
Oracle® Containers for J2EE
Developer’s Guide

10g (10.1.3.5.0)

E13979-01

July 2009

Oracle Containers for J2EE Developer's Guide, 10g (10.1.3.5.0)

E13979-01

Copyright © 2006, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Joseph Ruzzi

Contributing Author: Bonnie Vaughan, Dan Hynes

Contributors: Bryan Atsatt, Steve Button, Olivier Caudron, Pyounguk Cho, Marcelo Goncalves, Kurt Heiss,
Bruce Irvin, James Kirsch, Alex Kosowski, Philippe Le Mouel, Mike Lehmann, Sheryl Maring, Kuassi
Mensah, Jasen Minton, Rose Pan, Debu Panda, Charlie Shapiro, Gael Stevens, Brian Wright

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xi

Intended Audience.. xi
Documentation Accessibility ... xi
Related Documents .. xii
Conventions ... xiii

1 Getting Started with OC4J

Introduction to OC4J ... 1-1
J2EE Support in OC4J ... 1-1
New Features in OC4J ... 1-2

Support for Web Services .. 1-2
Support for J2EE 1.4 Application Management and Deployment Specifications 1-2
Support for Oracle Application Server TopLink.. 1-3
Oracle Job Scheduler... 1-3
Two-Phase Commit Transaction Coordinator Functionality ... 1-3
Generic JMS Resource Adapter Enhancements.. 1-3
Support for the Enterprise JavaBeans 3.0 .. 1-3
Support for the <library-directory> Element.. 1-4

Information in the OC4J Documentation Set ... 1-4
OC4J Installation .. 1-4

2 Developing Startup and Shutdown Classes

Developing Startup Classes ... 2-1
Developing Shutdown Classes.. 2-4

3 Utilizing the OC4J Class-Loading Framework

Class Loading in OC4J .. 3-1
Overview of Class Loading .. 3-1
Peek Utility for Debugging Class Loaders ... 3-2
Class Versioning with Shared Libraries in OC4J... 3-4
Shared Libraries That Applications Import by Default.. 3-6

Configuring an Application to Import a Nondefault Version of a Shared Library 3-7
Example: Importing an Earlier Version of the Oracle JDBC Driver ... 3-7
Example: Configuring an Application to Use a DataDirect JDBC Driver 3-9

Removing or Replacing an Oracle Shared Library Imported by Default 3-10

iv

Example: Replacing the Oracle XML Parser with the Xerces Parser....................................... 3-10
Example: Removing an Oracle Shared Library at Deployment Time..................................... 3-11

Using a Packaged JAR Instead of an Oracle Shared Library .. 3-12
Configuring an Application to Use Its Own Shared Library.. 3-12
Specifying search-local-classes-first at Deployment Time .. 3-12

Installing and Publishing a Shared Library in OC4J ... 3-13
When You Should Use a Shared Library... 3-13
Options for Installing and Publishing a Shared Library .. 3-13
How a Shared Library Is Installed and Published in an OC4J Instance 3-14

Configuring an Application to Import a Shared Library .. 3-16
Declaring Dependencies in an Application's OC4J Deployment Descriptor 3-17
Declaring Dependencies in an Application's Manifest File .. 3-17
Configuring All Deployed Applications to Import a Specific Shared Library 3-18

Sharing Libraries Using the applib Directory ... 3-18
Specifying a Library Directory in application.xml ... 3-19
Using Best Practices for Class Loading ... 3-20
Troubleshooting Class-Loading Problems in OC4J.. 3-21

Specifying a Built-In Query ... 3-22
Specifying a Query in Peek... 3-23
Specifying a Query in a Startup Property .. 3-24
Specifying Queries at Runtime Through the ClassLoading MBean................................. 3-24

Auditing Class Loaders.. 3-25
How to Audit Class Loaders with Peek ... 3-25
What Happens When You Audit Class Loaders... 3-26
What You May Need to Know About AuditLoader... 3-27

Finding Classes That Call a Method... 3-27
How to Find Classes That Call a Method with the Callers Query 3-27
What You May Need to Know About Callers ... 3-27

Monitoring Metrics for Class Loaders ... 3-28
How to Monitor Metrics for Class Loaders with the ClassLoadMetrics Query 3-28
What You May Need to Know About ClassLoadMetrics.. 3-28

Listing Code Sources in Use .. 3-28
Determining the Dependencies of a Class... 3-29
Determining Dependent Classes .. 3-29
Finding Duplicate Classes.. 3-29
Finding Duplicate Code Sources... 3-30
Exiting a Query Process ... 3-30
Finding a Resource in Code Sources .. 3-30

How to Use the FindResource Query in Peek ... 3-31
How to Find a Resource with No Package... 3-31
What You May Need to Know About FindResource ... 3-31

Getting Resources Used by a Class Loader ... 3-31
Monitoring HTTP Sessions for Deployed Applications.. 3-32
Detecting Class-Loader Leaks ... 3-32
Listing Classes Available from a Class Loader... 3-32

How to List Classes Available from a Class Loader ... 3-32
What You May Need to Know About ListClasses.. 3-33

v

Listing Queries... 3-33
How to List Queries... 3-33
What You May Need to Know About ListQueries ... 3-34

Loading a Class ... 3-34
How to Use the loadClass Query in Peek .. 3-34
What Happens When You Use the loadClass Query in Peek ... 3-34
What You May Need to Know About loadClass .. 3-35

Listing Loaded Classes... 3-35
How to Use the LoadedClasses Query in Peek ... 3-35
What You May Need to Know About LoadedClasses ... 3-36

Listing the Contents of a Class-Loader Tree ... 3-36
How to List the Contents of a Class-Loader Tree with the LoaderTree Query 3-36
What You May Need to Know About LoaderTree ... 3-36
Viewing a Class-Loader Tree with Peek... 3-37

Listing Packages in Code Sources... 3-39
Monitoring Replication Statistics.. 3-39
Listing Installed Shared Libraries and Their Class Loaders ... 3-39
Listing and Setting System Properties ... 3-40
Listing Thread-Pool Information .. 3-40
Listing Thread Information ... 3-41
Finding Unused Code Sources.. 3-41
Determining the Uptime for an OC4J Instance... 3-41
Monitoring JVM Statistics .. 3-41
Resolving Class-Loading Exceptions ... 3-42

ClassNotFoundException ... 3-42
NoClassDefFoundError .. 3-43
ClassFormatError... 3-44
 LinkageError.. 3-45
ClassCastException.. 3-45

Tracing Class-Loading Events to Help Troubleshoot Issues .. 3-47
Using Filters to Manage Trace Output ... 3-49

Setting Class-Loader Log Levels... 3-51

4 Logging Implementation Guidelines

Overview of the Java and Oracle Logging Frameworks ... 4-1
The Java Logging Framework ... 4-1
The Oracle Diagnostic Logging Framework .. 4-1
How Java Logging and Oracle Diagnostic Logging Work Together ... 4-2

Java Logging Guidelines... 4-2
Naming Java Loggers .. 4-2
Setting Log Levels .. 4-2
Adding Localization Support... 4-3

Configuring Java Loggers to Use the ODL Framework.. 4-3
Using Oracle HTTPClient Logging .. 4-5

Enabling HTTPClient Logging with the ODL Framework.. 4-6
Enabling HTTPClient Logging for Standalone OC4J or a Client-Side Application with a System
Property 4-7

vi

Enabling HTTPClient Logging for an OC4J Instance or Group in Oracle Application Server
with a System Property 4-7

5 Using MBeans for Management

Overview of MBeans ... 5-1
Accessing MBeans from Within Application Server Control.. 5-2

Accessing OC4J MBeans Using the System MBean Browser .. 5-2
Accessing Cluster MBeans Using the Cluster MBean Browser... 5-2
Accessing Application-Specific MBeans... 5-3

Accessing MBeans From a Client Application ... 5-3
Prerequisite: Add User to Security Group ... 5-4
Remote Management Using the JMX Remote API (JSR-160) .. 5-4

Connecting to the OC4J MBeanServer ... 5-5
Connecting to an Application-Specific MBean Server .. 5-7
Connecting to a Specific Application’s JMX Domain .. 5-9
Setting the JMX Service URI for an OPMN-Managed OC4J Instance................................. 5-9
Setting a Secure JMX Service URI for an OPMN-Managed OC4J Instance..................... 5-11
Setting the JMX Service URI for a Standalone OC4J Instance ... 5-11
Setting a Secure JMX Service URI for a Standalone OC4J Instance 5-11
Setting a Locale... 5-11
Enabling HTTP Tunneling.. 5-12

Remote Management Using the Management EJB (JSR-77) ... 5-12
Accessing the MEJB from a J2EE Application Client.. 5-12
Accessing the MEJB from a Servlet or EJB ... 5-13

MBean Usage Examples ... 5-14
Prerequisites... 5-14
Standalone OC4J Examples ... 5-15

Changing Thread Pool Properties ... 5-15
Stopping an OC4J Server .. 5-16
Adding a Managed Data Source.. 5-18
Updating Data Source Connection Pool Properties.. 5-19

Group-Based Examples .. 5-21
Listing the J2EE Servers that are Part of a Group ... 5-21
Adding a Managed Data Source to a Group of OC4J Instances 5-23
Provisioning Users to a Group of OC4J Instances .. 5-25

Providing Application-Specific MBeans .. 5-27
Writing an Application-Specific MBean .. 5-28

Types of MBeans Supported by OC4J... 5-28
Unsupported Methods in JMX MBeanServer and MBeanServerConnection Interfaces 5-29
Sample MBean.. 5-30

Packaging Your MBeans for Deployment ... 5-32
Defining MBeans in orion-application.xml.. 5-32
Initializing MBean Attributes... 5-33

Registering Your MBeans with the OC4J MBeanServer.. 5-34
Defining MBeans in an Application Descriptor .. 5-34
Defining MBeans in a Deployment Plan .. 5-35
Programmatically Registering MBeans Through Application Code 5-35

vii

Adding Localization Support to MBeans .. 5-37
Localization Support Provided by Oracle ... 5-37
Using Resource Bundles to Localize MBean Metadata ... 5-37
Adding Localization Support to Your MBeans ... 5-38

6 Working with Open Source Frameworks

Installing Open Source Libraries in OC4J .. 6-1
Removing Imported Oracle Shared Libraries to Avoid Conflicts .. 6-2
Using Jakarta Struts ... 6-3

Overview of Jakarta Struts.. 6-3
Struts Support in Oracle JDeveloper ... 6-3
Access to the Struts Binary Distribution... 6-4

Using the Spring Framework ... 6-4
Overview of the Spring Framework.. 6-4
Oracle TopLink Support in Spring 1.2 .. 6-5
The Spring Framework Distribution ... 6-5

Using Apache MyFaces ... 6-5
Overview of MyFaces .. 6-5
Accessing the MyFaces Distribution ... 6-5
Building JSPs Using MyFaces for Deployment to OC4J... 6-6
JDeveloper Support for MyFaces... 6-6

Using Hibernate.. 6-6
Accessing the Hibernate Binaries .. 6-6
Using Hibernate with Applications in OC4J.. 6-7

Using Apache Axis ... 6-7
Accessing the Axis Distribution... 6-7
Using the Xerces XML Parser ... 6-7
Using Oracle-Based and Axis-Based Web Services in OC4J.. 6-7

Configuring and Using Jakarta log4j ... 6-8
Overview of Jakarta log4j.. 6-8
Downloading the log4j Binary Distribution... 6-8
Using log4j Configuration Files ... 6-9

Using the Default Files for Automatic log4j Configuration.. 6-9
Using Alternative Files for Automatic log4j Configuration ... 6-9
Programmatically Specifying External Configuration Files .. 6-10

Enabling log4j Debug Mode in OC4J ... 6-11
Using JAX-WS RI .. 6-12

Downloading the JAX-WS RI Package... 6-13
Publishing JAX-WS RI Files to OC4J As a Shared Library.. 6-13
Importing the JAX-WS RI Shared Library into an Application.. 6-14

7 Packaging and Testing Applications

Overview of J2EE Application Packaging ... 7-1
J2EE Application Structure Within OC4J ... 7-2
Application Module (EAR File and WAR File) Structures .. 7-3

Sample EAR File.. 7-4

viii

Sample WAR File .. 7-4
Packaging Deployment Descriptors ... 7-4

Deployment Descriptors Overview... 7-4
Packaging a J2EE Standard Application Descriptor (application.xml)...................................... 7-7
Packaging an OC4J-Specific Application Descriptor (orion-application.xml) 7-7

8 Using J2EE Best Practices

JavaServer Pages Best Practices ... 8-1
Beware of HTTP Sessions.. 8-1

Avoid Using HTTP Sessions ... 8-1
Always Invalidate Sessions When No Longer in Use ... 8-2

Pretranslate JSP Pages Using the ojspc Utility .. 8-2
Unbuffer JSP Pages .. 8-2
Forward to JSP Pages Instead of Using Redirects ... 8-2
Hide JSP Pages from Direct Invocation to Limit Access .. 8-2
Use JSP-Timeout for Efficient Memory Utilization .. 8-3
Package JSP Files in an EAR File for Deployment ... 8-3

Class-Loading Best Practices .. 8-3
Sessions Best Practices .. 8-3

Persist Session State If Appropriate .. 8-4
Do Not Store Shared Resources in Sessions ... 8-4
Set Session Timeout Appropriately... 8-5
Monitor Session Memory Usage.. 8-5
Use a Mix of Cookies and Sessions.. 8-5
Use Coarse Objects Inside HTTP Sessions ... 8-5
Use Transient Data in Sessions Whenever Appropriate .. 8-5
Invalidate Sessions ... 8-5
Miscellaneous Guidelines ... 8-6

Enterprise JavaBeans Best Practices.. 8-6
Use Local, Remote, and Message-Driven EJB Modules When Appropriate............................. 8-7
Use EJB modules Judiciously ... 8-7
Use a Service Locator Pattern... 8-7
Cluster Your EJB modules .. 8-7
Index Secondary Finder Methods.. 8-8
Understand the Life Cycle of an EJB Modules... 8-8
Use Deferred Database Constraints... 8-8
Create a Cache with Read-Only EJB Modules ... 8-8
Pick an Appropriate Locking Strategy.. 8-9
Understand and Leverage Patterns ... 8-9
When Using Entity Beans, Use Container-Managed Aged Persistence Whenever Possible .. 8-9
Entity Beans Using Local interfaces Only.. 8-10
Use a Session Bean Facade for Entity Beans ... 8-10
Enforce Primary Key Constraints at the Database Level .. 8-10
Use a Foreign Key for 1-1 or 1-M Relationships ... 8-10
Avoid the findAll() Method on Entities Based on Large Tables .. 8-10
Set prefetch-size to Reduce Round Trips to Database ... 8-10
Use Lazy Loading with Caution ... 8-11

ix

Avoid Performing O-R Mapping Manually.. 8-11

A OC4J-Specific Deployment Descriptors

Elements in the orion-application.xml File .. A-1
Elements in the orion-application-client.xml File .. A-8

B Third Party Licenses

ANTLR .. B-1
The ANTLR License.. B-1

Apache ... B-1
The Apache Software License ... B-2

Apache SOAP... B-6
Apache SOAP License .. B-7

DBI Module .. B-10
Perl Artistic License .. B-10

Preamble.. B-10
Definitions... B-10

FastCGI.. B-12
FastCGI Developer's Kit License... B-12
Module mod_fastcgi License... B-13

Info-ZIP Unzip Package ... B-13
The Info-ZIP Unzip Package License ... B-14

JSR 110 ... B-14
Jaxen ... B-14

The Jaxen License .. B-14
JGroups.. B-15

The GNU License .. B-15
mod_mm and mod_ssl.. B-22
OpenSSL ... B-23

OpenSSL License ... B-23
Perl.. B-25

Perl Kit Readme... B-25
mod_perl 1.29 License .. B-26
mod_perl 1.99_16 License .. B-27
Perl Artistic License .. B-30

Preamble.. B-30
Definitions... B-30

SAXPath .. B-32
The SAXPath License.. B-32

W3C DOM .. B-33
The W3C License... B-33

Index

x

xi

Preface

This document provides detailed discussions on various facets of architecting,
developing, and packaging a J2EE-compliant application for deployment into Oracle
Containers for J2EE (OC4J). It summarizes standard implementation but focuses
primarily on Oracle implementation details and value-added features. As much as
possible, the focus is on best practices and guidelines that Oracle recommends.

This preface contains the following sections:

■ Intended Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Intended Audience
This document is intended for Java developers involved in building J2EE applications
to be deployed to OC4J and for system architects designing such applications. It is
based on the assumption that readers are already familiar with the following
technologies:

■ J2EE and Web technologies

■ The Java programming language

■ Web server and servlet environment configuration

■ Oracle JDBC (for JSP applications accessing Oracle Database)

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

xii

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documents
For more information, see the following Oracle resources.

Additional OC4J documents:

■ Oracle Containers for J2EE Configuration and Administration Guide

This document discusses how to configure and administer applications for OC4J,
including the use of Oracle Enterprise Manager 10g Application Server Control,
the use of standards-compliant MBeans provided with OC4J, and, where
appropriate, the direct use of OC4J-specific XML configuration files.

■ Oracle Containers for J2EE Deployment Guide

This document covers information and procedures for deploying an application to
an OC4J environment. This includes discussion of the deployment plan editor that
comes with Oracle Enterprise Manager 10g Application Server Control.

■ Oracle Containers for J2EE Servlet Developer’s Guide

This document provides information for servlet developers regarding use of
servlets and the servlet container in OC4J, including basic servlet development
and use of JDBC and EJB modules.

■ Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

This document provides information about JavaServer Pages development and the
JSP implementation and container in OC4J. This includes discussion of Oracle
features such as the command-line translator and OC4J-specific configuration
parameters.

■ Oracle Containers for J2EE JSP Tag Libraries and Utilities Reference

This document provides conceptual information as well as detailed syntax and
usage information for tag libraries, Enterprise JavaBeans (EJB) modules, and other
Java utilities provided with OC4J.

■ Oracle Containers for J2EE Services Guide

xiii

This document provides information about standards-based Java services
supplied with OC4J, such as JTA, JNDI, JMS, JAAS, and the Oracle Application
Server Java Object Cache.

■ Oracle Containers for J2EE Security Guide

This document describes security features and implementations particular to
OC4J. This includes information about using JAAS, the Java Authentication and
Authorization Service, as well as other Java security technologies.

■ Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

This document provides information about the development of Enterprise
JavaBeans (EJB) modules and the EJB implementation and container in OC4J.

■ Oracle Containers for J2EE Resource Adapter Administrator’s Guide

This document provides an overview of J2EE Connector Architecture features and
describes how to configure and monitor resource adapters in OC4J.

Oracle Application Server documents:

■ Oracle Application Server Web Services Developer’s Guide

This document describes development and configuration of Web services in OC4J
and Oracle Application Server.

■ Oracle Application Server Advanced Web Services Developer’s Guide

This document covers topics beyond basic Web service assembly. For example, it
describes how to diagnose common interoperability problems, how to enable Web
service management features (such as reliability, auditing, and logging), and how
to use custom serialization of Java value types.

This document also describes how to employ the Web Service Invocation
Framework (WSIF), the Web Service Provider API, message attachments, and
management features (reliability, logging, and auditing). It also describes
alternative Web service strategies, such as using JMS as a transport mechanism.

■ Oracle Application Server Web Services Security Guide

This document describes Web services security and configuration in OC4J and
Oracle Application Server.

Conventions
This document uses the following text conventions.

Convention Meaning

boldface Boldface type indicates either graphical user interface elements
associated with an action or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands or code within a paragraph,
URLs, code in examples, text that appears on the screen, or text that
you enter.

xiv

1

Getting Started with OC4J 1-1

1 Getting Started with OC4J

This chapter describes Oracle Containers for J2EE 10g (10.1.3.5.0), or OC4J, which is
part of the Oracle Application Server 10g (10.1.3.5.0) installation or a standalone server.

This chapter includes the following topics:

■ Introduction to OC4J

■ Information in the OC4J Documentation Set

■ OC4J Installation

Introduction to OC4J
Oracle Containers for J2EE 10g (10.1.3.5.0) provides a complete Java 2 Enterprise
Edition (J2EE) 1.4-compliant environment.

OC4J provides all the containers, APIs, and services that J2EE specifies. It is based on
technology licensed from Ironflare Corporation, which develops the Orion
server—one of the leading J2EE containers. As such, the product and some of the
documentation still contains some reference to the Orion server.

OC4J is written entirely in Java and executes on the Java Virtual Machine (JVM) of Java
Platform, Standard Edition (Java SE) Development Kit (JDK) 6, Java Platform 2,
Standard Edition (J2SE) Development Kit (JDK) 5.0 (also known as JDK 1.5), or JDK
1.4.2. You can run OC4J on the standard JDK that exists on your operating system.

J2EE Support in OC4J
OC4J 10g (10.1.3.5.0) supports the standard J2EE APIs listed in Table 1–1.

Table 1–1 OC4J J2EE Support

J2EE Standard APIs Version Supported By OC4J

JavaServer Pages (JSP) 2.0

Servlets 2.4

Enterprise JavaBeans (EJB) 2.1, 3.0 (Complete EJB 3.0 and JPA
implementation)

Java Management Extensions (JMX) 1.2

J2EE Management 1.0

J2EE Application Deployment 1.1

Java Transaction API (JTA) 1.0

Java Message Service (JMS) 1.1

Introduction to OC4J

1-2 Developer’s Guide

New Features in OC4J
Oracle Containers for J2EE 10g (10.1.3.x) includes a number of new features and
enhancements, which are summarized in the following text.

Support for Web Services
OC4J provides full support for Web services in accordance with the J2EE 1.4 standard,
including JAX-RPC 1.1. Web services interoperability is also supported.

■ EJB 2.1 Web services endpoint model

■ JSR 109 client and server deployment model

■ CORBA Web services: Support for wrapping existing basic CORBA Servants as
Web services and auto-generating WSDL from IDL

■ Support for source code annotations to customize Web services behavior such as
invocation and ending styles (RPC/literal, RPC/encoded, Doc/literal);
customizing the Java to XML mapping; enforcing security.

■ Database and JMS Web services

Support for J2EE 1.4 Application Management and Deployment Specifications
OC4J supports the following specifications and JSRs, which define new standards for
deploying and managing applications in a J2EE environment:

■ The Java Management Extensions (JMX) 1.2 specification, which allows standard
interfaces to be created for managing resources, such as services and applications,
in a J2EE environment. The OC4J implementation of JMX provides a JMX client
that can be used to completely manage an OC4J server and applications running
within it.

■ The J2EE Management Specification (JSR-77), which enables standard interfaces to
be created for managing applications in a J2EE environment.

■ The J2EE Application Deployment API (JSR-88), which defines a standard API for
configuring and deploying J2EE applications and modules into a J2EE-compatible
environment. The OC4J implementation includes the ability to create and/or edit a
deployment plan containing the OC4J-specific configuration data needed to
deploy a component to OC4J.

Java Naming and Directory Interface (JNDI) 1.2

Java Mail 1.2

Java Database Connectivity (JDBC) 3.0

Oracle Application Server Java Authentication
and Authorization Service (JAAS) Provider

1.0

J2EE Connector Architecture 1.5

Java API for XML-Based RPC (JAX-RPC) 1.1

SOAP with Attachments API for Java (SAAJ) 1.2

Java API for XML Processing (JAXP) 1.2

Java API for XML Registries (JAXR) 1.0.5

Table 1–1 (Cont.) OC4J J2EE Support

J2EE Standard APIs Version Supported By OC4J

Introduction to OC4J

Getting Started with OC4J 1-3

Support for Oracle Application Server TopLink
Oracle Application Server TopLink is an advanced, object persistence framework for
use with a wide range of Java 2 Enterprise Edition (J2EE) and Java application
architectures. Oracle TopLink includes support for the OC4J Container Managed
Persistence (CMP) container and base classes that simplify Bean Managed Persistence
(BMP) development.

Oracle Job Scheduler
The Oracle Job Scheduler provides asynchronous scheduling services for J2EE
applications. Its key features include capabilities for submitting, controlling, and
monitoring jobs, each job defined as a unit of work that executes when the work is
performed.

Two-Phase Commit Transaction Coordinator Functionality
The new Distributed Transaction Manager in OC4J can coordinate two-phase
transactions between any type of XA resource, including databases from Oracle as well
as other vendors and JMS providers such as IBM WebSphere MQ. Automatic
transaction recovery in the event of a failure is also supported.

Generic JMS Resource Adapter Enhancements
The Generic JMS Resource Adapter can now be used as an OC4J plug-in for Oracle
Enterprise Messaging Service (OEMS), which ships with the current version of OC4J,
as well as for IBM WebSphere MQ JMS version 5.3.

Support for lazy transaction enlistment has been added so that JMS connections can be
cached and still be able to correctly participate in global transactions.

Finally, the Generic JMS Resource Adapter now has better error handling. Endpoints
now automatically retry after provider or system failures, and onMessage errors are
handled correctly.

Support for the Enterprise JavaBeans 3.0
OC4J 10g (10.1.3.5.0) provides complete support for the Enterprise JavaBeans 3.0 final
specification, including support for EJB annotations and dependency injections. The
final specification is available at the following Web site:

http://java.sun.com/products/ejb/

You can use following annotations and others in your EJB modules:

■ MessageDrivenDeployment

■ StatefulDeployment

■ StatelessDeployment

The Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide describes how to
use EJB 3.0 annotations and EJB 3.0 JPA extensions. The Oracle Application Server
Annotations Java API Reference provides reference information for EJB 3.0 annotations.

Note: OC4J must use either JDK 6 or JDK 5.0 to enable EJB 3.0
support. JDK 5.0 is included with the 10g (10.1.3.5.0) release, in which
OPMN-managed OC4J instances use JDK 5.0 by default.

Information in the OC4J Documentation Set

1-4 Developer’s Guide

Support for the <library-directory> Element
The <library-directory> element of the application.xml file can be used to
specify shared libraries for OC4J instances. Directories specified in this element are
scanned for archives to include at OC4J startup.

Information in the OC4J Documentation Set
Most of the location of J2EE subject matter is obvious. For example, you can find out
how to implement and use servlets within the Oracle Containers for J2EE Servlet
Developer’s Guide. Table 1–2 shows each J2EE subject matter and where you can find
the information in the OC4J documentation set.

OC4J Installation
OC4J is a lightweight container that is J2EE-compliant. It is configured with powerful
and practical defaults and is ready to execute after installation. OC4J is installed with
Oracle Application Server; therefore, see the Oracle Application Server Installation Guide
for Microsoft Windows for details on OC4J installation.

Table 1–2 Location of Information for J2EE Subjects

J2EE Subject Document

JSP Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Tag Libraries Oracle Containers for J2EE JSP Tag Libraries and Utilities Reference

Servlet Oracle Containers for J2EE Servlet Developer’s Guide

EJB Oracle Containers for J2EE Enterprise JavaBeans Developer’s Guide

JTA Oracle Containers for J2EE Services Guide

Data Sources Oracle Containers for J2EE Services Guide

JNDI Oracle Containers for J2EE Services Guide

JMS Oracle Containers for J2EE Services Guide

RMI and RMI/IIOP Oracle Containers for J2EE Services Guide

Security Oracle Containers for J2EE Security Guide

CSiV2 Oracle Containers for J2EE Security Guide

J2CA Oracle Containers for J2EE Resource Adapter Administrator’s Guide

Java Object Cache Oracle Containers for J2EE Services Guide

Web Services Oracle Application Server Web Services Developer’s Guide

HTTPS Oracle Containers for J2EE Services Guide

2

Developing Startup and Shutdown Classes 2-1

2 Developing Startup and Shutdown Classes

This chapter provides guidelines on developing startup and shutdown classes that are
called after OC4J initializes or before OC4J terminates. Startup classes can start
services and perform functions after OC4J initiates. Shutdown classes can terminate
these services and perform functions before OC4J terminates.

When you compile these classes, the oc4j-api.jar file must be in a path specified in
the Java CLASSPATH environment variable, such as ORACLE_
HOME/j2ee/home/oc4j-api.jar.

OC4J deploys and executes the startup and shutdown classes based on configuration
of these classes in the server.xml file.

This chapter includes these topics:

■ Developing Startup Classes

■ Developing Shutdown Classes

Developing Startup Classes
Startup classes are executed only once after OC4J initializes. They are not reexecuted
every time the server.xml file is touched. A startup class implements the
oracle.j2ee.server.OC4JStartup interface, which contains two methods:

■ preDeploy

This method executes before any OC4J application initialization.

■ postDeploy

This method executes after all OC4J applications initialize.

In these methods, you can implement code for starting services, performing other
initialization routines, ending services, and performing other termination routines.

Each method requires two arguments:

■ Hashtable

This argument specifies a hash table that is populated from the configuration.

■ Context

This argument specifies a JNDI context to which you can bind to process values
contained within the context.

 Both methods return a String value, which is currently ignored.

Developing Startup Classes

2-2 Developer’s Guide

After you create a startup class, you must configure it within the
<startup-classes> element in the server.xml file. You can access this file
through Oracle Enterprise Manager 10g Application Server Control by selecting
Advanced Properties on the OC4J home page. Each OC4JStartup class is defined in
a single <startup-class> element within the <startup-classes> element. Each
<startup-class> element defines the following attributes:

■ The name of the class that implements the
oracle.j2ee.server.OC4JStartup interface

■ Whether a failure is fatal

 The default is not fatal. When an exception is thrown for a failure that is not
considered fatal, OC4J logs the exception and continues. When an exception is
thrown for a failure that is considered fatal, OC4J logs the exception and exits.

■ The order of execution

Each startup class receives an integer. The integers designate in what order the
classes are executed, starting with 0.

■ The initialization parameters, which contain key-value pairs of type String, that
OC4J takes

Initialization parameters are provided through the input Hashtable argument.
The name of each key-value pair must be unique because JNDI is used to bind
each value to its name.

In the <init-library> element in the server.xml file, you configure the directory
where the startup class resides or the directory and JAR file where the class is
archived. The path attribute can be fully qualified or relative to
/j2ee/instance/config.

For example, the configuration for the TestStartup class is contained within a
<startup-class> element in the server.xml file:

■ The failure-is-fatal attribute is true, so an exception would cause OC4J to
exit.

■ The <execution-order> subelement contains 0, so this is the first startup class
to execute.

■ Two initialization key-value pairs are defined, of type String. These key-value
pairs will be populated in the hash table that the Hashtable argument specifies:

"oracle.test.startup" "true"
"startup.oracle.year" "2002"

Add the following notation to the server.xml file to define the TestStartup class:

<startup-classes>
 <startup-class classname="test.oc4j.TestStartup" failure-is-fatal="true">

Note: Oracle strongly recommends that you if give your startup class
a constructor, you give it a public, no-argument constructor.
Otherwise, java.lang.IllegalAccessException may be thrown
when OC4J attempts to invoke a member method of this class.

Note: The names of the key-value pairs must be unique in all
startup and shutdown classes, as JNDI binds the name to its value.

Developing Startup Classes

Developing Startup and Shutdown Classes 2-3

 <execution-order>0</execution-order>
 <init-param>
 <param-name>oracle.test.startup</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>startup.oracle.year</param-name>
 <param-value>2008</param-value>
 </init-param>
 </startup-class>
 </startup-classes>

The container provides the two initialization key-value pairs within the input
Hashtable argument to the startup class.

The following example shows TestStartup, which implements the
oracle.j2ee.server.OC4JStartup interface. The preDeploy method retrieves
the key-value pairs from the hash table and prints them. The postDeploy method is a
null method. The oc4j.jar file must be in the path that the Java CLASSPATH
environment variable specifies when you compile TestStartup.

package text.oc4j;
import oracle.j2ee.server.OC4JStartup;

import javax.naming.*;
import java.util.*;

public class TestStartup implements OC4JStartup {

 //public, no-argument constructor
 public TestStartup() {
 }

 public String preDeploy(Hashtable args, Context context) throws Exception {
 // bind each argument using its name
 Enumeration keys = args.keys();
 while(keys.hasMoreElements()) {
 String key = (String)keys.nextElement();
 String value = (String)args.get(key);
 System.out.println("prop: " + key + " value: " + args.get(key));
 context.bind(key, value);
 }

 return "ok";
 }

 public String postDeploy(Hashtable args, Context context) throws Exception {
 return null;
 }
}

Assuming that the TestStartup class is archived in "../app1/startup.jar",
you would modify the <init-library> element in the server.xml file as follows:

<init-library path="../app1/startup.jar" />

When OC4J starts, the preDeploy method of TestStartup is executed before any
application is initialized. OC4J populates the JNDI context with the values from the
hash table. If TestStartup throws an exception, then OC4J exits because the
failure-is-fatal attribute was set to true.

Developing Shutdown Classes

2-4 Developer’s Guide

Developing Shutdown Classes
Shutdown classes are executed before OC4J terminates. A shutdown class implements
the oracle.j2ee.server.OC4JShutdown interface, which contains two methods,
preUndeploy and postUndeploy, in which you can implement code for shutting
down services or perform other termination routines.

■ The preUndeploy method executes before any OC4J application terminates.

■ The postUndeploy method executes after all OC4J applications terminate.

Each method requires two arguments: a hash table that is populated from the
configuration and a JNDI context to which you can bind to process values specified in
key-value pairs.

The implementation and configuration is identical to the shutdown classes as
described in "Developing Startup Classes" on page 2-1 with the exception that the
configuration is defined within the <shutdown-classes> and <shutdown-class>
elements and there is no failure-is-fatal attribute. Thus, the configuration for a
TestShutdown class would be as follows:

<shutdown-classes>
 <shutdown-class classname="test.oc4j.TestShutdown">
 <execution-order>0</execution-order>
 <init-param>
 <param-name>oracle.test.shutdown</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>shutdown.oracle.year</param-name>
 <param-value>2008</param-value>
 </init-param>
 </shutdown-class>
 </shutdown-classes>

Assuming that the TestShutdown class is archived in
"/j2ee/home/app1/shutdown.jar", add another <init-library> element in
the server.xml file, as follows:

<init-library path="../app1/shutdown.jar" />

Note: Oracle strongly recommends that if you give your shutdown
class a constructor, you give it a public, no-argument constructor.
Otherwise, java.lang.IllegalAccessException may be thrown
when OC4J attempts to invoke a member method of this class.

3

Utilizing the OC4J Class-Loading Framework 3-1

3 Utilizing the OC4J Class-Loading
Framework

This chapter explains how to use class loading and shared libraries for applications
deployed to Oracle Containers for J2EE (OC4J). The explanations include
guidelines for using the OC4J class-loading framework, recommendations for
avoiding common class-loader problems, and information about class-loading features
in Peek OC4J Runtime Inspector (Peek).

The following topics are included:

■ Class Loading in OC4J

■ Configuring an Application to Import a Nondefault Version of a Shared Library

■ Removing or Replacing an Oracle Shared Library Imported by Default

■ Using a Packaged JAR Instead of an Oracle Shared Library

■ Installing and Publishing a Shared Library in OC4J

■ Configuring an Application to Import a Shared Library

■ Sharing Libraries Using the applib Directory

■ Specifying a Library Directory in application.xml

■ Using Best Practices for Class Loading

■ Troubleshooting Class-Loading Problems in OC4J

Class Loading in OC4J
This section contains the following topics:

■ Overview of Class Loading

■ Peek Utility for Debugging Class Loaders

■ Class Versioning with Shared Libraries in OC4J

Overview of Class Loading
The term class loading refers to the process of locating the bytes for a given class name
and converting them into a Java class instance. All class instances within a Java Virtual
Machine (JVM) start as an array of bytes, structured in the class file format defined by
the JVM specification.

Class loading is performed by the JVM during the startup process, and subsequently
by class loaders, subclasses of the java.lang.ClassLoader class, which find and

Class Loading in OC4J

3-2 Developer's Guide

load class files at runtime. Class loaders provide an abstraction that enables the JVM to
load classes without any knowledge of where the class bytes come from, for both local
and remote storage as well as dynamic class generation.

Each class loader works with one or more code sources, root locations from which the
class loader searches for classes. Code sources can be defined to represent physical
storage of binary class files, Java sources that must first be compiled, or even classes
generated on the fly.

Standard class loaders are linked together in a parent-child hierarchy, with each class
loader having an associated parent class loader. This hierarchy represents a tree
structure, ranging in complexity from simple chains to complex, multibranched trees.

In this hierarchy, a child class loader imports a set of class loaders from its parent
loader. In the OC4J context, all J2EE applications running within an OC4J instance are
children of the system application. As a result, a class loader created at the
application level imports a set of class loaders from the system.root class loader.

Figure 3–1 shows the class-loader hierarchy for a running OC4J instance through Peek.
This display is a result of selecting Loaders from the View menu of Peek. See "Peek
Utility for Debugging Class Loaders" for detailed information about the Peek utility.

Figure 3–1 Class-Loader Hierarchy

Peek Utility for Debugging Class Loaders
Peek OC4J Runtime Inspector enables you to search shared libraries and code sources,
view the OC4J class-loader tree, and execute predefined queries to examine various
aspects of the OC4J Runtime. Built-in to the default Web application of an OC4J
instance, Peek is accessible through the following URIs:

Class Loading in OC4J

Utilizing the OC4J Class-Loading Framework 3-3

■ OC4J Standalone (oc4j_extended.zip):

http://localhost:8888/peek/

■ Oracle Application Server

http://localhost:instance_port/j2ee/peek

See "OC4J in an Oracle Application Server Configuration" in the Oracle Containers
for J2EE Configuration and Administration Guide for more information on OC4J in
Oracle Application Server

To logon to Peek, use the oc4jadmin username and the password that was set during
the first initialization of OC4J.

Using the Peek utility, you can perform the following tasks:

■ Search for any code source (JAR, ZIP, or directory) by name or path component.
The search string can include wildcard characters and regular expressions. Simply
enter the name in the text field and click go.

Figure 3–2 shows the output from a search for the oc4j.jar code source.

Figure 3–2 Search for a Code Source in Peek

■ Search the contents of all code sources for class or resource names. The search
string can include wildcard characters and regular expressions. Simply enter the
fully qualified classname in the text field and click go.

Figure 3–3 shows the output from a search for java.lang.String resource. The
output indicates from which code source and class loader the resource was found.

Figure 3–3 Search for a File in Peek

■ View the class-loader tree, as Figure 3–1 shows, and browse its contents:

– Each loader name and category, and for shared libraries, a description and
contact information if available

– Code sources

Class Loading in OC4J

3-4 Developer's Guide

– Loaded classes

– All classes, with hyperlinks

– All text-based resources

■ Execute predefined queries to examine various aspects of the OC4J Runtime.

For example, you can use the loadClass query to attempt to load a class from a
specified class loader. Also, you can use the AuditLoader query to validate a
class loader (shared library).

■ Link to or bookmark any query run, because all operations are driven through a
URL

For example, you can bookmark a URL like the following one to list any duplicate
classes that were loaded into an OC4J instance:

http://localhost:8888/query?q=DuplicateClasses

Class Versioning with Shared Libraries in OC4J
The class-loader hierarchy ensures that a J2EE application deployed into the OC4J
instance inherits a set of libraries by default from the default application. A Web
module bound to this application, in turn, inherits a set of classes from the application,
as well as the classes inherited from the system application, which sits at the root of
the application hierarchy in OC4J.

However, this inheritance model is not always desirable, such as when a nondefault
version of a library or class is needed by an application or module. The OC4J
class-loading infrastructure addresses this problem by enabling class loaders created
for an application or module to import a different version of a shared library than the
default version imported by the parent class loader. An application or loader can even
remove a class loader from the set of inherited class loaders entirely.

Figure 3–4 illustrates the class-loader tree structure in OC4J.

Class Loading in OC4J

Utilizing the OC4J Class-Loading Framework 3-5

Figure 3–4 The OC4J Class-Loader Tree

■ The jre.bootstrap loader is a proxy for the native bootstrap loader built into
the JVM. The native bootstrap loader itself is not directly visible at runtime.

■ The jre.extension loader is a custom replacement for the JRE-supplied
"extension" loader.

■ The api loader contains J2EE and OC4J API classes that must be visible to all
applications as well as to all OC4J internal classes.

■ The oc4j loader contains OC4J system classes.

■ The system.root loader is created for the OC4J system application.

Because system is at the root of the application hierarchy, the classes in this
loader are inherited by default by all other applications deployed into the OC4J
instance.

■ global.root is the class loader created for the default application, which is
the default parent of all J2EE applications deployed to the OC4J instance.

■ app-name.root is the root loader for a deployed application.

■ app-name.web.web-mod-name class loaders each contain Web module - classes
packaged within a WAR file.

Application 3Application 2Application 1

JRE Native Loader

OC4J System Loader

OC4J Application Loader

OC4J Shared Loader

A

B

C

D

oracle.jdbc:10.1.0_2

oracle.jdbc:9.2.0_5

oracle.xml:10.1.0_2

xerces.xml:2.6.2

Bootstrap

a.web.foo

B

Bootstrap

C
global.root

A

C
system.root

A

A C
a.root

a.web.foo

DB C

A C B DC
b.web.x b.web.y

b.root c.web.foo

c.jsp.bar

jre.bootstrap

jre.extension

api

oc4j
A C

Class Loading in OC4J

3-6 Developer's Guide

■ app-name.jsp.jsp name loads a compiled JSP implementation class.

The OC4J shared class loaders, oracle.jdbc:10.1.0_2, oracle.jdbc:9.2.0_5,
oracle:xml:10_1_02 and xerces:xml:2.6.2, represent shared libraries declared
in the OC4J instance. Each shared library definition consists of these items:

■ A shared library name, such as xerces.xml

■ A version number that typically represents the shared library's implementation
version, such as 2.6.2

■ One or more code sources, JAR or ZIP files, containing the classes that comprise
the library

Class Loaders are created at runtime based on the shared library definitions within the
OC4J instance. Class Loaders are registered using a concatenation of the shared library
name and the version number; for example, xerces.xml:2.6.2.

See "Installing and Publishing a Shared Library in OC4J" on page 3-13 for detailed
instructions on creating and installing shared libraries.

The JDBC driver and XML parser classes are loaded by the three deployed
applications: While Application 1 follows the default behavior of inheriting the classes
contained in the oracle.jdbc:10_1_02 and oracle:xml:10_1_02 shared
loaders from its parent, Application 2 and Application 3 each import alternative driver
and parser class loaders for their use.

By default, an application inherits the same set of shared libraries present in its parent
application, including libraries inherited from the system application. This means, for
example, that an application will by default use the Oracle JDBC driver and Oracle
XML parser, which are inherited from the system application.

However, using OC4J's class versioning capabilities, you can override an inherited
library with a different version, or even remove a library from the list of inherited
libraries altogether.

Shared Libraries That Applications Import by Default
The default set of shared libraries imported by all application class loaders within the
OC4J instance is specified within the <imported-shared-libraries> element in
ORACLE_HOME/j2ee/instance/system-application.xml. This is the
configuration file for the system application, an internal component of Oracle
Containers for J2EE that sits at the root of the application hierarchy and provides
classes and configuration required at OC4J startup. To view the imported shared
libraries using peek, use the following URL:

http://localhost:8888/peek/loader/system.root:0.0.0

By default, an application deployed to an OC4J instance will inherit the following
Oracle shared libraries:

■ oracle.dms:3.0

■ oracle.jdbc:10.1.0_2

■ oracle.gdk:10.1.0_2

■ oracle.xml:10.1.0_2

■ oracle.xml.security:10.1.3

■ oracle.toplink:10.1.3

■ oracle.persistence:1.0

Configuring an Application to Import a Nondefault Version of a Shared Library

Utilizing the OC4J Class-Loading Framework 3-7

■ oracle.ws.jaxrpc:1.1

■ oracle.ws.client:10.1.3

■ oracle.cache:10.1.3

■ soap:10.1.3

■ oracle.sqlj:10.1.3

■ oracle.jwsdl:10.1.3

■ global.libraries:1.0

■ global.tag.libraries:1.0

■ oracle.http.client:10.1.3

■ org.jgroups:2.3

Configuring an Application to Import a Nondefault Version of a Shared
Library

You can force an application to import a different version of a shared library than the
one declared in system-application.xml by creating a shared library with the
same name, but assigning a different version number. You will then configure the
application to import this shared library.

