to the portlet. Let's see how this is done.

12. On the General Portlet Information page, in the Name and Class fields, enter
Products.

13. Select Enable inter-portlet communication using Oracle WSRP V2 extensions.
Selecting this option enables your portlet to support Oracle WSRP 2.0 extensions,
and generates the oracle-portlet.xml file that is used for WSRP 2.0 features,
such as navigation parameters. We will need these parameters later on, when we
enable the OmniPortlet and this portlet to communicate with each other.
Figure 6–9 shows how the General Portlet Information page should now look.

Note: The steps to build this portlet rely on the naming convention
we've used, so follow the steps carefully. If you do not use the names
we've provided, you may not achieve the same results.

Step 1: Create a Standards-Based Java (JSR 168) Portlet

Building Portlets and Wiring Them in Your Application 6-7

Figure 6–9 Creating a JSR 168 Java Portlet - General Portlet Information

14. Click Next.

15. On the Additional Portlet Information page, we can either leave the defaults or,
because we know we are going to show a few details about the products in our
database, we can change the display name so anyone using the portlet will know
what the portlet contains. Update the fields on this page according to Table 6–1.
Figure 6–10 shows the resulting Additional Portlet Information page.

Table 6–1 Name and Attribution Values

Property Value

Display Name Name that will appear in the JDeveloper Component Palette.
Because you entered Products as the class name, this field is
automatically populated with that name.

Portlet Title Title that will appear on the portlet header. Because you entered
Products as the class name, this field is automatically populated
with that name.

Short Title Title that will appear on the portlet header on mobile devices.

Let's leave the default name, Products.

Description Description of the portlet. This field is relevant only when the
portlet is used in an Oracle Portal 10g environment.

Enter a description, for example, This is a JSR 168
portlet that displays the products.

Keywords Keywords provide additional information about a page, item, or
portlet so that users can locate it during a search. Although
keywords are not supported by Oracle WebCenter Suite or
Oracle Portal 10g, they are supported by other vendors from
whom you may have obtained a deployment environment.

Enter sample, Tutorial, products.

Step 1: Create a Standards-Based Java (JSR 168) Portlet

6-8 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 6–10 Creating a JSR 168 Java Portlet - Additional Portlet Information

16. Click Next.

17. On the Content Types and Portlet Modes page, notice that text/html is the default
content type. That means that the portlet will support text encoded with HTML.
View and edit are listed as the default portlet modes for text/html. View is
always available as a portlet mode; edit mode provides a page that allows users to
personalize the portlet instance.

Notice the Implementation Method area as shown in Figure 6–11. These controls
enable you to specify whether you want to generate JSP for the portlet, or use your
own custom JSP code.

Step 1: Create a Standards-Based Java (JSR 168) Portlet

Building Portlets and Wiring Them in Your Application 6-9

Figure 6–11 Creating a JSR 168 Portlet - Content Types and Portlet Modes

In this lesson, we'll ask JDeveloper to generate JSPs for us by leaving the default
selection.

18. Click Next.

Although you could click Finish here and produce a basic portlet, let's continue
and choose some other options and settings for our portlet.

19. On the Customization Preferences page, let's leave the default values and click
Next (Figure 6–12).

Although we're not going to do anything with this page now, in the future you
can use it to add other customization options for the portlet. For example, if your
portlet accepted a Zip Code parameter, you might want to allow users to
personalize the Zip Code label. If this were the case, you would use the Add
button to make the Zip Code label personalizable.

Step 1: Create a Standards-Based Java (JSR 168) Portlet

6-10 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 6–12 Creating a JSR 168 Java Portlet - Customization Preferences

20. On the Security Roles page, click Next (Figure 6–13). The Security Roles page is
used to specify which of the application's security roles you want to establish for
this portlet.

Figure 6–13 Creating a JSR 168 Java Portlet - Security Roles

21. On the Caching Options page, leave the default option and click Next
(Figure 6–14).

The settings on this page enable you to define expiry-based caching for your
portlet. You do not need any caching conditions now.

Step 1: Create a Standards-Based Java (JSR 168) Portlet

Building Portlets and Wiring Them in Your Application 6-11

Figure 6–14 Creating a JSR 168 Java Portlet - Caching Options

22. On the Initialization Parameters page, click Next (Figure 6–15). Our portlet does
not require any initialization parameters.

Figure 6–15 Creating a JSR 168 Java Portlet - Initialization Parameters

23. On the Portlet Navigation Parameters page, let's create a navigation parameter
based on the product ID.

Navigation parameters are a WSRP 2.0 feature. This page enables you to specify
external parameters to be consumed by the standards-based portlet, and only
displays if you select the Enable inter-portlet communication using Oracle
WSRP V2 extensions option on the first page of the wizard.

Step 1: Create a Standards-Based Java (JSR 168) Portlet

6-12 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Click Add.

24. Double-click the values and update each value to the following:

■ Name: productId

■ Label: Product ID

■ Hint: Enter Product ID

We will use these navigation parameters later on in Step 10: Wire the
Standards-Based Portlet and OmniPortlet Together. Figure 6–16 shows the
updated Portlet Navigation Parameters page.

Figure 6–16 Creating a JSR 168 Java Portlet - Portlet Navigation Parameters

25. Click Next.

26. On the last page of the wizard (Step 9 of 9), click Finish.

After you click Finish, you should be able to locate several newly generated files
in the Application Navigator under the Portlets project. The expanded Navigator
looks like Figure 6–17.

Step 1: Create a Standards-Based Java (JSR 168) Portlet

Building Portlets and Wiring Them in Your Application 6-13

Figure 6–17 Files Generated for the New Portlet

■ Under Application Sources, under portlet and portlet.resource, notice two
Java classes:

– Products.java is invoked by the portlet container. It contains all the
methods required by the portlet standards.

– ProductsBundle.java contains all the translation strings for the portlet.

■ Under Web Content, Products, html:

– edit.jsp, which contains the information needed to populate the
Personalize dialog.

– view.jsp, which is invoked when the portlet is sharing the page with other
components.

■ Under Web Content, WEB-INF, three deployment descriptors:

– oracle-portlet.xml, which contains information to support Oracle
extensions for import/export and inter-portlet communication. It appears
because you chose Enable WSRP V2 inter-portlet communication using
Oracle extensions on Step 1 of the wizard.

– portlet.xml, which specifies all the portlet resources (the information you
entered through the JSR 168 Java Portlet Wizard).

– web.xml, which specifies the web application resources.

27. Save all your files. In the next step, we will create a JavaBean to store all the portlet
information you just generated.

Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information

6-14 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Step 2: Create the JavaBeans to Store the Standards-Based Portlet
Information

In this step, you will create the JavaBean to store the information for your
standards-based portlet.

1. In the Application Navigator, right-click the portlet package, and choose New.
Figure 6–18 shows the portlet package in the Application Navigator.

Figure 6–18 Portlet Package

2. In the New Gallery, click the All Technologies tab.

3. In the Categories list, under General, choose Java, select Bean from the Items list,
then click OK (Figure 6–19).

Figure 6–19 Choosing the JavaBean in the New Gallery

4. In the Create Bean dialog that displays, enter the following information to set up
the new JavaBean (Figure 6–20):

■ Name: ProductDetailsBean

■ Package: portlet

■ Extends: java.lang.Object

Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information

Building Portlets and Wiring Them in Your Application 6-15

Figure 6–20 Create ProductDetailsBean

This creates a new bean called ProductDetailsBean in the portlet package.

5. Click OK. The new JavaBean displays in the Design window (Figure 6–21).

Figure 6–21 ProductDetails JavaBean in the Design View

Figure 6–22 shows the JavaBean in the Structure window. As previously
mentioned in Chapter 3, "Creating a WebCenter Application with a Customizable
Page," you can use the pushpin in the Structure window to freeze and unfreeze the
current view. Ensure that you have selected the ProductDetails Bean in the
Design view, then toggle the pushpin so that you see the ProductDetails
Bean in the Structure window.

Figure 6–22 ProductDetailsBean in the Structure Window

6. Now that we've set up our JavaBean, let's add the information we need for the
portlet. In the Structure window, right-click the ProductDetailsBean, then choose
New Field from the context menu (Figure 6–23).

Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information

6-16 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 6–23 Creating a New Field for the ProductDetails Bean

7. In the Create Field dialog, in the Name field, enter productId. This name
represents the name of the product in our database schema.

8. Ensure the Type is set to String.

9. Ensure the Scope is set to private (Figure 6–24).

Figure 6–24 Create Field Dialog

10. Click OK. The new field displays in the Design view of the JavaBean, as shown in
Figure 6–25.

Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information

Building Portlets and Wiring Them in Your Application 6-17

Figure 6–25 New Field in the ProductDetailsBean

11. Now, let's create the other four fields we want to show in our portlet. Follow steps
6 through 10 to create these four fields with the following names:

■ productName

■ productPrice

■ imageURL

■ categoryDescription

■ supplierName

The Design view of your JavaBean should now contain the six fields (Figure 6–26).

Figure 6–26 ProductsBean with the Six Fields

12. Now that we've set up the fields for the JavaBean, let's generate the accessors.

In the Structure window, right-click ProductDetailsBean and choose Generate
Accessors from the context menu.

 The Generate Accessors dialog displays (Figure 6–27).

Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information

6-18 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 6–27 Generate Accessors Dialog

13. Click Select All to select all the fields you created for this bean (Figure 6–28).

Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information

Building Portlets and Wiring Them in Your Application 6-19

Figure 6–28 Generate Accessors DIalog with all Fields Selected

14. Click OK to generate the accessors for these fields. Oracle JDeveloper generates
the code as shown in Example 6–1:

Example 6–1 ProductDetails JavaBean

package portlet;

public class ProductDetailsBean {
 private String productId;
 private String productName;
 private String productPrice;
 private String imageURL;
 private String categoryDescription;
 private String supplierName;

 public ProductDetailsBean() {
 }

 public void setProductId(String productId) {
 this.productId = productId;
 }

 public void setProductName(String productName) {

Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information

6-20 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

 this.productName = productName;
 }

 public String getProductName() {
 return productName;
 }

 public void setProductPrice(String productPrice) {
 this.productPrice = productPrice;
 }

 public String getProductPrice() {
 return productPrice;
 }

 public void setImageURL(String imageURL) {
 this.imageURL = imageURL;
 }

 public String getImageURL() {
 return imageURL;
 }

 public void setCategoryDescription(String categoryDescription) {
 this.categoryDescription = categoryDescription;
 }

 public String getCategoryDescription() {
 return categoryDescription;
 }

 public void setSupplierName(String supplierName) {
 this.supplierName = supplierName;
 }

 public String getSupplierName() {
 return supplierName;
 }
}

15. Create another JavaBean for the portlet called ProductsBean.java. This bean
represents the list of products, which the portlet will display at runtime.

To create the JavaBean right-click the portlet package in the Application Navigator
and choose New from the context menu.

16. In the New Gallery, click the Java category, then click the Bean item to display the
Create Bean dialog.

17. In the Name field, enter ProductsBean and java.lang.Object in the
Extends field, as shown in Figure 6–29, then click OK.

Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information

Building Portlets and Wiring Them in Your Application 6-21

Figure 6–29 Creating the ProductsBean

18. Replace the code of ProductsBean.java in the Source view with the code in
Example 6–2.

Example 6–2 ProductsBean.java Code

package portlet;

import java.util.ArrayList;

public class ProductsBean {
 public static final String DEFAULT_PRODUCT_ID = "12";

 private ArrayList<ProductDetailsBean> products =
 new ArrayList<ProductDetailsBean>();

 public ProductsBean() {
 super();
 }

 public void addProduct(ProductDetailsBean product) {
 products.add(product);
 }

 public ArrayList<ProductDetailsBean> getProducts() {
 return products;
 }
}

The Source view of the bean should now look like Figure 6–30.

Note: If the formatting of the code in this text does not work, you
can open the
C:\TutorialContent\Portlets\ProductsBeanJava.txt file
and copy and paste the code from there.

Step 3: Create the Business Logic for the Standards-Based Portlet

6-22 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 6–30 ProductsBean.java Code

19. Save all your files.

In the next steps, we'll set up the connection between our JavaBeans and the database
schema that contains the data we want to show in our portlet.

Step 3: Create the Business Logic for the Standards-Based Portlet
After you create the JavaBean to access the data in the database, you create the
business logic for the portlet in a Java Class. This class will contain a connection to the
database, establish the connection, then query for information using the SQL
statement in the class file. When you create a standards-based portlet, you must
manually create this class. The database schema you connect to is the one you
established in Chapter 2, "Preparing for the Tutorial."

1. In the Application Navigator, right-click the portlet package, then choose New
from the context menu.

2. In the New Gallery, click Java, then choose Java Class from the Items list
(Figure 6–31).

Step 3: Create the Business Logic for the Standards-Based Portlet

Building Portlets and Wiring Them in Your Application 6-23

Figure 6–31 Choosing the Java Class Option in the New Gallery

3. Click OK.

4. In the Create Java Class dialog, in the Name field, enter the name:
ProductsService, as shown in Figure 6–32.

Step 3: Create the Business Logic for the Standards-Based Portlet

6-24 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 6–32 Create Java Class Dialog

5. Leave the rest of the default values in this dialog, as we will overwrite them in the
next step, then click OK.

6. In the ProductsService.java file that displays, replace all the
automatically-generated code with the code shown in Example 6–3. The code
assumes that the database where you installed the sample schema is local. In the
code, modify the highlighted JDBC connection
(jdbc:oracle:thin:@localhost:1521:xe)to point to your database and
Tutorial (fod) schema

Example 6–3 ProductsService.java Code

package portlet;

import java.sql.Connection;

Note: If the formatting of the code in this text does not work, you
can open the
C:\TutorialContent\Portlets\ProductsServiceJava.txt
file and copy and paste the code from there.

Step 3: Create the Business Logic for the Standards-Based Portlet

Building Portlets and Wiring Them in Your Application 6-25

import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

public class ProductsService {
 public ProductsService() {
 }

 public ProductsBean getProducts() throws ClassNotFoundException {
 Connection conn = getConnection();
 ProductsBean products = new ProductsBean();
 if (conn != null) {
 try {
 Statement stmt = conn.createStatement();
 String query =
 "SELECT DISTINCT product_id, product_name name, cost_price
price, 'http://localhost:7101/MyTutorialApplication/' || external_url image_url,
category_description, supplier_name " +
 "FROM category_translations, products_base, suppliers" +
 " WHERE products_base.category_id = category_
translations.category_id" +
 " AND products_base.supplier_id = suppliers.supplier_id " +
 " AND cost_price between 25 and 75 " +
 " order by product_id";
 ResultSet rs = stmt.executeQuery(query);
 while (rs.next()) {
 ProductDetailsBean productDetails = new ProductDetailsBean();
 productDetails.setProductId(rs.getString(1));
 productDetails.setProductName(rs.getString(2));
 productDetails.setProductPrice(rs.getString(3));
 productDetails.setImageURL(rs.getString(4));
 productDetails.setCategoryDescription(rs.getString(5));
 productDetails.setSupplierName(rs.getString(6));

 products.addProduct(productDetails);
 }
 conn.close();
 } catch (SQLException sqle) {
 System.out.println("======== Oracle Fusion Middleware Tutorial for
WebCenter Developers ======== ");
 System.out.println("Database Connection established successfully
but encountered an error while working with the DB:" +
 sqle);

System.out.println("==
============== ");
 } catch (Throwable t) {
 System.out.println("======== Oracle Fusion Middleware Tutorial for
WebCenter Developers ======== ");
 System.out.println("Error while trying to get Product Details: " +
 t);

System.out.println("==
============== ");
 }

 }
 return products;
 }

Step 3: Create the Business Logic for the Standards-Based Portlet

6-26 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

 public static Connection getConnection() throws ClassNotFoundException {
 Connection conn = null;
 try {
 Class.forName("oracle.jdbc.driver.OracleDriver");
 conn =
DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe", "fod",
 "fusion");
 } catch (SQLException sqle) {
 conn = null;
 System.out.println("======== Oracle Fusion Middleware Tutorial for
WebCenter Developers ======== ");
 System.out.println("SQL error while trying to get connection to DB: "
+
 sqle);

System.out.println("==
============== ");
 } catch (Throwable t) {
 conn = null;
 System.out.println("======== Oracle Fusion Middleware Tutorial for
WebCenter Developers ======== ");
 System.out.println("Error while trying to get the connection to DB: "
+
 t);

System.out.println("==
============== ");
 }
 return conn;
 }
}

7. Save the file.

8. Before we can update our portlet's view.jsp file to use this Java class, let's return
to our portlet code so that it uses the parameter value. This parameter value is the
productId navigation parameter defined for the Products portlet in Figure 6–16.

Click the Products.java tab to bring it into focus. Or, if the file is not open,
double-click the name in the Application Navigator.

9. In the Products.java file, we must update the ProcessAction() method in
the generated portlet class file to pass the parameter value from the portlet to the
Java Bean, so that the appropriate products display depending on the parameter
entered.

In the Products.java file, locate the processAction() method. Example 6–4
shows the section of the code in the Products.java file where the method is
located.

Note: In this code, the package names and import statements of the
view.jsp, ProductsService, and ProductsBean depend on the
name, class name, and package you specified or the portlet. Also, in
this code, you must update the connection information to point to the
database containing the Tutorial (fod) schema. If you encounter
problems with this portlet, you can check the Messages log below the
Visual Editor (the Design view) to verify that the connection
information you entered in this code is correct.

Step 3: Create the Business Logic for the Standards-Based Portlet

Building Portlets and Wiring Them in Your Application 6-27

Example 6–4 End of the Products.java File Containing the processAction() Method

 public void processAction(ActionRequest request,
 ActionResponse response) throws PortletException,
 IOException {
 // Determine which action.
 String okAction = request.getParameter(OK_ACTION);
 String applyAction = request.getParameter(APPLY_ACTION);

 if (okAction != null || applyAction != null) {
 // Save the preferences.
 PortletPreferences prefs = request.getPreferences();
 String param = request.getParameter(PORTLETTITLE_KEY);
 prefs.setValues(PORTLETTITLE_KEY, buildValueArray(param));
 prefs.store();
 if (okAction != null) {
 response.setPortletMode(PortletMode.VIEW);
 response.setWindowState(WindowState.NORMAL);
 }
 }
 }

Example 6–4 shows the section we must update. For simplicity, you can replace all
the code in the Products.java file with the code in the
C:\TutorialContent\Portlets\ProductsJava.txt file. Alternatively,
Example 6–4 shows the updated section.

Example 6–5 Updating the Final Section of the Products.java file

 // Form field names
 public static final String PARAMETER1 = "productId";
 public static final String FORM_PARAMETER1 = "form_Parameter1";
 public static final String FORM_SUBMIT = "dosub";
 // Portlet Modes
 public static final String MODE_NAME_PARAM = "mode";
 public static final String MODE_VIEW = "view";

 public void processAction(ActionRequest request,
 ActionResponse response) throws PortletException,
 IOException {

 // Determine what kind of action we have by examining the mode parameter
 boolean viewMode =
 MODE_VIEW.equals(request.getParameter(MODE_NAME_PARAM));

 // Extract the form field parameter and pass it through as a portlet
parameter
 String param1 = request.getParameter(FORM_PARAMETER1);
 if (param1 == null) {
 param1 = ProductsBean.DEFAULT_PRODUCT_ID;
 }

 if (viewMode) {
 // Set the new parameter values. These will be intepreted by the
 // container as navigational parameters as the names match the names
of
 // the declared parameters.
 response.setRenderParameter(PARAMETER1, param1);
 } else {
 // Determine which action.