See the following sections for details:

■ "Example: Importing an Earlier Version of the Oracle JDBC Driver" on page 3-7 for
an end-to-end example

■ "Example: Configuring an Application to Use a DataDirect JDBC Driver" on
page 3-9 for another complete example

■ "Installing and Publishing a Shared Library in OC4J" on page 3-13 for additional
options for creating shared libraries

■ "Configuring an Application to Import a Shared Library" on page 3-16 for
additional options for configuring applications to import a particular shared
library

Example: Importing an Earlier Version of the Oracle JDBC Driver
The following example shows you how to configure an application to use an Oracle
9.2.0_5 JDBC driver, which is an earlier version of the Oracle JDBC driver than the
version packaged with OC4J 10g (10.1.3.5.0). This example applies only to thin JDBC
drivers and does not apply to the Oracle Call Interface (OCI) drivers.

Step 1: Create the Shared Library in OC4J
You can install a shared library for the 9.2.x JDBC driver using any of the mechanisms
described in "Options for Installing and Publishing a Shared Library" on page 3-13.
This example illustrates how to do this task with Application Server Control.

Configuring an Application to Import a Nondefault Version of a Shared Library

3-8 Developer's Guide

1. Click Administration>Shared Libraries. Note the default JDBC driver shared
library, oracle.jdbc:10.1.0_2.

2. Click Create on the Shared Libraries page.

3. Enter the name for the shared library. In this case, you will enter the same name as
the existing library, which is oracle.jdbc.

4. Enter the shared library version, which in this case is 9.2.0_5.

5. Click Add to upload the library JAR file to the OC4J instance. The following
shared library declaration is added to the ORACLE_
HOME/j2ee/instance/server.xml file:

<shared-library name="oracle.jdbc" version="9.2.0_5">
 <code-source path="ojdbc14.jar"/>
</shared-library>

Step 2: Configure an Application to Use the Shared Library
Once the shared library has been created in OC4J, you can configure an application to
use it instead of the default shared library installed with OC4J.

The following example illustrates how to do this at the time the application is
deployed with Application Server Control.

1. Select Applications>Deploy to launch the Application Server Control deployment
wizard.

2. Supply the path to the application in the first page of the wizard.

3. Specify the application name and supply any context URI mappings in the second
page.

4. Click Configure Class Loading in the third page of the wizard (Deploy:
Deployment Settings).

Both versions of the oracle.jdbc shared library are listed under Import Shared
Libraries.

5. Specify the version number you want to use, 9.2.0_5, in the Maximum Version
To Use column.

6. Deploy the application.

After the application is deployed, the following entry is in the
orion-application.xml deployment descriptor for the application:

<imported-shared-libraries>
 <import-shared-library name="oracle.jdbc" max-version="9.2.0_05"/>
</imported-shared-libraries>

Note: To use a JDBC driver that is not packaged with OC4J, you
must create a managed data source specifically for use by the
application, then configure the application to use it.

This is necessary because the default JDBC drivers and data sources
used by applications are imported by the global system application's
class loader. Because your application is loading a different driver, it
must also load a data source for the driver to use.

See the Oracle Containers for J2EE Services Guide for details on creating
and using application-specific managed data sources.

Configuring an Application to Import a Nondefault Version of a Shared Library

Utilizing the OC4J Class-Loading Framework 3-9

Example: Configuring an Application to Use a DataDirect JDBC Driver
The Oracle Application Server distribution includes several JDBC drivers to provide
connectivity to non-Oracle databases. The following example shows you how to
configure an application to use the DataDirect Sybase driver to connect to a Sybase
database.

Step 1: Create the Shared Library in OC4J
You can install a shared library for the driver using any of the mechanisms described
in "Options for Installing and Publishing a Shared Library" on page 3-13. This example
will illustrate how to do this task with Application Server Control.

1. Click Administration>Shared Libraries.

2. Click Create on the Shared Libraries page.

3. Enter the name for the shared library; for example, sybase.jdbc.

4. Enter a version number for the shared library, such as 1.0.

5. Click Add to upload the library JAR files to the OC4J instance. Note that the
YMbase.jar and YMutil.jar files are required to use any of the DataDirect
drivers provided with Oracle Application Server.

■ YMsybase.jar

■ YMbase.jar

■ YMutil.jar

The following shared library declaration is added to the ORACLE_
HOME/j2ee/instance/server.xml file:

<shared-library name="sybase.jdbc" version="1.0">
 <code-source path="YMbase.jar"/>
 <code-source path="YMutil.jar"/>
 <code-source path="YMsybase.jar"/>
</shared-library>

Step 2: Configure an Application to Use the Shared Library
Once the shared library has been created in OC4J, you can configure an application to
use it instead of the default shared library installed with OC4J.

The following example illustrates how to do this task at the time the application is
deployed with Application Server Control.

1. Select Applications and then Deploy to launch the Application Server Control
deployment wizard.

2. Supply the path to the application in the first page of the wizard.

3. Specify the application name and supply any context URI mappings in the second
page.

4. Click Configure Class Loading in the third page of the wizard (Deploy:
Deployment Settings).

5. Check the Import checkbox for the sybase.jdbc shared library. Optionally
specify 1.0 as the maximum version to use.

6. Deploy the application.

After the application is deployed, the following entry is in the
orion-application.xml deployment descriptor for the application:

Removing or Replacing an Oracle Shared Library Imported by Default

3-10 Developer's Guide

<imported-shared-libraries>
 <import-shared-library name="sybase.jdbc" max-version="1.0"/>
</imported-shared-libraries>

Removing or Replacing an Oracle Shared Library Imported by Default
The shared library framework also allows a shared library to be removed from the set
of shared libraries inherited by an application from its parent, and optionally allows a
different shared library to be imported in its place.

You can remove a shared library that an application inherits by default with a
<remove-inherited> subelement within an <imported-shared-libraries>
element in an orion-application.xml deployment descriptor for the application.
The name of the library to remove is specified as the value for the name attribute.

For example, the following entry in orion-application.xml will prevent the
application from importing the Oracle TopLink shared library:

<orion-application>
 <imported-shared-libraries>
 <remove-inherited name="oracle.toplink"/>
 </imported-shared-libraries>
</orion-application>

For complete examples, see the following subsections.

■ Example: Replacing the Oracle XML Parser with the Xerces Parser

■ Example: Removing an Oracle Shared Library at Deployment Time

Example: Replacing the Oracle XML Parser with the Xerces Parser
The following example illustrates how to remove the Oracle XML parser from the
default set of shared libraries inherited from the system application with Application
Server Control. It will also force the application to use the Xerces XML parser in its
place.

Step 1: Create the Shared Library in OC4J
You can install a shared library for the Xerces parser using any of the mechanisms
described in "Options for Installing and Publishing a Shared Library" on page 3-13.
This example illustrates how to do this task with Application Server Control.

1. Click Administration>Shared Libraries.

2. Click Create on the Shared Libraries page.

3. Enter the name for the shared library. In this case, you will enter xerces.xml.

4. Enter the shared library version, which in this case is 2.5.0.

5. Click Add to upload the library JAR files to the OC4J instance. Upload the
following Apache libraries:

■ xercesImpl.jar

■ xml-apis.jar

The following shared library declaration is added to the ORACLE_
HOME/j2ee/instance/server.xml file:

<shared-library name="xerces.mxl" version="2.5.0">
 <code-source path="xercesImpl.jar"/>
 <code-source path="xml-apis.jar"/>

Removing or Replacing an Oracle Shared Library Imported by Default

Utilizing the OC4J Class-Loading Framework 3-11

</shared-library>

Step 2: Configure an Application to Use the Shared Library
Once the shared library has been created in OC4J, you can configure an application to
use the Xerces parser instead of the default parser installed with OC4J.

The following example illustrates how to do this at the time the application is
deployed with Application Server Control.

1. Select Applications>Deploy to launch the Application Server Control deployment
wizard.

2. Supply the path to the application in the first page of the wizard.

3. Specify the application name and supply any context URI mappings in the second
page.

4. Click Configure Class Loading in the third page of the wizard (Deploy:
Deployment Settings).

5. Check the Import checkbox for the xerces.xml shared library. Optionally specify
2.5.0 as the maximum version to use.

6. To explicitly remove the Oracle parser, un-check the Import checkbox for the
oracle.xml shared library to remove it from the list of shared libraries inherited
by the application.

7. Optionally click the Save Deployment Plan button, and save the plan for re-use.

8. Deploy the application. After the application is deployed, note the following entry
in the application's orion-application.xml file:

<orion-application>
 <imported-shared-libraries>
 <remove-inherited name="oracle.xml"/>
 <import-shared-library name="xerces.xml" max-version="2.5.0"/>
 </imported-shared-libraries>
</orion-application>

Example: Removing an Oracle Shared Library at Deployment Time
The following example illustrates how to remove the Oracle TopLink shared library at
the time the application is deployed with Application Server Control.

1. Select Applications>Deploy to launch the Application Server Control deployment
wizard.

2. Supply the path to the application in the first page of the wizard.

3. Specify the application name and supply any context URI mappings in the second
page.

4. Click Configure Class Loading in the third page of the wizard (Deploy:
Deployment Settings).

5. Uncheck the Import checkbox for the oracle.toplink shared library to remove
it from the list of shared libraries inherited by the application.

6. Optionally click the Save Deployment Plan button, and save the plan for re-use.

7. Deploy the application. After the application is deployed, note the following entry
in the application's orion-application.xml file:

<orion-application>
 <imported-shared-libraries>

Using a Packaged JAR Instead of an Oracle Shared Library

3-12 Developer's Guide

 <remove-inherited name="oracle.toplink"/>
 </imported-shared-libraries>
</orion-application>

Using a Packaged JAR Instead of an Oracle Shared Library
The class-loading infrastructure enables you to package an XML parser or JDBC driver
as a JAR with your application and then force the application to use it instead of the
Oracle XML parser or JDBC driver installed with OC4J, without having to declare the
JAR as a shared library within OC4J.

Configuring an Application to Use Its Own Shared Library
In this case, you will specify the default inherited Oracle library in the
<remove-inherited> tag in orion-application.xml, which is then packaged
with the JAR in the application's EAR file. After deployment to OC4J, the application
will not import the default library installed with OC4J, causing the application's class
loader to find and load your packaged library instead.

The following notation in orion-application.xml will prevent the application's
class loader from importing the Oracle XML parser:

<imported-shared-libraries>
 <remove-inherited name="oracle.xml"/>
</imported-shared-libraries>

In the case of Web applications, you can specify that classes bundled within the
application's WAR file be used through a notation in the application's
orion-web.xml descriptor file.

First, add or uncomment the <web-app-class-loader> element in this file. Next,
set the search-local-classes-first attribute to true in this element, which
causes the class loader to find and load any libraries packaged in the WAR and to use
these libraries rather than the corresponding libraries packaged with OC4J.

For information about how you can do this at deployment time with Application
Server Control, see "Specifying search-local-classes-first at Deployment Time" on
page 3-12.

The entry in orion-web.xml looks like this:

<orion-web-app ...>
 ...
 <web-app-class-loader search-local-classes-first="true"
 include-war-manifest-class-path="true" />
 ...
</orion-web-app>

This approach is not a guaranteed solution; if an application further up the hierarchy
imports a shared library that includes the same classes, a collision is likely, and such
collisions are difficult to debug. Ideally, you should use the shared library mechanism
documented in this chapter to ensure that your Web applications use the correct
library.

Specifying search-local-classes-first at Deployment Time
The following example illustrates how to set the search-local-classes-first
attribute in the orion-web.xml file generated for the Web module at deployment
time, with Application Server Control.

Installing and Publishing a Shared Library in OC4J

Utilizing the OC4J Class-Loading Framework 3-13

1. Select Applications>Deploy to launch the Application Server Control deployment
wizard.

2. Supply the path to the application in the first page of the wizard.

3. Specify the application name and supply any context URI mappings in the second
page.

4. Click Configure Class Loading in the third page of the wizard (Deploy:
Deployment Settings).

5. Under Configure Web Module Class Loaders, check the Search Local Classes First
checkbox next to the name of the Web module containing the local JAR file to use.

6. Optionally click the Save Deployment Plan button, and save the plan for reuse.

Installing and Publishing a Shared Library in OC4J
Creating a shared library within an OC4J instance is essentially a two-step process.
First, the binaries composing the shared library must be installed in the appropriate
directory within OC4J. The shared library must then be declared in the OC4J server
configuration file (server.xml), essentially "publishing" it within the OC4J instance.

This section includes the following topics:

■ When You Should Use a Shared Library

■ Options for Installing and Publishing a Shared Library

■ How a Shared Library Is Installed and Published in an OC4J Instance

When You Should Use a Shared Library
Typically, applications deployed to OC4J will use the set of shared libraries packaged
with OC4J, which are inherited from the system application. However, there are
scenarios in which replacing or removing a library inherited from the application's
parent is necessary. Example use cases include:

■ Using a different version of the Oracle JDBC driver than the version packaged
with OC4J

■ Replacing the Oracle XML parser packaged with OC4J with a different parser for
use by your application

■ Sharing proprietary classes across one or more specific applications, rather than
across all applications

■ Making an open source library, such as Struts or the Spring Framework, available
to multiple Web applications

Options for Installing and Publishing a Shared Library
OC4J provides several options for installing and publishing shared libraries within one
or more OC4J instances. Each of these mechanisms will install the shared library in the
ORACLE_HOME/j2ee/instance/shared-lib directory and make the required
entry in server.xml.

■ Oracle Enterprise Manager 10g Application Server Control

This option enables you to install a shared library on a specific OC4J instance
through the Administration>Administration Tasks>Shared Libraries pages.

■ The publishSharedLibrary Ant task

Installing and Publishing a Shared Library in OC4J

3-14 Developer's Guide

This option enables you to install a shared library on a standalone OC4J server or
on a single OC4J instance in an Oracle Application Server environment managed
by Oracle Process Manager and Notification Server (OPMN).

■ The -publishSharedLibrary command in admin_client.jar

This option also enables you to install a shared library on a single
OPMN-managed OC4J instance or on a standalone OC4J server.

You can also manually install and publish a shared library within an OC4J instance by
following the process described under "How a Shared Library Is Installed and
Published in an OC4J Instance" on page 3-14.

How a Shared Library Is Installed and Published in an OC4J Instance
Shared libraries are installed in the ORACLE_HOME/j2ee/instance/shared-lib
directory in OC4J. The process includes creating the correct directory structure within
this directory and then copying one or more JAR or ZIP files that compose the library
into the directory.

OC4J provides several tools that automate this process. See "Options for Installing and
Publishing a Shared Library" on page 3-13 for an overview.

To manually install a shared library:

1. Ensure that the classes are not already present in the OC4J instance by searching
for the classes through Peek, which is described in "Peek Utility for Debugging
Class Loaders" on page 3-2.

Figure 3–5 shows the results of searching a running OC4J instance in Peek for any
classes whose path name contains *acme*.

Figure 3–5 Class Search with Peek

2. Create the following directory structure:

ORACLE_HOME/j2ee/instance/shared-lib
 /library_name
 /version
 filename.jar
 filename.zip

Note: If you are using JDK1.4, Oracle Application Server 10.1.3 does
not support using the Xalan library shipped with the JDK as a shared
library. To use the Xalan library, you have two alternatives:

■ Use JDK 6 or JDK 5.0 (JDK 1.5), in which the embedded Xalan
library is supported as a shared library.

■ With JDK1.4, use a standalone distribution of the Xalan library
instead of the embedded version.

Installing and Publishing a Shared Library in OC4J

Utilizing the OC4J Class-Loading Framework 3-15

 ...

The variables in the directory structure have these values:

■ instance is the name of an OC4J instance, which is home by default in an
Oracle Application Server environment and always home on a standalone
OC4J server.

■ library_name is a directory named with the name of the shared library; for
example, acme.common.

In cases where common APIs are implemented by multiple vendors, the name
should include both the vendor name and the name of the technology; for
example, oracle.jdbc or xerces.xml. If the technology is implemented by
a single vendor, the technology name alone is sufficient.

■ version is a subdirectory named for the shared library version number; for
example, 2.5. This value should ideally reflect the code implementation
version.

3. copy each JAR or ZIP file containing the classes that compose the shared library
into the version subdirectory. For example, assume the sample library consists of
acme-apis.jar and acmeImpl.jar. Given the preceding examples, the
resulting directory structure within the OC4J server would be as follows:

ORACLE_HOME/j2ee/instance/shared-lib
 /acme.common
 /2.5
 acme-apis.jar
 acmeImpl.jar

4. To create multiple versions of the shared library, install each version's archive files
in the version subdirectory, as the following example illustrates:

ORACLE_HOME/j2ee/instance/shared-lib
 /acme.common
 /2.5
 acme-apis.jar
 acmeImpl.jar
 /3.0
 acme-apis.jar
 acmeImpl.jar

After the code sources are installed, the shared library is defined within a
<shared-library> element that is added to the
ORACLE_HOME/j2ee/instance/server.xml file, which contains the configuration
data for the OC4J instance. The <shared-library> element takes the following
attributes and subelements:

■ A required name attribute, the value of which must match the name of the shared
library directory created within the /shared-lib directory.

■ A required version attribute, the value of which must match the version number
that serves as the name of the subdirectory containing the shared library's archive
files in the /shared-lib/library_name directory.

■ One or more <code-source> subelements, each containing a path attribute
defining the path to a JAR or ZIP file belonging to the library.

A path can be absolute if it is outside of the /shared-lib directory, or it can be
relative to the subdirectory containing the JAR or ZIP files within the

Configuring an Application to Import a Shared Library

3-16 Developer's Guide

/shared-lib/library_name directory. If a path is relative, only the archive file
name needs to be supplied as the value for path.

The following example illustrates a shared library definition in the server.xml
configuration file for the example shared library. The code source paths are relative to
the subdirectory containing the JAR or ZIP files within the
/shared-lib/acme.common directory; therefore, only the archive file names are
specified as path values.

<shared-library name="acme.common" version="2.5">
 <code-source path="acme-apis.jar">
 <code-source path="acmeImpl.jar"/>
</shared-library>

You can set path="*" to force OC4J to consume all of the archives within the
subdirectory. For example:

<shared-library name="acme.common" version="2.5">
 <code-source path="*" />
</shared-library>

Additionally, a shared library can be configured to import one or more other shared
libraries. The <shared-library> element can take one or more
<import-shared-library> elements, each specifying a shared library to be
imported by the shared library being configured. An imported shared library must
also be installed and published on the OC4J host.

The following sample code causes the acme.common shared library to import the
xyz.log shared library:

<shared-library name="acme.common" version="2.5">
 <import-shared-library name="xyz.log"/>
 <code-source path="acme-apis.jar"/>
 <code-source path="acmeImpl.jar"/>
</shared-library>

When a relative code-source path is encountered at runtime, the full path is
constructed by concatenating the shared library directory (/shared-lib), the shared
library name, and the version number. For example, the preceding sample entries
would resolve to these paths:

ORACLE_HOME/j2ee/instance/shared-lib/acme.common/2.5/acme-apis.jar
ORACLE_HOME/j2ee/instance/shared-lib/acme.common/2.5/acmeImpl.jar

Configuring an Application to Import a Shared Library
Once a shared library is installed, you can configure applications to import it using
one of the following options:

■ Declare a dependency in an application's OC4J-specific
orion-application.xml deployment descriptor.

See "Declaring Dependencies in an Application's OC4J Deployment Descriptor" on
page 3-17 for details.

■ Declare a dependency using an application's MANIFEST.MF file.

This is the standard J2EE mechanism for declaring dependencies on installed
libraries. See "Declaring Dependencies in an Application's Manifest File" on
page 3-17 for details.

Configuring an Application to Import a Shared Library

Utilizing the OC4J Class-Loading Framework 3-17

■ Force all applications deployed to the OC4J instance to use the shared library by
declaring a dependency in application.xml, the configuration file for the
default application. Because default is the parent of all other applications
deployed to the instance, the shared library will be imported by these applications.

See "Configuring All Deployed Applications to Import a Specific Shared Library"
on page 3-18 for details.

■ Configure the application to import the shared library at deployment time through
the deployment tasks provided in Application Server Control. The deployment
tasks mechanism updates the application's orion-application.xml file as
outlined in this section.

See the Oracle Containers for J2EE Deployment Guide for details on using this feature.

Declaring Dependencies in an Application's OC4J Deployment Descriptor
A dependency can be declared by adding notations in the dependent application's
orion-application.xml deployment descriptor.

Dependencies are declared by adding an <imported-shared-libraries> element
in the application-specific orion-application.xml configuration file. This element
takes one or more <import-shared-library> subelements, each specifying a
shared library to import.

The <import-shared-library> element has the following attributes:

■ name: The name of the shared library.

■ min-version and max-version: These are optional attributes that enable you
to specify a minimum or maximum version of the library to be specified for
inclusion. To use the latest installed version of the library, do not specify a version
number.

The following entry in orion-application.xml will import the
acme.common:2.5 shared library for use by the application:

<imported-shared-libraries>
 <import-shared-library name="acme.common" max-version="2.6"/>
</imported-shared-libraries>

Declaring Dependencies in an Application's Manifest File
The standard Java extension mechanism, also known as optional packages, can be
utilized to declare an application dependency on a JAR or ZIP file within a shared
library. This is the standard J2EE mechanism for declaring dependencies on installed
libraries.

To use this mechanism, the dependent JAR or ZIP file must be declared as a named
extension in its MANIFEST.MF file. This name is specified as the value of the
Extension-Name attribute. For example, the following manifest entry defines
acme.common as an extension:

Extension-Name: acme.common
Specification-Vendor: Acme, Inc

Note: Declaring a dependency using any of these options makes the
shared library required by the application. An error will result if the
shared library has not already been installed and published within the
OC4J instance.

Sharing Libraries Using the applib Directory

3-18 Developer's Guide

Specification-Version: 2.5
Implementation-Vendor-Id: com.acme
Implementation-Vendor: Acme, Inc
Implementation-Version: 2.5

The application that is dependent on the shared library then declares the dependency
in its own manifest file. The following manifest attributes will cause the application to
import the acme.common:2.5 shared library. The value of the
name-Extension-Name attribute matches the Extension-Name value specified for
the JAR or ZIP file's manifest file:

Extension-List: acme
acme-Extension-Name: acme.common
acme-Implementation-Version: 2.5

Version numbers in the Specification-Version and
Implementation-Version attributes of a MANIFEST.MF file can have up to eight
elements:

n1.n2.n3.n4.n5.n6.n7.n8

The maximum allowed value for an element is 99999999.

For more information on declaring dependencies using manifest files, see the
following Web site:

http://java.sun.com/j2se/1.4.2/docs/guide/extensions/versioning.html

Configuring All Deployed Applications to Import a Specific Shared Library
You can ensure that all applications deployed to an OC4J instance use the same
version of a shared library by configuring the default application to import it. Because
default is the parent of all applications deployed to OC4J, any shared libraries that
default imports will also be imported by these applications.

The configuration is managed by adding the XML notations described in "Declaring
Dependencies in an Application's OC4J Deployment Descriptor" on page 3-17 to the
ORACLE_HOME/j2ee/instance/application.xml file, the configuration file for
the default application.

The following entry in application.xml will ensure that all deployed applications
use version 2.0 of the acme.common shared library:

<imported-shared-libraries>
 <import-shared-library name="acme.common" max-version="2.0"/>
</imported-shared-libraries>

Note that an application will use the version of a shared library imported from the
default application—even if the application includes its own version of the shared library.
If this is not desirable, you can "remove" the version imported from default using the
process described in "Removing or Replacing an Oracle Shared Library Imported by
Default" on page 3-10.

Sharing Libraries Using the applib Directory
The legacy mechanism for sharing libraries across applications within OC4J, in which
JAR or ZIP files to be shared are installed in the ORACLE_
HOME/j2ee/instance/applib directory, is still supported in the current release of
OC4J. All JAR and ZIP files within this directory will be included in the

Specifying a Library Directory in application.xml

Utilizing the OC4J Class-Loading Framework 3-19

global.libraries shared library, and will be available to all applications within
the OC4J instance.

Support for this legacy functionality will be removed in a future release of OC4J.
Oracle recommends that you use the new shared-library mechanism documented in
this chapter whenever possible.

Specifying a Library Directory in application.xml
The <library-directory> element of the application.xml file specifies either a
relative or absolute path or URL to a directory or a JAR or ZIP archive to add as a
library path for this OC4J instance. Directories are scanned for archives to include at
OC4J startup.

If the application.xml file for an application has the version="5" attribute set
(Java EE 5 application), the <library-directory> element of the EAR file's
deployment descriptor can contain the name of a library directory through with
application components can share libraries.

<application version="5">
 <library-directory>app2lib</library-directory>
 <module>
 <ejb>ejb.jar</ejb>
 </module>
</application>

If a <library-directory> element is not specified, or if the EAR file does not
contain a deployment descriptor, the directory named lib is used.

You can use an empty <library-directory> element to specify that there is no
library directory. For example:

<application version="5">
 <library-directory></library-directory>
 <module>
 <ejb>ejb.jar</ejb>
 </module>
</application>

The <library-directory> element provides a standard mechanism to define class
path dependencies, as defined in the Java EE 5 specification. In OC4j 10g (10.1.3.5.0),
all files in a library directory with a .jar extension (but not in subdirectories) are
available to all components packaged in the EAR file except application clients.
Libraries in these JAR files can reference other libraries, either bundled with the
application or installed separately.

OC4j 10g (10.1.3.5.0) also supports the <library-directory> element in J2EE 1.4
applications, with the following caveats:

■ There will be no default lib directory for 1.4 applications, to prevent unexpected
changes in behavior to existing applications. A user must explicitly add the
<library-directory> element to an application.xml file to enable this
support.

■ A J2EE 1.4 application that adds the <library-directory> element cannot
have XML validation turned on if it is using the 1.4 schema.

The proprietary <library> element in the orion-application.xml file provides
the same functionality as <library-directory>.

Using Best Practices for Class Loading

3-20 Developer's Guide

Applications that use the <library-directory> element or Java EE 5 applications
that do not use an empty <library-directory> element will have an extra
deployment step that iterates over files in the library directory and adds them to the
class path.

Using Best Practices for Class Loading
This section provides guidelines for avoiding class-loading issues.

Declare Class Dependencies
Make dependencies explicit in the application's MANIFEST.MF file or
orion-application.xml file. Hidden or unknown dependencies will be left
behind when you move your application to another environment.

Group Dependencies Together
Ensure that all dependencies are visible at the same level or above. If you must move a
library, make sure all dependencies are still visible. Ensure that application resources,
dependent third-party libraries, and other enterprise modules are packaged in a
self-contained manner.

Share Rather Than Duplicate Libraries
Avoid duplicating libraries, which increases both the disk and memory footprints and
can lead to version problems.

Minimize Library Visibility
Dependency libraries should be placed at the lowest visibility level that satisfies all
dependencies.

Keep Your Configurations Portable
Choose configuration options in the following order:

1. Standard J2EE options

2. Options that can be expressed within your EAR file

3. Server-level options

4. J2SE extension options

Be Sure to Use the Correct Class Loader
If you use reflection by calling Class.forName(), always explicitly pass the class
loader returned by Thread.currentThread().getContextClassLoader. If you
are loading a properties file, use this code:

Thread.currentThread().getContextClassLoader().getResourceAsStream()

Calling Class.forName() is preferred over ClassLoader.loadClass() due to a
slight performance benefit and accurate cache entries.

If you intend to run static initializers while calling Class.forName(), use true as a
Boolean flag, as in Example 3–1. If you do not want to run static initializers while
calling Class.forName(), due to performance or security reasons, use false in the
method signature.

Example 3–1 Class.forName Call While Running Static Initializers

Class.forName(name, true, loader);

Troubleshooting Class-Loading Problems in OC4J

Utilizing the OC4J Class-Loading Framework 3-21

Troubleshooting Class-Loading Problems in OC4J
OC4J provides configuration options and built-in queries to help you troubleshoot and
resolve class-loading problems.

Most class-loading errors in Java are related to visibility, either not enough or, more
rarely, too much. Visibility in this case refers to the set of classes and resources that are
available on the class path, which is the search path across a set of loaders and the code
sources they contain (for example, JAR files, ZIP files, and directories).

In Java SE, the class path is usually thought of as the list of code sources specified on
the command line or in the manifest file for the main JAR file. These code sources are
all deployed in a single loader, usually referred to as the system loader. This loader is in
turn wired up to two other loaders: the JRE extensions loader (normally for any JAR
files in the jre/lib/ext directory) and the JRE bootstrap loader (containing rt.jar
and so on).

The idea that there is a class path is often misleading. For each class lookup, the search
begins at a specific loader, and (normally) can visit only loaders above the class in the
class-loader hierarchy. This means that a search starting at the extensions loader would
have a very different class path than one starting at the system loader.

In Java EE, the situation is substantially more complicated, as multiple class loaders
are required in place of the single system loader. Each deployed application has at
least one loader, separate from all other applications, so each application has a distinct
class path. There are frequently different class paths even within a single application,
as each Web module is deployed in a separate loader.

You can easily see this by making the following call from within different modules:

System.getProperty("java.class.path");

OC4J ensures that the correct class path is returned for the calling module.

There are many configuration options that affect class visibility for applications.
Table 3–1 lists the most common options within OC4J. Given the possible
combinations of loaders and code sources in a J2EE environment, it is easy to see how
visibility errors can arise. Often, a simple configuration change is all that is required to
eliminate the problem, but understanding what change to make can be tricky.

Table 3–1 Configuration Options That Affect Class Visibility

Class Loader Configuration Option

Configured shared library <code-source> in server.xml

<import-shared-library> in server.xml

app-name.root <import-shared-library> in
orion-application.xml

<library> JAR files, ZIP files, and directories in
orion-application.xml

<library-directory> JAR files, ZIP files, and
directories in application.xml

<ejb> JAR files and ZIP files in
orion-application.xml

RAR file: all JAR and ZIP files at the root.

RAR file: <native-library> directory paths

Manifest class path of preceding JAR and ZIP files

Troubleshooting Class-Loading Problems in OC4J

3-22 Developer's Guide

OC4J provides a number of built-in queries that you can run to troubleshoot
class-loading problems. Figure 3–6 shows a list of these queries in Peek.

Figure 3–6 Queries for Troubleshooting Class-Loading Problems

Specifying a Built-In Query
You can use any of the following tools to specify the built-in queries for
troubleshooting:

app-name.web.web-mod-name WAR file: Manifest class path

WAR file: WEB-INF/ classes

WAR file: WEB-INF/lib/ all JAR and ZIP files

<classpath> to all JAR files, ZIP files, and directories in
orion-web.xml

Manifest class path of preceding JAR files

search-local-classes-first attribute in
orion-web.xml

Shared libraries are inherited from the application root.

Table 3–1 (Cont.) Configuration Options That Affect Class Visibility

Class Loader Configuration Option

Troubleshooting Class-Loading Problems in OC4J

Utilizing the OC4J Class-Loading Framework 3-23

■ Peek

To retrieve information about an OC4J instance at run time, you can specify a
query in the Peek command-line window. For more information, see "Specifying a
Query in Peek" on page 3-23.

■ Startup property

To have a query execute at OC4J startup, you can specify it in the
oc4j.start.query system property for standalone OC4J or for an OC4J
instance. For information about setting this system property from the command
line, see "Specifying a Query in a Startup Property" on page 3-24 For information
about setting this system property for an OC4J instance through Application
Server Control, see Oracle Containers for J2EE Configuration and Administration
Guide.

■ ClassLoading MBean

You can specify a query through the ClassLoading MBean programatically or
through the System MBean Browser of Application Server Control. For
information about using MBeans programatically, see "Accessing MBeans From a
Client Application" on page 5-3 For more information about using MBeans
through Application Server Control, see Oracle Containers for J2EE Configuration
and Administration Guide.

Specifying a Query in Peek
In the Peek command-line window, you can enter a query to get information about a
running OC4J instance or to show the arguments of a query.

To specify a query in Peek, enter the query name with any argument in the Peek
command-line window.

Figure 3–7 shows a query for the
ascontrol.web.ascontrol.jsp33119438:0.0.0 loader. The figure has been
truncated, because the list that is returned is large.

Figure 3–7 Peek Display of ClassPath Query Arguments

Troubleshooting Class-Loading Problems in OC4J

3-24 Developer's Guide

You can also display the arguments of a query by clicking its name in the list of
queries, which Figure 3–6 shows.

Specifying a Query in a Startup Property
You can specify a query in the oc4j.start.query system property, which you can
set in the asctl command line for an OC4J instance or in the oc4j.jar command
line for standalone OC4J.

Query results are written to the file specified as the value of the
class.load.log.file property or if no file is specified, to the console
(System.out). The next time OC4J starts or restarts, it executes the query.

For more information about the class.load.log.file property, see "Setting
Class-Loader Log Levels" on page 3-51.

To specify a query in a startup property for standalone OC4J:

1. Specify the query name in the oc4j.start.query, system property, prefaced by
"-D"

The characters "-D" must preface each system property on the command line. The
syntax for specifying a query on the oc4j.jar command line follows:

java -Doc4j.start.query=queryName(arg0[,arg1] . . .) -jar oc4j.jar

2. To pass arguments to the query, append (arg0[,arg1] . . .) to the query
name. Enclose the arguments in parentheses, and use a comma to separate
multiple arguments.

For example, the DuplicateCodeSources query can be invoked with a
-digest argument as follows:

java -Doc4j.start.query=DuplicateCodeSources(-digest) -jar oc4j.jar

3. To specify multiple queries in a startup parameter, separate them with the +
character:

-Doc4j.start.query=DuplicateCodeSources(-digest)+UnusedCodeSources

Specifying Queries at Runtime Through the ClassLoading MBean
Queries can be executed on a running OC4J instance by calling the executeQuery
operation on the ClassLoading MBean.

This MBean is accessible through the Web-based Application Server Control interface.
See the Oracle Containers for J2EE Configuration and Administration Guide for
details on accessing and using the MBeans packaged with OC4J.

To specify queries at runtime through the ClassLoading MBean:

1. Click the Administration link in Application Server Control.

2. Click System MBean Browser.

3. Expand the ClassLoading node in the navigation pane, then select the
singleton MBean instance.

Note: For some Linux or UNIX shells, the property value string
(everything after the = symbol) will need to be enclosed in quotation
marks.

Troubleshooting Class-Loading Problems in OC4J

Utilizing the OC4J Class-Loading Framework 3-25

4. Click the Operations tab in the right-hand pane, then click the executeQuery
operation.

5. Enter the name of the query you want to execute as the value for
queryClassName. For example, LoaderTree.

6. Click the queryArguments icon, then add a new row for each argument you want
to specify. Do NOT enclose arguments in parentheses; these are added
automatically when the operation is invoked. Click OK when finished specifying
arguments.

7. Click the Invoke button to call the operation.

Auditing Class Loaders
You can use the AuditLoader query to audit one or more of the class loaders
available in an OC4J instance by performing diagnostics on their contents. This query
enables you to specify the level of audit output and to include JRE classes in the audit.

The output from AuditLoader includes information about errors. If you are adding a
new shared library, you should try to remove all errors reported for the new library.

How to Audit Class Loaders with Peek
In Peek you can audit class loaders by entering AuditLoader in the command-line
window and specifying the class loaders, optionally followed by additional
arguments. Table 3–2 describes the arguments.

To audit class loaders with Peek:

1. In the list of queries on the initial Peek screen, click AuditLoader.

Peek places the query name in the command-line window and displays the query
arguments.

2. If you want to specify one or more class loaders to audit, select each class loader
from the list under -- loaderName --.

Peek places each name you select in the command line after AuditLoader.

Alternatively, you can type the list of class loaders, separating each name from the
next with a space.

3. If you want to audit all class loaders available in the OC4J instance, type * after
AuditLoader.

If you specify AuditLoader * immediately after another AuditLoader query,
Peek uses the arguments from the preceding query.

4. Click go or press the Enter key.

Peek displays the results of the query.

5. If you want to run the same query later, save the URL for reuse.

6. If you are adding a new shared library, try to remove all errors reported in the
AuditLoader results for that library and then rerun the query to verify that the
errors are gone.

Note: Two versions of the executeQuery operation are exposed.
Click the version that takes two parameters. (The queryClassData
parameter cannot be set through the System MBean Browser.)

Troubleshooting Class-Loading Problems in OC4J

3-26 Developer's Guide

For example, to audit the oracle.jdbc loader with detailed output, you would
specify the query as follows:

AuditLoader oracle.jdbc:10.1.0_2 -verbose

Figure 3–8 shows part of the output from an execution of this query. The figure has
been truncated, because the list that is returned is large.

Figure 3–8 AuditLoader Query

What Happens When You Audit Class Loaders
Output from the AuditLoader query can include the following diagnostic
information for each class loader:

■ Class loaders that import the class loader being audited

■ Whether or not there is a default import

■ Imported class loaders

■ Member classes

■ Member packages

■ External class dependencies

■ External package dependencies

■ External loader dependencies

■ Notes about the class loader, such other class loaders it uses

■ Warnings

Note: it is possible to audit all loaders; however, the system may run
out of memory if the user tries to Audit all loaders. Users may specify
* to audit all shared loaders (try -XX:MaxPermSize=512m).

Troubleshooting Class-Loading Problems in OC4J

Utilizing the OC4J Class-Loading Framework 3-27

■ Duplicate classes

■ Errors

■ Suggestions for resolving warnings and errors

What You May Need to Know About AuditLoader
The AuditLoader query has the following arguments:

loaderName [loaderName] . . . | * [-verbose] [-includeJREClasses]

Table 3–2 describes these arguments.

Finding Classes That Call a Method
The Callers query reports all classes that call the specified method or methods. You
can limit the query by specifying the name of a class loader.

How to Find Classes That Call a Method with the Callers Query
For example, to find all classes that call System.currentTimeMillis(), you could
execute this query:

-Doc4j.start.query=Callers(java.lang.System.currentTimeMillis()long)

The next example will find the same method in classes visible from the MyApp.root
class loader:

-Doc4j.start.query=Callers(-MyApp.root,java.lang.System.currentTimeMillis()long)

To find calls to either version of the overloaded Class.forName() method, pass in
both method signatures as arguments:

-Doc4j.start.query=Callers(java.lang.Class.forName(java.lang.
String)java.lang.Class,java.lang.Class.forName(java.lang.String;boolean;java.lang.
ClassLoader)java.lang.Class)

You can include init in the signature argument to specify a constructor:

-Doc4j.start.query=Callers(java.util.Date.init())

What You May Need to Know About Callers
The Callers query has the following arguments:

[-loaderName,]signature . . .

Table 3–3 describes these arguments.

Table 3–2 AuditLoader Query Arguments

Argument Description

loaderName Specifies the name of a class loader to audit.

To audit all shared class loaders, specify an asterisk (*) for
loaderName.

* Specifies the audit of all class loaders in the OC4J instance.

-verbose Optional. Specifies detailed output.

-includeJREClasses Optional. Specifies the inclusion of JRE classes in the output.

Troubleshooting Class-Loading Problems in OC4J

3-28 Developer's Guide

Monitoring Metrics for Class Loaders
The ClassLoadMetrics query reports metrics for one or more specified class loaders
or for all class loaders if none is specified.

How to Monitor Metrics for Class Loaders with the ClassLoadMetrics Query
For example:

-Doc4j.start.query=ClassLoadMetrics(MyApp.root,MyOtherApp.root)

What You May Need to Know About ClassLoadMetrics
The ClassLoadMetrics query has the following arguments:

[-verbose] [loaderName] ...

Table 3–4 describes these arguments.

Listing Code Sources in Use
The ClassPath query lists the code sources in use.

Table 3–3 Callers Query Arguments

Argument Description

-loaderName Optional. If specified, all classes visible from the named class
loader will be checked for the specified methods.

If not specified, all classes visible to all class loaders down the
tree from the api class loader, the default parent of all
application-specific class loaders, are checked.

signature A method to check for.

You can specify multiple methods, each as a separate argument.

The syntax follows:

class-type.method-name([parameter-type[;paramet
er-type]...])return-type

Separate multiple parameter types using semicolons (;). Types
must be either fully qualified class names or primitive names.
For void return types, you can omit return-type.

Note: The verbose (multiline) output of the
PolicyClassLoader.toString() method is turned off by default
in OC4J. Only the loader name and version are returned.

You can enable verbose output by setting either of these system
properties:

■ -Dclass.load.log=any value

■ -Dverbose.loader.tostring=true

Table 3–4 ClassLoadMetrics Query Arguments

Argument Description

-verbose Optional. Supply to generate detailed metrics.

loaderName Optional. The name of a class loader for which to report metrics.

Troubleshooting Class-Loading Problems in OC4J

Utilizing the OC4J Class-Loading Framework 3-29

The ClassPath query has the following arguments:

[-list] [loaderName]

Table 3–5 describes these arguments.

Determining the Dependencies of a Class
The Dependencies query reports all dependencies of the specified class.

The Dependencies query has the following arguments:

className [loaderName] [-r]

Table 3–6 describes these arguments.

Determining Dependent Classes
The Depends query reports on all classes that are dependent on the specified class.

The Depends query has the following arguments:

[-loaderName] className

Table 3–7 describes these arguments.

Finding Duplicate Classes
The DuplicateClasses query reports the existence of classes and resources with the
same name in different code sources.

Table 3–5 ClassPath Query Arguments

Argument Description

-list Optional. Include to generate a line-separated, numbered list of
code sources.

loaderName Optional. If specified, the class loader is used as the starting
point from which the class path is computed. Otherwise, the
class path defaults to the internal class loader that loads all OC4J
system classes.

Table 3–6 Dependencies Query Arguments

Argument Description

className The fully qualified name of the class to report dependencies for.

loaderName Optional. If specified, the class loader is used as the starting
point from which dependencies are determined. Otherwise, the
internal class loader that loads all OC4J system classes is used.

-r Optional. Set to search classes recursively. The use of this
parameter can cause long execution times.

Table 3–7 Depends Query Arguments

Argument Description

-loaderName Optional. If specified, all classes visible to the named class
loader will be checked. Otherwise, all classes visible to all class
loaders from the api class loader downwards are checked.

className The fully qualified name of the class to check for dependencies.
To specify an entire package, use an asterisk (*) as the leaf name.

Troubleshooting Class-Loading Problems in OC4J

3-30 Developer's Guide

The DuplicateClasses query has the following arguments:

[[-loaderName] [-systemCodeSources]

Table 3–8 describes these arguments.

Finding Duplicate Code Sources
The DuplicateCodeSources query reports code sources that have the same name
or have more than one subscriber.

The DuplicateCodeSources query has the following argument:

[-digest]

Table 3–9 describes this argument.

Exiting a Query Process
The Exit query exits the process and shuts down OC4J, if it is running. This is useful
if you only want to execute a query without leaving the OC4J server running. For
example:

-Doc4j.start.query=LoaderTree+Exit

The Exit query has the following argument:

[-force]

Table 3–10 describes this argument.

Finding a Resource in Code Sources
The FindResource query reports the code sources that contain a specified resource.
The code sources are identified by either class name or resource path.

For a simple wildcard search, you can use a leading or trailing asterisk (*)

Table 3–8 DuplicateClasses Query Arguments

Argument Description

-loaderName Optional. If specified, the named class loader is used as the
starting point for the code-source search. Otherwise, all classes
visible to all class loaders from the api class loader downwards
are checked.

-systemCodeSources Optional. If specified, includes system code sources in the
search.

Table 3–9 DuplicateCodeSources Query Argument

Argument Description

-digest Optional. If specified, bit-wise comparisons of code sources will
be performed.

Table 3–10 Exit Query Argument

Argument Description

-force Optional. Forces a System.exit() call instead of a normal
shutdown.

Troubleshooting Class-Loading Problems in OC4J

Utilizing the OC4J Class-Loading Framework 3-31

To indicate that the argument should be treated as a regular expression, you can use a
leading tilde (~)

How to Use the FindResource Query in Peek
In Peek, you can use FindResource to display any code sources that contains a
resource.

Figure 3–9 FindResource Query

How to Find a Resource with No Package
The resourcePath argument must be passed to search for a class with no package.
For example, to find class foo, the query would be like this:

-Doc4j.start.query=FindResource(Foo.class)

To search for a resource with no package (/), in which the resource name contains a
period (.), you need to use a leading asterisk. For example, you could use the
following query to find the myconfig.xml file at the root of a code source:

-Doc4j.start.query=FindResource(*myconfig.xml)

What You May Need to Know About FindResource
The FindResource query has the following arguments:

[[-list] resourcePath|className

Table 3–11 describes these arguments.

Getting Resources Used by a Class Loader
The GetResource query calls getResource() or getResources() on a specified
loader and reports the results.

The GetResource query has the following arguments:

Table 3–11 FindResource Query Arguments

Argument Description

-list Optional. Can be used with wildcard or regular expressions to
list all matching resources.

resourcePath Required if className is not supplied. The fully qualified path
to the resource.

className Required if resourcePath is not supplied. The fully qualified
class name of the resource to search for.

Troubleshooting Class-Loading Problems in OC4J

3-32 Developer's Guide

resourcePath [loaderName] [-all]

Table 3–12 describes these arguments.

Monitoring HTTP Sessions for Deployed Applications
The HttpSessions query reports a summary of active HTTP sessions for deployed
applications.

The HttpSessions query has the following argument:

[details]

Table 3–13 describes this argument.

Detecting Class-Loader Leaks
The LeakedLoaders query controls detection of class-loader leaks and lists results.

The LeakedLoaders query has the following arguments:

[activate|list|deactivate]

Table 3–14 describes these arguments.

Listing Classes Available from a Class Loader
The ListClasses query lists all classes available from a given class loader.

How to List Classes Available from a Class Loader
You can use the ListClasses query as a startup option in the pcscomponent.xml
file for an OC4J instance or in the command line to start standalone OC4J, as follows:

java -Doc4j.start.query=ListClasses:loaderName -jar oc4j.jar

Table 3–12 GetResource Query Arguments

Argument Description

resourcePath Optional. The fully qualified path to the resource.

loaderName Optional. If specified, the named class loader is used as the
starting point for the resource search. Otherwise, all classes
visible to all class loaders from the api class loader downwards
are checked.

-all Optional. If this argument is specified, the query uses
getResources(). Otherwise, it uses getResource().

Table 3–13 HttpSessions Query Argument

Argument Description

details Optional. If specified, lists details of each HTTP session.

Table 3–14 LeakedLoaders Query Arguments

Argument Description

activate Optional. If specified, activates detection of class-loader leaks.

list Optional. If specified, lists results of class-loader leak detection.

deactivate Optional. If specified, deactivates detection of class-loader leaks.

Troubleshooting Class-Loading Problems in OC4J

Utilizing the OC4J Class-Loading Framework 3-33

For more information about using OC4J startup options, see "Starting, Restarting, and
Stopping OC4J Instances" in Oracle Containers for J2EE Configuration and Administration
Guide.

Example 3–2 lists the classes in the apache.commons.logging:1.0.4 loader.

Example 3–2 ListClasses Query Output

ListClasses apache.commons.logging:1.0.4

org.apache.commons.logging.Log
org.apache.commons.logging.LogConfigurationException
org.apache.commons.logging.LogFactory
org.apache.commons.logging.LogFactory$1
org.apache.commons.logging.LogFactory$2
org.apache.commons.logging.LogFactory$3
org.apache.commons.logging.LogSource
org.apache.commons.logging.impl.AvalonLogger
org.apache.commons.logging.impl.Jdk14Logger
org.apache.commons.logging.impl.Log4JCategoryLog
org.apache.commons.logging.impl.Log4JLogger
org.apache.commons.logging.impl.Log4jFactory
org.apache.commons.logging.impl.LogFactoryImpl
org.apache.commons.logging.impl.LogFactoryImpl$1
org.apache.commons.logging.impl.LogKitLogger
org.apache.commons.logging.impl.NoOpLog
org.apache.commons.logging.impl.SimpleLog
org.apache.commons.logging.impl.SimpleLog$1

What You May Need to Know About ListClasses
The ListClasses query has the following argument:

loaderName

Table 3–15 describes this argument.

Listing Queries
The ListQueries query lists all of the available queries in OC4J, by
oracle.oc4j.query.Query subclass name.

How to List Queries
You can use the ListQueries query as a startup option in the pcscomponent.xml
file for an OC4J instance or in the command line to start standalone OC4J, as follows:

java -Dstart.query="ListQueries(-l)" -jar oc4j.jar

For more information about using OC4J startup options, see "Starting, Restarting, and
Stopping OC4J Instances" in Oracle Containers for J2EE Configuration and Administration
Guide.

Table 3–15 ListClasses Query Argument

Argument Description

loaderName The name of the class loader for which to list classes.

Troubleshooting Class-Loading Problems in OC4J

3-34 Developer's Guide

What You May Need to Know About ListQueries
The ListQueries query has the following arguments:

[[-l] [queryclass] ...

Table 3–16 describes these arguments.

Loading a Class
You can use the loadClass query to perform a class-loading test run. This query
attempts to load a specified class using the specified class loader, or using the internal
class loader if none is specified, and reports the result.

The loadClass query is useful for troubleshooting a ClassNotFoundException
error. You can use the query to load classes from different initial loaders and get
reports on the results.

How to Use the loadClass Query in Peek
In Peek, you can use the loadClass query to load a class into an OC4J instance and
view a report on the result.

To use the loadClass Query in Peek:

1. In a Web browser, go to the /peek/ context root:

http://localhost:8888/peek/

2. Type the loadClass query with the name of the class you want to load and any
optional parameters (see Table 3–17).

3. Click go or press Enter.

What Happens When You Use the loadClass Query in Peek
Peek loads the specified class and then displays a report with the class name, defining
class loader, and code source from which the class was loaded. Figure 3–10 shows a
loadClass report.

Table 3–16 ListQueries Query Arguments

Argument Description

-l Optional. If specified, lists full descriptions.

queryclass Optional. If specified, lists each query with a single-line
description. Pass one or more query class names to list only
those queries.

Troubleshooting Class-Loading Problems in OC4J

Utilizing the OC4J Class-Loading Framework 3-35

Figure 3–10 loadClass Query

What You May Need to Know About loadClass
The loadClass query has the following arguments:

[className [loaderName] [-forName] [-depends] [-r] [-sort]

Table 3–17 describes these arguments.

Listing Loaded Classes
The LoadedClasses query lists the names of all loaded classes (if available) in an
OC4J instance.

How to Use the LoadedClasses Query in Peek
in Peek you can specify the LoadedClasses query in the command-line window to
list loaded classes.

To Use the LoadedClasses Query in Peek:
Figure 3–11 shows the output from a LoadedClasses query.

Table 3–17 LoadClass Query Arguments

Argument Description

className Required. The fully qualified name of the class to report on.

loaderName Optional. If specified, attempts to load the class using this class
loader are reported. If not specified, the internal class loader is
used by default.

-forName Optional. The class-loader method to record attempts for. If not
specified, loader.loadClass() is used by default.

-depends Optional. Specify to force the class loader to load and report on
all dependencies of the specified class.

-r Optional. Specify to load all dependencies recursively. Note that
recursion does not include classes in java.* packages.

-sort Optional. Include to sort the list of dependent classes by class
name.

Troubleshooting Class-Loading Problems in OC4J

3-36 Developer's Guide

Figure 3–11 LoadedClasses Query in Peek

What You May Need to Know About LoadedClasses
The LoadedClasses query has no arguments.

Listing the Contents of a Class-Loader Tree
The LoaderTree query reports the contents of the class-loader tree for the specified
root class loader, or for the JRE bootstrap class loader if none specified. By default,
only the names of the class loaders within the tree are reported.

This query is useful if you want to focus on a specific part of the class-loader tree, such
as from the root of a specific application downwards. Peek can also be used to list the
contents of a class-loader tree. See "Viewing a Class-Loader Tree with Peek" later in
this section.

How to List the Contents of a Class-Loader Tree with the LoaderTree Query
For example:

-Doc4j.start.query=LoaderTree(MyApp.root)

To retrieve the entire class-loader tree, do not include a root class-loader name:

-Doc4j.start.query=LoaderTree

What You May Need to Know About LoaderTree
The LoaderTree query has the following arguments:

[[rootLoaderName] [-verbose]

Table 3–18 describes these arguments.

Table 3–18 LoaderTree Query Arguments

Argument Description

rootLoaderName Optional. The root class-loader name. If not specified, reports the
contents of the JRE bootstrap class-loader tree.

Troubleshooting Class-Loading Problems in OC4J

Utilizing the OC4J Class-Loading Framework 3-37

Viewing a Class-Loader Tree with Peek
Peek can be used to report the contents of a class loader tree. In addition, Peek can be
used to "drill-down" all the way to a specific class within a code source and even see a
decompiled stub of the class. The following example demonstrates how to use Peek to
view a class-loader tree and also demonstrates how to view a stub for a specific class.

To query a class-loader tree with peek:

1. From the Peek tool, mouse-over View and select Loaders. The Class-Loader tree
displays as shown below. The figure has been truncated, because the list that is
returned is large.

2. From the tree, select the oc4j:10.1.3 class-loader link. A report of all imported
shared libraries, code sources, and classes displays for the class-loader as shown
below. The figure has been truncated, because the list that is returned is large.

-verbose Optional. Specify to output detailed information. If not
specified, only the names of the class loaders within the tree are
reported.

Table 3–18 (Cont.) LoaderTree Query Arguments

Argument Description

Troubleshooting Class-Loading Problems in OC4J

3-38 Developer's Guide

3. From the report, click the ${oracle.home}/j2ee/home/oc4j.jar code
source link to view all the classes within the JAR. A report of all classes displays as
shown below:

4. From the report, click a class link to see a decompiled stub of the class. For
example, the following stub displays when you click the
oracle/oc4j/loader/boot/BootStrap.class link:

Troubleshooting Class-Loading Problems in OC4J

Utilizing the OC4J Class-Loading Framework 3-39

Listing Packages in Code Sources
The Packages query lists the package names contained within one or more code
sources.

The Packages query has the following arguments:

[loaderName | codeSourcePath]

Table 3–19 describes these arguments.

Monitoring Replication Statistics
The SessionReplicationStats query retrieves statistics for replicated HTTP and
EJB sessions for a given application.

The SessionReplicationStats query has the following argument:

[application name]

Table 3–20 describes this argument.

Listing Installed Shared Libraries and Their Class Loaders
The SharedLibraries query lists all installed shared libraries and the class loaders
that import the libraries.

The SharedLibraries query has the following argument:

[loaderName]

Table 3–21 describes this argument.

Table 3–19 Packages Query Arguments

Argument Description

loaderName Optional. If specified, only code sources within that class loader
are searched.

codeSourcePath Optional. If specified, searches the code source path. Otherwise,
searches all available code sources.

Table 3–20 SharedLibraries Query Argument

Argument Description

application name Optional. The name of an application that is configured for
session replication.

Troubleshooting Class-Loading Problems in OC4J

3-40 Developer's Guide

Listing and Setting System Properties
The SystemProperties query lists or sets system properties.

The SystemProperties query has the following argument:

[key=value] ...

Table 3–22 describes this argument.

Figure 3–12 shows a Peek query that returns all system properties that are currently
set. The figure has been truncated, because the list that is returned is large.

Figure 3–12 System Property Query from Peek

Listing Thread-Pool Information
The ThreadPools query lists information about thread pools for the current JVM.

The ThreadPools query has the following arguments:

(list [sys|req|cx]|pool [sys|req|cx]|state [sys|req|cx][id])

Table 3–23 describes these arguments.

Table 3–21 SharedLibraries Query Argument

Argument Description

loaderName Optional. The name of a class loader. If specified, lists shared
libraries imported by the specified class loader. Otherwise, the
shared libraries imported by all class-loader instances are listed.

Table 3–22 SystemProperties Query Argument

Argument Description

key=value Optional. The name and value of a system property. If specified,
sets the value of the system property. If no key-value pair is
specified, lists the current values of system properties.

Troubleshooting Class-Loading Problems in OC4J

Utilizing the OC4J Class-Loading Framework 3-41

Listing Thread Information
The Threads query lists thread information for the current JVM. For JDK 1.5, checks
for thread deadlocks or gets thread memory usage for the current JVM.

The Threads query has the following arguments:

[list|groups|deadlock|memory]

Table 3–24 describes these arguments.

Finding Unused Code Sources
The UnusedCodeSources query reports code sources that have never retuned any
data.

The UnusedCodeSources query has no arguments.

Determining the Uptime for an OC4J Instance
The Uptime query reports the length of time the current OC4J instance has been
running.

The Uptime query has no arguments.

Monitoring JVM Statistics
The VMStat query lists statistics information for the current JVM.

The VMStat query has the following arguments:

[jps|pid|mem]

Table 3–25 describes these arguments.

Table 3–23 ThreadPools Query Arguments

Argument Description

list [sys|req|cx] If specified, lists all threads in all thread pools or all thread in a
specified thread pool.

pool [sys|req|cx]| If specified, lists all thread pools or details for a specified thread
pool.

state [sys|req|cx]
[id]

If specified, dumps thread state for all thread pools, for a
specified thread pool, or for a specified thread ID.

Table 3–24 Threads Query Arguments

Argument Description

list Optional. If specified, lists all threads for the current JVM.

groups Optional. If specified, lists all thread groups for the current JVM.

deadlocks Optional, for JDK 1.5 only. If specified, checks for thread
deadlocks in the current JVM.

memory Optional, for JDK 1.5 only. If specified, gets thread memory
usage for the current JVM.

Troubleshooting Class-Loading Problems in OC4J

3-42 Developer's Guide

Resolving Class-Loading Exceptions
Most class-loading errors in J2EE often surface as one of a small set of exceptions. The
OC4J class-loading infrastructure provides "annotated" subclasses for each of the
following standard class-loading configuration exceptions:

■ ClassNotFoundException

■ NoClassDefFoundError

■ ClassFormatError

■ LinkageError

■ ClassCastException

The subclasses enhance the output of the getMessage(), printStackTrace(), and
toString() methods with information to help you understand and correct the
configuration. Often, this extra information is all that is needed to fix the problem;
when it isn't, the logging, tracing, and query features can be used to dig further.

For each error, a diagnostic search may be performed to provide additional
information. This search is not restricted by standard loader visibility rules and can
visit any loader or code source known to the system. Results are reported as part of the
error message.

Under some conditions it would be possible for the loader runtime to act on the results
and attempt recovery (such as automatically find and load a missing class). However,
this might lead to further problems that would then be more difficult to diagnose.

ClassNotFoundException
This exception can occur during dynamic loading via any method that explicitly loads
a class by name, such as Class.forName() or ClassLoader.loadClass(). It
indicates that a required class is not visible from the initiating class loader.

How to troubleshoot and resolve
ClassNotFoundException is nearly identical to NoClassDefFoundError. One
important difference is that the initial loader can be selected by the calling code, rather
than by the JVM, and it is relatively easy to get this wrong.

If the Class.forName(String) method is used, the JRE code will select the initial
loader and will always choose the caller's loader. This is rarely correct; it is nearly
always better to explicitly pass the thread context loader:

Thread thread = Thread.currentThread();
ClassLoader loader = thread.getContextClassLoader();
Class cls = loader.loadClass(name);

Calling the loader directly is preferred to using the Class.forName() variant:

Class cls = Class.forName(name, true, loader);

Table 3–25 VMStat Query Arguments

Argument Description

jps Optional. If specified, Lists the running Java processes.

pid Optional. If specified, returns the PID of the current JVM.

mem Optional. If specified, returns memory information about the
current JVM.

Troubleshooting Class-Loading Problems in OC4J

Utilizing the OC4J Class-Loading Framework 3-43

While these two calls both try to load from the specified loader, the direct call is easier
to understand. It also ensures that tracing works as expected, since some VM
implementations of forName() can bypass the loader (only calling the loader if the
class is not already cached—the loader always consults the cache itself, so calling the
loader directly is safe and efficient).

The LoadClass query can be useful to experiment with loading classes from different
initial loaders.

If the correct initial loader was used, then a code source is likely missing in the search
path. See "NoClassDefFoundError" on page 3-43 for more detail.

NoClassDefFoundError
This exception can occur when the VM attempts to resolve a static dependency from
one class to another. It is a type of LinkageError that indicates that the required class is
not visible from the initiating loader. Since static dependency resolution is often
deferred until first use, this error can occur at unexpected times.

Example Error Message
Missing class: acme.Dynamite

Dependent class: acme.RoadRunner
Loader: acme.root:0.0.0
Code-Source: /myapps/acme/acme.jar
Configuration: <ejb> in /myapps/acme/application.xml

The missing class is available from the following locations:

1.Code-Source: /shared/bang/0.0.0/bang.jar (from <code-source>
in j2ee/home/server.xml)

This code-source is available in loader bang:0.0.0. This
shared-library can be imported by the "acme" application.

How to troubleshoot and resolve
Examine the error message. The first line names the missing class. The next four lines
describe the class that has the dependency: its name, the loader that defined it (also the
"initiating" loader, selected by the VM), the code source from which it came, and the
configuration option that caused the code source to be added to that loader.
Subsequent lines describe the result of the diagnostic search, and will likely provide
enough detail to resolve the issue.

Some common conditions reported by the diagnostic search follow, each with specific
suggestions for resolution:

■ The missing class is not present in any code source visible to the system.

This often simply means that another code source must be added (which in turn
may require others). Use the dependent class information to choose the right level
at which to add the configuration, and then select a convenient option (see
Table 3–1, " Configuration Options That Affect Class Visibility"). Consider creating
a new shared library if other applications are likely to need the same classes. Once
created, the new shared library must also be imported.

This result can also mean that an existing code source declaration is invalid. When
a path is encountered that does not point to a valid file or directory, this fact is

Troubleshooting Class-Loading Problems in OC4J

3-44 Developer's Guide

logged, but at a level that is normally masked. To see all messages, start the system
with the following setting:

-Dclass.load.log.level=finest

Look for messages about nonexistent code sources, find the relevant one, and
correct the configuration. There are often may of these messages, so it may be
helpful to direct the output to a file (for example, "loader.log") that can be more
easily searched:

-Dclass.load.log.file=loader.log

■ The missing class is present in a shared library, but that shared library was not
imported.

Import the shared library, either with Application Server Control or by adding an
<import-shared-library> element to the orion-application.xml
deployment descriptor for the application.

■ The missing class is present, but the loader configured to use it is a child of the
initiating loader.

This most often occurs when a class deployed in an application root loader (for
example, an EJB module) has a dependency on a class deployed in a Web module.
Resolving requires either refactoring to eliminate the dependency or moving the
classes into the same loader. Often, the simplest solution is to move such classes
from the Web module up to the application root, but the reverse may also be
possible. See Table 3–1 on page 3-21 for options to add code sources to the root.

Copying rather than moving such classes can lead to a ClassCastException
when the search-local-classes-first option in the Web module is
enabled.

■ The missing class is present, but the loader configured to use it is in an unrelated
application.

An ideal solution in this case is to move the relevant code sources out of the
existing application into a new shared library and reconfigure both applications to
import it. When this is not practical, the code source can be copied into the current
application. While it is possible to use configuration to point directly at the code
source in the other application, this will cause failures if that application is ever
undeployed.

The ClassPath query can be useful for examining code-source search order from
a specific loader:

-Doc4j.start.query="ClassPath(acme.root)+Exit"

The SharedLibraries query can also be used to list all shared libraries and the
loaders that import them.

ClassFormatError
This error can occur when a class is first loaded (during definition). It is a type of
LinkageError, and often indicates that the class was compiled for a different version of
the JVM.

How to troubleshoot and resolve
The error message will specify the version with which the class was compiled, and the
version supported by the current runtime.

Troubleshooting Class-Loading Problems in OC4J

Utilizing the OC4J Class-Loading Framework 3-45

To correct the failure, either switch to the correct version of JVM, or recompile the class
for the current one.

 LinkageError
This error can occur when a class is first loaded (during definition). The more common
LinkageError subtypes are processed as special cases by the OC4J class-loading
framework (see "NoClassDefFoundError" on page 3-43 and "ClassFormatError" on
page 3-44. The remaining cases generally indicate one of the following problems:

■ The version of a class used at compile time does not match the version found at
runtime.

■ A native library is required but cannot be found.

The error message will specify the actual failure, and will also provide the name,
defining loader, code source, and configuration for two different classes: the one that
failed during definition, and the class that has the dependency that caused the
definition to occur.

If the message indicates a version mismatch of some sort, such as
NoSuchMethodError, source level changes and recompilation will be required to
resolve the failure. Frequently, the mismatch occurs between a superclass or interface
and a subclass, and should be relatively easy to discern.

An UnsatisfiedLinkError means that a native library could not be found.
Generally, OC4J only supports configuring native libraries within RAR modules (see
Table 3–1, " Configuration Options That Affect Class Visibility" on page 3-21). If the
library is specified within a RAR, it may be an invalid path. See
"NoClassDefFoundError" on page 3-43 for a discussion of using the
class.load.log.level property to detect this case.

ClassCastException
This exception usually occurs for obvious reasons, such as:

Object source = new Integer(0);
String target = (String) source; // Exception

However, this exception can also be related to class loading. Unfortunately the error
message created by the VM is normally empty, and even when this exception is
loading related, it cannot be intercepted and annotated.

When more than one loader defines a class with the same name, a cast between the
two types will fail with a ClassCastException:

import com.acme.Foo;
...
// Get the loader that resolves our static dependency
// on class Foo

ClassLoader expected = Foo.class.getClassLoader();

// Dynamically load Foo from another loader and
// create an instance

Class fooClass = aLoader.loadClass("com.acme.Foo");
Object source = fooClass.newInstance();
ClassLoader actual = fooClass.getClassLoader();

// Compare and cast

Troubleshooting Class-Loading Problems in OC4J

3-46 Developer's Guide

System.out.println(actual == expected); // "false"
Foo target = (Foo) source; // Exception

In this case, the loader instances are different, and so the JVM considers the two classes
to be unrelated.

A relatively common example of this problem happens within a single application
when an EJB interface is packaged both in the EJB module and in a Web module that
uses the EJB module. If the search-local-classes-first option is enabled for
the Web module, the EJB classes will be loaded twice.

First, determine the target type of the cast by looking at the code described at the top
of the stack trace. If the cast is to a primitive type (such as int or long) or to a class
defined by the JRE (for example, String, HashMap, or any other java.* class), then it is
almost certainly not related to class loading and is a (usually simple) developer error.

Next, use tracing to see definition(s) of the target class. For example, if the target of the
cast is com.acme.Foo, use:

-Dclass.load.log=class-defined:com.acme.Foo

The output will describe the loader and the code source from which the class is
defined. If there is only one, then the problem is unlikely to be related to class loading
(though it is still possible if custom class loaders are in use because they do not
participate in tracing).

If there is more than one definition of the target class, then it is very likely that they are
coming into contact and causing the exception. If the trace messages list the same code
source for both definitions, then it is being shared across loaders and should be easy to
re-arrange.

However, it is far more common that the code sources will be different, perhaps
because classes were repackaged for convenience (nearly always a bad idea), or
because they are different versions. If one of the loaders is from a Web module,
disabling search-local-classes-first may be sufficient.

If the code can be instrumented, duplication can be confirmed by adding code just
before the cast (where obj is the object being cast):

ClassLoader expected = Foo.class.getClassLoader();
System.out.println("Expected: " + expected);
ClassLoader actual = obj.getClass().getClassLoader();
System.out.println(" Actual: " + actual);

The output should agree with the loaders named in the tracing messages. If obj is a
subclass of the expected type, then walking the hierarchy with
Class.getSupertype() may be required.

If duplication is confirmed as the cause, every duplicate class must be eliminated. This
can be accomplished by arranging for the class to be shared; either move the class to a
common parent of the two loaders or to a shared library. To help determine which
loader should continue to load the class, it might be helpful to see the call stack at the
point of each class definition:

-Dclass.load.log=class-defined:com.acme.Foo+stack

It might also be useful to see the relationships between loaders using the LoaderTree
query:

-Doc4j.start.query=LoaderTree

Troubleshooting Class-Loading Problems in OC4J

Utilizing the OC4J Class-Loading Framework 3-47

Queries can also be executed on a running instance using the System MBean Browser
in Application Server Control. The -verbose option can be used with this query to
see lots of detail:

-Doc4j.start.query="LoaderTree(-verbose)+Exit"

The DuplicateClasses query can also be used to search for potential duplicates
(same class name in different code sources).

Tracing Class-Loading Events to Help Troubleshoot Issues
OC4J provides the class.load.log system property that can be set to trace class
loading, class-loader life cycle, and code-source life-cycle events. The tracing output
generated can be extremely useful in troubleshooting issues related to class loading.

The class.load.log property is set at OC4J startup. The syntax follows:

class.load.log=<event>[[:<string-filter>[,<string-filter>]] |
 [~<pattern-filter>]]

■ <event> is the event to trace. See Table 3–26 on page 3-48 for valid values.

Multiple event values can be strung together with a + character.

-Dclass.load.log=class+loader

■ <string-filter> is a filter applied to manage trace output. Note that a colon
(:) separates the initial filter from the event. See "Using Filters to Manage Trace
Output" on page 3-49 for details on the types of filters that can be applied to
manage trace output.

Multiple filters can be separated by a comma:

-Dclass.load.log=class:com.acme.Foo,com.acme.Bar

■ <pattern-filter> is a single filter that is interpreted as a regular expression.
Note that a ~ character precedes the filter.

Note: This feature is subject to change in future releases of OC4J.

Notes:

■ System properties must be prefaced on the command line with a
-D. For example:

java -Dclass.load.log=loader -jar oc4j.jar

■ In a standalone OC4J configuration, system properties are set
directly on the oc4j.jar command line, as shown in the
preceding example.

■ In an Oracle Application Server configuration, system properties
are set in the <data> element where the id attribute is
"java-options" in the opmn.xml file for the OC4J instance.
For example:

<data id="java-options" value="-Dejb3=true
 -Dclass.load.log=class+loader"/>

Troubleshooting Class-Loading Problems in OC4J

3-48 Developer's Guide

Trace output is written to the console by default, but can be written to a file specified
using the class.load.log.file system property. For example:

java -Dclass.load.log.file=C:\logs\logfile.txt -jar oc4j.jar

Table 3–26 class.load.log System Property Values

Value Description

all Activate all tracing modes. Note that setting this value may
slightly impact OC4J performance, due to the volume of
output.

none Disable all tracing modes.

class Trace all class-loading search events.

class-defined Trace all events in which the specified class is initially loaded
by a class loader. The object is then cached for subsequent use
by class loaders.

class-found Trace all search events where the specified class was found.

class-not-found Trace all search events where the specified class was not found.

code-source Trace all code source life cycle events.

code-source-create Trace events where a code source object is first initialized. Only
one instance of a code source is created in memory; this object
is then shared by all class loaders that need it.

code-source-dependency Trace events for all code sources where extension dependencies
declared in the MANIFEST.MF file packaged within the archive
were found or not found.

code-source-dependency-satisfied Trace events for all code sources where all extension
dependencies declared in the MANIFEST.MF file packaged
within the archive were found.

code-source-dependency-not-satisfied Trace events for all code sources where all extension
dependencies declared in the MANIFEST.MF file packaged
within the archive were not found.

code-source-manifest Trace events for all code sources where a MANIFEST.MF file is
packaged within the archive and any class paths, extension
declarations, etc. are being processed.

code-source-state Trace events for two the following code source states:

■ Open: Code source is actively being searched for or used
by a class loader.

■ Closed: Code source is not currently being used by a class
loader and is basically in a passivated state.

code-source-destroy Trace events where a code source object is being destroyed.

loader Trace all class-loader life-cycle events.

loader-create Trace class-loader object-instantiation events.

loader-commit Trace events where a class-loader object has been created and
populated with classes from code sources.

loader-finalize Trace events where the finalize() method has been called
on a class-loader object and the object is no longer accessible.

loader-close Trace events where a class-loader object is in the process of
being garbage collected by the JVM.

loader-destroy Trace events where a class-loader object is being destroyed.

Troubleshooting Class-Loading Problems in OC4J

Utilizing the OC4J Class-Loading Framework 3-49

Using Filters to Manage Trace Output
The class.load.log system property supports the use of filters to make event
tracing output more manageable. The syntax is as follows. Note that a colon (:)
separates the initial filter from the event to trace:

<event>[[:<string-filter>[,<string-filter>]] | [~<pattern-filter>]]

Table 3–27 describes the supported event filter types.

resource Trace all resource search events.

resource-found Trace all resource search events where the resource was found.

resource-not-found Trace all resource search events where the resource was not
found.

stack Add a stack trace to all events.

help or ? Print the help text to the console.

Table 3–27 Supported Trace Output Filters

Event Supported Filters

class ■ Exact match

Specify the fully qualified name of the class to trace events for.
The following example will only trace loading of the
com.acme.Dynamite class:

-Dclass.load.log=class:com.acme.Dynamite

■ Prefix or suffix match

Use a leading or trailing asterisk (*) to treat the string as a prefix
or suffix. For example:

-Dclass.load.log=class:com.acme.*
-Dclass.load.log=code-source:*foo.jar

■ Regular expression match

Use a tilde (~) to treat the string as a regular expression. The .*
syntax indicates that any number of characters can match the
expression.

The following example will trace class-loading events for class
names containing "util":

-Dclass.load.log=class~.*util.*

■ Class loader match

Begin the filter string with loader. to treat the remainder of the
string as a class-loader name.

The following example will trace loading only of classes
performed by the api class loader, the default parent of all
application-specific class loaders:

-Dclass.load.log=class:loader.api

Table 3–26 (Cont.) class.load.log System Property Values

Value Description

Troubleshooting Class-Loading Problems in OC4J

3-50 Developer's Guide

code-source ■ Full path

Specify the full path for the code source to trace events for. For
example:

-Dclass.load.log=code-source:/C:/oc4j/xdk/lib

■ Partial path

Use a leading or trailing asterisk (*) to treat the string as a prefix
or suffix. This example will trace loading only of classes in the
com.acme package:

-Dclass.load.log=code-source:*/acme.jar
-Dclass.load.log=code-source:/C:/oc4j/*

■ Regular expression match

Use a tilde (~) to treat the string as a regular expression. The .*
syntax indicates that any number of characters can match the
expression.

The following example will trace code-source-create events
for the "foo" application:

-Dclass.load.log=code-source-create~.*/foo/.*

loader ■ Exact match

Specify the complete name (name.name:version) of the class
loader to trace events for. For example:

-Dclass.load.log=loader:oracle.jdbc:10.1.0_2

■ Suffix match

Use a trailing asterisk (*) to treat the string as a suffix. For
example:

-Dclass.load.log=loader:oracle.jdbc:*

■ Regular expression match

Use a tilde (~) to treat the string as a regular expression. The .*
syntax indicates that any number of characters can match the
expression.

The following example will trace create events for application
root class loaders:

-Dclass.load.log=loader-create~.*root.*

Table 3–27 (Cont.) Supported Trace Output Filters

Event Supported Filters

Troubleshooting Class-Loading Problems in OC4J

Utilizing the OC4J Class-Loading Framework 3-51

Setting Class-Loader Log Levels
By default, the class-loader logger messages are filtered at the CONFIG Java log level. If
necessary, you can use the class.load.log.level system property to change the
log level. Table 3–28 lists the values that can be set on this property.

For example, to set the log level to SEVERE:

-Dclass.load.log.level=severe

Note that tracing-related messages are written at the INFO log level. As a result, avoid
setting the log level above INFO, such as to WARNING, to prevent these messages from
being filtered from the logger output.

resource ■ Full path

Specify the full path for the resource. For example:

-Dclass.load.log=resource:META-INF/services/
 javax.xml.parsers.DocumentBuilderFactory.

■ Partial path

Use a leading or trailing asterisk (*) to treat the string as a prefix
or suffix. For example:

-Dclass.load.log=resource:*Messages_en.properties
-Dclass.load.log=resource: oracle/oc4j/admin/jmx/model/*

■ Regular expression match

Use a tilde (~) to treat the string as a regular expression. The .*
syntax indicates that any number of characters can match the
expression.

The following example will trace all resource searches for
property files with "security" in the path:

-Dclass.load.log=resource~.*security.*properties

Table 3–28 class.load.log.level System Property Values

Value Description

all Output all log messages.

severe Output messages at the SEVERE level only.

warning Output messages at the WARNING level or above.

info Output messages at the INFO level or above. If the log level is set below info,
for example, to finer, trace output will be filtered from the logger output.

config Output messages at the CONFIG level or above. This is the default log level.

fine Output messages at the FINE level or above.

finer Output messages at the FINER level or above.

finest Output messages at the FINEST level or above.

off Suppress all logging messages.

Table 3–27 (Cont.) Supported Trace Output Filters

Event Supported Filters

Troubleshooting Class-Loading Problems in OC4J

3-52 Developer's Guide

4

Logging Implementation Guidelines 4-1

4 Logging Implementation Guidelines

This chapter discusses the Oracle guidelines for implementing logging functionality in
applications that will be deployed to OC4J. It enables applications that use the
standard Java logging framework to integrate Java logging with Oracle Diagnostic
Logging (ODL) and take advantage of log analysis tools provided by Oracle, as the
following topics describe:

■ Overview of the Java and Oracle Logging Frameworks

■ Java Logging Guidelines

■ Configuring Java Loggers to Use the ODL Framework

■ Using Oracle HTTPClient Logging

For information on logging configuration and usage in OC4J, see the Oracle Containers
for J2EE Configuration and Administration Guide.

Overview of the Java and Oracle Logging Frameworks
The Java and Oracle logging frameworks are integrated to enable Java log output to be
generated in Oracle format.

The Java Logging Framework
The Java logging framework, introduced in JDK 1.4, provides extensive logging APIs
through the java.util.logging package. For an overview of the
java.util.logging package, visit
http://java.sun.com/j2se/1.4.2/docs/api/overview-summary.html.

For an overview of the Java logging framework, visit Sun’s site on the subject at
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.
html.

The Oracle Diagnostic Logging Framework
The Oracle Diagnostic Logging framework, or ODL, provides plug-in components
that complement the standard Java framework to automatically integrate log data with
Oracle log analysis tools. In the ODL framework, log files are formatted in XML,
enabling them to be more easily parsed and reused by other Oracle Application Server
and custom-developed components.

The ODL framework provides support for managing log files, including log file
rotation. The maximum log file size and the maximum size of log directories can also
be defined.

Java Logging Guidelines

4-2 Developer’s Guide

ODL-formatted log files can be viewed through the Web-based Oracle Enterprise
Manager 10g Application Server Control, enabling administrators to aggregate and
view the logging output generated by all components and applications running within
Oracle Application Server from one centralized location. For information about
viewing log files generated by an OC4J instance, see the Oracle Containers for J2EE
Configuration and Administration Guide.

How Java Logging and Oracle Diagnostic Logging Work Together
In the Java logging framework, applications record events by making calls on Logger
objects, which are instances of the java.util.logging.Logger class. A logger is a
named entity that is associated with a system or application component. Each logger is
assigned a specific log level and records events only at that level of severity or higher.

Logging messages are forwarded to a Handler object, which can in turn forward the
messages to a variety of destinations for publication. The
oracle.core.ojdl.logging package includes a handler class, ODLHandler,
which generates the logger output in XML-based ODL format.

Java Logging Guidelines
The following topics provide guidelines for implementing Java loggers that will
integrate with the Oracle Diagnostic Logging framework.

Naming Java Loggers
Java loggers are named entities, named using a hierarchical, dot-separated namespace.
The Logger namespace is global, and is shared by all applications running within
OC4J. As such, ensure that each logger name is unique to avoid potential naming
conflicts.

Each logger name should include the vendor name and component name, and
optionally include the module or submodule. Use the following convention for logger
names:

vendorName.componentName[.moduleName][.subModuleName]

For example:

acme.mycomponent.mymodule

Setting Log Levels
In the Java logging framework, log levels are represented by objects of the
java.util.logging.Level class. This class defines seven standard log levels,
ranging from SEVERE (the highest priority, with the highest value) to FINEST (the
lowest priority, with the lowest value).

Your applications should utilize these predefined Java log levels, which Oracle
diagnostic tools provided as part of OC4J map to Oracle Diagnostic Logging (ODL)
message types and levels.

Table 4–1 illustrates the mapping between the predefined Java log levels and ODL
message types and levels. The ODL log levels are between 1 and 32, with a lower
value indicating a higher severity or less volume of information.

Configuring Java Loggers to Use the ODL Framework

Logging Implementation Guidelines 4-3

The Oracle diagnostic tools provide some flexibility to accommodate custom log levels
implemented with applications. However, containing log levels to the seven default
Java levels (SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST) is
recommended.

Adding Localization Support
Each Logger object can optionally have an associated ResourceBundle object which
is used to localize log message strings.

If a logger does not have an associated ResourceBundle, it will inherit the
ResourceBundle name from its parent according to the classic class-loader hierarchy,
recursively up the tree.

Configuring Java Loggers to Use the ODL Framework
Enabling Java loggers to output log messages in the ODL format is accomplished by
mapping each logger to ODLHandler. This mapping is managed through a logging
configuration file, j2ee-logging.xml, which is generated by OC4J in the ORACLE_
HOME/j2ee/instance/config directory.

To set the log levels for loggers with Application Server Control:
1. On the OC4J Home page, click Administration.

Table 4–1 Mapping Between Java Log Levels and ODL Message Types and Log Levels

Java Log Level ODL Message Type:Log Level ODL Description

SEVERE.intValue()+100 INTERNAL_ERROR:1 The program has experienced an
error for some internal or
unexpected nonrecoverable
exception.

SEVERE ERROR:1 A problem requiring attention
from the system administrator
has occurred.

WARNING WARNING:1 An action occurred or a
condition was discovered that
should be reviewed and may
require action before an error
occurs.

INFO NOTIFICATION:1 A report of a normal action or
event. This could be a user
operation, such as "login
completed" or an automatic
operation such as a log file
rotation.

CONFIG NOTIFICATION:16 A configuration-related message
or problem.

FINE TRACE:1 A trace or debug message used
for debugging or performance
monitoring. Typically contains
detailed event data.

FINER TRACE:16 A fairly detailed trace or debug
message.

FINEST TRACE:32 A highly detailed trace or debug
message.

Configuring Java Loggers to Use the ODL Framework

4-4 Developer’s Guide

2. From the administration tasks, select Logger Configuration to display the
Logger Configuration page.

3. Click Expand All to view the entire list of loggers currently loaded for the OC4J
instance.

4. Select a log level for any of the loggers listed on the page.

You can also edit the j2ee-logging.xml configuration file by hand. Restart OC4J
after making any changes to this file.

This configuration file contains two elements within the
<logging-configuration> root element:

■ <log_handlers>

This element defines one or more handlers within OC4J. It includes one or more
<log_handler> elements, each defining the name of a handler and the class that
generates instances of it. By default, this element includes <log_handler>
elements defining three different log handlers:

– oc4j-handler

This is the log handler for the oracle logger.

– oracle-webservices-management-auditing-handler

This is the log handler for the
oracle.webservices.management.auditing logger.

– oracle-webservices-management-logging-handler

This is the log handler for the
oracle.webservices.management.logging logger.

The name of the handler is used only within a <logger> element (described in
the following text) to assign the handler to a logger.

The handler class can be either a subclass of java.util.logging.Handler or a
class that implements a HandlerFactory interface. If the class is a
java.util.logging.Handler subclass, the default constructor for that class
will be used to create a handler instance.

If the class implements the HandlerFactory interface, additional configuration
properties for the handler can be specified. The only available HandlerFactory
class is oracle.core.ojdl.logging.ODLHandlerFactory, which can be
used to configure an ODLHandler instance.

The ODLHandlerFactory class accepts the following properties, each specified
in a <property> subelement:

– path: Specifies the directory in which the handler will generate log files. In
the case of ODLHander, the directory specified is the destination for all
ODL-formatted logs. Do not modify this value.

– maxFileSize: Sets the maximum size, in kilobytes (KB) for any log file in the
directory. When a file reaches this limit, a new file is generated.

– maxLogSize: Sets the maximum size, in megabytes (MB), allowed for the log
file directory. When this limit is exceeded, log files are purged, beginning with
the oldest files.

■ <loggers>

Using Oracle HTTPClient Logging

Logging Implementation Guidelines 4-5

This element defines the mapping between each named logger and the specific
handler that will process its messages, including ODLHandler. Each mapping is
defined within a <logger> element, which includes the following:

– name: The logger name.

– level: The minimum log level that this logger acts upon. This level can be
either a Java log level (FINE) or an ODL Message Type:Log Level (TRACE:1).

– useParentHandlers: Indicates whether or not the logger should use its
parent handlers. This value is true by default.

– <handler>: The name of a handler to use, as defined in a <log_handler>
element. Only handlers defined within a <log_handler> element can be
specified.

The following example shows the definition of ODLHandler and the mapping of the
default oracle and custom acme.scheduler loggers to ODLHandler within
j2ee-logging.xml.

<logging_configuration>
 <log_handlers>
 <log_handler name='oc4j-handler'
 class='oracle.core.ojdl.logging.ODLHandlerFactory'>
 <property name='path' value='%ORACLE_HOME%/j2ee/log/oc4j'/>
 <property name='maxFileSize' value='10485760'/>
 <property name='maxLogSize' value='104857600'/>
 </log_handler>
 </log_handlers>
 <loggers>
 <logger name='oracle' level='NOTIFICATION:1' useParentHandlers='false'>
 <handler name='oc4j-handler'/>
 </logger>
 <logger name='acme.scheduler' level='TRACE:1' useParentHandlers='false'>
 <handler name='oc4j-handler'/>
 </logger>
 </loggers>
</logging_configuration>

Using Oracle HTTPClient Logging
Oracle HTTPClient, installed as the oracle.http.client:10.1.3 system library,
logs activity during setup and communications. HTTPClient version 10.1.3 or later
uses the standard JDK logging API (java.util.logging). The HTTPClient root
logger is HTTPClient.

You can enable, disable, and control HTTPClient logging in standalone OC4J or in an
OC4J instance or group with any of these features:

■ The Oracle Diagnostic Logging (ODL) framework

ODL works with the Java logging framework to integrate log data with Oracle log
analysis tools. Using the ODL framework, you can enable HTTPClient logging in
the j2ee-logging.xml configuration file. For information about this file, see
"Configuring Java Loggers to Use the ODL Framework" on page 4-3 For
information about how ODL works with the Java logging framework, see
"Overview of the Java and Oracle Logging Frameworks" on page 4-1.

■ The HTTPClient.log.level system property

This system property enables or disables HTTPClient logging with a
java.util.logging.Level value. HTTPClient uses only the trace portion of

Using Oracle HTTPClient Logging

4-6 Developer’s Guide

the JDK logging levels because it is a utility library and is unaware of the
application context within which an error occurs. It does not use the SEVERE,
WARNING, and INFO logging levels, which are reserved for applications.

■ The Java logging framework

By default, HTTPClient logging is controlled by the JDK java.util.logging
properties specified at JVM startup. This is described in the Javadoc output for
java.util.logging.LogManager. Usually, the JDK logging properties are
configured in the JRE-directory/lib/logging.properties file.

For information about the java.util.logging, package, see "The Java Logging
Framework" on page 4-1.

Also, you can redirect HTTPClient messages to the OC4J log. For information about
how to do this, see "Viewing Application Messages in the OC4J Log with LogViewer"
in Oracle Containers for J2EE Configuration and Administration Guide.

Enabling HTTPClient Logging with the ODL Framework
You can enable HTTPClient Logging in the j2ee-logging.xml configuration file,
using the ODL framework. For information about this file, see"Configuring Java
Loggers to Use the ODL Framework" on page 4-3.

To enable HTTPClient logging with the ODL framework:
1. Edit thej2ee-logging.xml logging configuration file for standalone OC4J or an

OC4J instance or group.

2. Map the HTTPClient logger to ODLHandler, like this:

<logging_configuration>
 <log_handlers>
 <log_handler name='oc4j-handler'
 class='oracle.core.ojdl.logging.ODLHandlerFactory'>
 <property name='path' value='%ORACLE_HOME%/j2ee/log/oc4j'/>
 <property name='maxFileSize' value='10485760'/>
 <property name='maxLogSize' value='104857600'/>
 </log_handler>
 </log_handlers>
 <loggers>
 <logger name='oracle' level='NOTIFICATION:1' useParentHandlers='false'>
 <handler name='oc4j-handler'/>
 </logger>
 <logger name='HTTPClient' level='TRACE:1' useParentHandlers='false'>
 <handler name='oc4j-handler'/>
 </logger>
 </loggers>
</logging_configuration>

3. Save the j2ee-logging.xml file.

4. Restart OC4J.

To disable HTTPClient logging with the ODL framework:
1. Edit thej2ee-logging.xml logging configuration file for standalone OC4J or an

OC4J instance or group.

2. Delete the following HTTPClient logger mapping to ODLHandler from the file:

 <logger name='HTTPClient' level='TRACE:1' useParentHandlers='false'>
 <handler name='oc4j-handler'/>

Using Oracle HTTPClient Logging

Logging Implementation Guidelines 4-7

 </logger>

3. Save the j2ee-logging.xml file.

4. Restart OC4J.

Enabling HTTPClient Logging for Standalone OC4J or a Client-Side Application with a
System Property

You can enable HTTPClient logging for standalone OC4J or client-side applications by
setting HTTPClient.log.level to any of these standard trace log levels:

CONFIG
FINE
FINER
FINEST
ALL

For information about these log levels and how they map to ODL message types and
log levels, see "Setting Log Levels" on page 4-2.