Step 3: Create the Business Logic for the Standards-Based Portlet

6-28 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

 String okAction = request.getParameter(OK_ACTION);
 String applyAction = request.getParameter(APPLY_ACTION);

 if (okAction != null || applyAction != null) {
 // Save the preferences.
 PortletPreferences prefs = request.getPreferences();
 String param = request.getParameter(PORTLETTITLE_KEY);
 prefs.setValues(PORTLETTITLE_KEY, buildValueArray(param));
 prefs.store();
 if (okAction != null) {
 response.setPortletMode(PortletMode.VIEW);
 response.setWindowState(WindowState.NORMAL);
 }
 }
 }
 }
}

10. Now that we've updated our portlet and created the Java Class to enable the
portlet to communicate with the database, let's update our portlet's view.jsp file
for the portlet to use the Java class.

In the Application Navigator, under Portlets, Web Content, Products, and html,
pen the view.jsp file (Figure 6–33).

Figure 6–33 View.jsp File in the Application Navigator

Step 3: Create the Business Logic for the Standards-Based Portlet

Building Portlets and Wiring Them in Your Application 6-29

11. Click the Source tab to view the code of this page.

12. Select all the code in the Source view and delete it.

13. Enter the code in Example 6–6 in the Source view of the view.jsp:

Example 6–6 View.jsp Code

<%@ page contentType="text/html" pageEncoding="windows-1252"
import="javax.portlet.*,
 java.util.*,
 portlet.ProductsBean,
 portlet.ProductDetailsBean,
 portlet.ProductsService,
 portlet.Products "%>
<%@ taglib uri="http://java.sun.com/portlet" prefix="portlet"%>

<!-- Include the Portlet render Response & Request objects -->
<portlet:defineObjects/>

<%
 // Get the list of products
 ProductsBean products = new ProductsService().getProducts();
 ArrayList<ProductDetailsBean> productDetails = products.getProducts();

 // "Portlet encode" the Action URL if running Portlet mode
 String actionURL = "view.jsp";
 if (renderResponse != null) {
 actionURL = renderResponse.createActionURL().toString();
 }

 // Extract the current portlet parameter value if running in Portlet mode
 String param1 = "";
 if (renderRequest != null) {
 param1 = renderRequest.getParameter(Products.PARAMETER1);
 if (param1 == null) { param1 = ""; }
 }
%>
<form method="POST" action="<%= actionURL %>">
 <table>
 <tr>
 <th>Select</th>
 <th>Product</th>
 <th>Product supplied by</th>
 <th>Our price</th>
 </tr>

 <%
 for (int i = 0; i < productDetails.size(); i++) {
 ProductDetailsBean productDetail = productDetails.get(i);
%>

 <tr>
 <td align="center">
 <!-- Set the Form parameter name to passed as a render parameter during
processAction -->

Note: If the formatting of the code in this text does not work, you
can open the C:\TutorialContent\Portlets\ViewJSP.txt file
and copy and paste the code from there.

Step 4: Test and Deploy the Standards-Based Portlet

6-30 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

 <input type="radio" name="<%= Products.FORM_PARAMETER1 %>"
 value="<%=productDetail.getProductId()%>"
 <%= param1.equals(productDetail.getProductId()) ? " checked='checked'"
: "" %>/>
 </td>
 <td>
 <%=productDetail.getProductName()%>
 </td>
 <td>
 <%=productDetail.getSupplierName()%>
 </td>
 <td align="right">
 $<%=productDetail.getProductPrice()%>
 </td>
 </tr>

 <% } %>

 <tr class="PortletText1">
 <td>
 <input name="<%= Products.FORM_SUBMIT %>" type="submit"
 class="portlet-form-button" value="Show Details"></input>
 </td>
 <td colspan="3"> </td>
 </tr>

 </table>

 <!-- create a hidden parameter to note we're running in "view" mode -->
 <input type="hidden" name="<%= Products.MODE_NAME_PARAM %>"
 value="<%= Products.MODE_VIEW %>"/>
</form>

14. Save the view.jsp.

Now that you have established the connection to the database and set up the portlet to
use the new JavaBean and Java Class to get the appropriate product information for
the portlet, you are ready to include the portlet in a WAR file. WAR stands for web
archive, and it packages all the resources, portlets, and deployment descriptors
required to deploy your portlet.

Step 4: Test and Deploy the Standards-Based Portlet
In this lesson, you will learn how to deploy the standards-based portlet to your local
Integrated WebLogic Server. When you deploy a portlet, you package it so that it can
run on a Java EE server. If you're familiar with Oracle Portal, we're in effect creating a
portlet provider, which in the WSRP world is known as a portlet producer.

1. If it is not running yet, start the Integrated WebLogic Server by choosing Start
Server Instance from the Run menu.

2. Before we deploy the portlet, let's quickly compile and test it. In the Application
Navigator, under Web Content then Products, right-click view.jsp and choose
Run. The portlet should compile and display in your browser, as shown in
Figure 6–34.

Step 4: Test and Deploy the Standards-Based Portlet

Building Portlets and Wiring Them in Your Application 6-31

Figure 6–34 Testing the Standards-Based Portlet

3. In the Application Navigator, under Portlets, Web Content, WEB-INF, right-click
the web.xml file, then choose Create WAR Deployment Profile from the context
menu (Figure 6–36).

Figure 6–35 Create WAR Deployment Profile Menu Option

4. In the Create Deployment Profile dialog, name the Deployment Profile Products,
then click OK (Figure 6–36).

Step 4: Test and Deploy the Standards-Based Portlet

6-32 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 6–36 Create Deployment Profile - WAR File Dialog

5. On the General tab of the WAR Deployment Profile Properties dialog, look for the
Web Application's Context Root setting. Let's change this to a more logical name,
so that we can easily reference it later.

Select the Specify J2EE Context Root option, then enter Products in the field, as
shown in Figure 6–37.

Figure 6–37 WAR Deployment Profile Properties -- Setting the Context Root

6. Click OK to finish updating the properties, then click OK in the Project Properties
dialog to finish creating the WAR deployment profile.

7. Oracle WebCenter includes its own default connection to the Integrated WLS
Server. You can see the connection, called IntegratedWLSConnection, in the
Resource Palette, under IDE Connections (Figure 6–38).

Step 4: Test and Deploy the Standards-Based Portlet

Building Portlets and Wiring Them in Your Application 6-33

Figure 6–38 IntegratedWebLogicServer in the Resource Palette

8. Now, create an EAR file for the Deployment Profile. From the Application menu,
choose Deploy, then New Deployment Profile.

9. In the New Gallery, ensure Deployment Profiles is selected, then choose EAR File
from the Items list (Figure 6–39).

Step 4: Test and Deploy the Standards-Based Portlet

6-34 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 6–39 Creating an EAR File for the Deployment Profile of the Products Portlet

10. In the Create Deployment Profile -- EAR File dialog, in the Deployment Profile
Name field, enter Products (Figure 6–40), then click OK.

Figure 6–40 Creating a Deployment Profile

11. Click OK, then click OK again.

12. Now, we're ready to deploy our standards-based portlet. In the Application
Navigator, right-click the Portlets project, and choose Deploy, then Products from
the context menu.

13. In the Deploy Products wizard, on the Deployment Action page, select Deploy to
Application Server, then click Next (Figure 6–41).

Step 4: Test and Deploy the Standards-Based Portlet

Building Portlets and Wiring Them in Your Application 6-35

Figure 6–41 Deployment Action page of the Deploy Products Wizard

14. On the Select Server page of the Deploy Products wizard, select
IntegratedWebLogicServer, then click Next (Figure 6–42).

Figure 6–42 Select Server Page of the Deploy Products Wizard

15. On the Summary page, ensure that the Application Server listed is the
IntegratedWebLogicServer and that the Archive Details shows the Output file
pointing to JDEV_USER_
HOME\jdeveloper\mywork\MyTutorialPortlet\Portlets\deploy\Prod
ucts.war.

16. Click Finish.

Step 4: Test and Deploy the Standards-Based Portlet

6-36 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

17. If the Select deployment type dialog displays, leave the default options and click
OK (Figure 6–43).

Figure 6–43 Select Deployment Type

Verify that the deployment is complete by checking the Deployment - Log below
the Visual Editor (the Design view) for the message "Deployment finished."

18. Let's to go a browser and verify whether the portlet deployment worked. In your
browser, enter the URL:

http://localhost:7101/Products

The WSRP Producer Test Page displays as shown in Figure 6–44.

Step 4: Test and Deploy the Standards-Based Portlet

Building Portlets and Wiring Them in Your Application 6-37

Figure 6–44 WSRP Producer Test Page

19. You can choose to use either the WSRP version 1 or version 2 WSDL In general, it's
good practice to use more recent versions wherever possible. If the portlet will be
consumed by WSRP 1.0 compliant consumers (such as Oracle Portal), you may
want to choose WSRP 1.0.

Click WSRP v2 WSDL to view the XML for this WSDL (Figure 6–45).

Figure 6–45 WSDL Describing Your Portlet as a Web Service

The portlet you just deployed has now been exposed as a web service. What appears
in the browser is the Web Services Description Language (WSDL) that describes this
web service. Now that the portlet is deployed and running, you can add this portlet to

Step 5: Register the Standards-Based Portlet with Your Application

6-38 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

any application that can consume portlets. Our next step is to register the producer
with our Tutorial application, then add this portlet to MyPage.

Step 5: Register the Standards-Based Portlet with Your Application
Once we have deployed our portlet, we can register the producer with our Tutorial
application and add it to our page.

To register the producer with MyTutorialApplication:

1. In the Application Navigator, choose MyTutorialApplication from the list to
return to our custom WebCenter application (Figure 6–46).

Figure 6–46 MyTutorialApplication in the Application Navigator List

2. In the Resource Palette, click the folder icon, then choose New Connection and
WSRP Producer from the context menu.

3. On the Name page, ensure Resource Palette is selected, and enter a name for the
producer, for example ProductsWSRPProducer, then click Next (Figure 6–47).