For information how to set log levels in Application Server Control, see "Configuring
Java Loggers to Use the ODL Framework" on page 4-3.

You can disable HTTPClient logging by setting the HTTPClient.log.level to OFF.

Enabling HTTPClient Logging for an OC4J Instance or Group in Oracle Application
Server with a System Property

HTTPClient logging for an OC4J instance or group in Oracle Application Server is the
same as for standalone OC4J, except that you have the option of setting Java system
properties in the Oracle Process Manager and Notification Server (OPMN)
configuration file, opmn.xml. Also, HTTPClient logging is directed to system out,
which is written to one of the Oracle Application Server logs.

To enable HTTPClient logging for an OC4J instance or group in Oracle
Application Server with a system property:
1. Open the ORACLE_HOME/opmn/conf/opmn.xml file.

2. Search for the <process-type> element in which the value of the id attribute
matches the name of the OC4J instance or group where you want to enable
HTTPClient logging; for example:

<process-type id="OC4J_Portal" module-id="OC4J">
 <environment>
 <variable id="DISPLAY" value="localhost:0"/>
 <variable id="LD_LIBRARY_PATH" value="/private1/iasinst/OraHome_4/lib32:
 /private1/iasinst/OraHome_4/lib:/private1/iasinst/OraHome_4/network/lib:
 /private1/iasinst/OraHome_4/jdk/jre/lib/sparc"/>
 </environment>
 <module-data>
 <category id="start-parameters">
 <data id="java-options" value="-server
 -Djava.security.policy=/private1/iasinst/OraHome_4/j2ee/OC4J_
Portal/config/java2.policy
 -Djava.awt.headless=true -Xmx256m "/>

Using Oracle HTTPClient Logging

4-8 Developer’s Guide

3. Set the system property to enable HTTPClient logging in the value attribute of
the <data> element in which the value of the id attribute is java-options,
under the <category> element start-parameters, like this:

 <category id="start-parameters">
 <data id="java-options" value="-server
 -Djava.security.policy=/private1/iasinst/OraHome_4/j2ee/OC4J_
Portal/config/java2.policy
 -Djava.awt.headless=true -Xmx256m
 -DHTTPClient.log.level=FINE />

4. Start the OC4J instance or group.

5. Review the HTTPClient log where Oracle Application Server writes to standard
out.

This log might be in ORACLE_HOME/opmn/logs/instance_default_1.

To disable HTTPClient logging for an OC4J instance or group in Oracle
Application Server with a system property:
1. Open the ORACLE_HOME/opmn/conf/opmn.xml file.

2. Search for the <process-type> element in which the value of the id attribute
matches the name of the OC4J instance or group where you want to disable
HTTPClient logging.:

3. Set the HTTPClient.log.level system property to OFF in the value attribute
of the <data> element in which the value of the id attribute is java-options,
under the <category> element start-parameters, like this:

 <category id="start-parameters">
 <data id="java-options" value="-server
 -Djava.security.policy=/private1/iasinst/OraHome_4/j2ee/OC4J_
Portal/config/java2.policy
 -Djava.awt.headless=true -Xmx256m
 -DHTTPClient.log.level=OFF>

4. Start the OC4J instance or group.

5

Using MBeans for Management 5-1

5 Using MBeans for Management

This chapter provides instructions for using Java Management Extensions (JMX)
MBeans that are registered in OC4J. This chapter covers OC4J-provided MBeans as
well as instructions for creating application-specific MBeans and registering them with
OC4J. The following sections are included in this chapter:

■ Overview of MBeans

■ Accessing MBeans from Within Application Server Control

■ Accessing MBeans From a Client Application

■ MBean Usage Examples

■ Providing Application-Specific MBeans

This chapter includes information about JMX MBeans and the JMX API and is not
intended to replace the formal JMX documentation. For detailed JMX documentation,
refer to the JMX page at Sun’s Web Site:

 http://java.sun.com/javase/6/docs/technotes/guides/jmx/
index.html

Overview of MBeans
An MBean, or managed bean, is a Java object that represents a manageable resource in a
distributed environment, such as an application, a service, a component or a device.
OC4J includes many pre-built MBeans that are used to manage and monitor OC4J. In
addition, application-specific MBeans can be created and deployed within an
application to help manage the application. MBeans allow resources to be managed
and monitored through an MBean client, such as Oracle Enterprise Manager 10g
Application Server Control, Java Monitoring and Management Console (JConsole), or
any custom MBean client.

J2EE-related MBeans are defined in the J2EE Management Specification (JSR-77), which
is part of the J2EE 1.4 specification as published by Sun Microsystems. This JSR defines
a set of managed objects and associated functionality that must be supported by
J2EE-compliant containers. OC4J is fully compliant with JSR-77. For more on JSR-77,
visit the Java Community Process site at:

http://jcp.org/en/jsr/detail?id=77.

An MBean has a management interface that is exposed to enable a management client
to manage a resource. The interface is composed of attributes, operations, and
notifications:

Accessing MBeans from Within Application Server Control

5-2 Developer's Guide

■ Attributes, name and value pairs of any type that a management client can get or
set. Attributes are analogous to properties set on a an Enterprise JavaBeans (EJB)
module.

■ Operations, methods with any signature and any return type that a client can
invoke.

■ Notifications that can be generated when specific events occur.

The actual management functionality is provided by the OC4J MBean Server, which
runs as a service within OC4J. The MBean server is able to discover, instantiate, and
access MBeans, including any MBeans that are supplied with an application. Methods
called on the MBean server access MBean attributes and operations and control MBean
instances.

Accessing MBeans from Within Application Server Control
Oracle Enterprise Manager 10g Application Server Control exposes both OC4J MBeans
as well as application-specific MBeans. The console can be used to view MBean
information, view MBean attributes, and invoke MBean operations.

Accessing OC4J MBeans Using the System MBean Browser
The System MBean Browser is a component of Oracle Enterprise Manager 10g
Application Server Control and is relatively simple to use. The browser allows you to
view and use all OC4J MBeans. For more information on using the System MBean
Browser, see "Using MBeans in OC4J" in the Oracle Containers for J2EE Configuration and
Administration Guide.

To access OC4J MBeans using the System MBean Browser:

1. Launch Application Server Control.

2. Click the Administration link.

3. Click the System MBean Browser Go to Task icon.

4. Specific MBean instances are accessed through the navigation pane to the left of
the console. Expand a node in the navigation pane and drill down to the MBean
you want to access.

5. Click the Attributes tab in the right-hand pane to access the selected MBean's
attributes. If you modify any attribute values, click the Apply button to apply
your changes to the OC4J runtime.

6. Click the Operations tab to access the MBean's operations. After selecting a
specific operation, click the Invoke button to call it.

Accessing Cluster MBeans Using the Cluster MBean Browser
The Cluster MBean Browser is a component of Oracle Enterprise Manager 10g
Application Server Control and is very similar to the System MBean Browser for a
standalone OC4J instance. The browser allows you to view and use all cluster MBeans.
Cluster MBeans allow you to view attributes and perform operations on a group of
OC4J instances. The Cluster MBean Browser is only available when using OracleAS.

Note: The Apply button will be visible only if the browser page
contains at least one attribute with a modifiable value.

Accessing MBeans From a Client Application

Using MBeans for Management 5-3

To access cluster MBeans using the Cluster MBean Browser:

1. Launch Application Server Control. The Cluster Topology page displays.

2. Click Cluster MBean Browser at the bottom of the page. The Cluster MBean
Browser page displays.

3. Specific MBean instances are accessed through the navigation pane to the left of
the console. Expand a node in the navigation pane and drill down to the MBean
you want to access.

4. Click the Attributes tab in the right-hand pane to access the selected MBean's
attributes. If you modify any attribute values, click the Apply button to apply
your changes to the OC4J runtime.

5. Click the Operations tab to access the MBean's operations. After selecting a
specific operation, click the Invoke button to call it.

Accessing Application-Specific MBeans
Vendor-supplied MBeans deployed with a J2EE application to OC4J can be accessed
through the application's home page in Application Server Control. You can view and
set attributes and invoke operations on application-specific MBeans, just as you can
with the OC4J system MBeans. For more information on packaging MBeans within an
application and registering the MBeans with OC4J see "Providing Application-Specific
MBeans" on page 5-27.

To access application-specific MBeans:

1. From the Application Server Control home page, click the Applications.

2. Click the name of the application to which the MBeans belong. The home page for
the application displays.

3. Click the Application Defined MBeans link. The MBeans defined by the
application are listed on the page displayed.

4. Click the Attributes tab in the right-hand pane to access the selected MBean's
attributes. If you modify any attribute values, click the Apply button to apply
your changes to the OC4J runtime.

5. Click the Operations tab to access the MBean's operations. After selecting a
specific operation, click the Invoke button to call it.

Accessing MBeans From a Client Application
Application MBeans can be managed remotely by accessing the remote OC4J
MBeanServer through JSR-160 compliant code. JSR-160 is a standard API for
connecting to remote JMX-enabled applications using RMI. This is also known as JMX
remoting. You can also use the Management EJB API. The following topics are included
in this section:

Note: The Apply button will be visible only if the browser page
contains at least one attribute with a modifiable value.

Note: The Apply button will only be visible if the browser page
contains at least one attribute with a modifiable value.

Accessing MBeans From a Client Application

5-4 Developer's Guide

■ Prerequisite: Add User to Security Group

■ Remote Management Using the JMX Remote API (JSR-160)

■ Remote Management Using the Management EJB (JSR-77)

Prerequisite: Add User to Security Group
Users that are assigned to the oc4j-administrators security group are able to
access any MBeans that are registered within OC4J. To constrain access to an
application’s MBeans, the user must be added to the oc4j-app-administrators
security group. Users can be added to groups using either the JAZN Admintool or the
Web-based Application Server Control.

The oc4j-app-administrators security group must have permission to login and
invoke methods on the remote OC4J process. The group must also have namespace
read access on the server.

See the Oracle Containers for J2EE Security Guide for detailed instructions on adding
users to security groups.

Remote Management Using the JMX Remote API (JSR-160)
The JMX Remote API (JSR-160) provides a client with the ability to use MBeans
remotely. In fact, it offers a number of advantages over using the MEJB defined by
JSR-77, making it the preferred method for remote management:

■ More of the MBeanServer functionality is available than is exposed through the
MEJB.

■ Compliant code can easily be migrated to use new connection protocols as they
become available.

■ The OC4J JMXConnector implementation supports localization and HTTP
tunneling, which enables clients to communicate with an MBeanServer across
firewalls.

Note that ORMI over SSL, ORMIS, is also supported. See the Oracle Containers
for J2EE Security Guide for detailed instructions on adding users to security
groups.

■ The JMXConnector also allows the connection state to be monitored.

■ You can use the OC4J admin_client.jar tool through the Oracle JMX Remote
API to manage an OC4J instance in an Oracle Application Server environment or a
standalone OC4J server.

For information about admin_client.jar, what package you can use, and the
client-side libraries you need to specify, see the Oracle Containers for J2EE
Configuration and Administration Guide.

Because OC4J uses ORMI, and not JRMP, the Oracle JMX Remote API implementation
is not compatible with other JSR-160 implementations.

The JMX Remote API defines a standard connector that provides Java clients with
remote access to an MBeanServer via the RMI protocol. In the OC4J implementation,
the connector is attached to the OC4J MBeanServer. Actual management is through a
proxy; for each method called on the proxy instance, a corresponding method is to be
called on the remote MBeanServer.

The following discussions explain how the API can be used:

■ Connecting to the OC4J MBeanServer

Accessing MBeans From a Client Application

Using MBeans for Management 5-5

■ Connecting to an Application-Specific MBean Server

■ Connecting to a Specific Application’s JMX Domain

■ Setting the JMX Service URI for an OPMN-Managed OC4J Instance

■ Setting the JMX Service URI for a Standalone OC4J Instance

■ Setting a Locale

■ Enabling HTTP Tunneling

Connecting to the OC4J MBeanServer
The following sample code creates a JMXConnector instance and uses it to connect to
a target OC4J instance defined as a JMXServiceURL object. An
MBeanServerConnection instance, which serves as a proxy for the OC4J
MBeanServer, is retrieved. The proxy allows management operations to be performed
on the MBeanServer operations; in this case, retrieving all the MBeans registered with
the MBeanServer.

The sample code that follows specifies importing the following JMX classes and
interfaces:

■ javax.management.remote.JMXConnector interface

Defines the client end of the JMX connector.

■ javax.management.remote.JMXConnectorFactory class

A factory containing methods to create JMX connector clients.

■ javax.management.remote.JMXServiceURL class

Constructs a URL defining the connection target. The constructor takes one or
more String objects as parameters. Here a String variable defining the OPMN
lookup URL containing the data needed to access an OPMN-managed OC4J
instance is passed to the constructor:

String url="service:jmx:rmi:///opmn://oc4jhost1:6003/home"
...
JMXServiceURL serviceUrl= new JMXServiceURL(url);

See "Setting the JMX Service URI for an OPMN-Managed OC4J Instance" on
page 5-9 for instructions on connecting to an OPMN-managed OC4J instance
running as a component of Oracle Application Server.

Note: To connect in the manner outlined in this section, the user
must be assigned to the oc4j-administrators role, which grants
the user full access to the MBeanServer and all of the MBeans
registered with it, including OC4J system and application-defined
MBeans.

The default OC4J administration user, oc4jadmin, is a member of
this role.

See "Connecting to a Specific Application’s JMX Domain" on page 5-9
for guidelines on enabling a user to access a specific application’s
MBeans without assigning the user to the oc4j-administrators
role.

Accessing MBeans From a Client Application

5-6 Developer's Guide

See "Setting the JMX Service URI for a Standalone OC4J Instance" on page 5-11 for
instructions on connecting in a standalone OC4J environment.

■ javax.management.MBeanServerConnection interface

Defines the proxy for performing operations on the OC4J MBeanServer.

In addition to these JMX classes and interfaces, the
oracle.oc4j.admin.jmx.remote.api.JMXConnectorConstant class is
imported to make constants used by OC4J JMX connector clients available. Rather than
importing this class, you may want to use the keys defined in this class directly in your
code to avoid introducing Oracle APIs into your code. The constants defined in the
class are:

■ CREDENTIALS_LOGIN_KEY

Stores a server login name.

■ CREDENTIALS_PASSWORD_KEY

Stores a server login password.

■ LOCALE

Stores a Locale used to localize MBean metadata, attributes and methods
accessed via the connection. See "Setting a Locale" on page 5-11 for details on
localizing a connection instance.

■ HTTP_TUNNELING

Stores a Boolean value indicating whether HTTP tunneling is enabled. See
"Enabling HTTP Tunneling" on page 5-12 for details on enabling HTTP tunneling.

// Import the JSR-160 classes and interfaces from jmx_remote_api.jar
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXServiceURL;
import javax.management.remote.JMXConnectorFactory;

// Import the JMX 1.2 class
import javax.management.MBeanServerConnection;

// Import OC4J specific constant values. You can optionally use
// the values specified in this class to avoid introducing
// any Oracle-specific code.
import oracle.oc4j.admin.jmx.remote.api.JMXConnectorConstant;

....
// Create a variable for a URL containing data needed to access
// the connection target; in this case, an OPMN-managed OC4J instance
String url="service:jmx:rmi:///opmn://opmnhost1.company.com:6003/home"

JMXConnector jmxCon= null;

try {
// Define the connection target
JMXServiceURL serviceUrl= new JMXServiceURL(url);

// Use to pass environment properties to be used while
// retrieving a connection
Hashtable env= new Hashtable();

// Define the provider root package
env.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,

Accessing MBeans From a Client Application

Using MBeans for Management 5-7

 "oracle.oc4j.admin.jmx.remote");

Hashtable credentials= new Hashtable();
// Connect using the oc4jadmin super-user administrator account
credentials.put(JMXConnectorConstant.CREDENTIALS_LOGIN_KEY,"oc4jadmin");
credentials.put(JMXConnectorConstant.CREDENTIALS_PASSWORD_KEY,"password");

// Specify the login/password to use for the connection
env.put(JMXConnector.CREDENTIALS, credentials);

// Get an instance of the JMXConnector interface for OC4J's rmi protocol
// User is not yet connected
jmxCon = JMXConnectorFactory.newJMXConnector(serviceUrl, env);

// Connect to the target OC4J instance defined in the JMXServiceURL
jmxCon.connect();

// Retrieve the MBeanServerConnection instance that acts as a proxy
// for the OC4J MBeanServer we are connecting to.
MBeanServerConnection con= jmxCon.getMBeanServerConnection();

// Use the MBeanServerConnection instance to perform remote
// operations on the OC4J MBeanServer. This call retrieves
// all MBeans registered with the server.
Set mbeans= con.queryNames(null, null);

// Display each MBean's ObjectName
Iterator iter= mbeans.iterator();
while(iter.hasNext())
System.out.println(iter.next().toString());
}

// Important!!! Release the connection, ideally using a Finally block
finally {
if(jmxCon!=null)
 jmxCon.close();
}

Connecting to an Application-Specific MBean Server
Applications can create and connect to a generic MBeanServer instance, instead of
using the OC4J MBeanServer. This is useful, for example, when creating applications
that must be portable to multiple J2EE containers, not just OC4J.

In this scenario, you will supply the default domain for the MBeanServer. The
MBeanServer instance will be created and registered with the MBeanServerFactory.

 The following example creates and registers an MBeanServer instance under the
domain myserv. The code specific to this MBeanServer instance is highlighted as
bold.

// Import the JSR-160 classes and interfaces from jmx_remote_api.jar
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXServiceURL;
import javax.management.remote.JMXConnectorFactory;

// Import the JMX 1.2 class
import javax.management.MBeanServerConnection;

// Import OC4J specific constant values. You can optionally use

Accessing MBeans From a Client Application

5-8 Developer's Guide

// use the values specified in this class to avoid introducing
// any Oracle-specific code.
import oracle.oc4j.admin.jmx.remote.api.JMXConnectorConstant;

....
// Create a variable for a URL containing data needed to access
// the connection target; in this case, an OPMN-managed OC4J instance
String url="service:jmx:rmi:///opmn://opmnhost1.company.com:6003/home"

JMXConnector jmxCon= null;

try {
// Define the connection target
JMXServiceURL serviceUrl= new JMXServiceURL(url);

// Use to pass environment properties to be used while
// retrieving a connection
Hashtable env= new Hashtable();

// Define the provider root package
env.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "oracle.oc4j.admin.jmx.remote");

Hashtable credentials= new Hashtable();

// Connect using the oc4jadmin administrator account
credentials.put(JMXConnectorConstant.CREDENTIALS_LOGIN_KEY,"oc4jadmin");
credentials.put(JMXConnectorConstant.CREDENTIALS_PASSWORD_KEY,"password");

// Specify the login/password to use for the connection
env.put(JMXConnector.CREDENTIALS, credentials);

// Specify the application-specific MBeanServer default domain name
// used at creation time for the MBeanServer the application will connect to.
// The domain name specified here is "myserv".
env.put(JMXConnectorConstant.PROPRIETARY_MBEANSERVER_DOMAIN_NAME, "myserv");

// Get an instance of the JMXConnector interface for OC4J RMI protocol
// User is not yet connected
jmxCon = JMXConnectorFactory.newJMXConnector(serviceUrl, env);

// Connect to the target OC4J instance defined in the JMXServiceURL
jmxCon.connect();

// Retrieve the MBeanServerConnection instance that acts as a proxy
// for the OC4J MBeanServer we are connecting to.
MBeanServerConnection con= jmxCon.getMBeanServerConnection();

// Use the MBeanServerConnection instance to perform remote
// operations on the OC4J MBeanServer. This call retrieves
// all MBeans registered with the server.
Set mbeans= con.queryNames(null, null);

// Display each MBean's ObjectName
Iterator iter= mbeans.iterator();
while(iter.hasNext())
System.out.println(iter.next().toString());
}

// Important!!! Release the connection, ideally using a Finally block

Accessing MBeans From a Client Application

Using MBeans for Management 5-9

finally {
if(jmxCon!=null)
 jmxCon.close();
}

Connecting to a Specific Application’s JMX Domain
Because users assigned to the oc4j-administrators role can access all MBeans
registered with the MBeanServer, assigning this role to all users may not be desirable.

You can, however, enable a user that is not assigned this role to access only those
MBeans registered by your application. In this case, the user connects at the
application level, and will only see MBeans registered by the application.

The code is the same as that outlined in "Connecting to the OC4J MBeanServer" on
page 5-5, except the url passed to the JMXServiceURL constructor includes the
name of the application. The following example will provide access to MBeans
registered by the hello-world application:

// Create a variable for a URL containing data needed to access
// the connection target; in this case, an OPMN-managed OC4J instance
String url="service:jmx:rmi:///opmn://opmnhost1.company.com:6003/home/hello-world"

JMXConnector jmxCon= null;

try {
// Define the connection target
JMXServiceURL serviceUrl= new JMXServiceURL(url);
...

See "Setting the JMX Service URI for an OPMN-Managed OC4J Instance" on page 5-9
for instructions on connecting to an OPMN-managed OC4J instance running as a
component of Oracle Application Server.

See "Setting the JMX Service URI for a Standalone OC4J Instance" on page 5-11 for
instructions on connecting in a standalone OC4J environment.

Setting the JMX Service URI for an OPMN-Managed OC4J Instance
In an Oracle Application Server environment, the RMI port for an OC4J instance,
required for a JMX connection, is not fixed and can change each time the instance is
started by OPMN.

To resolve this issue, an OPMN-based URL must be passed to the JMXServiceURL
constructor. This URL provides an indirect lookup with OPMN and returns the RMI
port required for the connection.

The syntax of the OPMN lookup URI used to connect to the MBeanServer on a specific
OPMN-managed OC4J instance is as follows:

service:jmx:rmi|ormi:///opmn://opmnHost:[opmnPort]/oc4jInstanceName/[appName]

To connect to the cluster MBeanServer, specify the following URI. Note the inclusion of
/cluster, indicating that the connection is with the cluster MBeanServer, rather than
a specific OC4J instance’s MBeanServer:

service:jmx:rmi:///opmn://opmnHost:[opmnPort]/cluster/[ASInstanceName
/[Oc4jCompName]

While the ASInstanceName and Oc4jCompName parameters are optional, Oracle
recommends that you specify an Oracle Application Server or OC4J instance, or both,
to connect to. Otherwise, a connection is made with a randomly selected OC4J process

Accessing MBeans From a Client Application

5-10 Developer's Guide

within the cluster. This can result in the creation of a new instance of the cluster
MBeanServer each time a new connection is obtained. The recommended practice is to
specify both ASInstanceName and Oc4jCompName, as a connection will be obtained
with a single instance of the cluster MBeanServer. Because OPMN automatically
restarts the OC4J process if needed, the process is guaranteed to be always available.
For example, the following example connects to the cluster MBeanServer within the
admin OC4J instance on the as101 Oracle Application Server instance:

service:jmx:rmis:///opmn://stadp69:6003/cluster/as101/admin

Table 5–1 describes the cluster MBeanServer service URI parameters and their values.

The following URL provides unrestricted JMX access to all application MBeans
deployed into the home OC4J instance on the specified host. Note that the port value is
omitted, meaning the default will be used:

service:jmx:rmi:///opmn://opmnhost1/home

The next example provides access only to MBeans registered by the petstore
application. The connection target is the home02 instance on the specified host. Note
that the port value has been specified:

service:jmx:rmi:///opmn://opmnhost1:6008/home02/petstore

Table 5–1 URI parameters

Parameter Value

hostname The name of the OPMN host, such as oc4jhost1. This value is
required.

port The OPMN request port. This value is specified in the request
attribute of the <port> element in opmn.xml.

If not specified, the default value 6003 is used.

oc4jInstanceName Valid for a specific OC4J MBeanServer only. The name of the
OC4J instance. This value is required.

The name of the default OC4J instance created in Oracle
Application Server is home. Specify/home to connect to this
instance on the target host.

appName Valid for a specific OC4J MBeanServer only. The optional name
of a specific application to access, such as /petstore. If not
specified, an unrestricted connection to all applications is
returned.

This option is used to allow users not assigned the
oc4j-administrators role to access a specific application’s
MBeans. Because the connection is made at the application level,
the user has access only to those MBeans registered by the
application.

ASInstanceName Valid for a cluster MBeanServer only. The optional name of an
Oracle Application Server instance to connect to. This value is
specified in the id attribute of the <ias-instance> element in
opmn.xml.

Oc4jCompName Valid for a cluster MBeanServer only. The name of an OC4J
instance to connect to. This value is specified in the id attribute
of the <process-type> element in opmn.xml.

If this parameter is specified without ASInstanceName, the port
parameter must be supplied for the Oracle Application Server
instance the OC4J instance is running within.

Accessing MBeans From a Client Application

Using MBeans for Management 5-11

Setting a Secure JMX Service URI for an OPMN-Managed OC4J Instance
The following URI accesses the cluster MBeanServer:

service:jmx:rmis:///opmn://opmnHost:opmnPort/cluster/[ASInstanceName]/Oc4jCompName

Setting the JMX Service URI for a Standalone OC4J Instance
In a standalone OC4J installation, in which OC4J is installed, managed, started and
stopped directly as a self-contained component, the RMI port is fixed. A URL
containing connection parameters can be passed to the JMXServiceURL constructor
to connect directly to the OC4J server.

The syntax of the lookup URL used in a standalone OC4J installation is as follows:

service:jmx:rmi|ormi://[hostname]:[rmiPort/]oc4jContextRoot/[appName]

For example:

service:jmx:rmi://oc4jhost:23791/oc4j/petstore

Table 5–2 describes the URL parameters and their values.

Setting a Secure JMX Service URI for a Standalone OC4J Instance
You can use ORMI over SSL, or ORMIS, to secure the connection between the
management client and the OC4J MBeanServer. To use this feature, simply replace rmi
or ormi with rmis or ormis in the JMX service URI syntax illustrated in the
preceding text. In the following example, the ORMIS port 23943 is specified:

service:jmx:rmis://oc4jhost:23943/oc4j/petstore

The target OC4J server must be configured to use ORMIS. See the Oracle Containers
for J2EE Security Guide for instructions on enabling ORMIS.

Setting a Locale
A specific Locale can be associated with a connection by setting an additional
environment property passed to either the
JMXConnectorFactory.newJMXConnector() or JMXConnector.connect()
method. The LOCALE constant of the OC4J-specific

Table 5–2 URL parameters

Parameter Value

hostname Optional. The name of the OC4J host, such as oc4jhost1.
Defaults to localhost if not specified.

rmiPort Optional. The RMI port to connect to. If not specified, the value
defaults to 23791.

oc4jcontextRoot Required. The URL path to the OC4J installed directory on the
server (/oc4j). The /oc4j context root is used to identify the
OC4J instance’s local MBeanServer instance. This value is
required.

appName Optional. The name of a specific application to access, such as
/petstore. If not specified, an unrestricted connection to all
applications is returned.

This option is used to enable users not assigned the
oc4j-administrators role to access a specific application’s
MBeans. Because the connection is made at the application level,
the user has access only to those MBeans registered by the
application.

Accessing MBeans From a Client Application

5-12 Developer's Guide

oracle.oc4j.admin.jmx.api.JMXConnectorConstant class can be used to set
this property. For example:

env.put(JMXConnectorConstant.LOCALE, Locale.FRENCH)

Note that for localization to be used, the MBeans to be managed must support
localization as outlined in "Adding Localization Support to MBeans" on page 5-37.

Enabling HTTP Tunneling
In scenarios where the client, the OC4J server, or both are secured behind firewalls that
allow only HTTP traffic, the JMX RMI connector can be configured to tunnel RMI
traffic over HTTP, enabling communication across firewalls.

In HTTP tunneling, RMI calls are encapsulated within an HTTP POST request. Replies
are similarly returned as HTTP-encapsulated data.

HTTP tunneling is enabled by setting the value of the HTTP_TUNNELING constant of
the oracle.oc4j.admin.jmx.api.JMXConnectorConstant class to the path of
the rmiTunnel servlet and passing it as an environment property to either the
JMXConnectorFactory.newJMXConnector() or JMXConnector.connect()
method. For example:

env.put(JMXConnectorConstant.HTTP_TUNNELING, "j2ee/rmiTunnel")

Note that the port value in the JMXServiceURL object used to get a JMXConnection
instance must be set to the HTTP port of the target OC4J instance, and not the RMI
port, as shown in previous connection examples. The OC4J default HTTP listener port
is 8888 in standalone OC4J, or 7777 in an Oracle Application Server environment.

JMXServiceURL serviceUrl= new JMXServiceURL("rmi","oc4j-sun.acme.com",
8888,"/oc4j");

See the Oracle Containers for J2EE Services Guide for instructions on configuring RMI
HTTP tunneling in OC4J.

Remote Management Using the Management EJB (JSR-77)
In compliance with the J2EE Management Specification (JSR-77), OC4J enables users to
remotely manage MBeans through the Management EJB (MEJB), which is deployed
with the OC4J implementation. The MEJB is a stateful session bean that provides a
remote interface to the OC4J MBeanServer, allowing remote users to query and access
MBeans running in an OC4J instance.

The MEJB uses JMX classes and interfaces. The
javax.management.j2ee.Management interface is the MEJB remote interface,
while the javax.management.j2ee.ManagementHome interface contains a single
method which creates an MEJB instance. The MEJB is available under the JNDI name
ejb/mgmt/MEJB.

The following discussions explain how the MEJB can be used:

■ Accessing the MEJB from a J2EE Application Client

■ Accessing the MEJB from a Servlet or EJB

Accessing the MEJB from a J2EE Application Client
The following code enables an application client to use the MEJB. Note that accessing
the MEJB from an application client allows both local and remote operations to be
performed.

Accessing MBeans From a Client Application

Using MBeans for Management 5-13

import javax.naming.*;

// Import the MEJB interface
import javax.management.j2ee.Management;
import javax.management.j2ee.ManagementHome;

.....

Hashtable env = new Hashtable();

// Set the connection target
String url = "ormi://host.company.com:23791/default";

// Set the login context
env.put(Context.PROVIDER_URL, url);
env.put(Context.SECURITY_PRINCIPAL, "oc4jadmin");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.evermind.server.ApplicationClientInitialContextFactory");

// Look up the MEJB Home interface and create the MEJB
Context ctx = new InitialContext(environment);
Object hm= ctx.lookup("java:comp/env/ejb/mgmt/MEJB");
ManagementHome mgmtHome=
 (ManagementHome)PortableRemoteObject.narrow(hm,ManagementHome.class);
Management mejb= mgmtHome.create();

.....

mejb.remove();

Accessing the MEJB from a Servlet or EJB
The following code enables a servlet or EJB module running within the target OC4J
instance to use the MEJB. Because the connection target is the executing container, the
login and password data is not supplied, but is instead retrieved from the executing
thread context. For this reason, the authenticating user must belong to the
oc4j-administrators security group.

See the Oracle Containers for J2EE Security Guide for details on adding users to
groups.

import javax.naming.*;

// Import the JSR-77 MEJB interface
import javax.management.j2ee.Management;
import javax.management.j2ee.ManagementHome;

.....

// Look up the MEJB Home interface and create the MEJB
Context ctx= new InitialContext();
Object hm= ctx.lookup("java:comp/env/ejb/mgmt/MEJB");
ManagementHome mgmtHome=
 (ManagementHome)PortableRemoteObject.narrow(hm,ManagementHome.class);
Management mejb= mgmtHome.create();

.....

mejb.remove();

MBean Usage Examples

5-14 Developer's Guide

MBean Usage Examples
This section provides some basic MBean examples that demonstrate using the System
MBean Browser, the Cluster MBean Browser, and client code to access OC4J MBeans.
The examples include standalone examples as well as group-based examples.

This section contains the following topics:

■ Prerequisites

■ Standalone OC4J Examples

■ Group-Based Examples

Prerequisites
The MBean usage examples are provided for illustrative purposes and are not
intended to be an exhaustive list of all tasks that can be performed using OC4J
MBeans.

To complete the tasks in this section, the following items are required:

■ The standalone examples require a running OC4J instance with access to
Application Server Control. For the group-based examples, a complete OracleAS
environment is required. The setup used in the group-based examples includes a
single application server instance with a single OC4J group that contains 3 OC4J
instances. Access to Application Server Control is also required for the
group-based examples.

■ OC4J administrative access (that is, membership within the
oc4j-administrators security group).

■ The JMX Remote API client examples require the following JARs:
adminclient.jar, ejb.jar, and oc4jclient.jar. These JARs are also
referenced by admin_client.jar, which can be used instead of placing each
JAR on the classpath separately.

The JARs are distributed with OC4J and as part of the Administrative Client
Utility, which is available on the companion CD or for downloading from the
Oracle Technology Network.

http://www.oracle.com/technology/software/products/ias/
htdocs/utilsoft.html

The JMX remote client examples use an MBean's unique JMX name in order to create
the MBean object. The following example demonstrates an MBean’s unique JMX name:

oc4j:j2eeType=ThreadPool,name=system,J2EEServer=standalone

An MBean’s unique JMX name can be found in the System MBean Browser and
Cluster MBean Browser when accessing a particular MBean. The name displays in the
Name field at the top of the page.

Lastly, many of the examples utilize an MBean proxy interface. The proxy has the same
name as the MBean, but includes Proxy at the end (for example,
J2EEApplicationMBeanProxy). For a complete list of MBeans, including their
proxies and available methods, refer to the MBean Java API Reference located at
http://download.oracle.com/docs/cd/B31017_01/web.1013/e10288/
toc.htm.

MBean Usage Examples

Using MBeans for Management 5-15

Standalone OC4J Examples
The examples in this section demonstrate how use MBeans to perform common
administrative tasks on a standalone OC4J instance. The following examples are
included in this section:

■ Changing Thread Pool Properties

■ Stopping an OC4J Server

■ Adding a Managed Data Source

■ Updating Data Source Connection Pool Properties

Changing Thread Pool Properties
This example uses the ThreadPool MBean to change HTTP, JCA, and System thread
pool properties. For more information on OC4J thread pools, see "Configuring OC4J
Thread Pools" in the Oracle Containers for J2EE Configuration and Administration Guide.

Changing HTTP Thread Pool Properties from the System MBean Browser
To change HTTP thread pool properties from the System MBean Browser:

1. From the System MBean Browser page, expand the ThreadPool node and click
http.

2. From the list of attributes, find the keepAliveTime attribute and enter a new
value in the Value field.

3. From the list of attributes, find the maxPoolSize attribute and enter a new value
in the Value field.

4. From the list of attributes, find the minPoolSize attribute and enter a new value
in the Value field.

5. Click Apply.

Changing System Thread Pool Properties from a Client
The following client example uses the ThreadPoolMBeanProxy interface to update
system thread properties.

package com.oracle.test;

import java.util.Hashtable;
import javax.management.MBeanServerConnection;
import javax.management.MBeanServerInvocationHandler;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import oracle.oc4j.admin.management.mbeans.proxies.ThreadPoolMBeanProxy;

public class UpdateThreadPool {
 public UpdateThreadPool() {
 }

 private JMXConnector connect (String URL, String username, String password) {

 JMXConnector jmxCon = null;

 try {
 Hashtable credentials = new Hashtable();

MBean Usage Examples

5-16 Developer's Guide

 credentials.put("login", username);
 credentials.put("password", password);

 Hashtable env = new Hashtable();
 env.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "oracle.oc4j.admin.jmx.remote");
 env.put(JMXConnector.CREDENTIALS, credentials);

 JMXServiceURL serviceUrl = new JMXServiceURL(URL);
 jmxCon = JMXConnectorFactory.newJMXConnector(serviceUrl, env);

 jmxCon.connect();

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 return jmxCon;
 }

 public static void main(String[] args) {

 try {
 UpdateThreadPool ctp = new UpdateThreadPool();
 JMXConnector connection =
 ctp.connect("service:jmx:rmi://host:23791", "user", "password");
 MBeanServerConnection mbs = connection.getMBeanServerConnection();

 ObjectName myThreadTest = new
 ObjectName("oc4j:j2eeType=ThreadPool,name=system,J2EEServer=standalone");
 ThreadPoolMBeanProxy TPMBean =
 MBeanServerInvocationHandler.newProxyInstance(mbs, myThreadTest,
 ThreadPoolMBeanProxy.class, false);

 TPMBean.setminPoolSize(10);
 TPMBean.setmaxPoolSize(1024);
 TPMBean.setkeepAliveTime(660000);
 System.out.println(TPMBean.getpoolSize());

 connection.close();

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Stopping an OC4J Server
This example uses the J2EEServer MBean to stop an OC4J server.

Stopping an OC4J Server from the System MBean Browser
To stop a standalone OC4J Server from the System MBean Browser:

1. From the System MBean Browser page, expand the J2EEServer node and click
standalone. The J2EEServer:standalone page displays.

2. Click Operations.

3. Click Next 3.

MBean Usage Examples

Using MBeans for Management 5-17

4. From the list of operations, click Stop. The Stop page displays.

5. Click Invoke Operation.

Stopping an OC4J Server from a Client
The following client example uses the J2EEServerMBeanProxy interface to stop an
OC4J server that is located in a cluster.

package com.oracle.test;

import java.util.Hashtable;
import javax.management.MBeanServerConnection
import javax.management.MBeanServerInvocationHandler;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import oracle.oc4j.admin.management.mbeans.proxies.J2EEServerMBeanProxy;

public class ServerLifeCycle {
 public ServerLifeCycle() {
 }

 private JMXConnector connect (String URL, String username, String password) {

 JMXConnector jmxCon = null;

 try {
 Hashtable credentials = new Hashtable();
 credentials.put("login", username);
 credentials.put("password", password);

 Hashtable env = new Hashtable();
 env.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "oracle.oc4j.admin.jmx.remote");
 env.put(JMXConnector.CREDENTIALS, credentials);

 JMXServiceURL serviceUrl = new JMXServiceURL(URL);
 jmxCon = JMXConnectorFactory.newJMXConnector(serviceUrl, env);
 jmxCon.connect();

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 return jmxCon;
 }

 public static void main(String[] args) {

 try {
 ServerLifeCycle slc = new ServerLifeCycle();
 JMXConnector connection =
 slc.connect("service:jmx:rmi:///opmn://host:6003/Oc4JCompName ",
 "user", "password");
 MBeanServerConnection mbs = connection.getMBeanServerConnection();

 ObjectName myServerTest = new
 ObjectName("oc4j:j2eeType=J2EEServer,name=standalone");
 J2EEServerMBeanProxy jsmb =
 MBeanServerInvocationHandler.newProxyInstance(mbs, myServerTest,

MBean Usage Examples

5-18 Developer's Guide

 J2EEServerMBeanProxy.class, false);

 System.out.println("stopping "+jsmb.getinstanceName());
 jsmb.stop();

 connection.close();

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Adding a Managed Data Source
This example uses the J2EEApplication MBean to add a managed data source to
the default application. For more information about data sources, see the Oracle
Containers for J2EE Services Guide.

Adding a Managed Data Source from the System MBean Browser
To add a managed data source from the System MBean Browser:

1. From the System MBean Browser page, expand the J2EEApplication node and
click default. The J2EEApplication:default page displays.

2. Click Operations.

3. From the list of operations, click createManagedDataSource. The
createManagedDataSource page displays.

4. Enter the data source parameters using the fields and instructions provided.

5. Click Invoke Operation.

Adding a Managed Data Source from a Client
The following client example uses the J2EEApplicationMBeanProxy interface to
add a managed data source to the default application. This example requires the
oc4j-internal.jar library in addition to the JARs previously discussed. The JAR
is located at ORACLE_HOME/j2ee/home/lib/.

package com.oracle.test;

import java.util.Hashtable;
import javax.management.MBeanServerConnection;
import javax.management.MBeanServerInvocationHandler;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import oracle.oc4j.admin.management.mbeans.proxies.J2EEApplicationMBeanProxy;

public class AddManagedDS {
 public AddManagedDS() {
 }

 private JMXConnector connect (String URL, String username, String password) {

 JMXConnector jmxCon = null;

 try {

MBean Usage Examples

Using MBeans for Management 5-19

 Hashtable credentials = new Hashtable();
 credentials.put("login", username);
 credentials.put("password", password);

 Hashtable env = new Hashtable();
 env.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "oracle.oc4j.admin.jmx.remote");
 env.put(JMXConnector.CREDENTIALS, credentials);

 JMXServiceURL serviceUrl = new JMXServiceURL(URL);
 jmxCon = JMXConnectorFactory.newJMXConnector(serviceUrl, env);

 jmxCon.connect();

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 return jmxCon;
 }

 public static void main(String[] args) {

 try {
 AddManagedDS amds = new AddManagedDS();
 JMXConnector connection =
 amds.connect("service:jmx:rmi://host:23791", "user", "password");
 MBeanServerConnection mbs = connection.getMBeanServerConnection();

 ObjectName myManagedDS = new
 ObjectName("oc4j:j2eeType=J2EEApplication,name=default,
 J2EEServer=standalone");
 J2EEApplicationMBeanProxy jamb =
 MBeanServerInvocationHandler.newProxyInstance(mbs,
 myManagedDS, J2EEApplicationMBeanProxy.class, false);

 jamb.createManagedDataSource("MyDataSource", "scott", "tiger",
 "jdbc/myDataSource", 30, "Example Connection Pool", "local", "null");

 System.out.println("the following data sources are available:
 "+jamb.listDataSources());

 connection.close();

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Updating Data Source Connection Pool Properties
This example uses the J2EEApplication MBean to add connection pool properties
to a connection pool defined in the default application. For more information about
data source connection pools, see the Oracle Containers for J2EE Services Guide.

Adding Connection Pool Properties from the System MBean Browser
To add connection pool properties from the System MBean Browser:

MBean Usage Examples

5-20 Developer's Guide

1. From the System MBean Browser page, expand the J2EEApplication node then
expand the default node then expand the JDBCResource node and click "Example
Connection Pool". The JDBCResource:"Example Connection Pool" page displays.

2. From the list of attributes, find the initialLimit attribute and enter a new
value in the Value field.

3. From the list of attributes, find the minConnections attribute and enter a new
value in the Value field.

4. From the list of attributes, find the maxConnections attribute and enter a new
value in the Value field.

5. Click Apply.

Adding Connection Pool Properties from a Client
The following client example uses the JDBCResourceMBean interface to add
connection pool properties to the example connection pool which is defined in the
default application when OC4J is first installed. This example requires the
oc4j-internal.jar library in addition to the JARs previously discussed. The JAR
is located at ORACLE_HOME/j2ee/home/lib/.

package com.oracle.test;

import java.util.Hashtable;
import javax.management.MBeanServerConnection;
import javax.management.MBeanServerInvocationHandler;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import oracle.oc4j.admin.management.mbeans.JDBCResourceMBean;

public class UpdateConnectionPool {
 public UpdateConnectionPool() {
 }

 private JMXConnector connect (String URL, String username, String password) {

 JMXConnector jmxCon = null;

 try {
 Hashtable credentials = new Hashtable();
 credentials.put("login", username);
 credentials.put("password", password);

 Hashtable env = new Hashtable();
 env.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "oracle.oc4j.admin.jmx.remote");
 env.put(JMXConnector.CREDENTIALS, credentials);

 JMXServiceURL serviceUrl = new JMXServiceURL(URL);
 jmxCon = JMXConnectorFactory.newJMXConnector(serviceUrl, env);

 jmxCon.connect();

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 return jmxCon;
 }

MBean Usage Examples

Using MBeans for Management 5-21

 public static void main(String[] args) {

 try {
 UpdateConnectionPool amds = new UpdateConnectionPool();
 JMXConnector connection =
 amds.connect("service:jmx:rmi://host:23791", "user", "password");
 MBeanServerConnection mbs = connection.getMBeanServerConnection();

 ObjectName myCP = new ObjectName(
 "oc4j:j2eeType=JDBCResource,name=\"Example
 Connection Pool\",J2EEApplication=default,J2EEServer=standalone");
 JDBCResourceMBean jrmb = MBeanServerInvocationHandler.newProxyInstance(
 mbs, myCP, JDBCResourceMBean.class, false);

 jrmb.setmaxConnections(1000);
 jrmb.setminConnections(5);
 jrmb.setinitialLimit(6);
 System.out.println("the following connection pool was updated:
 "+jrmb.getconnectionPoolName());

 connection.close();

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Group-Based Examples
The examples in this section use the J2EEServerGroup MBean to demonstrate how
to view attributes and perform operations for all OC4J instances that are assigned to
the same group. Unlike a standalone OC4J instance, group based tasks are performed
in the Application Server Control using the Cluster MBean Browser. The following
examples are included in this section:

■ Listing the J2EE Servers that are Part of a Group

■ Adding a Managed Data Source to a Group of OC4J Instances

■ Provisioning Users to a Group of OC4J Instances

Listing the J2EE Servers that are Part of a Group
This example demonstrate how to use the J2EEServerGroup MBean to get a list of
all the J2EE servers that are assigned to a group. The names of the J2EE servers are
returned as MBean instance object names.

Listing J2EE Servers from the Cluster MBean Browser
To list all the J2EE servers that are part of a group from the Cluster MBean Browser:

1. From the Cluster MBean Browser page, expand the J2EEServerGroup node and
click the name of the group on which to invoke an operation. The
J2EEServerGroup page displays for the group.

2. From the list of attributes, click j2eeServers. The Attribute page displays and lists
all the J2EE server instances that are part of the group.

MBean Usage Examples

5-22 Developer's Guide

Listing J2EE Servers from a Client
The following client example uses the getj2eeServers method from the
J2EEServerGroupMBeanProxy class to list all the J2EE servers that are part of a
group.

package com.oracle.test;

import java.util.Hashtable;
import javax.management.MBeanServerConnection;
import javax.management.MBeanServerInvocationHandler;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import oracle.oc4j.admin.management.farm.mbeans.proxies.J2EEServerGroupMBeanProxy;

public class ListServers {
 public ListServers() {
 }

 private JMXConnector connect(String URL, String username, String password) {

 JMXConnector jmxCon = null;

 try {
 Hashtable credentials = new Hashtable();
 credentials.put("login", username);
 credentials.put("password", password);

 Hashtable env = new Hashtable();
 env.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "oracle.oc4j.admin.jmx.remote");
 env.put(JMXConnector.CREDENTIALS, credentials);

 JMXServiceURL serviceUrl = new JMXServiceURL(URL);
 jmxCon = JMXConnectorFactory.newJMXConnector(serviceUrl, env);

 jmxCon.connect();

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 return jmxCon;
 }

 public static void main(String[] args) {

 try {
 ListServers ls = new ListServers();
 JMXConnector connection =
 ls.connect("service:jmx:rmi:///opmn://host:6003/cluster/", "user",
 "password");
 MBeanServerConnection mbs = connection.getMBeanServerConnection();

 ObjectName myListTest = new ObjectName("
 ias:j2eeType=J2EEServerGroup,name=default_group");
 J2EEServerGroupMBeanProxy jsgmp =
 MBeanServerInvocationHandler.newProxyInstance(mbs, myListTest,
 J2EEServerGroupMBeanProxy.class, false);

MBean Usage Examples

Using MBeans for Management 5-23

 Object[] l_results = jsgmp.getj2eeServers();

 for (int i = 0; i < l_results.length; i++) {
 Object o = l_results[i];

 System.out.println(o);
 }
 connection.close();

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Adding a Managed Data Source to a Group of OC4J Instances
This example demonstrates how to use the J2EEServerGroup MBean to invoke an
operation on the J2EEApplication MBean on each OC4J instance within a group.
The example demonstrates how to add a managed data source to the default
application in every OC4J instance within a specified group. For more information
about data sources, see the Oracle Containers for J2EE Services Guide.

Adding a Managed Data Source from the Cluster MBean Browser
To add a managed data source to all OC4J instances in a group from the Cluster
MBean Browser:

1. From the Cluster MBean Browser page, expand the J2EEServerGroup node and
click the name of the group on which to invoke an operation. The
J2EEServerGroup page displays for the group.

2. Click Operations.

3. From the list of operations, click invoke. The Operation: invoke page displays.

4. From the Operation: invoke page, click the Flashlight icon. The Search and Select:
MBean page displays.

5. From the list of MBeans tree, expand oc4j and then expand J2EEApplication.

6. Select the MBean instance for the default application.

7. Click Select.

8. From the Operation: invoke page, use the OperationName drop-down list to select
12. createManagedDataSource.

9. From the Operation: invoke page, click the parameters edit icon. The Edit params
page displays.

10. Enter the data source parameters using the fields provided.

11. Click OK.

12. Click Invoke Operation.

Adding a Managed Data Source from a Client
The following client example uses the invoke method from the
J2EEServerGroupMBean interface to invoke the createManagedDataSource
method on J2EEApplicationMBean interface in order to add a managed data
source to the default application on every OC4J instance in a group. This example

MBean Usage Examples

5-24 Developer's Guide

requires the oc4j-internal.jar library in addition to the JARs previously
discussed. The JAR is located at ORACLE_HOME/j2ee/home/lib/.

package com.oracle.test;

import java.util.Hashtable;
import java.util.Iterator;
import java.util.Map;
import javax.management.MBeanServerConnection;
import javax.management.MBeanServerInvocationHandler;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import oracle.oc4j.admin.management.farm.mbeans.proxies.J2EEServerGroupMBeanProxy;

public class AddMDStoGroup {
 public AddMDStoGroup() {
 }

 private JMXConnector connect (String URL, String username, String password) {

 JMXConnector jmxCon = null;

 try {
 Hashtable credentials = new Hashtable();
 credentials.put("login", username);
 credentials.put("password", password);

 Hashtable env = new Hashtable();
 env.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "oracle.oc4j.admin.jmx.remote");
 env.put(JMXConnector.CREDENTIALS, credentials);

 JMXServiceURL serviceUrl = new JMXServiceURL(URL);
 jmxCon = JMXConnectorFactory.newJMXConnector(serviceUrl, env);

 jmxCon.connect();

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 return jmxCon;
 }

 public static void main(String[] args) {

 try {
 AddMDStoGroup amds = new AddMDStoGroup();
 JMXConnector connection = amds.connect(
 "service:jmx:rmi:///opmn://host:6003/cluster/
 ASInstanceName/Oc4jCompName", "user", "password");
 MBeanServerConnection mbs = connection.getMBeanServerConnection();

 ObjectName myjsg = new ObjectName(
 "ias:j2eeType=J2EEServerGroup,name=default_group");
 J2EEServerGroupMBeanProxy jsgmb = MBeanServerInvocationHandler.
 newProxyInstance(mbs, myjsg, J2EEServerGroupMBeanProxy.class, false);

 ObjectName defaultApplication = new ObjectName(
 "oc4j:j2eeType=J2EEApplication,name=default,J2EEServer=standalone");

MBean Usage Examples

Using MBeans for Management 5-25

 Object [] params = { "MyDataSource2", "scott", "tiger",
 "jdbc/MyDataSource2", 30, "Example Connection Pool", "local", ""};

 String[] sig = {"java.lang.String", "java.lang.String",
 "java.lang.String", "java.lang.String", "java.lang.Integer",
 "java.lang.String", "java.lang.String", "java.lang.String"};

 Map results = jsgmb.invoke(defaultApplication, "createManagedDataSource",
 params, sig);

 System.out.println("The following instances were updated:");

 Iterator iterator = results.keySet().iterator();
 while (iterator.hasNext()) {
 Object var = iterator.next();
 System.out.println(var);
 }
 connection.close();

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Provisioning Users to a Group of OC4J Instances
This example uses the J2EEServerGroup MBean to invoke the J2EEApplication
MBean on each OC4J instance within a group. The example demonstrates how to add
a user and assign the user to the oc4j-administrators group.

Provisioning Users from the Cluster MBean Browser
To provision a user across all OC4J instance in a group using the Cluster MBean
Browser:

1. From the Cluster MBean Browser page, expand the J2EEServerGroup node and
click the name of the group on which to invoke an operation. The
J2EEServerGroup page displays for the group.

2. Click Operations.

3. From the list of operations, click invoke. The Operation: invoke page displays.

4. From the Operation: invoke page, click the Flashlight icon. The Search and Select:
MBean page displays.

5. From the list of MBeans tree, expand oc4j and then expand J2EEApplication.

6. Select the MBean instance for the default application.

7. Click Select.

8. From the Operation: invoke page, use the OperationName drop-down list to select
7. addUser.

9. From the Operation: invoke page, click the parameters edit icon. The Edit params
page displays.

10. Enter the user information using the fields provided.

11. Click OK.

MBean Usage Examples

5-26 Developer's Guide

12. Click Invoke Operation.

13. From the Operation: invoke page, use the OperationName drop-down list to select
9. addUserToGroup.

14. From the Operation: invoke page, click the parameters edit icon. The Edit params
page displays.

15. Using the fields provided, enter the user name that was created in step 10 and
enter oc4j-administrators for the group name.

16. Click OK.

17. Click Invoke Operation.

Provisioning Users from a Client
The following client example uses the invoke method from the
J2EEServerGroupMBean interface to invoke the addUser and AddUserToGroup
methods on the J2EEApplicationMBean interface in order to provision a user to the
default application on every OC4J instance in a group.

package com.oracle.test;

import java.util.Hashtable;
import java.util.Iterator;
import java.util.Map;
import javax.management.MBeanServerConnection;
import javax.management.MBeanServerInvocationHandler;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import oracle.oc4j.admin.management.farm.mbeans.proxies.J2EEServerGroupMBeanProxy;

public class ProvisionUser {
 public ProvisionUser() {
 }

 private JMXConnector connect (String URL, String username, String password) {

 JMXConnector jmxCon = null;

 try {
 Hashtable credentials = new Hashtable();
 credentials.put("login", username);
 credentials.put("password", password);

 Hashtable env = new Hashtable();
 env.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "oracle.oc4j.admin.jmx.remote");
 env.put(JMXConnector.CREDENTIALS, credentials);

 JMXServiceURL serviceUrl = new JMXServiceURL(URL);
 jmxCon = JMXConnectorFactory.newJMXConnector(serviceUrl, env);

 jmxCon.connect();

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 return jmxCon;

Providing Application-Specific MBeans

Using MBeans for Management 5-27

 }

 public static void main(String[] args) {

 try {
 ProvisionUser pu = new ProvisionUser();
 JMXConnector connection = pu.connect(
 "service:jmx:rmi:///opmn://host:6003/cluster/
 ASInstanceName/Oc4jCompName", "user", "password");
 MBeanServerConnection mbs = connection.getMBeanServerConnection();

 ObjectName myjsg = new ObjectName(
 "ias:j2eeType=J2EEServerGroup,name=default_group");
 J2EEServerGroupMBeanProxy jsgmb = MBeanServerInvocationHandler.
 newProxyInstance(mbs, myjsg, J2EEServerGroupMBeanProxy.class, false);

 ObjectName provision = new ObjectName(
 "oc4j:j2eeType=J2EEApplication,name=default,J2EEServer=standalone");

 Object[] params = {"joe", "password", "A nice guy"};

 String[] sig = {"java.lang.String", "java.lang.String",
 "java.lang.String"};

 jsgmb.invoke(provision, "addUser", params, sig);

 Object[] g_params = {"joe", "oc4j-administrators"};
 String[] g_sig = {"java.lang.String", "java.lang.String"};

 Map g_results = jsgmb.invoke(provision, "addUserToGroup", g_params,
 g_sig);

 System.out.println("The following instances were updated:");

 Iterator iterator = g_results.keySet().iterator();
 while (iterator.hasNext()) {
 Object var = iterator.next();
 System.out.println(var);
 }
 connection.close();

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Providing Application-Specific MBeans
Application-specific MBeans can be created and deployed within an application to
help manage the application. This section includes the following topics:

■ Writing an Application-Specific MBean

■ Packaging Your MBeans for Deployment

■ Registering Your MBeans with the OC4J MBeanServer

■ Adding Localization Support to MBeans

Providing Application-Specific MBeans

5-28 Developer's Guide

Writing an Application-Specific MBean
This section provides instructions for writing application-specific MBeans. For the
most part, J2EE application specific MBeans are no different then writing regular
MBeans as documented in the JMX specification; however, there are some differences.
This section includes the following topics:

■ Types of MBeans Supported by OC4J

■ Unsupported Methods in JMX MBeanServer and MBeanServerConnection
Interfaces

■ Sample MBean

Types of MBeans Supported by OC4J
Any of the following MBean types defined in JMX can be deployed to OC4J:

■ Standard MBeans

These are the simplest MBeans to design and implement; however, they are viable
only in a static management interface.

The attributes and operations of a Standard MBean are derived from a Java
interface which includes the suffix MBean in its name. A Java object can be a
Standard MBean simply by being of a class that has the same name as the
interface, but without the MBean suffix. For example, an object would be of the
class Manager, in the same Java package as the interface ManagerMBean.

A Standard MBean can also be created from the
javax.management.StandardMBean class.

■ Dynamic MBeans

These are MBeans that expose a dynamic management interface that is
implemented at runtime. Metadata describing each exposed attribute and
operation must be made available to the calling application, essentially providing
a self-documenting interface.

Dynamic MBeans must implement the javax.management.DynamicMBean
interface.

■ Model MBeans

These are Dynamic MBeans that can be configured at runtime. The runtime
administration of OC4J is implemented using MBeans of this type.

A Model MBean implementation can be reused many times with different
management interfaces and managed resources, and can provide common
functionality such as persistence and caching.

Model MBeans are defined by the interface
javax.management.modelmbean.ModelMBean. A Model MBean must be
implemented as an object of the
javax.management.modelmbean.RequiredModelMBean class.

■ Open MBeans

Another type of Dynamic MBean that can be discovered and used by a client at
runtime, without requiring the deployment of additional JAR files. Open MBeans
are usable with remote management programs that may not have access to
application-specific types, including non-Java programs.

Open MBeans are defined by the package javax.management.openmbean.

Providing Application-Specific MBeans

Using MBeans for Management 5-29

MBean implementation classes that are registered at deployment time or during
application startup— such as MBeans defined in orion-application.xml—must
include a no-arguments constructor. (See "Registering Your MBeans with the OC4J
MBeanServer" on page 5-34 for guideline.) If the application creates and registers its
MBeans, no such requirement exists.

The oracle.j2ee.admin.jmx package provides JMX state management
capabilities, including localization support, that you may want to consider
implementing in your MBean classes. See "Adding Localization Support to MBeans"
on page 5-37 for details.

Unsupported Methods in JMX MBeanServer and MBeanServerConnection
Interfaces
A number of methods from the JMX MBeanServer interface are not available to a J2EE
application when it uses an MBeanServer object obtained from the following
operation:

MBeanServer mbsrv = MBeanServerFactory.newMBeanServer();

The use of any of the following methods on the returned MBeanServer object will
throw an UnsupportedOperationException exception:

public final ClassLoader getClassLoaderFor(ObjectName mbeanName)

public final ClassLoader getClassLoader(ObjectName loaderName)

public final ClassLoaderRepository getClassLoaderRepository()

public final Object instantiate(String className)

public final Object instantiate(String className, ObjectName loaderName)

public final Object instantiate(String className, Object[] params, String[]
signature)

public final Object instantiate(String className, ObjectName loaderName, Object[]
params, String[] signature)

public final ObjectInstance createMBean(String className, ObjectName name)

public final ObjectInstance createMBean(String className, ObjectName name,
ObjectName loaderName)

public final ObjectInstance createMBean(String className, ObjectName name,
Object[] params, String[] signature)

public final ObjectInstance createMBean(String className, ObjectName name,
ObjectName loader, Object[] params, String[] signature)

public final ObjectInputStream deserialize(ObjectName name, byte[] data)

public final ObjectInputStream deserialize(String className, byte[] data)

public final ObjectInputStream deserialize(String className, ObjectName
loaderName, byte[] data)

A number of methods from the MBeanServerConnection interface are not supported
when an application uses the Oracle JMX connectors. The use of any of the following

Providing Application-Specific MBeans

5-30 Developer's Guide

methods on the MBeanServerConnection object that is created will throw an
UnsupportedOperationException exception:

public final ObjectInstance createMBean(String className, ObjectName name)

public final ObjectInstance createMBean(String className, ObjectName name,
ObjectName loaderName)

public final ObjectInstance createMBean(String className, ObjectName name,
Object[] params, String[] signature)

public final ObjectInstance createMBean(String className, ObjectName name,
ObjectName loader, Object[] params, String[] signature)

If your application uses the JMX MBeanServer or MBeanServerConnection interface,
avoid using any of the unsupported methods in the application.

Sample MBean
The following is an example of a simple MBean implementation. This MBean includes
operations to enable or disable a user within the application it is packaged with.

UserManagerMBean Interface
This is the Java interface for the MBean.

package demo.servicereq.management;

public interface UserManagerMBean {
 String[] listUsers();
 void enableUser(int userId);
 void disableUser(int userId);
}

UserManager Implementation Class
This is the MBean implementation class.

package demo.servicereq.management;

import oracle.srdemo.data.User;
import oracle.srdemo.data.UserAccess;
import java.util.Collection;
import java.util.logging.Level;
import javax.management.MBeanNotificationInfo;
import javax.management.Notification;
import javax.management.NotificationBroadcasterSupport;
import java.util.logging.Logger;
import java.util.Iterator;

public class UserManager
 extends NotificationBroadcasterSupport
 implements UserManagerMBean {

 private static final String m_classname =
 UserManager.class.getClass().getName();

 public static final String ENABLE_USER = "enableUser";
 public static final String DISABLE_USER = "disableUser";
 public static final String LIST_USERS = "listUsers";

 String[] m_users;

Providing Application-Specific MBeans

Using MBeans for Management 5-31

 // A logger
 private static final Logger m_logger = Logger.getLogger(m_classname);

 /**
 * Constructor.
 */
 public UserManager() {
 }

 /**
 * Lists all the user names.
 * @return
 */
 public String[] listUsers() {
 m_logger.entering(m_classname,"listUsers");
 // query all users and return
 m_logger.exiting(m_classname,"listUsers");
 return m_users;
 }

/**
 * Sets the specified user to a state of enabled.
 * @param userId
 */
 public void enableUser(int userId) {
 m_logger.entering(m_classname,"enableUser");
 sendNotification(ENABLE_USER, "userId [" + userId + "] now enabled");
 // Lookup user with userId.
 // Set the status of the user to enabled.
 // throw exception if user doesn't exist.
 m_logger.exiting(m_classname,"enableUser");
 }

/**
 * Sets the specified user to a state of disabled.
 * @param userId
 */
 public void disableUser(int userId) {
 m_logger.entering(m_classname,"disableUser");
 sendNotification(DISABLE_USER, "userId [" + userId + "] now disabled");
 // Lookup user with userId.
 // Set the status of the user to disabled.
 // throw exception if user doesn't exist.
 m_logger.exiting(m_classname,"disableUser");
 }

/**
 * Informs any interested party on what notifications this MBean emits.
 * @return the notifications this MBean emits
 */
 public MBeanNotificationInfo[] getNotificationInfo() {
 m_logger.entering(m_classname,"getNotificationInfo");
 String NOTIFICATIONS[] =
 { ENABLE_USER, DISABLE_USER };
 MBeanNotificationInfo[] info =
 {
 new MBeanNotificationInfo(NOTIFICATIONS,

Providing Application-Specific MBeans

5-32 Developer's Guide

 "javax.management.Notification",
 "Notification set for UserManager") };
 m_logger.exiting(m_classname,"getNotificationInfo");
 return info;
 }

 /**
 * Sends a JMX notification using the sendNotification method
 * from the base class.
 * @param operation - the name of the operation sending the notification.
 * @param desc - the description to place within the notification.
 * @return void
 */
 public void sendNotification(String operation, String desc) {
 m_logger.entering(m_classname,"sendNotification");
 Notification notification = new Notification(operation,this,
 System.currentTimeMillis(), desc);
 super.sendNotification(notification);
 m_logger.exiting(m_classname,"sendNotification");
 }

}

Packaging Your MBeans for Deployment
MBeans are packaged with the application they will manage. Package MBean classes
in a JAR file and add the JAR file to the root level of the application’s EAR file
structure. This section includes the following topics:

■ Defining MBeans in orion-application.xml

■ Initializing MBean Attributes

Defining MBeans in orion-application.xml
You can provide the configuration data needed to register your MBeans upon
deployment by defining them in orion-application.xml, the OC4J-specific
extension to the J2EE standard application.xml descriptor. Both of these
descriptors are packaged with the MBeans in the parent application’s EAR file.

MBeans defined in orion-application.xml will be registered automatically with
the OC4J MBeanServer upon deployment or application start. If the application is
undeployed, any MBeans belonging to it will also be undeployed.

Add the following XML elements to this descriptor to register the MBeans included in
the EAR:

■ A <library> or <library-directory> element pointing to the JAR file
containing the MBean classes. Set the path attribute to the JAR file name, as
follows:

<library path="MyMBeans.jar"/>

■ A unique <jmx-mbean> element for each MBean class included with the
application. This element has a <description> subelement that you can use to
specify a name for display in the MBean browser user interface. Each element
registers an MBean class with the MBeanServer.

The <jmx-mbean> element has the following attributes:

Providing Application-Specific MBeans

Using MBeans for Management 5-33

■ objectname: The name to register the MBean under. The domain part of the
name will be ignored even if specified; application MBeans are registered
using the application’s deployment name as the domain name.

For example, if you deploy an MBean named MyMBeanA with an application
named widget, supply:name=MyMBeanA as the value of this attribute. The
name will then be displayed as widget:name=MyMBeanA.

The MBean name should include a type property indicating the logical
MBean type, such as Servlet, Application, DisplayController, and so on.

■ class: The MBean implementation class.

The <jmx-mbean> element optionally takes the following subelements:

– A <description> sub-element containing a readable name. This name will
be displayed in the MBean browser user interface.

– One or more <attribute> elements, each defining an initial value to set for
an attribute of the MBean. See "Initializing MBean Attributes" on page 5-33 for
details.

The following example defines two application-specific MBeans in the
orion-application.xml deployment descriptor packaged in the parent
application’s EAR file:

<orion-application>
 ...
 <jmx-mbean objectname=":type=Application,name=MyMBeanA"
 class="my.mbeans:MBeanTypeA">
 <description>My First MBean</description>
 </jmx-mbean>
 <jmx-mbean objectname=":type=Application,name=MyMBeanB"
 class="my.mbeans:MBeanTypeB">
 <description>My Second MBean</description>
 </jmx-mbean>
</orion-application>

Initializing MBean Attributes
You can preconfigure an MBean by setting initial values for one or more of its
attributes in the orion-application.xml descriptor packaged with the MBean.
The MBean attributes will be initialized with these values upon instantiation.

An attribute value must be one of the following types to be preconfigured:

■ Primitive type (such as int, long, Integer, or Boolean)

■ String constructor (In the current release, this value must be a
javax.management.ObjectName value representing the object name of an
MBean.)

■ One-dimensional arrays of these supported types

Each attribute and its value are specified in an <attribute> element within the
<jmx-mbean> element defining the MBean in orion-application.xml. The actual
value is specified in a <value> subelement. Multiple <value> subelements
containing string values to set for the same attribute can be wrapped within a
<values> element.

The following example illustrates how the supported value types can be set within a
<jmx-mbean> element:

Providing Application-Specific MBeans

5-34 Developer's Guide

<orion-application>
 ...
 <jmx-mbean objectname=":type=Application,name=MyMBeanA"
 class="my.mbeans:MBeanTypeA">
 <description>My First MBean</description>
 <attribute name="attr1">
 <value>true</value>
 </attribute>
 <attribute name="attr2">
 <value>100</value>
 </attribute>
 <!-- An array of strings -->
 <attribute name="attr3">
 <value>Test string 1</value>
 <value>Test string 2</value>
 <value>Test string 3</value>
 </attribute>
 <!-- A javax.management.ObjectName representing the name of an MBean -->
 <attribute name="attr3">
 <value>MyApp:Type=Administration</value>
 </attribute>
 </jmx-mbean>
</orion-application>

Registering Your MBeans with the OC4J MBeanServer
The MBeans deployed with your application must be registered with the
MBeanServer. Once registered, an MBean is fully manageable through the System
MBean Browser component of Application Server Control.

You have three options for registering MBeans:

■ Define the MBeans in an orion-application.xml descriptor that is packaged
with the MBeans in the application EAR file.

■ Define the MBeans in the application’s deployment plan at deployment time.

■ Programmatically register the MBeans from within the code of an application.

See "Programmatically Registering MBeans Through Application Code" on
page 5-35 for implementation guidelines.

The following topics describe these options:

■ Defining MBeans in an Application Descriptor

■ Defining MBeans in a Deployment Plan

■ Programmatically Registering MBeans Through Application Code

Defining MBeans in an Application Descriptor
The most straightforward mechanism for automatically registering MBeans at the time
of deployment is to define the MBeans in an orion-application.xml descriptor
that is packaged with the MBeans in the application EAR file. See "Defining MBeans in
orion-application.xml" on page 5-32 for details.

Providing Application-Specific MBeans

Using MBeans for Management 5-35

Defining MBeans in a Deployment Plan
You can define MBean in an application’s deployment plan, which consolidates all of the
OC4J-specific configuration data that is spread among multiple deployment
descriptors, including orion-application.xml. Data set in the deployment plan is
persisted to the orion-application.xml descriptor created for the application
within OC4J.

Deployment plans can be created or edited at deployment time using the deployment
plan editor functionality provided in Application Server Control and Oracle
JDeveloper 10g. See the Oracle Containers for J2EE Deployment Guide for detailed
guidelines on creating and working with deployment plans.

Programmatically Registering MBeans Through Application Code
MBeans can be registered dynamically from within the code of an application. When
MBeans are registered programmatically, they are bound to the containing
application’s life cycle. This means that if the application is undeployed, all of its
MBeans are automatically unregistered from the MBeanServer.

An application that will register MBeans must import thejavax.management
package, which provides the core JMX classes, including classes needed to access the
OC4J MBeanServer. The MBean implementation class must also be available to the
application.

Applications gain access to the OC4J MBeanServer by creating a reference through the
javax.management.MBeanServerFactory, as shown in this code snippet:

MBeanServer mbsvr = MBeanServerFactory.newMBeanServer();

Note the following restrictions:

■ MBeans must be registered under an ObjectName whose domain is the
namespace under which the application was deployed. This will ensure that beans
live in their own namespace within OC4J. The getDefaultDomain() method
can be called on the MBeanServer object to return the correct domain for a given
application.

■ An application can only set attributes and call methods on MBeans that belong to
it. In fact, MBeans that belong to other applications are not visible to the
application.

The following code snippet registers an MBean with the OC4J MBeanServer. The
MBean is an object of the oracle.oc4j.admin.jmx.server.mbeans.Tester
class.

Note: An MBean can be registered under the global default
application, which makes it visible to all other applications deployed
into the OC4J instance.

MBeans are registered with the default application by adding a
<jmx-mbean> element to the OC4J-specific application.xml file,
located in the ORACLE_HOME/j2ee/instance/config directory by
default.

The formats of application.xml and orion-application.xml
files are defined by the same XML schema. See "Defining MBeans in
orion-application.xml" on page 5-32 for details on the <jmx-mbean>
element.

Providing Application-Specific MBeans

5-36 Developer's Guide

try
 {
 // Get a reference to the MBeanServer
 MBeanServer _mbeanServer = MBeanServerFactory.newMBeanServer();

 // Create the MBean instance
 Tester bean = new Tester();

 //Construct the MBean name using the default application’s domain name
 ObjectName beanName= new ObjectName(mbsrv.getDefaultDomain()+
 ":type=Tester,name=MyMBean");

 // Register the MBean with the MBeanServer
 mbsrv.registerMBean(bean, beanName);
 }
 catch(Exception e)
 {
 // Handle exceptions; for simplicity, dump the stack trace to show any
 // errors that occur
 e.printStackTrace();
 }

The next example is a sample servlet - UserMBeanServlet - that will register an
MBean with the OC4J MBeanServer in its init() method.

package web;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

import javax.management.*;

import oracle.oc4j.admin.jmx.server.mbeans.Tester;

public class UserMBeanServlet extends HttpServlet {

public void init() throws ServletException {
 try {
 // Get a reference to the MBeanServer
 MBeanServer mbsrv = MBeanServerFactory.newMBeanServer();

 // Create the MBean instance
 Tester bean = new Tester();

 //Construct the MBean name using the application’s domain name
 ObjectName beanName= new ObjectName(mbsrv.getDefaultDomain()+
 ":type=Tester,userprop1=bean,userprop2=beanProp2");

 // Register the MBean with the MBeanServer
 mbsrv.registerMBean(bean, beanName);

 // Print a success message to the console
 System.out.println("Finished registering" +beanName);

 }
catch(Exception e) {
// Dump the stack trace to show any errors that occur
e.printStackTrace();
 }
 }

Providing Application-Specific MBeans

Using MBeans for Management 5-37

//Standard servlet code for handling requests
...
}

Adding Localization Support to MBeans
All Dynamic MBeans - including Model and Open MBeans - must provide metadata
describing the MBean as well as each of its exposed attributes and operations. If your
application will be marketed internationally, you should design your MBeans to
support localization of this metadata.

For additional information on localization with resource bundles, read the following
article from Sun Microsystems:

http://java.sun.com/developer/technicalArticles/
Intl/ResourceBundles/

Localization Support Provided by Oracle
The oracle.j2ee.admin.jmx API extends the JMX specification with functionality
specific to localizing MBeans. Note that any MBeans that use this API must be specific
to OC4J, and will not be portable to other J2EE containers.

The following sections describe the localization-specific interface and class.

JMXState
The oracle.j2ee.admin.jmx.JMXState interface defines the state associated
with a JMX operation, specifically the state of the Locale instance to be used. This
state can be retrieved by an MBean implementation to provide localization support.

This interface contains a single method, which returns the Locale instance:

public Locale getLocale()

JMXStateFactory
The oracle.j2ee.admin.jmx.JMXStateFactory class provides access to the
state associated with a JMX operation, such as the Locale object to be used. It
includes the following method:

■ public static JMXState getJMXState()

Retrieves the oracle.j2ee.admin.jmx.JMXState instance containing the
JMX state associated with the calling JMX MBean operation. This method should
only be called from within an MBean implementation.

Using Resource Bundles to Localize MBean Metadata
Localization is enabled using resource bundles, which are objects of the
java.util.ResourceBundle class. A resource bundle consists of one or more Java
classes or Java properties files containing key/value pairs, where the value is a
string comprising the descriptive text. A resource bundle will typically exist for each
supported language.

The following example is a snippet from the default OC4J Messages.properties
file showing how the metadata for a sample UserManager MBean is stored as
key/value pairs. The keys correspond to values set in the code sample that follows.

//Description of the MBean
usermanager_description=Manages users of the corresponding installation.

Providing Application-Specific MBeans

5-38 Developer's Guide

//Attribute description strings
This MBean does not have attributes.

//Operation description strings
usermanager_listUsers=List current user IDs.
usermanager_enableUser=Enables the specified user account.
usermanager_disableUser=Disables the specified user account.

//Operation parameter description strings
usermanager_userId=The user account to affect.

See Localization with Resource Bundles at the following URL for more on resource
bundle implementation:

http://java.sun.com/developer/technicalArticles/Intl/ResourceBundles/

Adding Localization Support to Your MBeans
To expose its metadata, an MBean must implement the overloaded getMBeanInfo()
method, which returns an object of the javax.management.MBeanInfo object
populated with generic metadata for the attributes and operations exposed by the
MBean.

A Dynamic MBean must implement the generic version of this method to retrieve and
localize its metadata using the Locale object from the JMX client. The implementation
of a Model MBean - an object of the
javax.management.modelmbean.RequiredModelMBean class - must also
implement this generic signature. See "Implementing the Generic getMBeanInfo()
Signature" on page 5-38 for details.

MBeans supporting localization must also expose the signature
getMBeanInfo(Locale locale), which retrieves and localizes the metadata based
on the Locale passed in by the OC4J MBeanServer. See "Exposing the Required
getMBeanInfo(Locale locale) Signature" on page 5-39.

Implementing the Generic getMBeanInfo() Signature
To localize the returned metadata, the generic getMBeanInfo() method must get
access to the Locale object from the JMX client. The getLocale() method of the
oracle.j2ee.admin.jmx.JMXState interface can be used to accomplish this.
Your bean should also import the oracle.oc4j.admin.jmx.JMXStateFactory
class, which provides access to the state associated with a JMX operation, such as the
Locale object to be used.

The following example illustrates implementation of this method in a Simple MBean.

package demo.servicereq.management;

import oracle.srdemo.data.User;
import oracle.srdemo.data.UserAccess;

Note: OC4J uses Java classes to localize the metadata for its own
components, including Oracle-supplied MBeans. Do not make
changes to the default Messages.properties file used by OC4J.
Any changes made to this file will be overwritten whenever a new
version of OC4J is installed.

Providing Application-Specific MBeans

Using MBeans for Management 5-39

import java.util.Collection;
import java.util.logging.Level;
import javax.management.MBeanNotificationInfo;
import javax.management.Notification;
import javax.management.NotificationBroadcasterSupport;
import java.util.logging.Logger;
import java.util.Iterator;

// Import packages needed for localization of MBean metadata
import java.util.Locale;
import java.util.ResourceBundle;
import javax.management.MBeanInfo;

// Import the Oracle localization APIs
import oracle.j2ee.admin.jmx.JMXStateFactory;
import oracle.j2ee.admin.jmx.JMXState;

public class UserManager
 extends NotificationBroadcasterSupport
 implements UserManagerMBean {

// Create the MBeanInfo object to allow attributes and operations exposed by the
// MBean to be retrieved
public MBeanInfo getMBeanInfo()
 {
 // Get access to the Locale instance set by the JMX client
 Locale locale = JMXStateFactory.getJMXState().getLocale();

 // Create MBean's localized meta-data using the locale from JMX client
 return createMBeanInfo(locale);
 }

Exposing the Required getMBeanInfo(Locale locale) Signature
All MBeans deployed to OC4J, regardless of type, are required to expose the
getMBeanInfo(Locale locale) signature, which retrieves and localizes the
MBean’s metadata based on the Locale object passed in as a parameter. This method
will be called by clients such as the System MBean Browser component of Application
Server Control as well as the Oracle JSR-160 connector, which is used for remote
management of MBeans.

The method allows support of localized MBeanInfo without requiring any
modification to the default getMBeanInfo() method, such as introducing the
Oracle specific JMXState class. As such, it allows you to write localized code that
remains portable, although the proper localization will only work within Oracle
Application Server.

The following example illustrates implementation of both signatures of
getMBeanInfo() in a Dynamic MBean.

package demo.servicereq.management;

import oracle.srdemo.data.User;
import oracle.srdemo.data.UserAccess;
import java.util.Collection;
import java.util.logging.Level;
import javax.management.MBeanNotificationInfo;
import javax.management.Notification;
import javax.management.NotificationBroadcasterSupport;
import java.util.logging.Logger;

Providing Application-Specific MBeans

5-40 Developer's Guide

import java.util.Iterator;

// Import the Oracle localization APIs
import oracle.j2ee.admin.jmx.JMXStateFactory;
import oracle.j2ee.admin.jmx.JMXState;

public class UserManager
 extends NotificationBroadcasterSupport
 implements UserManagerMBean {

// Create the MBeanInfo object to allow attributes and operations exposed by the
// MBean to be retrieved
public MBeanInfo getMBeanInfo()
{
 // Get access to the Locale instance set by the JMX client
 Locale locale = JMXStateFactory.getJMXState().getLocale();

 // Create MBean's localized metadata using the Locale set by the JMX client
 return createMBeanInfo(locale);
}

// Expose the Dynamic MBean operation
public MBeanInfo getMBeanInfo(Locale locale)
{
 // Create MBean's metadata using the Locale from the MBeanServer
 return createMBeanInfo(locale);
}

In this example, both signatures of getMBeanInfo() pass the Locale instance to the
private createMBeanInfo(Locale locale) method, which retrieves the
appropriate resource bundle containing the descriptions of the MBean, its attributes,
and its operations. Note that this method also sets the localized description for each of
the operation’s parameters. It then creates the MBeanInfo object containing the
localized metadata.

package demo.servicereq.management;

import java.util.Locale;

import java.util.ResourceBundle;

import javax.management.MBeanConstructorInfo;
import javax.management.MBeanInfo;

import javax.management.MBeanOperationInfo;

import javax.management.MBeanParameterInfo;

import oracle.srdemo.data.User;
import oracle.srdemo.data.UserAccess;
import java.util.Collection;
import java.util.logging.Level;
import javax.management.MBeanNotificationInfo;
import javax.management.Notification;
import javax.management.NotificationBroadcasterSupport;
import java.util.logging.Logger;
import java.util.Iterator;

// Import the Oracle localization APIs
import oracle.j2ee.admin.jmx.JMXStateFactory;

Providing Application-Specific MBeans

Using MBeans for Management 5-41

import oracle.j2ee.admin.jmx.JMXState;

public class UserManager
 extends NotificationBroadcasterSupport
 implements UserManagerMBean {

 private static final String m_classname =
 UserManager.class.getClass().getName();

 public static final String ENABLE_USER = "enableUser";
 public static final String DISABLE_USER = "disableUser";
 public static final String LIST_USERS = "listUsers";

 String[] m_users;

 // A logger
 private static final Logger m_logger = Logger.getLogger(m_classname);

 /**
 * Constructor.
 */
 public UserManager() {
 }

 /**
 * Lists all the user names.
 * @return
 */
 public String[] listUsers() {
 m_logger.entering(m_classname,"listUsers");
 // query all users and return
 m_logger.exiting(m_classname,"listUsers");
 return m_users;
 }

/**
 * Sets the specified user to a state of enabled.
 * @param userId
 */
 public void enableUser(int userId) {
 m_logger.entering(m_classname,"enableUser");
 sendNotification(ENABLE_USER, "userId [" + userId + "] now enabled");

 // Lookup user with userId.
 // Set the status of the user to enabled.
 // throw exception if user doesn't exist.
 m_logger.exiting(m_classname,"enableUser");
 }

/**
 * Sets the specified user to a state of disabled.
 * @param userId
 */
 public void disableUser(int userId) {
 m_logger.entering(m_classname,"disableUser");
 sendNotification(DISABLE_USER, "userId [" + userId + "] now disabled");
 // Lookup user with userId.
 // Set the status of the user to enabled.
 // throw exception if user doesn't exist.
 m_logger.exiting(m_classname,"disableUser");

Providing Application-Specific MBeans

5-42 Developer's Guide

 }

/**
 * Informs any interested party on what notifications this MBean emits.
 * @return the notifications this MBean emits
 */
 public MBeanNotificationInfo[] getNotificationInfo() {
 m_logger.entering(m_classname,"getNotificationInfo");
 String NOTIFICATIONS[] =
 { ENABLE_USER, DISABLE_USER };
 MBeanNotificationInfo[] info =
 {
 new MBeanNotificationInfo(NOTIFICATIONS,
 "javax.management.Notification",
 "Notification set for UserManager") };
 m_logger.exiting(m_classname,"getNotificationInfo");
 return info;
 }

 /**
 * Sends a JMX notification using the sendNotification method
 * from the base class.
 * @param operation - the name of the operation sending the notification.
 * @param desc - the description to place within the notification.
 * @return void
 */
 public void sendNotification(String operation, String desc) {
 m_logger.entering(m_classname,"sendNotification");
 Notification notification = new Notification(operation,this,
 System.currentTimeMillis(), desc);
 super.sendNotification(notification);
 m_logger.exiting(m_classname,"sendNotification");
 }

// Create the MBeanInfo object to allow attributes and operations exposed by the
// MBean to be retrieved
public MBeanInfo getMBeanInfo()
{
 // Get access to the Locale instance set by the JMX client
 Locale locale;
 locale = JMXStateFactory.getJMXState().getLocale();

 // Create MBean's localized metadata using the Locale from JMX client
 return createMBeanInfo(locale);
}

// Create the MBeanInfo object to allow attributes and operations exposed by the
// MBean to be retrieved
public MBeanInfo getMBeanInfo(Locale locale)
{
 // Create the MBean's metadata using the Locale from the MBeanServer
 return createMBeanInfo(locale);
}

// Create the MBean's localized metadata
private MBeanInfo createMBeanInfo(Locale locale)
{
 // Get the resource bundle for the specified locale
 ResourceBundle resource =
 ResourceBundle.getBundle("mymbeans/Messages", locale);

Providing Application-Specific MBeans

Using MBeans for Management 5-43

 MBeanInfo minfo = null;
 try
 {

 // Set the MBean constructor descriptor
 consInfoArray_ = new MBeanConstructorInfo[0];

 // Set the MBean operations descriptor

 MBeanOperationInfo[] operInfoArray_ = new MBeanOperationInfo[]{ };
 MBeanParameterInfo params;
 params = new MBeanParameterInfo[];

 // Set the description for the userId parameter
 params[0] = new MBeanParameterInfo("userId",
 resource.getString("usermanager_userId"));

 // Set the description for the listUsers operation
 operInfoArray_[0] = new MBeanOperationInfo("listUsers",
 resource.getString("usermanager_listUsers"),
 params,
 "",
 MBeanOperationInfo.ACTION)

 // Set the description for the enableUser operation
 operInfoArray_[1] = new MBeanOperationInfo("enableUser",
 resource.getString("usermanager_enableUser"),
 params,
 "",
 MBeanOperationInfo.ACTION)

 // Set the description for the disableUser operation
 operInfoArray_[2] = new MBeanOperationInfo("disableUser",
 resource.getString("usermanager_disableUser"),
 params,
 "",
 MBeanOperationInfo.ACTION)

 // Create the MBeanInfo object containing the localized metadata
 // The null parameter is for notifications, which are not provided by this
 // MBean
 MBeanInfo minfo = new MBeanInfo("MyManager",
 resource.getString("mymanager_description"),
 attribInfoArray_,
 consInfoArray_,
 operInfoArray_,
 null);
 }
 catch
 {
 // Handle exceptions
 }
return minfo;
}

Providing Application-Specific MBeans

5-44 Developer's Guide

6

Working with Open Source Frameworks 6-1

6

Working with Open Source Frameworks

This chapter discusses developing applications on open source frameworks for
deployment to OC4J. It contains the following sections:

■ Installing Open Source Libraries in OC4J

■ Using Jakarta Struts

■ Using the Spring Framework

■ Using Apache MyFaces

■ Using Hibernate

■ Using Apache Axis

■ Configuring and Using Jakarta log4j

■ Using JAX-WS RI

Installing Open Source Libraries in OC4J
To enable a Web application built on an open source framework to be used in OC4J,
the JAR file or files containing the open source implementation as well as any
dependent libraries must be available within OC4J. No open source framework
libraries are available at the global level in OC4J by default.

The standard approach is to package the required JAR file or files with the Web
application on the WEB-INF/lib path. The library can then be deployed to OC4J with
the Web application. While this is the most straightforward process, it will result an
instance of the library being loaded for each Web application.

If the open source library is required by multiple Web applications, or to multiple Web
modules within a single J2EE application, the OC4J proprietary shared library
mechanism might be a more practical approach. Using this mechanism is an efficient
use of system resources because OC4J creates a single class loader for the shared
library, rather than loading multiple copies of the same library.

To use the shared library mechanism, you will install the shared library on the OC4J
instances hosting the applications using one of the options described in "Options for
Installing and Publishing a Shared Library" on page 3-13. You can then configure
specific applications to import the shared library as described in "Configuring an
Application to Import a Shared Library" on page 3-16.

Making the open source framework implementation available as a shared library is a
practical approach in these cases:

■ You want all Web modules within a J2EE application (EAR) to use the same
version of the library.

Removing Imported Oracle Shared Libraries to Avoid Conflicts

6-2 Developer’s Guide

In this case, you will configure the application to import the shared library in the
EAR-level orion-application.xml deployment descriptor as described in
"Declaring Dependencies in an Application's OC4J Deployment Descriptor" on
page 3-17, or in the MANIFEST.MF file as outlined in "Declaring Dependencies in
an Application's Manifest File" on page 3-17.

■ You want to ensure that all Web modules deployed to OC4J use the same version
of the library.

This requires configuring the default application to import the shared library, as
described in "Configuring All Deployed Applications to Import a Specific Shared
Library" on page 3-18. If this configuration is used, an application will use the
version of the shared library imported from the default application, even if a
different version of the library is packaged with the application.

You can create shared libraries using any of the mechanisms described in "Options for
Installing and Publishing a Shared Library" on page 3-13. The following example
illustrates how you can easily add the Xerces parser as a shared library to an OC4J
server with Oracle Enterprise Manager 10g Application Server Control.