Figure 6–47 Register WSRP Portlet Producer -- Name

4. On the Connection page, in the WSDL URL field, enter the URL for the WSDL
(typically, we use v.2):

http://localhost:7101/Products/portlets/wsrp2?WSDL

Step 5: Register the Standards-Based Portlet with Your Application

Building Portlets and Wiring Them in Your Application 6-39

Figure 6–48 Register WSRP Portlet Producer -- Connection

5. Since our Integrated WebLogic Server is installed locally, we do not need a proxy.
Click Next to create the connection to the WSRP Producer.

6. Let's leave the rest of the defaults and finish the wizard. On the Registration
Details page, click Finish. You'll see a registration dialog letting you know the
registration is being completed.

7. In the Resource Palette, under IDE Connections, open the WSRP Producer node,
then expand the ProductsWSRPProducer node. Figure 6–49 shows the Products
portlet here.

Step 6: Test the Standards-Based Portlet in Your Application

6-40 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 6–49 Products Portlet in the Resource Palette

Now that we've registered the producer with our application, let's add the portlet to
the page and test it.

Step 6: Test the Standards-Based Portlet in Your Application
To test the portlet, we'll add it to MyPage.jspx, run the page, and see if the portlet
displays as expected.

1. In MyTutorialApplication, if MyPage.jspx is not open, locate the page name in
the Application Navigator (under ViewController, Web Content) and
double-click it.

2. In the Structure window, navigate to the second facet, then expand Page
Customizable, Panel Group Layout, Layout Customizable, and Panel
Customizable, as shown in Figure 6–50. You should see the Show Detail Frame
called My Profile. You will add the portlets below this component.

Note: As previously mentioned, you can use the pushpin in the
Structure window to freeze the current view. For this step, you should
click MyPage in the Design view, then ensure the pushpin is in the
"freeze" position (pressed).

Step 6: Test the Standards-Based Portlet in Your Application

Building Portlets and Wiring Them in Your Application 6-41

Figure 6–50 Panel Customizable Where You Will Add the Products Portlet

3. In the Component Palette, choose ADF Faces from the list.

4. Drag and drop a Panel Group Layout just below the Show Detail Frame called My
Profile.

5. Set the Layout property to horizontal and the StyleClass (located below Style and
Theme) to AFStretchWidth. Figure 6–51 shows the new Panel Group Layout in
the Structure Window.

Figure 6–51 New Panel Group Layout

6. Drag and drop the Products portlet from the Resource Palette onto this Panel
Group Layout.

7. Run the page to see how the portlet looks at runtime. This may take a few
moments.

You will notice that selecting the different options and the Show Details button do
not yet work, because we have not wired this portlet with another portlet. Let's
create a second portlet, then wire it to this portlet. Figure 6–52 shows the Products
portlet at runtime.

Step 7: Register the Preconfigured Portlet Producer

6-42 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 6–52 Products Portlet in a Browser Window

For more information about creating standards-based JSR 168 portlets and using them
with a WebCenter application, see Part VIII, "Working with Portlets and Portals" in
Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.

Step 7: Register the Preconfigured Portlet Producer
For this Tutorial, we will use a preconfigured portlet producer, called OmniPortlet,
which is predeployed to the Integrated WebLogic Server, also referred to as the
Integrated WebLogic Server. Be sure you have followed the steps in Chapter 2,
"Preparing for the Tutorial" before you proceed.

To register the preconfigured portlet producer:

1. Ensure the Integrated WebLogic Server is running.

2. To find out the URL for the OmniPortlet producer running on the Integrated
WebLogic Server, choose WebCenter Preconfigured Server Readme from the
Help menu. This Read Me file shows all the information needed to use the portlets
that are predeployed to the Integrated WebLogic Server, and the login credentials
for the server.

3. In the Read Me file, under Preconfigured Portlet Producers, then PortalTools
Portlet Producers, click OmniPortlet Producer.

4. In your browser, you should see the OmniPortlet Producer Test Page. Copy the
URL from the location bar. The URL should look like this:

http://127.0.0.1:7101/portalTools/omniPortlet/providers/omniPortlet

Entering this URL in your browser displays the OmniPortlet producer test page
(Figure 6–53).

Step 7: Register the Preconfigured Portlet Producer

Building Portlets and Wiring Them in Your Application 6-43

Figure 6–53 OmniPortlet Producer Test Page

5. In the Resource Palette, click the New icon next to the search toolbar, then choose
New Connection, and then Oracle PDK-Java Producer (Figure 6–54).

Step 7: Register the Preconfigured Portlet Producer

6-44 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 6–54 Registering an Oracle PDK-Java Producer

6. On Step 1 of the Register Oracle PDK-Java Portlet Producer wizard, let's enable
this portlet producer to be used across all our applications. Select Resource
Palette.

7. In the Name field, enter OmniProducer (Figure 6–55).

Figure 6–55 Naming the OmniPortlet Producer

Step 7: Register the Preconfigured Portlet Producer

Building Portlets and Wiring Them in Your Application 6-45

8. Click Next.

9. Enter this URL for the OmniPortlet Producer Test Page, which you copied earlier
in the URL Endpoint field (Figure 6–56).

Figure 6–56 Specifying the Connection Details for the OmniPortlet Producer

10. Click Next.

11. On the Registration Details page, click Finish. You should see a message
indicating that Oracle JDeveloper is registering your producer.

Because you chose to register the portlet producer in the Resource Palette, your
new portlet producer displays in the IDE Connections list of the Resource Palette,
as shown in Figure 6–57.

Figure 6–57 OmniProducer in the IDE Connections List

Step 8: Add an OmniPortlet to Your Page

6-46 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Step 8: Add an OmniPortlet to Your Page
One type of portlet you can use with Oracle WebCenter Framework is OmniPortlet.
This portlet is provided out of the box, and is preconfigured on the Integrated
WebLogic Server. It lets you quickly create portlets using a variety of default layouts
and data sources.

Figure 6–58 shows a sample portlet you can build with OmniPortlet. The portlet
displays items stored in a database as images, which are stored locally. After you wire
this portlet with the portlet you created in "Step 1: Create a Standards-Based Java (JSR
168) Portlet", a user can click these images in your application to learn more about that
item.

Figure 6–58 OmniPortlet at Runtime

Before you can use this OmniPortlet, ensure that you have added the sample schema
to your database and that you have started the Integrated WebLogic Server as
described in Chapter 2, "Preparing for the Tutorial." Also, ensure that you have
registered the OmniPortlet producer, as described in Step 7: Register the
Preconfigured Portlet Producer.

1. In Oracle JDeveloper, ensure MyTutorialApplication is open.

2. In the Application Navigator, ensure the MyPage.jspx is in the Design view. If
you've closed your application, you can double-click the page name in the
Application Navigator.

3. In the Structure window, locate the horizontal Panel Group Layout where you
added the Products portlet.

Note: As previously mentioned, you can use the pushpin in the
Structure window to freeze the current view. For this step, you should
click MyPage in the Design view, then ensure the pushpin is in the
"freeze" position (pressed).

Step 8: Add an OmniPortlet to Your Page

Building Portlets and Wiring Them in Your Application 6-47

Figure 6–59 Panel Group Layout Containing the Products Portlet

4. In the Resource Palette, under IDE Connections, navigate to Oracle PDK-Java
Producer, OmniProducer, and OmniPortlet (Figure 6–60).

Figure 6–60 OmniPortlet in the Resource Palette

5. Drag and drop OmniPortlet onto your page onto the Panel Group Layout. It
should display below the existing adfp:portlet in the Structure window. If you see
an error message, ensure you have started the Integrated WebLogic Server, then
try again.

For more troubleshooting tips on using OmniPortlet, refer to Oracle Fusion
Middleware Developer's Guide for Oracle WebCenter.

6. Set the Height property for the portlet to 230px.

7. Now that we've added OmniPortlet to our page, let's customize its contents.

Step 9: Define OmniPortlet at Runtime

6-48 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Run your page to the browser and log in as Lisa/welcome1.

Figure 6–61 shows the OmniPortlet on MyPage in your browser.

Figure 6–61 Undefined OmniPortlet at Runtime

Step 9: Define OmniPortlet at Runtime
In this section, we will customize our OmniPortlet to bring in some information from
the database schema and the images we added to our application in Chapter 2,
"Preparing for the Tutorial."

Since OmniPortlet is a preconfigured portlet, our only steps are to add it to our
application, then customize it at runtime. Now that we've placed it on our page and
run our page to the browser, let's customize the layout and content of this portlet.

1. In the upper right corner of the portlet, click the arrow, and choose Customize to
launch the OmniPortlet wizard (Figure 6–63).

Figure 6–62 Customize Link for OmniPortlet

2. On the Data Type page, choose SQL so that we can obtain data from the schema in
a database, then click Next. At this point, be sure you've added the schema to your
database (as described in Chapter 2, "Preparing for the Tutorial") and the images
to your application resources (as described in Chapter 3, "Creating a WebCenter
Application with a Customizable Page") otherwise the portlet will not retrieve the
sample Tutorial data.

If you're familiar with SQL and your database, you can always use your own
sample data, but the ensuing images and steps may not necessarily be accurate for
you.

3. On the Data Source page, we can define our SQL statement and set up the
connection to the database where we installed the schema.

In the Statement box, enter the code in Example 6–7. The parameter in the
statement will be used when we wire this portlet with the Products portlet we
added in Step 5: Register the Standards-Based Portlet with Your Application.

Step 9: Define OmniPortlet at Runtime

Building Portlets and Wiring Them in Your Application 6-49

Example 6–7 OmniPortlet SQL Statement

SELECT distinct product_name name
, cost_price our_price
, cost_price * 1.3 retail_price
, cost_price * 0.3 savings
, external_url image_url
, category_description
, supplier_name
FROM category_translations, products_base, suppliers
WHERE products_base.category_id = category_translations.category_id
 AND products_base.supplier_id = suppliers.supplier_id
 AND products_base.product_id = nvl('##Param1##', 0)

4. Under Connection, click Edit Connection.

5. Enter a name for your connection and the connection information for your
database. The schema username is fod and the password is fusion. For example,
if you are using an Oracle XE database locally, the page would look like
Figure 6–63.