1. Click Administration>Shared Libraries.

2. Click Create on the Shared Libraries page.

3. Enter the name for the shared library. In this case, you will enter xerces.xml.

4. Enter the shared library version, which in this case is 2.5.0.

5. Click Add to upload the library JAR files to the OC4J instance. Upload the
following Apache libraries:

■ xercesImpl.jar

■ xml-apis.jar

The following shared library declaration is added to the ORACLE_
HOME/j2ee/instance/server.xml file:

<shared-library name="xerces.mxl" version="2.5.0">
 <code-source path="xercesImpl.jar"/>
 <code-source path="xml-apis.jar"/>
</shared-library>

Removing Imported Oracle Shared Libraries to Avoid Conflicts
When working with open-source frameworks, it might sometimes be necessary to
remove or override Oracle shared libraries imported by default to avoid conflicts with
corresponding open source libraries packaged with an application.

For example, the Oracle XML parser packaged with OC4J will be used by default by
any application deployed to OC4J. This is not desirable, for example, with an
Axis-based application, which requires the Xerces parser library.

In this scenario, you have several options:

■ Specify the shared library to remove in the orion-application.xml file
packaged with the application

See "Removing or Replacing an Oracle Shared Library Imported by Default" on
page 3-10 for an overview of using the <remove-inherited> tag.

■ Configure the application to not import the Oracle shared library at deployment
time

Using Jakarta Struts

Working with Open Source Frameworks 6-3

See "Removing or Replacing an Oracle Shared Library Imported by Default" on
page 3-10 for a step-by-step example illustrating how a shared library can be
removed at deployment time.

■ If the required open-source JAR file is packaged within a Web module, you can
specify that OC4J search for and load this local library, which will cause it to be
used instead of the default Oracle library.

See "Using a Packaged JAR Instead of an Oracle Shared Library" on page 3-12 for a
step-by-step example.

Using Jakarta Struts
The following sections provide an overview of using Jakarta Struts in an OC4J
environment:

■ Overview of Jakarta Struts

■ Struts Support in Oracle JDeveloper

■ Access to the Struts Binary Distribution

Overview of Jakarta Struts
Jakarta Struts is an open source framework for building Web applications using open
standards such as Java servlets, JavaServer Pages, and XML. Applications built on the
latest official release of Struts, version 1.1, can be easily deployed into the latest release
of OC4J.

Struts supports a modular application development model based on the
Model-View-Controller (MVC) pattern. With Struts, you can create an extensible
development environment for your application, based on industry standards and
proven design models. No OC4J-specific configuration is required to deploy Struts
MVC-enabled Web applications to OC4J.

Struts is part of the Apache Jakarta Project, sponsored by the Apache Software
Foundation. See the user guide, installation guide, and other documentation on the
official Struts Web site:

http://jakarta.apache.org/struts

Struts Support in Oracle JDeveloper
Oracle JDeveloper 10g provides extensive support for building Web applications on
the Struts 1.1 framework.

JDeveloper includes the source for the Struts framework in the jdev_
install/jakarta-struts/ directory. This directory contains the same Struts
package, including sample Web applications, that can be downloaded from the
Apache Struts home page.

A sampling of the features for Struts development provided in JDeveloper follows:

Note: The Struts documentation strongly recommends against
installing Struts as a shared library. Specifically, the documentation
notes that ClassNotFoundException issues may occur unless all of
your application classes are stored in the shared library directory.

As such, you should package struts.jar and any dependency
libraries with your application.

Using the Spring Framework

6-4 Developer’s Guide

■ The Struts page flow diagram lets you draw the flow of your application's Web
pages using icons selected from a palette. The diagram visually represents
standard Struts elements, including actions and action forwards, and
automatically updates those elements in the Struts configuration file.

■ The Structure window and Property Inspector let you edit the attributes of any
Struts element.

■ The Struts Configuration Editor allows you to directly edit the Struts configuration
file.

■ A large set of custom JSP tag libraries that work with the Struts framework is
provided, and the Struts tag libraries are accessible from the JDeveloper
Component Palette.

See the online Help provided with Oracle JDeveloper for details on Struts support.

Access to the Struts Binary Distribution
If you are not using Oracle JDeveloper, you can download the Struts 1.1 distribution
directly from Jakarta at the following site:

http://jakarta.apache.org/site/binindex.cgi

The sample applications, packaged as WAR files, make an excellent resource for
understanding generic Struts. A good example of a WAR file configured to use Struts
is provided in the /webapps folder of the Struts archive file as struts-blank.war.
This example serves as a useful template when you are constructing your own Web
applications.

Using the Spring Framework
This section provides an overview of using the Spring Framework 1.2 in OC4J. It
includes the following topics:

■ Overview of the Spring Framework

■ Oracle TopLink Support in Spring 1.2

■ The Spring Framework Distribution

Overview of the Spring Framework
Spring is an increasingly popular open source Java/J2EE application framework based
on the Dependency Injection (DI) design pattern. OC4J provides full support for
applications built on Spring Framework 1.2. This latest release of Spring also provides
extensive support for Oracle TopLink integration, providing you with a platform for
persistent data access.

Like Struts, Spring provides a Model-View-Controller (MVC) framework, and Web
applications built on Spring MVC can be deployed seamlessly to OC4J, without
requiring any OC4J-specific deployment configuration.

Spring is particularly strong in the area of persistent data access, making it an
attractive framework for building Web applications that will interact with a relational
database. The Spring framework itself includes a persistence layer built on the J2EE
Data Access Objects (DAO) design pattern. The DAO layer integrates well with
object-relational mapping (ORM) tools, including the open source Hibernate and the
proven Oracle TopLink.

Using Apache MyFaces

Working with Open Source Frameworks 6-5

Oracle TopLink Support in Spring 1.2
Spring 1.2 includes extensive support for Oracle TopLink releases 9.0.4 and 10.1.3. The
result of this integration is a powerful, high-performance framework for persisting
plain old Java objects (POJOs) to relational databases.

Section 11.4 in the Spring Reference Documentation, provided with the Spring
distribution as spring-refrence.pdf, discusses TopLink integration in
considerable detail. Documentation on the various TopLink classes provided with
spring.jar is also provided.

The Spring Framework Distribution
The Spring 1.2 distribution is available as a ZIP file from the following location:

http://www.springframework.org/download

The latest snapshot build can also be downloaded from this location.

The Spring Reference Documentation is provided with the distribution as
spring-refrence.pdf. Spring also ships with several sample applications that
illustrate best practices. These can be used as templates for your own applications.

Spring 1.2 is organized into seven modules, each packaged as a JAR file. The "core"
module is packaged as spring.jar and contains all of the other modules. However,
the modular structure makes it possible to provide only those JAR files that are
needed, if desired.

Using Apache MyFaces
The following provides an overview of how Web applications built using Apache
MyFaces work with OC4J.

■ Overview of MyFaces

■ Accessing the MyFaces Distribution

■ JDeveloper Support for MyFaces

Overview of MyFaces
MyFaces is an open source, alternative implementation of JavaServer Faces (JSF), a
standard Java framework for building Web applications. MyFaces has been developed
under the aegis of the Apache Foundation.

Because it is simply another "flavor" of JSF, Web applications built on MyFaces can be
easily deployed to OC4J; no OC4J-specific configuration changes are necessary.

Accessing the MyFaces Distribution
You can download the MyFaces distribution from the following location:

http://myfaces.apache.org/binary.cgi

The framework is packaged as myfaces.jar, which must be made available to Web
applications deployed to OC4J.

You can also download a set of Web applications packaged as WAR files that are built
on the MyFaces framework from this site.

Using Hibernate

6-6 Developer’s Guide

Building JSPs Using MyFaces for Deployment to OC4J
The taglib directive for the core and html tag libraries is the same for all JSF
implementations. This means, for example, that you can use either the Sun RI or
MyFaces libraries, without having to update your JSPs that have been deployed to
OC4J.

If you deploy a Web application that uses MyFaces, the following libraries must be
made available to the application:

■ myfaces-api.jar

■ myfaces-impl.jar

Alternatively, you can utilize myfaces-all.jar, which includes all files in these two
JAR files. However, using the two separate JAR files makes it easier to "swap out" a
specific library.

MyFaces also offers an open-source extension library named Tomahawk that is fully
compatible with any JSF 1.1 compatible implementation, including the Sun JSF RI
packaged with JDeveloper. If this component extension is used, the following library
must be made available to deployed applications:

■ tomahawk.jar

In addition, you must include the following taglib directive in all JSPs that will use
the library (note that tools such as JDeveloper will do this for you:)

<%@ taglib uri="http://myfaces.apache.org/tomahawk" prefix="t"%>

JDeveloper Support for MyFaces
Oracle JDeveloper has built-in support for the Sun JavaServer FacesReference
Implementation (RI). However, you can easily configure JDeveloper to use other JSF
implementations, including MyFaces, through the Import Custom JSP tag library
interface.

You can have both the Sun RI and MyFaces implementations installed in JDeveloper.
In fact, you can even build your JSPs using one of these standard implementations,
then change to using another at deployment time simply by replacing the libraries
used.

See the JDeveloper page on the Oracle Technology Network for additional information
and "how to’s" on using JSF, MyFaces and Oracle ADF:

http://www.oracle.com/technology/products/jdev/index.html

Using Hibernate
The following provides an overview of using Hibernate with applications deployed to
OC4J.

■ Accessing the Hibernate Binaries

■ Using Hibernate with Applications in OC4J

Accessing the Hibernate Binaries
Hibernate is an open source object-relational mapping (ORM) tool for Java
environments. Hibernate is often used in Java Swing applications, Java servlet-based
applications, or J2EE applications using EJB session beans.

You can access the Hibernate libraries and documentation from the following site:

Using Apache Axis

Working with Open Source Frameworks 6-7

http://hibernate.org/

Using Hibernate with Applications in OC4J
Both Oracle TopLink, which is packaged by default with OC4J, and Hibernate use
antlr.jar. To avoid class collisions between the library packaged with OC4J and
that packaged with your Hibernate application, you must explicitly remove the
oracle.toplink shared library from the set of libraries that will be imported by the
application.

See "Removing or Replacing an Oracle Shared Library Imported by Default" on
page 3-10 for details.

Using Apache Axis
The following provides an overview on using Axis-based Web services in OC4J.

■ Accessing the Axis Distribution

■ Using the Xerces XML Parser

■ Using Oracle-Based and Axis-Based Web Services in OC4J

Accessing the Axis Distribution
Apache Axis is a well-known and widely used framework for implementing Web
services. Applications that include Web services based on Axis 1.2 and 1.3 can easily be
deployed to OC4J.

You can access the Axis libraries and documentation from the following Apache site:

http://ws.apache.org/axis/

Using the Xerces XML Parser
Axis applications typically utilize the Xerces XML parser by default. However, Axis
applications can safely use the Oracle XML parser packaged with OC4J if the Xerces
parser is not packaged with the application.

The Oracle XML parser is configured to be used by all deployed applications by
default—even the Xerces libraries are packaged within your Web module (WAR) file.
As such, if you do want Axis-based applications to use the Xerces parser, you must use
one of the shared library mechanisms provided by OC4J to ensure that the Xerces
parser is used by a given Axis-based application. See "Removing Imported Oracle
Shared Libraries to Avoid Conflicts" on page 6-2 for details.

Note that attempting to remove the Oracle XML parser will result in an error if the
affected Web service includes Oracle’s JAX-RPC and/or SAAJ libraries
(jaxrpc-api.jar and saaj-api.jar).

Using Oracle-Based and Axis-Based Web Services in OC4J
Axis and Oracle each provide different implementations of several key Web services
libraries, such as JAX-RPC and WSDL libraries. Table 6–1 lists these common libraries.

Table 6–1 Web Services Libraries

Oracle Axis

jaxrpc-api.jar jax-rpc.jar

Configuring and Using Jakarta log4j

6-8 Developer’s Guide

Because these libraries currently contain the same class implementations, class-loading
issues are not expected when an Axis application is deployed to OC4J.

However, a single application (EAR) cannot contain one Web service that uses Axis,
and another that uses Oracle. Specifically, an Axis Web service calling out to another
Web service via a Web services client created using JAX-RPC implementation is not
supported.

Configuring and Using Jakarta log4j
The following sections cover considerations for using Jakarta log4j in an OC4J
environment:

■ Overview of Jakarta log4j

■ Downloading the log4j Binary Distribution

■ Using log4j Configuration Files

■ Enabling log4j Debug Mode in OC4J

Overview of Jakarta log4j
The log4j framework is an open source project of the Apache Jakarta Project,
sponsored by the Apache Software Foundation. The framework provides an efficient
and flexible API to support runtime logging operations for Java applications. It
enables developers to insert log statements into their code, incorporating messages at
different levels of alarm as desired. Log4j also enables system administrators to
separately define the level of logging they want to see from the application at runtime,
without requiring changes to the supplied application code.

Features of log4j allow you to enable logging at runtime without having to modify the
application binary file. Statements can remain in shipped code without incurring
significant performance cost. Logging is controlled through a configuration file
without requiring changes to the application binary.

The sections that follow describe how to install the log4j library and configure it for
use with OC4J. Use of the extensive log4j API is not OC4J-specific, so is not covered in
this document. See the documentation on the official log4j Web site:

http://jakarta.apache.org/log4j/docs/index.html

Downloading the log4j Binary Distribution
The log4j distribution is available at the following location:

http://jakarta.apache.org/log4j/docs/download.html

Download the archive file from this location, choosing the appropriate format (ZIP file
or compressed TAR file) for your environment, and save it to your local file system.

saaj-api.jar saaj.jar

orawsdl.jar wsdl4j-1.5.1.jar

Table 6–1 (Cont.) Web Services Libraries

Oracle Axis

Configuring and Using Jakarta log4j

Working with Open Source Frameworks 6-9

Using log4j Configuration Files
The log4j framework enables you to control logging behavior through settings
specified in an external configuration file, allowing you to make changes to the
logging behavior without modifying application code.

There are three common ways to use the external configuration files. Each approach
defines what the configuration files are named and how they are located by the J2EE
application server at runtime.

The following sections describe the three approaches:

■ Using the Default Files for Automatic log4j Configuration

■ Using Alternative Files for Automatic log4j Configuration

■ Programmatically Specifying External Configuration Files

Using the Default Files for Automatic log4j Configuration
By default, log4j uses a configuration file named log4j.properties or log4j.xml
to determine its logging behavior. It automatically attempts to load these files from the
class loaders available to it at runtime. If it finds both files, then log4j.xml takes
precedence.

To use an automatic configuration file, place it in a directory location that falls within
the classpath used by OC4J. This includes, in order of loading precedence:

1. Global application level: /j2ee/instance/applib

2. Web application level: /WEB-INF/classes

Using Alternative Files for Automatic log4j Configuration
You can choose alternative file names instead of using the default names for automatic
configuration of log4j. To do this, specify an additional runtime property when OC4J is
started, as follows, where url designates the location of the configuration file to use:

java -Dlog4j.configuration=url

Note: A log4j runtime is configured only once, using the
automatic configuration files, when the first call is made to the
org.apache.log4j.Logger class.

If you install the log4j library at the global application level, by
placing it in the /j2ee/instance/applib directory, then you
can use only one automatic configuration file to define all the log
levels, appenders, and other log4j properties for all the applications
running on your server.

If you install the log4j library separately for each Web application,
in each /WEB-INF/lib directory, then the log4j logger is initialized
separately for each Web application. This enables you to use
separate automatic log4j configuration files for each Web
application.

Visit the following log4j Web site and see the log4j user mailing list
for more information:

http://www.mail-archive.com/log4j-user@jakarta.apache.org/

Configuring and Using Jakarta log4j

6-10 Developer’s Guide

If the specified value for the log4j.configuration property is a fully formed URL,
log4j loads the URL directly and uses that as the configuration file.

If the specified value is not a correctly formed URL, log4j uses the specified value as
the name of the configuration file to load from the class loaders it has available.

For example, assume OC4J is started as follows (where this is a single, wraparound
command line):

java -Dlog4j.debug=true -Dlog4j.configuration=file:///d:\temp\foobar.xml
 -jar oc4j.jar

In this case, log4j tries to load the file d:\temp\foobar.xml as its configuration file.

As another example, assume OC4J is started as follows:

java -Dlog4j.debug=true -Dlog4j.configuration=foobar.xml -jar oc4j.jar

In this case, log4j tries to load foobar.xml from the class loaders it has available. This
works in the same manner as using the default automatic configuration file
log4j.xml, but using the specified file name instead.

Programmatically Specifying External Configuration Files
Instead of relying on the automatic configuration file loading mechanism, some
applications use a programmatic approach to load the external configuration file. In
this case, the path to the configuration file is supplied directly within the application
code. This allows different file names to be used for each application. The log4j utility
loads and parses the specified configuration file (either an XML document or a
properties file) to determine required logging behavior.

Here is an example:

public void init(ServletContext context) throws ServletException
{
 // Load the barfoo.xml file as the log4j external configuration file.
 DOMConfigurator("barfoo.xml");
 logger = Logger.getLogger(Log4JExample.class);
}

In this case, log4j tries to load barfoo.xml from the same directory from which OC4J
was started.

Using the programmatic approach provides the most flexibility to developers and
system administrators. A configuration file can be of any arbitrary name and be
loaded from any location. System administrators can still make changes to the logging
behavior without requiring application code changes through the external
configuration file.

To provide even further flexibility, and to avoid coding a specific name and location
into an application, a useful technique is to supply the file name and location as
parameters inside the standard web.xml deployment descriptor. The servlet or JSP
page reads the values of the parameters specifying the location and name of the
configuration file and dynamically constructs the location from which to load the
configuration file. This process enables system administrators to choose both the name
and location of the configuration file to use.

Note: This approach, although offering an additional level of
flexibility, does require all external configuration files for all
deployed applications to have the same name.

Configuring and Using Jakarta log4j

Working with Open Source Frameworks 6-11

Here is a sample web.xml entry specifying the name and location of the configuration
file:

<context-param>
 <param-name>log4j-config-file</param-name>
 <param-value>/web-inf/classes/app2-log4j-config.xml</param-value>
</context-param>

The application reads the location value from the deployment descriptor, constructs a
full path to the file on the local file system, and loads the file. Following is some
sample code:

public void init(ServletContext context) throws ServletException
{
 /*
 * Read the path to the config file from the web.xml file,
 * should return something like /web-inf/xxx.xml or web-inf/classes/xxx.xml.
 */
 String configPath = context.getInitParameter("log4j-config-file");

 /*
 * This loads the file based on the base directory of the Web application
 * as it is deployed on the application server.
 */
 String realPath = context.getRealPath(configPath);
 if(realPath!=null)
 DOMConfigurator.configure(realPath);
 _logger = Logger.getLogger(Log4JExample.class);
}

Enabling log4j Debug Mode in OC4J
When deploying an application on OC4J that uses log4j and external configuration
files, it is sometimes helpful to view how log4j is trying to find and load the requested
configuration files. To facilitate this, log4j provides a debug mode that displays how it
is loading (or attempting to load) its configuration files.

To turn on log4j debug mode, specify an additional runtime property when you start
OC4J, as follows:

java -Dlog4j.debug=true -jar oc4j.jar

OC4J displays output similar to the following:

Oracle Application Server (9.0.4.0.0) Containers for J2EE initialized
log4j: Trying to find [log4j.xml] using context classloader [ClassLoader:
[[D:\myprojects\java\log4j\app1\webapp1\WEB-INF\classes],
[D:\myprojects\java\log4j\app1\webapp1\WEB-INF\lib/log4j-1.2.7.jar]]].
log4j: Using URL [file:/D:/myprojects/java/log4j/app1/webapp1/WEB-INF/classes/
log4j.xml] for automatic log4j configuration.
log4j: Preferred configurator class: org.apache.log4j.xml.DOMConfigurator
log4j: System property is :null

Note: It is a good practice to place files that define behavior, and
that should not be accessible to clients from an HTTP request,
directly into the /WEB-INF directory of the Web application. (Do
not use a subdirectory of /WEB-INF.) This applies to log4j.xml,
for example. The servlet specification requires contents of the
/WEB-INF directory to be inaccessible to clients.

Using JAX-WS RI

6-12 Developer’s Guide

log4j: Standard DocumentBuilderFactory search succeeded.
log4j: DocumentBuilderFactory is oracle.xml.jaxp.JXDocumentBuilderFactory
log4j: URL to log4j.dtd is [classloader:/org/apache/log4j/xml/log4j.dtd].
log4j: debug attribute= "null".
log4j: Ignoring debug attribute.
log4j: Threshold ="null".
log4j: Level value for root is [debug].
log4j: root level set to DEBUG
log4j: Class name: [org.apache.log4j.FileAppender]
log4j: Setting property [file] to [d:/temp/webapp1.out].
log4j: Setting property [append] to [false].
log4j: Parsing layout of class: "org.apache.log4j.PatternLayout"
log4j: Setting property [conversionPattern] to [%n%-5p %d{DD/MM/yyyy}
d{HH:mm:ss} [%-10c] [%r]%m%n].
log4j: setFile called: d:/temp/webapp1.out, false
log4j: setFile ended
log4j: Adding appender named [FileAppender] to category [root].

Using JAX-WS RI
Oracle Web Services is based on JAX-RPC in Oracle Application Server 10g (10.1.3.5.0).
You can deploy a JAX-WS Web application to OC4J 10g (10.1.3.5.0) by configuring
OC4J and the application to use JAX-WS Reference Implementation (RI) instead of
Oracle Web Services, as follows:

1. Download the JAX-WS RI package.

2. Publish the JAX-WS RI files to OC4J as a shared library.

3. Unimport the Oracle Web Services library from the application, before or during
deployment.

4. Import the JAX-WS RI shared library into the application, after you unimport the
Oracle Web Services library.

Publishing the JAX-WS RI files as a shared library installs them in the OC4J instance or
group or in standalone OC4J, as described in "Options for Installing and Publishing a
Shared Library" on page 3-13. You could also package these files with the Web
application on the WEB-INF/lib path and then deploy the library to OC4J with the
Web application, as described in "Installing Open Source Libraries in OC4J" on
page 6-1.

To avoid conflicts and versioning issues when you publish or deploy the shared
library to OC4J, Oracle recommends that you add all of the JAR files that come with
the JAX-WS RI package as code sources:

■ jaxb-api.jar

■ saaj-api.jar

■ resolver.jar

■ jaxws-tools.jar

Note: You can also use the debug attribute of the
log4j:configuration tag in an external configuration file to
enable debug output. However, this does not display the loading
operations that take place, so it does not offer the best service for
resolving problems in loading configuration files.

Using JAX-WS RI

Working with Open Source Frameworks 6-13

■ streambuffer.jar

■ jsr173_api.jar

■ jaxws-api.jar

■ jsr181-api.jar

■ stax-ex.jar

■ jaxb-xjc.jar

■ saaj-impl.jar

■ jsr250-api.jar

■ jaxws-rt.jar

■ jaxb-impl.jar

■ sjsxp.jar

■ FastInfoset.jar

Downloading the JAX-WS RI Package
Download the version of the JAX-WS RI package you want to use from the JAX-WS
Reference Implementation Web site at:

https://jax-ws.dev.java.net/

Publishing JAX-WS RI Files to OC4J As a Shared Library
You can publish the JAX-WS RI files to OC4J as a shared library, using the procedure
described in "Installing Open Source Libraries in OC4J" on page 6-1 or "Installing and
Publishing a Shared Library in OC4J" on page 3-13. Or you can add the JAX-WS RI
files as part of a shared library in the server.xml configuration file for OC4J.

To add JAX-WS RI Files to OC4J in server.xml:
1. Add a <shared-library> element for JAX-WS RI to the server.xml file for

OC4J, specifying a library name and version, as follows:

server.xml
.
.
.
<shared-library name="jaxws20" version="2.0">
</shared-library>
.
.
.

2. Within the <shared-library> element, add a < code-source> element for each
JAX-WS RI file, specifying the relative path to the file, like this:

server.xml
.
.
.
<shared-library name="jaxws20" version="2.0">
<code-source path="jaxb-api.jar"/>
<code-source path="saaj-api.jar"/>
<code-source path="resolver.jar"/>
<code-source path="jaxws-tools.jar"/>

Using JAX-WS RI

6-14 Developer’s Guide

<code-source path="streambuffer.jar"/>
<code-source path="jsr173_api.jar"/>
<code-source path="jaxws-api.jar"/>
<code-source path="jsr181-api.jar"/>
<code-source path="stax-ex.jar"/>
<code-source path="jaxb-xjc.jar"/>
<code-source path="saaj-impl.jar"/>
<code-source path="jsr250-api.jar"/>
<code-source path="jaxws-rt.jar"/>
<code-source path="jaxb-impl.jar"/>
<code-source path="sjsxp.jar"/>
<code-source path="FastInfoset.jar"/>
</shared-library>
.
.
.

Importing the JAX-WS RI Shared Library into an Application
You can configure an application to import the JAX-WS RI shared library as described
in "Configuring an Application to Import a Shared Library" on page 3-16 or
"Configuring All Deployed Applications to Import a Specific Shared Library" on
page 3-18.

Before you import a JAX-WS RI shared library into an application, you need to
unimport the Oracle Web Services library from the application. For information about
how to do this, see "Removing or Replacing an Oracle Shared Library Imported by
Default" on page 3-10.

Or you can specify importing the JAX-WS RI shared library into an application, and
prevent the application from importing the JAX-RPC shared library, in the
orion-application.xml deployment descriptor for the application.

To specify importing the JAX-WS RI shared library in orion-application.xml:
1. Create an OC4J deployment descriptor for the application in an

orion-application.xml file with the following imported library:

<orion-application>
 <imported-shared-libraries>
 <import-shared-library name="jaxws20" min-version="2.0" max-version="2.0"/>
 </imported-shared-libraries>
</orion-application>

2. Add a <remove-inherited> element to orion-application.xml to prevent
the application from importing the JAX-RPC shared library, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<orion-application>
 <imported-shared-libraries>
 <remove-inherited name="oracle.ws.jaxrpc"/>
 <import-shared-library name="jaxws20"/>
 </imported-shared-libraries>
</orion-application>

3. Package the orion-application.xml file in the application’s EAR file.

7

Packaging and Testing Applications 7-1

7 Packaging and Testing Applications

This chapter provides guidelines for packaging J2EE-compliant applications and
modules for deployment to OC4J. It includes the following sections:

■ Overview of J2EE Application Packaging

■ Packaging Deployment Descriptors

Overview of J2EE Application Packaging
The proper packaging of J2EE applications and modules is critical to successful
deployment of your creations to OC4J. As a fully J2EE 1.4-compliant container, OC4J
supports the packaging of J2EE applications into different modules, which can then be
deployed together or separately. Modules can be categorized as belonging to one of
two types:

■ Application modules containing a complete J2EE application or a Web application

■ Standalone modules containing Enterprise JavaBeans (EJB) modules, application
clients, or resource adapters

A complete J2EE application is assembled and delivered as an Enterprise Archive
(EAR) file, a standard Java Archive (JAR) file ending in the .ear extension. The file
includes a J2EE application descriptor and can include an OC4J-specific descriptor
and, with JDK 6 or JDK 5.0, a lib directory. An EAR is essentially a metacontainer that
includes one or more of the following J2EE modules:

■ A Web application module is packaged as a Web Application Archive (WAR) file.
A WAR typically contains the servlet class files, JSP files, any supporting class files
(such as resource bundles), images, and HTML files that comprise a Web
application. A J2EE Web deployment descriptor and an optional OC4J-specific
Web descriptor are also included.

Web services are packaged in a WAR file for deployment.

■ EJB modules, which contain class files for enterprise beans, are packaged as JAR
files. An EJB JAR will also include an EJB deployment descriptor.

■ Resource adapter modules containing all Java interfaces, classes, native libraries,
and the resource adapter deployment descriptor are packaged as JAR files with a
.rar (resource adapter archive) extension.

■ Application client modules containing class files and an application client
deployment descriptor are packaged as JAR files.

Any of the preceding modules can be deployed individually to OC4J, rather than
having to be packaged within an EAR file as part of a complete J2EE application. This

Overview of J2EE Application Packaging

7-2 Developer’s Guide

makes it possible to deploy updated modules without having to redeploy the entire
application.

The proper packaging of J2EE applications and modules is critical to successful
deployment of your creations to OC4J. The following sections review the structure of
these files:

■ J2EE Application Structure Within OC4J

■ Application Module (EAR File and WAR File) Structures

J2EE Application Structure Within OC4J
The following is the standard J2EE application structure, which you can use as your
development and packaging structure as appropriate.

This discussion also shows the relative locations of optional OC4J-specific descriptors,
such as orion-application.xml. As noted previously, if you do not include the
OC4J-specific descriptors in your deployment, OC4J generates them for you when you
deploy a J2EE application, using values inherited from corresponding OC4J
configuration files and J2EE descriptors as defaults.

J2EEApplicationName.ear
 WAR file(s)
 JAR file(s)
 RAR file(s)
 lib/
 JAR and ZIP files for shared classes
 META-INF/
 MANIFEST.MF
 application.xml (standard J2EE application descriptor)
 orion-application.xml (optional OC4J application descriptor)

 WebModuleName.war
 static HTML files, such as index.html
 JSP pages
 images
 WEB-INF/
 web.xml (standard J2EE Web descriptor)
 orion-web.xml (optional OC4J Web descriptor)
 classes/
 servlet classes, according to package
 lib/
 JAR and ZIP files for shared classes

 EJBModuleName.jar
 EJB classes, according to package
 META-INF/
 ejb-jar.xml (standard J2EE descriptor)
 orion-ejb-jar.xml (optional OC4J descriptor)

 WebServiceWebModuleName.war
 WEB-INF/
 web.xml (standard J2EE Web descriptor)
 orion-web.xml (optional OC4J Web descriptor)
 webservices.xml (standard J2EE descriptor)

Note: Web services can be packaged as a WAR file or as an EJB
JAR file containing stateless session beans.

Overview of J2EE Application Packaging

Packaging and Testing Applications 7-3

 oracle-webservices.xml (optional OC4J descriptor)
 mapping_file.xml
 wsdl/
 wsdl_file.wsdl
 classes/
 class files
 lib/
 JAR and ZIP files for dependency classes

 ApplicationClientModuleName.jar
 client classes, according to package
 META-INF/
 application-client.xml (standard J2EE descriptor)
 orion-application-client.xml (optional OC4J descriptor)

 ResourceAdapterModuleName.rar
 JAR files for required classes
 required static files or other files
 META-INF/
 ra.xml (standard J2EE descriptor)
 orion-ra.xml (optional OC4J descriptor)

Application Module (EAR File and WAR File) Structures
In J2EE, a WAR file is typically contained within an EAR file. In the example in the
preceding section, the EAR file, J2EEAppName.ear, would have its /META-INF
directory at the top level, along with Web module WAR files, EJB module JAR files,
client application JAR files, and resource adapter RAR files (zero or more of each, as
applicable):

META-INF/
 application.xml
 orion-application.xml (optional)
EJBModuleName.jar
WebModuleName.war
ClientModuleName.jar
ResourceAdapterModuleName.rar

The following examples show the structure of the archive files for a simple Web
application. The EAR file contains a WAR file, which contains a single servlet.

Note: This structure is defined in the J2EE specification and
related specifications. The J2EE specification is at the following
location:

http://java.sun.com/j2ee/docs.html

Note: This document assumes you have some J2EE development
experience and a means of creating EAR and WAR files, either by
using the JAR utility directly, through an IDE such as Oracle
JDeveloper, or by using the ant utility and a build.xml file. For
information about using the OC4J Ant tasks, see the Oracle
Containers for J2EE Deployment Guide. For information about ant,
see the following Web site:

http://ant.apache.org

Packaging Deployment Descriptors

7-4 Developer’s Guide

Sample EAR File
Following are the contents of utility.ear. If there were EJB, client application, or
resource adapter modules, the associated JAR files would be at the same level as the
WAR file. Optionally, you could also include an orion-application.xml file in the
/META-INF directory. Instead, in this example, one would be generated by OC4J
during deployment.

META-INF/MANIFEST.MF
META-INF/application.xml
utility_web.war

Sample WAR File
Here are the contents of utility_web.war. Optionally, you could also include an
orion-web.xml file in the /WEB-INF directory. Instead, in this example, one would
be generated by OC4J during deployment.

META-INF/MANIFEST.MF
WEB-INF/classes/TestStatusServlet.class
WEB-INF/web.xml
index.html

Packaging Deployment Descriptors
The initial configuration data required to deploy an application or module into a J2EE
container is specified in an XML-formatted configuration file known as a deployment
descriptor. The format of a deployment descriptor is defined in a Document Type
Definition (DTD) document or an XML Schema Definition (XSD).

Each deployable module has a standard J2EE deployment descriptor that is required
for deployment into a J2EE-compatible server. In addition, J2EE containers such as
OC4J utilize a number of vendor-specific deployment descriptor files that extend the
standard J2EE deployment descriptors. For example, the OC4J-specific
orion-application.xml descriptor extends the J2EE standard application.xml
descriptor with configuration data specific to OC4J.

You can create and package the appropriate OC4J-specific descriptor with a
deployable archive. However, this is not required; if OC4J does not find a packaged
descriptor at deployment time, a deployment plan is automatically generated using
default values inherited from corresponding OC4J configuration files and J2EE
descriptors as defaults. See the Oracle Containers for J2EE Deployment Guide for more on
deployment plans.

Deployment Descriptors Overview
Table 7–1 provides a description of each J2EE standard deployment descriptor and its
corresponding OC4J extension. The XML Schema Definition (XSD) file that describes
each OC4J-specific descriptor is also noted. You can view the current Oracle XSDs at
the following link:

http://www.oracle.com/technology/oracleas/schema/index.html

OC4J enables you to create a deployment plan, which consolidates all of the
OC4J-specific configuration data that is persisted within the various OC4J descriptor
files. You can use the deployment plan editor in Application Server Control to set or

Note: The MANIFEST.MF files are created automatically by the
JAR utility.

Packaging Deployment Descriptors

Packaging and Testing Applications 7-5

edit configuration data at deployment time. See the Oracle Containers for J2EE
Deployment Guide for more on working with deployment plans.

Table 7–1 J2EE and OC4J Deployment Descriptors

J2EE Standard Descriptors OC4J Proprietary Descriptors

application.xml

Specifies the components of a J2EE application, such
as EJB modules and Web modules, and can specify
additional configuration for the application as well.
This descriptor must be included in the /META-INF
directory of the application’s EAR file.

orion-application.xml

Generally defines OC4J-specific configurations such as
security role mappings, data source definitions, JNDI
namespace access and shared library replacements. Can
also be used to specify additional modules, beyond those
specified in the J2EE application.xml descriptor.

The format of this file is defined by
orion-application-10_0.xsd.

web.xml

Specifies and configures a set of J2EE Web
components, including static pages, servlets, and JSP
pages. It also specifies and configures other
components, such as EJB modules, that the Web
components might call. The Web components might
together form an independent Web application and
be deployed in a standalone WAR file.

orion-web.xml

Extends the standard J2EE descriptor with
application-level, OC4J-specific configuration data, such
as whether or not OC4J features like developer mode or
auto-reload of JSPs are enabled.

The format of this file is defined by orion-web-10_
0.xsd.

ejb-jar.xml

Defines the specific structural characteristics and
dependencies of the Enterprise JavaBeans modules
within a JAR, and provides instructions for the EJB
container about how the beans expect to interact
with the container.

If you are using EJB 3.0, this deployment descriptor
file is optional; you can use annotations instead. In
this release, OC4J supports the use of both EJB 3.0
annotations and ejb-jar.xml for all options of
session and message-driven beans. The
ejb-jar.xml file is not used for EJB 3.0 entities.
Configuration in the ejb-jar.xml file overrides
annotations. For EJB 3.0 entities, you must either use
annotations or TopLink JPA persistence provider
deployment XML files (toplink-ejb-jar.xml
and ejb3-toplink-sessions.xml). For more
information, see the Oracle Containers for J2EE
Enterprise JavaBeans Developer’s Guide.

orion-ejb-jar.xml

Defines OC4J-specific configuration data for all EJB
modules within an archive, including EJB pool settings,
time-out and retry settings, JNDI mapping, and finder
method specifications. Also includes properties for the
TopLink persistence manager.

The format of this file is defined in
orion-ejb-jar-10_0.xsd.

persistence.xml

Defines one or more persistence units in an EJB 3.0
application that uses entities. In this release, you can
define persistence.xml in an EJB JAR, WAR, or
EAR. This deployment descriptor file can be
packaged in the META-INF directory of an EJB JAR
file, in the WEB-INF/classes/META-INF directory
of a Web module, in any standard JAR packaged in
the lib directory of an EAR, or in a WEB-INF/lib
directory that packages entities. For more
information, see the Oracle Containers for J2EE
Enterprise JavaBeans Developer’s Guide.

Packaging Deployment Descriptors

7-6 Developer’s Guide

Oracle provides additional OC4J-specific descriptors that enable you to define data
sources and security-role mappings. The J2EE specification does not provide standard
descriptors for defining such resources. You can also package any of these descriptors
with an application for deployment to OC4J.

application-client.xml

Describes the EJB modules and other resources used
by a J2EE application client packaged in an archive.

orion-application-client.xml

Contains OC4J deployment data, including JNDI
mappings to an EJB module’s home interface or to
external resources such as a data source, JMS queue, or
mail session.

The file format is defined in
orion-application-client-10_0.xsd.

ra.xml

Contains information on implementation code,
configuration properties, and security settings for a
resource adapter packaged within a RAR file.

oc4j-ra.xml

Contains deployment configurations for deploying a
resource adapter to OC4J. It contains EIS connection
information, the JNDI name to be used, connection
pooling parameters, and resource principal mappings.

The file format is defined by
oc4j-connector-factories-10_0.xsd.

oc4j-connectors.xml

In an OC4J instance with standalone resource adapters
deployed, contains an enumeration of those standalone
resource adapters. In a J2EE application with embedded
resource adapters deployed, contains a list of embedded
resource adapters that have been bundled with the
application.

This file is formatted according to
oc4j-connectors-10_0.xsd.

webservices.xml

Describes a Web service, including WSDL
information and JAX-RPC mapping data, for a Web
service application packaged within a WAR file.

oracle-webservices.xml

Defines properties used by the OC4J Web services
container, such as whether to expose the WSDL file. It
also defines endpoint addresses and data specific to EJB
modules implemented as Web services. The file can be
packaged in a WAR or an EJB JAR.

This file is formatted according to
oracle-webservices-10_0.xsd.

Table 7–2 Additional OC4J-Specific Descriptors

Descriptor Overview

data-sources.xml Defines one or more data sources to be used by the application to connect
to one or more databases. Data sources offer a portable,
vendor-independent method for creating connections to databases. A data
source's properties are set so that it represents a particular database.

The format of this file is defined by data-sources-10_1.xsd.

jazn-data.xml Can optionally be supplied with an application or module when the XML
provider type is specified. It stores JAAS (Java Authentication and
Authorization Service) data on users and roles.

For more information about the jazn-data.xml file, see the Oracle
Containers for J2EE Security Guide.

Table 7–1 (Cont.) J2EE and OC4J Deployment Descriptors

J2EE Standard Descriptors OC4J Proprietary Descriptors

Packaging Deployment Descriptors

Packaging and Testing Applications 7-7

Packaging a J2EE Standard Application Descriptor (application.xml)
The J2EE standard defines the concept and format of an application descriptor, called
application.xml, that you must include in the /META-INF directory of the EAR
file containing a J2EE application. The application descriptor acts as a manifest of the
modules contained in the application, possibly with additional configuration
information as well, and in some development environments can be created
automatically for you.

See the J2EE specification for more information.

Here is an example for an application with an EJB module, a Web module, and an
application client module:

<?xml version="1.0" ?>
<!DOCTYPE application (View Source for full doctype...)>
<application>
 <display-name>stateful, application:</display-name>
 <description>
 A sample J2EE application that uses a remote stateful session
 bean to call a local entity bean.
 </description>
 <module>
 <ejb>stateful-ejb.jar</ejb>
 </module>
 <module>
 <web>
 <web-uri>stateful-web.war</web-uri>
 <context-root>/stateful</context-root>
 </web>
 </module>
 <module>
 <java>stateful-client.jar</java>
 </module>
</application>

Packaging an OC4J-Specific Application Descriptor (orion-application.xml)
The J2EE standard application descriptor, application.xml, is extended by an
OC4J-specific application-level application descriptor, orion-application.xml,
which contains additional OC4J-specific configuration data. You can optionally
provide an orion-application.xml file with the application.xml file in the
/META-INF directory of your EAR file.

If you include an orion-application.xml file in your EAR file, OC4J initializes the
deployment plan created during the application deployment process with the values
specified in the file. For details on creating or editing deployment plans at deployment
time, see the Oracle Containers for J2EE Deployment Guide.

This data can optionally be edited at deployment time using the deployment plan
editor functionality provided by Oracle Enterprise Manager 10g Application Server

system-jazn-data.xml Contains the security configuration for the OC4J instance. The
jazn-data.xml descriptor can be specified, however, at the application
level to define users and roles.

For more information about the system-jazn-data.xml file, see the
Oracle Containers for J2EE Security Guide.

Table 7–2 (Cont.) Additional OC4J-Specific Descriptors

Descriptor Overview

Packaging Deployment Descriptors

7-8 Developer’s Guide

Control and JDeveloper 10g. The finalized data is then written out to a generated
orion-application.xml file in the ORACLE_
HOME/j2ee/instance/application-deployments directory.

If the EAR file does not contain an orion-application.xml file, OC4J generates
the file in the deployment directory with default settings inherited from the OC4J
global application descriptor (provided the OC4J default application is the parent
application, as is the case by default), and the application.xml file is within the
EAR file.

See "J2EE Application Structure Within OC4J" on page 7-2 for information about where
orion-application.xml fits in the application structure.

In most circumstances, you should use orion-application.xml only to define
OC4J-specific configuration such as security role mappings. Also note that when OC4J
generates the file, it creates <web-module> elements to reflect the modules specified
in the J2EE application.xml file.

The following example shows some OC4J-specific configuration and defines the same
EJB, Web, and client modules as defined in the example of the standard
application.xml file in "Packaging a J2EE Standard Application Descriptor
(application.xml)" on page 7-7:

<orion-application default-data-source="jdbc/OracleDS">
 <ejb-module remote="false" path="stateful-ejb.jar" />
 <web-module id="stateful-web" path="stateful-web.war" />
 <client-module path="stateful-client.jar" auto-start="false" />
 <persistence path="persistence" />
 <log>
 <file path="application.log" />
 </log>
 <namespace-access>
 <read-access>
 <namespace-resource root="">
 <security-role-mapping name="<jndi-user-role>">
 <group name="users" />
 </security-role-mapping>
 </namespace-resource>
 </read-access>
 <write-access>
 <namespace-resource root="">
 <security-role-mapping name="<jndi-user-role>">
 <group name="users" />
 </security-role-mapping>
 </namespace-resource>
 </write-access>
 </namespace-access>
</orion-application>

Note: When OC4J generates orion-application.xml, it may
make changes to the file, but these changes are transparent. For
example, an attribute setting that specifies the default value may be
ignored or removed.

8

Using J2EE Best Practices 8-1

8 Using J2EE Best Practices

This chapter provides recommended best practices to consider when developing J2EE
applications for deployment to OC4J. It includes the following sections:

■ JavaServer Pages Best Practices

■ Class-Loading Best Practices

■ Sessions Best Practices

■ Enterprise JavaBeans Best Practices

JavaServer Pages Best Practices
The following sections discuss best practices to consider when developing JSP pages
for deployment to OC4J.

■ Beware of HTTP Sessions

■ Unbuffer JSP Pages

■ Forward to JSP Pages Instead of Using Redirects

■ Hide JSP Pages from Direct Invocation to Limit Access

■ Use JSP-Timeout for Efficient Memory Utilization

■ Package JSP Files in an EAR File for Deployment

Beware of HTTP Sessions
HTTP sessions add performance overhead to your Web applications due to the
amount of memory used. Sessions are enabled in JSP by default.

Avoid Using HTTP Sessions
Avoid using HTTP session objects if they are not required. If a JSP page does not
require an HTTP session (essentially, does not require storage or retrieval of session
attributes), then you can specify that no session is to be used. Specify this with a page
directive such as the following:

<%@ page session="false" %>

This will improve the performance of the page by eliminating the overhead of session
creation or retrieval.

Note that although servlets by default do not use a session, JSP pages by default do use
a session.

JavaServer Pages Best Practices

8-2 Developer’s Guide

Always Invalidate Sessions When No Longer in Use
If your JSPs do use HTTP sessions, ensure that you explicitly cancel each session, using
the javax.servlet.http.HttpSession.invalidate() method, to release the
memory occupied.

The default session timeout for OC4J is 20 minutes. You can change this for a specific
application by setting the <session-timeout> parameter in the
<session-config> element of the application’s web.xml file.

Pretranslate JSP Pages Using the ojspc Utility
You might consider using the ojspc utility to pretranslate JSP pages before
deployment. This avoids the performance cost of translating pages as they are first
accessed by users. See the Oracle Containers for J2EE Support for JavaServer Pages
Developer’s Guide for additional discussion of the advantages of pretranslation.

Unbuffer JSP Pages
By default, a JSP page uses an area of memory known as a page buffer. This buffer (8 KB
by default) is required if the page uses dynamic globalization support content type
settings, forwards, or error pages. If it does not use any of these features, you can
disable the buffer in a page directive:

<%@ page buffer="none" %>

This will improve the performance of the page by reducing memory usage and saving
the output step of copying the buffer.

Forward to JSP Pages Instead of Using Redirects
You can pass control from one JSP page to another using one of two options: Including
a <jsp:forward> standard action tag or passing the redirect URL to
response.sendRedirect() in a scriptlet.

The <jsp:forward> option is faster and more efficient. When you use this standard
action, the forwarded target page is invoked internally by the JSP runtime, which
continues to process the request. The browser is totally unaware that the forward has
taken place, and the entire process appears to be seamless to the user.

When you use sendRedirect(), the browser actually has to make a new request to
the redirected page. The URL shown in the browser is changed to the URL of the
redirected page. In addition, all request scope objects are unavailable to the redirected
page because redirect involves a new request.

Use a redirect only if you want the URL to reflect the actual page that is being
executed in case the user wants to reload the page.

Hide JSP Pages from Direct Invocation to Limit Access
There are situations, particularly in an architecture such as Model-View-Controller
(MVC), where you would want to ensure that some JSP pages are accessible only to
the application itself and cannot be invoked directly by users.

As an example, assume that the front-end, or view, page is index.jsp. The user starts
the application through a URL request that goes directly to that page. Further assume
that index.jsp includes a second page, included.jsp, and forwards to a third
page, forwarded.jsp, and that you do not want users to be able to invoke these
directly through a URL request.

Sessions Best Practices

Using J2EE Best Practices 8-3

A mechanism for this is to place included.jsp and forwarded.jsp in the
application /WEB-INF directory. When located there, the pages cannot be directly
invoked through URL request. Any attempt would result in an error report from the
browser.

The page index.jsp would have the following statements:

<jsp:include page="WEB-INF/included.jsp"/>
...
<jsp:forward page="WEB-INF/forwarded.jsp"/>

The application structure would be as follows, including the standard classes
directory for any servlets, Enterprise JavaBeans (EJB) modules, or other classes, and
including the standard lib directory for any JAR or ZIP files:

index.jsp
WEB-INF/
 web.xml
 included.jsp
 forwarded.jsp
 classes/
 lib/

Use JSP-Timeout for Efficient Memory Utilization
Set the jsp-timeout attribute of the <orion-web-app> element to an integer value, in
seconds, after which any JSP page will be removed from memory if it has not been
requested. This frees up resources in situations where some pages are called
infrequently. The default value is 0, indicating no timeout.

The <orion-web-app> element is found in the OC4J
global-web-application.xml and orion-web.xml files. Modify the
global-web-application.xml file to apply the timeout to all applications in an
OC4J instance. To set configuration values for a specific application, set the values in
the application-specific orion-web.xml file.

Package JSP Files in an EAR File for Deployment
OC4J supports deployment of JSP pages by copying the files directly to the
appropriate location. This is very useful when developing and testing the pages.

However, this practice is not recommended for releasing your JSP-based application
for production. Always package JSP files in an Enterprise Archive (EAR) file to allow
deployment in a standard manner and to allow deployment across multiple
application servers.

Class-Loading Best Practices
See "Using Best Practices for Class Loading" on page 3-20 for J2EE class-loading best
practices.

Sessions Best Practices
The following sections discuss best practices to consider with regard to sessions.

■ Persist Session State If Appropriate

■ Do Not Store Shared Resources in Sessions

■ Set Session Timeout Appropriately

Sessions Best Practices

8-4 Developer’s Guide

■ Monitor Session Memory Usage

■ Use a Mix of Cookies and Sessions

■ Use Coarse Objects Inside HTTP Sessions

■ Use Transient Data in Sessions Whenever Appropriate

■ Invalidate Sessions

■ Miscellaneous Guidelines

Persist Session State If Appropriate
HTTP Sessions are used to preserve the conversation state with a Web browser. As
such, they hold information, which if lost, could result in a client having to start the
conversation over.

Hence, it is always safe to save the session state in database. However, this imposes a
performance penalty. If this overhead is acceptable, then persisting sessions is indeed
the best approach.

There are trade-offs when implementing state safety that affect performance,
scalability, and availability. If you do not implement state-safe applications, then:

■ A single JVM process failure will result in many user session failures. For example,
work done shopping online, filling in a multiple page form, or editing a shared
document will be lost, and the user will have to start over.

■ Not having to load and store session data from a database will reduce CPU
overhead, thus increasing performance.

■ Having session data clogging the JVM heap when the user is inactive reduces the
number of concurrent sessions a JVM can support, and thus decreases scalability.

In contrast, a state safe application can be written so that session state exists in the JVM
heap for active requests only, which is typically 100 times fewer than the number of
active sessions.

To improve performance of state safe applications:

■ Minimize session state. For example, a security role might map to detailed
permissions on thousands of objects. Rather than store all security permissions as
session state, just store the role id. Maintain a cache, shared across many sessions,
mapping role ID to individual permissions.

■ Identify key session variables that change often, and store these attributes in a
cookie to avoid database updates on most requests.

■ Identify key session variables that are read often and use HttpSession as a cache
for that session data to avoid having to read it from the database on every request.
You must manually synchronize the cache, which requires care to handle planned
and unplanned transaction rollbacks.

Do Not Store Shared Resources in Sessions
Objects that are stored in the session objects will not be released until the session times
out (or is invalidated). If you hold any shared resources that have to be explicitly
released to the pool before they can be reused (such as a JDBC connection), then these
resources may never be returned to the pool properly and can never be reused.

Sessions Best Practices

Using J2EE Best Practices 8-5

Set Session Timeout Appropriately
Set session timeout appropriately (setMaxInactiveInterval()) so that neither
sessions timeout frequently nor does it live for ever this consuming memory.

Monitor Session Memory Usage
Monitor the memory usage for the data you want to store in session objects. Make sure
there is sufficient memory for the number of sessions created before the sessions time
out.

Use a Mix of Cookies and Sessions
Typically, a cookie is set on the Web browser (automatically by the container), to track
a user session. In some cases, this cookie may last a much longer duration than a single
user session. (For example, one time settings, such as to determine the end-user
geographic location).

Thus, a cookie that persists on the client disk could be used to save information valid
for the long-term, while a server side session will typically include information valid
for the short-term.

In this situation, the long-term cookie should be parsed on only the first request to the
server, when a new session established. The session object created on the server should
contain all the relevant information, so as not to require reparsing the cookie on each
request.

A new client-side cookie should then be set that contains only an ID to identify the
server-side session object. This is automatically done for any JSP page that uses
sessions.

This gives performance benefit since the session object contents do not have to be
re-created from the long-term cookie. The other option is to save the user settings in a
database on the server, and have the user login. The unique userid can then be used to
retrieve the contents from the database and store the information in a session.

Use Coarse Objects Inside HTTP Sessions
Oracle Application Server automatically replicates sessions when session object is
updated. If a session object contains granular objects, (for example, a person’s name), it
results in too many update events to all the servers in the island. Hence, it is
recommended to use coarse objects, (for example the person object, as opposed to the
name attribute), inside the session.

Use Transient Data in Sessions Whenever Appropriate
Oracle Application Server does not replicate transient data in a session across servers
in the island. This reduces the replication overhead (and also the memory
requirements). Hence, use the transient type liberally.

Invalidate Sessions
The number of active users is generally quite small compared to the number of users
logged in on the system. For example, of the 100 users on a Web site, only 10 may
actually be doing something at any given time.

A session is typically established for each user on the system. Each session, of course,
uses memory.

Enterprise JavaBeans Best Practices

8-6 Developer’s Guide

Simple things, like a logout button, provide an opportunity for quick session
invalidation and removal. This avoids memory usage growth since the sessions on the
system will be closer to the number of active users, as opposed to all those that have
not timed out yet.

Miscellaneous Guidelines
■ Use sessions as light-weight mechanism by verifying session creation state.

■ Use cookies for long-standing sessions.

■ Put recoverable data into sessions so that they can be recovered if the session is
lost. Store non-recoverable data persistently (in file system or in database using
JDBC). However, storing every data persistently is an expensive thing. Instead,
one can save data in sessions and use HttpSessionBindingListener or other
events to flush data into persistent storage during session close.

■ Sticky versus Distributable Sessions

– Distributable session data must be serialized and useful for failover. However
it is expensive, as the data has to be serialized and replicated among peer
processes.

– Sticky sessions affect load-balancing across multiple JVMs, but are less
expensive as there is no state replication.

Enterprise JavaBeans Best Practices
This section describes Enterprise JavaBeans (EJB) best practices. It includes the
following topics:

■ Use Local, Remote, and Message-Driven EJB Modules When Appropriate

■ Use EJB modules Judiciously

■ Use a Service Locator Pattern

■ Cluster Your EJB modules

■ Index Secondary Finder Methods

■ Understand the Life Cycle of an EJB Modules

■ Use Deferred Database Constraints

■ Create a Cache with Read-Only EJB Modules

■ Pick an Appropriate Locking Strategy

■ Understand and Leverage Patterns

■ When Using Entity Beans, Use Container-Managed Aged Persistence Whenever
Possible

■ Entity Beans Using Local interfaces Only

■ Use a Session Bean Facade for Entity Beans

■ Enforce Primary Key Constraints at the Database Level

■ Use a Foreign Key for 1-1 or 1-M Relationships

■ Avoid the findAll() Method on Entities Based on Large Tables

■ Set prefetch-size to Reduce Round Trips to Database

Enterprise JavaBeans Best Practices

Using J2EE Best Practices 8-7

■ Use Lazy Loading with Caution

■ Avoid Performing O-R Mapping Manually

Use Local, Remote, and Message-Driven EJB Modules When Appropriate
An EJB module can be local or remote. If you envision calls to an EJB module to
originate from the same container as the one running the EJB module, a local EJB
module is better because it does not entail the marshalling, unmarshalling, and
network communication overhead. A local bean also enables you to pass an object by
reference, which can further improve performance.

Remote EJB modules enable clients on different machines or different application
server instances, or both, to talk to them. In this case, it is important to use the
value-object pattern to improve performance by reducing network traffic.

If you choose to write an EJB module, write a local EJB module over a remote EJB
object. Because the only difference is in the exception on the EJB object, almost all of
the implementation bean code remains unchanged.

Additionally, if you do not have a need for making synchronous calls, message-driven
beans are more appropriate.

Use EJB modules Judiciously
An EJB module is a reusable component backed by component architecture with
several useful services: persistence, transaction security, naming, and so on. However,
these additions make it "heavy."

If you just require abstraction of some functionality and are not leveraging the EJB
container services, you should consider using a simple JavaBean, or implement the
required functionality using JSPs or servlets.

Use a Service Locator Pattern
Most J2EE services and resources require "acquiring" a handle to them via an initial
Java Naming and Directory Interface (JNDI) call. These resources could be an EJB
Home object, or, a JMS topic. This results in expensive calls to the server machine to
resolve the JNDI reference, even though the same client may have gone to the JNDI
service for a different thread of execution to fetch the same data.

Hence, it is recommended to have a Service Locator, which in some sense is a local
proxy for the JNDI service, so that the client programs talk to the local service locator,
which in turn talks to the real JNDI service, and that only if required.

The Java Object Cache bundled with the product may be used to implement this
pattern.

This practice improves availability since the service locator can hide failures of the
backend server or JNDI tree by having cached the lookup. Although this is only
temporary since the results still have to be fetched.

Performance is also improved since trips to the back-end application server are
reduced.

Cluster Your EJB modules
Cluster your EJB modules only when you require one of the following features:

Enterprise JavaBeans Best Practices

8-8 Developer’s Guide

■ Load Balancing: The EJB client or clients are load balanced across the servers in the
EJB cluster.

■ Fault Tolerance: The state (in case of stateful session beans) is replicated across the
OC4J processes in the EJB cluster. If the proxy classes on the client cannot connect
to an EJB server, they will attempt to connect to the next server in the cluster. The
client does not see the failure.

■ Scalability: Since multiple EJB servers behaving as one can service many more
requests than a single EJB server, a clustered EJB system is more scalable. The
alternative is to have stand-alone EJB systems, with manual partitioning of clients
across servers. This is difficult to configure and does not have fault tolerance
advantages.

To fully leverage EJB clustering, you will need to use remote EJB modules. Remote EJB
modules have some performance implications over local EJB modules. If you use local
EJB modules and save a reference to them in a servlet (or JSP) session, when the
session is replicated, the saved reference becomes invalid. Therefore, use EJB
clustering only when you need the listed features.

Index Secondary Finder Methods
When finder methods, other than findByPrimaryKey() and findAll(), are
created they may be extremely inefficient if appropriate indexes are not created that
help to optimize execution of the SQL code generated by the container.

Understand the Life Cycle of an EJB Modules
As a developer, it is imperative that you understand the life cycle of an EJB module.
Many problems can be avoided by following the life cycle and the expected actions
during call backs more closely.

This is especially true with entity beans and stateful session beans. For example, in a
small test environment, a bean may never get passivated, and thus a
misimplementation (or nonimplementation) of ejbPassivate() and
ejbActivate() might not show up until later. Moreover, since these are not used for
stateless beans, they may confuse new developers.

Use Deferred Database Constraints
For those constraints that may be invalid for a short time during a transaction but will
be valid at transaction boundaries, use deferred database constraints. For example, if a
column is not populated during an ejbCreate(), but will be set prior to the
completion of the transaction, then you may want to set the not null constraint for that
column to be deferred. This also applies to foreign key constraints that are mirrored by
EJB relationships with EJB 2.0.

Create a Cache with Read-Only EJB Modules
For those cases where data changes very slowly or not at all, and the changes are not
made by your EJB application, read-only beans may make a very good cache. A good
example of this is a country EJB module. It is unlikely that it will change very often,
and it is likely that some degree of stale data is acceptable.

To create a cache with read-only EJB modules:
1. Create read-only entity beans.

2. Set exclusive-write-access="true".

Enterprise JavaBeans Best Practices

Using J2EE Best Practices 8-9

3. Set the validity timeout to the maximum acceptable staleness of the data.

Pick an Appropriate Locking Strategy
It is critical that an appropriate locking strategy be combined with an appropriate
database isolation mode for properly performing and highly reliable EJB applications.

Use optimistic locking where the likelihood of conflict in updates is low. If a lost
update is acceptable or cannot occur because of application design, use an isolation
mode of read-committed. If the lost updates are problematic, use an isolation mode of
serializable.

Use pessimistic locking where there is a higher probability of update conflicts. Use an
isolation mode of read-committed for maximum performance in this case. Use
read-only locking when the data will not be modified by the EJB application.

Understand and Leverage Patterns
With the wider industry adoption, there are several common (and generally)
acceptable ways of solving problems with EJB modules. These have been widely
published in, books, discussion forums, and so on. In some sense, these patterns are
best practices for a particular problem. These should be researched and followed.

Here are some examples:

■ Session Façade: Combines multiple entity bean calls into a single call on a session
bean, thus reducing the network traffic.

■ Message Façade: Use MDBs if you do not need a return status from your method
invocation.

■ Value Object Pattern: A value object pattern reduces the network traffic by
combining multiple data values that are usually required to be together, into a
single value object.

A full discussion on the large number of patterns available is outside the scope of this
document, but the references section contains some useful books, Web sites, or both on
this subject.

When Using Entity Beans, Use Container-Managed Aged Persistence Whenever
Possible

Although there are some limitations to container-managed persistence (CMP), CMP
has a number of benefits. One benefit is portability. With CMP, decisions like
persistence mapping and locking model selection become a deployment activity rather
than a coding activity. This allows deployment of the same application in multiple
containers with no change in code. This is commonly not true for Bean Managed
Persistence (BMP) since SQL statements and concurrency control must be written into
the entity bean and are therefore specific to the container and/or the data store.

Another benefit is that, in general, J2EE container vendors provide quality of service
(QoS) features such as locking model variations, lazy loading, and performance and
scalability enhancements, which may be controlled via deployment configuration
rather than by writing code. Oracle Application Server includes features such as
read-only entity beans, minimal writing of changes, and lazy loading of relations,
which would have to be built into code for BMP.

A third benefit of CMP is container-managed relationships. Through declarations, not
unlike CMP field mapping, a CMP entity bean can have relationships between two

Enterprise JavaBeans Best Practices

8-10 Developer’s Guide

entity beans managed by the container with no implementation code required from
application developers.

Last but least, tools are available to aid in the creation of CMP entity beans so that
minimal work is required from developers for persistence. This allows developers to
focus on business logic, which allows them to be more efficient. JDeveloper9i is a
perfect example where, through modeling tools and wizards, very little work is
required to create CMP entity beans including creation of both the generic EJB
descriptors and the Oracle Application Server specific descriptors.

Overall, there are cases where CMP does not meet the requirements of an application,
but the development effort saved, and the optimizations that J2EE containers like
OC4J provide make CMP much more attractive than BMP.

Entity Beans Using Local interfaces Only
It is a good practice to expose your entity beans using only local interfaces because
container managed relationship can only be used with local interfaces. Also local
interfaces avoid expensive serialization and remote network calls.

Use a Session Bean Facade for Entity Beans
Avoid using entity beans directly from Web modules and client applications and use a
session bean façade layer instead. Use of entity beans from client applications
hardcodes the domain model in the client. It also introduces difficulty when managing
both remote and local interfaces for entity beans.

Create a session bean façade layer by grouping together all natural use cases. This
exposes operations to one or more entity beans. It provides finer grained access to the
entity beans and reduces database interactions by acting as a transaction boundary.
This also enables the entity beans to be accessed by Web services by exposing the
stateless session bean as a Web service endpoint.

Enforce Primary Key Constraints at the Database Level
Enforce primary key constraint for the underlying table for your CMP entity beans
instead of having the container execute an extra SQL statement to check for a duplicate
primary key. You can switch this check in the orion-ejb-jar.xml file by setting the
do-select-before-insert="false" for your entity bean.

Use a Foreign Key for 1-1 or 1-M Relationships
Use a foreign key when completing the O-R mapping for 1-1 or 1-many relationships
between entity beans instead of using an association table. This enables you to avoid
maintaining an extra table and an extra SQL statement generated by container to
maintain the relationships.

Avoid the findAll() Method on Entities Based on Large Tables
When you use the findAll() method, the container tries to retrieve all rows of the
table. You should try to avoid this type of operation on entities based on tables that
have a large number of records. It will slow down the operations of your database.

Set prefetch-size to Reduce Round Trips to Database
Oracle JDBC drivers have extensions that allow setting the number of rows to prefetch
into the client while a result set is being populated during a query. This reduces the

Enterprise JavaBeans Best Practices

Using J2EE Best Practices 8-11

number of round trips to the server. This can drastically improve performance of
finder methods that return a large number of rows. You can specify the
prefetch-size attribute for your finder method in the orion-ejb-jar.xml file.

Use Lazy Loading with Caution
If you turn on lazy loading, which is off by default, then only the primary keys of the
objects retrieved within the finder are returned. Thus, when you access the object
within your implementation, the OC4J container uploads the actual object based on
the primary key.

You may want to turn on the lazy loading feature if the number of objects that you are
retrieving is so large that loading them all into your local cache would decrease
performance. If you retrieve multiple objects, but you only use a few of them, then you
should turn on lazy loading. In addition, if you only use objects through the
getPrimaryKey method, then you should also turn on lazy loading.

Avoid Performing O-R Mapping Manually
O-R mapping for CMP entity beans in the orion-ejb-jar.xml file is very complex
and error prone. Any error in the mapping can cause deployment errors and
generation of wrong SQL code for EJB-SQL statements. The following two approaches
are recommended:

■ Use JDeveloper to perform the O-R mapping and to generate the mapping
information in the orion-ejb-jar.xml file.

■ Deploy the application in OC4J to generate the mappings and then modify the
orion-ejb-jar.xml file to include the correct table name and persistence
names.

Enterprise JavaBeans Best Practices

8-12 Developer’s Guide

A

OC4J-Specific Deployment Descriptors A-1

A OC4J-Specific Deployment Descriptors

This appendix provides an overview of OC4J-specific orion-application.xml and
orion-application-client.xml deployment descriptor files. See the other OC4J
developer guides for documentation of other OC4J-specific descriptors.

The following topics are included:

■ Elements in the orion-application.xml File

■ Elements in the orion-application-client.xml File

Elements in the orion-application.xml File
This section provides an overview of the OC4J-specific application deployment
descriptor file.

<orion-application>
The top-level element of the orion-application.xml file is the
<orion-application> element.

Attributes:

■ autocreate-tables: Whether to automatically create database tables for CMP
beans in this application. The default is false.

■ autodelete-tables: Whether to automatically delete old database tables for
CMP beans when redeploying in this application. The default is false.

■ batch-compile: Controls whether container-generated code for EJB modules is
compiled all together (true) or one module at a time (false). The default is
true.

The false setting of this attribute can prevent exceeding physical memory during
the compile phase for an application that has many EJB modules.

■ default-data-source: The default data source to use if other than the server
default. This must point to a valid data source for this application, if specified.

■ deployment-version: The version of OC4J that this JAR was deployed against,
if it is not matching the current version then it will be redeployed. This is an
internal server value; do not edit.

■ treat-zero-as-null: Whether or not to treat read zero as null when
representing a primary key. The default is false.

Elements in the orion-application.xml File

A-2 Developer’s Guide

<argument>
An argument used when invoking the application client if starting it in-process; that is,
if auto-start="true". This element is specific to client applications.

Attribute:

■ value: The value of the argument.

<arguments>
Contains one or more <argument> elements, each containing an argument used
when invoking the application client if starting it in-process; that is, if
auto-start="true". This element is specific to client applications.

<client-module>
An application client module of the application. An application client is a GUI or
console-based standalone client that interacts with the server.

Attributes:

■ auto-start: Whether to automatically start the application in-process at OC4J
server startup. The default is false. If this attribute is set to true, the user
attribute must be set to anonymous.

■ deployment-time: Indicates the time the client was deployed. Internal to OC4J;
do not edit.

■ path: The path- absolute or relative to the EAR file - to the application client.

■ user: Set to anonymous to run the client in-process. If the auto-start attribute
is set to true, the user attribute must be set to anonymous.

<cluster>
Contains the application clustering configuration for an enterprise application running
within an OC4J instance.

Clustering is typically enabled at the global level; however, application-level settings
will override the global configuration. See Oracle Containers for J2EE Configuration and
Administration Guide for a detailed overview of the OC4J clustering framework.

Subelements of <cluster>:

<property-config>
<flow-control-policy>
<replication-policy>
<protocol>
<synchronous-replication>

For descriptions of these subelements, see Oracle Containers for J2EE Configuration and
Administration Guide.

Attributes:

■ enabled: Whether clustering is enabled for the application. The default is true.
Setting this value at the application level overrides the value inherited from the
parent application, including the default application.

■ group-name: The name to use when establishing the replication group channels.
If not supplied, the application name as defined in server.xml, the OC4J server
configuration file, is used by default, and new group channels are created for each
enterprise application.

Elements in the orion-application.xml File

OC4J-Specific Deployment Descriptors A-3

If a value is specified, the application and all child applications will use the
channels associated with this group name.

This attribute is ignored if the <database> tag is included.

■ allow-colocation: Whether to allow application state to be replicated to a
group member (JVM) residing on the same host machine.

The default is true. However, this attribute should be set to false if multiple
hosts are available.

If multiple OC4J instances are instantiated on the same machine, different listener
ports must be specified for each instance in the default-web-site.xml,
jms.xml, and rmi.xml configuration files.

■ write-quota: The number of other application group members (JVMs) to which
the application state should be replicated. This attribute makes it possible to
reduce overhead by limiting the number of JVMs to which state is written, similar
to the islands concept used in previous OC4J releases.

The default is 1 JVM.

This attribute is ignored if the <database> tag is included.

■ cache-miss-delay: The length of time, in milliseconds, to wait in-process for
another group member to respond with a session if the session cannot be found
locally. If the session cannot be found, the request will pause for the entire length
of time specified.

The default is 1000 milliseconds. In installations where heavy request loads are
expected, this value should be increase; for example, to 5000. Setting this value
higher also prevents the OC4J instance from creating a replica of session data
within itself if allow-colocation is set to true.

This attribute is ignored if the <database> tag is included.

<connectors>
Attribute:

■ path: The name and path of the oc4j-connectors.xml file. If no
<connectors> element is specified, then the default path is ORACLE_
HOME/j2ee/instance/connectors/rarName./oc4j-connectors.xml.

<data-sources>
Specifies the path and file name of the XML file defining data sources to be used by the
application.

OC4J data sources exist in an XML file known as data-sources.xml. This file is
installed in the /j2ee/instance/config directory with a default data source.

Attribute:

■ path: The path to the data-sources.xml file. The path can be fixed or relative
to the location of the orion-application.xml descriptor.

<description>
A string containing an optional short description of the application.

<ejb-module>
References an EJB JAR module within the application.

Elements in the orion-application.xml File

A-4 Developer’s Guide

Attributes:

■ path: The path (relative to the EAR or absolute) to the EJB JAR file.

■ remote: Set to true to activate the EJB instances on this node or to look them up
remotely from another server (remote or inside a cluster). The default is false.

<file>
A relative/absolute path to a log file.

Attribute:

■ path: The path.

<group>
A group that this security-role mapping implies. That is, all members of the specified
group are included in this role.

Attribute:

■ name: The name of the group.

<javagroups-config>
Contains data required to use the JavaGroups group communication protocol to
replicate session state across nodes in a cluster.

Attributes:

■ url: A link to a JavaGroups XML configuration file.

■ property-string: A string containing the properties that define how the
JavaGroups JChannel should be created.

<jazn>
Configures the Java Authentication and Authorization Service (JAAS) to use the
XML-based configuration provider type. For a description of this element, see the
description of the <jazn> element of the jazn.xml file in the Oracle Containers for
J2EE Security Guide.

<jazn-web-app>
Defines the filter element of JAZNUserManager. For a description of this element, see
the description of the <jazn-web-app> element of the jazn.xml file in the Oracle
Containers for J2EE Security Guide.

<jmx-mbean>
Specifies a single MBean deployed with an application that is to be registered
automatically with the OC4J MBeanServer.

Subelements:

■ <description>: A string containing a readable name for the MBean. This name
will be displayed in the MBean browser user interface.

Attributes:

■ objectname: The name to register the MBean under. The domain part of the
name will be ignored even if specified; application MBeans are registered using
the application’s deployment name as the domain name.

Elements in the orion-application.xml File

OC4J-Specific Deployment Descriptors A-5

For example, if you deploy an MBean named MyMBeanA with an application
named widget, supply:name=MyMBeanA as the value of this attribute. The name
will then be displayed as widget:name=MyMBeanA.

■ class: The MBean implementation class.

<library>
Specifies either a relative or an absolute path or URL to a directory or a JAR or ZIP
archive to add as a library path for this OC4J instance. Directories are scanned for
archives to include at OC4J startup.

Attribute:

■ path: The path.

<log>
Sets the logging configuration for the application.

Subelements:

<file>
<mail>
<odl>

<odl>
Configures Oracle Diagnostic Logging for the application. The ODL framework
provides plug-in components that complement the standard Java framework to
automatically integrate log data with Oracle log analysis tools. In the ODL framework,
log files are formatted in XML, enabling them to be more easily parsed and reused by
other Oracle Application Server and custom developed components

■ maxDirectorySize: Sets the maximum size, in bytes, allowed for the log file
directory. When this limit is exceeded, log files are purged, beginning with the
oldest files.

■ maxFileSize: The maximum size, in bytes, that an individual log file is allowed
to grow to. When this limit is reached, a new log file is generated.

■ path: Path and folder name of the log folder for this component. You can use an
absolute path or a path relative to where the XML configuration file exists, which
is normally in the /j2ee/instance/config directory. This denotes where the
log files will reside for the feature that the XML configuration file is concerned
with.

When you enable ODL logging, each message goes into its respective log file, named
logN.xml, where N is a number starting at one. The first log message starts the log
file, log1.xml. When the log file size maximum is reached, the second log file is
opened to continue the logging, log2.xml. When the last log file is full, the first log
file, log1.xml, is erased and a new file is opened for the new messages. Thus, your
log files are constantly rolling over and do not encroach on your disk space.

Attributes:

■ path: Path and folder name of the log folder for this area. You can use an absolute
path or a path relative to where the configuration XML file exists, which is
normally in the /j2ee/instance/config directory. This denotes where the log
files will reside for the feature that the XML configuration file is concerned with.
For example, modifying this element in the server.xml file denotes where the
server log files are written.

Elements in the orion-application.xml File

A-6 Developer’s Guide

■ max-file-size: The maximum size, in kilobytes (KB), of each individual log
file.

■ max-directory-size: The maximum size of the directory, in megabytes (MB).
The default directory size is 10 MB.

New files are created within the directory, until the maximum directory size is
reached. Each log file is equal to or less than the maximum specified in the attributes.

<mail>
An e-mail address to log events to. A valid mail session also needs to be specified if
this option is used.

Attribute:

■ address: The mail address.

<mail-session>
Defines the session SMTP server host (if using SMTP).

Attributes:

■ location: The location in the namespace to store the session at.

■ smtp-host: The session SMTP-server host (if using SMTP).

<namespace-access>
Specifies the namespace (naming context) security policy for RMI clients.

<namespace-resource>
Defines a resource with a specific security setting.

Attribute:

■ root: The root of the part of the namespace to which this rule applies.

<password-manager>
Specifies the UserManager that is used for the lookup of hidden passwords. If
omitted, the current UserManager is used for authentication and authorization. For
example, you can use a JAZN LDAP UserManager for the overall UserManager, but
use a JAZN XML UserManager for checking hidden passwords.

To identify a UserManager, provide a <jazn> element definition within this element,
as follows:

<password-manager>
 <jazn ...>
</password-manager>

For a description of the <jazn> element, see the description of the <jazn> element of
the jazn.xml file in the Oracle Containers for J2EE Security Guide

<persistence>
Contains a relative path (relative to the application root) or absolute path to a directory
where application state should be stored across restarts.

Attribute:

■ path: The path to the persistence directory, relative to the EAR file or absolute. For
example, ./persistence.

Elements in the orion-application.xml File

OC4J-Specific Deployment Descriptors A-7

<principals>
Defines the path to the principals.xml file.

Attribute:

■ path: The path (relative to the enterprise archive or absolute) to the principals file.

<property>
Contains a property as a name and value pair.

Attributes:

■ name: The name of the parameter.

■ value: The value of the parameter.

<protocol>
Defines the mechanism to use for data replication. Note that only one can be specified.

Subelements:

<multicast>
<peer>
<database>

<read-access>
The read-access policy.

<resource-provider>
Define a JMS resource provider. To add a custom <resource-provider>, add the
following to your orion-application.xml file:

<resource-provider class="providerClassName" name="JNDI name">
 <description> description </description>
 <property name="name" value="value" />
</resource-provider>

In place of the user-replaceable constructs (those in italics) in the preceding example,
do the following:

■ Replace the value providerClassName of the class attribute with the name of
the resource-provider class.

■ Replace the value JNDI name of the name attribute with a name by which to
identify the resource provider. This name will be used in finding the resource
provider in the application’s JNDI as "java:comp/resource/name/".

■ Replace the value description of the description tag with a description of
the specific resource provider.

■ Replace the values name and value of the corresponding attributes with the same
name in any property tags that the specific resource provider needs to be given as
parameters.

<security-role-mapping>
Defines the runtime mapping to groups and users of a role. Maps to a security ole of
the same name in the assembly descriptor.

Attributes:

■ impliesAll: Whether or not this mapping implies all users.

Elements in the orion-application-client.xml File

A-8 Developer’s Guide

■ name: The name of the role.

<user>
Defines a user that the security-role mapping implies.

Attribute:

■ name: The name of the user.

<user-manager>
Specifies an optional user-manager class to use. These are used to integrate existing
systems and provide custom user managers for Web applications.

Attributes:

■ class: The fully qualified class name of the user-manager; for example
com.evermind.sql.DataSourceUserManager or
com.evermind.ejb.EJBUserManager.

■ display-name: A descriptive name for the UserManager instance.

<web-module>
Identifies a Web application/module that is part of the application. Each Web
application can be installed on any site and in any context on those sites (for instance
http://www.myserver.com/myapp/).

Attributes:

■ id: The name used to reference this Web application, for example when binding
the module to a Web site.

■ path: The path - relative to the EAR or absolute - to the Web application.

<write-access>
The write-access policy.

Elements in the orion-application-client.xml File
This file is the OC4J-specific descriptor for an application client.

<orion-application-client>
Defines an orion-application-client.xml file containing the deploy time
information for a J2EE application client. It complements the application client
assembly information found in application-client.xml.

<context-attribute>
Contains an attribute sent to the context. The only mandatory attribute in JNDI is
java.naming.factory.initial, which is the class name of the context factory
implementation.

Attributes:

■ name: The name of the attribute.

■ value: The value of the attribute.

Elements in the orion-application-client.xml File

OC4J-Specific Deployment Descriptors A-9

<ejb-ref-mapping>
Used for the declaration of a reference to another enterprise bean's home. The
<ejb-ref-mapping> element ties this to a JNDI location during deployment.

Attributes:

■ location: The JNDI location to look up the EJB home from, such as
ejb/Payroll.

■ name: The ejb-ref name. Matches the name defined in an <ejb-ref> element
in application-client.xml.

<env-entry-mapping>
Overrides the value of env-entry in the assembly descriptor. It is used to keep the
EAR (assembly) clean from deployment-specific values. The body is the value.

Attributes:

■ name: The name of the context parameter.

<lookup-context>
Specifies an optional javax.naming.Context implementation used for retrieving
the resource. This is useful when hooking up with third party modules, such as a third
party JMS server for instance. Either use the context implementation supplied by the
resource vendor or if none exists, write an implementation, which in turn negotiates
with the vendor software.

Attributes:

■ location: The name to look for in the foreign context when retrieving the
resource.

<resource-env-ref-mapping>
Declares a reference to an external resource, such as a data source, JMS queue, mail
session, or similar. The <resource-env-ref-mapping> reference ties that element
to a JNDI location during deployment.

Attributes:

■ location: The JNDI location to bind the resource to.

<resource-ref-mapping>
Declares a reference to an external resource such as a data source, JMS queue, mail
session or similar. The resource-ref-mapping ties this to a JNDI location when
deploying.

Attributes:

■ location: The JNDI location to look up the resource home from.

■ name: The resource-ref name. Matches a resource-ref name in
application-client.xml.

Elements in the orion-application-client.xml File

A-10 Developer’s Guide

B

Third Party Licenses B-1

B Third Party Licenses

This appendix includes the Third Party License for all the third party products
included with Oracle Application Server.

ANTLR
This program contains third-party code from ANTLR. Under the terms of the Apache
license, Oracle is required to provide the following notices. Note, however, that the
Oracle program license that accompanied this product determines your right to use
the Oracle program, including the ANTLR software, and the terms contained in the
following notices do not change those rights.

The ANTLR License
Software License

We reserve no legal rights to the ANTLR--it is fully in the public domain. An
individual or company may do whatever they wish with source code distributed with
ANTLR or the code generated by ANTLR, including the incorporation of ANTLR, or its
output, into commerical software.
We encourage users to develop software with ANTLR. However, we do ask that credit
is given to us for developing ANTLR. By "credit", we mean that if you use ANTLR or
incorporate any source code into one of your programs (commercial product,
research project, or otherwise) that you acknowledge this fact somewhere in the
documentation, research report, etc... If you like ANTLR and have developed a nice
tool with the output, please mention that you developed it using ANTLR. In
addition, we ask that the headers remain intact in our source code. As long as
these guidelines are kept, we expect to continue enhancing this system and expect
to make other tools available as they are completed.

Apache
This program contains third-party code from the Apache Software Foundation
("Apache"). Under the terms of the Apache license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the Apache
software, and the terms contained in the following notices do not change those rights.

The Apache license agreements apply to the following included Apache components:

■ Apache HTTP Server

■ Apache JServ

■ mod_jserv

Apache

B-2 Developer’s Guide

■ Regular Expression package version 1.3

■ Apache Expression Language packaged in commons-el.jar

■ mod_mm 1.1.3

■ Apache XML Signature and Apache XML Encryption v. 1.4 for Java and 1.0 for
C++

■ log4j 1.1.1

■ BCEL v. 5

■ XML-RPC v. 1.1

■ Batik v. 1.5.1

■ ANT 1.6.2 and 1.6.5

■ Crimson v. 1.1.3

■ ant.jar

■ wsif.jar

■ bcel.jar

■ soap.jar

■ Jakarta CLI 1.0

■ jakarta-regexp-1.3.jar

■ JSP Standard Tag Library 1.0.6 and 1.1

■ Struts 1.1

■ Velocity 1.3

■ svnClientAdapter

■ commons-logging.jar

■ wsif.jar

■ commons-el.jar

■ standard.jar

■ jstl.jar

The Apache Software License

License for Apache Web Server 1.3.29
/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2000-2002 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *

Apache

Third Party Licenses B-3

 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * Portions of this software are based upon public domain software
 * originally written at the National Center for Supercomputing
Applications,
 * University of Illinois, Urbana-Champaign.

License for Apache Web Server 2.0
Copyright (c) 1999-2004, The Apache Software Foundation
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Copyright (c) 1999-2004, The Apache Software Foundation
 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

Apache

B-4 Developer’s Guide

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

Apache

Third Party Licenses B-5

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions

Apache SOAP

B-6 Developer’s Guide

 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

Apache SOAP
This program contains third-party code from the Apache Software Foundation
("Apache"). Under the terms of the Apache license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the Apache
software, and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the Apache

Apache SOAP

Third Party Licenses B-7

software is provided by Oracle "AS IS" and without warranty or support of any kind
from Oracle or Apache.

Apache SOAP License
Apache SOAP license 2.3.1

Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the

Apache SOAP

B-8 Developer’s Guide

 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution

Apache SOAP

Third Party Licenses B-9

 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

DBI Module

B-10 Developer’s Guide

DBI Module
This program contains third-party code from Tim Bunce. Under the terms of the Tim
Bunce license, Oracle is required to provide the following notices. Note, however, that
the Oracle program license that accompanied this product determines your right to
use the Oracle program, including the Tim Bunce software, and the terms contained in
the following notices do not change those rights. Notwithstanding anything to the
contrary in the Oracle program license, the Tim Bunce software is provided by Oracle
"AS IS" and without warranty or support of any kind from Oracle or Tim Bunce.

The DBI module is Copyright (c) 1994-2002 Tim Bunce. Ireland. All rights reserved.

You may distribute under the terms of either the GNU General Public License or the
Artistic License, as specified in the Perl README file.

Perl Artistic License
The "Artistic License"

Preamble
The intent of this document is to state the conditions under which a Package may be
copied, such that the Copyright Holder maintains some semblance of artistic control
over the development of the package, while giving the users of the package the right
to use and distribute the Package in a more-or-less customary fashion, plus the right to
make reasonable modifications.

Definitions
"Package" refers to the collection of files distributed by the Copyright Holder, and
derivatives of that collection of files created through textual modification.

"Standard Version" refers to such a Package if it has not been modified, or has been
modified in accordance with the wishes of the Copyright Holder as specified below.

"Copyright Holder" is whoever is named in the copyright or copyrights for the
package.

"You" is you, if you're thinking about copying or distributing this Package.

"Reasonable copying fee" is whatever you can justify on the basis of media cost,
duplication charges, time of people involved, and so on. (You will not be required to
justify it to the Copyright Holder, but only to the computing community at large as a
market that must bear the fee.)

"Freely Available" means that no fee is charged for the item itself, though there may be
fees involved in handling the item. It also means that recipients of the item may
redistribute it under the same conditions they received it.

1. You may make and give away verbatim copies of the source form of the Standard
Version of this Package without restriction, provided that you duplicate all of the
original copyright notices and associated disclaimers.

2. You may apply bug fixes, portability fixes and other modifications derived from
the Public Domain or from the Copyright Holder. A Package modified in such a
way shall still be considered the Standard Version.

3. You may otherwise modify your copy of this Package in any way, provided that
you insert a prominent notice in each changed file stating how and when you
changed that file, and provided that you do at least ONE of the following:

DBI Module

Third Party Licenses B-11

a. place your modifications in the Public Domain or otherwise make them Freely
Available, such as by posting said modifications to Usenet or an equivalent
medium, or placing the modifications on a major archive site such as
uunet.uu.net, or by allowing the Copyright Holder to include your
modifications in the Standard Version of the Package.

b. use the modified Package only within your corporation or organization.

c. rename any non-standard executables so the names do not conflict with
standard executables, which must also be provided, and provide a separate
manual page for each non-standard executable that clearly documents how it
differs from the Standard Version.

d. make other distribution arrangements with the Copyright Holder.

4. You may distribute the programs of this Package in object code or executable form,
provided that you do at least ONE of the following:

a. distribute a Standard Version of the executables and library files, together with
instructions (in the manual page or equivalent) on where to get the Standard
Version.

b. accompany the distribution with the machine-readable source of the Package
with your modifications.

c. give non-standard executables non-standard names, and clearly document the
differences in manual pages (or equivalent), together with instructions on
where to get the Standard Version.

d. make other distribution arrangements with the Copyright Holder.

5. You may charge a reasonable copying fee for any distribution of this Package. You
may charge any fee you choose for support of this Package. You may not charge a
fee for this Package itself. However, you may distribute this Package in aggregate
with other (possibly commercial) programs as part of a larger (possibly
commercial) software distribution provided that you do not advertise this Package
as a product of your own. You may embed this Package's interpreter within an
executable of yours (by linking); this shall be construed as a mere form of
aggregation, provided that the complete Standard Version of the interpreter is so
embedded.

6. The scripts and library files supplied as input to or produced as output from the
programs of this Package do not automatically fall under the copyright of this
Package, but belong to whoever generated them, and may be sold commercially,
and may be aggregated with this Package. If such scripts or library files are
aggregated with this Package through the so-called "undump" or "unexec"
methods of producing a binary executable image, then distribution of such an
image shall neither be construed as a distribution of this Package nor shall it fall
under the restrictions of Paragraphs 3 and 4, provided that you do not represent
such an executable image as a Standard Version of this Package.

7. C subroutines (or comparably compiled subroutines in other languages) supplied
by you and linked into this Package in order to emulate subroutines and variables
of the language defined by this Package shall not be considered part of this
Package, but are the equivalent of input as in Paragraph 6, provided these
subroutines do not change the language in any way that would cause it to fail the
regression tests for the language.

8. Aggregation of this Package with a commercial distribution is always permitted
provided that the use of this Package is embedded; that is, when no overt attempt

FastCGI

B-12 Developer’s Guide

is made to make this Package's interfaces visible to the end user of the commercial
distribution. Such use shall not be construed as a distribution of this Package.

9. The name of the Copyright Holder may not be used to endorse or promote
products derived from this software without specific prior written permission.

10. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

The End

FastCGI
This program contains third-party code from Open Market, Inc. Under the terms of the
Open Market license, Oracle is required to license the Open Market software to you
under the following terms. Note that the terms contained in the Oracle program
license that accompanied this product do not apply to the Open Market software, and
your rights to use the software are solely as set forth below. Oracle is not responsible
for the performance of the Open Market software, does not provide technical support
for the software, and shall not be liable for any damages arising out of any use of the
software.

FastCGI Developer's Kit License
This FastCGI application library source and object code (the "Software") and its
documentation (the "Documentation") are copyrighted by Open Market, Inc ("Open
Market"). The following terms apply to all files associated with the Software and
Documentation unless explicitly disclaimed in individual files.

Open Market permits you to use, copy, modify, distribute, and license this Software
and the Documentation solely for the purpose of implementing the FastCGI
specification defined by Open Market or derivative specifications publicly endorsed
by Open Market and promulgated by an open standards organization and for no other
purpose, provided that existing copyright notices are retained in all copies and that
this notice is included verbatim in any distributions.