Figure 6–63 Connection Information for OmniPortlet

6. Let's make sure the connection information is correct by clicking Test. Figure 6–64
shows a successful test message.

Note: If the formatting of the code in this text does not work, you
can open the C:\TutorialContent\Portlets\OmniPortlet_
SQL_Statement.txt file and copy and paste the code from there.

Note: In the statement, you'll notice a reference to the localhost. This
refers to the OmniPortlet producer you registered; localhost also
points to the IP address 127.0.0.1. Notice that you can also click the
Test button to see what the statement will return.

Step 9: Define OmniPortlet at Runtime

6-50 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 6–64 Successful Connection Message

7. Click Close, then click OK to finish creating the connection.

8. Under Portlet Parameters, set the Default Value for Param1 to 12. Doing so
provides a default value for the parameter in our SQL statement.

Figure 6–65 shows the SQL Source page.

Figure 6–65 SQL Source Page

Step 9: Define OmniPortlet at Runtime

Building Portlets and Wiring Them in Your Application 6-51

9. Click Test next to the Show Bind Variables button to validate the SQL statement
and connection.

Figure 6–66 Test Button

A pop-up window displays returning a row based on the statement. If you do not
see a row returned, validate your SQL statement, connection, and portlet
parameter.

Figure 6–67 SQL Statement Test Results

10. Click Next.

11. On the Filter page, click Next.

12. On the View page, let's name the portlet, for example Product Information,
by entering the name in the Title field.

13. We can choose any of the default layouts for this portlet. However, let's check out
the HTML layout, which you can use to fine tune the look and feel of your portlet.

Under Layout Style, select HTML, as shown in Figure 6–68, then click Next.

Note: If you do not have the images folder in your ViewController
project as described in Chapter 3, "Creating a WebCenter Application
with a Customizable Page," the images referenced in the SQL
statement will not display. You can go back and add these now by
following Step 2: Add the Resource Files to the Application, but you
must run the application to your browser again in order for
OmniPortlet to recognize the new folder.

Step 9: Define OmniPortlet at Runtime

6-52 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 6–68 View Page

14. On the Layout page, you'll notice a form for filling in HTML for the template.
Here, you can modify the layout of your portlet by updating the Header, Body,
and Footer fields. You can use the default layout that OmniPortlet provides, but
let's step through creating our own HTML layout.

From the Quick Start list, select Clear Fields, then click Apply. Doing so removes
the existing HTML code from the layout template.

15. In the Repeating Section, enter the HTML in Example 6–8 to create a table that
formats the data.

Example 6–8 OmniPortlet HTML Layout Code

<table>
 <tr>
 <td>
 ##NAME##
 <img src="##IMAGE_URL##"
 title="##NAME## - ##CATEGORY_DESCRIPTION## by ##SUPPLIER_NAME##">
 </td>
 <td>
 <table>

Note: If the formatting of the code in this text does not work, you
can open the C:\TutorialContent\Portlets\OmniPortlet_
HTML_Layout.txt file and copy and paste the code from there.

Step 9: Define OmniPortlet at Runtime

Building Portlets and Wiring Them in Your Application 6-53

 <tr class="PortletText2">
 <td>
 Product supplied by

 ##SUPPLIER_NAME##

 </td>
 </tr>
 <tr class="PortletText2">
 <td>
 List price: $##RETAIL_PRICE##
 </td>
 </tr>
 <tr class="PortletHeading2">
 <td>
 Our price: $##OUR_PRICE##
 </td>
 </tr>
 <tr class="PortletText2">
 <td>
 You save: $##SAVINGS##
 </td>
 </tr>
 <tr class="PortletText2">
 <td>
 Availability:
 In Stock. Ships from and sold by
 FusionOnline.com
 . Gift-wrap available.
 </td>
 </tr>
 <tr>
 <td> </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr class="PortletText1">
 <td colspan="2">Want it delivered Thursday? Order it in the next 22 hours and
 45 minutes, and choose One-Day Shipping at checkout.</td>
 </tr>
</table>

The Layout page should now look like Figure 6–69.

Step 10: Wire the Standards-Based Portlet and OmniPortlet Together

6-54 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 6–69 HTML Layout Page

16. Click Finish. Figure 6–70 shows the OmniPortlet in your browser.

Figure 6–70 Completed OmniPortlet at Runtime

Now that we have created our two portlets, let's wire them.

Step 10: Wire the Standards-Based Portlet and OmniPortlet Together
When you added the code for the standards-based portlet called Products, you also
included a parameter called productId. When you select different options in the
Products portlet, the application will send this parameter to OmniPortlet so that it
can display the details of a particular product with that product identification number.

We now must map the two parameters to each other, so that when you choose an
option in the Products portlet, the information in OmniPortlet updates accordingly.

Step 10: Wire the Standards-Based Portlet and OmniPortlet Together

Building Portlets and Wiring Them in Your Application 6-55

To wire the portlets:

1. In Oracle JDeveloper, ensure MyTutorialApplication is open.

2. In the Application Navigator, open the page definition file for the MyPage.jspx
page. You can do this by opening the page definition file itself in the Application
Navigator, or by right-clicking the page and choosing Go to Page Definition. You
created the page definition for MyPage in "Step 3: Add ADF Security Policies to
Your Application" in Chapter 4, "Adding Security to Your Application."

3. In the Structure window, use the pushpin to freeze the current view. Ensure the
MyPage Page Definition is selected in the Design view, then, in the Structure
window, click the pushpin so that it is in the "freeze" position (pressed).

4. In the Structure window for the MyPagePageDef.xml (page definition) file,
expand executables, expand OmniPortlet1_1 then parameters, then select the
portlet variable Param1, as shown in Figure 6–71.

Figure 6–71 OmniPortlet Variable in the Structure Window

5. While the variable is selected, you should be able to view the properties for it in
the Property Inspector.

Set the pageVariable property to Products1_1_productId, as shown in
Figure 6–72.

Step 10: Wire the Standards-Based Portlet and OmniPortlet Together

6-56 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 6–72 Setting the Default Value

6. Now we want the detail portlet (OmniPortlet) to refresh whenever the value from
the master portlet changes. To do so, we add a Partial Trigger to the detail portlet.
Click the MyPage.jspx tab at the top of the Visual Editor to bring it into focus.

7. Select the OmniPortlet on the page in the Structure window. The portlet is the
second instance of adfp:portlet in the Panel Group Layout, as shown in
Figure 6–73.

Figure 6–73 OmniPortlet on MyPage in the Design View

8. In the Property Inspector for OmniPortlet, under Common, click the arrow next to
PartialTriggers, then choose Edit (Figure 6–74).

Step 10: Wire the Standards-Based Portlet and OmniPortlet Together

Building Portlets and Wiring Them in Your Application 6-57

Figure 6–74 Editing the PartialTriggers Property for OmniPortlet

9. In the Edit Property: PartialTriggers dialog, the Portlet ID for OmniPortlet
(portlet - portlet2) is automatically selected. Locate the Portlet ID for the
Products portlet, which is directly above the OmniPortlet (Figure 6–75).

Step 10: Wire the Standards-Based Portlet and OmniPortlet Together

6-58 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 6–75 Locating the Portlet ID for the Products Portlet

10. Select the Portlet ID, in this case portlet - portlet1, and click the right arrow to
move it to the Selected list, then click OK (Figure 6–76).

Figure 6–76 Selecting the Portlet ID for the Products Portlet

11. Now that we've wired the portlet parameters, let's examine how they behave at
runtime.

Run MyPage.jspx to your browser and log in as Lisa/welcome1. In the next
step, we will test how the JSR 168 (Products) portlet and the OmniPortlet interact
at runtime.

Step 11: Test the Interaction Between the Portlets

Building Portlets and Wiring Them in Your Application 6-59

Step 11: Test the Interaction Between the Portlets
Let's test the portlets at runtime.

To test the interaction between the portlets:

1. In the Products portlet, select an option, for example iPod Speakers, then click
Show Details.

2. In the OmniPortlet, notice that the portlet updates to display information about
the iPod speakers (Figure 6–77).

Figure 6–77 Testing the Interaction Between the Portlets

For more information about creating portlets and using them with a WebCenter
application, see Part VIII, "Working with Portlets and Portals" in Oracle Fusion
Middleware Developer's Guide for Oracle WebCenter.

Now that you have created two portlets and added them to your application, let's see
how we can change the look and feel of our application using a skin, as well as
personalize the application at runtime in Chapter 7, "Changing the Look and Feel of
Your Application."

Step 11: Test the Interaction Between the Portlets

6-60 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

7

Changing the Look and Feel of Your Application 7-1

7 Changing the Look and Feel of Your
Application

Oracle WebCenter enables you design the look and feel of your application specifically
for your organization at both design time (which you, as a developer, can do before
deploying the application) and at runtime (which the application administrator or user
can do after you have deployed the application).

At design time in JDeveloper, Oracle WebCenter enables you to use a "skin," which is
essentially a global style sheet (based on CSS) that you can apply to your entire
application. Once you apply the skin to your application, every layout component
automatically uses the styles assigned by the skin. You cannot change this skin at
runtime or post-deployment.

At runtime in your browser, Oracle WebCenter enables authenticated users
(administrators, users, and so on) to personalize their view of their application using
Oracle Composer. For example, if our sample user Lisa logs into the application at
runtime, she can add, remove, or change the appearance of components or services
that are available to the application. Only Lisa can view these modifications; if Dan or
Alex log in, they see their own personal view of the application.

In this lesson, you, as a developer, will change the look and feel of your application at
design time that all users can view at runtime. Then, to understand how your users
can view and personalize the application, you will then log in as different users based
on the roles you set in Chapter 4, "Adding Security to Your Application," and
personalize the view of the application for that user at runtime.

Figure 7–1 shows how the application looks with the new skin.

7-2 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 7–1 Partial View of MyPage at Runtime with the New Skin

Figure 7–2 shows a partial view of Lisa's personalized page.

Changing the Look and Feel of Your Application 7-3

Figure 7–2 Partial View of Lisa's Personalized Page

Figure 7–3 shows a partial view of Alex's personalized page.

7-4 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 7–3 Partial View of Alex's Personalized Page

Figure 7–4 shows Dan's personalized page.

Introduction

Changing the Look and Feel of Your Application 7-5

Figure 7–4 New Layout on Dan's Personalized Page

Introduction
This lesson contains the following steps:

■ Step 1: Change the Application Look and Feel Using a Skin

■ Step 2: Personalize One User's (Lisa's) Page

■ Step 3: Personalizing a Second User's (Alex's) Page

■ Step 4: Personalizing a Third User's (Dan's) Page

Before you begin the steps in this lesson, ensure you have followed the steps up to this
point in the tutorial.

Step 1: Change the Application Look and Feel Using a Skin

7-6 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Step 1: Change the Application Look and Feel Using a Skin
When you create a custom WebCenter application using the WebCenter Application
template, the application includes a skin by default. You can extend this default skin
with your own CSS file to change the look and feel of your application.

In this step, you will extend the default skin to change the look and feel of your
application. First, you can either create a new CSS file or use an existing one; we've
provided a CSS file you can use in this step. Next, you will create an XML file that tells
the application to extend its default skin and use the CSS file you created to modify the
appearance of the pages in your application. Finally, you will copy the CSS file into the
directory that the XML file references.

Ensure you've followed the steps for adding the css and images folders from the
Tutorial Sample Files to your application in Chapter 3, "Creating a WebCenter
Application with a Customizable Page."

To change the application skin:

1. First, we need to create a configuration file, called trinidad-skins.xml, to tell
the application to extend the default skin.

Make sure your page, MyPage.jspx, is open in JDeveloper and that
MyTutorialApplication is in focus in the Application Navigator.

2. In the Application Navigator, under the ViewController project, open Web
Content.

3. Right-click WEB-INF, then choose New to display the New Gallery.

4. In the New Gallery, under General in the left pane, select XML

5. In the right pane, select XML Document, then click OK (Figure 7–5).

Figure 7–5 Creating a New XML Document

Step 1: Change the Application Look and Feel Using a Skin

Changing the Look and Feel of Your Application 7-7

6. In the Create XML File dialog, in the File Name field, enter
trinidad-skins.xml, then click OK (Figure 7–6). The new XML file displays in
the Design view.

Figure 7–6 Creating the trinidad-skins.xml File

7. Delete the code in this editor, as shown in Figure 7–7.

Figure 7–7 Deleting the Default Code in the trinidad-skins.xml File

8. Paste the following code snippet into the trinidad-skins.xml file
(Example 7–1):

Example 7–1 Skin Code in the trinidad-skins.xml File

<?xml version="1.0" encoding="windows-1252" ?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">
 <skin>
 <id> TutorialSkin.desktop</id>
 <family>TutorialSkin</family>
 <extends>blafplus-rich.desktop</extends>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>css/TutorialSkin.css</style-sheet-name>
 </skin>
</skins>

9. By creating trinidad-skin.xml file containing the code in Example 7–1, you
created a new skin called TutorialSkin, which extends a default skin contained
in the application called blafplus-rich. Every skin defined in this file must
have a corresponding CSS file. In this case, the CSS file is called
TutorialSkin.css. You already added the TutorialSkin.css file when you
added the images and other resources to your application in Chapter 3, "Creating
a WebCenter Application with a Customizable Page."

10. Refresh the Application Navigator by clicking the Refresh icon next to the Projects
list (Figure 7–8).

Note: If the formatting of the code in this text does not work, you
can open the
C:\TutorialContent\Portlets\trinidadskins.txt file and
copy and paste the code from there.

Step 1: Change the Application Look and Feel Using a Skin

7-8 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 7–8 The Refresh Icon in the Application Navigator

11. In the Application Navigator, under ViewController, WEB-INF, open the
trinidad-config.xml file.

12. Find the following code:

 <skin-family>fusion</skin-family>

13. In the code, replace fusion with TutorialSkin so the code looks like this:

 <skin-family>TutorialSkin</skin-family>

14. Save the file.

15. Restart JDeveloper to apply your changes to the trinidad-skins.xml and
trinidad-config.xml files.

16. Bring MyPage.jspx into focus.

17. In the Structure window for MyPage.jspx, navigate to the start facet that
contains the logo.png file you added in Chapter 3, "Creating a WebCenter
Application with a Customizable Page." Figure 7–9 shows the logo file in the
Structure window.

Figure 7–9 Logo.png in the start facet

18. Replace this file with the logo2.png file located in the images directory. To do
so, delete the af:image - images/logo.png from the Structure window
(while it is selected, press the Delete key).

19. In the Application Navigator, navigate to the images directory under the
ViewController, Web Content folders.

Step 1: Change the Application Look and Feel Using a Skin

Changing the Look and Feel of Your Application 7-9

20. Drag and drop logo2.png onto the start facet and choose ADF Faces Image
from the context menu (Figure 7–10).

Figure 7–10 Logo2.png in the Structure Window

21. You should now see a visual change to the design time view of your page, as
shown in Figure 7–11.

Step 1: Change the Application Look and Feel Using a Skin

7-10 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 7–11 MyPage in the Design View with the New Skin

22. Let's make a few changes to the Show Detail Frames surrounding the services.
Oracle WebCenter by default allows you to change the appearance of the layout
components in your application with three settings: light, medium, and dark.
These settings work with your CSS file to slightly alter the appearance of your
page. Let's see how this works.

In the Structure window, select the Show Detail Frame labeled People
Connections (Figure 7–12).

Figure 7–12 "My Documents" Show Detail Frame in the Structure Window

Step 1: Change the Application Look and Feel Using a Skin

Changing the Look and Feel of Your Application 7-11

23. In the Property Inspector for the Show Detail Frame, expand the Appearance
section.

24. The Background property should currently be set to medium. Use the arrow to
change this property to dark (Figure 7–13).

Figure 7–13 Setting the Background Property to dark

25. Perform the same steps to change the appearance of the Show Detail Frame of all
the task flows to dark:

■ Activity Stream

■ Messages

■ My Profile

■ My Documents

■ Tag Cloud

■ Mail (optional)

26. In the Structure window, change the same Background property to dark for the
two portlets.

MyPage should now look like Figure 7–14.

Step 1: Change the Application Look and Feel Using a Skin

7-12 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 7–14 Changing the Background of the Show Detail Frames

27. Run the page to your browser to view the new skin and log in as the user Lisa
with the password welcome1 (Figure 7–15).

Step 2: Personalize One User's (Lisa's) Page

Changing the Look and Feel of Your Application 7-13

Figure 7–15 Partial View of MyPage at Runtime with the New Skin

Since you are still developing your application (and have not yet deployed it), you can
continue to switch back and forth between the runtime view and design time in Oracle
JDeveloper to modify the look and feel.

Step 2: Personalize One User's (Lisa's) Page
In Chapter 3, "Creating a WebCenter Application with a Customizable Page," you
added Oracle Composer components to your page, including a Change Mode Link.
You then worked a little with the Edit mode of the page at runtime to see how you can
use Oracle Composer to modify your page at runtime.

Now that you've applied security and added content to the page, you can check out
how you and your users can personalize their page (their own page) at runtime. For
example, when Lisa logs in, she can change the look and feel of her page. When Dan
logs into the same application, he does not see Lisa's changes; he only sees his own
view. Remember that in Chapter 4, "Adding Security to Your Application," you
assigned both the admin-role (which is assigned to Lisa) and the user-role
(which is assigned to both Dan and Alex) privileges to View and Personalize MyPage.
This section shows you how these privileges affect what actions a user can perform at
runtime.

This step shows you a few tasks you can perform at runtime. You will log in as the
three different users: Lisa, Dan, and Alex to see how the views change depending on
the user and user privileges. Let's first play with some of the tasks you can perform to
personalize Lisa's page.

To personalize Lisa's page:

1. If MyPage is not already displaying in your browser, run the page to your browser
and log in as Lisa/welcome1.

Step 2: Personalize One User's (Lisa's) Page

7-14 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

2. One of the tasks Lisa can do at runtime is add a video, for example from YouTube,
to her page. In the upper right corner of the page, click Edit.

3. Above the People Connections Show Detail Frame, click Add Content
(Figure 7–16).

Figure 7–16 Add Content Button

4. In the Catalog that displays, click ADF Faces Components to open the folder.

5. Next to Movable Box, click Add to add this component to the page. This box will
contain the video component (Figure 7–17).

Figure 7–17 Adding a Movable Box

6. Click Close. The Movable Box displays on your page above the People
Connections Show Detail Frame (Figure 7–18).

Step 2: Personalize One User's (Lisa's) Page

Changing the Look and Feel of Your Application 7-15

Figure 7–18 Movable Box on MyPage

7. At the top of the page just below the company logo, notice the Composer toolbar.
You'll see a View menu option on the right. Click View, then choose Source from
the list to view the source of the page (Figure 7–19).

Figure 7–19 Viewing the Source of MyPage at Runtime

8. In the Source View, select the showDetailFrame:MovableBox.

9. From the menu, click Edit (Figure 7–20).

Figure 7–20 Movable Box in the Source View

10. In the Component Properties: Movable Box dialog, change the Text property to My
Recipes, as shown in Figure 7–21.

Step 2: Personalize One User's (Lisa's) Page

7-16 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 7–21 Setting the Text Property

11. Click Apply, then click OK.

12. Click Edit to re-enter the Edit mode of the page.

13. In the My Recipes Show Detail Frame, click Add Content.

14. In the Catalog, click ADF Faces Components.

Figure 7–22 Add Content Button in the My Recipes Show Detail Frame

15. Next to HTML Markup, click Add, then click Close.

16. Since the Movable Box Show Detail Frame already contains a header called "My
Recipes," you can delete the default header for the HTML Markup Show Detail
Frame. Change to the Source view again by clicking View, then choosing Source
in the context menu.