No written agreement, license, or royalty fee is required for any of the authorized uses.
Modifications to this Software and Documentation may be copyrighted by their
authors and need not follow the licensing terms described here, but the modified
Software and Documentation must be used for the sole purpose of implementing the
FastCGI specification defined by Open Market or derivative specifications publicly
endorsed by Open Market and promulgated by an open standards organization and
for no other purpose. If modifications to this Software and Documentation have new
licensing terms, the new terms must protect Open Market's proprietary rights in the
Software and Documentation to the same extent as these licensing terms and must be
clearly indicated on the first page of each file where they apply.

Open Market shall retain all right, title and interest in and to the Software and
Documentation, including without limitation all patent, copyright, trade secret and
other proprietary rights.

OPEN MARKET MAKES NO EXPRESS OR IMPLIED WARRANTY WITH RESPECT
TO THE SOFTWARE OR THE DOCUMENTATION, INCLUDING WITHOUT
LIMITATION ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT SHALL OPEN MARKET BE LIABLE TO
YOU OR ANY THIRD PARTY FOR ANY DAMAGES ARISING FROM OR RELATING

Info-ZIP Unzip Package

Third Party Licenses B-13

TO THIS SOFTWARE OR THE DOCUMENTATION, INCLUDING, WITHOUT
LIMITATION, ANY INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES OR
SIMILAR DAMAGES, INCLUDING LOST PROFITS OR LOST DATA, EVEN IF OPEN
MARKET HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE
SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS". OPEN MARKET
HAS NO LIABILITY IN CONTRACT, TORT, NEGLIGENCE OR OTHERWISE
ARISING OUT OF THIS SOFTWARE OR THE DOCUMENTATION.

Module mod_fastcgi License
This FastCGI application library source and object code (the "Software") and its
documentation (the "Documentation") are copyrighted by Open Market, Inc ("Open
Market"). The following terms apply to all files associated with the Software and
Documentation unless explicitly disclaimed in individual files.

Open Market permits you to use, copy, modify, distribute, and license this Software
and the Documentation solely for the purpose of implementing the FastCGI
specification defined by Open Market or derivative specifications publicly endorsed
by Open Market and promulgated by an open standards organization and for no other
purpose, provided that existing copyright notices are retained in all copies and that
this notice is included verbatim in any distributions.

No written agreement, license, or royalty fee is required for any of the authorized uses.
Modifications to this Software and Documentation may be copyrighted by their
authors and need not follow the licensing terms described here, but the modified
Software and Documentation must be used for the sole purpose of implementing the
FastCGI specification defined by Open Market or derivative specifications publicly
endorsed by Open Market and promulgated by an open standards organization and
for no other purpose. If modifications to this Software and Documentation have new
licensing terms, the new terms must protect Open Market's proprietary rights in the
Software and Documentation to the same extent as these licensing terms and must be
clearly indicated on the first page of each file where they apply.

Open Market shall retain all right, title and interest in and to the Software and
Documentation, including without limitation all patent, copyright, trade secret and
other proprietary rights.

OPEN MARKET MAKES NO EXPRESS OR IMPLIED WARRANTY WITH RESPECT
TO THE SOFTWARE OR THE DOCUMENTATION, INCLUDING WITHOUT
LIMITATION ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT SHALL OPEN MARKET BE LIABLE TO
YOU OR ANY THIRD PARTY FOR ANY DAMAGES ARISING FROM OR RELATING
TO THIS SOFTWARE OR THE DOCUMENTATION, INCLUDING, WITHOUT
LIMITATION, ANY INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES OR
SIMILAR DAMAGES, INCLUDING LOST PROFITS OR LOST DATA, EVEN IF OPEN
MARKET HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE
SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS". OPEN MARKET
HAS NO LIABILITY IN CONTRACT, TORT, NEGLIGENCE OR OTHERWISE
ARISING OUT OF THIS SOFTWARE OR THE DOCUMENTATION.

Info-ZIP Unzip Package
This program contains third-party code from Info-ZIP. Under the terms of the Info-ZIP
license, Oracle is required to provide the following notices. Note, however, that the
Oracle program license that accompanied this product determines your right to use
the Oracle program, including the Info-ZIP software, and the terms contained in the
following notices do not change those rights. Notwithstanding anything to the

JSR 110

B-14 Developer’s Guide

contrary in the Oracle program license, the Info-ZIP software is provided by Oracle
"AS IS" and without warranty or support of any kind from Oracle or Info-ZIP.

The Info-ZIP Unzip Package License
Copyright (c) 1990-1999 Info-ZIP. All rights reserved. For the purposes of this
copyright and license, "Info-ZIP" is defined as the following set of individuals:

Mark Adler, John Bush, Karl Davis, Harald Denker, Jean-Michel Dubois, Jean-loup
Gailly, Hunter Goatley, Ian Gorman, Chris Herborth, Dirk Haase, Greg Hartwig,
Robert Heath, Jonathan Hudson, Paul Kienitz, David Kirschbaum, Johnny Lee, Onno
van der Linden, Igor Mandrichenko, Steve P. Miller, Sergio Monesi, Keith Owens,
George Petrov, Greg Roelofs, Kai Uwe Rommel, Steve Salisbury, Dave Smith,
Christian Spieler, Antoince Verheijen, Paul von Behren, Rich Wales, Mike White

This software is provided "AS IS," without warranty of any kind, express or
implied. In no event shall InfoZIP or its contributors be held liable for any
direct, indirect, incidental, special or consequential damages arising out of the
use of or inability to use this software."

JSR 110
This program contains third-party code from IBM Corporation ("IBM"). Under the
terms of the IBM license, Oracle is required to provide the following notices. Note,
however, that the Oracle program license that accompanied this product determines
your right to use the Oracle program, including the IBM software, and the terms
contained in the following notices do not change those rights. Notwithstanding
anything to the contrary in the Oracle program license, the IBM software is provided
by Oracle "AS IS" and without warranty or support of any kind from Oracle or IBM.

Copyright IBM Corporation 2003 – All rights reserved

Java APIs for the WSDL specification are available at:
http://www-124.ibm.com/developerworks/projects/wsdl4j/

Jaxen
This program contains third-party code from the Apache Software Foundation
("Apache") and from the Jaxen Project ("Jaxen"). Under the terms of the Apache and
Jaxen licenses, Oracle is required to provide the following notices. Note, however, that
the Oracle program license that accompanied this product determines your right to
use the Oracle program, including the Apache and Jaxen software, and the terms
contained in the following notices do not change those rights.

The Jaxen License
Copyright (C) 2000-2002 bob mcwhirter & James Strachan. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list
of conditions, and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions, and the disclaimer that follows these conditions in the
documentation and/or other materials provided with the distribution.

The name "Jaxen" must not be used to endorse or promote products derived from this

JGroups

Third Party Licenses B-15

software without prior written permission. For written permission, please contact
license@jaxen.org.

Products derived from this software may not be called "Jaxen", nor may "Jaxen"
appear in their name, without prior written permission from the Jaxen Project
Management (pm@jaxen.org).

In addition, we request (but do not require) that you include in the end-user
documentation provided with the redistribution and/or in the software itself an
acknowledgment equivalent to the following: "This product includes software
developed by the Jaxen Project (http://www.jaxen.org/)." Alternatively, the
acknowledgment may be graphical using the logos available at
http://www.jaxen.org/.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE Jaxen
AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on
behalf of the Jaxen Project and was originally created by bob mcwhirter and James
Strachan . For more information on the Jaxen Project, please see
http://www.jaxen.org/.

JGroups
This program contains third-party code from GNU. Under the terms of the GNU
license, Oracle is required to provide the following notices. Note, however, that the
Oracle program license that accompanied this product determines your right to use
the Oracle program, including the GNU software, and the terms contained in the
following notices do not change those rights. Notwithstanding anything to the
contrary in the Oracle program license, the GNU software is provided by Oracle "AS
IS" and without warranty or support of any kind from Oracle or GNU.

The GNU License
GNU Lesser General Public License
Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute
verbatim copies of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the
successor of the GNU Library Public License, version 2, hence the version number
2.1.]

Preamble
The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee
your freedom to share and change free software--to make sure the software is free
for all its users.

JGroups

B-16 Developer’s Guide

This license, the Lesser General Public License, applies to some specially
designated software packages--typically libraries--of the Free Software Foundation
and other authors who decide to use it. You can use it too, but we suggest you
first think carefully about whether this license or the ordinary General Public
License is the better strategy to use in any particular case, based on the
explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish); that
you receive source code or can get it if you want it; that you can change the
software and use pieces of it in new free programs; and that you are informed that
you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to
deny you these rights or to ask you to surrender these rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the
library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee,
you must give the recipients all the rights that we gave you. You must make sure
that they, too, receive or can get the source code. If you link other code with
the library, you must provide complete object files to the recipients, so that
they can relink them with the library after making changes to the library and
recompiling it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and
(2) we offer you this license, which gives you legal permission to copy,
distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no
warranty for the free library. Also, if the library is modified by someone else
and passed on, the recipients should know that what they have is not the original
version, so that the original author's reputation will not be affected by problems
that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free
program. We wish to make sure that a company cannot effectively restrict the users
of a free program by obtaining a restrictive license from a patent holder.
Therefore, we insist that any patent license obtained for a version of the library
must be consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU
General Public License. This license, the GNU Lesser General Public License,
applies to certain designated libraries, and is quite different from the ordinary
General Public License. We use this license for certain libraries in order to
permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared
library, the combination of the two is legally speaking a combined work, a
derivative of the original library. The ordinary General Public License therefore
permits such linking only if the entire combination fits its criteria of freedom.
The Lesser General Public License permits more lax criteria for linking other code
with the library.

We call this license the "Lesser" General Public License because it does Less to
protect the user's freedom than the ordinary General Public License. It also
provides other free software developers Less of an advantage over competing
non-free programs. These disadvantages are the reason we use the ordinary General
Public License for many libraries. However, the Lesser license provides advantages

JGroups

Third Party Licenses B-17

in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the
widest possible use of a certain library, so that it becomes a de-facto standard.
To achieve this, non-free programs must be allowed to use the library. A more
frequent case is that a free library does the same job as widely used non-free
libraries. In this case, there is little to gain by limiting the free library to
free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs
enables a greater number of people to use a large body of free software. For
example, permission to use the GNU C Library in non-free programs enables many
more people to use the whole GNU operating system, as well as its variant, the
GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users'
freedom, it does ensure that the user of a program that is linked with the Library
has the freedom and the wherewithal to run that program using a modified version
of the Library.

The precise terms and conditions for copying, distribution and modification
follow. Pay close attention to the difference between a "work based on the
library" and a "work that uses the library". The former contains code derived from
the library, whereas the latter must be combined with the library in order to run.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other program which
contains a notice placed by the copyright holder or other authorized party saying
it may be distributed under the terms of this Lesser General Public License (also
called "this License"). Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to
be conveniently linked with application programs (which use some of those
functions and data) to form executables.

The "Library", below, refers to any such software library or work which has been
distributed under these terms. A "work based on the Library" means either the
Library or any derivative work under copyright law: that is to say, a work
containing the Library or a portion of it, either verbatim or with modifications
and/or translated straightforwardly into another language. (Hereinafter,
translation is included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for making
modifications to it. For a library, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running a program using the
Library is not restricted, and output from such a program is covered only if its
contents constitute a work based on the Library (independent of the use of the
Library in a tool for writing it). Whether that is true depends on what the
Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source
code as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and disclaimer
of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and distribute a copy of this License along with the
Library.

JGroups

B-18 Developer’s Guide

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus
forming a work based on the Library, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data
to be supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function
or table, the facility still operates, and performs whatever part of its purpose
remains meaningful.

(For example, a function in a library to compute square roots has a purpose that
is entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function
must be optional: if the application does not supply it, the square root function
must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Library, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Library, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights
to work written entirely by you; rather, the intent is to exercise the right to
control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or
distribution medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License
instead of this License to a given copy of the Library. To do this, you must alter
all the notices that refer to this License, so that they refer to the ordinary GNU
General Public License, version 2, instead of to this License. (If a newer version
than version 2 of the ordinary GNU General Public License has appeared, then you
can specify that version instead if you wish.) Do not make any other change in
these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the
ordinary GNU General Public License applies to all subsequent copies and
derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a

JGroups

Third Party Licenses B-19

program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it,
under Section 2) in object code or executable form under the terms of Sections 1
and 2 above provided that you accompany it with the complete corresponding
machine-readable source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the
same place satisfies the requirement to distribute the source code, even though
third parties are not compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is
designed to work with the Library by being compiled or linked with it, is called a
"work that uses the Library". Such a work, in isolation, is not a derivative work
of the Library, and therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an
executable that is a derivative of the Library (because it contains portions of
the Library), rather than a "work that uses the library". The executable is
therefore covered by this License. Section 6 states terms for distribution of such
executables.

When a "work that uses the Library" uses material from a header file that is part
of the Library, the object code for the work may be a derivative work of the
Library even though the source code is not. Whether this is true is especially
significant if the work can be linked without the Library, or if the work is
itself a library. The threshold for this to be true is not precisely defined by
law.

If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in
length), then the use of the object file is unrestricted, regardless of whether it
is legally a derivative work. (Executables containing this object code plus
portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the
object code for the work under the terms of Section 6. Any executables containing
that work also fall under Section 6, whether or not they are linked directly with
the Library itself.

6. As an exception to the Sections above, you may also combine or link a "work
that uses the Library" with the Library to produce a work containing portions of
the Library, and distribute that work under terms of your choice, provided that
the terms permit modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used
in it and that the Library and its use are covered by this License. You must
supply a copy of this License. If the work during execution displays copyright
notices, you must include the copyright notice for the Library among them, as well
as a reference directing the user to the copy of this License. Also, you must do
one of these things:

a) Accompany the work with the complete corresponding machine-readable source code
for the Library including whatever changes were used in the work (which must be
distributed under Sections 1 and 2 above); and, if the work is an executable
linked with the Library, with the complete machine-readable "work that uses the
Library", as object code and/or source code, so that the user can modify the

JGroups

B-20 Developer’s Guide

Library and then relink to produce a modified executable containing the modified
Library. (It is understood that the user who changes the contents of definitions
files in the Library will not necessarily be able to recompile the application to
use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A
suitable mechanism is one that (1) uses at run time a copy of the library already
present on the user's computer system, rather than copying library functions into
the executable, and (2) will operate properly with a modified version of the
library, if the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at least three years, to
give the same user the materials specified in Subsection 6a, above, for a charge
no more than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy from a
designated place, offer equivalent access to copy the above specified materials
from the same place.

e) Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must
include any data and utility programs needed for reproducing the executable from
it. However, as a special exception, the materials to be distributed need not
include anything that is normally distributed (in either source or binary form)
with the major components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies the
executable.

It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such a
contradiction means you cannot use both them and the Library together in an
executable that you distribute.

7. You may place library facilities that are a work based on the Library
side-by-side in a single library together with other library facilities not
covered by this License, and distribute such a combined library, provided that the
separate distribution of the work based on the Library and of the other library
facilities is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed
under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is
a work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library
except as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense, link with, or distribute the Library is void, and will
automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Library or
its derivative works. These actions are prohibited by law if you do not accept

JGroups

Third Party Licenses B-21

this License. Therefore, by modifying or distributing the Library (or any work
based on the Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying the Library or
works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy,
distribute, link with or modify the Library subject to these terms and conditions.
You may not impose any further restrictions on the recipients' exercise of the
rights granted herein. You are not responsible for enforcing compliance by third
parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed on
you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent license would not
permit royalty-free redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it
and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply, and the
section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free software
distribution system which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain
countries either by patents or by copyrighted interfaces, the original copyright
holder who places the Library under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Lesser General Public License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems
or concerns.

Each version is given a distinguishing version number. If the Library specifies a
version number of this License which applies to it and "any later version", you
have the option of following the terms and conditions either of that version or of
any later version published by the Free Software Foundation. If the Library does
not specify a license version number, you may choose any version ever published by
the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask

mod_mm and mod_ssl

B-22 Developer’s Guide

for permission. For software which is copyrighted by the Free Software Foundation,
write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH
YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY
TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Libraries
If you develop a new library, and you want it to be of the greatest possible use
to the public, we recommend making it free software that everyone can redistribute
and change. You can do so by permitting redistribution under these terms (or,
alternatively, under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to
attach them to the start of each source file to most effectively convey the
exclusion of warranty; and each file should have at least the "copyright" line and
a pointer to where the full notice is found.

<one line to give the library's name and an idea of what it does.> Copyright (C)
<year> <name of author>

This library is free software; you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later
version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this library; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA

mod_mm and mod_ssl
This program contains third-party code from Ralf S. Engelschall ("Engelschall"). Under
the terms of the Engelschall license, Oracle is required to provide the following
notices. Note, however, that the Oracle program license that accompanied this product

OpenSSL

Third Party Licenses B-23

determines your right to use the Oracle program, including the Engelschall software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the mod_mm
software is provided by Oracle "AS IS" and without warranty or support of any kind
from Oracle or Engelschall.

mod_mm
Copyright (c) 1999 - 2000 Ralf S. Engelschall. All rights reserved.
This product includes software developed by Ralf S. Engelschall
<rse@engelschall.com> for use in the mod_ssl project (http://www.modssl.org/).

mod_ssl
Copyright (c) 1998-2001 Ralf S. Engelschall. All rights reserved.
This product includes software developed by Ralf S. Engelschall
<rse@engelschall.com> for use in the mod_ssl project (http://www.modssl.org/).

OpenSSL
This program contains third-party code from the OpenSSL Project. Under the terms of
the OpenSSL Project license, Oracle is required to provide the following notices. Note,
however, that the Oracle program license that accompanied this product determines
your right to use the Oracle program, including the OpenSSL software, and the terms
contained in the following notices do not change those rights.

OpenSSL License
/* ==
 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 * software must display the following acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 * endorse or promote products derived from this software without
 * prior written permission. For written permission, please contact
 * openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 * nor may "OpenSSL" appear in their names without prior written
 * permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 * acknowledgment:

OpenSSL

B-24 Developer’s Guide

 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS" AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ==
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com). This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

 Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to. The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 * "This product includes cryptographic software written by
 * Eric Young (eay@cryptsoft.com)"
 * The word 'cryptographic' can be left out if the rouines from the library

Perl

Third Party Licenses B-25

 * being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 * the apps directory (application code) you must include an acknowledgement:
 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed. i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */

Perl
This program contains third-party code from the Comprehensive Perl Archive
Network ("CPAN"). Under the terms of the CPAN license, Oracle is required to
provide the following notices. Note, however, that the Oracle program license that
accompanied this product determines your right to use the Oracle program, including
the CPAN software, and the terms contained in the following notices do not change
those rights.

Perl Kit Readme
Copyright 1989-2001, Larry Wall

All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms
of either:

1. the GNU General Public License as published by the Free Software Foundation;
either version 1, or (at your option) any later version, or

2. the "Artistic License" which comes with this Kit.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See either the GNU General Public License
or the Artistic License for more details.

You should have received a copy of the Artistic License with this Kit, in the file named
"Artistic". If not, I'll be glad to provide one.

You should also have received a copy of the GNU General Public License along with
this program in the file named "Copying". If not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA or visit their
Web page on the internet at http://www.gnu.org/copyleft/gpl.html.

Perl

B-26 Developer’s Guide

For those of you that choose to use the GNU General Public License, my interpretation
of the GNU General Public License is that no Perl script falls under the terms of the
GPL unless you explicitly put said script under the terms of the GPL yourself.
Furthermore, any object code linked with perl does not automatically fall under the
terms of the GPL, provided such object code only adds definitions of subroutines and
variables, and does not otherwise impair the resulting interpreter from executing any
standard Perl script. I consider linking in C subroutines in this manner to be the moral
equivalent of defining subroutines in the Perl language itself. You may sell such an
object file as proprietary provided that you provide or offer to provide the Perl source,
as specified by the GNU General Public License. (This is merely an alternate way of
specifying input to the program.) You may also sell a binary produced by the dumping
of a running Perl script that belongs to you, provided that you provide or offer to
provide the Perl source as specified by the GPL. (The fact that a Perl interpreter and
your code are in the same binary file is, in this case, a form of mere aggregation.) This
is my interpretation of the GPL. If you still have concerns or difficulties understanding
my intent, feel free to contact me. Of course, the Artistic License spells all this out for
your protection, so you may prefer to use that.

mod_perl 1.29 License
/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 1996-2000 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

Perl

Third Party Licenses B-27

 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 */

mod_perl 1.99_16 License
Copyright (c) 1999-2004, The Apache Software Foundation
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Copyright (c) 1999-2004, The Apache Software Foundation
 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

Perl

B-28 Developer’s Guide

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

Perl

Third Party Licenses B-29

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a

Perl

B-30 Developer’s Guide

 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

Perl Artistic License
The "Artistic License"

Preamble
The intent of this document is to state the conditions under which a Package may be
copied, such that the Copyright Holder maintains some semblance of artistic control
over the development of the package, while giving the users of the package the right
to use and distribute the Package in a more-or-less customary fashion, plus the right to
make reasonable modifications.

Definitions
"Package" refers to the collection of files distributed by the Copyright Holder, and
derivatives of that collection of files created through textual modification.

"Standard Version" refers to such a Package if it has not been modified, or has been
modified in accordance with the wishes of the Copyright Holder as specified below.

"Copyright Holder" is whoever is named in the copyright or copyrights for the
package.

"You" is you, if you're thinking about copying or distributing this Package.

"Reasonable copying fee" is whatever you can justify on the basis of media cost,
duplication charges, time of people involved, and so on. (You will not be required to
justify it to the Copyright Holder, but only to the computing community at large as a
market that must bear the fee.)

"Freely Available" means that no fee is charged for the item itself, though there may be
fees involved in handling the item. It also means that recipients of the item may
redistribute it under the same conditions they received it.

1. You may make and give away verbatim copies of the source form of the Standard
Version of this Package without restriction, provided that you duplicate all of the
original copyright notices and associated disclaimers.

2. You may apply bug fixes, portability fixes and other modifications derived from
the Public Domain or from the Copyright Holder. A Package modified in such a
way shall still be considered the Standard Version.

3. You may otherwise modify your copy of this Package in any way, provided that
you insert a prominent notice in each changed file stating how and when you
changed that file, and provided that you do at least ONE of the following:

Perl

Third Party Licenses B-31

a. place your modifications in the Public Domain or otherwise make them Freely
Available, such as by posting said modifications to Usenet or an equivalent
medium, or placing the modifications on a major archive site such as
uunet.uu.net, or by allowing the Copyright Holder to include your
modifications in the Standard Version of the Package.

b. use the modified Package only within your corporation or organization.

c. rename any non-standard executables so the names do not conflict with
standard executables, which must also be provided, and provide a separate
manual page for each non-standard executable that clearly documents how it
differs from the Standard Version.

d. make other distribution arrangements with the Copyright Holder.

4. You may distribute the programs of this Package in object code or executable form,
provided that you do at least ONE of the following:

a. distribute a Standard Version of the executables and library files, together with
instructions (in the manual page or equivalent) on where to get the Standard
Version.

b. accompany the distribution with the machine-readable source of the Package
with your modifications.

c. give non-standard executables non-standard names, and clearly document the
differences in manual pages (or equivalent), together with instructions on
where to get the Standard Version.

d. make other distribution arrangements with the Copyright Holder.

5. You may charge a reasonable copying fee for any distribution of this Package. You
may charge any fee you choose for support of this Package. You may not charge a
fee for this Package itself. However, you may distribute this Package in aggregate
with other (possibly commercial) programs as part of a larger (possibly
commercial) software distribution provided that you do not advertise this Package
as a product of your own. You may embed this Package's interpreter within an
executable of yours (by linking); this shall be construed as a mere form of
aggregation, provided that the complete Standard Version of the interpreter is so
embedded.

6. The scripts and library files supplied as input to or produced as output from the
programs of this Package do not automatically fall under the copyright of this
Package, but belong to whoever generated them, and may be sold commercially,
and may be aggregated with this Package. If such scripts or library files are
aggregated with this Package through the so-called "undump" or "unexec"
methods of producing a binary executable image, then distribution of such an
image shall neither be construed as a distribution of this Package nor shall it fall
under the restrictions of Paragraphs 3 and 4, provided that you do not represent
such an executable image as a Standard Version of this Package.

7. C subroutines (or comparably compiled subroutines in other languages) supplied
by you and linked into this Package in order to emulate subroutines and variables
of the language defined by this Package shall not be considered part of this
Package, but are the equivalent of input as in Paragraph 6, provided these
subroutines do not change the language in any way that would cause it to fail the
regression tests for the language.

8. Aggregation of this Package with a commercial distribution is always permitted
provided that the use of this Package is embedded; that is, when no overt attempt

SAXPath

B-32 Developer’s Guide

is made to make this Package's interfaces visible to the end user of the commercial
distribution. Such use shall not be construed as a distribution of this Package.

9. The name of the Copyright Holder may not be used to endorse or promote
products derived from this software without specific prior written permission.

10. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

The End

SAXPath
This program contains third-party code from SAXPath. Under the terms of the
SAXPath license, Oracle is required to provide the following notices. Note, however,
that the Oracle program license that accompanied this product determines your right
to use the Oracle program, including the SAXPath software, and the terms contained
in the following notices do not change those rights. Notwithstanding anything to the
contrary in the Oracle program license, the SAXPath software is provided by Oracle
"AS IS" and without warranty or support of any kind from Oracle or SAXPath.

The SAXPath License
Copyright (C) 2000-2002 werken digital. All rights reserved. Redistribution and
use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list
of conditions, and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions, and the disclaimer that follows these conditions in the
documentation and/or other materials provided with the distribution.

The name "SAXPath" must not be used to endorse or promote products derived from
this software without prior written permission. For written permission, please
contact license@saxpath.org.

Products derived from this software may not be called "SAXPath", nor may "SAXPath"
appear in their name, without prior written permission from the SAXPath Project
Management (pm@saxpath.org).

In addition, we request (but do not require) that you include in the end-user
documentation provided with the redistribution and/or in the software itself an
acknowledgment equivalent to the following: "This product includes software
developed by the SAXPath Project (http://www.saxpath.org/)." Alternatively, the
acknowledgment may be graphical using the logos available at
http://www.saxpath.org/.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE SAXPath
AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

W3C DOM

Third Party Licenses B-33

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions made
by many individuals on behalf of the SAXPath Project and was originally created by
bob mcwhirter and James Strachan . For more information on the SAXPath Project,
please see http://www.saxpath.org/.

W3C DOM
This program contains third-party code from the World Wide Web Consortium
("W3C"). Under the terms of the W3C license, Oracle is required to provide the
following notices. Note, however, that the Oracle program license that accompanied
this product determines your right to use the Oracle program, including the W3C
software, and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the W3C
software is provided by Oracle AS IS and without warranty or support of any kind
from Oracle or W3C.

The W3C License
W3C® SOFTWARE NOTICE AND LICENSE
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
This work (and included software, documentation such as READMEs, or other related
items) is being provided by the copyright holders under the following license. By
obtaining, using and/or copying this work, you (the licensee) agree that you have
read, understood, and will comply with the following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation,
with or without modification, for any purpose and without fee or royalty is hereby
granted, provided that you include the following on ALL copies of the software and
documentation or portions thereof, including modifications:

The full text of this NOTICE in a location viewable to users of the redistributed
or derivative work.
Any pre-existing intellectual property disclaimers, notices, or terms and
conditions. If none exist, the W3C Software Short Notice should be included
(hypertext is preferred, text is permitted) within the body of any redistributed
or derivative code.
Notice of any changes or modifications to the files, including the date changes
were made. (We recommend you provide URIs to the location from which the code is
derived.)
THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or
publicity pertaining to the software without specific, written prior permission.
Title to copyright in this software and any associated documentation will at all
times remain with copyright holders.

W3C DOM

B-34 Developer’s Guide

Index-1

Index

Symbols
<argument> element, A-2
<arguments> element, A-2
<client-module> element, A-2
<connectors> element, A-3
<context-attribute> element, A-8
<data-sources> element, A-3
<description> element, A-3
<ejb-module> element, A-3
<ejb-ref-mapping> element, A-9
<env-entry-mapping> element, A-9
<file> element, A-4
<group> element, A-4
<import-shared-library> element, 3-8, 3-9, 3-11
<init-library> element, 2-2, 2-4
<jazn> element, A-6
<jazn-web-app> element, A-4
<library> element, A-5
<library-directory> element, 1-4, 3-19
<log> element, A-5
<lookup-context> element, A-9
<mail> element, A-6
<mail-session> element, A-6
<namespace-access> element, A-6
<namespace-resource> element, A-6
<odl> element, A-5
<orion-application> element, A-1
<password-manager> element, A-6
<persistence> element, A-6
<principals> element, A-7
<property> element, A-7
<read-access> element, A-7
<resource-env-ref-mapping> element, A-9
<resource-provider> element, A-7
<resource-ref-mapping> element, A-9
<security-role-mapping> element, A-7
<shutdown-class> element, 2-4
<shutdown-classes> element, 2-4
<startup-class> element, 2-2
<startup-classes> element, 2-2
<user> element, A-8
<user-manager> element, A-8
<web-module> element, A-8

A
annotations, 1-3
applib directory, using to share JARs, 3-18
application directory structure, 7-2
application packaging, 7-1
application.xml config file, 7-7

B
bean managed persistence, 8-9

C
class loaders

event tracing, 3-47
troubleshooting errors, 3-42

class loading
overview of, 3-1
queries, 3-22
troubleshooting errors, 3-21

class.load.trace system property, 3-47
cluster, EJB, 8-7
coarse objects, 8-5
container managed persistence, 8-9
container managed relationships, 8-9
cookie, 8-5
country EJB module, 8-8

D
deployed application structure, 7-2
deployment

application packaging, 7-1
EAR and WAR structure, 7-3

deployment descriptors
packaging, 7-4
summary list of, 7-4

E
EAR file structure, 7-3
EJB cluster, 8-7
EJB module, 8-7

Index-2

G
granular objects, 8-5

H
hiding JSP pages (e.g., MVC architecture), 8-2
HTTP tunneling, 5-12

J
J2EE

definition, 1-1
supported APIs, 1-1

J2EE application-level deployment descriptor, 7-7
J2EE deployment descriptors, 7-4
Java logging guidelines, 4-2
JDBC driver

replacing the default, 3-9, 3-11
JDBC driver, replacing the default, 3-8, 3-11
JDK, supported versions, 1-1
JPA extensions, 1-3
JSR-77, OC4J compliance with, 5-1
JVM, 1-1

L
lazy loading, 8-11
local EJB module, 8-7
locking strategies, 8-9
Logger objects, 4-2
logging

log4j (Apache Jakarta Project), config and use, 6-8
ODL, A-5
rollover logging, A-5

logging levels, mapping Java to ODL, 4-2

M
MBeans

accessing, 5-2
application-specific, 5-3
localizing, 5-37
overview, 5-1
registering with MBeanServer, 5-34
remote management of, 5-3
types valid in OC4J, 5-28
using, 5-2

MBeanServer
definition, 5-2
registering MBeans with, 5-34

message facade, 8-9
message-driven EJB module, 8-7
Model-View-Controller, hiding JSP pages, 8-2
MVC architecture, hiding JSP pages, 8-2

O
OC4J

installation, 1-4
shutdown class, 2-1

startup class, 2-1
OC4J application-level descriptor, 7-7
OC4J deployment descriptors, 7-4
OC4JShutdown interface, 2-4
OC4JStartup interface, 2-1, 2-2
ODL, 4-1
optimistic locking, 8-9
Oracle Diagnostic Logging framework, 4-1
orion-application-client.xml file, element

description, A-8
orion-application.xml config file, overview, 7-7
orion-application.xml file, element description, A-1

P
Peek OC4J Runtime Inspector, 3-2
performance

use of pretranslation, 8-2
pessimistic locking, 8-9
postUndeploy method, 2-4
preUndeploy method, 2-4

R
remote EJB module, 8-7

S
session facade, 8-9
session state, 8-4
session timeout, 8-5
shared libraries

declaring dependencies on, 3-16
declaring in application.xml, 3-18
definition, 3-4
installing, 3-14
publishing, 3-15
when to use, 3-13

shutdown class, 2-4
postUndeploy method, 2-4
preUndeploy method, 2-4

startup class
example, 2-3
methods, 2-1

Struts (Apache Jakarta Project), config and use, 6-3
System MBean Browser, 5-2

T
two-phase commit transaction engine, 1-3

V
value object pattern, 8-9

W
WAR file, structure, 7-3

Index-3

X
XML parser, replacing the default, 3-10
XSDs, viewing the latest, 7-4

Index-4

	Contents
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Getting Started with OC4J
	Introduction to OC4J
	J2EE Support in OC4J
	New Features in OC4J
	Support for Web Services
	Support for J2EE 1.4 Application Management and Deployment Specifications
	Support for Oracle Application Server TopLink
	Oracle Job Scheduler
	Two-Phase Commit Transaction Coordinator Functionality
	Generic JMS Resource Adapter Enhancements
	Support for the Enterprise JavaBeans 3.0
	Support for the <library-directory> Element

	Information in the OC4J Documentation Set
	OC4J Installation

	2 Developing Startup and Shutdown Classes
	Developing Startup Classes
	Developing Shutdown Classes

	3 Utilizing the OC4J Class-Loading Framework
	Class Loading in OC4J
	Overview of Class Loading
	Peek Utility for Debugging Class Loaders
	Class Versioning with Shared Libraries in OC4J
	Shared Libraries That Applications Import by Default

	Configuring an Application to Import a Nondefault Version of a Shared Library
	Example: Importing an Earlier Version of the Oracle JDBC Driver
	Example: Configuring an Application to Use a DataDirect JDBC Driver

	Removing or Replacing an Oracle Shared Library Imported by Default
	Example: Replacing the Oracle XML Parser with the Xerces Parser
	Example: Removing an Oracle Shared Library at Deployment Time

	Using a Packaged JAR Instead of an Oracle Shared Library
	Configuring an Application to Use Its Own Shared Library
	Specifying search-local-classes-first at Deployment Time

	Installing and Publishing a Shared Library in OC4J
	When You Should Use a Shared Library
	Options for Installing and Publishing a Shared Library
	How a Shared Library Is Installed and Published in an OC4J Instance

	Configuring an Application to Import a Shared Library
	Declaring Dependencies in an Application's OC4J Deployment Descriptor
	Declaring Dependencies in an Application's Manifest File
	Configuring All Deployed Applications to Import a Specific Shared Library

	Sharing Libraries Using the applib Directory
	Specifying a Library Directory in application.xml
	Using Best Practices for Class Loading
	Troubleshooting Class-Loading Problems in OC4J
	Specifying a Built-In Query
	Specifying a Query in Peek
	Specifying a Query in a Startup Property
	Specifying Queries at Runtime Through the ClassLoading MBean

	Auditing Class Loaders
	How to Audit Class Loaders with Peek
	What Happens When You Audit Class Loaders
	What You May Need to Know About AuditLoader

	Finding Classes That Call a Method
	How to Find Classes That Call a Method with the Callers Query
	What You May Need to Know About Callers

	Monitoring Metrics for Class Loaders
	How to Monitor Metrics for Class Loaders with the ClassLoadMetrics Query
	What You May Need to Know About ClassLoadMetrics

	Listing Code Sources in Use
	Determining the Dependencies of a Class
	Determining Dependent Classes
	Finding Duplicate Classes
	Finding Duplicate Code Sources
	Exiting a Query Process
	Finding a Resource in Code Sources
	How to Use the FindResource Query in Peek
	How to Find a Resource with No Package
	What You May Need to Know About FindResource

	Getting Resources Used by a Class Loader
	Monitoring HTTP Sessions for Deployed Applications
	Detecting Class-Loader Leaks
	Listing Classes Available from a Class Loader
	How to List Classes Available from a Class Loader
	What You May Need to Know About ListClasses

	Listing Queries
	How to List Queries
	What You May Need to Know About ListQueries

	Loading a Class
	How to Use the loadClass Query in Peek
	What Happens When You Use the loadClass Query in Peek
	What You May Need to Know About loadClass

	Listing Loaded Classes
	How to Use the LoadedClasses Query in Peek
	What You May Need to Know About LoadedClasses

	Listing the Contents of a Class-Loader Tree
	How to List the Contents of a Class-Loader Tree with the LoaderTree Query
	What You May Need to Know About LoaderTree
	Viewing a Class-Loader Tree with Peek

	Listing Packages in Code Sources
	Monitoring Replication Statistics
	Listing Installed Shared Libraries and Their Class Loaders
	Listing and Setting System Properties
	Listing Thread-Pool Information
	Listing Thread Information
	Finding Unused Code Sources
	Determining the Uptime for an OC4J Instance
	Monitoring JVM Statistics
	Resolving Class-Loading Exceptions
	ClassNotFoundException
	NoClassDefFoundError
	ClassFormatError
	LinkageError
	ClassCastException

	Tracing Class-Loading Events to Help Troubleshoot Issues
	Using Filters to Manage Trace Output

	Setting Class-Loader Log Levels

	4 Logging Implementation Guidelines
	Overview of the Java and Oracle Logging Frameworks
	The Java Logging Framework
	The Oracle Diagnostic Logging Framework
	How Java Logging and Oracle Diagnostic Logging Work Together

	Java Logging Guidelines
	Naming Java Loggers
	Setting Log Levels
	Adding Localization Support

	Configuring Java Loggers to Use the ODL Framework
	Using Oracle HTTPClient Logging
	Enabling HTTPClient Logging with the ODL Framework
	Enabling HTTPClient Logging for Standalone OC4J or a Client-Side Application with a System Property
	Enabling HTTPClient Logging for an OC4J Instance or Group in Oracle Application Server with a System Property

	5 Using MBeans for Management
	Overview of MBeans
	Accessing MBeans from Within Application Server Control
	Accessing OC4J MBeans Using the System MBean Browser
	Accessing Cluster MBeans Using the Cluster MBean Browser
	Accessing Application-Specific MBeans

	Accessing MBeans From a Client Application
	Prerequisite: Add User to Security Group
	Remote Management Using the JMX Remote API (JSR-160)
	Connecting to the OC4J MBeanServer
	Connecting to an Application-Specific MBean Server
	Connecting to a Specific Application’s JMX Domain
	Setting the JMX Service URI for an OPMN-Managed OC4J Instance
	Setting a Secure JMX Service URI for an OPMN-Managed OC4J Instance
	Setting the JMX Service URI for a Standalone OC4J Instance
	Setting a Secure JMX Service URI for a Standalone OC4J Instance
	Setting a Locale
	Enabling HTTP Tunneling

	Remote Management Using the Management EJB (JSR-77)
	Accessing the MEJB from a J2EE Application Client
	Accessing the MEJB from a Servlet or EJB

	MBean Usage Examples
	Prerequisites
	Standalone OC4J Examples
	Changing Thread Pool Properties
	Stopping an OC4J Server
	Adding a Managed Data Source
	Updating Data Source Connection Pool Properties

	Group-Based Examples
	Listing the J2EE Servers that are Part of a Group
	Adding a Managed Data Source to a Group of OC4J Instances
	Provisioning Users to a Group of OC4J Instances

	Providing Application-Specific MBeans
	Writing an Application-Specific MBean
	Types of MBeans Supported by OC4J
	Unsupported Methods in JMX MBeanServer and MBeanServerConnection Interfaces
	Sample MBean

	Packaging Your MBeans for Deployment
	Defining MBeans in orion-application.xml
	Initializing MBean Attributes

	Registering Your MBeans with the OC4J MBeanServer
	Defining MBeans in an Application Descriptor
	Defining MBeans in a Deployment Plan
	Programmatically Registering MBeans Through Application Code

	Adding Localization Support to MBeans
	Localization Support Provided by Oracle
	Using Resource Bundles to Localize MBean Metadata
	Adding Localization Support to Your MBeans

	6 Working with Open Source Frameworks
	Installing Open Source Libraries in OC4J
	Removing Imported Oracle Shared Libraries to Avoid Conflicts
	Using Jakarta Struts
	Overview of Jakarta Struts
	Struts Support in Oracle JDeveloper
	Access to the Struts Binary Distribution

	Using the Spring Framework
	Overview of the Spring Framework
	Oracle TopLink Support in Spring 1.2
	The Spring Framework Distribution

	Using Apache MyFaces
	Overview of MyFaces
	Accessing the MyFaces Distribution
	Building JSPs Using MyFaces for Deployment to OC4J
	JDeveloper Support for MyFaces

	Using Hibernate
	Accessing the Hibernate Binaries
	Using Hibernate with Applications in OC4J

	Using Apache Axis
	Accessing the Axis Distribution
	Using the Xerces XML Parser
	Using Oracle-Based and Axis-Based Web Services in OC4J

	Configuring and Using Jakarta log4j
	Overview of Jakarta log4j
	Downloading the log4j Binary Distribution
	Using log4j Configuration Files
	Using the Default Files for Automatic log4j Configuration
	Using Alternative Files for Automatic log4j Configuration
	Programmatically Specifying External Configuration Files

	Enabling log4j Debug Mode in OC4J

	Using JAX-WS RI
	Downloading the JAX-WS RI Package
	Publishing JAX-WS RI Files to OC4J As a Shared Library
	Importing the JAX-WS RI Shared Library into an Application

	7 Packaging and Testing Applications
	Overview of J2EE Application Packaging
	J2EE Application Structure Within OC4J
	Application Module (EAR File and WAR File) Structures
	Sample EAR File
	Sample WAR File

	Packaging Deployment Descriptors
	Deployment Descriptors Overview
	Packaging a J2EE Standard Application Descriptor (application.xml)
	Packaging an OC4J-Specific Application Descriptor (orion-application.xml)

	8 Using J2EE Best Practices
	JavaServer Pages Best Practices
	Beware of HTTP Sessions
	Avoid Using HTTP Sessions
	Always Invalidate Sessions When No Longer in Use

	Pretranslate JSP Pages Using the ojspc Utility
	Unbuffer JSP Pages
	Forward to JSP Pages Instead of Using Redirects
	Hide JSP Pages from Direct Invocation to Limit Access
	Use JSP-Timeout for Efficient Memory Utilization
	Package JSP Files in an EAR File for Deployment

	Class-Loading Best Practices
	Sessions Best Practices
	Persist Session State If Appropriate
	Do Not Store Shared Resources in Sessions
	Set Session Timeout Appropriately
	Monitor Session Memory Usage
	Use a Mix of Cookies and Sessions
	Use Coarse Objects Inside HTTP Sessions
	Use Transient Data in Sessions Whenever Appropriate
	Invalidate Sessions
	Miscellaneous Guidelines

	Enterprise JavaBeans Best Practices
	Use Local, Remote, and Message-Driven EJB Modules When Appropriate
	Use EJB modules Judiciously
	Use a Service Locator Pattern
	Cluster Your EJB modules
	Index Secondary Finder Methods
	Understand the Life Cycle of an EJB Modules
	Use Deferred Database Constraints
	Create a Cache with Read-Only EJB Modules
	Pick an Appropriate Locking Strategy
	Understand and Leverage Patterns
	When Using Entity Beans, Use Container-Managed Aged Persistence Whenever Possible
	Entity Beans Using Local interfaces Only
	Use a Session Bean Facade for Entity Beans
	Enforce Primary Key Constraints at the Database Level
	Use a Foreign Key for 1-1 or 1-M Relationships
	Avoid the findAll() Method on Entities Based on Large Tables
	Set prefetch-size to Reduce Round Trips to Database
	Use Lazy Loading with Caution
	Avoid Performing O-R Mapping Manually

	A OC4J-Specific Deployment Descriptors
	Elements in the orion-application.xml File
	Elements in the orion-application-client.xml File

	B Third Party Licenses
	ANTLR
	The ANTLR License

	Apache
	The Apache Software License

	Apache SOAP
	Apache SOAP License

	DBI Module
	Perl Artistic License
	Preamble
	Definitions

	FastCGI
	FastCGI Developer's Kit License
	Module mod_fastcgi License

	Info-ZIP Unzip Package
	The Info-ZIP Unzip Package License

	JSR 110
	Jaxen
	The Jaxen License

	JGroups
	The GNU License

	mod_mm and mod_ssl
	OpenSSL
	OpenSSL License

	Perl
	Perl Kit Readme
	mod_perl 1.29 License
	mod_perl 1.99_16 License
	Perl Artistic License
	Preamble
	Definitions

	SAXPath
	The SAXPath License

	W3C DOM
	The W3C License

	Index
	Symbols
	A
	B
	C
	D
	E
	G
	H
	J
	L
	M
	O
	P
	R
	S
	T
	V
	W
	X