17. Select showDetailFrame:HTML Markup, then click Edit in the toolbar.

18. In the Component Properties:HTML Markup dialog, set the Display Header
property to false (Figure 7–23).

Step 2: Personalize One User's (Lisa's) Page

Changing the Look and Feel of Your Application 7-17

Figure 7–23 Setting the Display Header Property

19. Click Apply, then click OK.

20. Close the Source view by clicking Close in the upper right corner of the
application.

21. Next, add the video component. To do so, click Edit again in the upper right
corner of MyPage to re-enter Edit mode.

22. In the My Recipes Show Detail Frame, next to the "New HTML Markup" text,
hover under the pencil icon to view the toolbar for the component, then click the
pencil (Edit) icon to edit the component (Figure 7–24).

Figure 7–24 Pencil Icon for Editing the HTML Markup Component

23. In the Component Properties:New HTML Markup dialog, change the Value
property to the following code snippet, as shown in Figure 7–25.

Example 7–2 HTML Markup for the Video Component

<object width="560" height="340"><param name="movie" name="allowFullScreen"
value="http://www.youtube.com/v/8HlqQqP6Mcw&hl=en_US&fs=1&"></param><param
value="true"></param><param name="allowscriptaccess" value="always"></param><embed
src="http://www.youtube.com/v/8HlqQqP6Mcw&hl=en_US&fs=1&"
type="application/x-shockwave-flash" allowscriptaccess="always"
allowfullscreen="true" width="560" height="340"></embed></object>

Step 2: Personalize One User's (Lisa's) Page

7-18 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 7–25 HTML Markup in the Value Field

24. Click Apply, then click OK. You should now see a video component embedded on
Lisa's page (Figure 7–26).

Figure 7–26 Video Component on MyPage

25. In addition to adding her favorite video to her page, suppose Lisa wants to change
the appearance of her page. Specifically, she wants to see stronger borders around
each component.

While in the Edit mode of the page, click the pencil (Edit) icon in the upper right
corner of the My Documents Show Detail Frame.

26. In the Component Properties:My Documents dialog, click the Style tab.

27. On the Style tab, in the Other CSS field, enter the following code snippet:

Example 7–3 Changing the Style of the Show Detail Frame

padding:2px;border:5px solid
#468ab1;-moz-border-radius:15px;-webkit-border-radius:1 5px;style="
background-color:#ccc;

Step 3: Personalizing a Second User's (Alex's) Page

Changing the Look and Feel of Your Application 7-19

Figure 7–27 shows how the dialog appears after you enter this code.

Figure 7–27 New Border Style in the Component Properties:My Documents Dialog

28. Click Apply, then click OK. Notice how the border of the My Documents Show
Detail Frame changes.

Figure 7–28 New Border on Lisa's Page

29. Now that you've made a few changes to personalize Lisa's page, you can either
perform steps 24 through 27 for all the other Show Detail Frames on the page, or
continue to the next step ("Step 3: Personalizing a Second User's (Alex's) Page").

Step 3: Personalizing a Second User's (Alex's) Page
The purpose of switching users at runtime in the application is to show how one user
(Lisa) can log in and personalize the application to accommodate her needs (adding
the video component and changing the borders), and how these changes do not affect
the other users' views of the application. Let's now take a look at Alex's page to see
this in practice, as well as make a few changes to the page for Alex.

To personalize Alex's page:

Step 3: Personalizing a Second User's (Alex's) Page

7-20 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

1. While Lisa is still logged into the page, click Close to switch from Edit mode to
View mode and take a look at Lisa's personalized page (Figure 7–29).

Figure 7–29 Lisa's Personalized Page

2. Click the Logout link in the upper right corner of MyPage, then log in as
Alex/welcome1. Notice that the view of MyPage (Figure 7–30) does not contain
any of the changes you made in "Step 2: Personalize One User's (Lisa's) Page".

Step 3: Personalizing a Second User's (Alex's) Page

Changing the Look and Feel of Your Application 7-21

Figure 7–30 Partial View of Alex's Page with No Personalizations

3. Suppose Alex does not want to track updates to the Tag Cloud and Profiles made
by other users, but he wants to keep the Activity Stream task flow to track other
changes made to the application.

In the upper right corner of the Activity Stream Show Detail Frame, click the tool
(Change the source, filter, and display options) icon (Figure 7–31).

Figure 7–31 Activity Stream Show Detail Frame

4. In the Configure dialog that displays, expand the Filter category, then clear the
Profiles and Tagging checkboxes (Figure 7–32).

Step 3: Personalizing a Second User's (Alex's) Page

7-22 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 7–32 Configure Dialog

5. Click Save. Notice that, to perform this operation, user Alex does not have to be in
the Edit mode (which he doesn't have permission to do, anyway). Any user can
perform this operation in the View mode; the changes are only visible to the
current user.

Figure 7–33 shows the updated Activity Stream on Alex's page.

Figure 7–33 Alex's Updated View of the Activity Stream

6. While still logged in as user Alex, you can play around with some of the other
options available. For example, you can minimize the My Profile Show Detail
Frame if you do not wish to see your profile.

Step 4: Personalizing a Third User's (Dan's) Page

Changing the Look and Feel of Your Application 7-23

Figure 7–34 Alex's Personalized Page

7. In the upper right corner of the page, click the Logout link. Now that you are
finished personalizing Alex's page, take a look at Dan's page to see what options
are available to him in the next step.

Step 4: Personalizing a Third User's (Dan's) Page
In Chapter 4, "Adding Security to Your Application," you assigned both users Alex
and Dan to the user-role and gave the role the View and Personalize permissions.
Both users, then, can only make minor modifications to the page that only they (while
logged in) can see. They do not have the permission to edit the page, and thus cannot
perform the same actions as Lisa, who is assigned to the admin-role (which can
View and Customize the page).

In this step, you will log in as user Dan to verify that he cannot view the changes you
made to the application as user Lisa or user Dan. You will also see what changes Dan
can make to the application.

To personalize Dan's page:

Step 4: Personalizing a Third User's (Dan's) Page

7-24 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

1. Log into the application as Dan/welcome1. Notice that none of the changes you
made to Lisa's or Alex's page display on Dan's page.

Figure 7–35 Dan's Page

2. While Dan can perform the same actions as Alex, suppose he simply wants to
change the layout of the page. Above the Tag Cloud, to the right, notice the change
layout icon.

Figure 7–36 Change Layout Icon above the Tag Cloud

3. Click the icon to view the different layouts you can choose.

Step 4: Personalizing a Third User's (Dan's) Page

Changing the Look and Feel of Your Application 7-25

Figure 7–37 Choosing a Different Layout

4. Try clicking one of the layouts, such as Two Columns Below Wide Area (the
layout to the left of the current selection). Notice how the layout changes.

Step 4: Personalizing a Third User's (Dan's) Page

7-26 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Figure 7–38 New Layout on Dan's Personalized Page

5. As with the changes you made while logged in as users Lisa and Alex, the layout
change only displays for Dan. Additionally, Dan does not require Edit privileges
to change the layout.

Click Logout.

6. Log in as Lisa or Alex to see that the changes you made in "Step 2: Personalize One
User's (Lisa's) Page" and "Step 3: Personalizing a Second User's (Alex's) Page" are
still saved, and that Dan's changes do not display for either user Lisa or Alex.

Now that you have had a short introduction to some of the ways users can
personalize their pages, you can learn about more actions you can perform at
runtime in Oracle Fusion Middleware User's Guide for Oracle WebCenter.

Congratulations! You've completed this lesson and changed the look and feel of the
application by using a skin. You've also checked out how to use Oracle Composer at
runtime to learn how to personalize your page at runtime, depending on your user
privileges. Continue on to Chapter 8, "Conclusion" to review what you learned in this
Tutorial, and where you can find more information about the features you used.

8

Conclusion 8-1

8Conclusion

Congratulations! You have created a custom WebCenter application and learned about
the fundamentals of Oracle WebCenter Framework.

Summary
In the this Tutorial, you learned how to perform a few quick and easy steps to create a
custom WebCenter application. You also learned about a few components of Oracle
WebCenter Framework, including Oracle Composer and the WebCenter Services.

Specifically, you learned how to:

■ Create a database connection, which allowed you to access a database containing
information your application needed. As you move on and develop more complex
custom WebCenter applications, you may want to connect to other databases for
various content, and so on. You can use the same methodology to create a
connection to your other databases.

■ Install the WebCenter schema, which allowed you to use the Tags service. Having
this schema available will now let you use the Tags, People Connections, and
Links services, which you can learn more about in the Oracle Fusion Middleware
Developer's Guide for Oracle WebCenter.

■ Create a simple custom WebCenter application, which allowed you to check out
how to use the built-in WebCenter application template to create a basic JSF
application.

■ Create a customizable page, which took just a few steps to create using the Quick
Start layout and a few customizable components from Oracle Composer. You also
learned about the Component Palette, which contains a variety of ADF Faces
components, ADF Layout components, and Oracle Composer components that
you can use to develop your pages and application.

■ Use Oracle Composer, both in your development environment (by adding the
customizable components to your page), and in your runtime environment (by
adding components like a text box). At runtime, you were able to see how easy it
is for an end user to customize her own page, including moving components
around and adding new components.

■ Implement design-time security to a custom WebCenter application to test
security and user-related preferences.

■ Add and use WebCenter services (Search, Documents, People Connections, Tags,
Links, and Mail services) to a page. By adding the Document and Search services,
you enabled your users to browse content from a single content repository (in this
case, your file system), and search for a keyword across your application. You also

Summary

8-2 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

learned how to add tags to documents in a document library, a "tag cloud" to
visualize user-defined tags right in your application, and links to create
relationships between content in your application and external sources. You also
learned how to create a basic social network, as well as integrate email with the
application.

■ Build a standards-based Java (JSR 168) portlet, which you built and coded in just a
few steps, and can now reuse with other applications or portals.

■ Register and define an OmniPortlet, which you added to your application, then
developed by using an out-of-the-box user-friendly wizard at runtime.

■ Wire two portlets, which enabled you to create user interaction at runtime by
having the user actions in one portlet (the standards-based JSR 168 portlet) drive
the content in the second portlet (the OmniPortlet).

■ Change the look and feel of the application using a skin.

■ Personalize your application at runtime while logged in as different users with
different permissions. Here, you not only used Oracle Composer to edit your
page, you also saw how users with only View and Personalize permissions can
modify their page, and how each user only sees the personalization change he or
she made while logged in.

Figure 8–1 shows a partial view of the application you created in this Tutorial.

Figure 8–1 Partial View of MyPage at Runtime

You should now have a basic working knowledge of the fundamentals of Oracle
WebCenter Framework.

Moving On

Conclusion 8-3

Moving On
You can learn more about designing your own custom WebCenter applications,
including using Oracle Composer, WebCenter Services, and portlets, in the Oracle
Fusion Middleware Developer's Guide for Oracle WebCenter.

To learn more about what you can do at runtime, including using Oracle Composer to
customize pages, and how the various components behave and can be configured at
runtime, see the Oracle Fusion Middleware User's Guide for Oracle WebCenter.

You can find all Oracle WebCenter Suite documentation on the WebCenter
Documentation page on the Oracle Technology Network, at
http://www.oracle.com/technology/products/webcenter/documentatio
n.html.

You can learn more about other features of Oracle WebCenter Suite, and view
demonstrations and see examples of custom WebCenter applications, portlets, and
services in action on the Oracle WebCenter Suite home page on the Oracle Technology
Network at:

http://www.oracle.com/technology/products/webcenter/index.html.

Moving On

8-4 Oracle Fusion Middleware Tutorial for Oracle WebCenter Developers

Index-1

Index

A
Activity Stream

about, 5-27
configuring at runtime, 7-21
using at runtime, 5-33

appearance
changing the application skin, 7-6

application
personalizing, 7-1, 7-13

applications
adding images, 3-7
adding Oracle Composer, 3-28
creating WebCenter applications, 3-2
files produced for a portlet producer

application, 6-13
testing using the Integrated WLS, 6-41
using Oracle Composer, 3-35

C
Connections

about, 5-27
using at runtime, 5-33

connections
creating for a content repository, 5-6
creating for Documents service, 5-6
creating to a database, 5-18

content integration
using the Documents service, 5-10

content repository
creating a connection, 5-6

CSS
changing the skin, 7-6

custom WebCenter applications
adding images to the resources, 3-7
adding Oracle Composer, 3-28
creating, 3-2
using Oracle Composer, 3-35

customizable components
using, 3-14

customization
enabling runtime, 3-28
performing at runtime, 3-35

customize mode
testing, 6-41

D
database

connecting, 5-18
installing sample schema, 2-3
installing the WebCenter schema, 2-6

deployment profile
WAR file, 6-30

Documents service
adding a task flow, 5-10
creating a connection, 5-6
using at runtime, 5-15
using with Links, 5-41
using with Tags, 5-23

H
HTML Markup

adding at runtime, 7-16

I
Integrated WLS

testing applications, 6-41
using the default connection, 6-32

J
JavaServer Faces (JSF) pages

see pages, 3-11
JSR 168 portlets

building, 6-2, 6-6
deploying, 6-30
files generated for, 6-13
testing customize mode, 6-41
testing with an application, 6-40
wiring with OmniPortlet, 6-54

L
layout components

enabling page customization, 3-14
links

adding a login/logout link, 4-12
Links service

using at runtime, 5-40
using with Documents, 5-41

Index-2

look and feel
about, 7-1
changing, 7-6

M
Mail service

using at runtime, 5-43
Message Board

about, 5-27
using at runtime, 5-33

O
OmniPortlet

adding to a page, 6-46
customizing, 6-48
registering the producer, 6-42
wiring with a JSR 168 portlet, 6-54

Oracle Composer, 7-13
adding, 3-28
adding HTML markup, 7-16
using, 3-35

Oracle Technology Network, vi
Oracle WebCenter Framework

checking for the extension, 2-1
installing, 2-1

Oracle WebCenter Services
about, 5-1

OTN
see Oracle Technology Network, vi

P
pages

adding Oracle Composer, 3-28
creating, 3-11
customizing at runtime, 3-35
enabling customization, 3-14, 3-28

PDK-Java portlets
adding OmniPortlet to a page, 6-46
registering, 6-42

People Connections service
adding a task flow, 5-27
using at runtime, 5-33

personalize
about, 7-1, 7-13
adding HTML markup, 7-16
configuring a task flow, 7-21

portlet producer application
files generated for, 6-13

portlet producers
registering, 6-42
registering a WSRP producer, 6-38
registering the preconfigured portlet

producer, 6-42
portlet providers

see WAR file, 6-30
portlets

adding OmniPortlet, 6-46
building a JSR 168 portlet, 6-2, 6-6

customizing OmniPortlet, 6-48
deploying to Integrated WLS, 6-30
deploying using the Integrated WLS, 6-32
enabling interaction, 6-54
exposing as a web service, 6-37
files generated for, 6-13
registering the producer, 6-42
testing a JSR 168 portlet with an application, 6-40
testing customize mode, 6-41
testing interaction, 6-59
testing using the Integrated WLS, 6-41
wiring, 6-54

preconfigured portlet producer
registering, 6-42

Profile
about, 5-27
using at runtime, 5-33

Q
Quick Start Layout

using, 3-11

R
runtime

adding HTML markup, 7-16
configuring a task flow, 7-21
personalizing, 7-1, 7-13

S
sample files

adding the database schema, 2-3
downloading, 2-2

sample schema
installing, 2-3

Search service
adding a task flow, 5-3
using with Tags, 5-26

security
adding a login/logout link, 4-12
adding ADF security, 4-1
adding ADF security policies, 4-8
changing the login page, 4-16
creating users and roles, 4-5

services
about, 5-1
adding the Connections task flow, 5-27
adding the Documents - Document Manager task

flow, 5-10
adding the Message Board task flow, 5-27
adding the Search Toolbar task flow, 5-3
using Documents and Tags together, 5-23
using Links at runtime, 5-40
using People Connections at runtime, 5-33
using Tags and Search together, 5-26
using the Documents service at runtime, 5-15
using the Mail service, 5-43
using the Tags service at runtime, 5-22

skin

Index-3

about, 7-1
changing, 7-6

standards-based portlets
building a JSR 168 portlet, 6-6
deploying, 6-30
exposing as a web service, 6-37
files generated for, 6-13
testing customize mode, 6-41
testing with an application, 6-40

T
Tags service

installing the WebCenter schema, 2-6
using at runtime, 5-22
using with Documents, 5-23
using with Search, 5-26

task flows
adding the Documents service, 5-10
adding the People Connections service, 5-27
adding the Search service, 5-3

trindidad-skins.xml
creating, 7-7

U
using at runtime, 7-13

V
video component

adding at runtime, 7-14

W
WAR file

creating, 6-30
web archive

see WAR file, 6-30
web services

exposing portlets as, 6-37
WebCenter applications

creating, 3-2
using Oracle Composer, 3-35

WebCenter Framework
installing, 2-1

WebCenter schema
installing, 2-6

WebLogic Server
testing applications, 6-41
using the default connection, 6-32

WSDL
publishing a portlet as, 6-37

WSRP producers
creating, 6-30
registering, 6-38

Index-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to WebCenter Framework and the Tutorial
	What is WebCenter Framework?
	What Will I Create?

	2 Preparing for the Tutorial
	Introduction
	Step 1: Obtain the Software
	Step 2: Download the Sample Tutorial Files
	Step 3: Add the Tutorial Sample Schema to Your Database
	Step 4: Install the WebCenter Schema

	3 Creating a WebCenter Application with a Customizable Page
	Introduction
	Step 1: Create a Custom WebCenter Application
	Step 2: Add the Resource Files to the Application
	Step 3: Create a Page
	Step 4: Add Layout Components to the Page
	Step 5: Add Oracle Composer to the Page to Enable Customization
	Step 6: Customize the Page at Runtime Using Oracle Composer

	4 Adding Security to Your Application
	Introduction
	Step 1: Add ADF Security to Your Application
	Step 2: Create Users and Roles for the Application
	Step 3: Add ADF Security Policies to Your Application
	Step 4: Add a Login/Logout Link to Your Application and Update the Login Page

	5 Adding Oracle WebCenter Services to Your Application
	Introduction
	Step 1: Add the Search Toolbar Task Flow to the Application
	Step 2: Create a Connection for the Documents Service
	Step 3: Add the Documents - Document Manager Task Flow to Your Application
	Step 4: Browse Documents at Runtime
	Step 5: Create a Database Connection to the WebCenter Schema
	Step 6: Add the Tags Service to Your Application
	Step 7: Use, Add, and Search Tags in Your Application at Runtime
	Step 8: Add the People Connections Service to Your Application
	Step 9: Use the People Connections Service in Your Application at Runtime
	Step 10: Use the Links Service in Your Application at Runtime
	Step 11: Use the Mail Service with Your Application (Optional)

	6 Building Portlets and Wiring Them in Your Application
	Introduction
	Step 1: Create a Standards-Based Java (JSR 168) Portlet
	Step 2: Create the JavaBeans to Store the Standards-Based Portlet Information
	Step 3: Create the Business Logic for the Standards-Based Portlet
	Step 4: Test and Deploy the Standards-Based Portlet
	Step 5: Register the Standards-Based Portlet with Your Application
	Step 6: Test the Standards-Based Portlet in Your Application
	Step 7: Register the Preconfigured Portlet Producer
	Step 8: Add an OmniPortlet to Your Page
	Step 9: Define OmniPortlet at Runtime
	Step 10: Wire the Standards-Based Portlet and OmniPortlet Together
	Step 11: Test the Interaction Between the Portlets

	7 Changing the Look and Feel of Your Application
	Introduction
	Step 1: Change the Application Look and Feel Using a Skin
	Step 2: Personalize One User's (Lisa's) Page
	Step 3: Personalizing a Second User's (Alex's) Page
	Step 4: Personalizing a Third User's (Dan's) Page

	8 Conclusion
	Summary
	Moving On

	Index
	A
	C
	D
	H
	I
	J
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W

